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ABSTRACT

The project is concerned with the development of algorithms for the creation of

photo-realistic 3D virtual environments, overcoming problems in mosaicing, colour

and lighting changes, correspondence search speed and correspondence errors due to

lack of surface texture.

A number of related new algorithms have been investigated for image stitching,

content based colour correction and efficient 3D surface reconstruction. All of the

investigations were undertaken by using multiple views from normal digital cameras,

web cameras and a ”one-shot” panoramic system. In the process of 3D reconstruction

a new interest points based mosaicing method, a new interest points based colour

correction method, a new hybrid feature and area based correspondence constraint

and a new structured light based 3D reconstruction method have been investigated.

The major contributions and results can be summarised as follows:

• A new interest point based image stitching method has been proposed and in-

vestigated. The robustness of interest points has been tested and evaluated.

Interest points have been proved robust to changes in lighting, viewpoint, rota-

tion and scale.

• A new interest point based method for colour correction has been proposed

and investigated. The results of linear and linear plus affine colour transforms

have proved more accurate than traditional diagonal transforms in accurately

matching colours in panoramic images.

• A new structured light based method for correspondence point based 3D recon-

struction has been proposed and investigated. The method has been proved to
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increase the accuracy of the correspondence search for areas with low texture.

Correspondence speed has also been increased with a new hybrid feature and

area based correspondence search constraint.

• Based on the investigation, a software framework has been developed for image

based 3D virtual environment construction. The GUI includes abilities for im-

porting images, colour correction, mosaicing, 3D surface reconstruction, texture

recovery and visualisation.

• 11 research papers have been published.

ii



LIST OF PUBLICATIONS

1. M. Bingham, D. Taylor, D. Gledhill, Z. Xu, ”Integration of Real and Virtual

Light Sources in Augmented Reality Worlds”, 14th International Conference on

Automation and Computing. Pacilantic International, ISBN 978-0955529320,

pp 75-80. Brunel University, UK, September 2008.

2. G. Y. Tian, R. Lu, D. Gledhill, ”Surface Measurement Using Active Vision and

Light Scattering”, Optics and Lasers in Engineering, Vol. 45, Issue 1. Elsevier

Science, ISSN 01438166, pp 131-139. 2007.

3. G. Y. Tian, D. Gledhill ”Visualisation Based Feedback Control for Multiple

Sensor Fusion”, 10th International Conference on Information Visualization

(IV’06). IEEE Computer Society, ISSN 1550-6037, pp 553-556. London, UK,

July 2006.

4. R. Lu, G. Y. Tian, D. Gledhill, S. Ward, ”Grinding Surface Roughness Measure-

ment Based on the Co-occurance Matrix of Speckle Pattern Texture”, Applied

Optics, Vol. 45, Issue 35. Optical Society of America, pp 8839-8847. December

2006.

5. D. Gledhill, G. Y. Tian, D. Taylor, D. Clarke, ”Panoramic Imaging Based e-

laboratory Construction”, The Book of Advances in e-Engineering and Digital

Enterprise Technology (e-ENGDET). Wiley, ISBN 978-1860584671, pp 589-600.

August 2004.

6. G. Y. Tian, D. Gledhill, ”Structured Light Based Stereo Vision for Coordination

of Multiple Robots”, 1st International Conference on Informations in Control,

iii



Automation and Robotics (ICINCO). Institute for Systems and Technologies

of Information, Control and Communication, ISBN 972-8865-12-0, pp 158-161.

Setubal, Portugal, August 2004.

7. C. Mitchell , G. Y. Tian, D. Gledhill, D. Taylor, ”Web-based Interactive 3D

Visualisation for Business and Building Management”, Proceedings of the 8th

IASTED International Conference on Internet and Multimedia Systems and

Applications (IMSA). ACTA Press, ISBN 0-88986-420-9. Kauai, Hawaii, USA,

August 2004.

8. D. Gledhill, G. Y. Tian, D. Taylor, D. Clarke, ”3D Reconstruction of a Re-

gion of Interest Using Structured Light and Stereo Panoramic Images”, 8th In-

ternational Conference on Information Visualisation (IV’04). IEEE Computer

Society, ISBN 0-7695-2177-0, pp 1007-1012. London, UK, July 2004.

9. D. Gledhill, G. Y. Tian, D. Taylor, D. Clarke, ”Panoramic Imaging - A Review”,

Computers and Graphics 27(3), ISSN 0097-8493, pp 435-445. 2003.

10. G. Y. Tian, D. Gledhill, D. Taylor, ”Comprehensive Interest Point Based Imag-

ing Mosaic”, Pattern Recognition Letters 24(9-10). ISSN 0167-8655, pp 1171-

1179. 2003.

11. G. Y. Tian, D. Gledhill, D. Taylor, D. Clarke, ”Colour Correction for Panoramic

Imaging”, 6th International Conference on Information Visualisation (IV’02).

IEEE Computer Society, ISBN 0-7695-1656-4, pp 483-488. London, UK, July

2002.

iv



LIST OF FIGURES

2.1 A complete panorama . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Kaidan Kiwi990 with Nikon Coolpix 990 camera . . . . . . . . . . . . 8

2.3 Diagram showing panoramic capture process for single camera where

Pn = Photo, Pc = combined panorama and O = optical centre of the

camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 A 360◦ by 120◦ panoramic image . . . . . . . . . . . . . . . . . . . . 10

2.5 iMove SVS-2000 Camera System . . . . . . . . . . . . . . . . . . . . 11

2.6 Two 180◦ hemispheres that can be used to create an omni directional

image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 BeHere Video System uses a mirror to capture the environment . . . 13

2.8 The first true stereo camera with two lenses, built in 1849 . . . . . . 14

2.9 A modern stereo camera setup . . . . . . . . . . . . . . . . . . . . . . 14

2.10 Altering the rotation point and using different parts of the images to

create a stereo panorama . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11 Original image, and position information provided by edge detector . 20

2.12 Left original image before the mosaicing . . . . . . . . . . . . . . . . 30

2.13 Right original images before the mosaicing . . . . . . . . . . . . . . . 30

2.14 Two images stitched together (without blending) . . . . . . . . . . . 31

2.15 Two images stitched together (with blending) . . . . . . . . . . . . . 31

2.16 3D surface reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 32

2.17 Stereo images and related disparity map . . . . . . . . . . . . . . . . 35

2.18 Epipolar geometry and epipolar plane . . . . . . . . . . . . . . . . . . 36

2.19 Triangulation to find a point in 3D from 2 2D images . . . . . . . . . 38

v



3.1 The basic theory of the project . . . . . . . . . . . . . . . . . . . . . 47

3.2 Showing the sub elements within each stage of the project . . . . . . 48

4.1 Stereovision system and panoramic imaging for 3D virtual environment 53

4.2 Showing the process of 3D panoramic imaging Where FOE is the Focus

of Expansion and FOC is the Focus of Contraction, both parts of a

panorama where either too much (FOE) or too little (FOC) depth is

perceived. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 The one-shot system . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 The multi-shot system, showing 4 of the 26 positions used . . . . . . 57

4.5 Stereo system using web cameras for stereo correspondence algorithm

testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Diagram showing multi-shot system camera orientations. . . . . . . . 58

4.7 Screenshot of software framework. . . . . . . . . . . . . . . . . . . . . 59

4.8 A diagram of the software framework . . . . . . . . . . . . . . . . . . 60

4.9 Crops from consecutive images from a panorama sequence showing

colour changes due to capture devices settings changes . . . . . . . . 62

5.1 Step 1 of the new approach of colour correction . . . . . . . . . . . . 64

5.2 Step 2 of new approach of colour correction . . . . . . . . . . . . . . 65

5.3 Linear transform matrix estimation and colour correction before image

stitching and panorama . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Histogram before and after equalisation . . . . . . . . . . . . . . . . . 68

5.5 Overlapping area of the stitching images . . . . . . . . . . . . . . . . 71

5.6 Colour correction based on M or M − 1 . . . . . . . . . . . . . . . . 71

5.7 A selection of images used in the experimental tests for the colour

correction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.8 Comparison of the speed for the colour correction pre-processing methods 90

5.9 Comparison of accuracy for the colour correction processing methods 91

vi



5.10 Comparison of the average speed of the colour correction methods . . 92

5.11 Comparison of the differences in processing accuracy for different image

variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.12 Comparison of the standard deviation in processing time for each pre-

processing method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.13 Comparison of the minimum, mean and maximum processing times for

each pre-processing method . . . . . . . . . . . . . . . . . . . . . . . 95

5.14 Different colour correction for panoramic imaging . . . . . . . . . . . 97

6.1 Image mosaic processing block-diagram . . . . . . . . . . . . . . . . . 99

6.2 Interest points across illumination and rotation . . . . . . . . . . . . 101

6.3 Rotation-invariant LBP . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Two stitching images and their corresponding points . . . . . . . . . 104

6.5 Stitched image without colour correction . . . . . . . . . . . . . . . . 105

6.6 The stitched images with colour correction . . . . . . . . . . . . . . . 108

6.7 A selection of images used in the experimental tests for the feature

matching algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.8 A comparison of the average accuracy (%) of the feature matching

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.9 A comparison of the average speed (seconds) of the feature matching

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.10 A comparison of the minimum accuracy (%) of the feature matching

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.11 A comparison of the minimum speed (seconds) of the feature matching

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.12 A comparison of the maximum accuracy (%) of the feature matching

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vii



6.13 A comparison of the maximum speed (seconds) of the feature matching

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.14 A comparison of the standard deviation of accuracy (%) of the feature

matching algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.15 A comparison of the standard deviation of speed (seconds) of the fea-

ture matching algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1 An example of the structured light pattern to be projected onto low

texture surface areas . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Showing the structured light pattern in an image (left) and after it has

been removed (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Showing the results of 3D depth calculations when no structured light

pattern used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Showing the results of 3D depth calculations when structured light

pattern used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Structured light pattern projection results showing fewer errors in the

depth map where the structured light is projected (inside the red line) 125

7.6 Interest points and their correspondence . . . . . . . . . . . . . . . . 125

7.7 Computing expense and search area . . . . . . . . . . . . . . . . . . . 126

7.8 Corresponding areas for constrained area based searching (Left image

and right image) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.9 Process using interest points to increase the speed of processing the 2D

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.10 The stereo images and their disparity map, using area based method

of correspondence searching . . . . . . . . . . . . . . . . . . . . . . . 128

7.11 Brick data showing Interest points and correspondence matches, and

disparity map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.1 Embedded 3D virtual environment for Web-based interactive applications131

viii



LIST OF TABLES

5.1 Average (mean) values for all colour correction image tests . . . . . . 73

5.2 Minimum values for all colour correction image tests . . . . . . . . . 74

5.3 Maximum values for all colour correction image tests . . . . . . . . . 75

5.4 Standard Deviation for all colour correction image tests . . . . . . . . 76

5.5 Average (mean) values across the brightness variation colour correction

test images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 Minimum values across the brightness variation colour correction test

images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Maximum values across the brightness variation colour correction test

images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Standard Deviation of values across the brightness variation colour

correction test images . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 Average (mean) values across the white balance variation colour cor-

rection test images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.10 Minimum values across the white balance variation colour correction

test images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.11 Maximum values across the white balance variation colour correction

test images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.12 Standard Deviation of values across the white balance variation colour

correction test images . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.13 Average (mean) values across the white balance and brightness varia-

tion colour correction test images . . . . . . . . . . . . . . . . . . . . 85

ix



5.14 Minimum values across the white balance and brightness variation

colour correction test images . . . . . . . . . . . . . . . . . . . . . . . 86

5.15 Maximum values across the white balance and brightness variation

colour correction test images . . . . . . . . . . . . . . . . . . . . . . . 87

5.16 Standard Deviation values across the white balance and brightness vari-

ation colour correction test images . . . . . . . . . . . . . . . . . . . 88

6.1 Average Interest Point Correspondence Results (SIFT and Proposed

Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Minimum values for the interest point correspondence results (SIFT

vs. Proposed Method) . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Maximum values for the interest point correspondence results (SIFT

vs. Proposed Method) . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Standard deviation values for the interest point correspondence results

(SIFT vs. Proposed Method) . . . . . . . . . . . . . . . . . . . . . . 114

x



ACKNOWLEDGEMENTS

I would like to thank the School of Computing and Engineering at the University

of Huddersfield for granting me the opportunity to carry out this project. I would

also like to thank Rotography Ltd and the EPSRC for co-funding the project.

I would like to express my gratitude to my director of studies, Prof. G. Y. Tian,

who has guided and supported me throughout the project. My gratitude also goes to

my second supervisor, Prof. D. Taylor for his help and support with the project.

I would also like to thank my parents for supporting and encouraging me through-

out my education. They always pushed me to do better, and it doesn’t get much

better than a PhD!

The work was very enjoyable and I am very excited about the new Augmented

Reality work currently underway. I would also like to keep working on the mosaicing

using interest points, the Hugin application currently uses 2 different methods for

automatic mosaicing. Developing a 3rd, faster, more accurate method would be very

interesting.

xi



TABLE OF CONTENTS

Abstract i

List of Publications iii

List of Figures v

List of Tables ix

Acknowledgements xi

Chapter 1: Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Literature Survey 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Image Capture Systems . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Single and Multi Camera-based Panoramic Systems . . . . . . 7

2.2.2 Omni Directional Imaging Systems . . . . . . . . . . . . . . . 11

2.2.3 Stereo Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Image Processing and Understanding . . . . . . . . . . . . . . . . . . 15

2.3.1 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Radial Lens Distortion Correction . . . . . . . . . . . . . . . . 16

2.3.3 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Feature Detection and Matching . . . . . . . . . . . . . . . . . 18

i



2.3.5 SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Colour Correction and Colour Constancy . . . . . . . . . . . . . . . . 22

2.5 Image Mosaicing and 3D Reconstruction . . . . . . . . . . . . . . . . 26

2.5.1 Mosaicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 3D Construction . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Stereo Panoramas . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.4 Rendering and 3D visualisation . . . . . . . . . . . . . . . . . 41

2.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 Stereo Vision Based Panoramic Capture System . . . . . . . . 42

2.6.2 Deriving Capturing Conditions and Object Surface Character-

istics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.3 Image Understanding and 3D Reconstruction . . . . . . . . . 43

2.6.4 Image Based Volumetric Rendering . . . . . . . . . . . . . . . 44

2.6.5 Problems identified . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 3: Theory and Project Issues 47

3.1 Project concept and major elements . . . . . . . . . . . . . . . . . . . 47

3.2 Key project elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Image capture . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 3D reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.4 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4: Panoramic Stereo Imaging 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ii



4.3 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Content Based Colour Correction . . . . . . . . . . . . . . . . . . . . 61

4.5 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 5: Colour Correction 63

5.1 Histogram Map Based Colour Correction . . . . . . . . . . . . . . . . 63

5.1.1 Histogram Equalisation . . . . . . . . . . . . . . . . . . . . . . 66

5.1.2 Histogram Mapping . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.3 Singular Value Decomposition . . . . . . . . . . . . . . . . . . 69

5.2 Colour Correction for Panoramic Imaging . . . . . . . . . . . . . . . . 70

5.3 Experimental Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 6: Image Mosaicing 98

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 4-step Interest Points Based Image Mosaic . . . . . . . . . . . . . . . 98

6.2.1 Identification of Interest Points . . . . . . . . . . . . . . . . . 99

6.2.2 Finding corresponding points from stitching images . . . . . . 101

6.2.3 Spatial and Spectral Transform Matrices . . . . . . . . . . . . 103

6.2.4 Image Mosaic with Smoothing . . . . . . . . . . . . . . . . . . 107

6.3 Experimental Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 7: 3D Surface Reconstruction 120

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 3D Surface Reconstruction Using Structured Light . . . . . . . . . . . 120

7.3 Interest Point Based 3D Surface Reconstruction . . . . . . . . . . . . 122

7.4 Experimental Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

iii



Chapter 8: Conclusions and Further Work 130

8.1 Panoramic Imaging for Virtual Environment Creation . . . . . . . . . 130

8.2 Web-Based Interactive System Using 3D Panoramic Imaging . . . . . 131

8.3 Video panoramic imaging . . . . . . . . . . . . . . . . . . . . . . . . 132

8.4 Using interest points to integrate the real and virtual world in computer

games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 135

iv



1

Chapter 1

INTRODUCTION

1.1 Motivation

Panoramic imaging is rapidly emerging as an important part of digital imaging and

image processing, especially with the required equipment becoming much cheaper and

more easily available. The most common and simplest way to produce panoramas

is to use a consumer digital camera such as a Canon Digital IXUS [1] or a Pentax

Optio S [2] which have a panorama assist mode. This means it is very simple to

create panoramas as the camera directs where the next image should be taken from.

Software is available for free [3] to be able to stitch the images together into a finished

panorama. This level of panorama is at the cheaper and simpler end of the list

of available options and needs approximately 20 photographs, depending on lens.

Recently though, even mobile phones have panoramic assist modes for small, simple

panoramas. Following these simple panoramic image capture systems more complex

systems are available. There exist panoramic systems that can use two fisheye lenses

[4], a single hyperboloid mirror [5, 6], or even a rotating camera designed to capture

high dynamic range panoramas [7]. Many options already exist for panoramic image

capture, from the inexpensive consumer system, to the expensive professional system.

3D reconstruction is another rapidly developing area in image processing. As with

panoramic systems, off the shelf cameras are now utilizing simple stereo for viewing

pictures as stereo images [2]. Using digital images for detailed 3D reconstruction is

also becoming a consumer reality with software products like D Sculptor 2 from D

Vision Works [8] or 3D SOM from Canon [9], although these still require the user to
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do most of the work. Stereo vision is still largely a research area though, as many

unresolved problems still exist. A significant problem is the correspondence problem,

the most common and difficult for computer vision applications and algorithms. Cor-

respondence describes the relationship of a feature or area between different images.

Given a point or area in one image, the correspondence problem is that of finding the

corresponding point or area in another image.

Recent research work has begun to combine the work of panoramic imaging and

stereo imaging to create stereo panoramas. Commercially there is now a product from

Autodesk which goes a long way toward this goal, although it is still an online process

requiring time consuming user input. With more work in this field, it will ultimately

mean the possibility of being able to create entire 3D environments from 2D panoramic

images for use in virtual tourism, gaming, film, military, manufacturing and design. It

will, in the future, be possible to enter a physical space, capture multiple panoramas

at different locations and then create a 3D reconstruction of the scene, with little or

no user involvement. Architects, film makers and games programmers could all take

advantage of such technology to speed up existing methods of 3D construction.

Applications for a 3D panoramic system include military, tourism, games, film,

manufacturing and design. As an example, a “drone” robot could scout a military

zone with no risk to humans. The automated drone would capture panoramic data

which would be processed in real time to generate a 3D virtual environment for

soldiers or commanders to explore before entering the area. Another example might

be being able to walk along a virtual beach to see a foreign resort, without leaving

the comfort of your home. Games programmers could save time building complex

models of famous buildings, just by visiting the building and capturing it in 3D. The

success of a system with this capability would depend on accuracy, ease of use, speed

and cost.

This work is partly sponsored by Rotography Ltd [10], a Halifax based panoramic

imaging company. Rotography started working with panoramic imaging in 1997.
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They are now working toward new technologies such as panoramic video and 3D

panoramic imaging. They sponsored this project to further their work in panoramic

technologies. They hope to gain useful insights into future technologies to help keep

them ahead of the competition. The research is also sponsored by the EPSRC.

The University has a previous research record in the area of signal processing.

Gui Yun Tian is a respected researcher in the areas of signal processing and colour

correction. Duke Gledhill has a degree in Multimedia Technology from the University

of Huddersfield and a personal, and expensive, interest in all technologies related to

panoramic imaging.

1.2 Aims

The objective of this project was to develop and improve algorithms used in a 3D

panoramic imaging system for fast construction of 3D environments from panoramic

images. Experimental work was carried out to determine the most appropriate

panoramic capture system for the purpose of 3D reconstruction. Experimental work

was also undertaken to determine the most accurate methods of matching the panoramic

images, and determining 3D information.

The objectives can be broken down as follows:

• To review current panoramic imaging techniques, from capture through to 3D

reconstruction.

• To design a novel 3D panoramic imaging system, comprising capture, processing

and visualisation.

• To apply advanced processing techniques for colour correction, feature detection

and matching, and visualisation.
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• To evaluate the test results and determine new strategies for overcoming any

problems.

• To identify the key features of the system and applications for the system.

1.3 Thesis Outline

Chapter 1 discusses the background and objectives of the project. Chapter 2 discusses

state-of-the-art research and techniques for the main areas of this research. Current

panoramic capture systems and stereo capture systems are reviewed, including single

and multi shot systems. The important components of panoramic imaging are covered

including camera calibration, lens distortion, colour correction, correspondence for

mosaicing, 3D reconstruction and visualisation. Chapter 3 discusses the research and

how it has been separated into four main areas of research. Chapter 4 introduces

a new 3D panoramic imaging system, including hardware and software. Chapter

5 introduces a new method of colour correction for panoramic imaging. Chapter 6

introduces a new image stitching method using interest points. Chapter 7 discusses

a new interest points based method for 3D surface reconstruction from 2D images.

Finally further work and conclusions are discussed.
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Chapter 2

LITERATURE SURVEY

2.1 Introduction

As computers and cameras become cheaper, the use of digital images is becoming

more prevalent. Panoramic imaging is an important part of this expanding use of

digital equipment. The term panorama was first used by the painter Robert Barker

to describe his panoramic paintings of Edinburgh. Surrounded by these paintings

gave the impression of standing in another environment. Translating that to modern

virtual tours, apart from being on a computer screen the feeling of immersion is still

present. In its most general sense, a panorama is a single wide-angle image of the

environment around the camera. Usually they completely surround the camera on the

horizontal plane, and can be either approximately 120◦ in the vertical field of view,

or 180◦ to create a complete sphere, but the term is often used to describe any wide

angle representation of a scene. An example of a complete 360◦ cylindrical panorama

is shown in Fig. 2.1 [10].

Panoramas are widely used in areas such as robotics, computer vision, surveillance

and virtual reality. They have also been driven by commercial interests like enter-

tainment, interactive TV, real estate and virtual tourism. In the past fifteen years,

panoramic imaging systems have significantly progressed. Not only can specialists

create and display panoramas, but also with a multitude of software available, some

for free [11], everyone with a computer and camera is able to create panoramas. Even

global corporations have embraced panoramas, for example Apple with their Quick-

Time software [12]. There are many ways to capture a panorama, either using a single
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Figure 2.1: A complete panorama

camera mounted on a tripod and rotated about its optical centre, using a single omni

directional camera, using multiple cameras facing in different directions, or using a

stereo panoramic camera from which stereo information can be extracted. There is

also another alternative to the stereo panorama for calculating stereo information.

Instead of rotating the camera about its optical centre, the camera can be moved

and used to capture multiple images of a scene from different viewpoints, from which

stereo information can be calculated about the scene. This stereo information can

then be used to create a 3D model of the scene, and arbitrary views can be computed.

This information could also be used to build 3D models of large areas, for example

a city might be reconstructed in this way. The process of the panoramic or stereo

system can be simplified to four main stages:

1. Image Capturing System

2. Image Processing

3. Image Stitching or Stereo Processing

4. Rendering and 3D Visualisation

This chapter will review and compare some of the methods in the various stages of
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3D panoramic imaging and identify research topics and applications. The rest of

the chapter is organised as follows. Section 2.2 introduces image capture systems,

section 2.3 discusses image processing and understanding, section 2.4 discusses colour

correction, section 2.5 discusses image stitching and structure from stereo and finally

3D visualisation.

2.2 Image Capture Systems

As the technology used in digital cameras becomes cheaper, so do the cameras them-

selves. Modern digital cameras have high-resolution sensors, which capture a large

amount of data about the scene being photographed. For panoramic imaging n num-

ber of images need to be captured, where n is dependent on the camera, lens, and the

type of panorama required. Many panoramic image systems have been developed,

from cheap off the shelf cameras that take a high number (e.g. >8) of sequential

images, to omni directional systems that capture only one image.

The important parts of the imaging systems are:

• Resolution

• Field of view

• Capturing speed

2.2.1 Single and Multi Camera-based Panoramic Systems

Panoramic imaging from multiple images involves either a camera rotated about its

optical axis (or nodal point), or using multiple cameras capturing different directions.

For a single camera rotated about its optical axis there are several components

required

• Camera
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• Lens

• Rotator

• Tripod

The camera and tripod can be relatively standard. The lens choice depends on

the field of view required from each image. The lens choice determines field of view

and therefore required number of images to capture the full panorama and also ensure

enough overlap between images to enable correspondence matching and an accurate

mosaic. The rotator is very important, it must enable the camera to rotate about its

entrance pupil without flex or movement. An inaccurate rotator will cause parallax

errors in the images and make mosaicing difficult or impossible.

From a commercial perspective, all of the above can be acquired easily on the

open market. Panoramic imaging systems can start with relatively standard, off the

shelf cameras [13, 14], panorama tripod mounts [15, 16] and software [11, 17, 18].

A commercial example might include a Nikon 990 [13] mounted on a Kiwi990 (Fig.

2.2) tripod mount from Kaidan [15], and using Pixaround [17] software to stitch the

images. This example system would require several images for an accurate panorama,

by altering the lens (e.g. a Nikon 8mm FC-E8), fewer images need capturing.

Figure 2.2: Kaidan Kiwi990 with Nikon Coolpix 990 camera

Once a multi-shot single camera system like the example above has been setup
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the panorama is captured by turning the camera on the tripod about the optical

centre of the camera (Fig. 2.3) and capturing an image at chosen points. Important

considerations include overlap, movement of objects in the scene near the overlap

regions and control of camera settings, such as white balance and exposure. Consistent

white balance and exposure are important for smooth blending of images.

Figure 2.3: Diagram showing panoramic capture process for single camera where Pn

= Photo, Pc = combined panorama and O = optical centre of the camera.

The main disadvantage of this multi-shot single camera system is that dynamic

scenes can cause many problems, for best results static scenes are required. In dy-

namic scenes, motion may be present at the overlap of the images, and create erro-

neous information in the final panorama. Some software uses masking to attempt to

compensate for differences in overlap regions. However, this is an off-line approach

with varying degrees of success, for example in very dynamic scenes like a crowd of

people it is difficult to acheive an accurate mosaic. Generally though multi-shot sin-

gle camera systems give a much higher resolution image than the omni directional

systems, for example a Canon 20D with EF-s 10-22mm lens using 13 shots creates a

49 mega pixel spherical panoramic image. An omni directional image from the same

camera but with a 0-360 one-shot mirror only creates a 0.9 mega pixel cylindrical

panoramic image. Multi-shot systems require the camera settings between shots to



10

be kept unchanged. For example changes in white balance and exposure between cap-

tures will result in more difficulties for mosaicing and blending images for a seemless

panorama.

Advantages of this process are that it can be relatively cheap and easy to use,

therefore it has become popular with many photographers. Also the fact that almost

any camera can be used on just about any tripod (and rotator) and it makes this type

of panorama even more appealing. Some modern cameras even come with panorama

assist modes to help in the capture process (e.g. Canon Digital IXUS and Nikon P

series cameras).

Figure 2.4: A 360◦ by 120◦ panoramic image

An alternative to using a single camera on a tripod is to use multiple cameras

mounted together, each pointing in a different direction. For example a system with

6 cameras, each spaced 60◦ apart. This system has the advantage of being able to

capture the whole scene in a single shot, and is able to keep the high resolution.

This system could also be used to capture video panoramas. The disadvantage of

this system is the number of cameras; mean time to failure for the system will be

significantly lower. A commercial example of this type of system is the iMove SVS-

2000 system [19] (Fig. 2.5). The iMove system uses 6 cameras, 4 on the horizontal

plane, spaced 90◦ apart and 1 up and 1 down. This system is able to capture video

rate spherical panoramas. Unfortunately because panoramas require images taken

from a central nodal point the cameras have to be as close together as possible. This
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translates into small cameras and with current technology relatively low resolution.

As sensor technology improves higher resolution solutions will be possible. Only 4

cameras for 180◦ coverage also requires very wide angle lenses and the issues that

exist with them, e.g. distortion and resolving power.

Figure 2.5: iMove SVS-2000 Camera System

2.2.2 Omni Directional Imaging Systems

Omni directional image sensors, first proposed in 1970 [20], capture the whole envi-

ronment in one single image and have the advantage of speed of capture without the

need for mosaicing. Panoramic video is also a possibility with this type of system.

It also means that the scene does not have to be static, as any motion will still be

captured in the same image. In an omni directional camera system there must be

a single effective viewpoint if pure perspective images are to be calculated and 3D

information extracted. Omni directional sensors either incorporate lenses or mirrors.

Some commercial systems use fisheye lenses [4] (Fig. 2.6 [10]) and others use a variety

of lens/mirror configurations (Fig. 2.7). Fisheye lenses are generally quite large and

typically expensive. They have a very short focal length, which produces a hemispher-

ical image, often with an approx. 180◦ field of view. There is a significant amount
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of lens distortion with fisheye lenses which takes processing power to correct, making

real time systems a more difficult goal. The low resolution and high lens distortion of

the fisheye lens means that accurate distortion free perspective views cannot be cal-

culated from images captured with a fisheye lens. Catadioptric imaging systems use a

reflecting surface to enhance the field of view. Examples of Catadioptric systems can

be found in [21] and commercial examples include the 0-360 one-shot system used in

this project [6]. Svoboda et al describe Spherical, Hyperbolic and Parabolic mirror

systems and derive information making them useful for stereo panoramic imaging [21].

However, omni directional systems generally suffer from lower resolution, something

that will become less of an issue as higher resolution sensors are developed.

Figure 2.6: Two 180◦ hemispheres that can be used to create an omni directional
image

A common problem with both single camera systems and multi camera or omni

directional systems is the dynamic range. Dynamic range in photography refers to

the limits of the luminance range that a camera can capture. The dynamic range of

current cameras is relatively small compared to the human vision system. With the

increase in the field of view there is generally an increase in the range, for example

including both the sun and shadows in an outdoor panorama. Aggarwal and Ahuja

[22] have developed a method to increase the dynamic range of the systems to produce

better quality images. They propose the use of a mask with 50% normal and 50%

covered by a neutral density filter. This ensures when rotating the camera both
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Figure 2.7: BeHere Video System uses a mirror to capture the environment

high key and low key images are captured for stitching. This method could not be

used for the multi-camera and omnidirectional systems. For omnidirectional sensors

bracketing the capture settings of the camera and post processing to create a high

dynamic range image can be very effective. As new sensors are developed, higher

dynamic range images will be possible.

2.2.3 Stereo Cameras

Stereo vision consists of two images of a scene taken at different viewpoints. What our

brains see as depth is called the disparity, which is the angular difference in viewing

directions of each scene point between the two images. Disparity is a function of

the points depth and the distance between eyes/cameras (baseline). Stereo cameras

were invented around 1839 to take two photographs seperated by a short distance,

usually similar to the human eye seperation. When viewed using a special viewer,

so that each eye saw the correct image only, depth perception was possible. See Fig.

2.8 for an example of the first true stereo camera and a more modern stereo setup

shown in Fig. 2.9. Many modern stereo cameras are available but need a viewer,

like special goggles, to see the two individual images correctly. Using the function of
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disparity and accurate correspondence information, computers are able to calculate

depth information from a set of stereo images to produce depth maps of the scene.

Figure 2.8: The first true stereo camera with two lenses, built in 1849

Figure 2.9: A modern stereo camera setup

For stereo panoramic image capture systems several options have been proposed.

Huang and Hung [23] proposed a system using two cameras. Their PSI-II system is

able to correct for problems such as epipolar alignment. Schum and Szeliski [24] also

proposed a stereo panoramic system by offsetting the rotation point of the camera

and using multi-perspective panoramas. Other researchers, for example Peleg and

Ben-Ezra [25] and Ishiguro et al [26] have proposed single camera stereo panoramic

systems. Peleg and Ben-Ezra propose rotating the camera about a point which is

offset from the nodal point, actually behind it. Once the camera has been rotated the

image is split into bands, for the left and right parts of the images. These left and
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right components are mosaiced to create two panoramas, one for each eye, illustrated

in Fig. 2.10.

Figure 2.10: Altering the rotation point and using different parts of the images to
create a stereo panorama

2.3 Image Processing and Understanding

The image acquired in the image capture system must now be processed. The pro-

cessing is required because the computer does not ’know’ what the images are, and

what information they contain, apart from the pixel data. Once the images are pro-

cessed they can be used in a panoramic or stereo system. There are many stages to

image processing, some which are not used in both stereo and panoramic imaging.

For 3D reconstruction and panoramic imaging the image processing can be defined in

several stages:

• Noise Reduction

• Radial Lens Distortion Correction

• Camera Calibration
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• Feature Detection and Matching

2.3.1 Noise Reduction

Noise is an inevitable part of image processing, particularly when using cheap off the

shelf systems. In recent years as the market is driven by megapixels noise has become

more of an issue for commercially available camera systems. Photosites are getting

smaller and the sensors are staying the same size. Noise can affect the location of

features, and therefore the correspondence problem. The greater the noise, the greater

the results will be affected. To minimise the effects of noise in the calculation of the

corresponding points, a Gaussian blur can be applied to the images, this makes the

effects of noise less significant [27], but also reduces contrast making feature point

detection less reliable. Tensor voting, presented by Medioni et al [28], is a novel

methodology for the robust inference of features from noisy data. This method does

not need the noise to be ’blurred’.

2.3.2 Radial Lens Distortion Correction

Most work with 3D assumes a pinhole camera model. A pinhole camera projects

the world onto the image plane linearly if expressed in terms of projective geometry.

However, optical systems in commercial cameras are not linear, so the camera is not

linear. The camera model can be described as linear with non-linear distortions. Often

the non-linear distortions can be ignored if very small and less accurate information

is acceptable. If accurate information is required then the non-linear distortions need

to be modelled and corrected. Lens correction is required where cheaper or extreme

wide angle lenses are used, particularly in the off-the-shelf systems, where radial lens

distortion is more significant. These radial lens distortion effects will mean that the

pinhole camera model is not satisfied. Lens distortion correction remaps the distorted

image to a distortion free image, which then satisfies the pinhole camera model [29].
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The simplest perspective projection of a pinhole camera onto an image plane can be

expressed as
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where the matrix describing the mapping is called the camera projection matrix

P . In Eq. 2.1 the camera projection matrix is the simplest possible case and only

contains information about the focal distance f .

If Eq. 2.1 is simplified to

zm = PM (2.2)

then M = (x, y, z, 1)T are the homogeneous coordinates of the 3D point and

m =
(

fx

z
, fy

z
, 1

)T
are the homogeneous coordinates of the image point.

2.3.3 Camera Calibration

Camera calibration provides information about the intrinsic (focal length, aspect ra-

tio, image centre and radial distortion coefficient) and extrinsic (rotation matrix and

translation vector) parameters of the camera. The intrinsic information provides data

for estimating the camera model with more accuracy, rather than assuming the pin-

hole model. Camera calibration is a necessary stage in 3D computer vision if 3D

information is to be extracted from the images. The camera information is also useful

for computing viewpoint changes in 3D environments and panoramic image naviga-

tion. There are two types of camera calibration, photogrammetric calibration and

self-calibration.

Photogrammetric calibration involves capturing a known calibrated object from

multiple viewpoints. Photogrammetric calibration is very efficient, but needs expen-
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sive calibration equipment and a complex setup. Zhang [30] and Heikkila [31] have

accomplished useful work in this area. Zhang proposes a flexible technique which

requires the camera observe a planar pattern at two or more orientations. Either the

camera or the pattern can move, no other information is required.

Self-calibration uses no known object or pattern. It instead uses multiple captures

of a static scene to calculate calibration information. McMillan [32] and Luong and

Faugeras [33] have accomplished a lot of work in this area. Luong and Faugeras pro-

pose a new Fundamental Matrix which is a simplification of the Essential Matrix to

provide epipolar geometry information. The Essential Matrix requires a calibrated

camera and intrinsic parameters. The Fundamental Matrix describes the correspon-

dence in more general terms.

In this project camera calibration is achieved using the Camera Calibration tool-

box from Strobl et al at the Institute of Robotics and Mechatronics [34] which is

based on the work of Zhang [30].

2.3.4 Feature Detection and Matching

To extract useful information from the scene, features need to be detected in the

images and then matched with corresponding features in the other images. The

correspondence problem is accepted as one of the most difficult and ongoing problems

in image processing. Many applications of 2D image registration, or matching, are

covered in Odone and Fusiello’s paper [35] and readers are referred to the paper by

Brown [36] for an in depth review of image registration techniques. There are two

main types of detecting and matching features in images, area based methods and

feature based methods.

Area based techniques use correlation of intensity patterns of a pixel with the

intensity pattern around the corresponding pixel in another image. First a point

of interest is chosen in one image. Then cross-correlation is used to search for the

corresponding pixel in the other image. Decisions about the size of the search window
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and the location and size of the search region need to be made. Some area based

methods use adaptive window sizing. Area based methods suffer because they use

the intensity values at each pixel directly, and are therefore sensitive to changes

in viewing position, absolute intensity, contrast and illumination. Occlusions can

also give erroneous correspondence information. Zitnick and Kanade [37] use a co-

operative stereo algorithm for stereo matching applying uniqueness and continuity

constraints to derive occlusion information.

Feature based methods are based on intensities in the images (e.g. edges, corners),

rather than image intensities (e.g. pixel colour) themselves. There are two features

that are most commonly used, edges and interest points.

Edge detectors attempt to recover the discontinuities in the photometric, geomet-

rical and physical characteristics of objects in the images. This information creates

variations in the grey-level image. There are three steps to edge detection. The first

step is noise smoothing to suppress as much of the image noise as possible, without

destroying the true edges. The second step is edge enhancement, which means apply-

ing a filter designed to be large at edge pixels and small elsewhere. The third step

is edge localisation, which means deciding which local maxima in the filters output

are edges and which are just caused by noise. Nonmaximum suppression to thin

wide edges and thresholding can be used for edge localisation. There are three main

ways to use the variation information, discontinuities (step edges), local extrema (line

edges) and the 2D features formed where at least two edges meet [38]. Fig. 2.11 [30]

shows an example of an original image and the position information provided by an

edge detector. There are tens of edge detectors in the vision community, but they

all produce similar results. Common edge detectors include Canny [39] and Sobel.

Canny proposed the original edge detector in 1986, but it is still state-of-the-art today

and still the most used.

Bao and Xu [40] use edge-preserving visual perception modelling to build mo-

saics. Kim et al [41] use edges in their graph matching algorithm and use camera
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focal length to improve stitching reliability, which finds corresponding edges for the

matching. Edge detection is used in Bourque’s et al [42] work for determining inter-

esting locations from where a robot should capture a spherical panorama.

Figure 2.11: Original image, and position information provided by edge detector

Interest point detectors attempt to find locations in the image where the sig-

nal changes two-dimensionally, locations such as corners, T-junctions or significant

changes in texture. Interest points for image matching can be traced back to the

interest operator used by Moravec [43] for automatic rover obstacle avoidance. Later

Harris and Stephens [44] improved the Moravec detector to make it more repeatable.

Many interest point detectors now exist, as reviewed by Schmid et al [45]. Schmid

et al showed that the Harris corner detector was the most consistent when testing

repeatability and information content of interest point detectors. Interest points, as

local invariant features [46], are robust to changes in lighting, viewpoint, rotation,

translation and scale [47] and are used in many areas including image retrieval and

indexing [48], object recognition [49] and mosaicing [46] to cite a few. More recently

a new approach to low level image processing has been introduced. The SUSAN prin-

ciple developed by Smith and Brady [50] uses non-linear filtering to define parts of

an image which closely relate to an individual pixel, each individual pixel now having

an associated local image region of similar brightness to that pixel. The new SUSAN

feature detectors are based on the minimisation of this local image region.
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2.3.5 SIFT

Scale-invariant feature transform (SIFT), first proposed by Lowe in [49] and updated

in [51] uses interest points (or keypoints) that have proved invariant to scale and

rotation and robust to changes in viewpoint and illumination. The SIFT algorithm

will be used for testing proposed methods against so is described here in more detail.

There are 4 main stages to the SIFT algorithm:

• Scale-space extrema detection

• Keypoint localisation

• Orientation assignment

• Keypoint descriptor

Scale-space extrema detection

Candidate keypoints are detected using a Gaussian based cascading filtering approach.

Candidate locations are compared across different scale-spaces [52] to find points that

are invariant to scale changes. Convolution of a variable scale Gaussian filter with an

image produces multiple scales of an image. Adjacent scales are compared using a

difference-of-Gaussian function. This subtracts one scale space image from another.

Once multiple d-o-G images are computed, possible delegates for keypoint selection

are compared with their 8 neighbours, and 9 neighbours in the scale above and below.

Stable keypoints are those which are either larger or smaller than all of the neighbours.

Keypoint localisation

Keypoint selections need to be filtered for points that have low contrast or are poorly

located along an edge. A 3D quadratic function is fitted to the local sample point

to determine the interpolated location of the maximum. A threshold is applied to
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reject points with a low contrast. Next poorly located edge points are rejected. Edges

produce a strong response in the difference-of-Gaussian function. A poor edge point

can be defined as having a large principle curvature across the edge, but a small one

in the perpendicular direction. By applying a threshold to the ratio of the principle

curves across and perpendicular to the edge, poor edge points can also be rejected.

Orientation assignment

Invariance to rotation can be acheived by assigning a consistent orientation to each

keypoint. An orientation histogram is formed from the gradient orientations of key-

points. Peaks in the orientation histogram correspond to dominant directions of local

gradients. The highest peak on the histogram is used to determine orientation infor-

mation. If there exists another peak within 80% of the highest then multiple keypoints

are created, each with a different orientation.

Keypoint descriptor

The previous stages have provided a local 2D coordinate system in which to describe

the local image region using keypoints with invariance to scale and orientation. This

final stage computes a descriptor to provide invariance to illumination and viewpoint

changes. The descriptor is formed from a vector based on orientation histograms taken

from the surrounding pixels around a keypoint. The feature vector is also normalised

to reduce the effects of global contrast and brightness changes, making the descriptor

robust to lighting changes.

2.4 Colour Correction and Colour Constancy

Colour changes are a common problem in panoramic imaging due to changes in light-

ing, viewpoint, or even uncontrollable device settings which all have an effect on the

final captured image. The basic method of colour correction used currently is the
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diagonal model, shown in Eq. 2.4 which was adapted by Ives [53] and based on the

theories of Von Kries.

The digital camera records large shifts in image colours under different illumina-

tions. However, a human observer viewing each scene will be able to discount the

colour of the illumination and perceive the colours in each scene as the same. This

property of compensating for illumination is called colour constancy. Colour con-

stancy is a subconscious colour correction that all humans have. To overcome the

problem of colour distortion when capturing images under different lighting or differ-

ent camera properties, it is necessary to understand the principle of colour variation

between the two images. The machine colour constancy problem can be defined as

follows. First, choose some illumination as the standard, or canonical, illumination.

The choice of canonical illumination matters little so long as it is not unusual. Then

consider the 3 band RGB image obtained by any standard colour camera of a scene

under some other, unknown illumination. The machine colour constancy problem re-

quires converting the RGB at every pixel to be what it would have been had the same

scene been illuminated by the canonical illumination. In this way, all the RGB values

in the image of the scene measured under the unknown illumination are converted

to standardized RGB descriptors relative to the canonical illuminant. Once these

standardized descriptors have been obtained, they can be used for object recognition

or for creating an image of the scene as it would appear under some other illuminant.

The key to solving this problem is discovering the colour of the unknown illumination.

Two well-known colour constancy methods, which work under limited circumstances,

are the grey world algorithm and the white patch algorithm. The grey world algo-

rithm assumes that the average of all colours in an image is grey, i.e. the red, green

and blue components of the average colour are equal. The amount the image average

differs from grey determines the illuminant RGB. The white patch algorithm, which

is at the heart of many of the various retinex [54] algorithms, presumes that in every

image there will be some surface or surfaces such that there will be a point or points
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of maximal reflectance for each of the R, G, and B bands.

A common approach to colour constancy is the use of the estimation illumination

to correct the images to a canonical light. Finlayson et al [55] suggested that if a

transform is linear, a diagonal model might be sufficient to model the colour transform.

Generally colour cameras are tri-chromatic, which means in a colour image, each pixel

is a 3 vector, one component per sensor channel and works independently. However,

with increasing colour fidelity, more accurate transforms will be required [56].

Different linear colour transforms, where the colour variation may be caused by

lighting, changes in viewpoint or capturing devices, are discussed as follows. The

transform Matrix M across images I1 and I2 can be represented as

I1 ∗ M = I2 (2.3)

1) Diagonal model

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

α

β

γ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2.4)

α =
mean(R2)

mean(R1)
(2.5)

Where R is the red channel image intensity values in the two images. β and γ are

similar for green and blue channels.

General features:

• Simple, not accurate enough in some cases

• Based on greyworld principle and does not need matching geometric pixels in

the 2 images

2) Diagonal model plus affine transform
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M =
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(2.6)

α, β and γ will be the same as diagonal model. The offset can be obtained from

polyfit in the individual channels.

General features:

• More accurate than diagonal model

• Two images require the same corresponding pixels

3) Linear model

M =
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(2.7)

Where M can be computed by

M =
[

IT
1 I1

]

−1
IT
1 I2 (2.8)

Where

I1, I2

is an [n, 3] matrix and n is the number of pixels in the images.

General features:

• Good accuracy

• Need the same corresponding pixels in both images

• Computationally expensive
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4) Linear model with affine

M =
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In addition to equation 2.8, the offset can be obtained by
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(2.10)

The general features are the same as the linear model.

As described above, to obtain better colour correction, more parameters in lin-

ear transforms will be used. We will use and compare diagonal model plus affine

transform, linear model and linear model plus affine for colour correction in image

correction for panoramic imaging.

2.5 Image Mosaicing and 3D Reconstruction

For panoramic imaging the images that have gone through image processing need to

be mosaiced, or stitched, together.

For 3D reconstruction, the stereo images are used to calculate the disparity be-

tween the image data.

For both of these processes, accurate correspondence information is essential. The

correspondence information is used to generate a homographic matrix, which remaps

the images onto the same plane or is used in the stereo process for calculating the

distance between corresponding pixels, to produce a disparity map.
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2.5.1 Mosaicing

The creation of panoramic images and mosaics from a video sequence or a collec-

tion of images has attracted tremendous attention from researchers and commercial

practitioners alike. Most systems for creating panoramas require the use of special

fixtures (e.g. tripods and rotators) for precisely controlled image capture [57] and are

transformed by their geometrical mapping [58].

In the last few years general interest in mosaicing has proliferated the vision and

graphics community because of the range of possible applications i.e. teleconfer-

encing, e-commerce, reconstruction of virtual environments and games. Szeliski et

al have presented techniques for automatically deriving realistic 2D scenes and 3D

texture mapping models from video sequences with applications in virtual environ-

ments [58, 59, 60]. The principal task in image mosaicing is finding the corresponding

points and their transforms from the source images, especially when the stitching

images have been produced in different capture conditions with different viewpoints

and capture devices. One of the approaches is to compute eigenimage features using

principal component analysis (PCA) for finding corresponding areas [61]. Another

approach applies wavelet-based edge preserving for finding corresponding image fea-

tures [40]. However, edge-based features are not robust to viewpoint changes. Also

recent progress on pattern recognition, based on local features, invariant features

in particular, has been used in many applications [49]. Interest points have been

extensively investigated for object recognition and content-based image retrieval in

computer vision [49, 62, 63] and corner-based image mosaicing has been presented

with reasonably good results [46]. The SIFT algorithm has proven very robust and

popular as a correspondence search and matching method for panoramic imaging and

object recognition.

A mosaic is a collection of images and the transformations that relate them. In

the case of a collection of images of a planar scene, taken from different points of view,
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or a collection of images of a 3D scene taken from the same point of view, the only

difference between the images is a rotation around the optical center of the camera

and the transformation between the images is a linear transformation of projective

space, called a collineation or a homography [64]. Previous work simplifies 2D image

mosaics by the homography estimation [33]. Two cases have been investigated. The

first is when the homography is mainly a translation and the rotation around the

optical axis and zooming are small. The second is the general case where the rotation

around the optical axis and zooming are large. Some efficient methods have been

developed to handle the first case. For example, if the overlap of the images is

very large, it has been shown that a non linear criterion minimization using the

Levenberg-Marquardt method yields very good results [58], but it is very sensitive to

the local minima and computationally expensive. A corner-based method to compute

the homography between two images with small overlap (around 50%) and arbitrary

rotation around the optical axis has been presented and used to build a 2D mosaic

from a set of images [46, 65]. For 3D object images, a precise imaging mosaic has

exploited non-linear transforms, for example the quadratic transform [65, 66]. This is

the second-order Taylor expansion of the general interframe mapping function where

the usual affine transformation model is the first-order expansion.

As described above, previous work to date mainly concentrated on geometric trans-

formations for image mosaics. With the wide use of colour imaging, spectral transfor-

mation is also becoming important, particularly for dealing with image mosaics under

various conditions. Colour image transformation and correction for illumination can

apply linear models [67, 56]. The diagonal model plus affine transform will be used

in this work.

New developments in electronic imaging and computer technologies now enable

the generation, processing, communication and display of complex and rich images.

Imaging has been developing rapidly over recent years and there is considerable scope

for innovation and refinement. The constant drive to accumulate multiple sensor
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devices into larger, faster, more efficient arrays stimulates technological developments

in both the hardware and software aspects of imaging techniques. Improvements

in identification and recognition have long been recognised as the primary goals of

intelligent systems. The motivation for this work is the many potential applications

in teleconferencing, construction of image-based virtual environments, e-commerce,

medical imaging and panoramic imaging.

For panoramic stitching or mosaicing, the features that are found in the previous

methods are then used to calculate the homograph between the two images. The

homograph is a mapping between two perspective images of a planar surface in a

scene [68, 69]. In effect this means that two images of a scene are related by a

homograph, typically a 3x3 matrix (see eq. 2.11). This homograph can be used to

re-map images onto different planes.
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(2.11)

In an automated system, there are many registration points and some of these

points will contain false information, i.e. incorrect registration. Deciding which of

these registration points to use to calculate the homograph is a difficult proposition.

By using all the points to create multiple homographic matrices and then filtering

them is one solution to finding the correct homographic matrix. There are a few

methods to find the ’best fit’. One common practice is to use the least squares

method. Another more recent method by Kanatani et al [68] uses a theoretical ac-

curacy bound based on a mathematical model of image noise, and then a technique

called renormalisation that theoretically attains the accuracy bound in the first order.

Once the optimal homographic matrix has been calculated the homograph infor-

mation is then used to re-map the images onto the same plane, and place them in

the correct positions so that the individual images create a single panoramic image
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such as the one in Fig. 2.14. The image in Fig. 2.14 used a homographic matrix

to align the images from Fig. 2.12 and Fig. 2.13 correctly after the ’best fit’ matrix

was computed from feature points in the images. Then colour correction algorithms

were applied to create the final image, shown in 2.15. Mann and Picard [70] use video

sequences and mosaicing to build high resolution images, and Kourogi et al [71] have

created a real time mosaicing system using video sequences. Zhu et al [72] use video

mosaics for stereo imaging.

Figure 2.12: Left original image before the mosaicing

Figure 2.13: Right original images before the mosaicing

Burt and Adelson [73] use a multi resolution spline technique for combining two
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Figure 2.14: Two images stitched together (without blending)

Figure 2.15: Two images stitched together (with blending)

or more images into a larger mosaic. In this technique the images are used as a

set of band-pass filtered component images, instead of using the whole image data.

Onoe et al [74] use omni directional video streams to create real-time view-dependent

perspective images, which lends itself to real-time telepresence systems.

2.5.2 3D Construction

The problem is that of 3D reconstruction, which is determining the 3D position of

points in a scene from a 2D representation. For example when a 2D image, e.g. digital

photograph, is captured the 3D scene is projected onto the 2D plane. 3D reconstruc-
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tion attempts to recover the 3D scene from this 2D version. It is the well-known

ill-posed computer vision problem. Particularly, the reconstruction of a dynamic,

complex 3D scene from multiple images is an old and challenging problem. Early

work by Longuet-Higgins [75] into deriving 3D information from 8 points led the way

for 3D reconstruction and his work is still the basis for many of todays algorithms.

Numerous studies have been conducted on various aspects of this general problem,

such as the recovery of the epipolar geometry between two stereo images, the calibra-

tion of multiple camera views, stereo reconstruction by solving the correspondence

problem, the modelling of the occlusions, the fusion of stereo and motion, and the fu-

sion of multiple images by lighting variation [76]. Of course the most accurate method

of 3D reconstruction is to use Laser measurement. This can be expensive and where

people are included in the panoramic scene a risk to health exists. Yu et al [77] used

a laser mounted on a van to produce accurate models of road surfaces and a video

camera to produce the texture.

Figure 2.16: 3D surface reconstruction

Algorithms for surface reconstruction from different cues, such as stereo, shading,

shadows, texture and spectral properties can be summarised in Fig. 2.16. Integrating
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information from different sources such as stereo vision, video sequences or multiple

images under different lighting are input for feature extraction. The feature extraction

will obtain point, edge, area, colour, texture features etc for matching corresponding

features in different image resources. Then depth estimation will calculate the depth

information for 3D data and visualisation. Many approaches have been investigated

in the last few decades. More details are discussed in the following paragraphs.

Using the correspondence information, a disparity map can be computed, as illus-

trated in Fig. 2.17 [78]. The disparity is the distance between corresponding pixels,

and can be used to triangulate the 3D position of the pixels in the image. One of

the biggest problems in stereo imaging, apart from correspondence, is the problem

of occlusions. Stereo imaging uses multiple views of the same scene, either with the

same camera from different viewpoints, or with multiple cameras. There are many

ways of calculating the disparity from stereo images, including using structured light,

geometry based approaches, image based approaches and parallax based approaches.

Dhond and Aggarwal [76] reviewed the state-of-the-art techniques up until 1989 in

their paper, which this section continues. Park and Inoue [79] use multiple cameras to

capture information, and use the information in a hierarchical depth mapping system

to overcome the occlusion problem. Hamden et al [80] use a trinocular vision sys-

tem together with structured light to create a fast 3D object reconstruction system.

Valkenburg and McIvor [81] use a single camera with a projector which projects a

stripe pattern onto the object which the camera captures.

Pilu [82] suggested using Singular Value Decomposition of an approximate cor-

respondence strength matrix, which gives very good results. Tzovaras et al [27] use

dynamic programming to calculate the depth map. Tsai and Katsaggelos [83] pre-

sented a divide-and-conquer approach for dense disparity estimation. Aquigiar and

Moura [29] use a surface-based factorisation method to recover 3D structure. Taylor

and Jelinek [84] construct linearly parameterized models from single images with a

camera of unknown focal length. Once the structure of the scene is known arbitrary
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views of the scene can be calculated. Izquierdo and Kruse [85] use stereo imaging

for calculating arbitrary views of the extracted models. Lee et al [86] use a similar

approach to stereo, using a front, back and side image, to create human models from

photographs. The system uses interest points to determine the silhouette of the hu-

man. Sietz and Dyer [87] use two images in a similar way to stereo vision, but they

use them to generate physically valid synthetic views of the scene, in effect viewing

the scene from a different viewpoint, not captured in the original images. Debevec et

al [88] approach the model generation technique from a different angle. They use a

manual photogrammetric method for the initial simple model, and then use a model

based stereo algorithm, which recovers how the real scene differs from the model. This

technique is limited to architectural models though, because it uses constraints that

are characteristic of architectural scenes. Oh et al [89] use a single image, with much

user input to generate 3D models. The system relies on the users input for assigning

layers, and depths. Aliaga and Carlbom [90] use multiple panoramas to create a new

walkthrough of a large environment. Their system captures the panoramas and uses

them to plot a series of interlocking ”walkways”, which can be used to generate the

new walkthroughs.

Correspondence is the most important process in 3D surface reconstruction. The

correspondence matching includes point matching, scan line matching, edge with re-

gion matching and segment area matching from images under different capturing

conditions such as different viewpoints (structure from stereo) [91, 92, 93, 94], move-

ment (structure from motion) [95, 96, 72] and different lighting [97, 98]. Stereo vision

infers 3D structure from two or more images taken from different viewpoints. Two or

three cameras are often used, which are binocular vision or trinocular vision. More

than two cameras used for stereo vision can improve the 3D reconstruction accuracy

and efficiency [91, 93]. To estimate depth from a pair of stereo images, two main

problems need to be solved. They are the correspondence problem and reconstruc-

tion problem. The correspondence problem finds the corresponding item in the right
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Figure 2.17: Stereo images and related disparity map

image from all the items such as pixels, edges, regions and objects in the left image

[92, 93, 99]. The correspondence problem is commonly calculated with either area-

based [100, 101, 24] or feature-based [92, 94, 102] methods. Feature based methods

use features such as edges or points, like corners. Area based methods use neighbour-

hoods around the pixel being computed. The reconstruction problem needs additional

information about the cameras and assumptions about the scene and uses them to

estimate disparities between items [94, 103, 104, 105]. To reduce the searching time of

finding corresponding items, one well-known constraint is the epipolar constraint [99]

as illustrated in Fig. 2.18. A point in an image creates an epipolar line on which the

corresponding point in the other image must lie. Fig. 2.18 shows an example of a 3D

point P , the two camera locations Ol and Or and the point ml with its corresponding

point mr. The line er and el are the epipolar lines and the plane formed by the points

P , Ol and Or is the epipolar plane.
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Figure 2.18: Epipolar geometry and epipolar plane

Epipolar geometry means a previous 2D search for corresponding points now be-

comes a 1D search, which as well as being much faster also means fewer false or

ambiguous matches. This constraint to the correspondence search is called the epipo-

lar constraint. In order to determine the epipolar line from a point in an image the

essential matrix and the fundamental matrix must be calculated. The essential matrix

defines the relationship between an image point defined in camera coordinates and

the epipolar line. The fundamental matrix defines the relationship between an image

point defined in pixel coordinates and the epipolar line. The essential matrix can be

computed using three vectors that lie on the epipolar plane,Pl, T and (Pl − T ). The

epipolar plane is computed by

(Pl − T )T (T × Pl) = 0 →
(

RT Pr

)T
(T × Pl) = 0 (2.12)

Where T ×Pl (cross product) is a vector perpendicular to the plane containing T and

Pl (the epipolar plane). Pl − T is also in the same plane, so the dot product is zero.

The cross product can be written as
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From 2.12 and 2.13 we get P T
r EPl = 0 → E = RS where matrix E is the essential

matrix which defines the epipolar constraint in terms of the extrinsic parameters.

More computation about epipolar constraints for stereo vision can be found in [99,

106]. As a basic constraint, many researchers have used the epipolar constraint for

reducing search time [92]. Other constraints are also possible, for example the use of

rigidity constraints [107].

Following the corresponding points process, depth information can be calculated,

by using triangulation as illustrated in Fig.2.19. Triangulation is the process of de-

termining the position of a point in a scene if that point is visible in two images [103].

Triangulation needs information about the camera for correct results, these are the

focal length of the camera and the distance between the camera positions, or baseline,

when the images were captured. These intrinsic camera properties can be found using

camera calibration techniques. Suppose a point P is visible in two images. If the two

camera matrices are known, the points ml and mr are projections of the point P in

the two images. From the available data the two rays in space corresponding to the

two image points may easily be computed [103]. The triangulation problem is to find

the intersection of the two lines in space. For example to find the Z value of the point

P (X, Y, Z). The corresponding points in the images are of the form ml (x1, y1) and

its matching point mr (x2, y2) where the point mr in the right image corresponds to

the point ml in the left image. In this example the disparity is on the x axis only (for

example if the corresponding points were on all the epipolar lines and the images were

corrected). If the focal length of the camera is f , y1 = y2 and the distance between

the cameras is b then the 3D point P (X, Y, Z) can be computed by the equation

2.14. The intrinsic and extrinsic parameters of the cameras need to be calibrated or

modelled [104, 105, 108].

Z =
fb

x2 − x1
(2.14)

As illustrated in Fig. 2.19, 3D surface reconstruction needs to apply feature ex-
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Figure 2.19: Triangulation to find a point in 3D from 2 2D images

traction for representing points, lines or areas for their correspondence search under

different constraints. In addition to the epipolar line constraints, other constraints

used by researchers include spatial continuity, disparity gradient and left-right consis-

tency [100]. Spatial continuity attempts to ensure that the variation in depth over the

image is smooth, with exceptions for discontinuities. The disparity gradient constraint

limits the ratio of difference in disparity to difference in 3D position and can assist in

finding false matches. For example the disparity gradient could be limited to a gradi-

ent of +1. The left-right consistency constraint states that feasible conjugate pairs are

those found with both direct and reverse matching. For example for each point (x, y)

on the left image the disparity dl(x, y) is computed. The process is repeated with re-

versed images to compute dr(x, y). If dl (x, y) = −dr (x + dl (x, y) , y) then the point

keeps its computed left disparity [99]. Examples of features used in stereo techniques

are edges, silhouettes and interest points. Unlike silhouettes, interest points are very

robust to changes in lighting, viewpoint, rotation and scaling which makes them very

useful for the correspondence problem [49, 98, 109]. With knowledge of the epipolar

geometry, the correspondence problem could be reduced from the original 2D search

to a 1D search along the epipolar lines. However, the correspondence ambiguity with
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the epipolar lines remains difficult to overcome, especially when the observed scene

consists of dense features. Several factors make the stereo correspondence problem

difficult: occlusions, large disparities, photometric and figural distortions, significant

orientation difference of the image planes [37, 97, 110, 111, 49, 101] and the difficulty

of deciding what window size to use in intensity-based matching [112, 113, 114, 83].

In addition to stereovision, a shape from shading algorithm [97] or motion is used to

improve efficiency and accuracy of 3D. 3D reconstruction from stereovision is accurate

but correspondence establishment is difficult. A complementary approach, structure-

from-motion uses the motion cue. Motion analysis techniques use an image sequence,

usually taken from a single video camera [95]. The camera is either moved around

a static scene, the scene moves around a static camera, or in some cases both the

camera and the scene move. Calculations are more difficult if both are moving. If

objects within the scene are moving, for example moving traffic, then motion segmen-

tation is required. The camera is usually moved slowly so that the distance between

frames, the baseline, is small. This means the information in the image sequences

moves little from one frame to the next. The motion of a camera relative to a static

object can be described by a translation velocity vector and an angular velocity vec-

tor. There are two main methods for determining motion and structure from image

sequences, optical flow and feature based methods. Structure from motion and struc-

ture from stereo have the same sub problems: the correspondence problem and the

reconstruction problem. The motion cue has the advantage that the correspondence

problem is relatively easy to solve because adjacent images are ’alike’. Thanks to

video compression and media communication, algorithms for motion cue e.g. motion

vectors for MPEG4 or H263 have been developed, standardised and implemented in

hardware which makes the approach attractive and possible for real-time applica-

tions [96, 115, 72, 116, 117, 118]. The shortcomings of both structure-from-stereo and

structure-from-motion techniques for 3D reconstruction have motivated a new direc-

tion of research to combine the two vision cues for 3D reconstruction when a stereo
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pair of cameras are available to capture binocular image sequences [119]. Recently

a few researchers have extended stereo imaging with panoramic imaging to create

stereo panoramic imaging [120, 23, 25, 102, 121, 24], which lends itself to creating 3D

environments of the real world.

2.5.3 Stereo Panoramas

A recent development in panoramic imaging is the stereo panorama. Stereo panora-

mas involve two panoramas, one for the left eye and one for the right eye. Peleg

et al [120] mosaic images from a single rotating camera, and then generate a stereo

panorama from the mosaic. Huang and Hung [23] base their panoramic stereo system

on two cameras, which produce stereo panoramas for VR worlds. Pritch et al [120]

presents a lens system and a mirror system for omni stereo panoramas. Peleg et al

[120] also provides ideas about cameras that can be used for stereo panoramas. The

next level is to use the stereo vision techniques and the stereo panoramic techniques to

build 3D models from the panoramic data. Svoboda and Pajdla [122] reviewed current

panoramic cameras that could be used for 3D computation. Koyasu et al [123] use

omni directional cameras to build panoramas which are then compared to build 3D

information and which is then used for robot navigation in dynamic environments. If

panoramas are taken on the same horizontal plane problems with focus of contraction

and focus of expansion arrise. If the panoramas are taken with vertical seperation,

they can not be used for human stereo viewing but stereo imaging for depth calcu-

lation becomes much easier. Using panoramic cameras for 3D computation would

enable full 3D scenes to be captured and modelled. There are limitations however

with current systems. 3D models that are generated from stereo images or panoramas

do not allow much movement, the view soon becomes distorted. To overcome this,

multiple models must be built and combined to create a larger more complete model.

Aliaga and Carlbom [90] have worked along these lines but no models are created,

the system is based on image based rendering techniques.
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2.5.4 Rendering and 3D visualisation

Once the panorama has been stitched to create the complete 360◦ image it needs

to be visualised. There are a number of online viewers available for free download

[11, 18]. The viewers remap the planar image onto the inside of a cylinder, sphere or

cube. A cylinder is the simplest model because the planar image maps directly onto

the inside. Because the panoramas need special viewers, they cannot take advantage

of any hardware texture-mapping acceleration without approximating the cylinder’s

or sphere’s shape with a polyhedron, which introduces distortions into the rendering.

Szeliski and Shum [124] use environment maps to overcome this. Lee et al [125]

present the idea of transmitting the panoramas in two levels, the background level,

which is a static panorama, therefore using less information than a video panorama.

The second level is a dynamic object overlaid on the background panorama. This

enables pseudo video panoramas to be transmitted over a network, using less data

than a pure video panorama. Another use of panoramic video is for tracking a region

of interest, for example if a whole scene is captured but only the region of interest

video stream is created from this to generate a standard video stream. Sun et al

[126] use this system for tracking a speaker at a lecture and creating a single stream

which pans with the movement of the speaker, similar to how a human operator

would control the camera. For the stereo images that have generated a depth map,

the depth map describes what shape the objects in the scene are, and can therefore

build a 3D model of the scene. This scene can then be rendered as any 3D object

would be. Texture information can be extracted from the individual images, and

mapped to the 3D model, giving a realistic model of the scene. Another way to

render the stereo information is using image based rendering [127]. Image-based

rendering effectively deforms the image using homograph to give the effect of a 3D

model. Shum and Kang [127] completed a review of current image-based rendering

techniques with the conclusion that image-based rendering and more traditional model
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based rendering have many complimentary characteristics, and in the future hardware

should be designed for both. Kiyokawa et al [128] use an optical see-through display

for mutual occlusion with a real-time stereovision system. This enables 3D objects to

be integrated with video in real-time.

2.6 Discussions

Panoramic or omni-directional cameras allow the opportunity to capture rich data

about an environment that can then be used to generate ”walk-throughs” for VR, or

backgrounds for games, or tourism [12]. The panoramic imaging system is a typical

system using the convergence of computer vision and computer graphics as described

above. Computer graphics and computer vision could be described as taking op-

posite approaches to the same problems. Computer vision develops novel capture

techniques while computer graphics adopts techniques from computer vision for cap-

turing models from the real world and also for reconstructing movement for virtual

worlds. However, traditional view computer graphics start with inputting geometric

models and producing image sequences whereas computer vision starts with inputting

image sequences and producing geometric models, at least as an intermediary step.

Linking with the real world, the virtual world is based on 3D, which will drive cur-

rent panoramic imaging systems from 2D to 3D including hardware and software. The

nucleation of virtual reality, graphics, video and vision is predicted to be an impor-

tant area of research, particularly for 3D panoramic imaging and virtual environment

construction. Some challenges exist in the following areas.

2.6.1 Stereo Vision Based Panoramic Capture System

It is well-known that stereo vision can obtain depth information for 3D scene capturing

[79]. Most computer vision research to date has been concerned with the geometric

recovery of points that can be matched between images [37]. Little work exists on
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the problem of automatically recovering useful surface or image-based models from

this data for stereo panoramic imaging. Instead of using special equipment, 3D scenes

obtained from stereo vision can be easily visualised in a VR environment. Equally, the

viewed scene can be changed based on different viewpoints and other view conditions.

A very interesting and exciting application of mixing stereo and panoramic imaging

is the Beagle 2 Stereo camera system [129]. Unfortunately it was never used on Mars,

but they integrated stereo imaging for digital elevation models and parabolic mirrors

for panoramic imaging into a single system. Video based reconstruction techniques

must be developed which allow a user to interactively recover models of a scene and

select viewpoints (much like a video paint brush that allows a user to interactively

recover representations of the scene).

2.6.2 Deriving Capturing Conditions and Object Surface Characteristics

Image formation on a digital sensor integrates illumination information and object

surface characteristics within the visible spectrum. It would be useful to reverse the

capture device, illumination and scene surface characteristics from the captured data.

For example, colour constancy algorithms have provided some approaches to estimate

the illuminant of an image. Based on the illumination, linear models, particularly the

diagonal model can be used for colour correction and transformation [130] where

lighting or viewpoints are changed.

2.6.3 Image Understanding and 3D Reconstruction

Multiple view images for image sequences or different cameras have some correlated

information. Based on the correlation, 3D images can be reconstructed. Further

approaches may expand current registration techniques from correspondence points

to correspondence area with the integration of shape, texture and colour. The rep-

resentation of robust invariance will reduce the importance of accurate calibration

on capturing systems. Augmented reality, as applied to the field of telerobotics, is
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concerned with enabling a human operator to conduct tasks more effectively in a

remote or hazardous environment when using a telepresence interface. Since vision is

central to comprehending the remote environment, the main AR technique is to over-

lay computer generated graphical information upon the operator’s view of the real

scene [128]. Thus, it is possible to provide additional qualitative and quantitative

information to the operator. In the latter case, the real and graphical worlds must be

made to register, or correspond, with each other statically or dynamically depending

on the application. Registration is required whenever quantitative information needs

to flow between the real and graphical worlds and is a key element of most applica-

tions. It requires careful calibration and modelling of all the real world sensors into

the graphical world. The sensor data is used to update the graphical model, often in

real-time, using transformation matrices. Inaccuracies in the sensor data and the ma-

trices gives rise to a dynamic registration error between the two worlds that manifests

as a jerky or swimming motion for the overlaid graphics. Some invariant features for

registration or correspondence, which are robust to image capturing condition and

devices, will be a future research direction [130]. Video research is an evolution of

vision and graphics work. The number of images is large and increasing bringing

a need for greater compression. While it is good to have fewer samples, this does

not guarantee fewer bits. If a sequence of images is seen as a video sequence, then

general video coding can be applied, however, this intra-coding does not exploit the

correlation between images. The use of intracoding however does not provide random

access (i.e. frame N depends on frame N-1).

2.6.4 Image Based Volumetric Rendering

The convergence of computer vision, computer graphics and digital video technology

has resulted in an emerging research area known as image-based rendering (IBR)

[127]. In image-based modelling, rendering and animation, virtual environments and

objects can be modelled and rendered directly from images and videos, bypassing
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the difficult and labour-intensive processes of traditional model construction. Critical

to image-based modelling and rendering of virtual environments, and image-based

animation of virtual objects, are compression and decompression of the large amount

of visual data. There is also no current work integrating virtual character animation

with IBR, although on the horizon are hybrid representations that use both geometric

models and IBR that will allow greater flexibility in dynamics. Also the integration of

IBR with video needs to be addressed to add dynamic surface appearance. Volumetric

reconstruction from multiviews is now quite well understood and analysed. The main

difficulties remain in turning the volumetric representation into a model and/or IBR

form and in extracting a representation of surface appearance properties to allow

realistic rendering for 3D panoramas.

2.6.5 Problems identified

In this chapter the different stages of panoramic imaging and stereo vision techniques

have been discussed. Major advances in digital imaging and vision computing have

been reviewed. These reviews suggest direction for future research. 3D panoramic

imaging will be a feasible approach for fast, realistic virtual environment construction.

From the literature survey it was determined that the work should concentrate on

several issues.

The first is the problem of colour constancy. When moving the camera to capture

the next image in a panoramic sequence changes in the lighting and/or camera settings

(automated) means that sequential images can have different appearances. Making

sure the images are as similar as possible in colour and lighting is important for

successful mosaicing.

The second problem is that of accurate image mosaicing. Determining an accurate

transform matrix is essential for accurate mosaicing and the problem of correspon-

dence is ongoing. The correspondence problem is an ongoing problem in the image

processing research community, however for mosaicing only a small number of corre-
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spondences are required and can be taken from areas where probability of a successful

match will be high.

The third problem researched was that of accurate correspondence in areas of low

texture. For example for 3D reconstruction of a surface with low texture there will

be many correspondence errors.



47

Chapter 3

THEORY AND PROJECT ISSUES

3.1 Project concept and major elements

The basic theory of this project is to develop algorithms for areas within the process

of creating 3D from 2D. The work concentrates on several small elements of the whole

process. The project areas include the capture of the digital images, the pre-processing

of the images, the 3D reconstruction and visualisation, as shown in Fig. 3.1.

Figure 3.1: The basic theory of the project

Each of the four stages can be broken down into more detailed elements. The

capture stage includes alignment of cameras, camera calibration and structured light

pattern generation and projection. A human element exists at this stage which con-

trols the focusing of the cameras and alignment. Templates can be used to overcome
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the alignment problem and printed patterns used to achieve accurate focusing. The

pre-processing includes epipolar alignment, colour correction, accurate mosaicing us-

ing homography and coordinate transform for the ’one-shot’ mirror system. 3D re-

construction includes triangulation and accurate correspondence. For visualisation

accurate texture recovery is required. Fig. 3.2 shows a more complete picture of the

process, with each sub element shown under the main project stages. The shaded

components are the areas this work addresses.

Figure 3.2: Showing the sub elements within each stage of the project

3.2 Key project elements

The key project elements are capture, processing, reconstruction and visualisation.

Each one has key sub elements to be solved.
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3.2.1 Image capture

Within the capture element accurate alignment of the cameras and camera calibra-

tion is required. Without accurate initial capture information the later stages will

contain errors. It is important to ensure accurate capture by checking the alignment

with templates, and camera calibration using a known calibration pattern, captured

several times and used to calculate the camera properties. In the project two cap-

ture systems are available. One system is based on a high resolution digital SLR

camera with a 0-360.com ’one-shot’ parabolic mirror attached. This system enables

the capture of panoramic images in a single image. The other system is a modular

system. The modular system is able to capture stereo vision images, for example for

object or face reconstruction, and also capture multiple images for mosaicing into a

single panorama. This second system uses low resolution web cameras. The use of

web cameras keeps the project costs to a minimum with the goal of proving accurate

depth information can be achieved with low cost low resolution equipment. Camera

calibration is only required for the second capture system. For example when recon-

structing small objects using stereo vision, or capturing multiple images for mosaicing,

camera calibration is required to determine the intrinsic and extrinsic parameters of

the cameras. Another element of the capture phase is a structured light pattern.

This pattern is used to assist the correspondence search algorithm by increasing the

texture in areas of low texture, for example walls. The structured light pattern needs

to be of sufficient size and distribution to assist the correspondence search, but also

suitable for filtering for later texture recovery.

3.2.2 Pre-processing

In the pre-processing element the major sub elements are colour correction, mosaic-

ing and epipolar alignment. The polar to rectangular conversion can be achieved

using known algorithms either in commercial software, or by implementation in Mat-
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lab. Colour correction is required for seamless mosaicing of the captured data, and

also to assist the correspondence search, which uses pixel intensities to achieve corre-

spondence. Colour correction for seamless mosaicing is required for visually accurate

rendering of the panorama. Colour correction is also used before stereo vision pro-

cessing to ensure similarity between the captured images. If the colour in the images

is too dissimilar then errors in the correspondence search will occur. The mosaicing

has to be accurate because the correspondence search will expect epipolar lines to be

undistorted. Incorrect alignment of the images for mosaicing will create deformations

in the final panoramic image, in which case the correspondence search will fail.

3.2.3 3D reconstruction

The key sub element in the reconstruction phase is the reconstruction algorithm.

If the stereo system cameras are aligned in parallel then simple triangulation can be

used. If the cameras are not aligned in parallel then a more complex algorithm is used.

With the ’one-shot’ system a depth calculation based on correspondence is used. In

all reconstruction situations accurate correspondence is essential for accurate results.

To aid the correspondence search constraints are used. The most common constraint

is the epipolar constraint, which is used to limit the correspondence search to a 1D

search instead of a 2D search.

3.2.4 Visualisation

For a visually pleasing and accurate visualisation of the final model a photo realistic

texture must be used. The structured light pattern needs to be removed from the

captured image data to produce the texture. To recover the texture, filtering tech-

niques can be used to remove the structured light pattern. In a static scene it is also

possible to capture a texture without the structured light pattern for a more accurate

representation.
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3.3 Methodology

The areas concentrated on in this work are that of colour correction in Chapter 5,

mosaicing in Chapter 6 and correspondence search speed and accuracy in Chapter 7.

The first problem tackled is that of colour correction. Current techniques, for example

the diagonal model, are tested against linear and linear plus affine transform matri-

ces to determine if they are more accurate at colour correction. Colour correction

is important both for aesthetics and for correspondence searching. Mosaicing is also

discussed, again for both aesthetics and correspondence searching for 3D reconstruc-

tion. Accurate correspondence is very important for an accurate homographic matrix

for translating the images and work is developed using interest points. Methods for

increasing the accuracy and speed of the correspondence search are also discussed.

Structured light patterns are used for accuracy and a hybrid area and feature based

constraint are used to increase speed.
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Chapter 4

PANORAMIC STEREO IMAGING

4.1 Introduction

The previous chapters were a comprehensive survey in the areas of image process-

ing, stereo imaging and panoramic imaging. The state-of-the-art panoramic image

capturing and 3D virtual environment systems have been reviewed. Much progress

has been made in the past few decades. However, more work is necessary to improve

the efficiency and fidelity for building 3D environments to meet the requirements of

potential users, for example entertainment such as video games, tourism and manufac-

turing such as collaborative design and validation. Based on the literature survey and

industrial requirements, a new system is proposed for fast reconstruction of 3D envi-

ronments using digital cameras or panoramic imaging capture systems. This chapter

will discuss the system design and development and novel approaches in the system.

4.2 System Design

The proposed system is to be able to build image-based 3D environments by using

stereo vision, including ’normal’ digital cameras or a panoramic image capturing

system. To reduce the system cost and improve the system efficiency and fidelity,

advanced signal processing will be used for the image content understanding, image

stitching and image based visualisation. The system framework is outlined in Fig.

4.1.

The system includes three components, which can be implemented by hardware

and software. With the increase of computational power, the project includes design
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Figure 4.1: Stereovision system and panoramic imaging for 3D virtual environment

and development of image processing and handling algorithms for constructing virtual

environments. The project includes the following:

• Evaluate current panoramic imaging systems and software

• Conceptualise a 3D panoramic imaging system

• Design and develop new image capturing system for 3D environments

• Design and implement a software environment for system investigation

• Design and develop new algorithms for image stitching

• Implement and evaluate robust feature-based correspondence points

• Investigate colour correction for images across viewpoints and devices

• Design and develop new algorithms for 3D surface reconstruction using stereo

digital cameras or panoramic imaging devices

• Identify the characteristics and weaknesses of the developed system and software

algorithms

• Propose further work based on the developed system and framework
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The panoramic imaging systems in Chapter 2 are used by many people, commer-

cially, academically and for fun. Many systems exist, each with its own advantages

and disadvantages. Stereo imaging is also a popular area. The fusion of these two

technologies though is still in its infancy. We propose new methods which could be

used in a panoramic system whereby panoramic images are captured and processed

to create 3D photorealistic environments suitable for user navigation. Fig. 4.2 shows

a block diagram of the process for capturing and processing panoramic images to

produce 3D information.

Figure 4.2: Showing the process of 3D panoramic imaging Where FOE is the Focus
of Expansion and FOC is the Focus of Contraction, both parts of a panorama where
either too much (FOE) or too little (FOC) depth is perceived.

The system used in the development of these new processes consists of a hardware

element and a software element. The hardware element already exists in two forms,

a one-shot system and a multi-shot system. Both systems can be used to generate
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panoramic images, it is proposed 3D reconstruction processing can be achieved using

those panoramic images. For the processing a software element is required. The initial

processing (warping and stitching) is completed using commercial software, but later

custom processing is developed in Matlab.

4.2.1 Hardware

There are two hardware systems, a ’normal’ system and a panoramic system. The

normal system consists of two off the shelf web cameras, these are used for the stereo

processing and testing. This system is used for most of the testing, the stitching,

colour correction and 3D surface reconstruction. The panoramic systems will be used

in the future, although some testing will be done using these systems. The reason

for first using the normal system is so that the principles behind the methods can be

understood first, and then apply those to the panoramic imaging system later. The

panoramic hardware used in the system takes two forms. The first hardware system

captures a single cylindrical image. The second system captures 26 images, which

are later stitched into a single spherical image. The reason for the two systems is to

determine which produces the best results. Also the fact that the one-shot system only

captures a cylindrical image means no depth information is available for the zenith and

nadir. The first hardware system, which will be known as the ’one-shot’ system uses

a camera mounted vertically with a parabolic mirror mounted above it. The resulting

image is spherical in appearance but is actually captured in polar coordinates, which

are then mapped to rectilinear coordinates before processing. A picture of the one-

shot system is shown in Fig. 4.3. The advantage of this system is that only one

image is captured. Not only is this quicker than the second method, but it means

dynamic scenes can be captured, for example moving traffic. The disadvantage is that

the image is lower resolution using current image sensor technology and is limited in

vertical field of view to approximately 115◦ . The second system, which will be

known as the ’multi-shot’ system uses a camera with a wide angle lens rotated about
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its optical axis to cover all directions. 12 images are captured about the horizontal

axis, then 6 images at +45◦ and 6 at -45◦ . 2 final images are captured, one pointing

straight up (+90◦ ) and one pointing down (-90◦ ) for the zenith and nadir. The

resulting images are stitched to create the finished sphere. A picture of the multi-

shot system is shown in Fig. 4.4. The advantage of this system is the quality of the

final panorama, it is approximately ten times the resolution of the one-shot system.

Also more information is captured, including the ceiling and floor. Unfortunately

dynamic scenes can not be captured. There is also a third system, used for testing

the stereo correspondence algorithms, shown in Fig 4.5.

Figure 4.3: The one-shot system

Fig. 4.6 shows a diagram describing the camera orientations for the multi-shot sys-

tem so that 26 images can be captured, ensuring everything is captured with sufficient

overlap for accurate mosaicing. Blue arrows at horizontal, 12 images, 30◦ spacing.

Red arrows 45◦ above horizontal, 6 images, 60◦ spacing. Yellow arrows 45◦ below hor-

izontal, 6 images, 60◦ spacing. Black arrows, 1 image 90◦ above horizontal, 1 image
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Figure 4.4: The multi-shot system, showing 4 of the 26 positions used

Figure 4.5: Stereo system using web cameras for stereo correspondence algorithm
testing

90◦ below.

To capture panoramas suitable for 3D reconstruction processing, more than one

panorama must be captured. Unless more than one camera system is available, dy-

namic scenes are not possible. The panoramas must also be captured in non-collinear

positions. For example not all in a straight line. Non-collinear positioning of the

camera systems is required because of the large field of view of the systems and to

overcome the focus of contraction and the focus of expansion problems. When cap-

turing panoramas using the ’one-shot’ system the camera can be moved vertically.

Because the zenith and nadir are not captured the focus of contraction and focus of

expansion are not a problem.
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Figure 4.6: Diagram showing multi-shot system camera orientations.

4.2.2 Software

The proposed system also includes software development. For the un-warping and

stitching of the captured images, commercially available software was initially used.

Photoshop is used for the conversion from polar coordinates to rectilinear coordinates

for the one-shot system. The multi-shot system images can be stitched with Panotools

and Hugin/PTGui. All of the post-processing after the commercial software stages

is completed using custom algorithms in Matlab. A graphical user interface (GUI)

was also developed for ease of use and faster algorithm development and testing. The

GUI includes abilities for importing images from the hardware system. The images are

then processed using signal processing techniques. Processes such as colour correction,

image stitching and 3D surface reconstruction are included. An interest point detector

was the first algorithm developed. Interest points are used throughout the system,

and therefore the most appropriate interest point detector is necessary. A modified

Harris detector is used in this system. The modifications allow the choice of the

number of interest points returned. Colour correction algorithms are also necessary.

Part of the proposed GUI is able to detect and edit colour changes across panoramic
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images using diagonal, diagonal plus affine, linear and linear plus affine transforms.

The GUI is also able to process stereo information to produce 3D surfaces. The

GUI includes feature based and area based methods. Fig 4.8 shows a diagram of

the software framework for easy reference. Fig 4.7 shows an example of part of the

software framework.

Figure 4.7: Screenshot of software framework.

4.3 Correspondence

As discussed in Chapter 2, correspondence is an important consideration for the

project, indeed it is an ongoing problem in most computer vision research. With-
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Figure 4.8: A diagram of the software framework

out the correct correspondence information it is impossible to obtain accurate 3D

information. Many approaches have been proposed and used for the correspondence

problem. The robustness and computing time are the main challenges for the prob-

lem. To develop a correspondence method robust to capture device, viewpoint and

lighting variation, an interest point based method is proposed for the system. Corre-

spondence between the panoramas is the most difficult and most important part of

the 3D panoramic process. Correspondence is the linking of a point in one image with

its corresponding point in the other image. There are two main methods of corre-

spondence searching, area based methods and feature based methods. For this work

a new interest point feature based correspondence method has been used. Interest

points are points in the image where the pixel information changes two-dimensionally,

for example at a corner, a t-junction, or a change in texture. Interest points can be

detected by using equation 4.1:



61

∧

C =

∣

∣

∣

∣

∣

∣

∣

∣

∧

I2
x

∧

(IxIy)
∧

(IxIy)
∧

I2
y

∣

∣

∣

∣

∣

∣

∣

∣

R (x, y) = det
∧

(C)−k.trace2
∧

(C)

R (x, y) > Threshold ⇒ Corner

(4.1)

Where Ix and Iy are image intensity from horizontal and vertical direction Gaus-

sian low pass filters.

Interest points will be used for image stitching. Their robustness to changes in

lighting, viewpoint, scaling and rotation is well proven [45].

4.4 Content Based Colour Correction

One problem often encountered when capturing multiple images for stitching together

is that of colour changes between images. Variables out of the users control such as

lighting or capture device settings change. For example the two images shown in Fig.

4.9 are from consecutive images from a panoramic sequence and require, for aesthetic

reasons, the same lighting results. The device settings have changed and therefore the

colours have changed. A discussion of colour correction methods and the presentation

of a new method are discussed in chapter 5. The colour correction methods discussed

in chapter 5 are used in this system to combat any colour changes in the multi-shot

system captured images.

4.5 3D Reconstruction

The 2D images that are captured using either the one- or multi-shot system do not

have any depth information with the pixel data. The data stored includes colour

information in a 2D array. The 2D array is filtered through a Bayer pattern and

interpolated to form the RGB image. From this 2D information the system must be

able to produce 3D results. This is achieved by using more than one 2D array of
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Figure 4.9: Crops from consecutive images from a panorama sequence showing colour
changes due to capture devices settings changes

image information. If a point in the scene can be acquired by more than one camera,

and some information about the camera is known, then that point’s 3D position can

be established. The more images that are captured, the more accurate the results

will be, and also points hidden to some cameras from some positions will be visible

in other cameras, therefore giving a larger 3D representation. A discussion of a new

3D stereo imaging technique is discussed in Chapter 7. Chapter 7 also investigates

efficiency of interest point based 3D surface reconstruction.
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Chapter 5

COLOUR CORRECTION

Because interest points are robust to changes in viewpoint [45] they are used here

to determine a linear transform to alter colours in consecutive images so they are more

similar. We propose a method whereby the matching of histograms, independent of

spatial information, is used to produce a transform which is then used to correct

the colour information in another image. This chapter tests diagonal, diagonal plus

affine, linear and linear plus affine transforms to determine the best possible result.

We show that a linear model produces a better result.

5.1 Histogram Map Based Colour Correction

Colour and brightness variations often make it difficult to combine photographs into

panoramic images. The individual source images and the overlapping regions remain

distinguishable. This effect counteracts any effort to improve panorama resolution

by using many photographs as sources. There are several origins for these variations

even if the photographer takes care to keep constant exposure for each image: 1)

Change of lighting conditions during the photo session; 2) Shutter speed variations;

3) Many more random and non reproducible parameters affecting image development

and subsequent scanning. Even worse, many exposure related factors are outside the

control of the photographer like automatic exposure settings in some cameras and

scanners, or scanning services. To balance two stitching images, some colour correc-

tion is required. The normal approach applies the overlapping region of an image for

estimating a colour transform matrix. Due to the variation of capturing conditions
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such as camera resolution, noise and viewpoints, the pixels in the overlapping area

are difficult to correspond to each other. In other words, the overlapping areas in

two images may have different pixels due to variations of viewpoints and scaling. The

difference of colour values at identical locations is not a very suitable optimization

criterion. Real world images rarely fit together perfectly, and unavoidable spatial

errors of one pixel or more between image 1 and image 2 may skew the optimization.

To be independent of the spatial alignment of the images and apply general linear

models (over 3 parameters in the transform matrix), it is intended that the matching

of histograms of colours in the overlapping region of images 1 and 2 is used. Fig. 5.1

illustrates step 1 of this approach. A, B, C, D and A′, B′, C ′, D′ are corresponding

points in the two images I1 and I2, in which the maximum overlapping area is covered.

Figure 5.1: Step 1 of the new approach of colour correction

As illustrated in Fig. 5.1, the overlapped areas may have different histograms. We

can map the histogram, where A1B1C1D1 area has the same ’geometrical content’ as

ABCD in image I1 but has the same histogram as A′B′C ′D′ in image I2.

In order to estimate M the images need to have the same corresponding pixels.

In the case of panoramic imaging the viewpoint has changed and therefore the pixels
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do not correspond. To overcome this, a correction is applied to the overlaps of the

images. This correction creates two images with corresponding geometric information,

but with different lighting information. The correction methods used are histogram

equalisation, histogram mapping and singular value decomposition (SVD).

In Step 3, as shown in Fig. 5.3, we can apply the histogram mapped image for

estimating colour transform matrix M , where A1B1C1D1 and ABCD areas have the

same image pixels with good correspondence. The transform matrix can be calcu-

lated by any linear transform as described in section 2.4. Finally, we can apply the

transform matrix for the entire image I1 or I2 for colour calibration.

Figure 5.2: Step 2 of new approach of colour correction
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Figure 5.3: Linear transform matrix estimation and colour correction before image
stitching and panorama

5.1.1 Histogram Equalisation

Histogram equalisation attempts to equalise the histogram as much as possible. Equal-

ising or flattening a histogram often leads to a clearer image. For histogram equali-

sation in these tests the histograms of both images are equalised. If r = 0 represents

black and r = 1 represents white and 0 ≤ r ≤ 1 then for any r in the range 0 to

1, s = T (r). From the previous equation a new pixel s will be produced for every

pixel r in an image after a transform T has been applied. The probability density

functions Pr (r) and Ps (s) characterise the original and transformed gray levels. If

Pr (r) and T (r) are known and T−1 (s) satisfies the condition that TI is single valued

and monotonically increasing in the interval 0 ≤ r ≤ 1, then the probability density

function of the transformed gray levels is given by the relation

ps (s) =

[

pr (r)
dr

ds

]

r−T−1(s)

(5.1)
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Consider eq:5.2 where w is a dummy variable of integration. The result on the

right side of eq:5.2 is known as the cumulative distribution function of r.

s = T (r) =

r
∫

0

pr (w) dw (5.2)

The conditions that TI is single valued and monotonically increasing in the interval

0 ≤ r ≤ 1, and that 0 ≤ T (r) ≤ 1 for 0 ≤ r ≤ 1, are satisfied by the transformation

function in eq:5.2 since the cumulative distribution function increases monotonically

0 to 1 as a function of r. From eq:5.2 the derivative of s with respect to r is given by

ds

dr
= pr (r) (5.3)

If we then substitute dr/ds into eq:5.1 we get

ps (s) =

[

pr (r)
1

pr (r)

]

r−T−1(s)

(5.4)

ps (s) = [1]r−T−1(s) (5.5)

=1 0 ≤ r ≤ 1

which is a uniform density in the interval of definition of the transformed variable

s. The above developments indicate that using a transformation function equal to

the cumulative distribution of r produces and image whose gray levels have a uniform

density. The transform function used to equalise the images is inverted for the second

stage If M1 and M2 are the transformation functions of the images to equalise them,

then I = I2 ∗M1 ∗M−1
2 where I2 is the uncorrected overlap from Image 2 and I is the

new corrected I2. An example of an equalised histogram is shown in Fig:5.4.

5.1.2 Histogram Mapping

Similar to histogram equalisation it is possible to specify a histogram that the image

is desired to have. For this example we let Pr (r) and Pz (z) be the original and desired
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Figure 5.4: Histogram before and after equalisation

probability density functions respectively.

First imagine an image is histogram equalised:

s = T (r) =

r
∫

0

pr (w) dw (5.6)

And if we had the corrected image we could equalise it also:

s = G (z) =

z
∫

0

pz (w) dw (5.7)

and the inverse process, z = G−1 (v) would give the desired levels back. Unfortunately

the z levels are what we are trying to find, so the above equation is hypothetical.

However, Ps (s) and Pv (v) would be identical uniform densities since the result of

eq:5.2 is independent of the density inside the integral. So instead of using v in

the inverse process we use s, the uniform levels obtained from the original image,

the resulting levels, z = G−1 (s), would have the desired probability function. To

summarize the process:

1. Equalise the levels of the original image using eq:5.2

2. Specify the desired density function and obtain the transformation function

G(z) using eq:5.6

3. Apply the inverse transformation function, z = G−1 (s), to the levels obtained

in step 1
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This procedure results in an image with the same geometrical content as the first

image, but with the histogram specified from the second image.

5.1.3 Singular Value Decomposition

SVD, or singular value decomposition is an important matrix calculation. The SVD

of an mxn matrix A gives two orthonormal matrices u and v and a diagonal matrix

s such that: A = usvT u is an mxm matrix and v is a nxn matrix. s is rectangular

with the same dimensions as A. The positive values of s are the singular values of A.

The columns of u and v are called left and right singular vectors for A.

The pseudo code below goes through the process used to use SVD for correcting

the colour in the images.

Image 1 (I1) = m ∗ n pixels

Image 2 (I2) = m ∗ n pixels

1) The image matrices (both are [k, 3] matrices)

I1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

R1
1 G1

1 B1
1

R1
2 G1

2 B1
2

...
...

...

↓ ↓ ↓
R1

k G1
k B1

k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and I2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

R2
1 G2

1 B2
1

R2
2 G2

2 B2
2

...
...

...

↓ ↓ ↓
R2

k G2
k B2

k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Where k = m ∗ n and R1, G1, B1 = Red, Green and Blue pixels from Image 1

2) M1 = I1 − H ∗ mean (I1) and N1 = I2 − H ∗ mean (I2)

where H =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

↓
k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

3) Calculate M2 and N2 [3,3] matrices

M2 = M
′

1 ∗ M1 and N2 = N
′

1 ∗ N1

4) [u, s, v] = svd (M2) and
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[

uN , sN , vN
]

= svd (N2)

5) Find maximum value and put in first row/column

s (1, 1) = max (s (1, 1) , 5) and

sN (1, 1) = max
(

sN (1, 1) , 5
)

6) M3 = pseudoinverse (
√

s) ∗ u
′

and

N3 = pseudoinverse
(√

N
)

∗ uN
′

7) final =
(

pseudoinverse (M3) ∗ N3 ∗ N
′

1

)

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mean (I1) ∗

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

↓
k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Find all values below 0 and make them equal 0, and similarly find all values over

255 and make them equal 255.

Reshape final into a [m,n,3] matrix and display as an image.

The result is image 2 now having the same lighting and colouring as image 1

5.2 Colour Correction for Panoramic Imaging

Based on the above-proposed approach, it has been applied for panoramic source

image colour correction. Fig. 5.5 illustrates the overlapping area from two stitch-

ing images. A histogram map will be applied to the two overlapped images. Then,

following the steps described in sections 2.4 and 5.1, transform matrices can be es-

timated by different linear models. Finally, apply the transform matrix for colour

correction and image stitching. Fig. 5.6 shows the colour corrected images to image

1 or image 2 capture conditions. At the end of the chapter, Fig. 5.14 illustrates four

panoramic images with the proposed colour correction approach. Linear transfor-

mation which considers the correlation of RGB channels can provide slightly better

results. However, the linear model plus affine transform can provide excellent results.
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Figure 5.5: Overlapping area of the stitching images

Figure 5.6: Colour correction based on M or M − 1
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5.3 Experimental Tests

Experiments to determine speed and accuracy of the different methods were con-

ducted. A range of image domains were used, including both synthetic and real world.

A variety of situations were simulated, including changes in brightness, changes in

global lighting temperature and a mix of the two. A selection of the images used in

the experiments can be seen in Fig. 5.7.

The colour difference was measured before and after each of the methods were

applied, which is used to determine the accuracy of the methods. The colour difference

is the average sum of squared differences for each colour channel.
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Average (mean) for all image tests

Average Initial Colour Difference = 0.39

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.57

diagonal 0.006 0.013 0.204 40.41%

diagonal plus affine 0.082 0.054 0.190 44.30%

linear 0.020 0.025 0.198 42.37%

linear plus affine 0.028 0.112 0.190 44.34%

histogram equalisation 1.42

diagonal 0.011 0.014 0.204 40.74%

diagonal plus affine 0.072 0.058 0.189 45.72%

linear 0.020 0.024 0.197 42.99%

linear plus affine 0.026 0.107 0.189 45.78%

svd 0.07

diagonal 0.006 0.013 0.203 40.85%

diagonal plus affine 0.075 0.056 0.185 46.09%

linear 0.023 0.020 0.196 42.90%

linear plus affine 0.026 0.108 0.186 45.66%

Table 5.1: Average (mean) values for all colour correction image tests
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Minimum values across all image tests

Minimum Initial Colour Difference = 0.10

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.031

diagonal 0.000 0.000 0.022 -0.72%

diagonal plus affine 0.000 0.000 0.044 3.14%

linear 0.000 0.000 0.030 1.32%

linear plus affine 0.000 0.078 0.044 3.18%

histogram equalisation 0.062

diagonal 0.000 0.000 0.006 -1.18%

diagonal plus affine 0.016 0.031 0.007 1.28%

linear 0.000 0.000 0.013 0.56%

linear plus affine 0.000 0.078 0.007 1.31%

svd 0.000

diagonal 0.000 0.000 0.006 -1.08%

diagonal plus affine 0.016 0.031 0.010 1.18%

linear 0.000 0.000 0.031 0.53%

linear plus affine 0.000 0.062 0.026 1.12%

Table 5.2: Minimum values for all colour correction image tests
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Maximum values across all image tests

Maximum Initial Colour Difference = 1.197

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 1.966

diagonal 0.031 0.047 0.546 95.26%

diagonal plus affine 0.234 0.094 0.546 95.26%

linear 0.047 0.047 0.546 95.20%

linear plus affine 0.062 0.156 0.546 95.21%

histogram equalisation 5.335

diagonal 0.047 0.031 0.566 96.90%

diagonal plus affine 0.187 0.094 0.602 96.50%

linear 0.047 0.031 0.593 95.28%

linear plus affine 0.078 0.140 0.602 96.45%

svd 0.250

diagonal 0.031 0.031 0.547 96.86%

diagonal plus affine 0.187 0.094 0.538 95.79%

linear 0.078 0.047 0.538 95.23%

linear plus affine 0.062 0.140 0.538 95.61%

Table 5.3: Maximum values for all colour correction image tests
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Standard Deviation across all image tests

Standard Deviation in Colour Difference = 0.391

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.565

diagonal 0.006 0.013 0.204 40.41%

diagonal plus affine 0.082 0.054 0.190 44.30%

linear 0.020 0.025 0.198 42.37%

linear plus affine 0.027 0.112 0.190 44.34%

histogram equalisation 1.420

diagonal 0.011 0.014 0.204 40.74%

diagonal plus affine 0.072 0.058 0.189 45.72%

linear 0.020 0.024 0.197 42.99%

linear plus affine 0.026 0.107 0.189 45.78%

svd 0.071

diagonal 0.006 0.013 0.203 40.85%

diagonal plus affine 0.075 0.056 0.185 46.09%

linear 0.023 0.020 0.196 42.90%

linear plus affine 0.026 0.108 0.186 45.66%

Table 5.4: Standard Deviation for all colour correction image tests
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Average (mean) values across the brightness variation test images

Average Initial Colour Difference = 0.455

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.468

diagonal 0.005 0.012 0.206 45.95%

diagonal plus affine 0.069 0.050 0.186 50.66%

linear 0.018 0.027 0.198 47.72%

linear plus affine 0.028 0.108 0.186 50.73%

histogram equalisation 1.206

diagonal 0.009 0.015 0.206 46.02%

diagonal plus affine 0.067 0.058 0.187 50.89%

linear 0.016 0.026 0.198 48.27%

linear plus affine 0.023 0.107 0.187 50.96%

svd 0.062

diagonal 0.003 0.014 0.205 46.13%

diagonal plus affine 0.068 0.054 0.183 51.29%

linear 0.019 0.021 0.194 48.57%

linear plus affine 0.021 0.107 0.183 51.42%

Table 5.5: Average (mean) values across the brightness variation colour correction
test images
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Minimum values across the brightness variation test images

Minimum Initial Colour Difference = 0.150

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.031

diagonal 0.000 0.000 0.048 1.97 %

diagonal plus affine 0.000 0.000 0.048 7.27 %

linear 0.000 0.016 0.049 1.43 %

linear plus affine 0.016 0.078 0.049 7.27 %

histogram equalisation 0.062

diagonal 0.000 0.000 0.048 1.20 %

diagonal plus affine 0.016 0.031 0.039 2.33 %

linear 0.000 0.000 0.048 1.24 %

linear plus affine 0.000 0.078 0.039 2.36 %

svd 0.000

diagonal 0.000 0.000 0.048 1.19 %

diagonal plus affine 0.016 0.031 0.043 2.14 %

linear 0.000 0.000 0.048 1.77 %

linear plus affine 0.000 0.062 0.045 2.58 %

Table 5.6: Minimum values across the brightness variation colour correction test
images
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Maximum values across the brightness variation test images

Maximum Initial Colour Difference = 1.197

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.998

diagonal 0.031 0.016 0.546 95.26 %

diagonal plus affine 0.156 0.094 0.546 95.26 %

linear 0.047 0.047 0.546 95.20 %

linear plus affine 0.047 0.140 0.546 95.21 %

histogram equalisation 2.777

diagonal 0.031 0.031 0.566 95.25 %

diagonal plus affine 0.156 0.094 0.602 96.15 %

linear 0.031 0.031 0.593 95.28 %

linear plus affine 0.047 0.125 0.602 96.13 %

svd 0.125

diagonal 0.016 0.016 0.547 95.27 %

diagonal plus affine 0.156 0.094 0.538 95.79 %

linear 0.047 0.031 0.538 95.23 %

linear plus affine 0.047 0.140 0.538 95.61 %

Table 5.7: Maximum values across the brightness variation colour correction test
images
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Standard Deviation values across the brightness variation test images

Standard Deviation of Initial Colour Difference = 0.315

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.319

diagonal 0.009 0.007 0.134 25.38 %

diagonal plus affine 0.037 0.024 0.123 24.06 %

linear 0.010 0.009 0.131 25.25 %

linear plus affine 0.013 0.015 0.123 24.09 %

histogram equalisation 0.901

diagonal 0.011 0.006 0.138 25.60 %

diagonal plus affine 0.034 0.021 0.140 26.19 %

linear 0.011 0.009 0.140 25.98 %

linear plus affine 0.011 0.014 0.141 26.20 %

svd 0.032

diagonal 0.006 0.005 0.135 25.64 %

diagonal plus affine 0.035 0.022 0.129 26.39 %

linear 0.011 0.012 0.131 26.07 %

linear plus affine 0.015 0.020 0.129 26.41 %

Table 5.8: Standard Deviation of values across the brightness variation colour correc-
tion test images
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Average (mean) values across the white balance variation test images

Average Initial Colour Difference = 0.270

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.682

diagonal 0.008 0.016 0.190 28.90%

diagonal plus affine 0.097 0.059 0.178 34.01%

linear 0.023 0.022 0.182 32.39%

linear plus affine 0.031 0.114 0.178 34.03%

histogram equalisation 1.831

diagonal 0.012 0.014 0.188 29.49%

diagonal plus affine 0.083 0.061 0.172 37.39%

linear 0.019 0.023 0.180 33.45%

linear plus affine 0.031 0.108 0.172 37.48%

svd 0.076

diagonal 0.006 0.014 0.188 29.62%

diagonal plus affine 0.094 0.059 0.170 37.89%

linear 0.022 0.020 0.181 33.46%

linear plus affine 0.031 0.106 0.174 36.98%

Table 5.9: Average (mean) values across the white balance variation colour correction
test images
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Minimum values across the white balance variation test images

Minimum Initial Colour Difference = 0.101

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.094

diagonal 0.000 0.000 0.058 -0.72 %

diagonal plus affine 0.016 0.031 0.044 3.14 %

linear 0.000 0.000 0.047 1.32 %

linear plus affine 0.016 0.094 0.044 3.18 %

histogram equalisation 0.218

diagonal 0.000 0.000 0.058 -1.18 %

diagonal plus affine 0.016 0.031 0.020 1.28 %

linear 0.000 0.016 0.039 0.56 %

linear plus affine 0.016 0.094 0.020 1.31 %

svd 0.031

diagonal 0.000 0.000 0.058 -1.08 %

diagonal plus affine 0.047 0.031 0.020 1.18 %

linear 0.000 0.000 0.039 0.53 %

linear plus affine 0.000 0.078 0.026 1.12 %

Table 5.10: Minimum values across the white balance variation colour correction test
images
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Maximum values across the white balance variation test images

Maximum Initial Colour Difference = 0.686

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 1.966

diagonal 0.031 0.047 0.452 73.45 %

diagonal plus affine 0.234 0.094 0.434 78.82 %

linear 0.047 0.031 0.434 71.41 %

linear plus affine 0.062 0.140 0.432 78.41 %

histogram equalisation 5.335

diagonal 0.047 0.016 0.452 74.52 %

diagonal plus affine 0.187 0.094 0.425 82.34 %

linear 0.031 0.031 0.425 73.75 %

linear plus affine 0.078 0.140 0.425 82.12 %

svd 0.203

diagonal 0.031 0.031 0.451 74.47 %

diagonal plus affine 0.187 0.094 0.415 82.29 %

linear 0.047 0.047 0.454 75.49 %

linear plus affine 0.062 0.140 0.456 84.32 %

Table 5.11: Maximum values across the white balance variation colour correction test
images
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Standard Deviation values across the white balance variation test images

Standard Deviation of Initial Colour Difference = 0.155

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.519

diagonal 0.011 0.015 0.110 19.23 %

diagonal plus affine 0.062 0.023 0.109 20.59 %

linear 0.017 0.013 0.106 19.17 %

linear plus affine 0.013 0.015 0.108 20.47 %

histogram equalisation 1.441

diagonal 0.014 0.005 0.110 19.42 %

diagonal plus affine 0.048 0.021 0.111 25.24 %

linear 0.012 0.008 0.106 20.85 %

linear plus affine 0.019 0.016 0.111 25.22 %

svd 0.047

diagonal 0.011 0.009 0.110 19.36 %

diagonal plus affine 0.045 0.024 0.108 25.23 %

linear 0.013 0.015 0.114 21.17 %

linear plus affine 0.018 0.018 0.119 24.61 %

Table 5.12: Standard Deviation of values across the white balance variation colour
correction test images
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Average (mean) values across the white balance and brightness variation test images

Average Initial Colour Difference = 0.382

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.643

diagonal 0.006 0.012 0.216 40.85 %

diagonal plus affine 0.094 0.056 0.210 41.85 %

linear 0.022 0.025 0.214 41.64 %

linear plus affine 0.022 0.117 0.210 41.87 %

histogram equalisation 1.438

diagonal 0.014 0.011 0.216 41.45 %

diagonal plus affine 0.072 0.056 0.209 43.69 %

linear 0.027 0.020 0.215 41.95 %

linear plus affine 0.028 0.106 0.208 43.71 %

svd 0.086

diagonal 0.012 0.011 0.215 41.51 %

diagonal plus affine 0.072 0.058 0.203 43.89 %

linear 0.031 0.017 0.215 41.01 %

linear plus affine 0.030 0.112 0.205 42.80 %

Table 5.13: Average (mean) values across the white balance and brightness variation
colour correction test images
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Minimum values across the white balance and brightness variation test images

Minimum Initial Colour Difference = 0.151

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.203

diagonal 0.000 0.000 0.022 1.92 %

diagonal plus affine 0.047 0.031 0.064 5.99 %

linear 0.016 0.016 0.030 1.57 %

linear plus affine 0.000 0.094 0.064 6.03 %

histogram equalisation 0.374

diagonal 0.000 0.000 0.006 1.26 %

diagonal plus affine 0.016 0.031 0.007 2.51 %

linear 0.016 0.000 0.013 1.38 %

linear plus affine 0.016 0.094 0.007 2.51 %

svd 0.016

diagonal 0.000 0.000 0.006 1.24 %

diagonal plus affine 0.031 0.031 0.010 2.37 %

linear 0.016 0.000 0.031 1.55 %

linear plus affine 0.016 0.094 0.033 2.12 %

Table 5.14: Minimum values across the white balance and brightness variation colour
correction test images
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Maximum values across the white balance and brightness variation test images

Maximum Initial Colour Difference = 1.179

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 1.732

diagonal 0.031 0.016 0.521 88.93 %

diagonal plus affine 0.203 0.094 0.521 68.19 %

linear 0.047 0.047 0.521 85.34 %

linear plus affine 0.062 0.156 0.521 68.19 %

histogram equalisation 3.853

diagonal 0.031 0.031 0.534 96.90 %

diagonal plus affine 0.140 0.094 0.532 96.50 %

linear 0.047 0.031 0.538 93.80 %

linear plus affine 0.062 0.140 0.529 96.45 %

svd 0.250

diagonal 0.031 0.016 0.519 96.86 %

diagonal plus affine 0.187 0.078 0.467 95.30 %

linear 0.078 0.031 0.518 84.48 %

linear plus affine 0.062 0.140 0.465 83.87 %

Table 5.15: Maximum values across the white balance and brightness variation colour
correction test images
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Standard Deviation values across the white balance and brightness variation test images

Standard Deviation of Initial Colour Difference = 0.297

Time(s) Calculate(s) Apply(s) Colour Difference % Change

histogram mapping 0.480

diagonal 0.011 0.007 0.141 23.62 %

diagonal plus affine 0.054 0.021 0.135 19.11 %

linear 0.011 0.011 0.141 22.82 %

linear plus affine 0.017 0.018 0.135 19.11 %

histogram equalisation 1.104

diagonal 0.012 0.011 0.147 25.55 %

diagonal plus affine 0.041 0.023 0.147 25.22 %

linear 0.011 0.011 0.147 24.75 %

linear plus affine 0.016 0.018 0.146 25.22 %

svd 0.066

diagonal 0.012 0.008 0.144 25.63 %

diagonal plus affine 0.046 0.020 0.131 25.42 %

linear 0.022 0.012 0.140 22.80 %

linear plus affine 0.017 0.016 0.128 23.05 %

Table 5.16: Standard Deviation values across the white balance and brightness vari-
ation colour correction test images
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Figure 5.7: A selection of images used in the experimental tests for the colour correc-
tion algorithms
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Results conclusions

As shown in Fig. 5.8, the fastest pre-processing method is SVD with an average of

0.07 seconds, followed by histogram mapping averaging 0.6 seconds and histogram

equalisation averaging 1.5 seconds. The SVD approach might lend itself to real time

situations averaging 14 frames per second.

Figure 5.8: Comparison of the speed for the colour correction pre-processing methods
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The affine correction proved to be advantageous over non-affine in the tests, as

can be seen in Fig. 5.9. When affine correction is added to the diagonal model

the accuracy of the results is significantly increased. The linear model proved more

accurate than diagonal alone, but both were improved with the addition of affine.

Using SVD as the pre-processing method also generally increased the accuracy.

Figure 5.9: Comparison of accuracy for the colour correction processing methods
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Fig. 5.10 shows the average speeds for each of the four methods. Adding affine

to the calculations slowed the methods considerably. Although adding the affine

correction increases accuracy of the methods, a system designer would need to weigh

up whether that increase in accuracy was worth the associated increase in processing

time, particularly important in a real time system.

Figure 5.10: Comparison of the average speed of the colour correction methods



93

Fig. 5.11 shows the difference between the different groups of tests against the

average for all tests. White balance changes proved more difficult to correct than

brightness variations.

Figure 5.11: Comparison of the differences in processing accuracy for different image
variations
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Fig. 5.12 shows the stability of the pre-processing methods. The standard de-

viation for the SVD method is very low, suggesting a consistent processing time.

Histogram equalisation is the least stable. This variation is further illustrated in Fig.

5.13.

Figure 5.12: Comparison of the standard deviation in processing time for each pre-
processing method
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Figure 5.13: Comparison of the minimum, mean and maximum processing times for
each pre-processing method
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5.4 Summary

Colour correction for image mosaic based panoramic imaging is important. Several

colour linear transformations have been discussed. The performance of linear models

for colour correction is slightly better than the diagonal model, however the diago-

nal model is faster to calculate. The addition of affine to the models significantly

increases the accuracy of the results, but with an increased processing time penalty.

A histogram map based colour correction has been proposed and tested. Different

colour correction based diagonal and linear transformations can be used in the pro-

posed approach. The choice of linear or diagonal transformation matrix for colour

correction can be affected by the accuracy and computing time. The results showed

the SVD is the fastest method and that diagonal plus affine and linear plus affine are

the most accurate colour correction methods.
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Figure 5.14: Different colour correction for panoramic imaging
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Chapter 6

IMAGE MOSAICING

6.1 Introduction

An integral and important part of a 2D or 3D panoramic system is accurate image

stitching or mosaicing. For normal devices image stitching is a necessary requirement,

but the one-shot system requires no stitching. The one-shot is a mirror system which

captures the whole scene in a single image, hence no stitching required. The resulting

image from the mirror does require remapping from polar coordinates to rectilinear

coordinates. Inaccurate stitching for multi shot systems would lead to inaccurate

correspondence matching due to misalignment and therefore lead to inaccurate 3D

modelling. In this chapter interest points are used to determine correspondence be-

tween consecutive images to produce an accurate stitch. A new 4-step interest point

based method for image stitching is introduced, including how to identify the interest

points, finding correspondence and then the spectral and spatial transforms used to

position the images. Smoothing is also discussed.

6.2 4-step Interest Points Based Image Mosaic

The present study proposes a new methodology to map the geometric and spectral

distribution of stitching images (Fig. 6.1). This work proposes a new 4-step model

for construction of panoramic images. First it is necessary to identify the interest

points in the image. Interest points are used because of their robustness to changes

in viewpoint, lighting and scale [45]. Corresponding points in the images then have

to be used for the transform matrices and at least four corresponding points will be
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required. The intensity information at each of the interest points used to form the

transform matrix will then be used to alter the image intensities to match each other.

The details of the process are described below.

Figure 6.1: Image mosaic processing block-diagram

6.2.1 Identification of Interest Points

Interest points are used to represent image characteristics or content changes. There

are two important requirements for feature points or interest points. Firstly, points

corresponding to the same scene point should be extracted consistently over the dif-

ferent views, different lighting conditions and even different devices. If this were not

the case, it would be impossible to find correspondences. Secondly, there should be
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enough information in the neighbourhood of the points, so that corresponding points

can be automatically matched. Many feature point extractors have been proposed.

In this system, an evaluation of the Harris corner detector is used. Consider the

following matrix

M =

⎡

⎢

⎣

(

∂I
∂x

)2 (

∂I
∂x

) (

∂I
∂y

)

(

∂I
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) (

∂I
∂y

)

(

∂I
∂y

)2

⎤

⎥

⎦ (6.1)

Where I(x, y) is the grey level intensity. If at a certain point the two eigenvalues

of the matrix are large, then a small motion in any direction will cause an important

change of grey level. This indicates that the point is a corner. The corner response

function is given by:

R = det M − k(traceM)2 (6.2)

Where k is a parameter set to 0.04 (a suggestion of Harris). Corners are defined as

local maxima of the “cornerness” function. Sub-pixel precision is achieved through a

quadratic approximation in the neighbourhood of the local maxima. To avoid corners

due to image noise, it can be interesting to smooth the images with a Gaussian filter

using σ = 0.6. This should however not be done on the input images, but on images

containing the squared image derivatives i.e.

(

∂I

∂x

)2

,

(

∂I

∂y

)2

,

(

∂I

∂x

) (

∂I

∂y

)

(6.3)

In practice far too many corners are often extracted. In this case it is often useful to

first restrict the numbers of corners before trying to match them. For a colour image,

the system processes the three RGB channels independently as grey scale images [56].

After the above evaluation for Harris corner detection, the detected interest points

are robust to viewpoint change, lighting differences, rotation and scaling due to the

process of various grey level derivatives and using local maxima as response function
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in eq. 6.2. Although RGB colour space is less robust to lighting differences than hue

or saturation components, the interest points are robust to light variation. Fig. 6.2

illustrates the interest points on different images produced when the same object was

captured under spectral illumination with different points, where the colour images

are from a colour constancy database [44]. As illustrated in Fig. 6.2, although there

is not 100% repeatability due to different lighting and viewpoints, most of the interest

points are robustly detected.

Figure 6.2: Interest points across illumination and rotation

As indicated in Fig. 6.2, using the whole image for calculations creates too much

data for computation. Interest points are local features and occur where the signal

changes two-dimensionally; where there is a corner or an edge or where the texture

changes significantly. Interest points are rich in information content and are robust

to many variables, including viewpoint, lighting, rotation and scaling [45].

6.2.2 Finding corresponding points from stitching images

The second task in the process is to find the partial correspondence between the two

reference images. Here a new approach is used, based on local invariance, which is

extended from content-based image retrieval research. This invariance characterises
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neighbourhoods of interest points. Probably the most related work is that of Schmid

and Mohr [63], who have investigated the matching of points between images from

local grey level invariants and have also applied this to the retrieval of images from a

database. However, their system only deals with invariance under rotation, combined

with scale space, to overcome changes in scale between the images and the permitted

change in viewpoint and light is rather limited. This work has extended these ideas

toward invariance under more general transformations. More precisely, the work

considers invariance under affine geometric transformations and under linear changes

in intensities in each of the three colour bands, i.e. intensities change by a scale factor

and offset that may be different for each colour band [131, 132]. To find corresponding

interest points the invariance has to be found. The image in the neighbourhood of

a point can be described by the set of its derivatives and one model is the “local jet

model” which is derived using the convolution of the Gaussian derivatives. If I is

an image and σ a given scale. The “local jet” of order N at a point x = (x1, x2) is

defined by

JN [I] (x, σ) =
{

Li1...in (x, σ) | (x, σ) ∈ IXIR+; n = 0, . . . , N
}

(6.4)

Where Li1...in (x, σ) is the convolution of image I with the Gaussian derivatives

Gi1...in (x, σ) and ik ∈ {x1, x2}. The σ of the Gaussian function is the quantity of the

smoothing. The local jet is used to compute invariant feature vectors in individual

interest points.

Previous work has applied invariant features such as local jets and neighbours,

where the points and their constellation angles have to match [62, 63]. As indicated

[62], not all neighbours have to be matched correctly, which is difficult when auto-

matically finding corresponding points. Particularly the angular match is difficult for

viewpoint variation. This new approach is to relax the constraints by using local in-

variant binary patterns (LBPs) which are used to describe the spatial structure of the

local interest points. The binary values of the thresholded neighbourhood (Fig. 6.3a)
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are mapped into an 8-bit word in clockwise or counter-clockwise order (Fig. 6.3b). In

Fig. 6.3a, the corner response R values Rx from eq. 6.2 in interest point X and its

eight neighbour interest points (Ra, Rb, Rc, Rd, Re, Rf , Rg, Rh) were compared.

If Ra >= Rx, A = 1; otherwise A = 0. If Rb >= Rx, B = 1; otherwise B = 0. In

this way, a binary number ABCDEFGH can be obtained. An arbitrary number of

binary shifts is then made (Fig. 6.3c), until the binary value is minimized and it is

then used for indexing the spatial structure of the local interest points. The index

of the matching pattern is used as the feature value, which is evaluated from Ojala’s

work [133], which describes the rotation-invariant LBP of the particular neighbour-

hood. Based on the local jet feature vectors and interest points neighbouring index

using invariant LBP, corresponding points can be found. Fig. 6.4 illustrates the cor-

responding points from two stitching images where the two images were captured on

different days where lighting, viewpoints and scales were all varied.

Figure 6.3: Rotation-invariant LBP

6.2.3 Spatial and Spectral Transform Matrices

This approach includes not only a spatial transform but also a spectral transform and

the general image transform can be formulated as IR = {G, M, I1, I2} where G is a

planar projective transformation from the pixels of image I1 to that of image I2, in

terms of homogeneous coordinates, and M is the spectral transform from the pixels of

image I1 to that of image I2 using diagonal versus affine transformations for colour
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Figure 6.4: Two stitching images and their corresponding points

correction.

Spatial transform using homographic model

A non-singular linear transformation of the projective plane onto itself is called ho-

mography. The most general homography is represented by a 3x3 matrix G:

λ
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⎢
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⎥
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(6.5)

If we express points in homogeneous coordinates, then 2D points in the image

plane are denoted as (x, y, z), with their corresponding Cartesian points being (x/z,

y/z). If H3,3 = 1, then the matrix has 8 degrees of freedom, and H3,3 is the scale

factor. At least four points, which give 8 parameters, are needed to define a unique

homography.

x′ (H3,1.x + H3,2.y + H3,3) = H1,1.x + H1,2.y + H1,3
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y′ (H3,1.x + H3,2.y + H3,3) = H2,1.x + H2,2.y + H2,3

There are more than four points from the corresponding points found in the corre-

sponding point tests from stitching images. All of the corresponding points are used

to calculate homographic matrices. The ’best match’ is found by using least square

estimation. Homography is used to transform an image from one plane to another,

and can be used to match images taken from different viewpoints. The images from

Fig. 6.4 have been transformed using the following matrix and the stitched image,

without colour correction, is displayed in Fig. 6.5.

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.9299 −0.0120 244.0661

0.0126 0.9886 −0.06320

−0.0000 −0.0001 1.0000

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Figure 6.5: Stitched image without colour correction

Spectral transform using the diagonal model

To compensate for differences in colour, a diagonal model [56, 130] is used. The light

reflected from a surface depends on the spectral properties of the surface reflectance
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and of the illumination incident on the surfaces:

ρ
k

=
∫

ω

E (λ)S (λ)Fk (λ) dλ (6.6)

Where λ is wavelength, ρ is the k-vector of sensor response (RGB pixel values),

F (λ) is the k-vector of sensor spectral sensitivities (the red, the green and the blue

sensing channels), E(λ) is the spectral power distribution of the illumination (assumed

constant across the scene) , S(λ) is the spectral reflectance function for a surface. The

integral range ω is over the visible spectrum ω ∈ [380, 780nm]. Let us approximate

the spectral reflectance:

S (λ) ∼=
3

∑

j=1

σjsj (λ) (6.7)

Where sj (λ) are a set of n fixed basis functions. Let ρ denote the column vector of

sensor measurement ρ = (R, G, B)T , and let σ = (σ1σ2σ3)
T of spectral reflectance

function coefficients. We can write

ρE = ΛEσ (6.8)

Where ΛE is the 3x3 matrix with entries:

ΛE =
∫

ω

E (λ) sj (λ)Fk (λ) dλ (6.9)

The colours of a single surface viewed under different illuminants E(λ) and eq. 6.8 is

described by:

ρE ∼= ΛEσ

ρe ∼= Λeσ

The vector σ describes the distribution of spectral reflectance of the object, and is

independent of illumination. Because camera response is a linear transform of surface

weight vector σ, it follows that camera responses are related across illumination by a

linear transform:

ρE ∼= Mρe
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M = ΛE [Λe]−1 (6.10)

Eq. 6.8 plays a central role in this study of colour correction, since it effectively places

a lower bound on the complexity of the illuminant colour problem. However, nine

dimensional problems are hard to visualize and solve, particularly in real-time imple-

mentations. To simplify matters M in eq. 6.10 is often taken to be a 3-parameter

diagonal matrix; thus reducing colour correction to a 3-parameter problem [130].

However, in this colour correction algorithm, the grey-world algorithms are expanded

to diagonal plus affine transform [56]. All the pixels from the corresponding areas

which were surrounded by the corresponding points in each image are used to calcu-

late the spectral transform between the two images. In the eq. 6.11, the transform

parameters can be obtained by 1st order polynomial fitting.

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

α α1

β β1

γ γ1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(6.11)

Based on the above discussion, the transform matrix for the two images in Fig.

6.4 is shown as follows. The colour corrected stitched image is shown in Fig. 6.6.

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.5908 32.2709

0.6718 24.2327

0.5152 40.8783

⎤

⎥

⎥

⎥

⎥

⎥

⎦

6.2.4 Image Mosaic with Smoothing

The final stage of the mosaic is to use the transform matrices to join the images,

and a smoothing algorithm to ’fill’ the ’holes’ created after transformation due to the

variations in image capture conditions, particularly variations in scaling. After under-

going geometric transformation and spectral transformation, a blending algorithm by

using interest points preserving smoothing filter, is then applied to eliminate visible
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Figure 6.6: The stitched images with colour correction

seams. The RGB values at any holes use linear interpolation from RGB values of

its surrounding pixels. Again, the three RGB channels are processed independently.

After individual processing, three grey images for R, G, B channels can simply be

integrated together for colour image rendering. A smoothed image is illustrated in

Fig. 6.6.

6.3 Experimental Tests

In order to provide accurate data for the homographic model to calculate spatial

transform matrices it is important that the matches are as accurate as possible. One

of the most popular interest point based matching algorithms is scale-invariant fea-

ture transform (SIFT), first proposed by Lowe in [49] and updated in [51]. For a

more detailed look at SIFT refer back to section 2.3.5. The proposed interest point

based system is compared with SIFT in a range of experiments. SIFT interest points

(or keypoints) are invariant to changes in scale and rotation and robust to changes

in viewpoint and illumination. To compare the two methods multiple 2-image tests

were designed. The images used are from a diverse range of scenes, including outdoor

scenes, office scenes and synthetic scenes involving a range of soft edge and hard edge
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and high texture and low texture objects. The images were subject to a range of

transformations, including translation (rotation about the optical axis of the cam-

era), rotation (roll, negligible translation) and scaling (zoom, negligible translation).

Some of the transformations were from data capture and some altered later in post

processing. Because the transformations were either synthetic or easily measured (i.e.

translation) it was possible to measure the positional accuracy. For each image pair

the proposed and SIFT methods were both tested. The experimental results concen-

trated on how many points were detected and of those points, how many were an

accurate match. The speed of the system was also measured. The tests used 50 im-

ages under translation, 20 under rotation and 10 under scale changes. The emphasis

was placed on translation as this is the most common variable in panoramic imaging.

A selection of the images used in the experiments is shown in Fig. 6.7.
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Figure 6.7: A selection of images used in the experimental tests for the feature match-
ing algorithms
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Averages for the accuracy and speed of the algorithms

Image group Method # of matches # of positive % Accuracy Time(s)

matches

Translation SIFT 1304 1143 85.20% 35.38

Translation Proposed 101 60 75.32% 1.54

Rotation SIFT 1574 1384 86.19% 37.80

Rotation Proposed 100 77 79.29% 1.56

Scale SIFT 606 367 50.88% 31.39

Scale Proposed 50 6 5.71% 1.55

All images SIFT 1285 1106 81.15% 35.39

All images Proposed 95 57 67.61% 1.55

Table 6.1: Average values for the interest point correspondence results (SIFT vs.
Proposed Method)

Table 6.1 shows the results from the experiments using the SIFT algorithm and

the proposed algorithm. The results show that the SIFT algorithm tends to match

many more features points than the proposed system, however the accuracy of those

matches is only marginally better than the proposed system. The proposed algorithm

does not match the accuracy of the SIFT algorithm, however it is significantly faster.

The results are more apparent in Fig. 6.8 showing higher average matching ac-

curacy from the SIFT algorithm, most dramatic in scale changes. However, Fig. 6.9

shows the significant average speed increases from the proposed algorithm. In situa-

tions where only the translation or rotation are variables the proposed system could

lend itself to near real time applications.

The minimum accuracy shown in Fig. 6.10 shows that the SIFT algorithm always

has at least a few matching points to pass to a mosaicing application. The proposed

system, under scale changes, would fail to give the mosaicing application accurate
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Minimums for the accuracy and speed of the algorithms

Image group Method # of matches # of positive % Accuracy Time(s)

matches

Translation SIFT 173 83 47.98% 2.36

Translation Proposed 3 3 37.75% 0.83

Rotation SIFT 508 458 63.59% 9.77

Rotation Proposed 23 15 64.15% 1.09

Scale SIFT 25 3 12.00% 16.19

Scale Proposed 1 0 0.00% 1.36

All images SIFT 25 3 12.00% 2.36

All images Proposed 1 0 0.00% 0.83

Table 6.2: Minimum values for the interest point correspondence results (SIFT vs.
Proposed Method)

matching information. The minimum speed shown in Fig. 6.11 shows that under all

circumstances the proposed algorithm is quicker. However, speed becomes irrelevant

if no matching points are found.

The maximum accuracy shown in Fig. 6.12 suggests that under translation and

rotation the proposed algorithm is capable of similar results to the SIFT algorithm.

The maximum speed results (Fig. 6.13) also show that under no circumstances does

the proposed algorithm take more than a couple of seconds, where as the SIFT algo-

rithm can be processing for up to 56 seconds.

The standard deviation for the accuracy (Fig. 6.14) suggests that the SIFT algo-

rithm is more stable than the proposed algorithm in general. However, this is not the

case in the stability of the speed of the algorithm. The results show (Fig. 6.15) that

the proposed algorithm is very consistent in the speed of the results, lending itself to

a real time system, whereas the SIFT algorithm is very unstable, varying in speed
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Maximums for the accuracy and speed of the algorithms

Image group Method # of matches # of positive % Accuracy Time(s)

matches

Translation SIFT 2747 2708 98.58% 56.68

Translation Proposed 414 185 100.00% 2.12

Rotation SIFT 3016 2763 93.84% 56.41

Rotation Proposed 247 186 97.06% 1.79

Scale SIFT 829 624 76.75% 39.03

Scale Proposed 140 27 27.84% 1.93

All images SIFT 3016 2763 98.58% 56.68

All images Proposed 414 186 100.00% 2.12

Table 6.3: Maximum values for the interest point correspondence results (SIFT vs.
Proposed Method)

from as fast as 2.36 seconds to as slow as 56.68 seconds.

In conclusion, the results show that the SIFT algorithm is more accurate than

the proposed system in the majority of tests, however the proposed system is much

quicker with only a minor accuracy penalty (except under scale change), lending itself

more toward real time implementation.



114

Standard deviation for the accuracy and speed of the algorithms

Image group Method # of matches # of positive % Accuracy Time(s)

matches

Translation SIFT 694 662 11.34% 14.14

Translation Proposed 121 55 19.43% 0.25

Rotation SIFT 941 878 8.98% 14.05

Rotation Proposed 73 53 10.03% 0.19

Scale SIFT 333 227 23.97% 8.87

Scale Proposed 64 12 12.37% 0.24

All images SIFT 770 737 17.07% 13.42

All images Proposed 105 55 28.90% 0.23

Table 6.4: Standard deviation values for the interest point correspondence results
(SIFT vs. Proposed Method)
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Figure 6.8: A comparison of the average accuracy (%) of the feature matching algo-
rithms

Figure 6.9: A comparison of the average speed (seconds) of the feature matching
algorithms
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Figure 6.10: A comparison of the minimum accuracy (%) of the feature matching
algorithms

Figure 6.11: A comparison of the minimum speed (seconds) of the feature matching
algorithms



117

Figure 6.12: A comparison of the maximum accuracy (%) of the feature matching
algorithms

Figure 6.13: A comparison of the maximum speed (seconds) of the feature matching
algorithms
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Figure 6.14: A comparison of the standard deviation of accuracy (%) of the feature
matching algorithms

Figure 6.15: A comparison of the standard deviation of speed (seconds) of the feature
matching algorithms
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6.4 Summary

After reviewing the state-of-the-art in automatic image mosaic, a new approach has

been described and validated. The new approach includes four steps of identifying

interest points, finding corresponding points based on invariant features, geometrical

and spectral transform and mapping. The preliminary results have demonstrated

that the approach by using evaluated interest points and integration of geometrical

& spectral transform is robust to various image-capturing conditions, although the

system is not robust to large changes in scale. Compared with the SIFT algorithm,

although the correspondence search is less accurate the proposed system is much

quicker. Further work will expand the approach for other colour spaces and real-

time searching for corresponding points, finding transform information and non-linear

transforms among the corresponding points and apply more robust correspondence

information [134, 135].
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Chapter 7

3D SURFACE RECONSTRUCTION

7.1 Introduction

3D surface reconstruction is a popular problem. 3D surface reconstruction is required

if the work is furthered to build 3D environments from panoramic images. Two pro-

cesses to increase the accuracy and speed of 3D reconstruction are presented here.

The first proposed process uses structured light to increase the accuracy of the cor-

respondence search in low texture areas, e.g. white walls.

The second proposed approach involves a hybrid area based and feature based

approach, using features to limit the area search to increase the speed of 3D recon-

struction. This new proposed approach increases the speed of an area based method

by between 30 and 50% without affecting the accuracy of the data.

7.2 3D Surface Reconstruction Using Structured Light

Correspondence methods are less accurate in areas of low texture. For example in

an outdoor environment where texture is in abundance correspondence is more ac-

curate, but an indoor environment usually has walls, and indoor walls usually have

low texture, e.g. white paint. To overcome this lack of texture, it is proposed that a

light pattern is projected onto the low texture areas to aid the correspondence search.

Once a texture has been applied the correspondence algorithms achieve higher ac-

curacy results. For this system a Gaussian noise pattern is produced. The image is

filtered to ensure that no two dark pixels are next to each other, so that no “blocks”

of black are produced. Large areas of black result in inaccurate removal of the noise
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later. The structured light pattern has to be dense enough to create a usable texture

for the correspondence algorithm, but with small enough ’dots’ to be able to remove

them for visualisation. The result is then projected into the environment. Fig. 7.1

shows an example of the structured light pattern used for projection. Because the

pattern of structured light is known, a filter such as a median filter can be used to

remove the pattern.

Figure 7.1: An example of the structured light pattern to be projected onto low
texture surface areas

Once the 3D model has been created a texture needs to be applied if realism is

to be achieved. The texture needed for the 3D model needs to be extracted from

the captured image data, which has a structured light pattern projected onto it. For

a realistic texture pattern the noise has to be removed. Median filtering techniques

are used to remove the pattern from the image. Fig. 7.2 shows an example of

the structured light pattern being removed from a wall image. Fig 7.3 shows the

results of 3D depth calculations when no structured light pattern is used and Fig 7.4

shows the results when a pattern is used. The noise pattern projection for increased

correspondence accuracy has also been used for 3D face reconstruction.

An example of the increase in accuracy gained by using the structured light pattern
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Figure 7.2: Showing the structured light pattern in an image (left) and after it has
been removed (right)

is shown in Fig. 7.5. The area within the red line clearly shows less disparity data

noise.

7.3 Interest Point Based 3D Surface Reconstruction

To reduce search ambiguity due to occlusions, large disparities, photometric distor-

tions and dense features and search time from large search area, many search window-

ing approaches have been proposed such as adaptive windows and multiple windows

[112, 113, 114]. In reference to the divide-and-conquer method for Fast Fourier Trans-

form (FFT) algorithms, this work expands the approach for 3D surface reconstruction

[95]. Interest points are locations in the image where the signal changes two dimen-

sionally. For example at a corner, a t-junction or where a significant texture change

occurs. Many different interest point detectors exist. Interest points have a high re-

peatability rate, which means they are robust to changes in viewpoint, lighting, scale

and rotation. The Harris detector is a very good interest point detector [49] so this

chapter uses that method. Fig. 7.6 shows an example of an image with the interest

points visible, and lines showing correspondence.

The area-based methods of finding stereo information are a slow search method as

they find depth information pixel by pixel. They do however produce dense disparity



123

Figure 7.3: Showing the results of 3D depth calculations when no structured light
pattern used

maps. As illustrated in Fig. 7.7, as the search area becomes larger, the computation

time for exhaustive searching increases exponentially. Feature based methods are

quicker but produce sparse disparity maps. This work proposes a mixture of these

techniques so that a quicker method is available but which still creates a dense dis-

parity map. The work also proposes a constraint for the search area from interest

points. Using interest points to determine smaller corresponding areas of information

for the search algorithm to search within, the area search becomes smaller. For ex-

ample interest points find the corners of a box. The search is constrained within this

box making a much smaller search region, which is searched much faster. Sun [136]

proposed a similar method in which the image is subdivided into rectangles based on

a coarse disparity map calculation. This coarse disparity map is used to determine

areas of similarity which are subdivided and a dense disparity method applied. The
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Figure 7.4: Showing the results of 3D depth calculations when structured light pattern
used

difference in the proposed system is that the rectangles are chosen by interest point

detection of regions rather than from a coarse disparity map. Interest points can be

detected by using eq. 7.1:
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(7.1)

Where IX and IY are image intensity from horizontal and vertical direction Gaus-

sian low pass filters. It is clear that different thresholds will detect different numbers

of interest points. Fig. 7.7 shows a theoretical comparison curve of the number of

calculations to size of search area using different size windows. It shows that the
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Figure 7.5: Structured light pattern projection results showing fewer errors in the
depth map where the structured light is projected (inside the red line)

Figure 7.6: Interest points and their correspondence

smaller the search area is, the quicker it can be computed. Once the interest point

data is available the image must be split into smaller areas, determined by the interest

points. For example in Fig. 7.8 the interest points I1, I2, I3 and I4 have determined

smaller areas. The corresponding points I1′, I2′, I3′ and I4′ in the second image

would create a corresponding area for an area based correspondence search. In the

implementation, the interest point based corresponding areas are overlapped.

Fig. 7.9 shows the process proposed. It shows the initial stages, using interest

points to determine smaller areas of correspondence. These smaller areas are searched

using area based methods for a dense disparity map. The disparity data is then

combined to create a dense depth map of the whole scene.
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Figure 7.7: Computing expense and search area

7.4 Experimental Tests

Experimental tests were run on the images shown in Fig. 7.10. The images are

corrected so that a search need only run on single rows. The image size is 256x256

pixels.

The images shown in Fig. 7.10 show the input stereo images and an output

disparity map which was computed using an area based method. The computing

time for this reconstruction was 391 seconds.

The method of finding interest points in the images and using that to determine

smaller windows is much quicker. The time taken using the interest point method

was approximately 196 seconds. The value is an estimate because the interest points

do not cover the whole image. 51% of the data was processed in 100.9 seconds. This

data shows a 49.9% time saving over the original method.

The calculations were also run on some brick data of rough surface reconstruction,

shown in Fig. 7.11. The calculation time was reduced here from 632 seconds to 450

seconds. A time saving of 30% was shown in this experiment. The efficiency of time
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Figure 7.8: Corresponding areas for constrained area based searching (Left image and
right image)

saving will be significantly increased for constructing large surface areas.

7.5 Summary

3D structure recovery of scenes is one of the most interesting goals of computer

vision. The main approaches are structure-from-stereo, structure-from-motion and

their integration. One of the most important processes for all the approaches is to

find correspondences. A new approach based on interest points based 3D surface

reconstruction for stereo vision has been proposed and tested. The computation can

be reduced significantly for large 3D surface reconstruction. The approach has been

tested for structure from stereo images with good results. It can be extended to

structure from motion or their integration of stereo-motion. It can also be expanded

to 3D panoramic construction. Further work would involve solving the problem of

interest point coverage and overlaps of corresponding areas.
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Figure 7.9: Process using interest points to increase the speed of processing the 2D
data

Figure 7.10: The stereo images and their disparity map, using area based method of
correspondence searching



129

Figure 7.11: Brick data showing Interest points and correspondence matches, and
disparity map
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Chapter 8

CONCLUSIONS AND FURTHER WORK

Current work has concentrated on the capture and processing of multiple views for

3D virtual environmental construction. Based on the investigation and framework,

which has been developed over the past few years, further work will be to extend

the current work into building 3D environments from data captured with the 3D

panoramic image capture system e.g. one-shot camera images. Applications in the

real world will also be included.

8.1 Panoramic Imaging for Virtual Environment Creation

Firstly the panoramic image capture system will be used to capture panoramas from

non-collinear positions in an environment. The captured data will then be processed

using the proposed software system such as interest point detection and colour cor-

rection. Processing will include interest point detection in one-shot camera images,

distortion correction, interest point correspondence matching, 3D surface reconstruc-

tion and visualisation in a virtual environment. A 3D video environment may be

conceptualised and developed. Currently the system components are a manual pro-

cess. The aim of the work beyond PhD level will not only be to create a 3D panoramic

imaging system but also to automate the entire system. Real-time processing will also

be considered. This would enable users to walk around an environment with a camera

and a 3D virtual environment would be generated in real-time. Possible uses include

wireless transmission and receiving of 3D environments, possibly to hand held com-

puters. The background needed for future work now exists from the past few years
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work, which will enable the work to move forward and create a real-time automated

3D panoramic system for the creation of virtual environments.

8.2 Web-Based Interactive System Using 3D Panoramic Imaging

In the future it will be possible to test real world applications including a web-based

interactive system for business management, collaborative design and demonstrations

(e-learning). An online collaborative system has been developed by a final year stu-

dent at the University of Huddersfield. It would be possible that the proposed system

could be used to build the 3D virtual building models used in the system. For example

a user walking around a building site with a handheld camera capturing data. The

model is built in the system offsite from the captured data and the collaborative design

and maintenance decisions then shared across large networks. A proposed interactive

system will be investigated as proposed in Fig. 8.1. More work on the interface and

the image based 3D construction, storage and visualisation will be investigated.

Figure 8.1: Embedded 3D virtual environment for Web-based interactive applications
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8.3 Video panoramic imaging

Research into a multiple camera real-time video panoramic system has begun. Using 6

small board cameras with an IEEE1394 interface aligned in a cylindrical layout it will

be possible to capture video panoramas. It is the intention that the system might also

be used to create stereo data. Eventually with two systems mounted above each other

it will be possible to achieve real time stereo panoramic data at a higher resolution

that the ’one-shot’ system proposed. The data from the cameras has successfully

been transformed into texture space. Mixing this with GPU’s it is hoped a real-time

system can be achieved.

8.4 Using interest points to integrate the real and virtual world in com-

puter games

It is intended that through a new research grant the interest point work for stereo

calculations will be extended into the augmented reality domain. The grant is to

extend the work so that computer games can include virtual characters in real world

environments. As well as computer games applications the work will also look at

training and visualisation.

8.5 Conclusions

Achievements over the past few years have been accomplished in 3 main areas, colour

correction, image stitching and 3D surface reconstruction. The work achieved will

enable a 3D panoramic system to be developed in the future.

The major contributions can be summarised as follows:

• A comprehensive literature survey has been undertaken. The state of the art

computer vision techniques and graphics techniques have been reviewed. Specif-

ically methods for colour correction, interest points, panoramic imaging and 3D
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surface reconstruction have been covered [137].

• A new interest point based image stitching method has been proposed and

investigated. The robustness of interest points has been tested and evaluated.

Interest points have been proved to be very suitable for 3D panoramic imaging as

all these changes can occur [109]. Further work to implement them into an open

source mosaicing application like Hugin or PTGui would be very interesting.

• A new interest point based method for colour correction has been proposed

and investigated. The results of linear and linear plus affine colour transforms

have proved more accurate than traditional diagonal transforms in accurately

matching colours in panoramic images [137]. Using interest points to determine

overlap regions and then mapping the spectral transform matrix has resulted in

accurate colour correction, meaning a much more aesthetically pleasing result.

• A new interest point based 3D surface reconstruction method has been proposed

and investigated. Traditional area based methods have been modified to include

an initial interest point and correspondence search. Limits have then been

placed on the area search resulting in increased speed performance. Increases of

30-50% have been recorded, without loss of detail in the data. Using structured

light to increase the accuracy of the correspondence search has also been very

successful.

• A new hardware rig has been setup for 3D panoramic testing. The hardware rig

is capable of low resolution one-shot capture, limited in vertical field of view.

The rig is also capable of high resolution multi-shot capture with no limits on

field of view.

• A new software framework has been developed for image based 3D virtual envi-

ronment construction. The GUI includes abilities for importing images, colour
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correction, stitching, 3D surface reconstruction and visualisation.

• A comparative study using multiple views from normal digital cameras and one-

shot camera images for 3D environment construction has been undertaken. The

merits and disadvantages of these approaches have been identified, which will

be the basis for further study.
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