724 research outputs found

    Membrane-Bound Complement Regulatory Proteins in Breast Cancer: Are they Best Therapeutic Targets?

    Get PDF
    Breast cancer is one of the most aggressive diseases in women, responsible for thousands of deaths annually and millions of new diagnoses; its treatment presents multiple obstacles due to late diagnosis and the various mechanisms of tumor resistance. In breast cancer the membrane-bound complement regulatory proteins (mCRP) have been proposed as biomarkers of malignant cellular transformation. These are molecules capable of inhibiting therapeutic efficacy, from both antibodies and cytotoxic drugs. Therefore, these proteins are potential targets to increase therapeutic efficacy and avoid cancer progression. We will gather information about mCRP: (i) structural features; (ii) expression levels in breast cancer and relationship with prognosis; (iii) therapeutic resistance mechanisms; and (iv) strategies to down-regulate mCRP in both activity and expression

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    HARMONI at ELT: overview of the capabilities and expected performance of the ELT's first light, adaptive optics assisted integral field spectrograph.

    No full text
    International audienc

    Additional file 4 of Worldwide clinical practices in perioperative antibiotic therapy for lung transplantation

    No full text
    Additional file 4. Answers to Case 2

    Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer

    No full text
    International audienc

    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H??????? and H???ZZ*???4??? Decay Channels at s\sqrt{s}=8??????TeV with the ATLAS Detector

    No full text
    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3~fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3  fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8  TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ*→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3 (stat)±1.6 (syst)  pb. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger.Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger
    corecore