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Overview of Nonlinear Kinetic Instabilities

H.L.Berk

Institute for Fusion Studies, University of Texas at Austin

Abstract. The saturation of shear Alfvén-like waves by alpha particles is presented from the general
viewpoint of determining the saturation mechanisms of basic waves in a plasma destabilized by
a perturbing source of free energy. The formalism is reviewed and then followed by analyses of
isolated mode saturation far from and close to marginal stability. The effect of multiple waves that
are isolated or are overlapping is then discussed. The presentation is concluded with a discussion
of a non-conventional quasilinear theory that covers both extreme cases as well as the intermediate
regime between the extremes.

Keywords: energetic particles, Alfvén waves, marginal stability, wave-particle resonance, nuclear
fusion
PACS: 89.30.Jj, 52.35.Bj, 94.05.Pt

INTRODUCTION

The basic principle for achieving energy from controlled fusion is to confine a deu-

terium/tritium plasma at a temperature from 10-20 KeV, sufficiently well so that nuclear

fusion occurs (through D,T → α,n) with a large gain above the energy input required

to sustain this plasma. The neutrons, with a birth energy of 14 MeV, readily escape the

plasma, and its energy will ultimately be converted to steam that will drive turbines gen-

erating electricity. Simultaneously, the electrically charged alpha particles, born at 3.5

MeV, remain confined in the plasma. The alpha kinetic energy is intended to be trans-

ferred to the plasma background primarily through the drag slowing down process to

the plasma’s electrons [1]. This energy transfer balances energy loss processes, such as

the energy flux from particle diffusion, to enable the plasma to remain at its high tem-

perature. In principle a fusion machine, which for magnetic fusion is most likely to be

a tokamak, need only be continually fed by the D,T fuel with continual helium ash re-

moval. In principle, no additional heating is needed, though auxiliary heating will be

required for startup and for control of the fusion burn.

An essential question to address is whether the alpha particles, as shown confined

in figure (1) in the JET machine, will be well confined and not be lost to the walls

prematurely. Loss to the plasma facing walls depletes the heating source that maintains

the plasma in its desired thermally hot state and unintentional alpha loss can cause

excessive wall damage, if lost at MeV and 100’ s of KeV energies. Thus, the confinement

of alpha particles is an extremely important issue in the quest to attain commercial fusion

energy power.

MHD and Energetic Particles
AIP Conf. Proc. 1478, 29-49 (2012); doi: 10.1063/1.4751638
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FIGURE 1. Schematic view of poloidal cross section of energetic particle orbits in the Joint European

Tokamak (JET). The curves are projections of the particle trajectories onto the poloidal plane. The circular

shaped curves are for passing particles while the crescent shaped (banana) orbits describe the trajectories

of magnetically trapped particles.

LINEAR INSTABILITY MECHANISM FROM ENERGETIC

PARTICLES

Alphas can be lost by magnetic field imperfections or by spontaneous generation of

instability. Though we will not discuss the first topic, care must be taken to be sure

that nearly all alpha particles would be confined in the absence of spontaneous wave

perturbations, e.g. particle loss due to magnetic field ripple, arises because the toroidal

magnetic fields are due to currents in a discrete magnet set rather than from a perfectly

symmetric toroidal coil.

In this lecture we will discuss the issue of how waves saturate when they are excited

spontaneously from instability. The understanding of this issue is very important in

determining the margins for linear instability that can be tolerated in a tokamak. Indeed,

it may be desirable to present a low level instability driven by alpha particles, so as to

provide a diagnostic that helps determine the state of the burning plasma. Possible use

of the wave ’free energy’ of alpha particles to help improve fusion burn conditions is

discussed by N. Fisch in this lecture series.

The basic instability mechanism for waves driven by alpha particles is the free energy

available from the so-called Universal Instability Mechanism that arises from the spatial

gradients in the alpha particle distribution function. This is the same mechanism that

causes turbulent transport of plasma in conventional magnetically confined systems. It

arises from the diamagnetic current flow that is associated with the spatial gradients of

the particle distribution function.

To understand the basic reason for instability, first consider a slab geometry case

where there is a uniform magnetic field in the z-direction. Take the plasma to be ho-

mogeneous in the y and z directions and spatial plasma confinement in the x-direction.

Then the particle distribution, F(�r,�v, t), will likewise be independent of y and z but de-
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pendent on x. As the particle distribution is stationary in time, it can be expressed in

terms of the constants of motion, F(�r,�v, t) = G(E,Py,μ), where E =�v2/2m+ eΦ(�r)/m

is the particle energy, Py = vy +ωcx is the canonical momentum in the y-direction, and

the magnetic moment is , μ = v2
⊥/2B (the three previous quantities are all per unit mass),

ωc = eB/mc is the cyclotron frequency, e is the particle charge, m is the particle mass

and c is the speed of light. If the distribution has a spatial scale large compared to the

Larmor radius then approximately, Py = Ψy ≡ ωcx. For simplicity we assume that the

distribution does not depend on magnetic moment, μ . Then we have:

G(E,Py) = G(E,Ψy + vy)≈ G(E,Ψy)+
∂G(E,Ψy)

∂Ψy

vy.

Hence when we construct the plasma flow that arises from this particle distribution we

find,

v∗ =
1

np

∫
d3vvyG(E,Py) =

1

np

∂

∂Ψy

∫
d3vv2

yG(E,ωc,Ψy) =
1

mnp

∂P

∂Ψy

=
c

eBnp

∂P

∂x
,

where P=m
∫

d3vv2
yG(E,ωcx) is the kinetic pressure, and np are the particle density and

diamagnetic flow velocity in the y-direction respectively of the particle species being

discussed. Thus, even for an otherwise isotropic distribution, there is a plasma flow,

v∗ = (c/npeB)∂P/∂x in the negative y-direction (if ∂P/∂x decreases with increasing x)

associated with the spatial gradient in the x-direction.

Now we note that the particles moving in the negative y-direction, with a speed |v|
that is in the range 0 < |v| < |v∗| will, at a fixed x position, be at speeds where the

distribution is effectively inverted in energy (the distribution increases with decreasing

speed). Because of this inversion, free energy can be spontaneously converted into wave

energy. This energy release also causes motion across field lines. To see this, we consider

a perturbed wave which is a function of kyy−ωt. As follows from the basic symmetry

of the perturbation [2], the following relation between the change of energy dE and

change of canonical momentum dPy is satisfied as the wave evolves slowly compared

to the frequency: kydE/ω = dPy = ωcdx (it is important to note we are considering a

resonance where −ω/ky < −v∗ is positive for a species with a positive charge). Thus

when energy is lost from a positive charged particle, with a speed in the y-direction less

than v∗, not only is energy lost but the particle moves spatially to larger x, i.e. down the

spatial gradient. The lower the frequency the more pronounced is the cross field motion

compared to the energy lost. For low frequency waves almost all the effect of losing

energy is associated with the cross field motion of the particles.

Similar arguments apply to a toroidal plasma symmetric in the toroidal angle φ , so

that the canonical momentum associated with Pφ = R2φ̇ + eΨ(r,θ)/mc is a constant of

motion, where Ψ(r,θ) is the poloidal magnetic flux with B⊥ =−(1/R)∂Ψ(r,θ)/∂ r the

poloidal component of the magnetic field. Then an equilibrium distribution can be taken

as a function of the energy E and the canonical momentum Pφ = R2φ̇ + eΨ(r,θ)/mc.

Because of the toroidal symmetry of the equilibrium, the linear waves will be a function

of nφ−ωt, where n is an integer which causes the following relation between the change

of particle energy, dE, and change of radial position, dr; ndE/ω = dPφ ≈−ωc⊥Rdr with
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ωc⊥= eB⊥/mc and r the minor radius of the torus. Again it follows (when n/ω > 0) that

as a particle gives up energy the particle moves outward in the r-direction. This cross

field motion associated with low frequency waves, is the mechanism for anomalous

diffusion.

As in the plasma slab case, one finds a diamagnetic rotation around the toroidal axis is

at the diamagnetic rate ω∗ =−∂P/∂ r/(npmωc⊥R) (note that ω∗ > 0 if ∂P/∂ r < 0, the

usual case in a confined plasma) and any wave whose phase rotation is slower than the

diamagnetic rotation frequency (i.e 0 < ω/(nω∗) < 1), is susceptible to a spontaneous

release of free energy that causes radial diffusion. Especially, note that the ratio of the

rotation rate of the energetic particles to the background species is the ratio of the mean

energetic particle energy to the thermal energy of the background plasma species, which

in a burning plasma is ∼ 100. As a result considerably higher wave frequencies can

cause radial loss of hot particles, than the frequencies that effect background plasma.

The waves causing radial loss of background plasma are predominantly drift waves.

However, the waves that could cause loss of energetic particles are higher frequency

MHD-like waves, particularly those related to the shear Alfvén wave, which causes the

magnetic field lines to bend while hardly changing the magnitude of the magnetic field.

MARGINALLY UNSTABLE STATE

In studying instability it is very important to consider conditions near marginal stability.

The time scale for the classical slowing down of alpha particles is close to a second,

whereas the time scale for instability growth, from 10−5 − 10−4 sec, which is also

the rough estimate for the time scale for relaxation of the nonlinear response. This

discrepancy in time scales makes it likely that if a burning plasma is susceptible to alpha

particle driven instability, that the system will relax in way to cause the system to hover

near marginal instability. If there is enough phase space available for expansion of alpha

particles without wall loss, the instabilities can remain benign in a state where there is

continual Alfvén activity but without significant particle and energy loss. In that case

the alpha particles will still continue to slow down within the plasma though perhaps

further out from the region from the magnetic axis that would be predicted if instability

is not accounted for. However, if the drive is too strong, the burn may be quenched

due to the reduction of plasma heating due to loss of energetic alpha particles that no

longer heat the background plasma and/or from the direct energetic particle flux on the

plasma facing surfaces that causes wall deterioration. Thus detailed properties of the

marginal stability state will affect whether a plasma burn can be sustained and hence it

is important to understand this marginal state.

Though it may seem over-simplistic, the key to understanding saturation near

marginal stability of Alfvénic modes in tokamaks, is to understand the saturation

mechanism of instability of single modes for the bump-on-tail instability. The feature

of the two problems have in common, is that a fundamental plasma excitation is present

in absence of a destabilizing source (the electrostatic plasma wave in the case of the

electrostatic bump-on-tail instability and the Toroidal Alfvén Wave (TAE) in the case of

an Alfvénic wave in a burning plasma). The saturation mechanism in the two problems
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is then due to the following:

1. the presence of background dissipation mechanisms which will allow an inverted

distribution of particles to remain stable until some critical gradient in the distribu-

tion is achieved;

2. the quenching of the instability drive by wave trapping [3] that flattens the distribu-

tion in the resonant region;

3. the presence of sources and sinks that allow a steady state balance to be achieved

between the source, sink, and the relaxation mechanisms arising from the nonlinear

response of the plasma.

The analysis to be discussed is not conventional quasilinear analysis. In the conven-

tional quasilinear analysis a key implicit assumption is that enough different waves are

excited such that the resonance width of the modes overlap. However, near marginal

stability, where there are limited number of waves excited, the overlap condition is not

necessarily attained. As a consequence, saturation is likely established due to the flat-

tening of the distribution gradient due to wave trapping of particles in limited regions

of phase space. Close enough to marginal stability, mode overlap is not likely to occur.

There is then an important region to understand for how a plasma responds when a fi-

nite number of unstable modes are present whose resonance frequencies do not overlap.

Then if mode overlap is achieved, the issues that arise are whether the system achieves

steady excitations, a series of pulsations or perhaps even avalanches.

We begin with a discussion of the saturation due to trapping [4] of a single mode in

the bump-on-tail electrostatic instability of a spatially homogeneous plasma. If a single

mode is present it is readily shown that the particles satisfy the following (pendulum)

equation:

d2ψ

dt2
+ω2

b sinψ = 0 (1)

where, ω2
b = ekE0/m, E0 is the normalized electric field amplitude and m are the charge

and mass of the particle and ψ = kx−ωt is the phase of the wave. The resonance con-

dition for an unperturbed orbit is ψ̇ = kv−ω = 0, where v = ẋ. The field normalization

is chosen so that ωb is the trapping frequency of the most deeply trapped particles in

the wave. Below we indicate why in the more general problem, Eq. (1) will still apply

in terms of a trapping frequency, ωb, and a phase ψ , where their specific expressions

depend on the details of the physical system being considered. Hence, as 3-D systems

and the nonlinear electrostatic wave satisfy similar structural equations, much is gained

by understanding the nonlinear properties of the bump-on-tail electrostatic problem.

Before a wave is excited in the bump-on-tail problem, the distribution of particles,

with a weight fa just above the linear wave phase velocity (the red region of figure 2)

has a larger weight than the weight of the distribution, fb below the resonant frequency

(the blue region of the figure). If just a single mode is excited two phase space regions

(i.e. the blue and red regions in fig. 2) will rotate clockwise in the trapping region at

a shearing rotational rate, so that eventually the distribution weight of the two regions

effectively mix, leading to an average of the two weights in the final mixed distribution.

It is mostly the particles in the trapping region that can mix their weights, though due

to non-adiabatic effects, there is mixing as well of particles in the region of phase space
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FIGURE 2. Phase space contours of constant energy in wave frame of a fixed amplitude standing wave.

slightly outside the separatrix. However, most of the particles outside the separatrix

(passing particles) respond in an adiabatic manner and thus do not mix their distribution

function, allowing the distribution to remain a constant function of their action variable

during the entire evolution of the background wave. Hence the relaxation of the passing

particle distribution is quite limited.

In fig. (3) we consider an energetic inverted distribution function as it increases with

increasing energy. There is then the potential for spontaneously release of free energy

from a region of action space I at a fixed frequency ω ≈Ω(I) = kv. Ω(I) is the frequency

of the particle’s action variable and kv is the particular form of this action variable

that applies to the bump-on-tail problem. As a result of the mixing of the distribution

within the separatrix, shown in fig. (2), the mean value for the distribution flattens in the

region Ω(I)∼ ω as is shown in fig. (3). Outside the separatrix region, the distribution is

essentially the same as it would be without any wave excitation while there is a relatively

sharp transition region around the separatrix.

When several modes are excited, one can have extreme situations, that can be com-

pared. In fig. (4a), the multiple discrete waves do not overlap, so that the distribution

only mixes within the separatrix of each isolated resonance while between resonances,

the distribution is hardly changed. In contrast, in fig.4(b) as a consequence of the multi-

ple resonance overlap, the particle mixing is no longer confined within the separatrix of

a single resonance. As a result the distribution mixes over a much larger region of phase

space. This much larger mixing region clearly reduces the energy of the resonant parti-

cles, far more than in the non-overlapping case. Hence, to the extent energy is conserved

between energetic particles and waves, there is a much larger enhancement of the wave

amplitudes in the overlapping case compared to the mixing case. Hence, fig.(4a) depicts

relatively benign relaxation as there is hardly any transport of resonant particles, while

fig.(4b) depicts pronounced nonlocal particle transport and even an amplification of the

wave amplitude. These two examples give two possible extreme outcomes during the

evolution of a marginally unstable state.
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FIGURE 3. Flattening of distribution due to mixing within the separatrix region.

FIGURE 4. (a) local flattening when waves do not overlap; (b) global flattening arising when waves

overlap.

FORMALISM FOR NONLINEAR WEAKLY DRIVEN KINETIC

INSTABILITY

In this section we review the formalism that allows us to use the simple 1-D picture that

is based on the electrostatic bump-on-tail problem, for problems in more complicated

geometry, such as description of phenomena in an axisymmetric tokamak. We note

that in axisymmetric geometry the unperturbed orbits exactly conserve two quantities,

the particle canonical momentum Pφ , the particle energy E and a third approximately

conserved invariant (to within exponential accuracy) the magnetic moment μ . Three

angles and frequencies associated with the motion of charged particles in a tokamak
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are, the toroidal angle φ matched with its mean angular frequency ωφ (E,Pφ ,μ) , the

poloidal angle θ with a mean angular frequency ωθ (E,Pφ ,μ), and the gyro-phase angle

ψ with its mean gyrofrequency ωψ(E,Pφ ,μ). These six coordinates determine the six

dimensional phase space positions of any orbit in the tokamak. The resonance condition

can be written as: ω − nωφ (E,Pφ ,μ)− lωθ (E,Pφ ,μ)− sωψ(E,Pφ ,μ) = 0, where the

quantities, l, n and s are integers with s=0, which is the case for resonances associated

with low-frequency modes (less than the cyclotron frequency).

The unperturbed particle orbits are usually integrable, which then allows the coor-

dinates to be transformed into three action variables, �J ≡ (J1,J2,J3) and to their three

respective conjugate angles,�χ ≡ (χ1,χ2,χ3). Recall that these conjugate angles have the

properties that for unperturbed motion, �̇χ =constant. It is this property that allows the

simple one dimensional bump-on-tail problem to be the basic paradigm for describing a

complex three dimensional tokamak problem and indeed, for many other physical prob-

lems. In a tokamak the actions can be chosen as J3 = μ , J1 = Pφ while the remaining

action J2 is related to the energy by dJ2 = dE/ωθ at constant J3 and J1.

Now consider an electromagnetic toroidal perturbation applied to the system (for suc-

cinctness of presentation, a gauge is chosen where the electrostatic potential vanishes).

The dynamics of the particle motion is determined by a Hamiltonian, that is a function

of momentum �p , position�r, and time t, taken to be of the form,

H(�p,�r, t) = H0(�p,�r)+
e�A0(�r) ·�v(�p,�r)

2c
[exp i(nφ −ωt)+ c.c] (2)

where �A0(�r)cos(nφ −ωt) is the perturbed vector potential and H0(�p,�r) and e
c
�A0(�r) ·

�v(�p,�r) are independent of the toroidal angle φ .

In terms of action angle variables, this Hamiltonian can be written as,

H(�p,�r, t) = H0(�J)+
1

2
∑
�s

<
e

c
�A0(�r) ·�v(�J)>�s [exp i(�s ·�χ−ωt)+ c.c] (3)

where,

<
e

c
�A0 ·�v(�J)>�s= lim

T→∞

1

T

∫ T

0
dt

e�A0 ·�v(�r(t))exp[inφ(t)]

2c
exp[−ilχ1(t)−inχ2(t)−isχ3(t)],

(4)

where the time dependence in the integrand is taken over the unperturbed orbits of a

particle.

Also, note that for the unperturbed system �̇χ(t) = ω(�J) = const. If the amplitude is

small enough, the response for the non-resonant perturbations can be taken as linear with

exp i(�s ·�χ(t)−ωt) considered to be a rapidly varying function of time. However, for res-

onant, indices�s0, the response in time has to be treated nonlinearly. We define resonant

surfaces in phase space for �J which satisfy,�s0 ·�χ(t)−ωt = 0. For the particles that nearly

satisfy this resonance, the response readily becomes nonlinear even for a relatively small

amplitude wave. The nonlinear solution to the resonant particle response is obtained by

neglecting the non-resonant terms in Eq.(3). As a result the near resonant particle dy-

namics is well described by a Hamiltonian that consists of the unperturbed Hamiltonian
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plus only those terms in Eq. (3) for which�s=�s0 where Ω�s0
(J0)≡ nωφ (J0)+ lωθ (J0)=ω

and we have taken the low frequency case where s = 0, which will apply to the remain-

ing discussion. With this truncation and expanding H(�J) to second order in �J− �J0 the

governing resonant particle reduced Hamiltonian, Hrdc, is found to be given by,

Hrdc =
(J− J0/n)2

2

∂Ω0(�J0)

∂J
|J′2,J3

+
1

2
(<

e

c
�A0 ·�v(�J)>�s0

exp(iχ)+ c.c) (5)

with χ = lχ1 +nχ2−ωt, J = J1/n and the constants of motion are J′2 = J2− lJ1/n and

J3 as the reduced Hamiltonian is independent of the phase angles χ2 and χ3 conjugate

to J′2 and J3. It follows from the reduced Hamiltonian equations of motion for J and χ
that the governing equation for the phase of the resonant particle response is given by

the same pendulum equation as Eq. (1), but now with a more general expression for the

wave trapping frequency given by,

ω2
b =<

e

c
�A ·�v(�J)>�s0

∂Ω�s0
(�J,J′2,J3))

∂J
|J′2,J3

(6)

In addition it follows that the kinetic equation for the resonant particles can

be expressed in terms of a distribution function, f (Ω,�χ;J′2,J3), with Ω =
ω + (J − J10/n)∂Ω�s0

(J10)/∂J1 that has the same structure as the Vlasov equation

for the bump-on-tail problem. The resonant particle distribution function, frs (the rs

subscript will usually be suppressed), satisfies the equation:

[
∂

∂ t
+Ω

∂

∂ χ
+ω2

b sinχ
∂

∂Ω
] f (Ω,χ, t) = ν3

e f f

∂ 2( f (ω,χ, t)− fS(Ω))

∂Ω2
(7)

where on the RHS we have added to the Vlasov equation a diffusive relaxation term and

a particle source term, which is the one containing fS(Ω).
The diffusive relaxation term can be related to such physical stochastic processes, as

collisions, heating, etc, that is always part of a physical system.

Observe that the kinetic equation given by Eq.(7) is just as applicable to resonant

particles in the bump-on-tail problem as waves in a tokamak (indeed to any system

where equilibrium orbits are integrable). The only difference in the two problems is that

there is only one region of resonant particles in the bump-on-tail problem, while in the

tokamak problem there are two dimensional surfaces for a given ω with indices�s0 that

satisfy the resonance condition, that need to be integrated over.

In addition we need to describe the wave response. We start from Maxwell’s equations

where the non-resonant linearly perturbed current is taken to be the reactive part of the

plasma current response. In addition we add an extrinsic dissipative part that comes from

collisional effects and/or stabilizing resonant particle effects. An additional assumption

used is that the spatial shape of the wave fields remain unchanged during the evolution of

the wave, while the temporal response of the wave changes. Such an assumption can be

justified when frequencies are close to the eigenfrequencies of the background plasma.

In linear theory, the reactive plasma current, �jrc(�r, t), which is related to the perturbed

electric field by a non-local conductivity tensor, ��σrc(t− t ′,�r,�r′) , that depends on space
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and time and produces a reactive current of the form,

�jrc(�r, t) =
∫ t

−∞

��σ(t− t ′,�r,�r′) ·�E(�r′, t ′) =−c−1
∫ t

−∞

��σ(t− t ′,�r,�r′) ·
∂�A(�r′, t ′)

∂ t ′
. (8)

There is also a current due to extrinsic dissipation, which is simply modeled as�jds(�r, t)=

σex
�E(�r, t). Finally, there is the current arising from the resonant regions of the plasma,

�jrs(�r, t). Only the resonant currents are treated as nonlinear and the distribution func-

tion in the resonant phase space region is taken to satisfy a reduced Vlasov equa-

tion given by Eq. (7). The vector potential is taken to be of the form, �A(�r, t) =
C(t)�a(�r;ω0)exp(−iω0t)/2+ c.c where C(t) is a complex amplitude with the assumed

property that dC(t)/dt/(ω(t)C(t))	 1 and �a(�r;ω0) is the linear eigenfunction of the

wave for eigenvalue ω = ω0. Substituting the currents into Maxwell equations leads to

the wave equation,

C(t)[�∇×�∇×�a(�r)−
ω2

0

c2
�a(�r)−

4πω0

c2

∫
d3�r′Σ(ω0,�r,�r

′) ·�a(�r′)] (9)

− i
4πω0

c2
σex�a(�r)C(t)+ i

dC(t)

dt

∂

∂ω0

[�∇×�∇×�a(�r)−
ω2

0

c2
�a(�r)−

4πω0

c2

∫
d3�r′Σ(ω0,�r,�r

′)�a(�r′)] =
4π

c
�jrs(t)exp(iω0t)

where −i
∫

d3�r′Σ(ω0,�r,�r
′), the Laplace transform of time of the spatially non-local

conductivity tensor with the resonance response omitted, which is a Hermitian self-

adjoint operator. Now take the dot product of this function with�a∗(�r;ω0), integrate over

all space, neglecting highly oscillatory terms to obtain for the wave amplitude evolution:

G(ω0)C(t)+ i
4πω0

c2

∫
d3�rσex|�a(�r)|

2C(t)+ i
∂G(ω0)

∂ω

dC(t)

dt
(10)

=−
4π

c
C(t)

∫
d3�r�jrs ·�a

∗(�r)exp(iω0t)

where

G(ω) =
∫ ∫

d3�rd3�r′

4π
{−δ (�r−�r′)[∇′ ×�a∗(�r′) ·∇×�a(�r)+

ω2

c2
δ (�r−�r′)�a∗(�r′) ·�a(�r)]

(11)

−
4πω

c
�a∗(�r′) ·Σrs(ω,�r,�r′) ·�a(�r′)}

Note that �a(�r) is eigenfunction obtained by solving the first bracketed term on the LHS

of Eq. (9) set to zero, from which one finds the eigenvalue ω = ω0. For the eigenvalue,

ω = ω0 one can show that G(ω0) = 0 and this expression can be viewed as the linear

dispersion relation for the basic undamped wave in a toroidal plasma. Hence, the wave

equation for determining the wave complex amplitude C(t) is

∂G(ω0)

∂ω

dC(t)

dt
+

4πω0

c2

∫
d3�rσex|�a(�r)|

2C(t) = i
4π

c
C(t)

∫
d3�r�jrs ·�a

∗(�r)exp(iω0t) (12)
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Further note that by multiplying Eq. (12) by C∗(t) and the complex conjugate of Eq.

(12) by C(t) and then adding the two terms, we obtain the equation,

∂G(ω0)

∂ω

d(C∗(t)C(t))

dt
=

4π

c
C∗(t)C(t)(i

∫
d3�r�jrs ·�a

∗(�r)exp(iω0t)+ c.c) (13)

−
8πω0

c2

∫
d3�rσex|�a(�r)|

2|C(t)|2

In addition one can show that
C∗(t)C(t)

4
∂G(ω0)/∂ω , ω0

C∗(t)C(t)
4

∂G(ω0)/∂ω and

n
C∗(t)C(t)

4
∂G(ω0)/∂ω are respectively the wave action, wave energy and wave angular

momentum along the axis of the axisymmetric torus. One may then interpret Eq.(13)

as the time rate of change of wave action (i.e. rate of change of the number of wave

photons) is due to the interaction of the resonant particle currents and dissipative

currents with the perturbed fields.

In solving for the wave equation, we need to solve for the resonant current response,

∫
d3�r�jrs ·�a

∗(�r) = e

∫
d3�rd3�v frs�v ·�a

∗(�r) (14)

= (2π)2
∫

dJ′2dJ3
∂J1

∂Ω
∑
�s0

∫
dχdΩ frs(�J,�χ;J′2,J3)< e�v ·�a∗(�r)>�s0

where frs(�J,�χ;J′2,J3) is solution for the resonant particle Vlasov equation given by Eq.

(7). Thus Eqs. (7), (13) and (14) correspond to a closed set of equations.

These equations describe the nonlinear response of resonant particles that produce

weakly driven instabilities. The basic difference between the simple bump-on-tail elec-

trostatic problem and the three dimensional problem is that additional integrations in the

J′2 and J3 and summation of resonances, denoted by�s0, are required for the 3-d problem

while for the electrostatic 1-d problem these integrations are absent. Otherwise the basic

structures of the problems are identical. Thus by in large we can limit our discussion to

the simple properties of the 1-d problem, and achieve insight needed to understand the

nonlinear response of alpha particles driving TAE modes in a burning plasma.

SATURATION LEVELS

a. Saturation without extrinsic damping, relaxation or particle sources

We now discuss the saturation levels in terms of the trapping frequency, ωb for the

bump-on-tail instability. First consider the case where a single mode is excited, and there

is an energetic particle drive that produces a growth rate γL, when there is no background

dissipation present. Then in the evolution of the mode, the total momentum must be

conserved. Hence, in the final saturated state, the increase of the final wave momentum

(this includes the electromagnetic field momentum plus the increased momentum of

the non-resonant particles oscillating coherently with the wave) is attained through the

loss of momentum of the resonant particles. The resonant distribution relaxes from a
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finite slope to a nearly zero slope in the trapping region, as shown in fig.(3), as well as

producing a distortion of the distribution of passing particles close to the resonance.

The final state of the system also depends somewhat on the dynamical path to satura-

tion. Two contrasting scenarios are readily described analytically by using that the final

distribution of trapped particles to be the average of the phase space regions of the un-

perturbed system that transition to the trapping region as the wave grows to saturation.

Different dynamical paths to saturation still give some uncertainty in the theoretical pre-

diction as to what level of saturation will be reached. At one extreme we can assume that

the fields evolve so slowly that the particles remain adiabatic, so that the distribution re-

mains a function of the action during the evolution, though with the distribution mixing

in the trapping region. Due to this mixing, a prediction of a saturation level, ωb = 2.9γL is

inferred. The other extreme is to assume that the final saturated field amplitude is estab-

lished suddenly as an impulse, whereupon the particles mix at constant field amplitude.

Then total momentum conservation leads to a prediction that ωb = 3.5γL. A numerical

simulation of the problem [5] gives as the final trapping frequency, ωb = 3.2γL, a result

that lies between these two estimates. Thus we see that particle trapping leads to a satu-

ration level that scales with the linear growth rate. The flattened region shown in fig.(3)

has a width ΔΩ≈ 3γL.

b. Saturation with a source and sink with weak extrinsic damping

Now consider the case where the distribution function is established with a source

and sink that is well above the marginal stability of a discrete mode. In that case the

instability growth rate γL in absence of damping is substantially above the damping rate

γd that would arise in absence of the drive. For a steady state solution, the time derivative

terms of Eqs. (7) and (13) are absent. As the result justifies a priori, we assume that the

solution has the character that ωb >> νe f f . Then to obtain an analytic result, we develop

a perturbation procedure for the pth iterant based on the following iteration,

Ω
∂ fp

∂ψ
−ω2

b sinψ
∂ fp

∂Ω
= ν3

e f f

∂ 2 fp−1

∂Ω2
(15)

with a boundary condition that
∂ f0
∂Ω
−→ ∂F(Ω)

∂Ω |Ω|
ωb
, where F(Ω) is the energetic

particle distribution established by the classical sources and sinks without any waves

present.

Here we discuss how to use dimensional analysis in this iteration to produce the

appropriate scaling for the saturated solution. To lowest order, p = 1, Eq. (15) gives:

Ω
∂ f0
∂ψ
− ω2

b sinψ ∂ f0
∂Ω

= 0. By balancing the two terms of the lowest order equation,

∂ f0/∂ψ ∼ f0 ∼ ω2
b f0/Ω2, we find that the range of sharp change of f0 with respect to

Ω occurs where Ω ≈ ωb, while the need to have the slope, ∂ f0/∂Ω, in the inner region

be comparable to the slope in the outer region, lead to : ∂ f0/∂Ω ∼ f0/ωb ∼ ∂F/∂Ω.

Consequently, f0 ≈ ωb∂F/∂Ω. Similar scaling considerations then give to next order,

f1 ≈ (νe f f /ωb)
3 f0 ≈ (ν3

e f f /ω2
b )∂F(Ω)/∂Ω.
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Now to estimate the saturation level we use that the nonlinear power transfer from the

energetic particles to the plasma, as given by Eq. (13), with the aid of Eq. (14), has to

be reduced from the one deduced from the linear theory expression by a factor of γd/γL.

Thus we find,

γd

γL

=

∫
dJ′2dJ3(

∂J1

∂Ω
)2

∫
dχdΩ[( f0(Ω)+ f1(Ω,χ))|ω2

b�s(
�J)|eiχ + c.c.]

2
∫

dJ′2dJ3(
∂J1

∂Ω
)2 ∑�s

∫
dχ ∂F

∂Ω
δ (Ω)dΩ|ω2

b�s(
�J)|2

The right hand side of this equation is ratio of nonlinear to linear power release of the

energetic particles. Also note that because the f0 term in the numerator is independent

of Ω, this term vanishes upon χ integration. If we then substitute the estimate f1 ∼
(ν3

e f f /ω2
b )∂F(Ω)/∂Ω, and use that the range of the Ω integration in the numerator is

ωb, we find the scaling for ωb to be.

ωb ∼ νd(
γL

γd

)1/3 (16)

For the bump-on-tail instability, the quantitative calculation gives ωb = 1.2νd(
γd

γL
)1/3 [4].

Closer to marginal stability, when γL− γd 	 γL, the saturated trapping frequency has

been shown to take the form found in [6].

ωb = 1.4(1−
γL

γd

)1/4νe f f . (17)

An understanding of how this scaling comes about from simple balancing arguments

similar to what we have just discussed, is given in [7].

To predict the saturation level in between the two limiting regimes γL 
 γd and

γL− γd 	 γL, an interpolation formula has been used. The results of this interpolation

compares favorably with the results from simulations as is shown in figure (5). (The

figure on the left is for the bump-on-tail problem simulated by Petviashvili [8] and the

figure on the right is for the TAE mode simulated by Y. Chen [7]).

The scaling formulas we have just presented in this sub-section then allows one to

estimate the mode width ΔΩ ∼ ωb in terms of the growth rate, γL, the damping rate γd

and the diffusive relaxation rate νe f f . This estimate is very important for establishing

saturation level in the quasilinear formalism that will be discussed below in the section

on quasilinear theory.

c. Pulsation Scenario

The previous section produced solutions that give a steady state saturated response

where there was a balance between a source input, an instability drive and a basic

diffusive relaxation mechanism. However, it is also possible that the wave response will

not be steady, even when there is just a single resonance excitation. Then one has to

consider the possibility of a non-steady response. An indication of this possibility is

the prediction from Eq. (16) that shows that the saturated wave amplitude becomes
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FIGURE 5. Comparison of the normalized saturation levels determined from simulation and interpo-

lated analytic formulae. The figure on the left is for the bump-on-tail instability while that on the right

is for the TAE instability as a function of γd/γL. The solid curve is the interpolated calculation, while

the discrete points are results of the simulation. The triangular and square points in the left figure are for

different values of γL.

arbitrarily small as νe f f goes to zero. In that case the saturated distribution would

hardly be distorted upon saturation, and hence one might expect the instability growth

to continue. Indeed, it was shown in reference [9] that the steady solution is unstable.

What should then happen is that the instability continues to grow essentially at the linear

growth rate, until the trapping frequency of the mode becomes comparable to the linear

growth rate. Then the nonlinear response that is attempting to produce over-turning

of the trapped particles within the separatrix, has enough time compared to the linear

growth time to complete this task. Then the distribution function in the resonance region

ΔΩ∼ ωb, flattens causing a depletion of the drive for the mode, thereby enabling mode

stabilization. We call this saturation level the natural saturation amplitude. If νe f f 	 γd ,

the mode amplitude will damp on a time scale tdmp ∼ 1/γd , while the distribution is

flattened over a region centered about the resonant frequency, for a width in phase space

ΔΩ∼ ωb ∼ γL.

The restoration of the slope in the distribution to a value comparable to the slope of

the surrounding ambient distribution function is brought about by a normalized phase

space diffusion coefficient given by ν3
e f f ∼ νclω

2 where νcl is the large angle scattering

rate. If νe f f 	 γd , standard diffusion arguments then produces the following scaling

for the restoration time, trst ∼ γ2
L/ν3

e f f , in a region ΔΩ ∼ γL, that goes from a flattened

phase space region to the slope of the fully developed instability. When restoration is

near completion, the slope of the distribution becomes large enough to produce a linear

instability drive that can overcome the background damping, and the linear instability is

excited again. Thus we expect a saw-tooth like response, with a sharp onset of instability

at a rate γL, a slower decay of the excitation at a rate γd followed by longer quiescent

time trst .

It is worth noting that when νe f f > γL (where the saturation level is in steady state with

the saturation amplitude ωb ∼ νe f f (γL/γd)
1/3) the saturation level is always intrinsically

larger than the natural saturation level ωb ∼ γL − γd (applicable when γd is not too

close to γL) of the pulsation state. Thus diffusion from the ambient distribution, which

is established by an external source and classical relaxation processes, pumps up the
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saturation level when νe f f > γL. Roughly then, the saturation level, independent of

numerical coefficients of order unity and taking into account Eqs. (16) and (17) can

be written in the following form,

ωb ∼ νe f f ((1−
γd

γL

)1/4 +(
γL

γd

−1)1/3)+(γL− γd) (18)

An unexpected response occurs when νe f f /(γL − γd) < 1, where oscillations and

explosions can occur. Indeed, the explosive state turns out to be a precursor to rapid

frequency chirping due to the generation of generalized BGK nonlinear wave [10]. This

scenario is the topic of accompanying lectures by M.Lilley. The saturated level of the

chirping structure is found to be ωb ∼ 0.5ωL. This is the same scaling as the case with

γd = 0, but with a numerical factor that is 6 times lower.

d. Mode overlap

When there are several modes present, the modes will oscillate independently of each

other when the mode width, ∼ ωb is much less than the mode frequency separation Δω .

However, with a source present, the overall level of the energetic particle population

will continue to rise, creating a larger slope in the distribution. In figure (6) the dashed

line represents the critical slope needed to achieve marginal stability. Suppose initially

we take the distribution’s slope, to be less than the critical slope. Then the background

dissipation is large enough to overcome the destabilizing tendency from the energetic

particles. The external source then slowly causes an increase of the slope until the

critical slope, as represented by the dashed curve in figure (6), is reached. When the

critical slope is barely exceeded, there is a discrete number of separate single mode

oscillations with a very small mode width proportional to νe f f (1− γd/γL)
1/4. When

barely above marginal stability, the mode width is too small to cause overlap. However,

the source causes a further increase in the slope, so that the mode width increases. If there

are enough modes present, mode overlap occurs, at the slope level shown by the solid

curve in figure (6). After mode overlap is triggered, there is an increase in the region of

flattening as particles are no longer restricted to diffuse within the environs of a single

separatrix, but now can diffuse to neighboring resonances. The increase in the range of

flattening of the distribution, then leads to an enhancement the free energy released to

the wave, causing an increase of mode amplitude, as was previously discussed in section

(3). Hence, a rapid relaxation to a lower slope arises as shown by the dotted curve, well

below the critical slope. Then the modes are stabilized, the waves damp away, and the

external source then produces an increase of the slope at the classical rate as the cycle

repeats itself. If the target energetic particle slope, that would arise in the absence of

oscillations, is well above the critical slope, the maximum slope that is experimentally

achieved will only be somewhat above the critical slope for instability; well below the

desired target slope.

Numerical particle simulations have been performed in [11] that illustrates an ampli-

fication of mode amplitude due to mode overlap as shown in figure (7). An initial state

is taken where the distribution is assumed to be at its classical targeted slope and then
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FIGURE 6. Oscillation cycle of marginal stable state. When distribution’s slope is below the critical

one(dashed curve), the slope builds up at the classical rate, to the critical slope for the onset of instability.

First, single non-overlapping modes are excited, allowing overall slope to continue to increase, to where

mode overlap arises (solid curve). Then rapid particle loss ensues, lowering slope to well below critical

one, causing background dissipation to damp the excited modes whereupon particles source restarts slope

buildup to continue oscillation cycle.

the response to spontaneous wave excitation is considered. First consider the first pulse

shown in the top left figure, where two modes with relatively close resonant frequen-

cies are present. Initially, the instabilities grow at their linear growth rate γL. At a time,

γLt = 73 the mode amplitude is shown on the upper left panel at the time indicated by

the left-most of the three arrows. The excited wave energy is relatively low, but we see

in the panel on the upper right side that flattening of the spatially averaged distribution

function has been achieved in two separate resonant regions of Ω (called velocity in the

figure). However, mode saturation does not occur at this time, as clearly seen by the

increase of wave energy at the middle arrow around the time γLt = 85 as compared to

the wave energy at γLt = 73. At the later time the lower left panel shows an annealing

of the distribution between the two resonances but also that the particle mixing is ex-

tending over a broader band in Ω, which is due to the combination of particle mixing

between the resonance regions due to mode overlap and the increasing mode amplitudes.

Because more phase space is available for particles to mix, more free energy is being

released and the excited saturation levels can exceed their single mode saturation lev-

els. At the right-most arrow at γLt = 98 the excited wave energy has reached its peak

saturation level at a level dramatically above the level of two single modes alone and

the distribution has flattened over a broadened region of Ω as shown in the lower right

panel. As the simulation continues, we see repetitions of the pulse rate, each of which

lead to a strong flattening of the distribution followed by a relatively long buildup time

for when the slope of the destabilizing distribution to be nearly restored,

We can estimate the level of enhancement in the scaling as follows. For a single res-

onant mode it can be ascertained that the energy lost in the resonant region is propor-

tional to γLω3
b while the level of wave energy excitation is proportional to the square of

the mode amplitude, or equivalently to ω4
b . Thus if on the time scale of the growth rate,

the wave damping γd and energy input from sources are sufficiently small, the overall

change of normalized energy is given by, αω4
b − βγLω3

b , where α and β are normal-

ized proportionality constants. As the overall energy is nearly conserved in a time scale
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FIGURE 7. Simulation of relaxation cycle due to two closely resonant modes.

∼ 1/γL, we find that the saturation level is given by ωb ∼ βγL/α , a scaling noted earlier.

However, we see in the upper left figure that the wave energy level does not saturate at

the time γLt = 73, but continues to grow. This is because the two waves are too close to

each other and particles in one resonant region can mix with particles in the neighboring

resonance region giving rise to mode overlap and a further release of energetic particle

kinetic energy as a result of the mixing. As the two modes are only assumed to be sep-

arated from each other by an amount ΔΩ ≈ γL, the energetic particles mix in this case

over a region∼ 2γL, which gives rise to a loss of resonant particle energy that is given by

γL(2γL)
3β , while the total wave energy is given by (2ωb)

4. By again applying energy

conservation, the expected total saturated wave energy per mode is found to be as large

as 4 times the saturated energy level for two well separated modes with the same growth

rate. If this argument is further extended to N roughly equally separately modes with a

phase space separation ΔΩ ∼ γL between each of the modes, the factors of 2 appearing

explicitly in the two mode overlap discussion, gets replaced by N, and then the amplifi-

cation of wave energy released per mode scales by a factor of N2 above the single mode

case. Clearly, this wave release amplification can be a serious problem that needs to be

avoided.

e. Quasilinear theory

The generic method to treat transport from waves is to employ quasilinear theory.

The conventional form of quasilinear equation when cast in terms of the wave trapping
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frequency that we have discussed throughout this paper is,

∂ f (�J)

∂ t
−

π

2
∑
j,k

|ω4
b j,k|

∂

∂Ω j,k
Q(ωk−Ω j,k)

∂ f (�J)

∂Ω j,k
= Sr (19)

where the subscript k refers to a linear eigenmode and the subscript j refers to the

specific region in phase space associated with the mode frequency ωk. The right hand

side of the quasilinear equation represents additional phase space sources, sinks and

collisional relaxation terms that are part of the problem. The quantity Q(ωk−Ω j,k) is the

frequency correlation function, with the normalization property
∫

dΩ j,kQ(ωk−Ω j,k) =
1. The correlation function needs to be a peaked function in phase space. During the

linear wave growth of the wave, its analytic form has been derived to be,

Q(ωk−Ω j,k) =
γ j,k

π((ωk−Ω j,k)2 + γ2
j,k)
−→ δ (ωk−Ω j,k), (20)

in the limit where γ j,k = γL j,k − γd j,k, the linear growth rate of the mode, is taken to

be very small. The delta function form, Q(ωk −Ω j,k) = δ (ωk −Ω j,k), is the most

frequently chosen form found in the literature. More generally we intuitively interpret

the width of the function Q(ωk−Ω j,k) as the region of mixing of the resonant particles.

The minimum width is taken to be comparable to the trapping frequency ωb j,k. In

addition the width broadens due to diffusive mixing through the resonance region which

adds the width, ν3
e f f /(ω

2
b j,k + γ2

j,k), to the mixing region. Hence the intuitive width,

γwd j,k of resonant particle in the resonance region is, γwd j,k ∼ a j,kν3
e f f /(ω

2
b j,k + γ2

j,k)+
b j,kγ j,k + c j,kωb j,k with the coefficients, (a,b,c) being order unity quantities selected to

best fit saturations results found in particle simulation [12]. Thus, a proposed correlation

function would have the form of Eq.(20), with the replacement of γ j,k by γwd j,k. Indeed,

the specific functional form of the peaked function Q(ωk−Ω j,k) is not truly essential as

long as the integral unit normalization condition
∫

dΩ j,kQ(ωk−Ω j,k) = 1 is satisfied.

In particular we note that the tail of the Lorenztian form of Eq.(20) is too large since

eventually, without any diffusive effects, the response in the tail is adiabatic. Instead

it is more appropriate to choose as a form, a single peaked positive unit normalized

correlation function Q as either Gaussian, step function or etc. in the dimensionless

variable (ωk−Ω j,k)/γwd j,k.

In addition we use the wave equation given by Eq.(13) for the resonant particle

response with the current from linear theory substituted into the resonant particle current.

A strictly formal perturbation theory gives a result for the wave energy evolution,

β jk0
(
∂ω4

b j,k0

∂ t
+2γd jω

4
b j,k0

) (21)

=
n

ωk

π

2

∫
dJ′2dJ3(

∂J1(Ω j,k = 0)

∂Ω j,k
)2

Qw

(
ωk−Ω j,k

)
ω4

b j,kdΩ j,k
∂ f

∂Ω j,k

where Qw j,k(ωk −Ω j,k) = δ (ω −Ω j,k) and β j,kω4
b j,k0

is the wave momentum of the

mode in terms of a reference trapping frequency ωb j,k0
, for a particular k-value, k0.

46
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.205.78 On: Fri, 20 Mar 2015 16:21:37



However, this form together with the quasilinear equation for the distribution does not

lead to conservation of the total momentum of the system. To achieve conservation

of total momentum, we change the delta function form of the correlation function to

the same form used in the quasilinear equation, ie. Qw j(ωk −Ω j,k) = Q(ωk −Ω j,k).
This form is still somewhat deficient as it does not lead to exact conservation of the

total energy. However total energy is approximately conserved to the extent that (ωk−
Ω j,k)/γwd j,k is a peaked function compared to the widths of the ambient distribution

function and the eigenfunctions.

This description of quasilinear theory enables its use over all regimes, from the ex-

tremes where there is complete mode isolation to where there is complete mode over-

lap and including the transition regime between the two extreme cases. As previously

noted, there is a considerable difference in the amount wave energy released between

the isolated case and the overlapped case, with much more energy released when the

resonances overlap. This increase of wave energy can even lead to an avalanche. Then a

small change of system parameters leads to dramatic differences in the nonlinear state.

In one case, the waves hardly change the distribution of energetic particles compared to

a totally quiescent case to another case where an additional parameter increment causes

nearly all the energetic particles to be lost. In figure (8) we show the results of a bump-

on-tail simulation studied in [12]. On the top row we see seven independent modes

producing benign oscillations where the stored particle energy is hardly affected by the

presence of the mode, as can be inferred from the top two panels in fig. (8). The spacing

between the modes was deliberately chosen to produce a ’domino’ effect in the system.

The modes in the bottom of the upper left figure are more closely packed than the modes

in the top of that figure. In the top figures, the inner two modes do not quite overlap. With

a slightly increased linear growth rate, the width of the inner most resonance expands

just enough to allow overlap of the lower two resonances to produce an increased wave

energy of about four times the wave energy released by two non-overlapping modes,

which increases the width of the saturated wave, thereby enabling wave overlap with the

third mode from the bottom. There then follows an even larger amplification of wave

energy. The ’blast’ continues upward until all the modes overlap. At that stage there is

rapid diffusion over the entire phase space with a considerably enhanced wave ampli-

tudes compared to the non-overlap case. The result is that nearly the entire distribution

is lost to left hand particle absorbing boundary, in a time scale of ∼ 1/γL.

SUMMARY AND CONCLUSION

We have described the formalism together with analytic and numerical results for how

to estimate the saturation level of discrete waves in a plasma that exists in absence of

dissipation or instability drive (e.g. electrostatic plasma waves, shear Alvén-like waves

such as the Toroidal Alfvén Eigenmode, etc.) when they are driven unstable by a kinetic

particle/wave resonant interaction of an inverted energetic particle distribution. By first

developing a nonlinear theory for a single wave with non-overlapping resonances we

showed how the conventional quasilinear theory, which generally requires resonance

wave overlap for its applicability, can be generalized to incorporate the fully isolated and

fully overlapped regimes, as well as the transition regime between the two. Depending
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FIGURE 8. Simulation of global avalanche using quasilinear theory with modified resonance widths.

See text for detail description.

on parameters, these models produce steady state as well as pulsating responses for the

plasma. In addition it is noted that there is a possibility of a phase space avalanche (a

catastrophe in the parlance of nonlinear dynamics) being triggered in the system, where

a small change of system parameters triggers a transition from a benign state to a state

where rapid global diffusion is produced. The author believes that the quasilinear model

briefly described in this article will prove to be an invaluable tool for interpreting and

predicting the effects of alpha particles in regimes where they cause shear Alfvén-like

modes to be excited. A concerted scientific effort should be made to build a suitable

quasilinear code that can predict and track global alpha particle dynamics when they

excite Alfvénic instability in a fusion producing experiment such as planed for the ITER

project.

The work described here has also led to deeper insight into the single mode problem

near marginal stablility. Only the steady states results of this study were described in

this paper. The study of the non-steady state regimes (νe f f /(γL−γd)< 1) has lead to the

observation of rapid frequency chirping due to the formation of phase space structures

[13, 14]. This theory has been described by M. Lilley at this summer school session

and is leading to deep insights into non-linear behavior of alpha particles in a burning

plasma. For further reading, with an extensive correlation to experimental phenomena,

the reader is referred to the review paper by Breizman and Sharapov [15].
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