
Universitat Politècnica de Catalunya
Facultat d’Informàtica de Barcelona

Final year project

Human-Computer interaction using hand
gesture recognition

Author:

Pin-Sho Feng

Supervisor:

Joan Climent Vilaró

March 15, 2010

I would like to thank my supervisor for his sincere dedication
and my friends who have shown interest in what I was doing,

especially my friend Alan for testing the final application.

Contents

1 Introduction 9

1.1 Project overview . 11

1.2 Report overview . 12

2 Planning 13

2.1 Organization . 13

2.2 Methodology . 13

2.3 Environment setup . 15

2.3.1 Hardware setup . 15

2.3.2 Software setup . 15

2.4 Time and costs . 16

2.4.1 Estimated time schedule . 16

2.4.2 Estimated costs . 16

2.4.3 Real time schedule and costs . 18

3 Hand shape enhancement 23

3.1 Single Gaussian skin colour distribution . 25

3.1.1 PCA transformation of RGB space . 26

3.1.2 HSV space . 26

4 Hand tracking 29

4.1 Kalman filtering vs Condensation . 30

5

4.2 Motion tracking using Condensation . 32

4.2.1 Propagation of state density . 32

4.2.2 Factored sampling . 32

4.2.3 Notation summary . 33

4.2.4 The algorithm . 33

4.2.5 Dynamical model and noise . 35

4.2.6 Observation model . 36

4.3 Hand detection . 37

4.4 Mouse pointer movement . 39

4.4.1 Algorithm . 39

4.4.2 Pointer stabilization . 41

5 Gesture recognition 43

5.1 Goals . 45

5.2 Binary segmentation . 46

5.2.1 Foreground cleanup . 47

5.2.2 Adaptive dynamic segmentation . 50

5.3 Method choice . 51

5.4 Our method . 52

5.4.1 Contour detection . 53

5.4.2 Polygonal approximation . 53

5.4.3 Convex hull . 55

5.4.4 Convexity defects . 56

5.4.5 Gesture recognition . 57

5.4.6 Further extending gesture recognition . 60

6 Implementation 63

6.1 Main program . 64

6.2 Hand shape enhancement and binary segmentation 66

6

6.3 Tracking . 68

6.3.1 Controlling the mouse pointer . 71

6.4 Gesture recognition . 74

7 Results 77

7.1 Hand shape enhancement . 77

7.2 Hand tracking . 78

7.2.1 CONDENSATION prototype . 79

7.2.2 CONDENSATION applied . 80

7.2.3 Hand presence detection . 82

7.3 Gesture recognition . 83

7.3.1 Binary segmentation . 83

7.3.2 Recognition . 85

7.4 All combined: Human-Computer interface . 87

8 Conclusions 91

8.1 Further work directions . 92

References 95

Appendix A On multiple hands tracking 99

Appendix B Test images for hand shape enhancement 105

Appendix C CONDENSATION - data for determining the parameters of the Dy-
namical Model 109

7

Chapter 1

Introduction

Gesture tracking and recognition is relatively new within the field of object recognition, even
though tracking objects has been studied for a long while already. In fact, it has only been the
latest years when it has really taken a leap forward and is being increasingly used in commercial
systems. Some known examples today which make use of related technology are Microsoft’s Project
Natal or Sony’s EyeToy in the gaming industry.

Aside of gaming, the technology can have as many applications as the human can imagine with
activities involving interaction with a computer with our bare hands. One field in which this
technology is becoming increasingly useful is medicine, where it finds numerous applications. Reilly
and Hanson (1995) created a three-dimensional contactless motion sensing device which patients
with physical disabilities, for example, could interact with the PC with the movements of their head
or limbs, converted into the movements of a mouse device, which as we will see is the functionality
we are looking forward to implement with easier means. Wachs et al. (2008) implemented a gesture
recognition system for browsing radiology images without touching any device helping them not to
lose their focus of attention (figure 1.1). Another application would be interpreting sign languages,
which Lockton and Fitzgibbon (2002) (American sign language) and Holden and Owens (2003)
(Australian sign language) have researched.

Gesture recognition is usually combined with tracking, which finds applications in many other
areas such as videoconferencing. Askar et al. (2004) implemented segmentation of moving hands
as part of a project which involved 3D videoconferencing where it would help generating the virtual
environments. Ramani et al. (2001) used multiple target tracking to keep track of the location
of the people in a videoconferencing room, but we can see that gesture recognition would further
enhance the experience letting participants control typical functions such as skipping slides.

It should be noted that it is necessary to differentiate between static gesture recognition and
dynamic gesture recognition. Our project fits in the former, which is about recognizing hand
postures, while the latter is about recognizing motion patterns, which is out of our scope.

With this project we intend to produce a proof of concept with which a human can interact with
a computer by means of a webcam and his hand. Specifically, the idea is to be able to use our
hand as a mouse device, which means a person should be able to move the mouse pointer and

9

Figure 1.1: Two doctors browse brain images using Wachs et al. (2008)’s gesture driven user interface.

Source: Ben-Gurion University of the Negev.

perform mouse functionality, such as a click. We were concerned, however, that being able to do
this acurately is difficult and thus we tried to set realistic goals and further improve the system
once a solid base had been constructed.

The objectives to be accomplished included but were not limited to:

• Hand tracking

– Skin detection

– Motion detection for controlling the mouse pointer

• Gesture recognition

– Rotation-invariant recognition

– Scale-invariant recognition

– Left-button click simulation

The expected final result was a demonstration application with which a user can control the mouse
pointer with his hand. This application would integrate with the operating system and while it is
running the mouse pointer could be controlled with our hand movements and gestures, substituting
the common mouse device.

The real applications of this are many and some were already mentioned previously. The result
would simply be another form to interact with a computer.

10

1.1 Project overview

In order to construct a human-computer interface using hand gesture recognition, input hand data
is needed. There are several ways to gather this input data, such as using data gloves, 3D shape
scanners or cameras. For our project a camera was used since was cheap, easily available and we
did not need 3D information, as our recognition system would be based on hand shape.

Figure 1.2: Overview of our application. Two parts can be clearly differentiated: hand tracking and

gesture recognition. Both are combined to construct a hand gesture-driven human-computer interface.

The input image captured by the camera is processed in order to extract hand shape information
in the form of a probability density image. This density image is then fed to the hand tracker and
to the gesture recognition system.

The tracker locates the hand on the image and uses this information to control the mouse pointer
motion by calling the corresponding functions of the operating system. The tracking system is
therefore used to move the mouse pointer.

11

Mouse functionality (e.g. clicking) is achieved through gesture recognition. The input image is
firstly processed using the previously obtained density image in order to obtain a binary represen-
tation of the hand. The recognition system then extracts geometrical features from the silhouette
of the hand and the corresponding functionality is called depending on the features found.

Combining the tracking system and the gesture recognition system the gesture driven human-
computer interface was successfully achieved. The whole process is summarized in figure 1.2.

1.2 Report overview

This report has been divided into eight chapters following an ’introduction, method, results and
conclusion’ structure. The present chapter and the next are the introduction which deal with the
motivation for the project and its planning.

The next three chapters (hand shape enhancement, hand tracking and gesture recognition) form
the theory block underneath the final application, in which all three were necessary. The hand
shape enhancement chapter describes the method considered to obtain a probability density image
of the input hand shape, which is then used by the tracker and the gesture recognition system. The
hand tracking chapter explains the theory behind the tracking algorithm, which will in the end
enable us to control the mouse pointer using hand motion, as well as how the presence of a hand in
front of the camera is detected and the mouse controller logic. And finally, the gesture recognition
chapter elaborates on the theory behind the algorithm that was used for the implementation.

The seventh chapter is a small guide to the implemented code, which should be of interest to
another developer but the general reader can probably skip it.

Our approach to theory is to explain it only in as much detail as we think is necessary, i.e. what
is necessary to understand in order to implement the system. Most noticeably, a difference can be
seen between the tracking and gesture recognition chapters since the former has more algorithmic
details than the latter, but then it was necessary. In any case, references will be given for further
information.

As we wanted to make a clear separation between theory and practice, the results chapter includes
not only the final application and how it performs, but also discussion on the theory in practice
together with the problems encountered.

The final chapter is the conclusion, which summarizes the project and discusses the degree of
success we had in achieving the goals set, as well as possible further work or continuation of the
project.

As extras, some appendices which were related to our work but somehow did not fit in the general
outline of the report are included at the end. Appendix A deals with the topic of multiple targets
tracking, which was considered at an initial stage but dropped in the end, appendix B contains
the images that were used for hand shape enhancement and how they were obtained, and finally
appendix C contains data relevant for the tracker.

12

Chapter 2

Planning

This chapter will discuss the planning required for the project, including organization, the method-
ology used, the hardware and software required and the time schedule, as well as the total cost of
the project.

2.1 Organization

The project involved basically two people: the student and the supervisor. Project development
was controlled by the student, while the supervisor provided guidance and supervised the work in
order to ensure it was progressing adequately.

The communication method used was mainly the e-mail, which was used to exchange documents
and report about the project status, as well as to schedule meetings, which occurred usually once
a week.

2.2 Methodology

The objective of the project was to produce a piece of software that could achieve the goals we
had proposed, thus the methodology chosen had to be specific to software development.

Due to the initial uncertain nature of our project, meaning that we could not be sure about how far
it could go, we chose an iterative and incremental development approach, which responds to
the weaknesses of the classic waterfall model. This kind of approach consists of a cyclic development
process and is essential in processes such as the Rational Unified Process, Extreme Programming
and Agile software development methodologies.

The classical waterfall model consists of a sequential software development process with a series
of stages that succeed one another. These stages are Conception, Initiation, Analysis, Design,
Construction, Testing and Maintenance. While they follow a logical order, the main problem of
this model is that it is inefficient in time. All the stages require a certain amount of time and if

13

any error is discovered at any stage or any requirement has to be added it would imply returning
to the corresponding stage and start over again. An extreme case would be, for example, that
in Testing it is discovered that the program lacks some required functionality. In that case the
project would have to go again to the initiation stage and progress through all the stages.

Figure 2.1: The waterfall software development model.

On the other hand, in the iterative and incremental development process the initial stages and
the last stages are not separated so far, which makes it much easier and faster to correct errors
and add features as the development progresses. The iterative process consists of the same stages
as the waterfall process, with the difference that they are carried much faster, as each iteration
focuses on individual parts of the project and the results obtained are used for the next iteration,
which allows fast prototyping in order to test the analysed and designed components. For the hand
tracker, for example, we first developed a prototype in order to test its functionality and ensure
that it was working as expected, before finally using this tracker to follow a hand in real-time.

Figure 2.2: The iterative and incremental software development model.

In our project mainly three iterations were used in order to develop the application, as can be seen
in section 2.4.1.

14

2.3 Environment setup

This section will describe the hardware and software used for the project and the reason why they
were chosen.

2.3.1 Hardware setup

Having set the goals for the project, we knew that we needed to track the motion of a hand and
interpret hand gestures.

Since the main objective was to be able to control the mouse pointer with the movement of a hand
in space it was not necessary to use any 3D motion capture device, even though a hand is naturally
a three-dimentional object. Also, we knew that we were interested in scale-invariant recognition,
thus we did not need image depth information for this either.

If we did not need depth information, a single camera was enough for the task so a simple USB
webcam was chosen for the task. Specifically, a ’Creative Live! Optia’. It was not chosen for
any particular feature, just because it was easily accessible to us and the Linux distribution we
used had drivers for it that worked out-of-the-box.

The computer used for the project was a Lenovo T61 laptop equipped with an Intel Core 2 Duo
2400MHz with 2GB of memory, working in 32bits mode. Despite the availability of two CPU
cores, the project was not developed with paralellism in mind.

We wanted it to work in a controlled environment, but we also wanted this environment to be as
real and common as possible. The place of work was an average office room with fluorescent
lamps, which was not precisely the most adequate lighting for a uniform illumination, but our
intention was to make the application robust under different lighting conditions (as long as the
place would remain reasonably lit, of course). The webcam could be placed on any horizontal
surface facing a user’s hand.

2.3.2 Software setup

The project was developed using mainly open source tools so as to keep the cost to a minimum.
The underlying operating system was Kubuntu 9.10 and the language chosen was C++ together
with Qt 4 and OpenCV 1.1 libraries.

The programming language was chosen for performance since OpenCV was already written in C
and Qt in C++. The compiler used was GCC-4.4 with optimization options always activated.
Qt, a user interface library, was chosen for its integration in Kubuntu, well-documented classes
and portability across platforms, even though this last feature was not exploited. OpenCV is a
known open source Computer Vision library developed by Intel and it provided implementations
for most common algorithms used in the field. In the middle of the project the 2.0 version of the
library was released, offering many improvements over the previous one. However, in our tests it
performed slower for our application so we stayed with 1.1.

15

Other software used:

• Matlab 2008 and Octave 3.2.2 for simple tests and data plots.

• The Gimp 2.6.7 and Inkscape 0.47 for image and vector graphics creation and editing.

• OpenOffice Calc 3.1.1 for data calculations.

• OpenOffice Presentation 3.1.1 for preparing the project presentation.

• Kile 2.0 for writing the final report (Latex environment).

• Microsoft Office Visio 2003 for flowcharts.

• Microsoft Office Project 2007 for time scheduling.

2.4 Time and costs

This section will discuss the time and costs of the project. Firstly, an estimation of the project
schedule will be shown based on the initial planning. Secondly, the estimated costs will be divided
into hardware, software and human resources costs. Finally, a comparison of the estimated cost
and the real cost will be shown.

2.4.1 Estimated time schedule

The initial planning of the project considered a semester for the realization of the project. This
semester consisted of five months, starting from the 1st of September 2009 to the 31st of January.
The project was then scheduled considering this time span, even though in the end a little more
time was needed.

The first month would be dedicated to the inception of the project as well as acquiring the knowl-
edge necessary to develop the project. In the next three months one development iteration each
month in order to complete all the parts of the application. Finally, in January the application is
expected to be finished and final testing is done. Afterwards, the remaining time is used to prepare
the final report as well as the presentation. This time schedule can be seen in figures 2.10 and
2.11 (last two pages of the chapter).

Considering an average dedication of 6 hours a day, the total amount of hours required is broken
down in figure 2.3.

2.4.2 Estimated costs

Hardware

The only hardware used were a laptop and a webcam. This hardware was not only used for the
project, thus summing their cost to the total costs would be inaccurate.

16

Inception 54 hours
Research and learning 78 hours
Iteration 1 132 hours
Iteration 2 132 hours
Iteration 3 132 hours
Final testing 60 hours
Documentation and presentation 102 hours
Total 690 hours

Figure 2.3: Estimated time required for the project

• Creative Live! Cam Optia - 74 e.

• Lenovo T61 7664R5G - 1630 e.

Assuming that the average life of a webcam and a laptop is 5 years, and that the camera is used
for 1 hour a day and the laptop for 6 hours a day during 22 days of a month, the following cost
per hour can be derived:

Costcamera =
74e

5years ∗ 12months/year ∗ 22days/month ∗ 1hours/day
= 0.056e/hour

Costlaptop =
1630e

5years ∗ 12months/year ∗ 22days/month ∗ 6hours/day
= 0.206e/hour

Considering figure 2.3, the camera was used for 396 hours (the three iterations) while the laptop
was used for the entire project. The entire hardware cost can then be calculated and is shown in
figure 2.4.

Creative Live! Cam Optia 396 hours 22.18 e
Lenovo T61 7664R5G 690 hours 142.14 e
Total 164.32 e

Figure 2.4: Estimated hardware cost required for the project

Software

The software used was mostly open source and the propietary software used, namely Matlab,
Microsoft Office Visio and Microsoft Office Project were either available at the university or could
be freely downloaded. In the case of Visio and Project they could be freely downloaded thanks to
an academic alliance between the faculty and Microsoft, which makes their software free for the
faculty’s students.

This means that the total cost of the software used was exactly 0 e.

17

Human resources

In order to calculate the cost of the human resources we considered the cost of the different roles
involved in the project. Figure 2.5 shows the roles and the cost associated. All the roles are
performed by the student except for the role of project supervisor.

Project Manager (M) 48 e/hour
Project Supervisor (S) 42 e/hour
Software Analyst (A) 40 e/hour
Software Architect (AR) 40 e/hour
Programmer (P) 30 e/hour
User (U) 15 e/hour

Figure 2.5: Estimated costs for each participating role

Then, considering the cost of the different roles and their percentage of participation the final
human resources cost can be estimated, as is shown in figure 2.6

Inception 54 hours 20%S, 40%M, 40%A 2354.4 e
Research and learning 78 hours 40%A, 30%AR, 30%P 2886 e
Iteration 1 132 hours 5%S, 5%M, 18%A, 18%AR, 50%P, 4%U 4554 e
Iteration 2 132 hours 5%S, 5%M, 18%A, 18%AR, 50%P, 4%U 4554 e
Iteration 3 132 hours 5%S, 5%M, 18%A, 18%AR, 50%P, 4%U 4554 e
Final testing 60 hours 5%M, 15%A, 15%AR, 15%P, 50%U 1584 e
Documentation and presentation 102 hours 15%S, 85%A 4110.6 e
Total human resources cost 24597 e

Figure 2.6: Estimated human resources cost required for the project

Total cost

Considering the previous sections, the total estimated cost was:

Hardware 164.32 e
Software 0 e
Human resources 24597 e
Total 24761.32 e

Figure 2.7: Total estimated cost

The total estimated cost of the project is approximately 24761 e.

2.4.3 Real time schedule and costs

The planning was more or less followed without major problems except for the last tasks, consisting
of the preparation of this report and the presentation. The preparation of the report took two

18

weeks more than expected and, in addition, an illness of the student impeded progress for further
two weeks, accounting for a total delay of a month (but two weeks of extra work).

The software costs remained the same as they covered all the requirements. With respect to the
hardware no equipment was damaged, thus the increment in the cost only accounted for the extra
time it had to be used.

Two weeks is equivalent to 60 hours of work. This 60 hours of work were exclusively for documen-
tation and presentation, thus summing a total of 162 hours for this phase and a new cost of 6528.6
e. In the case of the hardware, the laptop cost increases to 154.4 e. The difference between the
estimated cost and the final real cost, which is shown in figure 2.9.

Estimated time Real time
Inception 54 hours 54 hours
Research and learning 78 hours 78 hours
Iteration 1 132 hours 132 hours
Iteration 2 132 hours 132 hours
Iteration 3 132 hours 132 hours
Final testing 60 hours 60 hours
Documentation and presentation 102 hours 162 hours
Total 690 hours 750 hours

Figure 2.8: Estimated time required for the project

Estimated cost Real cost
Hardware 164.32 e 176.78 e
Software 0 e 0 e
Human resources 24597 e 27015 e
Total 24761.32 e 27191.78 e

Figure 2.9: Comparison between the estimated cost and the real cost

In conclusion, the total amount of work required 750 hours and an economic cost of approximately
27192 e.

19

Figure 2.10: Estimated project schedule calendar.

20

Figure 2.11: Estimated Gantt diagram of the schedule.

21

Chapter 3

Hand shape enhancement

Before we started tracking and recognizing hand gestures we preprocessed the image so as to obtain
the hand probability density image (figure 3.1). This probability refers to the probability that a
pixel is of skin colour. We refer to this process of obtaining the hand probability density image as
hand shape enhancement.

The mentioned image skin probability density image is used in two different ways. On one hand it
is fed to the tracker, which will use it in the measurement stage, as will be seen in the next chapter.
On the other hand, it is also used for binary segmentation before gesture recognition (chapter 5).

We chose to use skin colour instead of other properties for its specificity (we are interested in a
moving hand, not other moving objects), which has been proven useful and robust for face detection
and tracking. It has the advantage to be fast and invariant to changes in shape and orientation.
Furthermore, the human skin colour has been found to have special characteristics which make it
easier to be distinguished.

However, it must be pointed out that the enhancement process alone is prone to error (results
are noisy), so while it is helpful in assisting another process it cannot usually be completely relied
upon, which is the reason we used a probability based tracking algorithm (see chapter 4).

In the process of enhancement there are mainly two issues on which to make a decision. Firstly, the
colour space that will be used and secondly, the distribution of the skin colour in this colour space.
Colour space is important as robustness to changes in light conditions as well as good colour
resolution are desirable features and thus, colour spaces which separate chrominance (the ’real’
colour information) from luminance are favoured against those which do not. The distribution of
the skin colour refers to the values in the colour space within which a sample is considered ’skin’
and varies depending on the camera (due to different CCDs and lenses).

Colour spaces

The most common colour spaces in literature are RGB, HSV (or HSI or HSL) and YCrCb (Vassili
et al., 2003)(Kakumanu et al., 2007).

RGB is the most popular colour space in computer graphics due to its use in CRT screens, which

23

Figure 3.1: An image of a hand (top-left) and its skin colour density (top-right) in terms of Mahalanobis

distances to the mean skin colour in HSV colour space (less means higher skin probability). For illustration

purposes, the symmetric image with respect to the XY plane is shown at the bottom.

combined the primary colours (red, green and blue) of three rays to produce different colours. Most
digital cameras also capture images in RGB. It is the most basic colour space as the rest are based
on it and has been favoured by several authors such as Jones et al. (1999) and Peer et al. (2003)
for its simplicity. However, RGB has the drawback of mixing chrominance and luminance. This
problem is reduced in normalized RGB space, which consists of dividing each colour component by
the sum of all three components and is favoured by other researchers (Brown et al., 2001)(Storring
et al., 2003).

HSV (Hue, Saturation, Value) and similar variants (HSI - Intensity, HSL - Lightness) are colour
spaces which aim to separate chrominance from luminance. They describe colours based on per-
ceptual features to a user’s eye such as tint, saturation and tone. Hue defines the dominant colour
in an area and refers to pure colours without tint or shade (red, green, blue or yellow). Saturation
defines the colourfulness of a colour, which is the difference of a colour against its own brightness.
Value defines the amount of brightness perceived from the colour. Intuitively, what this means is
that any object has the same hue and saturation except for a different value under different light-
ing conditions. This clear separation between luminance and chrominance makes this space highly
popular (McKenna et al., 1998)(Zhu et al., 2004)(Deriche and Naseem, 2007). Further insight will
be given in section 3.1.2 since we eventually used it as well.

24

YCrCb is used image/video processing and separates chrominance from luminance by a simple
transform involving a weighted sum of RGB colours for luminance (Y) and basic operations between
colours for chrominance (Cr and Cb). Its simplicity and efficiency has made it a very popular choice
for skin detection (Phung et al., 2002)(Hsu et al., 2002).

Apart from these colour spaces, there are others which attempt to find a set of relevant colour
features. The skin has been found to contain significant levels of red, which some transformations
from RGB intend to take advantage of.

Skin colour distribution

In our choice of the enhancement algorithm, we had to take efficiency especially into account since
the application was expected to work real-time or close and we already knew the tracking algorithm
would be resource consuming. Simplicity was also an important factor, so methods which required
heavy training with large sets or complex skin models were not considered.

Skin colour distributions can be modelled non-parametrically or parametrically. Methods of the
former type estimate the skin colour distribution directly from the training data without deriving
a model, while the latter derive a model which they use afterwards to classify skin. As Vassili
et al. (2003) points out, non-parametric methods need considerably more storage space and have
high dependence on the representativeness of the training data used, even though they are fast
and independent to skin colour distribution shape. Parametric methods, on the other hand, can
generalize the model, need much less training data, do not depend so much on the representativeness
of this data and require little storage while being fast as well. For these reasons, a parametric
method was chosen.

In the section to follow, we will introduce the skin detection method we used and the choice of
colour space.

3.1 Single Gaussian skin colour distribution

The human skin colours tend to cluster in a small region of the colour space under controlled
lighting conditions (Kakumanu et al., 2007) (see figure 3.2). One parametric way to model this is
by using an elliptical Gaussian joint probability density function:

p (ci,j) =
1√

2π
√
|Σ|

exp
[
−1

2
Di,j

]
(3.1.1)

ci,j is the colour vector of a pixel where i, j ∈ [1...n] and n is the number of pixels in the image.
Di,j is the square root of the Mahalanobis distance, defined as

D2
i,j = (ci,j − µ)T Σ−1(ci,j − µ) (3.1.2)

where µ and Σ are the distribution parameters, namely mean (µ) and covariance matrix (Σ)
respectively estimated over skin colour samples ck, where k ∈ [1...m] and m is the number of skin
colour samples:

µ =
1
m

m∑
k=1

ck

25

Σ =
1

m− 1

m∑
k=1

(ck − µ)(ck − µ)T

The Mahalanobis distance Di,j was used as the probability measure of the skin-likelihood of a pixel
(i, j). Such distances were calculated for all the pixels in the input image and the result obtained
was the skin probability density image we were looking for, which is later used for tracking
and binary segmentation.

An equation similar to 3.1.1 is used in the observation model of the tracking algorithm as a weight
function (see section 4.2.6).

Along with the skin colour distribution model, a colour space had to be chosen. Two were consid-
ered and their effectiveness was evaluated by comparing their results in binary segmentation (see
chapter 7). A small set of training images taken under different lighting conditions were used and
are attached in appendix B.

3.1.1 PCA transformation of RGB space

The first colour space we chose was a transformation of RGB space based on a principle component
analysis (PCA) of colours, inspired by Holden and Owens (2003), who used it for their hand tracker:

(R,G,B)→ (a, b, c) = (
R+G+B

3
, R−B, 2G−R−B

2
)

From the set of training images, colour means and covariance matrices for different lighting condi-
tions were obtained.

While this method had very good performance in the conditions under which the training images
were taken, fast prototyping showed that it was very sensitive to illumination changes and thus we
did not look further into it. Another colour space had to be considered.

3.1.2 HSV space

As mentioned in the introduction, the HSV colour space provides a theoretic separation between
chrominance and luminance, which is what we are interested if we are after robustness under
different illumination conditions. In practice, however, we have seen that this is not entirely true
but does provide more robustness than the previous colour space. HSV is also a transformation
from RGB so that:

H = arccos
1
2 ((R−G) + (R−B))√

((R−G)2 + (R−B)(G−B)

S = 1− 3
min(R,G,B)
R+G+B

V =
1
3

(R+G+B)

Since we are only interested in chrominance, only H and S were used. Histograms (figure 3.2) of
the skin samples in the training set under different conditions show their shape can be effectively
approximated by Gaussian functions, as mentioned before.

26

Figure 3.2: Skin colour histograms in HS of the training image set obtained using a number of bins of ap-

proximately the square root of the total number of points. We can observe distributions are approximately

Gaussian. Top-left : daylight under shadow. Top-right : home at night, fluorescent light. Middle-left : office

during the day, fluorescent light. Middle-right : office during the night, fluorescent light. Bottom: all

combined.

Same as in the previous section, colour means and covariance matrices were calculated from the
training image set. A combined mean and a covariance matrix were calculated over all the images,
without distinguishing between different illuminations. It should be noted that hue has the partic-
ularity of being cyclic, so the colour at 0 degrees is basically equivalent to the one at 359 degrees,

27

and the colours which are close are similar. This could be problematic in implementation as the
Mahalanobis distances computed from the same colours at different equivalent hue values would
be different. To solve this issue, we used an equivalent transformation in Cartesian coordinates
suggested by Brown et al. (2001):

X = S cosH, Y = S sinH

Using this new space the found two-dimensional all illumination conditions combined mean and
covariance matrix of the training set were:

µ = [0.35920 0.19378]

Σ =

[
0.0055332 0.0023075
0.0023075 0.0034047

]
The individual matrices of each lighting condition can be found in appendix B.

Even though using this colour space had a big impact on performance due to the transformation
from RGB (camera images) to HSV, the results with this colour space were better and more robust
to illumination changes, thus it was chosen over the other tested colour space.

28

Chapter 4

Hand tracking

This chapter deals with the part of the project consisting of tracking a hand, which involves being
able to follow its trajectory, detect when it is actually visible and eventually control the mouse
pointer.

It could be argued that only with segmentation we could do the hand tracking. As Manresa
et al. (2000) points out, however, the low quality images that USB webcams produce and varying
illumination conditions can often cause errors in the segmentation process. An original image will
always provide more information than a binary image and we would like to make maximal use of
this information. When we want to track a moving object with a camera we estimate its location at
each frame. This estimation is inherently inaccurate due to possible occlusions, shadows, changes
in shape, clutter or appearance of other similar objects in the scene.

Figure 4.1: Location of two cars at a time step t (left) and at t + 1 (right). Suppose we are following

the car on the right. Segmentation only would detect that a car has disappeared while a motion estimator

would be able to shortly follow the car even though it is occluded.

Suppose that we are tracking the movements of a car. Using the segmentation process we know
exactly where the car is but then suddenly the car goes behind some trees. In the next frame, the
car has passed the trees but another car appears further back on the same road. Which one is the
car we were following? In our minds it is clear because we know how the car we were following was
moving but the segmentation process alone cannot differentiate between both. The idea behind
motion estimators is to use this information we already know in order to predict the new location
of the tracked object in the next frame minimizing the effect of noise. Therefore, they need a
motion model for the prediction. A model for our car, for example, could be that we assume it
travels at constant velocity and thus we can easily predict its location at a subsequent time step

29

knowing its location at the previous time step.

However, as the name implies already, it is a prediction and may be erroneous. We would like to
be able to correct this prediction using the data we gather at each frame so that in predictions at
subsequent frames this error will not be propagated. Hence, we can see that the tracking process
involves two phases: prediction and correction. These tracking systems are called estimators.

Figure 4.2: The estimation of an object’s location is usually achieved through a two-phased process

consisting of a prediction and its correction.

The two most used estimators in Computer Vision are the Kalman filter (Kalman, 1960) and
the Condensation filter (Isard and Blake, 1998a). The filter term refers to them filtering the
input data so as to infer the motion of an object. They are both probability based and estimate
the state of a process (position, orientation, velocity...). The Kalman filter aims at predicting
while minimizing the mean of the squared error so that the new model constructed from what we
already knew is the most probably correct, while Condensation is a particle filter which combines
stochastic methods together with a learned object dynamics model in order to estimate the state.

One important term which will often be used is density, which refers to the probability density
function which describes the likelihood of the location of the tracked object in the frame.

In the next section we will look into the differences between the estimators relevant to us and why
one was chosen over the other.

4.1 Kalman filtering vs Condensation

In this section we will present an informal comparison of the characteristics of both algorithms
and why we chose Condensation as our tracking algorithm. We will only discuss practical
considerations since a deeper understanding would require a proper introduction to both and we
will only describe Condensation (see next section).

For our project, both estimators would be perfectly valid since both would accomplish the objective
of tracking a hand. Therefore, the choice of one or another would depend on other factors.

The main difference between both estimators is that the Kalman filter assumes Gaussian densities,
which are unimodal and thus cannot represent simultaneous hypotheses of the location of multiple
objects, whereas Condensation can be used for tracking multiple targets ’out-of-the-box’ (actu-
ally there are further complications, but theoretically it allows this possibility). Even though the
project did not aim at tracking multiple objects, further extension of the project could consider it
so Condensation was more favourable in this aspect. Furthermore, cluttered backgrounds could

30

provide false alternative hypotheses as well.

Figure 4.3: Kalman assumes unimodal Gaussian densities (left) while Condensation can deal with

multimodal densities (right).

Another difference is ease of implementation. Condensation is considerably simpler and easier
to understand than the Kalman.

Accuracy wise, we will refer to Petrie (unknown), who performed several experiments comparing
both algorithms which involved the tracking of one or three bouncing balls and compared the
accuracy of both. Her results showed that Condensation was more accurate around bounces and
tops of the arcs, while in between they had similar accuracy (figure 4.4). Considering that hand
movements can be quite random, the higher accuracy at bounces and tops of the arcs suggested
Condensation would have higher accuracy for tracking sudden direction changes of a hand. The
reader is referred to her website for visual comparisons in video.

Figure 4.4: Comparison of the Kalman filter and the Condensation algorithm for tracking three bounc-

ing balls. As can be seen in the chart, the two have very similar performance. Image by Petrie (unknown).

As for performance, no profiling has been done to compare them but the stochastic nature of
Condensation would suggest it is much slower than Kalman. Nevertheless, Condensation has
been widely used in literature for real-time applications.

All in all, Condensation was used for the reasons mentioned.

31

4.2 Motion tracking using Condensation

Condensation (Isard and Blake, 1998a) stands for ”Conditional Density Propagation” and is
based on particle filter techniques in order to track objects. The algorithm was originally conceived
as a solution to tracking curves in visual clutter. The Kalman filter was not adequate since the
cluttered scene could often present multimodal densities and, as stated in the previous section, it
was meant for Gaussian densities. Condensation is in this sense more general since it addresses
a situation which is more common.

Before going into the algorithm some background theory is necessary.

4.2.1 Propagation of state density

As we are dealing with computers, the propagation through time t will have to be discrete. The
state of the object (position and other parameters if needed) to be tracked at time t is denoted as
xt and the vector of all states throughout time is Xt = {x1, ..., xt}. Observations (object features
in the image) are denoted as zt and its vector as Zt = {z1, ..., zt}.

The object dynamics are assumed to form a temporal Markov chain in the form of

p (xt | Xt−1) = p (xt | xt−1) (4.2.1)

so a new state is only conditioned by the immediate previous state.

The observations zt are assumed to be independent both mutually and from the dynamical process.
Hence, the observation process will be reduced to a time-independent function p (z | x), which
compares the image to the state.

Given that the observations are independent and our assumption that the dynamics form a Markov
chain, we can effectively deduce the state density pt at time t if we have all image observations
with

pt (xt) ≡ p (xt | Zt) .

The rule for propagation of state density over time is equivalent to the Bayes rule and is used for
inferring the posterior state density:

p (xt | Zt) = ktp (zt | xt) p (xt | Zt−1) (4.2.2)

where the prior density p (xt | Zt−1) is a prediction taken from the posterior density of the previous
time step.

4.2.2 Factored sampling

Factored sampling is a statistical method to deduce the posterior density p (x | z), which represents
all we know about the state x from the observations. Applying Bayes’ rule we can obtain

p (x | z) = kp (z | x) p (x)

32

where k is a normalizing constant. p (z | x) compares the observations to the state x and when it
cannot be expressed in closed-form, that is when the factored sampling comes into scene. In the
factored sampling algorithm a set of sample points

{
s(1), ..., s(N)

}
is randomly generated from the

prior density p(x). Each of the samples are then assigned a weight proportionate to the value of
the observed density p (z | x) = s(i) where i ∈ {1, ..., N}:

πt =
pz

(
s(i)
)∑N

j=1 pz

(
s(j)
) . (4.2.3)

pz (x) = p (z | x) is the conditional observation density. Notice that the weight is normalized so
that

∑N
i=1 πi = 1.

The Condensation algorithm is based on factored sampling, as we will see next.

4.2.3 Notation summary

This section will wrap up all the notation used in the previous sections so that the algorithm in
the next section can be understood more clearly.

x - state vector (position of the object, for example).

z - observation, image feature that we can measure (pixel intensity, for example).

p (x) - probability density that represents the state x.

p (z | x) - conditional observation density. Compares the image observation with the expected state
(weights samples).

p (x | z) - state density after measurements z from the image have taken place.

4.2.4 The algorithm

The Condensation algorithm is based on factored sampling applied iteratively to a series of
successive images. Each iteration at time t takes as an input a sample set {s(n)

t , n = 1, ..., N} (also
called particles) and its associated weights π(n)

t . The input sample set is the posterior density from
the previous iteration p (xt | Zt−1) and the output, or posterior density, is p (xt | Zt).

The whole process is shown in figure 4.5. Firstly, we will sample N times from s
(n)
t−1 when each

element is chosen with probability π
(n)
t−1 (cumulative probability c

(n)
t−1 will be used to do this ef-

ficiently as we will see later). Elements with higher weight will tend to be chosen several times
(and thus there may be identical samples in the output set) while lower weighted ones might not
be chosen at all. In each iteration the samples undergo three processes in this order: drift, diffuse
and measure.

Drift and diffusion form the prediction phase of the new state of the tracked object. The sam-
ples are drifted deterministically according to a dynamical model (their location, for example, is
predicted with a dynamical model). Afterwards, they undergo random diffusion so the ones with
the same state will no longer be the same (mimics the inherent noise in the tracking process).

33

Figure 4.5: An iteration of the Condensation algorithm. Samples with higher weight are more likely

to be selected several times and ones with lower weight may not be selected at all. The selected samples

undergo drift and diffusion. After measuring with the observation, the samples are assigned a new weight.

Having finished prediction, the next phase is the measurement or correction phase we mentioned
in the introduction to this chapter. Samples are assigned a weight π(n)

t according to observation
of the image.

At the end of any iteration it is possible to know the current state (where the object is located,
for example).

Outline of the algorithm

The sample set of the previous time step t− 1 is {s(n)
t−1, π

(n)
t−1, c

(n)
t−1}. An iteration of the algorithm

constructs a new sample set {s(n)
t , π

(n)
t , c

(n)
t }, n = 1, ..., N at time t.

The nth of N new samples is constructed as follows:

1. Select a sample s′(n)
t as follows:

a) Draw random number r ∈ [0, 1] from the uniform distribution

b) Find the smallest j for which c
(j)
t−1 ≥ r

c) Set s′(n)
t = s

(j)
t−1

2. Predict by sampling from
p(xt | xt−1 = s

′(n)
t)

to choose each s
(n)
t of the new sample set (recall equation 4.2.1). According to drift and

34

diffusion, the new sample may be generated as

s
(n)
t = As

′(n)
t +Bw

(n)
t (4.2.4)

where A corresponds to the dynamical matrix which determines the amount of drift the
sample is expected to experience while B is the standard deviation of the amount of diffusion
applied, being w(n)

t a random value from a zero-centred Gaussian distribution, representing
process noise.

3. Measure (the observed) and calculate weights for the new samples with the measurements
zt. Recalling equation 4.2.3

π
(n)
t = p(zt | xt = s

(n)
t)

normalized so that the sum of weights is 1. For efficiency, a cumulative probability is asso-
ciated where

c
(0)
t = 0

c
(n)
t = c

(n−1)
t + π

(n)
t

Notice steps 2 and 3 follow equation 4.2.2.

At each time step we can estimate the object’s position by computing the weighted average of the
positions of the samples.

It should be noted that the algorithm does not need special initialization conditions. At the
beginning, when there is no object, the samples are spread randomly and resampled constantly
while each particle has the same weight (the object to track has not appeared yet), thus the density
will settle to a steady state.

4.2.5 Dynamical model and noise

The dynamical model is the deterministic part of the prediction phase and determines the amount
of drift the samples experience (how much they have moved with respect to their previous location
in the previous time step). A good dynamical model will be able to minimize the prediction error
and thus contribute to more robust tracking.

For the sake of simplicity, we started considering a dynamical model of constant velocity based on
the position of the sample at time t and t− 1:

x(t+ 1) = x(t) + [x(t)− x(t− 1)] +Bxw
(n)
t

= 2x(t)− x(t− 1) +Bxw
(n)
t

where the state x is the position of the tracked object across the x-axis and likewise for y. From
empirical tests the standard deviations of process noise for both dimensions were found and set
as Bx = 29 for the x dimension and By = 21 for y. w(n)

t is a random value from a zero-centred
Gaussian distribution (please refer to appendix C for how the data was gathered and examined).

35

Equation 4.2.4 is therefore expanded as:
x(t+ 1)
y(t+ 1)
x(t)
y(t)

 =

2 0 −1 0
0 2 0 −1
1 0 0 0
0 1 0 0

+

29w(n)

xt

21w(n)
yt

0
0

In the tests the results were satisfactory for our purpose, so a second-order model based on accel-
eration was discarded as it would add to space complexity and slow the application.

4.2.6 Observation model

The observation model is used to compare the image at time t with the state at time t after the
prediction phase has taken place. The location of the samples are evaluated probabilistically, i.e.
the more probable the object is located at the position of a sample, the higher the weight it is
given.

Inspired by Holden and Owens (2003), we employed a window-based technique to measure the
weight of the particles, where the window is simply a square block of pixels which represent a skin
area. From the hand shape enhancement process we had the skin probability density function of
the image (recall section 3.1). The window was then centred at each pixel of the image and the
sum of the probabilities (Mahalanobis distances) of each pixel in the neighbourhood was used to
weight the pixel at the centre.

A window allows for more precise tracking instead of considering the probability of each pixel
individually as the impact of noise is reduced.

Figure 4.6: An 8x8 window centred on a pixel. The Mahalanobis distances of all pixels under the window

are summed for the weight function. The values on the window are just examples.

The given weight to the pixel at the centre of the window was established as a function of the
sum of probabilities (Mahalanobis distances) of all pixels in the window, and thus bounds to this
sum had to be set. We used a window of size 8x8, which amounts for a total of 64 pixels. In
order to determine the weight limits we calculated a maximum bound for the window based on the
threshold θ = 2.4 used to discriminate between skin and non-skin pixels in binary segmentation
(see section 5.2). The maximum bound for the window was then 2.4∗64 = 154, and a value higher
than that would have to be given much less weight as the pixel would be considered non-skin.

36

The highest weight would be given at a sum of 0, which would mean that all the pixels in the
neighbourhood have a colour exactly the same as in our skin model.

The 154 bound, however, often resulted in inaccurate tracking. The reason was that our window
technique required a harder discrimination since there could be pixels in the neighbourhood window
which were very close to our skin model (summing close to 0) and others very far, but in the end
they would yield the same value as in neighbourhoods where the pixels were mostly considered skin
but not necessarily close to the model. By trial and error we found that a higher accuracy could
be achieved using θ = 2, which accounts for a total weight bound of 128. The weight function was
then designed using this bound and is shown in figure 4.7.

Figure 4.7: The weight function used in our observation model. The lower the sum of Mahalanobis

distances of the pixels under the window, the higher the weight. Notice the lower asymptotic limit of the

weight is 0 but it will never be exactly 0 since then the sample cannot be selected in a subsequent iteration

of the Condensation algorithm (and if that happened to all the samples the tracker would stop working).

Our weight function was a modification of Holden and Owens (2003)’s Gaussian weight function:

π
(n)
t =

1√
2πφ

exp
[
−v2

8φ2

]
where v is the sum of Mahalanobis distances to the skin model of each pixel within an MxM

window (figure 4.6), φ =
M2 ∗ θ

10
, M = 8 and θ = 2. Figure 4.7 shows the function plot where

it can be seen that the parameters were determined to maximize weight of lower distances and
minimize weight of those higher.

4.3 Hand detection

With the previous section the Condensation algorithm has been fully explained. As we pointed
out earlier, initially when there is no hand the tracker will be in a steady state with all particles
being randomly spread across the image and resampled iteration after iteration. If we calculated
the weighted mean position with them the estimation of the location would be around the centre
of the image. We know, however, that a hand is not in front of the camera so this estimation would
be invalid.

37

Using the median of densities

We know the probability densities are measured as the Mahalanobis distance from the colour of
a pixel to the mean colour of a skin pixel. One method consisted of calculating the median of
the probability densities at each pixel within an 8x8 window centred at the estimated location to
determine if a hand was in place. The reason behind this approach was that if the median was
evaluated as ’skin’ then most pixels within the window would be ’skin’ and hence we could say a
hand has been detected.

This method worked as expected but also had a natural inconvenience. In case the hand was
temporarily occluded the tracker would not be able to give an estimated location as it would
believe that no hand is in the image area. Being this one of the justifications to use a motion
estimator, this method was therefore discarded.

Motion detection

Another method we thought is often used in the field. The idea would be to start the tracker with
basic motion detection. For example, a hand moving left-right-left could be interpreted as a sign
to start following the hand. However, one could argue that some automatism and convenience is
lost.

At the same time we had also thought of another method, which we describe next.

Using the standard deviation

When the particles are tracking an object they concentrate around it and if the object disappears
they are again randomly spread around the image. This gave us the idea of using the standard
deviation of the particles to detect the presence of a hand (figure 4.8). An assumption was made
that if it was below a certain threshold then a hand was detected. Again, by trial and error this
threshold was set at 100 for x direction (only one direction was actually sufficient).

Figure 4.8: When the samples detect a hand they concentrate on it, which means their dispersion is

much lower. This dispersion is used to detect the presence of a hand.

38

This method proved to be very robust even though it still had a weakness. If the noise in the
image was not properly removed the tracker could be following wrong objects and thus mistakenly
detecting a hand. Another problem was that when the hand disappeared of the screen it would
have a bouncing effect, which is explained in the results section.

Nevertheless, we omitted these problems and eventually chose this method as we were not expecting
to work with a heavily cluttered background and the bouncing effect was not a big issue taking
into account the mouse functionality we implemented (see section 7.2.3).

4.4 Mouse pointer movement

After successfully tracking a hand, the first objective is to be able to move the mouse pointer before
going into recognising basic hand gestures corresponding to mouse events or other functionality.

Once a hand is detected, making the mouse pointer move as the hand moves is quite straightfor-
ward. A mouse controller does not consider absolute positions but relative positions in the form of
increments or decrements in one direction or another. Knowing this all we had to do was to keep
variables that stored the location of the hand at each time step and calculate the differences (in x
and y directions) with respect to the previous time step. These differences were then used to move
the mouse pointer.

4.4.1 Algorithm

We define a time step t the same as with the tracker, since this algorithm is executed at the end
of each iteration of the Condensation filter. The hand’s position at t is compared to its position
at t− 1. The difference is then added (or substracted) to the current mouse position.

Let (mt
x,m

t
y) be the mouse position at time step t, (ht

x, h
t
y) the hand’s position and s a boolean

variable indicating if the hand is in sight.

Input

From the result of the Condensation algorithm, we have the hand’s position estimation (ht
x, h

t
y)

at time t.

Initialization

Set s = true.

Iteration

• Detect hand using samples’ standard deviation.

• If a hand was detected, then calculate the new mouse position as

39

– If s = true then

∆x = ht
x − ht−1

x

mt
x = mt−1

x + ∆x

and likewise for y direction. Move mouse pointer to new position.

– Else set s = true.

• Else set s = false.

Figure 4.9: The mouse pointer algorithm combined with an iteration of the Condensation algorithm.

The tracker estimates the hand’s position and the mouse pointer’s new position is calculated accordingly.

Notice that if a hand is not detected at t− 1 and is detected at t, the current pointer’s position is
used to calculate its new position at t+ 1, but remains logically static at t. Figure 4.9 depicts the
algorithm.

It should be added that since the images are not captured at the same speed as a conventional
optical mouse device captures images, the resulting motion of the pointer on screen is not as smooth
as with a mouse. In any case, using artificial acceleration and pixel-by-pixel pointer displacement
this issue could be solved.

40

4.4.2 Pointer stabilization

A problem we encountered was pointer vibration due to noise in the tracking process. Since it was
not completely precise, as such would require maximum pixel precision, this would translate into
small movements of the pointer in any direction.

To minimize such problem we added a condition to the algorithm to only update the pointer
position when it had moved more than a certain amount of distance. This distance was found to
provide good results at 4 pixels in any direction.

41

Chapter 5

Gesture recognition

Having achieved the first part of the project, which enabled us to control the mouse pointer, the
next step was to recognize gestures so that we are able to perform typical mouse actions such as
right-click.

Gesture recognition has several applications ranging from sign language alphabet recognition to
human-computer interaction (HCI) systems. Face-to-face, humans communicate with each other
mainly through their visual and auditive senses. In the case of deaf people, they have to rely
entirely on their vision, so apart from a heightened interaction experience we are also improving
on accessibility to the machines.

Traditionally humans have interacted with computers through a keyboard and a mouse device
which, while very useful and functional, one could argue they do not feel as natural as using our
bare hands. As of writing this report, touch systems have experienced a boom, especially in the
mobile phones sector. The videogames console Wii has exploited this more natural experience
with its famous motion-sensing controller. The logical next step is to be able to interact with the
machine without any device attached, which is being researched by Microsoft in its Project Natal
(figure 5.1) as of writing this report. Specifically speaking of hand gesture recognition, aside of HCI
systems, another application could be a deaf sign language automatic translator and combined with
audio recognition systems we could translate audio into images or viceversa, which would make
TV programs more accessible, for example. We can see that there are as many applications as we
can think of that involve interacting with gestures.

The problem we are dealing with is thus making the computer capable of understanding us. Tra-
ditionally this has been done by processing data collected from data gloves which can provide
accurate hand information. However, it has the big downside of being expensive as well as attach-
ing a device to our hand, which is what we are trying to avoid. Being a hand naturally 3D, 3D
scanners have also been used but again we encounter the same problem as before. A cheaper and
more convenient alternative is the use of multiple cameras to retrieve depth information from 2D
images. However, not all applications require 3D knowledge, which adds to overall complexity, and
2D shape analysis could be enough, which is our case.

In literature gesture recognition is a fairly recent and not many research papers have covered the

43

Figure 5.1: Microsoft’s Project Natal, a new completely hands-free human-computer interface for their

gaming console Xbox 360.

subject, probably because it has traditionally been resource expensive, but with the computers
of today this problem is much smaller. In general, the methods published can be classified into
learning-based and model-based methods. Learning methods rely on training a classifier using
the features detected from great amounts of samples. Model-based methods, on the other hand,
compare sets of features of hand shapes with models in order to classify them.

Lockton and Fitzgibbon (2002) proved that real-time performance could be achieved with a learning
method. They were able to recognize 46 symbols of the American sign language fast and reliably.
Ong and Bowden (2004)’s hand shape detector also made use of a machine learning algorithm to
train classifiers from a database of hand shapes classified by k-means clustering of distance metrics.
Even though it obtained good results, it could not perform in real-time. Dinh et al. (2006) used
AdaBoost to achieve computational efficiency and obtained fast and robust detection.

Even though learning methods proved to be successful in gesture recognition, they have the down-
side of requiring great amounts of training data to be accurate, thus other researchers have inves-
tigated model-based methods, which are much less costly in this aspect. Starner et al. (1998) used
a feature vector of sixteen geometric elements for recognizing the American sign language, such
as hand location, previous location, area or angle of axis of least inertia. O’Hagan and Zelinsky
(2000) used a set of geometric properties such as areas of high curvature, which could indicate
fingertips location or hand-wrist separation. Templates of these areas were then made and used
for gesture recognition. Bretzner et al. (2002) presented a hand tracking and posture recognition
system which used hierarchies of multi-scale colour image features to detect a hand and its fingers,
together with information about their relative orientation, position and scale. Based on these fea-
tures they could define models for different hand states and achieved real-time recognition. Our
first reference (Holden and Owens, 2003) extracted the topological formation of the fingers region
from its polar representation and used a technique from speech recognition (cepstral coefficients)
to interpret four different shapes, which they wanted to extend to the Australian sign language.

To increase gesture classification accuracy many methods rely on Markov models (Starner et al.,
1998), which means that frames over time are interpreted as being dependent from each other. The
logic behind it is, for example, that we know the word about to be recognized is an article and the

44

first interpreted sign is ’t’, thus ’he’ becomes the logical continuation (effectively compounding the
article ’the’). Usually different temporal gestures are allowed for each frame and their combination
represents a certain gesture. However, this implies that the number of recognized gestures is
significantly restricted, compared to a system which has a higher single-frame recognition accuracy.

With this vast range of methods, the choice would entirely depend upon the goals we wanted to
achieve, which is what we will discuss in the next section.

5.1 Goals

As we had already stated at the beginning of this report, our main idea was to create a human-
computer interface using solely a webcam. Specifically, we wanted to be able to to execute common
mouse actions with one hand.

The first functionality we thought about was ’left click’, as we already had the pointer movement
functionality. We soon realized that a click is composed of two actions, which are ’button up’
and ’button down’, clearly noticeable in the case of a user dragging a window to displace it. This
suggests that we needed two gestures to implement them.

While testing, we also realized that changing gestures affects the position of the pointer, even
though one might think his hand is stationary. The reason is that the tracker’s estimated weighted
average position is generally close to the centroid of the hand, which obviously changes if the
number of fingers or their positions are different. This could be a problem in several scenarios,
such as a user trying to click on an icon. In case he performs the click gesture and the pointer
moves away the target will be missed. This suggests that for the system to be accurate we needed
to recognize gestures in a stabilized position. Apart from this, it improves usability from a user’s
point of view in the sense that a user will usually stop before changing his gesture. It was then
decided that gesture recognition would only be triggered when the mouse pointer was completely
stopped, which means that we needed two more gestures for activating and deactivating pointer
motion.

As the gesture for different functionality could be shared, three gestures instead of four were then
set as the main goal. For a more complete experience, right click, double click and mouse scrolling
should also be implemented but we decided to start modestly with only basic functionality since
more gestures could be added afterwards.

Summarizing, the gestures to be recognized implement the functionality of:

• Mouse pointer motion trigger on/off

• Left-button click up/down

Figure 5.2 shows the gesture set chosen for the task. Notice the same gesture was chosen for
stopping pointer movement or left button click up since they seemed more natural actions.

There are also non-functional requirements needed for enhancing interactivity which can be listed
as:

45

Figure 5.2: a) Open palm: used for the functionality of mouse pointer motion trigger off and left button

click up. b) Arrow: used to move the mouse pointer. c) Thumb up: used as left button click down.

• Scale-invariance. While the user should remain within a reasonable distance with respect to
the camera, changes in hand size should not affect gesture recognition.

• Rotation-invariance. It would be quite difficult to move a hand naturally without rotating
it, thus recognition should not be affected by changes in this aspect either.

Once our initial goals are defined we can proceed to select the most appropriate method for the
task.

5.2 Binary segmentation

Before we are able to recognize hand gestures we need to isolate the hand from the background.
For this purpose, skin colour segmentation was chosen, which consisted of obtaining a binary
representation of the skin and non-skin pixels (figure 5.3).

However, there are other techniques based on learning a background model to effectively separate
it afterwards. Background substraction consists of substracting the current image with the learned
model (usually another frame representing the background) of the background and compute the
differences. The differences are supposedly new objects in the scene. The simplest background
substraction method is frame differencing, which as its name indicates, consist of substracting one
frame from another. In simple scenes this method works fairly well but it has several problems. It
does not distinguish between a hand or any other object and it becomes difficult to know which
frames to substract, plus it would only detect regions of motion and a static hand could pose a
problem. Another more advanced method is the Codebook method (Kim et al., 2005), which can
be used in scenes where there are complicated moving objects such as trees waving. The general
idea of this method is that it keeps ’boxes’ with all the common pixel values seen in an image and
these are constantly updated through time. Each box has a low threshold and a high threshold to
determine if a new colour of a pixel is still considered part of the background. These thresholds
expand when new values fall between the learning thresholds and when a new colour of a pixel
falls out of these limits, then it is considered part of a new object in the scene. While this method
works fairly well, it is more costly computationally and most importantly, it does not respond well
to changes in light, plus again we have the problem that we are only interested in a moving hand,
not other moving objects.

46

The main problem we encountered with skin colour segmentation was the changing lighting condi-
tions but with respect to the other problems, it seemed a better choice than the other background
substraction techniques mentioned. In fact, a combination of different methods would probably
yield better results but could involve other problems as well, such as a higher impact on efficiency,
and would have to be carefully analyzed and tested.

Figure 5.3: An image of a hand and its binary segmentation. The hand is effectively separated from the

background.

In chapter 3 we obtained the skin probability density image of the input image. From this image
segmenting the image into skin and non-skin regions was a matter of finding the correct threshold.
A pixel j was classified as skin if its probability was Dj < θ, where θ was adjusted as a trade-off
between true positives and false positives (see figure 7.7).

In the chosen colour space (HSV), pixels were considered skin when their Mahalanobis distance
to the mean was less than θ = 2.4, which is not perfect but choosing a universally good threshold
is simply impossible because of varying illumination conditions in different environments or non-
uniform illumination on the hand (caused by shadows, for example).

Since there are usually objects in the background that have similar colour to skin the segmentation
process usually yields noisy images. Further processing was then required to minimize noise and for
that matter morphological operations and connected components detection were used. Finally, we
also tried to improve segmentation under varying lighting conditions using adaptive segmentation.
The images obtained from each step can be found in the results chapter.

5.2.1 Foreground cleanup

We know from the previous section that we have a reasonably good segmentation of the image
but false positives produce noise in the segmented image, which is what we are looking forward
to remove. We will first apply morphological operations to remove small areas of noise and bigger
areas will be cleaned by detecting connected components.

47

Morphological operations

By observation we can see that noise is small in area when compared against the hand. The noise
was removed by firstly applying the morphological operation open followed by close. These two
operations are based on the basic morphological operators erode and dilate. Opening consists of an
erosion followed by a dilation with the same structuring element, which will be defined afterwards.
Closing consists of a dilation followed by an erosion.

Morphological operations can be applied to binary, gray-scale intensity or colour images but we
will focus on binary images, as our input is the binary segmentation of the hand. In general terms,
opening shrinks the areas of small noise while closing rebuilds the remaining areas which were
affected by the opening.

Morphology operators test how an image fits or misses a predefined shape called the structuring
element, which can be understood as a convolution kernel in linear filtering terms. Let A be a
binary image in an Euclidean space, and B the set of coordinates of a structuring element. Erosion
is defined as

A	B = {b | Bb ⊆ A}

where b are points in the Euclidean space and Bb is the structuring element translated by b. Con-
sider a structuring element with a centre. Let foreground pixels have a value of 1 and background
pixels 0. Assuming that the origin of B is at its centre, for each pixel the origin of the structuring
element is superimposed. If every pixel under the structuring element match the values of the
structuring element, then the value of the pixel at b is set to 1. Otherwise, it is zeroed. Figure 5.4
exemplifies the operation.

Figure 5.4: Example of a binary image eroded by a 1x15 structuring element. The structuring element

only fits the foreground pixels of the image at its centre, in which case the pixel underneath the centre

column is not zeroed. When applied over all the image, only the middle column pixels will be left.

Dilation is the opposite operation and can be similarly defined:

A	B = {b | Bb ∩A 6= 0}

At each position b, if the pixel at b under which the structuring element is centred is 1, then all
the pixels under the structuring element acquire the value of 1.

48

In the project a common 3x3 square structuring element was used. A bigger structuring element
produced better results in terms of noise removal but slowed the application so the original was
kept.

Connected components

After applying morphological operations bigger noise areas may still be left. By detecting con-
nected components in the segmented image we can then selectively delete them if their area is
inferior to a certain arbitrary value - i.e. not the hand. To detect these connected components
contour detection was used.

The algorithm used for contour detection was included in OpenCV and derived from Suzuki and
Abe (1985). Since understanding the algorithm is not important for our process we will only briefly
describe it.

We will first define what is understood as a contour in OpenCV (Bradski and Kaehler, 2008). A
contour is a list of points that represent a curve in an image. Consider the segmented test image
in figure (figure 5.5) where the background is gray and segmented regions are in white. OpenCV
distinguishes two types of contours: contours (labeled ’c’) and holes (labeled ’h’). When contours
are dashed red lines, they represent exterior boundaries of the white regions, contours, whereas
if they are inside a contour that has been labeled as an exterior boundary already - gray regions
within the white regions -, they are considered holes and their boundaries are marked with dotted
blue lines.

Figure 5.5: A segmented test image where the segmented regions are white and the background is gray.

Contours are marked with dashed red lines and holes with dotted blue lines.

For our project we are only interested in the very exterior contours and their areas. Suzuki and
Abe (1985)’s algorithm scans a binary input image for contours. In few words, the algorithm starts
by scanning row by row from left to right. An exterior contour starts as a 0-pixel (background
pixel) followed by a 1-pixel (foreground pixel). Once an exterior contour starting pixel is found, it
is labeled with an identifier and the contour is followed completely by scanning the neighbourhood

49

of the pixel for 1-pixels and so on successively until it ends back at the starting pixel. The scanning
is them resumed at the aforementioned starting pixel until the lower right corner of the image is
reached.

Once all the connected components were found, an arbitrary area value was set such that if the
area size was smaller than 5000 pixels, it would be discarded. This way the bigger areas of noise
which were not removed through morphological operations could be eliminated.

When only the final contour is left it is filled since there might be holes caused by erosion which
were not fully closed.

5.2.2 Adaptive dynamic segmentation

Even though the previous method yielded satisfactory results, varying illumination still posed a
challenge. To avoid changing skin models manually we were interested in a model that could adapt
itself in changing situations.

A method suggested by Khan et al. (2008) consisting of detecting the skin colour in human faces
to retrieve the skin model for a certain frame was first considered, but was soon discarded as we
found it would not solve our problem under non-uniform lighting conditions. Another big concern
was performance, since face detection was time consuming in itself. Other methods suggested in
literature were mostly probabilistic, such as Expectation Maximization (Shamsi et al., 2008) or
Gaussian distribution adaptation (Yang et al., 1997).

Figure 5.6: Example Gaussian distributions centred at different means. Gaussian mean shifting was used

as an adaptive segmentation method.

We chose a form of Gaussian distribution adaptation much simpler than Yang et al. (1997)’s that
would only add little processing overhead to our system. Observing figure 3.2 we saw that the
distribution shapes were similar but centred at slightly different locations. This suggested us that
we could dynamically move these distributions to improve segmentation by mean shifting. The
idea was then to adapt the skin colour distribution mentioned in the hand shape enhancement
chapter. Colour information of the pixels under the samples of the Condensation tracker was
used in order to determine the current weighted average skin colour.

50

The method is detailed below:

1. Calculate the weighted average skin colour m of the pixels under the samples of the Con-

densation tracker.

2. Compute the Mahalanobis distance D =
√

(m− µ)T Σ−1(m− µ), where µ and Σ are the
combined mean and covariance matrix found in section 3.1.2.

3. If D < 1 then we use m as the new mean for segmenting the next frame.

And segmentation was done as before, considering skin those pixels which were at a Mahalanobis
distance D < 2.4 to m.

Notice that in every different frame the new mean m is always compared to µ and Σ, which are
absolute references and do not change. Otherwise the mean could shift completely out of the skin
distribution bounds. D < 1 was calculated by computing the maximum Mahalanobis distance of
the means of all lighting conditions considered with respect to the ’all conditions combined’ mean.

The results obtained (see 7.3.1) suggest this adaptive method provides more robust segmentation
to varying illumination, especially in cases when the amount of light that each part of the hand
receives is different and generates shadows.

5.3 Method choice

Once the hand is successfully separated from the background we can proceed to analyse it in order
to recognize gestures. As seen previously, many methods exist for gesture recognition. However,
taking into account the functionality we need, which is not much, most of the methods mentioned
before are too complex, plus each of them may have some kind of inconvenience for our case.

For example, our first reference, Holden and Owens (2003), did not satisfy our requirement of
rotation-invariance as the polar image they obtained required that the hand starts facing away
from the camera with fingers pointing downward. In our case, the camera does not face the hand
from above but towards the user and we would like to restrict the user as minimum as possible,
since enhancing interactivity is the main purpose.

Learning methods, while proven very effective, were discarded as they required much training and
implementation time and were conceived for classifying large sets of gestures. For our small gesture
set, a model-based approach using geometric features seemed more convenient.

O’Hagan and Zelinsky (2000)’s approach could detect hand pose and fingertip positions, but it
was based on 3D information obtained from two cameras. Bretzner et al. (2002)’s method based
on localizing the different parts of a hand by detecting blobs and ridges was similar to what we
were looking for (figure 5.7).

Detecting fingertip positions was set as our objective as the possible combinations of the five
fingers, even without changing their vertical axis orientation, provided more than enough gestures.
Bretzner et al. (2002)’s method, however, seemed slightly complicated and we thought the same

51

Figure 5.7: Image by Bretzner et al. (2002). They used multi-scale analysis to compute blob and ridge

features to characterize the hand’s geometry.

could be done by considering the geometric shape of the hand. Malik (2003) detected fingertips
by detecting peaks and valleys on a segmented hand, but their approach was not robust enough as
it often missed valleys. Our method aimed at detecting the same features, but we achieved more
robustness.

Figure 5.8: The red circles indicate the peaks (fingertips) and the green circles the valleys. These are

the hand geometrical features we are looking for.

5.4 Our method

The method we conceived consists of detecting the valleys (convexity defects) between the peaks
(fingertips) by using simple geometrical concepts. Polygon areas, and hence perimeters, are robust
measurements independent of rotation and proportional in scale. These properties were used to
construct our recognition system.

52

5.4.1 Contour detection

The starting point of the algorithm was to detect the contour of the hand (figure 5.9), which was
already detected during the segmentation phase (section 5.2.1).

Figure 5.9: The contour of the segmented hand is marked with a red line.

This contour describes the shape of the hand but with too much detail. We would like to be able
to represent the shape with fewer points so as to simplify the problem, which is why we performed
a polygonal approximation in the next section.

5.4.2 Polygonal approximation

In order to simplify the representation of the shape of the hand we intended to reduce the number
of points in the contour to represent this shape. This simplification was necessary so that the next
steps of the algorithm are able to find the peaks and valleys we are looking for. But how exactly
are we simplifying the shape? To understand the process we will explain the Douglas-Peucker
algorithm (Douglas and Peucker, 1973), which is the one OpenCV offers for the task.

Let {p0, p1, ..., pn} be an ordered set of n+ 1 points in the plane which form a polygonal chain of
line segments p0p1, ..., pn−1pn. Cartographers Hershberger and Snoeyink (1992) identify the line
simplification problem as finding, given a polygonal chain C with n segments, a new chain C ′ with
fewer segments that approximates C, where approximation has a broad meaning (area difference
between C and C ′, C ′ with the most critical points...).

The OpenCV’s Douglas-Peucker algorithm implementation takes as input a contour C, which is
a set of ordered points, and a distance parameter ε. It first searches for two maximally separated
points. Once found, it searches for the point which is farthest to the imaginary line that connects
the two extremal points and this distance is > ε. If this point meets this condition, the contour is
further simplified recursively by splitting the contour at this point and repeating the process with
the slices until the points left do not longer meet the > ε condition. If the point does not meet the
condition, the approximation is accepted. The points of the resulting approximation are therefore

53

a subset of the original points set (figure 5.10).

Figure 5.10: Polygonal approximation of a set of points using the Douglas-Peucker algorithm. The points

in gray were discarded for being within < ε. This algorithm is used to approximate the contour of a hand.

After repeated trial and error tests, the distance parameter was set as ε = 20 (pixels). Figure 5.11
shows the polygonal approximation of the previous detected contour using this distance parameter.

Figure 5.11: Polygonal approximation (purple lines) of the previous detected contour.

Algorithm

Input

54

C = ordered set of n+ 1 points
ε = 20

Initialization

< pi, pj > = findExtremalPoints(C), where a and b are indices of points in C.

Procedure

Douglas-Peucker(C, i, j, ε)

1. Find farthest point pf from imaginary line pipj . Let d be its distance.

2. If d > ε then

(a) listA = Douglas-Peucker(C, i, f, ε)

(b) listB = Douglas-Peucker(C, f, j, ε)

(c) return {listA ∪ listB}

else

(a) return {i, j}

5.4.3 Convex hull

Once the polygonal approximation has been made we proceed by calculating its convex hull.

A set C is said to be convex if for all p and q within the set the line segment pq that joins them is
in C (figure 5.12).

Figure 5.12: The left polygon is convex while the right polygon is not. The red line proves the stated

convexity condition is not met.

The convex hull of a set X is then the smallest convex set C that contains X, or more specifically,
the boundary of C (figure 5.13). There are many algorithms for calculating the convex hull and
OpenCV implements Sklansky (1982)’s algorithm, which we will not explain as it is unnecessary
for understanding our project.

55

Figure 5.13: Convex hull of the polygonal approximation (marked in teal).

5.4.4 Convexity defects

The concept of convexity defect is illustrated in figure 5.14, which can be understood as concativity
areas with respect to the convex hull. As we can see in the picture, there are many convexity defects
in a hand, not only the areas between fingers. We can now see the advantage of having calculated
the polygonal approximation as the small convexity areas disappear.

Figure 5.14: Convexity defects are the valleys discussed at the beginning of the chapter. The deepest

points in the convexity defects are marked with green dots and the peaks with blue dots.

Concretely, we were interested in the deepest points in the convexities, which were the valleys we
were looking for. To obtain them the convex hull’s and the polygonal approximation’s points are
read simultaneously. The points in the polygonal approximation which are between two points
common to the convex hull form a convexity defect. Furthermore, these two common points are
the starting and ending points of a convexity defect, which can be used to detect fingertips.

56

5.4.5 Gesture recognition

After getting to this point, we are ready to use these detected features for gesture recognition. The
problem with the deepest points in convexity defects, however, is that often there are points which
are not of of our interest, as we can see in figure 5.15.

Figure 5.15: The green points representing the deepest points of the convexity defects within the red

circle are points which are not valid for recognition. They are result of poor segmentation.

At first, the minimum bounding box was considered to see if it could be used to discard the
unwanted points. The idea behind it was to fix a point of the box, join it with the estimated hand
location (approximately at the centre of the hand) and compute the angle with the points. The
problem was that it was not so easy to detect the orientation of the hand, and thus fix a point at
the bounding box.

Another way was necessary and the distance of the points to the convex hull was considered. By
observing the results we had so far, we noticed that the points at the valleys between fingers were
at a further distance with respect to the unwanted points. The maximum distance d to the convex
hull was calculated and then the points which were at < 0.6d were considered discardable (they
will be referred as invalid convexity defects), which eventually worked fairly well. Important valleys
were discarded sometimes, but they appeared to be more related to poor segmentation.

However, this approach still had a problem, which is shown in the figure 5.16. Apart from discarding
valid valleys, poor segmentation can yield false positives as well.

We did not find an easy way to tackle it, so in the end it was decided that this gesture would not
be recognised. Instead, we decided that the only gesture with one valid convexity defect which
would be accepted would be the thumb-up gesture, rotation-invariant.

As can be observed (figure 5.17), this gesture’s minimal bounding box has a particular width to
height ratio, so gestures which don’t meet a certain ratio threshold can be discarded. In particular,
1.6 was selected, being the result of dividing width/height or the inverse, whichever is > 1.

Another criteria we used to validate gestures was to establish a minimum and maximum number
of sides that the gesture’s polygonal approximation can have. With the polygonal approximation

57

Figure 5.16: (image needs correction)The closed fist’s segmentation will often result in a false positive.

No simple way was found to discard it so this gesture was not considered for the gesture set.

Figure 5.17: The thumb gesture’s minimal bounding box has a particular width to height ratio, which

we use to enhance detection.

we had chosen, the start and finish points of the convexity defect, the fingertips, could be either
spikes or flat (figure 5.18).

By observation, we defined a minimum number of sides of min sides = 6 for the polygonal ap-
proximation, which we found happened with a closed fist. Then, for every convexity defect we can
count 4 sides. Invalid defects change what would have been one side to two or more. Removing
already counted sides, we can get a number of maximum sides for a polygonal approximation to
be considered valid:

max sides = min sides+ (4 ∗ valid defects)− (valid defects− 1)− invalid defects

Even though not perfect, with these two simple methods we are able to discard many invalid

58

Figure 5.18: The red circles indicate the fingertips approximated as flat and the blue circle as a spike.

gestures due to poor segmentation and thus have a more robust recognition.

It is also important to note that partial hands cannot be interpreted, thus the system cannot be
triggered when the hand is not completely visible. At first the minimal bounding box had been
used to check that the whole hand was inside the viewport but this proved unreliable when the
hand orientation was horizontal/vertical, as the box would be horizontal/vertical as well when
the hand was close to the edges. Instead, the minimal bounding circle was used. Only if it was
completely inside would the gesture be considered for recognition.

After this processing the system proceeds to recognize the gesture. Given that our defined gesture
set is small, simply counting the number of convexity defects was enough. For a broader gesture
set fingertip detection and angles between them can be processed, which is described in the next
section.

Gesture features summary:

1. Open palm. 4 valid convexity defects.

2. Arrow gesture. 2 valid convexity defects or 1 valid convexity defect + 1 invalid convexity
defect.

3. Thumb up. 1 valid convexity defect and the hand has stopped moving (±4 pixels). Minimal
bounding box width to height ratio of 1.6.

Algorithm outline

Input Segmented hand binary image.

Procedure

1. Contour detection of the hand

59

2. Contour polygonal approximation using Douglas-Peucker algorithm

3. Calculate convex hull of the polygonal approximation

4. Compute convexity defects and its deepest points

5. Check gesture validity and recognize

5.4.6 Further extending gesture recognition

The existing system already has the functionality required for the project, but one could argue it
can only recognize quite a limited range of gestures. Even though we did not use it eventually, we
found a simple yet effective extension to the original algorithm by using the geometric features we
had detected already.

Having obtained the convexity defects, apart from the deepest points we also had the starting
and ending points of the convexity, which means we could detect the fingertips (peaks). However,
sometimes the fingertips could have been approximated as flat (figure 5.18), thus an ending point
of a prior convexity defect and a starting point of the next convexity defect could be detected and
would represent the same fingertip. This is trivially solved by considering only the first starting
point and only the ending point for the remaining peaks to process.

Once we have all the peaks and valleys, the angle between the different peaks from the centroid
could be used to detect other gestures. Given that one of our requirements was rotation invariance,
we had to add the restriction that the thumb should be visible and separated from the rest of the
fingers so that it could be used as a reference for hand orientation.

Figure 5.19: The angles between the (approximate) centroid of the hand to the fingertips can be used

for recognizing more gestures.

To detect the thumb, angle discrimination is also used. If we consider the fingertips as if they were
on a circle, the tips besides the thumb will be at an angle > π on one side and another angle θ
different from the rest on the other side.

60

The angle between fingertips considering line segments from the centroid of the hand was calculated
through basic trigonometry. To avoid calculating the centroid, the centre of the hand’s minimal
bounding circle was used, which is a good approximation (figure 5.19).

Therefore, more gestures could be added in case of need using this angle approach. Even though
our approach obviously cannot interpret a full sign language such as the American Sign Language
due to our restrictions and the nature of an angular approach, many combinations are possible
and would probably be enough for most human-computer interfaces.

61

Chapter 6

Implementation

In this chapter the essential implementation details of project will be shown. The structure of
the program will be first presented and the rest of the sections in the chapter will deal with each
part separately. In all sections pseudocode/plain text will be used so as to make the chapter
more readable, except for specific parts where it is interesting to see how specific external library
functions are used.

The programming language chosen was C++ and the libraries used were Qt 4.1 for the GUI,
OpenCV 1.1 for common computer vision functions and XTest library for manipulating the mouse
pointer. It should be noted that OpenCV itself provides GUI functionality but Qt was first chosen
in order to build the Condensation prototype, which will not be shown in this chapter as it has
little relevance. These choices were made upon the assumption that a compiled program would
be more efficient than its equivalent in Matlab form, even though no comparative tests were done,
and due to Matlab lacking an interface editor in its Linux version.

The program consists of two main windows, namely the camera window and the segmentation
window. The former show the images being captured by the camera in real time while the second
one shows the binary segmentation and the corresponding detected geometrical features (figure
6.1).

The program was structured as follows:

• main.cpp. Application main entrance which only creates the camera window.

• Camera window.cpp. The code for the whole logic of the application is contained in this
file.

• Segmentation window.cpp. File which contains the code for creating the segmentation
window and is used by Camera window.cpp. Does not contain other algorithmically relevant
code.

• Condensation.cpp. Contains the code of the Condensation tracker.

• MouseController.cpp. Contains the code for controlling the system’s mouse pointer.

63

Figure 6.1: Our application interface: the camera window (left) and the segmentation window (right).

The camera window is used to visualize the image captured by the camera as well as the samples of the

Condensation tracker in case of need. The segmentation window shows the binary segmentation of the

hand together with its geometrical features.

The names of the functions used in this chapter may not match the actual functions found in
the source code. Some of the function names refer to actual inline portions of code but were
summarized with the name of a function in order to increase the readability of the algorithms.
If necessary, the pseudocode can be easily matched with the actual source code. Only the most
relevant code will be shown and most auxiliary functions will be left.

Note: the OpenCV functions showed in this chapter will only be explained so that the code shown
is easily understandable. For more detail the documentation for the OpenCV functions can be
found at http://opencv.willowgarage.com/documentation/.

6.1 Main program

The logic of the program will be shown in this section. As mentioned before it is contained in
Camera window.cpp. The file contains the class ’Camera window’, which is created by main.cpp.
There are no public functions in the class as it was thought as a main program instead of a reusable
class.

Upon creation it initializes internal parameters and then proceeds to capture images. The relevant
variables which could be changed to change the behaviour of the program are shown below:

• IMAGE WIDTH, IMAGE HEIGHT. The captured image size.

• NUM SAMPLES. Number of samples for the Condensation tracker.

• mean. Reference skin colour mean for hand shape enhancement and binary segmentation.

• meanSeg. Variable skin colour mean used in adaptive segmentation.

• invCov. Inverse of the covariance matrix used for hand shape enhancement and binary
segmentation.

64

Once the relevant parameters are set, the program creates the segmentation window and then calls
setCameraWindow(), which initializes the camera window and the segmentation window.

setCameraWindow()

initCameraWindow(); /* initialize camera window background to black */

initSegmentationWindow(); /* initialize segmentation window background to black */

if !cameraIsConnected() then throw error;

tracker = createTracker(); /* create the condensation tracker structure */

configureCamera(); /* configure camera capture parameters */

capture(); /* called every 30 msecs */

As can be seen, at the end of initialization the function capture() is set to be called every 30
msecs. This function contains the main logic of the application. It grabs the image from the
camera and then the corresponding processes are performed, namely hand image segmentation,
binary segmentation, tracking and gesture recognition.

capture()

initVariables(); /* initialize image structures and other variables */

frame = cvQueryFrame(camera); /* capture image from the camera */

cvFlip(frame, img); /* flip image for mirror effect (OpenCV function)*/

convert img to HSV;

forall i,j in img do

mahal[i][j] = handShapeEnhancement(img[i][j]);

imgSeg[i][j] = binarySegment(img[i][j]);

endforall

processBinSeg(); /* see next section for details */

tracker->estimate(x, y, img, mahal); /* estimate hand position */

forall i in tracker->samples() do

drawSample(i);

/* calculate weighted mean colour of the samples */

meanColour += sampleColour(i);

endforall

if handIsVisible() then

65

updateSegmentationModel(meanColour); /* update skin colour model */

/* if hand was within sight in the previous iteration */

if handWithinSight then

if handIsMoving() and totalHands == 1 then

mouse->update(x,y);

endif

if !handIsMoving() and hand_totally_inside then

if totalHands == 1 then

gestureRecognition();

endif

endif

else

/* default state, set at initialization of the class */

handWithinSight = false;

endif

tracker->update(); /* update Condensation tracker state */

/* show the original image and binary segmentation

in the corresponding windows */

camera_window->setImage(img);

segmentation_window->setImage(imgSeg);

The main logic has been listed. In the next sections more detailed information will be given on
the specific parts that the code above used.

6.2 Hand shape enhancement and binary segmentation

The objective of hand shape enhancement is to obtain a probability density function which repre-
sents the skin pixel density in the image. This is done in the first for-loop in the function capture()
of the previous section.

Recalling section 3.1, the probability measure we used was the Mahalanobis distance of the pixels
to a previously calculated mean colour, which we save for each pixel in a matrix called mahal.
Binary segmentation is done for gesture recognition, but it was more efficient to do it together
with the calculation of the probability density function. Since we used adaptive segmentation,
we had another variable meanSeg which is initialized as a copy of mean and is updated with
the information from the tracker. Considering the mean colour meanSeg and the inverse of the
covariance matrix invCov, the corresponding code was as follows:

mahal[i][j] = cvMahalanobis(pixelColour, meanSeg, invCov);

where cvMahalanobis is an OpenCV’s function that returns the Mahalanobis distance from

66

pixelColour to meanSeg using the inverse of the covariance matrix invCov. All three parameters
are matrices.

Having calculated this Mahalanobis distance computing the binary segmentation is straightforward
as it is a matter of comparing the obtained distance to a threshold (θ < 2.4).

if mahal[i][j] < 2.4 then

imgSeg[i][j] = 1;

else

imgSeg[i][j] = 0;

endif

In order to update meanSeg with the information of the samples from the tracker a weighted average
skin colour was calculated from the colour of the pixels under the samples and their assigned weight.
The first thing that has to be checked is that the sample being examined is within the viewport, as
the prediction process of the tracker may have drifted it out of sight. Afterwards the mean can be
calculated. Depicted as meanColour += sampleColour(i) in capture(), it is expanded as follows:

...

forall i in tracker->samples() do

if withinViewport(i) then

meanColour += i.weight * i.colour;

totalWeight += i.weight;

endif

endforall

meanColour = meanSeg/totalWeight;

...

Afterwards, if a hand was actually visible, meanSeg is updated with meanColour if meanColour is
within 1 Mahalanobis distance from mean. This functionality was summarized as updateSegmen-
tationModel(meanColour) in capture():

updateSegmentationModel(meanColour)

mah = cvMahalanobis(meanColour, mean, invCov);

if (mah < 1) then

meanSeg = meanColour;

endif

In the next iteration of capture() meanSeg is used for calculating the skin probability density
and the binary segmentation. It should be noted that both mean and meanSeg are actually two-
dimensional as the mean colour used consists of components Hue and Saturation.

The reader might have noticed that the mean skin colour is calculated irrespectively of a hand
being detected or not. In case that a hand has not been detected then that calculation would be
useless. However, since the particles were painted to show the tracker in action it was decided that
the mean colour would also be calculated together.

67

6.3 Tracking

Tracking is done using the Condensation functions offered by OpenCV. OpenCV provides the
main structures needed and the algorithms. These structures contain information of the samples
(state, weight...) as well as the dynamic matrix, which we have to define. Apart of the dynamic
matrix, the weight function must also be defined. We will first introduce these functions.

The structure that contains all the information required by the tracker is CvConDensation:

typedef struct CvConDensation

{

int MP; //Dimension of measurement vector

int DP; // Dimension of state vector

float* DynamMatr; // Matrix of the linear Dynamics system

float* State; // Vector of State

int SamplesNum; // Number of the Samples

float** flSamples; // array of the Sample Vectors

float** flNewSamples; // temporary array of the Sample Vectors

float* flConfidence; // Confidence for each Sample

float* flCumulative; // Cumulative confidence

float* Temp; // Temporary vector

float* RandomSample; // RandomVector to update sample set

CvRandState* RandS; // Array of structures to generate random vectors

} CvConDensation;

MP is the number of dimensions of the tracking area. DP is the number of dimensions of the vector
that represents the state of the tracked object. DynamMatr is the dynamical matrix. SamplesNum
is the number of samples used by the tracker. flConfidence is the array of weights assigned to each
sample. RandS is an array of random values that represents the amount of noise to be added to
the array of samples. The rest of the fields are mainly used internally.

In order to allocate the previous structure, cvCreateConDensation is used:

CvConDensation* cvCreateConDensation(int dynam_params,

int measure_params, int sample_count)

dynam params is assigned to DP. measure params is assigned to MP. sample count is assigned to
SamplesNum. The function returns a pointer to the allocated CvConDensation structure.

Once the tracker structure is allocated, the samples are initialized with the function cvCon-
DensInitSampleSet. This function simply sums the noise to the samples’ state (recall the
stochastic diffusion of the samples at the prediction stage).

void cvConDensInitSampleSet(CvConDensation* condens,

CvMat* lower_bound, CvMat* upper_bound)

68

condens is a pointer to the tracker’s structure. lower bound is a vector of the lower boundary
(minimum values) for each dimension and upper bound likewise for the upper boundary.

To proceed to a new iteration of Condensation the function cvConDensUpdateByTime is
used. This function performs the selection and prediction stages.

void cvConDensUpdateByTime(CvConDensation* condens);

condens is a pointer to the tracker’s structure.

Now that we know the functions that OpenCV provides for implementing the Condensation

tracker we can proceed to see how they were actually used.

In our project a Condensation class was created in Condensation.cpp with functions that call
OpenCV’s corresponding functions, as well as defining the dynamic matrix and weight function.

The relevant public functions of our class are:

• initialize(). Initializes the structures of the tracker.

• estimate(x, y, img, mahal). Estimates the position of the hand, which is saved to x and
y.

• update(). Updates the state of the tracker (called before entering the next iteration).

• isObject(x, y). Determines if the object at (x,y) is a hand using the standard deviation of
the particles. Returns true if the standard deviation is below 100 pixels.

Relevant variables that can be used to change the behaviour of the tracker:

• NOISE STD DEV X = 29. Standard deviation of the amount of noise added to the
samples at the prediction phase for X dimension.

• NOISE STD DEV Y = 21. Same as above for Y dimension.

• SKIN BOUND = 2. Skin bound used for the window based weight function.

A condensation class is created as follows:

Condensation(num_samples, window_width, window_height, template_size);

where num samples is the number of samples, window width and window height the size of the
area to be tracked and template size is half the length of a side of the template for the observation
model (section 4.2.6). This constructor calls the OpenCV’s Condensation structure constructor
cvCreateCondensation:

filter = cvCreateConDensation(dynam_params, measure_params, num_samples);

69

After creation of the class, the function initialize() is called to initialize the corresponding struc-
tures of the tracker. The dynamic matrix is defined in this function, as well as the amount of noise
that will be used for the stochastic diffusion of the samples. Therefore, it is necessary to change
the source code of this function in order to change the dynamic matrix and noise parameters. ini-
tialize() calls OpenCV’s cvConDensInitSampleSet, which initializes the random sample set’s state
(x and y location at time steps t and t − 1 in our case, refer to section section 4.2.5) between an
upper bound and a lower bound so that the samples are not out of the tracking area.

initialize()

CvMat *lowerBound;

CvMat *upperBound;

lowerBound = cvCreateMat(4, 1, CV_32F);

upperBound = cvCreateMat(4, 1, CV_32F);

float F[] = {

2, 0, -1, 0,

0, 2, 0, -1,

1, 0, 0, 0,

0, 1, 0, 0,

};

memcpy(filter->DynamMatr, F, sizeof(F)); // set dynamical matrix

lowerBound->data.fl[0] = 0.0f;

upperBound->data.fl[0] = (float) WINDOW_WIDTH;

lowerBound->data.fl[1] = 0.0f;

upperBound->data.fl[1] = (float) WINDOW_HEIGHT;

lowerBound->data.fl[2] = 0.0f;

upperBound->data.fl[2] = 0.0f;

lowerBound->data.fl[3] = 0.0f;

upperBound->data.fl[3] = 0.0f;

cvConDensInitSampleSet(filter, lowerBound, upperBound);

cvRandInit(&(filter->RandS[0]), 0 /*mean*/, NOISE_STD_DEV_X /*std dev*/,

0 /*seed*/, CV_RAND_NORMAL /*distribution*/);

cvRandInit(&(filter->RandS[1]), 0 /*mean*/, NOISE_STD_DEV_Y /*std dev*/,

1 /*seed*/, CV_RAND_NORMAL/*distribution*/);

...

cvConDensInitSampleSet takes as input the pointer to the filter structure and the aforemen-
tioned lower and upper bounds. Notice the third and fourth dimensions are all 0 as they refer to
the position of the particles at time t− 1. cvRandInit initializes the random noise vector applied
to the samples. The parameters accepted are self-explanatory in the code above.

70

After initialization, an iteration of the tracker consists of calling estimate followed by update.
The former function performs the measurement stage of Condensation while the latter performs
the selection and prediction stages.

estimate(x, y, img, mahal)

/* Output parameters

* x, y - estimated position of the object

*

* Input parameters

* img - image to be measured

* mahal - image skin probability density

*/

x = y = 0;

totalWeight = 0;

forall i in samples do

if !withinViewport(i) do

i.weight = 0;

else

i.weight = measureWeight(i, img, mahal);

x = x + i.weight * i.x;

y = y + i.weight * i.y;

totalWeight = totalWeight + i.weight;

endif

endforall

x = x/totalWeight;

y = y/totalWeight;

measureWeight simply implements the weight function described in 4.2.6.

Afterwards the call update() simply calls OpenCV’s cvConDensUpdateByTime(filter).

The remaining function isObject(x, y) is used to evaluate the standard deviation of the particles
in order to detect the presence of a hand. The value of this standard deviation and its change
requires editing of the source code of the function.

6.3.1 Controlling the mouse pointer

The functionality of the mouse pointer is encapsulated in MouseController.cpp. This file con-
tains the functions required to move the system’s mouse pointer, concretely the X Window System
(does not work for other Windows, MacOS or GTK based systems). The library which contained
this functionality was XTest, which is part of Xlibs.

71

A MouseController class is constructed using the empty constructor MouseController(), which

The relevant public functions are:

• setCurrentReferencePosition(x, y). Sets the current reference position in order to cal-
culate amounts of change in different directions in the future. Used by the tracker to set the
current hand’s position.

• update(x, y). Moves the mouse pointer from its current position to the corresponding loca-
tion calculated from the input position (x,y) and its difference with respect to the reference
position.

• leftClickDown(). Performs the left click button down functionality.

• leftClickUp(). Performs the left click button up functionality.

• getDeltaX(). Returns the amount of change in X direction between the last two mouse
position updates.

• getDeltaY(). Same as above for Y.

It should be noted that the reference position mentioned is not the mouse pointer’s position, but
any position which could be served as a reference to calculate relative movements. In the context
of our project it is the hand’s current position. setCurrentReferencePosition(x, y), apart of
setting the current reference position also obtains the current position of the mouse pointer, which
the class needs internally to move the mouse pointer, as it’s location is obviously different from the
input reference position. In order to obtain the pointer’s location the following calls are necessary:

Display* display = XOpenDisplay(NULL);

/* Screen where the pointer is displayed */

Screen *screen = ScreenOfDisplay(display, i);

/* obtain pointer position */

ret = XQueryPointer(display, RootWindowOfScreen(screen),

0, 0,

¤tCursorX, ¤tCursorY, 0, 0, 0);

/* ret = true when the pointer’s position has been obtained. False otherwise */

The important external function here is XQueryPointer, which obtains the pointer coordinates.

Bool XQueryPointer(Display *display, Window w, Window

*root_return, Window *child_return, int *root_x_return, int *root_y_return,

int *win_x_return, int *win_y_return, unsigned int *mask_return);

display is a pointer to the structure that controls a display in the X server and is obtained us-
ing the XOpenDisplay function. The current pointer position is saved to currentCursorX and
currentCursorY. The rest of the parameters are irrelevant in our case and should be used as in-
dicated above. The function returns true if the pointer’s position was successfully obtained and
false otherwise.

72

update(x, y) moves the pointer to the new corresponding location.

update(x, y)

deltaX = xpos - currentReferenceX;

deltaY = ypos - currentReferenceY;

if abs(deltaX) > 4 || abs(deltaY) > 4 then

currentCursorX += deltaX;

currentCursorY += deltaY;

/* Check the cursor does not go out of the screen */

if (currentCursorX < 0)

currentCursorX = 0;

endif

if (currentCursorY < 0)

currentCursorY = 0;

endif

ret = XTestFakeMotionEvent(display, screen, currentCursorX,

currentCursorY, CurrentTime);

endif

The important external function here is XTestFakeMotionEvent, which moves the mouse pointer.

int XTestFakeMotionEvent(display, screen_number, x, y, delay);

The parameters are the display and output screen number, which are the same as previously. x
and y are the locations to which to move the pointer and delay the amount of delay of the event,
which is assumed to be 0 when delay is set to CurrentTime. The function returns true in case the
motion event was successful and false otherwise.

The mouse click functionality is achieved through XTestFakeButtonEvent, which is used by
leftClickDown() and leftClickUp().

ret = XTestFakeButtonEvent(display, button, is_press, delay)

The specification of XTestFakeButtonEvent is:

int XTestFakeButtonEvent(display, button, is_press, delay);

display and delay adopt the same values as previously. button is self-explanatory (equals 1 for the
left button) and is press is true for button press (click down) and false for button release (click
up). The function returns true in case the button event was successful and false otherwise.

73

6.4 Gesture recognition

In order to perform gesture recognition the input image has to be binary segmented first, which
we already did before. The segmented image, however, is noisy and has to be processed in order to
remove the noise. In capture() we summarized the operations as processBinSeg(), which in reality
consists of applying morphological operators, finding and removing connected components.

The morphological operators of erode and dilate were applied using OpenCV’s cvErode and
cvDilate. Since both have the same structure, only cvErode is shown below:

cvErode(source_img, dest_img, struct_element, iterations)

source img is the source image, dest img the destination image, struct element the structuring
element (default is 3-by-3) and iterations is the number of iterations applied (default is 1).

Connected components are found using OpenCV’s CvContourScanner, which is created using
cvStartFindContours.

CvContourScanner cvStartFindContours(CvArr* image, CvMemStorage* storage,

int header_size=sizeof(CvContour), int mode=CV_RETR_LIST,

int method=CV_CHAIN_APPROX_SIMPLE, CvPoint offset=cvPoint(0, 0))

image is the binary source image. storage is a container of the retrieved contours. header size is
the size of the sequence header. mode is the retrieval mode. method is the approximation method
used and offset the region of interest offset. The function returns CvContourScanner, which is a
structure used to traverse the contour.

We used this function in the following manner:

CvContourScanner scanner = cvStartFindContours(image, contourStorage,

sizeof(CvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

where CV RETR EXTERNAL means we are only interested in the outer contours and CV CHAIN
APPROX SIMPLE simply determines how the points of the contour are stored (for further infor-
mation please refer to OpenCV’s documentation).

The contours are then scanned using cvFindNextContour, which on successive calls returns the
next non-visited contour.

while ((c = cvFindNextContour(scanner)) != NULL) {

area = cvContourArea(c);

if (area < 5000) {

cvSubstituteContour(scanner, NULL);

}

}

74

The code above checks that all contours found have an area greater than >= 5000. Otherwise they
are eliminated. This way larger portions of noise which were not removed by the morphological
operators are now eliminated.

Once the segmented image is clean of noise, we proceed by applying our gesture recognition al-
gorithm. The relevant OpenCV functions used were cvApproxPoly, cvConvexHull2 and cv-
ConvexityDefects.

CvSeq* cvApproxPoly(const void* src_seq, int header_size,

CvMemStorage* storage, int method, double parameter, int parameter2=0)

src seq is a sequence of points. header size is the header size of the approximated curves. stor-
age is where the approximated contours are saved. method is the approximation method used.
parameter is a method-specific parameter; in the case of CV POLY APPROX DP it is a desired
approximation accuracy.

CvSeq* cvConvexHull2(const CvArr* input, void* hull_storage=NULL,

int orientation=CV_CLOCKWISE, int return_points=0)

input is a sequence of points. hull storage is where the convex hull is saved. orientation is the
orientation of the convex hull (points ordered clockwise or counter-clockwise). return points is
non-zero when the points will be saved in the return.

CvSeq* cvConvexityDefects(const CvArr* contour,

const CvArr* convexhull, CvMemStorage* storage=NULL)

contour is the sequence of points. convexhull is the convex hull of the contour. storage is where
the found convexity defects will be stored.

These functions were used in the following way:

// Polygonal approximation of the contour (hand)

cPoly = cvApproxPoly(contour, sizeof(CvContour), 0, CV_POLY_APPROX_DP, 20, 0);

// Convex hull of the polygonal approximation

cHull = cvConvexHull2(cPoly, 0, CV_CLOCKWISE, 1);

// variable checked in capture()

// true when the enclosing circle of the cHull is completely within the viewport

hand_totally_inside = drawEnclosingCircle(cHull, img);

// compute convexity defects

cDefects = cvConvexityDefects(cPoly, cHull);

numDefects = cDefects->total;

75

// filter defects for valid and invalid defects

filterDefects(cDefects);

Once the defects are detected the corresponding checks based on the deepest points in the defects
are used for gesture recognition, as explained in 5.4.5.

76

Chapter 7

Results

In this section the results and evaluation of each phase of the project are presented in approximate
chronological order.

Firstly, hand shape enhancement will be evaluated. Subsequently, we will proceed with the results
of the hand tracker showing the different phases of the implementation process and the results
obtained. Afterwards, the results of binary segmentation and our gesture recognition algorithm
will be shown. To conclude, the results of the whole human-computer interface in action will
presented.

It should be noted that when performance tests were performed both the images captured in real-
time and the segmented image (both 640x480) with the corresponding calculations on it were shown
on screen, which is computationally expensive but gives more feedback to the user. Therefore, this
should be factored when interpreting the performance numbers shown in the next sections.

7.1 Hand shape enhancement

Recalling from chapter 3 the starting point was to obtain a probability density image that would
describe the skin-likelihood of each pixel in the image, which was thereafter used for the mea-
surement phase in the Condensation tracker and for binary segmentation. A measure of the
adequacy of each colour space was their performance in binary segmentation.

The test set of images consisted of a series of photographs of the author’s right hand under differ-
ent lighting environments (appendix B). These environments were basically the places where we
developed our system. Under fluorescent light three images were taken at home and four at the
workplace at the university at night, so that daylight would not affect them. During the day, four
pictures were taken at the workplace under both fluorescent light and daylight (coming from the
window). And finally, a set of three photographs were taken in the outside under daylight, in the
shadow, as photos under direct sunlight could not be used as they were severely overexposed. The
hands from the images were segmented manually from the background.

77

All the photographs were taken with our webcam. It could be argued that the images obtained
are not representative as only a hand of one subject was used, plus the images were all taken with
the same camera and thus have a specific chromacity dependent on it. However, it is our belief
that our approach could be easily extended to be more generalistic by simply using a broader test
set, even though the number of false positives would most probably increase.

The first step in the enhancement phase was to choose an appropriate colour space. We selected
two colour spaces and trained a skin detector based on single Gaussian skin distribution modelling.
In figure 7.1 an original hand image and its segmentation (marked as green) in the (a,b,c) space
(section 3.1.1) and HSV space are shown. In both colour spaces the hand could be segmented
reasonably but the segmentation quality in the (a,b,c) space depended heavily on the skin model
used and only performed better when these skin models have been trained specifically for those illu-
mination conditions. Selecting a specific model each time, however, is not desirable as the process
should be as automatic as possible, involving less user interaction. Even though it is technically
possible to automatically test the skin models ’on the fly’ and choose the most appropriate one
each time, it is not convenient for our system as efficiency is a major concern and such method
would certainly have a big impact on the performance.

Figure 7.1: Segmentation of a hand under fluorescent light. The matrices used for both were those

obtained for daylight conditions. The picture in the middle was segmented in the (a,b,c) space and

the Mahalanobis distance limit to the calculated mean skin colour was θ = 2.8. The right picture was

segmented in the HSV space, and the Mahalanobis distance limit was θ = 2.4. It can be seen that when

comparing matrices associated to the same conditions HSV’s performance is better.

Since the HSV colour space offered better binary segmentation the resulting skin probability density
image would also be better, hence we chose HSV over (a,b,c). Being the HSV space more suitable
for our case does not mean it does not have its drawbacks too. Even though no performance tests
were carried out, conversion to the HSV space was noticeably slower than to the (a,b,c) space, so
there is area for improvement in this sense, starting by considering other colour spaces for example.

7.2 Hand tracking

The hand tracker implementation stage was divided into two phases so that the test environment
would be more controlled. The first phase involved creating a prototype in order to test our
understanding of the Condensation algorithm and the parameters it needed. This test would
consist of a very controlled environment with no noise. The second phase was about testing the
tracker in a real situation and thus the parameters considered previously were evaluated and tuned
for the movement of a hand.

78

7.2.1 CONDENSATION prototype

The Condensation prototype consisted of a small window with a black background on which a
white square could move in any direction at constant speed (figure 7.2). The white square simulated
the segmented element which we had to follow. The tracking algorithm was then applied in order
to see if it could follow the white square successfully. Recall the tracked object’s location was
estimated as a weighted average of the samples’ positions.

The first problem encountered was with the initialization of the algorithm. We used a dynamical
model based on the positions at time step t and t+1, which were calculated by applying a dynamic
matrix to a matrix of positions at t and t−1 (section 4.2.5), thus the position of the tracked object
at the previous time step was needed. The initialization call of the algorithm in OpenCV created
a set of random samples at random locations, treating all dimensions of a sample equally. During
tests we saw that it was then necessary to make sure that the position of the samples at t and t−1
were the same initially, as otherwise they would be drifted away during the prediction phase, or
more intuitively, samples would move out of the viewport whether the actual object to be tracked
was visible or not.

Figure 7.2: Condensation prototype used to test the algorithm. The tracker had to follow a moving

white square, which simulated a segmented element.

The next task was to check that the weight function satisfied our requirements. Initially, Holden
and Owens (2003)’s weight function was used, which consisted of a Gaussian function based on
the number of skin pixels within a 40x40 square window. We considered that such window of
1600 pixels was too big and tried a much smaller window of 64 pixels (8x8), which yielded the
same results in the end and was much more efficient. However, this function was conceived for
an already segmented hand and therefore we had to change it to suit our approach, which was to
apply it directly on the unprocessed image.

Once we were sure all the parameters were correct and the tracker was working, we tried to add
a second white square in order to test the supposedly natural multitracking capability of the
Condensation algorithm. If both squares were visible from the start the samples would revolve
around both squares. On the contrary, if they were initially hidden, then the samples would settle
around the square which would become visible first, completely ignoring the other when it would
finally appear. If the elements to be tracked were not of the same size, the density tended to shift
towards the bigger one. The Condensation algorithm as it was originally concieved was then not
very suitable for multiple target tracking as the multimodal density could only be maintained for

79

a small period. However, with certain changes the algorithm could definitely do so. For example,
it could be set that after detection of an object a certain percentage of samples would still keep
independent of the prior density and move randomly across the image. For further information
the reader is encouraged to read appendix A.

7.2.2 CONDENSATION applied

Once we were certain that the prototype implementation was working as expected we proceeded
to apply it to a real situation, but first we had to change the weight function since we did not have
the benefit of an already segmented image or a background model(recall section 4.2.6).

In order to determine the parameters for the dynamical model a test set consisting of images of a
hand held moving lantern was used so as to mimic the random movement of a hand. This way we
could obtain a generalization of the stochastic parameters of the horizontal and vertical movement
of a hand in front of the camera through time. Further information is shown in appendix C.

When the dynamical model had been defined the tracker was tested against a moving hand at the
workplace with it randomly moving in front of the camera.

Initialization consisted simply of letting the tracker settle to a steady state (samples uniformly
distributed across the image) through iterations without any hand. When a hand appears on scene
the samples rapidly concentrate around it approximating a Gaussian distribution, which is also
maintained during temporary occlusion. Figure 7.3 shows that thanks to the dynamical model the
distribution can be maintained when the hand disappears momentaneously as the tracker estimates
its location given its previous position in time. Even though the camera was able to capture at 30
frames/sec, we only achieved 5 frames/sec with a distribution of N = 500 samples at a resolution
of 640x480 with both Condensation and segmentation turned on. At N = 100 the frame rate
increased to 6 frames/sec only, so the former amount of samples was left for higher accuracy.

Figure 7.4 shows the samples gather across the whole hand but dispersion seems rather high,
which suggests that the weight function could be further improved. The sequence of images show
that when moving the hand at a reasonably high speed the estimated position by the tracker is
slightly off the centre of the hand (if too fast, track would just be lost). This is due to our first
order dynamical model, which does not take the hand’s acceleration into account and the samples
cannot keep up with the pace of the hand. However, since the purpose of the tracker was not to
track the location as exact as possible but for moving the mouse pointer, adding complexity to the
model with a second order approach did not seem necessary. In any case, if the tracker happened
to have lost track of a rapidly moving object the recovery speed was instantaneous when the object
slowed down. Accuracy could be increased with a higher amount of samples but the impact on
performance would be considerable.

A possibility that might happen in presence of skin coloured elements in high clutter (noise, for
the most part) is that the clutter may have the higher posterior density. In that case the particles
will settle around the hypothesis with highest probability and the appearance of a hand in other
areas of the image may be ignored. In figure 7.5 we can see that the hand is completely invisible
to the tracker, only reacting when it approaches the previous hypothesis. While this does not
affect the tracker much in the sense that tracking (and thus pointer movement) is still possible,

80

Figure 7.3: Sequence of images showing the benefits of a motion estimator when partial occlusions occur.

As the hand travels from left to right, it is occluded by the book but the samples continue moving along

based on the state at the previous time step. Notice the transition from frame 3 to frame 5, where the

samples are over the book due to our dynamical model of constant velocity, even though the hand is not

visible there (the estimated position is not the visual mean position of the samples because the samples

on the hand at the left have more weight).

Figure 7.4: Sequence of images of a moving hand. It can be seen that in frames 4, 5, 7 and 8 the tracker

loses a bit of track of the hand as it travels faster (red circle indicates the estimated location), but when

the hand is stopped the tracker recovers instantly.

the segmented result will not be useful for recognition if it cannot be completely cleaned, as it
is prone to error. On the other hand, this can also be seen from another perspective in which a
hypothesis is not so much affected by noise. If the tracker is following a hand and the hand passes
over a small noise area or close to it, then the noise will only be assigned temporary probability,
which will disappear eventually for lack of high weight samples around. In any case, the problem
could be solved by using knowledge from binary segmentation or with multitracking, in which case

81

multiple hypothesis could be tracked and the small area of noise could be ignored.

Figure 7.5: Sequence of images where the samples have been initially distracted by noise. When a hand

appears in the third frame it is completely ignored until it approaches the samples.

7.2.3 Hand presence detection

We have already seen that our final chosen method of hand detection based on the standard
deviation of the samples positions was enough for our purposes. In this section we will compare this
method to the first method conceived, which consisted of calculating the median of the probability
densities at each pixel within an 8x8 window centred at the estimated location.

Both methods effectively detect the hand when it is within the viewport, either when the hand
is moving faster or slower, as long as the particles are able to track the hand. Which method is
more efficient depends on the number of samples (for the standard deviation) and the window size
(for the median). In our case the window size is smaller, so the median seemed as the first choice.
However, using the median the hand would be lost during temporary occlusions. Even though the
hand is not expected to be occluded in general, it is a good feature from motion estimators and
we decided to keep it, thus the standard deviation was finally used.

It is noticeable in the images in this chapter that the hand’s appearance on screen is effectively
detected with our samples dispersion approach (section 4.3). However, it should be noted that this
method is not the best as in situations where the hand disappears from the viewport the particles
return to a balanced steady state (uniformly distributed across the image) and during this return
their dispersion is slowly increased, thus the tracker believes a hand is still visible when it clearly
is not.

82

To picture the consequences of this, we have to see the tracker’s estimation applied for moving
the mouse pointer. Straightforward implementation of our pointer movement algorithm using the
estimated position of the hand allows us to move the pointer. Consider now a situation where
we start with our hand at the centre of the viewport and move to the left until it completely
disappears. The pointer will subsequently move towards the right relative to the position where it
was initially, but when the hand disappears the pointer will bounce slightly to the right again as
momentaneously the tracker thought the hand was still visible (figure 7.6).

Figure 7.6: Sequence of images where the tracked hand disappears towards the left side. With our hand

presence detection method the estimated location bounces back since the dispersion of the particles is still

low.

A solution to this issue was not found without resorting to segmentation, but in the end it was left
as was since the gestures for triggering the tracker on and off meant this was no longer a problem.

7.3 Gesture recognition

7.3.1 Binary segmentation

Having chosen the adequate colour space during evaluation of the hand shape enhancement method,
the problem remaining for binary segmentation was to choose an adequate threshold to discriminate
skin and non-skin pixels. This threshold was the Mahalanobis distance of the colour of a pixel to
the mean skin colour we had found.

In figure 7.7 the chart shows the ratio of true positives to false positives depending on the Maha-

83

lanobis distance (squared) used for the same picture and table 7.8 presents the data in more detail.
A threshold can be determined as a trade off between true positives and false negatives.

Figure 7.7: True positives (blue) and false positives (red) as functions of the skin detection threshold

measured in terms of squared Mahalanobis distances to the mean colour in HSV space. Using this a value

that maximizes the number of true positives for a determine amount of false positives can be determined.

In our case a value around θ2 = 6 was chosen.

Squared Mahalanobis distance True positives % Total skin pixels False positives
1 7719 (34.19%) 10
2 13856 (61.37%) 28
3 17633 (78.09%) 40
4 19657 (87.06%) 59
5 20849 (92.34%) 107
6 21477 (95.12%) 206
7 21803 (96.56%) 324
8 21979 (97.34%) 494
9 22086 (97.82%) 734
10 22154 (98.12%) 978
11 22208 (98.36%) 1241
12 22248 (98.53%) 1515

Figure 7.8: True positives and false positives based on the Mahalanobis distance. Between 5 and 6 the

increase in detection rate begins to slow down while the number of false positives begins to grow faster.

However small the number of false positives or undetected skin pixels, they can affect the recogni-
tion of the gesture and thus noise clean up is necessary, which is done first applying the opening
morphological operation followed by closing. Once small noise areas are removed, bigger noise ar-
eas might still be left, which are removed by detecting connected components and discarding those
which have an area smaller than our considered threshold. The final result should be a cleanly

84

segmented hand ready for recognition (see figure 7.9), as it would not be useful otherwise.

Figure 7.9: a) Original input image. b) Segmented image, with a lot of noise. c) Open shrinks small

areas of noise. d) Close fills small holes and reconstructs area deleted by the opening. e) Bigger noise areas

are detected as connected components and removed. The largest remaining connected component is then

filled.

So far the results achieved were already good enough for recognition, but we still wanted to make it
more robust to varying illumination and thus we implemented an adaptive skin colour segmentation
algorithm as detailed in section 5.2.2. We used a testing image set consisting of a sequence of 84
frames of a moving hand where segmentation could be improved in some of them.

In our tests (figure 7.10) the adaptive algorithm provided important improvement in some cases
and only resulted in marginally worse segmentation in few others. It can be observed that the
images obtained with the adaptive algorithm are in general less noisy. In frames where the non-
adaptive model yields an important amount of holes in the hand it can be seen that these same
holes are much smaller when using the adaptive model.

7.3.2 Recognition

For gesture recognition to be triggered the segmented hand must be stationary (or almost) in order
to minimize erroneous detections. Furthermore, the system will only try to recognize the gesture
if the segmented hand is the only segmented area in the image. This means that if there is too
much clutter and more than one skin patch is detected the recognition system will be inactive. If
the hand is not completely inside the viewport, then it will also not be considered for recognition.

In the case of figure 7.11 we can see that other skin-coloured regions were detected gesture recog-
nition cannot be triggered. This problem could potentially be solved by background substraction
methods or multitracking, or maybe all combined. In the case of background substraction methods
we have the problems mentioned in 5.2. Using multitracking we could detect different clusters in

85

Figure 7.10: Some frames from a test sequence where the hand received uneven light. The skin pixels are

marked in green while the background pixels are left as is. Normal segmentation is used in the upper rows

and adaptive segmentation in the lower rows. It can be seen that the results of the adaptive segmentation

are in the worst case only slightly worse, as is the case of frame 1 where there are more true positives in

the case of normal segmentation. Especially noticeable improvement can be observed in frames 2 and 3,

where the percentage of detected hand pixels is visibly higher. Normal segmentation left several holes in

the fingers while adaptive segmentation left much smaller holes. Another observable improvement is that

the amount of noise (false positives) is much smaller.

the image and our gesture recognition method could be used to discard valid and invalid gestures.
In any case, it seems that the problem can be solved by combining these methods.

Figure 7.11: An image and its segmentation. When the hand cannot be reliably segmented gesture

recognition is not possible. Since the tracker uses a weight function based on skin colour it gets confused

as well, so it cannot be used to distinguish the hand cluster from the rest.

In figure 7.12 the corresponding segmentations of our gesture set are shown. The functions of
these gestures were mouse pointer motion trigger on and off, and mouse left button click up and
down (useful for drawing or dragging elements, for example). Motion stopping and left button
up gestures were chosen to be the same as it appears to be more intuitive to the user. From the
pictures it is obvious that the method is both rotation-invariant and scale-invariant, which is useful

86

in our project as the hand is expected to move around and staying exactly the same all through is
difficult. However, in case of need orientation can be calculated from the position of the fingertips
and thus a new set of gestures could be conceived, taking advantage of this.

Figure 7.12: Segmented images of our gesture set. Only the deepest points in the convexity defects have

been indicated (green points).

The system also proved adaptable to different hand morphologies, as it was tested with two other
subjects with the same results. This is due to the fact that we only made use of convexity defects,
but further testing would be necessary to confirm that the system is also robust if the extension
of considering fingertips and the angles between them were to be implemented.

Performance of gesture recognition was completely related to segmentation quality and thus no
specific test set was made in order to test the accuracy as they could all be biased towards a
certain result. In general, slight defects in segmentation did not affect the recognition due to our
mechanism of approximation, but it was difficult to determine to which extent the system was
still able to recognize a gesture properly. In absence of clutter and with uniform illumination
the system could achieve 100% accuracy due to the simplicity and robustness of the geometric
characteristics considered. As far as time performance, the frame rate dropped from 5 fps to 4
fps when segmentation, tracking and gesture recognition were combined. Without the tracker the
frame rate rose to 7 fps, which appears to be on par with some methods consulted in literature such
as Fang et al. (2007), who achieved 10fps. It is important to take into account that these frame
rates were based on live capture from the camera, not a previous set of images, which would be
faster. Due to different equipment, algorithms and programming approach it is certainly difficult
to establish comparisons, but the simplicity of our method leads us to believe in its performance.

7.4 All combined: Human-Computer interface

Having tested all parts individually it was time to assemble them together and test the whole
system. The functionalities associated to the recognized gestures were added so that we could
move the mouse pointer and simulate left click.

The first important thing was to make sure that gestures would only be recognized when the
movement of the hand is minimal (±4 pixels), as errors would be much less likely to appear.
For this we simply moved our hand in front of the camera and saw this is the case. We found
that for higher robustness it would probably have been better to have implemented a triggering

87

moving gesture as otherwise, if our hand stays stationary for a frame, gesture recognition could be
triggered.

Afterwards we proceeded to test that mouse pointer trailing could be activated or deactivated on
demand. By default mouse pointer motion was disabled. We started by placing our open palm in
front of the camera so that it would fit completely inside the image area, since the open palm is
recognized as pointer motion switch off. Then we tested that trailing could effectively be activated
and deactivated on the fly by switching between open palm and arrow gesture, which worked
as expected. Figure 7.13 shows the transition from an open palm to the arrow gesture and the
posterior mouse pointer movement.

Figure 7.13: Left : open palm gesture, which stops pointer motion. Right : arrow gesture, which triggers

pointer motion. Notice the new position of the hand in the right image and the new position of the pointer.

Figure 7.14: In the top-left image the mouse pointer is over the window bar and the gesture thumb-up

has been performed, which means left button click down and thus the window is dragged. The top-right

image shows that the window can be moved while it is dragged. Bottom image shows the window has been

released after the open palm gesture triggered the left button click up functionality.

88

To test the left button click we decided to drag a window. Figure 7.14 shows the thumb-up gesture
when the pointer is on the top of a window (recall that the necessary previous gesture was the
open palm, as tracking has to be disabled in order to recognize a new gesture). The thumb-up
gesture meant left button click down, which meant that maintaining this gesture we were then able
to move the dragged window around the screen. It is interesting to note that given the small image
resolution of the camera the hand has very limited motion, thus it was difficult to drag the window
from a top corner to a bottom corner, for example. A trick to overcome this was to make the hand
disappear towards the direction we intended to move and reappear at the opposite side, iterated as
long as necessary. The problem with this is that we would face the bouncing issue related to hand
detection with samples dispersion mentioned in a previous section, thus doing so while triggering
mouse pointer motion on and off successively could solve the issue. After opening the palm again
this time the gesture would be interpreted as left button up and the window is dropped.

With all the required functionality tested we could conclude that the goals set initially were
achieved. More than the number of actual gestures recognized the concerns were related to ro-
bustness and performance. Robustness has been achieved for the functionality required but a
performance of only 4 fps with a 2.4GHz processor can be certainly improved, even though these 4
fps were calculated with the captured images and the corresponding processed segmentation shown
on screen. While the tests indicate that acceptable real-time interaction is possible, a clear path
of progression in the future is to make the experience smoother.

89

Chapter 8

Conclusions

Human-Computer interaction using hand gesture recognition is a field that increasingly gets atten-
tion year after year. The methods involved have been traditionally computationally intensive for
real-time usage but newer and more powerful computers have allowed much progress in the field.
We have achieved our initial goals of implementing a gestual interface based on just a camera and
even though we did not achieve competitive real-time performance we constructed a solid basis
which can certainly be further improved.

The logical first step in such an interface was to obtain the probability density of the location of the
hand. The use of a single Gaussian model for skin distribution modelling meant that we required
little training data in order to obtain a general model, as well as being simple and storage-efficient.
The choice of colour space played a very important role as we struggled for robustness under
different light conditions at the initial stages of the project. The (a,b,c) space was competitive
when the models used in each environment had been trained specifically for them, but it was too
much of an inconvenience to switch between models if a more robust one could be found. HSV space
(HS, concretely), on the contrary, offered much more robustness to these changing conditions, as
it explicitly separated chrominance from luminance, even though at the expense of some efficiency.

The location of the hand would serve for moving the mouse pointer. Hand tracking was necessary
but segmentation alone had many inconveniences. Out of two motion estimators, Kalman filter and
Condensation, the latter was chosen as we believed it would perform better for our conditions
based on comparisons found in literature. The first order dynamical model used based on the
tracked object’s positions at current and previous time steps proved sufficient for moving the
mouse pointer, even though it could not achieve high accuracy at higher motion speeds. The
window-based weight function served for the purpose even though the samples dispersion and
estimated position suggest it could be further improved. In tests the number of samples required
for decent accuracy was as low as N = 100 but we finally increased that number to N = 500
as accuracy improved dramatically and did not have as much impact on performance as could
be expected, probably because the performance of the Condensation algorithm improves as N
increases (Isard and Blake, 1998a). Hand presence detection (in front of the camera) was achieved
through analysis of the dispersion of the samples (standard deviation), which was useful but had
inconveniences when the hand disappeared towards the sides of the image area, thus another better

91

method could probably be conceived.

Once the mouse pointer movement part was done, the second part consisted of recognizing gestures
to add functionality to the interface. Before being able to recognize gestures the hand had to be
isolated from the background. From the skin probability density image obtained it was straight-
forward to obtain the binary segmentation of the hand. As the obtained segmentation was noisy,
it was cleaned using morphological operators and finding small connected components. The re-
sulting segmentation was generally good but additional robustness was sucessfully added through
an adaptive segmentation technique, achieving improvement and reducing the amount of noise.

When the hand was successfully separated from the background we could proceed to recognize
the gesture. A small gesture set for the functions of mouse pointer movement on/off and left
button click up/down was considered, but the method is extendable to a broader gesture set.
Geometrical features were obtained from the segmented hand for the recognition algorithm and
thus its robustness was highly dependent of the quality of the segmentation. Even though the
method had some requirements regarding the position of the hand with the palm necessary facing
the camera, fingertips and valleys between them could be successfully detected without heavy
impact on efficiency, thus we believe the algorithm obtained was quite powerful.

Aside of the issues mentioned, the major concern was the efficiency obtained, which was only of
4 fps with images of 640x480 pixels. This number, however, was obtained with all the samples
and the segmentation result being painted and shown on screen together with the images captured
in real time, thus the true performance is probably much better. In any case, some areas seem
conceptually inefficient. For example, the tracking process could probably help segmentation in
order to specify a region of interest and avoid segmenting the whole image area. We did not find
a way to do so, but if this could be improved, then the whole process would be sped up by several
orders.

All parts combined, the initial goal of constructing a simple human-computer interface substituting
a common mouse device was achieved. Were the project to be continued, the working direction
would seem to be to address the issues mentioned.

8.1 Further work directions

Apart from the possible improvements mentioned previously, there are also other possible direc-
tions, some of which were considered but finally left out of our scope. Some of these are:

• Find a way to segment only the hand and discard the forearm. In the project, one important
requirement was to wear sleeves to avoid this problem, since this was not an easy task and
existing literature has also opted to omit it.

• Expand gesture set making use of the fingertips and the angles between them.

• Improve segmentation in cases where there is heavy skin-coloured clutter.

• Recognize gestures in movement. To minimize errors, recognition was only triggered when
the hand was static, but adding recognition in movement is useful for gaming applications,
for example.

92

• Multiple hands tracking for enhanced functionality. This seems to be a natural extension of
our system as we can take advantage of the multi-modality of the Condensation algorithm.

• Motion recognition. Only static gesture recognition was considered but recognizing moving
gestures would add even more possibilities.

And so forth.

In conclusion, a whole new world of possibilities are possible and there is certainly room for future
work.

93

References

S. Askar, Y. Kondratyuk, K. Elazouzi, P. Kauff, and O. Schreer. Vision-based skin-colour segmen-
tation of moving hands for real-time applications. In Visual Media Production, 2004. (CVMP).
1st European Conference on, pages 79–85, March 2004.

D. G. R. Bradski and A. Kaehler. Learning OpenCV, 1st edition. O’Reilly Media, Inc., 2008. ISBN
9780596516130.

L. Bretzner, I. Laptev, and T. Lindeberg. Hand gesture recognition using multi-scale colour fea-
tures, hierarchical models and particle filtering. In FGR ’02: Proceedings of the Fifth IEEE
International Conference on Automatic Face and Gesture Recognition, page 423, Washington,
DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1602-5.

D. Brown, I. Craw, and J. Lewthwaite. A som based approach to skin detection with application
in real time systems. In in Proc. of the British Machine Vision Conference, 2001.

M. Deriche and I. Naseem. A new approach to face localization in the hsv space using the gaussian
model. pages 373–383, 2007.

T. B. Dinh, V. B. Dang, D. A. Duong, T. T. Nguyen, and D.-D. Le. Hand gesture classification
using boosted cascade of classifiers. In RIVF, pages 139–144, 2006.

D. Douglas and T. Peucker. Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. Canadian Cartographer, 10:112–122, 1973.

Y. Fang, J. Cheng, K. Wang, and H. Lu. Hand gesture recognition using fast multi-scale analysis.
In ICIG ’07: Proceedings of the Fourth International Conference on Image and Graphics, pages
694–698, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2929-1. doi:
http://dx.doi.org/10.1109/ICIG.2007.105.

J. Hershberger and J. Snoeyink. Speeding up the douglas-peucker line-simplification algorithm. In
Proc. 5th Intl. Symp. on Spatial Data Handling, pages 134–143, 1992.

E.-J. Holden and R. Owens. Representing the finger-only topology for hand shape recognition.
volume 12, pages 187–202, Warsaw, Poland, Poland, 2003. Polish Academy of Sciences.

R. Hsu, M. Abdel-Mottaleb, and A. Jain. Face detection in color images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24:696–706, 2002. ISSN 0162-8828.

M. Isard and A. Blake. Icondensation: Unifying low-level and high-level tracking in a stochastic
framework. In ECCV ’98: Proceedings of the 5th European Conference on Computer Vision-
Volume I, pages 893–908, London, UK, 1998a. Springer-Verlag. ISBN 3-540-64569-1.

95

M. Isard and A. Blake. Condensation—conditional density propagation for visual
tracking. Int. J. Comput. Vision, 29(1):5–28, 1998b. ISSN 0920-5691. doi:
http://dx.doi.org/10.1023/A:1008078328650.

M. Jones, , M. J. Jones, and J. M. Rehg. Statistical color models with application to skin detection.
In International Journal of Computer Vision, pages 274–280, 1999.

P. Kakumanu, S. Makrogiannis, and N. Bourbakis. A survey of skin-color modeling and detection
methods. Pattern Recogn., 40(3):1106–1122, 2007. ISSN 0031-3203.

R. E. Kalman. A new approach to linear fi ltering and prediction problems. volume 82, pages
35–45, 1960.

R. Khan, J. Stöttinger, and M. Kampel. An adaptive multiple model approach for fast content-
based skin detection in on-line videos. In AREA ’08: Proceeding of the 1st ACM workshop on
Analysis and retrieval of events/actions and workflows in video streams, pages 89–96, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-318-1.

K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis. Real-time foreground-background seg-
mentation using codebook model. 11(3):172–185, June 2005.

R. Lockton and A. W. Fitzgibbon. Real-time gesture recognition using deterministic boosting. In
Proceedings, British Machine Vision Conference, 2002.

S. Malik. Real-time hand tracking and finger tracking for interaction. Paper for Vision Course,
2003.

C. Manresa, J. Varona, R. Mas, and F. J. Perales. Real-time hand tracking and gesture recognition
for human-computer interaction. volume 0, pages 1–7, 2000.

S. McKenna, S. Gong, and Y. Raja. Modelling facial colour and identity with gaussian mixtures.
31(12):1883–1892, December 1998.

R. O’Hagan and A. Zelinsky. Visual gesture interfaces for virtual environments. In AUIC ’00:
Proceedings of the First Australasian User Interface Conference, page 73, Washington, DC,
USA, 2000. IEEE Computer Society. ISBN 0-7695-0515-5.

E.-J. Ong and R. Bowden. A boosted classifier tree for hand shape detection. In Automatic Face
and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, pages
889–894, May 2004.

P. Peer, J. Kovac, and F. Solina. Human skin colour clustering for face detection. 2003.

T. Petrie. Tracking bouncing balls using kalman filters and condensation, unknown.
http://www.marcad.com/cs584/Tracking.html.

S. Phung, A. Bouzerdoum, and D. Chai. A novel skin color model in ycbcr color space and its
application to human face detection. pages I: 289–292, 2002.

D. Z. Ramani, R. Duraiswami, H. N, and L. S. Davis. Multimodal tracking for smart videoconfer-
encing. In In Proc. 2nd Int. Conference on Multimedia and Expo, 2001.

R. Reilly and A. Hanson. Gesture recognition for augmentative human computer interaction. In
Engineering in Medicine and Biology Society, 1995., IEEE 17th Annual Conference, volume 2,
pages 1275–1276 vol.2, Sep 1995.

96

M. Shamsi, R. A. Zoroofi, C. Lucas, M. S. Hasanabadi, and M. R. Alsharif. Automatic facial
skin segmentation based on em algorithm under varying illumination. IEICE - Trans. Inf. Syst.,
E91-D(5):1543–1551, 2008. ISSN 0916-8532.

J. Sklansky. Finding the convex hull of a simple polygon. 1:79–83, 1982.

M. Spengler and B. Schiele. Towards robust multi-cue integration for visual tracking. 14(1):50–58,
2003.

T. Starner, A. Pentland, and J. Weaver. Real-time american sign language recognition using desk
and wearable computer based video. IEEE Trans. Pattern Anal. Mach. Intell., 20(12):1371–1375,
1998. ISSN 0162-8828.

M. Storring, T. Kocka, H. Andersen, and E. Granum. Tracking regions of human skin through
illumination changes. 24(11):1715–1723, July 2003.

S. Suzuki and K. Abe. Topological structural analysis of digitized binary images by border follow-
ing. 30(1):32–46, April 1985.

V. V. Vassili, V. Sazonov, and A. Andreeva. A survey on pixel-based skin color detection techniques.
In in Proc. Graphicon-2003, pages 85–92, 2003.

J. P. Wachs, H. I. Stern, Y. Edan, M. Gillam, J. Handler, C. Feied, and M. Smith. A gesture-based
tool for sterile browsing of radiology images. volume 15, pages 321–323, 2008.

T. Wilhelm, H. J. Böhme, and H. M. Gross. A multi-modal system for tracking and analyzing faces
on a mobile robot. Robotics and Autonomous Systems, 48(1):31 – 40, 2004. ISSN 0921-8890.
doi: DOI: 10.1016/j.robot.2004.05.004. European Conference on Mobile Robots (ECMR ’03).

J. Yang, W. Lu, and A. Waibel. Skin-color modeling and adaptation. In ACCV ’98: Proceedings of
the Third Asian Conference on Computer Vision-Volume II, pages 687–694, London, UK, 1997.
Springer-Verlag. ISBN 3-540-63931-4.

Q. Zhu, K. Cheng, C. Wu, and Y. Wu. Adaptive learning of an accurate skin-color model. pages
37–42, 2004.

97

Appendix A

On multiple hands tracking

On a stage of the project we considered multiple hands tracking as a possible feature for our
application but we found that our was unable to track multiple hands. At first it was thought it
could have been a bug or some configuration errors in the parameters of the tracker. However,
due to the simple nature of the few configuration parameters of the Condensation algorithm, a
further revision suggested the reason must lie somewhere else.

Theoretically the Condensation algorithm, by definition, should be able to track multiple objects
as all objects detected in the scene will have its own density. The problem relies on the fact that
when an object is firstly detected the samples density defines the location of this object (samples
revolve around the object) and thus any new object that appears in scene at another location
will not be detected. This suggests that for multimodal density to be possible the objects to be
detected should already be on the image. However, the tracked objects need to be similar size and
even if so the multimodal density will usually only be kept for a short period after which it would
become unimodal (samples around one of the objects).

Let’s assume an initial state consisting of a black background with two identical still white blocks
placed at different locations. We initialise the tracker with 1000 particles per time step, an identity
matrix as the dynamics matrix so that no movement prediction is taken and a standard deviation of
20 pixels for the stochastic diffusion of the particles chosen as a value to represent mean variation
in hand movement. The weight of the particles depend on the number of white pixels under a
window centred at each pixel in the image. The initial state of the tracker is a steady state with
the particles scattered randomly across the window while no measurements are taken (figure A.1).

The next stage is to place the aforementioned two white squares at different locations. The tracker
should assign higher weights to particles on both squares, effectively giving a multi-modal state
density. As can be seen figure A.2, the experiment so far confirms this behaviour.

The red circle in the figure A.2 is drawn around the centre of the object estimated by the tracker.
Considering the two blocks the theoretical estimated centre should be in the middle of the imaginary
line that connects the centres of both squares. In the image this is not happening exactly due to
the random factor of the algorithm. If we consider our initial steady state and our weight function
based on the number of white pixels, it is highly improbable that the accumulated weight of the

99

Figure A.1: Initial state with all samples scattered randomly.

Figure A.2: Multimodal density. There are samples on both squares.

particles around both squares will be exactly the same, as well as the number of samples, which will
not be exactly the same either. One square will have more samples than another, which explains
why the red circle is biased towards a certain square. In fact, as time passed by the red circle
fluctuated a bit towards one square or another, but in the end the samples would settle around
one square, making the density unimodal.

In our case we believe this happens due to the stochastic nature of the algorithm and our window-
based weight function. The diffusion part of the prediction stage of the Condensation causes
the particles to be drifted randomly (figure A.3), sometimes just out of the square causing them
to have lower weight, or far enough from the square so that their weight is close to null and hence
discarded at the next iteration. The samples around the square with most weight will be more
likely to be chosen and, at the same time, the fewer particles around the other square may be
gradually drifted and discarded, resulting in the particles generated in the next iteration being
around a certain square.

The ability of the Condensation algorithm to track multiple hypothesis at the same time was also
tested in a realistic environment. We started by placing both hands together so as to concentrate

100

Figure A.3: Stochastic diffusion may cause the samples to be drifted outside of the square in some cases.

the density and afterwards the hands were separated in opposite directions, dividing the density.
Figure A.4 shows that the algorithm can effectively track more than one hand at the same time
for a small period, but inevitably the density on each hand will not be equal, thus the samples in
the higher density area are more likely to be resampled more times.

Figure A.4: Sequence of images of two hands separated by five time steps each. The test started by

placing both hands together and slowly separating them apart. It can be seen that the particles will be

divided in two clusters for a period but will eventually settle around one hand.

101

Multi-tracking with CONDENSATION

We have seen that even though initially the Condensation algorithm manages to keep track of
both squares, eventually it will gradually shift towards a certain square. The reason we stated was
the drift that occurred to the particles, leading some of them to be discarded, mostly affecting the
object with less particles around.

This statement suggests that if we are able to limit this drift it will be possible to maintain the
particles as they will not be discarded for the next factored sampling. The previous set-up used 20
as the standard deviation. In order to test our hypothesis a new standard deviation of 2 was set.

Figure A.5: Constant multimodal density was possible with a much smaller noise parameter

As figure A.5 shows, a smaller noise parameter effectively allows the tracker to follow both squares.
All particles are well inside the squares, which implies they will all have the same weight given
that all the pixels in their neighbourhood are white. Hence, no particle will be discarded for the
next iteration. This situation, however, is unrealistic. In the case of our project, we would need
balanced skin regions so that the previous approach would work, considering how we compute the
weight of the particles. However, the small added noise is not adequate to real hand movement and
the tracker would constantly lose track of the hand. In addition, we would still have the problem
that the objects may not appear at the same time and if the samples distribution was set around
a specific object the new objects would still be ignored.

In order to solve this problem, several approaches can be found in the current literature. Wilhelm
et al. (2004) also used skin segmentation and dynamically added or removed new Condensation

trackers which covered different regions of the scene in order to detect different skin patches,
together with a sonar which detected the presence of people, so as to increase the tracking precision.
Spengler and Schiele (2003) used colour and intensity change cues to track multiple faces, as well
as newly generating a 10% of the samples randomly and not from the prior density so that there
will always be particles for detecting new objects. Other researchers have tracked the shape of
the objects or used other mechanisms to assist the tracker. Isard and Blake (1998b), the original
creators of the algorithm, updated it to combine low-level information (e.g. skin colour) and
high-level information (e.g. hand contour), and generated sample positions from the detected
important locations. Kumar et al.[2] on the other hand uses an adaptive multiple object tracking

102

system by using colour intensity and segmentation cues. Their approach to the problem we have
been discussing in this section is to maintain the weight of the pixels of a prior iteration for the
next iteration so that they will not be discarded and evaluate the accuracy of the hypotheses.

In conclusion, we have seen that the Condensation algorithm strictly applied with our chosen
weight function based on the number of skin pixels is unable to track multiple hands. However,
we have also seen that this problem has been successfully addressed in literature.

103

Appendix B

Test images for hand shape

enhancement

Our training set consisted of a series of photographs different lighting conditions. In order to
calculate our skin colour model the photographs were segmented manually from the background.
In this appendix, the corresponding images are listed together with the mean H-S colour, the
covariance matrix and the maximum and minimum values of these.

Notation used:

• µ. Mean colour [H S].

• Σ. Covariance matrix.

• max(X). Maximum value of X, where X is H or S

• min(X). Minimum value of X, where X is H or S

1. Daylight, in the shadow

µ = [0.081452 0.425547]

Σ =

[
6.6954e− 04 −3.8606e− 04
−3.8606e− 04 4.5605e− 03

]

105

max(H) = 0.16667
min(H) = 0

max(S) = 0.61047
min(S) = 0.069444

2. At home, in the evening, fluorescent light

µ = [0.082877 0.329488]

Σ =

[
9.3504e− 03 −7.3467e− 04
−7.3467e− 04 8.8476e− 03

]

max(H) = 0.99775
min(H) = 0

max(S) = 0.87179
min(S) = 0.020408

106

3. At the office, during the day, fluorescent light

µ = [0.083700 0.453989]

Σ =

[
1.8222e− 04 −5.3235e− 05
−5.3235e− 05 3.2304e− 03

]

max(H) = 0.13333
min(H) = 0.036458

max(S) = 0.60526
min(S) = 0.17532

107

4. At the office, in the evening, fluorescent light

µ = [0.075260 0.412146]

Σ =

[
4.5435e− 04 7.9546e− 05
7.9546e− 05 4.5221e− 03

]

max(H) = 0.99583
min(H) = 0

max(S) = 0.64567
min(S) = 0.18571

4. All conditions combined

µ = [0.080303 0.410846]

Σ =

[
2.0724e− 03 −2.1952e− 04
−2.1952e− 04 6.7185e− 03

]

max(H) = 0.99775
min(H) = 0

max(S) = 0.87179
min(S) = 0.020408

108

Appendix C

CONDENSATION - data for

determining the parameters of the

Dynamical Model

In order to determine the parameters of the dynamical model the movement of a real hand had to
be analyzed. To mimic the situation the white light of a hand held lantern was segmented from a
black background so as to minimize noise and simulate real hand movement.

The positions (2D) of the white light were then recorded for a short period (a total of 412 frames)
and then used to calculate the velocity, acceleration and common statistics which are detailed in
figure C.1. The standard deviations shown were used for the noise parameter in the dynamical
model.

Figures C.2 and C.3 show the velocity and acceleration variation charts of the recorded sequence
through time. They suggest sudden high accelerations are rare and short in time, thus it did
not seem necessary to consider acceleration for our dynamical model, which would have slightly
impacted efficiency.

X Y
Mean Velocity 35.29 19.36
Standard Deviation 28.83 20.66
Maximum Absolute Deviation 99.71 88.71
Minimum Absolute Deviation 0.29 0.29

Mean Acceleration 25.1 14.57
Standard Deviation 19.67 15.66

Figure C.1: Statistics for the recorded sequence.

109

Figure C.2: Velocity chart. The spikes in the chart indicate that high variations in speed were very short

in time.

Figure C.3: Acceleration chart. High accelerations were short and not very often.

110

