172 research outputs found

    Examining the role of smart TVs and VR HMDs in synchronous at-a-distance media consumption

    Get PDF
    This article examines synchronous at-a-distance media consumption from two perspectives: How it can be facilitated using existing consumer displays (through TVs combined with smartphones), and imminently available consumer displays (through virtual reality (VR) HMDs combined with RGBD sensing). First, we discuss results from an initial evaluation of a synchronous shared at-a-distance smart TV system, CastAway. Through week-long in-home deployments with five couples, we gain formative insights into the adoption and usage of at-a-distance media consumption and how couples communicated during said consumption. We then examine how the imminent availability and potential adoption of consumer VR HMDs could affect preferences toward how synchronous at-a-distance media consumption is conducted, in a laboratory study of 12 pairs, by enhancing media immersion and supporting embodied telepresence for communication. Finally, we discuss the implications these studies have for the near-future of consumer synchronous at-a-distance media consumption. When combined, these studies begin to explore a design space regarding the varying ways in which at-a-distance media consumption can be supported and experienced (through music, TV content, augmenting existing TV content for immersion, and immersive VR content), what factors might influence usage and adoption and the implications for supporting communication and telepresence during media consumption

    Data compression and transmission aspects of panoramic videos

    Get PDF
    Panoramic videos are effective means for representing static or dynamic scenes along predefined paths. They allow users to change their viewpoints interactively at points in time or space defined by the paths. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission. They also make real-time decoding computationally very intensive. This paper proposes efficient data compression and transmission techniques for panoramic videos. A high-performance MPEG-2-like compression algorithm, which takes into account the random access requirements and the redundancies of panoramic videos, is proposed. The transmission aspects of panoramic videos over cable networks, local area networks (LANs), and the Internet are also discussed. In particular, an efficient advanced delivery sharing scheme (ADSS) for reducing repeated transmission and retrieval of frequently requested video segments is introduced. This protocol was verified by constructing an experimental VOD system consisting of a video server and eight Pentium 4 computers. Using the synthetic panoramic video Village at a rate of 197 kb/s and 7 f/s, nearly two-thirds of the memory access and transmission bandwidth of the video server were saved under normal network traffic.published_or_final_versio

    Telepresence learning environments for opera singing, a case study

    Get PDF
    The present study analyzes the data obtained in the execution of the Opera eLearning project, a multidisciplinary effort to develop a solution for Opera singing distance lessons at the graduate level, using high bandwidth to deliver quality audio and video experience that has been evaluated by singing teachers, chorus and orchestra directors, singers and other professional musicians. The research work includes the phases of design, execution and evaluation of pilot tests, followed by further development and execution of several experimental exercises with the system, all of them carried out between July 2008 and April 2009. This is an empirical research, an exploratory case study that has provided enough data to arrive to a sustainable model for a telepresence learning environment. Different usability methods have been implemented in order to assure users of the quality of the product. The main objective is to prove whether the system or artifact proposed can be used to deliver a complete remote singing class at a higher education level; for that purpose, we have defined several research categories that describe the usability of the system in multiple dimensions. We have used “design as research” approaches to promote innovation in the technological area. The theoretical framework is based on a wide variety of fields; from acoustics, physics, music, professional singing to telecommunications and multimedia technology. However, the common thread and central issue under analysis is distance education, through the construction of a remote learning system. We have also included the corresponding justification of the scientific methodology employedEl presente estudio analiza los datos obtenidos en la ejecución del proyecto Opera eLearning, un esfuerzo multidisciplinario para desarrollar una solución que permita dar clases a distancia de canto lírico a nivel de educación superior, utilizando conexiones de banda ancha con el fin de proveer una experiencia de vídeo y audio de calidad, la que ha sido evaluada por profesores de canto, directores de coros y orquesta, cantantes y otros músicos profesionales. El trabajo de investigación incluye las fases de diseño, ejecución y evaluación de las pruebas piloto, seguido del posterior desarrollo y ejecución de varios ejercicios experimentales con el sistema, todos ellos efectuados entre Julio de 2008 y Abril de 2009. Esta es una investigación empírica, un caso de estudio exploratorio que ha obtenido datos suficientes como para definir un modelo sostenible de entorno de enseñanza por telepresencia. Diversos métodos de usabilidad fueron implementados con el fin de asegurar a los usuarios la calidad del producto. El objetivo principal es probar si el sistema o artefacto propuesto puede ser usado para realizar de modo remoto una clase completa de canto lírico a nivel de educación superior; con tal propósito, hemos definido varias categorías de investigación que describen la usabilidad del sistema en múltiples dimensiones. Hemos utilizado el enfoque de “diseño como investigación” para promover la innovación en el área tecnológica. El marco teórico se basa en una amplia variedad de campos; desde la acústica, la física, la música, el canto profesional hasta las telecomunicaciones y tecnología multimedia. Sin embargo, el hilo común y tema central bajo análisis es la educación a distancia, ya que se trata de la construcción de un sistema de aprendizaje remoto. También se he incluido la justificación correspondiente a la metodología científica empleada

    Diseño de un robot móvil autónomo de telepresencia

    Get PDF
    The recent rise in tele-operated autonomous mobile vehicles calls for a seamless control architecture that reduces the learning curve when the platform is functioning autonomously (without active supervisory control), as well as when tele-operated. Conventional robot plat-forms usually solve one of two problems. This work develops a mobile base using the Robot Operating System (ROS) middleware for teleoperation at low cost. The three-layer architec-ture introduced adds or removes operator complexity. The lowest layer provides mobility and robot awareness; the second layer provides usability; the upper layer provides inter-activity. A novel interactive control that combines operator intelligence/ skill with robot/autonomous intelligence enabling the mobile base to respond to expected events and ac-tively react to unexpected events is presented. The experiments conducted in the robot laboratory summarises the advantages of using such a system.El reciente auge de los vehículos móviles autónomos teleoperados exige una arquitectura de control sin fisuras que reduzca la curva de aprendizaje cuando la plataforma funciona de forma autónoma (sin control de supervisión activo), así como cuando es teleoperada. Las plataformas robóticas convencionales suelen resolver uno de los dos problemas. Este tra-bajo desarrolla una base móvil que utiliza el middleware Robot Operating System (ROS) para la teleoperación a bajo coste. La arquitectura de tres capas introducida añade o elimina la complejidad del operador. La capa más baja proporciona movilidad y conciencia robótica; la segunda capa proporciona usabilidad; la capa superior proporciona interactividad. Se presenta un novedoso control interactivo que combina la inteligencia/habilidades del op-erador con la inteligencia autónoma del robot, lo que permite que la base móvil responda a los eventos esperados y reaccione activamente a los eventos inesperados. Los experi-mentos realizados en el laboratorio robótica resumen las ventajas de utilizar un sistema de este tipoDepartamento de Ingeniería de Sistemas y AutomáticaMáster en Electrónica Industrial y Automátic

    Multisensory wearable interface for immersion and telepresence in robotics

    Get PDF
    The idea of being present in a remote location has inspired researchers to develop robotic devices that make humans to experience the feeling of telepresence. These devices need of multiple sensory feedback to provide a more realistic telepresence experience. In this work, we develop a wearable interface for immersion and telepresence that provides to human with the capability of both to receive multisensory feedback from vision, touch and audio and to remotely control a robot platform. Multimodal feedback from a remote environment is based on the integration of sensor technologies coupled to the sensory system of the robot platform. Remote control of the robot is achieved by a modularised architecture, which allows to visually explore the remote environment. We validated our work with multiple experiments where participants, located at different venues, were able to successfully control the robot platform while visually exploring, touching and listening a remote environment. In our experiments we used two different robotic platforms: the iCub humanoid robot and the Pioneer LX mobile robot. These experiments show that our wearable interface is comfortable, easy to use and adaptable to different robotic platforms. Furthermore, we observed that our approach allows humans to experience a vivid feeling of being present in a remote environment

    Immersive Telerobotic Modular Framework using stereoscopic HMD's

    Get PDF
    Telepresença é o termo utilizado para descrever o conjunto de tecnologias que proporcionam aos utilizadores a sensação de que se encontram num local onde não estão fisicamente. Telepresença imersiva é o próximo passo e o objetivo passa por proporcionar a sensação de que o utilizador se encontra completamente imerso num ambiente remoto, estimulando para isso o maior número possível de sentidos e utilizando novas tecnologias tais como: visão estereoscópica, visão panorâmica, áudio 3D e Head Mounted Displays (HMDs).Telerobótica é um sub-campo da telepresença ligando a mesma à robótica, e que essencialmente consiste em proporcionar ao utilizador a possibilidade de controlar um robô de forma remota. Nas soluções do estado da arte da telerobótica existe uma falha, uma vez que a telerobótica não tem usufruido, no geral, das recentes evoluções em tecnologias de controlo e interfaces de interação pessoa- computador. Além da falta de estudos que apostam em soluções de imersividade, tais como visão estereoscópica, a telerobótica imersiva pode também incluir controlos mais intuitivos, tais como controladores de toque ou baseados em movimentos e gestos. Estes controlos são mais naturais e podem ser traduzidos de forma mais natural no sistema. Neste documento propomos uma abordagem alternativa a métodos mais comuns encontrados na teleoperação de robôs, como, por exemplo, os que se encontram em robôs de busca e salvamento (SAR). O nosso principal foco é testar o impacto que características imersivas, tais como visão estereoscópica e HMDs podem trazer para os robôs de telepresença e sistemas de telerobótica. Além disso, e tendo em conta que este é um novo e crescente campo, vamos mais além estando também a desenvolver uma framework modular que possuí a capacidade de ser extendida com diferentes robôs, com o fim de proporcionar aos investigadores uma plataforma com que podem testar diferentes casos de estudo.Pretendemos provar que adicionando tecnologias imersivas a um sistema de telerobótica é possível obter uma plataforma mais intuitiva, ou seja, menos propensa a erros induzidos por uma perceção e interação errada com o sistema de teleoperação do robô, por parte do operador. A perceção de profundidade e do ambiente em geral são significativamente melhoradas quando se utiliza esta solução de imersão. E o desempenho, tanto em tempo de operação numa tarefa como numa bem-sucedida identificação de objetos de interesse, é também reforçado. Desenvolvemos uma plataforma modular, de baixo/médio custo, de telerobótica imersiva que pode ser estendida com aplicações Android hardware-based no lado do robô. Esta solução tem por objetivo proporcionar a possibilidade de utilizar a mesma plataforma, em qualquer tipo de caso de estudo, estendendo a plataforma com diferentes tipos de robô. Em adição a uma framework modular e extensível, o projeto conta também com três principais módulos de interação, nomeadamente: - Módulo que contém um head mounted display com suporte a head tracking no ambiente do operador - Stream de visão estereoscópica através de Android - E um módulo que proporciona ao utilizador a possibilidade de interagir com o sistema com positional tracking No que respeita ao hardware não apenas a área móvel (e.g. smartphones, tablets, arduino) expandiu de forma avassaladora nos últimos anos, como também assistimos ao despertar de tecnologias de imersão a baixo custo, tais como o Oculus Rift, Google Cardboard ou Leap Motion.Estas soluções de hardware, de custo acessível, associadas aos avanços em stream de vídeo e áudio fornecidas pelas tecnologias WebRTC, principalmente pelo Google, tornam o desenvolvimento de uma solução de software em tempo real possível. Atualmente existe uma falta de métodos de software em tempo real em estereoscopia, mas acreditamos que a chegada de tecnologias WebRTC vai marcar o ponto de viragem, permitindo um plataforma económica e elevando a fasquia em termos de especificações.Telepresence is the term used to describe the set of technologies that enable people to feel or appear as if they were present in a location which they are not physically in. Immersive telepresence is the next step and the objective is to make the operator feel like he is immersed in a remote location, using as many senses as possible and new technologies such as stereoscopic vision, panoramic vision, 3D audio and Head Mounted Displays (HMDs).Telerobotics is a subfield of telepresence and merge it with robotics, providing the operator with the ability to control a robot remotely. In the current state of the art solutions there is a gap, since telerobotics have not enjoyed, in general, of the recent developments in control and human-computer interfaces technology. Besides the lack of studies investing on immersive solutions, such as stereoscopic vision, immersive telerobotics can also include more intuitive control capabilities such as haptic based controls or movement and gestures that would feel more natural and translated more naturally into the system. In this paper we propose an alternative approach to common teleoperation methods. As an example of common solutions, the reader can think about some of the methods found, for instance, in search and rescue (SAR) robots. Our main focus is to test the impact that immersive characteristics like stereoscopic vision and HMDs can bring to telepresence robots and telerobotics systems. Besides that, and since this is a new and growing field, we are also aiming to a modular framework capable of being extended with different robots in order to test different cases and aid researchers with an extensible platform.We claim that with immersive solutions the operator in a telerobotics system will have a more intuitive perception of the remote environment, and will be less error prone induced by a wrong perception and interaction with the teleoperation of the robot. We believe that the operator's depth perception and situational awareness are significantly improved when using immersive solutions, the performance both in terms of operation time and on successful identification, of particular objects, in remote environments are also enhanced.We have developed a low cost immersive telerobotic modular platform, this platform can be extended with hardware based Android applications in slave side (robot side). This solution provides the possibility of using the same platform, in any type of case study, by just extending it with different robots.In addition to the modular and extensible framework, the project will also features three main modules of interaction, namely:* A module that supports an head mounted display and head tracking in the operator environment* Stream of stereoscopic vision through Android with software synchronization* And a module that enables the operator to control the robot with positional tracking In the hardware side not only the mobile area (e.g. smartphones, tablets, arduino) expanded greatly in the last years but we also saw the raise of low cost immersive technologies, like the Oculus Rift DK2, Google Cardboard or Leap Motion. This cost effective hardware solutions associated with the advances in video and audio streaming provided by WebRTC technologies, achieved mostly by Google, make the development of a real-time software solution possible. Currently there is a lack of real-time software methods in stereoscopy, but the arrival of WebRTC technologies can be a game changer.We take advantage of this recent evolution in hardware and software in order to keep the platform economic and low cost, but at same time raising the flag in terms of performance and technical specifications of this kind of platform

    3D panoramic imaging for virtual environment construction

    Get PDF
    The project is concerned with the development of algorithms for the creation of photo-realistic 3D virtual environments, overcoming problems in mosaicing, colour and lighting changes, correspondence search speed and correspondence errors due to lack of surface texture. A number of related new algorithms have been investigated for image stitching, content based colour correction and efficient 3D surface reconstruction. All of the investigations were undertaken by using multiple views from normal digital cameras, web cameras and a ”one-shot” panoramic system. In the process of 3D reconstruction a new interest points based mosaicing method, a new interest points based colour correction method, a new hybrid feature and area based correspondence constraint and a new structured light based 3D reconstruction method have been investigated. The major contributions and results can be summarised as follows: • A new interest point based image stitching method has been proposed and investigated. The robustness of interest points has been tested and evaluated. Interest points have been proved robust to changes in lighting, viewpoint, rotation and scale. • A new interest point based method for colour correction has been proposed and investigated. The results of linear and linear plus affine colour transforms have proved more accurate than traditional diagonal transforms in accurately matching colours in panoramic images. • A new structured light based method for correspondence point based 3D reconstruction has been proposed and investigated. The method has been proved to increase the accuracy of the correspondence search for areas with low texture. Correspondence speed has also been increased with a new hybrid feature and area based correspondence search constraint. • Based on the investigation, a software framework has been developed for image based 3D virtual environment construction. The GUI includes abilities for importing images, colour correction, mosaicing, 3D surface reconstruction, texture recovery and visualisation. • 11 research papers have been published.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance

    Utilization of viewer location based projection effects on ODV video display in CAVE like environments

    Get PDF
    The thesis work provides an overview of the CAVE-like virtual environments by describing and comparing different kinds of virtual environments and the technologies behind them. It provides through information about presence, immersion and user experience of a virtual environment. It also explains the concept of omni directional videos, which are used in CAVE virtual environment. The study involves a CAVE-like virtual environment hardware setup situated at University of Tampere. The system is evaluated by conducting an experiment where the participants are viewing objects in omni directional (360-degree) videos (ODV). The participants were asked to perform certain tasks within virtual environments. The study objective is to understand how adjusting virtual camera parameters based on the user’s physical head location effects the user experience of viewing 360-degree videos in a CAVE-like environment. Three conditions are tested which are termed as scaling conditions. In each scaling condition, the virtual camera moved differently based on the user’s head movements. The results are collected through questionnaires, observations and interviews. The questionnaire data is compiled using statistical analysis. The results describe the overall user experience of CAVE-like virtual environment, the level of immersion and presence felt by the user and any possible cyber-sickness. The study conducted paves way to explore different dimensions of CAVE-based ODV viewing and how to improve it
    corecore