UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis
DL: T. 877-2012

Francisco Fons Lluis

EMBEDDED ELECTRONIC SYSTEMS DRIVEN
BY RUN-TIME RECONFIGURABLE HARDWARE

DOCTORAL THESIS

Supervised by Dr. Enrique F. Canté Navarro

Departament d’Enginyeria Electronica, Eléctrica i Automatica

UNIVERSITAT ROVIRA | VIRGILI

Tarragona
2012

UNIVERSITAT ROVIRA I VIRGILT

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

UNIVERSITAT
ROVIRA | VIRGILI

ESCOLA TECNICA SUPERIOR D’ENGINYERIA
DEPARTAMENT D’ENGINYERIA ELECTRONICA, ELECTRICA I AUTOMATICA

Avinguda dels Paisos Catalans, 26
Campus Sescelades

43007 Tarragona — SPAIN

Tel. + 34 977 559 610

Fax + 34 977 559 605

e-mail: secelec@urv.net

http:/ /sauron.etse.urv.es/DEEEA/

Enrique F. Cant6é Navarro, professor at the Department of Electronic, Electrical and
Automatic Control Engineering of the University Rovira i Virgili,

STATES:

That the present thesis, entitled “Embedded electronic systems driven y run-time
reconfigurable hardware”, presented by Francisco Fons Lluis for the award of the degree
of Doctor, has been carried out under my supervision at the Department of Electronic,
Electrical and Automatic Control Engineering of the University Rovira i Virgili.

Tarragona, March 2012

Doctoral Thesis Supervisor

Dr. Enrique F. Canté Navarro

UNIVERSITAT ROVIRA I VIRGILT

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Abstract

Run-time reconfigurable hardware technology has experienced a big progress in the last
decade after both academia and industry research communities have jointly got involved
in this issue, bringing the necessary talent and energy to definitively put this technology
to the service of the society. Many indicators confirm today that dynamic partial
reconfiguration is no longer just for the avid early explorers of the recent past: improved
programmable logic devices supporting this technology have been shipped; a valid
method and design flow supported by acceptable EDA tools has been established;
potential use cases and killer applications that can benefit from this technology have
been identified; and last but not least, the first commercial products/systems driven by
this technology are already being launched to the market.

This PhD dissertation addresses the exploration of run-time reconfigurable hardware to
implement embedded applications, exploiting its inherent strengths in flexibility and
adaptability, as well as in power and system cost savings. This work does research on
the conception of an open system architecture driven by a reconfiguration engine
suitable for synthesizing flexible embedded electronic systems on SRAM-based
FPGA/SoC devices. Thereby, it pays attention to the identification, from an application-
driven viewpoint, of computational tasks typically synthesized in static hardware —e.g.
general-purpose processors (MCU, DSP, GPU) or programmable logic (FPGA, SoC)- in
which dynamic partial reconfiguration can be used to advantage. Several application
fields like control engineering (e.g. PID and fuzzy logic controllers), digital computing (e.g.
trigonometrics, 2D convolution), or full complex electronic systems (e.g. biometric
recognition system, automotive electronic control unit) have been investigated from an
algorithmic standpoint first and prototyped then through commercial devices -e.g.,
Xilinx, Atmel and Altera platforms— provided with on-the-fly reconfiguration, pioneering
the use of run-time reconfigurable hardware by first time in the scientific literature in
some of them.

This work demonstrates that a complete run-time reconfigurable computing ecosystem
provided with a high enough level of maturity for its exploitation in the industry is today
already in place, making feasible —although further advances are still required, especially
regarding automatic tools— the professional design and development of embedded
electronic systems. Thus, in a future of digital system design increasingly parallel and
programmable, many application opportunities for run-time reconfigurable hardware
abound. In this sense, the future of this computing paradigm is highly promising, hoping
that the intellectual effort invested in this area by the research community, the FPGA
vendors and the industry in general helps to enhance the life quality of the human
beings in the near future. The work conducted in this PhD dissertation aims at
contributing to this goal.

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis
DL: T. 877-2012

vi

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

Acronyms and abbreviations

AFAS Automatic Fingerprint Authentication System
AHB Advanced High-performance Bus

ALU Arithmetic Logic Unit

AMBA Advanced Microcontroller Bus Architecture
ASIC Application Specific Integrated Circuit

ASIL Automotive Safety Integrity Level

ASIP Application-Specific Instruction-set Processor
ASSP Application Specific Standard Product

API Application Programming Interface

ARM Advanced RISC Machine

AXI Advanced Extensible Interface

BOM Bill Of Materials

CAD Computer Aided Design

CAGR Compound Annual Growth Rate

CAN Controller Area Network

CISC Complex Instruction Set Computing

CLB Configurable Logic Block

CORDIC COordinate Rotation Dlgital Computer

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DDR-SDRAM Doble Data Rate Synchronous Dynamic Random Access Memory
DMA Direct Memory Access

DPRAM Dual Port Random Access Memory

DRAM Dynamic Random Access Memory

D&D Design and Development

ECU Electronic Control Unit

EDA Electronic Design Automation

E/E Electrical /Electronic

EPP Extensible Processing Platform

ESA European Space Agency

FLC Fuzzy Logic Controller

FPGA Field Programmable Gate Array

FPSLIC Field Programmable System Level Integrated Circuit
FPU Floating Point Unit

FSM Finite State Machine

GPGPU General-Purpose computation on Graphics Processing Unit
GPP General-Purpose Processor

GPS Global Positioning System

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

HPC High-Performance Computing

HPRC High-Performance Reconfigurable Computing
ICAP Internal Configuration Access Port

ICT Information & Communication Technology
IEC International Electrotechnical Commission
I/0 Input/Output

IP Intellectual Property

ISA Instruction Set Architecture

ISO International Organization for Standardization

vii

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

JTAG Joint Test Action Group

LCD Liquid Crystal Display

LUT Look-Up Table

MAC Multiplier-Accumulator

MCU Microcontroller Unit

MCyT Spanish Ministry of Science and Technology
MMU Memory Management Unit

MPMC Multi-Port Memory Controller

NASA National Aeronautics and Space Administration
NoC Network-on-Chip

NPI Native Port Interface

NRE Non-Recurring Engineering

NVM Non-Volatile Memory

OEM Original Equipment Manufacturer

OS Operating System

OTP One-Time Programmable

PAL Programmable Array Logic

PC Personal Computer

PCB Printed Circuit Board

PID Proportional Integral Derivative

PIN Personal Identification Number

PLA Programmable Logic Arrays

PLB Peripheral Local Bus

PLD Programmable Logic Device

PR Partial Reconfiguration

PROM Programmable Read-Only Memory

PRM Partially Reconfigurable Module

PRR Partially Reconfigurable Region

PSoC Programmable System-on-Chip

RAM Random Access Memory

RC Reconfigurable Computing

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RTL Register Transfer Level

SDRAM Synchronous Dynamic Random Access Memory
SEU Single Event Upset

SME Small and Medium Enterprises

SoC System-on-Chip

SoPC System-on-Programmable-Chip

SRAM Static Random Access Memory

SWaP Size, Weight and Power

UART Universal Asynchronous Receiver Transmitter
VHDL Very High Speed Integrated Circuit Hardware Description Language
VLIW Very Long Instruction Word

V&V Verification and Validation

XCL Xilinx CacheLink

viii

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

List of figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

Figure 5.7

Figure 5.8
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9

Figure 7.10
Figure 8.1
Figure 8.2
Figure 8.3

Milestones of the roadmap towards run-time reconfigurable computing
Use of FPGA devices

Recent achievements in run-time reconfigurable computing

DES horizontal (design technology) and vertical (embedded apps)
disciplines

Antifuse programming technology

SRAM programming technology

MRAM programming technology

SRAM-based FPGA conceptual view

SRAM-based FPGA logic cell

Embedded system components breakdown
reconfiguration engine, external memory and I/O
High level model of the FPGA embedded system split in physical devices
Dynamic partial self-reconfigurable FPGA high level model

Minimalist system architecture based on one PR partition and one
repository

Embedded system architecture based on two PR partitions and one
repository

Embedded system architecture composed of two PR partitions and two
sytem repositories which split the reconfiguration data from the
application data

VAPRES system architecture

Autovision system architecture

KIT-ITIV system architecture

ESM system architecture

Molen system architecture

Self-reconfigurable FPGA versus externally-reconfigurable FPGA

Internal FPGA configuration port in Atmel AT94K FPSLIC

Altera Excalibur EPXA reconfiguration controller architecture

Arbitration of configuration interfaces in Xilinx FPGAs

Xilinx FPGA reconfiguration controller architecture

Decoupling of bitstream provider and consumer via a simple dual-port
FIFO

Block diagram of the system architecture deployed in the ML401
platform

PR design flow (EDA tools, source code files and resultant bitstreams)
Block diagram of a closed-loop control system based on a PID controller
AT40K logic cell based on two 3-input LUTs and one 1-bit flip-flop

AT94K series architecture

Scheduling of the PID algoritm performed with a multiplier and an adder
Block diagram of the PID coprocessor implemented in the FPGA
Reconfigurable operands selector

PID coprocessor

AT94K prototype board developed

Floorplanning, placement and routing of the PID app in the AT94K40
FPSLIC

Reconfigurable selector of the operands of the multiplier and the adder
Fuzzy-based control system constituted by two inputs and one output
Three-stage fuzzy process

Fuzzy control surface z=f[x,y) obtained in the fuzzification, rule inference
and defuzzification stages. Segmentation and indexing of the surface

into host CPU,

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6

Figure 9.7
Figure 9.8

Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7

Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4

Figure 11.5
Figure 11.6

Figure 11.7
Figure 11.8

Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4

Block diagram of the AT94K40-based FLC

Block diagram of the FLC embedded in the AT94K40 FPSLIC

Scheduling of the fuzzy computing

DR-MIXER and DR-ROM modules

Automatic testing of the FLC design

Floorplanning of the fuzzy logic controller in the AT94K40 FPSLIC

ML401 evaluation board used in the prototyping of the 2D convolver
System architecture and functional components breakdown

2D convolution split in four stacked functional blocks

Parallelism and 4-stage pipeline of the 2D convolver placed in the PRR
Isotropic filter Kj; of kernel 13x13 with 28 common taps coefficients
Example of image 2D convolution based on an isotropic filter of kernel
13x13 with processing of 4 pixels in parallel into the PRR

Partial bitstreams of image processors based on different 2D convolution
features. FPGA floorplanning and partitioning into static and PR regions
Composition of the full bitstream placed in the FPGA at a given time split
in the static region and the 2D convolver located in the PRR

Circular CORDIC rotation of a vector in a 2D coordinate system

Block diagram of the AT94K40-based trigonometric CORDIC coprocessor
Internal structure of the CORDIC coprocessor

Multiplexing of Kcorpic by dynamic partial reconfiguration

Sign controller: static version versus dynamic version

Static 3x1-multiplexer versus dynamic 3x1-multiplexer

Floorplanning of the trigonometric CORDIC computer in the AT94K40
FPSLIC

Design flow of the embedded AFAS application

Image processing tasks breakdown of the AFAS algorithm

Fingerprint image processing stages

Sequential execution flow (temporal partitioning) distributed in static-
and PR-regions (spatial partitioning)

AFAS development platform
System architecture of the
processor

Biometric recognition system architecture in a Virtex-4 FPGA

Spatial partitioning and floorplanning of the AFAS in one static region
and one reconfigurable region of the FPGA. Temporal partitioning of the
application in sequential stages performed in the reconfigurable region
AUTOSAR layer-based model

Porting of the AUTOSAR ECU architecture to a SoC/FPGA platform

Block diagram of an automotive ECU deployed in programmable logic
HW/SW co-design of a safety architecture that isolates the safety-
relevant ports from non-safety ports to guarantee the freedom from
interference

reconfigurable fingerprint recognition

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

List of tables and code

Table 1.1
Table 1.2

Table 3.1

Table 3.2
Table 3.3
Table 3.4
Table 5.1
Table 5.2
Table 5.3
Table 5.4

Table 5.5

Table 5.6
Table 7.1
Table 7.2
Table 8.1
Table 8.2
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 10.1
Table 10.2

Table 10.3
Table 10.4
Table 10.5
Table 10.6

Table 11.1

Table 11.2
Table 14.1
Table 14.2

Code 5.1

Code 5.2

Code 5.3
Code 7.1

Scientific conferences focused on reconfigurable hardware technology
International journals which broach reconfigurable hardware as topic of
interest

Research projects
technology

Patents based on reconfigurable hardware technology

Reconfigurable computing research groups

PhD dissertations related to reconfigurable computing

Atmel AT94K/AT94S FPSLIC reconfiguration controller

Altera Excalibur EPXA reconfiguration controller

Partial Reconfiguration features of Xilinx FPGAs

Reconfiguration controllers implemented on Spartan-3 and Virtex-II Pro
devices

Reconfiguration controllers implemented on Virtex-4/-5 and Spartan-6
devices

Reconfiguration features of the next generation Xilinx and Altera devices
PID computation in different HW/SW platforms

Hardware resources used in the PID controller implementation

Hardware resources used in the fuzzy logic controller implementation
Time breakdown of the FLC tasks

FPGA spatial partitioning

Processing time of the different tasks

Use of FPGA hardware resources

Hardware implementation features

Numerical representation of the CORDIC corrective constants Ks»
Comparison of different HW/SW implementations of the CORDIC
algorithm

Time breakdown of the execution tasks

Computation error

Hardware resources used in the CORDIC computer implementation
Hardware resources used in the CORDIC atan(y/x) computer
implementation

Processing time breakdown of the different tasks executed in different
AFAS platforms. Tasks performance comparison: (i) SW-only approach on
a personal computer platform based on an Intel Core 2 Duo processor @
1.83GHz, (ii) HW/SW co-design on an Altera Excalibur EPXA10 SoPC
based on an ARM9 processor @ 200MHz and custom hardware
coprocessors @ 24MHz/48MHz, and (iiij PR-HW/SW co-design on a
Xilinx Virtex-4 XC4VLX25 FPGA based on a Microblaze processor @
100MHz and custom reconfigurable hardware coprocessors @
50MHz/100MHz

Balance of resources in the AFAS application based on Virtex-4 FPGA
Development platforms used in the different research works

European and Spanish research projects framework of this PhD
dissertation

oriented to run-time reconfigurable hardware

Reconfiguration of an 8-bit resource of the FPGA via the MCU software
code

Reconfiguration of the FPGA via the MCU software code

Reconfiguration function used by the host processor

PID algorithm

Xi

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

Code 7.2 PID software function prototypes

Code 7.3 Reconfiguration of the logic cell’s XLUT and YLUT in each PID cycle

Code 8.1 Binary search algorithm based on a 256-sectors surface

Code 9.1 Pseudo code of a 13x13 isotropic filter 2D convolution implemented in
SW

Code 10.1 Prototypes of the trigonometric functions

Xii

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

List of publications

Journals

* E. Cant6, M. Fons, F. Fons, M. Lopez, R. Ramos, Fast self-reconfigurable embedded
system on Spartan-3, Journal of Universal Computer Science (under 2nd review).

» F. Fons, M. Fons, E. Cant6, M. Lopez, Deployment of run-time reconfigurable hardware
coprocessors into compute-intensive embedded applications, Journal of Signal Processing
Systems, vol. 66, no. 2, pp. 191-221, Springer, 2012.

* M. Fons, F. Fons, E. Canté, M. Lopez, FPGA-based personal authentication using
fingerprints, Journal of Signal Processing Systems, Vol. 66, no. 2, pp. 153-189, Springer,
2012.

* F. Fons, M. Fons, E. Cant6, M. Lopez, Real-time embedded systems powered by FPGA
dynamic partial self-reconfiguration: A case study oriented to biometric recognition
applications, Journal of Real-Time Image Processing, pp. 1-23, Springer,
doi:10.1007/s11554-010-0186-1, 2011.

* M. Fons, F. Fons, E. Cant6, Biometrics-based consumer applications driven by
reconfigurable hardware architectures, Future Generation Computer Systems, vol. 28, no.
1, pp. 268-286, Elsevier, January 2012.

* F. Fons, M. Fons, E. Cant6, Run-time self-reconfigurable 2D convolver for adaptive image
processing, Microelectronics Journal, vol. 42, no. 1, pp. 204-217, Elsevier, January
2011.

* M. Fons, F. Fons, E. Cant6, Fingerprint Image Processing Acceleration Through Run-Time
Reconfigurable Hardware, IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 57, no. 12, pp. 991-995, December 2010.

» F. Fons, M. Fons, E. Canto, System-on-chip design of a Fuzzy Logic controller based on
dynamically reconfigurable hardware, International Transactions on Systems Science
and Applications, vol. 2, no. 2, pp. 191-196, Xiaglow Research, ISSN 1751-1461, 2006.

» F. Fons, M. Fons, E. Canté, M. Lopez, Trigonometric computing embedded in a
dynamically reconfigurable CORDIC system-on-chip, K. Bertels, J.M.P. Cardoso, S.
Vassiliadis (Eds.), Reconfigurable Computing: Architectures and Applications, Lecture
Notes in Computer Science, vol. 3985, pp. 122-127, Springer, ISBN 978-3-540-36708-6,
2006.

* E. Cant6, N. Canyellas, M. Fons, F. Fons, M. Lopez, FPGA Implementation of the ridge
line following fingerprint algorithm, J. Becker, M. Platzner, S. Vernalde (Eds.), Field-
Programmable Logic and Applications, Lecture Notes in Computer Science, vol. 3203, pp.
1087-1089, Springer, ISBN 3-540-22989-2, 2004.

Book chapters

* M. Fons, F. Fons, Exploiting run-time reconfigurable hardware in the development of
automatic fingerprint-based personal recognition applications, Recent Application in
Biometrics, pp. 239-266, InTech, ISBN 978-953-307-488-7, July 2011.

Xiii

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Internaltional conferences

* E. Cant6, F. Fons, M. Lopez, Self-reconfigurable embedded systems on Spartan-3,
International Conference on Field Programmable Logic and Applications, FPL Conference
Proceedings, pp. 571-574, Heidelberg, Germany, September 2008.

* E. Cant6, M. Lopez, F. Fons, Self-reconfiguration of embedded systems mapped on
Spartan-3, International Workshop on Reconfigurable Communication-centric System-
on-Chips, ReCoSoC Conference Proceedings, pp. 117-124, Barcelona, Spain, July 2008.

» F. Fons, M. Fons, E. Canté, Approaching fingerprint image enhancement through
reconfigurable hardware accelerators, IEEE International Symposium on Intelligent
Signal Processing, WISP Conference Proceedings, pp. 457-462, Alcala de Henares, Spain,
October 2007.

* M. Fons, F. Fons, E. Cant6, Embedded VLSI accelerators for fingerprint signal
processing, IEEE International Symposium on Intelligent Signal Processing, WISP
Conference Proceedings, pp. 463-468, Alcala de Henares, Spain, October 2007.

* M. Fons, F. Fons, E. Canto, M. Lopez, Design of a hardware accelerator for fingerprint
alignment, IEEE International Conference on Field Programmable Logic and Applications,
FPL Conference Proceedings, pp. 485-488, Amsterdam, The Netherlands, August 2007.

» F. Fons, M. Fons, E. Cantoé, M. Lopez, Flexible hardware for fingerprint image
processing, IEEE International Conference on Ph.D. Research in Microelectronics and
Electronics, RME Conference Proceedings, pp. 169-172, Bordeaux, France, July 2007.

* M. Fons, F. Fons, E. Canté, Embedded security: New trends in personal recognition
systems, IEEE International Conference on Ph.D. Research in Microelectronics and
Electronics, RME Conference Proceedings, pp. 89-92, Bordeaux, France, July 2007.

* M. Fons, F. Fons, E. Canté, Hardware-Software codesign of a fingerprint alignment
processor, IEEE International Conference on Mixed Design of Integrated Circuits and
Systems, MIXDES Conference Proceedings, pp. 661-666, Ciechocinek, Poland, June
2007.

* F. Fons, M. Fons, E. Canté, Hardware-Software co-design of a dynamically
reconfigurable FPGA-based Fuzzy Logic controller, IEEE International Conference on
Electronics, Circuits and Systems, ICECS Conference Proceedings, pp. 1228-1231, Nice,
France, December 2006.

* E. Cant6, F. Fons, M. Lopez, Reconfigurable OPB coprocessors for a Microblaze self-
reconfigurable SOC mapped on Spartan-3 FPGAs, IEEE Industrial Electronics Society
Conference, IECON Conf. Proceedings, pp. 4940-4944, Paris, France, November 2006.

» F. Fons, M. Fons, E. Cant6, System-on-chip design of a Fuzzy Logic controller based on
dynamically reconfigurable hardware, International Conference on Self-Organization and
Autonomic Systems in Computing and Communications (SOAS), Erfurt, Germany,
September 2006.

* E. Canto, M. Lopez, F. Fons, J. del Rio, A. Manuel, Automated design flow for multi-
context FPGAs, IEEE International Midwest Symposium on Circuits and Systems,
MWSCAS Conference Proceedings, pp. 470-474, San Juan, Puerto Rico, USA, August
2006.

Xiv

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

* M. Fons, F. Fons, E. Canté, Design of an embedded fingerprint matcher system, IEEE
International Symposium on Consumer Electronics, ISCE Conference Proceedings, pp.
610-615, Saint Petersburg, Russia, June 2006.

* M. Fons, F. Fons, E. Canté, Design of FPGA-based hardware accelerators for on-line
fingerprint matcher systems, IEEE International Conference on Ph.D. Research in
MicroElectronics and Electronics, RME Conference Proceedings, pp. 333-336, Otranto,
Lecce, Italy, June 2006.

* M. Fons, F. Fons, E. Canté, M. Lopez, Hardware-Software co-design of a fingerprint
matcher on card, IEEE International Conference on Electro/Information Technology, EIT
Conference Proceedings, East Lansing, Michigan, USA, May 2006.

» F. Fons, M. Fons, E. Cant6, Custom-made design of a digital PID control system, IEEE
International Conference on Acoustics, Speech, and Signal Processing, ICASSP
Proceedings, vol. 3, pp. 1020-1023, Toulouse, France, May 2006.

» F. Fons, M. Fons, E. Cant6, M. Lopez, Dynamically reconfigurable CORDIC coprocessor
for trigonometric computing, W. Karl, J. Becker, K.E. Grofpietsch, C. Hochberger, E.
Maehle (Eds.), International Conference on Architecture of Computing Systems (ARCS),
Workshop Proceedings, Lecture Notes in Informatics (LNI), vol. P-81, pp. 254-263, GI-
Edition, ISBN 3-88579-175-7, Frankfurt am Main, Germany, March 2006.

* M. Fons, F. Fons, N. Canyellas, E. Canté, M. Lopez, Hardware-Software co-design of an
automatic fingerprint acquisition system, IEEE International Symposium on Industrial
Electronics, ISIE Conference Proceedings, pp. 1123-1128, Dubrovnik, Croatia, June
2005.

* E. Cant6, N. Canyellas, M. Lopez, M. Fons, F. Fons, Coprocessor of the ridge line
following fingerprint algorithm, Conference on Design of Circuits and Integrated Systems,
DCIS Conference Proceedings, pp. 139-143, Bordeaux, France, November 2004.

* F. Fons, M. Fons, S. Ibanez, Biometrics is the key, 24. Tagung Elektronik im
Kraftfahrzeug — Neue Technologien, Integration und Systementwurf. Haus der Technik e.
V., Essen, Germany, June 2004.

National conferences

* E. Cant6, M. Lopez, F. Fons, R. Ramos, Sistema embebido de rdpida auto-
reconfiguraciéon sobre Spartan-3, IX Jornadas de Computacion Reconfigurable y
Aplicaciones, Actas Congreso JCRA, pp. 183-192, Alcala de Henares, Spain, September
20009.

* F. Fons, M. Fons, E. Canto, M. Lépez, Procesador hardware auto-reconfigurable de
Huella Dactilar, VII Jornadas de Computaciéon Reconfigurable y Aplicaciones, Actas
Congreso JCRA, pp. 19-26, Zaragoza, Spain, September 2007.

* M. Fons, F. Fons, E. Canto, M. Lopez, Procesador de alineamiento de huellas dactilares,
VII Jornadas de Computacion Reconfigurable y Aplicaciones, Actas Congreso JCRA, pp.
27-34, Zaragoza, Spain, September 2007.

* E. Canto, M. Lopez, N. Canyellas, M.D. Palomera, M. Fons, F. Fons, Coprocesador para

la esqueletizacion de huellas dactilares, V Jornadas de Computacion Reconfigurable y
Aplicaciones, Actas Congreso JCRA, pp. 103-108, Sevilla, Spain, September 2005.

XV

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

* M. Lopez, E. Canto, N. Canyellas, M.D. Palomera, M. Fons, F. Fons, Diserio de un
coprocesador hardware para segmentaciéon de huellas dactilares, V Jornadas de
Computacion Reconfigurable y Aplicaciones, Actas Congreso JCRA, pp. 173-178, Sevilla,
Spain, September 2005.

* E. Cant6, N. Canyellas, M. Fons, F. Fons, M. Lopez, Coprocesador de extracciéon de
minutia para MicroBlaze, IV Jornadas de Computacion Reconfigurable y Aplicaciones,
Actas Congreso JCRA, pp. 605-611, Barcelona, Spain, September 2004.

e F. Fons, M. Fons, N. Canyellas, M. Lopez, E. Canto, Planteamiento de una alternativa de
solucion al reto del proceso de matching sobre bases de datos grandes. Aplicacion del
método en los sistemas de identificacion personal basados en biometria de huella dactilar,
III Jornadas de Computacion Reconfigurable y Aplicaciones (JCRA), E. Boemo Scalvinoni,
F. Gomez Arribas, S. Lopez Buedo, G. Sutter Capristo (Eds.), Computacion
Reconfigurable & FPGAs, pp. 597-610, Madrid, Spain, September 2003.

* M. Fons, F. Fons, N. Canyellas, M. Lopez, E. Cantd, Codiserio hardware-software de un
algoritmo de matching biométrico, III Jornadas de Computacion Reconfigurable y
Aplicaciones (JCRA), E. Boemo Scalvinoni, F. Gémez Arribas, S. Lopez Buedo, G. Sutter
Capristo (Eds.), Computacion Reconfigurable & FPGAs, pp. 399-406, Madrid, Spain,
September 2003.

» F. Fons, M. Fons, N. Canyellas, M. Lopez, E. Canto, Trusted smart cards: a future new
generation of embedded systems that merges biometrics and system-on-chip technology,
Ph.D. Student Meeting on Electronics Engineering, Departament d’Enginyeria
Electronica, Eléctrica i Automatica, Universitat Rovira i Virgili, Tarragona, Spain, July
2003.

* M. Fons, F. Fons, N. Canyellas, M. Lopez, E. Canto, Trends on personal recognition
systems: Evolving to biometric security, Ph.D. Student Meeting on Electronics
Engineering, Departament d’Enginyeria Electronica, Eléctrica i Automatica, Universitat
Rovira i Virgili, Tarragona, Spain, July 2003.

Others

» F. Fons, M. Fons, FPGA-based automotive ECU design addresses AUTOSAR and ISO
26262 standards, Xcell Journal, issue 78, pp. 20-31, Xilinx, First Quarter 2012.

* F. Fons, M. Fons, Auf die finger blicken, Elektronik Journal, pp. 16-18, October 2010.

» F. Fons, M. Fons, Making biometrics the killer app of FPGA dynamic partial
reconfiguration, Xcell Journal, issue 72, pp. 24-31, Xilinx, Third Quarter 2010.

» F. Fons, M. Fons, E. Cant6, M. Lopez, Dynamically reconfigurable CORDIC coprocessor
for trigonometric computing, Mitteilungen — Gesellschaft flir Informatik (GI) e. V., Parallel-
Algorithmen und Rechnerstrukturen, no. 23, pp. 34-43, ISSN 0177-0454, December
2006.

* M. Lopez, E. Cantdé, M. Palomera, F. Fons, M. Fons, N. Canyellas, Hardware-Software
co-design for fingerprint biometric identification, Instrumentation Viewpoint, SARTI
Technological Development Centre of Remote Acquisition and Data Processing Systems,
pp- 7-10, ISSN 1697-2562, Spring 2005.

XVi

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Content
2 N1 T RN v
Acronyms and abbreviationscccccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitititititietitetetatasacaes vii
List Of fIZUTES ..iiiiiiiiiiiiiiiiiiniiitiiiiieieietecececetreressssssssasecesesesescssssssssssasssasessseseses ix
List of tables and COdeccccciiiiiiiiiiiiiieiiiiiiiiiiiieiiieietetececrieetiesesesacacesecesesesssnses xi
List of publicationsc.cccccieiiiiiiiiiiiiiiiinrciiitieieieieieiececesestersesesesacesacesesesesesnces xiii
0 0 5 ' =) PPt xiii
BOOK Ca D OIS ceiiiii e xiii
International CONfErenCEeSoc.iiiiiiiiiiiiii i Xiv
National CONfETENCES ...uiiuiiiiii i XV
(019 o 153 S SO PP xvi
L0 03 43 T 1 T xvii
PART I. OUTLINEcccoitituiuiuieieienrecacecesencececacesescscecscscsssssssssssssasssssssssssssssssscncass 1
1. Reconfigurable computingcccceieiiiiiiiuiuiiiiiiiiiiiieieiititieieieietatcititietesecaees 3
1.1 INtrodUCHION .enie e e e e e e 3
1.1.1 History: roadmap towards reconfigurable computingc..cocvviiiiiiiiinian... 4
1.1.2 The present of reconfigurable hardware technologycccoviiiviiiiinnnan. 8
IS oY 2= o) o PN 9
1.2.1 Scientific events and specialized journalsc.cooiiiiiiiiiiiiiiiiiiiiii 11
1.3 Dissertation aims and SCOPEoiiriiitiiitii et enes 13
1.3.1 Contribution and thesis organizationcooiiiiiiiiiiiiiii e 15
RETEIEIICES oninitiiiiii e 18
PART II. STATE OF THE ARTccoutuititiiiiuintuieieientecectceiecesececacescssesasacassssssscncees 19
2. Embedded systems and reconfigurable hardwarecccccevuvuvnceieiacneincnnnee. 21
2.1 Embedded electroniC SYSTEIMSiuiuiuiiiiiiiiit i 21
2.1.1 Implementation alternativescooiiiiiiiiiiiiiiiii 21
2.2 Field programmable gate arrayscccocooiiiiiiiiiiiiiiiiii 23
2.2.1 Programming teChNOlOZYc.oiiiiiiiiii e 24
S ADNTIUSE o 24
- EPROM, EEPROM and Flashcccoiiiiiiiiiiiiiii e 25
2 O R A e 25
= R A e 26
2.3 SRAM-based reconfigurable hardware technologyccceoeviiiiiiinininiinininnen.e. 26
2.3.1 Reconfiguration modelcooiiiiiiiiiiiii e 29
- SINGLE CONEEXT ooiiiitit it 29
- Partially reconfigurable ... 29
- MUlti-CONTEXt oot 30
2.3.2 GranUIATItY .oueniiiiitii e e a e 30
- Fine-grain architeCturec.coiiiiiii e 31
- Coarse-grain architeCturecooiiiiiiiiii e 31
- Hybrid architeCtureco.oiiiiiii e 31

XVii

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

2.3.3 Reconfigurability featurescoooiiiiiiiiiiiiii i 31
- Device activity during reconfigurationcooiiiiiiiiiiiiiiiii 31
- Amount of device resources reconfiguredcc 32
- Bitstream format and downloading mechanismc.cccocvviiiiiiiiiiininenn.. 33
- Link between bitstream repository and reconfiguration engine 33
- Reconfiguration engine interfacecooooiiiiiiiiiiiiiiii i 34
- Reconfiguration 1atencycoeoiiiiiiii e 35
2.4 Bitstream manipulation and configuration techniquesc.c.cooooii 36
2.4.1 Bitstream compression/deCoOmMPreSSION cveviierinirieniieeteieereeeteieneaeaeaeneannns 36
2.4.2 Bitstream relocation coooiiiiiiiiiiiii e 37
2.4.3 Bitstream SECUTIILY .o.iiviniiiiiii i e 38
2.4.4 Configuration bootstrapping and multiple-bootcco 38
2.4.5 Configuration overcloCKingc.ccoooiiiiiiiiiiiiiiiiiiiiii 39
2.4.6 Configuration CaChingc.oooiiiiiiiiiiii e 39
2.4.7 Configuration prefetChingcoooiiiiiiiiiii e 40
2.4.8 Configuration SCTUbDING ...c.oiiiiiiii e 40
2.4.9 Configuration schedulingc.cooiiiiiiiiiiiiii 40
2.4.10 Online bitstream buildc.cooiiiiiii 41
2.4.11 Low power consumption targetcooiiiiiiiiiiiiiii e 41
B TS 1 /0 0 - oy 7/ 42
e 5 /3 6 Lo X 43
3. Research and deploymentcccccciiiiiiiiiiiiiiiiiiiiiiiiiiciicitiicitiocetcscacessncescacesnns 45
3.1 Related academic and industrial advancescccociiiiiiiiiiiiiiiiiiiiiiii 45
3.1.1 ReSEarCh ProjeCLS .ottt e 45
- RECONE 2 e 45
= ADRIATIC oottt 46
S AMDIREL Lot 46
- MORPHEUS o 46
m S e 46
- AN D RES Lo 47
-AETHER oo 47
C RE C O PSS L e 47
= H AR T E S e 48
= ORI P 48
S B R A 48
- REFLECT i 48
3.l 2 Pat IS ot e 49
3.1.3 RESEATCR GIOU DS ittt e ettt ettt e a s S0
3.1.4 PhD diSSertationsc.ccoiiiiiiiiiiiiiii i 52
3.2 Reconfigurable hardware deVICESo.iviuiniiiiiiiiiiiii e eeeeeenes 53
3.2.1 Commercial and industrial FPGAs and SOCSciciiiiiiiiiiiiiiiiiirieeeeee, 53
e 2 X 1 - TP 53
S ATINEL e 53
- LattiCe oot 54
D, 155D S OO P PP 54
S OtNETS o 55
3.2.2 Research and academic reconfigurable platformsocooii S7
= POEIC ittt e 57
- CRIMAETA ceiiiiiii e 58
- AD RE S 58
= DTS e 59
2 D P G A e 59
- Time-multiplexed FPGA . .o 59

XViii

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

L€ -V g o T PN 60
= P PEREIICIH e 60
= P RIS e 61
= O TS i 61
G TG T 010 0 - 1 oy 7/ 61
S 5 o3 6 Lo X P 62
PART III. DESIGN AND DEVELOPMENTcccoccttetcetcercescescescescescessescessessessossessnss 63
4. Run-time reconfigurable system architecturec.ccccociviiiiiiniiiiiiiniiiininnnnes 65
4.1 Standardized flexible hardware/software architectureco. 65
4.2 High level functional DIOCKS ...ciiiiiiiiiiii e 66
4.2.1 HOSt CPU oo e 67
4.2.2 EXTerNal MEIMOTY . ouiutniniiiitit ittt et ettt et e e et et e e e neaenenen 68
4.2.3 INPUt/OULPUL oo e 68
4.2.4 Reconfiguration €NZINEc.o.iuiiiiiiiiiiiii e 68
4.3 System components breakdOWIl o.ouiiiiiiiiiiiii e 69
4.3.1 Standard statiC deSIZN ouiuiniiiiii e 70
4.3.2 Dynamic partial self-reconfiguration designcccoeviiiiiiiiiiiiiiiiiiiene, 71
4.4 System modeling and deploymentoiiiiiiiiiiiii e 71
4.4.1 Minimalist model: single data repository and single PR partition 72
4.4.2 Model with single data repository and two PR partitionsccceeeveiiieninen.. 75
4.4.3 Model with two data repositories and two PR partitionscccoevviviiiinnnn.n. 77
4.4.4 Comparison with other state-of-the-art architecturesc.cociiiini. 78
=V AP R E S e 78
= AULOVISIONL .ottt ettt 79
= KIT-ITIV et 80
S O T 81
7 [0 5 o P 82
2SN 16 U0 0 1 0 = oy 2 83
RELEIEIICES oot 84
5. Reconfiguration engineccccccieiiiiiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiitciteieieitcacesenees 85
5.1 Reconfiguration design parameters oeeveeeieiuiniiinininire e 85
5.2 State-of-the-art reconfiguration controllers: a SUIVEYcccceveviviiiieininiinenenenen. 86
5.2.1 Closed reconfiguration controller SOlUtioNScceviiiiiiiiiiiiiiiiiiiieieeeaeaenes 88
- Atmel AT94K/ATO4S FPSLIC ..ot 88
- Altera Excalibur EPXA SOPC ... 90
5.2.2 Open reconfiguration controller SOIUtIONS c.oiiiiiiiiiiiiiiii e 93
- Xilinx Virtex/Spartan FPGAS ..cooiiiiiiiiie e eae e 93
- Research on reconfiguration controllers based on Xilinx FPGAs 95
5.3 Reconfiguration engine architecture and modellingc.cooiiiiiiiii... 97
5.3.1 Reconfiguration controller architecture ... 97
5.3.2 Analytical model formulationc.coveiiiiiiii e 99
- Minimum reconfiguration timecooiiiiiiiiiiiiiii e 99
- Reconfiguration process scheduled in a cyclic taskcccooeviiiiiiiiinin... 101
5.3.3 System integration and proof of feasibilityc.cocioiiiiii 102
- Performance evaluationcocoiiiiiiiiiiiiiiii 107
5.3.4 Comparison with state-of-the-art architecturesccooviiiiiiiiiiiiiiiinnnnnn.. 109
5.3.5 Next generation reconfiguration enginescocoeiiiiiiiiiiiiiiiiiiiiiiniinennnn. 112
TR 1B 01001 E- W oy 7 PN 113
RO T O ICES ettt 113

XiX

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

PART IV. PROOFS OF CONCEPT AND USE CASES ...ccccitititruinieieierececececececees 115
6. Exploration and exploitationcccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiecaceteeaeaes 117
(ST I oY ey s w21 NP2 o o) ot To) o 1= 117
(TR RN o =Tl CP=1 o o) ToT=1 o) o 1= 117
6.1.2 Bio-inspired applicationscocoeiiiiiiinii e 118
6.1.3 Data security applicationso.ooiiuiiiiiiii e 119
6.1.4 Thermal self-protected SYStemscooiiiiiiiiiiiiiiiii 120
6.1.5 Software defined 1adioc.ooiiiiiiiiiiii 121
(TR IGI®7o] ahu o) B2 o] o) ToT=1 o) o 1= 122
6.1.7 Hardware emulation and rapid prototypingcccoeveveiiiiiiiiiiiiiiiiinnnnnnns 123
6.1.8 Digital signal processing and arithmetic computingc.cooiiiiiiiiit. 124
6.1.9 Image processing and multimedia applicationsccooiiiiiiiiiiiii 124
6.1.10 Telecommunications and NEtWOIrKingcccoeiiviririiiiiiiiiiiiinieeieenenenes 125
6.1.11 AUtomotive apPPliCAtIONIS t.iiuiniitiiit ettt ee et e e e e e e eeaeaaes 127
6.1.12 High-performance computingcocoeiiiiiiiiiniiiiiiiiiie e 127
6.2 Success cases of commercial products and industrial applications 128
6.2.1 Consumer €leCITONICS ...oviiiiitiiii e 128
0.2.2 Computing platformso.oniiiii e 128
6.2.3 NASA/ESA 2eroSpace MISSIONS .iuevviuietinitieeteneteneatetenteteeaeeeateneneeneaeeneaens 129
6.2.4 Signal processing at CERN ...ttt 129
6.2.5 Software defined radiocooiiiiiiiii 129
0.2.6 Cryplographiy c.oeoniiiii i 130
SRCIIN 1 b hasba oF-¥ o\ AN PP 130
RETETEIICES ouinitiiii e 130
7. PID cONtIoller ...cccoeiuiuiiiiiiiiiieieieieieieceterecititiesesesecacesesesecsssssssssasasessssssssssssasaes 133
A N Gs koY L& Ue3 s (o3 o NN S 133
7.1.1 PID algorithim ... e 134
7.2 Related WOTK ..o 135
7.3 IMPlementationoo.iiiieiiii e e e 137
7.3.1 Atmel AT94K field programmable system level integrated circuit 137
7.3.2 HW/SW co-design and run-time reconfigurationc.ccoooiiiiiiiiiiinn. 139
7.3.3 System ProtOtYPINE ..oeovininini e 142
7.3.4 Experimental results ... e 145
A N1 64 hs o - oA PP 146
RETETEIICES oniiitii it e 146
8. Fuzzy logic controllerccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitetieietcscetestetescacessscerssnns 147
8.1 INtrOdUCHION ettt e et 147
8.1.1 Fuzzy logic fundamentalsc.ooiiiiiiiii e 148
8.2 Related WOTK ..o 149
8.3 Hardware/Software Co-deSiZncociiiiiiiiiiitii e 152
8.3.1 Fuzzy algorithImc.oiiiii e 152
8.3.2 System architeCturecooiiiiiiiiiii e 154
8.3.3 FPGA dynamic partial reconfigurationccooooiiiiiiiiiiiiiiiiiiiiiiiiiieeen, 156
8.4 Performance evaluationc.cooioiiiiiiiiiiiiiiiiii e 157
SIS IN 1B has bo o=V oA PP 159
S 5 o3 8 o X 159
9. 2D cONVOlUtiON PrOCESSOT ..cccieieieiurerurnreritieiereresecasesecesecsssasasssesssessssssssasasaaes 161
0.1 INtrOdUCHION o.eeit e e e 161

XX

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

9.2 Related WOTK .ot 162
9.3 FPGA-DASed deSIZIl c.onuiniiiiiii it et 163
9.3.1 System architeCtUreo.oiiiiiii e 164
9.3.2 Adaptive 2D CONVOLVET ...iuiniiiiitit ittt e e e e e e e 166
9.4 ExXperimental TeSUILS ...ooiiiiiiii i ettt ettt et aaas 169
0.4.1 VIrteX-4 FPG A .ot 169
9.4.2 Performance evaluationoooiiiiiiiiii e 169
.0 SUITIITIATY tututinintin ittt ettt et et et et et e et e et et e et e et e et et e e e e e e e eeeenenenens 175
| S) (S 4 =) o Lo =1 S PPN 176
10. Trigonometric CORDIC COMPULErcccoieiirininrinieririeiesieiersaceresseressecessacessnss 177
10.1 INtrOdUCHION oniinieiiii ettt e e et et e e e et e e eaenas 177
10.1.1 CORDIC algorithm applied to trigonometricscccceovviviiiiiiiniiiniinineennne. 178
10.2 Related WOTK c.oouiiiiiii e 180
10.3 Run-time reconfigurable hardware implementationc.c.cocoviiiiiiiiiinnin... 181
10.3.1 Hardware/Software co-design and run-time reconfiguration 182
10.4 Unified fine-grain reconfigurable implementationc.cooiiiiiiii. 182
10.4.1 Coprocessor arChit@CIUIEooiiiiiiiii et e e 183
10.4.2 Performance evaluationcccoooiiiiiiiiiiiiiiiiiiiiii e 187
10.5 Specific coarse-grain reconfigurable implementationcoccooiiil. 188
10.5.1 Coprocessor arChiteCtUIE oiiiiiiiiiiiii e e e e e eaenes 188
10.5.2 Performance evaluationc.oceveiiuiiiiiiini et aenes 189
TO.0 SUIMIMIATY ettt ettt et et et ettt e e et et et et e e e e e enenenenen 189
RETEIEIICES ooiitiiiii e 190
11. Automatic fingerprint authentication systemcccccceviiiiiiiiininininiinenane. 191
11,1 INtrodUCHION ouiiniiiii ittt ettt e e e et e e e eaas 191
11.1.1 Basics Of DIOMELIICS t.vuieniniiniiiiit ittt ettt e et e e eneaenes 192
11.1.2 Automatic fingerprint authentication systemccooiiiiiiiiiiiiiiiiiiinnnne. 194
11.2 Related WOTK .ottt et ettt ana 194
11.3 Design and development ... 195
11.3.1 Batch process of mutually exclusive tasksccccoooviiiiiiiiiiiiiiiiiiiinieeens 197
11.3.2 Spatial and temporal partitioning of tasksccccoeviiiiiiiiiiiiii 201
11.4 Experimental TeSUILS ..ot 201
11.4.1 Approach I: Full FPGA reconfiguration on Excalibur SoPC 202
11.4.2 Approach II: Partial FPGA reconfiguration on Virtex-4c.ccooiviiiiiiininine. 204
11.4.3 Performance evaluationc.o.vuiuiniiininre e 207
11,5 SUMIMIATY ceininenitiiii ettt et ettt et e et et e e et e ea e e et en e e e et eneae e enenenenen 210
a5 o3 8 Lo X 212
12. Automotive electronic control unitccceieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee. 213
)220 B0 o 15 e 15 o1 wTo) o L PRSP 213
12.1.1 AUTOSAR oot ettt et et e e e eane 214
L12.1.2 ISO 260202 .oniiiiiiiiiiie e aae 214
12.2 Related WOTK oottt ettt ettt e e enas 215
12.3 System archit@CtUTIEcoiiniiiiiii e 217
12.3.1 REAL SCEIMATIO vttt ettt et e e et e e et e e eaaenas 217
12.3.2 ECU deployment on FPGA-based static hardwarec..cociiiiiiiiinn. 219
12.3.3 ECU deployment on run-time reconfigurable hardwarec..cocoveviiienine. 223
1204 SUIMIMIATY ottt et ettt e et ettt et et et ea e e e e e et e easaaaenaaeaenenenenes 223
a5 o3 8 Lo X 224

XXi

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

PART V. CONCLUSIONS ...ccciuiutututtieieiecacacecececcsssssacacsssssssssssssscscsssssssssssssscssass 225
13. Reconfigurable hardware technology today: strengths and weaknesses 227
13.1 Benefits of run-time reconfigurable hardwarecc.ccooiiiiiiiiiiiiin. 227
13.1.1 FPGA teChNOLlOZY .oeniiiiiiiii ittt ettt e aenes 227
13.1.2 Time-to-solution and life CYClec.ooiiiiiiiiiii e 228
13.1.3 Portability and immunity against components obsolescence 228
13.1.4 System versatility, adaptability and self-adaptibitycc.cooviiiii. 229
13.1.5 Early system validationcc.oeieeriiiiniiii e 229
13.1.6 Performance improvement, acceleration and parallelismc..cccoveieiennane. 229
13.1.7 Hardware CUSTOMISATION ..iuiuiiiiiiieiitiii ettt e e e et e e e e e eaeenas 230
13.1.8 Hardware reuse and functional densitycoccocoiiiiiiiiiiiiiiiiiiiiiiiiniien, 230
13.1.9 Reduction of complexity, space, weight and costcccoiiiiiiii 230
13.1.10 POWET CONSUIMIPLION tuiuiniiiiitiiitiii it e e et et ettt ete e eneneenaaeeeeaesensnenenenanenas 231
13.1.11 System survivability and self-healingccociiiiiiiiiiiiiieen 231
13.1.12 Rapid prototyping platform but also end-user productcccceevvvinenenn.n.. 231
13.1.13 Technology accessibilityc.coveiiiiiiiiiiiii e 232
13.1.14 HOSE COUPLINE .oiniiniiiiiiii ettt et aenes 232
13.2 Weak points of reconfigurable hardware technologyccccccoeviiiiiiiiiinininne. 232
13.2.1 Low ease of use and designer productivityccccoeveiiiiiiiiiiiiiinininiinenene. 232
13.2.2 Advances in design flow and development tools still needed 233
13.2.3 Lack of commercial devices with better reconfiguration features 233
13.2.4 Software but also hardware skills neededccooiiiiiiiii 234
13.2.5 ComPOnEnt COSt .iuiniiiiiiii ettt e e e e e e e e e e e e e e aanas 234
13.2.6 Lack of killer applications in Placeccviviieieiiiiiiiiiieeei e eenenes 234
13.2.7 Energy management is increasingly demandedc..cocoiiiiiiiiiiiiiiiiiininiane. 235
13.2.8 Embedded security aspectscciiiiiiiiiiiiii e 235
13.3 SUMIMATY coiiiiiniiiii ettt et e e e a e 235
RETEIEIICES ooniiiiii ittt 236
14. Conclusions and future WOrkccccciiiiiiiiiiiiiiiiiiiiiiiiciecicieieciececiececcscacecnans 237
14.1 CONCIUSIONS touiiiiiiiiiii ettt e e eaeaae 237
14.2 ReSearCh PrOJECES ..ouuiiiiiiii et enes 239
L14.2.1 TRUST -8 ottt ettt et ettt et et e e en e eaeans 239
14.2.2 DELFIN L.ttt et ettt ettt et et et et eae e eaeans 241
14.2.3 PIBES oottt aae 241
14.3 FULUTE WOTK oottt e 242

XXii

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis
DL: T. 877-2012

Part I

Outline

UNIVERSITAT ROVIRA I VIRGILT

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Chapter 1

Reconfigurable computing

Reconfigurable computing (RC) constitutes today a consolidated implementation
technique of applications —or functionality in general- synthesizable electronically in
distributed look-up tables (LUTSs), flip-flops and memory blocks of an SRAM-based field
programmable logic device. In essence, it brings a new perspective to the design and
development of embedded electronic systems, featuring a strong influence on system-on-
chip (SoC) architectures and taking full advantage of the inherent parallelism and
adaptability of reconfigurable hardware technology. This chapter briefly introduces
reconfigurable computing and outlines the scope and goals of this PhD dissertation,
which tackles the exploitation possibilities of run-time reconfigurable hardware in the
embedded space. Based on hardware/software codesign and driven by dynamic partial
reconfiguration, the reconfigurable computing paradigm enables the partitioning of a
computational problem into a batch process of scheduled serial and parallel tasks to be
performed sequentially in a set of shared silicon resources, balancing thus key design
parameters like area (resources required), time (processing latency involved), functional
density and power (both static and dynamic terms) in its implementation.

1.1 Introduction

Very often software and hardware arise as two feasible implementation alternatives of an
application through digital electronics, subjected to the paradigms of computation-in-
time and computation-in-space, respectively. The decision of mapping a computational
task either in hardware or in software depends, in general, on the specific constraints of
the application itself. On the one hand, software solutions are based on a general-
purpose processor or CPU that handles a set of instructions executed sequentially, giving
rise to a procedural implementation or instruction flow. As result, software is flexible
since the processing can be changed by only modifying the list of instructions or program
code, but also relatively inefficient due to the instruction fetch-decode-execute
mechanism limited by the sequential execution — one instruction after the other. On the
contrary, hardware designs offer high performance due to their customized problem-
focused solution —a specific hardware circuitry is synthesized on silicon, with no extra
overhead for solving a more general problem- and their spatially parallelized execution,
where each operator exists at a different point in space, although this comes at the cost
of involving so many hardware resources as necessary, resulting in a structural
implementation or configuration flow [DeHon and Wawrzynek, DAC 1999].

The emergence of run-time reconfigurable hardware technology —materialized through
SRAM-based field programmable gate array (FPGA) devices some decades ago-
introduces a new methodology to balance space and time in the electronic
implementation of applications, decomposing the target application into a series of
processing tasks which follow an effective temporal and spatial partitioning. Thus,
reconfigurable computing (RC) is defined as the study of computation using
reconfigurable hardware devices [Bobda, Springer 2007]. With it, digital hardware design
becomes soft and its original structural implementation evolves to a simple structural
programming. Some terminology must also be defined to address the concepts of
reconfigurability. On the one hand, in computing science the term programmable refers
to the time domain. It is a type of flexible computations where a sequence of instructions
is loaded and executed in the time dimension by using one or several processing
elements. Like this, programming means instruction scheduling and it relates to software
flow. On the other hand, the term configurable introduces the space domain. It is a type

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

of flexible computations where only one or a few instructions per processing element are
loaded and the execution is performed in the dimensions of space and time concurrently.
Therefore, configuration means the setup of structures and preadjustment of logic blocks
and it clearly concerns hardware. Moreover, as a subset of configurable, the term
reconfigurable referred to a device means that such device can be configured more than
once. Still a deeper term within reconfiguration is dynamic, run-time, on-the-fly or active
reconfiguration; while configuration or reconfiguration is usually not feasible during
operation, dynamic reconfiguration means that reconfiguration may happen at run-time,
i.e. during application execution. Thus, dynamic reconfiguration implies that an active
device may be partially reconfigured, while ensuring the correct operation of the rest of
active circuits that are not being changed. This is known as partial reconfiguration (PR)
and refers to the ability to dynamically modify blocks of a programmable logic device by
downloading partial bitstream files while the remaining logic on the device continues to
operate without interruption. Finally, the term self-reconfiguration extends the dynamic
reconfiguration concept to specialized autonomous devices where specific circuits of the
device itself are used to control the reconfiguration of other parts of the device, being the
integrity of these control circuits guaranteed during reconfiguration [Zomaya, Springer
2006].

Designers realized soon that the volatility of SRAM-based FPGAs could be exploited to
gain a competitive advantage in many applications. Since the configuration of these
devices can be changed by a completely electrical process performed by a specific engine,
either at run-time or off-line, SRAM-based FPGAs become the workhorse of numerous
reconfigurable applications. These devices contain an array of LUTs for synthesizing
combinational functions, flip-flops for sequential finite state machines, memory blocks
for data storage, DSP blocks for compact signal processing, clock management blocks for
configuring system clocks, and interconnection nets to link all these resources giving rise
to a made-to-measure computing system. By means of reconfiguration technology, all
these resources can be highly customized to the instantaneous needs of an application,
where the configurable structures are changed during circuit operation, allowing the
computational resources to be reused in time. The main goal behind the temporal and
spatial partitioning of reconfigurable logic resources is to achieve the highest efficiency of
reconfigurable systems, taking the maximum advantage of parallelism, resource usage
and flexibility [Diessel et al., CDT 2000]. This approach is viable when the target
application can be decomposed into a set of functions or stages executed sequentially
following a batch process, whose simultaneous availability is not required and where
each one of such serial stages, in its turn, is decomposed in a subset of tasks running in
serial and/or in parallel instatiated on demand in the same set of shared resources. As a
result, the functionality demanded by the application can be performed on the minimum
number of processing elements possible at expenses of raising at maximum its usage or
functional density. Moreover, usually the reconfiguration latency is sufficiently small,
typically in the order of a few milliseconds or less, for those functions to be swapped in
real-time [Lysaght and Rosenstiel, Springer 2005]|. Other derived benefits can be the
reduction in power dissipation in comparison to static hardware solutions. Such
reduction is made effective in both static (less hardware resources involved) and dynamic
(less activity if some reconfigurable portions of the device are replaced by blank
bitstreams when they are not in use) terms of power. Following this introduction, a short
walk through the history of reconfigurable computing, from its birth until today, is
presented in the next sections.

1.1.1 History: roadmap towards reconfigurable computing

The reconfigurable computing concept was introduced in 1960 by Gerald Estrin, a
computer scientist at the Universtity of California, Los Angeles. Dr. Estrin and his group
at the UCLA did the earliest work on reconfigurable computer architectures, proposing
the idea of a fixed plus variable (F+V) computing system in which a fixed processor

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

abstraction exists side by side with programmable hardware [Estrin, WJCC 1960]. At
that time, the fixed part was implemented in a motherboard composed basically of a
general-purpose processor whereas the variable part was made upon a set of specific
functional units and their wire harness, composing block modules insertable into the
motherboard [Estrin and Turn, TEC 1963]|. With this architecture, the reconfiguration
was exclusively performed by hand -either changing the wiring harness or replacing
some basic blocks by new ones— reaching thus a manual modification of the system
functionality [Estrin, AHC 2002].

Close to this concept, programmable logic devices (PLDs) such as programmable read-
only memories (PROMs), programmable logic arrays (PLAs) and programmable array logic
devices (PALs) have been available since the 1960s, the 1970s and the early 1980s,
respectively. These three PLD models are composed of an array of AND-gates connected
to another array of OR-gates and they are well suited to implement any computation
expressed as a sum of products: the external inputs —in both forms, just as they are and
negated— are connected to the AND-gates in a first stage; the intermediate results of this
stage are connected then to the second stage composed of OR-gates. Depending on the
device -PROM, PAL or PLA- model, only OR, only AND, or both AND and OR connections
are user programmable, respectively. However, the use of PROMs and PLAs was quite
limited mainly due to technological reasons like its relatively slow maximum operating
speed, and concerning PALs, although they started to be used as glue logic, suffered from
power consumption problems. Apart from all those issues, the main limitation of these
three PLDs is found in their low capacity -restricted by the nature of the AND-OR
planes— equivalent to a few hundreds of logic gates. Later, complex programmable logic
devices (CPLDs) arose for larger logic circuits, consisting of a set of macro cells (typically
composed of several PLAs and flip-flops), I/O blocks and an interconnection network.
Despite their relative larger capacity (few hundreds thousands of logic gates), CPLDs are
still too small for using in reconfigurable computing to implement big circuits and they
are basically used only as glue logic.

The extension of the gate array technique to post-manufacturing customisation, based
on the idea of using arrays of custom logic blocks surrounded by a perimeter of I/O
blocks, all of which can be assembled arbitrarily, gives rise to the FPGA concept, a new
type of programmable logic architecture introduced by Ross Freeman, one of the
founders of Xilinx Inc. in 1984, who promoted the notion that silicon is free, using such
slogan to emphasize the idea that it does not matter that making a single logic gate
requires as many as 100 transistors, what really matters is the convenience and time-to-
market advantages that reconfigurable FPGAs offer, promoting thus end-user flexibility
at the expense of more transistors. The first chip of that company consisted of 85000
transistors (no more than one thousand equivalent gates) and was fabricated in a 2-um
process in 1985, reinforcing already at that time two of the key benefits of reconfigurable
computing: the computation is spatial (in contrast to the temporal style associated with
microprocessors) and the architecture used in the computation is determined at post-
fabrication time and can therefore adapt to the characteristics of the executed algorithm
[Xilinx Inc., Xcell 2004]. Probably the first interest from an industrial viewpoint for these
ideas started at the beginning of the 1990s once FPGA densities broke the 10K logic gate
barrier, being the subject of extensive research and experimentation. At that time, the
continuous increase in price for ASIC flows combined with the advance in semiconductor
manufacturing made FPGAs a more appealing option for an increasing number of
applications, to the extent that they started becoming an actual alternative to low volume
ASICs production besides its initial use as rapid prototyping platforms. FPGAs were
slowly gaining popularity but still they could not be used for all applications since they
did not provide enough hardware resources and software tools had not yet reached
enough maturity to create optimized designs. It is in the 1990s when the FPGA design
space reached a level of maturity that made them the choice of implementation in many
fields, experiencing a fast progress from that moment on. FPGAs started at that time to
be used in hardware/software co-design platforms, described in hardware description

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

languages (HDL) like Verilog and VHDL. Until the middle of the 1990s, all the FPGA-
based reconfigurable systems were implemented using statically reconfigurable FPGAs
that exhibited some restrictions: to configure a new circuit all FPGA operations had to be
completely suspended and a full reconfiguration bitstream had to be loaded in order to
reconfigure even one cell of the device; moreover, all information stored in internal
registers was lost after a reconfiguration, making it impossible to share internal data
between two configurations [Sklyarov et al.,, Euromicro 1998]. These restrictions were
overcome by a new type of SRAM-based dynamically reconfigurable FPGAs. These new
devices can be partially updated without suspending operations of the parts that do not
need to be modified, such as the Xilinx XC6200 family — the first commercially available
FPGA designed in 1995 for run-time reconfigurable computing [Hartenstein et al., FPL
1998]. Since then, run-time reconfigurable computing became a subject of intensive
research. The concept of virtual hardware —-the idea of using a reconfigurable device to
implement a number of applications requiring more resources that those currently
available— pointed out to the use of temporal partitioning as a way to implement those
applications whose area requirements exceed the reconfigurable logic space available,
assuming to a certain extend the availability of unlimited hardware resources [Ling and
Amano, FCCM 1993]. Thus, after the advance of single context FPGAs, it arises a new
trend based on developing multi-context FPGAs [Trimberger, FPGA 1998], leaded by
bipartitioning techniques aimed at splitting the static implementation of a circuit in two
or more hardware contexts and switching one context to another in some few
nanoseconds by means of multiplexed architectures, increasing thus the logic capacity
[Hauck and Borriello, CADICS 1997]. Similarly, the increasing amount of logic available
in FPGAs, the development of glitchless partial reconfiguration technology and the
reduction of the reconfiguration latency allowed extending the concept of virtual
hardware to other new FPGAs able to be partially reconfigured, in portions, without the
need of replicating their resources in several identical contexts. Thus, the late 1990s
opened the door to new FPGA applications, achieving a good level of performance based
on exploiting the functional density of their resources.

A new trend is observed in which design teams start to use FPGAs in tandem with
standard microprocessors as a way to merge both peripheral functions and custom
processing. To maximize performance in such applications, designs must tightly couple
the FPGA and microprocessor instead of treating each as independent entities. FPGA
vendors start to offer various types of processors for their FPGAs just when FPGA
transistor counts grew enough to accommodate them. In the late 1990s, FPGA vendors
started offering soft-cores (8-bit, 16-bit and then 32-bit processor cores in HDL, or as
prerouted netlists like 8051, ARM7, MIPS, LEON, NIOS II, Microblaze, etc) that hardware
designers could add into FPGAs with synthesis and place-and-route tools. Later, in the
early 2000s, FPGAs achieve the enough density of transistors to implement
microprocessors in the silicon itself, as hard-wired cores next to programmable-logic
blocks. Implementing cores in the fabric itself saves space on the chip for programmable
logic, lowers power and improves overall performance. As examples, Atmel or Altera
introduced ARM and AVR hard-core processors in their SoC devices FPSLIC and
Excalibur, respectively. Xilinx integrated PowerPC processors in derivatives of its Virtex-4
and Virtex-5 devices.

Although the hardware/software co-design flow (hardware/software partitioning, design
synthesis, placement, routing, technological mapping, bitstream generation, co-
verification) is more complex than the design flow used in a purely-software approach
(software edition, compiling and linking), in the 2000s the FPGA flow was fully available
for implementing static or off-line reconfigurable designs but not for covering run-time
reconfigurable systems. Devices and tools became powerful enough to deal with most
static hardware designs. However, the lack of a well-defined and efficient design flow to
develop run-time reconfigurable computing together with the lack of efficient
reconfiguration features (reconfiguration bandwidtch, grain, etc) for these devices would
drastically limit the explosion of this technology to the masses basically for the first 20

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

years after the appearance of the first SRAM-based FPGAs. Together with the lack of an
appropriate tool set -historically the first stopper of this technology-, the second big
stopper of run-time reconfigurable computing at that time was the device cost. FPGAs
have historically been restricted to a narrow set of high performance computing
applications because of their relative high cost compared with other implementation
alternatives (e.g. MCU). However, for over all the quarter of century of life, cost reduction
has played a fundamental role in the development of reconfigurable hardware
technology. The progress in silicon industry has resulted in a tremendous increase in
device capacity of FPGAs while at the same time the cost has decreased drastically. They
grow in capacity as they are built by more and more miniaturized cooper process
technology, following the Moore’s law which states that the achievable transistor count
on a single integrated circuit doubles every 18 to 24 months (130nm, 90nm, 65nm,
40nm, 28nm, etc). This fact lets FPGAs already lodge the whole computation demanded
by many applications in one single chip. During the decade of 1990s, there was a
reduction of around 10000% in the cost of the basic FPGA building block or logic cell —
consisting of one LUT and one flip-flop. Besides, the trends observed in the first decade
of 2000s confirmed that advancements in process technology like architectural
enhancements, increased logic cell count, and speed contributed to an increase in
performance of FPGAs manufactured containing multi-millions of transistors. Thus, in
this period of time, the logic compute performance increased approximately by 920%
while the logic cell count incremented by 240% and the price per logic cell decreased by
90% [Xilinx Inc., WP375 2010]|. From a hardware viewpoint, new nanometer scale
fabrication processes allow devices containing several million and ever billion LUTs and
flip-flops to be fabricated. An increasing number of logic and I/O resources are available,
including complex functional blocks, e.g. on-chip distributed RAM memories, phase-
locked loops (PLLs), digital clock managers (DCMs), communication transceivers (GTX,
Ethernet, PCle) and interfaces (DDR-SDRAM), arithmetic circuits (DSP blocks) or
cryptographic blocks (e.g. AES core) [Rodriguez-Andina et al., TIE 2007].

Nevertheless, event though partial reconfiguration technology has existed for
generations, this feature has only gained big attention recently, becoming a potential
implementation alternative of embedded systems based on FPGA devices due basically to
the software enhancements of EDA tools carried out in the last years. For this goal, a
definitive breakthrough concerning development toolset for run-time reconfigurable
computing occurred in 2006. At that time, Xilinx released what probably might be
considered the first mature partial reconfiguration design flow provided with automated
CAD tools. Such design methodology is built around the PlanAhead tool and definitely
makes dynamic reconfiguration feasible, turning it from a heroic activity to a reliable
design process. These tools supported Xilinx Virtex-4 FPGAs, which presented further
technological enhancements on its architecture oriented to PR like finer reconfiguration
granularity and improved reconfiguration bandwidth. Hence, a new era of run-time
reconfigurable computing began. An early access version of the PR design tools initially
developed by Xilinx was offered to well-qualified partners from both academia and
industry who contributed to deploy it and report feedback for its improvement. As one
would expect with an early access tool flow, there were opportunities for improvement
but the level reached at that moment was conclusive to prove its feasibility aimed at, in
the end, porting this design methodology from research to industry. Recently, new tools
that allow the FPGA design to become increasingly hardware-independent have been
developed (e.g. Simulink model-based design from MathWorks, allowing the use of
behavioural descriptions as design entry converted then automatically in HDL code).
Summarizing this evolution in only some few milestones, the timeline of Figure 1.1
highlights that reconfigurable computing is a very recent scientific field where, although
the concept had its origins 50 years ago, the FPGA technology able to support such
paradigm arose 25 years ago and the design flow and tooling for exploiting this
technology in a professional way were definitively mature only 5 years ago. Nowadays,
with concepts, devices, and professional tools already in place, we live the beginning of a

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

promising era of computing, with many opportunities ahead that shall let us contribute
to the enhancement of our society in aspects like health and quality of life of the citizens.

Reconfigurable Foundation First First Commercial Xilinx Early Access Partial
Computing Concept FPGA Vendor PR-FPGA Reconfiguration Lounge
G. Estrin Xilinx Inc. Xilinx XC6200 Modular Design Flow

1960 1984 1995 2006

Figure 1.1 Milestones of the roadmap towards run-time reconfigurable computing

1.1.2 The present of reconfigurable hardware technology

The continuous advances in microelectronics are changing the technology, the
computing world and also the society. At a fundamental level, reconfigurable computing
is the process of best exploiting the potential of reconfigurable hardware. Just to name
some of the most important milestones recently achieved, Xilinx presented in 2010 a new
PR design flow, inspired in its previous early access PR modular design flow, based now
on partitions. The most relevant highlight of this PR flow -the Xilinx PR fourth
generation- is the fact that it is released as mainstream in the design toolset, integrated
in the standard tools. This means that PR is officially supported by the FPGA vendor,
offered as one more exploitable feature of the device, and therefore accessible from now
on by any FPGA development team.

Also in 2010, three FPGA vendors announced their next-generation devices featuring, to
a greater or lesser extent, dynamic reconfiguration as part of their strategy to take
programmable logic forward to higher densities and throughputs. Altera announced its
28-nm Stratix-V FPGA equipped with PR capability as well as the introduction of the PR
design flow integrated into its classical Quartus-II tool. In this way, Altera joins for the
first time the group of FPGA vendors that provide partial reconfiguration in their devices.
Meanwhile, Xilinx announced its next-generation 7-series of FPGAs - its fifth generation
of devices that support PR. Finally, also at that time, the startup Tabula Inc. revealed
some details of its technology that makes extensive use of dynamic reconfiguration
through its multi-context Abax devices.

Already in 2011, a new computing wave based on merging hard-core processors with
programmable logic in the same fabric arises into the market, promoting the exploitation
of system-on-chip solutions. State-of-the-art FPGA devices make possible to implement
all the functionality associated to an embedded system in a single chip: one or more
hard- or soft-core processors can be placed there along with additional programmable
logic to synthesize standard or custom coprocessors. Thus, many platforms tightly
integrate today the MCU+FPGA combination and a development tools ecosystem allow an
embedded design team to optimally partition their implementation by means of
hardware/software co-design. In this direction, Xilinx announced the new generation of
the so-called extensible processing platforms (EPP) composed of its Zyng-7000 family of
devices. Some months later, Altera announced the new generation of SoC FPGAs Arria-V
and Cyclone-V devices. In both —Xilinx and Altera— cases, the devices are composed of a
dual-core ARM Cortex-A9 MPCore processor and 28-nm programmable logic. Besides, in
the end of 2011, Xilinx started the shipment of the Virtex-7 2000T FPGA device —-the
world’s highest capacity programmable logic device ever built provided with 6.8 billion
transistors on a single chip— and the Zynq-7020 EPP, while Altera released the Arria-V
SoC FPGA. Figure 1.2 shows the forecasted change in embedded designs based on FPGA
devices which incorporate a hard-wired processor. All these FPGA devices that merge one
or more hard core processors with reconfigurable fabric are referred to by the FPGA
vendors as programmable system-on-chip (PSoC), system-on-programmable-chip (SoPC),

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

SoC FPGA or extensible processing platform. Independently of the name, it refers to an
efficiently coupled MCU+FPGA architecture packaged in a single chip. As example, in
some of these devices the coupling between the processor system —an ARM CPU- and the
programmable logic is performed through a high-bandwidth AMBA-AXI interconnect.

UNITS 120" @ FPGA with embedded processor

O FPGA withoutembedded processor
K) 100l

80 T

60

40

20

0 L L L L L L

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

YEAR

Figure 1.2 Use of FPGA devices (source: Gartner Dataquest, September 2010)

In relation to the market trends, as the complexity of the embedded applications
increases, the combination of a processor with programmable logic in a single device is a
viable solution that is acquiring more and more acceptance for implementing embedded
systems. It is observed an increment in the integration of processors into programmable
logic devices, from no use of processors in 1999 to a percentage higher than 50%
estimated for 2014, as depicted in Figure 1.2. Moreover, the usage of programmable logic
for implementing dynamically reconfigurable solutions —based on the idea of doing more
with less by means of the reuse of resources- is also increasing. Figure 1.3 highlights the
latest milestones achieved in the field of reconfigurable computing in the last years. As
far as achievements are concerned, the PR design toolset is consolidated and gets
mainstream in the FPGA design flow. Besides, some FPGA vendors show their clear bet
on run-time reconfigurable hardware applied to their next-generation FPGA and SoC
devices.

PR Flow merged to Announcement Announcement Altera Announcement Announcement Shipment First
FPGA Design Flow Xilinx 28-nm FPGA 28-nm FPGAwith PR Xilinx EPPs Altera SoC FPGAs Xilinx EPPs
Xilinx ISE 11-12 7-Series Stratix V Zyng-7000 Arria V & Cyclone V Zyng-7000

e K s N s K s K e K /h*%

May-2009 Feb-2010 Feb-2011 Apr-2011 Oct-2011 Dec-2011

Figure 1.3 Recent achievements in run-time reconfigurable computing

1.2 Motivation

Embedded computing, in one way or another, is present everywhere in our daily life. The
combination of hardware and software to perform specific functions is applied in
multitude of scenarios. Definitively, you only need to look at your pockets to confirm this
fact: mobile phones, smart cards or vehicle remote keyless entry systems immediately
come in mind. In medical equipment, for instance, it is observed a high demand for
portable and reliable devices to improve global healthcare in all three segments of the
medical device market: home-based applications, clinical and diagnostic applications,

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

and medical imaging. In fact, it is said that in the near future about 90% of applications
will be embedded systems, most of these mobile appliances that shall be small in size,
with very low power consumption and with high performance. Moreover, with the
growing popularity of personalized, interactive, real-time technology, it is expected to see
in the future a rise in demand for specialized embedded computing systems to support a
broad range of new applications — including many that have not yet been envisioned.

Due to rapid advancements in integrated circuit technology, the rich theoretical results
that have been developed by the research community are now being increasingly applied
in practical systems to solve real-world processing problems. Nowadays, an increasing
number of researchers believe that the computating challenge for the future is to exploit
reconfigurability and parallelism on a single die. The flexibility provided by run-time
partial reconfiguration together with the potential for implementing large circuits on
limited hardware resources are earned values that make run-time reconfigurable
systems an excellent choice for implementing a wide range of low-cost embedded
applications. Moreover, reconfigurable hardware technology can clearly contribute to
enhance the fault-tolerance capabilities of these systems. Therefore, many applications
abound that can take benefit of these technological strengths, delimited by strong
constraints on size, weight, cost, and power consumption. For this, it is necessary to
define new system architectures based on this new technology able to surpass the
performance-cost restrictions of the current solutions in the industry and demonstrate
moreover its feasibility. The deployment of this technology involves, in general, to
redesign the current solutions from scratch since the requirements inherent to this
technology have changed, due especially to the new time-space concept introduced in
this approach up to now not present in other technologies like a purely software or static
hardware solution based on a Von Neumann or Harvard MCU, DSP, GPU or ASIC.

This PhD initiative was born in September 2002 within the context of constituting a new
research group inside the Departament d’Enginyeria Electronica, Eléctrica i Automatica
(DEEEA) of Escola Técnica Superior d’Enginyeria (ETSE), Universitat Rovira i Virgili (URV),
in Tarragona, Spain. The research group is named Development of Embedded Systems
(DES) and its topics of interest covers two transverse or horizontal matters aimed at being
deployed then into vertical fields. On the one hand, the transverse disciplines focus on
the design of embedded system architectures driven by the synthesis of digital circuits.
One of the horizontal disciplines deals with the hardware/software co-design of
embedded systems on programmable logic. The other discipline focuses on the synthesis
of such digital circuits exploiting run-time reconfiguration to reach, in the end, dynamic
self-reconfigurable embedded systems. On the other hand, the vertical fields where to
deploy these transverse disciplines are organized basically in three main areas:
biometrics, cryptography, and a set of more generic computing fields such as arithmetic,
digital control and signal/image processing. At that time, the recently founded
Development of Embedded Systems research group starts to walk constituted by seven
members: three PhD full professors and four PhD students, being the author of this
dissertation one member of the last group. The technical profile of all the members met
an exciting interest in the design of embedded applications exploiting design techniques
based on hardware/software co-design and reconfigurable computing over MCU, FPGA
and SoC platforms. Under this scenario, each member takes responsibilities in a specific
area so that, when joining all the parts, the group totally covers its global objective: to
face up the D&D of embedded systems based on FPGA and SoC devices by exploring
efficient system architectures able to lead to significant implementation advances
concerning performance and cost. Figure 1.4 shows a snapshot of the different
computational application areas of interest of the DES research group, all of them driven
by two transverse disciplines.

In particular, the author’s research field encompasses the evaluation of run-time
reconfigurable hardware as the key technology to address the design of applications
portable to embedded electronic systems. As part of this investigation, the author
explores how run-time reconfigurable hardware can be used in certain embedded

10

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

applications to become an advantage, pursuing cost-efficient technical solutions suitable
for being integrated in cost-sensitive commercial products or applications across multiple
industries and markets.

S

D l |

C | M G

B R |HW/SW CO-DESIGN G A A N

| Y | R G A

0 P T | E L

M T A T

L1 E H O L —H H H P H p H
— T M G — M — R M R M

R R C E 0 0

| A 0 T C c

C P N | E E

S H |RUN-TIME HW RECONFIGURABILITY | T C S S

Y R S S

0 l |

L N N

Figure 1.4 DES horizontal (design technology) and vertical (embedded apps) disciplines

More than ever before, run-time reconfigurable hardware is a consolidated technology
with promising exploration areas. The continuous drop in the price of programmable
logic technology -together with the incessant rise in performance most of embedded
electronic systems demand- should make this computing paradigm change viable in the
not-too-distant future. Hence, reconfigurable computing is gaining great momentum;
some evidences which confirm this trend are the rapidly increasing number and
attendance of international conferences on reconfigurable computing, as well as the
adoption of this engineering field by new scientific journals with topics of interest
including theory, architecture, algorithms, design and applications which demonstrate
the benefits of reconfigurable computing, as detailed next.

1.2.1 Scientific events and specialized journals

One indicator of the growing footprint of reconfigurable computing in embedded
applications is the large number of events (workshops, conferencesm symposiums, etc)
organized and devoted to this topic in the last years. Besides, the growth observed in the
market share of programmable logic devices, particularly FPGAs, is an unequivocal
indicator of the strong interest in reconfigurable logic. Some of the most popular
conferences which annually address the underlying principles that lead to the choice of
reconfigurable hardware technology for an extended set of applications are enumerated
in Table 1.1. These conferences aim at bringing together researchers and practitioners of
reconfigurable computing. In a more or lesser extent, all these scientific events
encompass run-time reconfigurable hardware technology and provide an excellent
snapshot of the latest research directions from both academia and industry research
communities on dynamically reconfigurable architectures and embedded systems.

Apart from the proceedings of the conferences listed below, there are also some specific
journals and magazines which focus their interest on reconfigurable computing and
FPGA technology. Some of them are listed next in Table 1.2. As proof of the relevance of
these information sources, most of the references cited in this PhD dissertation are
related to publications presented in these conferences and journals.

11

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012
Table 1.1 Scientific conferences focused on reconfigurable hardware technology
ACRONYM FULL CONFERENCE/WORKSHOP NAME URL
AHS zlr? tsréf:s/?: %(I)-?f—eﬁ/r-{;eA/()SoADdgztr?grSr?égvgireE\?;Sasbsllgtﬁg]rfjware) http:/fwww see.ed.ac.uk/ans2012/
ARC International Symposium on Applied Reconfigurable Computing http://www.arc-workshop.org
ARCS {ncuces DRS - Warkahop on Dynamial Recanfgurabie ystems) s arcs2012tum e
ASAP Int. Conference on Application-specific Systems, Architectures and Processors http://asap-conference.org
CARL Workshop on the Intersections of Computer Architecture and Reconfigurable Logic http://www.ece.cmu.edu/calcm/carl/
ClcC IEEE Custom Integrated Circuits Conference http://www.ieee-cicc.org/
DAC Design Automation Conference http://www.dac.com
DASIP Conference on Design and Architectures for Signal and Image Processing http://www.ecsi.org/dasip
DATE Design, Automation and Test in Europe Conference http://www.date-conference.com
DCIS Conference on Design of Circuits and Integrated Systems http://www.dcis.org
DELTA International Symposium on Electronic Design, Test and Applications http://delta.massey.ac.nz/
DSD Euromicro Conference on Digital System Design http://www.dsdconf.org/
ERSA International Conference on Engineering of Reconfigurable Systems and Algorithms http://ersaconf.org
FCCM Symposium on Field-Programmable Custom Computing Machines http://www.fccm.org
FPGA International Symposium on Field-Programmable Gate Arrays http://www.isfpga.org
FPL International Conference of Field-Programmable Logic and Applications http://www.fpl.org
FPT International Conference on Field-Programmable Technology http://www.icfpt.org
HEART Int. Workshop on Highly Efficient Accelerators and Reconfigurable Technologies http://iwww.isheart.org
HPEAC | (nciudes, WRG - Woskshop on Reconiquable Computng)- | Ml ipeace
HPEC High-Performance Embedded Computing Workshop http://www.Il.mit.edu/HPEC/2011/
HPRCTA InternatiolnaIIWorkshop on High-Performance Reconfigurable Computing Technology | http://www.ncsa.illinois.edu/Conferences/HP
and Applications RCTA10/
ICECS IEEE International Conference on Electronics, Circuits and Systems http://icecs2011.com/
ICES International Conference on Evolvable Hardware: From Biology to Hardware http://www.ices2010.org
IESS International Embedded Systems Symposium http://www.iess.org
IPDPS IEEE International Parallel & Distributeq Processing Symposium http://www.ipdps.org '
(includes: RAW - Reconfigurable Architectures Workshop) http://www.ece.Isu.edu/vaidy/raw
ISCAS IEEE International Symposium on Circuits and Systems http://www.iscas2012.org/index.html
ISVLSI IEEE Computer Socigty Annual Symposium on VLSII . ' http://wwyv.i§vlsi201 1 .org .
(includes: RC Education — Int. Workshop on Reconfigurable Computing Education) http://helios.informatik.uni-kl.de/RCeducation
JCRA Jornadas de Computacion Reconfigurable y Aplicaciones (Spain) http://www.jcraconf.org
MAPLD Military and Aerospace Programmable Logic Devices Conference http://www.cosmiac.org/respace2010
MICRO IEEE/ACM International Symposium on Microarchitecture . http://www.microarch.org/
(includes: CARL — Workshop on Intersections of Computer Arch. and Reconf. Logic) http://www.ece.cmu.edu/calcm/carl/
ProRISC Workshop on Circuits, Systems and Signal Processing (The Netherlands) http://www.stw.nl/Programmas/Prorisc
ReConFig International Conference on Reconfigurable Computing and FPGAs http://www.reconfig.org
ReCoSoC Reconfigurable Communication-centric Systems-on-Chip Workshop http://www.recosoc.org
RSP IEEE International Symposium on Rapid System Prototyping http://www.rsp-symposium.org
SAMOS Int. Conf. on Embedded Computer Systems: Architectures, Modeling and Simulation http://samos.et.tudelft.nl
SASP IEEE Symposium on Application Specific Processors http://www.sasp-conference.org
SBCCI Symposium on Integrated Circuits and Systems Design http://www.sbc.org.br/sbcci
SoC International Symposium on System-on-Chip http:/soc.cs.tut.fi
SPL Southern Programmable Logic Conference http://www.splconf.org
VLSI-SoC IEEE/IFIP International Conference on Very Large Scale Integration http://www.visi-soc.com
CODES+ISSS | International Conference on Hardware/Software Codesign and System Synthesis http://www.esweek.org

12

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Table 1.2 International journals which broach reconfigurable hardware as topic of interest

JOURNAL EDITOR | URL

ACM Transactions on Autonomous and Adaptive Systems (TAAS) ACM http://taas.acm.org

ACM Transactions on Embedded Computing Systems (TECS) ACM http://acmtecs.acm.org

ACM Transactions on Design Automation of Electronic Systems (TODAES) | ACM http://todaes.acm.org

ACM Trans. on Reconfigurable Technology and Systems (TRETS) ACM http://trets.cse.sc.edu

Future Generation Computer Systems (FGCS) Elsevier | http://www.elsevier.com/locate/fgcs
Integration, the VLSI Journal Elsevier | http:/www.elsevier.com/locate/vlsi
Journal of Systems Architecture (JSA) Elsevier | http://www.elsevier.com/locate/sysarc
Microelectronics Journal (MEJ) Elsevier | http://www.elsevier.com/locate/mejo
Microprocessors and Microsystems (MICPRO) Elsevier | http://www.elsevier.com/locate/micpro
EURASIP Journal on Advances in Signal Processing Hindawi | http://www.hindawi.com/journals/asp
EURASIP Journal on Embedded Systems Hindawi | http://www.hindawi.com/journals/es
International Journal of Reconfigurable Computing (IJRC) Hindawi | http://www.hindawi.com/journals/ijrc
IEEE Design & Test of Computers IEEE http://www.computer.org/design

|IEEE Micro IEEE http://www.computer.org/micro

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems | IEEE http://tcad.polito.it

IEEE Transactions on Circuits and Systems Il — Express Briefs IEEE http://tcas2.polito.it

|IEEE Transactions on Computers IEEE http://www.computer.org/tc

|IEEE Transactions on Evolutionary Computation IEEE http://ieee-cis.org/pubs/tec

|IEEE Transactions on Industrial Electronics IEEE http://tie.ieee-ies.org/

|IEEE Transactions on Very Large Scale Integration (VLSI) Systems IEEE http://www.princeton.edu/~tvlsi

Computing and Control Engineering IET http://www.ietdl.org/CCE

Electronic Systems and Software IET http://www.ietdl.org/ESS

IET Circuits, Devices & Systems IET http://www.ietdl.org/[ET-CDS

IET Computers & Digital Techniques IET http://www.ietdl.org/IET-CDT

Journal of Signal Processing Systems Springer | http://www.springer.com/engineering/signals/journal/11265
The Journal of Supercomputing Springer | http://www.springer.com/computer/swe/journal/11227
Jounal of Real-Time Image Processing (JRTIP) Springer t11t1tg:5/gwww.sprinqer.com/computer/imaqe+processinq/iournal/
International Journal of Electronics ;?grﬁzs& http://www.tandf.co.uk/journals/titles/00207217.asp

Xcell Journal Xilinx http://www xilinx.com/publications/xcellonline

Further metrics that confirm the increasing acceptance of run-time reconfigurable
hardware are the proliferation of commercial products/applications in the industry
which take advantage of this technology in areas like consumer electronics or high-
performance computing, the growing presence of FPGA manufacturers, research centers,
laboratories, and groups specifically focused on research lines turning around
reconfigurable computing technology, or even the birth of collaborative research projects
co-funded and financially supported by national or international committees (e.g.
Framework Programmes in Europe, or the Department of Defense in USA) interested in
such topic. Due to this fact, all seems to indicate the reconfigurable technology is
definitely here to stay.

1.3 Dissertation aims and scope

For years, partial reconfiguration —-the notion that a system can modify itself during
operation— has been described as the extreme sport of FPGA design, adopted only by
hard-core enthusiasts. In practice, partial reconfiguration is hard: getting the circuit to

13

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

behave well while part of it is off reconfiguring, isolating the area that is being
reconfigured from the part that is still operating, making the I0s behave properly during
the transition, all of these issues can become complicated. However, the benefit to obtain
from it is worth. The key advantage of reconfiguration technology falls on its silicon
reusability. SRAM-based FPGAs offer today undeniable benefits in a world where
products and its standards change day-by-day, going out of style in months as the
technology progress advances. One might argue that usually there is a bigger FPGA
where the application fits as a fixed hardware design, but the impact concerning cost or
power consumption makes this other option, on most occasions, either inefficient or not
competitive enough, or even simply unaffordable whether the final product is designed
for mass production. Furthermore, the strongest obstacle for the massive introduction of
FPGA devices in certain embedded applications —-namely, the cost- is progressively
ceasing to be a problem since the performance/cost trade-off delivered by state-of-the-art
FPGAs makes them more and more affordable. That said, the introduction of partial
reconfiguration technology in FPGA devices clearly contributes to reach this low cost
target in many embedded application fields.

The aim of this PhD dissertation is to investigate how dynamic partial reconfiguration
technology can be used to gain competitive advantages in the implementation of
embedded electronic systems typically synthesized by means of MCU-based platforms.
For this, one of the entrusted missions comprises the evaluation of the state of this
technology from an experimental viewpoint, especially concerning design flow, toolset
and commercial devices available. The final goal is to do research on the feasibility of use
of reconfigurable computing technology in the industry, on the one hand exploring the
real possibilities of the current commercial programmable logic devices provided with
dynamic partial reconfiguration capability and, on the other hand, evaluating the
development flow and automatic tools linked to this technology — by following a rigorous
methodology to solve specific real computing problems in embedded applications. Thus,
this work focuses on the conception of a standard embedded system architecture to
implement embedded applications driven by flexible hardware, noting that the design of
an efficient reconfiguration engine —seamlessly coupled to the host CPU and the memory
repository- is a key aspect to partition the application in functional tasks. Like this, it
investigates the introduction of reconfigurable computing in specific applications fields
whose functionality, apart from featuring parallel processing through the deployment of
custom hardware accelerators, can be scheduled as a natural sequence of mutually
exclusive tasks. The capability of run-time reconfigurable hardware technology to
synthesize in programmable logic certain functionality partitioned in area and
multiplexed in time by means of dynamic full/partial reconfiguration lets increase the
functional density of these resources and fit the design into a smaller programmable
logic device. The reuse of hardware resources to play a different role at each time results
in cost and power consumption savings. As application scope, several end-user
embedded applications highly demanded by the industry have been studied from a run-
time reconfigurable hardware perspective. It is sometimes the case that a processing
algorithm is designed and proven theoretically sound, presumably with a specific
application in mind, but its practical application and detailed V&V are not fully explored
and demonstrated, giving rise to critical and wusually non-trivial issues when
implementing it. Just to cover this aspect, these applications have been prototyped in
real embedded FPGA/SoC platforms to take realistic conclusions about the proof of
feasibility and benefits of this technology by evaluating the achieved results. In the end,
this work seeks to serve the large community of researchers and professional engineers
working on theoretical and practical aspects of reconfigurable computing. It is intended
to bridge the gap between the theory and practice of embedded computing, contributing
the greater community of researchers, practicing engineers, and industrial professionals
who deal with designing, implementing or utilizing electronic systems which must satisfy
real-time and low-cost processing constraints, to help to promote the use of
reconfigurable computing for real-life products and applications in the industry.

14

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

1.3.1 Contribution and thesis organization

In essence, this PhD dissertation pays attention to the introduction of reconfigurable
computing in specific embedded applications where its use can lead to clear advantages
in performance, cost and power metrics, demonstrating furthermore that such
technology is mature enough to be exploited in the industry. With this goal in mind, this
work is structured in fourteen chapters which are in turn organized in five sections:
outline, state of the art, design and development, proofs of concept and use cases, and
conclusions. The work is organized as a technical book split in chapters which are self-
contained, each exploring a specific topic. Although one chapter can do some mention to
other chapters, they try together to follow a consistent storyline. Besides, the
bibliography is provided individually for each chapter. In this way, the reader should be
able to plan the reading of this work chapter by chapter, allowing breaks or rest periods
among chapters. Moreover, each chapter starts with a brief summary of its content, just
to facilitate to the reader the distribution of matters along the book.

The first section is composed of an introductory chapter which presents the
reconfigurable computing concept and briefly reviews its history, from its birth until
today. The second section encompasses the next two chapters and deals with the state of
the art of reconfigurable hardware technology. Since the reconfigurable computing field
is very dynamic, it covers relevant and varied matters in this arena, from technology
aspects (reconfiguration design parameters, existing academic and commercial devices,
technical open issues still pending to solve, etc) to other related measurables like
research projects in progress today, derived patents under exploitation, etc. The third
block comprises —in two more chapters— the design proposed by the author of a standard
system architecture suitable for synthesizing embedded applications driven by run-time
reconfigurable hardware. Special emphasis is put on the development of the
reconfiguration engine since it becomes the most critical component of the flexible
system and highly influences the efficiency of the whole target application. Both the
system architecture and the reconfiguration engine design methodologies are compared
with other approaches found in the literature. The fourth section focuses on the scope of
application of this technology and is organized in seven chapters. The first of them is a
survey of the application areas of reconfigurable computing; potential applications but
also real applications and products which exploit PR like cryptography or software
defined radio are reviewed. After this survey, up to six different use cases are studied by
the author and prototyped in commercial FPGA or SoC devices. These use cases are
distributed basically in three different application areas: control systems, arithmetic
coprocessing, and high-performance computing. Regarding control, the proofs-of-concept
of a PID controller and a fuzzy logic controller have been developed in an FPGA;
concerning arithmetic coprocessing, two flexible computing systems like a 2D convolver
and a CORDIC processor have been deployed in commercial FPGAs; and with regard to
compute-intensive applications, two embedded systems have been designed. On the one
hand, a biometric personal recognition system -to be exact, an automatic fingerprint
authentication system or AFAS- has been completely mapped in different run-time
reconfigurable platforms. On the other hand, another complex embedded system such as
an automotive electronic control unit (ECU) —specifically, a body control module or body
domain controller—- has been designed to be deployed in a run-time reconfigurable SoC
device. These six different scenarios are sufficiently significant and representative from
an embedded computing viewpoint, with a wide enough diversity of features to analyse
the implementation pros and cons of flexible hardware in contrast to other design
technologies in use today. These case studies encompass the use of PR by covering from
the fine reconfiguration of an element inside a coprocessor to the complete
reconfiguration of a complex coprocessor in an application. Finally, the fifth section,
composed of the last two chapters, concludes this dissertation by thinking over the
current status of this technology, the goals reached up to now and the new milestones. It
also points out the direction of the future author’s work.

15

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

After this brief overview of the sections, a description of each chapter is stated next,
highlighting the more relevant contributions of this dissertation.

In chapter 1, the author outlines the scope of this work. It introduces first the concepts
of reconfigurable computing and run-time reconfigurable hardware, and highlights then
the more relevant milestones reached up to date in this field by putting them in
perspective, just to realize both the difficulties that historically turned around this
technology and its high computational potential achievable in return for this research
effort. The momentum this technology is experiencing is evidenced through the large
collection of dissemination means (especially conferences and journals) in place today.
Chapter 2 gives a concise introduction to the implementation alternatives of electronic
embedded systems. It is provided a detailed overview of the technical characteristics
related to FPGA technology. It also does a revision to the challenges and open issues that
the scientific community is facing today in this area.

Chapter 3 describes the more notorious advances of this technology on the subject of
relevant research projects conducted by the research community, publicated patents
under exploitation, or PhD dissertations which turn about this computing paradigm,
increasing thus the human resources and research groups that are getting involved in
this matter. This chapter lists also a wide spectrum of devices and platforms coming
from both academia and industry which support this technology.

Chapter 4 introduces the standard embedded system architecture proposed by the
author to deploy run-time reconfigurable computing. It presents the system breakdown
in functional blocks, with special focus on practical issues concerning system
performance. The system architecture proposed is compared then with some state-of-the-
art system architectures found in the literature.

As an extension of the previous chapter, the chapter 5 focuses exclusively on the design
and development of the reconfiguration engine. This component takes charge of
performing the online/offline full/partial reconfiguration of the programmable logic. It
undoubtedly becomes the cornerstone of any run-time reconfigurable computing system.
The efforts conducted in this area aimed at achieving a high reconfiguration bandwidth
to minimize thus the reconfiguration latency in partially reconfigurable devices are
presented here. The proposed reconfiguration controller is compared with state-of-the-art
reconfiguration controllers.

In chapter 6, apart from identifying many potential application areas of PR technology,
some successful use cases, such as real applications in the industry or even commercial
products already launched to the market, are overviewed.

Chapter 7 concerns the implementation of a Proportional-Integral-Derivative or PID
controller implemented in a small SoC —the Atmel AT94K FPSLIC device- composed of an
MCU and an FPGA driven by run-time partial reconfiguration. The PID computing
system is partitioned in three functional contexts (P, I and D computations, respectively)
synthesized on hardware and time-multiplexed by the MCU at run-time, without
interrupting the system execution.

Similarly, chapter 8 encompasses the design of a general-purpose two-input one-output
fuzzy logic controller driven by run-time reconfigurable hardware. A novel architecture is
proposed to cope with the cost-effective implementation of digital controllers based on
fuzzy logic. The controller, fueled by reconfigurability concepts, is architected to become
general-purpose, able to be used in whatever two-input one-ouptut control application.
Most of the flexibility reached in this concept is thanks to the flexible hardware.

In chapter 9, the author proposes the design of a flexible 2D convolution computer based
on run-time reconfigurable hardware. Two-dimensional convolution is a basic operation
in digital signal processing that, although its computation is conceptually simple —a sum
of products of constants by variables— its implementation is highly demanding in terms
of computational power, especially when addressed to real-time embedded systems. This
work brings an innovative approach oriented to dynamically reconfigurable hardware on
a Xilinx Virtex-4 FPGA. All the configurable aspects of the convolver (kernel dimensions,
operands resolution, constant coefficients, pipeline stages, etc) are handled in a partially

16

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

reconfigurable region (PRR) of the device so they can be reconfigured on the fly in order
to self-adapt the hardware structure of the 2D convolver to meet the optimum processing
architecture required by the particular convolution to perform at each time, aimed at
providing thus a universal solution.

In chapter 10, it is presented the implementation of a trigonometric CORDIC computer
based on a run-time reconfigurable architecture. Synthesized in the Atmel AT94K
FPSLIC, the computer processes functions like sin(alpha), cos(alpha), atan2(b/a)
and sgrt(@a 2+b?)in hardware. The architecture lets switch from a trigonometric function
to another by reconfiguring part of the coprocessor in only some few operation clocks.
Chapter 11 pioneers the development of an automatic fingerprint authentication system
on a run-time reconfigurable system-on-chip platform. The biometric recognition
algorithm is partitioned in a sequence of image processing steps which are performed
through custom hardware coprocessors following a batch process. Each of these
computers is specifically designed to impressively enhance the performance of the
algorithm in comparison to a software-based solution. In its turn, special care is taken to
not to impact the system cost; for this, dynamic partial reconfiguration makes possible
the reuse of the hardware resources along the execution of the different processing
phases. This embedded application is prototyped in two different platforms: the Altera
Excalibur SoC and the Xilinx Virtex-4 FPGA. In both cases, the system architecture is
composed of an MCU (a hard-core ARM9 in Excalibur and a soft-core MicroBlaze in
Virtex-4) and programmable logic. The author’s work has consisted in studying the entire
biometric algorithm to identify the best partitioning of tasks and optimize then the
synthesis of such processing in reconfigurable hardware. The study has covered the
floorplaning and resizing of both PR and static regions in programmable logic in order to
fit the application in the smallest FPGA platform possible while guaranteeing real-time
performance. Regarding the partitioning of tasks, each image processing stage -
determined by the reading of one image stored in the repository to be processed by the
PR processor and sent back to the repository— delimits the proper way to do the spatial
and temporal partitioning of the application. A key design aspect of this system consists
in improving the bandwidth between the data repository and the reconfigurable
computer. The system architecture and reconfiguration engine proposed in chapter 4 and
5, deployed now in this application example, proves to reduce hardware utilization
significantly compared with static FPGA design solutions. Furthermore, the acceleration
reached by means of hardware parallelism makes feasible to ensure real-time
performance in the implementation of this biometric recognition system, fact that is not
achievable when porting this same algorithm to only software in a PC platform based on
a processor running at GHz.

In chapter 12, the author details the design of an automotive electronic control unit
(ECU) based on run-time programmable logic. This approach explores key features such
as parallelism, customization, flexibility, redundancy and versatility of the reconfigurable
hardware. Although it is only an early concept, is a pioneer in terms of merging both
AUTOSAR and ISO 26262 with run-time reconfigurable hardware to perform
hardware/software co-design for a full automotive embedded ECU system. This design is
oriented to be prototyped in the Xilinx Zynqg-7000 extensible processing platform, which
combines a hard-wired ARM dual-core processor and 28-nanometer programmable logic
equipped with dynamic partial reconfiguration capability.

After overviewing the design and development of different embedded applications of
interest and use in the industry based on run-time reconfigurable hardware, in chapter
13 the author reflects on the strengths and weaknesses of this technology today,
highlighting all those aspects that make this computing paradigm attractive for the
community but also all those issues or stoppers that need to be solved in the not-too-
distant future in order to convert run-time reconfigurable hardware into a disruptive
technology able to provide a clear competitive advantage to embedded electronic systems.

17

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Finally, chapter 14 reviews the deliverables generated by the author along all these years
of research —through his participation in research projects, a part from publications in
conferences, book chapters and journals— and concludes this work.

The organization of this PhD dissertation composed of five sections and distributed in
fourteen chapters aims to offer the reader a pleasant and friendly way to be introduced to
the author’s work, combining theoretical and experimental aspects of run-time
reconfigurable hardware, thinking about its pros and cons in contrast to other
implementation alternatives, presenting innovative use cases, and evaluating, with real
experiments, the state-of-the-art of this technology regarding commercial FPGA/SoC
devices and EDA/CAD tools to be definitively exploited in the embedded computing
world.

References

[Bobda, Springer 2007]
C. Bobda, Introduction to reconfigurable computing — Architectures, algorithms and applications, Springer,
ISBN 978-1-4020-6088-5, 2007.

[DeHon and Wawrzynek, DAC 1999]
A. DeHon, J. Wawrzynek, Reconfigurable computing: what, why, and implications for design automation,
Proceedings of the Design Automation Conference, pp. 610-615, 1999.

[Diessel et al., CDT 2000]
O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, B. Schmidt, Dynamic scheduling of tasks on
partially reconfigurable FPGAs, IEE Proc. of Computers and Digital Techniques, vol. 147, no. 3, pp. 181-
188, 2000.

[Estrin, AHC 2002]
G. Estrin, Reconfigurable computer origins: The UCLA fixed-plus-variable (F+V) structure computer, IEEE
Annals of the History of Computing, vol. 24, no. 4, pp. 3-9, 2002.

[Estrin, WJCC 1960]
G. Estrin, Organization of computer systems—The fixed plus variable structure computer, Proceedings of
the Western Joint Computer Conference, pp. 33-40, 1960.

[Estrin and Turn, TEC 1963]
G. Estrin, R. Turn, Automatic assignment of computations in a variable structure computer system, IEEE
Transactions on Electronic Computers, vol. 12, no. 5, pp. 755-773, 1963.

[Hartenstein et al., FPL 1998]
R.W. Hartenstein, M. Herz, F. Gilbert, Designing for Xilinx XC6200 FPGAs, Proc. of the Int. Conference
on Field-Programmable Logic and Applications, LNCS, vol. 1482, pp. 29-38, Springer-Verlag, 1998.

[Hauck and Borriello, CADICS 1997]
S. Hauck, G. Borriello, An evaluation of bipartitioning techniques, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 16, no. 8, pp. 849-866, 1997.

[Ling and Amano, FCCM 1993]
X.P. Ling, H. Amano, WASMII: a data driven computer on a virtual hardware, Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines, pp. 33-42, 1993.

[Lysaght and Rosenstiel, Springer 2005]
P. Lysaght, W. Rosenstiel (Eds.), New algorithms, architectures and applications for reconfigurable
computing, pp. 117-129, Springer, ISBN 978-1-4020-3127-4, 2005.

[Rodriguez-Andina et al., TIE 2007]
J.J. Rodriguez-Andina, M.J. Moure, M.D. Valdes, Features, design tools, and application domains of
FPGAs, IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1810-1823, 2007.

[Sklyarov et al.,, Euromicro 1998]
V. Sklyarov, N. Lau, R. Sal Monteiro, A. Melo, A. Oliveira, K. Kondratjuk, Design of virtual digital
controllers based on dynamically reconfigurable FPGAs, Proc. of the Euromicro Conference, vol. 1,
pp.200-203, 1998.

[Trimberger, FPGA 1998]
S. Trimberger, Scheduling designs into a time-multiplexed FPGA, Proceedings of the International
Symposium on Field Programmable Gate Arrays, pp. 153-160, 1998.

[Xilinx Inc., WP375 2010]
P. Sundararajan, High Performance Computing Using FPGAs, Xilinx Inc., White Paper WP375 (v1.0),
2010.

[Xilinx Inc., Xcell 2004]
Xilinx Staff, Celebrating 20 Years of Innovation, Xcell Journal, issue 48, pp.14-16, Xilinx Inc., Spring
2004.

[Zomaya, Springer 2006]
AY. Zomaya, Handbook of nature-inspired and innovative computing, Springer, ISBN 978-0-387-40532-
2, 2006.

18

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

Part IT
State of the Art

UNIVERSITAT ROVIRA I VIRGILT

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Chapter 2

Embedded systems and reconfigurable hardware

Embedded electronic systems need to be synthesized as compact and efficient designs. In
addition, due to the ever-increasing trend for adding new functionality into current
applications and products, their architecture shall be flexible and scalable, able to let
them absorb the continuous growth of computational power demanded to such
embedded systems. Field programmable logic devices, mainly FPGAs, are nowadays a
clear option to build versatile high-performance computing systems. To their original
capability to synthesize a given functionality in programmable logic, the fact that the
system can modify itself during operation, even on the fly, was soon understood as a
strong added value which distinguishes FPGAs from other implementation alternatives,
making thus the boundary between hardware and software more and more blurred. This
chapter makes an introduction to the embedded computing world by overviewing the
existing implementation options to build embedded systems. Regarding FPGA devices,
they are clasified first from the programming technology point of view to, afterwards, give
exclusive attention to SRAM-based dynamically reconfigurable FPGAs — the powerhorse
of the reconfigurable computing paradigm today. The chapter tackles key FPGA design
features like reconfiguration granularity, bitstream format or reconfiguration latency,
and highlights the more relevant open issues to be addressed in the near future —related
basically to bitstream manipulation matters— to propel forward the run-time
reconfigurable hardware technology. It is considered today a promising design alternative
in the embedded space, able to lead the next computing wave in the industry.

2.1 Embedded electronic systems

Embedded systems gain competitive advantages and add value to applications by
embodying end-user functionality endowed with exclusive performance. In the last years,
in the progress towards a more nomadic lifestyle, this trend has been accentuated by the
emergence of many new mobile embedded devices in use in the daily routine. Examples
of embedded systems span from control or security (e.g. smart cards) to mainstream
consumer products in areas such as personal communication (e.g. cell phones), global
positioning (e.g. navigation systems), personal computing (e.g. PDA), entertainment and
many more. Although the implementation characteristics of an embedded system
thoroughly depend on the specific application domain to which it is addressed, in
general, the embedded design space shares a set of common, highly demanded technical
constraints applicable to any embedded electronic system: limited size, weight and power
consumption (i.e., SWaP), computation efficiency, security against attacks/reverse
engineering, remote (in-field) system upgrade capability, functional flexibility and low
cost are some of the unavoidable qualities that any embedded design shall be provided
with. Hence, a successful product/application is one that, apart from performing the
assigned functionality, is able to balance all these stringent technical features at the
conception and development stages, being the cost the industry’s primary challenge
today. Many implementation alternatives exist today to synthesize embedded electronic
systems and each one meets specific demands, fitting well in a specific market niche;
this is the main reason why each of these alternatives survives in the market.

2.1.1 Implementation alternatives

General-purpose processors (GPPs) are designed with the primary goal of providing
acceptable performance on a wide variety of tasks rather than providing high
performance on specific tasks. Driven by a software-oriented implementation perspective,

21

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Von Neumann or Harvard architectures found in CPUs of single-core or multicore
microcontrollers (MCUs) provide a versatile platform able to perform a broad range of
applications. As result, many applications can be deployed in such static hardware
architecture via structured and flexible software programs described in simple lines of
code. Nevertheless, their inherent constraints —e.g. the limited processing word size
(typically 8-, 16- or 32-bit) leading to a performance degradation specially when the
operations to be performed poorly match to the computational engine characteristics, or
the sequential execution which causes a significant memory access bottleneck, or more
recently, in multicore processors, the difficulty at the software end to program
applications that can execute different parts in parallel on multiple cores, known as
multicore programming crisis— give rise to a set of weaknesses which can make the
software implementation alternative inadvisable for certain types of high-demanding
applications, especially in time-critical scenarios.

Other feasible general-purpose computing solutions are the digital signal processors
(DSPs). Although they were originally conceived to applications of signal processing
which make a great use of products and additions, at present the DSP is often joined to a
CPU processor to make this platform more oriented to general-purpose computation.

In addition, driven by the insatiable market demand for real-time high-definition 3D
graphics, the graphics processor unit (GPU) has evolved into a highly parallel,
multithreaded, many-core processor with high computational power and memory
bandwidth, specifically well-suited to address problems that can be expressed as data-
parallel computations —the same program is executed on many data elements in parallel-
with high arithmetic intensity, e.g. 3D rendering. Moreover, with the concept of general-
purpose computing on graphics processing units (GPGPU), NVIDIA introduced a general-
purpose parallel computing architecture called compute unified device architecture
(CUDA) to extend thus the GPU application field to applications requiring massive vector
operations, not only graphical operations. The model for GPGPU is to use a CPU and
GPU together in a heterogeneous co-processing computing model. The sequential part of
the application runs on the CPU and the computationally intensive part is accelerated by
the GPU, composed of hundreds of processor cores. However, this architecture is not
suited for applications that merge at the same time parallel processing and other types of
specific processing that do not match the GPU or CPU architecture.

Going from one extreme to another, application-specific integrated circuits (ASICs) or
application-specific standard products (ASSPs) are designed for a specific application
domain and, hence, each ASIC or ASSP deploys fixed functionality with superior
performance since it is tailored to a specific algorithm or problem and no extra overhead
for instruction interpretation is needed and no extra circuitry is deployed to cover a more
general problem. However, the ASICs restrict the flexibility of the circuits by excluding
any posterior design optimization, upgrade or bug fixing capability after fabrication.
Besides, their non-recurring engineering (NRE) costs make this technology prohibitive or
inaccessible to small and medium enterprises (SMEs) and they typically need high
production volumes to make this option affordable.

At midway between the high performance of ASICs and the flexibility of purely-software
approaches synthesized on GPPs, FPGA devices are used in the market for more than
glue logic, MCU hardware emulation and ASIC prototyping. Its exploitation is more and
more usual in embedded computing design since, as the electronics density of these
systems increases to satisfy the growing functional demands of new end-user
applications, FPGA vendors are delivering bigger devices that boast lower power
consumption rates at more competitive prices. Only very high-volume and highly power-
sensitive products remain today out-of-reach for FPGAs, and the border of having cost
advantage from custom circuits is raising to higher production volumes continually.
Thus, FPGA devices, either stand-alone or used in conjunction with a general-purpose
processor, are being used in a variety of applications since the developer can tailor the
computer architecture to the particular application needs to accomplish an efficient
solution, by mapping particular algorithms in hardware and matching the processor

22

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

structure to the needs of the demanded computation. Moreover, due to the rapid
technology advancement, the design and development of embedded systems has been
relentlessly merged with integrated circuit design. This continuous growth has brought
the technology over the border where it can now accommodate complete embedded
systems on a single chip. Today’s silicon technology allows building embedded
processors as part of SoC devices comprising up to a billion transistors usable as
programmable logic on a single die [Nurmi, Springer 2007]. FPGAs have become now
complete SoC platforms that combine a whole MCU (processor, memory and peripherals)
with user programmable fabric into a single device to implement there custom
coprocessors or accelerators required by the end-user application. This results a leading
option to balance parallelism and flexibility in an efficient way to deploy embedded
applications. Moreover, one definitive advantage of FPGAs against the rest of alternatives
is their inherent reconfigurability. Reconfigurable computing, reinforced with the
widespread availability of commercial SRAM-based FPGAs, is intended to fill in the gap
between both static hardware-oriented and software-oriented implementation strategies
by customizing the hardware architecture at the instruction level for every application,
where the optimal grain needed for the application matches the instruction granularity of
the hardware computer deployed in each case. It offers the advantages of custom and
scalable, parallel hardware processing for each of the processing tasks the embedded
application demands.

As summary, GPPs, MCUs, DSPs, ASICs, FPGAs, GPUs and SoCs are nowadays the
major options to develop embedded electronic systems. Independently of the chosen
alternative, the demand for low cost and low power consumption and computation
performance is an unavoidable feature. This dissertation focuses exclusively on SRAM-
based FPGA devices to deploy embedded electronic systems driven by run-time
reconfigurable hardware technology.

2.2 Field programmable gate arrays

FPGA devices emerged as an implementation alternative oriented to the acceleration of
computationally intensive tasks by exploiting hardware parallelism. Many applications
characterized by the processing of large amounts of data are well suited for exploiting
parallelism, e.g. image processing, therefore the use of an FPGA device can bring an
increase in performance compared to a sequential implementation on GPPs. Moreover,
along the time, FPGA devices have experienced an outstanding growth in resources,
ranging up to some billions of transistors today —allowing already the implementation of
a full application in a single chip— and gaining acceptance the trend of converting the
FPGA into a SoC device which merges programmable logic and a MCU in the same chip.
Hence, by means of hardware/software partitioning it is possible to meet a solution of
two computing worlds - digital hardware design to fit in logic the computationally
intensive tasks of any target application and embedded software handled by the CPU for
the remaining processing tasks that exhibit little parallelism.

To this original view, it was realized that the benefits of logic cell level specialization
could be extended by reconfiguring circuit resources at run-time. Reconfiguration
accentuated the interest in FPGA devices by providing a clear competitive advantage over
other traditional alternatives based on static hardware implementations. The field of
programmable logic evidenced a significant interest in the addition of dynamic
reconfiguration capabilities to conventional FPGAs. The fact that the configuration data
of certain FPGAs can be reprogrammed —either offline or on-the-fly— an unlimited number
of times incited the research on partial reconfiguration, becoming a potential
implementation alternative to achieve unmatched performance and flexibility over
conventional systems, especially for compute-intensive and cost-sensitive applications. It
represents a step forward in the design and development of digital systems through
flexible programmable logic since it allows to reduce the hardware resources required for
performing the specific computation by reusing them along the execution time if every

23

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

part of the design is not needed the 100% of the application life cycle; some portions of
the hardware resources can be reconfigured on the fly while the the rest of the system
continues in operation undisturbed by the reconfiguration process.

There exist several types of FPGA devices attending to the programming technology.
Although all of them make possible the hardware/software co-design of embedded
applications, not all these types support dynamic partial reconfiguration.

2.2.1 Programming technology

In order to map a synthesized circuit on an FPGA, the physical logic and routing
resources of the device must be configured. The programming technology determines the
method of storing such configuration information within the device. This has a strong
impact on area and performance. In fact, the area of an FPGA is dominated by the area of
the programmable components. Three main programming technologies coexist:
irreversible antifuse technology, non-volatile technologies, and volatile SRAM technology.
The choice of the programming technology is basically determined by the computation
environment in which the FPGA is used. Antifuse and non-volatile technologies have a
bigger level of immunity to single event upset (SEU) than SRAM technology. Other key
factors to be considered are the number of times the FPGA has to be programmed and
the reconfiguration latency. Antifuse-based FPGAs can be programmed only once, while
in SRAM-based FPGAs there is no limit to the number of times the device can be
reconfigured. Moreover, apart from SRAM, another volatile technology is nowadays in
development based on magnetoresistive random access memory (MRAM). All these
programming technologies are overviewed next.

A. Antifuse

The antifuse technology uses a programmable connection based on amorphous silicon
whose impedance changes on the application of high current through it. In essence, two
routing tracks, each one of a different metal, are originally connected only physically (but
not electrically) by depositing a high resistance layer of amorphous silicon above a
tungsten plug via that would otherwise bridge the insulation between two metal layers.
In unprogrammed state, the amorphous silicon or antifuse is an insulator, i.e, a high
impedance connection of the order of a few GQ. By applying a high voltage between both
extremes of the dielectric, a physical change of its crystalline structure occurs. This
process, known as fusion, results in an impedance of some few Q, so it becomes from
now on conductor, establishing a permanent connection between both metals.

ROUTING TRACKS 4% METAL 3 ‘)
—— = AMORPHOUS SILICON / DIELECTRIC ANTIFUSE
I TUNGSTEN PLUG VIA
METAL 2 ﬂ

METAL 1
TUNGSTEN PLUG CONTACT

SILICON SUBSTRATE

Figure 2.1 Antifuse programming technology

24

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Since antifuse FPGAs have metal-to-metal interconnects, they do not require additional
transistors to retain these interconnects, and the area of the programming element is
small, in the order of the size of a via, what results in reduced power consumption and
very little leakage current. In addition, since the programming process is permanent and
irreversible, antifuse-based FPGAs are one-time programmable and they do not require
external configuration storage on power-down. Figure 2.1 shows, through a cross-section
view, the two possible programming states of the amorphous silicon/dielectric antifuse,
connection (e.g. metals 1-2) and isolation (e.g. metals 2-3).

B. EPROM, EEPROM and Flash

This type of FPGA non-volatile programming technology uses the same techniques as
EPROM, EEPROM and Flash memory technologies. Like this, FPGA devices based on this
technology possess the ability to hold their configuration data when power is down,
avoiding the need to reprogram the chip at power-up, while their configuration can be
changed electrically. This method is based on a special transistor with two gates: a
floating gate and a select gate. When a large current flows through the transistor, a
charge is trapped in the floating gate that increases the threshold voltage of the
transistor. Under normal operation, the programmed transistors may act as open
circuits, while the other transistors can be controlled using the select gates. The charge
under the floating gate persists during power-down. It can be removed by exposing the
gate to ultraviolet light in the case of EPROMs, and by electrical means in the case of
EEPROM and Flash. Concerning the area spent in making a connection, the Flash
technology uses one transistor. The programming is more complex and time consuming
than that of the SRAM technique. There exist also hybrid FPGAs which merge Flash and
SRAM memories.

C. SRAM

In this programming method, the configuration is stored in SRAM cells. When the
interconnect network is implemented using pass-transistors, the SRAM cells control
whether the transistors are on or off. In the case of LUTs used in the logic blocks, the
logic is also stored in SRAM cells. This storage is volatile, i.e. when power is down the
configuration data is lost, therefore a total configuration of the device is needed each
time at power up and consequently, for systems using SRAM-based FPGAs, an external
permanent storage device is needed to hold the configuration bitstream. Regarding the
connection area, it requires at least five transistors per cell. Due to the relatively large
size of the memory cells, the area of the FPGA is dominated by configuration storage.
However, the SRAM method of programming offers the advantage of being
reprogrammable, even in-system, permiting to reuse a single device for implementing
different applications by loading different configurations. Figure 2.2 shows some of the
configurable elements present in a SRAM-based FPGA.

PASS TRANSISTOR TRISTATE BUFFER SWITCH BOX

____1____r____

VERTICAL
WRRE

\/

TWO-WAY MULTIPLEXER TWO-INPUT LOOK UP TABLE

HORIZONTAL
WIRE

IN0O

MUX INO1
- SRAM [w0 |MUXFH-
IN11
A H FPGA
SRAM SEL1 SELO INTERCONNECT

Figure 2.2 SRAM programming technology

25

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

D. MRAM

Recently, the first commercial magnetoresistive random access memory (MRAM) products
have been launched to the market. This technology lets store data using magnetic
polarization (electron spin) rather than electric charge, a process often referred to as
spintronics. It is based on a magnetic tunnel junction (MTJ) storage element that is
deposited on top of a standard logic process. The MTJ contains a fixed layer that is
always polarized in one direction, separated from a free layer by a tunnel barrier. When
the free layer is polarized in the same direction as the fixed layer, the MTJ exhibits a low
resistance across the tunnel barrier. When the free layer is polarized in the reverse
direction, the MTJ has a high resistance. This magnetoresistive effect converts MRAM
into a non-volatile RAM memory that offers a combination of benefits not offered by any
of today’s popular memory types (Flash, DRAM and SRAM): it lets retain data for decades
while performing writing and reading operations at SRAM speed, guaranteeing non-
volatity, random access to data and low-cost. Apart from these characteristics, other
special benefits of the MTJ storage element are: the fact that magnetic polarization does
not leak away like an electric charge, therefore data can be retained for long periods of
time; and the fact that switching the magnetic polarization between the two states does
not involve actual movement of electrons, what means it is possible to perform write and
read data transactions without wearout. A scheme is shown in Figure 2.3.

Free Layer

/

‘ ’ Bit line
Magnetic

field
Flux concentrating |
cladding layer
F ~__ Isolation

Inlaid copper transistor
interconnects ‘off’

Tunnel Barrier

Fixed Layer

Figure 2.3 MRAM programming technology

In summary, FPGA devices based on antifuse or Flash technology cannot be reconfigured
since its programming technology prevents this feature. These FPGAs are not in the
scope of this work. From a point of view of FPGAs able to perform a full/partial dynamic
reconfiguration of the device at real-time, the SRAM and MRAM programming technology
are the alternatives that meet all the technical requirements to support it. Although
MRAM technology is expected to make feasible the exploitation of dynamic partial
reconfiguration in the future, nowadays SRAM is the first and mature programming
technology vastly available in commercial FPGA devices to make a professional use of
this computing paradigm in real products and applications. This dissertation is focused
exclusively on SRAM-based FPGAs. The more relevant features of this technology are
overviewed in detail next.

2.3 SRAM-based reconfigurable hardware technology

The field programmable gate arrays domain allows circuit designers to produce
application-specific chips bypassing the time-consuming fabrication process. FPGAs are
featured by the logic blocks and interconnect architecture, the programming technology,
the reconfiguration model and the power dissipation. They are composed of three

26

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

fundamental components: logic cells, I/O blocks, and programmable routing.
Additionally, it is also frequent to find other types of more complex building components
such as advanced clock management blocks, embedded SRAM memory blocks and
dedicated computing blocks like hardware multipliers, MAC and DSP blocks, and even
hard core CPUs integrated in the FPGA fabric. All these blocks are spatially replicated in
a symmetrical grid and configure the capacity of resources of every device within each
particular FPGA family. These configurable resources are codified in the FPGA bitstream
through the address —i.e., type of element and its 2D location inside the matrix— and the
configuration data — the set of configuration bits which describe each element when the
hardware design is downloaded into the FPGA. Hence, in SRAM-based FPGAs all these
blocks can be programmed in each (re)jconfiguration cycle, in the way that the FPGA can
be perceived by the designer as a platform with two abstraction layers: the low-level or
physical layer (static hardware resources) and the high-level or behavioural layer
(described as a binary file by the bitstream). Figure 2.4 illustrates this concept.

L L e
— —
—ickiliofliolliofliofliolioliiolioliolliollckiE=
[—
:E o fjLcliLe LcifLcliLciiLe LCiLC) 10 g
ROUTING —] D S — /0 BLOCK
RESoURCEs =IO J1LCliLC g Lelitc e liLe /Fi Leliclio
=13 I elitclicliclimiLclici o —
—il o4l LcliLc E ellicHicich milicticlli oIS
[3 O E —
:E OHLCHLC cliLciLcliciiLct miitcliLctio g
— ‘ LcliLctiLcliLe 3 N = LOGIC CELL
— ! Y
CONFIGURATION =" Lc liLe LCH Le |1 101
MEMORY CELLS]! 5 L=
E S e T N =
_ Wl ‘ i O —
—{e il b b i I LCHLC]Cl c HICHCH 0= cikBLocK
=P EEHEEEEN \eliclic] “ Hicliicio :'g
| — e
gr__r_ii CIETETETrT offofiioliiollio ?(Tg
[UOIUOOTUuorouoroaoouayoua o

Figure 2.4 SRAM-based FPGA conceptual view

Therefore, these devices can implement any digital circuit as long as their available
resources are adequate. The circuit is synthesized in the FPGA by programming each
logic block (composed of combinational and sequential elements), I/O block, routing
resources and rest of components required by the specific design.

The logic cell structure varies from vendor to vendor although typically consists of lookup
tables (LUTs), carry logic, flip-flops, and programmable multiplexers. The I/O blocks
provide FPGAs with capabilities to interact with the external world. The programmable
routing is configured to make all the necessary connections between logic blocks and
from logic blocks to I/O blocks. The interconnection network is typically configured by
programming pass gates and multiplexors. The general model of an FPGA featured by
SRAM configuration memory is shown in Figure 2.5.

27

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

LOGIC CELL (LC)
\| OUTPUTS
MUXf—>
INPUTS MUX DaQ L
> LUT
CLK —>

LOGIC CELL CONFIGURATION SRAM

INTERCONNECT STRUCTURE

Figure 2.5 SRAM-based FPGA logic cell

Taking advantage of this two-layered view of SRAM-based FPGA devices, the execution of
a specific application on these devices is typically divided in two steps: device
configuration, by downloading the bitstream from non-volatile memory to the SRAM
configuration memory cells, and afterwards, once the configuration bits take effect on
both logic cells and interconnect, the processing. Regarding processing, FPGA capacity is
conventionally measured in terms of logic cells, i.e., LUTs and flip-flops, assigned to a
problem. This notion of logic cell utilization is, however, a purely spatial metric which
ignores the temporal aspect of logic cell usage. That is, it says nothing about how often
each logic cells is actually used. A logic cell may only perform useful work for a small
fraction of the time it is employed. Taking the temporal usage of a logic cell into account,
it is admitted that each gate has a capacity defined by its bandwidth, and exploiting this
temporal aspect of capacity is necessary to extract the most performance out of
reconfigurable devices [DeHon, FPGA 1996]. As a particular feature of SRAM-based FPGA
technology, a functional density metric can be introduced to balance the advantages of
run-time reconfiguration against its associated reconfiguration costs [Wirthlin and
Hutchings, TVLSI 1998]. Like this, instead of using a static architecture designed to
perform all the computations of an application, several special-purpose architectural
partitions can be used to solve the problem with greater efficiency. That is, one way of
improving the efficiency of a computation using run-time reconfiguration is to replace
idle or inactive hardware with other more usable circuitry at any time. This run-time
optimization of the circuitry allows a computation to take place with fewer hardware
resources. In other words, this technology can be used to partition large, special-purpose
computing architectures onto limited FPGA resources. However, the use of this technique
on conventional FPGAs requires additional time for circuit reconfiguration. Such
reconfiguration latency shall be minimized to not impact in excess the total processing
time of the application.

Due to the broad range of applications where the use of hardware reconfiguration has
been proved to be advantageous, different classifications can be made to characterize

28

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

reconfigurable FPGA devices paying attention to specific properties. Following sections
provide a review of the more relevant features which define a reconfigurable device. It can
be stated that, according to all this set of characteristics, the choice for the best suited
reconfigurable device is strongly related to the application itself where this device is
intended for deploying certain functionality, with a defined level of performance and cost.

2.3.1 Reconfiguration model

Reconfigurable hardware devices can be classified in several categories in terms of the
reconfiguration method used [Compton and Hauck, ACM 2002]:

A. Single context

A single context FPGA is architected with an only plane of hardware resources
distributed along the device. Such resources are configured by downloading the
configuration bitstream. Since the access to the configuration memory is restricted by a
sequential flow, the entire FPGA must be reconfigured even if only a portion of the chip
needs to be changed. Therefore, in order to implement run-time reconfiguration using a
single context FPGA, the configurations are grouped into contexts and each full context
is transferred to the device when needed. Although from an architectural viewpoint this
reconfiguration mechanism is simple, a good partitioning of the target application in
configuration contexts is essential to minimize the total reconfiguration latency. Most
commercial SRAM-based FPGAs are of this style, like Altera Cyclone and Stratix families.

B. Partially reconfigurable

Often, only a part of the FPGA resources require modification. In these situations, a
partial reconfiguration of the FPGA is needed rather than a full reconfiguration. In a
partially reconfigurable (PR) FPGA, a portion of the FPGA can be reconfigured without
interrupting the operation of the rest of the circuit, which may continue the execution
while the reconfiguration is in progress. This type of FPGA architecture increases the
efficiency of reconfiguration by reducing the reconfiguration overhead. Besides, as it is
possible to overlap the computation of some parts of the device with the reconfiguration
of the other parts, this has the benefit of potentially hiding partially or totally the
reconfiguration latency. However, for this the bitstream format shall contain the specific
position of the addressed resource: since address information must be supplied with
configuration data, the total amount of information transferred to the reconfigurable
hardware may be greater that what is required with a single context design where in this
case the address can be implicitly specified through the sequence of the bitstream
information. The reconfigurable partition of a partially reconfigurable FPGA is typically
organized in a rectangular area. In function of the dimensional characteristics of such
reconfigurable surface, partially reconfigurable FPGAs are classified in two groups:

» One-dimensional (1D) reconfiguration

In these FPGAs, the reconfiguration is performed in regions that are extended along
the vertical dimension of the reconfigurable hardware device. While the designer can
define the horizontal length of the reconfigurable region, the vertical length is fixed to
the complete vertical dimension of the device. An example of partially reconfigurable
FPGA with 1D reconfiguration models is the Xilinx Virtex-II FPGA.

» Two-dimensional (2D) reconfiguration

The 2D reconfigurable FPGAs treat PR regions or partitions as rectangles to be placed
at an arbitrary position inside the larger 2D sea of resources distributed along the
device. 2D models have been shown to lead to better device utilization. In this way, the
designer can define both horizontal and vertical dimensions of the PR partition,
although typically it is necessary to meet some minor restrictions concerning the total
size of the PR partition selected. An example of commercial FPGA device which meets

29

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

the 2D reconfiguration model is the Xilinx Virtex-4 device. Although the minimum
number of vertical configurable logic blocks (CLBs) which must be reconfigured is still
fixed to a specific grain (16 CLBs), the reconfiguration time and the partial bitstream
size are decreased, providing a greater flexibility in choosing the best floorplanning
and mapping of reconfigurable tasks inside the device.

Apart from this classification, there exist a technique that allows effective 2D partial
reconfiguration in 1D partially reconfigurable FPGA devices so-called Read-Modify-
Writeback [Paulsson et al.,, FPL 2007]. This method was developed for increasing the
flexibility when performing dynamic partial reconfiguration on Xilinx Virtex-II FPGAs. In
this way, the inherent 1D (column-based) reconfiguration of Virtex-II and Virtex-II Pro
devices is somehow converted to a 2D reconfiguration. This approach exploits the
possibility for reading back configuration data from the FPGA configuration memory,
modifying it and writing it back to the configuration memory, although the write
operation still affect all the column dimension.

C. Multi-context

A multi-context FPGA can be seen as a set of planes of resources from single context
FPGAs working in a multiplexed way, where only one of these configuration planes is
active at any given time. Therefore, the multi-context FPGA includes multiple memory
bits for each programming bit location, in the way that these memory bits can be thought
of as multiple planes of configuration information. As result, this model allows for the
background loading of one of the contexts while another is active and in execution. One
plane of configuration information can be active at a given moment and the device can
quickly switch among different planes or contexts of already programmed configurations.
Switching between two different contexts can take place in one clock cycle (i.e., order of
nanoseconds) since there is no need to load the configuration data just at that moment.
Thus, although reconfiguring a context should take the same time as in a single context
device, such reconfiguration can be hidden and performed in parallel while other context
is operating. In return for it, the additional memory required to store the configuration
data substantially increases the complexity and chip area of the FPGA, since the amount
of virtual hardware emulated by a multi-context FPGA with n contexts is limited to n
times the physical hardware in that FPGA. Regarding the amount of resources
reconfigured, multi-context devices can support both full and partial reconfiguration.
Full reconfiguration corresponds to devices architected with only one select control bus
which is common to all the context multiplexors affecting all the FPGA resources. Partial
reconfiguration is feasible by having individual select control lines distributed along the
device resources and assigned each one to a different configuration bit of the device. An
example of multi-context FPGA is FIPSOC from SIDSA which, although no longer in the
market, admits partial reconfiguration of rectangular blocks and also full reconfiguration
at run-time in only one clock cycle.

2.3.2 Granularity

The grain of reconfigurable logic devices refers to the physical size of the smallest
element or block that can be reconfigured without interacting with the rest of resources
in the device. It is a critical point for silicon efficiency in reconfigurable hardware
technology and determines the minimum atomic change possible. There are several types
of reconfigurable devices attending to configuration granularity of the logic elements that
constitute the device; a distinction is made between fine- and coarse-grain architectures,
as well as a fusion of both. Like this, configuration information or bitstream refers to the
data bits sent to the device to set the state of all its resources, logic and interconnection.
A fine-grained FPGA architecture lets change a minimum part of the device, up to a bit-
level, between a configuration cycle and the following one, for instance to change a
connection bit or a LUT-based truth table bit. On the contrary, a coarse-grained

30

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

architecture applies the same procedure to a bigger element or group of elements, for
instance a whole logic cell (composed of LUT, flip-flop and local interconnections) or a
specific processing block. Both FPGA configuration time and configuration memory size
directly depend on the FPGA grain. Lower granularity provides more flexibility in
adapting the hardware to the computation structure; however, it has a major
performance penalty due to larger delays when constructing computation modules of a
larger size using smaller functional units. In addition, fine-grain and coarse-grain devices
have differences in the configuration time because coarse-grain devices typically need
less data bits for bitstream storage; therefore, their configuration time is shorter.

A. Fine-grain achitecture

In fine-grained reconfigurable architectures, the functionality of the hardware is specified
at the bit-level and the programmable interconnect is manipulated as individual wires.
Fine-grained architectures are efficient for complex bit-oriented computations or bit-level
masking and filtering. However, this fine-grained flexibility comes at the cost of
additional silicon and configuration time overhead and an increment in the bitstream
storage capacity. Typically, an FPGA architecture is considered fine-grained when its
datapath width is four bits or less. The Atmel AT40K FPGA is an example of fine-grained
reconfigurable architecture.

B. Coarse-grain architecture

As reconfigurable fabrics grow in size and are migrated to more advanced technologies,
the cost in terms of both speed and power of the interconnect part of a reconfigurable
fabric rises. Designers are responding to this by increasing the granularity of their logic
units, thereby reducing the amount of interconnect needed. As example, some FPGA
have moved the structure of LUTs from 4-inputs to 6-inputs. Coarse-grained
reconfigurable architectures contain word-level function units such as multipliers and
the programmable interconnect is manipulated with n-bit buses. An example of coarse-
grained architecture corresponds to the XPP processor from PACT, constituted by a set of
processing array elements (PAEs).

C. Hybrid architecture

A hybrid architecture comprising both fine- and coarse-grained elements is also possible.
This hybrid archichecture, named also multi-grain or heterogeneous architecture,
combines the best of both worlds: it can implement word-level algorithms much more
efficiently than fine-grained architectures and can also implement bit-level algorithms
much more efficiently than coarse-grained architectures. Such FPGA devices embed
coarse-grained components into their fine-grained architecture.

2.3.3 Reconfigurability features

Since their introduction, SRAM-based FPGAs have received increasing attention due to
their potential as reconfigurable logic devices, with the ability to implement arbitrary
functionality and be reprogrammed an unlimited number of times during their lifetime,
both off-line and on the fly [Hadley and Hutchings, FCCM 1995]. Reconfiguration
features can be classified according to certain basic criteria such as device activity,
amount of resources reconfigured, reconfiguration interface, and so on. All these
characteristics are overviewed next.

A. Device activity during reconfiguration

Paying attention to the number of reconfigurations performed during the application
execution or to the device activity while the reconfiguration is in progress, reconfigurable
FPGAs are classified in different categories [Shoa and Shirani, VLSI 2005]:

31

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

= Static (compile-time) reconfiguration

Depending on the technological features of the FPGA device or on the application for
which it is deployed, in certain applications the reconfiguration is not used. That
situation occurs in the so-called static or compile-time reconfigurable systems. This
name comes from the fact that the entire configuration is determined at compile-time
and does not change throughout system operation; a single design is loaded into the
full FPGA after a system power-on-reset and it remains unchanged for all the
application lifetime, until the application finishes. In the past, most FPGA designs
have been architected in this way, being static in nature.

» Shutdown reconfiguration

Certain FPGA devices allow reconfiguring the device multiple times during the
application execution. However, this reconfiguration cannot be performed while the
device is in operation. In such case, the functionality of the circuit does not change
while the application is running and it must be halted during the reconfiguration
period. Hence, to reconfigure this type of device it is required to stop it first (i.e., keep
the device in reset) and reconfigure then its logic off-line. In other words, these devices
have mutually exclusive operational and configuration modes since there is no
mechanism to allow simultaneous operation and configuration.

= Active (dynamic or run-time) reconfiguration

Systems in which the configuration of the reconfigurable hardware can change during
run-time are referred to as dynamic or run-time reconfigurable systems. Active
reconfiguration allows that parts of the system may be reconfigured while other parts
are running, without disruption. In this scenario, the application is partitioned into
time-multiplexed tasks. Each task is implemented as a distinct configuration which
can be downloaded into the FPGA at run-time during application operation.

B. Amount of device resources reconfigured

FPGA reconfiguration consists in reprogramming the configuration memory by
downloading a sequence of bits known as bitstream onto it. These data define the
operation (i.e. functionality) to be processed by the combinational and sequential logic
resources present in the FPGA device. In general, two different scenarios are possible
concerning the amount of configuration bitstream data transferred: either the entire
FPGA configuration memory is re-written (full configuration of the device) or only a
subset of this needs to be changed (partial reconfiguration). According to this, a new
classification can be established [Henkel and Parameswaran, Springer 2007]:

= Full reconfiguration

Some devices admit only full (global) configuration, therefore, the entire FPGA
bitstream must be downloaded for all their programmable elements. Global
reconfiguration reserves all the hardware resources for each step of execution. After a
step has been concluded, the device is reconfigured as a whole for the next step.

= Partial reconfiguration

Other devices, however, a part from full reconfiguration allow also downloading partial
bitstreams involving only certain parts of the device. This implies the selective
modification of hardware resources affecting only some selected portions of the device.

To summarize the reconfigurability aspects seen up to now, these levels of adaptivity are
offered in the market through different types of FPGAs. From lowest to highest levels of
configurability, these devices can be classified as one-time configurable (hence not
reconfigurable) FPGAs (e.g. Actel Axcelerator), reconfigurable FPGAs (e.g. Altera Cyclone),
coarse-grain partially reconfigurable FPGAs (e.g. Xilinx Virtex-4) and fine-grain ultimately
reconfigurable FPGAs (e.g. Xilinx XC6200). Only FPGAs with static/active and
full/partial reconfiguration performance let exploit reconfigurable computing technology.

32

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

C. Bitstream format and downloading mechanism

One fundamental limitation of commercial SRAM-based FPGAs is nowadays their
reconfiguration mechanism. There are four primary approaches commonly adopted:

= Serial access configuration

In devices using serial configuration, the configuration storage elements are connected
as a large scan chain around the entire chip (e.g. Altera APEX family). During
configuration, the bitstream is downloaded as sequential raw data into the FPGA
configuration memory, shifted throughout in a bit-wise manner. In addition, the entire
device must be configured before any part may be used for execution. Due to these
architectural restrictions, partial reconfiguration is not supported in these devices.

= Random access configuration

Other FPGA devices use a random access method for reconfiguration. The
reconfiguration cells for these devices can be accessed in the same way as a standard
RAM. An on-chip row/column address is presented to the device and the configuration
information is either read or written to the desired cells. Partial reconfiguration is
supported though an address-data access mechanism, and, to an extent,
configuration time is reduced through the use of a parallel data path (e.g. 32-bit
configuration data bus for Xilinx XC6200 series).

» Windowing configuration

The bitstream format of certain FPGA families follows a very flexible windowing
mechanism where small areas of the device can be programmed independently of each
other. Each of these areas is known as window. This mechanism is suitable for
specifying not only full bitstreams but also partial bitstreams. One example of FPGA
devices following this windowing bitstream specification are the Atmel AT40K FPGAs.

» Frames-based bitstream commanded by packets

Other FPGA devices follow a bitstream format composed of a series of configuration
commands and configuration data. The configuration data corresponds to the data
written into the FPGA configuration memory while the configuration commands
encompass the handling of the internal registers of the configuration logic. Thus, the
writing of data into the configuration memory requires the proper handling of the
configuration registers, which at the same time manage the finite state machine (FSM)
of the reconfiguration engine in the way that writing a configuration is done by issuing
the configuration commands to the desired interface followed by the configuration data
and following certain protocol. As example, the Xilinx Virtex families of FPGA devices
are arranged in frames that are tiled about the device. A frame is the atomic unit of
configuration —i.e., the smallest portion of the configuration memory that can be
written to or read from- and all operations must therefore act upon whole
configuration frames. From the bitstream format point of view, data are encapsulated
in packets, where a packet contains two different sections: header and data. The
header specifies the configuration registers addressed (i.e. configuration command)
whereas the data contains the configuration frame to be downloaded.

D. Link between bitstream repository and reconfiguration engine

A reconfiguration engine is required to transfer the application bitstreams from the
repository, usually an external non-volatile memory, to the FPGA configuration memory.
This engine is coupled to the reconfiguration logic, either embedded inside the device or
connected to it through an external interface.

= External interface
An external smart device, either a controller synthesized inside a non-volatile memory
device, or a secondary PLD, or even a general-purpose microprocessor, is usually used

33

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

to synchronously transfer the bitstream in master or slave mode to the FPGA to
perform the configuration of the programmable logic in a sequential way. A drawback
of this alternative is the increased number of components and PCB area restrictions
necessary to accommodate that external device.

= Internal interface

A dedicated internal processor, either a hard core attached to the FPGA or even a soft-
core processor synthesized in the own FPGA fabric, able to access to the FPGA
configuration memory can take charge of the configuration protocol. The integration of
an internal controller inside the programmable logic device lets reduce the system bill
of materials (BOM). In addition, such a tightly integrated reconfiguration control
solution typically reaches higher performance than an external controller.

Apart from the accessibility to the reconfiguration interface, a further sub-classification
can be established based on the location of the non-volatile memory (NVM) used as
bitstreams repository, in function of whether this memory resides internally to the
programmable logic device —e.g., Xilinx Spartan-3AN or Atmel AT94S equipped with
internal Flash memory- or otherwise, externally linked to a NVM configuration chip.

E. Reconfiguration engine interface

A further classification can be established according to the data flow used to load the
bitstream into the FPGA configuration memory. Several mechanisms are possible:

= Serial or parallel bus

In many FPGAs the configuration memory is written serially, i.e. via a 1-bit data bus
(e.g. SPI, JTAG interfaces) or via a parallel bus, typically an 8-, 16- or 32-bit data
interface. In case of serial access, the reconfiguration bandwidth is strongly limited by
such a narrow interface. In compensation for this drawback, the hardware resources
involved in synthesizing the reconfiguration interface inside the device results quite
simple. On the other hand, in parallel bus, an n-bit data word is transferred to the
configuration memory at each system clock, thus increasing the configuration
throughput by n compared to a serial interface working at the same clock frequency.
In both cases, the bitstream is loaded into the FPGA synchronously and the
reconfiguration time depends basically on the bitstream size, the bus data wide and
the reconfiguration frequency.

» Multiplexing

Some reconfigurable devices are designed in the way that their configuration memory
is physically replicated several times. This is the case of multi-context FPGAs, which
possess various planes of configuration information with just one of them active at any
given time. Like this, the multi-context reconfiguration mechanism lets map
successive configurations from the configuration memory to the logic resources of the
device by swapping a selected inactive configuration memory context or plane into the
active one. The effective reconfiguration interface is based on a physical multiplexer for
each one of the configurable bits present into the device, having these multiplexers as
many inputs as hardware contexts. In this way, the context swap can be performed
quickly across the entire configurable array. Moreover, this swaping time results to be
independent of the bitstream size, although the time needed to previously transfer the
bitstream to the inactive configuration memory plane does depend on the bitstream
size since it is first transferred via a serial or parallel data interface.

= Wormhole run-time reconfiguration

One of the limitations of current commercial FPGAs is the reconfiguration mechanism,
fundamentally accentuated by the use of a centralized configuration controller. Both
serial and parallel interfaces suffer from this downfall since only one controller (data
path) at a time can configure the device through the access port. An alternative

34

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

approach is to create a distributed control scheme in which multiple independent
computational streams can configure the system simultaneously through multiple
access ports. Within that scope, wormhole provides a framework for implementing
large-scale fast run-time reconfiguration. Wormhole run-time reconfiguration is a
method for reconfiguring an FPGA in an entirely distributed fashion: it allows different
parts of the same FPGA to be independently configured through many different data
paths simultaneously given that the reconfigurable device owns multiple configuration
controllers. For this, however, it is necessary a mechanism responsible for avoiding
any kind of resources overlap conflict among several configuration controllers that,
although each one is conducted from a different configuration interface, could perform
a partial reconfiguration addressing the same logic resource at the same time. Like
this, multiple independent configuration paths greatly increase the configuration
bandwidth of a given device, enhancing reconfiguration speed and overall system
performance. As example, the Colt/Stallion configurable computing machine (CCM)
makes use of this distributed reconfiguration paradigm allowing multiple data ports to
independently and simultaneously configure different sections of the chip [Bittner and
Athanas, FPGA 1997].

F. Reconfiguration latency

One of the main motivations for using reconfigurable hardware is to reduce the execution
time of algorithms that would otherwise be executed on software, involving for this as few
hardware resources as possible. But the improvements in efficiency provided by run-time
reconfiguration are not available without cost and reconfiguration latency is a critical
parameter in the design of dynamically reconfigurable systems specifically used for
algorithm acceleration [Wirthlin and Hutchings, TVLSI 1998]. The reconfiguration latency
of dynamically reconfigurable hardware is defined as the time that elapses between a
request for a new circuitry to be loaded onto an already active FPGA and the point at
which the new circuitry is ready for use [Lysaght, FPL 1997]. In fact, it is possible that
the dynamic swapping of circuits on and off in an FPGA consume significant time relative
to the execution time of the algorithm that is being accelerated. Therefore, this
reconfiguration technique, if inappropriately used, could potentially offset any speed-up
gained in using parallel hardware instead of software-based solutions. Just for this
reason, this reconfiguration time overhead needs to be evaluated early in the phases of
design of embedded applications driven by dynamically reconfigurable hardware.
Depending on the type of device and the reconfiguration strategy in use, it is possible to
minimize or even totally hide the reconfiguration time overhead. According to this, it is
possible to classify the run-time reconfigurable systems in two groups:

= Reconfiguration overhead

In single context devices or partially reconfigurable FPGAs architected with only one
PR partition, additional time is required to transfer circuit configuration bits from off-
chip storage into the device configuration memory. In these cases, the reconfiguration
time is visible to the application scheduling and therefore it penalizes to the execution
time of the application. The total execution time of the application synthesized on
reconfigurable hardware is decomposed then in two terms: the processing time and
the reconfiguration time. In some cases, this second term obviously mitigates the
advantages of run-time specialization.

» Hidden reconfiguration time

In multi-threading applications, it is possible to overlap the reconfiguration time of
certain hardware resources with the processing of other tasks in the portion of the
system that keeps in operation. This feature can be achieved in multi-context FPGA
devices or in partially reconfigurable FPGAs composed of more than one PR partition.
In multi-context devices, this reconfiguration time overhead is basically null, one clock
cycle is usually enough to switch from one hardware context to the next one. However,

35

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

although the context swaping is hidden, the fact of transferring the full or partial
bitstream to the inactive configuration context previously to the reconfiguration can
represent a time overhead. On the other hand, in partially reconfigurable FPGAs
composed by more than one PR partition, considering the bipartitioning of an
application in tasks that are distributed in two different PR partitions, the
reconfiguration latency can be hidden if one partition is operative while the other is
concurrently reconfigured to instantiate there the next sequential task to compute.
Finally, the pipeline reconfiguration or striped configuration method (striping) arises
as a modification of the partially reconfigurable FPGA model. This style of
reconfiguration is particularly suited towards the implementation of pipelined
applications. A pipelined application can be easily decomposed into a set of stripes
where, in an ideal scenario, each of the application’s stages fits into one of the FPGA’s
stripes and is reconfigured as a whole, in the way that the atomic unit of
reconfiguration of the FPGA is chosen so that it matches an entire pipeline processing
stage. Pipeline reconfiguration would be used to swap processing stages in the FPGA
in case the number of virtual pipeline stages exceeds the number of hardware pipeline
stages that fit at the same time placed in the FPGA. Hence, partial reconfiguration
would be performed at the level of individual pipeline stages so that configuration and
execution coexist at the same point in time but applied to different stages in the pipe
(one stage is reconfigured while the remainder stages of the pipeline are in execution).
An example of device based on pipeline reconfiguration is the PipeRench platform
[Schmit, FCCM 1997].

2.4 Bitstream manipulation and configuration techniques

Some of the major concerns and open issues submitted to active research in the area of
run-time reconfigurable hardware technology are related to bitstream manipulation and
configuration techniques, aimed at optimizing this technology by minimizing its
weaknesses. All these matters are briefly described next.

2.4.1 Bitstream compression/decompression

Reconfiguration time is one of the critical aspects of run-time reconfigurable hardware
technology because it not only penalizes in the total execution time of the application —as
discussed above- but it also brings an area overhead for the reconfigured resources
which are not operative during such time. Just for this reason, it is convenient to speed
up as much as possible this process. In order to reduce such latency, the efforts can be
addressed in two directions: either minimizing the number of data transfers required to
update a new design in the FPGA, or rising up to the maximum the configuration
bandwidth of the reconfiguration engine. In relation to the first option, in the end it
consists in trying to improve the efficiency of the bitstream format and its transfer so the
bitstream compression/decompression is a valid alternative, while regarding the second
option, other alternatives attending to design reasons like data bus width and
transmission frequency are feasible and they discussed later.

The bitstream bitstream compression/decompression is a manipulation technique in
search of two main goals: firstly, to store the bitstream in the repository occuping the
minimum space possible and, secondly, transmitting it to the FPGA configuration
memory minimizing as much as possible the transmission time and the power
consumed. Bitstream compression can help to reduce the reconfiguration time especially
when the bottleneck is found in the data transfer from the external bitstream repository
to the FPGA. Since the amount of information needed to configure an entire FPGA can be
very large, sending the bitstream compressed to the FPGA lets reduce the time or
number of data word transfers required. Once this configuration information arrives to
the FPGA, however, it shall be decompressed before it is written in the original format to
the FPGA configuration memory via the reconfiguration engine. For this, hardware

36

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

compression/decompression units are inserted into the data path of the FPGA
configuration engine as either hard or soft IPs. Thus, some FPGAs are provided with an
internal bitstream decompressor hardwired in the FPGA fabric, like Altera Stratix-II
devices. Another option is to implement the decompression engine inside the FPGA,
making use of the FPGA resources [Huebner et al., IPDPS 2004] and inserted into the
pipeline [Nabina and Nunez-Yanez, FPL 2010]. Moreover, the compression of the
bitstream file is supported by EDA tools and must be lossless; that is, the compression
strategy shall be able to completely recover the exact data that was compressed.
Furthermore, the compression technique must allow for online decompression. A wide
range of well-established compression algorithms exist in the literature classified into
statistical encoding (e.g. Huffman code) and phrase substitution code (e.g. LZW) [Stefan
and Cotofana, FPL 2008]. The same occurs for decompression algorithms [Koch et al.,
TRETS 2009]. In addition, apart from compression/decompression IPs, certain
configuration controllers of some families of FPGAs are equipped with specific features
oriented to reduce the size of the bitstream, for instance the multiple-frame write (MFW)
command in Xilinx bitstreams, what permits to replicate some identical and consecutive
bitstream frames to be downloaded into the FPGA although such frame is specified only
once in the bitstream. Other technique put in practice in some research work consists in
optimizing the partial bitstream size by removing superfluous information that is stored
into the bitstream due to the own specification of the bitstream format, for instance in
Xilinx FPGA devices [Sellers et al., FPL 2009].

2.4.2 Bitstream relocation

Modern FPGAs are composed of heterogenous resources. Most of these routing and logic
resources are symmetrically distributed along the device, although not all of them
maintain a rigorous symmetrical distribution. In this direction, apart from bitstream
compression, another technique intended to reduce storage space required by the
application relates to the bitstream homogenisation. In reconfigurable systems based on
more than one PRR, in order to save bitstream storage space, it can be convenient to use
one bitstream that can be located in different PRRs, without being constraint to only one
specific position due to the absolute resources addressing of the bitstream format,
avoiding thus the fact of having to store two copies of the same PR module in different
bitstreams addressing different locations inside the FPGA. Hence, a partial bitstream
stored in the repository can be placed in any of the PR regions available in the FPGA if
the bitstream addressing mechanism is modified to point to the specific PR region, what
is known as bitstream relocation. For this, it is necessary to attach to the reconfiguration
engine a bitstream relocation unit responsible for performing the corresponding
bitstreams modifications at run-time. Taking advantage of the symmetric distribution of
resources in the FPGA device, it is possible to perform the bitstream relocation among
identical regions on the FPGA by only changing the absolute address of the resources
where the bitstream shall be fitted. However, it is possible to perform this relocation also
among regions that are not identical if such non-identical resources are restricted to not
be used. This relocation involves knowing in detail the target FPGA bitstream structure
and implementing, in software or in hardware, the relocation unit. With this, every
functional bitstream is saved in the repository only once and it can be mapped in
different locations with a specific manipulation, eliminating redundant storage (on-chip
or off-chip) and providing additional flexibility by allowing the dynamic placement of a PR
module into any available PRR provided with the type and amount of resources required
by such bitstream. Due to its transcendental consequences, this issue has attracted big
interest among the scientific community since it can provide valuable flexibility to certain
application fields [Becker et al., FCCM 2007], [Marconi et al., SASP 2010]. As example,
bitstream relocation can be used to implement fault-tolerant systems able to relocate a
hardware IP module inside an SRAM-based FPGA in case some of its resources get
defective, placing the module in a new error-free area at run-time [Montminy et al., AHS

37

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

2007]. Other research topics linked to the bitstream relocation are the bitstream
defragmentation —related to the fact that sometimes a new functional task needs to be
downloaded into the reconfigurable device but such distributed partial bitstream does
not fit into the currently free resources of the device, requiring first the compactation and
rearranging of the current tasks allocated in the device to solve the placement conflicts—
or the online scheduling of tasks.

2.4.3 Bitstream security

Security concerns are of critical relevance today in embedded system design. SRAM-
based FPGA designs shall guarantee the data security between the bitstream repository —
typically external non-volative memory- and the FPGA itself since the device is
configured at each power-on-reset. In this direction, most of the FPGA vendors do not
reveal the bitstream format of their FPGA devices, just to put major difficulties to hacking
designs through reverse engineering. Although Xilinx has disclosed some details of the
bitstream format of its devices, other manufacturers like Altera does not disclose such
information, and Atmel only releases it under a signed non-disclosure agreement (NDA).
Although some SRAM-based FPGA devices include non-volatile memory inside, often this
memory is not large enough to store sufficient partial bitstreams required by the
application. Thus, in SRAM-based FPGA designs it is typical to find some external NVM
devices used as bitstreams repository and attached to the FPGA. In this case, it is
necessary to protect these bitstreams from external attacks aimed at protecting the
intellectual property of the design (anti-tamper) but also in order to prevent an attacker
from uploading a malicious design that could cause unintended functionality to the
system [Bossuet et al., IPDPS 2004]|. Apart from the typical redundant information added
to the bitstream to guarantee its data integrity, e.g. by means of checksum, parity or
CRC added to the raw binary data, in certain devices such information is stored and
transferred to the FPGA device in an encrypted way. For this, the FPGA device is
equipped with a hardware cryptographic core that takes charge of decrypting the received
information before being downloaded to the hardware resources distributed along the
FPGA fabric, like in Xilinx Virtex-II devices. Bitstream encryption is a common alternative
applied by the FPGA manufacturers into all their more recent FPGA devices.

2.4.4 Configuration bootstrapping and multiple-boot

The configuration bootstrapping, also known as two-step configuration or prioritized
startup, is a technique oriented to reduce the startup time of an FPGA-based system as
much as possible by performing the configuration of the full FPGA device in two steps —
instead of using a single and monolithic full device configuration— where in an initial step
only the modules requiring fast availability are loaded to the device (boot-time critical
components) while finishing the configuration in a second non-time-critical step with
those boot-time tolerant components [Koch and Torresen, Dagstuhl 2010]. As FPGAs are
growing in size, their configuration data increase and such increment affects
proportionally to their full configuration time. In many applications, embedded systems
have to meet extremely tight timing constraints, especially in the startup time - that is,
the time it takes for the electronic system to be operative after power-up or wake-up. For
instance in the automotive domain, electronic control units (ECUs) powered by the
vehicle battery stay in low power mode when the vehicle is locked and parked -
minimizing thus the power consumption demanded to the battery to extend thus its
lifetime— but shall recover their activity when the driver approaches the vehicle and
unlocks the doors with the keyfob. In order, to allow FPGA devices to synthesize ECUs,
they shall meet the startup times required by the automotive applications [Meyer et al.,
Xcell 2011]. In these timing-critical scenarios, the strategy based on partial
reconfiguration consists in loading only the minimalist design at startup, and loading
afterwards, in a second shot after the startup, the non-time-critical modules. This

38

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

technique reduces the initial configuration data and thus minimizes the FPGA startup
time by splitting the design in two partial bitstreams [Sellers et al., FPL 2009]. With this
technique, it is possible to address the challenge of increasing configuration time in
modern FPGAs which otherwise would prevent the use of FPGAs in many applications
that require a fast startup process.

Apart from configuration bootstrapping, FPGAs easily support applications requiring the
ability to dynamically select from multiple FPGA configurations or design revisions,
referred to as multiple-boot. It is the process by which the FPGA selectively reprograms
and reloads its bitstream from an external memory. As use cases, the real-time system
upgrade of an FPGA design or the automatic recovery from any failure booting by loading
a golden FPGA image are real-world examples. One further example of an application
requiring multiple-boot is when the FPGA needs to support both diagnostic as well as
general functionality. In this case, the FPGA boots up using a diagnostics application to
perform board-level tests. If the tests are successful, then the FPGA triggers a
reconfiguration from a second bitstream containing the general functionality
configuration image needed for normal operation. The general FPGA application could be
designed to trigger a reconfiguration to reload the diagnostics application at any time as
needed. A particular approach of multiple-boot is the MultiBoot reconfiguration strategy
in Xilinx FPGA devices. This multiple boot approach can be implemented also in a
custom way in dynamically reconfigurable FPGA devices [Xilinx Inc., XAPP1100 2008].

2.4.5 Configuration overclocking

Another design aspect which can be researched to minimize the reconfiguration latency
of PR designs is to optimize the reconfiguration engine interface to achieve the maximum
reconfiguration bandwidth possible. For this, both the reconfiguration data bus and the
reconfiguration frequency shall be maximized. Concerning frequency, the reconfiguration
speeds currently available are somehow artificially limited by the FPGA vendors, while
the fabrication process technologies used for building the latest devices today are capable
of delivering much higher reconfiguration frequencies. An option which has been tested
by several research groups with valid results has consisted in running the
reconfiguration process at a higher speed than the one specified by the FPGA vendor in
the device datasheet [Shelburne et al., FPL 2008], [Claus et al., ARC 2010], [Duhem et
al., ARC 2011]. In all these cases, the reconfiguration engine was operated at higher
frequencies without observing either data transmission errors or reconfiguration errors.
This option allows increasing the reconfiguration throughput notoriosly.

2.4.6 Configuration caching

Many applications based on run-time reconfigurable hardware technology are
reconfigured frequently during execution time to exploit the full potential of
reconfigurable hardware. By reducing the overall reconfiguration overhead the
performance of the system can be improved. Configuration caching is a strategy oriented
to reduce the number of reconfigurations required in an SRAM-based FPGA system,
lowering thus the configuration overhead [Li et al., FCCM 2000]. Similar to the
instruction or data caching strategy used in microprocessor systems, caching
configurations on an FPGA allows retaining the configurations on fast volatile memory so
the amount of data that needs to be transferred from the system repository —typically
large and slower non-volatile memory— through a restricted data bandwidth channel to
the reconfiguration engine can be reduced. As its name suggests, the configuration
caching approach consists in storing in cache memory the configurations required by the
application at each moment in accordance with the tasks scheduling of the application.
This strategy is useful in those systems where, from an architectural viewpoint, the
reconfiguration bottleneck is found either in the data path between the FPGA
reconfiguration engine and the external repository or in the access time of such NVM.

39

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

2.4.7 Configuration prefetching

Another technique inspired on reducing the reconfiguration latency is the configuration
prefetching. It consists in the process of loading a configuration before it is actually
required [Hauck, FPGA 1998]. By loading a configuration into the reconfigurable logic in
advance of when it is needed, it is possible to overlap the reconfiguration process with
the processing of functionality. In this way, the reconfiguration is hidden to the
application processing, without involving a time overhead to the application. For this, it
is required a tasks scheduler which determines when to download a new full or partial
bitstream (in multi-context devices or in partially reconfigurable FPGAs with several
PRRs, respectively) while the rest of the system keeps in operation. This feature, however,
is sometimes not feasible depending on the tasks scheduling of the application. Besides,
the fact of reconfiguring an FPGA region before it is required is only possible if such
region admits gaps of time where it is not operative.

2.4.8 Configuration scrubbing

Electronic devices are susceptible to the effects of high energy charged particles. These
particles, if provided with sufficient energy, can cause single-event upsets (SEUs),
altering the logic state of any static memory element (latch, flip-flop, or RAM cell).
Related to reliability measures against potential environmental conditions like SEUs
leading to failures in reconfigurable hardware devices, although these upsets are
unavoidable, there exist techniques that let correct them by means of mitigation
strategies. One of these techniques is the configuration scrubbing [Heiner et al., IEEEAC
2008]. It consists in refreshing the sensitive FPGA configuration memory by downloading
the full or partial bitstream into the region influenced by the interferences. Scrubbing
can be performed periodically to ensure that a single upset is present no longer than the
time it takes to refresh the FPGA configuration memory. If faults can be temporarily
accepted, it is sufficient to permanently overwrite the existing configuration (or parts of
it) while keeping the device in active operation mode. With this, the system ensures by
design that the data corruption will be present a time not longer that the reconfiguration
period used. Alternatively, the configuration bitstream may be read and compared to a
golden copy to perform the configuration refresh only when an error in the bitstream is
detected. However, there is a period of time between the moment the upset occurs and
the moment when it is repaired in which the FPGA configuration is incorrect, so the
design may not function correctly during that time. To completely mitigate the errors
caused by SEUs, scrubbing must be used in conjunction with another form of mitigation
which masks the faults in the bitstream. The most popular of these techniques is triple
module redundancy (TMR), which lets mask any single-bit fault in the configuration
bitstream. Combined with scrubbing, TMR can completely mask the effects of SEUs
[Heiner et al., FPL 2009]. These techniques improve the reliability of SRAM-based FPGAs
and enable their use in safety critical applications, typically aerospace applications.

2.4.9 Configuration scheduling

Reconfigurable computing systems, from the standpoint of the configuration scheduling
of their hardware processing tasks, can be classified into deterministic or non-
deterministic. In deterministic configurations, the allocations of hardware tasks in the
FPGA are pre-planned therefore the system knows at design time which context or PR
partition will be active deploying what functional task at each moment. This approach
corresponds to a static tasks scheduling of the entire application. On the other hand, in
non-deterministic configurations, the operating system performs the tasks scheduling
and manages the context switching or partial reconfiguration of partitions at run-time,
taking care also of the tasks floorplanning. A line of research is engaged in the design of
operating systems for reconfigurable embedded platforms. Although some work has been

40

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

published on such reconfigurable hardware operating systems able to dynamically load
and execute hardware tasks on the FPGA [Steiger et al., TC 2004], this powerful feature
is still far from being ready for professional use, incorporated into design tools in the
industry. Active research is however being carried out in this direction.

2.4.10 Online bitstream build

The ability to design a reconfigurable system able to self-construct its hardware context
at run-time is a goal of some research groups. In future, it is expected it will be possible
to use embedded algorithms for dynamic synthesis, mapping, placement and routing on
chip during run-time. That is, the system itself shall build the required partial bitstream
on-demand and self-download it instead of picking it up, already prebuild, from any data
repository. This feature would give maximum flexibility to the system, saving external
memory, adapting the shape of the PR partitions on the FPGA during run-time and, in
the end, moving closer to an ideal utilization of the configurable elements. However, this
requires the integration of the current FPGA generation tools (synthesis, floorplan, map,
placement and routing) inside the reconfigurable embedded system in order to build from
there the partial bitstreams demanded at each time. Thus, the embedded system should
integrate the typical toolset that the FPGA developer runs today in a PC platform, and
run it fast enough, for instance through an internal core processor, to make the
bitstream build to not penalize in excess over the application time. With this, the
embedded system would become autonomous, able to self-adapt and evolve by itself.
However, today this goal is still far since it would require run-time synthesis, typically
requiring very long processing time. A great advance in CAD tools is still necessary and
there are many restrictions and limitations to overcome in order to perform online
dynamic synthesis, mapping and placement. One first step toward that solution has been
developed by the University of Karlsruhe. A method for 2D reconfiguration is described
which consists in the run-time placement of pre-synthesized blocks which let compose
the hardware system, which requires online routing of interconnection signals or
communication primitives [Hubner et al, ISVLSI 2006]. This option of partial build
performed at run-time by means of fixed blocks that are connected by means of online
routing has been put in practice with success, although the reconfiguration time
increases notoriously due to the online routing processing performed on the on-chip
processor [Paulsson et al, FPL 2007]. In that approach, the implemented system is
developed under a Xilinx Virtex-II Pro FPGA. Another interesting approach is presented
in [Silva and Ferreira, JSA 2012]. It presents a method of generating partial bitstreams at
run-time for dynamic reconfiguration of sections of an FPGA. The proposed approach
combines partial bitstreams of coarse-grained components to produce a new partial
bitstream implementing a given circuit netlist. The desired partial bitstream is
constructed by merging together the default bitstream of the reconfigurable area, the
relocated partial bitstreams of the components, and the configurations of the switch
matrices used for routing. All this processing is performed by an embedded PowerPC 405
microprocessor clocked at 300 MHz.

2.4.11 Low power consumption target

Although the increased density and performance gained at each transistor
miniaturization step are valuable benefits, another pressing design consideration for
system developers is power consumption, which probably has become the hottest issue
today. Power consumption is composed of two terms: static power and dynamic power.
Static power is the power consumed by the FPGA when it is programmed but no clocks
are operating. The static power increases as the channel length decreases when process
geometries shrink. Therefore, at every generation, smaller silicon geometries result in
increased leakage currents resulting, a priori, in higher static power. On the other hand,
dynamic power is the portion of power consumed through the operation of the device

41

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

caused by toggling of transistors, affected basically by factors like the capacitance
charging, the supply voltage and the clock frequency. Although smaller process
geometries reduce parasitic capacitance of the transistors and allow for lower voltage
levels and shorter interconnect lengths, there are a greater number of transistors in the
chip that operate at higher frequencies, fact that makes to increase a priori the dynamic
power too. However, a large number of widely used technologies are applied each time
silicon technology is migrated to smaller geometries (40nm, 32nm, 28nm, 22nm) in order
to reduce total power in comparison to the previous technology [Lamoureux and Luk,
AHS 2008]. A big part of this work is conducted by the FPGA manufacturers: new
transistor technologies like High-K Metal Gate (HKMG) or new processes like the 28 nm
High-Performance Low-Power (28 HPL) help to reduce static power, i.e. leakage; other
techniques like advanced clock gating to reduce activity, dynamic voltage scaling, use of
lower K-dielectric to reduce the parasitic capacitance, increment of the LUTs size from 4-
inputs to 6-inputs to reduce the routing, the use of more integrated blocks instead of
soft-IPs, or the decrement of core supply voltage result in lower dynamic power
consumption. Further work is conducted by the FPGA developers: pipeline as a simple
way to reduce glitching, dynamic frequency scaling [Lorenz et al., FPL 2004], retiming or
even dynamic partial reconfiguration [Paulsson et al., DATE 2008] are some of the valid
methodologies used to minimize power consumption.

2.5 Summary

At present, the ever-increasing trend to add new and more complex functionality into
current embedded applications or products leads to an exponential growth of the
computational power demanded to such electronic systems, putting special pressure on
design aspects like cost, performance and time. In this context, reconfigurable computing
driven by run-time reconfigurable hardware emerged —just some decades ago through
SRAM-based FPGAs- as an alternative computing paradigm to implement embedded
applications based on a well proven technology today, qualified to improve valuable
implementation features like performance, scalability and versatility of electronic
systems, and promising furthermore speed-up factors and energy savings by up to
several orders of magnitude compared to classical software-based approaches mapped on
DSPs, MCUs, GPUs, or even in FPGA or SoC devices used as static hardware designs.
Dynamic reconfiguration vastly extends the application field of FPGA technology, due
basically to two main features: the increase of functional density —this allows the
emulation of a larger circuit using a smaller device— and the possibility to implement
autonomous self-adaptive circuits. The reconfiguration capability of modern SRAM-based
FPGAs lets execute a sequential application by partitioning it into multiple hardware
stages that are executed one after other (batch process), in a time-multiplexed way.
Furthermore, some parts of an active stage mapped in hardware resources can even be
reconfigured on the fly, just while others at the same moment continue operating
undisturbed, emphasizing the savings in cost and power consumption. These natural
features have motivated a lot of research effort on different aspects of run-time
reconfigurable systems. However, for this potential to materialize it is necessary both the
reconfigurable hardware technology and the effective way of exploiting it through
automatic tools defining an automated development process. Although there exist
advanced reconfigurable hardware devices, the availability of an efficient toolset has
become an issue since long time ago. Basically, the bitstream manipulation and
configuration techniques are most of the hot topics or open issues which are actively
researched by the scientific community. Even though there are still many restrictions
and limitations to overcome, in the last years it has been an important progress on all
these matters and today this technology can compete with other technological
alternatives in the industry.

42

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

References

[Becker et al.,, FCCM 2007]
T. Becker, W. Luk, P.Y.K. Cheung, Enhancing relocatability of partial bitstreams for run-time
reconfiguration, Proc. of the International Symposium of Field-Programmable Custom Computing
Machines, pp. 35-44, 2007.

[Bittner and Athanas, FPGA 1997]
R. Bittner, P. Athanas, Wormhole run-time reconfiguration, Proceedings of the ACM International
Symposium on Field-Programmable Gate Arrays, pp. 1-8, 1997.

[Bossuet et al., IPDPS 2004]
L. Bossuet, G. Gogniat, W. Burleson, Dynamically configurable security for SRAM FPGA bitstreams,
Proceedings of the International Parallel and Distributed Processing Symposium, pp. 1-8, 2004.

[Claus et al., ARC 2010]
C. Claus, R. Ahmed, F. Altenried, W. Stechele, Towards rapid dynamic partial reconfiguration in video-
based driver assistance systems, Proceedings of the International Symposium on Applied Reconfigurable
Computing, LNCS, vol. 5992, pp. 55-67, Springer-Verlag, 2010.

[Compton and Hauck, ACM 2002]
K. Compton, S. Hauck, Reconfigurable computing: A survey of systems and software, ACM Computing
Surveys, vol. 34, no. 2, pp. 171-210, 2002.

[DeHon, FPGA 1996]
A. DeHon, DPGA utilitzation and application, Proceedings of the ACM International Symposium on Field-
Programmable Gate Arrays, pp. 1-7, 1996.

[Duhem et al., ARC 2011]
F. Duhem, F. Muller, P. Lorenzini, FaRM: Fast reconfiguration manager for reducing reconfiguration time
overhead on FPGA, International Symposium on Applied Reconfigurable Computing, LNCS, vol. 6578,
pp. 253-260, Springer-Verlag, 2011.

[Hadley and Hutchings, FCCM 1995]
J.D. Hadley, B.L. Hutchings, Design methodologies for partially reconfigured systems, Proceedings of the
IEEE Symposium on FPGAs form Custom Computing Machines, pp. 19-21, 1995

[Hauck, FPGA 1998]
S. Hauck, Configuration prefetch for single context reconfigurable coprocessors, Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 65-74, 1998.

[Heiner et al., FPL 2009]
J. Heiner, B. Sellers, M. Wirthlin, J. Kalb, FPGA partial reconfiguration via configuration scrubbing, Proc.
of the International Conference on Field Programmable Logic and Applications, pp. 99-104, 2009.

[Heiner et al., IEEEAC 2008]
J. Heiner, N. Collins, M. Wirthlin, Fault tolerant ICAP controller for high-reliable internal scrubbing,
Proceedings of the IEEE Aerospace Conference, pp. 1-10, 2008.

[Henkel and Parameswaran, Springer 2007
J. Henkel, S. Parameswaran, Designing embedded processors - A low power perspective, Springer, ISBN
978-1-4020-5868-4, 2007.

[Hubner et al., ISVLSI 20060]
M. Hubner, C. Schuck, M. Kuhnle, J. Becker, New 2-dimensional partial dynamic reconfiguration
techniques for real-time adaptive microelectronic circuits, Proceedings of the IEEE Symposium on
Emerging VLSI Technologies and Architectures, pp. 1-6, 2006.

[Huebner et al., IPDPS 2004
M. Huebner, M. Ullmann, F. Weissel, J. Becker, Real-time configuration code decompression for dynamic
FPGA self-reconfiguration, Proc. Int. Parallel and Distributed Processing Symposium, pp. 1-6, 2004.

[Koch and Torresen, Dagstuhl 2010]
D. Koch, J. Torresen, Advances and trends in dynamic partial run-time reconfiguration, Dagstuhl
Seminar 10281: Dynamically Reconfigurable Architectures, Schloss Dagstuhl, 2010.

[Koch et al., TRETS 2009]
D. Koch, C. Beckhoff, J. Teich, Hardware decompression techniques for FPGA-based embedded systems,
ACM Transactions on Reconfigurable Technology and Systems, vol. 2, no. 2, pp. 9.1-9.23, 2009.

[Lamoureux and Luk, AHS 2008]
J. Lamoureux, W. Luk, An overview of low-power techniques for field-programmable gate arrays,
Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems, pp.338-345, 2008.

[Li et al., FCCM 2000]
Z. Li, K. Compton, S. Hauck, Configuration caching management techniques for reconfigurable computing,
IEEE Symposium on FPGAs for Custom Computing Machines, pp. 22-36, 2000.

[Lorenz et al., FPL 2004]
M.G. Lorenz, L. Mengibar, M.G. Valderas, L. Entrena, Power consumption reduction through dynamic
reconfiguration, Proceedings of the International Conference on Field Programmable Logic and
Applications, LNCS, vol. 3203, pp. 751-760, Springer-Verlag, 2004.

43

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

[Lysaght, FPL 1997]
P. Lysaght, Towards an expert system for a priori estimation of reconfiguration latency in dynamically
reconfigurable logic, Proceedings of the International Conference on Field Programmable Logic and
Applications, LNCS, vol. 1304, pp. 183-192, Springer, 1997.

[Marconi et al., SASP 2010]
T. Marconi, J. Young Hur, K. Bertels, G. Gaydadjiev, A novel configuration circuit architecture to speedup
reconfiguration and relocation for partially reconfigurable devices, Proceedings of the IEEE Symposium on
Application Specific Processors, pp. 87-92, 2010.

[Meyer et al., Xcell 2011]
J. Meyer, J. Noguera, R. Stewart, M. Hubner, J. Becker, Fast startup for Xilinx FPGAs, Xcell Journal,
issue 75, pp. 18-23, Xilinx Inc., Second Quarter 2011.

[Montminy et al., AHS 2007]
D.P. Montminy, R.O. Baldwin, P.D. Williams, B.E. Mullins, Using relocatable bitstreams for fault
tolerance, Proc. of the NASA/ESA Conference on Adaptive Hardware and Systems, pp. 701-708, 2007.

[Nabina and Nunez-Yafiez, FPL 2010]
A. Nabina, J.L. Nufiez-Yafiez, Dynamic reconfiguration optimisation with streaming data decompression,
Proc. of the International Conference on Field-Programmable Logic and Applications, pp. 602-607, 2010.

[Nurmi, Springer 2007]
J. Nurmi, Processor design — System-on-Chip computing for ASICs and FPGAs, Springer, ISBN 978-1-
4020-5529-4, 2007.

[Paulsson et al., DATE 2008]
K. Paulsson, M. Hubner, J. Becker, Cost-and power optimized FPGA based system integration:
methodologies and integration of a low-power capacity-based measurement application on Xilinx FPGAs,
Proceedings of the Conference on Design, Automation and Test in Europe, pp. 50-55, 2008.

[Paulsson et al., FPL 2007]
K. Paulsson, M. Hubner, J. Becker, J.M. Philippe, C. Gamrat, On-line routing of reconfigurable functions
for future self-adaptive systems — investigations within /Ether project, Proceedings of the International
Conference on Field-Programmable Logic and Applications, pp. 415-422, 2007.

[Schmit, FCCM 1997]
H. Schmit, Incremental reconfiguration for pipelined applications, Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 47-55, 1997.

[Sellers et al., FPL 2009]
B. Sellers, J. Heiner, M. Wirthlin, J. Kalb, Bitstream compression through frame removal and partial
reconfiguration, Proc. of the Int. Conf. on Field Programmable Logic and Applications, pp. 476-480,
2009.

[Shelburne et al., FPL 2008]
M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin, R. Fong, MetaWire: using FPGA
configuration circuitry to emulate a network-on-chip, Proceedings of the International Conference on Field
Programmable Logic and Applications, pp. 257-262, 2008.

[Shoa and Shirani, VLSI 2005]
A. Shoa, S. Shirani, Run-time reconfigurable systems for digital signal processing applications: A survey,
Journal of VLSI Signal Processing, vol. 39, no. 3, pp. 213-235, Springer, 2005.

[Silva and Ferreira, JSA 2012]
M.L. Silva, J.C. Ferreira, Run-time generation of partial FPGA configurations, Journal of Systems
Architecture, vol. 58, no. 1, pp. 24-37, Elsevier, 2012.

[Stefan and Cotofana, FPL 2008]
R. Stefan, S.D. Cotofana, Bitstream compression techniques for Virtex 4 FPGAs, Proceedings of the
International Conference on Field Programmable Logic and Applications, pp. 323-328, 2008.

[Steiger et al., TC 2004|
C. Steiger, H. Walder, M. Platzner, Operating systems for reconfigurable embedded platforms: Online
scheduling of real-time tasks, IEEE Transactions on Computers, vol. 53, no. 11, pp. 1393-1407, 2004.

[Wirthlin and Hutchings, TVLSI 1998]
M.J. Wirthlin, B.L. Hutchings, Improving functional density using run-time circuit reconfiguration, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 6, no. 2, pp. 247-256, 1998.

[Xilinx Inc., XAPP1100 2008]
J. Hussein, R. Patel, MultiBoot with Virtex-5 FPGAs and Platform Flash XL, Xilinx Inc., Application Note
XAPP1100 (v1.0), 2008.

44

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Chapter 3

Research and deployment

This chapter presents the last advances in different aspects of research, design,
development and deployment of run-time reconfigurable hardware technology. Many
indicators objectively highlight the growing interest in this technology not only by the
academic research community but also by the industry. Apart from parameters already
considered in chapter one like symposiums, conferences and journals focused on this
field, further measurables like funded research projects, related patents under
exploitation, research groups specialized in reconfigurable computing, PhD dissertations
intimely linked to these matters, or commercial and academic programmable logic
platforms based on this technology are new criteria chosen in this chapter to evaluate
the state of health of run-time reconfigurable hardware technology today.

3.1 Related academic and industrial advances

Run-time reconfigurable hardware is an emerging technology with more and more
supporters. This trend has been especially accentuated in the last decade, where
computing systems driven by this technology are becoming commonplace in embedded
applications and point out some clear advantages over traditional electronic systems.

3.1.1 Research projects

In the last years, there has been a clear explosion of interest in run-time reconfigurable
hardware technology. Relevant efforts have been addressed by several research teams
around many aspects of this computational field. One clear measurable of the big
importance acquired is the growing number of international projects supported typically
by public institutions, like the European Defence Agency or the European Commission
with its Framework Programmes, to carry out research on subjects of strategic interest,
with a clear benefit for the knowledge based society. As example, over the past years, the
European Commission has constantly increased the amount of funding going to research
in computing architectures and tools through its research programme in Information and
Communication Technologies (ICT) —formely Information Society Technologies (IST)- with
the objective of improving the competitiveness of the European industry. In this context,
a large number of research projects have been conducted in the area of reconfigurable
computing [Cardoso and Hubner, Springer 2011]. Some of the most relevant projects
turning around reconfigurable computing are enumerated next.

A. RECONF 2

RECONF 2 (design methodology and environment for dynamic reconfigurable FPGA) is a
project of the European Community placed inside the Fifth Framework Programme (EU-
FP5 IST 34016). It emerges with the aim of helping in reducing the lack of CAD/EDA
activity in Europe and participating in the effort of standardization to give large
companies and SMEs the opportunity to develop new, complex and high performance
applications based on partial reconfiguration technology. The RECONF 2 project focuses
on developing a complete design environment to take full benefits of dynamic
reconfigurable FPGAs, chosing the Atmel AT94K commercial devices as use case. The
deliverables of the project are a new design methodology along with the front and back
end tools, validated through three complementary industrial experiments like space,
multimedia and aeronautic. The set of tools and associated methodologies developed
accomplish the automatic or manual partitioning of a conventional design, thee

45

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

specification of the dynamic constraints, the verification of the dynamic implementation
through dynamic simulations in all steps of the design flow, the automatic generation of
the configuration controller core for VHDL or C implementations and the dynamic
floorplanning management and guidelines for modular back-end implementation.

B. ADRIATIC

ADRIATIC (advanced methodology for designing reconfigurable SoC and application-
targeted IP-entities in wireless communications) is a cooperative R&D project funded by
the European Commission's Information Society Technologies initiative under the Fifth
Framework Programme. The ADRIATIC project brings together providers of CAD tools
and wireless communications technology with manufacturers of wireless communication
ICs to develop an advanced high-level hardware/software co-design and co-verification
methodology, along with tools, for reconfigurable SoCs specifically oriented to wireless
applications. The main objective of the project is the development of a technology-
independent methodology oriented to the flexible re-use of SoC resources to address
problems related to cost and power consumption, aimed at being thus commercially and
technically viable. This methodology is then validated through the implementation of two
reconfigurable processors —a reconfigurable video processor for wireless terminals
(HIPERLAN/2 broadband) and a wireless communication baseband processor- which
execute the critical part of the protocol stack (medium access control and link layers).

C. AMDREL

The main objective of the AMDREL (architectures and methodologies for dynamic
reconfigurable logic) project, funded by the Information Society Technologies initiative
under the Fifth Framework Programme (EU-FPS5 IST 34379), is to develop methodologies,
tools and reusable IP blocks to be integrated in a mixed granularity dynamically
reconfigurable SoC platform for the efficient realization of wireless communications
systems, including critical parts of a wireless LAN system (e.g. IEEE 802.11a) and a
multimedia processor for wireless terminals. This project contributes to increase the
competitiveness of telecom manufacturers mainly in the domain of wireless
communications, helping in consolidating the position of Europe in this specific domain.
The major improvements concern the reduced design time and time-to-market of systems
in the target application domain, and the improved balance between flexibility,
performance, energy and area in comparison to traditional implementation platforms.

D. MORPHEUS

The goal of the MORPHEUS (multi-purpose dynamically reconfigurable platform for
intensive heterogeneous processing) project, supported under the Sixth Framework
Programme of the European Community (EU-FP6 IST 027342), is to develop new
heterogeneous reconfigurable SoCs with various sizes of reconfiguration granularity and
to provide an integrated toolset of spatial and sequential design for mapping target
applications, especially in four domains like broadband wireless access, network routing,
professional video and homeland security. MORPHEUS copes with the challenges of
rising complexity and the enlarging design productivity gap by developing a global
solution based on a modular heterogeneous SoC platform which combines multiple
reconfigurable components together with an ARM processor, as well as deploying the
appropriate toolchain to make this technology usable at a wide industrial level and
contribute thus to reach a cost-effective solution for building embedded systems.

E. 4S

The overall mission of the 4S (smart chips for smart surroundings) project, funded by the
Sixth European Framework Programe, is to define and develop efficient (ultra low-power),
flexible, reconfigurable core building blocks for future ambient systems, including their

46

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

supporting tools. Ambient systems, also known as ubiquitous computing, are networked
embedded systems wirelessly integrated with everyday environments and supporting
people in their activities. These systems create a smart surrounding for people to
facilitate and enrich daily life and increase productivity at work. The aim is to establish
Europe as the dominant player in the field of efficient reconfigurable architectures for
ambient devices. The 4S consortium proposes a heterogeneous multi-tile hardware
architecture with operating software and tools that allows to dynamically assigning
applications and sub-tasks to the “best fit” architecture. The heterogeneous
reconfigurable SoC proposed consists of bit-level reconfigurable tiles (e.g. embedded
FPGAs), word-level reconfigurable tiles and general-purpose programmable tiles (DSPs
and microprocessors), where all these tiles are interconnected by a suitable NoC.

F. ANDRES

ANDRES (analysis and design of run-time reconfigurable, heterogenous systems) is a
specific research project co-funded by the Sixth Framework Programme. Leading
European companies providing application know-how and research institutes with
outstanding experience in modelling and synthesis of embedded systems joined hands in
the ANDRES consortium to develop industrially applicable solutions based on run-time
reconfigurable hardware. The high-level objective of the project is to improve the
competitiveness of innovative European industries such as the telecommunication and
automotive by providing means to efficiently use and exploit adaptivity in embedded
system design. ANDRES focuses its attention in developing a seamless integrated design
flow for adaptive heterogeneous embedded systems. It covers the full degree of adaptivity,
from setting a few parameters up to reconfiguring the whole programmable logic device.
This approach is driven by SystemC to model a given reconfigurable area as an adaptive
object with a fixed interface and make use of polymorphism.

G. AETHER

Under the Sixth Framework Programe, the AETHER (self-adaptive embedded technologies
for pervasive computing architectures) project aims to tackle the issues related to the
performance and technological scalability, increased complexity and programmability of
future embedded computing architectures by introducing technologies for the self-
management, self-tuning and self-adaptation of systems. The AETHER project focuses on
managing the complexity of such systems and designing self-adaptive architectures able
to include a high number of networking computing resources to execute a wide spectrum
of complex algorithms with power constraints. For this, it is introduced a basic
computing entity called Self-Adaptive Networked Entity (SANE) able to change its
behavior to react to changes in its environment and which is networked with other SANE
entities to form complete systems. Through the SANE-based hardware architecture, the
AETHER consortium approaches the design of self-adaptive systems that make run-time
decisions based on current requirements of the application and investigates how
monitoring and online routing can be evaluated on reconfigurable FPGAs.

H. RECOPS

The RECOPS (reconfiguring programmable devices for military hardware electronics)
project is a contract from the European Defence Agency funded by the National
Ministries of Defence of the participating countries Belgium, France and Italy, involving
partners distributed in the military industry and some research centres. The project aims
to study the use of reconfiguration in modern military applications, as well as identifying
requirements, techniques, methodologies and opportunities to use dynamic
reconfiguration. Military applications are far from the usual consumer electronics
applications sold in high volume. The lifetime of a military product is longer than
consumer electronics, reaching often several decades. In addition, military applications

47

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

have a high level of reliability and security and they need further validation, test or
certification. Furthermore, they need to have a high level of flexibility to be able to adapt
to environment changes in real-time during a mission. This high level of flexibility is also
one of the best ways to cope with the long life cycle. In this scope, the RECOPS project is
highly application oriented and it uses several demonstrators based on Xilinx Virtex-4
FPGA platforms to evaluate the reconfiguration technology through real experiments.

I. HARTES

The hArtes (holistic approach to reconfigurable real-time embedded systems) project is
supported by Sixth Framework Programme (EU-FP6 IST 035143) and addresses the
optimal and rapid design of embedded systems from high-level descriptions, targeting a
combination of embedded processors, digital signal processing and reconfigurable
hardware. It aims to lay the foundation for a new holistic approach for complex real-time
embedded system design, with the latest algorithm exploration tools and reconfigurable
hardware technologies. The tools and methodologies developed in hArtes are applied to
real world multimedia applications. The complexity of future multimedia devices is
becoming too big to design monolithic processing platforms and this is where the hArtes
approach with reconfigurable heterogeneous systems becomes vital. All these concepts
are deployed on modular and scalable hardware platforms that can be reused and re-
targeted by the tool chain to produce optimized embedded products.

J. CRISP

CRISP, acronym for cutting edge reconfigurable ICs for stream processing, is a project co-
funded by the Seventh Framework Programme of the European Union (EU-FP7 ICT
215881) and performed by an adept consortium of companies and universities which
aims at developing a single highly scalable reconfigurable many-core system architecture
concept with dynamic resource management usable for a wide range of streaming
applications, from low-cost consumer applications to very demanding specialty
applications. The CRISP project partners developed a self-testing, self-repairing nine-core
chip showing new concepts for run-time resource management to attain the goal of self-
repairing: the chip tests cores and connections while in operation and a resource
manager dynamically assigns the chip’s tasks to fault-free parts. Thus, it strives to take
advantage of the huge processing power of many-cores and creates a much-desired
flexibility to adapt to new tasks and standards during the functional life of the chip.

K. ERA

ERA (embedded reconfigurable architectures) is a funded project of the European
Commission’s Seventh Framework Programme. It aims at investigating and developing
new methodologies in both tools and hardware designs to break through current power
and memory walls for the next-generation embedded systems. The proposed strategy is
to utilize adaptive hardware to provide the highest possible performance for given power
budgets. The following main objectives are identified: to define and develop a dynamically
reconfigurable integrated platform composed of a parameterized VLIW processor, a
reconfigurable NoC, and a memory subsystem able to perform flexible and fast
reconfiguration of the platform; to provide the needed hardware monitoring and OS
support to efficiently control the hardware reconfiguration; to benchmark existing
applications in the area of mobile processing to extract a set of measurable parameters to
which react by reconfiguring the hardware in case of online application changes.

L. REFLECT

REFLECT (rendering FPGAs to multi-core embedded computing) is a project funded under
the Seventh Framework Programme (EU-FP7 ICT 248976) aimed at developing a novel
compilation and synthesis system approach for FPGA-based platforms. The REFLECT

48

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

approach intends to solve some of the problems when mapping efficiently computations
to FPGA systems. The proposed design flow conducts a systematic control of all the
compilation stages and considers the relationship between non-functional requirements
to different design patterns and optimizations. The project leverages aspect-oriented
specifications and a set of transformations to generate an intermediate representation
using an extensible mapping language named LARA. Like this, LARA specifications shall
allow the exploration of alternative architectures and run-time adaptive strategies
enabling the generation of flexible hardware cores that can be easily incorporated into
larger multicore designs. The effectiveness of the proposed approach will be evaluated in
the domain of audio/video processing and real-time avionics.

Table 3.1 Research projects oriented to run-time reconfigurable hardware technology

ACRONYM FULL PROJECT NAME RESEARCH AREA
RECONF2 Design methodology and environment for dynamic reconfigurable FPGA Methods and tools
Advanced methodology for designing reconfigurable SoC and application-
ADRIATIC targeted IP-entities in wireless communications kﬂetzo(c\:;rzrs;ogésrnmunications)
http://www.imec.be/adriatic/ PP
AMDREL architectures and methodologies for dynamic reconfigurable logic %g;zc}(j\zrzr:sgogfmmunications)
Multi-purpose dynamically reconfigurable platform for intensive heterogeneous Devices
MORPHEUS f0CesSin Methods and tools
P g Apps (wireless, network, video & homeland security)
Devices
48 Smart chips for smart surroundings Methods and tools
Apps (ubiquitous computing)
ANDRES Analysis and design of run-time reconfigurable, heterogenous systems Methods and tools
http://andres.offis.de/ Apps (telecom and automotive)
AETHER Self-adaptive embedded technologies for pervasive computing architectures Devices
http://www.aether-ist.org/ Design flow and tools
RECOPS Reconfiguring programmable devices for military hardware electronics Apps (military)
HARTES Holistic approach to reconfigurable real-time embedded systems Design flow and tools
http:/hartes.org/hArtes/ Apps (multimedia)
)) . Devices
CRISP Cutt.lng edge_reconfl_gurable ICs for stream processing Design flow and tools
http://www.crisp-project.eu/ .
Apps (streaming)
) . Devices
ERA Eml?edded reconﬂgurable architectures Design flow and tools
http://www.era-project.eu/ . .
Apps (mobile processing)
REFLECT Ren.dering FPGAs to lmulti-core embedded computing Design flow and tools
http://www.reflect-project.eu/

Table 3.1 summarizes the scope of all these projects according to their orientation to
design flow and tools, devices or application cases. As observed, the research community
is aware of the big importance of automatic tools as enablers of this technology.

3.1.2 Patents

Several FPGA vendors like Atmel Corp. and Xilinx Inc. have patented their research on
partial reconfiguration in the last decade. Apart from patents under exploitation directly
related to technology or devices, other patents have been registered addressing the
exploitation of such technology in specific application fields like automotive (e.g.
DaimlerChryster AG), consumer and embedded processing (e.g. RMT Inc.), portable
devices (e.g. IMEC), high-performance computing (e.g. oriented to solving an specific
problem like searching regular expressions by Microsoft Corporation) or cryptography
(e.g. Advanced Communication Concepts, Inc.). All these patents are listed in Table 3.2.

49

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

Table 3.2 Patents based on reconfigurable hardware technology

PATENT INVENTORS COMPANY TITLE PRIORITY

PCT/US2000/41889 | D. McConnell et al. Atmel Corp. Method for implementing a physical design for a 14.12.1999
dynamically reconfigurable logic circuit

PCT/US2000/014257 | M.T. Mason, et al. Atmel Corp. jg\f}l‘gjsre tool to allow field programmable system level 16.07.1999

PCT/US2003/039610 | D.R. Curd, et al. Xilinx Inc. Reconfiguration ofthe programmable logic of an integrated | 13,12 5002

PCT/US2005/012564 | V. Mantra Vadi, et al. Xilinx Inc. Dynamic reconfiguration 30.04.2004

PCT/US2001/22120 S.P. Young & T.J. Bauer | Xilinx Inc. Architecture and method for partially reconfiguring an FPGA | 25.07.2000

PCT/EP2006/001578 | J. Becker, et al. DaimlerChryster AG | Control device with configurable hardware modules 04.03.2005

US7607005 S. Lewis RMT Inc. Virtual hardware system with universal ports using FPGA 22.12.2004

PCT/US2010/039271 | K.H. Eguro and A. Forin | Microsoft Corp. Searching regular expressions with virtualized massively | 14 45 99
parallel programmable hardware

US 2007/0255941 . Advanced Comms. Methoq and system for securing data utilizing 18.04.2006

J.W. Ellis Concepts, Inc. reconfigurable logic

US 2004/0049672 V. Nollet, et al. IMEC System _and method for hardware-software multitasking on 02.06.2003

a reconfigurable computing platform

3.1.3 Research groups

A large group of scientists and researchers firmly believe that run-time reconfiguration
can greatly improve the cost-time performance over other technological alternatives in a
wide variety of embedded applications. In fact, a lot of research in this domain has been
carried out during the last decades, particularly at universities, and an extensive set of
these applications has been already proved in physical designs achieving impressive
results. Many research groups are in these days actively working on the field of
reconfigurable computing. Some of them are listed in Table 3.3 as a quick reference.

Table 3.3 Reconfigurable computing research groups

RESEARCH GROUP LOCATION / URL RESEARCHERS
Adaptive Computing Machines and Emulators University of Washington, USA S, Hauck
(ACME) Laboratory http://ee.washington.edu/faculty/hauck/acme.html '

Universitat Politécnica de Catalunya (UPC), Spain J.M. Moreno

Advanced Hardware Architectures (AHA) Group

http://www-eel.upc.es/aha/

J. Cabestany

Berkeley Reconfigurable Architectures,

Berkeley - University of California, USA

J. Wawrzynek

Systems & Software (BRASS) Research Group | http://brass.cs.berkeley.edu/ A. DeHon
Cellular Architectures Research Group (CARG) Eco!e Polytechnique Fédérale de Lausanne (EPFL), Switzerland G. Tempest
http://carg.epfl.ch/

L Imperial College, UK P.Y.K. Cheung
Clrcuits and Systems Group http://www3.imperial.ac.uk/circuitssystems G. Constantinides
Computer Architecture and Logic Design Universidad de Extremadura, Spain M.A. Vega
(ARCO) Group http://arco.unex.es/ J.A. Gémez Pulido
Computer Architecture for Embedded Systems University of Twente, The Netherlands G.JM. Smit
(CAES) Group http://caes.cs.utwente.nl/ e
Computer Engineering University of Wisconsin-Madison, USA K. Compton

http://www.engr.wisc.edu/ece/research/comp.eng.html

Computer Engineering

University of Southern California (USC), USA
http://ceng.usc.edu/

V K. Prasanna

Computer Engineering Group

University of Paderborn, Germany
http://www.cs.uni-paderborn.de/fachgebiete/computer-engineering-group.html

M. Platzner

Computer Engineering Laboratory

Delft University of Technology, The Netherlands
http://ce.et.tudelft.nl/

K.L.M. Bertels
S. Dan Cotofana

50

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

Table 3.3 Reconfigurable computing research groups (cont'd)

RESEARCH GROUP LOCATION / URL RESEARCHERS
Computer Engineering Research Group :t?;yzmogezzrz?;?onto cal J. Rose
Virginia Tech Department of Electrical and Computer Engineering, USA P. Athanas

Configurable Computing Lab

http://www.ccm.ece.vt.edu/

C. Patterson

Configurable Computing Laboratory

Brigham Young University (BYU), USA
http://splish.ee.byu.edu/

B.L. Hutchings
B. Nelson

Custom Computing Research Group

Imperial College, UK
http://cc.doc.ic.ac.uk/

W. Luk

Development of Embedded Systems (DES)

Universitat Rovira i Virgili (URV), Spain

J.P. Deschamps

Research Group http://sauron.etse.urv.es/DEEEA/cat/recerca/grups.htm E. Cantd
High Performance Computing and Networking Universidad Autonoma de Madrid (UAM), Spain G. Sutter
Group http://www.hpcn.es/ |. Gonzalez
DSP and Communications Tampere University of Technology, Finland J. Nurmi
System-on-Chip Research Group http://www.cs.tutfi/~nurmi/group.html)
Dynamically Reconfigurable Hardware Group Universidad Complutense de Madrid (UCM), Spain J. Septién
(GHADIR) http://www.ucm.es/info/ghadir/ H. Mecha
Electronic Systems Design and Automation INESC-ID, Portugal P.C. Diniz
(ESDA) Research Group http://esda.inesc-id.pt/ H.C. Neto
Embedded and Reconfigurable Lab University of California at Los Angeles (UCLA), USA M S
i . Sarrafzadeh
(ER Lab) http://er.cs.ucla.edu/
Embedded Systems and Biometric |dentification | Univertitat Politécnica de Catalunya (UPC), Spain M. Lépez
Group http://petrus.upc.es/emsy/ E. Canto
Embedded Systems Group Microsoft Research Redmond, USA A. Forin
http://research.microsoft.com/en-us/groups/embeddedsystems/ N. Pittman
. University of Masachusetts, USA R. Tessier
Embedded System Security Group http://vcsg.ecs.umass.edu/essg/ W. Burleson
- Universidad Rey Juan Carlos (URJC), Spain J.I. Martinez
Grupo de Disefio HW-SW http://www.gdhwsw.uric.es/ J. Castillo
) . George Washinton University (GWU), USA)
High Performance Computing Lab http://hpcl2.hpcl.qwu.edu/ T. El-Ghazawi
High-Performance Computing & Simulation University of Florida, USA AD. George
Research Laboratory http://lwww.hcs.ufl.edu/ o
Embedded Electronic Systems Group University of Karlsruhe, Germany J. Becker
Karlsruher Institut fiir Technologie (KIT) http://www.itiv.uni-karlsruhe.de/ M. Huibner
L . . University of Montpellier Il, France
kﬂgborgtmre dllnformat|que, de'Robot|que et de Centre National de la Recherche Scientifique, France L. Torres
icroélectronique de Montpellier (LIRMM) hito:// i fi/
p://www.lirmm.fr
Lab-STICC Université de Bretagne Sud, France J.P. Diguet
http://recherche.telecom-bretagne.eu/lab-sticc/ G. Gogniat
Lehrstuhl fiir integrierte Systeme (LIS) 'rl]'echn|sche.Un|lverS|tat Minchen (TUM), Germany W. Stechele
ttp://www.lis.ei.tum.de
USA national industry/university research consortium (University of Florida, | A.D. George
NSF Center for High-Performance Brigham Young University, George Washington University, Virginia Tech, B. Nelson
Reconfigurable Computing (CHREC) NASA, Altera, Xilinx, AMD, HP, NI, Sandia National Laboratories, etc) T. El-Ghazawi
http://www.chrec.org/ P. Athanas

Reconfigurable Computing Lab (RCL)

Simon Fraser University, Canada
http://www2.ensc.sfu.ca/~Ishannon/rcl/index.html

Lesley Shannon

Reconfigurable Digital Systems Group (RDSG)

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
http://rdsg.epfl.ch/

E. Sanchez

Reconfigurable Network Group

Washington University in St. Louis, USA
http://www.arl.wustl.edu/projects/fpx/reconfig.htm

J.W. Lockwood

) . University of Oslo, Norwa J. Torresen
Robotics and Intelligent Systems (ROBIN) http://ww}\:v.ifi.uio.no/resea);ch/qroups/robin/ D. Koch
Self-Organizing Embedded University of Kaiserslautern, Germany C. Bobda
Systems (SOES) Research Group http://soes.informatik.uni-kl.de/ '

. . Institute of Information Theory and Automation (UTIA), Czech Republic J. Kadlec
Signal Processing Department http://zs.utia.cas.cz/ M. Danék

System Architectures Group

Politecnico di Milano
http://sagroup.ws.dei.polimi.it/

M.D. Santambrogio
D. Sciuto

Surrey Space Centre, University of Surrey, England

VLSI Design and Embedded Systems Group hitp://www.ee.surrey.ac.uk/SSClresearchivisi T. Vladimirova
- Xilinx, USA and Ireland P. Lysaght
Xilinx Research Labs http://www.xilinx.com/ B. Blodget

Xputer Laboratory

University of Kaiserslautern, Germany
http://xputers.informatik.uni-kl.de/

R.W. Hartenstein

51

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

3.1.4 PhD dissertations

Another indicator of the increasing interest in run-time reconfigurable hardware
technology is the number of PhD dissertations focused on related topics like:
reconfigurable computing techniques and methods (Mthd); modelling, design flow and
automation tools (Tool); system architectures (Arch); and killer applications (App), e.g.
software defined radio, bio-inspired systems, nuclear and particle physics, etc.

Table 3.4 PhD dissertations related to reconfigurable computing

AUTHOR PhD DISSERTATION AREA | UNIVERSITY YEAR

M.J. Wirthlin Improving functional density through run-time circuit reconfiguration Mthd | Brigham Young University 1997

E.F. Cantd Navarro Temporal bipartitioning techniques for multi-context FPGAs Mthd gggﬁm Politécnica 2001

J.M. Faura Enriquez Dlseﬁg & implementacion de ar quitecturas dinamicamente Mthd | Universidad Autdnoma Madrid 2001
reconfigurables basadas en microprocesador

K. Leigh Compton Architecture generation of customized reconfigurable hardware Mthd | Northwestern University 2003

J.J. Noguera Serra Energy-efﬂment har.dware/software co-design for dynamically Mihd Universitat Politécnica 2005
reconfigurable architectures Catalunya

U. Malik Configuration encoding techniques for fast FPGA reconfiguration Mthd | University of New South Wales 2006

. . o Virginia Polytechnic Institute

S. Douglas Craven Structured approach to dynamic computing application development Mthd and State University 2008

Y. Esteves Krasteva Reconﬂlgurable.computmg pased on co mmerC|a|.FPGAs. Solutions for Mthd | Universidad Politécnica Madrid 2009
the design and implementation of partially reconfigurable systems

J. Tabero Godino Técnicas de uplcacmn dle ?arfeas y defragmeqtauon para multiarea Mthd Un|vgr5|dad Complutense 2010
hardware en sistemas dinamicamente reconfigurables Madrid

E. Moscu Panainte The Molen compiler for reconfigurable architectures Tool | Technische Universiteit Delft 2007
Architectures, methods, and tools for distributed run-time s .

D. Koch reconfigurable FPGA-based systems Tool Universitat Erlangen-Niimberg 2009

) . MARTE based model driven design methodology for targeting Université des Sciences et

I. Rafiq Quadi dynamically reconfigurable FPGA based SoCs Tool Technologies de Lille 2010

M. Rullmann Model;, desl|gn methods and tools for improved partial dynamic Tool Technischen Universitat 2010
reconfiguration Dresden

A. Schallenberg Dynamlp partial self-reconfiguration: quick modeling, simulation, and Tool Vop derl (")arl von Ossietzky 2010
synthesis Universitat Oldenburg

N. Abel DeS|gn_ and |mplemen§atlon _of an object-oriented framework for Tool | Universitit Heidelberg 2010
dynamic partial reconfiguration

JA Clemente Barreira Schz.edulllng techniques in reconfigurable environments for multimedia Tool Un|v§r3|dad Complutense 2011
applications Madrid

A Astarloa Recgnﬂgqrguon dindmica de sistemas modulares multi-procesador Arch Euskal Herriko Unibertsitatea 2005
en dispositivos SoPC

. . Imperial College of Science,

N. Peter Sedcole Reconﬂgurable platform-based design in FPGAs for video image Arch | Technology and Medicine, 2006

processing -
University of London

M. Hiibner Dynamlsch und partiell rekonflgurlerbare _hfardware-systemarchltektur Arch Karlsruher_lnstltut fir 2007
mit echtzeitfahiger on-demand-funktionalitat Technologie

M. Majer 1’2; FI)Elzltz;r;gen Slot Machine — An FPGA-based partially reconfigurable Arch | Universitat Erangen-Nimberg 2011

AM. Alsolaim SD}}/Srlzmiscally reconfigurable architecture for third generation mobile App Ohio University 2002

Y. Thoma Tissu numérique cellulaire a routage et configuratioin dynamiques App Egﬁlszrlj:‘laytechmque Fédérale 2005

I Gonzélez Martinez Coprogesadores dinamicamente reconfigurables en sistemas Aop Universidad Auténoma Madrid 2006
embebidos basados en FPGAs]

A.E. Upegui Posada Dynamically reconfigurable bio-inspired hardware App Egﬁlsz:r?éytechmque Federale 2006

J.P. Delahaye Plate-forme hétérogéne reconfigurable: application a la radio logicielle | App Université de Rennes | 2007

T Kuwahara gsﬁc\e—ﬁzizd reconfigurable on-board computing systems for space Aop Universitit Stuttgart 2009

0. Sander Skallerbare adapt!ve §ystem-on-ch|p-archltekturen fir inter-car und App Karlsruherhlnstltut fir 2009
intra-car kommunikationsgateways Technologie

C.S. Claus Zum Elnsatz dy_namlsch rekonfigurierbarer eingebetteter Systeme in Aop Te:_chmsche Universitat 2010
der Bildverarbeitung Minchen

M. Liu Adaptive Computing based on FPGA Run-time Reconfigurability App g&ﬁ:dgﬁg tute of Technology 2011

52

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

3.2 Reconfigurable hardware devices

Next, it is presented the state-of-the-art about commercial and research devices that
exploit reconfigurable computing technology. The list of devices is split in two categories:
commercial/industrial devices and academic/research platforms.

3.2.1 Commercial and industrial FPGAs and SoCs

Nowadays, programmable logic is one of the fastest growing segments of the entire
semiconductor market. The programmable logic industry is controlled today by several
established FPGA vendors, mainly Xilinx, Altera, Actel/Microsemi, Lattice and Atmel.
Besides, some coarse-grained devices from other companies like PACT XPP Technologies
or Recore Systems are commercially available. Although there are several programmable
logic manufacturers distributing their products, only few of these devices present in the
market support run-time reconfigurable computing. A brief description of these devices is
presented next, specially focusing on the reconfigurable hardware aspects of each family.

A. Altera (www.altera.com)

Altera is focused on FPGA devices based on SRAM programming technology. It
distinguishes three types of products: high-end devices (Stratix, Stratix-II, Stratix-III,
Stratix-IV and Stratix-V series), mid-range devices (Arria GX, Arria II and Arria V series)
and low-cost devices (Cyclone, Cyclone-II, Cyclone-III, Cyclone-IV and Cyclone-V
families). Although most of the Altera FPGA devices are not equipped with partial
reconfiguration features, Altera Corp. announced the introduction, by first time in their
devices, of partial reconfiguration in the new 28-nm versions of their FPGA families,
Stratix-V, Arria-V and Cyclone-V devices. In this way, Altera has joined the group of
FPGA manufacturers that provide devices supporting run-time partial reconfiguration
technology. Regarding SoPC devices, Altera developed the Excalibur family in the early
2000s, although today is already not shipped. The Excalibur device is composed of a
microprocessor subsystem and FPGA configuration logic. The microprocessor subsystem
(or embedded stripe) includes a 32-bit ARM922T processor with AMBA advanced high-
performance bus (AHB) bus structure, SRAM and dual-port SRAM memories, Flash,
SRAM, and SDRAM interfaces, and peripherals. The programmable logic of Excalibur is
composed by the equivalent resources of an Altera APEX20KE FPGA. Unlike FPGA
solutions, Excalibur devices can be reconfigured at any time via processor control, while
the processor continues to run. This architecture lets deploy run-time reconfigurable
hardware applicatioin with this device. More recently, just in 28-nm Arria-V and
Cyclone-V devices, Altera is including a hard dual-core processor together with
programmable logic giving rise to SoC FPGAs. These devices feature a hard processor
system containing a dual-core ARM Cortex-A9 MPCore processor and a rich set of
peripherals seamlessly linked to the FPGA fabric. Once running, the hard processor
system can fully or partially reconfigure the FPGA fabric at any time under software
control. Concerning tools, Altera integrates the PR flow in its Quartus-II tools.

B. Atmel (www.atmel.com)

Atmel has developed several SRAM-based FPGA devices like the mature AT6000 family
and the AT40K family. These devices, although they are small in capacity, are equipped
with fine grain reconfigurability. New devices currently under development are the
radiation hardened ATF280E and ATFS450 devices oriented to aerospace applications, in
addition to the rad-hard version of the AT40K named AT40FEL. Apart from FPGA
devices, Atmel has developed the AT94K SoC family, also called Field-Programmable
System-Level Integrated Circuit (FPSLIC), composed of a hard-core AVR processor and an
AT40K FPGA, both from Atmel, inside the same chip. Besides, a secure version of
FPSLIC, the AT94S device, furthermore integrates non-volatile memory inside the chip.

53

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Regarding dynamic reconfiguration, both FPGAs and SoCs are equipped with Cache
Logic technology, which corresponds to fine-grain run-time partial reconfiguration
developed by Atmel. Concerning automatic tools, the Atmel Figaro tool is currently in use
to develop reconfigurable hardware applications with Atmel FPGAs.

C. Lattice (wwuw.latticesemi.com)

Lattice Semiconductor produces different families of FPGAs suitable for general-purpose
applications: Lattice EC, ECP, ECP2, ECP2M, ECP3, ispXPGA, SC, SCM, XP and XP2. In
general, the Lattice FPGA architecture is composed of a grid of logic blocks which contain
SRAM-based resources for logic, arithmetic and RAM blocks, and also non-volatile Flash
memory blocks. The SRAM contains the working configuration whereas the Flash
memory retains the configuration for use as necessary. Moreover, the contents of the
Flash memory can be loaded into SRAM automatically at power-up or at any desired
time, replacing the need for external boot memory and enabling thus a single-chip
solution. The more relevant reconfigurability feature of the Lattice FPGA devices is the
so-called Transparent Field Reconfiguration (TransFR). TransFR I/O is a technology that
allows users to update their logic in the field without interrupting the system operation.
TransFR I/O allows I/O states to be frozen during device configuration. This allows the
device to be field updated with a minimum of system disruption and downtime, being
completely transparent to the application. The process consists of four phases:
backgroung programming - through which the NVM (internal or external) is
reprogrammed while the RAM is running undisturbed; boundary scan locks outputs,
where 1/O states are captured and held or driven to a user-defined level using JTAG
commands; device configuration by transferring the new functionality from non-volatile
memory to SRAM configuration space; and boundary scan released so that the internal
logic reassumes control of the I/Os.

D. Xilinx (www.xilinx.com)

Xilinx is undoubtedly the FPGA manufacturer which has bet the most on dynamic partial
reconfiguration technology. Recognizing that it is no longer sufficient to just build an
ever-larger FPGA, Xilinx has put the spotlight on the partial reconfiguration capabilities
of its devices as a powerful weapon in the competitive landscape and, more importantly,
it has dedicated the resources and support to make partial reconfiguration an equally
powerful capability for users. The first Xilinx FPGA family provided with dynamic partial
reconfiguration capability was the XC6200 series. It is the first commercial FPGA to
address the requirements of interfacing programmable logic to microprocessors. Like
this, it is provided with a full parallel (configurable as 8, 16 or 32 bits in width) CPU
interface referred to as FastMap and managed by chip select and read/write control
signals. This makes the configuration SRAM and logic cells appear as conventional
memory mapped SRAM, and the configuration file consists of a set of address/data pairs,
allowing fine grain reconfiguration of individual words, bytes or even single bits in real-
time. Fast reconfiguration of the entire chip can be performed in less than 200
microseconds. Additionally, the ability to partially reconfigure the device even more
rapidly is also supported, which increases application flexibility: up to 32 bits can be
reconfigured in approximately 40 nanoseconds. Thus, in 1996 the first generation of PR
was born with the XC6200 series of FPGAs, although today they are already
discontinued and Xilinx ceased their shipment. In 1999, it is launched the second
generation of PR, applied this time to Xilinx Virtex devices first and, along the time,
extended also to Virtex-II and Virtex-II Pro devices. At that date, PR was seen only as a
promising disruptive technology but not fully supported by tools to drive the development
of professional applications and products. Unlike XC6200 devices, in Virtex FPGAs the
configuration memory is segmented into frames. In fact, the organization of the
configuration memory is strongly influenced by the FPGA internal configuration control
logic and, in the first Virtex families, each configuration frame encompasses the

54

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

implementation of a column of resources in the FPGA logic. A configuration frame is the
smallest unit of data which can be accessed in a single reconfiguration cycle, consisting
typically of some hundreds of bytes. The exact amount of data in a configuration frame
depends on the device itself. For instance, in Virtex-II, the column of logic resources
governed by a configuration frame spans the full height of the device. Consequently,
frames for shorter devices contain fewer data than frames for taller devices. Concerning
the reconfiguration controller, all Virtex devices make use of the SelectMap and ICAP
(internal configuration access port) interfaces. In parallel to the high-end Virtex family
(Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, Virtex-6 and Virtex-7), Xilinx
has also developed a low-end family (Spartan, Spartan-3, Spartan-3E, Spartan-3A/3A
DSP/3AN, Spartan-6) that differs from the PR point of view in the fact that it is not built
with PR glitchless technology (except Spartan-6). Nevertheless, although these devices
have never been officially supported by the Xilinx PR design flow, partial reconfiguration
is possible and some proofs have been successfully performed by several research groups
in the community. In 2006, Xilinx releases the third generation of PR based on a
modular design flow. With this, it is problably reached the first mature level of partial
reconfiguration technology, this time applied to Virtex-4 and Virtex-5 devices. This new
PR design flow already lets the designer follow all the development steps in a quite
automatic and consistent way to reach a PR application. Furthermore, Virtex-4 and
Virtex-5 devices did a decisive step forward concerning partial reconfiguration. As
example, the configuration frames of the Xilinx Virtex-4 series have a single fixed size,
with a smaller reconfiguration granularity of 16 CLBs high. Therefore, these devices do
not have the reconfiguration constraint of spanning the full height of the FPGA like in the
previous Virtex-II devices. This allows designers to have finer granularity and more
control over the resources in the FPGA they are reconfiguring. Moreover, the
reconfiguration engine is notoriously improved and the reconfiguration bandwidth
increases in comparison to their predecessors, allowing a maximum reconfiguration rate
of 3.2 Gbps for whatever partial bitstream. At the same time, in the aerospace field,
Xilinx has been working in rad-hard reconfigurable versions of Virtex-4 and Virtex-5
FPGAs clearly oriented to space applications, like Virtex-4QV and Virtex-5QV families.
The PR modular flow of 2006 achievement definitely meant a turning point concerning
the potential of PR technology. From that moment on, new improvements have been
adopted. In 2009-2010, Xilinx works on a new design flow oriented to PR partitions and
extended to Virtex-6 devices. This PR design flow becomes the fourth generation of Xilinx
partial reconfiguration and is integrated as mainstream in the ISE 12 tool, giving open
access to PR to any FPGA design team. Recently, in 2011 Xilinx presented the fifth
generation of PR devices composed of the 7-series FPGAs built in 28-nm technology and
holding partial reconfiguration in their Virtex-7, Kintex-7 and Artix-7 families. In parallel,
Xilinx launches the Zyng-7000 Extensible Processing Platform (EPP), a family of SoC
devices which tightly combine a complete ARM dual-core Cortex-A9 MPCore processor
with integrated 28-nm Xilinx’s Artix-7 or Kintex-7 equivalent programmable logic wich
can be partially reconfigurable at run-time. Besides, the ISE 13 PR design flow with
enhanced usability is launched, becoming the fifth generation of PR addressed to Virtex-
6 and 7-series FPGAs and it is announced the ISE 14 extended to the Zyng-7000 family.
Xilinx delivers a complete toolset to support all the design flow: ISE and PlanAhead for
the synthesis and hardware, System Generator for digital signal processing, EDK and
SDK for dealing with software implementation, and Chipscope for debugging purposes.
Other third-party tools like Matlab/simulink, for implementing DSP designs convertible
to RTL code, or AutoESL, which lets translate algorithms programmed in C/C++ to RTL,
are further alternatives that are gaining popularity today.

E. Others

Many other companies and startups have shown their interest in programmable logic
and run-time reconfigurable hardware technology:

55

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

= Tabula (www.tabula.com)

Tabula Inc., a programmable logic startup, released its new family of programmable logic
devices ABAX currently in volume production provided with up to 8 different hardware
contexts or stacked layers (folds) that can be swapped on the fly in some few
picoseconds. In these devices, each fold performs a portion of the desired function and
stores the result in place. When some or all of a fold is reconfigured, it uses the locally
stored data to perform the next portion of the function. By rapidly reconfiguring to
execute different portions of each function, the device can implement a complex design
using only a small fraction of the resources that would be required by a static hardware
design, and performing the reconfiguration at GHz rates.

» PACT XPP Technologies (www.pactxpp.com)

PACT XPP Technologies is a company oriented to multimedia communication server
accelerator solutions which has developed the XPP (eXtreme Processing Platform)
architecture. This architecture is present in the commercially available XPP-III
processors, a heterogenous multicore architecture provided by two basic types of
processing resources to combine sequential and parallel data processing: a set of unique
cores —function processing array elements or PAEs— are dedicated to strictly sequential
tasks and a reconfigurable array —the XPP array— takes care of data streams. Thus, the
function PAEs process sequential tasks, like operating system, protocol stacks and
decoding, whereas the XPP array directly processes high bandwidth data streams, such
as pixel and audio. Moreover, concerning reconfiguration capability, ultra fast array
reconfiguration allows on-the-fly exchange of processing tasks executed on the array.

= Recore Systems (Www.recoresystems.com)

Recore Systems is a fabless semiconductor company that develops advanced digital
signal processing platform chips and licenses reconfigurable semiconductor IP. The
company is specialized in reconfigurable multicore designs that allow instant adaptation
to new situations and offer a unique combination of flexibility, high performance, low
power and low cost by means of merging in a same fabric heterogeneous processing
elements to match thus the granularity of whatever synthesizable algorithm or
application with the granularity of the hardware inside the device. Recore Systems has
developed two types of dynamically reconfigurable cores: Montium and Xentium. The
reconfigurable Montium processor consists of a Processing Part Array (PPA) and a
Communication and Control Unit (CCU) and its reconfiguration typically takes less than
S us using a 100 MHz clock. The Xentium processor is a fixed point VLIW-DSP core
designed for high-performance embedded signal processing with an instruction set
optimized for digital baseband processing.

* Menta (www.menta.fr)

Menta is an FPGA startup specifically focused on embedded FPGAs (eFPGAs) which, in
collaboration with the Laboratory of Informatics, Robotics and Microelectronics of
Montpellier (LIRMM) have developed the world’s first FPGA built in non-volatile
magnetoresistive random access memory (MRAM), claiming that this technology proposes
better non-volatile configuration versatility, dynamic partial reconfiguration capabilities
and instantaneous on/off total or partial energy savings than SRAM and Flash
technologiies. Besides its advantage against Flash-based FPGA technology in power
saving during standby mode, it also benefits the access speed of SRAM but with
configuration time reduction since there is no need to load the configuration data from
an external non-volatile memory as in SRAM-based FPGAs. Furthermore, during the
FPGA circuit operation, the magnetic tunneling junctions can be written, which allows a
dynamic configuration (both partial and multicontext reconfiguration) and increases the
flexibility and performance of FPGA circuits [Guillemenet et al., IJRC 2008].

Further programmable logic startups interested in run-time reconfigurable hardware
have disappeared, as listed next in summarized form:

56

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

= SIDSA, which developed the SoC called FIPSOC (abbreviation of Field Programmable
System-On-Chip) provided with an 8051 MCU, configurable analog blocks and
programmable logic with excellent multi-context full and partial dynamic reconfiguration
capabilities in a single substrate. Although already out of production, the more relevant
feature of FIPSOC is its multi-context dynamic reconfiguration capability: chip
configuration is stored in static RAM bits and either the microprocessor or the logic
circuit itself can drive a context update of the complete sea of cells or only a square
region. The configuration data is loaded to the active memory context by issuing a
memory write command and while the cell is in operation according to the data stored in
the configuration bits one or two new contexts can be pre-loaded on the backup memory.
This feature enables multi-context dynamic reconfiguration since there is no need to stop
the chip to reconfigure it as these two extra configurations can be swapped in real-time.

* Chameleon Systems, a fabless semiconductor company which developed the CS2000
family of reconfigurable communications processors. Each product in the CS2000 family
has main functional blocks like a 32-bit RISC processor and a reconfigurable processing
fabric, interconnected through a high-speed system bus. The reconfigurable processing
fabric comprises an array of reconfigurable tiles used to implement the desired
application algorithms and organized in slices. Moreover, loading the background plane
from external memory requires 3 microseconds per slice and such operation does not
interfere with active processing on the fabric. Afterwards, powered by the company's
proprietary eConfigurable technology, swapping the background plane into the active
plane requires only one clock cycle, that is, the entire reconfigurable processing fabric
can be changed from one algorithm to another in a single clock cycle.

= National Semiconductor, which developed the SRAM-based partially reconfigurable
FPGA device called Configurable Logic Array (CLAy).

» Some other startups have been absorbed by other FPGA companies, like Algotronix,
which developed the CAL SRAM-based FPGA supporting PR and was acquired by Xilinx.

3.2.2 Research and academic reconfigurable platforms

Along the time, many research groups have developed their own hardware platforms to
carry out their investigation on reconfigurable computing. Some of these works
conducted by research and academic groups have led to the founding of new
programmable logic startups delivering commercial devices today, like the Montium core
from Recore Systems, result of the research performed by the University of Twente
developing a tiled heterogeneous SoC so-called Chameleon, or the FIPSOC device from
SIDSA, developed in part by the Universitat Politécnica de Catatunya. Many other
reconfigurable hardware platforms emerged from the academia are discussed next.
Unlike the fine-grained reconfigurable devices from FPGA vendors overviewed in the
previous section, most of the platforms presented here are coarse-grained architectures.
The two approaches are complementary: coarse-grained architectures are typically used
for acceleration of algorithms that have a high level of data-intensive processing but
exhibit less control flow and fine-grained approaches in contrast are preferred for
mapping of algorithms with increased amount of control flow by synthesizing
instructions. Most coarse-grained architectures are moreover coupled with RISC
processors to execute entire applications. This section reviews some of the most popular
architectures experimented in reconfigurable computing by the research community.

A. POEtic

The development of systems inspired by biological mechanisms is finding increasing
interest in computer science and engineering fields. However, the implementation of bio-
inspired systems in silicon is quite difficult due to the high complexity of the biological

57

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

mechanisms involved. In this line, POEtic is a SoC conceived to address the prototyping
of bio-inspired applications organized around a 32-bit RISC microprocessor and an FPGA
composed of a scalable architecture [Moreno et al., ICES 2005]. The flexible hardware
substrate of the device is provided with key features which provide capabilities similar to
those present in living beings like evolution, development, self-replication, self-repair and
learning. Among the more relevant features are the facility to create, dynamically, data
paths across resources on one or multiple chips (i.e., dynamic routing), and the ability of
both the dedicated microprocessor and the array itself to reconfigure parts of the device
(i.e., partial dynamic self-reconfiguration). The POEtic project has been developed by the
University of York, Ecole Polytecnique Fédérale de Lausanne, University of Lausanne,
Universitat Politécnica de Catalunya and University of Glasgow.

B. Chimaera

Chimaera is a micro-architecture which integrates a small and fast reconfigurable
functional unit (RFU) into the pipeline of a dynamically-scheduled superscalar processor.
This RFU is an FPGA-like logic comprised of cells arranged in rows and designed to
implement application specific operations. The applicacion code is split in instructions.
Each of these instructions is known as an RFU operation (RFUOP) and corresponds to a
RFU configuration executed through a call to the RFU. These RFU calls are handled by
the compiler to tell the processor to execute an RFUOP. Hence, Chimaera treats the
reconfigurable logic as a cache of RFU instructions, retaining those instructions
necessary for the current execution. In this way, the RFU calls act just like any other
instruction, fitting into the processor’s standard execution pipeline. If the requested
instruction is not currently loaded into the RFU, the host processor is stalled while the
RFU fetches the instruction from memory and it is brought into the RFU by reconfiguring
itself, either placing it on free space if available, or, otherwise, overwriting one or more of
the currently loaded instructions. This does require that the reconfigurable logic be
somewhat symmetric, so that a given instruction can be placed into the RFU wherever
there is available logic. Like this, the system uses partial run-time reconfiguration to
manage the reconfigurable logic and initialize the hardware to perform the specific
instruction by loading the configuration bitstream of such instruction into the RFU. The
configurations themselves are row-based, with each configuration using as many
complete rows as necessary. Thus, every time a new instruction needs to be loaded into
the RFU it only changes the contiguous set of rows required to hold that new instruction
(http:/ /www.ee.washington.edu /faculty/hauck/chimaera.html).

C. ADRES

IMEC (Interuniversitair Microelektronica Centrum) developed the coarse-grained
architecture ADRES (Architecture for Dynamically Reconfigurable Embedded Systems)
consisting of two tightly coupled parts: a VLIW processor and a coarse-grained
reconfigurable matrix. Both parts work according to a processor/coprocessor execution
model: the identified compute-intensive processing loops are mapped onto the
reconfigurable array whereas the VLIW processor performs the control of the application
flow, being both processor and coprocessor coupled through a shared central register file.
Concerning reconfiguration features, the configuration memory can store a number of
contexts locally in each cell. Thus, a cell may use one or more contexts depending on the
functionality implemented. When a specific processing loop is executed in the
reconfigurable matrix, these contexts are cyclically loaded until the loop ends. Such
architecture template can be synthesized as an application-specific instruction-set
processor (ASIP) and it results in a power-efficient and flexible solution oriented to
embedded multimedia devices. The ADRES architecture is supported by a compiler
framework, DRESC (Dynamically Reconfigurable Embedded System Compiler), which
manages all the design flow —mainly compiler, assembler, linker and RTL generators- to
map an application written in C onto an ADRES instance [Mei et al., FPL 2003].

58

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

D. DISC

Researchers from the Brigham Young University developed a computer named DISC
(Dynamic Instruction Set Computer) which lets the user synthesize its own application-
specific instruction set. This platform provides application-specific performance to a
simple processor by allowing user-defined application-specific instructions to
supplement a conventional instruction set. Conceptually, DISC is composed of a host
processor, several partially reconfigurable CLAy31 FPGAs from National Semiconductor
and external memory. DISC treats instructions as removable modules paged in and out
through partial reconfiguration as demanded by the executing program. In this way, the
DISC processor uses run-time reconfiguration to provide an essentially limitless
application-specific instruction set, where each instruction is implemented as an
independent circuit module. An application running on DISC contains source code and a
library of application-specific instruction circuit modules. This library is available simply
by referencing them as source code in a C program: instruction modules are
implemented as partial configurations and individually configured on DISC as demanded
by the application program. The ability to replace instruction modules in the system at
run-time provided by the partial reconfiguration allows the implementation of an
instruction set much larger than is possible on a single static FPGA. Instructions occupy
FPGA resources only when needed and FPGA resources can be reused to implement an
arbitrary number of custom-made instructions. Nonetheless, the processor needs to be
equipped with a relocatable hardware strategy. This relocatable hardware algorithm
provides the ability to make placement decisions of partial reconfigurations on the fly.
This feature is achieved by designing each custom instruction module for multiple
locations on the FPGA and physically independent from each other of the set of
instruction modules in the library [Wirthlin and Hutchings, FCCM 1995].

E. DPGA

Dynamically Programmable Gate Arrays (DPGAs) differ from traditional single context
FPGAs by providing on-chip memory for multiple array contexts. The configuration
memory resources are replicated to contain several configurations for the fixed
computing and interconnect resources. In effect, the DPGA contains an on-chip cache of
array configurations and exploits high, local on-chip bandwidth to allow reconfiguration
to occur rapidly, although loading a new configuration from off-chip is still limited by low
off-chip bandwidth. The multiple contexts on the DPGA allow the array to operate on one
context while other contexts are being reloaded from off-chip. The DPGA uses traditional
4-input LUTs for the basic array element and interconnect programming cells with a 4-
context memory implemented using a 4x32-bit primitive of dynamic RAM. Dynamic
reconfiguration between contexts, known as context switching, is controlled through a
global instruction signal, thus all array elements switch together: a single 2-bit global
context identifier is distributed throughout the array to select the configuration for use
among the four possible. Furthermore, an array element in a context has the ability to
communicate with the same array element in the following context via its flip-flop. This is
because the flip-flop state is not affected by the context switch, thus the flip-flop value is
stored between contexts. In summary, the DPGA serves as a multiple-context FPGA
which, once the contexts are preloaded, can switch from one context to another in one
clock cycle to process an application. As result, the multiple loaded contexts allow using
the array elements more efficiently [Tau et al., FPD 1995].

F. Time-multiplexed FPGA

The Time-Multiplexed FPGA (TM-FPGA) is an extension of the Xilinx XC4000E FPGA that
exploits some architectural changes to convert it in a multi-context device. Thus, the TM-
FPGA maintains the same basic 2D array of CLBs as well as the routing structure of the
XC4000E device. However, as novelty, each one of its configuration elements (associated

59

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

with either logic or routing bits) is replicated eight times in total by SRAM memory cells.
The configuration memory is thus distributed throughout the die, with each active
configuration memory cell backed by eight inactive bits stored in the configuration
SRAM. This distributed inactive memory can be viewed as eight configuration memory
planes or contexts so that the device is composed by one active context, in foreground,
and other eight as spare, in background. Each plane is a very large word of memory and
the entire reconfiguration of the FPGA can be performed in only one single cycle of the
memory; all bits in the logic and interconnect array are updated simultaneously from the
on-chip memory in 30ns. Moreover, in order to store signals between contexts, the device
incorporates the addition of eight micro registers at the outputs of the CLBs in
accordance with the eight configuration memory planes of the device. Each CLB output,
either the combinational or sequential output, can be stored in any of the n micro
registers. This allows a signal to be stored into a micro register in one context and
retrieved in another context, and still allows the operation of the CLB in intermediate
contexts. Thus, direct communication between any two contexts is possible. These two
architectural changes in the original XC4000E FPGA -configurable bits replication and
addition of micro-registers— make feasible the fact that configuration memory planes can
be loaded from off-chip while the FPGA is operating [Trimberger et al., FCCM 1997].

G. Garp

The Garp architecture, developed at the University of California, combines a standard
MIPS processor with additional reconfigurable hardware on the same die. This hybrid
architecture was intended to improve the performance of general-purpose applications
split in a main processor and a reconfigurable slave coprocessor tailored specifically for
accelerating execution loops of code. The main thread of control through a program is
managed by the processor while for certain loops or subroutines are performed by the
reconfigurable coprocessor to speed up the processing. Like an FPGA, the Garp array is a
two-dimensional array of CLBs interconnected by programmable wiring. It functions as a
reconfigurable data path. Besides, memory buses provide a high bandwidth
reconfiguration path between the array and the memory. From a reconfiguration
viewpoint, this device is rows-oriented, that is, a partial reconfiguration is possible
provided that the area reconfigured covers some number of complete and contiguous
rows, being one row the smallest configuration grain. Furthermore, distributed with the
array is a cache of recently used configurations so that programs can quickly switch
between several configurations without the cost of reloading them from memory each
time. Together with the Garp architecture, a big effort was done to design a compiler
adapted to this architecture. The Garp compiler takes standard ANSI C as input,
identifies the pieces of source code, and breaks up the program into basic blocks divided
in instruction sequences with no branches which result beneficial —in terms of
acceleration— to be executed on the reconfigurable array, and execute everything else on
the main processor. Several instructions were added to the MIPS-II instruction set for
this purpose, giving thus rise to an instruction set extended for Garp machines ready to
manage the coprocessor’s reconfigurations [Callahan et al.,, Computer 2002].

H. PipeRench

For many applications, a customized data path with appropriate levels of parallelism and
pipelining is intrinsically more efficient than traditional software execution. However, an
impediment to the use of custom hardware technologies is the cost of developing and
reusing such hardware pipelines. The PipeRench architecture, designed at the Carnegie
Mellon University (CMU), addresses these problems by introducing a virtual hardware
abstraction. This virtualization of hardware is accomplished by run-time reconfiguration
of the programmable hardware fabric. Unlike other run-time reconfigurable devices,
PipeRench manages its own reconfiguration without any host or user interaction.
PipeRench can be looked at as a reconfigurable fabric, i.e., an interconnected parallel-

60

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

processing network of logic and storage processing elements. Combined with an off-chip
general-purpose processor, PipeRench can support a system in its various computing
needs. It is particularly suitable for stream-based media applications or any applications
that rely on simple, regular computations on large sets of small data elements [Goldstein
et al., Computer 2000]. Thus, using the pipeline reconfiguration technique presented in
section 2.3.3.F, PipeRench improves reconfiguration time and saves area by virtualizing
pipelined computations. The hardware virtualization is achieved by structuring the
configurations into pipeline stages that are time-multiplexed onto the physical stages,
breaking a single static configuration into pieces that correspond to pipeline stages in the
application. Each pipeline stage is loaded, one per cycle, into the fabric. This makes
performing the computation possible, even if the entire configuration is never present in
the fabric at one time. But virtualization through pipelined reconfiguration imposes some
constraints: it requires that every physical stage be identical and also restricts the
computations it can support to those in which the state in any pipeline stage is a
function of the current state of that stage and the state of the previous stage in the
pipeline — in other words, the dataflow graph of the computation cannot have long cycles.
PipeRench was designed at CMU and fabricated by ST Microelectronics in a six-metal
layer 0.18 micron CMOS process [Schmit et al., CICC 2002].

I. PRISM

In the mid-90s, researchers from the Brown University developed a computer
architecture called PRISM (Processor Reconfiguration through Instruction Set
Metamorphosis) consisting of a general-purpose core processor and a reconfigurable
FPGA platform designed to bridge the gap between general-purpose and specialized
computing. PRISM-I becomes a first proof-of-concept developed to demonstrate the
viability of speeding up computationally intensive tasks by extending the core processor’s
functionality with new instructions executed on dedicated reconfigurable hardware and
tailored specifically for each application [Athanas and Silverman, Computer 1993]|. The
PRISM-I prototype consists of a Motorola M68010 processor and a reconfigurable
platform composed of four Xilinx XC3090 FPGAs. The FPGAs are dynamically configured
to execute the critical sections of a given C program more efficiently while the less
frequently accessed sections are executed by the core processor. A second research loop
on the PRISM approach gives place to PRISM-II. Basically, PRISM-II introduces a novel
execution model and a framework for translating a C function into a FPGA-based custom
architecture. Furthermore, PRISM-II addresses some hardware and software deficiencies
of PRISM-I, like the development of a new system level architecture that improves the
communication efficiency between the reconfigurable hardware and the host processor.
PRISM-II consists of an AMD AM29050 RISC processor and a reconfigurable platform
composed of a set of three Xilinx XC4010 FPGAs [Agarwal et al, ICPP 1994]|. In
summary, this work carried out at the Brown University presents an architecture and
high-level language compiler oriented to improve the execution performance of many
applications adapting the configuration and fundamental operations of a core processing
system to the computationally intensive portions of a targeted application.

J. Others

Many other devices have arised along the time from the research community exploiting
run-time reconfiguration features: MorphoSys, DReAM, RaPiD, XPUTER, DECPeRLe-1,
SPLASH-2, ARDOISE, SCORE, RAW, NAPA, MATRIX, ONECHIP, KressArrays, etc.

3.3 Summary

The emergence of SRAM-based FPGAs boosted reconfigurable computing as a research
and engineering field. While standard MCUs are nowadays the dominant hardware
platform in many embedded fields, the decreasing cost of new FPGAs, along with the fact

61

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

that some of them harbor hard-core processors inside, makes these devices interesting to
be considered for a massive deployment in many embedded application areas. Hence,
many indicators show the good health of reconfigurable hardware technology today.
Leaded by a growing research community composed mainly by staff from the academia
but also from the industry (e.g. programmable logic manufacturers), this field is
expanding its application areas through new research projects focused on concepts,
physical devices and tools, or even through patents under exploitation in the industry.
The broad community of research groups around the world and the continuous
proliferation of these groups with new of PhD candidates focused on these areas, ensures
the continuity of the task force in this research field. As a result, numerous
reconfigurable hardware architectures have been proposed and developed as
application/domain specific hardware accelerators, divided basically in two categories:
those that target coarse, loop-level optimisations and those that target fine-grain,
instruction-level optimisations. In addition, a big effort is addressed to the definition of
an efficient ecosystem composed of appropriate automatic tools to manage these
reconfigurable architectures and make easier and faster their design flow. Recently,
relevant advances have been performed in this direction concerning PR flow and EDA
tools pushed by Xilinx. To sum up all these advances, this chapter makes evident the
fact that the scientific community is involved in run-time reconfigurable hardware,
spending big research efforts from long time ago and showing a great interest in this
technology which is expected to continue, as foreseen in part through the funded
international research projects that have started to walk recently on this field.

References

[Agarwal et al., ICPP 1994]
L. Agarwal, M. Wazlowski, S. Ghosh, An asynchronous approach to synthesizing custom architectures for
efficient execution of programs on FPGAs, Proc. Int. Conf. on Parallel Processing, pp. 290-294, 1994.
[Athanas and Silverman, Computer 1993]
P.M. Athanas, H.F. Silverman, Processor reconfiguration through instruction-set metamorphosis,
Computer, vol. 26, no. 3, pp. 11-18, IEEE, 1993.
[Callahan et al., Computer 2002]
T.J. Callahan, J.R. Hauser, J. Wawrzynek, The Garp architecture and C compiler, Computer, vol. 33, no.
4, pp. 62-69, IEEE, 2002.
[Cardoso and Huibner, Springer 2011]
J.M.P. Cardoso, M. Huibner (Eds.), Reconfigurable computing - From FPGAs to hardware/ software
codesign, Springer, ISBN 978-1-4614-0060-8, 2011.
[Goldstein et al., Computer 2000]
S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R.R. Taylor, PipeRench: a reconfigurable
architecture and compiler, Computer, vol. 33, no. 4, pp. 70-77, IEEE, 2000.
[Guillemenet et al., IIRC 2008
Y. Guillemenet, L. Torres, G. Sassatelli, N. Bruchon, On the use of magnetic RAMs in field-programmable
gate arrays, International Journal of Reconfigurable Computing, Hindawi, vol. 2008, pp. 1-9, 2008.
[Mei et al., FPL 2003]
B. Mei, S. Vernalde, D. Verkest, H. De Man, R. Lauwereins, ADRES: An architecture with tightly coupled
VLIW processor and coarse-grained reconfigurable matrix, Proc. of the Int. Conference on Field
Programmable Logic and Applications, LNCS, vol. 2778, pp. 61-70, Springer, 2003.
[Moreno et al., ICES 2005]
J.M. Moreno, Y. Thoma, E. Sanchez, POEtic: A prototyping platform for bio-inspired hardware, Proc. Int.
Conf. on Evolvable Hardware: From Biology to Hardware, LNCS, vol. 3637, pp. 177-187, Springer, 2005.
[Schmit et al., CICC 2002]
H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, R.R. Taylor, PipeRench: a virtualized programmable
datapath in 0.18 micron technology, Proc. IEEE Custom Integrated Circuits Conf., pp. 63-66, 2002.
[Tau et al., FPD 1995]
E. Tau, I. Eslick, D. Chen, J. Brown, A. DeHon, A first generation DPGA implementation, Proceedings of
the Canadian Workshop on Field-Programmable Devices, pp. 138-143, 1995.
[Trimberger et al., FCCM 1997]
S. Trimberger, D. Carberry, A. Johnson, J. Wong, A time-multiplexed FPGA, Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines, pp. 22-28, 1997.
[Wirthlin and Hutchings, FCCM 1995]
M.J. Wirthlin, B.L. Hutchings, A dynamic instruction set computer, Proceedings of IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 99-107, 1995.

62

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

Part 11

Design & Development

UNIVERSITAT ROVIRA I VIRGILT

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Chapter 4

Run-time reconfigurable system architecture

Undoubtedly, finding a universal electronic system architecture in the embedded design
space able to meet the targets of performance and cost required by most of the industrial
and commercial applications is a primary but at the same time hard challenge today,
especially if such cost-sensitive embedded systems demand a high integration of
functionality. Aimed at solving this issue, this chapter addresses the design of an open,
standard and cost-effective embedded system architecture driven by run-time
reconfigurable hardware, able to meet the general-purpose and application-specific
computing demands of any generic application. The concept approached —based on
hardware/software co-design and supported by dynamically reconfigurable FPGA
technology— highlights key design vectors like heterogeneous computation and functional
adaptivity to balance cost and power metrics. Nevertheless, special attention shall be
payed in the deployment of such system versatility to avoid performance degradation. All
these technical features are addressed in this chapter aimed at meeting the performance-
cost trade-off demanded by many real embedded applications today.

4.1 Standard flexible hardware/ software architecture

Dynamically reconfigurable SRAM-based programmable logic constitutes the cornerstone
that sustains the standard embedded system architecture approached in this chapter.
This technology makes feasible to materialize the synthesis of a given application
through the space-time partitioning/scheduling of functionality. This approach responds
to the natural splitting of any application into a series of functional tasks processed in a
specific order; no matter how complex an application or process is, in the end it can be
decomposed into a set of processing tasks which share certain relationship concerning
inputs and outputs, and are processed serially or in parallel according to its temporal
execution flow. Moreover, each individual task, obeying to its own characteristics, can be
synthesized either in software —performed as a sequence of instructions on a processor—
or in a dedicated hardware IP driven by combinational and sequential logic. The
superlative flexibility of this generic architectural approach is attained by decomposing
the whole system into both static and reconfigurable partitions located inside a partially
reconfigurable FPGA. The static regions are occupied by fixed functional components,
like a host CPU and a memory controller, whereas the reconfigurable regions are put at
the service of the system developer as flexible and shared resources to instantiate, at
run-time, hardware accelerators or software processors to perform functionality. In this
way, the resultant architecture aims to offer a general-purpose processing system with
enough flexibility to self-adapt some dedicated parts for application-specific computing
purposes. With this, the system developer has freedom in both hardware and software
disciplines to deploy any custom end-user application.

The stringent design constraints that the embedded market generically demands to the

electronic systems are outlined next:

* More and more, an embedded application shall fit more functionality into a less
expensive platform, performing the processing in less time, and consuming the lowest
possible power rate.

» The system shall admit parallel processing. In complex applications it is common the
use of multithreading or parallel programming. Already in MCU platforms, the CPU is
typically surrounded by other standard peripherals performed in dedicated hardware
resources like timers, communication controllers (SPI, UART, I12C, etc), PWM
controllers, ADC converters, and so on, all running at the same time. That is, the

65

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

parallel execution of tasks is required where typically at least one host CPU takes
charge of monitoring and synchronising all these parallel activities.

= Often, these embedded systems do not work autonomously and independently, but
they hold a permanent link with the exterior world (e.g. remote host) through which
both parts share some kind of information. In this case, the embedded system shall
maintain a permanent communication channel with the exterior world. This restriction
forces the system to have at least one part that keeps alive all the time —just the one
responsible for managing the external link- while other parts or modules inside the
system can be switched off or kept in low power. This operation partitioning is
commonly applied to MCU devices, where specific peripherals can be turned off while
others keep operative. Porting this concept to a programmable logic device is also
possible by partitioning the resources of the device in static regions and dynamically
reconfigurable regions where the functional components that do not need to run for
the entire application life cycle are placed into the reconfigurable regions and can be
disabled or replaced at run-time by new ones when their processing has finished.

» Standardization and modularity are also relevant characteristics demanded to the
embedded system, not only due to reusability and NRE reasons but especially to the
interest in ensuring reduced system development and maintenance cycles. In this
sense, the processing tasks of the application are encapsulated in functional modules
—either software functions accessible through APIs or hardware IP cores described in
HDL~ and are typically managed in abstract stacked layers. In this direction, it is also
necessary to define standard interfaces between the static and the reconfigurable
partitions so that the custom hardware accelerators instantiated in the reconfigurable
partitions can be ported to whatever platform wusing general-purpose interfaces
instantiable in any kind of programmable logic platform.

The fulfilment of all these requirements is possible today through SRAM-based FPGA
devices provided with partial reconfiguration capability. In line with the system
requirements demanded, PSoC-based embedded systems have become a standard in the
industry in the last years. Modern FPGAs, with large integration of transistors on chip,
help to promote the PSoC concept by enabling the implementation of all the digital
processing power requested to a computer application just in one single device,
combining CPU-based software processing and custom hardware computing.

4.2 High level functional blocks

At a first glance, the embedded system architecture can be decomposed into four
functional blocks: the system or host CPU, which manages the full application flow in
software; the data repository, constituted typically by volatile and non-volatile low-cost
memories of big capacity to store system information (i.e., functional bitstreams, program
code and application data like system settings or configuration parameters); the physical
inputs and outputs which connect the system with the exterior world, composed
basically of communication transceivers and local sensors and actuators; and finally, the
reconfiguration engine, which takes charge of the reconfiguration process. All these
components can be interconnected in a generic way through a crossbar switch. The
conceptual view is shown in the block diagram of Figure 4.1.

One key aspect of this architecture is the need for guaranteeing a big bandwidth between
the data repository, i.e. the external memory, and the processing units placed in the
programmable logic device. This is a relevant feature since the repository is usually
composed of only one NVM memory chip and optionally another RAM memory chip, and
both chips can be accessed by more than one processor at the same time. Just for this
reason, the connection among the memories and the processors is typically carried out
by means of a multiprocessor bus provided with arbitration mechanisms (e.g. AMBA from
ARM Inc., CoreConnect from IBM Corp., Avalon from Altera Inc., or Wishbone, originally
designed by Silicore Corp. and available now as open source). Besides, it is important to
note that, although the system architecture is composed of four functional blocks, the

66

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

host CPU and the reconfiguration engine are physically instantiated together in one
SRAM-based FPGA device, and the reconfiguration mechanism becomes hidden to the
application itself (that is, this process is internal to the system and results transparent
from outside). Next, it is presented how all these physical components are articulated
inside this embedded system architecture to deploy the specific functionality required by
any end-user application.

HOST CPU EXTERNAL MEMORY

STATIC STANDARD CENTRAL INTERNAL RAM NVM
PERIPHERALS PROCESSING MEMORY
UNIT User-Application Data Full and Partial Bitstreams
CPU Program Code

Interrupt Controller Data & Instructions

Timer FPU (Bootloader, Application) Application Settings and

UART ALU Configuration Parameters
Memory Controller Cache Memory

(DDR-SDRAM, Flash)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| r N
|

|

: SRAM-BASED PROGRAMMABLE LOGIC DEVICE I/ CROSSBAR
| SWITCH
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RECONFIGURATION ENGINE INPUT/QUTPUT

FPGA RUN-TIME RECONF. RECONFIGURATION COMMUNICATION SENSORS/ACTUATORS
CONFIGURATION HARDWARE CONTROLLER TRANSCEIVERS
MEMORY COPROCESSORS
RS232 Switch/Push Button
SRAM Reconfigurable Memory Controller Ethernet DC Motor
Region or Partition CAN LCD Display

LED/Lamp
Camera

|
|
|
|
|
|
|
|
|
|
|
Partially : usB SmartFET
|
|
|
|
|
|
|
|
|
|
|
|

Figure 4.1 Embedded system components breakdown into host CPU, reconfiguration
engine, external memory and I/ O

4.2.1 Host CPU

Most of embedded systems which handle a considerable level of processing complexity
are equipped with at least one CPU core since such complexity can be easily managed in
software. From general-purpose one-core processors (e.g. ARM7 or PowerPC cores) used
in low- and mid-range computing systems to multicore (e.g. dual- and quad-cores from
Intel or AMD) or many-core (e.g. 512-core GPUs from NVIDIA) processors used in high-
performance computing, all of them have at least one processor running software code.
In line with this approach, the run-time reconfigurable system architecture proposed
makes use of a CPU responsible for managing the application. Since such core is
allocated in a programmable logic device, it can be placed either as a hard-core processor
or as a synthesisable soft-core processor instantiated in the programmable logic. One
way or another, the CPU is the main component in an embedded system composed of
software processing. This CPU is usually supported by additional functional components
such as standard peripherals, data and instruction memory caches, and coprocessing
units like ALUs or FPUs, among others.

67

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

4.2.2 External memory

State-of-the-art SRAM-based FPGAs are provided with internal RAM macros allowing the
storage of data in two possible ways: as small 4-/6-input LUTSs distributed along the logic
cells of the FPGA or as compact RAM blocks located in specific columns or regions of the
device. All these elements are put at the service of the synthesis tools to be used by the
application. While the set of LUTSs is typically intended to map the combinational part of
the hardware circuitry of a design, the RAM blocks can be used for taking part in the
implementation of certain hardware coprocessors (e.g. data buffers, FIFOs, dual-port
memories) or in the storage of data and instructions for CPU software operation. Certain
SRAM-based FPGAs, although only a minority, are equipped also with internal non-
volatile memory intended for both configuration storage and user operation, for instance
the Xilinx Spartan-3AN FPGA, with in-system Flash memory, or the Atmel AT94S FPSLIC
SoC equipped with configuration EEPROM. Apart from the internal volatile and non-
volatile memory available in the FPGA device, embedded applications often require
external memory since the amount available in the programmable logic device is not
enough, especially in data-intensive applications. Just for this reason, the system
architecture proposed populates an external NVM chip (typically Flash memory) and
another volatile memory chip (e.g. DDR-SDRAM) in the system. These memories shall be
connected to the multiprocessor bus to be accessible by any of the master processors of
the system at any time. Since the NVM memory stores the system bitstreams, this
memory must be accessible to the configuration engine too.

4.2.3 Input/Output

Inside the FPGA device, the input data to be processed and the output results of these
computations are transferred in and out the device trough input and output pins, either
through communication networks or as local sensor and actuators. FPGA devices drive a
high level of connectivity concerning digital I/O standards (e.g. LVCMOS, LVTTL, LVDS,
SSTL, and HSTL). Furthermore, some FPGAs introduce analog inputs via internal ADC
converters, like the Xilinx 7-Series FPGAs or the Cypress PSoC families. In case of
communication links, the communication controllers can be implemented inside the
programmable logic device as dedicated soft-core processors, and only the
communication transceivers are required outside to adjust the digital signals to the
physical layer concerning voltage levels, time response and so on.

4.2.4 Reconfiguration engine

Up to now, the host CPU, the memory and the I/O are functional blocks which, in a
generic way, are present in any design technological approach, i.e., in a purely software-
based MCU system, or even in a hardware/software co-design of a system based on a
static FPGA design. Therefore, the reconfiguration engine is the component which adds
value to the proposed architecture to drive flexible hardware on the fly. An embedded
electronic system based on an SRAM-based FPGA, still without exploiting its dynamic
reconfiguration capability (i.e. used only as a static device configured only once, at power
up) is composed of several functional components, each one responsible for carrying out
some specific tasks. This approach is commonly used with successful results in many
application fields today. Now, in the process of defining an accurate model for a universal
embedded system, it is introduced dynamic partial self-reconfiguration to the SRAM-
based FPGA device of Figure 4.1 by means of the reconfiguration engine. Apart from this
functional component, composed of a reconfiguration controller, configuration memory
and reconfigurable partitions, the programmable logic device shall be technologically
designed to support run-time reconfiguration, as discussed in chapter 2 (i.e., featuring
PR glitchess technology, efficient reconfiguration granularity, good modularity concerning
bitstream partitioning, and so on).

68

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

4.3 System components breakdown

After this first overview, it is possible to decompose functional blocks of the embedded
system architecture into physical ones, organized in integrated circuits to model the
standard system as follows:

= The brain of the system is the processor unit, in this case an FPGA device. This brain
is usually split in different functional blocks that work seamlessly, as a whole, to
shape all the digital processing of the application.

» External non-volatile memory (NVM) is required to store all those permanent system
and application data which shall remain saved even when power is off.

= External RAM memory is often required too, mainly low-cost SDRAM (e.g. DDR-,
DDR2- or DDR3-SDRAM). Particularly in big data consuming applications like image
and video processing, this component is of significance since the amount of internal
RAM blocks available in the FPGA is not enough to meet the high demands of data
storage of such applications.

= Sensors and actuators (e.g. push button, thermal sensor, electromechanical relay, DC
motor, LCD display), connected to the FPGA and driven by GPIO interfaces or serial
digital links (e.g. SPI, I2C) are also common resources in such kind of applications.

* Communication transceivers, responsible for adapting the digital communication
controllers instantiated in the FPGA to their corresponding physical layers (e.g. RS232
or CAN interfaces), are habitual components in embedded systems.

» Besides, an external clock is distributed to all the synchronous system elements.

» Finally, the power supply manages the energy delivered to the whole system. Two
options are distinguished according to the way energy is provided to the system:
autonomous systems, when the energy source is located inside the system (e.g.
internal batteries), or non-autonomous systems when the power is taken from outside.

Therefore, the system is physically composed of a programmable logic device, external

memory chips, both NVM and RAM, and I/O peripherals (sensors, actuators and

communication transceivers), apart from the power supply (e.g. voltage regulator) and
the clock circuitry (e.g. crystal oscillator). This system architecture fits properly in many
embedded application domains and its components breakdown is shown next.

g]
EMBEDDED SYSTEM
SENSOR {l FPGA il CcoM {l :l
[] []] L
g]
NVM ACTUATOR

CLOCK RAM

_LI_JP_"I

1

gl
POWER
L]

Figure 4.2 High level model of the FPGA embedded system split in physical devices

Run-time reconfigurable hardware brings important considerations on the standard
embedded system architecture. Attending to this, the SRAM-based FPGA model can be
decomposed into static and dynamic partitions, where the standard design related to the
system CPU described before constitutes now a static region and the dynamic partial
self-reconfiguration design is decomposed in a PR block and another static block, the
latter encompassing the reconfiguration controller, as depicted in Figure 4.3.

69

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

FPGA

STANDARD STATIC DESIGN DYNAMIC PARTIAL SELF-RECONFIGURATION

toSENSOR

toACTUATOR STATIC REGION PR REGION
toNVM
toRAM
toCOM

toCLOCK

toPOWER

Figure 4.3 Dynamic partial self-reconfigurable FPGA high level model

All the functionality granted to the embedded application is deployed on internal
resources of the SRAM-based FPGA. These resources are modeled through different
abstracted functional components or blocks which perform specific processing either in
software or in hardware and constitute the modular view of the system. These
components distributed inside the FPGA are detached in detail next.

4.3.1 Standard static design

In the modeling of an embedded system on an SRAM-based FPGA oriented to dynamic
partial self-reconfiguration, the standard static design block illustrated in Figure 4.3 is
constituted by those functional components that are common also whether implementing
such system in software on an MCU. Thus, in case of using an SRAM-based FPGA, the
standard static design block includes the same functional components but in the
programmable logic device. The spliting of the standard static design block in internal
components responds to a conceptual distribution of functional tasks: bootloader —
mechanism to permit system upgrades in the field—, software application, CPU and
peripherals, internal and external memory, arithmetic-logic units (ALUs), memory
controllers and communication controllers (COM), custom coprocessors/accelerators and
the system bus through which all the different processors in the embedded system are
interconnected.

At present, the build of the system processor is fully supported by EDA tools. Both FPGA
manufacturers (e.g. Xilinx, Altera) and independent EDA vendors (e.g. Mentor Graphics,
Cadence Design Systems, Synopsys) provide automatic tools which help the designer to
build a whole CPU-based system in some few clicks of the mouse guided by some
application wizards. As examples, Altera delivers the Quartus II and SOPC Builder tools
which allow composing a SoC solution on the AMBA multiprocessor bus. In the same
way, Xilinx makes use of its EDK and ISE tools to build a system on the CoreConnect
bus. Other example is Atmel with its Figaro IDS tool. With these EDA tools, the system
CPU, the external memory and I/O interfaces constitute the typical subsystems required
for building a static embedded system. To these three parts (CPU + Memory + 1/0), it is
pending to add now the run-time reconfiguration engine to the original system.
Nowadays the design of the reconfiguration engine is still not supported by automatic
tools. The design of this component is addressed in depth in chapter 5.

70

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

4.3.2 Dynamic partial self-reconfiguration design

Out of the static standard design block, partial reconfiguration involves additional
functional components, some of them deployed as static blocks and others as
reconfigurable blocks. The static ones are detailed next:

* Reconfiguration controller. Any SRAM-based FPGA device is provided with a
configuration mechanism that permits to retrieve a full bitstream from a data
repository and download it into the FPGA configuration memory at each power-up.
However, in partially reconfigurable FPGA devices, after initial device configuration
with a full bitstream, partial bitstreams can be downloaded into the configuration
memory of some particular PR regions at run-time. The design of a high bandwidth
reconfiguration controller specific for on the fly configurations is required.

» PRR interfaces. It is convenient to define a standard interface between the static region
and the reconfigurable region. This interface is part of the static design and remains
unchanged during the reconfiguration of the PRRs. This standardization lets abstract
the application-dependant PR coprocessors from the system architecture and makes
possible to build standard coprocessors portable from one platform to another.

These additional static components placed inside the dynamic partial self-reconfiguration

block of Figure 4.3 represent the area overhead due to the run-time reconfigurable

hardware architecture versus a typical approach based on static hardware and software.

This overhead, however, is compensated with the area reserved to partial reconfiguration

where different functional PR modules can be multiplexed in time:

= One or more reconfigurable partitions or PR regions (PRRs) with the convenient area —
i.e., number and type of hardware resources— where specific and custom coprocessors
(referred to as partial reconfigurable modules or PRMs) are swapped in and out during
the execution of the application. The shape and size of each PRR keeps invariant for all
the application life cycle. They constitute the portion of FPGA components to be used
as flexible time-shared resources by the application.

Figure 4.3 highlights the fact that the system designer shall minimize the cost in
resources of the reconfiguration controller in order to make this run-time reconfigurable
approach viable compared to a static implementation. Besides, the continuous reuse of
the resources of the PR partitions to fit there different coprocessors each time lets
balance the total amount of resources and justify thus the cost savings originated by the
use of this technology and architecture in the implementation of embedded applications.
Similarly to the balance of area, concerning time, the processing speed up reached by
implementing some computational tasks in dedicated hardware (exploiting parallelism)
instead of software lets compensate the time overhead originated by the reconfiguration
process introduced now in the application execution. Finally, a third term to be balanced
with this solution is the power consumption. Therefore, there exists a clear area-time-
power trade-off in the design of the standard embedded system architecture proposed.

4.4 System modeling and deployment

This section describes the modeling of a general-purpose electronic system architecture
intended for implementing specific embedded applications in reconfigurable hardware
and software. The proposed model is oriented to run-time partially reconfigurable SRAM-
based FPGA devices — it does not cover single context or multi-context FPGAs according
to chapter 2 classification. In a first step, the formal model of the embedded system
architecture is particularized to a minimalist approach, being the system composed only
of one PR partition and one single data repository. Since the presented architecture is
totally scalable, that first approach is extended later in other two more complex scenarios
in which the number of PR regions and data repositories increases. Although the model
aims to be generic, its physical deployment is conducted on a specific platform, to be
exact the commercial Xilinx ML401 evaluation board based on the Xilinx Virtex-4
XC4VLX25 FPGA. The experimental results confirm the feasibility of the model.

71

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

4.4.1 Minimalist model: single data repository and single PR partition

The system architecture is based on two computing engines or cores: one host processor
which performs tasks in software and one flexible and custom processor which takes
charge of the computation of tasks in dedicated hardware. The host processor is placed
in a static region of the FPGA and plays the role of a typical CPU to process functionality
abstracted in the way of sequential assembler instructions. Similarly, the flexible
processor, placed in a PR partition, becomes a dedicated hardware acceleration engine
able to self-adapt its computational architecture at run-time to perform any assigned
processing task in the most efficient way possible. This flexible computer is frequently
seen as a coprocessor attached to the host CPU. The high level of flexibility granted to
this system architecture based on a custom reconfigurable hardware computer defined
into a partition of the FPGA is possible thanks to the exploitation of SRAM-based
programmable logic technology. The powerful computational features of this second
processor and its seamless integration into the CPU-based system are undoubtedly the
most relevant novelties of the architecture proposed.

While the concept of defining a CPU-based system in an FPGA platform is not new, the
way of connecting the reconfigurable hardware processor with the host CPU presents
certain innovative advances. In this sense, it is observed two types of data accesses to
the PR partition, each one pursuing a different purpose: on the one hand, in the
reconfiguration process, the partial bitstream is downloaded from the system repository —
typically an external memory device- to the internal FPGA configuration memory aimed
at changing the features of the processor placed in the PR partition; on the other hand,
already in application mode, the processor instantiated in the PR partition must transfer
and share some data with the rest of the system. Especially in data-intensive
applications, these data are stored in the system repository instead of in internal FPGA
memory due to the high volume required. To manage the transfer of both application
data and partial bitstreams between the system repository —located in the static region—
and the PR partition, the proposed architecture makes use of a master memory
management unit (MMU). It is a key component in the system architecture since it lets
offload the host CPU from the time-consuming transfers of data required either in the
reconfiguration processes or in the processing of tasks inside the PR. Thus, the host
processor works in foreground by managing the execution flow of the whole target
application and performing some application tasks scheduled in software whereas, in
parallel, the master MMU acts as a slave coprocessor that in background supports the
reconfiguration and execution of tasks instantiated in the PR partition.

From an application point of view, it is convenient that all the processors placed in the
PR partition share a common interface to transfer data with the static region of the
system. This design constraint is necessary since this interface is implemented in the
static region of the FPGA and therefore it can not be modified at run-time. In this sense,
the reconfigurable hardware processors instantiated in the PR partition are designed
with standard input and output interfaces based on first-in-first-out (FIFO) memories.
These FIFO interfaces enable the transfer of data in and out of the PR partition in a
standard way —from the system repository to the hardware computer and vice versa—
constituting a full-duplex link. Moreover, these FIFOs are implemented with internal
RAM blocks of the FPGA, being one port controlled from the static region and the other
from the reconfigurable region. The MMU handles the static side of the FIFO whereas the
PRMs placed in the PRR takes charge of the FIFO ports accessible from the dynamic side.
Other relevant design aspect in the architecture of embedded systems composed of
multiple processors is the management of the access to the data repository since it
becomes a shared resource. This repository is typically a large external memory device,
e.g. a low-cost DDR-SDRAM chip, connected to the pinout of the FPGA. In accordance
with the idea of partitioning the end-user application in tasks that are computed
concurrently by multiple engines, both CPU and MMU engines need to be master
processors to perform writing and reading accesses to the system repository at any time.

72

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

For this, the DDR-SDRAM memory is managed by a multi-port memory controller (MPMC
implemented in the static region of the FPGA. The multi-port interface allows the
different master processors to access the memory from identical or different buses. In
our proof-of-concept, the host CPU is connected to the DDR-SDRAM through both
CoreConnect PLBv46 and Xilinx CacheLink (XCL) buses while the master MMU is
connected via a fast Native Port Interface (NPI) bus. All these buses reach the MPMC and
the this controller is who administrates the access of the different sources to the physical
DDR-SDRAM at any time, by establishing arbitration mechanisms in case of collisions.
Concerning the reconfiguration process, as mentioned above, the master MMU performs
the transaction of the configuration bitstream from the system repository to the FPGA
configuration memory. In the Virtex-4 FPGA, the datapath to the FPGA configuration
memory can be performed through a specific primitive accessible from inside the FPGA
logic named internal configuration access port (ICAP). As part of our reconfiguration
controller, a finite state machine (FSM) controls the signals of the ICAP interface. This
controller is connected with the master MMU through a FIFO memory. Such FIFO plays
the role of an intermediate buffer that regulates the data flow, i.e., isolating or making
independent the speed in which the data are produced (filled) by the master MMU with
respect to the speed in which such data are then consumed (emptied) by the FPGA
configuration memory, in accordance with the reconfiguration bandwidth constraints of
the particular FPGA in use. Analogously, the FIFOs inserted as standard interfaces
between the master MMU and the PR processor let decouple the stage related to the
production or consumption of data in the system repository from the counterpart stage
in the PR partition. This decoupling feature achieved with FIFOs is a key aspect in this
design architecture because just the time independency reached with this approach lets
ensure that the custom processors synthesized in the PR partition can be designed
without inheriting any technical restriction coming from the rest of the static system (e.g.
multiprocessor bus in use, etc). This feature is highly appreciated from the perspective of
reusability of IP cores portable to different FPGA platforms. Besides, FIFOs transparently
implement blocking-read and blocking-write synchronization mechanisms in case of
empty and full buffer scenarios, and the set of control lines which constitute the FIFO
wrapper is reasonably small and manageable. Furthermore, hardware modules can
read /write from/to FIFOs using a simple, well-known communication protocol instead of
other more complex addressing and syncronization schemes. As summary, the use of
FIFO memories as standard interfaces among the master MMU, the PR partition and the
FPGA configuration memory lets architect a system with multiple clock domains.

Besides, a slave MMU is implemented to link the host processor with the master MMU
and the PR processor. It consists of a series of configuration registers —some writable and
others readable by the host CPU- used as control and status registers for managing the
handshake between the master MMU and the PR processor. Through these registers, the
CPU can configure a bistream transfer from the repository to the FPGA configuration
memory; it is only a matter of specifying to the master MMU the initial address where the
bitstream in located in memory and its total size and then give the go-ahead to start the
reconfiguration. In parallel, the master MMU notifies the host CPU about the status of
this transaction with register flags readable by the host. In addition to the transfer of
bitstreams from the system repository to the FPGA configuration memory conducted by
the master MMU in each partial reconfiguration, the master MMU is involved in the
posterior transfer of data from the repository to that new coprocessor placed in the PR
partition. In a similar way, the host CPU configures that transaction by means of
configuration registers and the status of this process can be tracked in real-time by
specific registers used by the master MMU and accessible at any moment by the host
CPU. The same rules apply between the PR processor and the host CPU: specific
registers of the slave MMU are written by the host CPU and take effect in the PR
processor to initialize some configuration parameters before launching the processing of
a specific hardware task. Similarly, the host CPU can be informed about this processing
through registers adapted to each custom processor synthesized in the PR partition.

73

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

As a last remark of the system architecture, optionally the host CPU can be supported
with memory caches to accelerate the processing of the software application. In our real
example, the connection between the DDR-SDRAM which lodges the CPU program and
the internal instruction and data caches —constituted by internal RAM blocks of the
FPGA- is performed through two dedicated XCL (IXCL and DCXL) buses. Figure 4.4
shows the architecture of the system with all the functional blocks involved.

DDR-SDRAM

MPMC

NPI XCL XCL PLB

HOST

ya
CPU \‘_

~ ~ _Z

MMU MST MMU SLV

-> == d° TT‘l
~> <> 9

ICAP &
RECONF. LOGIC

PARTIALLY
{} RECONFIGURABLE
FPGA REGION

CONFIG.
MEMORY

igs

Figure 4.4 Minimalist system architecture based on one PR partition and one repository

A further reason for using FIFOs for buffering data in the PR processors is the fact that

the master MMU can overlap the transfer of both input and output data to the PR

processor while the PR processor is in operation. For this, the data bandwidth of the

master MMU must be at least twice the bandwidth of the PR processor.

The most relevant advantages of this system architecture are highlighted next:

» Jt is a minimalist design, provided with the minimum functional components to design
a run-time reconfigurable embedded system.

= Although the size and location of the PR partition is defined at compilation time and it
cannot be resized later at run-time, the operation clock of the processor placed in the
PR partition can be changed on the fly. This flexibility lets schedule the processing of
an application partitioned into a set of specific tasks operated at different clocks. This
feature can be achieved in two different ways: either connecting several clock sources
from the static region to the PR partition, or interfacing to the partition only one clock
signal which can be reconfigured at run-time, for instance through the digital clock
manager (DCM) block in Virtex-4 devices.

74

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

This minimalist approach owns also some drawbacks which, in occasions are

accentuated depending on the requirements demanded to the target application:

* In any programmable logic design, the system designer is always exposed to a time-
area trade-off. That said, the minimalist model is designed with the target of lowest
cost in mind. However, in systems based on only one PR partition, the reconfiguration
time results in a penalty added to the processing time of the tasks.

* An important design aspect linked to this architecture is the effective access to the
memory, since this memory is a resource shared between two processors —CPU and
master MMU- storing both application data and reconfiguration bitstreams. The
master MMU provides data from the repository to two different consumers, the ICAP
and the PRR, in addition to sending other data produced by the PRR back to the
repository. In this way, the MPMC must dispatch in time all the requests coming from
the master MMU and the CPU to not delay the processing. In fact, the bottleneck of
many system architectures is found in the fetch and storage of data in memory.

* One more limitation in reconfigurable systems composed of only one PR partition is
the fixed size of the PRR. Just for this reason, to take the best benefit of this region, all
the processors should consume the same number and type of resources. If one PRM
placed in the PR partition takes much more resources than the others, this provokes a
waste of resources since the size of the biggest PRM delimits the size of the PRR.

Attending to the design constraints of certain applications and aimed at improving the
drawbacks discussed above regarding this first approach, other variants of the
minimalist model are presented next, focused on reducing the impact of the
reconfiguration latency over the application execution time, increasing the bandwidth to
access the shared memory and optimizing the PR area reserved to the PR processors by
making use of several PR partitions different in size.

4.4.2 Model with single data repository and two PR partitions

In time-critical applications which require fast or frequent switching of PR modules in a
PRR, the reconfiguration time can be significant in absolute terms compared to the total
execution time of the application. The model proposed in the previous section could
reduce or definitively hide its inherent penalty in reconfiguration time by just performing
a small change in its architecture. This change consists in adding a second PR partition
into the system connected to the same master and slave MMUs. In this way, this
redesign presents a reconfigurable system composed of two PR partitions with identical
interfaces. The main reason to add the second PR partition is to deploy a bipartitioning
strategy of hardware tasks. That is, it is feasible that at any time one PR partition is
operative while the other is being reconfigured. Thus, the processing of a given task in
one partition is overlapped with the reconfiguration process of the next task in the
second partition. For this, the processing time of a hardware task T; in a PR partition
shall take identical or more time than the reconfiguration of the next task Ti+; conducted
in parallel in the other PR partition, and ensuring the fulfilment of this condition for all
the hardware tasks which the applitation is split in.

To make this model work correctly, the MPMC shall ensure it is able to serve in time all
the requests from the host CPU and the master MMU, the latter dealing in this
architecture with up to three FIFOs at the same time, one from the reconfiguration
process and two from the active PR partition that runs a hardware processor at that
moment. In this way, the master MMU supports in parallel the processing of a task and
the reconfiguration process of the next one in background. Also of note, the use of two
PR partitions offers more flexibility to the system architect to define the size of the PR
processors since both partitions can be different in size, shape and types of resources.
This fact lets skip more easily the case of having wasted resources in a PRR when a
hardware task uses fewer resources than the ones the PRR provides. Furthermore, each
PR partition encompasses a different clock domain; therefore, each PR partition can be
clocked at a different operation frequency. The new model is illustrated in Figure 4.5.

75

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

DDR-SDRAM

MPMC

NPI XCL XCL PLB

HOST

-
CPU \—

~ ~ _Z

MMU MST /4-}\ MMU SLV
\m/
1T I A% T7T

FIFO FIFO FIFO \A

~> S~ 1t

RECIO(,)\IAFP linGIC / DEMUX \W/ MUX \W/ MUX \T07/ DEMUX \
el ITTT T79r Frar IF
PARTIALLY RECONFIGURABLE REGION 1

conFic I I

MEMORY

PARTIALLY RECONFIGURABLE REGION 2

Figure 4.5 Embedded system architecture based on two PR partitions and one repository

Although this model achieves some clear time advantages compared with the minimalist
model, this new approach accentuates in its turn other disadvantages. In the minimalist
approach, the hardware resources included into the PR partition are operative as long as
some task is placed and processed there. Therefore, if the application manages to
continuously swap in and out tasks in the PR partition, then the only time at which
these resources are wasted is during the reconfiguration processes, since at that time the
whole PR partition is not operative. With the introduction of a second PR partition into
the system to deploy a bipartitioning strategy, the application sees at any time one
hardware task running in one of the PR partitions. However, a drawback of this model
versus the minimalist model is the reduced use of the PR resources — that is, the loss of
functional density of the resources placed in the PR partitions since, in absolute terms,
one out of two PR partitions is inoperative along all the application lifetime. This point
can result especially inefficient in applications that require big PR partitions.

Depending on the features of size and time of the tasks of an application, the system
designer must choose the best alternative in order to make these architectural models to
give a competitive advantage instead of a disadvantage. A third model is proposed next to
consider the case in which the model presented in this section is not able to manage in
time all the memory requests from the CPU and the master MMU.

76

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

4.4.3 Model with two data repositories and two PR partitions

A new variant of the system architecture discussed above consists in splitting the system
repository in two separate memory chips aimed at offloading the access to it by building
two effective parallel accesses. The system repository is separated in one memory that
stores only the partial bitstreams and another memory exclusively dedicated to the end-
user application. In this new model, one master MMU could manage the reconfiguration
of the hardware tasks connected to a dedicated memory while the second memory would
be left exclusively to the application data, accessed by the host CPU and by another
master MMU responsible for the PR partitions. This configuration lets double thus the
system memory bandwidth. The new model is depicted in Figure 4.6.

NVM DDR-SDRAM

| MPMC |

XCL XCL NPI

S
PLB
J\ HOST
_/

CPU

N~ ~ - N~

MMU MST /1\,:/'\ MMU SLV MMU MST
~ = afin ~ =

FIFO \E FIFO FIFO

~ = alin ~ =

REccl)?\ﬁ:P E&OGIC / DEMUX \T07/ MUX \W/ MUX \W/ DEMUX \
e ITTT 747 Fr4r IF
PARTIALLY RECONFIGURABLE REGION 1

ot I - L

MEMORY

igs

PARTIALLY RECONFIGURABLE REGION 2

Figure 4.6 Embedded system architecture composed of two PR partitions and two sytem
repositories which split the reconfiguration data from the application data

In this way, two memory sources are running in parallel, allowing two concurrent
accesses to the memory resources. This new architecture should permit to conduct the
parallel execution of the reconfiguration and processing of tasks in those scenarios where
the model discussed in the previous section does not have enough data bandwidth. The
memory dedicated only to store the partial bitstreams can be connected through only one

77

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

port to the master MMU. In such a case, the memory is dedicated to only one source so it
is not required any arbitration controller (MPMC). Otherwise, in a different approach, a
MPMC could still be used connect the memory to the master MMU and the host CPU.
Unlike the bandwidth advantages achieved with this double memory in this third
approach, the only drawback is the overcost caused by the implementation of two
memory controllers and the presence of two external chips. The analytical study related
to the MMU data throughput required in these models to provide a concurrent service to
the reconfiguration and to the application is covered later in chapter 5. As observed
through the three model variants proposed, the system architecture is scalable in PR
partitions and memory repositories. This scalability is a valuable design feature to match
the architecture to the specific demands of each target application.

These approaches cover the scenario where only one task is processed in one out of two
PR partitions at one time. Further alternatives could be designed with small changes (e.g.
using a pair of dedicated FIFOs for each PR partition) and keeping the system skeleton
practically intact, powered by the idea of having one software processor and another
reconfigurable hardware processor efficiently coupled to perform end-user applications
with a fast access to the system memory. The case of adding more PR partitions in the
system to run multiple hardware tasks in parallel has not been considered in this work.
Such consideration involves new issues like the partial bitstream relocation or the inter-
module communication, which are being addressed by some research groups today.

4.4.4 Comparison with other state-of-the-art architectures

After describing the system architecture proposed, it is now compared with state-of-the-
art architectures found in the literature. Due to the large number of existing
architectures, this section focuses only on a small representative subset of them that
stand out for its advances and recent novelty in run-time reconfigurable computing.

A. VAPRES

The VAPRES (virtual architecture for partially reconfigurable embedded systems) system
architecture developed at the University of Florida is claimed to be a general-purpose
embedded base platform for building PR systems [Jara-Berrocal and Gordon-Ross, DATE
2010]. The concept is prototyped in a Xilinx ML401 evaluation board based on a Virtex-4
FPGA. Basically, the system is composed of a MicroBlaze processor connected to a set of
PR regions which place different processing modules reconfigurated at run-time. Its
switching methodology lets overlap the module operation in some PRR with other PRR
reconfiguration, which avoids stream processing interruption.

SDRAM —

UART [T

Flash
controller

ICAP =

PR Socket 1

clk0
PR Socket 2

PR Socket 3

Module Module
Interfaces Interfaces

Network =

Figure 4.7 VAPRES system architecture

78

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

This architecture has been evaluated in a real wireless sensor network (WSN) application
oriented to a target tracking control system based on Kalman filters [Garcia et al., FCCM
2009]. This architecture shares big similarities with the approach presented in this
dissertation, especially regarding the interfaces between the static region and the PRRs:
on the one hand, PRRs interface with the host processor through asynchronous fast
simplex link (FSL) interfaces, in a similar way to the slave MMU proposed in our
approach; on the other hand, each PRR is provided with a module interface composed of
two bidireccional FIFO memories, like the two FIFOs connecting the master MMU in our
approach, as depicted in Figure 4.7. Additionaly, the VAPRES architecture enables the
inter-task communication by means of SCORES (Scalable Communication Architecture
for Reconfigurable Embedded Systems), which basically allows a PRR to dynamically
establish a fast data-streaming channel with any other arbitrary PRR by interconnecting
their input and output FIFOs, performed dynamically through a highly parametric switch
block, and being this action performed in a deterministic time [Jara-Berrocal and
Gordon-Ross, DATE 2009]. In this architecture, both non-volatile and volatile memories
are directly connected to the PLB bus. The PRR FIFOs are also connected to the PLB bus
through dedicated I/O modules. The main drawback observed is the high reconfiguration
latency obtained in switching the processors or hardware tasks in the PR partition [Jara-
Berrocal and Gordon-Ross, ReConFig 2009]. The bottleneck is found in the fact that the
MicroBlaze processor is who conducts the partial reconfiguration. The MicroBlaze
processor, the Flash memory which stores the partial bitstreams and the ICAP primitive
are all connected to the PLB bus. Thus, the MicroBlaze processor reads the bitstream
from Flash and downloads it into the FPGA configuration memory via the ICAP interface.

B. Autovision

The Autovision project developed at the University of Technology of Munich is intended
for the acceleration of video-based driver assistance applications in future automotive
systems by means of a run-time reconfigurable hardware MPSoC architecture [Claus et
al., DATE 2007]. A flexible hardware platform can give a competitive advantage in the
development of driver assistance systems since different driving conditions —highway,
city, sunlight, rain, tunnel entrance— can involve the use of different algorithms for video
processing. These different time-consuming algorithms are performed at real-time
through hardware accelerators which are loaded into the Autovision platform at run-
time, triggered by changing driver conditions. The Autovision architecture was initially
prototyped in a Xilinx Virtex-II Pro device, although later it has been ported to Virtex-4
and Virtex-5 devices. It is shown in Figure 4.8.

, PPC [& | ICAP
SRAM : Processor |OQ @ |
: Core =

i Data | Instruct,) DDR SDRAM
SRAM < - Cache ; |
Unit

/|

DvI

Write
Data
Bus

IPIF

CF
A Master attachment controller

O Slave attachment f

Camera

CF Karte

D Bus Interface

Réconﬁgurable region

Figure 4.8 Autovision system architecture

79

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE

Francisco Fons Lluis

DL:

T.

877-2012

The block diagram of the system is very similar to the one proposed above in this
dissertation, although it uses two CPU processors instead of one [Claus et al., IT 2007].
The second CPU is responsible for verifying the reconfiguration process by reading back
the partial bitstream once it is downloaded through the ICAP interface to the FPGA
configuration memory. The reconfigurable hardware processors placed in the PR
partition are interconnected to the static part of the system through the PLB bus
[Platzner et al.,, Springer 2010]. This dedicated interface makes the design of the
hardware processors conditional to fit only in CoreConnect PLB-based bus systems,
giving rise to non-standard IP cores that should be reworked in case of porting the
system application to other platforms based on different buses like AMBA or Wishbone.
This portability issue has been carefully cared in the standardized architecture proposed
in this dissertation in order to achieve that any application deployed in the PR partition
by custom hardware accelerators is independent of the system architecture itself, being
these engines connected to the static side by means of standard FIFOs and registers.

C. KIT-ITIV

The system architecture developed at the University of Karlsruhe (Institut fiir Technik der
Informationsverarbeitung) is oriented to execute general-purpose applications or tasks on
demand, requested from an external communication bus and deployed in four or five
dynamically reconfigurable regions in an FPGA [Huebner et al.,, FPL 2004]|. The system is
prototyped in a Xilinx Virtex-II device and is shown next in Figure 4.9.

Run-time /O (e.g. CAN)
Module C——ly
Controller

— Boot-

28R Jl 4

Bus Com0 BusCom1 BusCom2 Bus Com3 |
B3 Bl B2 B3 T e
Unit (LZSS)
% memo
t t t t Arbiter 1 2

Bus-Macro -> ICAP

=
9]
a
=
)
o

| aInpopy
Z @INpPOo
€ 9|NpPOol

Figure 4.9 KIT-ITIV system architecture

The partial bitstreams are compressed and stored in external Flash memory. Internally to
the FPGA system there is a bitstream decompression/reconfiguration controller
implemented in hardware which links the external repository with the ICAP interface.
The system is connected with the exterior world trhough a CAN bus. A MicroBlaze sof-
core processor placed in the static region of the FPGA is the host CPU of the system and
manages the execution of the different applications or tasks requested via CAN frames in
the different reconfigurable regions or partitions of the FPGA. If the task requested
requires a dedicated processor which is not placed in the PRRs at that time, the
reconfiguration controller looks for a free partition and handles the reconfiguration by
downloading the bitstream from external Flash. As innovative architecture, all the PRRs
are linked together through a bus macro interface managed by a communication

80

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

controller or arbiter. This controller is addressed by the CPU and takes charge of the
control of the internal communication with the PR modules [Ullmann et al., FPL 2004].
The communication controller and the bus macro are implemented in the static region of
the FPGA. Inside each partition, however, there is a communication controller that can
be reconfigured together with each PR partition at run-time to self-adapt the link with
the bus macro. In this way, this flexible connection admits the adaption of several
topologies (i.e. bus, star or ring) among the communication controller and the different
PR partitions [Huebner and Becker, JICS 2006]. Like this, such architecture supports
inter-module communication. Furthermore, it also offers the possibility of disconnecting
a PR module from the bus macro during a dynamic reconfiguration to protect the bus
from interferences. Although the system is connected to the exterior world through CAN,
this architecture lacks the use of external memory, especially fast and large memory
demanded in data-intensive applications. Just for this reason, the memory sharing issue
is not addressed in this work. A clear use case for exploiting this system architecture is
in FPGA-based automotive electronic control units [Ullmann et al., IPDPS 2004].

D. ESM

The Erlangen Slot Machine (ESM) system architecture proposed by the University of
Erlangen-Nuremberg allows the partial reconfiguration of hardware modules arranged in
a set of identical PR regions so-called slots. The system is architected in two subsystems:
one general-purpose board (base) based on a Xilinx Virtex-II FPGA, which contains such
run-time reconfigurable slots to lodge there any type of digital processing, and another
application-specific board (satellite) prototyped in a Xilinx Spartan FPGA and focused on
customizing those aspects of the target application that keep constant or statically
implemented for the whole application lifetime [Bobda et al., FPT 2005], as shown next.

MotherBoard
BabyBoard
sraM| |sram| [sram SRAM
<
g
Flash =
1 S1 S2 S3 eece SN
Reconfiguration - — . :
e P P— 1 '
Manager | | 1 | | S
Crossbar
PowerPC -
Peripherals

Figure 4.10 ESM system architecture

On the one hand, the satellite board (or motherboard) is especially intended to implement
a crossbar switch to connect all those signals coming from the slots of the baseboard
with the external peripherals -typically sensors and actuators— required by the
application and located in the satellite board. In this way, the particularization about
connections is performed in a crossbar switch in order to keep symmetrical all the I/O

81

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

pinout connections of the slots in the baseboard. This aspect helps to promote the
bistream relocation by reducing the complexity in the baseboard whereas the crossbar
switch takes charge of establishing the connections in the satellite board which is
application-specific. Apart from the crossbar switch, the satellite board also contains a
PowerPC processor for managing the data flow and the communication with the exterior
world. On the other hand, the baseboard (also called baby board) contains six identical
slots inside the Virtex-II FPGA. Each slot is connected to a dedicated external SRAM
memory to support the data processing carried out in that slot or its neighbours in left
and right sides. This architecture gives solution to the inter-module communication
through several options: bus macros, shared memory, reconfigurable multiple buses or
external crossbar switch [Majer et al., VLSI 2007]. A reconfiguration manager is in charge
of placing the partial bitstream indistinctly in any of the slots possible. As proof-of-
concept, this platform has been used in modular video streaming applications.

The main advantage of the ESM platform is the flexibility in communication, uniformity
of resource distribution and placement freedom by means of relocation. The main
disadvantage is the big number of components (BOM), which makes this approach
prohibitive in some cost-sensitive applications. However, although some restrictions
come from the non-support for two-dimensional reconfigurability of the Virtex-II FPGA
(full-column reconfiguration only), these ideas can be ported to a 2D-reconfigurable
FPGA (e.g. Virtex-4) and implement the crossbar switch in the static region of the device.

E. Molen

Developed at the Delft University of Technology, the Molen architecture addresses both
general-purpose and custom computing in one hybrid field-programmable custom
computing machine [Vassiliadis et al, TC 2004|. It copes with a reconfigurable
coprocessing extension seamlessly coupled to a processor, all prototyped in a Xilinx
Virtex-II Pro FPGA. The PowerPC hard core embedded in the FPGA is operating as a
general-purpose processor while the reconfigurable fabric is used as a reconfigurable
coprocessor [Kuzmanov et al., SAMOS 2004]. Additionally, some exchange registers
(XREG) are introduced to communicate the reconfigurable processor with the core
processor giving rise to an architectural coupling. Moreover, this coupling is performed at
the level of an assembler instructions extension: some few instructions are added to the
original assembler instructions set of the core processor to drive the coprocessor. The
minimal extension comprises only four instructions: two instructions (set/execute) for
loading a hardware implementation and launching its execution on the reconfigurable
hardware, and two instructions (movtx/movfx) for providing the communication via
XREG registers between the reconfigurable hardware and the general-purpose processor.
The two main components in the Molen machine organization are the Core Processor,
which is a general-purpose processor, and the Reconfigurable Processor. The main
memory stores the program code, the application data and the partial bitstreams.
Instructions are fetched from the main memory and issued to either processor by the
Arbiter. Data are fetched/stored by the Data Fetch unit. The Memory Mux/Demux unit is
responsible for distributing/collecting data. The reconfigurable processor is divided in
two units: the Reconfigurable Microcode (pu-code) Unit and the Custom Configuration Unit
(CCU). The CCU consists of reconfigurable hardware (e.g. FPGA) and memory. The pp-
code unit is responsible for controlling the downloading of the partial bitstream from the
main memory to the FPGA configuration memory. This role assigned to the pp-code unit
is deployed when executing the instructions set/execute during the reconfiguration
and the next execution of the reconfigurable task: the set phase can be scheduled well
ahead of the execute phase, thereby hiding the reconfiguration latency. After the
reconfiguration, the role of the pp-code unit is to communicate the CCU with the core
processor, taking care of the exchange of function parameters and results between both
processors through the movtx/movfx instructions [Kuzmanov et al., SAMOS 2003]. The
system architecture detached in functional blocks is depicted next.

82

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

| Main Memory |

! i

Instruction Data
Fetch Load/Store
_ DATA
ARBITER | _ | MEMORY |
_ - MUX/DEMUX
I A
' |
\ Y Y
Register File |« Core reconfigurable | !
Processor microcode [ccu
unit '
Exchange f
Registers < > Reconfigurable Processor

Figure 4.11 Molen system architecture

Comparing the Molen architecture with the one presented in this dissertation, the CCU
matches with the PR partition of the approach described in section 4.4.1. The
communication interfaces between the core processor and the reconfigurable processor is
performed through registers (i.e., the extended registers XREG, role taken by the slave
MMU in our approach) and via a direct memory access (in our case through the master
MMU). The reconfiguration engine and the communication controllers between both
static and PR regions (registers and memory interfaces) are implemented here by the
arbiter, the pp-code unit and the memory mux/demux. The most relevant novelty of the
Molen approach is the fact that the compiler is involved in the reconfigurable hardware
implementation [Moscu et al.,, TECS 2007|. In this way, the designer can check the
scheduling of the application and the reconfiguration at compilation time, and check any
inconsistency/confict regarding space and sharing of reconfigurable resources.

4.5 Summary

In this chapter, the author proposes a standard system architecture oriented to a broad
range of embedded applications targeting both general-purpose and specific digital
computation. This approach is deployed in an FPGA or PSoC platform exploiting run-
time hardware reconfiguration. The system architecture and its components breakdown
has been addressed throughout the chapter. The proposed architecture includes the
management of the partial reconfiguration process through a reconfiguration engine
seamlessly merged to the system. In this way, the reconfiguration is transparent to the
application itself, where the reconfiguration handshake remains practically hidden to the
application. The reason behind this approach is the attempt to reach a generic
architecture able to fit an extensive range of end-user applications exploiting the use of
flexible hardware in order to speed-up the application execution and to reduce costs by
the time multiplexing of resources. This system architecture has been compared with
similar architectures developed by other research groups. The proposed architecture, like
other state-of-the-art architectures discussed, becomes a generic approach valid for a
wide range of computing applications. In this direction, the system architecture proposed
in this chapter has been deployed by the author in several real application examples to
demonstrate the viability of the model, as detailed later in the part IV of this dissertation.

83

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

References

[Bobda et al., FPT 2005]
C. Bobda, A. Majer, A. Ahmadinia, T. Haller, A. Linarth, J. Teich, The Erlangen Slot Machine: Increasing
flexibility in FPGA-based reconfigurable platforms, Proceedings of the IEEE International Conference on
Field-Programmable Technology, pp. 37-42, 2005.

[Claus et al., DATE 2007]
C. Claus, J. Zeppenfeld, F. Muller, W. Stechele, Using partial-run-time reconfigurable hardware to
accelerate video processing in driver assistance systems, Proceedings of the Conference and Exhibition
on Design, Automation, and Test in Europe, pp. 498-503, 2007.

[Claus et al., IT 2007]
C. Claus, W. Stechele, A. Herkersdorf, Autovision — A run-time reconfigurable MPSoC architecture for
future driver assistance systems, Information Technology, vol. 49, no. 3, pp. 181-187, 2007.

[Garcia et al.,, FCCM 2009]
R. Garcia, A. Gordon-Ross, A. George, Exploiting partially reconfigurable FPGAs for situation-based
reconfiguration in wireless sensor networks, Proceedings of the IEEE Symposium on Field Programmable
Custom Computing Machines, pp.243-246, 2009.

[Huebner and Becker, JICS 2000]
M. Huebner, J. Becker, Dynamic and partial FPGA self-reconfiguration using real-time LUT-based
network-on-chip adaptive topologies for Xilinx FPGAs, Journal Integrated Circuits and Systems, vol. 1,
no. 4, pp. 43-53, 2006.

[Huebner et al., FPL 2004]
M. Huebner, M. Ullmann, L. Braun, A. Klausmann, J. Becker, Scalable application-dependent network
on chip adaptivity for dynamical reconfigurable real-time systems, Proc. Int. Conf. on Field Programmable
Logic and Applications, LNCS, vol. 3203, pp. 1037-1041, Springer-Verlag, 2004.

[Jara-Berrocal and Gordon-Ross, DATE 2009]
A. Jara-Berrocal, A. Gordon-Ross, SCORES: A scalable and parametric streams-based communication
architecture for modular reconfigurable systems, Proceedings of the Conference and Exhibition on
Design, Automation, and Test in Europe, pp. 268-273, 2009.

[Jara-Berrocal and Gordon-Ross, DATE 2010]
A. Jara-Berrocal, A. Gordon-Ross, VAPRES: A virtual architecture for partially reconfigurable embedded
systems, Proc. Conf. and Exhibition on Design, Automation, and Test in Europe, pp. 837-842, 2010.

[Jara-Berrocal and Gordon-Ross, ReConFig 2009]
A. Jara-Berrocal, A. Gordon-Ross, Runtime temporal partitioning assembly to reduce FPGA
reconfiguration time, Proc. Int. Conf. on Reconfigurable Computing and FPGAs, pp. 374-379, 2009.

[Kuzmanov et al., SAMOS 2003]
G. Kuzmanov, G.N. Gaydadjiev, S. Vassiliadis, Loading rm-code: Design considerations, Proceedings of
the International Workshop on Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
LNCS, vol. 3133, pp. 11-19, Springer-Verlag, 2003.

[Kuzmanov et al., SAMOS 2004]
G.K. Kuzmanov, G.N. Gaydadjiev, S. Vassiliadis, The Virtex II Pro'™ MOLEN processor, Proceedings of the
International Workshop on Computer Systems: Architectures, Modelling, and Simulation, LNCS, vol.
3133, pp. 192-202, Springer-Verlag, 2004.

[Majer et al., VLSI 2007]
M. Majer, J. Teich, A. Ahmadinia, C. Bobda, The Erlangen Slot Machine: A dynamically reconfigurable
FPGA-based computer, The Journal of VLSI Signal Processing, vol. 47, no. 1, pp. 15-31, 2007.

[Moscu et al., TECS 2007]
E. Moscu Panainte, K. Bertels, S. Vassiliadis, The Molen compiler for reconfigurable processors, ACM
Transactions in Embedded Computing Systems, vol. 6, no. 1, pp. 1-18, 2007.

[Platzner et al., Springer 2010]
M. Platzner, J. Teich, N. Wehn (Eds.), Dynamically reconfigurable systems - Architectures, design
methods and applications, Springer, ISBN 978-90-481-3484-7, 2010.

[Ullmann et al., FPL 2004]
M. Ullmann, M. Hubner, B. Grimm, J. Becker, On-demand FPGA run-time system for dynamical
reconfiguration with adaptive priorities, Proc. of the Int.Conference on Field Programmable Logic and
Applications, LNCS, vol. 3203, pp. 454-463, Springer-Verlag, 2004.

[Ullmann et al., IPDPS 2004]
M. Ullmann, M. Hubner, B. Grimm, J. Becker, An FPGA run-time system for dynamic on-demand
reconfiguration, Proceedings of the International Parallel and Distributed Processing Symposium, 2004.

[Vassiliadis et al., TC 2004]
S. Vassiliadis, G. Gaydadjiev, G. Kuzmanov, The MOLEN polymorphic processor, IEEE Transactions on
Computers, vol. 53, no. 11, pp. 1363-1375, 2004.

84

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Chapter 5

Reconfiguration engine

This chapter focuses on the mechanism which allows an SRAM-based programmable
logic device to partially or fully reconfigure its logic resources at run-time, while the rest
of its non-reconfigured/non-reconfigurable resources continue in operation without
suffering any interruption (i.e., operation discontinuity) or affectation (i.e., malfunction),
and making the reconfigured blocks —just after concluding the reconfiguration- restart
their activity to join thus the rest of device already in operation. As part of the functional
components which constitute the embedded reconfigurable system architecture
promoted in the previous chapter, next it is presented the design features of the
reconfiguration engine as well as the technological characteristics demanded to the
SRAM-based programmable logic device that shall harbour it. After evaluating different
closed (e.g. Atmel, Altera) and open (e.g. Xilinx) reconfiguration engine solutions applied
to embedded systems based on FPGA or PSoC devices, the author details step by step the
modeling of the reconfiguration engine proposed.

5.1 Reconfiguration design parameters

As introduced in chapter 4, given an embedded system based on an SRAM-based
programmable logic device provided with run-time reconfigurable hardware technology,
the reconfiguration engine is is one of the basic components in the system architecture.
Apart from the bitstreams repository, typically composed of an external non-volatile or
volatile memory chip, the reconfiguration engine is constituted by three functional blocks
which build the reconfiguration datapath, as illustrated in Figure 4.1: the SRAM-based
configuration memory of the programmable logic device, the PR partitions which delimit
the set of resources subject to be reconfigured at run-time, and the reconfiguration
controller which manages the transfer of the partial bitstreams from the repository to the
internal configuration memory. Attending to features of the reconfiguration controller,
certain programmable logic devices allow conducting the dynamic reconfiguration of their
resources by themselves, that is, in an autonomous way — without requiring the help of
any external logic. For this, these devices include in their fabric the complete
reconfiguration logic. Other approaches are based on the use of external devices to
implement the logic that controls the reconfiguration, for instance through an external
processor or MCU responsible for carrying out the bistream transfer, or by means of an
external CPLD which implements the specific controller, or even embedding this
controller in the repository memory chip (e.g. platform flash PROM devices, composed of
flash memory and a controller provided with an integrated bitstream delivery mechanism
adapted to the transfer protocol of the Xilinx FPGA devices). Figure 5.1 shows these two
different reconfiguration approaches: self-reconfiguration and external reconfiguration, in
function of whether the reconfiguration controller is placed inside the FPGA or outside.
In the block diagram, the reconfiguration controller is shown split in two parts, making a
clear distinction between the functional block that takes care of translating the FPGA
raw data received through the bitstream frames to be loaded into the internal FPGA
configuration memory —called reconfiguration logic- and the logic block responsible for
handling the high-level control and handshake of the bitstream transfer between the
external memory and the FPGA - called reconfiguration controller. Both logic blocks are
connected via the reconfiguration port.

The reconfiguration efficiency is function of a large number of design parameters that
shall be carefully evaluated, as discussed in chapter 2. Design parameters related to the
technology of the programmable logic device -like reconfiguration granularity, bitstream

85

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

format, reconfiguration bandwidth (intimately linked to memory interface features like
data bus size and operation frequency), or others related to the tasks partitioning of the
end-user application (size of the reconfigurable region, resultant bitstream complexity of
the reconfigurable module placed in the PRR, time elapsed between consecutive
reconfigurations of one or several PRRs, etc), or even others that influence the system
architecture like workload of the reconfiguration bus and the bitstream repository—
affect, in the end, the reconfiguration latency of the PR module to be placed and
performed at run-time in a shared region of hardware resources of the programmable
logic device. Although some of these design parameters are unchangeable in a device and
therefore they cannot be modified or manipulated by the system architect, there are
others that are flexible, giving certain freedom to design the reconfiguration controller in
the most efficient way possible and meet thus the constrains imposed by the end-user
application. In fact, the design of a reconfiguration controller is a design space that has
attracted numerous research groups in the past. Nowadays, a big effort is being
addressed to this topic. The research community is aware of the importance of all these
aspects to succeed in the implementation of embedded electronic systems driven by run-
time reconfigurable hardware.

EXTERNAL
MEMORY

BITSTREAM
REPOSITORY

1L

RECONF.

EXTERNAL
MEMORY

BITSTREAM
REPOSITORY

CONTROLLER

&
IIIIIIIIIIEE:EFIIIIIIIIII IIIIIIIIII!EiE}IIIIIIIIII

RECONF.
CONTROLLER

1L

RECONF. PORT

RECONF. LOGIC

RECONF. PORT

RECONF. LOGIC

1L

FPGA
CONFIGURATION

MEMORY

1L

FPGA
CONFIGURATION

MEMORY FPGA
ARRRRRRRRRRRRRRRERRRRENND

FPGA
IRNRRRNRRNNRNNERENEREERND

Figure 5.1 Self-reconfigurable FPGA versus externally-reconfigurable FPGA

5.2 State-of-the-art reconfiguration controllers: a survey

In the implementation of an end-user application partitioned in a set of functional tasks
that are processed one after another, if such application is implemented in software
executed by one core processor, the transition from one task to the next one is typically
performed by the sequential switching of functions, having several consecutive function
calls in the program flow. This switching mechanism is practically negligible in terms of
time consumption; the processor spends just some few assembler instructions to leave a
function by recovering the previous execution context from the stack and performing the
jump to the next function, stacking again its new context before starting its execution.
This operation takes typically some few clock cycles. The level of efficiency of tasks

86

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

switching reached when these tasks are synthesized in software would be a priori
expected also when these tasks are implemented in reconfigurable hardware on a PR
partition. However, this short latency is not feasible in case of switching hardware tasks
in a partially reconfigurable FPGA, especially if the processing unit instantiated in the PR
partition is large. Physically, this switching consists in transferring a partial bitstream
from the repository to the configuration memory of the programmable logic device, that
is, to read data from one memory and write them into another memory. Such transaction
takes a specific time delimited by the amount of data to be transferred, the bandwidth of
the input and output memories, etc. In function of all these parameters, the
reconfiguration time can result non-negligible, being even much longer than the time
spent afterwards processing that task in the PR partition. As the time required by this
physical transaction cannot be avoided, the strategic solution to this issue in partially
reconfigurable FPGA devices consists in hiding this operation in background while other
tasks are performed in foreground. This hiding mechanism can be achieved only if the
reconfigurable system is a multi-processing system, composed of two or more hardware
or software controllers able to reach a concurrent processing of several threads in
parallel, in order to overlap the reconfiguration of one task with the execution of another
task. In this way, one processor or coprocessor can perform the reconfiguration of a PRR
to fit there a task T; while other processor is simultaneously executing the functional
task Ti scheduled at that time placed outside that PRR (i.e., either in software, or in
hardware inside another PRR). Once the task currently in execution T; finishes, the
application flow can switch to process the next task Tj scheduled in the reconfigured
PRR. As the reconfiguration has been performed in advance, the tasks switching is now
immediate and practically does not penalize in time. Attending to the viability of hiding
the reconfiguration process during the execution of an application, the system
architecture can be classified in two types:

= System architectures with unhidden reconfiguration latency

In partially reconfigurable FPGAs composed of one PR partition, the reconfiguration
cannot be hidden since the PRR is not operative while it is reconfigured (during the
reconfiguration it stays in reset or transient state). Therefore, to the time required to
process the hardware tasks it is necessary to add now the time required to reconfigure
each one of these tasks into the PRR, resulting in a time overhead for the application
execution. In such a case, the implementation efficiency of the reconfiguration engine
is a key design factor, especially in real-time or time-critical embedded applications.

= System architectures with hidden reconfiguration latency

In partially reconfigurable FPGAs with two PR partitions and in multi-context FPGAs,
the reconfiguration latency can be hidden by reconfiguring one PRR or context while
another is in operation. In this way, the system can see one hardware task running at
any time. The price to pay in order to reach this linear execution of tasks is however
quantified in area, i.e. hardware resources. The uninterrupted sequential processing of
application tasks, without interleaving wait states originated by the reconfiguration
process, is achievable in a single hardware context composed of two PRRs at expenses
of having one of two PRRs inoperative whenever it is reconfigured, fact that involves an
area overhead that the system must afford. In multi-context FPGAs, the context swap
time is basically null —one clock cycle is usually enough to switch from one hardware
context to the next one, although the time required to transfer the new bitstream from
the repository shall be considered too— but to hide the reconfiguration time there is an
evident overhead of resources since the device is architected with two or more
hardware contexts and only one context is active at one time. Another approach is the
use of partially reconfigurable FPGAs with more than two PR partitions, where two or
more hardware tasks can be executed simultaneously in different PRRs. However,
these systems can require a higher reconfiguration bandwidth in order to support the
concurrent execution of several PR modules.

87

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Current state-of-the-art programmable logic devices provide a limited solution regarding
run-time partial reconfiguration efficiency. Some devices integrate solutions totally closed
from the architectural viewpoint, without offering any chance to the system architect to
improve some design aspects of the reconfiguration controller. Other devices offer more
open solutions where the system architect can still tailor the reconfiguration controller.
Just in these cases, however, the reconfiguration controller is not a standard IP
selectable from a library which can be parameterized automatically supported by EDA
tools. In open platforms, these reconfiguration controllers are designed by hand today.
Many research groups address the design of custom reconfiguration controllers to embed
them in their designs. The next sections show a survey of the current reconfiguration
controllers used in the most advanced reconfigurable systems available in the scientific
literature. Besides, the work conducted focuses on several commercial families of PSoC
and FPGA devices from different vendors —Atmel, Altera and Xilinx— which have been
deeply investigated in this dissertation. Some experiments have been carried out with
those devices, prototyping real applications based on run-time self-reconfiguration.

5.2.1 Closed reconfiguration controller solutions

Some programmable logic devices, especially SoCs provided with an MCU and an FPGA
in a single chip, offer a hard-coded reconfiguration controller solution through which the
MCU can manage the reconfiguration of the FPGA at run-time. In this approach, the
hard-core processor of the MCU stays active while the FPGA can be fully or partially
reconfigured. This solution is totally closed from an architectural viewpoint since the
FPGA configuration memory is accessible only through such hard-wired interface at run-
time. Therefore, only the MCU can perform the reconfiguration by transferring the
bitstream to the FPGA configuration memory through such specific interface. Two similar
approaches, one from Atmel and another from Altera, are described next.

A. Atmel AT94K/AT94S FPSLIC

The Atmel AT94K Field Programmable System Level Integration Circuit (FPSLIC) is a
family of programmable SoC devices which combines an Atmel 8-bit AVR RISC hard-core
MCU and an Atmel AT40K SRAM-based FPGA. The on-chip FPGA configuration memory
is accessible from the MCU core to support in-system dynamic full or partial FPGA
reconfiguration, trademarked as Cache Logic by Atmel Corporation [Atmel Corp., AN1088
1998]. The AT94K family supports the writing and reading of design specific data to or
from the configuration SRAM by means of a simple single port synchronous SRAM type
interface. This configuration interface consists of a clock, a write/read control line, an
error flag line, a 24-bit address bus and an 8-bit data bus. The CPU has direct access to
the data buses of the FPGA configuration SRAM and is able to download bitstreams as
required [Atmel Corp., RM1138 2008]. This interface is depicted next.

Configuration Logic

& EMBEDDED
g AVR CORE
= FPGAX [7:0]
0 |l L Memory-mapped
EMBEDDED E h FPGAIY -0 Location
FPGA CORE T | / [7:0] Memory-mapped
< L a " FPGAIZ [7:0] Location
8-bit Configuration % < L i Memory-mapped
Memory Write Data | & FPGAD [7:0] Location
o 24-bit Address Write O] y Memory-mapped
(Operation is not = / Location
interrupted during)
Cache Logic _ CACHEIOWE ©

loading) <«

Figure 5.2 Internal FPGA configuration port in Atmel AT94K FPSLIC

88

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

The Cache Logic port in the MCU is located in the I/O memory map. Three write-only
registers (FPGAX, FPGAY and FPGAZ) control the address to access to a specific
reconfigurable resource inside the FPGA whereas other register (FPGAD) controls the
data [Atmel Corp., AN1009 2002]. The FPGAD I/O address is not physically supported by
a register; it is simply the I/O address which, if written to, triggers the FPGA cache I/O
write strobe operation. In this way, the CACHEIOWE signal is a qualified version of the
AVR IOWE (input output write enable) signal which is only active if an OUT orST (store-
to) AVR instruction references the FPGAD I/O address. As result, the 32-bit word
composed by the address and data buses constitutes a configuration word that is latched
at each configuration clock. These 32-bits are decomposed into a 2D address, i.e., two 8-
bit horizontal (FPGAX) and vertical (FPGAY) coordinates which address the physical
position of the resource in the FPGA plane, a third coordinate (FPGAZ) or depth
dimension to codify the specific type of resource pointed out, and finally, the 8-bit SRAM
configuration data (FPGAD) to be mapped on that address given by the 3D (X,Y,Z)
coordinates. With this, the MCU manages in software the transfer of the bitstream to the
FPGA configuration memory through a dedicated 24-bit address and 8-bit data interface
so that the entire FPGA or selected portions can be reconfigured at run-time [Atmel
Corp., AN2313 2001]. This programming format, so-called Mode 4, provides complete
configuration data with explicit address information to perform a synchronous access the
SRAM configuration memory. Therefore, this interface does not require any complex
configuration state machine during the download process. During write/read cycles,
data, address and control signals are presented simultaneously to the configuration
SRAM and the writing/reading cycle occurs on the falling or rising edges of the clock.

The FPGA bitstream format can be obtained from [Atmel Corp., AN2323 2001], made
available only under non-disclosure agreement by Atmel to protect customers from
reverse engineering their FPGA designs. The smallest unit of configuration data which
can be programmed is one byte (8-bit data bus wide), although the minimum
reconfiguration change is one bit if the other seven bits of the data byte keep unchanged
with regard to the previous value stored, achieving a fine reconfiguration granularity. As
additional reconfiguration features, the maximum reconfiguration frequency is restricted
to 25 MHz, transmitting 8 bits of data per clock. However, managed from the MCU, the
reconfiguration of an 8-bit resource requires typically four instructions to access the
resource in its specific location (addressX, addressY, addressZ) and overwrite the
value dataReconf there, since such implicit 32-bits word addressing is managed from an
8-bit CPU, as shown in the piece of code next.

#define FPGAX (*(volatile unsigned char*)(BASE + 0x18)) /* FPGA Cache X Address Reg. */
#define FPGAY (*(volatile unsigned char*)(BASE + 0x19)) /* FPGA Cache Y Address Reg. */
#define FPGAZ (*(volatile unsigned char*)(BASE + 0x1A)) /* FPGA Cache Z Address Reg. */
#define FPGAD (*(volatile unsigned char*)(BASE + 0x1B)) /* FPGA Cache Data Register */

FPGAX = addressX;
FPGAY = addressY;
FPGAZ = addressZ;
FPGAD = dataReconf;

Code 5.1 Reconfiguration of an 8-bit resource of the FPGA via the MCU software code

Moreover, each one of these C instructions, once compiled, results disassembled into two
AVR instructions —according to the addressing mode supported by the AVR processor for
I/O access- of the processor instruction set: the data is loaded first in a general-purpose
register (LDl Rx, data) and from this is transferred then to the specified address (OUT

address, Rx). In this way, the writing to any of these FPGA registers takes 2 AVR clock

cycles and therefore the total execution time of the four generic C code instructions
shown above is 8 clock cycles. In conclusion, although this device has a great flexibility
thanks to its fine reconfiguration granularity (up to 1-bit of the configuration memory
can be changed at one time), its reconfiguration throughput is low. Table 5.1
summarises the more relevant features of the Atmel FPSLIC AT94K reconfiguration

89

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

controller architecture. In the part IV of this dissertation, some reconfigurable
applications are deployed in the AT94K FPSLIC aimed at exploring the performance of
this architecture. The main drawback of this PSoC device is, however, its limited size
(only 40 Kgates in the AT94K40 device), enabling only the development of small
embedded applications.

Table 5.1 Atmel AT94K/AT94S FPSLIC reconfiguration controller

DEVICE RECONF. | MAX. RECONF. | CONFIG. RECONF. RECONF.
FAMILY WORD FREQUENCY INTERFACE LATENCY GRAIN
AT94K | AT94S 8 bits 25 MHz explicit word address+data 4 memory accesses per data byte | 1 bit SRAM

B. Altera Excalibur EPXA SoPC

Altera developed the family of Excalibur system-on-programmable-chip devices which
combine a 32-bit RISC ARM9 MCU with an Altera APEX20KE FPGA on a single chip
[Altera Corp. HRMEPXA 2002]. The embedded MCU consists of a hard core 32-bit
ARMO922T processor, on-chip SRAM and dual-port SRAM memories and standard
peripherals such as timers, UART or SDRAM controllers, all interconnected through two
AMBA AHB buses, AHB1 and AHB2. Besides, external non-volatile and volatile memories
(used to store the CPU program and the application data, as well as the FPGA
bitstreams) can be linked to the SoPC device through both a SDRAM controller and an
expansion bus interface (EBI) internally connected to the AHB buses. All these
components compose a typical MCU-based computing platform. In addition to the MCU,
an FPGA device is connected to the system through some internal dual-port memories
(DPRAM) and also AHB bus interfaces which enable the communication among
peripherals of the embedded MCU and custom hardware processors implemented by the
designer in the FPGA. In addition, the shared DPRAM allows the logic in the FPGA to
interface with the MCU. Besides, a reconfiguration controller is connected to the AHB2
bus to carry out the reconfiguration of the FPGA at run-time. This reconfiguration
controller is managed by the ARM9 processor through a set of configuration registers
placed in the system memory map. One of these registers is used to buffer the bitstream
to the internal FPGA configuration memory. The other control and status configuration
registers are connected to the logic of the configuration controller to handle the transfer
of the full bitstream from the MCU data buffer register to the FPGA configuration
memory adapted to the specific configuration protocol of the APEX20KE device. In this
way, the reconfiguration controller provides the configuration port (control, data and
status signals) for the specific FPGA interface.

The system bitstream contains the configuration data for all the system, i.e., the
embedded MCU configuration and its program code, and also the FPGA configuration
data. This FPGA admits only a full reconfiguration of the device; a partial reconfiguration
is not possible. In this way, the configuration controller takes charge of all the boot
process of the Excalibur device, such as configuring the PLLs, the memory map and even
the embedded MCU and its cache memories, although the last step related to the FPGA
configuration is performed by the embedded MCU itself. In fact, during the
reconfiguration, the FPGA is not operative while the MCU keeps in operation and takes
charge of the reconfiguration process [Altera Corp., AN187 2003]. The set of
configuration registers accessible by the ARM9 CPU to transfer the full bitstream to the
configuration memory of the APEX 20KE FPGA are detailed next:

= The CFG_DATA register is the input buffer through which the reconfiguration

controller receives synchronously the FPGA bitstream,
= The CFG_CLCK register lets configure the clock frequency used to transfer the
bitstream to the FPGA,

90

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

= The CFG_CTRL register performs all the handshake necessary between the ARM9 CPU
and the FPGA reconfiguration controller, and finally,

» The CFG_UNLK register is used as a protection mechanism against unintended
accesses to the FPGA configuration port, only admitting configuration data to initiate
the reconfiguration if the configuration logic is unlocked.

The configuration port of the FPGA and its connection to the MCU through the

reconfiguration logic is illustrated in Figure 5.3, where the reconfiguration controller is

managed in software by the MCU through the four control and status registers and the
reconfiguration logic is mapped as a hard core in the fabric to adapt the four registers
interface to the reconfiguration port of the FPGA and its configuration logic.

ARM9 CPU RECONF. APEX 20KE FPGA

LOGIC
RECONF. | [CFG CTRL | a2vis
nSTATUS LOGIC

CONTROLLER
(@ DATA[7:0]
DCLK
CONFIG_ENABLE

ﬁ -
Figure 5.3 Altera Excalibur EPXA reconfiguration controller architecture

N

CONFIG_DONE CONFIG.

A AN

D CFG_DATA | s2bis
D cre cLok | a2

YV V.V YV

VVVVYV

The APEX20KE is reconfigured in Passive Parallel Synchronous (PPS) mode [Altera Corp.,
AN116 2000]. The reconfiguration port of the FPGA constituted by the control lines
CONFIG_DONE, CONFIG_ENABLE, nSTATUS, DCLK and the DATA bus is connected to the
FPGA configuration logic to access thus the SRAM configuration memory. To begin the
FPGA configuration, CONFIG_ENABLE is given a low-to-high transition and the
configuration data is transferred from the reconfiguration controller to the FPGA via the
DATA bus. This configuration data is synchronized to the DCLK input. On the first rising
edge of DCLK, a byte of configuration data is latched into the FPGA. Eight falling edges of
DCLK are required then to internally serialize the 8-bit data in the FPGA and reach thus
the configuration memory. Like this, the 32-bit data word received from the MCU register
by the reconfiguration controller is split first in four 8-bit words to be transferred in this
format to the FPGA reconfiguration logic; afterwards, these 8-bit words are serialized
with DCLK to meet in the end the 1-bit serial synchronous interface of the internal FPGA
configuration memory. Thus, new data shall be presented by the reconfiguration
controller and latched by the FPGA every eight clock cycles, and this process continues
until the full FPGA bitstream is transferred. A status pin nSTATUS on the FPGA indicates
when it is serializing data and when it is ready to accept the next data byte (ready/busy).
The reconfiguration controller senses this low signal to send bitstream bytes only when
the FPGA is ready. Moreover, if an error occurs during configuration, the nSTATUS pin
drives low. Once the full bitstream is configured successfully, the FPGA releases the
CONFIG_DONE pin. When CONFIG_DONE goes high, it indicates that configuration is
complete. After the last data byte, the DCLK pin must be clocked 40 times for the
APEX20KE device to release CONFIG_DONE and initialize the FPGA.

According to the reconfiguration protocol described, the effective configuration
throughput is 1 bit/clock. Besides, the maximum configuration frequency of the
APEX20KE is 16 MHz —programmable through the CFG_CLCK register—- and results in a
maximum reconfiguration bandwidth of 16 Mbps. Due to the reconfiguration system
architecture, the FPGA is reconfigured by the ARM9 processor via the reconfiguration
controller managed in software. The ARM9 core runs in software the transfer of the
binary file stored in memory related to the full FPGA bitstream [Altera Corp., AN298
2003]. The embedded MCU configures the FPGA by transferring the bitstream through
the CFG_DATA register. This transfer is partitioned in 32-bit words via AHB2.

91

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Nonetheless, CFG_DATA is only a holding register and the data stored in this register are
then loaded serially (1-bit data per clock cycle) into the FPGA configuration memory
[Altera Corp., DSAPEX20K 2003]. The program code of the full reconfiguration is shown
next.

#define CFG_CTRL (*(volatile unsigned long*)(BASE + 0x140)) /* FPGA control cfg reg. */
#define CFG_CLCK (*(volatile unsigned long*)(BASE + 0x144)) /* FPGA clock cfg reg. */
#define CFG_DATA (*(volatile unsigned long*)(BASE + 0x148)) /* FPGA data cfg reg. */
#define CFG_ULCK (*(volatile unsigned long*)(BASE + 0x14C)) /* FPGA unlock cfg reg. */

CFG_ULCK = CONFIG_UNLOCK_MASK; /* unlock configuration logic */

while (CFG_CTRL & CONFIG_LOCK_MASK); /* wait until configuration logic unlocked */
CFG_CLCK = CONFIG_CLOCK_FREQ; /* set configuration logic clock frequency */
CFG_CTRL = CONFIG_ENABLE_MASK; /* enable configuration */

while (sbiAddress <= shiAddressEnd) /* full bitstream transfer from ext. memory to FPGA */

{
while (CFG_CTRL & CONFIG_BUSY_MASK); /* check busy status bit */
CFG_DATA = *(unsigned long *)sbiAddress; /* 32-bit data from bitstream sbi file to buffer */
sbiAddress ++; [* point to the next 32-bit bitstream data word */

}
while (CFG_CTRL & CONFIG_ENABLE_MASK); /* wait until configuration is complete */

Code 5.2 Reconfiguration of the FPGA via the MCU software code

In Excalibur devices, the FPGA is configured by the MCU not only at the start up
sequence, after power-on reset, but it is also possible in any moment during normal
execution. The FPGA is stopped while the MCU continues active, reconfiguring the
programmable logic by transferring configuration data from a flash memory. During the
system initialization, which occurs immediately after configuration, the FPGA resets its
registers first and then, once the initialization is complete, the system begins to operate.
That means that the intermediate data obtained during the execution of a hardware
context are lost when a new hardware context is downloaded and initialized. This
initialization of the content of registers is relevant from a point of view of the development
of reconfigurable systems since if this information is required to remain from one
reconfiguration to another then it shall be saved in memory on purpose, for instance in
the internal DPRAM shared by MCU and FPGA in the SoPC device, and be recovered then
to be used in the next hardware context after reconfiguration.

Furthermore, the bitstream is composed of an array of data where each bit in the
sequence corresponds to a specific reconfigurable resource of the FPGA. This bitstream
format does not admit then a partial reconfiguration of the device since the absolute
address for each configuration bit is not explicitly specified in the bitstream format but it
is calculated through the sequential order in which the bits are transferred to the FPGA
configuration memory. In this way, the bitstream size related to each FPGA device of the
Excalibur family is fixed, independently of the design implemented inside the FPGA.
Furthermore, to the best of the author’s knowledge, Altera never released public
information about the bitstream format of the APEX20KE FPGA placed inside the
Excalibur SoPC device so there is no chance for system developers to make big research
progress in this direction to try to improve the efficiency of the reconfiguration process.
Furthermore, the configuration port is not accessible from the FPGA logic but only from
the MCU, therefore it is not possible for the system architect to modify the technical
characteristics of this reconfiguration engine. The more relevant technical features of the
reconfiguration engine architecture is shown next in Table 5.2.

Table 5.2 Altera Excalibur EPXA reconfiguration controller

DEVICE RECONF. | MAX. RECONF. CONFIG. RECONF. RECONF.

FAMILY WORD FREQUENCY INTERFACE LATENCY GRAIN

EPXA1, EPXA4, EPXA10 32 bits 16 MHz sequencial data siream 1 clock per data bit Full SRAM
(implicit addressing)

92

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

The Excalibur device has been used in some application examples conducted in this
dissertation, partitioning the application in functional tasks synthesized in specific
coprocessors that are performed in the APEX220KE FPGA and reconfigured dynamically
by the ARM9 processor. Furthermore, some reconfiguration experiments based on
overclocking have been also performed, running the full FPGA reconfiguration at 50 MHz
instead of the maximum frequency specified by Altera of 16 MHz, reaching a
reconfiguration speed up factor of 3.125 without realizing any failure.

Although the Altera Excalibur family is nowadays deprecated, this device remains one of
the few commercial SoPCs —along with the Atmel FPSLIC AT94K- which admitted the
exploitation of run-time reconfigurable computing already ten years ago, constituted by
an ARM processor and an FPGA in the same package. Novel SoC devices recently
announced like Altera Cyclone-V and Arria-V SoC FPGAs or Xilinx Zyng-7000 EPPs keep
strong similarities with this SoPC device.

5.2.2 Open reconfiguration controller solutions

The reconfigurable platforms overviewed up to now offer a closed, hard-wired solution
regarding its reconfiguration engine. Other opposite alternative in commercial FPGAs is
to offer the reconfiguration engine as an accessible block, left open to customization after
manufacturing the device. Thus, in this case the system architect can design the
reconfiguration controller together with the end-user application. This more flexible
design approach is possible today with Xilinx FPGA devices, where the reconfiguration
controller can be designed as a soft-core IP at post-fabrication.

A. Xilinx Virtex/ Spartan FPGAs

Xilinx is the FPGA vendor with the longest experience in the exploitation of run-time
partial reconfiguration in programmable logic devices. Concerning the reconfiguration
granularity of the Xilinx FPGA devices, the grain has been evolving with the launch of
new families of devices. As example, the fist Virtex families of FPGA devices (e.g. Virtex-II)
are arranged in frames that are tiled about the device. That is, the internal configuration
memory is partitioned into vertical segments of one-bit wide called frames. Thus, a frame
is the atomic unit of configuration —it is the smallest portion of the configuration memory
that can be written to or read from— and all operations must therefore act upon whole
configuration frames, while the number and size of frames varies with the device. More
recent families of Virtex devices (e.g. Virtex-4) admit a grain composed of a portion (some
CLB tall inside the same clock region) of a frame whereas in the Spartan families (e.g.
Spartan-3) the grain is increased to a full column, wich is composed of several frames.
Thus, depending on the family used, the reconfiguration grain of the programmable logic
device is restricted to a specific size. Although a single CLB LUT or flip-flop can be
modified, the underlying reconfiguration mechanism does not permit the writing to the
configuration memory by addressing a resource lower than the smallest grain. That
means that the reconfiguration of a 1-bit resource to change it from O to 1 (or 1 to 0) is
not possible unless the entire or partial column or frame where this resource is fitted is
reconfigured, changing only the target 1-bit resource and overwriting the rest of
resources with exactly the same values. As a consequence of this reconfiguration grain,
Xilinx FPGAs can be classified in two types from the point of view of partial
reconfiguration technology: PR glitchless and non-glitchless devices. Focusing on the
devices currently in the market, the PR non-glitchless devices are the Spartan-3 and the
extended Spartan-3A/3AN/3A DSP FPGA families. On the contrary, the latest Spartan-6
and the Virtex families Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5 and Virtex-6, in addition
to the 7-Series FPGAs and Zynqg-7000 EPP devices are built with PR glitchless
technology. This is a crucial aspect concerning partial reconfiguration feasibility. PR
glitchless technology means that when an FPGA memory cell (logic or routing resource) is
reconfigured with the same value (O or 1) than it has already stored, the memory cell
keeps such value constant (O or 1) before, during and after the reconfiguration, therefore

93

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

the resource controlled by that bit will not experience any discontinuity in operation.
This is not the case in PR non-glitchless technology, especially when the value rewritten
is 1: in this case it can be observed some transition to O in such signal that in terms of
functionality can originate some malfunction or unexpected glitch. Therefore, PR
glitchless technology is required in order to enable static routing resources cross a PR
partition with resources reserved for reconfiguration, a key condition for the automatic
place and route tools in order to make easier the routing of the reconfigurable system.
Xilinx devices offer a big flexibility regarding configuration interfaces. In general, each
device has several interfaces available to access to its configuration memory, from serial
to parallel. Most of these devices are also equipped with an internal configuration access
port (ICAP) interface to access the configuration memory. Each FPGA family holds
different characteristics concerning reconfiguration data width, reconfiguration frequency
and reconfiguration granularity. All these features are collected in Table 5.3.

Table 5.3 Partial Reconfiguration features of Xilinx FPGAs

DEVICE MAX. RECONF. BANDWIDTH CONFIGURATION RECONF. GLITCHLESS
FAMILY (BUS SIZE & RECONF. FREQ.) | INTERFACE GRAIN PR TECH.
SPARTAN-3 400 Mbps (8 bits x 50 MHz) serial, JTAG, selectMAP full column no
SPARTAN-3E 400 Mbps (8 bits x 50 MHz) serial, JTAG, SPI, BPI, selectMAP full column no
VIRTEX-II/ [l PRO 400 Mbps (8 bits x 50 MHz) serial, boundary scan, selectMAP, ICAP full frame yes
SPARTAN-3A/3AN/3A DSP | 640 Mbps (8 bits x 80 MHz) serial, JTAG, SPI, BPI, selectMAP, ICAP full column no

. serial, JTAG, boundary scan, selectMAP, fraction of frame
VIRTEX-4 3.2 Gbps (32 bits x 100 MHz) ICAP of 16 CLB tall yes

. serial, JTAG, boundary scan, SPI, BPI, fraction of frame
VIRTEX-5 3.2 Gbps (32 bits x 100 MHz) selectMAP. ICAP of 20 CLB tall yes
SPARTAN-6 320 Mops (16 bit x 20 MHz) serial, JTAG, SPI, BPI, selectMAP, [cAp | raction offrame | .

of 16 CLB tall

. serial, JTAG, boundary scan, SPI, BPI, fraction of frame

VIRTEX-6 3.2 Gbps (32 bits x 100 MHz) selectMAP & ICAP of 40 CLB tall yes

Several configuration interfaces can access the configuration logic of the FPGA. The
arbitration mechanism to ensure that the access to the configuration memory is granted
only to one interface at one time is controlled through a word of synchronism
(OxAA9955606) sent first within the bitstream (bit file). Inside the configuration logic, all
the configuration interfaces have a kind of pattern recognition block in charge of
detecting the SYNC word in the data stream. Once the SYNC word is found, such pattern
recognition block enables the corresponding data path to the configuration logic while all
other paths are automatically disabled at that time. This arbitration mechanism is
illustrated in Figure 5.4.

Serial >
JTAG > \ CONFIGURATION
MU / LOGIC
SelectMAP >
ICAP >

‘SYNC’' PATTERN RECOGNITION

Figure 5.4 Arbitration of configuration interfaces in Xilinx FPGAs

94

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Undoubtedly, from all the reconfiguration interfaces available, the most attractive for PR
design is the ICAP primitive because it is accessible from inside the FPGA and offers the
maximum reconfiguration bandwidth possible. The ICAP interface is composed of the
control lines CLK (clock), CE (clock enable) and WR (write enable), a status signal BUSY
for handshake, and a data bus split in input IN and output OUT, both of 8, 16 or 32 bits
depending on the FPGA family. The block diagram of the reconfiguration controller
implementable in the Xilinx FPGAs via the internal ICAP interface is depicted below.

EXTERNAL RECONF. ICAP RECONF. FPGA
MEMORY CONTROLLER LOGIC CONFIGURATION
MEMORY
32, 16 or 8 bits > DATA IN
32, 16 or 8 bits
l | & DATA OUT ' '
BITSTREAM >| WE
REPOSITORY \,_‘/ > ce \,_‘/
< BUSY
>] CLK
QRENSOEICN FIXED SOLUTION
(PROGRAMMABLE) (HARD FABRIC)

Figure 5.5 Xilinx FPGA reconfiguration controller architecture

The reconfiguration engine is split in a fixed logic or hard fabric (reconfiguration logic)
and a part built in flexible logic customizable by the system designer (reconfiguration
controller). The configuration logic consists of a packet processor, a set of registers, and
global signals that are controlled by the configuration registers. The packet processor
controls the flow of data from the configuration interface to the appropriate register. The
registers control all other aspects of configuration. The format of the Xilinx bitstreams is
organized in commands and configuration data. All bitstream commands are executed by
reading or writing to the configuration registers. The hard-coded reconfiguration logic in
contact with the ICAP and the FPGA configuration memory takes charge of decodifying
the bitstream. The flexible part implements the FSM related to the transmission of the
bitstream from the repository to the ICAP interface following the specific communication
protocol expected by the FPGA device.

The flexibility granted to Xilinx FPGAs regarding their open reconfiguration engine
architecture has allowed the research community to get involved in this topic
contributing with big efforts in search of efficient designs of reconfiguration engines for
embedded applications. This has been and remains still today a topic of high interest
among the scientific community, basically due to the relevant impact of the
reconfiguration latency on the performance of the applications based on dynamically
reconfigurable FPGAs. Some of the most relevant works on this area are presented next.

B. Research on reconfiguration controllers based on Xilinx FPGAs

First PR approaches carried out with Xilinx devices were focused on Spartan-3, starting
with low performance reconfiguration interfaces, for instance the JTAG interface
managed in software by an internal soft-core processor connected by GPIOs to the
external JTAG pins and reaching an extremely low reconfiguration rate of 2 Mbps
[Paulsson et al., FPL 2007], or even deploying the same approach but replacing the JTAG
by the external SelectMAP interface managed from custom logic inside the FPGA,
increasing thus the data bus width, although reaching yet a slow rate of 16.5 Mbps
[Gonzalez et al., MICRO 2007]. A weak point in those controllers is the fact that the
bitstream transfer is totally managed by the host processor in software, fact that reduces
the application performance since the reconfiguration task is not hidden to the own
functional processing of the application and furthermore this task can highly influence

95

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

the application scheduling. This reconfiguration time, usually carried out in one shot —
without interruptions in between— to accelerate thus the swapping of PR modules, could
provoke some difficulties to fit a long non-preemptive task devoted to reconfiguration in
the scheduling of applications like digital signal processing that demand a cyclic signal
sampling/computation at high frequencies. Just for this reason, intended to minimize
the impact of the reconfiguration over the application processing itself and not to degrade
the CPU performance with excessive additional workload, it results advisable to design a
master reconfiguration processor to manage all the transfer by itself, freeing thus the
system CPU. All these advances are applied in [Bayar and Yurdakul, HIPEAC 2008], still
under Spartan-3, based on a stand-alone hardware reconfiguration controller which
downloads the partial bitstream via the SelectMAP interface. Although it reaches the
maximum reconfiguration throughput of Spartan-3 FPGAs (8-bit data at 50 MHz, i.e. 400
Mbps), the main drawback of this solution is that the partial bitstream has to be
preloaded in BRAM (internal RAM blocks of the FPGA) because the controller retrieves
the data from there. This fact restricts this solution to extremely small partial bitstreams
given that, in general, the amount of RAM blocks available inside a FPGA is very limited.
Hence, this solution is only suitable for small PR regions. Another approach based on
Spartan-3 is presented in [Cantdé et al, FPL 2009] where it is developed a custom
reconfiguration controller connected to the LMB-EMC bus. This controller retrieves 32-
bit words from an external SRAM or Flash memory using a LMB-EMC memory controller
and drives the 8-bit SelectMAP interface under a system clock of 40 MHz, reaching a
reconfiguration throughput of 319.8 Mbps.

Apart from Spartan-3 devices, other works have been conducted on Virtex-II Pro devices.
A NoC system equipped with a custom ICAP-based configuration controller under Virtex-
II Pro is presented in [Moller et al, ReCoSoC 2007], reaching a reconfiguration
throughput of around 80 Mbps. This reconfiguration throughput is achieved also in
[Bomel et al., ARCS 2009] with an embedded application running over Ethernet at 100
Mbps where the reconfiguration controller retrieve from remote servers the partial
bitstreams to be downloaded in the FPGA. This solution is prototyped in a Virtex-II Pro
device running at 100 MHz and the reconfiguration controller is implemented in software
by the PPC405 core and supported by DMA transfers. Both the processor and the
Ethernet controller are connected to the CoreConnect PLB bus and from there the
bitstream is bridged to the OPB bus where the ICAP interface resides. Another work
based on Virtex-II Pro and detailed in [Van der Bok et al., ProRISC 2007] concerns to the
implementation of an ICAP-based reconfiguration controller able to reconfigure a PRR at
its maximum throughput of 400 Mbps (8-bit data interface operating at 50 MHz).
However, such reconfiguration controller is designed in the way that it is connected to
the repository of reconfigurable bitstreams in an exclusive mode, i.e., an external
memory device is used as a dedicated resource connected only to the reconfiguration
controller by means of a specific memory controller —so-called partial reconfiguration
management unit (PRMU) — and connected to the external memory. The fact of using a
dedicated memory instead of a shared one to store the partial bitstreams can notoriously
increase the cost of the embedded solution since other processors in the system, e.g. the
CPU, do not have access to that data source and probably will require access to extensive
data, demanding thus the presence a second memory source in the system. Apart from
this drawback, as advantage, the dedicated bus to connect the reconfiguration controller
to the memory releases the processor bus, freeing it to other processors. Going on with
the overview of Virtex-II Pro based reconfiguration controllers, a master CoreConnect PLB
ICAP controller is developed in [Claus et al.,, IPDPS 2007]. It is equipped with DMA
capability to work independently of the CPU. The PLB and ICAP are clocked at 100 MHz.
This ICAP overclocking is possible by using a simple handshake protocol based on the
BUSY signal of the ICAP. This signal informs when it is possible to flow data through the
ICAP port. When the ICAP is busy, it is necessary to insert wait states as a result of
overclocking the ICAP above its specified frequency. In these conditions, it was possible
to achieve an effective throughput of 760 Mbps.

96

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

As summary of the works on Spartan-3 and Virtex-II Pro devices, none of the approaches
discussed above fulfils all the requirements demanded to an efficient reconfiguration
controller; some of those controllers achieved some requirements but not all them at the
same time. The performance evaluation of all these solutions is presented in Table 5.4.

Table 5.4 Reconfiguration controllers implemented on Spartan-3 and Virtex-II Pro devices

Research work Reconfiguration controller FPGA (demsgzggs%lgfe @) fr;?c((l:/rl]lfl.z) biz(:(%ri]tfé) T{mﬁg;’ t
[Paulson, FPL 2007] CoreConnect-OPB JTAG Spartan-3 SRAM (d) 10 1 2.0
[Gonzalez, MICRO 2007] SelectMAP Spartan-3 SDRAM (d) 65 8 16.5
[Bayar, HIPEAC 2008] SelectMAP Spartan-3 BRAM (d) 50 8 400.0
[Canto, FPL 2009] LMB-EMC SelectMAP Spartan-3 SRAM/FLASH (s) 40 8 319.8
[Mdller, ReCoSoC 2007] ICAP Virtex-Il Pro SRAM (d) 50 8 80.0
[Bomel, ARCS 2009] CoreConnect-OPB ICAP Virtex-Il Pro Ethernet 100 8 80.0
[Van der Bok, ProRISC 2007] | ICAP Virtex-Il Pro PRMU (d) 50 8 400.0
[Claus, IPDPS 2007] CoreConnect-PLB ICAP Virtex-Il Pro DDR-SDRAM (s) 100 32 760.0

(1) Mbit expressed in Sl system (decimal base: 106), not in IEC 60027 system (binarly base: 220).
(2) Type of memory used to store the partial bitstreams: (d) dedicated and exclusively accessed by the reconfiguration controller or (s)
shared and accessible by other controllers from the system.

Of all the devices addressed up to now, Virtex-II Pro ICAP features the highest
throughtput. Its successors Virtex-4, Virtex-5, Virtex-6 and 7-series FPGA families did a
great advance concerning PR performance, delivering the maximum reconfiguration
bandwidth today in the market. Somehow, these devices symbolize the transition from
the early-access era to the mature era of partial reconfiguration. The PR early-access era
has been developed basically at the academia while the started mature era, although still
driven mainly by the research community, begins to gain ground also in the industry.
The research works conducted with these devices are covered in the next sections.

5.3 Reconfiguration engine architecture and modelling

This section presents the design of a reconfiguration controller suitable for state-of-the-
art programmable logic devices. The goal is to design a generic reconfiguration controller
easily portable to most of the embedded PR applications based on Xilinx FPGAs, aimed at
being a reference design or standard IP core to be used in many types of end-user
embedded applications. This approach has been prototyped in a Virtex-4 device.

The standard embedded system architecture presented in chapter 4 requires a master
reconfiguration controller provided with an efficient communication link to transfer
bitstream data from outside the FPGA to its internal configuration memory. This process
is carried out via an automatic direct memory access (DMA) transfer of data conducted in
background by the reconfiguration controller, concurrently to the host processor activity,
without causing any impact on the CPU load. In fact, the reconfiguration controller shall
be processor-independent; in foreground, the CPU runs the software program flow and
does not take part in the reconfiguration process except for configuring the transaction
settings (i.e., base address and size of the bitstream), ordering the start command, and
being notified by the reconfiguration controller just when the process has finished.

5.3.1 Reconfiguration controller architecture

The design of an efficient reconfiguration controller is a key aspect to succeed in the

development of partially reconfigurable embedded systems. It must take into account

some design constraints:

= Jt shall provide the maximum reconfiguration bandwidth possible to minimize thus the
reconfiguration latency whenever the application switches from one PRM to another.

97

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

= The number of resources involved in its implementation shall be minimized since the
reconfiguration engine constitutes the only functional block in the system architecture
that differentiates a standard non-reconfigurable system from another reconfigurable
at run-time, as detailed in chapter 4.
= The operation of the reconfiguration engine shall be transparent to the end-used
application; an application designed in a traditional way with HW/SW co-design
should be portable to a PR implementation without too much effort, based on the
standard architecture proposed.
* In order to gain flexibility, the reconfiguration controller must be a modular IP core,
able to be parameterized and adjusted to different platforms.
The basic idea is to establish a permanent datapath between the memory that stores the
partial bitstreams and the FPGA configuration memory. The concept proposed is to insert
a FIFO memory as intermediate buffer between the bitstream repository and the FPGA
configuration memory in order to obtain a decoupling effect between the reconfiguration
logic subsystem and the memory storage subsystem. The write and read ports of the
FIFO let split the datapath in two isolated domains with different data bandwidth since
each port can be configured at different data bus size and frequency. Like this, while the
reconfiguration logic follows the specific proprietary protocol of Xilinx devices, the way
the bitstream is recovered from the external memory to be transferred to the FIFO is a
flexible characteristic in hands of the system designer. With this FIFO, the hardware-
dependent logic (restricted by the bitstream protocol and the ICAP) gets decoupled from
the service oriented to move data between memories, as illustrated in Figure 5.6.

: WRITE PORT READ PORT :

| |

| DATA_IN [0:n] |:> D1 D2 :} DATA_OUT [0:m] :

|

: WREN — —> <— RD_EN :

| WRCLK —PD 4 F2 ¢ RD_CLK :

|

I FULL <— FIFO ——> EMPTY :

: PROG_FULL <— —> PROG_EMPTY |
|

l |

| |

| RST —> |
|

l |

_———— / _ s - - """ J

/ -
Frequency F1 / -7 Frequency F2
Data Bus D1 1.-" Data Bus D2
SYSTEM FPGA
SHARED
MEMORY FIFO CONFIGURATION
(Bitstreams) MEMORY

RECONFIGURATION CONTROLLER

(Master MMU)

Figure 5.6 Decoupling of bitstream provider and consumer via a simple dual-port FIFO

Next it is described the modelling of the FIFO memory concerning data bus size, depth
and operation frequency taking into account the restrictions imposed to the system.

98

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

5.3.2 Analytical model formulation

The decoupling of data bandwidth between the write port and the read port of the FIFO
memory is achieved by designing both parameters —-data bus size and operation
frequency- of each port individually, according to particular restrictions imposed to every
side of the FIFO, i.e., the memory storage and the reconfiguration logic itself. The side
related to the bistreams repository, which operates the write port of the FIFO, is usually
managed by a memory management unit (MMU). We use this acronym to refer to terms
of this part. The other side affected by the read port of the FIFO involves to the
configuration logic; likewise, the parameters related to this side will be designated by the
acronym CFG in the following mathematical development. In a first formulation, it is
presented the study of throughput aimed at minimizing the reconfiguration time.

A. Minimum reconfiguration time

Given a module described in HDL to implement a specific functionality in programmable
logic, once it is mapped in a certain FPGA technology and placed and routed in a specific
PRR, this PRM is abstracted in a binary file or bitstream. The resultant length of this
bitstream depends on the area bounded by the PRR (i.e., type and number of
programmable resources affected) and on the complexity of the PRM to synthesize such
functionality on those specific resources of the FPGA. Compilation tools perform all this
process automatically to convert the HDL code in binary data. This bistream must be as
short of possible to optimise thus two metrics: memory space and reconfiguration time.

Given a PRM defined by a partial bitstream of n bits, its reconfiguration into a specific
PRR consists in transferring the n bits to the configuration logic. The configuration logic
decodifies the n bits of the bitstream —usually decomposed in instructions, addresses and
configuration data— to store thus each configuration bit into the specific address of the
FPGA configuration memory. In order to minimize the reconfiguration time, the transfer
of data to the configuration logic must be performed at the maximum throughput
admitted, which is obtained when combining the maximum bandwidth (i.e., maximum
operation frequency f and maximum data bus width w of the configuration logic
interface) and furthermore transferring the n bits continuously at one word per clock
until the end, without interrupting this process by inserting wait states in between.
Thus, given a FIFO parameterized by the features shown next where the write port is
connected to the MMU and the read port is connected to the configuration logic (CFG):

Write Port
word= W,,,, [bits]

.1
frequency= f =1 [Hz] (5-1)

MMU
Read Port
word= .., [bits|
5.
frequencys fope = ——— [H2] (5-2)
TbFG

in order to achieve the minimum reconfiguration latency, fcr¢ and wcre shall match both
the respective maximum values admitted. Additionally, once the bitstream transaction
starts and the first word is received in the FIFO, the data flow must continue until the n
bits are transferred to the configuration logic. This condition implies that the FIFO
memory must not get empty until the transfer ends, so that the read port is continuously
sourcing data to the configuration logic. This condition can be expressed in the form that
the write port of the FIFO (MMU domain) shall provide a throughput or effective

99

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

bandwidth higher or equal to the one of the read port of the FIFO in the configuration
logic (CFG) domain. Matematically formulated:

Throughput, =~ = Throughput___ {%} (5.3)
s

In this analysis, two possible cases shall be distinguished: the case of having a bitstream
memory exclusively dedicated to the reconfiguration controller (dedicated resource) or the
case in which this memory is accessed by multiple processors at the same time,
becoming then a shared resource that needs arbitration to avoid data contention.

Case 1. Dedicated resource (no arbitration)

In this condition, if the bitstream repository is a single data rate memory resource (e.g.
SRAM or Flash) managed exclusively by the reconfiguration controller or MMU connected
to the write port of the FIFO, the memory bandwidth is exclusively dedicated to the
MMU. The equation (5.3) is expressed as:

Wy [fimu 2 Worg [ferg (5.4)

And the minimum reconfiguration time required to tranferring the n-bits bitstream is:

n

WCFG

teecone = { —‘UCFG (5.5)

Case II. Shared resource (arbitration)

In case that the memory used to store the partial bitstream is a shared resource whith
concurrent access by different processors, this resource shall be arbitrated. This fact
originates a possible loss of throughput. Besides, SDRAM memory is particularly suited
for data-intensive and cost-sensitive embedded applications because it provides low cost
large storage memory space, although it penalizes with some time overhead in the
reading and writing to SDRAM due to its internal buffering, pipeline, etc.

It is considered the MMU reads the shared memory by means of N-bits burst accesses.
Then, on average, the latency required to reach the resource in each burst transfer is
quantified in L clocks at fumy. This latency is the result of considering the time overhead
factors mentioned above like resource arbitration and latency of the memory itself.

burstlength= N [bits]

(5.6)
burst latency L [clock%MU]

Therefore, the time Trus: Spent in performing a burst transaction in these conditions is:

N
Tburst = (L-I_]UMMU (57)

WMMU

In this context, the equation (5.3) is rewritten as:

N > N (5.8)
N N
(L + j oo r Mere
Wumu CFG

100

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

The left side of the equation determines the number of bits per second transmited in a
read burst transaction to move the data from the external memory to the write port of the
internal FIFO. The right side determines how many bits per second can be read from the
read port of the FIFO and provided to the ICAP. The equation can be reworked as follows:

N [Wyu

m wu = Wees DfCFG (5.9)
MMU

This condition must be met to guarantee the minimum reconfiguration time to
tranferring the n-bits bitstream partitioned in N-bit bursts, each burst transaction with a
latency L. If the equation (5.9) is fulfilled then the minimum reconfiguration time is:

n

teecone = |7 —‘D-CFG (5.10)

VWZFG

Otherwise, if the condition (5.9) is not fulfilled, the reconfiguration time increases
because the FIFO gets empty at some point of the n-bits transmission, resulting in
additional wait states included in the read domain of the FIFO during the bitstream
download. As remark, the equation (5.4) is a particular case of equation (5.9) when the
latency L is null. The latency L depends on the arbitration algorithm and the type of
memory addressed (e.g. SRAM, SDRAM, DDR-SDRAM, DDR2-SDRAM, etc).

Apart from designing the data bandwidth of both ports of the FIFO, other relevant design
parameter is the FIFO depth. It delimits the time that the filling of the FIFO in the write
domain can be unattended without affecting the continuous emptying conducted in
parallel in the read domain. The minimum time elapsed from the instant the FIFO is full
until it gets empty is a critical parameter in those systems where the memory which
stores the bitstreams is a shared resource accessed concurrently by more than one
controller. When the FIFO is full or not empty, there exists a gap of time in which the
memory that stores the bitstream can be released from the reconfiguration controller and
be used by other master controller connected to the memory to attend other write/read
requests while the reconfiguration is in progress. This strategy permits to manage the
transfer of the bitstream to the FIFO scheduled in bursts transactions spaced a certain
period of time. In this way, the bursts of the reconfiguration process can be interleaved
with other accesses to the shared memory done by other processing tasks which coexist
in the system. In these conditions, the reconfiguration engine can schedule a cyclic
reconfiguration task to perform a burst transaction periodically, leaving a time T between
two consecutive bursts. Other functional tasks that require a cyclic access to the shared
memory have also the time window they require. This study is described next.

B. Reconfiguration process scheduled in a cyclic task

The difference of speed between the simultaneous filling and emptying of the FIFO
generates an accumulated buffer of data inside the FIFO when the filling is faster than
the emptying. Therefore, the FIFO depth lets compensate the difference in throughput of
both domains. This buffer lets architect the reconfiguration process to download the
partial bitstream split in spaced and cyclic burst transactions instead of performing the
downloading of the n-bits of the bitstream in one shot, collapsing the access to the
shared memory resource for a long time.

Given a FIFO of N bits of capacity and initially full of data, the minimum time T spent by
the FIFO to be emptied is denoted by the expression:

T = Nog. (5.11)

VWCFG

101

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

This time delimits the period of the task scheduled to perform the downloading of a n-
bits bitstream organized in burst transactions of N-bits size and freeing up the memory
access after each burst to other resources accessing the shared memory, with a latency L
to access the shared resource. The free time Tp.. between two consecutive bursts is
obtained from equations (5.7) and (5.11) as follows:

T = T_Tburst = N D-CFG_(L-'- N jD-MMU (5.12)

free
CFG VVMMU

This free time of the shared resource can be used by other master controllers in the
systems to access the memory while the reconfiguration is conducted. This interleaving
of tasks is interesting in order to hide the reconfiguration process of one PRM while other
tasks are processed concurrently. Furthermore, this reconfiguration can be hidden by
other hardware tasks processed in other PRRs while one of the PRRs is reconfigured.

5.3.3 System integration and proof of feasibility

The reconfiguration controller modelled in the previous section has been prototyped in a
Xilinx Virtex-4 FPGA. The platform used is the Xilinx ML401 evaluation board composed
of the XC4VLX25 FPGA. Following the minimalist system architecture proposed in
chapter 4, the embedded system is composed of a host processor (MicroBlaze sof-core),
the reconfiguration controller and a PR region. Besides, a DDR-SDRAM chip is managed
by a MPMC synthesized in the FPGA connected to four buses: a 64-bit Native Port
Interface (NPI), a 32-bit PLBv46, and two Xilinx Cache Link (XCL) buses, where the
system designer can define the priority given to each of the buses [Xilinx Inc., DS643
2008]. The NPI is connected to the master MMU. The PLBv46 is the multiprocessor bus
of the system, used by the host processor and its peripherals. The other two XCL buses
are oriented to fast instructions and data caches of the host processor, respectively.
These caches are built with internal RAM blocks of the FPGA. Although the system also
has Flash memory, the system uses DDR-SDRAM as repository of bitstreams since, in a
generic case, the bitstream can come also from an external communication link in case
of a remote system update. In this way, it is considered that the bitstream will be moved
to the DDR-SDRAM before starting the reconfiguration process. This DDR-SDRAM
memory stores the program code, the settings or application data required by the
different controllers of the system and the partial bitstreams. Therefore, this memory is a
shared resource accessible by the host processor, the PRMs and the reconfiguration
engine at any time. Due to this reason, it is connected to a MPMC from which it can be
accessed either by the host processor —from the PLBv46 system bus or the XCL buses- or
by the reconfiguration controller or PRM - via the NPI bus connected to a master MMU
specifically designed for establishing a fast link between the external DDR-SDRAM
repository and both the ICAP primitive and the PRR. The block diagram of the system is
shown in Figure 5.7.

The designed master MMU handles the data transaction between the DDR-SDRAM
memory and up to three internal FIFOs, one connected to the FPGA configuration
memory and the others to the PRR, via the NPI protocol. The NPI is configured with a 64-
bits data bus. This 64-bit data bus is connected to the write port of the FIFO inserted in
the datapath of the FPGA configuration memory. The counterpart read port of such FIFO
uses a data bus length of 32-bit since this is the maximum length admitted by the ICAP
primitive in Virtex-4 devices. Regarding operation frequencies, both write and read ports
of the FIFO, i.e. NPI and ICAP sides, work at 100 MHz, although the NPI side could work
at a higher rate if necessary. The maximum frequency admitted by the ICAP interface is
100 MHz. Concerning capacity, the FIFO has a depth of 1024 words of 32 bits, delimited
basically by the size (total RAM bits) and flexible geometry (width and depth) admitted by
the RAM blocks in the Virtex-4 technology.

102

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE

Francisco Fons Lluis

877-2012

T.

DL:

Wvdd
‘WaW
o0

anT-a

siqee X ze
ENE]
Y¥318193d

T

300930

J\{ AKX

Y
\{_

"HLSNI

1NN

JHOVO-a

nv

SY31SI9TY
3S0dind
WI03ds

TF

Wvdd
‘WaW
o0

aNT

¥344nd
"HLSNI

7T AT

NOIO3d

378vdNOIANOD3Y
ATIVILYVd

-» OMOV SNg

«5 Nm

oyovi sng /A
-y_n Nm-

AJONEN
NOILYHNOIINOD YOdd

T
@ 1901

s
¥ 3%

L~

dvol dVINIO3IRS

7T 7T

TdLO
'ANOO3d

Feal

‘O34 SLIS B LD
H3LINNOD

NV4O0dd

JOUL

JHOVD

d0SS300dd LSOH

\
/

N1S NAIN

ZHN 06—

[—ZHIN 09

[—ZHW 00}

04l 04l

04l

ZHIN 001

[—ZHN 00}

[—ZHIN 001

IT

el

eol>

AN
\m4

LS NAIN

9vA g1d

g1d

19,

HSY14
dVaNIT

Old©

OWdW

¢E¢-SY
WOD

Wvdads-dad

d3NIL

T4IND
INI

HSVT4
WH041V1d

Figure 5.7 Block diagram of the system architecture deployed in the ML401 platform

103

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

In order to reduce the transfer latency at minimum, the master MMU performs the
bitstream reconfiguration in burst transfers of the maximum size possible to the internal
FIFO. In this way, it is reduced the number of requests to access the shared resource.
The maximum number of words (32-bits) transferred in each burst is 64 words. NPI
throughput increases with burst size so the 64 word bursts offer the highest throughput.
In the other side, the reconfiguration controller reads the stored FIFO data and transfers
them in 32-bit format to the ICAP primitive as long as the FIFO is not empty. The read
port of this FIFO is dedicated to the ICAP only. In summary, the master MMU is handling
the direct memory access to huge DDR-SDRAM memory to download the bitstream into
the FPGA in an autonomous way to not overhead the host processor during the
reconfiguration. The other two bidirectional FIFOs are connected directly to the PRR.
They are used by the end-user application as a fast communication channel between the
static side (MCU) and the reconfigurable module placed in the PRR, especially if intensive
transfers of data are required, and constitute a full-duplex link.

The slave MMU implemented as a part of the reconfiguration engine and connected to the
PLBv46 bus is based on a set of control and status registers which link the
reconfiguration engine with the host processor. Some of these registers are written by the
master MMU or the PRM and read by the host processor. The other registers work in the
opposite direction, i.e., they are written by the CPU to be read then by the master MMU
or the PRM. In addition, some of these registers are used by the CPU to directly control
the enable lines of the bus macros, aimed at putting in high impedance the output lines
of the PRR while the reconfiguration is in progress, to prevent the PRR could alter the
static part of the design during its reconfiguration. In this way, the dynamic region is
decoupled from the static region when that region is reconfigured. Moreover, the PRR is
tied to reset —also through a control line managed from the slave MMU registers— during
the reconfiguration, and this reset line is released once the reconfiguration has finished
in order to make the new PRM start its execution.

As observed in Figure 5.7, the PRR is connected to two types of interfaces: FIFOs,
capable of transferring huge amounts of data, and registers, used as control and
configuration signals during the reconfiguration and the execution of the PR
coprocessors. These two types of interfaces lets cover most of the demands regarding
transfer of information between the two processing units (MCU and PR unit) required by
a broad range of embedded applications. Apart from the registers, the master MMU uses
an interrupt source connected to the interrupt controller through which it can notify the
CPU when a specific event occurs, usually the one related to the completion of a data
transaction between the ICAP or the PRR and the DDR-SDRAM. Other interrupt source
connectable to the interrupt controller could be a timer in case the software applications
need to perform some processing following a scheduling of periodic tasks. The slave MMU
and the interrupt controller, both connected to the PLBv46, constitute the physical link
between the host processor and the reconfiguration engine. Additionaly to this, the DDR-
SDRAM data is also a shared resource between both engines.

The reconfiguration process is organized in the following way: the host processor
manages the application flow and triggers the reconfiguration when required. After this
trigger, the reconfiguration controller starts the downloading of the specific bitstream to
the FPGA configuration memory by means of the master MMU. This instruction is given
by the host CPU through the configuration registers of the slave MMU. The host
processor only needs to configure the initial address and size of the partial bitstream to
be downloaded in the PRR and then give the go ahead to the master MMU to start the
reconfiguration process. Then, the master MMU starts the bitstream DMA transfer to the
internal FIFO and from this to the ICAP primitive. Once the transfer is finished, the host
processor is notified either through some flag read from the status registers of the slave
MMU in case of making use of a polling strategy, or attending an interrupt service
routine (ISR) related to the interrupt source of the master MMU. Both options are
possible. Thanks to the use of a dedicated master MMU, the host CPU only takes charge
of ordering the start of the reconfiguration process but is not involved in the transfer. In

104

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

this way, the reconfiguration is practically transparent to the processing of tasks of the
end-user application. From a software point of view, the reconfiguration process seen by
the host processor can be abstracted by a simple function call inserted in the program
flow of the application whenever a new task must be processed in hardware in the PRR.
The prototype of this generic function is shown next in Code 5.3.

void reconf(u32* bitstreamAddress, u32 bitstreamSize);

Code 5.3 Reconfiguration function used by the host processor

The master MMU continuosly check a flag from the slave MMU registers that triggers the
data transfer from the external DDR-SDRAM to the FPGA configuration memory. If this
flag is set then it initializes the process by reading the initial address and size of the
partial bitstream placed in DDR-SDRAM to start the data transaction by means of DMA
transfers without requiring CPU intervention. Once this transaction is concluded, the
master MMU either raises an interrupt or sets a flag in one of the registers of the slave
MMU to notify the CPU. A part from the interrupt source and the slave MMU registers to
link the reconfiguration engine with the host processor, other way of communication is
the shared memory.

As observed in the system block diagram, the host processor is connected to the DDR-
SRAM not only via the PLBv46 bus but also through the XCL buses of instructions and
data caches. These caches let the host CPU accelerate the software processing by
reducing the access to memory (access to dedicated cache memory instead of to a
shared, bursted and arbitrated memory) but also let minimize the access to the DDR-
SDRAM by the CPU, fact that goes in benefit of all the system and especially of the
reconfiguration engine since the probability of collisions for accessing the shared DDR-
SDRAM memory —involving retries and therefore increasing latencies— is reduced. If the
CPU minimizes the access to DDR-SDRAM, then the other resources have more effective
time to access the shared memory while the application is in progress. Moreover, special
care shall be taken in case the host processor is connected to the shared DDR-SDRAM
memory and is caching data that can be modified by both CPU and master MMU
concurrently. In certain processing applications, the CPU and the PRMs can share some
data in the DDR-SDRAM. In that case, if there is a possibility that some data is modified
by the PRM in DDR-SDRAM whereas the CPU is using an obsolete copy of such data
from DCACHE, for avoiding this desyncronization, the portion of data memory written by
the PRM and read by the CPU should not be cached, to ensure the CPU works at any
time with data up-to-date by accessing always those data directly from DDR-SDRAM.
Another option is to cache those data but making the CPU to enable and disable the
cache during the application execution, performing a flush to refresh the data in
DCACHE before using them if it is known that the PRM could have modified them. The
second option described is the one used in the proof of concept conducted in our
experiments.

In designs with a stringent demand on low power consumption, if the use of the PRR is
not very high and the PRR keeps in idle state for long periods of time, in this case it
could be necessary to reconfigure the PRR module with a blank bitstream once the PRM
finishes its processing just to contribute to reduce power consumption (both static and
dynamic terms), specially when the PRR is of big dimensions. In this way, the execution
of the task related to that PRM processing task involves two reconfiguration processes
instead of one, that is: PRM reconfiguration + PRM task processing + PRR blank
reconfiguration. Otherwise, if the hardware tasks scheduled in the PRR are swapped and
processed one after the other without idle states in between, then in this case one
hardware task is replaced by the next one in the chain and therefore the execution of
each task would involve only one reconfiguration, that is: PRM reconfiguration + PRM task
processing. The model of the reconfiguration engine has been prototyped and evaluated
in a real platform. The analysis of the experimental results achieved follows next.

105

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE

Francisco Fons Lluis

877-2012

T.

DL:

(weaasyq Iny MS+MH) me
— uq
EQEN%U %076 381 N

(INYd+OILYLS Weansiq (I mMH) . (Lsx) pou
w0'7'6 381 uobngfL
(W weassiq leped MH) sx)
1w0'7'6 381 uabig
ny)
SINVI¥LSLIE ¥d I EEH chd toze 38! -
E. s _ﬁ_ won _ﬂ i _ﬁ 70°7'6 351 - L'2'6 Peayyueld P .
, avd AV . pingpbu fl N i
W eeornma . 7 !
HES - 176 Peayyueld ﬂ
(apnpoxasose)
o bu*
wozeast (™ L85,
L'76 Peayyueld Oy
o % 1907’6 381
(01LYLS weassyq eped mMH) :
A O)) s e (]
posmonas)
w026 381 ﬁ o
e L'7°6 peayyueld ﬂ i |
rspeanveed ([s]
Eﬂ - i) CHId WOTE3SI
A= %mi@ o (]
weoes Q)2
-G A 12026 %03
rozevaa { [[™
dol

EERER-ER])]

Figure 5.8 PR design flow (EDA tools, source code files and resultant bitstreams)

106

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

A. Performance evaluation

The proof of feasibility of the reconfiguration engine has been conducted in a Xilinx
ML401 development platform composed of a XC4VLX25 Virtex-4 FPGA from Xilinx and
two 256-Mbit HYB25D256160BT-7 DDR-SDRAM devices from Infineon. The system has
been mainly described in VHDL and synthesized, mapped, placed and routed with the
Xilinx toolset from the Early Access Partial Reconfiguration lounge based on a modular
design methodology (http://www.xilinx.com /support/prealounge/protected/index.htm).
The processor system has been implemented with EDK 9.2.02i. The floorplanning of all
the modules has been performed with PlanAhead 9.2.7. The generation of the full and
partial bitstreams has been carried out with ISE 9.2.04i and the PR patch PR12. In
addition, the design of specific hard macros has been done with the Xilinx Core
Generator toolset, for instance the FIFOs, built with the FIFO Generator v3.3 tool. This
tool enables the customization of both depth and width of the FIFO and the selection of
distributed memory or embedded RAM blocks. Besides, the ChipScope Pro tool has been
used for debugging, validation and verification of the design. This tool has been of big
help to test the real latency and performance of the reconfiguration controller. By
inserting a ChipScope ICON (integrated controller) core and a ChipScope ILA (integrated
logic analyser) core in the design it has been possible to verify the real performance of the
reconfiguration controller by monitoring the lines of the ICAP and the NPI buses during
the operation. Figure 5.8 shows the PR methodology and design flow followed.

The main goal of our approach is to ensure the maximum reconfiguration throughput. As
presented above, Virtex-4 technology admits a reconfiguration bandwidth of 3.2 Gbps
when running the ICAP controller at 32 bits and 100 MHz. Several scenarios have been
evaluated: the first test consists in performing a reconfiguration of the PRR guided by the
master MMU while the host processor is not accessing the DDR-SDRAM, just to see
which throughput can be achieved in these conditions. The second case evaluates the
worst case by forcing the continuous access to DDR-SDRAM from the host processor
while the master MMU is reconfiguring a PRR. The results are detailed next.

Case I. Shared memory accessed by MMU only (no data contention)

It is programmed an application where the host processor starts a reconfiguration of the
PRR and keeps in a waiting loop until the master MMU confirms the end of the bitstream
transaction from the external memory to the ICAP. It is necessary to ensure that the code
related to the active waiting is executed from the DCACHE, without requiring the CPU to
access the DDR-SDRAM. In these conditions, it is observed that once the reconfiguration
FIFO is not empty it starts the transfer to the ICAP without suffering any interruption
due to lack of data in the FIFO during all the process. The bistream download is
conducted through consecutive bursts of 64 words of 32 bits. The equation (5.9) is next
particularized to the specific case as follows:

Wy, =64 [bits]

W =32 [bits]

fuu =100 [MHZ]

fore =100 [MHZ]

N = 64132=2048 |bits]

N [Wyu

— > W LF
Low,,, +N MMU cre Here

L < Nifwy _ N _ 2048100 2048 _) ro o
WCFG |:IfCFG WMMU 32&00 64

107

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

It means that, in these conditions, the latency of each read burst shall be less than or
equal to 32 clocks to guarantee the minimum reconfiguration time. The latency L
obtained experimentally is 24 clocks for each 64-word read burst performed, measured
with the support of the Chipscope ILA logic analyser core. Therefore, starting at the
instant that the FIFO receives the first data, the transfer is performed at 3.2 Gbps.

The latency achieved experimentally can also be analysed theoretically by examining the
interface between the FPGA and the DDR-SDRAM as well as the technical features of this
memory. The external DDR-SDRAM is constituted by two 256-Mbit HYB25D256160BT-7
DDR-SDRAM devices [Xilinx Inc., UG080 2006]. Each device is organized in a 16-bit data
bus and they are connected in parallel, with the same addressing, in order to reach thus
a data bus of 32 bits. Internally, read and write accesses to this DDR-SDRAM are burst
oriented, with the burst length being programmable. The burst length determines the
maximum number of column locations that can be accessed for a given read or write
command. Burst lengths of 2, 4 or 8 locations are available. Therefore, accesses start at
a selected location and continue for the programmed number of locations in a sequence.
Furthermore, this memory has a read latency of 2.5 clocks and its dual data rate
characteristic permit to read or write at both rising and falling edges of the memory clock
[Infinieon Tech., DS HYB25D256 2003]. Wih these features, each 64-word (32-bit) NPI
read burst commanded by the master MMU is decomposed in 8 consecutive 8-word (32-
bit) read bursts in the DDR-SDRAM. In one clock, the two 32-bit words read by the DDR-
SDRAM (one at each edge) compose one 64-bit word that can be stored in the 64-bit read
FIFO of the NPI interface. Only from the 8 DDR-SDRAM bursts it is obtained a read
latency related to the memory itself of 20 clocks (8 x 2.5) and the other 4 clocks are spent
in the arbitration and the NPI protocol. Therefore, the total time measured in a NPI read
burst, according to equation (5.7), is:

Wy, = 64 [bits]
fuu =100 [MHZ]
N =2048 |[bits]
L=24 [clock%MU]

(L+ N]EFMMU = (24+ zgjsto = 560 [nd

VWMMU

burst

Case II. Shared memory accessed by MMU and CPU with data contention

The reconfiguration test of case I has been repeated now but making the CPU to
continuously write or read the DDR-SDRAM memory while the master MMU is carrying
out the reconfiguration, aimed at seeing how much the reconfiguration process can be
slowed due to the collisions. In this case, the latency L observed amounts to 40 clocks,
measured with the Chipscope ILA logic analyser core. This 64-word read burst latency is
detached in 20 clocks due to memory latency itself as in case I and other 20 clocks due
to the arbitration of the collisioned requests between the reconfiguration controller and
the host processor to access the shared memory. This latency higher than 32 clocks
means that in these conditions it is not possible to perform the reconfiguration at the
maximum rate of Virtex-4. However, this extreme situation can be skipped through the
use of the cache memory by the CPU. In order to avoid the loss of performance observed
in this test, it is convenient to cache the program code executed by the host processor
when a reconfiguration is in progress in order to not impact on the reconfiguration
latency. If the software host processor is cached, then it is possible to eradicate the
additional latency due to the arbitration of the memory resource since the CPU will run
the program code from the ICACHE instead of DDR-SDRAM. With this, the DDR-SDRAM
is leaved to the master MMU and only from time to time the CPU will access to DDR-

108

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

SDRAM to perform some data update. By caching the CPU data and program code, the
probability of collision in the access to the shared external memory by the CPU and the
master MMU is notoriously reduced. In this way, this architecture lets execute the two
tasks, partial reconfiguration and software execution, in parallel without impacting the
DDR-SDRAM. Another possibility to improve the efficiency could be the use of a DDR-
SDRAM with lower read latency.

Anyhow, as conclusion, this reconfiguration engine architecture achieves to transfer the
partial bitstream at the maximum throughput of Virtex-4 technology, even if the DDR-
SDRAM is accessed by the CPU via XCL or PLBv46 buses at the same time given that, in
the end, the CPU runs the program flow in internal BRAM cache, freeing thus the access
to the external DDR-SDRAM to the reconfiguration controller. To the best of the author’s
knowledge, at the time of finishing the implementation of this reconfiguration controller,
around the beginning of 2009, this was the first work to achieve a controller able to self-
reconfigure any PR region of the FPGA at the maximum throughput specified by Xilinx
technology, overcoming the time performance achieved by other works published until
then in the scientist literature by the research community. This design lets attain a
bandwidth of 3.2 Gbps with no restrictions on the partial bitstreams size, and residing
the downloadable bitstream files stored in external low-cost SDRAM where, moreover,
this memory works as a shared resource in the system, i.e. accessible at any time not
only by the reconfiguration controller but by any other processor (CPU) connected to the
multiprocessor bus. As remark, the designed reconfiguration controller is not using the
readback capability, that is, it does not make use of the read port available in the ICAP.
However, in case it was necessary, it could be included in the design with no major
changes. Finally, the reconfiguration controller modeled and validated in this work is
submitted next to benchmarking of other relevant works found in the literature.

5.3.4 Comparison with state-of-the-art architectures

Virtex-4 devices, together with their successors Virtex-5, Virtex-6 and Virtex-7, are at
present the state-of-the-art on the subject of commercially available high-performance
dynamic partial self-reconfiguration technology. Virtex-4 FPGAs meant a serious advance
regarding reconfiguration bandwidth: it comes with a 32-bit data bus ICAP interface
qualified to self-reconfigure at run-time any portion of the device at a frequency of 100
MHz, what puts the reconfiguration rate to 3.2 Gbps — the highest bandwidth today in
the market. As benchmark, the reconfiguration model proposed in this chapter and
prototyped in Virtex-4 is compared next with the latest works found in the scientist
literature also based on Virtex-4 technology.

As introduction, the Xilinx FPGA vendor made some ICAP controller proposals to be
connected to the OPB or PLBv46 buses like OPB HWICAP [Xilinx Inc., DS280 2004| and
XPS HWICAP [Xilinx Inc., DS586 2010], respectively. However, in both cases the
bitstream transfer from the repository to the ICAP interface is performed by the system
CPU, fact that limits the reconfiguration throughput. In the XPS HWICAP controller, for
instance, the CPU bursts the required bitstream data directly from main memory.
Incoming data is stored within a write FIFO in the reconfiguration controller, from where
it can be fed to the ICAP. The XPS HWICAP also provides for read back of configuration
resource states. In this case, the frames are read back into the read FIFO one at a time
and the CPU reads the data frame directly from there. Experiments with these controllers
found in the literature reveal a low reconfiguration throughput. Going on with further
examples, the work presented in [HUbner et al, RAW 2010] targets a cost-effective
implementation of the reconfiguration controller in terms of resources consumed, leaving
in a second term the reconfiguration throughput. Taking into account such goal, the host
processor is responsible for performing the bitstream transfer from external memory
connected to the ICAP interface. The host processor is connected to the external
repository through a MPMC via XCL or PLB buses to internal registers of the core
processor and from here to the ICAP interface through a Fast Simplex Link (FSL)

109

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

managed by the core processor. The main disadvantage of this architecture is the fact
that the core processor is totally blocked during the the reconfiguration process since it
performs the bitstream transfer. The throughput reached is 226 Mbps. In [Claus et al,
FPL 2008], it is proposed a CoreConnect PLB ICAP controller with DMA capability via
PLB bus to accesss the repository and fetch a bitstream through burst transfers, and
without involving the CPU, thus off-loading it. The throughput achieved is 2.36 Gbps. In
the work [Liu et al., FPL 2009], it is proposed a reconfiguration controller connected to
the PLB bus where the partial bitstream is stored in internal RAM blocks of the FPGA,
with the subsequent restriction of this solution to small bitstreams of 64 Kbytes as
maximum. The highest reconfiguration speed attainable with this solution is 2.97 Gbps.
Another approach is deployed in [Manet et al., JES 2008]. This time the ICAP-based
reconfiguration controller is based on the CoreConnect OPB bus architecture. The
custom controller is equipped with DMA capability and reaches a reconfiguration
throughput of 3.0 Gbps. The work presented in [Nabina and Nunez-Yanez, FPL 2010]
develops a system based on the AMBA multiprocessor bus, where the main processor —
LEONS3 soft-core- and the memory controller are connected to the AMBA AHB bus
together with the ICAP controller. As novelty, the reconfiguration controller proposed
incudes -in addition to DMA, burst transfers and end transaction notification via
interrupt to the host processor—- a bitstream decompressor in the datapath. In this way,
as the bitstream is stored compressed in the repository, the latency experimented in the
transfer from the off-chip memory repository to an internal FIFO buffer present in the
reconfiguration controller is decreased since the number of accesses to memory is
reduced in comparison to the case of storing the same bitstream uncompressed. The
system is implemented in a Virtex-5 device. The low bus efficienty of this system is
compensated by the high compression ratio of the bitstream, obtaining a maximum
throughput of 3.08 Gbps. This bitstream compression strategy, however, is only effective
in case the reconfiguration bottleneck is in the access to the off-chip memory since the
bitstream must be transferred uncompressed to the FPGA configuration memory.
Another approach which incorpores the bitstream decompression phase in the
reconfiguration datapath to improve the transfer rate of the bitstream from the external
memory (SRAM) to the reconfiguration controller is [Liu et al.,, MSR-TR-2009-150]. In this
system architecture proposed by Microsoft Research, the decompression operation
involves a two-cycle overhead that makes not possible to achieve the theoretical
maximum throughput. The tests conducted show a throughput that ranges from 2.99 to
3.14 Gbps. Following a different research line, one approach that makes use of ICAP
overclocking is presented in [Shelburne et al., FPL 2008]. The reconfiguration controller
is implemented in a Virtex-4 device and admits two types of operations: readback and
configuration. Here, the configuration engine is used as a NoC without requiring routing
the nodes but communicating them by means of the reconfiguration controller, moving
data from one internal RAM block (BRAM) to another through the reconfiguration. That
is, the configuration information of the BRAM connected to a node of the network is read
by the reconfiguration controller and written to another BRAM related to another node
afterwards. In this approach, in order to accelerate the reconfiguration process, the ICAP
interface is overclocked at a frequency of 144 MHz and is capable of providing a
reconfiguration throughput of 1.75 Gbps.

Up to now, none of the implementations assessed have reached the theoretical maximum
reconfiguration speed of Virtex-4 technology. The following ones met this target and even
overpass it by means of overclocking strategies. In [Delorme et al.,, ReConFig 2009], it is
proposed a reconfiguration controller based on three components: an external SRAM
memory exclusively dedicated to store the partial bitstreams, a custom custom
reconfiguration controller with access to the ICAP interface, and a MicroBlaze processor
interfaced via the CoreConnect OPB bus to the reconfiguration controller through several
configuration registers. The reconfiguration controller, after receiving the configuration
commands from MicroBlaze, performs the reconfiguration process autonomously. With
this architecture, it is achieved the maximum reconfiguration throughput in Virtex-4

110

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

running at 100 MHz and 32 bits. Besides, the same reconfiguration approach is tested
on a Virtex-5 overclocking the ICAP interface at 125 MHz, reaching a throughput of 4
Gbps. Although this model reaches an excellent reconfiguration performance in terms of
time, concerning cost the fact that the reconfiguration controller is based on a dedicated
external SRAM memory to store the bitstreams accessible only by the reconfiguration
controller —not by MicroBlaze- could mean some handicap to certain types of
applications. The exclusive use of this FPGA for storing only bitstreams can be an
expensive solution if the application requires other external memory devices for storing
application data. Just for this reason, the model proposed in this dissertation makes use
of a generic low-cost external memory where any kind of data (program code, application
data, partial bitstreams) can be stored and accessed by any of the controllers present in
the system. Going on with more examples, the work presented in [Hoffman and Pattichis,
IJRC 2011] copes with the implementation of an ICAP-based reconfiguration engine
which introduces the use of overclocking with active feedback. During overclocking, it
receives active feedback from the System Monitor IP [Xilinx Inc., UG192 2011] to ensure
that the device voltage and temperature are within nominal operating conditions. The
custom reconfiguration controller leads to a bandwidth of 3.4 Gbps for both reads and
writes to the ICAP port. A similar reconfiguration engine approach to the one proposed in
this dissertation is the one proposed in [Claus et al.,, ARC 2010] and [Claus et al., XCell
2010] oriented to a video-based driver assistance system. The PR region lodges different
image processing coprocessors multiplexed in time. These hardware accelerators are
attached as bus masters to the PLB bus. Thus, the PR region is connected to the system
through the PLB interface by means of two separate read and write data buses, each 64-
bit wide. With this, the reconfigurable coprocessors can perform direct memory accesses
without involving the host CPU. The reconfiguration controller is connected to external
DDR-SRAM by means of a MPMC and linked to a NPI bus. It also uses an intermediate
FIFO for data buffering. This FIFO permits to split the bitstream datapath in two clock
domains, one for the external memory and the other for the ICAP. The ICAP controller
can initiate data transactions using DMA and burst transfers. By means of overclocking
the ICAP interface, it is obtained a high reconfiguration throughput. Furthermore, the
reconfiguration controller includes an online verification module to ensure the
reconfiguration is performed correctly in overclocking conditions. The verification
consists in a CRC IP module connected between the FIFO output port and the ICAP port
to check the data fed into the ICAP. Like this, while the bitstream is pushed into the
ICAP, the system calculates in parallel a cyclic redundancy check to ensure the
bitstream integrity. If the bitstream was corrupted during the transfer it would be
detected by this module and the configuration could be stopped. The reconfiguration
throughput reached in a Virtex-4 device at 140 MHz is 4.48 Gbps and a Virtex-5 device
at 300 MHz is 9.6 Gbps. Still in the field of ICAP overclocking, in [Hansen et al., IPDPS
2011] it is proposed the design —built with the Xilinx FPGA Editor tool- of an enhanced
extension of the Xilinx native ICAP primitive. By extending the ICAP with custom logic it
is designed an enhanced ICAP hard macro provided with 64-bit input and output ports.
Its function is to widen the data path size of the original ICAP primitive from 32 bits to
64 bits in order to gain configuration throughput. Thus, the enhanced ICAP hard macro
can be seen as a 64-to-32 bit data multiplexer that takes 64-bit input data at one data
rate and multiplex it out as two 32-bit output data at twice the data rate. This concept is
similar to the one proposed by the author in this dissertation by means of the FIFO
managed by the master MMU of Figure 5.7. The main progress of this work is that it has
explored the limit sustainable by the ICAP, verifying that it is possible to overclock the
ICAP interface at up to 550 MHz without malfunction, achieving thus a maximum
reconfiguration speed of 17.6 Gbps, a value 5.5 times higher than the default
reconfiguration throughput specified by Xilinx. However, the main drawback of this
reconfiguration engine is the fact that it does not solve the paradigm related to the data
path connection between the bitstream repository and the ICAP interface: the enhanced
ICAP hard macro makes use of 64 Kbytes FIFO for temporary storing the partial

111

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

bitstream, fact that restricts the size of the reconfigurable modules usable for the system
to 64 Kbytes as maximum. Apart from Virtex-4 and Virtex-5 devices, there are other
works based on Spartan-6. As example, in [Bayar and Tukel, ReCoSoC 2011] it is
presented a reconfiguration engine entirely written in VHDL and connected to the 16-bit
ICAP interface operated at 100 MHz, reaching thus the maximum throughput achievable
with these devices of 1.6 Gbps. This engine uses a decompressor unit to decompress on
the fly the bitstream during reconfiguration. However, it makes use of internal BRAM to
store the compressed partial bitstreams, fact that restricts its use to small partial
bitstreams only.

The features of each of the reconfiguration controllers explored by the research
community are summarised in Table 5.5. Although further reconfiguration controller
approaches exist in the literature, the ones presented in this section cover the most
significant variants or alternatives regarding architectural aspects. They are thus a good
overview of the state of the art in this topic. The reconfiguration engine deployed in this
chapter shares many of the qualities offered by most of the solutions overviewed here.

Table 5.5 Reconfiguration controllers implemented on Virtex-4/-5 and Spartan-6 devices

Research work Reconfiguration controller FPGA (demsgggstﬁlgz @) (iAreH(l) ICﬁ;IiDtst;us T?gs)l:)%?; t

[Hiibner, RAW 2010] FSLICAP Virtex-4 DDR-SDRAM (s) 100 32 0.23
[Claus, FPL 2008] CoreConnect-PLB ICAP Virtex-4 DDR2-SDRAM (d) 100 32 2.36
[Liu, FPL 2009] CoreConnect-PLB ICAP Virtex-4 BRAM (d) 100 32 2.97
[Manet, JES 2008] CoreConnect-OPB ICAP Virtex-4 DDR-SDRAM (s) 100 32 3.00
[Nabina, FPL 2010] AMBA-AHB ICAP Virtex-4 SDRAM (s) 100 32 3.08
[Liu, MSR-TR-2009-150] Dedicated SRAM ICAP Virtex-4 SRAM (d) 100 32 3.14
[Shelburne, FPL 2008] Dedicated BRAM ICAP Virtex-4 BRAM (d) 144 32 1.75
[Delorme, ReConFig 2009] | Dedicated SRAM ICAP Virtex-4, -5 SRAM (d) 125 32 4.00
[Hoffman, IJRC 2011] LocalLink ICAP Virtex-4, -5 DDR-SRAM (s) 133 32 3.40
[Claus, ARC 2010] NPI ICAP Virtex-4, -5 DDR-SDRAM (s) 300 32 9.60
[Hansen, IPDPS 2011] Dedicated BRAM ICAP Virtex-5 BRAM (d) 550 32 17.60
[Bayar, ReCoSoC 2011] Dedicated BRAM ICAP Spartan-6 BRAM (d) 100 16 1.60
Fons, 2009 NPIICAP Virtex-4 DDR-SDRAM (s) 100 32 3.20

(1) Gbit expressed in Sl system (decimal base: 10), not in IEC 60027 system (binarly base: 2%).
(2) Type of memory used to store the partial bitstreams: (d) dedicated and exclusively accessed by the reconfiguration controller or (s)
shared and accessible by other controllers from the system.

5.3.5 Next generation reconfiguration engines

Finally, in this section it is briefly overviewed the reconfiguration features of the latest
programmable logic devices announced or recently shipped to the market by both Altera
and Xilinx vendors, all of them equipped with partial reconfiguration technology. The
new Xilinx devices present a new ICAP primitive called ICAPE2, provided with the same
reconfiguration features than the original ICAP. In Altera devices, partial reconfiguration
is supported through the Fast Passive Parallel (FPP) configuration interface. By first time
in Altera devices, it is possible to reconfigure logic blocks, DSP blocks and memory
blocks (apart from transceivers and PLL blocks) at run-time.

Table 5.6 Reconfiguration features of the next generation Xilinx and Altera devices

DEVICE FAMILY RECONF. DATA WORD MAX. RECONF. FREQ. | RECONF. GRANULARITY
ARTIX-7, KINTEX-7, VIRTEX-7, ZYNQ-7000 EPP | 32 bits 100 MHz region 50 CLBs high by 1 CLB wide
STRATIX-V, ARRIA-V, CYCLONE-V 16 bits 125 MHz (Not disclosed)

112

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

5.4 Summary

Going on with the conception of a standard embedded system architecture driven by
run-time reconfigurable hardware started in chapter 4, this chapter focuses its attention
in the design of the reconfiguration engine. Aimed at minimizing the reconfiguration
latency by achieving a high bandwidth link between the bitstream repository and the
FPGA configuration memory, the design of this system component is an active research
field which has attracted great attention. Hence, this chapter reviews first the technical
features of the reconfiguration controllers embedded in commercial devices like Atmel
AT94K FPSLIC, Altera Excalibur SoPC and Xilinx Virtex-4 FPGA. Although the first two
SoCs offer only a closed engine solution, the third one allows the designer to customize
the reconfiguration controller to the application needs. Thus, afterwards, a
reconfiguration engine has been modelled and verified on Virtex-4. To the best of the
author’s knowledge, this work is a pioneer in terms of achieving the maximum
reconfiguration throughput specified by Virtex-4 technology (i.e. 3.2 Gbps — the highest
rate of existing devices in the industry today) with no constraints on the partial bitstream
size, and being the downloadable bitstream file stored in an external SDRAM memory
architected as a shared resource in the system (i.e. not dedicated) accessible
concurrently by several processors. Finally, in the part IV of this dissertation, the three
reconfiguration engines from different FPGA vendors studied in this chapter have been
deeply evaluated by prototyping them in several real applications and verifying the
validity of the reconfiguration engine model developed.

References

[Altera Corp., AN116 2000]
Altera Corp., Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices, App. Note 116 (v1.03), 2000.
[Altera Corp., AN187 2003]
Altera Corp., Booting Excalibur Devices, Application Note 187 (v1.2), 2003.
[Altera Corp., AN298 2003]
Altera Corp., Reconfiguring Excalibur devices under processor control, Application Note 298 (v1.0), 2003.
[Altera Corp., DSAPEX20K 2003]
Altera Corp., APEX 20K programmable logic device family, Data Sheet (v5.1), 2004.
[Altera Corp., HRMEPXA 2002]
Altera Corp., Excalibur devices hardware reference manual, Reference Manual (v3.1), 2002.
[Atmel Corp., AN1009 2002]
Atmel Corp., AT40K series configuration, Application Note 1009, 2002.
[Atmel Corp., AN1088 1998]
Atmel Corp., AT40K series Cache LogiclJ (mode 4) configuration, Application Note 1088, 1998.
[Atmel Corp., AN2313 2001]
Atmel Corp., AT94K series configuration, Application Note 2313, 2001.
[Atmel Corp., AN2323 2001]
Atmel Corp., AT94K series Cache LogiclJ (mode 4) configuration, Application Note 2323, 2001.
[Atmel Corp., RM1138 2008]
Atmel Corp., AT94KAL Series Field Programmable System Level Integrated Circuit, Ref. Man. 1138, 2008.
[Bayar and Tukel, ReCoSoC 2011]
S. Bayar, M. Tukel, A self-reconfigurable platform for general purpose image processing systems on low-
cost Spartan-6 FPGAs, Proc. Int. Workshop on Reconf. Communication-centric SoC, pp. 1-9, 2011.
[Bayar and Yurdakul, HiPEAC 2008]
S. Bayar, A. Yurdakul, Dynamic partial self-reconfiguration on Spartan-IIl FPGAs via a parallel
configuration access port (PCAP), Proc. HIPEAC Workshop on Reconfigurable Computing, pp. 1-10, 2008.
[Bomel et al., ARCS 2009]
P. Bomel, J. Crenne, L. Ye, J.P. Diguet, G. Gogniat, Ultra-fast downloading of partial bitstreams through
Ethernet, Int. Conf. on Architecture of Computing Systems, LNCS, vol. 5455, pp. 72-83, Springer, 2009.
[Cant6 et al., FPL 2009]
E. Cantd, M. Fons, M. Lépez, R. Ramos, Acceleration of complex algorithms on a fast reconfigurable
embedded system on Spartan-3, Proc. Int. Conf. on Field Prog. Logic & Applications, pp. 429-434, 2009.
[Claus et al., ARC 2010]
C. Claus, R. Ahmed, F. Altenried, W. Stechele, Towards rapid dynamic partial reconfiguration in video-
based driver assistance systems, International Symposium on Applied Reconfigurable Computing,
LNCS, vol. 5992, pp. 55-67, Springer-Verlag, 2010.

113

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

[Claus et al., FPL 2008]
C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hubner, J. Becker, A multi-platform controller allowing for
maximum dynamic partial reconfiguration throughput, Proc. Int. Conf. on Field Programmable Logic and
Applications, pp. 535-538, 2008.
[Claus et al., IPDPS 2007]
C. Claus, F.H. Muller, J. Zeppenfeld, W. Stechele, A new framework to accelerate Virtex-II Pro dynamic
partial self-reconfiguration, Proc. IEEE Int. Parallel & Distributed Processing Symposium, pp. 1-7, 2007.
[Claus et al., XCell 2010]
C. Claus, F. Altenried, W. Stechele, Dynamic partial reconfiguration of Xilinx FPGAs lets system adapt on
the fly, Xcell Journal, issue 70, pp. 18-23, Xilinx Inc., First Quarter 2010.
[Delorme et al., ReConFig 2009]
J. Delorme, A. Nafkha, P. Leray, C. Moy, New OPBHWICAP interface for realtime partial reconfiguration of
FPGA, Proc. of the Int. Conference of Reconfigurable Computing and FPGAs, pp. 386-391, 2009.
[Gonzalez et al.,, MICRO 2007]
I. Gonzalez, E. Aguayo, S. Lopez-Buedo, Self-reconfigurable embedded systems on low-cost FPGAs,
MICRO, IEEE, pp. 49-57, 2007.
[Hansen et al., IPDPS 2011]
S.G. Hansen, D. Koch, J. Torresen, High speed partial run-time reconfiguration using enhanced ICAP hard
macro, Proc. of the IEEE Int. Parallel and Distributed Processing Symposium, pp. 174-180, 2011.
[Hoffman and Pattichis, IJRC 2011]
J.C. Hoffman, M.S. Pattichis, A high-speed dynamic partial reconfiguration controller using direct memory
access through a multiport memory controller and overclocking with active feedback, International Journal
of Reconfigurable Computing, vol. 2011, pp. 1-10, 2011.
[Hubner et al., RAW 2010]
M. Hubner, D. Gohringer, J. Noguera, J. Becker, Fast dynamic and partial reconfiguration data path with
low hardware overhead on Xilinx FPGAs, Proc. Reconfigurable Architectures Workshop, pp. 1-8, 2010.
[Infinieon Tech., DS HYB25D256 2003]
Infineon, HYB25D256[400/ 800/ 160]B[T/ C|(L) 256-Mbit DDR SDRAM, Datasheet (v1.1), 2003.
[Liu et al., FPL 2009]
M. Liu, W. Kuehn, Z. Lu, A. Jantsch, Run-time partial reconfiguration speed investigation and
architectural design space exploration, Proc. Int. Conf. on Field Prog. Logic and App., pp. 498-502, 2009.
[Liu et al., MSR-TR-2009-150]
S. Liu, R. Neil Pittman, A. Forin, Minimizing partial reconfiguration overhead with fully streaming DMA
engines and intelligent ICAP controller, Microsoft Research, Technical Report MSR-TR-2009-150, pp. 1-
33, 2009.
[Manet et al., JES 2008]
P. Manet, D. Maufroid, L. Tosi, G. Gailliard, O. Mulertt, M. Di Ciano, J.D. Legat, D. Aulagnier, C.
Gamrat, R. Liberati, V. La Barba, P. Cuvelier, B. Rousseau, P. Gelineau, An evaluation of dynamic partial
reconfiguration for signal and image processing in professional electronics applications, EURASIP Journal
on Embedded Systems, pp.1-11, 2008.
[Moller et al., ReCoSoC 2007]
L. Méller, I. Grehs, E. Carvalho, R. Soares, N. Calazans, F. Moraes, A NoC-based infrastructure to enable
dynamic self reconfigurable system, Proc. Int. Workshop ReCoSoC, pp. 23-30, 2007.
[Nabina and Nunez-Yafnez, FPL 2010]
A. Nabina, J.L. Nunez-Yanez, Dynamic reconfiguration optimisation with streaming data decompression,
Proc. of the Int. Conference on Field-Programmable Logic and Applications, pp. 602-607, 2010.
[Paulsson et al., FPL 2007]
K. Paulsson, M. Hubner, G. Auer, M. Dreschmann, L. Chen, J. Becker, Implementation of a virtual
internal configuration access port (JCAP) for enabling partial self-reconfiguration on Xilinx Spartan III
FPGAs, Proc. of the Int. Conference on Field Programmable Logic and Applications, pp. 351-356, 2007.
[Shelburne et al., FPL 2008]
M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin, R. Fong, MetaWire: Using FPGA
configuration crcuitry to emulate a network-on-chip, Proc. of the Int. Conf. on Field Programmable Logic
and Applications, pp. 257-262, 2008.
[Van der Bok et al., ProRISC 2007]
K. van der Bok, R. Chaves, G. Kuzmanov, L. Sousa, A. van Genderen, Dynamic FPGA reconfigurations
with run-time region delimitation, Proc. Workshop on Circuits, Syst. & Signal Proc., pp. 201-207, 2007.
[Xilinx Inc., DS280 2004]
Xilinx Inc., OPB HWICAP, Datasheet 280 (v1.3), 2004.
[Xilinx Inc., DS586 2010]
Xilinx Inc., LogiCORE IP XPS HWICAP, Datasheet 586 (v5.00a), 2010.
[Xilinx Inc., DS643 2008]
Xilinx Inc., Multi-Port Memory Controller (MPMC), Datasheet 643 (v4.02.a), 2008.
[Xilinx Inc., UG080 2006]
Xilinx Inc., ML401/ML402/ML403 Evaluation Platform, User Guide 80 (v2.5), 2006.
[Xilinx Inc., UG192 2011]
Xilinx Inc., Virtex-5 FPGA System Monitor, User Guide 192 (v1.7.1), 2011

114

UNIVERSITAT ROVIRA I VIRGILI

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

Part IV

Proofs of Concept
& Use Cases

UNIVERSITAT ROVIRA I VIRGILT

EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Chapter 6

Exploration and exploitation

From long time ago, the scientific community has been actively involved in the search
and exploration of potential killer applications for run-time reconfigurable hardware
technology. Reconfigurable computing fits well in many application fields and, in this
chapter, application domains that benefit from this technology are pointed out. Its
potential has been demonstrated in numerous research works, gaining up to several
orders of magnitude in performance/cost benefits compared to other traditional
implementation alternatives based on static hardware. A survey of potential applications
and successful stories of commercial products based on this technology is presented
next. In summary, these examples share a common vision about the importance of
reconfigurable computing and some very exciting ideas and directions for future work.
After this outlook, the next chapters of the part IV of the dissertation encompass the
design of specific solutions based on run-time reconfigurable hardware to solve six
particular engineering problems. Through these experimental examples developed, the
author aims at extracting a compelling methodology to exploit run-time reconfigurable
hardware and give evidences of its proof-of-feasibility. It is an attempt to brigde the gap
between the theoretical math of engineering apps and the design issues to make it
possible in practice with current FPGA devices. They show how to translate an algorithm
to a circuit using techniques which match the advantages of area and time multiplexing.

6.1 Potential applications

The goal of this section is to collect a comprehensive list of current computing and
engineering applications which, deployed in reconfigurable hardware technology, can
contribute to add value to real solutions in both industrial and academic areas.
Software-defined radio, cryptography or high-performance computing are among the
system applications beginning to use partial reconfiguration today. Furthermore,
because this field is still growing, new fields of application are likely to be developed in
the future.

6.1.1 Space applications

Electronic systems specifically designed to carry out space applications under strong
operating environments (e.g. telecom, military or avionics) are submitted to aggressive
requirements and qualification tests concerning features like low-power consumption,
reduced weight and size, electromagnetic compatibility (EMC) and, mainly, immunity and
tolerance to single event upset (SEU) due to the exposition of the silicon area to cosmic
radiation. The atmosphere contains several types of subatomic energetic particles that
whether collide with semiconductor devices can cause them some kind of damage,
interfering thus with the normal operation of those electronic components. These
particles —basically high-energy protons, neutrons and heavy ions— are the result of the
collision of both solar and galactic cosmic rays with the oxygen and nitrogen atoms in
the Earth’s atmosphere. The single event upsets are radiation-induced errors in
microelectronics circuits caused when these charged particles lose energy by ionising the
medium through which they pass, leaving behind a wake of electron-hole pairs. If these
charges generated in the silicon substrate in CMOS devices are located near to a
transistor can be then collected by its source and drain producing a current pulse which,
if it is large enough, can finally change the state of a memory cell or configuration bit
from logic 1 to logic O and vice versa.

117

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

Despite SRAM-based FPGAs are more susceptible to particle-induced SEUs than Flash or
anti-fuse FPGAs, they are gaining relevance due to its high potential as on-orbit
fully/partially reconfigurable systems [Osterloh et al., AHS 2009]. There exists a clear
trend towards re-designing the control electronics of space applications up till now based
on mask-programmable or one-time programmable (OTP) silicon platforms, such as
ASICs or antifuse-based FPGAs (e.g. Actel FPGAs), by introducing SRAM-based FPGAs
(e.g. Xilinx and Atmel FPGAs). The reasons are their higher performance and
reconfiguration capabilities, as well as the considerable reduction of development time
and costs. Besides, SRAM-based FPGAs provide the flexibility to update processing
algorithms as needed during the development cycle and even post-launch by replacing
faulty/outdated designs at different stages of a mission. That is, reconfigurability can be
used to change the resources where a particular function is implemented, upon the
successful detection and diagnosis of a fault affecting the area of the device in which it
had been originally placed. It is relevant to note here that space qualification for printed
circuit boards (PCB) restricts to only a maximum of three soldering and de-soldering
cycles for any given pad, therefore the use of SRAM-based programmable logic devices
lets skip these constraints since they can be in-system reconfigured repeatedly, once the
device is soldered onto the PCB. An additional reason is that the FPGA vendors have
already begun to develop SEU mitigation techniques in order to make their devices
usable in space applications: the European Space Agency (ESA) is activelly working with
the European provider of FPGAs Atmel, which develops radiation-hardened versions of
SRAM-based (rad-hard) FPGA devices admitting also run-time reconfiguration
(http:/ /spacefpga.atmel-nantes.fr/spacefpga), and the National Aeronautics and Space
Administration (NASA) is working with Xilinx FPGAs. Apart from this, it is expected that
future space missions will require measurements from high data rate instruments.
Recent internal studies at NASA’s Jet Propulsion Laboratory estimate approximately a
transaction of 1-5 Terabytes of raw data (uncompressed) per day. Implementations of on-
board processing algorithms to perform lossless data reduction are required to drastically
reduce data volumes to within the downlink capabilities of the spacecraft and existing
ground stations. Reconfigurable FPGAs can include embedded processors thereby
providing a flexible hardware and software co—design architecture to meet the on-board
processing challenges of these missions while reducing the critical spacecraft resources
of mass and volume of earlier generation flight—qualified single board computers. With
satellite lifetimes increased far beyond ten years —much longer than the validity of
telecom standards— re-programmability in flight becomes a stringent requirement. If
software solutions are not possible, dynamically reconfigurable FPGAs may soon be the
only solution. In summary, they offer flexibility for changing requirements, in-system and
on-orbit programmability as well as potential recovery of in-flight failures.

6.1.2 Bio-inspired applications

Nature has always inspired humans. As proof of this, reconfigurable technology is
allowing the physical implementation of bio-inspired systems, emulating the structure,
the behavior and the mechanisms of biological organisms. Natural capabilities such as
growth, evolution, learning, healing, self-replication or reasoning can be modelled by
hardware systems to reach an approach of what could be called artificial life. From a
global viewpoint it can be considered that these basic principles are structured around
three main axes: phylogenesis (evolution), ontogenesis (growth, self-replication, self-
repair) and epigenesis (learning). These three axes are the key representatives of a new
hardware conception paradigm known as bio-inspired hardware and, analogous to
nature, the space of bio-inspired hardware system can be partitioned along them: the
phylogenesis encompasses all the processes which result in what is usually called
natural evolution, i.e., the history of the evolution of the species, the development of
living species and populations driven by the pressure exerted by the environment. If one
considers the specific case of phylogenetic hardware, one finds the domain of evolvable

118

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

hardware. The ontogenesis involves the development of a single individual from its own
genetic code, essentially without environmental interactions. The self-replication and
self-repair capabilities that can be usually observed in living beings and cellular systems
are based on the concept of ontogeny, where a single mother cell gives rise, through
multiple divisions, to a multiple cellular organism. Ontogenetic hardware mainly involves
hardware implementations of self-replicating and self-repairing cellular systems. Finally,
the epigenesis handles the learning through environmental interactions that take place
after formation of the individual. It consists in the development of an individual through
learning processes influenced by both genetic code (the innate) and environment (the
acquired). Epigenetic hardware mainly involves artificial neural network hardware
architectures. Therefore, these three organisation principles have provided a
longstanding inspiration for solving an extensive list of engineering problems as
navigation management in autonomous robots, evolutive artificial neural models in
applications where an autonomous system reacts and learn in real-time from the
environment, the design of fault-tolerant integrated -circuits due the continuous
semiconductor technology scaling, or online repairing strategies for electronic systems in
hostile environments that may damage the device such as space applications discussed
above. Many bio-inspired projects have been carried out in the last years on
reconfigurable logic architectures. BioWall is an excellent example of a bio-inspired
electronic tissue composed by an array of 5700 Xilinx Spartan FPGAs that replicates
biological functions in digital hardware [Tempesti and Teuscher, Xcell 2003]. Other
research projects are POEtic, which develops an electronic tissue in the form of an ASIC
[Moreno et al., MIXDES 2006], and PERPLEXUS, an project that implements a scalable
hardware platform made of custom reconfigurable devices for designing systems able to
grow by means of cellular replication, where, by using a small configuration bitstream
(describing a single cell), it is possible to generate a complete highly complex organism
composed of several cells [Thoma et al., ARCS 2007].

6.1.3 Data security applications

With the continuous and rapid expansion of internet and wireless-based
communications across open networks, the value of data as a corporate asset itself is
growing and data security becomes a mandatory element required in almost any new
system architecture. Applications such as electronic banking, electronic commerce,
healthcare practice supported by electronic processes and communication, or virtual
private networks (VPNs) require an efficient and cost-effective way to address security
over public domains. Security, in the context of information technology, refers basically
to properties like: confidentiality or assurance that information is not disclosed to
unauthorised individuals; integrity, i.e. ensuring that information retains its original
level of accuracy; authentication —-recognizing/verifying valid users to allow them access
to certain system privileges— and non-repudiation. Consequently, cryptography is the
fundamental component for securing such confidential data. The security level provided
by cryptographic systems depends on aspects as the mathematical features of the
algorithm itself, the way it is implemented (e.g. its power consumption and its prevention
of power analysis attacks), the management and length of the keys, etc, and these
cryptographic algorithms can impose tremendous processing power demands.
Furthermore, the swapping between several encryption algorithms at run-time is a
feature highly demanded in many communication systems, therefore the cryptographic
implementation must support different algorithms or standards, as well as rapid changes
of them being upgradeable in the field since, otherwise, interoperability among different
systems is prohibited and any upgrade results in excessive cost. In addition, each
security association or link is restricted by its lifetime, after the expiration of which, a
new security association has to be established by dynamically negotiating the security
parameters between the communicating entities. The ultimate solution for cryptography
in terms of flexibility and data transfer rates in line with these demands is an adaptive

119

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

cryptographic processor. Just this target is reachable by means of reconfigurable
hardware technology.

Encryption applications, which involve repetitive computation and have inherent
parallelism of large data, are specifically well suited to the use of FPGAs. Reconfigurable
hardware emerges as a superior implementation platform with which to address these
high-computational algorithms to reach secure applications and overcome the drawbacks
of software-based alternatives. Besides, at lowest level, some inherent implementation
features of the encryption/decryption algorithm as the change of keys and sub-keys
generation, data permutations, data shift, or dynamic changes of constant coefficient
multipliers (KCM) and constant coefficient adders (KCA), and the exploitation of hash
functions, e.g. Secure Hash Algorithm (SHA), to implement a cryptosystem which can
switch between several hash functions are all well-suited to be handled through
reconfigurable hardware. Summarizing, reconfigurable hardware devices such as SRAM-
based FPGAs combine potential advantages of SW and HW implementations in
cryptographic applications. As examples, many works exist which show the benefits of
deploying cryptographic systems based on reconfigurable hardware for IDEA and AES
algorithms [Gonzalez et al.,, FPL 2003], [Granado et al., MEJ 2009], aimed at using the
hardware resources in an optimal way. Moreover, other viewpoint is presented in
[Mentens et al., CHES 2008], where it is exploited the use of dynamic reconfiguration to
improve the resistance of cryptographic systems against physical attacks. A new class of
countermeasures are introduced which provides increased resistance, in particular
against fault attacks, by randomly changing the physical location of functional blocks on
the chip area at run-time —introducing in this way spatial jitter by means of random
relocation of the functional blocks—- and by randomly positioning registers in between
functional blocks by means of a dynamically reconfigurable switch matrix to introduce
delays — countermeasures that aim at introducing temporal jitter into the sequence of
operations in order to desynchronize the observations of power consumption. Therefore,
in order to improve the resistance of the implementation against fault analysis attacks, it
is proposed a dynamically architecture in which both the location of the subfunctions
and the addition of intermediate registers is altered randomly based on a true random
number generator to introduce a spatial and temporal jitter.

6.1.4 Thermal self-protected systems

If an integrated circuit is submitted to a severe thermal stress, for instance leading the
chip to an increased junction temperature or to the presence of regions that dissipate
excessive amounts of heat (hotspots), this overtemperature unleashes negative effects in
the device like performance degradation or increase in its leakage current. Hence, the
thermal testing/monitoring of an electronic design plays a vital role to ensure safe and
reliable thermal operating conditions. In addition to static techniques to remove the heat
from the die and reduce the temperature (e.g. sophisticated chip packaging techniques),
dynamic techniques of thermal management are essential. Such techniques rely on
accurate on-chip temperature information. Thermal monitoring by employing thermal
sensors is a widely used technique for assessing thermal behavior of integrated circuits
and providing thus preventive measures at run-time to ensure a reliable operation of the
device and make it to self-adapt to the environment in case of overtemperature.
Traditionally, microprocessors operate only at a single frequency and voltage, thus
always consuming full power; however, state-of-the-art microprocessors are built to allow
their voltage and frequency to be scaled to decrement power usage before the chip
overheats and improve thus the battery life in laptops and handheld devices where they
are used (e.g. Intel Xeon processor). Similarly, in the field of programmable logic devices,
FPGA circuits can operate at reconfigurable operating frequencies. Besides, their power
dissipation depends on the characteristics of the specific application placed and routed
in the FPGA. In order to obtain the termograph of either the whole FPGA device or a
specific region, an array of on-chip thermal sensors should be distributed along the area

120

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

under study. A way to measure chip heating is to construct a ring oscillator and calibrate
its output drift in MHz/°C. A ring oscillator consists of a feedback loop that includes an
odd number of inverters needed to produce the phase shifting that maintains the
oscillation, with the particularity that the resulting period is twice the sum of the delays
of all elements that compose the loop. Ring oscillators are extensively used for
implementing thermal sensors on the FPGA fabric since their advantages as thermal
transducers are multiple: they can be implemented with few hardware resources (the
inverters can be easily synthesized as gates “not” in LUTs of the FPGA) and they can be
placed in virtually any position of the chip; moreover, they can be inserted, moved or
eliminated by means of dynamic reconfiguration, making possible the construction of a
thermal map of the die without requiring any external equipment; also, they do measure
the junction temperature and not the package temperature, and unlike reusing specific
thermal sensing diodes or /O pad clamping diodes present in some FPGAs, no I/O pads
are necessary to measure the die temperature, hence it is not necessary to make any
PCB modification. As application examples, Lopez-Buedo et al. present a thermal
monitoring strategy suitable for FPGA-based systems based on the idea that a fully
digital temperature transducer can be dynamically inserted, operated, and eliminated
from the circuit under test using reconfiguration [Lopez-Buedo et al., TCPT 2002].
Similarly, Jones et al. exploit these ideas on an image processing application
implemented on a Xilinx Virtex-4 FPGA [Jones et al., FPL 2007]. By time-multiplexing the
system between running the application and making a temperature measurement, they
present an adaptive mechanism that automatically adjusts some system operating
parameters to yield the best performance for the given environmental conditions,
overcoming thus the performance loss in such systems due to overtemperature. The
image recognition system sustains a safe operational temperature by automatically
adjusting its frequency and output quality to self-regulate its temperature. Like this, the
circuit sacrifices output performance and quality to lower its internal temperature as the
ambient temperature increases, and can leverage cooler temperatures by increasing
output performance and quality. The adaptive application firstly reduces its frequency
and secondly the number of cores as well as their size and functional characteristics in
order to operate safety under worst-case thermal conditions. In this way, this solution
adaptively reacts to changing environmental conditions to obtain the highest possible
performance while maintaining a safe temperature. Furthermore, the circuit is able to
shutdown if the ambient temperature becomes too hot for the device to function properly;
this is performed by downloading a blank bitstream to the FPGA. As summary, thermal
monitoring is a valid application field for reconfigurable hardware. The reconfiguration
capability of FPGAs transforms these devices into a powerful tool for the study of thermal
aspects of ICs and packaging, making possible new alternatives for building thermally
self-protected systems.

6.1.5 Software defined radio

In the last years, there has been a strong push to replace analog radio systems by digital
radio systems. The Joint Tactical Radio System (JTRS) program of the US Department of
Defense shifted the emphasis on the development of software-defined radio (SDR) aimed
at doing an essential step towards the unification of radio communication systems, the
transparency of services and the exchangeability of components. Like this, SDR is
considered a key technology expected to play a decisive role in the wireless
communication evolution and spectrum management. It basically refers to a set of
techniques that permit the reconfiguration of a communication system without the need
to change any hardware system element. The goal is to solve incompatible wireless
network issues by implementing radio functionalities as software modules running on
generic hardware platforms. The key point is the fact that this adaptation shall be
dynamic, in real-time, and even on the fly in case service continuity is required (e.g.

121

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

roaming, reconfiguring the terminal to change from one network to another without
losing the connection).

Although the idea of having a single versatile hand-held device supporting a large
number of wireless standards and enabling ubiquitous connectivity through seamless
handovers is not new, still today the major bottleneck is the need for low cost, low power
consumption, multi-purpose chipsets that support a large variety of bit rates,
modulation formats, physical bandwidths and carrier frequencies. Nevertheless, multi-
purpose SDR systems turn out to be the only viable option to enable cost-effective mobile
terminals incorporating multiple wireless technologies. Only recently, semiconductor
technology has evolved to make SDR possible. Although typical architectures implement
waveforms in the digital domain using MCUs and DSPs, today the new generation of
partially and dynamically reconfigurable FPGAs have specific features which enable SDR
implementation. Conceptually, a SDR is a radio communication system which can tune
to any frequency band (e.g. GSM, DECT, WLAN) and receive any data modulation (e.g.
BPSK, QPSK, OFDM) across a large frequency spectrum by means of programmable
hardware controlled by software. Some examples of SDR platforms synthesized in run-
time reconfigurable hardware are [Delahaye et al., WSR 2004], where the system is
composed of one TI DSP C6201 and one Xilinx FPGA Virtex 1000E driven by run-time
partial reconfiguration, and [Rauwerda and Smit, ProRISC 2004], where it is used a
coarse-grained reconfigurable MONTIUM processor. Thus, in general, the adaptivity
features of the SDR falls into four broad classifications, ordered in an increasing level of
both adaptivity and sophistication: functions (e.g. basic building blocks such as
Kahlman filters, fast Fourier transforms (FFT) and finite impulse response (FIR) filters),
components (e.g. digital down converters and digital up converters which adapt to
waveforms that support different bit rates or sampling rates), applications (e.g.
modulators) and services (e.g. radio services, network awareness services, ad-hoc
networking and even anti-jam services) shall be able to adapt to changing conditions as
needed. These levels of adaptivity are possible with PR-FPGAs, although the SDR
platforms are still in their early development stages and many issues must be solved to
reach the flexibility, scalability and reconfigurability demanded. However, this research
field has attracted a large expectation of both industry and academia, and the advances
in FPGAs lets be a step closer toward the deployment of reconfigurable radios.

6.1.6 Control applications

There are many application fields which build real-time control systems based on PID,
fuzzy logic, artificial neural networks (ANN) or state-space controllers. The need for a
transparent and straightforward design methodology of controllers often leads to
software implementations, that is, microprocessor programs described in a high-level
language using floating-point arithmetic. This approach, however, is inappropriate for
some applications that require high sampling rates with short computational times. Like
this, FPGA technology exploiting run-time reconfiguration has been explored in the field
of control applications, resulting in an efficient alternative to controllers executed by
either software-based processors or synthesized in fixed hardware. Many industrial
processes, due to their nature, present a dynamic behavior modelled by a set of operating
regimes. Each of these regimes is delimited by a series of environment conditions
(temperature, humidity, etc) in which the system can be immersed. Thus, depending on
the changing environment, the plant must change its operating regime at real-time by
adapting its plant controller (either small changes as modifying some parameters of a
controller or big structural changes like adding and removing some processing units) to
the new operation conditions. With conventional methods it might be possible to design a
controller able to control the plant in all operating regimes, but often it is not possible to
guarantee optimal working conditions in all the operational range. Parameter adaptive
controllers could be used, but they might respond too slowly to abrupt changes of the
plant’s dynamic behavior. In this case, it is possible a multiple-model approach

122

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

composed of a set of controller modules implemented in static hardware, each optimized
for a special operating regime of the plant, with a supervisor module responsible for
switching among the controller modules to determine the active module. However, in this
multi-controller architecture, although all modules are instantiated in parallel, only one
controller module is active at one time, leading to an inefficient design in terms of area
and power consumption. Partial run-time reconfiguration can increase the resource
efficiency by keeping the currently active controller on the FPGA while inactive
controllers are stored in an external NVM. As example, the University of Paderbon
proposed an architecture where two controller modules coexist in hardware, one in
foreground and the other in background, in order to hide the reconfiguration time typical
of the controller switching during normal operation. This architecture takes advantage of
the inherent features of the reconfigurable hardware [Danne et al., FPL 2003]. A similar
approach exploiting the benefits of partial reconfiguration is found in the work of
Rummele-Werner et al. oriented to the design of a real-time multi-object-tracker. The
system is able to track three objects simultaneously by using different algorithms to get
the best result. By using the dynamic partial reconfiguration capability of FPGAs, the
algorithms can be exchanged during run-time without interrupting the object-tracking
process [Rummele-Werner et al., ISCAS 2011]. Other example of controller that can
benefit from run-time reconfigurable hardware technology is the design of artificial
neural networks since this technology provides designers with a very flexible platform for
the development of adaptive digital circuits. Most types of neural networks have two
operation modes which are processed depending on the moment of the execution:
training and operation. As the algorithm used in each mode is different, it is possible to
switch from one mode to another by implementing the two specific hardware circuits in a
reconfigurable FPGA. Moreover, many neural networks training algorithms, in turn, can
be partitioned into a series of smaller sub-algorithms that are sequentially executed. This
partitioning can be exploited by FPGAs because only one of the sub-algorithms needs to
be implemented in hardware at any time. Moreover, some types of neural networks have
many different types of training algorithms, and each one of these algorithms would
require its own special hardware. This allows a more effective use of hardware resources.
All these criteria were put in practice by the Reconfigurable Logic Laboratory at the
Brigham Young University (BYU) to develop the so-called Run-Time Reconfiguration
Artificial Neural Network (RRANN and RRANN2) as a proof-of-concept system that
demonstrates the effectiveness of run-time reconfigurable FPGAs for implementing
neural networks [Eldredge and Hutchings, VLSI 1996|. The RRANN architecture,
designed on Xilinx XC3090 FPGAs, divides the backpropagation algorithm into the
sequential execution of three time-exclusive stages known as feed-forward,
backpropagation, and update. This work was extended later in the RRANN2 project,
implementing theANN on a fine-grained SRAM-based FPGA with run-time partial
reconfiguration —the National Semiconductor CLAy31 FPGA- where the reconfiguration
process entails only reconfiguring those portions of the FPGA that change between two
consecutive configurations [Hadley and Hutchings, FCCM 1995].

6.1.7 Hardware emulation and rapid prototyping

Today’s embedded systems design has to deal with the growing complexity implied by the
combination of emerging technologies and the increasing need for reconfigurability
motivated by the combination of the backward compatibility demanded to the current
products and the emergence of new protocols/standards or functionality in general. With
this, one of the most difficult tasks in the design of modern complex embedded systems
is the validation phase. In this sense, the use of FPGA dynamic reconfiguration
technology allows having an early analysis of the behavior of the system under almost
real conditions while providing an extreme flexibility for embedded validation by adding
or modifying the design: different specific peripherals or trace mechanisms can be
included on the FPGA on demand to improve the observability and even controllability of

123

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

the system. This specific data path to extract information from the device under test can
be configured and removed on-the-fly adapted to different test situations. The system can
then run during long tests, where different operations are performed and different
equipment is connected, without having to stop the whole system. This concept can also
be extended to the debug phase, where traditionally there has been a problem of visibility
of internal signals. This limited visibility can be overcome by adding reconfigurable
monitoring IPs on the fly on the design under test. Such adaptable system design offered
by the reconfigurable hardware has been particularly popular among test equipment
manufacturers since reconfigurable FPGAs can be used to adapt the same hardware to
perform varying types of tests. Moreover, another valuable feature exploited by run-time
reconfigurable hardware is the system failure injection [Antoni et al., DFT 2000].

6.1.8 Digital signal processing and arithmetic computing

Many embedded applications implement digital signal processing algorithms to perform
certain functionality. In specific domains, software-based implementations do not attain
the level of performance required. In such cases, characterized typically by aggressive
real-time constraints, hardware coprocessors provided with a high level of parallelism
and attached to the host processor are often the solution. Many of these coprocessing
architectures, furthermore, demand a level of flexibility and versatility not reachable with
static hardware. Run-time reconfigurable hardware technology fits well in such
applications oriented to signal filtering, data transmission, arithmetic computing, etc. As
examples, in the field of digital filtering, the capability of reconfiguring a filter at run-time
is of special interest for applications such as wireless communications or SDR [Delahaye
et al., MWCS 2007]. Llamoca et al. developed a 1D FIR filtering system on distributed
arithmetic of an FPGA platform that lets, by means of dynamic partial reconfiguration, to
reconfigure either only the filter coefficients or the full filter core architecture, modifying
the number of coefficients as well as the coefficient values [Llamoca et al., IJIRC 2010].
The same concept based on run-time reconfigurable hardware has been successfully
applied to the implementation of other use cases like discrete wavelet transform, fast
Fourier transform (FFT), discrete cosine transform (DCT), etc. In the area of arithmetic
computation, reconfigurable systems achieve significant increases in performance by
adapting to computations that are not so well supported by general-purpose processors.
Such computational systems are based on processing units customized to the
requirements of a particular application. In this context, special attention is given to
problems in the area of combinatorial optimization. Among them, the boolean
satisfiability (SAT) problem stands out because of the extremely wide range of practical
applications in a variety of engineering areas, including the testing of electronic circuits,
pattern recognition, logic synthesis, etc. SAT is a very well-known combinatorial problem
that consists of determining whether for a given boolean formula, composed of a set of
clauses and variables, there exists an assignment of values to the variables which makes
the given formula true. Implementations based on reconfigurable hardware enable the
primary operations of the respective algorithms to be executed in parallel. Consequently,
the effect of exponential growth in the computation time can be delayed, thus allowing
larger size instances of SAT to be solved. Recently, several research groups have explored
different approaches to solve the SAT problem with the aid of reconfigurable hardware
[Skiliarova and De Brito, TOC 2004].

6.1.9 Image processing and multimedia applications

Real-time image processing systems are finding many new applications in areas such as
real-time video processing, medical instrumentation or multimedia. Most of these
systems are commonly implemented on general-purpose processors; however, an
alternative solution is the wuse of reconfigurable computing systems, which have
demonstrated their efficiency to execute complex algorithms satisfying the simultaneous

124

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

application needs of performance and flexibility. Moreover, computer vision algorithms
are characterized by complex and repetitive operations on large amounts of data
involving a variety of data interactions (e.g., point operations but also neighbourhood
operations) and they can be efficiently synthesized in dedicated hardware coprocessors.

Apart from image processing, in the multimedia and consumer electronics domain, audio
processing is also of relevance. The boom of sales of portable multimedia devices in the
past years went joined with the appearance in the market of many emerging compression
and communication technologies adopted in standards organizations such as ISO, ITU
and IEEE. As example, the MPEG and JPEG groups have developed standards to address
the compression needs of audio and video. These compression standards address a
broad range of application areas, such as digital video broadcast, medical imaging, video
surveillance and digital cinema. In this direction, new standards offer unprecedented
levels of performance but at a computational cost that favors FPGA technology over
traditional processor-based solutions. Besides, the tremendous growth of formats makes
dynamic reconfigurable FPGAs an effective platform for this kind of applications to
support and play whatever new multimedia format under the same hardware platform.
As use case, in [Castillo et al.,, ReConFig 2006], it is presented a multimedia player
system that can be self-reconfigured with appropriate hardware codec to perform the
audio and video reproduction depending on the multimedia file to be played, e.g. audio
coding formats like WAV (Waveform Audio Format) and MP3 (MPEG-1 Audio Layer 3), or
video formats such as JPEG (Joint Photographic Experts Group) and MPEG-2 (Moving
Picture Experts Group). Still in the field of multimedia applications, the expansion of
wired and wireless network infrastructures and advancement of electronic devices enable
the society to enjoy a new life style where we download added-value contents from
remote servers and play them on local PCs or embedded appliances such as smart
phones. As example, IMEC developed a reconfigurable Internet camera called Cam-E-
Leon, combining reconfigurable hardware and embedded software. The appliance
implements a secure VPN (Virtual Private Network) with 3DES encryption and an
Internet camera server (including JPEG compression), which is run-time reconfigurable
by the client, allowing to switch among several available image manipulation functions
from a web browser [Desmet et al, SAMOS 2002]. Other work related to video
compression is the one performed in [Ramachandran and Srinivasan, VLSID 2002],
where a dynamically reconfigurable video encoder lets switch among JPEG, MPEG-1,
MPEG-2 and H.263 standards through the partitioning of the algorithm using dynamic
reconfiguration. The video encoder is implemented on the Atmel AT6000 FPGA and the
dynamic reconfigurability for the entire encoder system is confined to only a portion of a
Variable Length Coder (VLC) module residing in the FPGA. This video encoder presents a
flexible solution to dynamically switch from one standard to another, changing program
features like colour, picture size and channel rate to achieve the desired image quality.

6.1.10 Telecommunications and networking

The recent proliferation of wireless communication systems has highlighted the need to
dynamically adapt communications architectures at the hardware level, characterized via
a set of configurable parameters. Many other application fields arise in the area of
telecom and networking, like data error recovery. The use of error-correcting codes has
proven to be an effective way to overcome data corruption in digital communication
channels. For this, the system is composed of an encoder and a decoder, separated one
from the other by a communication channel exposed to different sources of noise.
Encoding is accomplished through the addition of redundant bits into the binary
information sequence that is transmitted over the communication channel. These
redundant bits provide the decoder with the capability to detect and correct transmission
errors originated by the effects of noise and interference into the communication
channel. Thus, values received at the decoder may differ from values sent by the encoder
due to the noisy and error-prone channel, affected by characteristics such as weather

125

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

(wireless communication), distance or battery-power. The changes in these parameters
result in a change in the signal-to-noise ratio (SNR). The function of the decoder is to
attempt to reconstruct the input sequence transmitted by the encoder by evaluating the
received channel output, and the performance of this decoder is characterized by the bit
error rate (BER), i.e., the ratio of the number of decoded output bits in error to the total
number of bits transmitted. The ability of error correction codes to increase the signal to
noise ratio of a communication channel depends on the code chosen. Several of these
coding/decoding (CODEC) strategies implemented on reconfigurable hardware are
presented next.

» Viterbi and Adaptive Viterbi decoders are some of the most extensively used
techniques for detecting and correcting error in communication systems based on
convolutional codes. Their implementation is typically accomplished by means of shift
registers and logic (XOR) functions. As example, Swaminathan et al. proposed the
implementation of a dynamically reconfigurable adaptive Viterbi decoder implemented
in reconfigurable hardware [Swaminathan et al., FPGA 2002|. In this way, if the
channel noise increases, a more accurate but slower running decoder is swapped into
the FPGA hardware. Reduced channel noise leads to the opposite effect, downloading
in hardware a decoder version of reduced computation and memory to support faster
performance and achieve the same decode accuracy.

* Turbo codes are other error-correction codes based on redundant data transmission.
The component encoder consists of a shift register augmented with generator
functions (AND and XOR) to compose one or more parity bits per each input bit. Liang
et al. developed a dynamically reconfigurable ASOVA (Adaptive Soft Output Viterbi
Architecture) turbo decoder mapped on an Altera Stratix FPGA [Liang et al.,, FCCM
2004]|. Dynamic reconfiguration is used to ensure that, in response to changing
channel conditions, the lowest-power decoder that meets the required BER is present
in the FPGA at any time, while saving power in comparison to a static implementation.

= Reed-Solomon (RS) codes are further examples of codes used to perform Forward Error
Correction (FEC) by introducing redundancy in data before they are transmitted. The
fundamental operations in RS encoding and decoding involve Galois field arithmetic.
These codes are particularly well suited to correct burst errors, in which a continuous
sequence of bits is received with errors. Haase et al. developed a Reed-Solomon
coder/decoder taking advantage of the partial dynamic reconfiguration of Xilinx Virtex
FPGA devices [Haase et al., DATE 2002].

Apart from error correction algorithms, in the field of networked applications, the always

increasing demands of the Internet directly affect the requirements of networking routers

and firewalls in aspects like data bandwidth and flexibility to support the implementation
of new features and functions, e.g. new protocols, enhanced security, all of course
without involving prohibitive costs. On the one hand, existing router architectures that
provide sufficient flexibility and data-flow processing employ software-based platforms
containing multiple RISC cores, therefore some features can be added or removed in the
router by upgrading the software in the system. The sequential nature of the
microprocessor, however, can limit the system throughput. On the other hand, existing
high-performance router architectures capable of data processing at optical line speeds
employ ASICs to perform parallel computations in hardware. Nevertheless, these
architectures often provide limited flexibility for the deployment of new applications or
protocols due to the static nature of the ASIC circuit and consequently they need longer
design cycles and higher costs than software-based solutions. In this context, the
diversity of networking applications and data flows suggests dynamically reconfigurable
hardware to cover this potential design space. As example, the Applied Research Lab
from the Washington University developed the Field Programmable Port Extender (FPX),

a prototype which enables customized packet processing functions to be implemented as

modules which can be dynamically loaded into hardware over a network. Each of these

modules, called Dynamic Hardware Plugins (DHP), is deployed in the physical router.

The DHP architecture employs reconfigurable hardware to provide a flexible hardware

126

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

processing environment for programmable multi-port routers, allowing multiple
hardware applications to be dynamically loaded into a single device and run in parallel.
The modular design of the FPX makes the system of interest for active networking
systems as it allows customized applications to achieve the higher performance via
hardware acceleration while these modular components can be dynamically reconfigured
over the Internet [Taylor et al., OPENARCH 2001].

6.1.11 Automotive applications

There exist many potential applications in the automotive industry which can take
advantage of run-time reconfigurable computing like driver assistance, infotainment
(information & entertainment), telematics (the convergence of mobile telecommunications
and information processing in vehicles) or the traditional body control and engine
management functions. Today, the automobile is provided with novel functionality;
linked to this trend, the percentage of vehicle added-value due to mechanical parts is
constantly decreasing while the percentage related to electronic components goes just in
the opposite direction embedded in the electronic control units (ECUs) present in the
vehicle. These ECUs are requested to increase their computational power to join and take
charge of much more functionality. In an attempt to manage this complexity,
DaimlerChrysler AG in cooperation with the Institute for Information Processing
Technology (ITIV) of the University of Karlsruhe investigated the design of an automotive
ECU based on the usage of dynamic and partially reconfigurable hardware [Becker et al.,
IEEE 2007]. Partial and dynamic run-time self-reconfiguration of FPGA devices enables
the development of adaptive hardware for a huge variety of applications. In this
approach, the typical microcontroller as central component of an ECU is replaced by a
dynamically and partially reconfigurable FPGA able to provide vehicle functions on
demand. This approach is based on the fact that not all vehicle functions must be
available or needed at the same time —in fact, this neither happens today in a vehicle
when several functions or tasks are sequentially executed by the same MCU within an
ECU- therefore it should be possible to identify an adequate subset of functions which
can be operated on the same reconfigurable resource by applying a kind of flexible
demand-driven time-multiplexing. This fact makes possible to save hardware resources
and power consumption. In the work conducted by Daimler and ITIV, the system
consists of a run-time module controller, implemented on a MicroBlaze soft-core
processor and four reconfigurable module slots where the different hardware-based
application functions are dynamically downloaded and executed on-demand. The system
is prototyped in a Xilinx Virtex-II FPGA device. In the static region of the FPGA, a
MicroBlaze sof-core processor is the host CPU of the system. The system is connected to
its environment via a Controller Area Network (CAN) bus, which is a well established
communication interface in the automotive domain. The CPU manages the execution of
the different applications or tasks requested via CAN frames in the different
reconfigurable regions or partitions of the FPGA. If the task requested via CAN requires a
dedicated processor that is not placed at that time in the partially reconfigurable regions,
then the reconfiguration controller looks for a free partition and handles the
reconfiguration by downloading its bitstream from external Flash memory. This system
was implanted in a real car for conducting system tests in a real-world scenario to deploy
body functions like seat memory, window lifter or rear mirrors. The results prove that the
reduction of power dissipation by adapting the hardware to the actual demand of the
application is possible with reconfigurable hardware by means of a dynamically and
partially reconfigurable FPGA.

6.1.12 High-performance computing

The potential of FPGAs for scientific computation, high-performance computing or
supercomputing is well understood today although their long implementation cycles have

127

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

hindered their faster adoption for numerically intensive applications. At present, various
key research contributions and initiatives propel FPGA-based computation from the
embedded space into scientific computing. A large set of examples can be found in the
literature, such as bioinformatics and computational biology, financial computing,
astrophysics simulations or weather and climate modelling. Pattern matching, for
instance, is an application domain extended in the area of bioinformatics, speech
recognition, or in search engines. In many cases, regular expression pattern matching
needs to support high processing throughput at lowest possible hardware cost. When
performance is critical, software platforms may not be able to provide efficient regular
expression implementations. It is a fact that they can be more than one order of
magnitude slower than hardware implementations, their performance does not scale well
as the number of regular expressions increases and their memory requirements may be
substantially large. Parallel hardware architectures offer large advantages in time
performance compared to software designs, due to easily extracted parallelism in the
intrusion detection string-matching problem. A generic ASIC design would be fast but
not suitable due to the dynamic nature of the ruleset —as new vulnerabilities and attacks
are identified, new rules must be added to the database and the device configuration
must be regenerated. Compared to CPU- or ASIC-based designs, an FPGA allows for
exceptional performance due to the parallel hardware nature of execution as well as the
ability to customize the device for a particular set of patterns through on-the-fly
reconfiguration of a new ruleset. FPGAs can operate at hardware speed and exploit
parallelism. Moreover, they provide the required flexibility to change the regular
expression ruleset implementation on demand. As the size of the regular expressions set
grows, conventional CPU performance may deteriorate appreciably compared to an
FPGA-based approach. Consequently, regular expression pattern matching is an
application field suitable to best exploit the advantages of reconfigurable hardware.

6.2 Success cases of commercial products and industrial
applications

The potentiality of all these applications fields enumerated in the previous section has
encouraged the FPGA vendors, supported by research groups in universities, to develop
this technology to definitely move it from research to industry. In this sense, additional
indicators which confirm the acceptance of run-time reconfigurable hardware is the slow
but progressive emergence in the market of commercial products or real use cases that
take advantage of this technology in the way of end applications. Nowadays, a very
reduced set of commercial products and industrial apps have revealed that make use of
run-time reconfigurable hardware technology. These success stories can be probably
turned out into the beginning of a new computing wave.

6.2.1 Consumer electronics

Sony Corp. released in 2003 the industry’s first consumer electronics product —the
Network Walkman NW-MS70D- driven by run-time hardware reconfiguration technology
(so-called Virtual Mobile Engine or VME) for audio codecs. Other commercial products
from Sony which integrate run-time reconfigurable hardware are the PlayStation Portable
console (PSP) or the Network Walkman NW-E405, deployed through VME technology
[Sony Corp., CX-NEWS 2009].

6.2.2 Computing platforms

FPGAs have become commonplace in embedded systems and are now beginning to
appear in high-performance, server-class computing applications as well. This shift
toward HPRC has been driven by the continuous growth of FPGA device capabilities. As
example, in the area of computation, the SwitchBack reconfigurable PC from RMT Inc.,

128

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

deployed with the Black Diamond Advanced Technology [Lewis, Xcell 2009], or the
supercomputer Altix 4700 from SGI, based on its Reconfigurable Application-Specific
Computing (RASC) technology [Silicon Graphics Inc., www 2005], are pioneer computing
architectures powered by reconfigurable SRAM-based FPGA devices.

6.2.3 NASA/ESA aerospace missions

In the aerospace field, the SpaceCube computing platform, an on-board science data
processing system developed at the NASA Goddard Space Flight Center, successfully
proved the feasibility of SRAM-based FPGA technology in the space through the STS-125
and STS-129 missions carried out in May and November 2009, respectively [Flatley,
ESTF 2010]. The SpaceCube incorporates commercial rad-tolerant SRAM-based FPGA
technology (Xilinx Virtex-4 or Virtex-5 devices) and couples it with an upset mitigation
software architecture to provide improvements in computing power quantified between
one and two orders of magnitude over traditional rad-hard flight systems. Methods for
fault mitigation, circuit redundancy and fault scrubbing have definitively enabled the use
of SRAM-based FPGAs in space making use of run-time partial reconfiguration. Thus,
the system is partially reconfigurable in flight, through either ground commanding or
autonomously in response to detected events in the instrument data stream [Flatley, GTT
2009]. On the other hand, in Europe, the ESA, under the research project called "FPGA
based generic module and dynamic reconfigurator”, focuses on reconfigurable hardware
devices for exploiting run-time adaptability and processing performance of payload
onboard processing systems. Since performance requirements for onboard processing of
satellite instrument data are steadily increasing and the data volume generated by the
next generation of earth observation instrumentation can hardly be transmitted to
ground (because science data downlinks offer limited capacity only), a dynamically
reconfigurable processing module demonstrator based on Xilinx Virtex-4 FPGAs is
developed which exploits and unveils partial and dynamic reconfigurability of SRAM-
based FPGAs for space applications, including advanced concepts for mitigating
radiation effects [Dittmann et al., SpaceWire 2010].

6.2.4 Signal processing at CERN

Another real use case of run-time reconfigurable computing is found at CERN (European
Council for Nuclear Research) with the high energy physic experiments for particle
accelerators, e.g. ALICE, where it must be possible to change at run-time the
functionality of filters and other processing units of data acquisition systems along the
life cycle of such experiments [Abel et al.,, TNS 2010].

6.2.5 Software defined radio

Over 90 new satellites are projected to be launched by 2013 which will provide global
navigation satellite system (GNSS) signals on many different frequencies and with dozens
of different code types. Under this context, NAVSYS Corp., a company specialized in
developing next generation global positioning system (GPS) technology, is currently
leveraging its development efforts to design a miniaturized SDR architecture with low-
power design features and dynamic reconfiguration of the receiver channels to allow
different GNSS frequency bands and signal codes to be processed by each channel. By
using dynamic reconfiguration of the GNSS receiver channels rather than a conventional
fixed ASIC design approach, the channel resources can be reallocated to operate with
any GNSS code/frequency pair in order to compute the optimum navigation solution
from a subset of the many visible GNSS satellites. The SDR design is flexible enough to
cover the GNSS frequency bands for L1 and L2 operation and the new civil L5
frequencies using either the military or civil codes. The entire receiver baseband
processing is being implemented on a single Xilinx Virtex-6 FPGA. The base band

129

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluis

DL:

T.

877-2012

processing system is able to switch among six different receiver channels managed by a
navigation and host processor. In its turn, each of these FPGA receiver channels in the
GNSS SDR can be dynamically reconfigured to track a different GPS frequency or
satellite signal. For this, once triggered by the host processor, an encrypted bitstream of
the receiver channel is downloaded into the appropriate FPGA reconfigurable region from
external flash memory by a crypto core, being the channel reconfigured in approximately
1.5 milliseconds. The design, oriented to the United States GPS, is flexible enough to
handle in the future the signals from other GNSS constellations such as the European
Galileo, the Russian GLONASS, the Japanese QZSS, the Indian GAGAN or the Chinese
CNNS [Brown and Reed, GNSS 2011].

6.2.6 Cryptography

Nallatech Ltd., a company specialized in the development of reconfigurable computing
systems, designed a reconfigurable video encryption system oriented to military
applications for the UK Ministry of Defence (MOD). Using FPGAs, Nallatech successfully
designed a reconfigurable system that proved how the MOD could replace one or more
components of its original video encryption platform without affecting the rest of the
system and software. To prove this flexible concept, Nallatech designed a reconfigurable
video encryption system on a FPGA device by creating two identical designs with different
encryption cores. For the first encryption core, Nallatech chose a modified Enigma
encryption algorithm used by German military and intelligence communications during
World War II. For the second core, they chose the Advanced Encryption System (AES)
algorithm. The original system was updated with a new encryption core by fully
reconfiguring the FPGA [Denning et al., FPL 2003]. Thus, they successfully demonstrated
the feasibility of IP obsolescence protection and update by means of reconfigurable
hardware technology.

6.3 Summary

FPGA dynamic partial reconfiguration has attracted high attention from both academia
and industry in recent years. The advances in run-time reconfigurable hardware
