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Abstract 

Telepresence is the term used to describe the set of technologies that enable people to feel or 

appear as if they were present in a location which they are not physically in. Immersive 

telepresence is the next step and the objective is to make the operator feel like he is immersed in 

a remote location, using as many senses as possible and new technologies such as stereoscopic 

vision, panoramic vision, 3D audio and Head-Mounted Displays (HMDs). 

Telerobotics is a subfield of telepresence and merge it with robotics, providing the operator with 

the ability to control a robot remotely. In the state-of-the-art solutions there is a lack of studies 

investing on immersive solutions, such as stereoscopic vision. Immersive telerobotics can also 

include more intuitive control capabilities such as haptic-based controls or movement and 

gestures that would feel more natural and translated more naturally into the system. 

 

In this thesis we propose an alternative approach to common teleoperation methods such as some 

of the methods found, for instance, in search and rescue (SAR) robots.  

We claim that immersive solutions increase depth perception and situational awareness, the 

operator in a telerobotics system will be less error-prone and have better performance both in 

terms of operation time and on successful identification, of particular objects, in remote 

environments. 

 

Our main focus was to test the impact that immersive characteristics like stereoscopic vision and 

HMDs can bring to the control of robots from a distance (telepresence robots) and telerobotics 

systems. Besides that, and since this is a new and growing field, we were also aiming at a low-

cost modular framework capable of being extended with hardware-based Android applications in 

slave side (robot side), providing the ability to use different robots in order to test different cases 

and aid researchers with an extensible platform. 

The expansion of technologies in different areas, such as mobile (e.g. smartphones, tablets, 

arduino), low-cost immersive solutions like Oculus Rift DK2 and web-based technologies like 

WebRTC and WebGL turns possible the development of a real-time software solution. 

A pratical experiment has been performed where the majority of participants had improvements 

(80%) with stereo vision in a visual search task. A significant increase regarding distances 
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between objects were also observed. The results and feedback regarding the head tracking were 

also very positive. 

 

Keywords: Stereoscopics, Telerobotics, WebRTC, WebGL, Immersive Telepresence, Robotics, 

Android 
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Resumo 

Telepresença é o termo utilizado para descrever o conjunto de tecnologias que proporcionam aos 

utilizadores a sensação de que se encontram num local onde não estão fisicamente. Telepresença 

imersiva é o próximo passo e o objetivo passa por proporcionar a sensação de que o utilizador se 

encontra completamente imerso num ambiente remoto, estimulando para isso o maior número 

possível de sentidos e utilizando novas tecnologias tais como: visão estereoscópica, visão 

panorâmica, áudio 3D e Head-Mounted Displays (HMDs). 

Tele-robótica é um sub-campo da telepresença ligando esta à robótica, e que essencialmente 

consiste em proporcionar ao utilizador a possibilidade de controlar um robô de forma remota.  

Nas soluções do estado da arte da tele-robótica existe uma falta de estudos a apostar em soluções 

de imersividade, tais como visão estereoscópica. A tele-robótica imersiva pode também incluir 

controlos mais intuitivos, tais como controladores de toque ou baseados em movimentos e gestos. 

Estes controlos são mais naturais e podem ser traduzidos de forma mais natural no sistema.  

 

Neste documento propomos uma abordagem alternativa a métodos mais comuns encontrados na 

teleoperação de robôs, como, por exemplo, os que se encontram em robôs de busca e salvamento 

(SAR).  

Pretendemos provar que soluções imersivas melhoram a perceção de profundidade e do ambiente 

em geral, e que o operador num sistema de tele-robótica imersiva estará menos propenso a erros 

e terá um melhor desempenho tanto em termos de eficácia como numa bem sucedida identificação 

de objectos de interesse num ambiente remoto.  

 

O nosso principal foco foi testar o impacto que características imersivas, tais como visão 

estereoscópica e HMD’s podem trazer para os robôs de telepresença e sistemas de tele-robótica. 

Além disso, e tendo em conta que este é um novo e crescente campo, também desenvolvemos 

uma framework modular e de baixo custo que possui a capacidade de ser estendida com diferentes 

robôs, com o fim de proporcionar aos investigadores uma plataforma com que podem testar 

diferentes casos de estudo.  

A expansão de tecnologias em diferentes áreas, tais como a área móvel (e.g. smartphones, tablets, 

arduino), tecnologias de imersão de baixo custo como o Oculus Rift DK2 e tecnologias baseadas 
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na web, tais como WebRTC e WebGL, tornam possível o desenvolvimento de uma solução em 

tempo-real baseada em software. 

Uma experiência foi realizada onde a maioria dos participantes obteve melhorias significat ivas 

(80%) com a visão estereoscópica em tarefas de busca visual. Também foi observado um aumento 

significativo em relação à identificação relativa de distâncias entre objectos. Os resultados e 

comentários em relação ao head tracking foram também bastante positivos. 

 

Palavras-Chave: Estereoscopia, Tele-robótica, WebRTC, WebGL, Telepresença Imersiva, 

Robótica, Android 
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The individual has always had to struggle to 

keep from being overwhelmed by the tribe. If 

you try it, you will be lonely often, and 

sometimes frightened. But no price is too high 

to pay for the privilege of owning yourself. 

 

Friedrich Nietzsche 
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Introduction 

 

Chapter 1 

 

 

Introduction 

The main objective in the research field of immersive telepresence is to provide the user with the 

ability to interact with the remote environment through movements and gestures, making the most 

to increase the sense of immersion on the remote environment or simulated system. When the 

fidelity of perception through these systems is equivalent to an in-situ observation from the user, 

the ultimate desired experience is the same as being in that location. 

 

Telerobotics is a sub-field of telepresence that brings robotics to the telepresence, allowing the 

user to control robots at distance. There are a wide variety of situations were the human being 

would significantly gain from being remotely immersed in a location through a telerobotic system, 

for instance to provide safer work environments, to aid in search and rescue (SAR), patrolling and 

surveillance missions, space exploration and to visit points of interest remotely in a new concept 

of tourism. 

In order to create a more immersive solution we need to stimulate the largest number of possible 

senses, being the most crucial the sense of sight. Humans use different cues to achieve 3D scene 

perception, such as accommodation, convergence, perspective, binocular disparity, motion 

parallax, and a lot more. Various stereoscopic vision techniques are used in order to enrich the 

immersion in many digital imaging areas, such as cinema, gaming and virtual reality. To provide 

stereo vision, and the perspective of depth (stereopsis) [StDisp09], two cameras, displaced 

horizontally one from another, are used to obtain two different views on a scene, in a similar way 

to the human binocular vision. 
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With this thesis we aim to test the impact that immersive characteristics, like stereoscopic vision, 

head tracking, positional tracking and Head Mounted Displays (HMD’s), can bring to 

telepresence and telerobotics systems. Besides that, and since this is a new and growing field, we 

also aim at the creation of a modular platform. With this solution we want to provide the 

possibility of using the same platform, in any type of case study, by just extending the platform 

with different robots. 

 

The project being developed is an immersive telerobotics platform that consists of a modular 

framework extensible with hardware-based Android applications. The platform will be connected 

to an HMD with a separate video source, in front of each eye, in order to achieve a stereoscopic 

effect. In terms of robot control, the user will be able to move the robot with head tracking and 

positional tracking, while immersed in the remote environment. 

 

In the following sections, the context, definition of the problem, motivation and objectives will 

be presented. 

1.1 Context 

This document was produced as part of a MSc Thesis in Informatics and Computing Engineering, 

from the Faculty of Engineering of University of Porto. And aims to describe the work done 

throughout the dissertation as well as present tests and results obtained. 

The term “Telepresence” dates from 1980, by the cognitive scientist Marvin Minsky [TelePrs]. 

However, as in many other areas of science and technology, the first references to the concept of 

telepresence appeared in science fiction. According to Marvin Minsky himself his first sight of a 

remotely operated mechanism originated in the prophetic novel by Robert A. Heinlein, “Waldo”,  

1948. In his science fiction story, Heinlein mentioned a primitive telepresence solution based on 

a master-slave manipulation system. 

 

Small ground robots, such as the PackBot and TALON, have been widely used by warfighters to 

hunt for terrorists and perform all types of reconnaissance duties [RT12]. Search and rescue robots 

have been used since the September 11 attacks at World Trade Center, in the aftermath of disasters 

(natural and otherwise) and building collapses. While they have definite benefits, such as being 

able to get into spaces that human or canine rescuers might find too difficult or dangerous to 

reach, they are currently expensive and complicated to use. Dr. Julie Adams, a professor at 

Vanderbilt who studies human-robot interactions, says that using robots in search and rescue 

usually requires the presence of maybe four human experts to one robot, making the cost of using 

robots relatively high compared to the benefit they provide.  
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Immersive solutions have been kept away from these tele-operated robots because of technology 

limitations and cost. However in recent years there has been a great evolution of mobile platforms 

(e.g., smartphones, tablets, Arduino, etc ...) and mobile robotics. We are also currently witnessing 

a growing explosion that makes immersive technologies, such as HMDs (Head Mounted 

Displays), touchless and gesture interaction technologies, affordable. All these facts put together 

make it possible to develop immersive telepresence solutions in robotics, emerging as a new area 

called Immersive Telerobotics. These cost-effective hardware solutions associated with the 

advances in video and audio streaming, provided by WebRTC technologies, achieved mostly by 

Google, and 3D/2D rendering and image processing provided by Web Graphics Library (WebGL) 

make the development of a real-time software solution possible. Currently there is a lack of real-

time software methods in stereoscopy, but the arrival of WebRTC technologies can be a game 

changer. 

 

As a conclusion, not only we believe that with a more immersive interface the need for special 

formed operators will fade, but the integration of immersive modules in these robots will also 

benefit the operator, with a more intuitive perception of the remote environment, making the 

operator less error prone induced by a wrong perception and interaction with the teleoperation of 

the robot. 

 

The development of this project aims to test and evaluate the impact that stereoscopy with head 

tracking can have in tele-operated robots and, since this is a new field that certainly will grow in 

the time to come, we are aiming at a modular platform to help researchers in the areas of 

immersive telepresence and telerobotics to test their case studies, saving time and money that 

would go to creating a specific platform, and benefiting from the time saved to focus on the core 

issues of their study. 

1.2 Project 

The project described here concerns a low / medium cost platform for immersive telerobotics 

which first aims to be used in a set of ambient controlled tests, in order to evaluate the impact that 

stereoscopy would have in tele-operated robots.  

A second goal is to make the platform available to researchers in immersive telepresence and 

telerobotics field, developing a modular and extensible framework with hardware-based software 

in the slave side (i.e. remote robot) that would meet the inherent requirements of the case study 

that the researcher aims for. From these requirements comes the motivation to develop this 

project. 
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Our platform will consist of three major modules: 

 A module that supports a head mounted display and head tracking in the operator 

environment 

 Stream of stereoscopic vision through Android with software synchronization 

 And a module that enables the operator to control the robot with positional tracking 

 

Our aim with these modules is to provide the operator with a robust solution in terms of 

immersiveness in the remote environment. 

 

The framework can be extended with any robot. If the researcher chooses an Android compatible 

robot there is no need to be an expert in electronics. However, if the researcher decides to choose 

a more low-cost approach, the framework can also be extended using an integrated circuit board 

(e.g. Android IOIO, Arduino MEGA ADK) which can easily be attached to any robot or even to 

a remotely controlled vehicle. 

 

1.3 Motivation and Objectives 

State of the art studies in telepresence/telerobotics lack a focus on evaluating the impact that 

immersive elements could have in telerobotics. 

As proved in [RT12], where a limited system with stereoscopic vision was used, 13 of 18 users 

said that they would prefer an immersive telepresence condition. Reasons provided included its 

overall ease of use and, in particular, ease of visual search and target localization. Overall 

comments included descriptions of telepresence as “intuitive”, “easy” and “second nature”.  

 

In a general way state of the art telerobotics have not enjoyed of the recent developments in 

human-computer interaction and the evolution of immersive technologies. 

A recent study [BSK12b] points out that controllers with touch interface are a poor alternative to 

immersiveness, at least when the operator lacks experience.  

In the telerobotics field the research with other methods of interaction, like controls for positional 

tracking or movements and gestures, is near non-existence. Following this line of thinking, and 

assuming the lack of conclusive tests proving the effectiveness of control technologies by 

positional tracking and/or movements and gestures, we also got motivation to develop, with a 

secondary focus, a positional tracker module in the project. 

 

As will be discussed in Chapter 2, the benefits of immersiveness in telepresence and telerobotic 

systems begin to be undeniable.  
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Researchers increasingly will need ways to test if immersion really is a good bet in the various 

contexts that Telerobotics covers. Currently researchers end up wasting too much time and money 

bulding specific solutions each time they plan to test a specific case. And often the solutions fall 

short of expectations at the technical level. 

 

In short, this project aims to address some shortcomings identified in the Telerobotics field. 

Namely: 

 Lack of immersive elements 

 Absence of a modular and adaptable platform that can be used in various case studies 

with different robots 

 Poor use of recent evolution in mobile, HMDs, human-computer interaction and real-time 

streaming technologies 

 

And the main objectives identified to develop in the course of this thesis: 

• Scientific Component: Test and evaluate the impact that stereoscopic vision can 

introduce in tele-operated robots 

• Pratical Component: Provide a framework and tool to develop rapid prototypes based 

on the requirements of the case study 

o A module that supports an head mounted display and head tracking in the 

operator environment 

o Stream of stereoscopic vision through Android with software synchronization 

o And a module that enables the operator to control the robot with positional 

tracking 

1.4 Document Structure 

Apart from the introduction, this document contains 4 more chapters.  

In Chapter 2, we describe the state of the art and related work is presented. In Chapter 3 the entire 

development of the platform is detailed. Chapter 4 presents the prototype developed as a case 

study demonstration of the platform’s potential, and also is a demonstration of how all the 

components of this project interact. In Chapter 5 we show the experimental procedure and results 

obtained. Finally, in Chapter 6 the conclusions and some possible future work are presented. 
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Chapter 2 

 

State of the Art 

State of the art in the various areas touched by this Dissertation are presented in this Section. 

Related work is also presented in order to show what is being made and the major problems faced. 

We start with the state of the art in telepresence and telerobotics, then a survey and review of the 

evolution of technologies that allow this dissertation are presented. Finally we review the 

problems that researchers in this field are currently facing. 

2.1 Telepresence 

State of the art in telepresence essentially consists of static solutions that pass through webcams 

and monitors, for image transmission, and keyboards / joysticks for data entry and remote control.  

There is no use of immersive solutions, this meaning that current commercial solutions try to 

bring the user to the remote environment without worrying about getting the remote environment 

to the user. In Figure 2.1 we can see one of the top comercial solutions of telepresence - 

TelePresence 3200 Cisco System1. 

                                                 
1 http://www.cisco.com/c/en/us/products/collaboration-endpoints/telepresence-system-3200-series/index.html 

http://www.cisco.com/c/en/us/products/collaboration-endpoints/telepresence-system-3200-series/index.html
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Figure 2.1: Telepresence 3200 from Cisco Systems. 

 

The main objective of Telepresence 3200 is to provide a video conferencing solution and 

undoubtedly this is achieved. However we believe that telepresence can take a big leap with the 

recent development of mobile platforms and technologies, as stated in [RMT13]. 

We also claim that if we add immersive components to the Mobile Robotic Telepresence (MRP), 

telepresence can “explode” and grow from the niche in which it commercially lies now - that is 

the video-conference niche. Some examples of immersive components are: stereo or 3D sound, 

stereoscopic vision through HMDs, head tracking and touchless controls. 

The bandwidth required in this solution can be as high as 20.4 Mbps, with a 1080p resolution 

running at 30 frames per second (FPS) and a variable bit rate (VBR). The average latency lies 

around 150ms, with a 10ms jitter and packet loss below 0.05%. 

2.2 Telerobotics 

Telerobotics is quite different from telepresence in concept. However, the technological 

limitations found in both areas are quite similar, as we can check in academic projects such as 

[PlatRb13] and [RMT13], in more simple and commercial ones [AtkRb13] or even in the top 

commercial products like iRobot robots [iRobot]. 

In Figure 2.2 we can see the state of the art solution in search and rescue environments, 

recognition and patrolling telerobotics, from iRobot. 
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Figure 2.2: iRobot 110 FirstLook – state of the art in recognition operations. 

 

Used in military and search and rescue (SAR) environments, the iRobot 110 is a lightweight robot 

that provides immediate perception of remote environments, distance observation and allows to 

search environments and hazardous materials keeping the operator’s safe. 

The control console (master) is also quite complex, requiring an operator to have prior training to 

operate these devices. In Figure 2.3 you can see a control panel of such systems, in this case from 

Packbot robot. 

 

Figure 2.3: Operation console (master) of iRobot 510 Packbot. 

 

As seen in Figure 2.3, the operator interface has a small screen and low resolution. In this system 

the reaction time of operator is increased and the overall interaction with the remote environment 

is subject to extreme noise. 

In a recent study [RT12] carried out by the research laboratory of the US Army, in which a 

telerobotics immersive solution was tested, they came to the conclusion that in reconnaissance 
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operations an operator can develop its tasks more quickly using a system with immersive 

technologies. The reaction time of operator can decrease as much as about 47% when compared 

with a conventional solution. 

Head tracking and stereoscopic vision through the HMD were the immersive capabilities 

implemented in this study. Regarding the technical specifications it was a somewhat limited 

system, with a optical resolution of 320 by 240 pixels, estimated latency of 100-150ms and a 

HMD with an estimated weight of 950g. 

 

In conclusion, we believe that in SAR missions the operator environmental perception can 

increase with an immersive telerobotics system, along with a more intuitive and user-friendly 

control module. The operator response time will be reduced, increasing the efficiency and 

reducing the time required to take decisions, while reducing the noise and barriers inherent of 

such environments and conditions. 

Besides, state of the art still has a large gap in what concerns using stereoscopy, solutions or even 

research with movements and gestures controllers are also near zero. 

2.3 Real-Time Stereo Vision  

Various stereoscopic vision techniques are used in order to enrich the immersion in many digital 

imaging areas, such as cinema, gaming and virtual reality. To provide stereo vision, and the 

perspective of depth (stereopsis) [StDisp09], two cameras, displaced horizontally one from 

another, are used to obtain two different views on a scene, in a similar way to the human binocular 

vision. Humans use different cues to achieve 3D scene perception, such as accommodation, 

convergence, perspective, binocular disparity, motion parallax, and a lot more. 

In a best case scenario the two image sensors, used in a stereo vision system, need to be perfectly 

aligned along a horizontal or vertical line that passes through the key points of both images. 

Cameras are liable to lens distortion, which will introduce convexity or concavity to the image 

projection. Different cameras will introduce different distortions on the images acquired. The 

process called stereo pair rectification [EpipLR96] [ImgRect] is adopted to remap distorted 

projection into an undistorted plane. In Figure 2.4.a we can see the arrangement of image planes 
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and Figure 2.4.b illustrates the pinhole model [CamCal04] of two cameras to show how the 

projection of a real world object is formed in left and right images. 

Figure 2.4: Modelling of stereo rig and pinhole model of cameras [CamCal04] 

 

The algorithm already established in stereo vision systems have the following main modules; 

Calibration, Rectification, Stereo Correspondence and Triangulation. 

The last two modules are used to acquire a disparity map and depth perception, but since we are 

not dealing with autonomous robots they are not relevant in the context of this work, however the 

remaining ones are essential. 

 

Calibration is a procedure usually done offline and aimed at finding the intrinsic and extrinsic 

parameters of cameras.  

Extrinsic parameters are the ones that define the location and orientation of the camera reference 

frame, with respect to a known world reference frame. The intrinsic parameters are the ones 

necessary to link the pixel coordinates of an image point, with the corresponding coordinates in 

the camera reference frame. 

In Figure 2.5 we can see how to use the extrinsic camera parameters to find the relation between 

the coordinates of point P in world (Pw) and camera (Pc) coordinates. 
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Figure 2.5: Extrinsic parameters and relation of a point in world (Pw) and camera (Pc) 

coordinates. 

 

Intrinsic parameters are the ones that characterize the optical and geometric characteristics of the 

camera: 

 The perspective projection (focal length f) 

 Transformation between image plane cordinates and pixel coordinates 

 Geometric distortion introduced by the optics 

 

In Figure 2.6.a we have the perspective projection equations to find the image plane coordinates 

from camera coordinates. In Figure 2.6.b we can see how to get the pixel coordinates from image 

plane coordinates. 

Figure 2.6: Intrinsic parameters. From camera to image plane (a) and from image plane to pixel 

coordinates (b). 
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Image Rectification is a procedure that uses the information from calibration in order to remove 

lens distortion and align the epipolar lines. The image below, Figure 2.7, shows a basic setup with 

two cameras taking the image of same scene and will be used to explain the process of aligning 

the epipolar lines. 

Figure 2.7: Image rectification. Taken from [epipGeom] 

 

In Figure 2.7 O and O' are the camera centers. From the setup given above, you can see that 

projection of right camera O' is seen on the left image at the point e. It is called the epipole. 

Epipole is the point of intersection of line through camera centers and the image planes. Similarly 

e' is the epipole of the right camera. All the epipolar lines pass through its epipole. Furthermore, 

the epipolar lines are parallel to the line O–O' between the centers of projection, and can in 

practice be aligned with the horizontal axes of the two images. In our project we align the epipolar 

lines in order to avoid vertical desynchronization, and a checkerboard pattern is used in this 

process, like the one in Figure 2.8. 

 

Figure 2.8: Checkerboard pattern used in image rectification 
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Current state-of-the-art stereo vision systems are heavily dependent on hardware using integrated 

circuits, such as field programmable gate arrays (FPGA) to achieve real-time stereo vision. In 

order to achieve this real-time processing, many FPGA-based systems have been proposed to 

date, from relatively simple ones [LCStVi07] to more complex solutions [FPGA06] [FPGA10]. 

In these solutions the reported video stream lag lies around 100-200ms.  

The major flaw with any hardware implementation, besides the cost, lies in the stereo 

synchronization and overall image control.  

A software implementation would allow to have a better control over the streams while sacrificing 

the response time. However, as we will see in Section 2.7, new software solutions in the field of 

web-based communication are arriving. 

2.4 First-Person Robot Teleoperation 

With the advent of new solutions in the field of binocular HMDs, such as Oculus Rift or Sony 

HMZ-T2, these technologies had a significant price decrease, from prices above 2,500 $ to much 

more affordable values, below 400$. Besides the affordable prices, they continue to introduce 

technological innovations raising the state of the art. 

In Figure 2.9 we can see the version 2 of the Oculus Rift Development Kit. 

 

Figure 2.9: Oculus Rift - Development Kit 2 

 

Oculus Rift Development Kit 2 is priced at $ 350 and has top technical specifications, among 

them a 960 by 1080 resolution (per eye) with a refresh rate of 75Hz, positional tracking and an 

open source2 SDK which includes source media for the reference game engines of today, such as 

UDK, UE4 and Unity4. 

                                                 
2 Software for which the original source code is made freely available and may be redistributed and modified. 
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2.4.1 Human-Computer Interaction in Robotics 

Controls such as those used in Packbot are complex, requiring a huge amount of training by the 

operator and a great ability to focus what may interfere with overall performance. 

In order to bring these systems to a larger share of audience, and make them more intuitive, the 

scientific community has tried to find alternatives, now focusing on two methodologies in 

concrete, namely: 

 Haptic-based controls 

 Movements and gestures controls 

 

Haptic-based controls, or touch controls, have been widely tested using mobile platforms like 

smartphones and tablets.  

In [BSK12b] an example where an alternative interface using Android tablets was tested, and 

compared, with a more conventional approach including keyboards and gamepads. Despite the 

order lead the researchers in [BSK12b] to think that the touch interface would provide a greater 

sense of immersiveness, because we are using platforms to which users are already familiar, 

precisely the opposite has been showed by the end result of these tests. But the explanation is 

simple: with the gamepad operators can connect the movement of the robot to the physical touch 

of analog directional-pad (or joystick), besides that the lack of tactile feedback in touch interfaces 

has been identified as a major problem. 

2.4.2 Movements and Gestures Controls 

Currently we can find, in the field of touchless control, some affordable technologies that allows 

us to develop far more intuitive interfaces based on movements and gestures. 

A new way of tracking movements and gestures is introduced with the Leap Motion 3controller, 

with sub-millimeter accuracy. Contrasting with standard multi-touch solutions, this sensor is 

designed to be used in interactions with realistic 3D and stereo systems, especially regarding the 

selection of objects arranged stereoscopically. In terms of precision and accuracy Leap Motion 

has considerable gains against its main rival currently on the market (i.e. Microsoft Kinect4). 

In Figure 2.5 we can see the Leap Motion. 

                                                 
3 https://www.leapmotion.com/ 
4 http://www.microsoft.com/en-us/kinectforwindows/ 

https://www.leapmotion.com/
http://www.microsoft.com/en-us/kinectforwindows/
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Figure 2.10: Leap Motion 

 

As recent studies show in [ARLM13] and [ARLM14], when Leap Motion is tested in a real 

situation of real robot control in a dynamic environment, it can maintain an average accuracy of 

0.7mm. This is a relatively high value when compared with the documentation, which claims an 

accuracy of 0.01mm, however, still above the accuracy of Kinect that is of 2mm at 1m distance 

from Kinect and 2.5cm at 3m distance [kinect12]. 

 

 

Oculus Rift DK2 also features positional tracking via an infra-red camera, seen in Figure 2.11. 

The camera works best at 1.5 meters from the Rift, and the tracking is lost if the “face” of the rift 

goes out of the frame of the camera, but depending on the type and accuracy of positional tracking 

required it can also be a solution. 

Figure 2.11: Oculus Rift DK2 Positional Tracking Camera 

 

Since our main focus is to study the impact of stereoscopic vision, the Oculus Rift DK2 camera 

can be a good solution if we decide to implement a more “simple” positional tracking module.  
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2.4.3 Robot Control: Classic Vs Fuzzy Approach 

We tried to understand the best way to control a robot and its actuators, and, as stated in 

[FuzzL10], the classical approach can have good results and give excellent control when dealing 

with a physical actuator where freedom of movement is not limited (i.e. a thumb). However, in 

head tracking the movement of the head is more physically limited, also in positional tracking the 

movement of the body is equally limited while sitting. And these limitations are non-linear due 

to the skeletal and muscular structure of the body. 

When dealing with body restrictions a fuzzy system that takes into account the anatomy of the 

body and its physical limitations will feel more natural and intuitive. 

Passing for a brief explanation of the concepts, in classical logic a simple proposition P is a 

statement contained within a universe of elements, X, that can be identified as being a collection 

of elements in X that are strictly true of strictly false. A fuzzy logic proposition, Q, is a statement 

involving some concept without clearly defined boundaries. 

2.5 Mobile Platforms 

In recent years there has been a considerable development of mobile and mobile robotic platforms. 

Allied to this mobile development an increasing interest in developing immersive solutions in the 

telerobotics field gains momentum, and a new area starts to germinate - Immersive Telerobotics. 

2.5.1 Smartphones and Tablets 

Smartphones and tablets are common devices with an amazing processing power. Not only this 

power has increased in last years but it continues to grow at an incredible rate. If we couple this 

processing capacity with modern operating systems and the useful extras (i.e. a huge number of 

available sensors, good battery life and compact size) these platforms are an excellent choice for 

mobile robotics, serving as onboard computers (robot brains). 

2.5.2 Android SDK 

The Android software development kit (SDK) includes a comprehensive set of development tools 

[AndTools]. These tools include a debugger, libraries, a handset emulator based on QEMU5,  

documentation, sample code and tutorials. Currently supported development platforms include 

Linux (any modern desktop Linux distribution), Mac OS X 10.5.8 or later, and Windows XP or 

later.  

                                                 
5 http://wiki.qemu.org/Main_Page 

http://wiki.qemu.org/Main_Page
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The official integrated development environment (IDE) is Android Studio6. 

2.5.3 Android Compatible Integrated Circuit Boards 

The growing interest in having smartphones to interact with peripheral devices such as motors, 

servos and sensors, led to the development of electronic boards that can easily be purchased at a 

low cost. These cards are a bridge of communication between Android and external devices. The 

top two currently available boards are IOIO, which costs around €25, and the Arduino ADK Rev3 

with a price around €40. In Figure 2.6 we can see both solutions. 

 

(a) (b) 

Figure 2.12: IOIO (a) and Arduino ADK Rev3 (b) 

 

A significant number of projects carried out by enthusiasts, teachers and students, using these 

electronic boards, are now available online. We are talking about projects involving remote 

controlled vehicles (RC Vehicles) or robots controlled via Android IOIO or Arduino boards. It’s 

easy to find some interesting projects, like, for example, the researchers controlling a RC sailing 

boats using an Android smartphone via IOIO board. 

 

 

 

 

                                                 
6 http://developer.android.com/tools/studio/index.html 

http://developer.android.com/tools/studio/index.html
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2.6 Android-Based Robotics 

As stated in Section 2.5 a growing interest in mobile robotics has grown, more specifically on an 

Android based one. 

Currently we have at our disposal a large number of robotic platforms, for education and research 

that enable the creation of robots without electronics knowledge.  

In Table 2.1 we can see a list of some platforms, ordered by price. 

 

Robotic Platform Price 

IRobot Create  95€ 

Thymio II 140€ 

VEX Robotics (VEX IQ; VEX) 185€; 300€ 

Lego Mindstorms EV3 250€ 

Robotis (Bioloid; DARwIn-OP) 250€; 8,500€ 

TETRIX 280€ 

Surveyor (SRV-1) 370€ 

K-Team Corporation (K-Junior; Kilobot; Khepera; Koala) 600€; 850€; 2,400€; 6,200€ 

Adept MobileRobots (AmigoBot; Pioneer DX; Pioneer AT)  1250€; 3,000€; 4,800€ 

Scout (Dr Robot)  6,500€ 

Aldebaran Robotics (NAO)  11,500€ 

Table 2.1: Robotic Platforms for research and education 

 

These platforms are available in kits and can be purchased by teachers, students and researchers 

willing to program behaviors. All these platforms already have compatibility with Android OS. 

Robotic platforms like Lego Mindstorms EV3, Thymio II, iRobot Create, TETRIX, Bioloid or 

VEX have a cost affordable enough to be used in robotics research. 

Developed at the University of Oklahoma, an example of a low-cost platform that confirms the 

previous statements can be seen in [PlatRb13] and is a project that joins iRobot Create with 

Android devices through ROS7. 

2.6.1 Lego Mindstorms EV3 

Lego Mindstorms EV3 is the third generation robot in LEGO's LEGO Mindstorms robotics line. 

It is the successor to the second generation Lego Mindstorms NXT 2.0 robot.  

We decided to go with the Lego Mindstorms EV3 because is easy to use and flexible and such 

will allow a rapid prototyping what will help to test various approaches in a limited period of 

time. 

                                                 
7 ROS: Robot Operating System 

http://www.irobot.com/us/learn/Educators/Create.aspx
https://aseba.wikidot.com/en:thymio
http://www.vexrobotics.com/
http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com
http://www.robotis.com/xe/BIOLOID_main_en
http://www.tetrixrobotics.com/
http://www.surveyor.com/SRV_info.html
http://www.k-team.com/
http://www.mobilerobots.com/Mobile_Robots.aspx
http://www.drrobot.com/products_item.asp?itemNumber=SCOUT
http://www.aldebaran-robotics.com/en/
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In terms of programming, the native EV3 Software is not the best solution in market, since it 

relies on a visual programming approach. We tested the two best alternatives in market to connect 

Android devices with the EV3 and the results can be seen in the Table 2.2. 

 

 Wifi Bluetooth USB 

LeJOS Yes. With all the API functionality Yes. But with limitations No. 

EV3JLib 
Yes. In autonomous and direct 

mode 

Autonomous and Direct 

mode, but only Bluetooth 

PAN 

Yes. Only in 

autonomous mode 

Table 2.2: EV3 Communication Libraries Comparison 

 

But in our platform we will need Bluetooth and Wifi running at same time in the Android device, 

this is explained in detail in Section 3, EV3JLib was discarded because Bluetooth PAN uses Wifi 

to create the personal area. 

 

LeJOS enables the connection between Android and EV3 via Bluetooth with some API 

limitations, but the major drawback is that it requires an application that simulates the NXT8 

environment in the EV3, and in our tests the application was somewhat unstable. 

Another option in LeJOS is to simulate the LCP9 from NXT, allowing direct control of the EV3 

(without any application running on the brick), but this feature is in an early stage of life with 

some instability and only a few part of the API is ported. 

 

Finally we have the option of creating a direct connection via Bluetooth and send direct 

commands in bytecode to the EV3 brick.  

2.6.2 Comercial Telepresence Robots 

Over the last year it was possible to see a new wave of commercial products to grow in the area 

of Telepresence and Telerobotics. As mentioned in [AtkRb13]: 

“A handful of innovative high-tech startups have emerged to create a new market: remote 

telepresence robots.” 

 

Romo, on the left side of Figure 2.13, is a small robot that uses an iPhone as board computer and 

can be controlled with another iPhone via Wi-Fi. And Botiful, on the right side of Figure 2.13, is 

a similar solution to Romo, but with Android OS as a target. 

                                                 
8 NXT Mindstorms is the antecessor of EV3, released in 2006 
9 The Lego Communication Protocol from Mindstorms 
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Figure 2.13: Romo (left) and Botiful (right) 

 

Such solutions are devices to be used for conferencing, and an interesting market, however not 

modular enough or appropriate for the purposes of education or research. 

2.7 Stream Through Android Devices 

We started with the following question: Can we achieve real time stereoscopic vision, in order to 

develop immersive telepresence, with an inexpensive software solution through some widely 

available hardware? 

We made a survey of the state of the art in real-time video stream, with the aim to test the best 

solutions developing small prototypes in order to compare and select the most suitable one for 

this project. The criteria used in the selection of technologies was the quality of video and audio 

streaming, seeking to reduce the maximum latency. Different technologies were analyzed in order 

to choose the best for the project context and the most suitable one will be selected and described 

more deeply. 

 

The alternatives compared for video transmission between Android and PC were:  

 IP Camera: Turn the Android device into an IP Camera that will stream to the operator 

computer. 

 Java Server: Native Java server on operator computer, using Java Servlets and Apache 

Tomcat. 



State of the Art 

  22 

 WebRTC: Develop a Webapp and use the new WebRTC10 technology, which consists 

in an API framework for real-time communication in the Web. 

 

 IP Camera Java Server WebRTC 

Advantages 

- Easy to develop 

- Latency 200-250ms @ 

720p 

- Java Application  

- Server running on operator 

computer 

- Real time communication 

- Peer-to-peer connection 

- Low latency (below 50ms) 

Disadvantages 
- Too heavy to run in 

Android application 

- Latency >= 1000ms @ 

720p 

- Still in an early stage, lack 

documentation 

- Limited OpenCV support 

Table 2.3: Android media stream solutions 

 

WebRTC libraries, behind a web application, was the chosen solution. 

The WebRTC libraries are optimized for real-time communications and, despite being a new 

technology, already shown to be in in the right path. Note that behind this project we find Google, 

Mozilla and Opera. 

We were able to achieve resolutions of 1080p running at a stable framerate of 30FPS with an 

estimated delay of around 40-50ms in the best circunstances under a 2.5Mbps available 

bandwidth. With WebRTC the FPS stability depends on packet loss. 

 

The platform developed in this thesis also aims at a user that is accustomed to the internet browser, 

and the tendency in the next years is to increasingly bring software to the cloud. With this solution 

the application is also multi-platform. 

2.7.1 WebRTC  

WebRTC is an API definition drafted by the World Wide Web Consortium (W3C) to enable end-

to-end browser communication without using any plug-in. This browser-to-browser connection 

can be comprised of an audio stream, video stream and/or data channel. WebRTC uses SRTP11 

for media transmission and ICE12 for traversal through NAT’s and firewalls.  

 

                                                 
10 http://www.webrtc.org/ 
11 Secure Real-Time Transport Protocol 
12 Internet Communications Engine 
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Some features, among others found in [WRTC14], stated in [RelRR14]: 

 Provides APIs and access rules for end-user devices such as microphones, cameras etc. 

 An end-to-end security architecture and protocol is given. It uses SRTP. 

 NAT transversal techniques for peer connectivity are implemented. 

 Signaling mechanisms for setting up, updating and tearing down the sessions. 

 Support for different media types is given. 

 Media transport requirements. 

 Quality of Service, congestion control and reliability requirements for the session over 

the Best-Effort Internet is provided. 

 Identity architecture and mechanisms for peer identification are provided. 

 Codec for audio and video compression. 

 HTML and JavaScript APIs for use by application developers are provided. 

  

 

The bit-rate is variable and depends on the current available bandwidth. As stated in [RelRR14], 

this option is the best for real-time applications because the loss of a small percentage of packets 

is tolerable. In Figure 2.14 we can see how a WebRTC application works. 

Figure 2.14: WebRTC Application13 

 

 

 

                                                 
13 Figure taken from http://blogs.cisco.com/openatcisco/webrtc-bringing-real-time-communications-to-the-web-

natively/ 

http://blogs.cisco.com/openatcisco/webrtc-bringing-real-time-communications-to-the-web-natively/
http://blogs.cisco.com/openatcisco/webrtc-bringing-real-time-communications-to-the-web-natively/
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The most useful APIs for this project are GetUserMedia, PeerConnection, RTCDataChannel and 

RTCStats. 

 GetUserMedia API: defines requirements for a Web application to access end-users 

media sources such as camera and microphone 

 RTCPeerConnection API: specifies SDP-based session description APIs and the state 

machine to session setup, update and tear-down between the peers. 

 PeerConnectionStats API: will allow to get peer connection statistics i.e., bandwidth 

usage, packets lost, stream resolution, framerate, current delay in stream, local/remote ip 

addresses and ports, type of connection, etc... 

 RTCDataChannel API: will enable peer-to-peer exchange of arbitrary data, with low 

latency and high throughput. 

 

Next we can see a video stream bitrate to bandwidth ratio, over WebRTC, with VP814 codec: 

 1080p at 30 FPS causes 2.5+ Mbps bandwidth usage 

 720p at 30 FPS causes 1.0~2.0 Mbps bandwidth usage 

 360p at 30 FPS causes 0.5~1.0 Mbps bandwidth usage 

 180p at 30 FPS causes 0.1~0.5 Mbps bandwidth usage 

 

A full overview of WebRTC can be found in [WebRTC]. 

2.7.2 Libjingle: WebRTC in Native Android Application 

For the native Android application connection to the server, Google’s libjingle15 library will be 

used, which contains a set of components to interoperate with Google Talk’s peer-to-peer voice 

and video chat. Libjingle contains the API of WebRTC and, besides that, it has the stacks of 

Extensible Messaging and Presence Protocol (XMPP) and Session Traversal Utilities (STUN) 

implementation that will be used in the signaling process (process explained in Section 3.3.1). 

2.8 Single-Page Application 

Since we were looking for a non-blocking Single-Page Application (SPA), for intensive real-time 

streaming across distributed devices, we take into consideration two platforms, namely: Node.js16 

and Vert.x17. To take a decision we consider the engine in which the platforms are running, overall 

documentation, community support and package management. In Table 2.4 we can see the 

comparison between these two platforms. 

                                                 
14 VP8 is a video compression format owned by Google 
15 https://code.google.com/p/libjingle/ 
16 http://nodejs.org/ 
17 http://vertx.io/ 

https://code.google.com/p/libjingle/
http://nodejs.org/
http://vertx.io/
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 Node.js Vert.x 

Source Language C++ Java 

Operating Syatem 

OS X, Linux, Solaris, FreeBSD, 

OpenBSD, Microsoft Windows 

(older versions require Cygwin), 

webOS 

Cross-platform 

Platform V8 JavaScript Engine Java Virtual Machine (JVM) 

Language Javascript 

Java, JavaScript, Groovy, 

Ruby, Python, Scala, Clojure 

and Ceylon 

Package 

Management 
 Node Package Management 

(NPM) (highly mature) 
Still maturing 

Use Cases and 

Examples 
Highly mature Very young community  

Table 2.4: Node.JS and Vert.x comparison 

 

Since Node.js is a platform built on Chrome’s V8 JavaScript18 runtime, developed by Google, 

and we are aiming at real-time streaming using WebRTC APIs, also developed by Google, 

Node.js seemed the first obvious choice. Besides that, the highly matured community and the  

higly matured NPM, were decisive. As stated in [Node14]: 

“When discussing Node.js, one thing that definitely should not be omitted is built-in support 

for package management using the NPM tool that comes by default with every Node.js 

installation. The idea of NPM modules is quite similar to that of Ruby Gems: a set of publicly 

available, reusable components, available through easy installation via an online repository, 

with version and dependency management.” 

 

Some important modules for this project would be: 

                                                 
18 https://code.google.com/p/v8/ 

https://code.google.com/p/v8/
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 Express.js: A Sinatra19-inspired web development framework for Node.js, and the 

standard for the majority of Node.js applications out there today. Using a robust set of 

features, developers can create single, multi-page, and hybrid web applications. 

 Socket.io: Server-side component of the two most common websockets components out 

there today. 

 

A full list of packaged modules can be found on the NPM website20, or accessed using the NPM 

CLI tool that automatically gets installed with Node.js. 

 

Since we also knew that the need to use OpenCV could be significant, a survey to find some valid 

options was made, which led to the next ones: 

 Node-OpenCV21 - OpenCV module for Node.js (missing some features). 

 OpenCV22 for Google Chrome. 

 OpenCVjs23 – A javascript implementation of OpenCV.  

2.8.1 WebGL 

WebGL (Web Graphics Library) is a JavaScript API for rendering interactive 3D graphics and 

2D graphics within any compatible web browser without the use of plug-ins. It is integrated 

completely into all the web standards of the browser allowing GPU accelerated usage of physics 

and image processing and effects as part of the web page canvas. 

We will use WebGL projection and rendering to create both virtual cameras that will be fed via 

WebRTC media stream from Android devices. 

The transformation needed to implement the barrel distortion [Distort14] required by the HMD, 

because of pincushion distortion [Distort14] created by the lenses, will be also implemented in 

WebGL. 

2.9 Conclusions 

We can conclude that recent developments in Mobile Platforms, Immersive Technologies and 

Mobile Robotics turns possible the development of an immersive telepresence solution in the field 

of telerobotics, emerging as a new field – Immersive Telerobotics. One survey was carried out 

and aimed to find which technologies, in terms of hardware, should be used to develop immersive 

                                                 
19 http://www.sinatrarb.com/ 
20 https://npmjs.org/ 
21 https://github.com/peterbraden/node-opencv 
22 http://opencv.org/opencv-ported-to-google-chrome-nacl-and-pnacl.html 
23 https://github.com/sakiyamaK/OpenCVjs 

http://www.sinatrarb.com/
https://npmjs.org/
https://github.com/peterbraden/node-opencv
http://opencv.org/opencv-ported-to-google-chrome-nacl-and-pnacl.html
https://github.com/sakiyamaK/OpenCVjs
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modules. Being these modules in the fields of stereoscopic vision, head tracking and movements 

and gestures controls. We now present the conclusions. 

2.9.1 Hardware to be Used 

For the stereoscopic vision and head tracking modules the Oculus Rift it is the best option 

available for a low / medium cost system. Besides having an open-source SDK and out-of-the-

box support for the most recognized game engines of the market, still possess technical 

specifications that reach the state of the art solutions. 

 

For a possible person-computer interaction module to be developed in the future, and taking into 

account what has already been confirmed by previous studies, stating that a touch-based module 

using the most recognized platforms is not the best option, and also taking into account previous 

studies [ARLM13] and [ARLM14], we conclude that for the development of a control module by 

movements and gestures with the precision that a system like this would need, the Leap Motion 

platform will be the best option.  

But since this is not our main cientific focus, the “Oculus Rift DK2 Positional Tracking Camera” 

can be a good solution to implement a simpler module with a zoom-in and zoom-out “feeling”, 

giving the operator the possibility of using its body in order to have a finer control on the actuators 

of the robot. 

 

In the remote environment, the slave, we concluded that in robotics field there are two paths to 

be followed. The first path is most suitable for those who have few, if any, knowledge of 

electronics and focus on the use of a robotic kit to build the robot. The other option, which can 

also be cheaper, is to acquire an open source electronic controller board, like the Arduino ADK 

Rev3 or IOIO and use any RC vehicle.  

We decided to take the first path in our case study, and we are using the Lego Mindstorms EV3 

kit as a proof of concept.  

As onboard computer on the robot, and for stereoscopic vision streaming, two medium range 

smartphones will be used. 
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2.9.2 Technologies and Software Modules to be Used 

In terms of software to be used throughout the development of this thesis, we now present the 

conclusions organized in terms of web (Master) and mobile (Slave) applications. 

Master: 

 Node.js: as cross-platform runtime environment  

 Express.js: web application framework 

 Socket.IO: for signalling and communication protocol 

 WebRTC APIs: for audio and video streams and stereoscopic synchronization 

 WebGL: for image display, processing and synchronization  

 

Slave: 

 Android SDK: to develop native application and camera access 

 Google’s Libjingle: for WebRTC and ICE (STUN) implementation 

 Socket.IO-client.java: for communication protocol 
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Chapter 3 

 

 

TrekProbe - Immersive Telerobotic 

Modular Framework 

In this Chapter we will start presenting the identified requisites, proposed architecture, and then 

the development and implementation of the platform, which is comprised of two major 

components the master and slave, web application and mobile, respectively. 

3.1 Requirements Specification 

In this section we have a specification of requirements that define which features we want in the 

global platform. 

We want to develop a turnkey solution in which the user can test a telerobotic system with easy 

to find and cost effective devices.  

 

Our main focus, in the platform development, is to develop a low cost software solution to achieve 

real time stereoscopic vision through Android devices. We want our platform to be modular and 

capable of being extended, in order to help researchers to study as many case studies as possible. 

We can think of a black box solution that receives input from the operator and sends the data to 

robot, receiving input from robot and sending back to the operator. 

 

The main requirements identified for the global platform are: 

 Real-time stereoscopic vision through Android devices 
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 A modular platform 

 A black box software solution that can be used with any kind of robot 

 Control of a robotic head with head flexion, extension and axial rotation 

 Robot control with body movement and classic Keyboard/Gamepad input 

3.2 System Architecture 

With the defined requirements a global architecture, which we can see in Figure 3.1, was 

designed. 

Figure 3.1: Global System Architecture 

 

The operator is interacting with the system through the actuation devices, all the data generated 

in the operator environment, through gamepad, positional and head tracking, is then sent to the 

robot by our communication protocol. The operator’s senses are stimulated with stereo images 

feeding an HMD and audio through real time streaming. The sense of immersion is also enhanced 

via the positional and head tracking that mimics the operator’s movements in the remote 

environment. 

The main objective here was to achieve real time stereoscopic vision through everyday hardware 

and software synchronization. The second objective is to keep the platform modular and with a 

software framework design approach, the aim of this second objective is to provide a solution in 

which the researcher can use any kind of robot depending on the case study needs. 

 

In the researcher perspective it would be easy to extend the platform, just needing to override the 

Robot Communication module in the Android application, developing the proper bytecode to 

communicate, with the desired robot, via Bluetooth. 
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As an example, we can see in Figure 3.2 the bytecode written in the prototype developed with 

this framework, throughout this thesis, that was aiming at test the stereoscopic vision impact in 

teleoperation of robots. This prototype, and all the experimental procedure, is described in more 

detail in Chapter 4. 

Figure 3.2: Example of bytecode for robot control 

 

The bytecode written, in Figure 3.2, was developed while extending this platform with the 

selected robotic platform (see the detailed experiment in Chapter 4). As we can see this function 

starts a desired actuator with a specific motor speed, sending the command via the Bluetooth 

communication module. Extending the framework to another robot might be as simple as 

rewriting these functions. 

3.3 Communication Protocol from Master to Slave 

In this section we describe the communication protocol between Master and Slave. The media 

stream is done via WebRTC and while it enables a peer to peer connection between the Android 

application and Web application browser, as stated in section 2.7.1, it still needs servers to deal 

with signaling, network address translators (NATs) and firewalls. 

3.3.1 Signaling 

Signaling is the process of coordinating communication. For a WebRTC application to establish 

a connection, as stated in [H5Rocks], its clients need to exchange the following information: 

 Session control messages used to open or close communication 
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 Error messages 

 Media metadata such as codecs and codec settings, bandwidth and media types 

 Key data, used to establish secure connections 

 Network data, such as a host’s IP address and port as seen by the outside world 

 

This signaling process needs a way for clients to exchange messages. This mechanism is not 

implemented by the WebRTC APIs: we need to build it ourselves.  

In our project a WebSockets solution is used to establish the signalling process, through Socket.IO 

library, on Node.js. 

After signalling, in order to deal with Network Address Translation (NAT) and firewalls, the 

Interactive Connectivity Establishment (ICE) framework is used. We used Google’s STUN 

servers with the RTCPeerConnection to test the implementation. But note that in our project the 

objective was to use the platform in a wireless local area network (WLAN) and, since we are 

behind NAT, there’s no need to use STUN. 

 

3.3.2 Robot Commands API 

In this Section we present the commands developed during the project and that are currently 

available in order to control a robot. The API was developed with JavaScript Object Notation 

(JSON) encoding. 

 

We have three types of commands, namely: 

 Robot Movement 

 Head Tracking 

 Positional Tracking 

 

 

In Table 3.1 we can see the major commands currently available in this platform for robot control.  

 

 

 

Command Parameters Description 

R
o

b
o

t 
M

o
v
em

en
t 

{ stop }  Stop all the actuators used in the locomotion 

of the robot 

{ front || back }  speed Move the robot forward or backward 

Parameter speed accepts [0, 100] or -1 for a 

default preset speed 
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{ left || right}  speed Robot turns left or right 

Parameter speed accepts [0, 100] or -1 for a 

default preset speed 

H
ea

d
 T

ra
ck

in
g

 

{ liftHead || 

lowerHead } 

 speed 

 degree 

Lift or lower the robotic head 

Parameter speed accepts [0, 100] or -1 for a 

default preset speed  

Parameter degree from [0º, 180º]24  

{ leftHead || 

rightHead } 

 speed 

 degree 

An axial rotation to left or right, in the 

robotic head 

Parameter speed accepts [0, 100] or -1 for a 

default preset speed  

Parameter degree from [0º, 180º]24 

{ liftHeadRect || 

lowerHeadRect || 

leftHeadRect || 

rightHeadRect } 

 Control the robotic head in the lift/lower or 

left/right movements 

Acts as a calibration command, to be used as 

a manual rectification when the robotic head 

gets out of sync with the HMD 

P
o

si
ti

o
n

a
l 

T
ra

ck
in

g
 

{ forwardWS || 

backWS || leftWS 

|| rightWS } 

 speed Robot moves without stop. Keep the robot 

moving while the operator’s body is in the 

same position. Changing speed according to 

the movement of the body25 

Parameter speed from [0, 100] 

Table 3.1: Robot Control API commands 

 

In Figure 3.3 we can see a pratical example of a JSON formatted message. In this case we have a 

Head Tracking type message making the robot lift its robotic head by 3 degrees. 

 

                                                 
24 The degree conversion, from head position to the platform, will be explained in Section 3.4.2. 
25 Entire Positional Tracking algorithm is explained in Section 3.4.3 
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Figure 3.3: JSON encoded Head Tracking command 

3.4 Master: Web Application 

In the current Section we present all the details concerning the development of the Web 

Application. We were aiming at creating an independent web-based user interface (UI) over a 

platform independent system. A web-based UI allows the user/operator to quickly start using the 

robot without plugins or installations. As stated in Section 2.8, the platform selected was Node.js.  

 

We will start pointing the main features and requirements of the platform, progressing to the 

system architecture and main modules, finally explaining the hardware integration and the major 

algorithms developed. 

3.4.1 Requirements Specification 

We wanted a telerobotic platform with immersive modules like: HMD with stereoscopy, head 

tracking and positional tracking. But we also wanted some more “classic” modules of interaction 

like HMD with mono vision and keyboard/gamepad controls. 

We are also aiming at a real-time streaming with software synchronization, thus it will require a 

manual image rectification to adjust the different focal lenses distances and also a manual 

calibration of the epipolar lines in order to avoid a bigger conflict between the accommodation 

and vergence of the eye26. 

 

Therefore, the following are the main requirements that have been identified for the solution:  

                                                 
26 The image rectification process is explained in detail in Section 3.4.4. 
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 Manually-assisted Image Rectification 

 Automatic Stereoscopic Synchronization 

 Telerobotic platform with: 

o Classic interface (no HMD) 

o Non-stereoscopic vision with HMD 

o Stereoscopic vision with HMD 

 Head tracking to control the robotic head 

 Positional tracking to have more intuitive control of robot movement 

 

 

Regarding the main options available in terms of interaction in our telerobotic platform, the 

diagram in Figure 3.4 was developed. 

Figure 3.4: Diagram Depicting Main Web Application Options 

 

When the operator is using the HMD, he has the option of mono vision which consists in feeding 

the HMD with the video stream of one Android device, or the stereo vision consisting in the feed 

of the HMD by two sources, through the video stream of two Android devices.  

 

When the HMD is off we developed an extra feature that allows the user to perform a 

“bidirectional call” that consists not only in receiving audio and video from the remote location, 

but also send audio and video to the robot through the peer-to-peer connection. In Section 3.4.1.2 

we briefly explain this extra feature.  

 

The user is able to go with only a “classic” approach, meaning that it can control the robot and 

robotic head with the keyboard or gamepad. But on the other hand, the user can complement these 

controls with head tracking and positional tracking modules: the head tracking to control the 

robotic head and positional tracking for a finer control of the robot movement (both of these 
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options are explained in depth in Section 3.4.4). We can see in Figure 3.5 the UI developed that 

incorporates all this options. 

Figure 3.5: Web Application UI - Options 

3.4.1.1 Technologies and Modules 

In this Section we present the technologies used in this Web Application. 

We already stated this in Section 2.9.2, however, as a brief summary, the runtime environment is 

Node.js, the web framework is Express.js, Socket.io is used for communication protocol and 

signalling, Three.JS27 for image display, rectification and synchronization and finally for media 

stream we are using WebRTC APIs, namely: 

 GetUserMedia to access local media sources, like camera and microphone. 

 RTCPeerConnection that represents the WebRTC connection and handles all the media 

streaming between two peers. 

 PeerConnectionStats that allows to get all kind of data and statistics from the stream, and 

is used in one of the synchronization algorithms developed, this algorithm being 

explained in more detail in Section 3.4.3.2. 

3.4.1.2 Test WebRTC Capabilities with a videocall prototype 

We will use WebRTC to stream video between two devices. And since we were dealing with a 

new technology, as a proof of concept, we implemented a videocall-like prototype, which 

implements a telepresence feature similar to the ones seen in Section 2.6.2.  

                                                 
27 Three.JS is a WebGL API. For more information: http://threejs.org/ 

http://threejs.org/
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In Figure 3.6 we can see this feature running in the platform developed. 

Figure 3.6: Web Application – Bidirectional Call 

 

In Figure 3.6, that shows the bidirectional feature running, we can see on the left side of the image 

the Slave stream, which is coming from the Android device. On the right side we have the Master 

Camera that shows our own camera, in this case the laptop one. The Android device is also 

receiving audio and video coming from PC microphone and camera, and reproducing both via the  

device speaker and screen. 

The Slave stream has a resolution of 1280x768 running at 30fps, this and other options can be 

changed in the mobile app, and this will be explained in detail in Section 3.5. The Master stream 

has a resolution of 640x480. 
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3.4.2 System Architecture and Modules 

With the defined requirements we developed the architecture presented in Figure 3.7. 

Figure 3.7: Architecture Overview 

 

The HMD provides Node.JS with head and positional tracking data. These data are then redirected 

to the Web Application through websockets. Finally, after processing the data in accordance with 

the developed specification, our Communication Protocol is used in order to send commands to 

the primary Android device, which is the device controlling the robot. 

 

The web application uses Signaling in order to establish a direct peer-to-peer connection between 

browser and Android device. Android device uses a specific library to establish this connection, 

which is explained in detail in Section 3.5.  

 

In the web application, after the image rectification and stereoscopic synchronization, we have a 

real time display of the remote environment through the projection of virtual cameras, process 

explained in Section 3.4.3. 

Event Listeners are used to get input from keyboard and gamepad. 

 

Finally, the Web Application uses getUserMedia() API, invoked in browser (Mozilla Firefox or 

Chrome), to get a MediaStream which allows the web application to access local camera and 

microphone. 
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Proceeding to a description of the main modules of the system’s source code, where a class 

diagram can be visible in Figure 3.8. 

 app.js: this module is the Node.js server. It connects to the routes package essentialy to 

handle the active streams requests. The serverSocketHandler is a module that allows our 

server to handle new requests and incoming connections from clients, and also is here 

that the server is polling the Oculus Rift. 

 routes: this package deals with the routing between server and web application, 

essentialy keeping the streams indexed. 

 app_modules: this package contains two main modules, streams is used to represent an 

active list of streams, while serverSocketHandler handles all the websockets 

communication and Oculus Rift polling with a delay of 150ms. 

 app_scripts:  

o TrekProbeViewModel is a module that encapsulates all the functionality the 

system provides to the user.  

o ClientManager represents the web application, it handles the head tracking and 

positional tracking input using the communication protocol, is also responsible 

for handling exchanged data between clients. 

o OculusRender is the module responsible for WebGL, it does the image 

rectification and stereoscopic synchronization, displaying the HMD view in a 

WebGL canvas. 
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Figure 3.8: Main Modules of Web Application 
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3.4.3 Stereo Vision System through WebGL 

As previously stated we aim at a software solution through WebRTC technology with WebGL 

projection and rendering. For a true real-time application, latency is a critical factor. 

Maintaining a stable frame rate is also crucial in order to avoid motion sickness. There is a lot of 

effort put by the research community into the real-time processing of 3D stereo vision and we 

know that the rate of 30 frames per second (FPS) is the standard, desirable value, for the human 

eye. With WebRTC the connection is peer-to-peer, meaning that the frame rate stability depends 

on packet loss, or by another words we are mainly dependent on bandwidth to achieve really 

acceptable results. 

 

Three.js library is used to render two virtual cameras, each one simulating left and right eye, using 

perspective cameras and WebGL renderer capabilities. The transformation needed to implement 

the barrel distortion required by Oculus Rift, because of pincushion distortion created by the 

Oculus lenses, is also implemented in Three.js. 

3.4.3.1 Stereo Image Rectification 

As stated in Section 2.3, image rectification is a process that aims at removing vertical 

misalignment, aligning the epipolar lines and distortion due to different focal length distances. 

Different Android devices have different camera specifications - like different focal length 

distances or apertures. 

 

In real time stereo vision the focal length is a very important factor, both images need to be aligned 

by the epipolar lines in order to have a vertical synchronization and avoid a bigger conflict 

between the accommodation and vergence, which can lead to an increase of two errors: loss of 

accommodation resulting in a blurred image or loss of fusion resulting in double vision (or both) 

[VisualF09]. 

 

The image rectification process can be considered as a reprojection of the 3D world into our 

virtual cameras. With the concept of virtual cameras we have a few advantages, for instance both 

rectified images are independent from the real projection system, this means that the processing 

software does not need to know anything about the real cameras and can be adapted to the 

projection of virtual cameras. 
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Regarding the epipolar lines rectification, we used a manual calibration that can be used by the 

operator at anytime. The concept is simple and is explained with the aid of Figure 3.9. 

Figure 3.9: Virtual Projection Cameras 

 

We have two projection cameras, THREE.PerspectiveCamera, and two scenes, instances of 

THREE.Scene, each scene has an instance of THREE.PlaneGeometry with 960x1080 resolution 

(same of each eye in the Oculus Rift DK2) that receives an object movieScreen, which is an 

instance of THREE.Mesh with a canvas texture applied into it. This texture is the video stream 

for each eye. 

We provide the user with option of changing the y axis of each virtual scene, this makes it possible 

to rectify the vertical misalignment, aligning the epipolar lines with the help of a physical 

checkerboard pattern, like the one shown in Section 2.3.  

 

Another problem with stereo vision arises due to the different focal length distances when dealing 

with different devices. In order to acquire the stereo image calibration we implemented a method 

that, once more using a chess pattern, allows the operator to manually calibrate the virtual cameras 

(THREE.PerspectiveCamera) frustum vertical field of view (vFOV) and rectify the differences 

induced by different focal length distances. With this feature the user can manually calibrate the 

virtual projection in order to compensate different specifications of real cameras. 
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3.4.3.2 Synchronizing Streams 

The WebRTC PeerConnection API is used in both streams to receive video while audio stream 

comes from one of them. 

 

The major desynchronization factor in this platform would be due to WLAN instability. 

The Google statistics API (PeerConnectionStats) is used in order to get the delay information, 

from both streams. After acquiring the delay from the streams a synchronizing algorithm is 

implemented, this algorithm consists in acquiring the difference between both delay values and 

then, if the absolute difference is >= 0, the faster stream is delayed by that very same value. In 

Figure 3.10 we can see this implementation in pseudo code form. 

Figure 3.10: Pseudo-code for Synchronization 

 

With this technique we are able to counter network latency in an efficient manner. 

 

 

However, we can experience another type of desynchronization, introduced by hardware. Since 

the platform will allow Android devices of any range, some latency may be introduced when 

using more modest devices, which can cause discrepancy due to hardware limitations. To counter 

this problem we developed a motion recognition synchronization. This solution is used one time 

in order to establish the hardware introduced lag. 

The motion detection sample in [motionJS] was adapted in order to output a timestamp when the 

user slides the finger in a defined area of the camera frame. This works as a movie slate, marking 

the timestamp in each stream. 

This system only performs recognition on the canvas, which means that the recognition is done 

after the stream has passed through the network and before being drawn on the screen, but already 

lying on the server. If we remove the delay between streams, the remaining is the hardware 

introduced lag that can be used to synchronize streams before drawing on screen. 
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3.4.4 Oculus Rift DK2 Integration 

For hardware access and to obtain positional and head tracking data a javascript wrapper, based 

on node-ovrsdk28 (at time of writing was only supporting v0.3.2 of the SDK), was developed 

resorting to a Dynamic-Link Library (DLL) compiled from v0.4.2 source code, written in C 

language, of the SDK.  

3.4.4.1 Head Tracking Algorithm 

When the module responsible for handling the head tracking logic is updated by the server (that 

is polling the HMD), the raw data received about orientation of the head is on the fly converted 

to an angle value (degrees), with linear interpolation. This conversion is explained with the aid of 

Figure 3.11. 

Figure 3.11: Head Tracking Orientation 

 

In the axial rotation movement (around yaw): 

 With user looking at screen, the value converted by our algorithm would be 90º. 

 User looking left, maximum value will be 180º when the face is perpendicular to roll axis.  

 User right, minimum value will be 0º when the face is perpendicular to roll axis. 

 

In flexion and extension movement (around pitch): 

 With user looking at screen, the value converted by our algorithm would be 90º. 

 User looking up, maximum value will be 180º when the face is perpendicular to roll.  

 User looking down, minimum value will be 0º when the face is perpendicular to roll.  

                                                 
28 https://github.com/wwwtyro/node-ovrsdk 

https://github.com/wwwtyro/node-ovrsdk
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To avoid noise we use a threshold of 1 degree in the logic that checks if the head changed 

orientation. 

3.4.4.2 Positional Tracking Algorithm 

Positional tracking is used for a more intuitive control of the robot moving actuators, for example 

can be used for a “zoom-in” experience when the gamepad control is too blunt. 

We implemented a simple fuzzy logic system with the following criteria: 

 When the body is straight the output in both axis should be minimal. 

 When the body is leaned left or right, the output in horizontal axes should reflect the 

direction of the body. 

 When the body is leaned forward of backward, the vertical axes should reflect the forward 

or backward direction. 

 

Raw data received about position of the body is on the fly converted to a distance value in 

centimeters (cm), with the mathematical rule of three.  

The algorithm starts by getting the initial position of the body {DEFAULT_X, DEFAULT_Z},  

then fuzzy logic is used to obtain a speed related to the position of the operator. In Figure 3.12.a 

the pseudo code for this algorithm is presented, in Figure 3.12.b we can see the area of effect in a 

graphical representation. 

Figure 3.12: Positional Tracking pseudo-code 

 

As we can see, the operator has a degree of freedom of 10cm for each side, and 20cm to lean 

forward and backward, however, as we can see in the pseudo-code, the maximum speed achieved 

in vertical axes (moving forward and backward) is 10% of the actuator capabilites, while 

maximum speed achieved in horizontal axes (rotation) is 20%. These values can be changed 

easily, but for the prototype being developed in a later phase, explained in Chapter 4, these values 
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seem a good default ones. Finnaly, we have a “dead motor” zone in the center, marked in red in 

Figure 3.12 (b), that is a square with 10cm in each side. To avoid noise a threshold of 1 degree is 

used in the logic that checks if the position of the body changed. 

 

3.5 Slave: Mobile Application 

In the current Section we present all the details concerning the development of the mobile 

application. This is a native application that extends the platform, and it was developed modular 

enough so that anyone wanting to reuse the code could focus on their needs.  

The Android SDK was used for development, Google’s Libjingle is used for WebRTC and ICE 

(STUN) implementation and Socket.IO-client.java is used in communication protocol with the 

master. 

We will start pointing the main features and requirements of the platform, progressing to the 

system architecture presentation with an UML diagram and, finally, ending with the description 

of the major modules. 

3.5.1 Requirements Specification 

The application was developed with a minimum SDK requirement of 14 (Android 4.0 APIs), in 

order to have a more dynamic UI we opted for the Fragment29 API. Since we wanted the 

architecture as modular as possible, we decided that the UI should reflect this approach and have 

three main Fragments, namely the Server, Stream and Robot configuration. Figure 3.13 shows 

the Sliding Menu with these options. 

Figure 3.13: TrekProbe Slave – Sliding Menu 

                                                 
29 http://developer.android.com/guide/components/fragments.html 

http://developer.android.com/guide/components/fragments.html
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Regarding the stream options we decided that the more important details to implement in the 

application would be: 

 Maximum and Minimum Resolution 

 Maximum and Minimum Framerate 

 Aspect Ratio 

 Turn the audio stream on/off 

 Turn the local stream on/off 

 Show remote stream in fullscreen or corner window 

 

In Figure 3.14 we can see stream options in the UI developed. 

Figure 3.14: TrekProbe Slave – Streaming Options 

 

It was also important to have one application for both devices, although they have different 

responsibilities, as it facilitates the deployment. 

 

Another important requirement is to be able to choose which camera we want to use on device, 

since for a telepresence robot the front camera is more suitable, but for the stereoscopic immersive 

telerobotic option the back camera will achieve better results. 
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Finnaly, the robot configuration Fragment needs the Android system Bluetooth’s turned on, and 

so the application checks Bluetooth status, warning the user if it is off, and then allows the user 

to connect to previous paired Bluetooth robots, this behaviour is shown in Figure 3.15. 

Figure 3.15: TrekProbe Slave – Bluetooth Options 

3.5.2 System Architecture 

With all the requirements defined the architecture presented in Figure 3.16 was designed. 

Figure 3.16: Architecture Overview of Slave Environment 
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This diagram represented in Figure 3.14 depicts a stereoscopic solution, both Android device are 

communicating with the web application via peer-to-peer and exchanging media data, however, 

the Slave Droid (on the right) also uses the Communication Protocol via websockets to receive 

the robot commands.  

Slave Droid is the real “brain” of the robot, since it will communicate with any kind of hardware 

via Bluetooth. 

3.5.2.1 Application Modules 

Here we present the main modules from the mobile application and a diagram of the global 

architecture can be seen in Figure 3.17. 

 

The main modules are: 

 com.trekprobe.connection: this package handles all the communication with the server.  

 com.trekprobe.connection.robot: this is the package that needs to be extended or 

refactored in order to establish a Bluetooth connection with the desired robotic hardware. 

This package was used in our prototype and is explained in detail in Chapter 4. 

 com.trekprobe.models: this package serves to accommodate data models. 

 com.trekprobe.utilities: several utilities used in the application are here. 

 com.trekprobe.variables: reserved for the major variables used by the application. 

 com.trekprobe.view: package reserved for the Activities developed for this application.  

 com.trekprobe.fragments: here we have the Fragments developed.
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Figure 3.17: Main Modules of Mobile Application
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3.6 Conclusions 

The web application was developed as a software framework, the server runtime used was Node.js 

and it was developed with the web framework Express.js. We also used the module Socket.IO in 

order to implement the communication protocol between the server and web application and the 

web and mobile applications, and the Knockout.js module that provides a complementary, high-

level way to link the data model to a UI. The Three.js library is used to create the virtual 

perspective cameras, representing each eye, image processing and stereo synchronization. An 

altered version of the OculusRiftEffect example is used in order to render the scene in 3D stereo 

with the lens distortion required by the Oculus Rift DK2 v0.4.2. WebRTC APIs are used to stream 

the media content and acquire stream statistics in order to implement stereo synchronization 

algorithms. A javascript wrapper based on node-ovrsdk (only supporting v0.3.2 at time of writing) 

was developed, with the proper compiled .dll from Oculus Rift DK2 source code version 0.4.2, 

in order to obtain the head tracking and positional tracking data.  

A keyboard input system was also developed in order to allow a more classic control via keyboard 

and/or gamepad.  

The mobile application extends the web framework and was developed with the Android SDK. 

Libjingle library, supported by Google, was used for media stream and signalling. Socket.IO- 

client.java library was used to develop the communication protocol with the web application. A 

module that allows to communicate with the robot chosen for the prototype, via direct connection 

through Bluetooth, was also developed, and will be addressed in Chapter 4. 

This platform architecture was developed in a way that allow a researcher to reuse it, for different 

types of robots and/or RC vehicles, by just developing a new Bluetooth communication module. 
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Chapter 4 

 

 

Prototype Development  

With the aim of testing the impact that stereoscopic vision can have in telerobotic systems, and at 

same time test the platform in terms of usability and extensibility, a prototype was developed. 

This prototype was developed for the Experimental Procedure described in detail in Chapter 5. 

This phase was about the validation of the developed theoretical concepts and the implementation 

of all the modules required to integrate the controls for head tracking and positional tracking in 

the robot. 

4.1 Unity Simulator 

Due to delays in the delivery of the robotic kit, a simulator was created in Unity. The objective 

was to test the developed theoretical solutions, namely the control of the cameras for head tracking 

in a direct relationship with a small threshold and, also, the positional tracking controls of the 

robot body using fuzzy logic. In Figure 4.1 we can see the Unity simulator running. 
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Figure 4.1: Unity Simulator  

 

The initial design of the robot was also made in the simulator developed. 

In this phase we also included in the platform as a whole (master and slave) the necessary modules 

to control the robot with positional and head tracking.  

4.2 Mindstorms EV3 

Since we were going to use 4 motors on EV3, the maximum amount allowed, we started looking 

for the motors capabilities: 

 EV3 Large Engine Power: 160-170 RPM (approximately 960 ~ 1020 ° / s) 

 EV3 Medium Motor Power: 240-250 RPM (approximately 1440 ~ 1500 ° / s) 

4.2.1 Programming the Brick 

As already stated in Section 2.6.1 the only library available, at time of writing, for controlling the 

EV3 via Bluetooth was LeJOS, however, the API is in an early stage of development. After a few 

tests we decided to discard due to instability issues. 
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The official “EV3 Communication Developer Kit” [LegoProg] was read for the purpose of 

understand the EV3 protocol, in order to develop all the bytecode instructions that we would need 

to control the robot actuators. We are controlling the EV3 brick via direct commands, an example 

of these commands is in Figure 4.2. 

Figure 4.2: Direct Command Example30 

                                                 
30 Figure taken from [LegoProg] 
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In Figure 4.3 the specific modules developed for hardware access are shown. 

Figure 4.3: Modules Developed for Brick Control 

 

Some of the main bytecodes developed are encapsulated in the following functions: 

 forwardByRotation90(byte port, byte speed) – this function moves the robot front by 

rotating both actuators 90 degrees, in the first 30 degrees gaining power and in the last 30 

losing it. 

 rotateRobotByRotating9(byte port, byte speed) – this function rotates the robot 9 degrees, 

while gaining power in the initial 3 degrees and losing in the last 3 degrees. 

 moveForwardWithoutStop(byte port, byte speed) – this function keeps the actuators 

running forward, if invoked again while still running, just update the speed value in the 

actuators. This is used with positional tracking fuzzy logic. 

 liftPlatform(byte port, byte degrees, byte speed) – this function lift the robotic head by x 

degrees and with y actuator speed. 

 

As an example we can observe, in Figure 4.4, how the functionality described for function 

forwardByRotation90(byte port, byte speed) is implemented with bytecode. 
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Figure 4.4: Bytecode to move robot forward by rotating 90 degrees 

 

Note that in Figure 4.4 the byte 19 is 0x00, what means that the actuator will not stop abruptly. 

This command is making the robot move forward by rotating both actuators 90 degrees, the first 

30 degrees gaining speed, then 30 degrees at full speed and then, the last ones, loosing speed. 

 

In Figure 4.5 we can see the final robot, with images taken from a test session made during the 

development phase. 

Figure 4.5: Robot Development 
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A class BluetoothService was developed and does all the work for setting up and managing 

Bluetooth connections with other devices. It has a thread that listens for incoming connections, a 

thread for the connection with a device and another for performing data transmissions when 

connected. 

BluetoothService class implements BluetoothSocket31 and BluetoothDevice32, both from Android 

SDK, representing the connection made and device connected, respectively. OutputStream and 

InputStream, both from java.io33, are used to exchange data with the device (robot). In Figure 4.4 

os.write(cmd) is calling the instance of OutputStream.

                                                 
31 http://developer.android.com/reference/android/bluetooth/BluetoothSocket.html 
32 http://developer.android.com/reference/android/bluetooth/BluetoothDevice.html 
33 http://developer.android.com/reference/java/io/package-summary.html 

http://developer.android.com/reference/android/bluetooth/BluetoothSocket.html
http://developer.android.com/reference/android/bluetooth/BluetoothDevice.html
http://developer.android.com/reference/java/io/package-summary.html
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Chapter 5 

Experimental Procedure and 

Results 

In this chapter the experimental procedure and the results obtained are presented. This 

experiement had two major focus, the first was to evaluate if stereoscopic vision can have an 

impact in telepresence robots and the second was to test the robustness of the platform created, 

using the prototype. 

5.1 Experimental Procedure 

In this Section we describe the developed experiment, where we examined the operator’s 

performance and experience while using the immersive telerobotic platform. Each operator 

performed equivalent tasks, one with stereoscopic vision and the other without the stereo. With 

this approach we have been able to understand the impact and contribution of stereoscopic vision 

and HMDs in the teleoperation of the robot. 

After performing the task the operators provided feedback about the system in general. 
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5.1.1 Prototype Equipment 

The EV3 robot developed in the prototype, seen in Chapter 4, was used in this experiment, Figure 

5.1. 

Figure 5.1: EV3 Robot 

 

For the stereo vision we are using two Samsung Galaxy S4 Mini34 smartphones. In this experiment 

we used a resolution of 640 x 480 pixels (per eye/smartphone) with a framerate of 30fps. With 

this configuration we were able to experience an average global delay of 60 milliseconds. 

In Figure 5.2 we can see the operator’s equipment. 

 

Figure 5.2: Experimental Procedure – Operator Equipment 

 

The participants used an Oculus Rift DK2 v0.4.2 and Wiimote with Wii Nunchuk, as shown in 

top left of Figure 5.2, below is the router used, a GO-RT-N300 Wireless N300 Easy Router, to 

establish the WLAN and, finally, at right the laptop used to run the server and web application, 

an Asus N550JK-CN102H. 

                                                 
34 http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9195ZKABTU 

http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9195ZKABTU
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5.1.1.1 General Controls 

The robotic head has a range of 180 degrees in axial rotation, and 20 degrees in the lifting and 

lowering movement. 

 

Positional tracking maps body leaning movements to robot back and forth movements and also 

robot rotation. Following we have a list of positional controls. 

 Lean Forward: The robot moves forward with speed depending on the degree of slope 

 Lean Backward: The robot moves backward with speed depending on the degree of 

slope 

 Lean Left: The robot rotates around itself to the left, with the speed depending on the 

degree of inclination 

 Lean Right: The robot rotates around itself to the right, with the speed depending on the 

degree of inclination 

 

Head tracking maps head rotation, flexion and extension to the robotic head rotation, lowering 

and lifting movements. Following we have a list of head tracking controls. 

 Head Flexion (face downwards): The robotic head will lower the cameras down to a 

maximum amplitude of 20 degrees and a threshold of 1 degree 

 Head Extension: The robotic head will lift the cameras to a maximum amplitude of 20 

degrees and a threshold of 1 degree 

 Head Rotation Left: The Robotic Head will rotate the cameras to the left, with a 

threshold of 1 degree 

 Head Rotation Right: The Robotic Head will rotate the cameras to the right, with a 

threshold of 1 degree 

 

The gamepad configuration: 

 Analog Wii Nunchuk: used to control the robot, moving forward/backward and rotating 

left/right 

 Wiimote’s D-Pad: used to control the robotic head 

 Wiimote’s B Button: enable/disable Head and Positional tracking 

 

5.1.2 Scenario and Instructions 

Our main focus was to test the impact that stereoscopic vision can have in telerobotics, but we 

also tried to evaluate the head tracking solution, comparing it with a classic robotic head 

manipulation through a D-Pad. Our tests focused on: 
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 Visual Search and Object Identification: in a polluted or camouflaged environment try 

to identify an item 

 Distances Between Objects: with the robot fixed try to identify the distance between 

objects and which one is closest 

 Head Tracking Control: try to follow a bouncing ball controlling the robotic head 

5.1.2.1 Types of Controls 

For this experiment we prepared a visual search task with three major points of interest. We had 

three types of controls: 

 MHT (Mono Head Tracking): Mono video on HMD, with Nunchuk to control the 

robotic body 

 SHT (Stereo Head Tracking): Stereo video on HMD, with Nunchuk to control the 

robotic body 

 SWM (Stereo with Wiimote): Stereo video on HMD, with Nunchuk to control the 

robotic head and Wiimote’s D-Pad to control the robotic head.  

5.1.2.2 Reconaissance Course 

The operator is brought to a control station, and asked to operate the robot in a remote 

environment, of which the operator has no prior knowledge, and cannot see due to visual barriers . 

As we can see in Figure 5.3, three tests are waiting in the remote environment. 

Figure 5.3: Reconnaissance course 
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In Test A the objective was to evaluate the impact of stereoscopic vision in the identification of 

distances between objects, we had three white objects (a cube, a parallelepiped and a pyramide) 

and a camouflaged object (a cube), a total of four objects. They were arranged in two different 

layouts (A.1 and A.2) as we can see in Figure 5.4. 

 

Figure 5.4: Test A – Both layouts 

 

Both of them, A.1 and A2, were randomly ordered in terms of distribution among operators and 

Stereo/Mono variant of the test.  

In Table 5.1 the distribution order of these tests is shown per Participant. 

 

Participant No. Order of Test A Layouts 

1, 3, 5, 7, 8, 9 A.1 (Mono) – A.2 (Stereo) 

2, 4, 6, 10 A.2 (Mono) – A.1 (Stereo) 

Table 5.1: Assignment of participants to layout setups 

 

In Test A two questions were asked to each participant, in order to evaluate the accuracy of what 

they were seeing. This test was made with two types of controls, namely: MHT and SHT. 

 

In Test B we had a visual search task and tried to evaluate the object identification accuracy in a 

polluted or camouflaged environment. When the operator could not see the camouflaged object,  

he was asked to approach until he get a glimpse of something, then the distance at which he could 
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observe something was measured and collected. Figure 5.5 shows more in depth what the 

environment in Test B had camouflaged. 

Figure 5.5: Test B – Camouflaged Cube 

 

Test B was also made with two types of controls, being: MHT and SHT. 

 

In Test C, regarding the head tracking module, we asked the participants to follow a bouncing 

ball with a manual control (with D-Pad of the Wiimote) and then try again with head tracking. 

Our objective was to get some feedback about the comparison of both. 

 

We now present the questions asked and the order in which the tests were performed. 

 Test A: In this test two questions are asked to the operator: 

o “How many geometrical figures can you see?” 

o “Sort them, in order of distance to the camera, from the nearest to the farthest.” 

 Test B: After Test A, the operator is asked to rotate the robot by 90º to the left. Then one 

question is asked: 

o “How many geometrical figures can you see?” 

 However, if the operator is not sure, he will be asked to move as close as 

possible to scene, until he is sure of what he is seeing. 

o After doing both tests (A and B), the user is asked to repeat them both with 

another control type. If the first test was with MHT, the user switches to SHT and 

vice versa. 

 Test C: Finally the user is asked to perform 2 tasks: 

o Follow the bouncing ball with the robotic head, but only with the Wiimote’s D-

Pad, for 30 seconds. 
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o Follow the bouncing ball with the robotic head, but only with the Head Tracking, 

for 30 seconds. 

 

In the end of this reconnaissance course all the operators were asked to fill a survey about what 

they experienced, and also asked to leave testimony with tips, advice or reviews. 

5.1.3 Participants 

As it can be observed from Figure 5.6 the majority of the participants were under the age of 

twenty-three. 

Figure 5.6: Age distribution 

 

We tried to reach different areas of training in order to avoid potential users of this kind of 

systems, these distribution can be observed in Figure 5.7. 

Figure 5.7: Area of Training distribution 
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5.1.4 Measured Results 

The measures include performance, easy of use, and operator evaluations.  

Performance measures include: 

 The number of correct identified figures in Test A 

o Comparison between stereo and mono vision 

 Number of correct order distances in Test A 

o Comparison between stereo and mono vision 

 Distance needed with stereo and mono vision to spot the camouflaged object 

5.1.4.1 Test A 

In this test we had three white geometrical figures, as observed in Figure 5.4, and a fourth one 

camouflaged in the scene. Should be noted that no one observed the same arrangement of figures 

two times. In Table 5.2 we can see the obtained results. 

 

 

 

 

 

Table 5.2: Test A results 

5.1.4.2 Test B 

In this test we had a camouflaged figure alone in a scene. At an initial distance of 170 centimeters 

from the robot. 

 Mono Vision Stereo Vision 

1st Question 

(How many figures?) 

2 participants have seen the 

figure at the initial distance 

20% 

10 participants have seen the 

figure at the initial distance 

100% 

2nd Question 

(Move closer) 

3 participants were unable to 

see anything 

Average: 67.2cm  

10 participants have seen the 

figure at the initial distance 

Average: 170cm 

Table 5.3: Test B results 

Something to be noted: 

 With mono vision 3 participants were unable to see anything in Test A, even with the 

robot in front of the figure.  

 With stereo vision no one had the need to move the robot, all participants immediately 

spotted the figure. 

 Mono Vision Stereo Vision 

1st Question 

(How many figures?) 

no one seen the 

camouflaged figure 

0% 

3 participants in 10 were able 

to see the 4 figures 

30% 

2nd Question 

(Distance order?) 

correct answers: 4 

40%  

Correct answers: 10 

100% 
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 With stereo vision the ability to identify a hard to spot object, or one that becomes hard 

because of the surrounding environment, increases in, at least (since our initial position 

was 170cm), an amount of 60.5%.  

5.1.5 Survey Presented  

The survey, in Appendix A, consisted of four parts, the first three directly related to the 

experienced tests and the last one with a more global approach. The objective of the survey 

consisted in trying to understand whether the participant’s results corresponded to their 

perception. We also try to get feedback about the prototype and overall experience feedback. 

5.1.5.1 Survey Results 

In this Section we present all the results obtained from the survey and display its information in 

Table 5.4. 
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1.1 Have you previously tested the Oculus Rift or any other Head 

Mounted Display? 

 

1.2 How do you rate your computer skills? 

1.3 Do you have any vision problem? 1.3.1 If yes, what kind? 

 

1.4 Do you use glasses or contact lenses? 

 

1.5 Have you previously controlled a telepresence robot? 
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2.1 I’ve noticed that stereoscopic vision has increased my depth 

perception. 

 

2.2 It was easy to figure out the correct order of objects with 

mono vision. 

 

2.3 It was easy to figure out the correct order of objects with 

stereoscopic vision. 

 

2.4 With stereoscopic vision I felt competition between eyes, 

resulting in double vision. 

 

3.1 I had no problem identifying the camouflaged object with 

stereoscopic vision. 

 

3.2 I had no problem identifying the camouflaged object with 

mono vision. 
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3.3 I’ve noticed that stereoscopic vision has increased my depth 

perception. 

 

3.4 With stereoscopic vision I felt competition between eyes, 

resulting in double vision. 

 

4.1 The Wiimote was extremely helpful in the overall 

maneuvering of the robotic head. 

 

4.2 The head tracking was extremely helpful in the overall 

maneuvering of the robotic head. 

 

4.3 I think that a head tracking module would be more intuitive 

than a Wiimote/Gamepad control in a real world situation. 

 

5.1 I would prefer a stereoscopic vision solution in a real world 

search and rescue (SAR) situation. 
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Table 5.4: Survey results 

5.1.5.2 Comments and Testimonies 

General comments by the participants, about the system, included descriptions such as "going the 

good way", "intuitive", "clear vision" and "a natural depth perception".  

A few less positive comments were made during the tests about the flexion and extension range 

of the robotic head or, by other words, the vertical amplitude of the robotic head. But this was a 

known limitation induced by the hardware used to develop the prototype, seen in Chapter 4, and 

by no means it interferes with the success achieved in the development of the platform. 

 

The written testimonies were also very positive, and quoting a full testimonial by a more 

experienced participant: 

“This project has a magnitude comparable to an extremely high cost project developed 

at Instituto Superior Técnico (IST), with an hardware solution. In TrekProbe, with 3D 

mode vision, I’ve not been able to see a difference, in terms of perception of things in 3D, 

when compared with the IST equipment solution.” 

5.1.6 Experiment Conclusions 

As we seen in Test A, in a polluted environment is impossible to see certain objects, while 

recurring to stereo vision we see an increase from 0% to 30%. The distances between objects are 

much more easily to spot with stereo vision, being 60.5% higher than without it. 

 

5.2 I would prefer a head tracking solution in a real world search 

and rescue (SAR) situation. 

 

 

5.3 Select the symptoms you felt (if any). 
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In Test B, regarding Visual Search and Object Identification in a polluted or camouflaged 

environment, stereo vision has an improvement of 80% over mono vision. The distance that it is  

possible to identify an object also increases by 60%. 

 

In Test C, regarding head tracking module, when asked about what would be better in a real world 

situation between a gamepad/joystick and head tracking, 80% of the participants were in favor of 

the head tracking. 

 

Generally speaking, the experiment revealed itself a success, where all of the participants stated 

that the stereo vision is a big leap from mono and classic implementations. The results of the 

experiment were a success, and it was also possible to imply, with the survey presented, that not 

only the results were good but the participants were also aware of this. 
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Chapter 6 
 

 

 

Conclusion 

Our main motivation came from the fact that state-of-the-art solutions in telerobotics have a lack 

of use of immersive solutions. A secondary motivation came from the fact that currently 

researchers end up wasting too much time and money building specific solutions each time they 

plan to test a specific case, which influenced the creation of an extensible framework. The 

expansion of technologies in areas like mobile, immersive technologies and web-based solutions 

led us to a low-cost platform based on a real-time software based solution. 

 

Despite the inclusion of different types of technologies, both from software and hardware, which 

greatly increased the complexity of the project, the platform development went extremely well,  

achieving all the proposed objectives. 

The prototype developed had two objectives, test the platform developed and evaluate the impact 

that immersive components can have in telerobotics. The platform extension, with the chosen 

robot was also a success, despite some hardware limitations that we already knew from the start 

that we were going to find. 

 

Due to logistic limitations the sample size of participants in the experimental procedure was 

somewhat limited, but was enough to imply that our initial claim was in the right direction. The 

experiment itself went extremely well with the results exceeding the expectations. All of the 

participants stated that the stereo vision is a big leap from mono vision and the more classic 

implementations.  

It was possible to show that on a polluted environment is really hard to see objects that easily 

camouflage in common areas, but with stereo vision we see an increase from 0% (with non-

stereoscopic solution) to 30% in the global identification of this kind of objects. And when in a 
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camouflaged environment not polluted by other objects, this gain increases even more, to a value 

of 80%.  

The distances between objects are also much more easily spotted with stereo vision, being 60% 

higher than without it. 

Regarding the range at which the operator is able to identify a scene with some security of what 

he's able to see, stereoscopic vision increases this range, at least, by 60.5%. 

 

The pratical component was also accomplished with success, as seen in Chapter 4 and proved in 

Section 5.1.5. General testimonies by the participants about the platform were positive and 

included descriptions such as "going the good way", "intuitive", "clear vision" and "a natural 

depth perception".  

 

But not only of positive statements lives our platform. We have a modular platform that can be 

extended with multiple kinds of robots. These robots being controlled with gamepad/keyboard, 

head and positional tracking through Wi-Fi network. We achieved stereoscopic vision with 

everyday accessible hardware (two Android devices) using software synchronization and 

rectification. Currently we are able to achieve a maximum resolution of 1280x720 pixels, with a 

framerate of 30fps, 40-50ms of delay and a packet loss below 0.9%.

 

Regarding future work, we believe that some modules of this platform can, and should, get some 

refactoring. Due to the nature of this project, involving many and different technologies, 

sometimes we lacked time to perform a process of refactoring with care. 

The communication API between the mobile and web applications can be extended with some 

additional capabilities.  

Maybe developing a new prototype, with a more robust robot, could be really helpful in order to 

show features that currently are hard to see or even think about. 
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