1,882 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    CGAMES'2009

    Get PDF

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Survey on some key technologies of virtual tourism system based on Web3D

    Get PDF
    Some key technologies on how to build large-scale virtual tourism systssems comprehensively on Web browsers and mobiles were analyzed and the current R&D status on Web3D virtual tourism was surveyed insightfully. Then, some methods were summarized, including 3D trees or plants modeling, 3D architectural modeling, 3D Virtual Human behavior modeling, virtual agents path planning, collision detection and progressive transmission strategy suitable for developing large scale Web3D tourism scenarios. Also, some bottleneck problems of Web3D virtual tourism system were investigated. At the same time, the lightweight 3D engine, the lightweight 3D modeling, the lightweight 3D streaming and P2P based progressive transmission of huge Web3D tourism contents would become much helpful to breakthrough those bottlenecks of Web3D tourism systems were pointed out. In addition, all kinds of Web3D engines in terms of lightweight, realism and efficiency that would be a good reference for developers to choose during various applications were compared comprehensively. Finally, the prospect of future investigation of Web3D tourism system is presented, which will be going on in terms of four characteristics lightweight, high-speed, realism, beauty.

    Levels of interaction: a user-guided experience in large-scale virtual environments

    Get PDF
    This paper investigates a range of challenges faced in the design of a serious game, teaching history to a player immersed in an 'open' virtual environment. In the context of this paper, such an environment is described as an exploratory, expansive virtual world within which a user may interact in a non-linear, situated fashion with both the environment and virtual characters. The main contribution of this paper consists in the introduction of the levels of interaction (LoI), a novel framework designed to assist in the creation of interactions between the player and characters. The LoI approach also addresses the necessity for balancing computational efficiency with the need to provide believable and interactive virtual characters, by allowing varying degrees of animation, display and, ultimately, interaction detail. This paper demonstrates the challenges faced when implementing such a technique, as well as the potential benefits it brings

    A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics

    Get PDF
    This paper presents a survey of ocean simulation and rendering methods in computer graphics. To model and animate the ocean's surface, these methods mainly rely on two main approaches: on the one hand, those which approximate ocean dynamics with parametric, spectral or hybrid models and use empirical laws from oceanographic research. We will see that this type of methods essentially allows the simulation of ocean scenes in the deep water domain, without breaking waves. On the other hand, physically-based methods use Navier-Stokes Equations (NSE) to represent breaking waves and more generally ocean surface near the shore. We also describe ocean rendering methods in computer graphics, with a special interest in the simulation of phenomena such as foam and spray, and light's interaction with the ocean surface

    Production and Playback of Human Figure Motion 3D Virtual Environments

    Get PDF
    We describe a system for off-line production and real-time playback of motion for articulated human figures in 3D virtual environments. The key notions are (1) the logical storage of full body motion in posture graphs, which provides a simple motion access method for playback, and (2) mapping the motions of higher DOF figures using slaving to provide human models at several levels of detail, both in geometry and articulation, for later playback. We present our system in a context of a simple problem: Animating human figures in a distributed simulation, using DIS protocols for communication the human state information. We also discuss several related techniques for real-time animation of articulated figures in visual simulation
    • 

    corecore