21 research outputs found

    An intuitive tangible game controller

    Get PDF
    This paper outlines the development of a sensory feedback device providing a low cost, versatile and intuitive interface for controlling digital environments, in this example a flight simulator. Gesture based input allows for a more immersive experience, so rather than making the user feel like they are controlling an aircraft the intuitive interface allows the user to become the aircraft that is controlled by the movements of the user's hand. The movements are designed to feel intuitive and allow for a sense of immersion that would be difficult to achieve with an alternative interface. In this example the user's hand can become the aircraft much the same way that a child would imagine it

    Understanding the complex needs of automotive training at final assembly lines

    Get PDF
    Automobile final assembly operators must be highly skilled to succeed in a low automation environment where multiple variants must be assembled in quick succession. This paper presents formal user studies conducted at OPEL and VOLVO Group to identify assembly training needs and a subset of requirements; and to explore potential features of a hypothetical game-based virtual training system. Stakeholder analysis, timeline analysis, link analysis, Hierarchical Task Analysis and thematic content analysis were used to analyse the results of interviews with various stakeholders (17 and 28 participants at OPEL and VOLVO, respectively). The results show that there is a strong case for the implementation of virtual training for assembly tasks. However, it was also revealed that stakeholders would prefer to use a virtual training to complement, rather than replace, training on pre-series vehicles

    Hand Gesture Interaction with Human-Computer

    Get PDF
    Hand gestures are an important modality for human computer interaction. Compared to many existing interfaces, hand gestures have the advantages of being easy to use, natural, and intuitive. Successful applications of hand gesture recognition include computer games control, human-robot interaction, and sign language recognition, to name a few. Vision-based recognition systems can give computers the capability of understanding and responding to hand gestures. The paper gives an overview of the field of hand gesture interaction with Human- Computer, and describes the early stages of a project about gestural command sets, an issue that has often been neglected. Currently we have built a first prototype for exploring the use of pieand marking menus in gesture-based interaction. The purpose is to study if such menus, with practice, could support the development of autonomous gestural command sets. The scenario is remote control of home appliances, such as TV sets and DVD players, which in the future could be extended to the more general scenario of ubiquitous computing in everyday situations. Some early observations are reported, mainly concerning problems with user fatigue and precision of gestures. Future work is discussed, such as introducing flow menus for reducing fatigue, and control menus for continuous control functions. The computer vision algorithms will also have to be developed further

    Systematic literature review of hand gestures used in human computer interaction interfaces

    Get PDF
    Gestures, widely accepted as a humans' natural mode of interaction with their surroundings, have been considered for use in human-computer based interfaces since the early 1980s. They have been explored and implemented, with a range of success and maturity levels, in a variety of fields, facilitated by a multitude of technologies. Underpinning gesture theory however focuses on gestures performed simultaneously with speech, and majority of gesture based interfaces are supported by other modes of interaction. This article reports the results of a systematic review undertaken to identify characteristics of touchless/in-air hand gestures used in interaction interfaces. 148 articles were reviewed reporting on gesture-based interaction interfaces, identified through searching engineering and science databases (Engineering Village, Pro Quest, Science Direct, Scopus and Web of Science). The goal of the review was to map the field of gesture-based interfaces, investigate the patterns in gesture use, and identify common combinations of gestures for different combinations of applications and technologies. From the review, the community seems disparate with little evidence of building upon prior work and a fundamental framework of gesture-based interaction is not evident. However, the findings can help inform future developments and provide valuable information about the benefits and drawbacks of different approaches. It was further found that the nature and appropriateness of gestures used was not a primary factor in gesture elicitation when designing gesture based systems, and that ease of technology implementation often took precedence

    Real-time Immersive human-computer interaction based on tracking and recognition of dynamic hand gestures

    Get PDF
    With fast developing and ever growing use of computer based technologies, human-computer interaction (HCI) plays an increasingly pivotal role. In virtual reality (VR), HCI technologies provide not only a better understanding of three-dimensional shapes and spaces, but also sensory immersion and physical interaction. With the hand based HCI being a key HCI modality for object manipulation and gesture based communication, challenges are presented to provide users a natural, intuitive, effortless, precise, and real-time method for HCI based on dynamic hand gestures, due to the complexity of hand postures formed by multiple joints with high degrees-of-freedom, the speed of hand movements with highly variable trajectories and rapid direction changes, and the precision required for interaction between hands and objects in the virtual world. Presented in this thesis is the design and development of a novel real-time HCI system based on a unique combination of a pair of data gloves based on fibre-optic curvature sensors to acquire finger joint angles, a hybrid tracking system based on inertia and ultrasound to capture hand position and orientation, and a stereoscopic display system to provide an immersive visual feedback. The potential and effectiveness of the proposed system is demonstrated through a number of applications, namely, hand gesture based virtual object manipulation and visualisation, hand gesture based direct sign writing, and hand gesture based finger spelling. For virtual object manipulation and visualisation, the system is shown to allow a user to select, translate, rotate, scale, release and visualise virtual objects (presented using graphics and volume data) in three-dimensional space using natural hand gestures in real-time. For direct sign writing, the system is shown to be able to display immediately the corresponding SignWriting symbols signed by a user using three different signing sequences and a range of complex hand gestures, which consist of various combinations of hand postures (with each finger open, half-bent, closed, adduction and abduction), eight hand orientations in horizontal/vertical plans, three palm facing directions, and various hand movements (which can have eight directions in horizontal/vertical plans, and can be repetitive, straight/curve, clockwise/anti-clockwise). The development includes a special visual interface to give not only a stereoscopic view of hand gestures and movements, but also a structured visual feedback for each stage of the signing sequence. An excellent basis is therefore formed to develop a full HCI based on all human gestures by integrating the proposed system with facial expression and body posture recognition methods. Furthermore, for finger spelling, the system is shown to be able to recognise five vowels signed by two hands using the British Sign Language in real-time

    Human-Computer interaction using hand gesture recognition

    Get PDF

    Real-time immersive human-computer interaction based on tracking and recognition of dynamic hand gestures

    Get PDF
    With fast developing and ever growing use of computer based technologies, human-computer interaction (HCI) plays an increasingly pivotal role. In virtual reality (VR), HCI technologies provide not only a better understanding of three-dimensional shapes and spaces, but also sensory immersion and physical interaction. With the hand based HCI being a key HCI modality for object manipulation and gesture based communication, challenges are presented to provide users a natural, intuitive, effortless, precise, and real-time method for HCI based on dynamic hand gestures, due to the complexity of hand postures formed by multiple joints with high degrees-of-freedom, the speed of hand movements with highly variable trajectories and rapid direction changes, and the precision required for interaction between hands and objects in the virtual world. Presented in this thesis is the design and development of a novel real-time HCI system based on a unique combination of a pair of data gloves based on fibre-optic curvature sensors to acquire finger joint angles, a hybrid tracking system based on inertia and ultrasound to capture hand position and orientation, and a stereoscopic display system to provide an immersive visual feedback. The potential and effectiveness of the proposed system is demonstrated through a number of applications, namely, hand gesture based virtual object manipulation and visualisation, hand gesture based direct sign writing, and hand gesture based finger spelling. For virtual object manipulation and visualisation, the system is shown to allow a user to select, translate, rotate, scale, release and visualise virtual objects (presented using graphics and volume data) in three-dimensional space using natural hand gestures in real-time. For direct sign writing, the system is shown to be able to display immediately the corresponding SignWriting symbols signed by a user using three different signing sequences and a range of complex hand gestures, which consist of various combinations of hand postures (with each finger open, half-bent, closed, adduction and abduction), eight hand orientations in horizontal/vertical plans, three palm facing directions, and various hand movements (which can have eight directions in horizontal/vertical plans, and can be repetitive, straight/curve, clockwise/anti-clockwise). The development includes a special visual interface to give not only a stereoscopic view of hand gestures and movements, but also a structured visual feedback for each stage of the signing sequence. An excellent basis is therefore formed to develop a full HCI based on all human gestures by integrating the proposed system with facial expression and body posture recognition methods. Furthermore, for finger spelling, the system is shown to be able to recognise five vowels signed by two hands using the British Sign Language in real-time.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore