109 research outputs found

    A trust supportive framework for pervasive computing systems

    Get PDF
    Recent years have witnessed the emergence and rapid growth of pervasive comput- ing technologies such as mobile ad hoc networks, radio frequency identification (RFID), Wi-Fi etc. Many researches are proposed to provide services while hiding the comput- ing systems into the background environment. Trust is of critical importance to protect service integrity & availability as well as user privacies. In our research, we design a trust- supportive framework for heterogeneous pervasive devices to collaborate with high security confidence while vanishing the details to the background. We design the overall system ar- chitecture and investigate its components and their relations, then we jump into details of the critical components such as authentication and/or identification and trust management. With our trust-supportive framework, the pervasive computing system can have low-cost, privacy-friendly and secure environment for its vast amount of services

    Simulating sensor networks

    Get PDF
    Tese de mestrado em Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2010Nos últimos anos, as redes de sensores sem fios conheceram um grande impulso em variadas ´áreas, nomeadamente na monitorização industrial e ambiental e, mais recentemente, na logística e noutras aplicações que envolvem processos de negócio e a chamada Internet das Coisas e dos Serviços. Contudo, e apesar dos avanços que se têm verificado tanto em termos de hardware como de software, estas redes são difíceis de programar, testar e instalar. A simulação de redes de sensores é frequentemente utilizada para testar e depurar aplicações para redes de sensores, pois permite testar a execução de das aplicações em ambientes virtuais. Esta tese aborda um problema que diz respeito a testar estas redes através de simulação: a definição (manual) de modelos. A nossa abordagem aponta para a geração de modelos de simulação directamente a partir de aplicações redes de sensores, em particular, modelos para o simulador VisualSense criados a partir de aplicações escritas em Callas, uma linguagem de programação para as redes de sensores. Para tal, criamos uma ferramenta capaz de gerar modelos que ´e paramétrica pelos modelos de rede e modelos sensores da rede que se pretende modelar, e ainda por um conjunto extensível de parâmetros de simulação. As nossas experiências mostraram resultados encorajadores na simulação de redes de grande escala, uma vez que conseguimos executar simulações com até 5000 nós. À medida que as redes de sensores sem fios começam a ser utilizadas em processos de negócio, a informação que recolhem do ambiente tem cada vez mais influência no decurso dos fluxos de trabalho associados aos processos de negócio. De um modo geral, os testes levados a cabo em fluxos de trabalho fazem uso de informação gravada em fluxos de trabalho executados previamente, tornando difícil testar o sistema como um todo. Em alternativa, e como uma segunda proposta desta tese, propomos testar fluxos de trabalho através da incorporação de resultados obtidos nas simulações das aplicações das redes de sensores. Além de cobrir os casos cobertos pela primeira abordagem, esta técnica permite testar novos fluxos de trabalho, bem como as mudanças ocorridas num determinado fluxo de trabalho por acontecimentos no ambiente.In recent years, Wireless Sensor Networks have gaining momentum in several fields, notably in industrial and environmental monitoring and, more recently, in logistics. However, and in spite of the advances in hardware and software, Wireless Sensor Networks are still hard to program, test, and deploy. Simulation is often used for testing and debugging sensor networks because they allow us to perform deployments in virtual environments. This paper addresses a key problem of testing such networks using simulation: (manual) model definition. Our approach is to generate simulation models directly from WSN applications, in particular, VisualSense simulator models from applications written in Callas, a programming language for WSN. For that purpose, we create a model generator tool that is parameter sable by network and sensor templates, and by an extensible set of simulation parameters. Our experiments show encouraging results on simulating large scale networks, as we are able to handle WSN with as many as 5000 nodes. As Wireless Sensor Networks begin to play some role in business processes, the information they gather from the environment influences the execution of workflows. Generally, the tests carried out on these systems make use of recorded information in earlier workflow executions, making it difficult to test the system as a whole. Alternatively, and as a second proposal of this thesis, we propose testing such workflows by incorporating results obtained from the simulation of sensor network applications. Besides covering the situations described in the first approach, this technique allows the testing of new workflows, as well as the changes made to a given workflow by events in the environment

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots

    Kommunikation und Bildverarbeitung in der Automation

    Get PDF
    In diesem Open-Access-Tagungsband sind die besten Beiträge des 9. Jahreskolloquiums "Kommunikation in der Automation" (KommA 2018) und des 6. Jahreskolloquiums "Bildverarbeitung in der Automation" (BVAu 2018) enthalten. Die Kolloquien fanden am 20. und 21. November 2018 in der SmartFactoryOWL, einer gemeinsamen Einrichtung des Fraunhofer IOSB-INA und der Technischen Hochschule Ostwestfalen-Lippe statt. Die vorgestellten neuesten Forschungsergebnisse auf den Gebieten der industriellen Kommunikationstechnik und Bildverarbeitung erweitern den aktuellen Stand der Forschung und Technik. Die in den Beiträgen enthaltenen anschaulichen Beispiele aus dem Bereich der Automation setzen die Ergebnisse in den direkten Anwendungsbezug

    Digital forensics challenges and readiness for 6G Internet of Things (IoT) networks

    Get PDF
    The development of sixth-generation (6G) wireless communication technology is expected to provide super high-speed data transmission, and advanced network performance than the current fifth-generation (5G) and be fully functional by the 2030s. This development will have a significant impact and add improvements to digital extended reality (XR), autonomous systems, vehicular ad hoc networks (VANETs), artificial intelligence (AI), underwater communications, blockchain technology, pervasive biomedical informatics and smart cities built on the digital infrastructure backbone of the Internet of Things (IoT). The ubiquitous nature of this large-scale 6G-enabled IoT that offers faster connectivity capabilities and integrates both terrestrial and non-terrestrial networks will not only create new data security and privacy issues but also provide a treasure trove of digital evidence useful for digital forensic examiners investigating security incidents and cybercrime. However, for digital forensic examiners, evidence collection, preservation and analysis will become a priority in the successful deployment of 6G IoT networks. In this study, we define key applications of 6G network technology to the Internet of Things and its existing architectures. The survey introduces potential digital forensic challenges and related issues affecting digital forensic investigations specific to 6G IoT networks. Finally, we highlight and discuss forensic readiness and future research directions for identified challenges within the 6G IoT network environments

    Cryptographic key management for the vehicles of tomorrow

    Get PDF
    The automotive industry is undergoing a major transformation process in which nearly every part of the vehicle is becoming digital and connected. Modern vehicles are often connected to the internet, feature several wireless interfaces and will soon communicate directly with surrounding vehicles and roadside infrastructure using V2X technology. However, this transformation has not yet been paralleled by the development of techniques or standards which address the cyber security challenges posed by these systems. The automotive industry has historically failed to use secure cryptography or appropriate key management techniques and there is no sign that things have improved. In this thesis, we present several new cryptographic and key management flaws in an existing automotive immobiliser system and we develop two new V2X architectures for improving the safety and privacy of tomorrow’s connected and autonomous vehicles. Specifically, we study the AUT64 automotive block cipher and its associated authentication protocol in a real-world immobiliser system. Despite having a 120~bit key, we find a number of flaws in the system which we combine to present several practical key-recovery attacks. Our first new V2X architecture, IFAL, provides a practical and secure improvement to the leading European standard for V2X. IFAL introduces a new certificate issuance mechanism that eliminates the trade-off between pseudonym duration and bandwidth. Our second architecture, VDAA, addresses the need for efficient techniques that preserve vehicle privacy despite dishonest or colluding certificate authorities

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Media of things : supporting the production and consumption of object-based media with the internet of things

    Get PDF
    Ph. D. Thesis.Visual media consumption habits are in a constant state of flux, predicting which platforms and consumption mediums will succeed and which will fail is a fateful business. Virtual Reality and Augmented Reality could be the 3D TVs that went before them, or they could push forward a new level of content immersion and radically change media production forever. Content producers are constantly trying to adapt to these shifts in habits and respond to new technologies. Smaller independent studios buoyed by their new-found audience penetration through sites like YouTube and Facebook can inherently respond to these emerging technologies faster, not weighed down by the “legacy” many. Broadcasters such as the BBC are keen to evolve their content to respond to the challenges of this new world. Producing content that is both more compelling in terms of immersion, and more responsive to technological advances in terms of input and output mediums. This is where the concept of Object-based Broadcasting was born, content that is responsive to the user consuming their content on a phone over a short period of time whilst also providing an immersive multi-screen experience for a smart home environment. One of the primary barriers to the development of Object-based Media is in a feasible set of mechanisms to generate supporting assets and adequately exploit the input and output mediums of the modern home. The underlying question here is how we build these experiences, we obviously can’t produce content for each of the thousands of combinations of devices and hardware we have available to us. I view this challenge to content makers as one of a distinct lack of descriptive and abstract detail at both ends of the production pipeline. In investigating the contribution that the Internet of Things may have to this space I first look to create well described assets in productions using embedded sensing. Detecting non-visual actions and generating detail not possible from vision alone. I then look to exploit existing datasets from production and consumption environments to gain greater understanding of generated media assets and a means to coordinate input/output in the home. Finally, I investigate the opportunities for rich and expressive interaction with devices and content in the home exploiting favourable characteristics of existing interfaces to construct a compelling control interface to Smart Home devices and Object-based experiences. I resolve that the Internet of Things is vital to the development of Object-based Broadcasting and its wider roll-out.British Broadcasting Corporatio
    corecore