224 research outputs found

    Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I: Macroscopic effects of the electron flows

    Full text link
    In this work, we compare gyrokinetic (GK) and fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (bgb_g). Here we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (βi=0.01\beta_i=0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (bg30b_g\gtrsim 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (bg5b_g\gtrsim 5). Kinetic PIC simulations using guide fields bg30b_g \lesssim 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (βi=1.0\beta_i=1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (bg3b_g\lesssim 3).Comment: 18 pages, 13 figures. Revised to match with the published version in Physics of Plasma

    Overview Of Nonlinear Kinetic Instabilities

    Get PDF
    The saturation of shear Alfven-like waves by alpha particles is presented from the general viewpoint of determining the saturation mechanisms of basic waves in a plasma destabilized by a perturbing source of free energy. The formalism is reviewed and then followed by analyses of isolated mode saturation far from and close to marginal stability. The effect of multiple waves that are isolated or are overlapping is then discussed. The presentation is concluded with a discussion of a non-conventional quasilinear theory that covers both extreme cases as well as the intermediate regime between the extremes.Physic

    Hybrid Simulation of Solar-Wind-Like Turbulence

    Get PDF
    We present 2.5D hybrid simulations of the spectral and thermodynamic evolution of an initial state of magnetic field and plasma variables that in many ways represents solar wind fluctuations. In accordance with Helios near-Sun high-speed stream observations, we start with Alfvnic fluctuations along a mean magnetic field in which the fluctuations in the magnitude of the magnetic field are minimized. Since fluctuations in the radial flow speed are the dominant free energy in the observed fluctuations, we include a field-aligned v(k) with an k(exp 1) spectrum of velocity fluctuations to drive the turbulent evolution. The flow rapidly distorts the Alfvnic fluctuations, yielding spectra (determined by spacecraft-like cuts) transverse to the field that become comparable to the k fluctuations, as in spacecraft observations. The initial near constancy of the magnetic field is lost during the evolution; we show this also takes place observationally. We find some evolution in the anisotropy of the thermal fluctuations, consistent with expectations based on Helios data. We present 2D spectra of the fluctuations, showing the evolution of the power spectrum and cross-helicity. Despite simplifying assumptions, many aspects of simulations and observations agree. The greatly faster evolution in the simulations is at least in part due to the small scales being simulated, but also to the non-equilibrium initial conditions and the relatively low overall Alfvnicity of the initial fluctuations

    Electron acceleration and parallel electric fields due to kinetic Alfvén waves in plasma with similar thermal and Alfvén speeds

    Get PDF
    We investigate electron acceleration due to shear Alfven waves in a collissionless plasma for plasma parameters typical of 4–5RE radial distance from the Earth along auroral field lines. Recent observational work has motivated this study, which explores the plasma regime where the thermal velocity of the electrons is similar to the Alfven speed of the plasma, encouraging Landau resonance for electrons in the wave fields. We use a self-consistent kinetic simulation model to follow the evolution of the electrons as they interact with a short-duration wave pulse, which allows us to determine the parallel electric field of the shear Alfven wave due to both electron inertia and electron pressure effects. The simulation demonstrates that electrons can be accelerated to keV energies in a modest amplitude sub-second period wave. We compare the parallel electric field obtained from the simulation with those provided by fluid approximations

    Collisionless Magnetic Reconnection in Space Plasmas

    Get PDF
    Magnetic reconnection requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in thin current sheets. Analytical concepts proceeded gradually down to the microscopic scale, the scale of the electron skin depth or inertial length, recognizing that current layers that thin do preferentially undergo spontaneous reconnection. Thick current layers start reconnecting when being forced by plasma inflow to thin. For almost half a century the physical mechanism of reconnection has remained a mystery. Spacecraft in situ observations in combination with sophisticated numerical simulations in two and three dimensions recently clarified the mist, finding that reconnection produces a specific structure of the current layer inside the electron inertial (also called electron diffusion) region around the reconnection site, the X line. Onset of reconnection is attributed to pseudo-viscous contributions of the electron pressure tensor aided by electron inertia and drag, creating a complicated structured electron current sheet, electric fields, and an electron exhaust extended along the current layer. We review the general background theory and recent developments in numerical simulation on collisionless reconnection. It is impossible to cover the entire field of reconnection in a short space-limited review. The presentation necessarily remains cursory, determined by our taste, preferences, and knowledge. Only a small amount of observations is included in order to support the few selected numerical simulations.Comment: Review pape

    Thermal disequilibration of ions and electrons by collisionless plasma turbulence

    Full text link
    Does overall thermal equilibrium exist between ions and electrons in a weakly collisional, magnetised, turbulent plasma---and, if not, how is thermal energy partitioned between ions and electrons? This is a fundamental question in plasma physics, the answer to which is also crucial for predicting the properties of far-distant astronomical objects such as accretion discs around black holes. In the context of discs, this question was posed nearly two decades ago and has since generated a sizeable literature. Here we provide the answer for the case in which energy is injected into the plasma via Alfv\'enic turbulence: collisionless turbulent heating typically acts to disequilibrate the ion and electron temperatures. Numerical simulations using a hybrid fluid-gyrokinetic model indicate that the ion-electron heating-rate ratio is an increasing function of the thermal-to-magnetic energy ratio, βi\beta_\mathrm{i}: it ranges from 0.05\sim0.05 at βi=0.1\beta_\mathrm{i}=0.1 to at least 3030 for βi10\beta_\mathrm{i} \gtrsim 10. This energy partition is approximately insensitive to the ion-to-electron temperature ratio Ti/TeT_\mathrm{i}/T_\mathrm{e}. Thus, in the absence of other equilibrating mechanisms, a collisionless plasma system heated via Alfv\'enic turbulence will tend towards a nonequilibrium state in which one of the species is significantly hotter than the other, viz., hotter ions at high βi\beta_\mathrm{i}, hotter electrons at low βi\beta_\mathrm{i}. Spectra of electromagnetic fields and the ion distribution function in 5D phase space exhibit an interesting new magnetically dominated regime at high βi\beta_i and a tendency for the ion heating to be mediated by nonlinear phase mixing ("entropy cascade") when βi1\beta_\mathrm{i}\lesssim1 and by linear phase mixing (Landau damping) when $\beta_\mathrm{i}\gg1
    corecore