

Francisco Fons Lluís

EMBEDDED ELECTRONIC SYSTEMS DRIVEN
BY RUN-TIME RECONFIGURABLE HARDWARE

DOCTORAL THESIS

Supervised by Dr. Enrique F. Cantó Navarro

Departament d’Enginyeria Electrònica, Elèctrica i Automàtica

Tarragona

2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

ESCOLA TÈCNICA SUPERIOR D’ENGINYERIA
DEPARTAMENT D’ENGINYERIA ELECTRÒNICA, ELÈCTRICA I AUTOMÀTICA

Avinguda dels Països Catalans, 26
Campus Sescelades
43007 Tarragona – SPAIN
Tel. + 34 977 559 610
Fax + 34 977 559 605
e-mail: secelec@urv.net
http://sauron.etse.urv.es/DEEEA/

Enrique F. Cantó Navarro, professor at the Department of Electronic, Electrical and
Automatic Control Engineering of the University Rovira i Virgili,

STATES:

That the present thesis, entitled “Embedded electronic systems driven y run-time
reconfigurable hardware”, presented by Francisco Fons Lluís for the award of the degree
of Doctor, has been carried out under my supervision at the Department of Electronic,
Electrical and Automatic Control Engineering of the University Rovira i Virgili.

Tarragona, March 2012

Doctoral Thesis Supervisor

Dr. Enrique F. Cantó Navarro

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

v

Abstract

Run-time reconfigurable hardware technology has experienced a big progress in the last
decade after both academia and industry research communities have jointly got involved
in this issue, bringing the necessary talent and energy to definitively put this technology
to the service of the society. Many indicators confirm today that dynamic partial
reconfiguration is no longer just for the avid early explorers of the recent past: improved
programmable logic devices supporting this technology have been shipped; a valid
method and design flow supported by acceptable EDA tools has been established;
potential use cases and killer applications that can benefit from this technology have
been identified; and last but not least, the first commercial products/systems driven by
this technology are already being launched to the market.
This PhD dissertation addresses the exploration of run-time reconfigurable hardware to
implement embedded applications, exploiting its inherent strengths in flexibility and
adaptability, as well as in power and system cost savings. This work does research on
the conception of an open system architecture driven by a reconfiguration engine
suitable for synthesizing flexible embedded electronic systems on SRAM-based
FPGA/SoC devices. Thereby, it pays attention to the identification, from an application-
driven viewpoint, of computational tasks typically synthesized in static hardware –e.g.
general-purpose processors (MCU, DSP, GPU) or programmable logic (FPGA, SoC)– in
which dynamic partial reconfiguration can be used to advantage. Several application
fields like control engineering (e.g. PID and fuzzy logic controllers), digital computing (e.g.
trigonometrics, 2D convolution), or full complex electronic systems (e.g. biometric
recognition system, automotive electronic control unit) have been investigated from an
algorithmic standpoint first and prototyped then through commercial devices –e.g.,
Xilinx, Atmel and Altera platforms– provided with on-the-fly reconfiguration, pioneering
the use of run-time reconfigurable hardware by first time in the scientific literature in
some of them.
This work demonstrates that a complete run-time reconfigurable computing ecosystem
provided with a high enough level of maturity for its exploitation in the industry is today
already in place, making feasible –although further advances are still required, especially
regarding automatic tools– the professional design and development of embedded
electronic systems. Thus, in a future of digital system design increasingly parallel and
programmable, many application opportunities for run-time reconfigurable hardware
abound. In this sense, the future of this computing paradigm is highly promising, hoping
that the intellectual effort invested in this area by the research community, the FPGA
vendors and the industry in general helps to enhance the life quality of the human
beings in the near future. The work conducted in this PhD dissertation aims at
contributing to this goal.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

vi

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

vii

Acronyms and abbreviations

AFAS Automatic Fingerprint Authentication System
AHB Advanced High-performance Bus
ALU Arithmetic Logic Unit
AMBA Advanced Microcontroller Bus Architecture
ASIC Application Specific Integrated Circuit
ASIL Automotive Safety Integrity Level
ASIP Application-Specific Instruction-set Processor
ASSP Application Specific Standard Product
API Application Programming Interface
ARM Advanced RISC Machine
AXI Advanced Extensible Interface
BOM Bill Of Materials
CAD Computer Aided Design
CAGR Compound Annual Growth Rate
CAN Controller Area Network
CISC Complex Instruction Set Computing
CLB Configurable Logic Block
CORDIC COordinate Rotation DIgital Computer
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DDR-SDRAM Doble Data Rate Synchronous Dynamic Random Access Memory
DMA Direct Memory Access
DPRAM Dual Port Random Access Memory
DRAM Dynamic Random Access Memory
D&D Design and Development
ECU Electronic Control Unit
EDA Electronic Design Automation
E/E Electrical/Electronic
EPP Extensible Processing Platform
ESA European Space Agency
FLC Fuzzy Logic Controller
FPGA Field Programmable Gate Array
FPSLIC Field Programmable System Level Integrated Circuit
FPU Floating Point Unit
FSM Finite State Machine
GPGPU General-Purpose computation on Graphics Processing Unit
GPP General-Purpose Processor
GPS Global Positioning System
GPU Graphics Processing Unit
HDL Hardware Description Language
HLS High-Level Synthesis
HPC High-Performance Computing
HPRC High-Performance Reconfigurable Computing
ICAP Internal Configuration Access Port
ICT Information & Communication Technology
IEC International Electrotechnical Commission
I/O Input/Output
IP Intellectual Property
ISA Instruction Set Architecture
ISO International Organization for Standardization

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

viii

JTAG Joint Test Action Group
LCD Liquid Crystal Display
LUT Look-Up Table
MAC Multiplier-Accumulator
MCU Microcontroller Unit
MCyT Spanish Ministry of Science and Technology
MMU Memory Management Unit
MPMC Multi-Port Memory Controller
NASA National Aeronautics and Space Administration
NoC Network-on-Chip
NPI Native Port Interface
NRE Non-Recurring Engineering
NVM Non-Volatile Memory
OEM Original Equipment Manufacturer
OS Operating System
OTP One-Time Programmable
PAL Programmable Array Logic
PC Personal Computer
PCB Printed Circuit Board
PID Proportional Integral Derivative
PIN Personal Identification Number
PLA Programmable Logic Arrays
PLB Peripheral Local Bus
PLD Programmable Logic Device
PR Partial Reconfiguration
PROM Programmable Read-Only Memory
PRM Partially Reconfigurable Module
PRR Partially Reconfigurable Region
PSoC Programmable System-on-Chip
RAM Random Access Memory
RC Reconfigurable Computing
RISC Reduced Instruction Set Computing
ROM Read Only Memory
RTL Register Transfer Level
SDRAM Synchronous Dynamic Random Access Memory
SEU Single Event Upset
SME Small and Medium Enterprises
SoC System-on-Chip
SoPC System-on-Programmable-Chip
SRAM Static Random Access Memory
SWaP Size, Weight and Power
UART Universal Asynchronous Receiver Transmitter
VHDL Very High Speed Integrated Circuit Hardware Description Language
VLIW Very Long Instruction Word
V&V Verification and Validation
XCL Xilinx CacheLink

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

ix

List of figures

Figure 1.1 Milestones of the roadmap towards run-time reconfigurable computing
Figure 1.2 Use of FPGA devices
Figure 1.3 Recent achievements in run-time reconfigurable computing
Figure 1.4 DES horizontal (design technology) and vertical (embedded apps)

disciplines
Figure 2.1 Antifuse programming technology
Figure 2.2 SRAM programming technology
Figure 2.3 MRAM programming technology
Figure 2.4 SRAM-based FPGA conceptual view
Figure 2.5 SRAM-based FPGA logic cell
Figure 4.1 Embedded system components breakdown into host CPU,

reconfiguration engine, external memory and I/O
Figure 4.2 High level model of the FPGA embedded system split in physical devices
Figure 4.3 Dynamic partial self-reconfigurable FPGA high level model
Figure 4.4 Minimalist system architecture based on one PR partition and one

repository
Figure 4.5 Embedded system architecture based on two PR partitions and one

repository
Figure 4.6 Embedded system architecture composed of two PR partitions and two

sytem repositories which split the reconfiguration data from the
application data

Figure 4.7 VAPRES system architecture
Figure 4.8 Autovision system architecture
Figure 4.9 KIT-ITIV system architecture
Figure 4.10 ESM system architecture
Figure 4.11 Molen system architecture
Figure 5.1 Self-reconfigurable FPGA versus externally-reconfigurable FPGA
Figure 5.2 Internal FPGA configuration port in Atmel AT94K FPSLIC
Figure 5.3 Altera Excalibur EPXA reconfiguration controller architecture
Figure 5.4 Arbitration of configuration interfaces in Xilinx FPGAs
Figure 5.5 Xilinx FPGA reconfiguration controller architecture
Figure 5.6 Decoupling of bitstream provider and consumer via a simple dual-port

FIFO
Figure 5.7 Block diagram of the system architecture deployed in the ML401

platform
Figure 5.8 PR design flow (EDA tools, source code files and resultant bitstreams)
Figure 7.1 Block diagram of a closed-loop control system based on a PID controller
Figure 7.2 AT40K logic cell based on two 3-input LUTs and one 1-bit flip-flop
Figure 7.3 AT94K series architecture
Figure 7.4 Scheduling of the PID algoritm performed with a multiplier and an adder
Figure 7.5 Block diagram of the PID coprocessor implemented in the FPGA
Figure 7.6 Reconfigurable operands selector
Figure 7.7 PID coprocessor
Figure 7.8 AT94K prototype board developed
Figure 7.9 Floorplanning, placement and routing of the PID app in the AT94K40

FPSLIC
Figure 7.10 Reconfigurable selector of the operands of the multiplier and the adder
Figure 8.1 Fuzzy-based control system constituted by two inputs and one output
Figure 8.2 Three-stage fuzzy process
Figure 8.3 Fuzzy control surface z=f(x,y) obtained in the fuzzification, rule inference

and defuzzification stages. Segmentation and indexing of the surface

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

x

Figure 8.4 Block diagram of the AT94K40-based FLC
Figure 8.5 Block diagram of the FLC embedded in the AT94K40 FPSLIC
Figure 8.6 Scheduling of the fuzzy computing
Figure 8.7 DR-MIXER and DR-ROM modules
Figure 8.8 Automatic testing of the FLC design
Figure 8.9 Floorplanning of the fuzzy logic controller in the AT94K40 FPSLIC
Figure 9.1 ML401 evaluation board used in the prototyping of the 2D convolver
Figure 9.2 System architecture and functional components breakdown
Figure 9.3 2D convolution split in four stacked functional blocks
Figure 9.4 Parallelism and 4-stage pipeline of the 2D convolver placed in the PRR
Figure 9.5 Isotropic filter Kj,i of kernel 13x13 with 28 common taps coefficients
Figure 9.6 Example of image 2D convolution based on an isotropic filter of kernel

13x13 with processing of 4 pixels in parallel into the PRR
Figure 9.7 Partial bitstreams of image processors based on different 2D convolution

features. FPGA floorplanning and partitioning into static and PR regions
Figure 9.8 Composition of the full bitstream placed in the FPGA at a given time split

in the static region and the 2D convolver located in the PRR
Figure 10.1 Circular CORDIC rotation of a vector in a 2D coordinate system
Figure 10.2 Block diagram of the AT94K40-based trigonometric CORDIC coprocessor
Figure 10.3 Internal structure of the CORDIC coprocessor
Figure 10.4 Multiplexing of KCORDIC by dynamic partial reconfiguration
Figure 10.5 Sign controller: static version versus dynamic version
Figure 10.6 Static 3x1-multiplexer versus dynamic 3x1-multiplexer
Figure 10.7 Floorplanning of the trigonometric CORDIC computer in the AT94K40

FPSLIC
Figure 11.1 Design flow of the embedded AFAS application
Figure 11.2 Image processing tasks breakdown of the AFAS algorithm
Figure 11.3 Fingerprint image processing stages
Figure 11.4 Sequential execution flow (temporal partitioning) distributed in static-

and PR-regions (spatial partitioning)
Figure 11.5 AFAS development platform
Figure 11.6 System architecture of the reconfigurable fingerprint recognition

processor
Figure 11.7 Biometric recognition system architecture in a Virtex-4 FPGA
Figure 11.8 Spatial partitioning and floorplanning of the AFAS in one static region

and one reconfigurable region of the FPGA. Temporal partitioning of the
application in sequential stages performed in the reconfigurable region

Figure 12.1 AUTOSAR layer-based model
Figure 12.2 Porting of the AUTOSAR ECU architecture to a SoC/FPGA platform
Figure 12.3 Block diagram of an automotive ECU deployed in programmable logic
Figure 12.4 HW/SW co-design of a safety architecture that isolates the safety-

relevant ports from non-safety ports to guarantee the freedom from
interference

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xi

List of tables and code

Table 1.1 Scientific conferences focused on reconfigurable hardware technology
Table 1.2 International journals which broach reconfigurable hardware as topic of

interest
Table 3.1 Research projects oriented to run-time reconfigurable hardware

technology
Table 3.2 Patents based on reconfigurable hardware technology
Table 3.3 Reconfigurable computing research groups
Table 3.4 PhD dissertations related to reconfigurable computing
Table 5.1 Atmel AT94K/AT94S FPSLIC reconfiguration controller
Table 5.2 Altera Excalibur EPXA reconfiguration controller
Table 5.3 Partial Reconfiguration features of Xilinx FPGAs
Table 5.4 Reconfiguration controllers implemented on Spartan-3 and Virtex-II Pro

devices
Table 5.5 Reconfiguration controllers implemented on Virtex-4/-5 and Spartan-6

devices
Table 5.6 Reconfiguration features of the next generation Xilinx and Altera devices
Table 7.1 PID computation in different HW/SW platforms
Table 7.2 Hardware resources used in the PID controller implementation
Table 8.1 Hardware resources used in the fuzzy logic controller implementation
Table 8.2 Time breakdown of the FLC tasks
Table 9.1 FPGA spatial partitioning
Table 9.2 Processing time of the different tasks
Table 9.3 Use of FPGA hardware resources
Table 9.4 Hardware implementation features
Table 10.1 Numerical representation of the CORDIC corrective constants K32
Table 10.2 Comparison of different HW/SW implementations of the CORDIC

algorithm
Table 10.3 Time breakdown of the execution tasks
Table 10.4 Computation error
Table 10.5 Hardware resources used in the CORDIC computer implementation
Table 10.6 Hardware resources used in the CORDIC atan(y/x) computer

implementation
Table 11.1 Processing time breakdown of the different tasks executed in different

AFAS platforms. Tasks performance comparison: (i) SW-only approach on
a personal computer platform based on an Intel Core 2 Duo processor @
1.83GHz, (ii) HW/SW co-design on an Altera Excalibur EPXA10 SoPC
based on an ARM9 processor @ 200MHz and custom hardware
coprocessors @ 24MHz/48MHz, and (iii) PR-HW/SW co-design on a
Xilinx Virtex-4 XC4VLX25 FPGA based on a Microblaze processor @
100MHz and custom reconfigurable hardware coprocessors @
50MHz/100MHz

Table 11.2 Balance of resources in the AFAS application based on Virtex-4 FPGA
Table 14.1 Development platforms used in the different research works
Table 14.2 European and Spanish research projects framework of this PhD

dissertation

Code 5.1 Reconfiguration of an 8-bit resource of the FPGA via the MCU software

code
Code 5.2 Reconfiguration of the FPGA via the MCU software code
Code 5.3 Reconfiguration function used by the host processor
Code 7.1 PID algorithm

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xii

Code 7.2 PID software function prototypes
Code 7.3 Reconfiguration of the logic cell’s XLUT and YLUT in each PID cycle
Code 8.1 Binary search algorithm based on a 256-sectors surface
Code 9.1 Pseudo code of a 13x13 isotropic filter 2D convolution implemented in

SW
Code 10.1 Prototypes of the trigonometric functions

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xiii

List of publications

Journals

• E. Cantó, M. Fons, F. Fons, M. López, R. Ramos, Fast self-reconfigurable embedded
system on Spartan-3, Journal of Universal Computer Science (under 2nd review).

• F. Fons, M. Fons, E. Cantó, M. López, Deployment of run-time reconfigurable hardware
coprocessors into compute-intensive embedded applications, Journal of Signal Processing
Systems, vol. 66, no. 2, pp. 191-221, Springer, 2012.

• M. Fons, F. Fons, E. Cantó, M. López, FPGA-based personal authentication using
fingerprints, Journal of Signal Processing Systems, vol. 66, no. 2, pp. 153-189, Springer,
2012.

• F. Fons, M. Fons, E. Cantó, M. López, Real-time embedded systems powered by FPGA
dynamic partial self-reconfiguration: A case study oriented to biometric recognition
applications, Journal of Real-Time Image Processing, pp. 1-23, Springer,
doi:10.1007/s11554-010-0186-1, 2011.

• M. Fons, F. Fons, E. Cantó, Biometrics-based consumer applications driven by
reconfigurable hardware architectures, Future Generation Computer Systems, vol. 28, no.
1, pp. 268-286, Elsevier, January 2012.

• F. Fons, M. Fons, E. Cantó, Run-time self-reconfigurable 2D convolver for adaptive image
processing, Microelectronics Journal, vol. 42, no. 1, pp. 204–217, Elsevier, January
2011.

• M. Fons, F. Fons, E. Cantó, Fingerprint Image Processing Acceleration Through Run-Time
Reconfigurable Hardware, IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 57, no. 12, pp. 991-995, December 2010.

• F. Fons, M. Fons, E. Cantó, System-on-chip design of a Fuzzy Logic controller based on
dynamically reconfigurable hardware, International Transactions on Systems Science
and Applications, vol. 2, no. 2, pp. 191-196, Xiaglow Research, ISSN 1751-1461, 2006.

• F. Fons, M. Fons, E. Cantó, M. López, Trigonometric computing embedded in a
dynamically reconfigurable CORDIC system-on-chip, K. Bertels, J.M.P. Cardoso, S.
Vassiliadis (Eds.), Reconfigurable Computing: Architectures and Applications, Lecture
Notes in Computer Science, vol. 3985, pp. 122-127, Springer, ISBN 978-3-540-36708-6,
2006.

• E. Cantó, N. Canyellas, M. Fons, F. Fons, M. López, FPGA Implementation of the ridge
line following fingerprint algorithm, J. Becker, M. Platzner, S. Vernalde (Eds.), Field-
Programmable Logic and Applications, Lecture Notes in Computer Science, vol. 3203, pp.
1087-1089, Springer, ISBN 3-540-22989-2, 2004.

Book chapters

• M. Fons, F. Fons, Exploiting run-time reconfigurable hardware in the development of
automatic fingerprint-based personal recognition applications, Recent Application in
Biometrics, pp. 239-266, InTech, ISBN 978-953-307-488-7, July 2011.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xiv

Internaltional conferences

• E. Cantó, F. Fons, M. López, Self-reconfigurable embedded systems on Spartan-3,
International Conference on Field Programmable Logic and Applications, FPL Conference
Proceedings, pp. 571-574, Heidelberg, Germany, September 2008.

• E. Cantó, M. López, F. Fons, Self-reconfiguration of embedded systems mapped on
Spartan-3, International Workshop on Reconfigurable Communication-centric System-
on-Chips, ReCoSoC Conference Proceedings, pp. 117-124, Barcelona, Spain, July 2008.

• F. Fons, M. Fons, E. Cantó, Approaching fingerprint image enhancement through
reconfigurable hardware accelerators, IEEE International Symposium on Intelligent
Signal Processing, WISP Conference Proceedings, pp. 457-462, Alcalá de Henares, Spain,
October 2007.

• M. Fons, F. Fons, E. Cantó, Embedded VLSI accelerators for fingerprint signal
processing, IEEE International Symposium on Intelligent Signal Processing, WISP
Conference Proceedings, pp. 463-468, Alcalá de Henares, Spain, October 2007.

• M. Fons, F. Fons, E. Cantó, M. López, Design of a hardware accelerator for fingerprint
alignment, IEEE International Conference on Field Programmable Logic and Applications,
FPL Conference Proceedings, pp. 485-488, Amsterdam, The Netherlands, August 2007.

• F. Fons, M. Fons, E. Cantó, M. López, Flexible hardware for fingerprint image
processing, IEEE International Conference on Ph.D. Research in Microelectronics and
Electronics, RME Conference Proceedings, pp. 169-172, Bordeaux, France, July 2007.

• M. Fons, F. Fons, E. Cantó, Embedded security: New trends in personal recognition
systems, IEEE International Conference on Ph.D. Research in Microelectronics and
Electronics, RME Conference Proceedings, pp. 89-92, Bordeaux, France, July 2007.

• M. Fons, F. Fons, E. Cantó, Hardware-Software codesign of a fingerprint alignment
processor, IEEE International Conference on Mixed Design of Integrated Circuits and
Systems, MIXDES Conference Proceedings, pp. 661-666, Ciechocinek, Poland, June
2007.

• F. Fons, M. Fons, E. Cantó, Hardware-Software co-design of a dynamically
reconfigurable FPGA-based Fuzzy Logic controller, IEEE International Conference on
Electronics, Circuits and Systems, ICECS Conference Proceedings, pp. 1228-1231, Nice,
France, December 2006.

• E. Cantó, F. Fons, M. López, Reconfigurable OPB coprocessors for a Microblaze self-
reconfigurable SOC mapped on Spartan-3 FPGAs, IEEE Industrial Electronics Society
Conference, IECON Conf. Proceedings, pp. 4940-4944, Paris, France, November 2006.

• F. Fons, M. Fons, E. Cantó, System-on-chip design of a Fuzzy Logic controller based on
dynamically reconfigurable hardware, International Conference on Self-Organization and
Autonomic Systems in Computing and Communications (SOAS), Erfurt, Germany,
September 2006.

• E. Cantó, M. López, F. Fons, J. del Río, A. Manuel, Automated design flow for multi-
context FPGAs, IEEE International Midwest Symposium on Circuits and Systems,
MWSCAS Conference Proceedings, pp. 470-474, San Juan, Puerto Rico, USA, August
2006.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xv

• M. Fons, F. Fons, E. Cantó, Design of an embedded fingerprint matcher system, IEEE
International Symposium on Consumer Electronics, ISCE Conference Proceedings, pp.
610-615, Saint Petersburg, Russia, June 2006.

• M. Fons, F. Fons, E. Cantó, Design of FPGA-based hardware accelerators for on-line
fingerprint matcher systems, IEEE International Conference on Ph.D. Research in
MicroElectronics and Electronics, RME Conference Proceedings, pp. 333-336, Otranto,
Lecce, Italy, June 2006.

• M. Fons, F. Fons, E. Cantó, M. López, Hardware-Software co-design of a fingerprint
matcher on card, IEEE International Conference on Electro/Information Technology, EIT
Conference Proceedings, East Lansing, Michigan, USA, May 2006.

• F. Fons, M. Fons, E. Cantó, Custom-made design of a digital PID control system, IEEE
International Conference on Acoustics, Speech, and Signal Processing, ICASSP
Proceedings, vol. 3, pp. 1020-1023, Toulouse, France, May 2006.

• F. Fons, M. Fons, E. Cantó, M. López, Dynamically reconfigurable CORDIC coprocessor
for trigonometric computing, W. Karl, J. Becker, K.E. Groβpietsch, C. Hochberger, E.
Maehle (Eds.), International Conference on Architecture of Computing Systems (ARCS),
Workshop Proceedings, Lecture Notes in Informatics (LNI), vol. P-81, pp. 254-263, GI-
Edition, ISBN 3-88579-175-7, Frankfurt am Main, Germany, March 2006.

• M. Fons, F. Fons, N. Canyellas, E. Cantó, M. López, Hardware-Software co-design of an
automatic fingerprint acquisition system, IEEE International Symposium on Industrial
Electronics, ISIE Conference Proceedings, pp. 1123-1128, Dubrovnik, Croatia, June
2005.

• E. Cantó, N. Canyellas, M. López, M. Fons, F. Fons, Coprocessor of the ridge line
following fingerprint algorithm, Conference on Design of Circuits and Integrated Systems,
DCIS Conference Proceedings, pp. 139-143, Bordeaux, France, November 2004.

• F. Fons, M. Fons, S. Ibáñez, Biometrics is the key, 24. Tagung Elektronik im
Kraftfahrzeug – Neue Technologien, Integration und Systementwurf. Haus der Technik e.
V., Essen, Germany, June 2004.

National conferences

• E. Cantó, M. López, F. Fons, R. Ramos, Sistema embebido de rápida auto-
reconfiguración sobre Spartan-3, IX Jornadas de Computación Reconfigurable y
Aplicaciones, Actas Congreso JCRA, pp. 183-192, Alcalá de Henares, Spain, September
2009.

• F. Fons, M. Fons, E. Cantó, M. López, Procesador hardware auto-reconfigurable de
Huella Dactilar, VII Jornadas de Computación Reconfigurable y Aplicaciones, Actas
Congreso JCRA, pp. 19-26, Zaragoza, Spain, September 2007.

• M. Fons, F. Fons, E. Cantó, M. López, Procesador de alineamiento de huellas dactilares,
VII Jornadas de Computación Reconfigurable y Aplicaciones, Actas Congreso JCRA, pp.
27-34, Zaragoza, Spain, September 2007.

• E. Cantó, M. López, N. Canyellas, M.D. Palomera, M. Fons, F. Fons, Coprocesador para
la esqueletización de huellas dactilares, V Jornadas de Computación Reconfigurable y
Aplicaciones, Actas Congreso JCRA, pp. 103-108, Sevilla, Spain, September 2005.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xvi

• M. López, E. Cantó, N. Canyellas, M.D. Palomera, M. Fons, F. Fons, Diseño de un
coprocesador hardware para segmentación de huellas dactilares, V Jornadas de
Computación Reconfigurable y Aplicaciones, Actas Congreso JCRA, pp. 173-178, Sevilla,
Spain, September 2005.

• E. Cantó, N. Canyellas, M. Fons, F. Fons, M. López, Coprocesador de extracción de
minutia para MicroBlaze, IV Jornadas de Computación Reconfigurable y Aplicaciones,
Actas Congreso JCRA, pp. 605-611, Barcelona, Spain, September 2004.

• F. Fons, M. Fons, N. Canyellas, M. López, E. Cantó, Planteamiento de una alternativa de
solución al reto del proceso de matching sobre bases de datos grandes. Aplicación del
método en los sistemas de identificación personal basados en biometría de huella dactilar,
III Jornadas de Computación Reconfigurable y Aplicaciones (JCRA), E. Boemo Scalvinoni,
F. Gómez Arribas, S. López Buedo, G. Sutter Capristo (Eds.), Computación
Reconfigurable & FPGAs, pp. 597-610, Madrid, Spain, September 2003.

• M. Fons, F. Fons, N. Canyellas, M. López, E. Cantó, Codiseño hardware-software de un
algoritmo de matching biométrico, III Jornadas de Computación Reconfigurable y
Aplicaciones (JCRA), E. Boemo Scalvinoni, F. Gómez Arribas, S. López Buedo, G. Sutter
Capristo (Eds.), Computación Reconfigurable & FPGAs, pp. 399-406, Madrid, Spain,
September 2003.

• F. Fons, M. Fons, N. Canyellas, M. López, E. Cantó, Trusted smart cards: a future new
generation of embedded systems that merges biometrics and system-on-chip technology,
Ph.D. Student Meeting on Electronics Engineering, Departament d’Enginyeria
Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain, July
2003.

• M. Fons, F. Fons, N. Canyellas, M. López, E. Cantó, Trends on personal recognition
systems: Evolving to biometric security, Ph.D. Student Meeting on Electronics
Engineering, Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat
Rovira i Virgili, Tarragona, Spain, July 2003.

Others

• F. Fons, M. Fons, FPGA-based automotive ECU design addresses AUTOSAR and ISO
26262 standards, Xcell Journal, issue 78, pp. 20-31, Xilinx, First Quarter 2012.

• F. Fons, M. Fons, Auf die finger blicken, Elektronik Journal, pp. 16-18, October 2010.

• F. Fons, M. Fons, Making biometrics the killer app of FPGA dynamic partial
reconfiguration, Xcell Journal, issue 72, pp. 24-31, Xilinx, Third Quarter 2010.

• F. Fons, M. Fons, E. Cantó, M. López, Dynamically reconfigurable CORDIC coprocessor
for trigonometric computing, Mitteilungen – Gesellschaft für Informatik (GI) e. V., Parallel-
Algorithmen und Rechnerstrukturen, no. 23, pp. 34-43, ISSN 0177-0454, December
2006.

• M. López, E. Cantó, M. Palomera, F. Fons, M. Fons, N. Canyellas, Hardware-Software
co-design for fingerprint biometric identification, Instrumentation Viewpoint, SARTI
Technological Development Centre of Remote Acquisition and Data Processing Systems,
pp. 7-10, ISSN 1697-2562, Spring 2005.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xvii

Content

Abstract …………………………………….………………………………………………………. v

Acronyms and abbreviations ………………………….……………………………………… vii

List of figures ………………………….………………………………………………………….. ix

List of tables and code ………………………….………………………………………………. xi

List of publications ………………………….………………………………………………….. xiii

Journals .. xiii
Book chapters ... xiii
International conferences .. xiv
National conferences ... xv
Others ... xvi

Content …………………………………………………….……………………………………….. xvii

PART I. OUTLINE ……………………………………………….……………………………….. 1

1. Reconfigurable computing …………………………………….…………..……………… 3

1.1 Introduction ……………………………………………………………………………………. 3
1.1.1 History: roadmap towards reconfigurable computing ……………………………… 4
1.1.2 The present of reconfigurable hardware technology ………………………….……. 8
1.2 Motivation ………………………………………………………………………………………. 9
1.2.1 Scientific events and specialized journals ……………………………………………. 11
1.3 Dissertation aims and scope ……………………………………………………………….. 13
1.3.1 Contribution and thesis organization …………………………………………………. 15
References …………………………………………………………………………………………… 18

PART II. STATE OF THE ART ……………….………………………………………..……… 19

2. Embedded systems and reconfigurable hardware ……………………….............. 21

2.1 Embedded electronic systems ……………………………………………………………... 21
2.1.1 Implementation alternatives …………………………………………………………….. 21
2.2 Field programmable gate arrays ………………………………………………………….. 23
2.2.1 Programming technology …………………………………………………………………. 24

- Antifuse ……………………………………………………………………………………. 24
- EPROM, EEPROM and Flash ………………………………………………………… 25
- SRAM ………………………………………………………………………………………. 25
- MRAM ……………………………………………………………………………………… 26

2.3 SRAM-based reconfigurable hardware technology ………………………………....... 26
2.3.1 Reconfiguration model ……………………………………………………………………. 29

- Single context ……………………………………………………………………………. 29
- Partially reconfigurable ………………………………………………………………… 29
- Multi-context …………………………………………………………………………….. 30

2.3.2 Granularity ………………………………………………………………………………….. 30
- Fine-grain architecture ………………………………………………………………... 31
- Coarse-grain architecture …………………………………………………………….. 31
- Hybrid architecture …………………………………………………………………….. 31

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xviii

2.3.3 Reconfigurability features ………………………………………………………………… 31
- Device activity during reconfiguration …………………………………………….. 31
- Amount of device resources reconfigured …………………………………………. 32
- Bitstream format and downloading mechanism …………………………………. 33
- Link between bitstream repository and reconfiguration engine ……………… 33
- Reconfiguration engine interface ……………………………………………………. 34
- Reconfiguration latency ……………………………………………………………….. 35

2.4 Bitstream manipulation and configuration techniques ……………………………… 36
2.4.1 Bitstream compression/decompression ………………………………………………. 36
2.4.2 Bitstream relocation ………………………………………………………………………. 37
2.4.3 Bitstream security …………………………………………………………………………. 38
2.4.4 Configuration bootstrapping and multiple-boot ……………………………………. 38
2.4.5 Configuration overclocking ………………………………………………………………. 39
2.4.6 Configuration caching ……………………………………………………………………. 39
2.4.7 Configuration prefetching ………………………………………………………………... 40
2.4.8 Configuration scrubbing …………………………………………………………………. 40
2.4.9 Configuration scheduling ………………………………………………………………… 40
2.4.10 Online bitstream build ………………………………………………………………….. 41
2.4.11 Low power consumption target ……………………………………………………….. 41
2.5 Summary ……………………………………………………………………………………….. 42
References …………………………………………………………………………………………… 43

3. Research and deployment ……………………………………..………………………….. 45

3.1 Related academic and industrial advances …………………………………………….. 45
3.1.1 Research projects ………………………………………………………………………….. 45

- RECONF 2 ………………………………………………………………………………… 45
- ADRIATIC ………...…….. 46
- AMDREL …………………………………………………………………………………… 46
- MORPHEUS ………………………………………………………………………………. 46
- 4S …………………………………………………………………………………………… 46
- ANDRES …………………………………………………………………………………… 47
- AETHER …………………………………………………………………………………… 47
- RECOPS …………………………………………………………………………………… 47
- HARTES …………………………………………………………………………………… 48
- CRISP ………………………………………………………………………………………. 48
- ERA …………………………………………………………………………………………. 48
- REFLECT ………………………………………………………………………………….. 48

3.1.2 Patents ……………………………………………………………………………………….. 49
3.1.3 Research groups ……………………………………………………………………………. 50
3.1.4 PhD dissertations ………………………………………………………………………….. 52
3.2 Reconfigurable hardware devices …………………………………………………………. 53
3.2.1 Commercial and industrial FPGAs and SoCs ……………………………………….. 53

- Altera ………………………………………………………………………………………. 53
- Atmel ………………………………………………………………………………………. 53
- Lattice ……………………………………………………………………………………… 54
- Xilinx ………………………………………………………………………………………. 54
- Others ……………………………………………………………………………………... 55

3.2.2 Research and academic reconfigurable platforms …………………………………. 57
- POEtic ……………………………………………………………………………………… 57
- Chimaera …………………………………………………………………………………. 58
- ADRES …………………………………………………………………………………….. 58
- DISC ………………………………………………………………………………………… 59
- DPGA ………………………………………………………………………………………. 59
- Time-multiplexed FPGA ……………………………………………………………….. 59

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xix

- Garp ……………………………………………………………………………………….. 60
- PipeRench ………………………………………………………………………………… 60
- PRISM ……………………………………………………………………………………… 61
- Others ……………………………………………………………………………………… 61

3.3 Summary ……………………………………………………………………………………….. 61
References …………………………………………………………………………………………… 62

PART III. DESIGN AND DEVELOPMENT …………………………….…………………….. 63

4. Run-time reconfigurable system architecture …………….…………..……………. 65

4.1 Standardized flexible hardware/software architecture …..…………………………. 65
4.2 High level functional blocks ……………………………….………………………………. 66
4.2.1 Host CPU ………………………………………………………….………………………….. 67
4.2.2 External memory …………………………………………………………………………… 68
4.2.3 Input/Output ……………………………………………………………………………….. 68
4.2.4 Reconfiguration engine …………………………………………………………………… 68
4.3 System components breakdown ………………………………………………………….. 69
4.3.1 Standard static design ……………………………………………………………………. 70
4.3.2 Dynamic partial self-reconfiguration design ………………………………………… 71
4.4 System modeling and deployment ………………………………………………………... 71
4.4.1 Minimalist model: single data repository and single PR partition ………………. 72
4.4.2 Model with single data repository and two PR partitions …………………………. 75
4.4.3 Model with two data repositories and two PR partitions ………………………….. 77
4.4.4 Comparison with other state-of-the-art architectures …………………………….. 78

- VAPRES …………………………………………………………………………………… 78
- Autovision ………………………………………………………………………………… 79
- KIT-ITIV ……………………………………………………………………………………. 80
- ESM ………………………………………………………………………………………… 81
- Molen …………………………………………………………………………................ 82

4.5 Summary ……………………………………………………………………………………….. 83
References …………………………………………………………………………………………… 84

5. Reconfiguration engine ………………………………….…………………………………. 85

5.1 Reconfiguration design parameters ……………………………………………………… 85
5.2 State-of-the-art reconfiguration controllers: a survey ……………………………….. 86
5.2.1 Closed reconfiguration controller solutions ………………………………………….. 88

- Atmel AT94K/AT94S FPSLIC …………………………………………………………. 88
- Altera Excalibur EPXA SoPC …………………………………………………………. 90

5.2.2 Open reconfiguration controller solutions …………………………………………… 93
- Xilinx Virtex/Spartan FPGAs ………………………………………………………… 93
- Research on reconfiguration controllers based on Xilinx FPGAs …………….. 95

5.3 Reconfiguration engine architecture and modelling ………………………………….. 97
5.3.1 Reconfiguration controller architecture ………………………………………………. 97
5.3.2 Analytical model formulation ……………………………………………………………. 99

- Minimum reconfiguration time ……………………………………………………… 99
- Reconfiguration process scheduled in a cyclic task …………………………….. 101

5.3.3 System integration and proof of feasibility …………………………………………… 102
- Performance evaluation ……………………………………………………………….. 107

5.3.4 Comparison with state-of-the-art architectures ……………………………………. 109
5.3.5 Next generation reconfiguration engines ……………………………………………... 112
5.4 Summary ……………………………………………………………………………………….. 113
References …………………………………………………………………………………………… 113

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xx

PART IV. PROOFS OF CONCEPT AND USE CASES ………………….………………… 115

6. Exploration and exploitation ……………………….……………………………………. 117

6.1 Potential applications ……………………………………………………………………….. 117
6.1.1 Space applications ………………………………………………………………………… 117
6.1.2 Bio-inspired applications ………………………………………………………………… 118
6.1.3 Data security applications ……………………………………………………………….. 119
6.1.4 Thermal self-protected systems ………………………………………………………… 120
6.1.5 Software defined radio …………………………………………………………………….. 121
6.1.6 Control applications ……………………………………………………………………….. 122
6.1.7 Hardware emulation and rapid prototyping …………………………………………. 123
6.1.8 Digital signal processing and arithmetic computing ………………………………. 124
6.1.9 Image processing and multimedia applications …………………………………….. 124
6.1.10 Telecommunications and networking ……………………………………………….. 125
6.1.11 Automotive applications ………………………………………………………………… 127
6.1.12 High-performance computing …………………………………………………………. 127
6.2 Success cases of commercial products and industrial applications ……………… 128
6.2.1 Consumer electronics …………………………………………………………………….. 128
6.2.2 Computing platforms ……………………………………………………………………… 128
6.2.3 NASA/ESA aerospace missions ………………………………………………………… 129
6.2.4 Signal processing at CERN ………………………………………………………………. 129
6.2.5 Software defined radio …………………………………………………………………….. 129
6.2.6 Cryptography ………………………………………………………………………………… 130
6.3 Summary ……………………………………………………………………………………….. 130
References …………………………………………………………………………………………… 130

7. PID controller …………………………………………………………….…………………… 133

7.1 Introduction ……………………………………………………………………………………. 133
7.1.1 PID algorithm ……………………………………………………………………………….. 134
7.2 Related work …………………………………………………………………………………… 135
7.3 Implementation ……………………………………………………………………………….. 137
7.3.1 Atmel AT94K field programmable system level integrated circuit ………………. 137
7.3.2 HW/SW co-design and run-time reconfiguration …………………………………… 139
7.3.3 System prototyping ………………………………………………………………………… 142
7.3.4 Experimental results ……………………………………………………………………… 145
7.4 Summary ……………………………………………………………………………………….. 146
References …………………………………………………………………………………………… 146

8. Fuzzy logic controller ………………………………………………………………………. 147

8.1 Introduction …………………………………………………………………………………… 147
8.1.1 Fuzzy logic fundamentals ………………………………………………………………… 148
8.2 Related work …………………………………………………………………………………… 149
8.3 Hardware/Software co-design …………………………………………………………….. 152
8.3.1 Fuzzy algorithm …………………………………………………………………………….. 152
8.3.2 System architecture ……………………………………………………………………….. 154
8.3.3 FPGA dynamic partial reconfiguration ………………………………………………… 156
8.4 Performance evaluation ……………………………………………………………………... 157
8.5 Summary ……………………………………………………………………………………….. 159
References …………………………………………………………………………………………… 159

9. 2D convolution processor ……………………………………….………………………… 161

9.1 Introduction ……………………………………………………………………………………. 161

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xxi

9.2 Related work …………………………………………………………………………………… 162
9.3 FPGA-based design …………………………………………………………………………… 163
9.3.1 System architecture ……………………………………………………………………….. 164
9.3.2 Adaptive 2D convolver …………………………………………………………………….. 166
9.4 Experimental results ….……………………………………………………………………… 169
9.4.1 Virtex-4 FPGA ……………………………………………………………………………….. 169
9.4.2 Performance evaluation …………………………………………………………………… 169
9.5 Summary ……………………………………………………………………………………….. 175
References …………………………………………………………………………………………… 176

10. Trigonometric CORDIC computer ……………………………………………………... 177

10.1 Introduction ... 177
10.1.1 CORDIC algorithm applied to trigonometrics ... 178
10.2 Related work .. 180
10.3 Run-time reconfigurable hardware implementation ... 181
10.3.1 Hardware/Software co-design and run-time reconfiguration 182
10.4 Unified fine-grain reconfigurable implementation …………………………………… 182
10.4.1 Coprocessor architecture ... 183
10.4.2 Performance evaluation ... 187
10.5 Specific coarse-grain reconfigurable implementation ………………………………. 188
10.5.1 Coprocessor architecture .. 188
10.5.2 Performance evaluation ... 189
10.6 Summary ... 189
References ... 190

11. Automatic fingerprint authentication system ... 191

11.1 Introduction ... 191
11.1.1 Basics of biometrics ... 192
11.1.2 Automatic fingerprint authentication system ... 194
11.2 Related work .. 194
11.3 Design and development .. 195
11.3.1 Batch process of mutually exclusive tasks ... 197
11.3.2 Spatial and temporal partitioning of tasks ... 201
11.4 Experimental results .. 201
11.4.1 Approach I: Full FPGA reconfiguration on Excalibur SoPC …………………….. 202
11.4.2 Approach II: Partial FPGA reconfiguration on Virtex-4 …………………………... 204
11.4.3 Performance evaluation …………………………………………………………………. 207
11.5 Summary ... 210
References .. 212

12. Automotive electronic control unit ... 213

12.1 Introduction ... 213
12.1.1 AUTOSAR .. 214
12.1.2 ISO 26262 ... 214
12.2 Related work .. 215
12.3 System architecture .. 217
12.3.1 Real scenario ... 217
12.3.2 ECU deployment on FPGA-based static hardware .. 219
12.3.3 ECU deployment on run-time reconfigurable hardware 223
12.4 Summary ... 223
References ... 224

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

xxii

PART V. CONCLUSIONS .. 225

13. Reconfigurable hardware technology today: strengths and weaknesses 227

13.1 Benefits of run-time reconfigurable hardware ... 227
13.1.1 FPGA technology ... 227
13.1.2 Time-to-solution and life cycle ... 228
13.1.3 Portability and immunity against components obsolescence 228
13.1.4 System versatility, adaptability and self-adaptibity 229
13.1.5 Early system validation ... 229
13.1.6 Performance improvement, acceleration and parallelism 229
13.1.7 Hardware customisation .. 230
13.1.8 Hardware reuse and functional density .. 230
13.1.9 Reduction of complexity, space, weight and cost .. 230
13.1.10 Power consumption ... 231
13.1.11 System survivability and self-healing ... 231
13.1.12 Rapid prototyping platform but also end-user product 231
13.1.13 Technology accessibility ... 232
13.1.14 Host coupling .. 232
13.2 Weak points of reconfigurable hardware technology .. 232
13.2.1 Low ease of use and designer productivity ... 232
13.2.2 Advances in design flow and development tools still needed 233
13.2.3 Lack of commercial devices with better reconfiguration features 233
13.2.4 Software but also hardware skills needed .. 234
13.2.5 Component cost .. 234
13.2.6 Lack of killer applications in place ... 234
13.2.7 Energy management is increasingly demanded .. 235
13.2.8 Embedded security aspects ... 235
13.3 Summary ... 235
References ... 236

14. Conclusions and future work .. 237

14.1 Conclusions .. 237
14.2 Research projects .. 239
14.2.1 TRUST-eS ... 239
14.2.2 DELFIN ... 241
14.2.3 PIBES ... 241
14.3 Future work ... 242

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

Part I

Outline

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 3

Chapter 1

Reconfigurable computing

Reconfigurable computing (RC) constitutes today a consolidated implementation
technique of applications –or functionality in general– synthesizable electronically in
distributed look-up tables (LUTs), flip-flops and memory blocks of an SRAM-based field
programmable logic device. In essence, it brings a new perspective to the design and
development of embedded electronic systems, featuring a strong influence on system-on-
chip (SoC) architectures and taking full advantage of the inherent parallelism and
adaptability of reconfigurable hardware technology. This chapter briefly introduces
reconfigurable computing and outlines the scope and goals of this PhD dissertation,
which tackles the exploitation possibilities of run-time reconfigurable hardware in the
embedded space. Based on hardware/software codesign and driven by dynamic partial
reconfiguration, the reconfigurable computing paradigm enables the partitioning of a
computational problem into a batch process of scheduled serial and parallel tasks to be
performed sequentially in a set of shared silicon resources, balancing thus key design
parameters like area (resources required), time (processing latency involved), functional
density and power (both static and dynamic terms) in its implementation.

1.1 Introduction

Very often software and hardware arise as two feasible implementation alternatives of an
application through digital electronics, subjected to the paradigms of computation-in-
time and computation-in-space, respectively. The decision of mapping a computational
task either in hardware or in software depends, in general, on the specific constraints of
the application itself. On the one hand, software solutions are based on a general-
purpose processor or CPU that handles a set of instructions executed sequentially, giving
rise to a procedural implementation or instruction flow. As result, software is flexible
since the processing can be changed by only modifying the list of instructions or program
code, but also relatively inefficient due to the instruction fetch-decode-execute
mechanism limited by the sequential execution – one instruction after the other. On the
contrary, hardware designs offer high performance due to their customized problem-
focused solution –a specific hardware circuitry is synthesized on silicon, with no extra
overhead for solving a more general problem– and their spatially parallelized execution,
where each operator exists at a different point in space, although this comes at the cost
of involving so many hardware resources as necessary, resulting in a structural
implementation or configuration flow [DeHon and Wawrzynek, DAC 1999].
The emergence of run-time reconfigurable hardware technology –materialized through
SRAM-based field programmable gate array (FPGA) devices some decades ago–
introduces a new methodology to balance space and time in the electronic
implementation of applications, decomposing the target application into a series of
processing tasks which follow an effective temporal and spatial partitioning. Thus,
reconfigurable computing (RC) is defined as the study of computation using
reconfigurable hardware devices [Bobda, Springer 2007]. With it, digital hardware design
becomes soft and its original structural implementation evolves to a simple structural
programming. Some terminology must also be defined to address the concepts of
reconfigurability. On the one hand, in computing science the term programmable refers
to the time domain. It is a type of flexible computations where a sequence of instructions
is loaded and executed in the time dimension by using one or several processing
elements. Like this, programming means instruction scheduling and it relates to software
flow. On the other hand, the term configurable introduces the space domain. It is a type

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 4

of flexible computations where only one or a few instructions per processing element are
loaded and the execution is performed in the dimensions of space and time concurrently.
Therefore, configuration means the setup of structures and preadjustment of logic blocks
and it clearly concerns hardware. Moreover, as a subset of configurable, the term
reconfigurable referred to a device means that such device can be configured more than
once. Still a deeper term within reconfiguration is dynamic, run-time, on-the-fly or active
reconfiguration; while configuration or reconfiguration is usually not feasible during
operation, dynamic reconfiguration means that reconfiguration may happen at run-time,
i.e. during application execution. Thus, dynamic reconfiguration implies that an active
device may be partially reconfigured, while ensuring the correct operation of the rest of
active circuits that are not being changed. This is known as partial reconfiguration (PR)
and refers to the ability to dynamically modify blocks of a programmable logic device by
downloading partial bitstream files while the remaining logic on the device continues to
operate without interruption. Finally, the term self-reconfiguration extends the dynamic
reconfiguration concept to specialized autonomous devices where specific circuits of the
device itself are used to control the reconfiguration of other parts of the device, being the
integrity of these control circuits guaranteed during reconfiguration [Zomaya, Springer
2006].
Designers realized soon that the volatility of SRAM-based FPGAs could be exploited to
gain a competitive advantage in many applications. Since the configuration of these
devices can be changed by a completely electrical process performed by a specific engine,
either at run-time or off-line, SRAM-based FPGAs become the workhorse of numerous
reconfigurable applications. These devices contain an array of LUTs for synthesizing
combinational functions, flip-flops for sequential finite state machines, memory blocks
for data storage, DSP blocks for compact signal processing, clock management blocks for
configuring system clocks, and interconnection nets to link all these resources giving rise
to a made-to-measure computing system. By means of reconfiguration technology, all
these resources can be highly customized to the instantaneous needs of an application,
where the configurable structures are changed during circuit operation, allowing the
computational resources to be reused in time. The main goal behind the temporal and
spatial partitioning of reconfigurable logic resources is to achieve the highest efficiency of
reconfigurable systems, taking the maximum advantage of parallelism, resource usage
and flexibility [Diessel et al., CDT 2000]. This approach is viable when the target
application can be decomposed into a set of functions or stages executed sequentially
following a batch process, whose simultaneous availability is not required and where
each one of such serial stages, in its turn, is decomposed in a subset of tasks running in
serial and/or in parallel instatiated on demand in the same set of shared resources. As a
result, the functionality demanded by the application can be performed on the minimum
number of processing elements possible at expenses of raising at maximum its usage or
functional density. Moreover, usually the reconfiguration latency is sufficiently small,
typically in the order of a few milliseconds or less, for those functions to be swapped in
real-time [Lysaght and Rosenstiel, Springer 2005]. Other derived benefits can be the
reduction in power dissipation in comparison to static hardware solutions. Such
reduction is made effective in both static (less hardware resources involved) and dynamic
(less activity if some reconfigurable portions of the device are replaced by blank
bitstreams when they are not in use) terms of power. Following this introduction, a short
walk through the history of reconfigurable computing, from its birth until today, is
presented in the next sections.

1.1.1 History: roadmap towards reconfigurable computing

The reconfigurable computing concept was introduced in 1960 by Gerald Estrin, a
computer scientist at the Universtity of California, Los Angeles. Dr. Estrin and his group
at the UCLA did the earliest work on reconfigurable computer architectures, proposing
the idea of a fixed plus variable (F+V) computing system in which a fixed processor

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 5

abstraction exists side by side with programmable hardware [Estrin, WJCC 1960]. At
that time, the fixed part was implemented in a motherboard composed basically of a
general-purpose processor whereas the variable part was made upon a set of specific
functional units and their wire harness, composing block modules insertable into the
motherboard [Estrin and Turn, TEC 1963]. With this architecture, the reconfiguration
was exclusively performed by hand –either changing the wiring harness or replacing
some basic blocks by new ones– reaching thus a manual modification of the system
functionality [Estrin, AHC 2002].
Close to this concept, programmable logic devices (PLDs) such as programmable read-
only memories (PROMs), programmable logic arrays (PLAs) and programmable array logic
devices (PALs) have been available since the 1960s, the 1970s and the early 1980s,
respectively. These three PLD models are composed of an array of AND-gates connected
to another array of OR-gates and they are well suited to implement any computation
expressed as a sum of products: the external inputs –in both forms, just as they are and
negated– are connected to the AND-gates in a first stage; the intermediate results of this
stage are connected then to the second stage composed of OR-gates. Depending on the
device –PROM, PAL or PLA– model, only OR, only AND, or both AND and OR connections
are user programmable, respectively. However, the use of PROMs and PLAs was quite
limited mainly due to technological reasons like its relatively slow maximum operating
speed, and concerning PALs, although they started to be used as glue logic, suffered from
power consumption problems. Apart from all those issues, the main limitation of these
three PLDs is found in their low capacity –restricted by the nature of the AND-OR
planes– equivalent to a few hundreds of logic gates. Later, complex programmable logic
devices (CPLDs) arose for larger logic circuits, consisting of a set of macro cells (typically
composed of several PLAs and flip-flops), I/O blocks and an interconnection network.
Despite their relative larger capacity (few hundreds thousands of logic gates), CPLDs are
still too small for using in reconfigurable computing to implement big circuits and they
are basically used only as glue logic.
The extension of the gate array technique to post-manufacturing customisation, based
on the idea of using arrays of custom logic blocks surrounded by a perimeter of I/O
blocks, all of which can be assembled arbitrarily, gives rise to the FPGA concept, a new
type of programmable logic architecture introduced by Ross Freeman, one of the
founders of Xilinx Inc. in 1984, who promoted the notion that silicon is free, using such
slogan to emphasize the idea that it does not matter that making a single logic gate
requires as many as 100 transistors, what really matters is the convenience and time-to-
market advantages that reconfigurable FPGAs offer, promoting thus end-user flexibility
at the expense of more transistors. The first chip of that company consisted of 85000
transistors (no more than one thousand equivalent gates) and was fabricated in a 2-µm
process in 1985, reinforcing already at that time two of the key benefits of reconfigurable
computing: the computation is spatial (in contrast to the temporal style associated with
microprocessors) and the architecture used in the computation is determined at post-
fabrication time and can therefore adapt to the characteristics of the executed algorithm
[Xilinx Inc., Xcell 2004]. Probably the first interest from an industrial viewpoint for these
ideas started at the beginning of the 1990s once FPGA densities broke the 10K logic gate
barrier, being the subject of extensive research and experimentation. At that time, the
continuous increase in price for ASIC flows combined with the advance in semiconductor
manufacturing made FPGAs a more appealing option for an increasing number of
applications, to the extent that they started becoming an actual alternative to low volume
ASICs production besides its initial use as rapid prototyping platforms. FPGAs were
slowly gaining popularity but still they could not be used for all applications since they
did not provide enough hardware resources and software tools had not yet reached
enough maturity to create optimized designs. It is in the 1990s when the FPGA design
space reached a level of maturity that made them the choice of implementation in many
fields, experiencing a fast progress from that moment on. FPGAs started at that time to
be used in hardware/software co-design platforms, described in hardware description

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 6

languages (HDL) like Verilog and VHDL. Until the middle of the 1990s, all the FPGA-
based reconfigurable systems were implemented using statically reconfigurable FPGAs
that exhibited some restrictions: to configure a new circuit all FPGA operations had to be
completely suspended and a full reconfiguration bitstream had to be loaded in order to
reconfigure even one cell of the device; moreover, all information stored in internal
registers was lost after a reconfiguration, making it impossible to share internal data
between two configurations [Sklyarov et al., Euromicro 1998]. These restrictions were
overcome by a new type of SRAM-based dynamically reconfigurable FPGAs. These new
devices can be partially updated without suspending operations of the parts that do not
need to be modified, such as the Xilinx XC6200 family – the first commercially available
FPGA designed in 1995 for run-time reconfigurable computing [Hartenstein et al., FPL
1998]. Since then, run-time reconfigurable computing became a subject of intensive
research. The concept of virtual hardware –the idea of using a reconfigurable device to
implement a number of applications requiring more resources that those currently
available– pointed out to the use of temporal partitioning as a way to implement those
applications whose area requirements exceed the reconfigurable logic space available,
assuming to a certain extend the availability of unlimited hardware resources [Ling and
Amano, FCCM 1993]. Thus, after the advance of single context FPGAs, it arises a new
trend based on developing multi-context FPGAs [Trimberger, FPGA 1998], leaded by
bipartitioning techniques aimed at splitting the static implementation of a circuit in two
or more hardware contexts and switching one context to another in some few
nanoseconds by means of multiplexed architectures, increasing thus the logic capacity
[Hauck and Borriello, CADICS 1997]. Similarly, the increasing amount of logic available
in FPGAs, the development of glitchless partial reconfiguration technology and the
reduction of the reconfiguration latency allowed extending the concept of virtual
hardware to other new FPGAs able to be partially reconfigured, in portions, without the
need of replicating their resources in several identical contexts. Thus, the late 1990s
opened the door to new FPGA applications, achieving a good level of performance based
on exploiting the functional density of their resources.
A new trend is observed in which design teams start to use FPGAs in tandem with
standard microprocessors as a way to merge both peripheral functions and custom
processing. To maximize performance in such applications, designs must tightly couple
the FPGA and microprocessor instead of treating each as independent entities. FPGA
vendors start to offer various types of processors for their FPGAs just when FPGA
transistor counts grew enough to accommodate them. In the late 1990s, FPGA vendors
started offering soft-cores (8-bit, 16-bit and then 32-bit processor cores in HDL, or as
prerouted netlists like 8051, ARM7, MIPS, LEON, NIOS II, Microblaze, etc) that hardware
designers could add into FPGAs with synthesis and place-and-route tools. Later, in the
early 2000s, FPGAs achieve the enough density of transistors to implement
microprocessors in the silicon itself, as hard-wired cores next to programmable-logic
blocks. Implementing cores in the fabric itself saves space on the chip for programmable
logic, lowers power and improves overall performance. As examples, Atmel or Altera
introduced ARM and AVR hard-core processors in their SoC devices FPSLIC and
Excalibur, respectively. Xilinx integrated PowerPC processors in derivatives of its Virtex-4
and Virtex-5 devices.
Although the hardware/software co-design flow (hardware/software partitioning, design
synthesis, placement, routing, technological mapping, bitstream generation, co-
verification) is more complex than the design flow used in a purely-software approach
(software edition, compiling and linking), in the 2000s the FPGA flow was fully available
for implementing static or off-line reconfigurable designs but not for covering run-time
reconfigurable systems. Devices and tools became powerful enough to deal with most
static hardware designs. However, the lack of a well-defined and efficient design flow to
develop run-time reconfigurable computing together with the lack of efficient
reconfiguration features (reconfiguration bandwidtch, grain, etc) for these devices would
drastically limit the explosion of this technology to the masses basically for the first 20

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 7

years after the appearance of the first SRAM-based FPGAs. Together with the lack of an
appropriate tool set –historically the first stopper of this technology–, the second big
stopper of run-time reconfigurable computing at that time was the device cost. FPGAs
have historically been restricted to a narrow set of high performance computing
applications because of their relative high cost compared with other implementation
alternatives (e.g. MCU). However, for over all the quarter of century of life, cost reduction
has played a fundamental role in the development of reconfigurable hardware
technology. The progress in silicon industry has resulted in a tremendous increase in
device capacity of FPGAs while at the same time the cost has decreased drastically. They
grow in capacity as they are built by more and more miniaturized cooper process
technology, following the Moore’s law which states that the achievable transistor count
on a single integrated circuit doubles every 18 to 24 months (130nm, 90nm, 65nm,
40nm, 28nm, etc). This fact lets FPGAs already lodge the whole computation demanded
by many applications in one single chip. During the decade of 1990s, there was a
reduction of around 10000% in the cost of the basic FPGA building block or logic cell –
consisting of one LUT and one flip-flop. Besides, the trends observed in the first decade
of 2000s confirmed that advancements in process technology like architectural
enhancements, increased logic cell count, and speed contributed to an increase in
performance of FPGAs manufactured containing multi-millions of transistors. Thus, in
this period of time, the logic compute performance increased approximately by 920%
while the logic cell count incremented by 240% and the price per logic cell decreased by
90% [Xilinx Inc., WP375 2010]. From a hardware viewpoint, new nanometer scale
fabrication processes allow devices containing several million and ever billion LUTs and
flip-flops to be fabricated. An increasing number of logic and I/O resources are available,
including complex functional blocks, e.g. on-chip distributed RAM memories, phase-
locked loops (PLLs), digital clock managers (DCMs), communication transceivers (GTX,
Ethernet, PCIe) and interfaces (DDR-SDRAM), arithmetic circuits (DSP blocks) or
cryptographic blocks (e.g. AES core) [Rodriguez-Andina et al., TIE 2007].
Nevertheless, event though partial reconfiguration technology has existed for
generations, this feature has only gained big attention recently, becoming a potential
implementation alternative of embedded systems based on FPGA devices due basically to
the software enhancements of EDA tools carried out in the last years. For this goal, a
definitive breakthrough concerning development toolset for run-time reconfigurable
computing occurred in 2006. At that time, Xilinx released what probably might be
considered the first mature partial reconfiguration design flow provided with automated
CAD tools. Such design methodology is built around the PlanAhead tool and definitely
makes dynamic reconfiguration feasible, turning it from a heroic activity to a reliable
design process. These tools supported Xilinx Virtex-4 FPGAs, which presented further
technological enhancements on its architecture oriented to PR like finer reconfiguration
granularity and improved reconfiguration bandwidth. Hence, a new era of run-time
reconfigurable computing began. An early access version of the PR design tools initially
developed by Xilinx was offered to well-qualified partners from both academia and
industry who contributed to deploy it and report feedback for its improvement. As one
would expect with an early access tool flow, there were opportunities for improvement
but the level reached at that moment was conclusive to prove its feasibility aimed at, in
the end, porting this design methodology from research to industry. Recently, new tools
that allow the FPGA design to become increasingly hardware-independent have been
developed (e.g. Simulink model-based design from MathWorks, allowing the use of
behavioural descriptions as design entry converted then automatically in HDL code).
Summarizing this evolution in only some few milestones, the timeline of Figure 1.1
highlights that reconfigurable computing is a very recent scientific field where, although
the concept had its origins 50 years ago, the FPGA technology able to support such
paradigm arose 25 years ago and the design flow and tooling for exploiting this
technology in a professional way were definitively mature only 5 years ago. Nowadays,
with concepts, devices, and professional tools already in place, we live the beginning of a

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 8

promising era of computing, with many opportunities ahead that shall let us contribute
to the enhancement of our society in aspects like health and quality of life of the citizens.

Figure 1.1 Milestones of the roadmap towards run-time reconfigurable computing

1.1.2 The present of reconfigurable hardware technology

The continuous advances in microelectronics are changing the technology, the
computing world and also the society. At a fundamental level, reconfigurable computing
is the process of best exploiting the potential of reconfigurable hardware. Just to name
some of the most important milestones recently achieved, Xilinx presented in 2010 a new
PR design flow, inspired in its previous early access PR modular design flow, based now
on partitions. The most relevant highlight of this PR flow –the Xilinx PR fourth
generation– is the fact that it is released as mainstream in the design toolset, integrated
in the standard tools. This means that PR is officially supported by the FPGA vendor,
offered as one more exploitable feature of the device, and therefore accessible from now
on by any FPGA development team.
Also in 2010, three FPGA vendors announced their next-generation devices featuring, to
a greater or lesser extent, dynamic reconfiguration as part of their strategy to take
programmable logic forward to higher densities and throughputs. Altera announced its
28-nm Stratix-V FPGA equipped with PR capability as well as the introduction of the PR
design flow integrated into its classical Quartus-II tool. In this way, Altera joins for the
first time the group of FPGA vendors that provide partial reconfiguration in their devices.
Meanwhile, Xilinx announced its next-generation 7-series of FPGAs – its fifth generation
of devices that support PR. Finally, also at that time, the startup Tabula Inc. revealed
some details of its technology that makes extensive use of dynamic reconfiguration
through its multi-context Abax devices.
Already in 2011, a new computing wave based on merging hard-core processors with
programmable logic in the same fabric arises into the market, promoting the exploitation
of system-on-chip solutions. State-of-the-art FPGA devices make possible to implement
all the functionality associated to an embedded system in a single chip: one or more
hard- or soft-core processors can be placed there along with additional programmable
logic to synthesize standard or custom coprocessors. Thus, many platforms tightly
integrate today the MCU+FPGA combination and a development tools ecosystem allow an
embedded design team to optimally partition their implementation by means of
hardware/software co-design. In this direction, Xilinx announced the new generation of
the so-called extensible processing platforms (EPP) composed of its Zynq-7000 family of
devices. Some months later, Altera announced the new generation of SoC FPGAs Arria-V
and Cyclone-V devices. In both –Xilinx and Altera– cases, the devices are composed of a
dual-core ARM Cortex-A9 MPCore processor and 28-nm programmable logic. Besides, in
the end of 2011, Xilinx started the shipment of the Virtex-7 2000T FPGA device –the
world’s highest capacity programmable logic device ever built provided with 6.8 billion
transistors on a single chip– and the Zynq-7020 EPP, while Altera released the Arria-V
SoC FPGA. Figure 1.2 shows the forecasted change in embedded designs based on FPGA
devices which incorporate a hard-wired processor. All these FPGA devices that merge one
or more hard core processors with reconfigurable fabric are referred to by the FPGA
vendors as programmable system-on-chip (PSoC), system-on-programmable-chip (SoPC),

Xilinx Early Access Partial
Reconfiguration Lounge

Modular Design Flow

2006

First Commercial
PR-FPGA

Xilinx XC6200

1995

Foundation First
FPGA Vendor

Xilinx Inc.

1984

Reconfigurable
Computing Concept

G. Estrin

1960

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 9

SoC FPGA or extensible processing platform. Independently of the name, it refers to an
efficiently coupled MCU+FPGA architecture packaged in a single chip. As example, in
some of these devices the coupling between the processor system –an ARM CPU– and the
programmable logic is performed through a high-bandwidth AMBA-AXI interconnect.

0

20

40

60

80

100

120
UNITS

(k)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

YEAR

FPGA with embedded processor
FPGA without embedded processor

Figure 1.2 Use of FPGA devices (source: Gartner Dataquest, September 2010)

In relation to the market trends, as the complexity of the embedded applications
increases, the combination of a processor with programmable logic in a single device is a
viable solution that is acquiring more and more acceptance for implementing embedded
systems. It is observed an increment in the integration of processors into programmable
logic devices, from no use of processors in 1999 to a percentage higher than 50%
estimated for 2014, as depicted in Figure 1.2. Moreover, the usage of programmable logic
for implementing dynamically reconfigurable solutions –based on the idea of doing more
with less by means of the reuse of resources– is also increasing. Figure 1.3 highlights the
latest milestones achieved in the field of reconfigurable computing in the last years. As
far as achievements are concerned, the PR design toolset is consolidated and gets
mainstream in the FPGA design flow. Besides, some FPGA vendors show their clear bet
on run-time reconfigurable hardware applied to their next-generation FPGA and SoC
devices.

Figure 1.3 Recent achievements in run-time reconfigurable computing

1.2 Motivation

Embedded computing, in one way or another, is present everywhere in our daily life. The
combination of hardware and software to perform specific functions is applied in
multitude of scenarios. Definitively, you only need to look at your pockets to confirm this
fact: mobile phones, smart cards or vehicle remote keyless entry systems immediately
come in mind. In medical equipment, for instance, it is observed a high demand for
portable and reliable devices to improve global healthcare in all three segments of the
medical device market: home-based applications, clinical and diagnostic applications,

Shipment First
Xilinx EPPs

Zynq-7000

Dec-2011

Announcement
Altera SoC FPGAs

Arria V & Cyclone V

Oct-2011

Announcement
Xilinx EPPs

Zynq-7000

Apr-2011

PR Flow merged to
FPGA Design Flow

 Xilinx ISE 11-12

May-2009

Announcement
Xilinx 28-nm FPGA

7-Series

Feb-2010

Announcement Altera
28-nm FPGA with PR

Stratix V

Feb-2011

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 10

and medical imaging. In fact, it is said that in the near future about 90% of applications
will be embedded systems, most of these mobile appliances that shall be small in size,
with very low power consumption and with high performance. Moreover, with the
growing popularity of personalized, interactive, real-time technology, it is expected to see
in the future a rise in demand for specialized embedded computing systems to support a
broad range of new applications – including many that have not yet been envisioned.
Due to rapid advancements in integrated circuit technology, the rich theoretical results
that have been developed by the research community are now being increasingly applied
in practical systems to solve real-world processing problems. Nowadays, an increasing
number of researchers believe that the computating challenge for the future is to exploit
reconfigurability and parallelism on a single die. The flexibility provided by run-time
partial reconfiguration together with the potential for implementing large circuits on
limited hardware resources are earned values that make run-time reconfigurable
systems an excellent choice for implementing a wide range of low-cost embedded
applications. Moreover, reconfigurable hardware technology can clearly contribute to
enhance the fault-tolerance capabilities of these systems. Therefore, many applications
abound that can take benefit of these technological strengths, delimited by strong
constraints on size, weight, cost, and power consumption. For this, it is necessary to
define new system architectures based on this new technology able to surpass the
performance-cost restrictions of the current solutions in the industry and demonstrate
moreover its feasibility. The deployment of this technology involves, in general, to
redesign the current solutions from scratch since the requirements inherent to this
technology have changed, due especially to the new time-space concept introduced in
this approach up to now not present in other technologies like a purely software or static
hardware solution based on a Von Neumann or Harvard MCU, DSP, GPU or ASIC.
This PhD initiative was born in September 2002 within the context of constituting a new
research group inside the Departament d’Enginyeria Electrònica, Elèctrica i Automàtica
(DEEEA) of Escola Tècnica Superior d’Enginyeria (ETSE), Universitat Rovira i Virgili (URV),
in Tarragona, Spain. The research group is named Development of Embedded Systems
(DES) and its topics of interest covers two transverse or horizontal matters aimed at being
deployed then into vertical fields. On the one hand, the transverse disciplines focus on
the design of embedded system architectures driven by the synthesis of digital circuits.
One of the horizontal disciplines deals with the hardware/software co-design of
embedded systems on programmable logic. The other discipline focuses on the synthesis
of such digital circuits exploiting run-time reconfiguration to reach, in the end, dynamic
self-reconfigurable embedded systems. On the other hand, the vertical fields where to
deploy these transverse disciplines are organized basically in three main areas:
biometrics, cryptography, and a set of more generic computing fields such as arithmetic,
digital control and signal/image processing. At that time, the recently founded
Development of Embedded Systems research group starts to walk constituted by seven
members: three PhD full professors and four PhD students, being the author of this
dissertation one member of the last group. The technical profile of all the members met
an exciting interest in the design of embedded applications exploiting design techniques
based on hardware/software co-design and reconfigurable computing over MCU, FPGA
and SoC platforms. Under this scenario, each member takes responsibilities in a specific
area so that, when joining all the parts, the group totally covers its global objective: to
face up the D&D of embedded systems based on FPGA and SoC devices by exploring
efficient system architectures able to lead to significant implementation advances
concerning performance and cost. Figure 1.4 shows a snapshot of the different
computational application areas of interest of the DES research group, all of them driven
by two transverse disciplines.
In particular, the author’s research field encompasses the evaluation of run-time
reconfigurable hardware as the key technology to address the design of applications
portable to embedded electronic systems. As part of this investigation, the author
explores how run-time reconfigurable hardware can be used in certain embedded

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 11

applications to become an advantage, pursuing cost-efficient technical solutions suitable
for being integrated in cost-sensitive commercial products or applications across multiple
industries and markets.

Figure 1.4 DES horizontal (design technology) and vertical (embedded apps) disciplines

More than ever before, run-time reconfigurable hardware is a consolidated technology
with promising exploration areas. The continuous drop in the price of programmable
logic technology –together with the incessant rise in performance most of embedded
electronic systems demand– should make this computing paradigm change viable in the
not-too-distant future. Hence, reconfigurable computing is gaining great momentum;
some evidences which confirm this trend are the rapidly increasing number and
attendance of international conferences on reconfigurable computing, as well as the
adoption of this engineering field by new scientific journals with topics of interest
including theory, architecture, algorithms, design and applications which demonstrate
the benefits of reconfigurable computing, as detailed next.

1.2.1 Scientific events and specialized journals

One indicator of the growing footprint of reconfigurable computing in embedded
applications is the large number of events (workshops, conferencesm symposiums, etc)
organized and devoted to this topic in the last years. Besides, the growth observed in the
market share of programmable logic devices, particularly FPGAs, is an unequivocal
indicator of the strong interest in reconfigurable logic. Some of the most popular
conferences which annually address the underlying principles that lead to the choice of
reconfigurable hardware technology for an extended set of applications are enumerated
in Table 1.1. These conferences aim at bringing together researchers and practitioners of
reconfigurable computing. In a more or lesser extent, all these scientific events
encompass run-time reconfigurable hardware technology and provide an excellent
snapshot of the latest research directions from both academia and industry research
communities on dynamically reconfigurable architectures and embedded systems.
Apart from the proceedings of the conferences listed below, there are also some specific
journals and magazines which focus their interest on reconfigurable computing and
FPGA technology. Some of them are listed next in Table 1.2. As proof of the relevance of
these information sources, most of the references cited in this PhD dissertation are
related to publications presented in these conferences and journals.

 …

 HW/SW CO-DESIGN

 RUN-TIME HW RECONFIGURABILITY

B
I
O
M
E
T
R
I
C
S

C
R
Y
P
T
O
G
R
A
P
H
Y

D
I
G
I
T
A
L

C
O
N
T
R
O
L

A
R
I
T
H
M
E
T
I
C

I
M
A
G
E

P
R
O
C
E
S
S
I
N
G

S
I
G
N
A
L

P
R
O
C
E
S
S
I
N
G

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 12

Table 1.1 Scientific conferences focused on reconfigurable hardware technology

ACRONYM

FULL CONFERENCE/WORKSHOP NAME

URL

AHS
NASA/ESA Conference on Adaptive Hardware and Systems
(in the past: EH – NASA/DoD Conference on Evolvable Hardware)

http://www.see.ed.ac.uk/ahs2012/

ARC International Symposium on Applied Reconfigurable Computing http://www.arc-workshop.org

ARCS
International Conference on Architecture of Computing Systems
(includes: DRS – Workshop on Dynamically Reconfigurable Systems)

http://www.arcs2012.tum.de/

ASAP Int. Conference on Application-specific Systems, Architectures and Processors http://asap-conference.org

CARL Workshop on the Intersections of Computer Architecture and Reconfigurable Logic http://www.ece.cmu.edu/calcm/carl/

CICC IEEE Custom Integrated Circuits Conference http://www.ieee-cicc.org/

DAC Design Automation Conference http://www.dac.com

DASIP Conference on Design and Architectures for Signal and Image Processing http://www.ecsi.org/dasip

DATE Design, Automation and Test in Europe Conference http://www.date-conference.com

DCIS Conference on Design of Circuits and Integrated Systems http://www.dcis.org

DELTA International Symposium on Electronic Design, Test and Applications http://delta.massey.ac.nz/

DSD Euromicro Conference on Digital System Design http://www.dsdconf.org/

ERSA International Conference on Engineering of Reconfigurable Systems and Algorithms http://ersaconf.org

FCCM Symposium on Field-Programmable Custom Computing Machines http://www.fccm.org

FPGA International Symposium on Field-Programmable Gate Arrays http://www.isfpga.org

FPL International Conference of Field-Programmable Logic and Applications http://www.fpl.org

FPT International Conference on Field-Programmable Technology http://www.icfpt.org

HEART Int. Workshop on Highly Efficient Accelerators and Reconfigurable Technologies http://www.isheart.org

HiPEAC
Int. Conference on High Performance and Embedded Architectures and Compilers
(includes: WRC – Workshop on Reconfigurable Computing)

http://www.hipeac.net

HPEC High-Performance Embedded Computing Workshop http://www.ll.mit.edu/HPEC/2011/

HPRCTA
International Workshop on High-Performance Reconfigurable Computing Technology
and Applications

http://www.ncsa.illinois.edu/Conferences/HP
RCTA10/

ICECS IEEE International Conference on Electronics, Circuits and Systems http://icecs2011.com/

ICES International Conference on Evolvable Hardware: From Biology to Hardware http://www.ices2010.org

IESS International Embedded Systems Symposium http://www.iess.org

IPDPS
IEEE International Parallel & Distributed Processing Symposium
(includes: RAW – Reconfigurable Architectures Workshop)

http://www.ipdps.org
http://www.ece.lsu.edu/vaidy/raw

ISCAS IEEE International Symposium on Circuits and Systems http://www.iscas2012.org/index.html

ISVLSI
IEEE Computer Society Annual Symposium on VLSI
(includes: RC Education – Int. Workshop on Reconfigurable Computing Education)

http://www.isvlsi2011.org
http://helios.informatik.uni-kl.de/RCeducation

JCRA Jornadas de Computación Reconfigurable y Aplicaciones (Spain) http://www.jcraconf.org

MAPLD Military and Aerospace Programmable Logic Devices Conference http://www.cosmiac.org/respace2010

MICRO
IEEE/ACM International Symposium on Microarchitecture
(includes: CARL – Workshop on Intersections of Computer Arch. and Reconf. Logic)

http://www.microarch.org/
http://www.ece.cmu.edu/calcm/carl/

ProRISC Workshop on Circuits, Systems and Signal Processing (The Netherlands) http://www.stw.nl/Programmas/Prorisc

ReConFig International Conference on Reconfigurable Computing and FPGAs http://www.reconfig.org

ReCoSoC Reconfigurable Communication-centric Systems-on-Chip Workshop http://www.recosoc.org

RSP IEEE International Symposium on Rapid System Prototyping http://www.rsp-symposium.org

SAMOS Int. Conf. on Embedded Computer Systems: Architectures, Modeling and Simulation http://samos.et.tudelft.nl

SASP IEEE Symposium on Application Specific Processors http://www.sasp-conference.org

SBCCI Symposium on Integrated Circuits and Systems Design http://www.sbc.org.br/sbcci

SoC International Symposium on System-on-Chip http://soc.cs.tut.fi

SPL Southern Programmable Logic Conference http://www.splconf.org

VLSI-SoC IEEE/IFIP International Conference on Very Large Scale Integration http://www.vlsi-soc.com

CODES+ISSS International Conference on Hardware/Software Codesign and System Synthesis http://www.esweek.org

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 13

Table 1.2 International journals which broach reconfigurable hardware as topic of interest

JOURNAL

EDITOR URL

ACM Transactions on Autonomous and Adaptive Systems (TAAS) ACM http://taas.acm.org

ACM Transactions on Embedded Computing Systems (TECS) ACM http://acmtecs.acm.org

ACM Transactions on Design Automation of Electronic Systems (TODAES) ACM http://todaes.acm.org

ACM Trans. on Reconfigurable Technology and Systems (TRETS) ACM http://trets.cse.sc.edu

Future Generation Computer Systems (FGCS) Elsevier http://www.elsevier.com/locate/fgcs

Integration, the VLSI Journal Elsevier http://www.elsevier.com/locate/vlsi

Journal of Systems Architecture (JSA) Elsevier http://www.elsevier.com/locate/sysarc

Microelectronics Journal (MEJ) Elsevier http://www.elsevier.com/locate/mejo

Microprocessors and Microsystems (MICPRO) Elsevier http://www.elsevier.com/locate/micpro

EURASIP Journal on Advances in Signal Processing Hindawi http://www.hindawi.com/journals/asp

EURASIP Journal on Embedded Systems Hindawi http://www.hindawi.com/journals/es

International Journal of Reconfigurable Computing (IJRC) Hindawi http://www.hindawi.com/journals/ijrc

IEEE Design & Test of Computers IEEE http://www.computer.org/design

IEEE Micro IEEE http://www.computer.org/micro

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems IEEE http://tcad.polito.it

IEEE Transactions on Circuits and Systems II – Express Briefs IEEE http://tcas2.polito.it

IEEE Transactions on Computers IEEE http://www.computer.org/tc

IEEE Transactions on Evolutionary Computation IEEE http://ieee-cis.org/pubs/tec

IEEE Transactions on Industrial Electronics IEEE http://tie.ieee-ies.org/

IEEE Transactions on Very Large Scale Integration (VLSI) Systems IEEE http://www.princeton.edu/~tvlsi

Computing and Control Engineering IET http://www.ietdl.org/CCE

Electronic Systems and Software IET http://www.ietdl.org/ESS

IET Circuits, Devices & Systems IET http://www.ietdl.org/IET-CDS

IET Computers & Digital Techniques IET http://www.ietdl.org/IET-CDT

Journal of Signal Processing Systems Springer http://www.springer.com/engineering/signals/journal/11265

The Journal of Supercomputing Springer http://www.springer.com/computer/swe/journal/11227

Journal of Real-Time Image Processing (JRTIP) Springer
http://www.springer.com/computer/image+processing/journal/
11554

International Journal of Electronics
Taylor &
Francis

http://www.tandf.co.uk/journals/titles/00207217.asp

Xcell Journal Xilinx http://www.xilinx.com/publications/xcellonline

Further metrics that confirm the increasing acceptance of run-time reconfigurable
hardware are the proliferation of commercial products/applications in the industry
which take advantage of this technology in areas like consumer electronics or high-
performance computing, the growing presence of FPGA manufacturers, research centers,
laboratories, and groups specifically focused on research lines turning around
reconfigurable computing technology, or even the birth of collaborative research projects
co-funded and financially supported by national or international committees (e.g.
Framework Programmes in Europe, or the Department of Defense in USA) interested in
such topic. Due to this fact, all seems to indicate the reconfigurable technology is
definitely here to stay.

1.3 Dissertation aims and scope

For years, partial reconfiguration –the notion that a system can modify itself during
operation– has been described as the extreme sport of FPGA design, adopted only by
hard-core enthusiasts. In practice, partial reconfiguration is hard: getting the circuit to

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 14

behave well while part of it is off reconfiguring, isolating the area that is being
reconfigured from the part that is still operating, making the IOs behave properly during
the transition, all of these issues can become complicated. However, the benefit to obtain
from it is worth. The key advantage of reconfiguration technology falls on its silicon
reusability. SRAM-based FPGAs offer today undeniable benefits in a world where
products and its standards change day-by-day, going out of style in months as the
technology progress advances. One might argue that usually there is a bigger FPGA
where the application fits as a fixed hardware design, but the impact concerning cost or
power consumption makes this other option, on most occasions, either inefficient or not
competitive enough, or even simply unaffordable whether the final product is designed
for mass production. Furthermore, the strongest obstacle for the massive introduction of
FPGA devices in certain embedded applications –namely, the cost– is progressively
ceasing to be a problem since the performance/cost trade-off delivered by state-of-the-art
FPGAs makes them more and more affordable. That said, the introduction of partial
reconfiguration technology in FPGA devices clearly contributes to reach this low cost
target in many embedded application fields.
The aim of this PhD dissertation is to investigate how dynamic partial reconfiguration
technology can be used to gain competitive advantages in the implementation of
embedded electronic systems typically synthesized by means of MCU-based platforms.
For this, one of the entrusted missions comprises the evaluation of the state of this
technology from an experimental viewpoint, especially concerning design flow, toolset
and commercial devices available. The final goal is to do research on the feasibility of use
of reconfigurable computing technology in the industry, on the one hand exploring the
real possibilities of the current commercial programmable logic devices provided with
dynamic partial reconfiguration capability and, on the other hand, evaluating the
development flow and automatic tools linked to this technology – by following a rigorous
methodology to solve specific real computing problems in embedded applications. Thus,
this work focuses on the conception of a standard embedded system architecture to
implement embedded applications driven by flexible hardware, noting that the design of
an efficient reconfiguration engine –seamlessly coupled to the host CPU and the memory
repository– is a key aspect to partition the application in functional tasks. Like this, it
investigates the introduction of reconfigurable computing in specific applications fields
whose functionality, apart from featuring parallel processing through the deployment of
custom hardware accelerators, can be scheduled as a natural sequence of mutually
exclusive tasks. The capability of run-time reconfigurable hardware technology to
synthesize in programmable logic certain functionality partitioned in area and
multiplexed in time by means of dynamic full/partial reconfiguration lets increase the
functional density of these resources and fit the design into a smaller programmable
logic device. The reuse of hardware resources to play a different role at each time results
in cost and power consumption savings. As application scope, several end-user
embedded applications highly demanded by the industry have been studied from a run-
time reconfigurable hardware perspective. It is sometimes the case that a processing
algorithm is designed and proven theoretically sound, presumably with a specific
application in mind, but its practical application and detailed V&V are not fully explored
and demonstrated, giving rise to critical and usually non-trivial issues when
implementing it. Just to cover this aspect, these applications have been prototyped in
real embedded FPGA/SoC platforms to take realistic conclusions about the proof of
feasibility and benefits of this technology by evaluating the achieved results. In the end,
this work seeks to serve the large community of researchers and professional engineers
working on theoretical and practical aspects of reconfigurable computing. It is intended
to bridge the gap between the theory and practice of embedded computing, contributing
the greater community of researchers, practicing engineers, and industrial professionals
who deal with designing, implementing or utilizing electronic systems which must satisfy
real-time and low-cost processing constraints, to help to promote the use of
reconfigurable computing for real-life products and applications in the industry.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 15

1.3.1 Contribution and thesis organization

In essence, this PhD dissertation pays attention to the introduction of reconfigurable
computing in specific embedded applications where its use can lead to clear advantages
in performance, cost and power metrics, demonstrating furthermore that such
technology is mature enough to be exploited in the industry. With this goal in mind, this
work is structured in fourteen chapters which are in turn organized in five sections:
outline, state of the art, design and development, proofs of concept and use cases, and
conclusions. The work is organized as a technical book split in chapters which are self-
contained, each exploring a specific topic. Although one chapter can do some mention to
other chapters, they try together to follow a consistent storyline. Besides, the
bibliography is provided individually for each chapter. In this way, the reader should be
able to plan the reading of this work chapter by chapter, allowing breaks or rest periods
among chapters. Moreover, each chapter starts with a brief summary of its content, just
to facilitate to the reader the distribution of matters along the book.
The first section is composed of an introductory chapter which presents the
reconfigurable computing concept and briefly reviews its history, from its birth until
today. The second section encompasses the next two chapters and deals with the state of
the art of reconfigurable hardware technology. Since the reconfigurable computing field
is very dynamic, it covers relevant and varied matters in this arena, from technology
aspects (reconfiguration design parameters, existing academic and commercial devices,
technical open issues still pending to solve, etc) to other related measurables like
research projects in progress today, derived patents under exploitation, etc. The third
block comprises –in two more chapters– the design proposed by the author of a standard
system architecture suitable for synthesizing embedded applications driven by run-time
reconfigurable hardware. Special emphasis is put on the development of the
reconfiguration engine since it becomes the most critical component of the flexible
system and highly influences the efficiency of the whole target application. Both the
system architecture and the reconfiguration engine design methodologies are compared
with other approaches found in the literature. The fourth section focuses on the scope of
application of this technology and is organized in seven chapters. The first of them is a
survey of the application areas of reconfigurable computing; potential applications but
also real applications and products which exploit PR like cryptography or software
defined radio are reviewed. After this survey, up to six different use cases are studied by
the author and prototyped in commercial FPGA or SoC devices. These use cases are
distributed basically in three different application areas: control systems, arithmetic
coprocessing, and high-performance computing. Regarding control, the proofs-of-concept
of a PID controller and a fuzzy logic controller have been developed in an FPGA;
concerning arithmetic coprocessing, two flexible computing systems like a 2D convolver
and a CORDIC processor have been deployed in commercial FPGAs; and with regard to
compute-intensive applications, two embedded systems have been designed. On the one
hand, a biometric personal recognition system –to be exact, an automatic fingerprint
authentication system or AFAS– has been completely mapped in different run-time
reconfigurable platforms. On the other hand, another complex embedded system such as
an automotive electronic control unit (ECU) –specifically, a body control module or body
domain controller– has been designed to be deployed in a run-time reconfigurable SoC
device. These six different scenarios are sufficiently significant and representative from
an embedded computing viewpoint, with a wide enough diversity of features to analyse
the implementation pros and cons of flexible hardware in contrast to other design
technologies in use today. These case studies encompass the use of PR by covering from
the fine reconfiguration of an element inside a coprocessor to the complete
reconfiguration of a complex coprocessor in an application. Finally, the fifth section,
composed of the last two chapters, concludes this dissertation by thinking over the
current status of this technology, the goals reached up to now and the new milestones. It
also points out the direction of the future author’s work.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 16

After this brief overview of the sections, a description of each chapter is stated next,
highlighting the more relevant contributions of this dissertation.
In chapter 1, the author outlines the scope of this work. It introduces first the concepts
of reconfigurable computing and run-time reconfigurable hardware, and highlights then
the more relevant milestones reached up to date in this field by putting them in
perspective, just to realize both the difficulties that historically turned around this
technology and its high computational potential achievable in return for this research
effort. The momentum this technology is experiencing is evidenced through the large
collection of dissemination means (especially conferences and journals) in place today.
Chapter 2 gives a concise introduction to the implementation alternatives of electronic
embedded systems. It is provided a detailed overview of the technical characteristics
related to FPGA technology. It also does a revision to the challenges and open issues that
the scientific community is facing today in this area.
Chapter 3 describes the more notorious advances of this technology on the subject of
relevant research projects conducted by the research community, publicated patents
under exploitation, or PhD dissertations which turn about this computing paradigm,
increasing thus the human resources and research groups that are getting involved in
this matter. This chapter lists also a wide spectrum of devices and platforms coming
from both academia and industry which support this technology.
Chapter 4 introduces the standard embedded system architecture proposed by the
author to deploy run-time reconfigurable computing. It presents the system breakdown
in functional blocks, with special focus on practical issues concerning system
performance. The system architecture proposed is compared then with some state-of-the-
art system architectures found in the literature.
As an extension of the previous chapter, the chapter 5 focuses exclusively on the design
and development of the reconfiguration engine. This component takes charge of
performing the online/offline full/partial reconfiguration of the programmable logic. It
undoubtedly becomes the cornerstone of any run-time reconfigurable computing system.
The efforts conducted in this area aimed at achieving a high reconfiguration bandwidth
to minimize thus the reconfiguration latency in partially reconfigurable devices are
presented here. The proposed reconfiguration controller is compared with state-of-the-art
reconfiguration controllers.
In chapter 6, apart from identifying many potential application areas of PR technology,
some successful use cases, such as real applications in the industry or even commercial
products already launched to the market, are overviewed.
Chapter 7 concerns the implementation of a Proportional-Integral-Derivative or PID
controller implemented in a small SoC –the Atmel AT94K FPSLIC device– composed of an
MCU and an FPGA driven by run-time partial reconfiguration. The PID computing
system is partitioned in three functional contexts (P, I and D computations, respectively)
synthesized on hardware and time-multiplexed by the MCU at run-time, without
interrupting the system execution.
Similarly, chapter 8 encompasses the design of a general-purpose two-input one-output
fuzzy logic controller driven by run-time reconfigurable hardware. A novel architecture is
proposed to cope with the cost-effective implementation of digital controllers based on
fuzzy logic. The controller, fueled by reconfigurability concepts, is architected to become
general-purpose, able to be used in whatever two-input one-ouptut control application.
Most of the flexibility reached in this concept is thanks to the flexible hardware.
In chapter 9, the author proposes the design of a flexible 2D convolution computer based
on run-time reconfigurable hardware. Two-dimensional convolution is a basic operation
in digital signal processing that, although its computation is conceptually simple –a sum
of products of constants by variables– its implementation is highly demanding in terms
of computational power, especially when addressed to real-time embedded systems. This
work brings an innovative approach oriented to dynamically reconfigurable hardware on
a Xilinx Virtex-4 FPGA. All the configurable aspects of the convolver (kernel dimensions,
operands resolution, constant coefficients, pipeline stages, etc) are handled in a partially

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 17

reconfigurable region (PRR) of the device so they can be reconfigured on the fly in order
to self-adapt the hardware structure of the 2D convolver to meet the optimum processing
architecture required by the particular convolution to perform at each time, aimed at
providing thus a universal solution.
In chapter 10, it is presented the implementation of a trigonometric CORDIC computer
based on a run-time reconfigurable architecture. Synthesized in the Atmel AT94K
FPSLIC, the computer processes functions like sin(alpha), cos(alpha), atan2(b/a)
and sqrt(a 2+b2)in hardware. The architecture lets switch from a trigonometric function
to another by reconfiguring part of the coprocessor in only some few operation clocks.
Chapter 11 pioneers the development of an automatic fingerprint authentication system
on a run-time reconfigurable system-on-chip platform. The biometric recognition
algorithm is partitioned in a sequence of image processing steps which are performed
through custom hardware coprocessors following a batch process. Each of these
computers is specifically designed to impressively enhance the performance of the
algorithm in comparison to a software-based solution. In its turn, special care is taken to
not to impact the system cost; for this, dynamic partial reconfiguration makes possible
the reuse of the hardware resources along the execution of the different processing
phases. This embedded application is prototyped in two different platforms: the Altera
Excalibur SoC and the Xilinx Virtex-4 FPGA. In both cases, the system architecture is
composed of an MCU (a hard-core ARM9 in Excalibur and a soft-core MicroBlaze in
Virtex-4) and programmable logic. The author’s work has consisted in studying the entire
biometric algorithm to identify the best partitioning of tasks and optimize then the
synthesis of such processing in reconfigurable hardware. The study has covered the
floorplaning and resizing of both PR and static regions in programmable logic in order to
fit the application in the smallest FPGA platform possible while guaranteeing real-time
performance. Regarding the partitioning of tasks, each image processing stage –
determined by the reading of one image stored in the repository to be processed by the
PR processor and sent back to the repository– delimits the proper way to do the spatial
and temporal partitioning of the application. A key design aspect of this system consists
in improving the bandwidth between the data repository and the reconfigurable
computer. The system architecture and reconfiguration engine proposed in chapter 4 and
5, deployed now in this application example, proves to reduce hardware utilization
significantly compared with static FPGA design solutions. Furthermore, the acceleration
reached by means of hardware parallelism makes feasible to ensure real-time
performance in the implementation of this biometric recognition system, fact that is not
achievable when porting this same algorithm to only software in a PC platform based on
a processor running at GHz.
In chapter 12, the author details the design of an automotive electronic control unit
(ECU) based on run-time programmable logic. This approach explores key features such
as parallelism, customization, flexibility, redundancy and versatility of the reconfigurable
hardware. Although it is only an early concept, is a pioneer in terms of merging both
AUTOSAR and ISO 26262 with run-time reconfigurable hardware to perform
hardware/software co-design for a full automotive embedded ECU system. This design is
oriented to be prototyped in the Xilinx Zynq-7000 extensible processing platform, which
combines a hard-wired ARM dual-core processor and 28-nanometer programmable logic
equipped with dynamic partial reconfiguration capability.
After overviewing the design and development of different embedded applications of
interest and use in the industry based on run-time reconfigurable hardware, in chapter
13 the author reflects on the strengths and weaknesses of this technology today,
highlighting all those aspects that make this computing paradigm attractive for the
community but also all those issues or stoppers that need to be solved in the not-too-
distant future in order to convert run-time reconfigurable hardware into a disruptive
technology able to provide a clear competitive advantage to embedded electronic systems.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 18

Finally, chapter 14 reviews the deliverables generated by the author along all these years
of research –through his participation in research projects, a part from publications in
conferences, book chapters and journals– and concludes this work.
The organization of this PhD dissertation composed of five sections and distributed in
fourteen chapters aims to offer the reader a pleasant and friendly way to be introduced to
the author’s work, combining theoretical and experimental aspects of run-time
reconfigurable hardware, thinking about its pros and cons in contrast to other
implementation alternatives, presenting innovative use cases, and evaluating, with real
experiments, the state-of-the-art of this technology regarding commercial FPGA/SoC
devices and EDA/CAD tools to be definitively exploited in the embedded computing
world.

References

[Bobda, Springer 2007]
C. Bobda, Introduction to reconfigurable computing – Architectures, algorithms and applications, Springer,
ISBN 978-1-4020-6088-5, 2007.

[DeHon and Wawrzynek, DAC 1999]
A. DeHon, J. Wawrzynek, Reconfigurable computing: what, why, and implications for design automation,
Proceedings of the Design Automation Conference, pp. 610-615, 1999.

[Diessel et al., CDT 2000]
O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, B. Schmidt, Dynamic scheduling of tasks on
partially reconfigurable FPGAs, IEE Proc. of Computers and Digital Techniques, vol. 147, no. 3, pp. 181-
188, 2000.

[Estrin, AHC 2002]
G. Estrin, Reconfigurable computer origins: The UCLA fixed-plus-variable (F+V) structure computer, IEEE
Annals of the History of Computing, vol. 24, no. 4, pp. 3-9, 2002.

[Estrin, WJCC 1960]
G. Estrin, Organization of computer systems—The fixed plus variable structure computer, Proceedings of
the Western Joint Computer Conference, pp. 33-40, 1960.

[Estrin and Turn, TEC 1963]
G. Estrin, R. Turn, Automatic assignment of computations in a variable structure computer system, IEEE
Transactions on Electronic Computers, vol. 12, no. 5, pp. 755-773, 1963.

[Hartenstein et al., FPL 1998]
R.W. Hartenstein, M. Herz, F. Gilbert, Designing for Xilinx XC6200 FPGAs, Proc. of the Int. Conference
on Field-Programmable Logic and Applications, LNCS, vol. 1482, pp. 29-38, Springer-Verlag, 1998.

[Hauck and Borriello, CADICS 1997]
S. Hauck, G. Borriello, An evaluation of bipartitioning techniques, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 16, no. 8, pp. 849-866, 1997.

[Ling and Amano, FCCM 1993]
X.P. Ling, H. Amano, WASMII: a data driven computer on a virtual hardware, Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines, pp. 33-42, 1993.

[Lysaght and Rosenstiel, Springer 2005]
P. Lysaght, W. Rosenstiel (Eds.), New algorithms, architectures and applications for reconfigurable
computing, pp. 117-129, Springer, ISBN 978-1-4020-3127-4, 2005.

[Rodriguez-Andina et al., TIE 2007]
J.J. Rodriguez-Andina, M.J. Moure, M.D. Valdes, Features, design tools, and application domains of
FPGAs, IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1810-1823, 2007.

[Sklyarov et al., Euromicro 1998]
V. Sklyarov, N. Lau, R. Sal Monteiro, A. Melo, A. Oliveira, K. Kondratjuk, Design of virtual digital
controllers based on dynamically reconfigurable FPGAs, Proc. of the Euromicro Conference, vol. 1,
pp.200-203, 1998.

[Trimberger, FPGA 1998]
S. Trimberger, Scheduling designs into a time-multiplexed FPGA, Proceedings of the International
Symposium on Field Programmable Gate Arrays, pp. 153-160, 1998.

[Xilinx Inc., WP375 2010]
P. Sundararajan, High Performance Computing Using FPGAs, Xilinx Inc., White Paper WP375 (v1.0),
2010.

[Xilinx Inc., Xcell 2004]
Xilinx Staff, Celebrating 20 Years of Innovation, Xcell Journal, issue 48, pp.14-16, Xilinx Inc., Spring
2004.

[Zomaya, Springer 2006]
A.Y. Zomaya, Handbook of nature-inspired and innovative computing, Springer, ISBN 978-0-387-40532-
2, 2006.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

Part II

State of the Art

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 21

Chapter 2

Embedded systems and reconfigurable hardware

Embedded electronic systems need to be synthesized as compact and efficient designs. In
addition, due to the ever-increasing trend for adding new functionality into current
applications and products, their architecture shall be flexible and scalable, able to let
them absorb the continuous growth of computational power demanded to such
embedded systems. Field programmable logic devices, mainly FPGAs, are nowadays a
clear option to build versatile high-performance computing systems. To their original
capability to synthesize a given functionality in programmable logic, the fact that the
system can modify itself during operation, even on the fly, was soon understood as a
strong added value which distinguishes FPGAs from other implementation alternatives,
making thus the boundary between hardware and software more and more blurred. This
chapter makes an introduction to the embedded computing world by overviewing the
existing implementation options to build embedded systems. Regarding FPGA devices,
they are clasified first from the programming technology point of view to, afterwards, give
exclusive attention to SRAM-based dynamically reconfigurable FPGAs – the powerhorse
of the reconfigurable computing paradigm today. The chapter tackles key FPGA design
features like reconfiguration granularity, bitstream format or reconfiguration latency,
and highlights the more relevant open issues to be addressed in the near future –related
basically to bitstream manipulation matters– to propel forward the run-time
reconfigurable hardware technology. It is considered today a promising design alternative
in the embedded space, able to lead the next computing wave in the industry.

2.1 Embedded electronic systems

Embedded systems gain competitive advantages and add value to applications by
embodying end-user functionality endowed with exclusive performance. In the last years,
in the progress towards a more nomadic lifestyle, this trend has been accentuated by the
emergence of many new mobile embedded devices in use in the daily routine. Examples
of embedded systems span from control or security (e.g. smart cards) to mainstream
consumer products in areas such as personal communication (e.g. cell phones), global
positioning (e.g. navigation systems), personal computing (e.g. PDA), entertainment and
many more. Although the implementation characteristics of an embedded system
thoroughly depend on the specific application domain to which it is addressed, in
general, the embedded design space shares a set of common, highly demanded technical
constraints applicable to any embedded electronic system: limited size, weight and power
consumption (i.e., SWaP), computation efficiency, security against attacks/reverse
engineering, remote (in-field) system upgrade capability, functional flexibility and low
cost are some of the unavoidable qualities that any embedded design shall be provided
with. Hence, a successful product/application is one that, apart from performing the
assigned functionality, is able to balance all these stringent technical features at the
conception and development stages, being the cost the industry’s primary challenge
today. Many implementation alternatives exist today to synthesize embedded electronic
systems and each one meets specific demands, fitting well in a specific market niche;
this is the main reason why each of these alternatives survives in the market.

2.1.1 Implementation alternatives

General-purpose processors (GPPs) are designed with the primary goal of providing
acceptable performance on a wide variety of tasks rather than providing high
performance on specific tasks. Driven by a software-oriented implementation perspective,

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 22

Von Neumann or Harvard architectures found in CPUs of single-core or multicore
microcontrollers (MCUs) provide a versatile platform able to perform a broad range of
applications. As result, many applications can be deployed in such static hardware
architecture via structured and flexible software programs described in simple lines of
code. Nevertheless, their inherent constraints –e.g. the limited processing word size
(typically 8-, 16- or 32-bit) leading to a performance degradation specially when the
operations to be performed poorly match to the computational engine characteristics, or
the sequential execution which causes a significant memory access bottleneck, or more
recently, in multicore processors, the difficulty at the software end to program
applications that can execute different parts in parallel on multiple cores, known as
multicore programming crisis– give rise to a set of weaknesses which can make the
software implementation alternative inadvisable for certain types of high-demanding
applications, especially in time-critical scenarios.
Other feasible general-purpose computing solutions are the digital signal processors
(DSPs). Although they were originally conceived to applications of signal processing
which make a great use of products and additions, at present the DSP is often joined to a
CPU processor to make this platform more oriented to general-purpose computation.
In addition, driven by the insatiable market demand for real-time high-definition 3D
graphics, the graphics processor unit (GPU) has evolved into a highly parallel,
multithreaded, many-core processor with high computational power and memory
bandwidth, specifically well-suited to address problems that can be expressed as data-
parallel computations –the same program is executed on many data elements in parallel–
with high arithmetic intensity, e.g. 3D rendering. Moreover, with the concept of general-
purpose computing on graphics processing units (GPGPU), NVIDIA introduced a general-
purpose parallel computing architecture called compute unified device architecture
(CUDA) to extend thus the GPU application field to applications requiring massive vector
operations, not only graphical operations. The model for GPGPU is to use a CPU and
GPU together in a heterogeneous co-processing computing model. The sequential part of
the application runs on the CPU and the computationally intensive part is accelerated by
the GPU, composed of hundreds of processor cores. However, this architecture is not
suited for applications that merge at the same time parallel processing and other types of
specific processing that do not match the GPU or CPU architecture.
Going from one extreme to another, application-specific integrated circuits (ASICs) or
application-specific standard products (ASSPs) are designed for a specific application
domain and, hence, each ASIC or ASSP deploys fixed functionality with superior
performance since it is tailored to a specific algorithm or problem and no extra overhead
for instruction interpretation is needed and no extra circuitry is deployed to cover a more
general problem. However, the ASICs restrict the flexibility of the circuits by excluding
any posterior design optimization, upgrade or bug fixing capability after fabrication.
Besides, their non-recurring engineering (NRE) costs make this technology prohibitive or
inaccessible to small and medium enterprises (SMEs) and they typically need high
production volumes to make this option affordable.
At midway between the high performance of ASICs and the flexibility of purely-software
approaches synthesized on GPPs, FPGA devices are used in the market for more than
glue logic, MCU hardware emulation and ASIC prototyping. Its exploitation is more and
more usual in embedded computing design since, as the electronics density of these
systems increases to satisfy the growing functional demands of new end-user
applications, FPGA vendors are delivering bigger devices that boast lower power
consumption rates at more competitive prices. Only very high-volume and highly power-
sensitive products remain today out-of-reach for FPGAs, and the border of having cost
advantage from custom circuits is raising to higher production volumes continually.
Thus, FPGA devices, either stand-alone or used in conjunction with a general-purpose
processor, are being used in a variety of applications since the developer can tailor the
computer architecture to the particular application needs to accomplish an efficient
solution, by mapping particular algorithms in hardware and matching the processor

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 23

structure to the needs of the demanded computation. Moreover, due to the rapid
technology advancement, the design and development of embedded systems has been
relentlessly merged with integrated circuit design. This continuous growth has brought
the technology over the border where it can now accommodate complete embedded
systems on a single chip. Today’s silicon technology allows building embedded
processors as part of SoC devices comprising up to a billion transistors usable as
programmable logic on a single die [Nurmi, Springer 2007]. FPGAs have become now
complete SoC platforms that combine a whole MCU (processor, memory and peripherals)
with user programmable fabric into a single device to implement there custom
coprocessors or accelerators required by the end-user application. This results a leading
option to balance parallelism and flexibility in an efficient way to deploy embedded
applications. Moreover, one definitive advantage of FPGAs against the rest of alternatives
is their inherent reconfigurability. Reconfigurable computing, reinforced with the
widespread availability of commercial SRAM-based FPGAs, is intended to fill in the gap
between both static hardware-oriented and software-oriented implementation strategies
by customizing the hardware architecture at the instruction level for every application,
where the optimal grain needed for the application matches the instruction granularity of
the hardware computer deployed in each case. It offers the advantages of custom and
scalable, parallel hardware processing for each of the processing tasks the embedded
application demands.
As summary, GPPs, MCUs, DSPs, ASICs, FPGAs, GPUs and SoCs are nowadays the
major options to develop embedded electronic systems. Independently of the chosen
alternative, the demand for low cost and low power consumption and computation
performance is an unavoidable feature. This dissertation focuses exclusively on SRAM-
based FPGA devices to deploy embedded electronic systems driven by run-time
reconfigurable hardware technology.

2.2 Field programmable gate arrays

FPGA devices emerged as an implementation alternative oriented to the acceleration of
computationally intensive tasks by exploiting hardware parallelism. Many applications
characterized by the processing of large amounts of data are well suited for exploiting
parallelism, e.g. image processing, therefore the use of an FPGA device can bring an
increase in performance compared to a sequential implementation on GPPs. Moreover,
along the time, FPGA devices have experienced an outstanding growth in resources,
ranging up to some billions of transistors today –allowing already the implementation of
a full application in a single chip– and gaining acceptance the trend of converting the
FPGA into a SoC device which merges programmable logic and a MCU in the same chip.
Hence, by means of hardware/software partitioning it is possible to meet a solution of
two computing worlds – digital hardware design to fit in logic the computationally
intensive tasks of any target application and embedded software handled by the CPU for
the remaining processing tasks that exhibit little parallelism.
To this original view, it was realized that the benefits of logic cell level specialization
could be extended by reconfiguring circuit resources at run-time. Reconfiguration
accentuated the interest in FPGA devices by providing a clear competitive advantage over
other traditional alternatives based on static hardware implementations. The field of
programmable logic evidenced a significant interest in the addition of dynamic
reconfiguration capabilities to conventional FPGAs. The fact that the configuration data
of certain FPGAs can be reprogrammed –either offline or on-the-fly– an unlimited number
of times incited the research on partial reconfiguration, becoming a potential
implementation alternative to achieve unmatched performance and flexibility over
conventional systems, especially for compute-intensive and cost-sensitive applications. It
represents a step forward in the design and development of digital systems through
flexible programmable logic since it allows to reduce the hardware resources required for
performing the specific computation by reusing them along the execution time if every

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 24

part of the design is not needed the 100% of the application life cycle; some portions of
the hardware resources can be reconfigured on the fly while the the rest of the system
continues in operation undisturbed by the reconfiguration process.
There exist several types of FPGA devices attending to the programming technology.
Although all of them make possible the hardware/software co-design of embedded
applications, not all these types support dynamic partial reconfiguration.

2.2.1 Programming technology

In order to map a synthesized circuit on an FPGA, the physical logic and routing
resources of the device must be configured. The programming technology determines the
method of storing such configuration information within the device. This has a strong
impact on area and performance. In fact, the area of an FPGA is dominated by the area of
the programmable components. Three main programming technologies coexist:
irreversible antifuse technology, non-volatile technologies, and volatile SRAM technology.
The choice of the programming technology is basically determined by the computation
environment in which the FPGA is used. Antifuse and non-volatile technologies have a
bigger level of immunity to single event upset (SEU) than SRAM technology. Other key
factors to be considered are the number of times the FPGA has to be programmed and
the reconfiguration latency. Antifuse-based FPGAs can be programmed only once, while
in SRAM-based FPGAs there is no limit to the number of times the device can be
reconfigured. Moreover, apart from SRAM, another volatile technology is nowadays in
development based on magnetoresistive random access memory (MRAM). All these
programming technologies are overviewed next.

A. Antifuse

The antifuse technology uses a programmable connection based on amorphous silicon
whose impedance changes on the application of high current through it. In essence, two
routing tracks, each one of a different metal, are originally connected only physically (but
not electrically) by depositing a high resistance layer of amorphous silicon above a
tungsten plug via that would otherwise bridge the insulation between two metal layers.
In unprogrammed state, the amorphous silicon or antifuse is an insulator, i.e, a high
impedance connection of the order of a few GΩ. By applying a high voltage between both
extremes of the dielectric, a physical change of its crystalline structure occurs. This
process, known as fusion, results in an impedance of some few Ω, so it becomes from
now on conductor, establishing a permanent connection between both metals.

Figure 2.1 Antifuse programming technology

SILICON SUBSTRATE

TUNGSTEN PLUG CONTACT

METAL 1

METAL 2

METAL 3
AMORPHOUS SILICON / DIELECTRIC ANTIFUSE

TUNGSTEN PLUG VIA

ROUTING TRACKS

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 25

Since antifuse FPGAs have metal-to-metal interconnects, they do not require additional
transistors to retain these interconnects, and the area of the programming element is
small, in the order of the size of a via, what results in reduced power consumption and
very little leakage current. In addition, since the programming process is permanent and
irreversible, antifuse-based FPGAs are one-time programmable and they do not require
external configuration storage on power-down. Figure 2.1 shows, through a cross-section
view, the two possible programming states of the amorphous silicon/dielectric antifuse,
connection (e.g. metals 1-2) and isolation (e.g. metals 2-3).

B. EPROM, EEPROM and Flash

This type of FPGA non-volatile programming technology uses the same techniques as
EPROM, EEPROM and Flash memory technologies. Like this, FPGA devices based on this
technology possess the ability to hold their configuration data when power is down,
avoiding the need to reprogram the chip at power-up, while their configuration can be
changed electrically. This method is based on a special transistor with two gates: a
floating gate and a select gate. When a large current flows through the transistor, a
charge is trapped in the floating gate that increases the threshold voltage of the
transistor. Under normal operation, the programmed transistors may act as open
circuits, while the other transistors can be controlled using the select gates. The charge
under the floating gate persists during power-down. It can be removed by exposing the
gate to ultraviolet light in the case of EPROMs, and by electrical means in the case of
EEPROM and Flash. Concerning the area spent in making a connection, the Flash
technology uses one transistor. The programming is more complex and time consuming
than that of the SRAM technique. There exist also hybrid FPGAs which merge Flash and
SRAM memories.

C. SRAM

In this programming method, the configuration is stored in SRAM cells. When the
interconnect network is implemented using pass-transistors, the SRAM cells control
whether the transistors are on or off. In the case of LUTs used in the logic blocks, the
logic is also stored in SRAM cells. This storage is volatile, i.e. when power is down the
configuration data is lost, therefore a total configuration of the device is needed each
time at power up and consequently, for systems using SRAM-based FPGAs, an external
permanent storage device is needed to hold the configuration bitstream. Regarding the
connection area, it requires at least five transistors per cell. Due to the relatively large
size of the memory cells, the area of the FPGA is dominated by configuration storage.
However, the SRAM method of programming offers the advantage of being
reprogrammable, even in-system, permiting to reuse a single device for implementing
different applications by loading different configurations. Figure 2.2 shows some of the
configurable elements present in a SRAM-based FPGA.

Figure 2.2 SRAM programming technology

SRAM SRAM

MUX

SRAM

SRAM
SRAM

SRAM

SRAM

SRAM

SRAM

FPGA
INTERCONNECT

VERTICAL
WIRE

HORIZONTAL
WIRE

MUXSRAM

PASS TRANSISTOR TRISTATE BUFFER

TWO-WAY MULTIPLEXER TWO-INPUT LOOK UP TABLE

SWITCH BOX

IN00

IN01

IN10

IN11

OUT

SEL1 SEL0

SRAM SRAM

MUX

SRAM

SRAM
SRAM

SRAM

SRAM

SRAM

SRAM

FPGA
INTERCONNECT

VERTICAL
WIRE

HORIZONTAL
WIRE

MUXSRAM

PASS TRANSISTOR TRISTATE BUFFER

TWO-WAY MULTIPLEXER TWO-INPUT LOOK UP TABLE

SWITCH BOX

IN00

IN01

IN10

IN11

OUT

SEL1 SEL0

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 26

D. MRAM

Recently, the first commercial magnetoresistive random access memory (MRAM) products
have been launched to the market. This technology lets store data using magnetic
polarization (electron spin) rather than electric charge, a process often referred to as
spintronics. It is based on a magnetic tunnel junction (MTJ) storage element that is
deposited on top of a standard logic process. The MTJ contains a fixed layer that is
always polarized in one direction, separated from a free layer by a tunnel barrier. When
the free layer is polarized in the same direction as the fixed layer, the MTJ exhibits a low
resistance across the tunnel barrier. When the free layer is polarized in the reverse
direction, the MTJ has a high resistance. This magnetoresistive effect converts MRAM
into a non-volatile RAM memory that offers a combination of benefits not offered by any
of today’s popular memory types (Flash, DRAM and SRAM): it lets retain data for decades
while performing writing and reading operations at SRAM speed, guaranteeing non-
volatity, random access to data and low-cost. Apart from these characteristics, other
special benefits of the MTJ storage element are: the fact that magnetic polarization does
not leak away like an electric charge, therefore data can be retained for long periods of
time; and the fact that switching the magnetic polarization between the two states does
not involve actual movement of electrons, what means it is possible to perform write and
read data transactions without wearout. A scheme is shown in Figure 2.3.

Figure 2.3 MRAM programming technology

In summary, FPGA devices based on antifuse or Flash technology cannot be reconfigured
since its programming technology prevents this feature. These FPGAs are not in the
scope of this work. From a point of view of FPGAs able to perform a full/partial dynamic
reconfiguration of the device at real-time, the SRAM and MRAM programming technology
are the alternatives that meet all the technical requirements to support it. Although
MRAM technology is expected to make feasible the exploitation of dynamic partial
reconfiguration in the future, nowadays SRAM is the first and mature programming
technology vastly available in commercial FPGA devices to make a professional use of
this computing paradigm in real products and applications. This dissertation is focused
exclusively on SRAM-based FPGAs. The more relevant features of this technology are
overviewed in detail next.

2.3 SRAM-based reconfigurable hardware technology

The field programmable gate arrays domain allows circuit designers to produce
application-specific chips bypassing the time-consuming fabrication process. FPGAs are
featured by the logic blocks and interconnect architecture, the programming technology,
the reconfiguration model and the power dissipation. They are composed of three

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 27

fundamental components: logic cells, I/O blocks, and programmable routing.
Additionally, it is also frequent to find other types of more complex building components
such as advanced clock management blocks, embedded SRAM memory blocks and
dedicated computing blocks like hardware multipliers, MAC and DSP blocks, and even
hard core CPUs integrated in the FPGA fabric. All these blocks are spatially replicated in
a symmetrical grid and configure the capacity of resources of every device within each
particular FPGA family. These configurable resources are codified in the FPGA bitstream
through the address –i.e., type of element and its 2D location inside the matrix– and the
configuration data – the set of configuration bits which describe each element when the
hardware design is downloaded into the FPGA. Hence, in SRAM-based FPGAs all these
blocks can be programmed in each (re)configuration cycle, in the way that the FPGA can
be perceived by the designer as a platform with two abstraction layers: the low-level or
physical layer (static hardware resources) and the high-level or behavioural layer
(described as a binary file by the bitstream). Figure 2.4 illustrates this concept.

Figure 2.4 SRAM-based FPGA conceptual view

Therefore, these devices can implement any digital circuit as long as their available
resources are adequate. The circuit is synthesized in the FPGA by programming each
logic block (composed of combinational and sequential elements), I/O block, routing
resources and rest of components required by the specific design.
The logic cell structure varies from vendor to vendor although typically consists of lookup
tables (LUTs), carry logic, flip-flops, and programmable multiplexers. The I/O blocks
provide FPGAs with capabilities to interact with the external world. The programmable
routing is configured to make all the necessary connections between logic blocks and
from logic blocks to I/O blocks. The interconnection network is typically configured by
programming pass gates and multiplexors. The general model of an FPGA featured by
SRAM configuration memory is shown in Figure 2.5.

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

 C

IO

IO

IO

CK

IO

IO

IO

IO

IO

IO

CK

IO

LC

LC

IO

LC

LC

LC

LC

LC

IO

LC

LC

LC

IO

LC

LC

LC

LC

LC

LC

IO

LC

LC

LC

IO

LC

LC

LC

LC

LC

IO

LC

LC

LC

IO

LC

LC

LC

LC

LC

IO

LC

LC

LC

IO

LC

LC

LC

LC

LC

IO

LC

LC

LC

LC

LC

LC

LC

IO

LC

LC

LC

LC

LC

IO

LC

LC

LC

LC

LC

IO

LC

LC

LC

LC

LC

IO

LC

LC

LC

LC

IO

IO

IO

IO

IO

DQ

IO

CK

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

I/O BLOCK

LOGIC CELL

ROUTING
RESOURCES

CONFIGURATION
MEMORY CELLS

S
R
A
M

M
E
M
O
R
Y

B
L
O
C
K

D
S
P

B
L
O
C
K

CLK BLOCK

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 28

Figure 2.5 SRAM-based FPGA logic cell

Taking advantage of this two-layered view of SRAM-based FPGA devices, the execution of
a specific application on these devices is typically divided in two steps: device
configuration, by downloading the bitstream from non-volatile memory to the SRAM
configuration memory cells, and afterwards, once the configuration bits take effect on
both logic cells and interconnect, the processing. Regarding processing, FPGA capacity is
conventionally measured in terms of logic cells, i.e., LUTs and flip-flops, assigned to a
problem. This notion of logic cell utilization is, however, a purely spatial metric which
ignores the temporal aspect of logic cell usage. That is, it says nothing about how often
each logic cells is actually used. A logic cell may only perform useful work for a small
fraction of the time it is employed. Taking the temporal usage of a logic cell into account,
it is admitted that each gate has a capacity defined by its bandwidth, and exploiting this
temporal aspect of capacity is necessary to extract the most performance out of
reconfigurable devices [DeHon, FPGA 1996]. As a particular feature of SRAM-based FPGA
technology, a functional density metric can be introduced to balance the advantages of
run-time reconfiguration against its associated reconfiguration costs [Wirthlin and
Hutchings, TVLSI 1998]. Like this, instead of using a static architecture designed to
perform all the computations of an application, several special-purpose architectural
partitions can be used to solve the problem with greater efficiency. That is, one way of
improving the efficiency of a computation using run-time reconfiguration is to replace
idle or inactive hardware with other more usable circuitry at any time. This run-time
optimization of the circuitry allows a computation to take place with fewer hardware
resources. In other words, this technology can be used to partition large, special-purpose
computing architectures onto limited FPGA resources. However, the use of this technique
on conventional FPGAs requires additional time for circuit reconfiguration. Such
reconfiguration latency shall be minimized to not impact in excess the total processing
time of the application.
Due to the broad range of applications where the use of hardware reconfiguration has
been proved to be advantageous, different classifications can be made to characterize

LOGIC CELL (LC)

CLK

D Q

LUT

MUX

INTERCONNECT STRUCTURE

INPUTS

MUX
OUTPUTS

LOGIC CELL CONFIGURATION SRAM

LOGIC CELL (LC)

CLK

D Q

LUT

MUX

INTERCONNECT STRUCTURE

INPUTS

MUX
OUTPUTS

LOGIC CELL CONFIGURATION SRAM

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 29

reconfigurable FPGA devices paying attention to specific properties. Following sections
provide a review of the more relevant features which define a reconfigurable device. It can
be stated that, according to all this set of characteristics, the choice for the best suited
reconfigurable device is strongly related to the application itself where this device is
intended for deploying certain functionality, with a defined level of performance and cost.

2.3.1 Reconfiguration model

Reconfigurable hardware devices can be classified in several categories in terms of the
reconfiguration method used [Compton and Hauck, ACM 2002]:

A. Single context

A single context FPGA is architected with an only plane of hardware resources
distributed along the device. Such resources are configured by downloading the
configuration bitstream. Since the access to the configuration memory is restricted by a
sequential flow, the entire FPGA must be reconfigured even if only a portion of the chip
needs to be changed. Therefore, in order to implement run-time reconfiguration using a
single context FPGA, the configurations are grouped into contexts and each full context
is transferred to the device when needed. Although from an architectural viewpoint this
reconfiguration mechanism is simple, a good partitioning of the target application in
configuration contexts is essential to minimize the total reconfiguration latency. Most
commercial SRAM-based FPGAs are of this style, like Altera Cyclone and Stratix families.

B. Partially reconfigurable

Often, only a part of the FPGA resources require modification. In these situations, a
partial reconfiguration of the FPGA is needed rather than a full reconfiguration. In a
partially reconfigurable (PR) FPGA, a portion of the FPGA can be reconfigured without
interrupting the operation of the rest of the circuit, which may continue the execution
while the reconfiguration is in progress. This type of FPGA architecture increases the
efficiency of reconfiguration by reducing the reconfiguration overhead. Besides, as it is
possible to overlap the computation of some parts of the device with the reconfiguration
of the other parts, this has the benefit of potentially hiding partially or totally the
reconfiguration latency. However, for this the bitstream format shall contain the specific
position of the addressed resource: since address information must be supplied with
configuration data, the total amount of information transferred to the reconfigurable
hardware may be greater that what is required with a single context design where in this
case the address can be implicitly specified through the sequence of the bitstream
information. The reconfigurable partition of a partially reconfigurable FPGA is typically
organized in a rectangular area. In function of the dimensional characteristics of such
reconfigurable surface, partially reconfigurable FPGAs are classified in two groups:

� One-dimensional (1D) reconfiguration
In these FPGAs, the reconfiguration is performed in regions that are extended along
the vertical dimension of the reconfigurable hardware device. While the designer can
define the horizontal length of the reconfigurable region, the vertical length is fixed to
the complete vertical dimension of the device. An example of partially reconfigurable
FPGA with 1D reconfiguration models is the Xilinx Virtex-II FPGA.

� Two-dimensional (2D) reconfiguration
The 2D reconfigurable FPGAs treat PR regions or partitions as rectangles to be placed
at an arbitrary position inside the larger 2D sea of resources distributed along the
device. 2D models have been shown to lead to better device utilization. In this way, the
designer can define both horizontal and vertical dimensions of the PR partition,
although typically it is necessary to meet some minor restrictions concerning the total
size of the PR partition selected. An example of commercial FPGA device which meets

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 30

the 2D reconfiguration model is the Xilinx Virtex-4 device. Although the minimum
number of vertical configurable logic blocks (CLBs) which must be reconfigured is still
fixed to a specific grain (16 CLBs), the reconfiguration time and the partial bitstream
size are decreased, providing a greater flexibility in choosing the best floorplanning
and mapping of reconfigurable tasks inside the device.

Apart from this classification, there exist a technique that allows effective 2D partial
reconfiguration in 1D partially reconfigurable FPGA devices so-called Read-Modify-
Writeback [Paulsson et al., FPL 2007]. This method was developed for increasing the
flexibility when performing dynamic partial reconfiguration on Xilinx Virtex-II FPGAs. In
this way, the inherent 1D (column-based) reconfiguration of Virtex-II and Virtex-II Pro
devices is somehow converted to a 2D reconfiguration. This approach exploits the
possibility for reading back configuration data from the FPGA configuration memory,
modifying it and writing it back to the configuration memory, although the write
operation still affect all the column dimension.

C. Multi-context

A multi-context FPGA can be seen as a set of planes of resources from single context
FPGAs working in a multiplexed way, where only one of these configuration planes is
active at any given time. Therefore, the multi-context FPGA includes multiple memory
bits for each programming bit location, in the way that these memory bits can be thought
of as multiple planes of configuration information. As result, this model allows for the
background loading of one of the contexts while another is active and in execution. One
plane of configuration information can be active at a given moment and the device can
quickly switch among different planes or contexts of already programmed configurations.
Switching between two different contexts can take place in one clock cycle (i.e., order of
nanoseconds) since there is no need to load the configuration data just at that moment.
Thus, although reconfiguring a context should take the same time as in a single context
device, such reconfiguration can be hidden and performed in parallel while other context
is operating. In return for it, the additional memory required to store the configuration
data substantially increases the complexity and chip area of the FPGA, since the amount
of virtual hardware emulated by a multi-context FPGA with n contexts is limited to n
times the physical hardware in that FPGA. Regarding the amount of resources
reconfigured, multi-context devices can support both full and partial reconfiguration.
Full reconfiguration corresponds to devices architected with only one select control bus
which is common to all the context multiplexors affecting all the FPGA resources. Partial
reconfiguration is feasible by having individual select control lines distributed along the
device resources and assigned each one to a different configuration bit of the device. An
example of multi-context FPGA is FIPSOC from SIDSA which, although no longer in the
market, admits partial reconfiguration of rectangular blocks and also full reconfiguration
at run-time in only one clock cycle.

2.3.2 Granularity

The grain of reconfigurable logic devices refers to the physical size of the smallest
element or block that can be reconfigured without interacting with the rest of resources
in the device. It is a critical point for silicon efficiency in reconfigurable hardware
technology and determines the minimum atomic change possible. There are several types
of reconfigurable devices attending to configuration granularity of the logic elements that
constitute the device; a distinction is made between fine- and coarse-grain architectures,
as well as a fusion of both. Like this, configuration information or bitstream refers to the
data bits sent to the device to set the state of all its resources, logic and interconnection.
A fine-grained FPGA architecture lets change a minimum part of the device, up to a bit-
level, between a configuration cycle and the following one, for instance to change a
connection bit or a LUT-based truth table bit. On the contrary, a coarse-grained

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 31

architecture applies the same procedure to a bigger element or group of elements, for
instance a whole logic cell (composed of LUT, flip-flop and local interconnections) or a
specific processing block. Both FPGA configuration time and configuration memory size
directly depend on the FPGA grain. Lower granularity provides more flexibility in
adapting the hardware to the computation structure; however, it has a major
performance penalty due to larger delays when constructing computation modules of a
larger size using smaller functional units. In addition, fine-grain and coarse-grain devices
have differences in the configuration time because coarse-grain devices typically need
less data bits for bitstream storage; therefore, their configuration time is shorter.

A. Fine-grain achitecture

In fine-grained reconfigurable architectures, the functionality of the hardware is specified
at the bit-level and the programmable interconnect is manipulated as individual wires.
Fine-grained architectures are efficient for complex bit-oriented computations or bit-level
masking and filtering. However, this fine-grained flexibility comes at the cost of
additional silicon and configuration time overhead and an increment in the bitstream
storage capacity. Typically, an FPGA architecture is considered fine-grained when its
datapath width is four bits or less. The Atmel AT40K FPGA is an example of fine-grained
reconfigurable architecture.

B. Coarse-grain architecture

As reconfigurable fabrics grow in size and are migrated to more advanced technologies,
the cost in terms of both speed and power of the interconnect part of a reconfigurable
fabric rises. Designers are responding to this by increasing the granularity of their logic
units, thereby reducing the amount of interconnect needed. As example, some FPGA
have moved the structure of LUTs from 4-inputs to 6-inputs. Coarse-grained
reconfigurable architectures contain word-level function units such as multipliers and
the programmable interconnect is manipulated with n-bit buses. An example of coarse-
grained architecture corresponds to the XPP processor from PACT, constituted by a set of
processing array elements (PAEs).

C. Hybrid architecture

A hybrid architecture comprising both fine- and coarse-grained elements is also possible.
This hybrid archichecture, named also multi-grain or heterogeneous architecture,
combines the best of both worlds: it can implement word-level algorithms much more
efficiently than fine-grained architectures and can also implement bit-level algorithms
much more efficiently than coarse-grained architectures. Such FPGA devices embed
coarse-grained components into their fine-grained architecture.

2.3.3 Reconfigurability features

Since their introduction, SRAM-based FPGAs have received increasing attention due to
their potential as reconfigurable logic devices, with the ability to implement arbitrary
functionality and be reprogrammed an unlimited number of times during their lifetime,
both off-line and on the fly [Hadley and Hutchings, FCCM 1995]. Reconfiguration
features can be classified according to certain basic criteria such as device activity,
amount of resources reconfigured, reconfiguration interface, and so on. All these
characteristics are overviewed next.

A. Device activity during reconfiguration

Paying attention to the number of reconfigurations performed during the application
execution or to the device activity while the reconfiguration is in progress, reconfigurable
FPGAs are classified in different categories [Shoa and Shirani, VLSI 2005]:

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 32

� Static (compile-time) reconfiguration
Depending on the technological features of the FPGA device or on the application for
which it is deployed, in certain applications the reconfiguration is not used. That
situation occurs in the so-called static or compile-time reconfigurable systems. This
name comes from the fact that the entire configuration is determined at compile-time
and does not change throughout system operation; a single design is loaded into the
full FPGA after a system power-on-reset and it remains unchanged for all the
application lifetime, until the application finishes. In the past, most FPGA designs
have been architected in this way, being static in nature.

� Shutdown reconfiguration
Certain FPGA devices allow reconfiguring the device multiple times during the
application execution. However, this reconfiguration cannot be performed while the
device is in operation. In such case, the functionality of the circuit does not change
while the application is running and it must be halted during the reconfiguration
period. Hence, to reconfigure this type of device it is required to stop it first (i.e., keep
the device in reset) and reconfigure then its logic off-line. In other words, these devices
have mutually exclusive operational and configuration modes since there is no
mechanism to allow simultaneous operation and configuration.

� Active (dynamic or run-time) reconfiguration
Systems in which the configuration of the reconfigurable hardware can change during
run-time are referred to as dynamic or run-time reconfigurable systems. Active
reconfiguration allows that parts of the system may be reconfigured while other parts
are running, without disruption. In this scenario, the application is partitioned into
time-multiplexed tasks. Each task is implemented as a distinct configuration which
can be downloaded into the FPGA at run-time during application operation.

B. Amount of device resources reconfigured

FPGA reconfiguration consists in reprogramming the configuration memory by
downloading a sequence of bits known as bitstream onto it. These data define the
operation (i.e. functionality) to be processed by the combinational and sequential logic
resources present in the FPGA device. In general, two different scenarios are possible
concerning the amount of configuration bitstream data transferred: either the entire
FPGA configuration memory is re-written (full configuration of the device) or only a
subset of this needs to be changed (partial reconfiguration). According to this, a new
classification can be established [Henkel and Parameswaran, Springer 2007]:

� Full reconfiguration
Some devices admit only full (global) configuration, therefore, the entire FPGA
bitstream must be downloaded for all their programmable elements. Global
reconfiguration reserves all the hardware resources for each step of execution. After a
step has been concluded, the device is reconfigured as a whole for the next step.

� Partial reconfiguration
 Other devices, however, a part from full reconfiguration allow also downloading partial

bitstreams involving only certain parts of the device. This implies the selective
modification of hardware resources affecting only some selected portions of the device.

To summarize the reconfigurability aspects seen up to now, these levels of adaptivity are
offered in the market through different types of FPGAs. From lowest to highest levels of
configurability, these devices can be classified as one-time configurable (hence not
reconfigurable) FPGAs (e.g. Actel Axcelerator), reconfigurable FPGAs (e.g. Altera Cyclone),
coarse-grain partially reconfigurable FPGAs (e.g. Xilinx Virtex-4) and fine-grain ultimately
reconfigurable FPGAs (e.g. Xilinx XC6200). Only FPGAs with static/active and
full/partial reconfiguration performance let exploit reconfigurable computing technology.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 33

C. Bitstream format and downloading mechanism

One fundamental limitation of commercial SRAM-based FPGAs is nowadays their
reconfiguration mechanism. There are four primary approaches commonly adopted:

� Serial access configuration
In devices using serial configuration, the configuration storage elements are connected
as a large scan chain around the entire chip (e.g. Altera APEX family). During
configuration, the bitstream is downloaded as sequential raw data into the FPGA
configuration memory, shifted throughout in a bit-wise manner. In addition, the entire
device must be configured before any part may be used for execution. Due to these
architectural restrictions, partial reconfiguration is not supported in these devices.

� Random access configuration
Other FPGA devices use a random access method for reconfiguration. The
reconfiguration cells for these devices can be accessed in the same way as a standard
RAM. An on-chip row/column address is presented to the device and the configuration
information is either read or written to the desired cells. Partial reconfiguration is
supported though an address-data access mechanism, and, to an extent,
configuration time is reduced through the use of a parallel data path (e.g. 32-bit
configuration data bus for Xilinx XC6200 series).

� Windowing configuration
The bitstream format of certain FPGA families follows a very flexible windowing
mechanism where small areas of the device can be programmed independently of each
other. Each of these areas is known as window. This mechanism is suitable for
specifying not only full bitstreams but also partial bitstreams. One example of FPGA
devices following this windowing bitstream specification are the Atmel AT40K FPGAs.

� Frames-based bitstream commanded by packets
Other FPGA devices follow a bitstream format composed of a series of configuration
commands and configuration data. The configuration data corresponds to the data
written into the FPGA configuration memory while the configuration commands
encompass the handling of the internal registers of the configuration logic. Thus, the
writing of data into the configuration memory requires the proper handling of the
configuration registers, which at the same time manage the finite state machine (FSM)
of the reconfiguration engine in the way that writing a configuration is done by issuing
the configuration commands to the desired interface followed by the configuration data
and following certain protocol. As example, the Xilinx Virtex families of FPGA devices
are arranged in frames that are tiled about the device. A frame is the atomic unit of
configuration –i.e., the smallest portion of the configuration memory that can be
written to or read from– and all operations must therefore act upon whole
configuration frames. From the bitstream format point of view, data are encapsulated
in packets, where a packet contains two different sections: header and data. The
header specifies the configuration registers addressed (i.e. configuration command)
whereas the data contains the configuration frame to be downloaded.

D. Link between bitstream repository and reconfiguration engine

A reconfiguration engine is required to transfer the application bitstreams from the
repository, usually an external non-volatile memory, to the FPGA configuration memory.
This engine is coupled to the reconfiguration logic, either embedded inside the device or
connected to it through an external interface.

� External interface
An external smart device, either a controller synthesized inside a non-volatile memory
device, or a secondary PLD, or even a general-purpose microprocessor, is usually used

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 34

to synchronously transfer the bitstream in master or slave mode to the FPGA to
perform the configuration of the programmable logic in a sequential way. A drawback
of this alternative is the increased number of components and PCB area restrictions
necessary to accommodate that external device.

� Internal interface
A dedicated internal processor, either a hard core attached to the FPGA or even a soft-
core processor synthesized in the own FPGA fabric, able to access to the FPGA
configuration memory can take charge of the configuration protocol. The integration of
an internal controller inside the programmable logic device lets reduce the system bill
of materials (BOM). In addition, such a tightly integrated reconfiguration control
solution typically reaches higher performance than an external controller.

Apart from the accessibility to the reconfiguration interface, a further sub-classification
can be established based on the location of the non-volatile memory (NVM) used as
bitstreams repository, in function of whether this memory resides internally to the
programmable logic device –e.g., Xilinx Spartan-3AN or Atmel AT94S equipped with
internal Flash memory– or otherwise, externally linked to a NVM configuration chip.

E. Reconfiguration engine interface

A further classification can be established according to the data flow used to load the
bitstream into the FPGA configuration memory. Several mechanisms are possible:

� Serial or parallel bus
In many FPGAs the configuration memory is written serially, i.e. via a 1-bit data bus
(e.g. SPI, JTAG interfaces) or via a parallel bus, typically an 8-, 16- or 32-bit data
interface. In case of serial access, the reconfiguration bandwidth is strongly limited by
such a narrow interface. In compensation for this drawback, the hardware resources
involved in synthesizing the reconfiguration interface inside the device results quite
simple. On the other hand, in parallel bus, an n-bit data word is transferred to the
configuration memory at each system clock, thus increasing the configuration
throughput by n compared to a serial interface working at the same clock frequency.
In both cases, the bitstream is loaded into the FPGA synchronously and the
reconfiguration time depends basically on the bitstream size, the bus data wide and
the reconfiguration frequency.

� Multiplexing
Some reconfigurable devices are designed in the way that their configuration memory
is physically replicated several times. This is the case of multi-context FPGAs, which
possess various planes of configuration information with just one of them active at any
given time. Like this, the multi-context reconfiguration mechanism lets map
successive configurations from the configuration memory to the logic resources of the
device by swapping a selected inactive configuration memory context or plane into the
active one. The effective reconfiguration interface is based on a physical multiplexer for
each one of the configurable bits present into the device, having these multiplexers as
many inputs as hardware contexts. In this way, the context swap can be performed
quickly across the entire configurable array. Moreover, this swaping time results to be
independent of the bitstream size, although the time needed to previously transfer the
bitstream to the inactive configuration memory plane does depend on the bitstream
size since it is first transferred via a serial or parallel data interface.

� Wormhole run-time reconfiguration
One of the limitations of current commercial FPGAs is the reconfiguration mechanism,
fundamentally accentuated by the use of a centralized configuration controller. Both
serial and parallel interfaces suffer from this downfall since only one controller (data
path) at a time can configure the device through the access port. An alternative

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 35

approach is to create a distributed control scheme in which multiple independent
computational streams can configure the system simultaneously through multiple
access ports. Within that scope, wormhole provides a framework for implementing
large-scale fast run-time reconfiguration. Wormhole run-time reconfiguration is a
method for reconfiguring an FPGA in an entirely distributed fashion: it allows different
parts of the same FPGA to be independently configured through many different data
paths simultaneously given that the reconfigurable device owns multiple configuration
controllers. For this, however, it is necessary a mechanism responsible for avoiding
any kind of resources overlap conflict among several configuration controllers that,
although each one is conducted from a different configuration interface, could perform
a partial reconfiguration addressing the same logic resource at the same time. Like
this, multiple independent configuration paths greatly increase the configuration
bandwidth of a given device, enhancing reconfiguration speed and overall system
performance. As example, the Colt/Stallion configurable computing machine (CCM)
makes use of this distributed reconfiguration paradigm allowing multiple data ports to
independently and simultaneously configure different sections of the chip [Bittner and
Athanas, FPGA 1997].

F. Reconfiguration latency

One of the main motivations for using reconfigurable hardware is to reduce the execution
time of algorithms that would otherwise be executed on software, involving for this as few
hardware resources as possible. But the improvements in efficiency provided by run-time
reconfiguration are not available without cost and reconfiguration latency is a critical
parameter in the design of dynamically reconfigurable systems specifically used for
algorithm acceleration [Wirthlin and Hutchings, TVLSI 1998]. The reconfiguration latency
of dynamically reconfigurable hardware is defined as the time that elapses between a
request for a new circuitry to be loaded onto an already active FPGA and the point at
which the new circuitry is ready for use [Lysaght, FPL 1997]. In fact, it is possible that
the dynamic swapping of circuits on and off in an FPGA consume significant time relative
to the execution time of the algorithm that is being accelerated. Therefore, this
reconfiguration technique, if inappropriately used, could potentially offset any speed-up
gained in using parallel hardware instead of software-based solutions. Just for this
reason, this reconfiguration time overhead needs to be evaluated early in the phases of
design of embedded applications driven by dynamically reconfigurable hardware.
Depending on the type of device and the reconfiguration strategy in use, it is possible to
minimize or even totally hide the reconfiguration time overhead. According to this, it is
possible to classify the run-time reconfigurable systems in two groups:

� Reconfiguration overhead
In single context devices or partially reconfigurable FPGAs architected with only one
PR partition, additional time is required to transfer circuit configuration bits from off-
chip storage into the device configuration memory. In these cases, the reconfiguration
time is visible to the application scheduling and therefore it penalizes to the execution
time of the application. The total execution time of the application synthesized on
reconfigurable hardware is decomposed then in two terms: the processing time and
the reconfiguration time. In some cases, this second term obviously mitigates the
advantages of run-time specialization.

� Hidden reconfiguration time
In multi-threading applications, it is possible to overlap the reconfiguration time of
certain hardware resources with the processing of other tasks in the portion of the
system that keeps in operation. This feature can be achieved in multi-context FPGA
devices or in partially reconfigurable FPGAs composed of more than one PR partition.
In multi-context devices, this reconfiguration time overhead is basically null, one clock
cycle is usually enough to switch from one hardware context to the next one. However,

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 36

although the context swaping is hidden, the fact of transferring the full or partial
bitstream to the inactive configuration context previously to the reconfiguration can
represent a time overhead. On the other hand, in partially reconfigurable FPGAs
composed by more than one PR partition, considering the bipartitioning of an
application in tasks that are distributed in two different PR partitions, the
reconfiguration latency can be hidden if one partition is operative while the other is
concurrently reconfigured to instantiate there the next sequential task to compute.
Finally, the pipeline reconfiguration or striped configuration method (striping) arises
as a modification of the partially reconfigurable FPGA model. This style of
reconfiguration is particularly suited towards the implementation of pipelined
applications. A pipelined application can be easily decomposed into a set of stripes
where, in an ideal scenario, each of the application’s stages fits into one of the FPGA’s
stripes and is reconfigured as a whole, in the way that the atomic unit of
reconfiguration of the FPGA is chosen so that it matches an entire pipeline processing
stage. Pipeline reconfiguration would be used to swap processing stages in the FPGA
in case the number of virtual pipeline stages exceeds the number of hardware pipeline
stages that fit at the same time placed in the FPGA. Hence, partial reconfiguration
would be performed at the level of individual pipeline stages so that configuration and
execution coexist at the same point in time but applied to different stages in the pipe
(one stage is reconfigured while the remainder stages of the pipeline are in execution).
An example of device based on pipeline reconfiguration is the PipeRench platform
[Schmit, FCCM 1997].

2.4 Bitstream manipulation and configuration techniques

Some of the major concerns and open issues submitted to active research in the area of
run-time reconfigurable hardware technology are related to bitstream manipulation and
configuration techniques, aimed at optimizing this technology by minimizing its
weaknesses. All these matters are briefly described next.

2.4.1 Bitstream compression/decompression

Reconfiguration time is one of the critical aspects of run-time reconfigurable hardware
technology because it not only penalizes in the total execution time of the application –as
discussed above– but it also brings an area overhead for the reconfigured resources
which are not operative during such time. Just for this reason, it is convenient to speed
up as much as possible this process. In order to reduce such latency, the efforts can be
addressed in two directions: either minimizing the number of data transfers required to
update a new design in the FPGA, or rising up to the maximum the configuration
bandwidth of the reconfiguration engine. In relation to the first option, in the end it
consists in trying to improve the efficiency of the bitstream format and its transfer so the
bitstream compression/decompression is a valid alternative, while regarding the second
option, other alternatives attending to design reasons like data bus width and
transmission frequency are feasible and they discussed later.
The bitstream bitstream compression/decompression is a manipulation technique in
search of two main goals: firstly, to store the bitstream in the repository occuping the
minimum space possible and, secondly, transmitting it to the FPGA configuration
memory minimizing as much as possible the transmission time and the power
consumed. Bitstream compression can help to reduce the reconfiguration time especially
when the bottleneck is found in the data transfer from the external bitstream repository
to the FPGA. Since the amount of information needed to configure an entire FPGA can be
very large, sending the bitstream compressed to the FPGA lets reduce the time or
number of data word transfers required. Once this configuration information arrives to
the FPGA, however, it shall be decompressed before it is written in the original format to
the FPGA configuration memory via the reconfiguration engine. For this, hardware

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 37

compression/decompression units are inserted into the data path of the FPGA
configuration engine as either hard or soft IPs. Thus, some FPGAs are provided with an
internal bitstream decompressor hardwired in the FPGA fabric, like Altera Stratix-II
devices. Another option is to implement the decompression engine inside the FPGA,
making use of the FPGA resources [Huebner et al., IPDPS 2004] and inserted into the
pipeline [Nabina and Nuñez-Yañez, FPL 2010]. Moreover, the compression of the
bitstream file is supported by EDA tools and must be lossless; that is, the compression
strategy shall be able to completely recover the exact data that was compressed.
Furthermore, the compression technique must allow for online decompression. A wide
range of well-established compression algorithms exist in the literature classified into
statistical encoding (e.g. Huffman code) and phrase substitution code (e.g. LZW) [Stefan
and Cotofana, FPL 2008]. The same occurs for decompression algorithms [Koch et al.,
TRETS 2009]. In addition, apart from compression/decompression IPs, certain
configuration controllers of some families of FPGAs are equipped with specific features
oriented to reduce the size of the bitstream, for instance the multiple-frame write (MFW)
command in Xilinx bitstreams, what permits to replicate some identical and consecutive
bitstream frames to be downloaded into the FPGA although such frame is specified only
once in the bitstream. Other technique put in practice in some research work consists in
optimizing the partial bitstream size by removing superfluous information that is stored
into the bitstream due to the own specification of the bitstream format, for instance in
Xilinx FPGA devices [Sellers et al., FPL 2009].

2.4.2 Bitstream relocation

Modern FPGAs are composed of heterogenous resources. Most of these routing and logic
resources are symmetrically distributed along the device, although not all of them
maintain a rigorous symmetrical distribution. In this direction, apart from bitstream
compression, another technique intended to reduce storage space required by the
application relates to the bitstream homogenisation. In reconfigurable systems based on
more than one PRR, in order to save bitstream storage space, it can be convenient to use
one bitstream that can be located in different PRRs, without being constraint to only one
specific position due to the absolute resources addressing of the bitstream format,
avoiding thus the fact of having to store two copies of the same PR module in different
bitstreams addressing different locations inside the FPGA. Hence, a partial bitstream
stored in the repository can be placed in any of the PR regions available in the FPGA if
the bitstream addressing mechanism is modified to point to the specific PR region, what
is known as bitstream relocation. For this, it is necessary to attach to the reconfiguration
engine a bitstream relocation unit responsible for performing the corresponding
bitstreams modifications at run-time. Taking advantage of the symmetric distribution of
resources in the FPGA device, it is possible to perform the bitstream relocation among
identical regions on the FPGA by only changing the absolute address of the resources
where the bitstream shall be fitted. However, it is possible to perform this relocation also
among regions that are not identical if such non-identical resources are restricted to not
be used. This relocation involves knowing in detail the target FPGA bitstream structure
and implementing, in software or in hardware, the relocation unit. With this, every
functional bitstream is saved in the repository only once and it can be mapped in
different locations with a specific manipulation, eliminating redundant storage (on-chip
or off-chip) and providing additional flexibility by allowing the dynamic placement of a PR
module into any available PRR provided with the type and amount of resources required
by such bitstream. Due to its transcendental consequences, this issue has attracted big
interest among the scientific community since it can provide valuable flexibility to certain
application fields [Becker et al., FCCM 2007], [Marconi et al., SASP 2010]. As example,
bitstream relocation can be used to implement fault-tolerant systems able to relocate a
hardware IP module inside an SRAM-based FPGA in case some of its resources get
defective, placing the module in a new error-free area at run-time [Montminy et al., AHS

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 38

2007]. Other research topics linked to the bitstream relocation are the bitstream
defragmentation –related to the fact that sometimes a new functional task needs to be
downloaded into the reconfigurable device but such distributed partial bitstream does
not fit into the currently free resources of the device, requiring first the compactation and
rearranging of the current tasks allocated in the device to solve the placement conflicts–
or the online scheduling of tasks.

2.4.3 Bitstream security

Security concerns are of critical relevance today in embedded system design. SRAM-
based FPGA designs shall guarantee the data security between the bitstream repository –
typically external non-volative memory– and the FPGA itself since the device is
configured at each power-on-reset. In this direction, most of the FPGA vendors do not
reveal the bitstream format of their FPGA devices, just to put major difficulties to hacking
designs through reverse engineering. Although Xilinx has disclosed some details of the
bitstream format of its devices, other manufacturers like Altera does not disclose such
information, and Atmel only releases it under a signed non-disclosure agreement (NDA).
Although some SRAM-based FPGA devices include non-volatile memory inside, often this
memory is not large enough to store sufficient partial bitstreams required by the
application. Thus, in SRAM-based FPGA designs it is typical to find some external NVM
devices used as bitstreams repository and attached to the FPGA. In this case, it is
necessary to protect these bitstreams from external attacks aimed at protecting the
intellectual property of the design (anti-tamper) but also in order to prevent an attacker
from uploading a malicious design that could cause unintended functionality to the
system [Bossuet et al., IPDPS 2004]. Apart from the typical redundant information added
to the bitstream to guarantee its data integrity, e.g. by means of checksum, parity or
CRC added to the raw binary data, in certain devices such information is stored and
transferred to the FPGA device in an encrypted way. For this, the FPGA device is
equipped with a hardware cryptographic core that takes charge of decrypting the received
information before being downloaded to the hardware resources distributed along the
FPGA fabric, like in Xilinx Virtex-II devices. Bitstream encryption is a common alternative
applied by the FPGA manufacturers into all their more recent FPGA devices.

2.4.4 Configuration bootstrapping and multiple-boot

The configuration bootstrapping, also known as two-step configuration or prioritized
startup, is a technique oriented to reduce the startup time of an FPGA-based system as
much as possible by performing the configuration of the full FPGA device in two steps –
instead of using a single and monolithic full device configuration– where in an initial step
only the modules requiring fast availability are loaded to the device (boot-time critical
components) while finishing the configuration in a second non-time-critical step with
those boot-time tolerant components [Koch and Torresen, Dagstuhl 2010]. As FPGAs are
growing in size, their configuration data increase and such increment affects
proportionally to their full configuration time. In many applications, embedded systems
have to meet extremely tight timing constraints, especially in the startup time – that is,
the time it takes for the electronic system to be operative after power-up or wake-up. For
instance in the automotive domain, electronic control units (ECUs) powered by the
vehicle battery stay in low power mode when the vehicle is locked and parked –
minimizing thus the power consumption demanded to the battery to extend thus its
lifetime– but shall recover their activity when the driver approaches the vehicle and
unlocks the doors with the keyfob. In order, to allow FPGA devices to synthesize ECUs,
they shall meet the startup times required by the automotive applications [Meyer et al.,
Xcell 2011]. In these timing-critical scenarios, the strategy based on partial
reconfiguration consists in loading only the minimalist design at startup, and loading
afterwards, in a second shot after the startup, the non-time-critical modules. This

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 39

technique reduces the initial configuration data and thus minimizes the FPGA startup
time by splitting the design in two partial bitstreams [Sellers et al., FPL 2009]. With this
technique, it is possible to address the challenge of increasing configuration time in
modern FPGAs which otherwise would prevent the use of FPGAs in many applications
that require a fast startup process.
Apart from configuration bootstrapping, FPGAs easily support applications requiring the
ability to dynamically select from multiple FPGA configurations or design revisions,
referred to as multiple-boot. It is the process by which the FPGA selectively reprograms
and reloads its bitstream from an external memory. As use cases, the real-time system
upgrade of an FPGA design or the automatic recovery from any failure booting by loading
a golden FPGA image are real-world examples. One further example of an application
requiring multiple-boot is when the FPGA needs to support both diagnostic as well as
general functionality. In this case, the FPGA boots up using a diagnostics application to
perform board-level tests. If the tests are successful, then the FPGA triggers a
reconfiguration from a second bitstream containing the general functionality
configuration image needed for normal operation. The general FPGA application could be
designed to trigger a reconfiguration to reload the diagnostics application at any time as
needed. A particular approach of multiple-boot is the MultiBoot reconfiguration strategy
in Xilinx FPGA devices. This multiple boot approach can be implemented also in a
custom way in dynamically reconfigurable FPGA devices [Xilinx Inc., XAPP1100 2008].

2.4.5 Configuration overclocking

Another design aspect which can be researched to minimize the reconfiguration latency
of PR designs is to optimize the reconfiguration engine interface to achieve the maximum
reconfiguration bandwidth possible. For this, both the reconfiguration data bus and the
reconfiguration frequency shall be maximized. Concerning frequency, the reconfiguration
speeds currently available are somehow artificially limited by the FPGA vendors, while
the fabrication process technologies used for building the latest devices today are capable
of delivering much higher reconfiguration frequencies. An option which has been tested
by several research groups with valid results has consisted in running the
reconfiguration process at a higher speed than the one specified by the FPGA vendor in
the device datasheet [Shelburne et al., FPL 2008], [Claus et al., ARC 2010], [Duhem et
al., ARC 2011]. In all these cases, the reconfiguration engine was operated at higher
frequencies without observing either data transmission errors or reconfiguration errors.
This option allows increasing the reconfiguration throughput notoriosly.

2.4.6 Configuration caching

Many applications based on run-time reconfigurable hardware technology are
reconfigured frequently during execution time to exploit the full potential of
reconfigurable hardware. By reducing the overall reconfiguration overhead the
performance of the system can be improved. Configuration caching is a strategy oriented
to reduce the number of reconfigurations required in an SRAM-based FPGA system,
lowering thus the configuration overhead [Li et al., FCCM 2000]. Similar to the
instruction or data caching strategy used in microprocessor systems, caching
configurations on an FPGA allows retaining the configurations on fast volatile memory so
the amount of data that needs to be transferred from the system repository –typically
large and slower non-volatile memory– through a restricted data bandwidth channel to
the reconfiguration engine can be reduced. As its name suggests, the configuration
caching approach consists in storing in cache memory the configurations required by the
application at each moment in accordance with the tasks scheduling of the application.
This strategy is useful in those systems where, from an architectural viewpoint, the
reconfiguration bottleneck is found either in the data path between the FPGA
reconfiguration engine and the external repository or in the access time of such NVM.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 40

2.4.7 Configuration prefetching

Another technique inspired on reducing the reconfiguration latency is the configuration
prefetching. It consists in the process of loading a configuration before it is actually
required [Hauck, FPGA 1998]. By loading a configuration into the reconfigurable logic in
advance of when it is needed, it is possible to overlap the reconfiguration process with
the processing of functionality. In this way, the reconfiguration is hidden to the
application processing, without involving a time overhead to the application. For this, it
is required a tasks scheduler which determines when to download a new full or partial
bitstream (in multi-context devices or in partially reconfigurable FPGAs with several
PRRs, respectively) while the rest of the system keeps in operation. This feature, however,
is sometimes not feasible depending on the tasks scheduling of the application. Besides,
the fact of reconfiguring an FPGA region before it is required is only possible if such
region admits gaps of time where it is not operative.

2.4.8 Configuration scrubbing

Electronic devices are susceptible to the effects of high energy charged particles. These
particles, if provided with sufficient energy, can cause single-event upsets (SEUs),
altering the logic state of any static memory element (latch, flip-flop, or RAM cell).
Related to reliability measures against potential environmental conditions like SEUs
leading to failures in reconfigurable hardware devices, although these upsets are
unavoidable, there exist techniques that let correct them by means of mitigation
strategies. One of these techniques is the configuration scrubbing [Heiner et al., IEEEAC
2008]. It consists in refreshing the sensitive FPGA configuration memory by downloading
the full or partial bitstream into the region influenced by the interferences. Scrubbing
can be performed periodically to ensure that a single upset is present no longer than the
time it takes to refresh the FPGA configuration memory. If faults can be temporarily
accepted, it is sufficient to permanently overwrite the existing configuration (or parts of
it) while keeping the device in active operation mode. With this, the system ensures by
design that the data corruption will be present a time not longer that the reconfiguration
period used. Alternatively, the configuration bitstream may be read and compared to a
golden copy to perform the configuration refresh only when an error in the bitstream is
detected. However, there is a period of time between the moment the upset occurs and
the moment when it is repaired in which the FPGA configuration is incorrect, so the
design may not function correctly during that time. To completely mitigate the errors
caused by SEUs, scrubbing must be used in conjunction with another form of mitigation
which masks the faults in the bitstream. The most popular of these techniques is triple
module redundancy (TMR), which lets mask any single-bit fault in the configuration
bitstream. Combined with scrubbing, TMR can completely mask the effects of SEUs
[Heiner et al., FPL 2009]. These techniques improve the reliability of SRAM-based FPGAs
and enable their use in safety critical applications, typically aerospace applications.

2.4.9 Configuration scheduling

Reconfigurable computing systems, from the standpoint of the configuration scheduling
of their hardware processing tasks, can be classified into deterministic or non-
deterministic. In deterministic configurations, the allocations of hardware tasks in the
FPGA are pre-planned therefore the system knows at design time which context or PR
partition will be active deploying what functional task at each moment. This approach
corresponds to a static tasks scheduling of the entire application. On the other hand, in
non-deterministic configurations, the operating system performs the tasks scheduling
and manages the context switching or partial reconfiguration of partitions at run-time,
taking care also of the tasks floorplanning. A line of research is engaged in the design of
operating systems for reconfigurable embedded platforms. Although some work has been

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 41

published on such reconfigurable hardware operating systems able to dynamically load
and execute hardware tasks on the FPGA [Steiger et al., TC 2004], this powerful feature
is still far from being ready for professional use, incorporated into design tools in the
industry. Active research is however being carried out in this direction.

2.4.10 Online bitstream build

The ability to design a reconfigurable system able to self-construct its hardware context
at run-time is a goal of some research groups. In future, it is expected it will be possible
to use embedded algorithms for dynamic synthesis, mapping, placement and routing on
chip during run-time. That is, the system itself shall build the required partial bitstream
on-demand and self-download it instead of picking it up, already prebuild, from any data
repository. This feature would give maximum flexibility to the system, saving external
memory, adapting the shape of the PR partitions on the FPGA during run-time and, in
the end, moving closer to an ideal utilization of the configurable elements. However, this
requires the integration of the current FPGA generation tools (synthesis, floorplan, map,
placement and routing) inside the reconfigurable embedded system in order to build from
there the partial bitstreams demanded at each time. Thus, the embedded system should
integrate the typical toolset that the FPGA developer runs today in a PC platform, and
run it fast enough, for instance through an internal core processor, to make the
bitstream build to not penalize in excess over the application time. With this, the
embedded system would become autonomous, able to self-adapt and evolve by itself.
However, today this goal is still far since it would require run-time synthesis, typically
requiring very long processing time. A great advance in CAD tools is still necessary and
there are many restrictions and limitations to overcome in order to perform online
dynamic synthesis, mapping and placement. One first step toward that solution has been
developed by the University of Karlsruhe. A method for 2D reconfiguration is described
which consists in the run-time placement of pre-synthesized blocks which let compose
the hardware system, which requires online routing of interconnection signals or
communication primitives [Hübner et al., ISVLSI 2006]. This option of partial build
performed at run-time by means of fixed blocks that are connected by means of online
routing has been put in practice with success, although the reconfiguration time
increases notoriously due to the online routing processing performed on the on-chip
processor [Paulsson et al., FPL 2007]. In that approach, the implemented system is
developed under a Xilinx Virtex-II Pro FPGA. Another interesting approach is presented
in [Silva and Ferreira, JSA 2012]. It presents a method of generating partial bitstreams at
run-time for dynamic reconfiguration of sections of an FPGA. The proposed approach
combines partial bitstreams of coarse-grained components to produce a new partial
bitstream implementing a given circuit netlist. The desired partial bitstream is
constructed by merging together the default bitstream of the reconfigurable area, the
relocated partial bitstreams of the components, and the configurations of the switch
matrices used for routing. All this processing is performed by an embedded PowerPC 405
microprocessor clocked at 300 MHz.

2.4.11 Low power consumption target

Although the increased density and performance gained at each transistor
miniaturization step are valuable benefits, another pressing design consideration for
system developers is power consumption, which probably has become the hottest issue
today. Power consumption is composed of two terms: static power and dynamic power.
Static power is the power consumed by the FPGA when it is programmed but no clocks
are operating. The static power increases as the channel length decreases when process
geometries shrink. Therefore, at every generation, smaller silicon geometries result in
increased leakage currents resulting, a priori, in higher static power. On the other hand,
dynamic power is the portion of power consumed through the operation of the device

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 42

caused by toggling of transistors, affected basically by factors like the capacitance
charging, the supply voltage and the clock frequency. Although smaller process
geometries reduce parasitic capacitance of the transistors and allow for lower voltage
levels and shorter interconnect lengths, there are a greater number of transistors in the
chip that operate at higher frequencies, fact that makes to increase a priori the dynamic
power too. However, a large number of widely used technologies are applied each time
silicon technology is migrated to smaller geometries (40nm, 32nm, 28nm, 22nm) in order
to reduce total power in comparison to the previous technology [Lamoureux and Luk,
AHS 2008]. A big part of this work is conducted by the FPGA manufacturers: new
transistor technologies like High-K Metal Gate (HKMG) or new processes like the 28 nm
High-Performance Low-Power (28 HPL) help to reduce static power, i.e. leakage; other
techniques like advanced clock gating to reduce activity, dynamic voltage scaling, use of
lower K-dielectric to reduce the parasitic capacitance, increment of the LUTs size from 4-
inputs to 6-inputs to reduce the routing, the use of more integrated blocks instead of
soft-IPs, or the decrement of core supply voltage result in lower dynamic power
consumption. Further work is conducted by the FPGA developers: pipeline as a simple
way to reduce glitching, dynamic frequency scaling [Lorenz et al., FPL 2004], retiming or
even dynamic partial reconfiguration [Paulsson et al., DATE 2008] are some of the valid
methodologies used to minimize power consumption.

2.5 Summary

At present, the ever-increasing trend to add new and more complex functionality into
current embedded applications or products leads to an exponential growth of the
computational power demanded to such electronic systems, putting special pressure on
design aspects like cost, performance and time. In this context, reconfigurable computing
driven by run-time reconfigurable hardware emerged –just some decades ago through
SRAM-based FPGAs– as an alternative computing paradigm to implement embedded
applications based on a well proven technology today, qualified to improve valuable
implementation features like performance, scalability and versatility of electronic
systems, and promising furthermore speed-up factors and energy savings by up to
several orders of magnitude compared to classical software-based approaches mapped on
DSPs, MCUs, GPUs, or even in FPGA or SoC devices used as static hardware designs.
Dynamic reconfiguration vastly extends the application field of FPGA technology, due
basically to two main features: the increase of functional density –this allows the
emulation of a larger circuit using a smaller device– and the possibility to implement
autonomous self-adaptive circuits. The reconfiguration capability of modern SRAM-based
FPGAs lets execute a sequential application by partitioning it into multiple hardware
stages that are executed one after other (batch process), in a time-multiplexed way.
Furthermore, some parts of an active stage mapped in hardware resources can even be
reconfigured on the fly, just while others at the same moment continue operating
undisturbed, emphasizing the savings in cost and power consumption. These natural
features have motivated a lot of research effort on different aspects of run-time
reconfigurable systems. However, for this potential to materialize it is necessary both the
reconfigurable hardware technology and the effective way of exploiting it through
automatic tools defining an automated development process. Although there exist
advanced reconfigurable hardware devices, the availability of an efficient toolset has
become an issue since long time ago. Basically, the bitstream manipulation and
configuration techniques are most of the hot topics or open issues which are actively
researched by the scientific community. Even though there are still many restrictions
and limitations to overcome, in the last years it has been an important progress on all
these matters and today this technology can compete with other technological
alternatives in the industry.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 43

References

[Becker et al., FCCM 2007]
T. Becker, W. Luk, P.Y.K. Cheung, Enhancing relocatability of partial bitstreams for run-time
reconfiguration, Proc. of the International Symposium of Field-Programmable Custom Computing
Machines, pp. 35-44, 2007.

[Bittner and Athanas, FPGA 1997]
R. Bittner, P. Athanas, Wormhole run-time reconfiguration, Proceedings of the ACM International
Symposium on Field-Programmable Gate Arrays, pp. 1-8, 1997.

[Bossuet et al., IPDPS 2004]
L. Bossuet, G. Gogniat, W. Burleson, Dynamically configurable security for SRAM FPGA bitstreams,
Proceedings of the International Parallel and Distributed Processing Symposium, pp. 1-8, 2004.

[Claus et al., ARC 2010]
C. Claus, R. Ahmed, F. Altenried, W. Stechele, Towards rapid dynamic partial reconfiguration in video-
based driver assistance systems, Proceedings of the International Symposium on Applied Reconfigurable
Computing, LNCS, vol. 5992, pp. 55–67, Springer-Verlag, 2010.

[Compton and Hauck, ACM 2002]
K. Compton, S. Hauck, Reconfigurable computing: A survey of systems and software, ACM Computing
Surveys, vol. 34, no. 2, pp. 171-210, 2002.

[DeHon, FPGA 1996]
A. DeHon, DPGA utilitzation and application, Proceedings of the ACM International Symposium on Field-
Programmable Gate Arrays, pp. 1-7, 1996.

[Duhem et al., ARC 2011]
F. Duhem, F. Muller, P. Lorenzini, FaRM: Fast reconfiguration manager for reducing reconfiguration time
overhead on FPGA, International Symposium on Applied Reconfigurable Computing, LNCS, vol. 6578,
pp. 253-260, Springer-Verlag, 2011.

[Hadley and Hutchings, FCCM 1995]
J.D. Hadley, B.L. Hutchings, Design methodologies for partially reconfigured systems, Proceedings of the
IEEE Symposium on FPGAs form Custom Computing Machines, pp. 19-21, 1995

[Hauck, FPGA 1998]
S. Hauck, Configuration prefetch for single context reconfigurable coprocessors, Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 65-74, 1998.

[Heiner et al., FPL 2009]
J. Heiner, B. Sellers, M. Wirthlin, J. Kalb, FPGA partial reconfiguration via configuration scrubbing, Proc.
of the International Conference on Field Programmable Logic and Applications, pp. 99-104, 2009.

[Heiner et al., IEEEAC 2008]
J. Heiner, N. Collins, M. Wirthlin, Fault tolerant ICAP controller for high-reliable internal scrubbing,
Proceedings of the IEEE Aerospace Conference, pp. 1–10, 2008.

[Henkel and Parameswaran, Springer 2007]
J. Henkel, S. Parameswaran, Designing embedded processors - A low power perspective, Springer, ISBN
978-1-4020-5868-4, 2007.

[Hübner et al., ISVLSI 2006]
M. Hübner, C. Schuck, M. Kühnle, J. Becker, New 2-dimensional partial dynamic reconfiguration
techniques for real-time adaptive microelectronic circuits, Proceedings of the IEEE Symposium on
Emerging VLSI Technologies and Architectures, pp. 1-6, 2006.

[Huebner et al., IPDPS 2004]
M. Huebner, M. Ullmann, F. Weissel, J. Becker, Real-time configuration code decompression for dynamic
FPGA self-reconfiguration, Proc. Int. Parallel and Distributed Processing Symposium, pp. 1-6, 2004.

[Koch and Torresen, Dagstuhl 2010]
D. Koch, J. Torresen, Advances and trends in dynamic partial run-time reconfiguration, Dagstuhl
Seminar 10281: Dynamically Reconfigurable Architectures, Schloss Dagstuhl, 2010.

[Koch et al., TRETS 2009]
D. Koch, C. Beckhoff, J. Teich, Hardware decompression techniques for FPGA-based embedded systems,
ACM Transactions on Reconfigurable Technology and Systems, vol. 2, no. 2, pp. 9.1-9.23, 2009.

[Lamoureux and Luk, AHS 2008]
J. Lamoureux, W. Luk, An overview of low-power techniques for field-programmable gate arrays,
Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems, pp.338-345, 2008.

[Li et al., FCCM 2000]
Z. Li, K. Compton, S. Hauck, Configuration caching management techniques for reconfigurable computing,
IEEE Symposium on FPGAs for Custom Computing Machines, pp. 22-36, 2000.

[Lorenz et al., FPL 2004]
M.G. Lorenz, L. Mengibar, M.G. Valderas, L. Entrena, Power consumption reduction through dynamic
reconfiguration, Proceedings of the International Conference on Field Programmable Logic and
Applications, LNCS, vol. 3203, pp. 751-760, Springer-Verlag, 2004.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 44

[Lysaght, FPL 1997]
P. Lysaght, Towards an expert system for a priori estimation of reconfiguration latency in dynamically
reconfigurable logic, Proceedings of the International Conference on Field Programmable Logic and
Applications, LNCS, vol. 1304, pp. 183-192, Springer, 1997.

[Marconi et al., SASP 2010]
T. Marconi, J. Young Hur, K. Bertels, G. Gaydadjiev, A novel configuration circuit architecture to speedup
reconfiguration and relocation for partially reconfigurable devices, Proceedings of the IEEE Symposium on
Application Specific Processors, pp. 87-92, 2010.

[Meyer et al., Xcell 2011]
J. Meyer, J. Noguera, R. Stewart, M. Hübner, J. Becker, Fast startup for Xilinx FPGAs, Xcell Journal,
issue 75, pp. 18-23, Xilinx Inc., Second Quarter 2011.

[Montminy et al., AHS 2007]
D.P. Montminy, R.O. Baldwin, P.D. Williams, B.E. Mullins, Using relocatable bitstreams for fault
tolerance, Proc. of the NASA/ESA Conference on Adaptive Hardware and Systems, pp. 701-708, 2007.

[Nabina and Nuñez-Yañez, FPL 2010]
A. Nabina, J.L. Nuñez-Yañez, Dynamic reconfiguration optimisation with streaming data decompression,
Proc. of the International Conference on Field-Programmable Logic and Applications, pp. 602-607, 2010.

[Nurmi, Springer 2007]
J. Nurmi, Processor design – System-on-Chip computing for ASICs and FPGAs, Springer, ISBN 978-1-
4020-5529-4, 2007.

[Paulsson et al., DATE 2008]
K. Paulsson, M. Hübner, J. Becker, Cost-and power optimized FPGA based system integration:
methodologies and integration of a low-power capacity-based measurement application on Xilinx FPGAs,
Proceedings of the Conference on Design, Automation and Test in Europe, pp. 50-55, 2008.

[Paulsson et al., FPL 2007]
K. Paulsson, M. Hübner, J. Becker, J.M. Philippe, C. Gamrat, On-line routing of reconfigurable functions
for future self-adaptive systems – investigations within Æther project, Proceedings of the International
Conference on Field-Programmable Logic and Applications, pp. 415-422, 2007.

[Schmit, FCCM 1997]
H. Schmit, Incremental reconfiguration for pipelined applications, Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 47-55, 1997.

[Sellers et al., FPL 2009]
B. Sellers, J. Heiner, M. Wirthlin, J. Kalb, Bitstream compression through frame removal and partial
reconfiguration, Proc. of the Int. Conf. on Field Programmable Logic and Applications, pp. 476-480,
2009.

[Shelburne et al., FPL 2008]
M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin, R. Fong, MetaWire: using FPGA
configuration circuitry to emulate a network-on-chip, Proceedings of the International Conference on Field
Programmable Logic and Applications, pp. 257–262, 2008.

[Shoa and Shirani, VLSI 2005]
A. Shoa, S. Shirani, Run-time reconfigurable systems for digital signal processing applications: A survey,
Journal of VLSI Signal Processing, vol. 39, no. 3, pp. 213-235, Springer, 2005.

[Silva and Ferreira, JSA 2012]
M.L. Silva, J.C. Ferreira, Run-time generation of partial FPGA configurations, Journal of Systems
Architecture, vol. 58, no. 1, pp. 24–37, Elsevier, 2012.

[Stefan and Cotofana, FPL 2008]
R. Stefan, S.D. Cotofana, Bitstream compression techniques for Virtex 4 FPGAs, Proceedings of the
International Conference on Field Programmable Logic and Applications, pp. 323-328, 2008.

[Steiger et al., TC 2004]
C. Steiger, H. Walder, M. Platzner, Operating systems for reconfigurable embedded platforms: Online
scheduling of real-time tasks, IEEE Transactions on Computers, vol. 53, no. 11, pp. 1393-1407, 2004.

[Wirthlin and Hutchings, TVLSI 1998]
M.J. Wirthlin, B.L. Hutchings, Improving functional density using run-time circuit reconfiguration, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 6, no. 2, pp. 247-256, 1998.

[Xilinx Inc., XAPP1100 2008]
J. Hussein, R. Patel, MultiBoot with Virtex-5 FPGAs and Platform Flash XL, Xilinx Inc., Application Note
XAPP1100 (v1.0), 2008.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 45

Chapter 3

Research and deployment

This chapter presents the last advances in different aspects of research, design,
development and deployment of run-time reconfigurable hardware technology. Many
indicators objectively highlight the growing interest in this technology not only by the
academic research community but also by the industry. Apart from parameters already
considered in chapter one like symposiums, conferences and journals focused on this
field, further measurables like funded research projects, related patents under
exploitation, research groups specialized in reconfigurable computing, PhD dissertations
intimely linked to these matters, or commercial and academic programmable logic
platforms based on this technology are new criteria chosen in this chapter to evaluate
the state of health of run-time reconfigurable hardware technology today.

3.1 Related academic and industrial advances

Run-time reconfigurable hardware is an emerging technology with more and more
supporters. This trend has been especially accentuated in the last decade, where
computing systems driven by this technology are becoming commonplace in embedded
applications and point out some clear advantages over traditional electronic systems.

3.1.1 Research projects

In the last years, there has been a clear explosion of interest in run-time reconfigurable
hardware technology. Relevant efforts have been addressed by several research teams
around many aspects of this computational field. One clear measurable of the big
importance acquired is the growing number of international projects supported typically
by public institutions, like the European Defence Agency or the European Commission
with its Framework Programmes, to carry out research on subjects of strategic interest,
with a clear benefit for the knowledge based society. As example, over the past years, the
European Commission has constantly increased the amount of funding going to research
in computing architectures and tools through its research programme in Information and
Communication Technologies (ICT) –formely Information Society Technologies (IST)– with
the objective of improving the competitiveness of the European industry. In this context,
a large number of research projects have been conducted in the area of reconfigurable
computing [Cardoso and Hübner, Springer 2011]. Some of the most relevant projects
turning around reconfigurable computing are enumerated next.

A. RECONF 2

RECONF 2 (design methodology and environment for dynamic reconfigurable FPGA) is a
project of the European Community placed inside the Fifth Framework Programme (EU-
FP5 IST 34016). It emerges with the aim of helping in reducing the lack of CAD/EDA
activity in Europe and participating in the effort of standardization to give large
companies and SMEs the opportunity to develop new, complex and high performance
applications based on partial reconfiguration technology. The RECONF 2 project focuses
on developing a complete design environment to take full benefits of dynamic
reconfigurable FPGAs, chosing the Atmel AT94K commercial devices as use case. The
deliverables of the project are a new design methodology along with the front and back
end tools, validated through three complementary industrial experiments like space,
multimedia and aeronautic. The set of tools and associated methodologies developed
accomplish the automatic or manual partitioning of a conventional design, thee

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 46

specification of the dynamic constraints, the verification of the dynamic implementation
through dynamic simulations in all steps of the design flow, the automatic generation of
the configuration controller core for VHDL or C implementations and the dynamic
floorplanning management and guidelines for modular back-end implementation.

B. ADRIATIC

ADRIATIC (advanced methodology for designing reconfigurable SoC and application-
targeted IP-entities in wireless communications) is a cooperative R&D project funded by
the European Commission's Information Society Technologies initiative under the Fifth
Framework Programme. The ADRIATIC project brings together providers of CAD tools
and wireless communications technology with manufacturers of wireless communication
ICs to develop an advanced high-level hardware/software co-design and co-verification
methodology, along with tools, for reconfigurable SoCs specifically oriented to wireless
applications. The main objective of the project is the development of a technology-
independent methodology oriented to the flexible re-use of SoC resources to address
problems related to cost and power consumption, aimed at being thus commercially and
technically viable. This methodology is then validated through the implementation of two
reconfigurable processors –a reconfigurable video processor for wireless terminals
(HIPERLAN/2 broadband) and a wireless communication baseband processor– which
execute the critical part of the protocol stack (medium access control and link layers).

C. AMDREL

The main objective of the AMDREL (architectures and methodologies for dynamic
reconfigurable logic) project, funded by the Information Society Technologies initiative
under the Fifth Framework Programme (EU-FP5 IST 34379), is to develop methodologies,
tools and reusable IP blocks to be integrated in a mixed granularity dynamically
reconfigurable SoC platform for the efficient realization of wireless communications
systems, including critical parts of a wireless LAN system (e.g. IEEE 802.11a) and a
multimedia processor for wireless terminals. This project contributes to increase the
competitiveness of telecom manufacturers mainly in the domain of wireless
communications, helping in consolidating the position of Europe in this specific domain.
The major improvements concern the reduced design time and time-to-market of systems
in the target application domain, and the improved balance between flexibility,
performance, energy and area in comparison to traditional implementation platforms.

D. MORPHEUS

The goal of the MORPHEUS (multi-purpose dynamically reconfigurable platform for
intensive heterogeneous processing) project, supported under the Sixth Framework
Programme of the European Community (EU-FP6 IST 027342), is to develop new
heterogeneous reconfigurable SoCs with various sizes of reconfiguration granularity and
to provide an integrated toolset of spatial and sequential design for mapping target
applications, especially in four domains like broadband wireless access, network routing,
professional video and homeland security. MORPHEUS copes with the challenges of
rising complexity and the enlarging design productivity gap by developing a global
solution based on a modular heterogeneous SoC platform which combines multiple
reconfigurable components together with an ARM processor, as well as deploying the
appropriate toolchain to make this technology usable at a wide industrial level and
contribute thus to reach a cost-effective solution for building embedded systems.

E. 4S

The overall mission of the 4S (smart chips for smart surroundings) project, funded by the
Sixth European Framework Programe, is to define and develop efficient (ultra low-power),
flexible, reconfigurable core building blocks for future ambient systems, including their

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 47

supporting tools. Ambient systems, also known as ubiquitous computing, are networked
embedded systems wirelessly integrated with everyday environments and supporting
people in their activities. These systems create a smart surrounding for people to
facilitate and enrich daily life and increase productivity at work. The aim is to establish
Europe as the dominant player in the field of efficient reconfigurable architectures for
ambient devices. The 4S consortium proposes a heterogeneous multi-tile hardware
architecture with operating software and tools that allows to dynamically assigning
applications and sub-tasks to the “best fit” architecture. The heterogeneous
reconfigurable SoC proposed consists of bit-level reconfigurable tiles (e.g. embedded
FPGAs), word-level reconfigurable tiles and general-purpose programmable tiles (DSPs
and microprocessors), where all these tiles are interconnected by a suitable NoC.

F. ANDRES

ANDRES (analysis and design of run-time reconfigurable, heterogenous systems) is a
specific research project co-funded by the Sixth Framework Programme. Leading
European companies providing application know-how and research institutes with
outstanding experience in modelling and synthesis of embedded systems joined hands in
the ANDRES consortium to develop industrially applicable solutions based on run-time
reconfigurable hardware. The high-level objective of the project is to improve the
competitiveness of innovative European industries such as the telecommunication and
automotive by providing means to efficiently use and exploit adaptivity in embedded
system design. ANDRES focuses its attention in developing a seamless integrated design
flow for adaptive heterogeneous embedded systems. It covers the full degree of adaptivity,
from setting a few parameters up to reconfiguring the whole programmable logic device.
This approach is driven by SystemC to model a given reconfigurable area as an adaptive
object with a fixed interface and make use of polymorphism.

G. AETHER

Under the Sixth Framework Programe, the AETHER (self-adaptive embedded technologies
for pervasive computing architectures) project aims to tackle the issues related to the
performance and technological scalability, increased complexity and programmability of
future embedded computing architectures by introducing technologies for the self-
management, self-tuning and self-adaptation of systems. The AETHER project focuses on
managing the complexity of such systems and designing self-adaptive architectures able
to include a high number of networking computing resources to execute a wide spectrum
of complex algorithms with power constraints. For this, it is introduced a basic
computing entity called Self-Adaptive Networked Entity (SANE) able to change its
behavior to react to changes in its environment and which is networked with other SANE
entities to form complete systems. Through the SANE-based hardware architecture, the
AETHER consortium approaches the design of self-adaptive systems that make run-time
decisions based on current requirements of the application and investigates how
monitoring and online routing can be evaluated on reconfigurable FPGAs.

H. RECOPS

The RECOPS (reconfiguring programmable devices for military hardware electronics)
project is a contract from the European Defence Agency funded by the National
Ministries of Defence of the participating countries Belgium, France and Italy, involving
partners distributed in the military industry and some research centres. The project aims
to study the use of reconfiguration in modern military applications, as well as identifying
requirements, techniques, methodologies and opportunities to use dynamic
reconfiguration. Military applications are far from the usual consumer electronics
applications sold in high volume. The lifetime of a military product is longer than
consumer electronics, reaching often several decades. In addition, military applications

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 48

have a high level of reliability and security and they need further validation, test or
certification. Furthermore, they need to have a high level of flexibility to be able to adapt
to environment changes in real-time during a mission. This high level of flexibility is also
one of the best ways to cope with the long life cycle. In this scope, the RECOPS project is
highly application oriented and it uses several demonstrators based on Xilinx Virtex-4
FPGA platforms to evaluate the reconfiguration technology through real experiments.

I. HARTES

The hArtes (holistic approach to reconfigurable real-time embedded systems) project is
supported by Sixth Framework Programme (EU-FP6 IST 035143) and addresses the
optimal and rapid design of embedded systems from high-level descriptions, targeting a
combination of embedded processors, digital signal processing and reconfigurable
hardware. It aims to lay the foundation for a new holistic approach for complex real-time
embedded system design, with the latest algorithm exploration tools and reconfigurable
hardware technologies. The tools and methodologies developed in hArtes are applied to
real world multimedia applications. The complexity of future multimedia devices is
becoming too big to design monolithic processing platforms and this is where the hArtes
approach with reconfigurable heterogeneous systems becomes vital. All these concepts
are deployed on modular and scalable hardware platforms that can be reused and re-
targeted by the tool chain to produce optimized embedded products.

J. CRISP

CRISP, acronym for cutting edge reconfigurable ICs for stream processing, is a project co-
funded by the Seventh Framework Programme of the European Union (EU-FP7 ICT
215881) and performed by an adept consortium of companies and universities which
aims at developing a single highly scalable reconfigurable many-core system architecture
concept with dynamic resource management usable for a wide range of streaming
applications, from low-cost consumer applications to very demanding specialty
applications. The CRISP project partners developed a self-testing, self-repairing nine-core
chip showing new concepts for run-time resource management to attain the goal of self-
repairing: the chip tests cores and connections while in operation and a resource
manager dynamically assigns the chip’s tasks to fault-free parts. Thus, it strives to take
advantage of the huge processing power of many-cores and creates a much-desired
flexibility to adapt to new tasks and standards during the functional life of the chip.

K. ERA

ERA (embedded reconfigurable architectures) is a funded project of the European
Commission’s Seventh Framework Programme. It aims at investigating and developing
new methodologies in both tools and hardware designs to break through current power
and memory walls for the next-generation embedded systems. The proposed strategy is
to utilize adaptive hardware to provide the highest possible performance for given power
budgets. The following main objectives are identified: to define and develop a dynamically
reconfigurable integrated platform composed of a parameterized VLIW processor, a
reconfigurable NoC, and a memory subsystem able to perform flexible and fast
reconfiguration of the platform; to provide the needed hardware monitoring and OS
support to efficiently control the hardware reconfiguration; to benchmark existing
applications in the area of mobile processing to extract a set of measurable parameters to
which react by reconfiguring the hardware in case of online application changes.

L. REFLECT

REFLECT (rendering FPGAs to multi-core embedded computing) is a project funded under
the Seventh Framework Programme (EU-FP7 ICT 248976) aimed at developing a novel
compilation and synthesis system approach for FPGA-based platforms. The REFLECT

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 49

approach intends to solve some of the problems when mapping efficiently computations
to FPGA systems. The proposed design flow conducts a systematic control of all the
compilation stages and considers the relationship between non-functional requirements
to different design patterns and optimizations. The project leverages aspect-oriented
specifications and a set of transformations to generate an intermediate representation
using an extensible mapping language named LARA. Like this, LARA specifications shall
allow the exploration of alternative architectures and run-time adaptive strategies
enabling the generation of flexible hardware cores that can be easily incorporated into
larger multicore designs. The effectiveness of the proposed approach will be evaluated in
the domain of audio/video processing and real-time avionics.

Table 3.1 Research projects oriented to run-time reconfigurable hardware technology

ACRONYM

FULL PROJECT NAME

RESEARCH AREA

RECONF2 Design methodology and environment for dynamic reconfigurable FPGA Methods and tools

ADRIATIC
Advanced methodology for designing reconfigurable SoC and application-
targeted IP-entities in wireless communications
http://www.imec.be/adriatic/

Methods and tools
Apps (wireless communications)

AMDREL architectures and methodologies for dynamic reconfigurable logic
Methods and tools
Apps (wireless communications)

MORPHEUS
Multi-purpose dynamically reconfigurable platform for intensive heterogeneous
processing

Devices
Methods and tools
Apps (wireless, network, video & homeland security)

4S Smart chips for smart surroundings
Devices
Methods and tools
Apps (ubiquitous computing)

ANDRES
Analysis and design of run-time reconfigurable, heterogenous systems
http://andres.offis.de/

Methods and tools
Apps (telecom and automotive)

AETHER
Self-adaptive embedded technologies for pervasive computing architectures
http://www.aether-ist.org/

Devices
Design flow and tools

RECOPS Reconfiguring programmable devices for military hardware electronics Apps (military)

HARTES
Holistic approach to reconfigurable real-time embedded systems
http://hartes.org/hArtes/

Design flow and tools
Apps (multimedia)

CRISP
Cutting edge reconfigurable ICs for stream processing
http://www.crisp-project.eu/

Devices
Design flow and tools
Apps (streaming)

ERA
Embedded reconfigurable architectures
http://www.era-project.eu/

Devices
Design flow and tools
Apps (mobile processing)

REFLECT

Rendering FPGAs to multi-core embedded computing
http://www.reflect-project.eu/

Design flow and tools

Table 3.1 summarizes the scope of all these projects according to their orientation to
design flow and tools, devices or application cases. As observed, the research community
is aware of the big importance of automatic tools as enablers of this technology.

3.1.2 Patents

Several FPGA vendors like Atmel Corp. and Xilinx Inc. have patented their research on
partial reconfiguration in the last decade. Apart from patents under exploitation directly
related to technology or devices, other patents have been registered addressing the
exploitation of such technology in specific application fields like automotive (e.g.
DaimlerChryster AG), consumer and embedded processing (e.g. RMT Inc.), portable
devices (e.g. IMEC), high-performance computing (e.g. oriented to solving an specific
problem like searching regular expressions by Microsoft Corporation) or cryptography
(e.g. Advanced Communication Concepts, Inc.). All these patents are listed in Table 3.2.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 50

Table 3.2 Patents based on reconfigurable hardware technology

PATENT INVENTORS COMPANY TITLE PRIORITY

PCT/US2000/41889 D. McConnell, et al. Atmel Corp.
Method for implementing a physical design for a
dynamically reconfigurable logic circuit

14.12.1999

PCT/US2000/014257 M.T. Mason, et al. Atmel Corp.
Software tool to allow field programmable system level
devices

16.07.1999

PCT/US2003/039610 D.R. Curd, et al. Xilinx Inc.
Reconfiguration of the programmable logic of an integrated
circuit

13.12.2002

PCT/US2005/012564 V. Mantra Vadi, et al. Xilinx Inc. Dynamic reconfiguration 30.04.2004

PCT/US2001/22120 S.P. Young & T.J. Bauer Xilinx Inc. Architecture and method for partially reconfiguring an FPGA 25.07.2000

PCT/EP2006/001578 J. Becker, et al. DaimlerChryster AG Control device with configurable hardware modules 04.03.2005

US7607005 S. Lewis RMT Inc. Virtual hardware system with universal ports using FPGA 22.12.2004

PCT/US2010/039271 K.H. Eguro and A. Forin Microsoft Corp.
Searching regular expressions with virtualized massively
parallel programmable hardware

19.06.2009

US 2007/0255941

J.W. Ellis

Advanced Comms.
Concepts, Inc.

Method and system for securing data utilizing
reconfigurable logic

18.04.2006

US 2004/0049672 V. Nollet, et al. IMEC
System and method for hardware-software multitasking on
a reconfigurable computing platform

02.06.2003

3.1.3 Research groups

A large group of scientists and researchers firmly believe that run-time reconfiguration
can greatly improve the cost-time performance over other technological alternatives in a
wide variety of embedded applications. In fact, a lot of research in this domain has been
carried out during the last decades, particularly at universities, and an extensive set of
these applications has been already proved in physical designs achieving impressive
results. Many research groups are in these days actively working on the field of
reconfigurable computing. Some of them are listed in Table 3.3 as a quick reference.

Table 3.3 Reconfigurable computing research groups

RESEARCH GROUP

LOCATION / URL RESEARCHERS

Adaptive Computing Machines and Emulators
(ACME) Laboratory

University of Washington, USA
http://ee.washington.edu/faculty/hauck/acme.html

S. Hauck

Advanced Hardware Architectures (AHA) Group
Universitat Politècnica de Catalunya (UPC), Spain
http://www-eel.upc.es/aha/

J.M. Moreno
J. Cabestany

Berkeley Reconfigurable Architectures,
Systems & Software (BRASS) Research Group

Berkeley - University of California, USA
http://brass.cs.berkeley.edu/

J. Wawrzynek
A. DeHon

Cellular Architectures Research Group (CARG)
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
http://carg.epfl.ch/

G. Tempesti

Circuits and Systems Group
Imperial College, UK
http://www3.imperial.ac.uk/circuitssystems

P.Y.K. Cheung
G. Constantinides

Computer Architecture and Logic Design
(ARCO) Group

Universidad de Extremadura, Spain
http://arco.unex.es/

M.A. Vega
J.A. Gómez Pulido

Computer Architecture for Embedded Systems
(CAES) Group

University of Twente, The Netherlands
http://caes.cs.utwente.nl/

G.J.M. Smit

Computer Engineering
University of Wisconsin-Madison, USA
http://www.engr.wisc.edu/ece/research/comp.eng.html

K. Compton

Computer Engineering
University of Southern California (USC), USA
http://ceng.usc.edu/

V.K. Prasanna

Computer Engineering Group
University of Paderborn, Germany
http://www.cs.uni-paderborn.de/fachgebiete/computer-engineering-group.html

M. Platzner

Computer Engineering Laboratory
Delft University of Technology, The Netherlands
http://ce.et.tudelft.nl/

K.L.M. Bertels
S. Dan Cotofana

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 51

Table 3.3 Reconfigurable computing research groups (cont'd)

RESEARCH GROUP

LOCATION / URL RESEARCHERS

Computer Engineering Research Group
University of Toronto
http://www.eecg.utoronto.ca/

J. Rose

Configurable Computing Lab
Virginia Tech Department of Electrical and Computer Engineering, USA
http://www.ccm.ece.vt.edu/

P. Athanas
C. Patterson

Configurable Computing Laboratory
Brigham Young University (BYU), USA
http://splish.ee.byu.edu/

B.L. Hutchings
B. Nelson

Custom Computing Research Group
Imperial College, UK
http://cc.doc.ic.ac.uk/

W. Luk

Development of Embedded Systems (DES)
Research Group

Universitat Rovira i Virgili (URV), Spain
http://sauron.etse.urv.es/DEEEA/cat/recerca/grups.htm

J.P. Deschamps
E. Cantó

High Performance Computing and Networking
Group

Universidad Autónoma de Madrid (UAM), Spain
http://www.hpcn.es/

G. Sutter
I. Gonzalez

DSP and Communications
System-on-Chip Research Group

Tampere University of Technology, Finland
http://www.cs.tut.fi/~nurmi/group.html

J. Nurmi

Dynamically Reconfigurable Hardware Group
(GHADIR)

Universidad Complutense de Madrid (UCM), Spain
http://www.ucm.es/info/ghadir/

J. Septién
H. Mecha

Electronic Systems Design and Automation
(ESDA) Research Group

INESC-ID, Portugal
http://esda.inesc-id.pt/

P.C. Diniz
H.C. Neto

Embedded and Reconfigurable Lab
(ER Lab)

University of California at Los Angeles (UCLA), USA
http://er.cs.ucla.edu/

M. Sarrafzadeh

Embedded Systems and Biometric Identification
Group

Univertitat Politècnica de Catalunya (UPC), Spain
http://petrus.upc.es/emsy/

M. López
E. Cantó

Embedded Systems Group
Microsoft Research Redmond, USA
http://research.microsoft.com/en-us/groups/embeddedsystems/

A. Forin
N. Pittman

Embedded System Security Group
University of Masachusetts, USA
http://vcsg.ecs.umass.edu/essg/

R. Tessier
W. Burleson

Grupo de Diseño HW-SW
Universidad Rey Juan Carlos (URJC), Spain
http://www.gdhwsw.urjc.es/

J.I. Martínez
J. Castillo

High Performance Computing Lab
George Washinton University (GWU), USA
http://hpcl2.hpcl.gwu.edu/

T. El-Ghazawi

High-Performance Computing & Simulation
Research Laboratory

University of Florida, USA
http://www.hcs.ufl.edu/

A.D. George

Embedded Electronic Systems Group
Karlsruher Institut für Technologie (KIT)

University of Karlsruhe, Germany
http://www.itiv.uni-karlsruhe.de/

J. Becker
M. Hübner

Laboratoire d'Informatique, de Robotique et de
Microélectronique de Montpellier (LIRMM)

University of Montpellier II, France
Centre National de la Recherche Scientifique, France
http://www.lirmm.fr/

L. Torres

Lab-STICC
Université de Bretagne Sud, France
http://recherche.telecom-bretagne.eu/lab-sticc/

J.P. Diguet
G. Gogniat

Lehrstuhl für integrierte Systeme (LIS)
Technische Universität München (TUM), Germany
http://www.lis.ei.tum.de

W. Stechele

NSF Center for High-Performance
Reconfigurable Computing (CHREC)

USA national industry/university research consortium (University of Florida,
Brigham Young University, George Washington University, Virginia Tech,
NASA, Altera, Xilinx, AMD, HP, NI, Sandia National Laboratories, etc)
http://www.chrec.org/

A.D. George
B. Nelson
T. El-Ghazawi
P. Athanas

Reconfigurable Computing Lab (RCL)
Simon Fraser University, Canada
http://www2.ensc.sfu.ca/~lshannon/rcl/index.html

Lesley Shannon

Reconfigurable Digital Systems Group (RDSG)
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
http://rdsg.epfl.ch/

E. Sánchez

Reconfigurable Network Group
Washington University in St. Louis, USA
http://www.arl.wustl.edu/projects/fpx/reconfig.htm

J.W. Lockwood

Robotics and Intelligent Systems (ROBIN)
University of Oslo, Norway
http://www.ifi.uio.no/research/groups/robin/

J. Tørresen
D. Koch

Self-Organizing Embedded
Systems (SOES) Research Group

University of Kaiserslautern, Germany
http://soes.informatik.uni-kl.de/

C. Bobda

Signal Processing Department
Institute of Information Theory and Automation (UTIA), Czech Republic
http://zs.utia.cas.cz/

J. Kadlec
M. Daněk

System Architectures Group
Politecnico di Milano
http://sagroup.ws.dei.polimi.it/

M.D. Santambrogio
D. Sciuto

VLSI Design and Embedded Systems Group
Surrey Space Centre, University of Surrey, England
http://www.ee.surrey.ac.uk/SSC/research/vlsi

T. Vladimirova

Xilinx Research Labs
Xilinx, USA and Ireland
http://www.xilinx.com/

P. Lysaght
B. Blodget

Xputer Laboratory
University of Kaiserslautern, Germany
http://xputers.informatik.uni-kl.de/

R.W. Hartenstein

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 52

3.1.4 PhD dissertations

Another indicator of the increasing interest in run-time reconfigurable hardware
technology is the number of PhD dissertations focused on related topics like:
reconfigurable computing techniques and methods (Mthd); modelling, design flow and
automation tools (Tool); system architectures (Arch); and killer applications (App), e.g.
software defined radio, bio-inspired systems, nuclear and particle physics, etc.

Table 3.4 PhD dissertations related to reconfigurable computing

AUTHOR

PhD DISSERTATION

AREA

UNIVERSITY

YEAR

M.J. Wirthlin Improving functional density through run-time circuit reconfiguration Mthd Brigham Young University 1997

E.F. Cantó Navarro Temporal bipartitioning techniques for multi-context FPGAs Mthd
Universitat Politècnica
Catalunya

2001

J.M. Faura Enríquez
Diseño e implementación de arquitecturas dinámicamente
reconfigurables basadas en microprocesador

Mthd Universidad Autónoma Madrid 2001

K. Leigh Compton Architecture generation of customized reconfigurable hardware Mthd Northwestern University 2003

J.J. Noguera Serra
Energy-efficient hardware/software co-design for dynamically
reconfigurable architectures

Mthd
Universitat Politècnica
Catalunya

2005

U. Malik Configuration encoding techniques for fast FPGA reconfiguration Mthd University of New South Wales 2006

S. Douglas Craven Structured approach to dynamic computing application development Mthd
Virginia Polytechnic Institute
and State University

2008

Y. Esteves Krasteva
Reconfigurable computing based on commercial FPGAs. Solutions for
the design and implementation of partially reconfigurable systems

Mthd Universidad Politécnica Madrid 2009

J. Tabero Godino
Técnicas de ubicación de tareas y defragmentación para multiárea
hardware en sistemas dinámicamente reconfigurables

Mthd
Universidad Complutense
Madrid

2010

E. Moscu Panainte The Molen compiler for reconfigurable architectures Tool Technische Universiteit Delft 2007

D. Koch
Architectures, methods, and tools for distributed run-time
reconfigurable FPGA-based systems

Tool Universität Erlangen-Nürnberg 2009

I. Rafiq Quadri
MARTE based model driven design methodology for targeting
dynamically reconfigurable FPGA based SoCs

Tool
Université des Sciences et
Technologies de Lille

2010

M. Rullmann
Models, design methods and tools for improved partial dynamic
reconfiguration

Tool
Technischen Universität
Dresden

2010

A. Schallenberg
Dynamic partial self-reconfiguration: quick modeling, simulation, and
synthesis

Tool
Von der Carl von Ossietzky
Universität Oldenburg

2010

N. Abel
Design and implementation of an object-oriented framework for
dynamic partial reconfiguration

Tool Universität Heidelberg 2010

J.A. Clemente Barreira
Scheduling techniques in reconfigurable environments for multimedia
applications

Tool
Universidad Complutense
Madrid

2011

A. Astarloa
Reconfiguración dinámica de sistemas modulares multi-procesador
en dispositivos SoPC

Arch Euskal Herriko Unibertsitatea 2005

N. Peter Sedcole
Reconfigurable platform-based design in FPGAs for video image
processing

Arch
Imperial College of Science,
Technology and Medicine,
University of London

2006

M. Hübner
Dynamisch und partiell rekonfigurierbare hardware-systemarchitektur
mit echtzeitfähiger on-demand-funktionalität

Arch
Karlsruher Institut für
Technologie

2007

M. Majer
The Erlangen Slot Machine – An FPGA-based partially reconfigurable
computer

Arch Universität Erlangen-Nürnberg 2011

A.M. Alsolaim
Dynamically reconfigurable architecture for third generation mobile
systems

App Ohio University 2002

Y. Thoma Tissu numérique cellulaire à routage et configuratioin dynamiques App
École Polytechnique Fédérale
Lausanne

2005

I. González Martínez
Coprocesadores dinámicamente reconfigurables en sistemas
embebidos basados en FPGAs

App Universidad Autónoma Madrid 2006

A.E. Upegui Posada Dynamically reconfigurable bio-inspired hardware App
École Polytechnique Fédérale
Lausanne

2006

J.P. Delahaye Plate-forme hétérogène reconfigurable: application à la radio logicielle App Université de Rennes I 2007

T. Kuwahara
FPGA-based reconfigurable on-board computing systems for space
applications

App Universität Stuttgart 2009

O. Sander
Skalierbare adaptive system-on-chip-architekturen für inter-car und
intra-car kommunikationsgateways

App
Karlsruher Institut für
Technologie

2009

C.S. Claus
Zum Einsatz dynamisch rekonfigurierbarer eingebetteter Systeme in
der Bildverarbeitung

App
Technische Universität
München

2010

M. Liu Adaptive Computing based on FPGA Run-time Reconfigurability App
Royal Institute of Technology
Stockholm

2011

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 53

3.2 Reconfigurable hardware devices

Next, it is presented the state-of-the-art about commercial and research devices that
exploit reconfigurable computing technology. The list of devices is split in two categories:
commercial/industrial devices and academic/research platforms.

3.2.1 Commercial and industrial FPGAs and SoCs

Nowadays, programmable logic is one of the fastest growing segments of the entire
semiconductor market. The programmable logic industry is controlled today by several
established FPGA vendors, mainly Xilinx, Altera, Actel/Microsemi, Lattice and Atmel.
Besides, some coarse-grained devices from other companies like PACT XPP Technologies
or Recore Systems are commercially available. Although there are several programmable
logic manufacturers distributing their products, only few of these devices present in the
market support run-time reconfigurable computing. A brief description of these devices is
presented next, specially focusing on the reconfigurable hardware aspects of each family.

A. Altera (www.altera.com)

Altera is focused on FPGA devices based on SRAM programming technology. It
distinguishes three types of products: high-end devices (Stratix, Stratix-II, Stratix-III,
Stratix-IV and Stratix-V series), mid-range devices (Arria GX, Arria II and Arria V series)
and low-cost devices (Cyclone, Cyclone-II, Cyclone-III, Cyclone-IV and Cyclone-V
families). Although most of the Altera FPGA devices are not equipped with partial
reconfiguration features, Altera Corp. announced the introduction, by first time in their
devices, of partial reconfiguration in the new 28-nm versions of their FPGA families,
Stratix-V, Arria-V and Cyclone-V devices. In this way, Altera has joined the group of
FPGA manufacturers that provide devices supporting run-time partial reconfiguration
technology. Regarding SoPC devices, Altera developed the Excalibur family in the early
2000s, although today is already not shipped. The Excalibur device is composed of a
microprocessor subsystem and FPGA configuration logic. The microprocessor subsystem
(or embedded stripe) includes a 32-bit ARM922T processor with AMBA advanced high-
performance bus (AHB) bus structure, SRAM and dual-port SRAM memories, Flash,
SRAM, and SDRAM interfaces, and peripherals. The programmable logic of Excalibur is
composed by the equivalent resources of an Altera APEX20KE FPGA. Unlike FPGA
solutions, Excalibur devices can be reconfigured at any time via processor control, while
the processor continues to run. This architecture lets deploy run-time reconfigurable
hardware applicatioin with this device. More recently, just in 28-nm Arria-V and
Cyclone-V devices, Altera is including a hard dual-core processor together with
programmable logic giving rise to SoC FPGAs. These devices feature a hard processor
system containing a dual-core ARM Cortex-A9 MPCore processor and a rich set of
peripherals seamlessly linked to the FPGA fabric. Once running, the hard processor
system can fully or partially reconfigure the FPGA fabric at any time under software
control. Concerning tools, Altera integrates the PR flow in its Quartus-II tools.

B. Atmel (www.atmel.com)

Atmel has developed several SRAM-based FPGA devices like the mature AT6000 family
and the AT40K family. These devices, although they are small in capacity, are equipped
with fine grain reconfigurability. New devices currently under development are the
radiation hardened ATF280E and ATFS450 devices oriented to aerospace applications, in
addition to the rad-hard version of the AT40K named AT40FEL. Apart from FPGA
devices, Atmel has developed the AT94K SoC family, also called Field-Programmable
System-Level Integrated Circuit (FPSLIC), composed of a hard-core AVR processor and an
AT40K FPGA, both from Atmel, inside the same chip. Besides, a secure version of
FPSLIC, the AT94S device, furthermore integrates non-volatile memory inside the chip.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 54

Regarding dynamic reconfiguration, both FPGAs and SoCs are equipped with Cache
Logic technology, which corresponds to fine-grain run-time partial reconfiguration
developed by Atmel. Concerning automatic tools, the Atmel Figaro tool is currently in use
to develop reconfigurable hardware applications with Atmel FPGAs.

C. Lattice (www.latticesemi.com)

Lattice Semiconductor produces different families of FPGAs suitable for general-purpose
applications: Lattice EC, ECP, ECP2, ECP2M, ECP3, ispXPGA, SC, SCM, XP and XP2. In
general, the Lattice FPGA architecture is composed of a grid of logic blocks which contain
SRAM-based resources for logic, arithmetic and RAM blocks, and also non-volatile Flash
memory blocks. The SRAM contains the working configuration whereas the Flash
memory retains the configuration for use as necessary. Moreover, the contents of the
Flash memory can be loaded into SRAM automatically at power-up or at any desired
time, replacing the need for external boot memory and enabling thus a single-chip
solution. The more relevant reconfigurability feature of the Lattice FPGA devices is the
so-called Transparent Field Reconfiguration (TransFR). TransFR I/O is a technology that
allows users to update their logic in the field without interrupting the system operation.
TransFR I/O allows I/O states to be frozen during device configuration. This allows the
device to be field updated with a minimum of system disruption and downtime, being
completely transparent to the application. The process consists of four phases:
backgroung programming – through which the NVM (internal or external) is
reprogrammed while the RAM is running undisturbed; boundary scan locks outputs,
where I/O states are captured and held or driven to a user-defined level using JTAG
commands; device configuration by transferring the new functionality from non-volatile
memory to SRAM configuration space; and boundary scan released so that the internal
logic reassumes control of the I/Os.

D. Xilinx (www.xilinx.com)

Xilinx is undoubtedly the FPGA manufacturer which has bet the most on dynamic partial
reconfiguration technology. Recognizing that it is no longer sufficient to just build an
ever-larger FPGA, Xilinx has put the spotlight on the partial reconfiguration capabilities
of its devices as a powerful weapon in the competitive landscape and, more importantly,
it has dedicated the resources and support to make partial reconfiguration an equally
powerful capability for users. The first Xilinx FPGA family provided with dynamic partial
reconfiguration capability was the XC6200 series. It is the first commercial FPGA to
address the requirements of interfacing programmable logic to microprocessors. Like
this, it is provided with a full parallel (configurable as 8, 16 or 32 bits in width) CPU
interface referred to as FastMap and managed by chip select and read/write control
signals. This makes the configuration SRAM and logic cells appear as conventional
memory mapped SRAM, and the configuration file consists of a set of address/data pairs,
allowing fine grain reconfiguration of individual words, bytes or even single bits in real-
time. Fast reconfiguration of the entire chip can be performed in less than 200
microseconds. Additionally, the ability to partially reconfigure the device even more
rapidly is also supported, which increases application flexibility: up to 32 bits can be
reconfigured in approximately 40 nanoseconds. Thus, in 1996 the first generation of PR
was born with the XC6200 series of FPGAs, although today they are already
discontinued and Xilinx ceased their shipment. In 1999, it is launched the second
generation of PR, applied this time to Xilinx Virtex devices first and, along the time,
extended also to Virtex-II and Virtex-II Pro devices. At that date, PR was seen only as a
promising disruptive technology but not fully supported by tools to drive the development
of professional applications and products. Unlike XC6200 devices, in Virtex FPGAs the
configuration memory is segmented into frames. In fact, the organization of the
configuration memory is strongly influenced by the FPGA internal configuration control
logic and, in the first Virtex families, each configuration frame encompasses the

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 55

implementation of a column of resources in the FPGA logic. A configuration frame is the
smallest unit of data which can be accessed in a single reconfiguration cycle, consisting
typically of some hundreds of bytes. The exact amount of data in a configuration frame
depends on the device itself. For instance, in Virtex-II, the column of logic resources
governed by a configuration frame spans the full height of the device. Consequently,
frames for shorter devices contain fewer data than frames for taller devices. Concerning
the reconfiguration controller, all Virtex devices make use of the SelectMap and ICAP
(internal configuration access port) interfaces. In parallel to the high-end Virtex family
(Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, Virtex-6 and Virtex-7), Xilinx
has also developed a low-end family (Spartan, Spartan-3, Spartan-3E, Spartan-3A/3A
DSP/3AN, Spartan-6) that differs from the PR point of view in the fact that it is not built
with PR glitchless technology (except Spartan-6). Nevertheless, although these devices
have never been officially supported by the Xilinx PR design flow, partial reconfiguration
is possible and some proofs have been successfully performed by several research groups
in the community. In 2006, Xilinx releases the third generation of PR based on a
modular design flow. With this, it is problably reached the first mature level of partial
reconfiguration technology, this time applied to Virtex-4 and Virtex-5 devices. This new
PR design flow already lets the designer follow all the development steps in a quite
automatic and consistent way to reach a PR application. Furthermore, Virtex-4 and
Virtex-5 devices did a decisive step forward concerning partial reconfiguration. As
example, the configuration frames of the Xilinx Virtex-4 series have a single fixed size,
with a smaller reconfiguration granularity of 16 CLBs high. Therefore, these devices do
not have the reconfiguration constraint of spanning the full height of the FPGA like in the
previous Virtex-II devices. This allows designers to have finer granularity and more
control over the resources in the FPGA they are reconfiguring. Moreover, the
reconfiguration engine is notoriously improved and the reconfiguration bandwidth
increases in comparison to their predecessors, allowing a maximum reconfiguration rate
of 3.2 Gbps for whatever partial bitstream. At the same time, in the aerospace field,
Xilinx has been working in rad-hard reconfigurable versions of Virtex-4 and Virtex-5
FPGAs clearly oriented to space applications, like Virtex-4QV and Virtex-5QV families.
The PR modular flow of 2006 achievement definitely meant a turning point concerning
the potential of PR technology. From that moment on, new improvements have been
adopted. In 2009-2010, Xilinx works on a new design flow oriented to PR partitions and
extended to Virtex-6 devices. This PR design flow becomes the fourth generation of Xilinx
partial reconfiguration and is integrated as mainstream in the ISE 12 tool, giving open
access to PR to any FPGA design team. Recently, in 2011 Xilinx presented the fifth
generation of PR devices composed of the 7-series FPGAs built in 28-nm technology and
holding partial reconfiguration in their Virtex-7, Kintex-7 and Artix-7 families. In parallel,
Xilinx launches the Zynq-7000 Extensible Processing Platform (EPP), a family of SoC
devices which tightly combine a complete ARM dual-core Cortex-A9 MPCore processor
with integrated 28-nm Xilinx’s Artix-7 or Kintex-7 equivalent programmable logic wich
can be partially reconfigurable at run-time. Besides, the ISE 13 PR design flow with
enhanced usability is launched, becoming the fifth generation of PR addressed to Virtex-
6 and 7-series FPGAs and it is announced the ISE 14 extended to the Zynq-7000 family.
Xilinx delivers a complete toolset to support all the design flow: ISE and PlanAhead for
the synthesis and hardware, System Generator for digital signal processing, EDK and
SDK for dealing with software implementation, and Chipscope for debugging purposes.
Other third-party tools like Matlab/simulink, for implementing DSP designs convertible
to RTL code, or AutoESL, which lets translate algorithms programmed in C/C++ to RTL,
are further alternatives that are gaining popularity today.

E. Others

Many other companies and startups have shown their interest in programmable logic
and run-time reconfigurable hardware technology:

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 56

� Tabula (www.tabula.com)
Tabula Inc., a programmable logic startup, released its new family of programmable logic
devices ABAX currently in volume production provided with up to 8 different hardware
contexts or stacked layers (folds) that can be swapped on the fly in some few
picoseconds. In these devices, each fold performs a portion of the desired function and
stores the result in place. When some or all of a fold is reconfigured, it uses the locally
stored data to perform the next portion of the function. By rapidly reconfiguring to
execute different portions of each function, the device can implement a complex design
using only a small fraction of the resources that would be required by a static hardware
design, and performing the reconfiguration at GHz rates.

� PACT XPP Technologies (www.pactxpp.com)
PACT XPP Technologies is a company oriented to multimedia communication server
accelerator solutions which has developed the XPP (eXtreme Processing Platform)
architecture. This architecture is present in the commercially available XPP-III
processors, a heterogenous multicore architecture provided by two basic types of
processing resources to combine sequential and parallel data processing: a set of unique
cores –function processing array elements or PAEs– are dedicated to strictly sequential
tasks and a reconfigurable array –the XPP array– takes care of data streams. Thus, the
function PAEs process sequential tasks, like operating system, protocol stacks and
decoding, whereas the XPP array directly processes high bandwidth data streams, such
as pixel and audio. Moreover, concerning reconfiguration capability, ultra fast array
reconfiguration allows on-the-fly exchange of processing tasks executed on the array.

� Recore Systems (www.recoresystems.com)
Recore Systems is a fabless semiconductor company that develops advanced digital
signal processing platform chips and licenses reconfigurable semiconductor IP. The
company is specialized in reconfigurable multicore designs that allow instant adaptation
to new situations and offer a unique combination of flexibility, high performance, low
power and low cost by means of merging in a same fabric heterogeneous processing
elements to match thus the granularity of whatever synthesizable algorithm or
application with the granularity of the hardware inside the device. Recore Systems has
developed two types of dynamically reconfigurable cores: Montium and Xentium. The
reconfigurable Montium processor consists of a Processing Part Array (PPA) and a
Communication and Control Unit (CCU) and its reconfiguration typically takes less than
5 µs using a 100 MHz clock. The Xentium processor is a fixed point VLIW-DSP core
designed for high-performance embedded signal processing with an instruction set
optimized for digital baseband processing.

� Menta (www.menta.fr)
Menta is an FPGA startup specifically focused on embedded FPGAs (eFPGAs) which, in
collaboration with the Laboratory of Informatics, Robotics and Microelectronics of
Montpellier (LIRMM) have developed the world’s first FPGA built in non-volatile
magnetoresistive random access memory (MRAM), claiming that this technology proposes
better non-volatile configuration versatility, dynamic partial reconfiguration capabilities
and instantaneous on/off total or partial energy savings than SRAM and Flash
technologiies. Besides its advantage against Flash-based FPGA technology in power
saving during standby mode, it also benefits the access speed of SRAM but with
configuration time reduction since there is no need to load the configuration data from
an external non-volatile memory as in SRAM-based FPGAs. Furthermore, during the
FPGA circuit operation, the magnetic tunneling junctions can be written, which allows a
dynamic configuration (both partial and multicontext reconfiguration) and increases the
flexibility and performance of FPGA circuits [Guillemenet et al., IJRC 2008].

Further programmable logic startups interested in run-time reconfigurable hardware
have disappeared, as listed next in summarized form:

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 57

� SIDSA, which developed the SoC called FIPSOC (abbreviation of Field Programmable
System-On-Chip) provided with an 8051 MCU, configurable analog blocks and
programmable logic with excellent multi-context full and partial dynamic reconfiguration
capabilities in a single substrate. Although already out of production, the more relevant
feature of FIPSOC is its multi-context dynamic reconfiguration capability: chip
configuration is stored in static RAM bits and either the microprocessor or the logic
circuit itself can drive a context update of the complete sea of cells or only a square
region. The configuration data is loaded to the active memory context by issuing a
memory write command and while the cell is in operation according to the data stored in
the configuration bits one or two new contexts can be pre-loaded on the backup memory.
This feature enables multi-context dynamic reconfiguration since there is no need to stop
the chip to reconfigure it as these two extra configurations can be swapped in real-time.

� Chameleon Systems, a fabless semiconductor company which developed the CS2000
family of reconfigurable communications processors. Each product in the CS2000 family
has main functional blocks like a 32-bit RISC processor and a reconfigurable processing
fabric, interconnected through a high-speed system bus. The reconfigurable processing
fabric comprises an array of reconfigurable tiles used to implement the desired
application algorithms and organized in slices. Moreover, loading the background plane
from external memory requires 3 microseconds per slice and such operation does not
interfere with active processing on the fabric. Afterwards, powered by the company's
proprietary eConfigurable technology, swapping the background plane into the active
plane requires only one clock cycle, that is, the entire reconfigurable processing fabric
can be changed from one algorithm to another in a single clock cycle.

� National Semiconductor, which developed the SRAM-based partially reconfigurable
FPGA device called Configurable Logic Array (CLAy).

� Some other startups have been absorbed by other FPGA companies, like Algotronix,
which developed the CAL SRAM-based FPGA supporting PR and was acquired by Xilinx.

3.2.2 Research and academic reconfigurable platforms

Along the time, many research groups have developed their own hardware platforms to
carry out their investigation on reconfigurable computing. Some of these works
conducted by research and academic groups have led to the founding of new
programmable logic startups delivering commercial devices today, like the Montium core
from Recore Systems, result of the research performed by the University of Twente
developing a tiled heterogeneous SoC so-called Chameleon, or the FIPSOC device from
SIDSA, developed in part by the Universitat Politècnica de Catatunya. Many other
reconfigurable hardware platforms emerged from the academia are discussed next.
Unlike the fine-grained reconfigurable devices from FPGA vendors overviewed in the
previous section, most of the platforms presented here are coarse-grained architectures.
The two approaches are complementary: coarse-grained architectures are typically used
for acceleration of algorithms that have a high level of data-intensive processing but
exhibit less control flow and fine-grained approaches in contrast are preferred for
mapping of algorithms with increased amount of control flow by synthesizing
instructions. Most coarse-grained architectures are moreover coupled with RISC
processors to execute entire applications. This section reviews some of the most popular
architectures experimented in reconfigurable computing by the research community.

A. POEtic

The development of systems inspired by biological mechanisms is finding increasing
interest in computer science and engineering fields. However, the implementation of bio-
inspired systems in silicon is quite difficult due to the high complexity of the biological

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 58

mechanisms involved. In this line, POEtic is a SoC conceived to address the prototyping
of bio-inspired applications organized around a 32-bit RISC microprocessor and an FPGA
composed of a scalable architecture [Moreno et al., ICES 2005]. The flexible hardware
substrate of the device is provided with key features which provide capabilities similar to
those present in living beings like evolution, development, self-replication, self-repair and
learning. Among the more relevant features are the facility to create, dynamically, data
paths across resources on one or multiple chips (i.e., dynamic routing), and the ability of
both the dedicated microprocessor and the array itself to reconfigure parts of the device
(i.e., partial dynamic self-reconfiguration). The POEtic project has been developed by the
University of York, École Polytecnique Fédérale de Lausanne, University of Lausanne,
Universitat Politècnica de Catalunya and University of Glasgow.

B. Chimaera

Chimaera is a micro-architecture which integrates a small and fast reconfigurable
functional unit (RFU) into the pipeline of a dynamically-scheduled superscalar processor.
This RFU is an FPGA-like logic comprised of cells arranged in rows and designed to
implement application specific operations. The applicacion code is split in instructions.
Each of these instructions is known as an RFU operation (RFUOP) and corresponds to a
RFU configuration executed through a call to the RFU. These RFU calls are handled by
the compiler to tell the processor to execute an RFUOP. Hence, Chimaera treats the
reconfigurable logic as a cache of RFU instructions, retaining those instructions
necessary for the current execution. In this way, the RFU calls act just like any other
instruction, fitting into the processor’s standard execution pipeline. If the requested
instruction is not currently loaded into the RFU, the host processor is stalled while the
RFU fetches the instruction from memory and it is brought into the RFU by reconfiguring
itself, either placing it on free space if available, or, otherwise, overwriting one or more of
the currently loaded instructions. This does require that the reconfigurable logic be
somewhat symmetric, so that a given instruction can be placed into the RFU wherever
there is available logic. Like this, the system uses partial run-time reconfiguration to
manage the reconfigurable logic and initialize the hardware to perform the specific
instruction by loading the configuration bitstream of such instruction into the RFU. The
configurations themselves are row-based, with each configuration using as many
complete rows as necessary. Thus, every time a new instruction needs to be loaded into
the RFU it only changes the contiguous set of rows required to hold that new instruction
(http://www.ee.washington.edu/faculty/hauck/chimaera.html).

C. ADRES

IMEC (Interuniversitair Microelektronica Centrum) developed the coarse-grained
architecture ADRES (Architecture for Dynamically Reconfigurable Embedded Systems)
consisting of two tightly coupled parts: a VLIW processor and a coarse-grained
reconfigurable matrix. Both parts work according to a processor/coprocessor execution
model: the identified compute-intensive processing loops are mapped onto the
reconfigurable array whereas the VLIW processor performs the control of the application
flow, being both processor and coprocessor coupled through a shared central register file.
Concerning reconfiguration features, the configuration memory can store a number of
contexts locally in each cell. Thus, a cell may use one or more contexts depending on the
functionality implemented. When a specific processing loop is executed in the
reconfigurable matrix, these contexts are cyclically loaded until the loop ends. Such
architecture template can be synthesized as an application-specific instruction-set
processor (ASIP) and it results in a power-efficient and flexible solution oriented to
embedded multimedia devices. The ADRES architecture is supported by a compiler
framework, DRESC (Dynamically Reconfigurable Embedded System Compiler), which
manages all the design flow –mainly compiler, assembler, linker and RTL generators– to
map an application written in C onto an ADRES instance [Mei et al., FPL 2003].

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 59

D. DISC

Researchers from the Brigham Young University developed a computer named DISC
(Dynamic Instruction Set Computer) which lets the user synthesize its own application-
specific instruction set. This platform provides application-specific performance to a
simple processor by allowing user-defined application-specific instructions to
supplement a conventional instruction set. Conceptually, DISC is composed of a host
processor, several partially reconfigurable CLAy31 FPGAs from National Semiconductor
and external memory. DISC treats instructions as removable modules paged in and out
through partial reconfiguration as demanded by the executing program. In this way, the
DISC processor uses run-time reconfiguration to provide an essentially limitless
application-specific instruction set, where each instruction is implemented as an
independent circuit module. An application running on DISC contains source code and a
library of application-specific instruction circuit modules. This library is available simply
by referencing them as source code in a C program: instruction modules are
implemented as partial configurations and individually configured on DISC as demanded
by the application program. The ability to replace instruction modules in the system at
run-time provided by the partial reconfiguration allows the implementation of an
instruction set much larger than is possible on a single static FPGA. Instructions occupy
FPGA resources only when needed and FPGA resources can be reused to implement an
arbitrary number of custom-made instructions. Nonetheless, the processor needs to be
equipped with a relocatable hardware strategy. This relocatable hardware algorithm
provides the ability to make placement decisions of partial reconfigurations on the fly.
This feature is achieved by designing each custom instruction module for multiple
locations on the FPGA and physically independent from each other of the set of
instruction modules in the library [Wirthlin and Hutchings, FCCM 1995].

E. DPGA

Dynamically Programmable Gate Arrays (DPGAs) differ from traditional single context
FPGAs by providing on-chip memory for multiple array contexts. The configuration
memory resources are replicated to contain several configurations for the fixed
computing and interconnect resources. In effect, the DPGA contains an on-chip cache of
array configurations and exploits high, local on-chip bandwidth to allow reconfiguration
to occur rapidly, although loading a new configuration from off-chip is still limited by low
off-chip bandwidth. The multiple contexts on the DPGA allow the array to operate on one
context while other contexts are being reloaded from off-chip. The DPGA uses traditional
4-input LUTs for the basic array element and interconnect programming cells with a 4-
context memory implemented using a 4x32-bit primitive of dynamic RAM. Dynamic
reconfiguration between contexts, known as context switching, is controlled through a
global instruction signal, thus all array elements switch together: a single 2-bit global
context identifier is distributed throughout the array to select the configuration for use
among the four possible. Furthermore, an array element in a context has the ability to
communicate with the same array element in the following context via its flip-flop. This is
because the flip-flop state is not affected by the context switch, thus the flip-flop value is
stored between contexts. In summary, the DPGA serves as a multiple-context FPGA
which, once the contexts are preloaded, can switch from one context to another in one
clock cycle to process an application. As result, the multiple loaded contexts allow using
the array elements more efficiently [Tau et al., FPD 1995].

F. Time-multiplexed FPGA

The Time-Multiplexed FPGA (TM-FPGA) is an extension of the Xilinx XC4000E FPGA that
exploits some architectural changes to convert it in a multi-context device. Thus, the TM-
FPGA maintains the same basic 2D array of CLBs as well as the routing structure of the
XC4000E device. However, as novelty, each one of its configuration elements (associated

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 60

with either logic or routing bits) is replicated eight times in total by SRAM memory cells.
The configuration memory is thus distributed throughout the die, with each active
configuration memory cell backed by eight inactive bits stored in the configuration
SRAM. This distributed inactive memory can be viewed as eight configuration memory
planes or contexts so that the device is composed by one active context, in foreground,
and other eight as spare, in background. Each plane is a very large word of memory and
the entire reconfiguration of the FPGA can be performed in only one single cycle of the
memory; all bits in the logic and interconnect array are updated simultaneously from the
on-chip memory in 30ns. Moreover, in order to store signals between contexts, the device
incorporates the addition of eight micro registers at the outputs of the CLBs in
accordance with the eight configuration memory planes of the device. Each CLB output,
either the combinational or sequential output, can be stored in any of the n micro
registers. This allows a signal to be stored into a micro register in one context and
retrieved in another context, and still allows the operation of the CLB in intermediate
contexts. Thus, direct communication between any two contexts is possible. These two
architectural changes in the original XC4000E FPGA –configurable bits replication and
addition of micro-registers– make feasible the fact that configuration memory planes can
be loaded from off-chip while the FPGA is operating [Trimberger et al., FCCM 1997].

G. Garp

The Garp architecture, developed at the University of California, combines a standard
MIPS processor with additional reconfigurable hardware on the same die. This hybrid
architecture was intended to improve the performance of general-purpose applications
split in a main processor and a reconfigurable slave coprocessor tailored specifically for
accelerating execution loops of code. The main thread of control through a program is
managed by the processor while for certain loops or subroutines are performed by the
reconfigurable coprocessor to speed up the processing. Like an FPGA, the Garp array is a
two-dimensional array of CLBs interconnected by programmable wiring. It functions as a
reconfigurable data path. Besides, memory buses provide a high bandwidth
reconfiguration path between the array and the memory. From a reconfiguration
viewpoint, this device is rows-oriented, that is, a partial reconfiguration is possible
provided that the area reconfigured covers some number of complete and contiguous
rows, being one row the smallest configuration grain. Furthermore, distributed with the
array is a cache of recently used configurations so that programs can quickly switch
between several configurations without the cost of reloading them from memory each
time. Together with the Garp architecture, a big effort was done to design a compiler
adapted to this architecture. The Garp compiler takes standard ANSI C as input,
identifies the pieces of source code, and breaks up the program into basic blocks divided
in instruction sequences with no branches which result beneficial –in terms of
acceleration– to be executed on the reconfigurable array, and execute everything else on
the main processor. Several instructions were added to the MIPS-II instruction set for
this purpose, giving thus rise to an instruction set extended for Garp machines ready to
manage the coprocessor’s reconfigurations [Callahan et al., Computer 2002].

H. PipeRench

For many applications, a customized data path with appropriate levels of parallelism and
pipelining is intrinsically more efficient than traditional software execution. However, an
impediment to the use of custom hardware technologies is the cost of developing and
reusing such hardware pipelines. The PipeRench architecture, designed at the Carnegie
Mellon University (CMU), addresses these problems by introducing a virtual hardware
abstraction. This virtualization of hardware is accomplished by run-time reconfiguration
of the programmable hardware fabric. Unlike other run-time reconfigurable devices,
PipeRench manages its own reconfiguration without any host or user interaction.
PipeRench can be looked at as a reconfigurable fabric, i.e., an interconnected parallel-

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 61

processing network of logic and storage processing elements. Combined with an off-chip
general-purpose processor, PipeRench can support a system in its various computing
needs. It is particularly suitable for stream-based media applications or any applications
that rely on simple, regular computations on large sets of small data elements [Goldstein
et al., Computer 2000]. Thus, using the pipeline reconfiguration technique presented in
section 2.3.3.F, PipeRench improves reconfiguration time and saves area by virtualizing
pipelined computations. The hardware virtualization is achieved by structuring the
configurations into pipeline stages that are time-multiplexed onto the physical stages,
breaking a single static configuration into pieces that correspond to pipeline stages in the
application. Each pipeline stage is loaded, one per cycle, into the fabric. This makes
performing the computation possible, even if the entire configuration is never present in
the fabric at one time. But virtualization through pipelined reconfiguration imposes some
constraints: it requires that every physical stage be identical and also restricts the
computations it can support to those in which the state in any pipeline stage is a
function of the current state of that stage and the state of the previous stage in the
pipeline – in other words, the dataflow graph of the computation cannot have long cycles.
PipeRench was designed at CMU and fabricated by ST Microelectronics in a six-metal
layer 0.18 micron CMOS process [Schmit et al., CICC 2002].

I. PRISM

In the mid-90s, researchers from the Brown University developed a computer
architecture called PRISM (Processor Reconfiguration through Instruction Set
Metamorphosis) consisting of a general-purpose core processor and a reconfigurable
FPGA platform designed to bridge the gap between general-purpose and specialized
computing. PRISM-I becomes a first proof-of-concept developed to demonstrate the
viability of speeding up computationally intensive tasks by extending the core processor’s
functionality with new instructions executed on dedicated reconfigurable hardware and
tailored specifically for each application [Athanas and Silverman, Computer 1993]. The
PRISM-I prototype consists of a Motorola M68010 processor and a reconfigurable
platform composed of four Xilinx XC3090 FPGAs. The FPGAs are dynamically configured
to execute the critical sections of a given C program more efficiently while the less
frequently accessed sections are executed by the core processor. A second research loop
on the PRISM approach gives place to PRISM-II. Basically, PRISM-II introduces a novel
execution model and a framework for translating a C function into a FPGA-based custom
architecture. Furthermore, PRISM-II addresses some hardware and software deficiencies
of PRISM-I, like the development of a new system level architecture that improves the
communication efficiency between the reconfigurable hardware and the host processor.
PRISM-II consists of an AMD AM29050 RISC processor and a reconfigurable platform
composed of a set of three Xilinx XC4010 FPGAs [Agarwal et al., ICPP 1994]. In
summary, this work carried out at the Brown University presents an architecture and
high-level language compiler oriented to improve the execution performance of many
applications adapting the configuration and fundamental operations of a core processing
system to the computationally intensive portions of a targeted application.

J. Others

Many other devices have arised along the time from the research community exploiting
run-time reconfiguration features: MorphoSys, DReAM, RaPiD, XPUTER, DECPeRLe-1,
SPLASH-2, ARDOISE, SCORE, RAW, NAPA, MATRIX, ONECHIP, KressArrays, etc.

3.3 Summary

The emergence of SRAM-based FPGAs boosted reconfigurable computing as a research
and engineering field. While standard MCUs are nowadays the dominant hardware
platform in many embedded fields, the decreasing cost of new FPGAs, along with the fact

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 62

that some of them harbor hard-core processors inside, makes these devices interesting to
be considered for a massive deployment in many embedded application areas. Hence,
many indicators show the good health of reconfigurable hardware technology today.
Leaded by a growing research community composed mainly by staff from the academia
but also from the industry (e.g. programmable logic manufacturers), this field is
expanding its application areas through new research projects focused on concepts,
physical devices and tools, or even through patents under exploitation in the industry.
The broad community of research groups around the world and the continuous
proliferation of these groups with new of PhD candidates focused on these areas, ensures
the continuity of the task force in this research field. As a result, numerous
reconfigurable hardware architectures have been proposed and developed as
application/domain specific hardware accelerators, divided basically in two categories:
those that target coarse, loop-level optimisations and those that target fine-grain,
instruction-level optimisations. In addition, a big effort is addressed to the definition of
an efficient ecosystem composed of appropriate automatic tools to manage these
reconfigurable architectures and make easier and faster their design flow. Recently,
relevant advances have been performed in this direction concerning PR flow and EDA
tools pushed by Xilinx. To sum up all these advances, this chapter makes evident the
fact that the scientific community is involved in run-time reconfigurable hardware,
spending big research efforts from long time ago and showing a great interest in this
technology which is expected to continue, as foreseen in part through the funded
international research projects that have started to walk recently on this field.

References

[Agarwal et al., ICPP 1994]
L. Agarwal, M. Wazlowski, S. Ghosh, An asynchronous approach to synthesizing custom architectures for
efficient execution of programs on FPGAs, Proc. Int. Conf. on Parallel Processing, pp. 290-294, 1994.

[Athanas and Silverman, Computer 1993]
P.M. Athanas, H.F. Silverman, Processor reconfiguration through instruction-set metamorphosis,
Computer, vol. 26, no. 3, pp. 11-18, IEEE, 1993.

[Callahan et al., Computer 2002]
T.J. Callahan, J.R. Hauser, J. Wawrzynek, The Garp architecture and C compiler, Computer, vol. 33, no.
4, pp. 62-69, IEEE, 2002.

[Cardoso and Hübner, Springer 2011]
J.M.P. Cardoso, M. Hübner (Eds.), Reconfigurable computing - From FPGAs to hardware/software
codesign, Springer, ISBN 978-1-4614-0060-8, 2011.

[Goldstein et al., Computer 2000]
S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R.R. Taylor, PipeRench: a reconfigurable
architecture and compiler, Computer, vol. 33, no. 4, pp. 70-77, IEEE, 2000.

[Guillemenet et al., IJRC 2008]
Y. Guillemenet, L. Torres, G. Sassatelli, N. Bruchon, On the use of magnetic RAMs in field-programmable
gate arrays, International Journal of Reconfigurable Computing, Hindawi, vol. 2008, pp. 1-9, 2008.

[Mei et al., FPL 2003]
B. Mei, S. Vernalde, D. Verkest, H. De Man, R. Lauwereins, ADRES: An architecture with tightly coupled
VLIW processor and coarse-grained reconfigurable matrix, Proc. of the Int. Conference on Field
Programmable Logic and Applications, LNCS, vol. 2778, pp. 61-70, Springer, 2003.

[Moreno et al., ICES 2005]
J.M. Moreno, Y. Thoma, E. Sanchez, POEtic: A prototyping platform for bio-inspired hardware, Proc. Int.
Conf. on Evolvable Hardware: From Biology to Hardware, LNCS, vol. 3637, pp. 177-187, Springer, 2005.

[Schmit et al., CICC 2002]
H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, R.R. Taylor, PipeRench: a virtualized programmable
datapath in 0.18 micron technology, Proc. IEEE Custom Integrated Circuits Conf., pp. 63-66, 2002.

[Tau et al., FPD 1995]
E. Tau, I. Eslick, D. Chen, J. Brown, A. DeHon, A first generation DPGA implementation, Proceedings of
the Canadian Workshop on Field-Programmable Devices, pp. 138-143, 1995.

[Trimberger et al., FCCM 1997]
S. Trimberger, D. Carberry, A. Johnson, J. Wong, A time-multiplexed FPGA, Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines, pp. 22-28, 1997.

[Wirthlin and Hutchings, FCCM 1995]
M.J. Wirthlin, B.L. Hutchings, A dynamic instruction set computer, Proceedings of IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 99-107, 1995.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

Part III

Design & Development

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 65

Chapter 4

Run-time reconfigurable system architecture

Undoubtedly, finding a universal electronic system architecture in the embedded design
space able to meet the targets of performance and cost required by most of the industrial
and commercial applications is a primary but at the same time hard challenge today,
especially if such cost-sensitive embedded systems demand a high integration of
functionality. Aimed at solving this issue, this chapter addresses the design of an open,
standard and cost-effective embedded system architecture driven by run-time
reconfigurable hardware, able to meet the general-purpose and application-specific
computing demands of any generic application. The concept approached –based on
hardware/software co-design and supported by dynamically reconfigurable FPGA
technology– highlights key design vectors like heterogeneous computation and functional
adaptivity to balance cost and power metrics. Nevertheless, special attention shall be
payed in the deployment of such system versatility to avoid performance degradation. All
these technical features are addressed in this chapter aimed at meeting the performance-
cost trade-off demanded by many real embedded applications today.

4.1 Standard flexible hardware/software architecture

Dynamically reconfigurable SRAM-based programmable logic constitutes the cornerstone
that sustains the standard embedded system architecture approached in this chapter.
This technology makes feasible to materialize the synthesis of a given application
through the space-time partitioning/scheduling of functionality. This approach responds
to the natural splitting of any application into a series of functional tasks processed in a
specific order; no matter how complex an application or process is, in the end it can be
decomposed into a set of processing tasks which share certain relationship concerning
inputs and outputs, and are processed serially or in parallel according to its temporal
execution flow. Moreover, each individual task, obeying to its own characteristics, can be
synthesized either in software –performed as a sequence of instructions on a processor–
or in a dedicated hardware IP driven by combinational and sequential logic. The
superlative flexibility of this generic architectural approach is attained by decomposing
the whole system into both static and reconfigurable partitions located inside a partially
reconfigurable FPGA. The static regions are occupied by fixed functional components,
like a host CPU and a memory controller, whereas the reconfigurable regions are put at
the service of the system developer as flexible and shared resources to instantiate, at
run-time, hardware accelerators or software processors to perform functionality. In this
way, the resultant architecture aims to offer a general-purpose processing system with
enough flexibility to self-adapt some dedicated parts for application-specific computing
purposes. With this, the system developer has freedom in both hardware and software
disciplines to deploy any custom end-user application.
The stringent design constraints that the embedded market generically demands to the
electronic systems are outlined next:
� More and more, an embedded application shall fit more functionality into a less

expensive platform, performing the processing in less time, and consuming the lowest
possible power rate.

� The system shall admit parallel processing. In complex applications it is common the
use of multithreading or parallel programming. Already in MCU platforms, the CPU is
typically surrounded by other standard peripherals performed in dedicated hardware
resources like timers, communication controllers (SPI, UART, I2C, etc), PWM
controllers, ADC converters, and so on, all running at the same time. That is, the

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 66

parallel execution of tasks is required where typically at least one host CPU takes
charge of monitoring and synchronising all these parallel activities.

� Often, these embedded systems do not work autonomously and independently, but
they hold a permanent link with the exterior world (e.g. remote host) through which
both parts share some kind of information. In this case, the embedded system shall
maintain a permanent communication channel with the exterior world. This restriction
forces the system to have at least one part that keeps alive all the time –just the one
responsible for managing the external link– while other parts or modules inside the
system can be switched off or kept in low power. This operation partitioning is
commonly applied to MCU devices, where specific peripherals can be turned off while
others keep operative. Porting this concept to a programmable logic device is also
possible by partitioning the resources of the device in static regions and dynamically
reconfigurable regions where the functional components that do not need to run for
the entire application life cycle are placed into the reconfigurable regions and can be
disabled or replaced at run-time by new ones when their processing has finished.

� Standardization and modularity are also relevant characteristics demanded to the
embedded system, not only due to reusability and NRE reasons but especially to the
interest in ensuring reduced system development and maintenance cycles. In this
sense, the processing tasks of the application are encapsulated in functional modules
–either software functions accessible through APIs or hardware IP cores described in
HDL– and are typically managed in abstract stacked layers. In this direction, it is also
necessary to define standard interfaces between the static and the reconfigurable
partitions so that the custom hardware accelerators instantiated in the reconfigurable
partitions can be ported to whatever platform using general-purpose interfaces
instantiable in any kind of programmable logic platform.

The fulfilment of all these requirements is possible today through SRAM-based FPGA
devices provided with partial reconfiguration capability. In line with the system
requirements demanded, PSoC-based embedded systems have become a standard in the
industry in the last years. Modern FPGAs, with large integration of transistors on chip,
help to promote the PSoC concept by enabling the implementation of all the digital
processing power requested to a computer application just in one single device,
combining CPU-based software processing and custom hardware computing.

4.2 High level functional blocks

At a first glance, the embedded system architecture can be decomposed into four
functional blocks: the system or host CPU, which manages the full application flow in
software; the data repository, constituted typically by volatile and non-volatile low-cost
memories of big capacity to store system information (i.e., functional bitstreams, program
code and application data like system settings or configuration parameters); the physical
inputs and outputs which connect the system with the exterior world, composed
basically of communication transceivers and local sensors and actuators; and finally, the
reconfiguration engine, which takes charge of the reconfiguration process. All these
components can be interconnected in a generic way through a crossbar switch. The
conceptual view is shown in the block diagram of Figure 4.1.
One key aspect of this architecture is the need for guaranteeing a big bandwidth between
the data repository, i.e. the external memory, and the processing units placed in the
programmable logic device. This is a relevant feature since the repository is usually
composed of only one NVM memory chip and optionally another RAM memory chip, and
both chips can be accessed by more than one processor at the same time. Just for this
reason, the connection among the memories and the processors is typically carried out
by means of a multiprocessor bus provided with arbitration mechanisms (e.g. AMBA from
ARM Inc., CoreConnect from IBM Corp., Avalon from Altera Inc., or Wishbone, originally
designed by Silicore Corp. and available now as open source). Besides, it is important to
note that, although the system architecture is composed of four functional blocks, the

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 67

host CPU and the reconfiguration engine are physically instantiated together in one
SRAM-based FPGA device, and the reconfiguration mechanism becomes hidden to the
application itself (that is, this process is internal to the system and results transparent
from outside). Next, it is presented how all these physical components are articulated
inside this embedded system architecture to deploy the specific functionality required by
any end-user application.

Figure 4.1 Embedded system components breakdown into host CPU, reconfiguration

engine, external memory and I/O

4.2.1 Host CPU

Most of embedded systems which handle a considerable level of processing complexity
are equipped with at least one CPU core since such complexity can be easily managed in
software. From general-purpose one-core processors (e.g. ARM7 or PowerPC cores) used
in low- and mid-range computing systems to multicore (e.g. dual- and quad-cores from
Intel or AMD) or many-core (e.g. 512-core GPUs from NVIDIA) processors used in high-
performance computing, all of them have at least one processor running software code.
In line with this approach, the run-time reconfigurable system architecture proposed
makes use of a CPU responsible for managing the application. Since such core is
allocated in a programmable logic device, it can be placed either as a hard-core processor
or as a synthesisable soft-core processor instantiated in the programmable logic. One
way or another, the CPU is the main component in an embedded system composed of
software processing. This CPU is usually supported by additional functional components
such as standard peripherals, data and instruction memory caches, and coprocessing
units like ALUs or FPUs, among others.

SRAM-BASED PROGRAMMABLE LOGIC DEVICE

RECONFIGURATION ENGINE

HOST CPU

STATIC STANDARD

PERIPHERALS

Interrupt Controller
Timer
UART

Memory Controller
(DDR-SDRAM, Flash)

INTERNAL
MEMORY

Data & Instructions
(Bootloader, Application)

Cache Memory

CENTRAL

PROCESSING
UNIT

FPU
ALU

EXTERNAL MEMORY

FPGA

CONFIGURATION
MEMORY

SRAM

RUN-TIME RECONF.

HARDWARE
COPROCESSORS

Partially
Reconfigurable

Region or Partition

RECONFIGURATION

CONTROLLER

Memory Controller

INPUT/OUTPUT

RAM

User-Application Data

NVM

Full and Partial Bitstreams

CPU Program Code

Application Settings and

Configuration Parameters

COMMUNICATION
TRANSCEIVERS

RS232
USB

Ethernet
CAN

SENSORS/ACTUATORS

Switch/Push Button
SmartFET
DC Motor

LCD Display
LED/Lamp

Camera

CROSSBAR

SWITCH

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 68

4.2.2 External memory

State-of-the-art SRAM-based FPGAs are provided with internal RAM macros allowing the
storage of data in two possible ways: as small 4-/6-input LUTs distributed along the logic
cells of the FPGA or as compact RAM blocks located in specific columns or regions of the
device. All these elements are put at the service of the synthesis tools to be used by the
application. While the set of LUTs is typically intended to map the combinational part of
the hardware circuitry of a design, the RAM blocks can be used for taking part in the
implementation of certain hardware coprocessors (e.g. data buffers, FIFOs, dual-port
memories) or in the storage of data and instructions for CPU software operation. Certain
SRAM-based FPGAs, although only a minority, are equipped also with internal non-
volatile memory intended for both configuration storage and user operation, for instance
the Xilinx Spartan-3AN FPGA, with in-system Flash memory, or the Atmel AT94S FPSLIC
SoC equipped with configuration EEPROM. Apart from the internal volatile and non-
volatile memory available in the FPGA device, embedded applications often require
external memory since the amount available in the programmable logic device is not
enough, especially in data-intensive applications. Just for this reason, the system
architecture proposed populates an external NVM chip (typically Flash memory) and
another volatile memory chip (e.g. DDR-SDRAM) in the system. These memories shall be
connected to the multiprocessor bus to be accessible by any of the master processors of
the system at any time. Since the NVM memory stores the system bitstreams, this
memory must be accessible to the configuration engine too.

4.2.3 Input/Output

Inside the FPGA device, the input data to be processed and the output results of these
computations are transferred in and out the device trough input and output pins, either
through communication networks or as local sensor and actuators. FPGA devices drive a
high level of connectivity concerning digital I/O standards (e.g. LVCMOS, LVTTL, LVDS,
SSTL, and HSTL). Furthermore, some FPGAs introduce analog inputs via internal ADC
converters, like the Xilinx 7-Series FPGAs or the Cypress PSoC families. In case of
communication links, the communication controllers can be implemented inside the
programmable logic device as dedicated soft-core processors, and only the
communication transceivers are required outside to adjust the digital signals to the
physical layer concerning voltage levels, time response and so on.

4.2.4 Reconfiguration engine

Up to now, the host CPU, the memory and the I/O are functional blocks which, in a
generic way, are present in any design technological approach, i.e., in a purely software-
based MCU system, or even in a hardware/software co-design of a system based on a
static FPGA design. Therefore, the reconfiguration engine is the component which adds
value to the proposed architecture to drive flexible hardware on the fly. An embedded
electronic system based on an SRAM-based FPGA, still without exploiting its dynamic
reconfiguration capability (i.e. used only as a static device configured only once, at power
up) is composed of several functional components, each one responsible for carrying out
some specific tasks. This approach is commonly used with successful results in many
application fields today. Now, in the process of defining an accurate model for a universal
embedded system, it is introduced dynamic partial self-reconfiguration to the SRAM-
based FPGA device of Figure 4.1 by means of the reconfiguration engine. Apart from this
functional component, composed of a reconfiguration controller, configuration memory
and reconfigurable partitions, the programmable logic device shall be technologically
designed to support run-time reconfiguration, as discussed in chapter 2 (i.e., featuring
PR glitchess technology, efficient reconfiguration granularity, good modularity concerning
bitstream partitioning, and so on).

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 69

4.3 System components breakdown

After this first overview, it is possible to decompose functional blocks of the embedded
system architecture into physical ones, organized in integrated circuits to model the
standard system as follows:
� The brain of the system is the processor unit, in this case an FPGA device. This brain

is usually split in different functional blocks that work seamlessly, as a whole, to
shape all the digital processing of the application.

� External non-volatile memory (NVM) is required to store all those permanent system
and application data which shall remain saved even when power is off.

� External RAM memory is often required too, mainly low-cost SDRAM (e.g. DDR-,
DDR2- or DDR3-SDRAM). Particularly in big data consuming applications like image
and video processing, this component is of significance since the amount of internal
RAM blocks available in the FPGA is not enough to meet the high demands of data
storage of such applications.

� Sensors and actuators (e.g. push button, thermal sensor, electromechanical relay, DC
motor, LCD display), connected to the FPGA and driven by GPIO interfaces or serial
digital links (e.g. SPI, I2C) are also common resources in such kind of applications.

� Communication transceivers, responsible for adapting the digital communication
controllers instantiated in the FPGA to their corresponding physical layers (e.g. RS232
or CAN interfaces), are habitual components in embedded systems.

� Besides, an external clock is distributed to all the synchronous system elements.
� Finally, the power supply manages the energy delivered to the whole system. Two

options are distinguished according to the way energy is provided to the system:
autonomous systems, when the energy source is located inside the system (e.g.
internal batteries), or non-autonomous systems when the power is taken from outside.

Therefore, the system is physically composed of a programmable logic device, external
memory chips, both NVM and RAM, and I/O peripherals (sensors, actuators and
communication transceivers), apart from the power supply (e.g. voltage regulator) and
the clock circuitry (e.g. crystal oscillator). This system architecture fits properly in many
embedded application domains and its components breakdown is shown next.

EMBEDDED SYSTEM

NVM

RAM

COMSENSOR

ACTUATOR

POWER

CLOCK

FPGA

Figure 4.2 High level model of the FPGA embedded system split in physical devices

Run-time reconfigurable hardware brings important considerations on the standard
embedded system architecture. Attending to this, the SRAM-based FPGA model can be
decomposed into static and dynamic partitions, where the standard design related to the
system CPU described before constitutes now a static region and the dynamic partial
self-reconfiguration design is decomposed in a PR block and another static block, the
latter encompassing the reconfiguration controller, as depicted in Figure 4.3.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 70

FPGA

toSENSOR

toACTUATOR

toNVM

toRAM

toCOM

toCLOCK

toPOWER

STANDARD STATIC DESIGN DYNAMIC PARTIAL SELF-RECONFIGURATION

STATIC REGION PR REGION

Figure 4.3 Dynamic partial self-reconfigurable FPGA high level model

All the functionality granted to the embedded application is deployed on internal
resources of the SRAM-based FPGA. These resources are modeled through different
abstracted functional components or blocks which perform specific processing either in
software or in hardware and constitute the modular view of the system. These
components distributed inside the FPGA are detached in detail next.

4.3.1 Standard static design

In the modeling of an embedded system on an SRAM-based FPGA oriented to dynamic
partial self-reconfiguration, the standard static design block illustrated in Figure 4.3 is
constituted by those functional components that are common also whether implementing
such system in software on an MCU. Thus, in case of using an SRAM-based FPGA, the
standard static design block includes the same functional components but in the
programmable logic device. The spliting of the standard static design block in internal
components responds to a conceptual distribution of functional tasks: bootloader –
mechanism to permit system upgrades in the field–, software application, CPU and
peripherals, internal and external memory, arithmetic-logic units (ALUs), memory
controllers and communication controllers (COM), custom coprocessors/accelerators and
the system bus through which all the different processors in the embedded system are
interconnected.
At present, the build of the system processor is fully supported by EDA tools. Both FPGA
manufacturers (e.g. Xilinx, Altera) and independent EDA vendors (e.g. Mentor Graphics,
Cadence Design Systems, Synopsys) provide automatic tools which help the designer to
build a whole CPU-based system in some few clicks of the mouse guided by some
application wizards. As examples, Altera delivers the Quartus II and SOPC Builder tools
which allow composing a SoC solution on the AMBA multiprocessor bus. In the same
way, Xilinx makes use of its EDK and ISE tools to build a system on the CoreConnect
bus. Other example is Atmel with its Figaro IDS tool. With these EDA tools, the system
CPU, the external memory and I/O interfaces constitute the typical subsystems required
for building a static embedded system. To these three parts (CPU + Memory + I/O), it is
pending to add now the run-time reconfiguration engine to the original system.
Nowadays the design of the reconfiguration engine is still not supported by automatic
tools. The design of this component is addressed in depth in chapter 5.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 71

4.3.2 Dynamic partial self-reconfiguration design

Out of the static standard design block, partial reconfiguration involves additional
functional components, some of them deployed as static blocks and others as
reconfigurable blocks. The static ones are detailed next:
� Reconfiguration controller. Any SRAM-based FPGA device is provided with a

configuration mechanism that permits to retrieve a full bitstream from a data
repository and download it into the FPGA configuration memory at each power-up.
However, in partially reconfigurable FPGA devices, after initial device configuration
with a full bitstream, partial bitstreams can be downloaded into the configuration
memory of some particular PR regions at run-time. The design of a high bandwidth
reconfiguration controller specific for on the fly configurations is required.

� PRR interfaces. It is convenient to define a standard interface between the static region
and the reconfigurable region. This interface is part of the static design and remains
unchanged during the reconfiguration of the PRRs. This standardization lets abstract
the application-dependant PR coprocessors from the system architecture and makes
possible to build standard coprocessors portable from one platform to another.

These additional static components placed inside the dynamic partial self-reconfiguration
block of Figure 4.3 represent the area overhead due to the run-time reconfigurable
hardware architecture versus a typical approach based on static hardware and software.
This overhead, however, is compensated with the area reserved to partial reconfiguration
where different functional PR modules can be multiplexed in time:
� One or more reconfigurable partitions or PR regions (PRRs) with the convenient area –

i.e., number and type of hardware resources– where specific and custom coprocessors
(referred to as partial reconfigurable modules or PRMs) are swapped in and out during
the execution of the application. The shape and size of each PRR keeps invariant for all
the application life cycle. They constitute the portion of FPGA components to be used
as flexible time-shared resources by the application.

Figure 4.3 highlights the fact that the system designer shall minimize the cost in
resources of the reconfiguration controller in order to make this run-time reconfigurable
approach viable compared to a static implementation. Besides, the continuous reuse of
the resources of the PR partitions to fit there different coprocessors each time lets
balance the total amount of resources and justify thus the cost savings originated by the
use of this technology and architecture in the implementation of embedded applications.
Similarly to the balance of area, concerning time, the processing speed up reached by
implementing some computational tasks in dedicated hardware (exploiting parallelism)
instead of software lets compensate the time overhead originated by the reconfiguration
process introduced now in the application execution. Finally, a third term to be balanced
with this solution is the power consumption. Therefore, there exists a clear area-time-
power trade-off in the design of the standard embedded system architecture proposed.

4.4 System modeling and deployment

This section describes the modeling of a general-purpose electronic system architecture
intended for implementing specific embedded applications in reconfigurable hardware
and software. The proposed model is oriented to run-time partially reconfigurable SRAM-
based FPGA devices – it does not cover single context or multi-context FPGAs according
to chapter 2 classification. In a first step, the formal model of the embedded system
architecture is particularized to a minimalist approach, being the system composed only
of one PR partition and one single data repository. Since the presented architecture is
totally scalable, that first approach is extended later in other two more complex scenarios
in which the number of PR regions and data repositories increases. Although the model
aims to be generic, its physical deployment is conducted on a specific platform, to be
exact the commercial Xilinx ML401 evaluation board based on the Xilinx Virtex-4
XC4VLX25 FPGA. The experimental results confirm the feasibility of the model.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 72

4.4.1 Minimalist model: single data repository and single PR partition

The system architecture is based on two computing engines or cores: one host processor
which performs tasks in software and one flexible and custom processor which takes
charge of the computation of tasks in dedicated hardware. The host processor is placed
in a static region of the FPGA and plays the role of a typical CPU to process functionality
abstracted in the way of sequential assembler instructions. Similarly, the flexible
processor, placed in a PR partition, becomes a dedicated hardware acceleration engine
able to self-adapt its computational architecture at run-time to perform any assigned
processing task in the most efficient way possible. This flexible computer is frequently
seen as a coprocessor attached to the host CPU. The high level of flexibility granted to
this system architecture based on a custom reconfigurable hardware computer defined
into a partition of the FPGA is possible thanks to the exploitation of SRAM-based
programmable logic technology. The powerful computational features of this second
processor and its seamless integration into the CPU-based system are undoubtedly the
most relevant novelties of the architecture proposed.
While the concept of defining a CPU-based system in an FPGA platform is not new, the
way of connecting the reconfigurable hardware processor with the host CPU presents
certain innovative advances. In this sense, it is observed two types of data accesses to
the PR partition, each one pursuing a different purpose: on the one hand, in the
reconfiguration process, the partial bitstream is downloaded from the system repository –
typically an external memory device– to the internal FPGA configuration memory aimed
at changing the features of the processor placed in the PR partition; on the other hand,
already in application mode, the processor instantiated in the PR partition must transfer
and share some data with the rest of the system. Especially in data-intensive
applications, these data are stored in the system repository instead of in internal FPGA
memory due to the high volume required. To manage the transfer of both application
data and partial bitstreams between the system repository –located in the static region–
and the PR partition, the proposed architecture makes use of a master memory
management unit (MMU). It is a key component in the system architecture since it lets
offload the host CPU from the time-consuming transfers of data required either in the
reconfiguration processes or in the processing of tasks inside the PR. Thus, the host
processor works in foreground by managing the execution flow of the whole target
application and performing some application tasks scheduled in software whereas, in
parallel, the master MMU acts as a slave coprocessor that in background supports the
reconfiguration and execution of tasks instantiated in the PR partition.
From an application point of view, it is convenient that all the processors placed in the
PR partition share a common interface to transfer data with the static region of the
system. This design constraint is necessary since this interface is implemented in the
static region of the FPGA and therefore it can not be modified at run-time. In this sense,
the reconfigurable hardware processors instantiated in the PR partition are designed
with standard input and output interfaces based on first-in-first-out (FIFO) memories.
These FIFO interfaces enable the transfer of data in and out of the PR partition in a
standard way –from the system repository to the hardware computer and vice versa–
constituting a full-duplex link. Moreover, these FIFOs are implemented with internal
RAM blocks of the FPGA, being one port controlled from the static region and the other
from the reconfigurable region. The MMU handles the static side of the FIFO whereas the
PRMs placed in the PRR takes charge of the FIFO ports accessible from the dynamic side.
Other relevant design aspect in the architecture of embedded systems composed of
multiple processors is the management of the access to the data repository since it
becomes a shared resource. This repository is typically a large external memory device,
e.g. a low-cost DDR-SDRAM chip, connected to the pinout of the FPGA. In accordance
with the idea of partitioning the end-user application in tasks that are computed
concurrently by multiple engines, both CPU and MMU engines need to be master
processors to perform writing and reading accesses to the system repository at any time.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 73

For this, the DDR-SDRAM memory is managed by a multi-port memory controller (MPMC
implemented in the static region of the FPGA. The multi-port interface allows the
different master processors to access the memory from identical or different buses. In
our proof-of-concept, the host CPU is connected to the DDR-SDRAM through both
CoreConnect PLBv46 and Xilinx CacheLink (XCL) buses while the master MMU is
connected via a fast Native Port Interface (NPI) bus. All these buses reach the MPMC and
the this controller is who administrates the access of the different sources to the physical
DDR-SDRAM at any time, by establishing arbitration mechanisms in case of collisions.
Concerning the reconfiguration process, as mentioned above, the master MMU performs
the transaction of the configuration bitstream from the system repository to the FPGA
configuration memory. In the Virtex-4 FPGA, the datapath to the FPGA configuration
memory can be performed through a specific primitive accessible from inside the FPGA
logic named internal configuration access port (ICAP). As part of our reconfiguration
controller, a finite state machine (FSM) controls the signals of the ICAP interface. This
controller is connected with the master MMU through a FIFO memory. Such FIFO plays
the role of an intermediate buffer that regulates the data flow, i.e., isolating or making
independent the speed in which the data are produced (filled) by the master MMU with
respect to the speed in which such data are then consumed (emptied) by the FPGA
configuration memory, in accordance with the reconfiguration bandwidth constraints of
the particular FPGA in use. Analogously, the FIFOs inserted as standard interfaces
between the master MMU and the PR processor let decouple the stage related to the
production or consumption of data in the system repository from the counterpart stage
in the PR partition. This decoupling feature achieved with FIFOs is a key aspect in this
design architecture because just the time independency reached with this approach lets
ensure that the custom processors synthesized in the PR partition can be designed
without inheriting any technical restriction coming from the rest of the static system (e.g.
multiprocessor bus in use, etc). This feature is highly appreciated from the perspective of
reusability of IP cores portable to different FPGA platforms. Besides, FIFOs transparently
implement blocking-read and blocking-write synchronization mechanisms in case of
empty and full buffer scenarios, and the set of control lines which constitute the FIFO
wrapper is reasonably small and manageable. Furthermore, hardware modules can
read/write from/to FIFOs using a simple, well-known communication protocol instead of
other more complex addressing and syncronization schemes. As summary, the use of
FIFO memories as standard interfaces among the master MMU, the PR partition and the
FPGA configuration memory lets architect a system with multiple clock domains.
Besides, a slave MMU is implemented to link the host processor with the master MMU
and the PR processor. It consists of a series of configuration registers –some writable and
others readable by the host CPU– used as control and status registers for managing the
handshake between the master MMU and the PR processor. Through these registers, the
CPU can configure a bistream transfer from the repository to the FPGA configuration
memory; it is only a matter of specifying to the master MMU the initial address where the
bitstream in located in memory and its total size and then give the go-ahead to start the
reconfiguration. In parallel, the master MMU notifies the host CPU about the status of
this transaction with register flags readable by the host. In addition to the transfer of
bitstreams from the system repository to the FPGA configuration memory conducted by
the master MMU in each partial reconfiguration, the master MMU is involved in the
posterior transfer of data from the repository to that new coprocessor placed in the PR
partition. In a similar way, the host CPU configures that transaction by means of
configuration registers and the status of this process can be tracked in real-time by
specific registers used by the master MMU and accessible at any moment by the host
CPU. The same rules apply between the PR processor and the host CPU: specific
registers of the slave MMU are written by the host CPU and take effect in the PR
processor to initialize some configuration parameters before launching the processing of
a specific hardware task. Similarly, the host CPU can be informed about this processing
through registers adapted to each custom processor synthesized in the PR partition.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 74

DDR-SDRAM

MPMC

NPI XCL XCL

HOST
CPU

MMU SLV MMU MST

PARTIALLY
RECONFIGURABLE

REGION

ICAP &
RECONF. LOGIC

FPGA
CONFIG.
MEMORY

FIFO FIFO FIFO

PLB

As a last remark of the system architecture, optionally the host CPU can be supported
with memory caches to accelerate the processing of the software application. In our real
example, the connection between the DDR-SDRAM which lodges the CPU program and
the internal instruction and data caches –constituted by internal RAM blocks of the
FPGA– is performed through two dedicated XCL (IXCL and DCXL) buses. Figure 4.4
shows the architecture of the system with all the functional blocks involved.

Figure 4.4 Minimalist system architecture based on one PR partition and one repository

A further reason for using FIFOs for buffering data in the PR processors is the fact that
the master MMU can overlap the transfer of both input and output data to the PR
processor while the PR processor is in operation. For this, the data bandwidth of the
master MMU must be at least twice the bandwidth of the PR processor.
The most relevant advantages of this system architecture are highlighted next:
� It is a minimalist design, provided with the minimum functional components to design

a run-time reconfigurable embedded system.
� Although the size and location of the PR partition is defined at compilation time and it

cannot be resized later at run-time, the operation clock of the processor placed in the
PR partition can be changed on the fly. This flexibility lets schedule the processing of
an application partitioned into a set of specific tasks operated at different clocks. This
feature can be achieved in two different ways: either connecting several clock sources
from the static region to the PR partition, or interfacing to the partition only one clock
signal which can be reconfigured at run-time, for instance through the digital clock
manager (DCM) block in Virtex-4 devices.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 75

This minimalist approach owns also some drawbacks which, in occasions are
accentuated depending on the requirements demanded to the target application:
� In any programmable logic design, the system designer is always exposed to a time-

area trade-off. That said, the minimalist model is designed with the target of lowest
cost in mind. However, in systems based on only one PR partition, the reconfiguration
time results in a penalty added to the processing time of the tasks.

� An important design aspect linked to this architecture is the effective access to the
memory, since this memory is a resource shared between two processors –CPU and
master MMU– storing both application data and reconfiguration bitstreams. The
master MMU provides data from the repository to two different consumers, the ICAP
and the PRR, in addition to sending other data produced by the PRR back to the
repository. In this way, the MPMC must dispatch in time all the requests coming from
the master MMU and the CPU to not delay the processing. In fact, the bottleneck of
many system architectures is found in the fetch and storage of data in memory.

� One more limitation in reconfigurable systems composed of only one PR partition is
the fixed size of the PRR. Just for this reason, to take the best benefit of this region, all
the processors should consume the same number and type of resources. If one PRM
placed in the PR partition takes much more resources than the others, this provokes a
waste of resources since the size of the biggest PRM delimits the size of the PRR.

Attending to the design constraints of certain applications and aimed at improving the
drawbacks discussed above regarding this first approach, other variants of the
minimalist model are presented next, focused on reducing the impact of the
reconfiguration latency over the application execution time, increasing the bandwidth to
access the shared memory and optimizing the PR area reserved to the PR processors by
making use of several PR partitions different in size.

4.4.2 Model with single data repository and two PR partitions

In time-critical applications which require fast or frequent switching of PR modules in a
PRR, the reconfiguration time can be significant in absolute terms compared to the total
execution time of the application. The model proposed in the previous section could
reduce or definitively hide its inherent penalty in reconfiguration time by just performing
a small change in its architecture. This change consists in adding a second PR partition
into the system connected to the same master and slave MMUs. In this way, this
redesign presents a reconfigurable system composed of two PR partitions with identical
interfaces. The main reason to add the second PR partition is to deploy a bipartitioning
strategy of hardware tasks. That is, it is feasible that at any time one PR partition is
operative while the other is being reconfigured. Thus, the processing of a given task in
one partition is overlapped with the reconfiguration process of the next task in the
second partition. For this, the processing time of a hardware task Ti in a PR partition
shall take identical or more time than the reconfiguration of the next task Ti+1 conducted
in parallel in the other PR partition, and ensuring the fulfilment of this condition for all
the hardware tasks which the applitation is split in.
To make this model work correctly, the MPMC shall ensure it is able to serve in time all
the requests from the host CPU and the master MMU, the latter dealing in this
architecture with up to three FIFOs at the same time, one from the reconfiguration
process and two from the active PR partition that runs a hardware processor at that
moment. In this way, the master MMU supports in parallel the processing of a task and
the reconfiguration process of the next one in background. Also of note, the use of two
PR partitions offers more flexibility to the system architect to define the size of the PR
processors since both partitions can be different in size, shape and types of resources.
This fact lets skip more easily the case of having wasted resources in a PRR when a
hardware task uses fewer resources than the ones the PRR provides. Furthermore, each
PR partition encompasses a different clock domain; therefore, each PR partition can be
clocked at a different operation frequency. The new model is illustrated in Figure 4.5.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 76

Figure 4.5 Embedded system architecture based on two PR partitions and one repository

Although this model achieves some clear time advantages compared with the minimalist
model, this new approach accentuates in its turn other disadvantages. In the minimalist
approach, the hardware resources included into the PR partition are operative as long as
some task is placed and processed there. Therefore, if the application manages to
continuously swap in and out tasks in the PR partition, then the only time at which
these resources are wasted is during the reconfiguration processes, since at that time the
whole PR partition is not operative. With the introduction of a second PR partition into
the system to deploy a bipartitioning strategy, the application sees at any time one
hardware task running in one of the PR partitions. However, a drawback of this model
versus the minimalist model is the reduced use of the PR resources – that is, the loss of
functional density of the resources placed in the PR partitions since, in absolute terms,
one out of two PR partitions is inoperative along all the application lifetime. This point
can result especially inefficient in applications that require big PR partitions.
Depending on the features of size and time of the tasks of an application, the system
designer must choose the best alternative in order to make these architectural models to
give a competitive advantage instead of a disadvantage. A third model is proposed next to
consider the case in which the model presented in this section is not able to manage in
time all the memory requests from the CPU and the master MMU.

DDR-SDRAM

MPMC

NPI XCL XCL

HOST
CPU

MMU SLV MMU MST

PARTIALLY RECONFIGURABLE REGION 2

ICAP &
RECONF. LOGIC

FPGA
CONFIG.
MEMORY

FIFO FIFO FIFO

DEMUX MUX DEMUX MUX

PARTIALLY RECONFIGURABLE REGION 1

PLB

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 77

4.4.3 Model with two data repositories and two PR partitions

A new variant of the system architecture discussed above consists in splitting the system
repository in two separate memory chips aimed at offloading the access to it by building
two effective parallel accesses. The system repository is separated in one memory that
stores only the partial bitstreams and another memory exclusively dedicated to the end-
user application. In this new model, one master MMU could manage the reconfiguration
of the hardware tasks connected to a dedicated memory while the second memory would
be left exclusively to the application data, accessed by the host CPU and by another
master MMU responsible for the PR partitions. This configuration lets double thus the
system memory bandwidth. The new model is depicted in Figure 4.6.

Figure 4.6 Embedded system architecture composed of two PR partitions and two sytem

repositories which split the reconfiguration data from the application data

In this way, two memory sources are running in parallel, allowing two concurrent
accesses to the memory resources. This new architecture should permit to conduct the
parallel execution of the reconfiguration and processing of tasks in those scenarios where
the model discussed in the previous section does not have enough data bandwidth. The
memory dedicated only to store the partial bitstreams can be connected through only one

NVM

XCL

HOST
CPU

MMU MST MMU MST

PARTIALLY RECONFIGURABLE REGION 2

ICAP &
RECONF. LOGIC

FPGA
CONFIG.
MEMORY

XCL

FIFO FIFO FIFO

DEMUX MUX DEMUX MUX

PARTIALLY RECONFIGURABLE REGION 1

MMU SLV

NPI

DDR-SDRAM

MPMC

PLB

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 78

port to the master MMU. In such a case, the memory is dedicated to only one source so it
is not required any arbitration controller (MPMC). Otherwise, in a different approach, a
MPMC could still be used connect the memory to the master MMU and the host CPU.
Unlike the bandwidth advantages achieved with this double memory in this third
approach, the only drawback is the overcost caused by the implementation of two
memory controllers and the presence of two external chips. The analytical study related
to the MMU data throughput required in these models to provide a concurrent service to
the reconfiguration and to the application is covered later in chapter 5. As observed
through the three model variants proposed, the system architecture is scalable in PR
partitions and memory repositories. This scalability is a valuable design feature to match
the architecture to the specific demands of each target application.
These approaches cover the scenario where only one task is processed in one out of two
PR partitions at one time. Further alternatives could be designed with small changes (e.g.
using a pair of dedicated FIFOs for each PR partition) and keeping the system skeleton
practically intact, powered by the idea of having one software processor and another
reconfigurable hardware processor efficiently coupled to perform end-user applications
with a fast access to the system memory. The case of adding more PR partitions in the
system to run multiple hardware tasks in parallel has not been considered in this work.
Such consideration involves new issues like the partial bitstream relocation or the inter-
module communication, which are being addressed by some research groups today.

4.4.4 Comparison with other state-of-the-art architectures

After describing the system architecture proposed, it is now compared with state-of-the-
art architectures found in the literature. Due to the large number of existing
architectures, this section focuses only on a small representative subset of them that
stand out for its advances and recent novelty in run-time reconfigurable computing.

A. VAPRES

The VAPRES (virtual architecture for partially reconfigurable embedded systems) system
architecture developed at the University of Florida is claimed to be a general-purpose
embedded base platform for building PR systems [Jara-Berrocal and Gordon-Ross, DATE
2010]. The concept is prototyped in a Xilinx ML401 evaluation board based on a Virtex-4
FPGA. Basically, the system is composed of a MicroBlaze processor connected to a set of
PR regions which place different processing modules reconfigurated at run-time. Its
switching methodology lets overlap the module operation in some PRR with other PRR
reconfiguration, which avoids stream processing interruption.

Figure 4.7 VAPRES system architecture

PRR1 PRR2 PRR3

FSL Interface

PLB Bus

Module

Interfaces

Module

Interfaces

Module

Interfacescl
k

1

cl
k

2

cl
k

0

ICAP

Flash

controller

UART

SDRAM

Network

I/O
 M

o
d

u
le

I/O
 M

o
d

u
le

DCR

Bridge

Module

Interfaces

Module

Interfaces

MicroBlaze

P
R

 S
o

ck
e

t
1

P
R

 S
o

ck
e

t
2

P
R

 S
o

ck
e

t
3

Slice macros

PRR1 PRR2 PRR3

FSL Interface

PLB Bus

Module

Interfaces

Module

Interfaces

Module

Interfacescl
k

1

cl
k

2

cl
k

0

ICAP

Flash

controller

UART

SDRAM

Network

I/O
 M

o
d

u
le

I/O
 M

o
d

u
le

DCR

Bridge

Module

Interfaces

Module

Interfaces

MicroBlaze

P
R

 S
o

ck
e

t
1

P
R

 S
o

ck
e

t
2

P
R

 S
o

ck
e

t
3

P
R

 S
o

ck
e

t
1

P
R

 S
o

ck
e

t
2

P
R

 S
o

ck
e

t
3

Slice macros

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 79

This architecture has been evaluated in a real wireless sensor network (WSN) application
oriented to a target tracking control system based on Kalman filters [Garcia et al., FCCM
2009]. This architecture shares big similarities with the approach presented in this
dissertation, especially regarding the interfaces between the static region and the PRRs:
on the one hand, PRRs interface with the host processor through asynchronous fast
simplex link (FSL) interfaces, in a similar way to the slave MMU proposed in our
approach; on the other hand, each PRR is provided with a module interface composed of
two bidireccional FIFO memories, like the two FIFOs connecting the master MMU in our
approach, as depicted in Figure 4.7. Additionaly, the VAPRES architecture enables the
inter-task communication by means of SCORES (Scalable Communication Architecture
for Reconfigurable Embedded Systems), which basically allows a PRR to dynamically
establish a fast data-streaming channel with any other arbitrary PRR by interconnecting
their input and output FIFOs, performed dynamically through a highly parametric switch
block, and being this action performed in a deterministic time [Jara-Berrocal and
Gordon-Ross, DATE 2009]. In this architecture, both non-volatile and volatile memories
are directly connected to the PLB bus. The PRR FIFOs are also connected to the PLB bus
through dedicated I/O modules. The main drawback observed is the high reconfiguration
latency obtained in switching the processors or hardware tasks in the PR partition [Jara-
Berrocal and Gordon-Ross, ReConFig 2009]. The bottleneck is found in the fact that the
MicroBlaze processor is who conducts the partial reconfiguration. The MicroBlaze
processor, the Flash memory which stores the partial bitstreams and the ICAP primitive
are all connected to the PLB bus. Thus, the MicroBlaze processor reads the bitstream
from Flash and downloads it into the FPGA configuration memory via the ICAP interface.

B. Autovision

The Autovision project developed at the University of Technology of Munich is intended
for the acceleration of video-based driver assistance applications in future automotive
systems by means of a run-time reconfigurable hardware MPSoC architecture [Claus et
al., DATE 2007]. A flexible hardware platform can give a competitive advantage in the
development of driver assistance systems since different driving conditions –highway,
city, sunlight, rain, tunnel entrance– can involve the use of different algorithms for video
processing. These different time-consuming algorithms are performed at real-time
through hardware accelerators which are loaded into the Autovision platform at run-
time, triggered by changing driver conditions. The Autovision architecture was initially
prototyped in a Xilinx Virtex-II Pro device, although later it has been ported to Virtex-4
and Virtex-5 devices. It is shown in Figure 4.8.

Figure 4.8 Autovision system architecture

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 80

The block diagram of the system is very similar to the one proposed above in this
dissertation, although it uses two CPU processors instead of one [Claus et al., IT 2007].
The second CPU is responsible for verifying the reconfiguration process by reading back
the partial bitstream once it is downloaded through the ICAP interface to the FPGA
configuration memory. The reconfigurable hardware processors placed in the PR
partition are interconnected to the static part of the system through the PLB bus
[Platzner et al., Springer 2010]. This dedicated interface makes the design of the
hardware processors conditional to fit only in CoreConnect PLB-based bus systems,
giving rise to non-standard IP cores that should be reworked in case of porting the
system application to other platforms based on different buses like AMBA or Wishbone.
This portability issue has been carefully cared in the standardized architecture proposed
in this dissertation in order to achieve that any application deployed in the PR partition
by custom hardware accelerators is independent of the system architecture itself, being
these engines connected to the static side by means of standard FIFOs and registers.

C. KIT-ITIV

The system architecture developed at the University of Karlsruhe (Institut für Technik der
Informationsverarbeitung) is oriented to execute general-purpose applications or tasks on
demand, requested from an external communication bus and deployed in four or five
dynamically reconfigurable regions in an FPGA [Huebner et al., FPL 2004]. The system is
prototyped in a Xilinx Virtex-II device and is shown next in Figure 4.9.

Figure 4.9 KIT-ITIV system architecture

The partial bitstreams are compressed and stored in external Flash memory. Internally to
the FPGA system there is a bitstream decompression/reconfiguration controller
implemented in hardware which links the external repository with the ICAP interface.
The system is connected with the exterior world trhough a CAN bus. A MicroBlaze sof-
core processor placed in the static region of the FPGA is the host CPU of the system and
manages the execution of the different applications or tasks requested via CAN frames in
the different reconfigurable regions or partitions of the FPGA. If the task requested
requires a dedicated processor which is not placed in the PRRs at that time, the
reconfiguration controller looks for a free partition and handles the reconfiguration by
downloading the bitstream from external Flash. As innovative architecture, all the PRRs
are linked together through a bus macro interface managed by a communication

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 81

controller or arbiter. This controller is addressed by the CPU and takes charge of the
control of the internal communication with the PR modules [Ullmann et al., FPL 2004].
The communication controller and the bus macro are implemented in the static region of
the FPGA. Inside each partition, however, there is a communication controller that can
be reconfigured together with each PR partition at run-time to self-adapt the link with
the bus macro. In this way, this flexible connection admits the adaption of several
topologies (i.e. bus, star or ring) among the communication controller and the different
PR partitions [Huebner and Becker, JICS 2006]. Like this, such architecture supports
inter-module communication. Furthermore, it also offers the possibility of disconnecting
a PR module from the bus macro during a dynamic reconfiguration to protect the bus
from interferences. Although the system is connected to the exterior world through CAN,
this architecture lacks the use of external memory, especially fast and large memory
demanded in data-intensive applications. Just for this reason, the memory sharing issue
is not addressed in this work. A clear use case for exploiting this system architecture is
in FPGA-based automotive electronic control units [Ullmann et al., IPDPS 2004].

D. ESM

The Erlangen Slot Machine (ESM) system architecture proposed by the University of
Erlangen-Nuremberg allows the partial reconfiguration of hardware modules arranged in
a set of identical PR regions so-called slots. The system is architected in two subsystems:
one general-purpose board (base) based on a Xilinx Virtex-II FPGA, which contains such
run-time reconfigurable slots to lodge there any type of digital processing, and another
application-specific board (satellite) prototyped in a Xilinx Spartan FPGA and focused on
customizing those aspects of the target application that keep constant or statically
implemented for the whole application lifetime [Bobda et al., FPT 2005], as shown next.

Figure 4.10 ESM system architecture

On the one hand, the satellite board (or motherboard) is especially intended to implement
a crossbar switch to connect all those signals coming from the slots of the baseboard
with the external peripherals –typically sensors and actuators– required by the
application and located in the satellite board. In this way, the particularization about
connections is performed in a crossbar switch in order to keep symmetrical all the I/O

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 82

pinout connections of the slots in the baseboard. This aspect helps to promote the
bistream relocation by reducing the complexity in the baseboard whereas the crossbar
switch takes charge of establishing the connections in the satellite board which is
application-specific. Apart from the crossbar switch, the satellite board also contains a
PowerPC processor for managing the data flow and the communication with the exterior
world. On the other hand, the baseboard (also called baby board) contains six identical
slots inside the Virtex-II FPGA. Each slot is connected to a dedicated external SRAM
memory to support the data processing carried out in that slot or its neighbours in left
and right sides. This architecture gives solution to the inter-module communication
through several options: bus macros, shared memory, reconfigurable multiple buses or
external crossbar switch [Majer et al., VLSI 2007]. A reconfiguration manager is in charge
of placing the partial bitstream indistinctly in any of the slots possible. As proof-of-
concept, this platform has been used in modular video streaming applications.
The main advantage of the ESM platform is the flexibility in communication, uniformity
of resource distribution and placement freedom by means of relocation. The main
disadvantage is the big number of components (BOM), which makes this approach
prohibitive in some cost-sensitive applications. However, although some restrictions
come from the non-support for two-dimensional reconfigurability of the Virtex-II FPGA
(full-column reconfiguration only), these ideas can be ported to a 2D-reconfigurable
FPGA (e.g. Virtex-4) and implement the crossbar switch in the static region of the device.

E. Molen

Developed at the Delft University of Technology, the Molen architecture addresses both
general-purpose and custom computing in one hybrid field-programmable custom
computing machine [Vassiliadis et al., TC 2004]. It copes with a reconfigurable
coprocessing extension seamlessly coupled to a processor, all prototyped in a Xilinx
Virtex-II Pro FPGA. The PowerPC hard core embedded in the FPGA is operating as a
general-purpose processor while the reconfigurable fabric is used as a reconfigurable
coprocessor [Kuzmanov et al., SAMOS 2004]. Additionally, some exchange registers
(XREG) are introduced to communicate the reconfigurable processor with the core
processor giving rise to an architectural coupling. Moreover, this coupling is performed at
the level of an assembler instructions extension: some few instructions are added to the
original assembler instructions set of the core processor to drive the coprocessor. The
minimal extension comprises only four instructions: two instructions (set/execute) for
loading a hardware implementation and launching its execution on the reconfigurable
hardware, and two instructions (movtx/movfx) for providing the communication via
XREG registers between the reconfigurable hardware and the general-purpose processor.
The two main components in the Molen machine organization are the Core Processor,
which is a general-purpose processor, and the Reconfigurable Processor. The main
memory stores the program code, the application data and the partial bitstreams.
Instructions are fetched from the main memory and issued to either processor by the
Arbiter. Data are fetched/stored by the Data Fetch unit. The Memory Mux/Demux unit is
responsible for distributing/collecting data. The reconfigurable processor is divided in
two units: the Reconfigurable Microcode (ρµ-code) Unit and the Custom Configuration Unit
(CCU). The CCU consists of reconfigurable hardware (e.g. FPGA) and memory. The ρµ-
code unit is responsible for controlling the downloading of the partial bitstream from the
main memory to the FPGA configuration memory. This role assigned to the ρµ-code unit
is deployed when executing the instructions set/execute during the reconfiguration
and the next execution of the reconfigurable task: the set phase can be scheduled well
ahead of the execute phase, thereby hiding the reconfiguration latency. After the
reconfiguration, the role of the ρµ-code unit is to communicate the CCU with the core
processor, taking care of the exchange of function parameters and results between both
processors through the movtx/movfx instructions [Kuzmanov et al., SAMOS 2003]. The
system architecture detached in functional blocks is depicted next.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 83

Figure 4.11 Molen system architecture

Comparing the Molen architecture with the one presented in this dissertation, the CCU
matches with the PR partition of the approach described in section 4.4.1. The
communication interfaces between the core processor and the reconfigurable processor is
performed through registers (i.e., the extended registers XREG, role taken by the slave
MMU in our approach) and via a direct memory access (in our case through the master
MMU). The reconfiguration engine and the communication controllers between both
static and PR regions (registers and memory interfaces) are implemented here by the
arbiter, the ρµ-code unit and the memory mux/demux. The most relevant novelty of the
Molen approach is the fact that the compiler is involved in the reconfigurable hardware
implementation [Moscu et al., TECS 2007]. In this way, the designer can check the
scheduling of the application and the reconfiguration at compilation time, and check any
inconsistency/confict regarding space and sharing of reconfigurable resources.

4.5 Summary

In this chapter, the author proposes a standard system architecture oriented to a broad
range of embedded applications targeting both general-purpose and specific digital
computation. This approach is deployed in an FPGA or PSoC platform exploiting run-
time hardware reconfiguration. The system architecture and its components breakdown
has been addressed throughout the chapter. The proposed architecture includes the
management of the partial reconfiguration process through a reconfiguration engine
seamlessly merged to the system. In this way, the reconfiguration is transparent to the
application itself, where the reconfiguration handshake remains practically hidden to the
application. The reason behind this approach is the attempt to reach a generic
architecture able to fit an extensive range of end-user applications exploiting the use of
flexible hardware in order to speed-up the application execution and to reduce costs by
the time multiplexing of resources. This system architecture has been compared with
similar architectures developed by other research groups. The proposed architecture, like
other state-of-the-art architectures discussed, becomes a generic approach valid for a
wide range of computing applications. In this direction, the system architecture proposed
in this chapter has been deployed by the author in several real application examples to
demonstrate the viability of the model, as detailed later in the part IV of this dissertation.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 84

References

[Bobda et al., FPT 2005]
C. Bobda, A. Majer, A. Ahmadinia, T. Haller, A. Linarth, J. Teich, The Erlangen Slot Machine: Increasing
flexibility in FPGA-based reconfigurable platforms, Proceedings of the IEEE International Conference on
Field-Programmable Technology, pp. 37-42, 2005.

[Claus et al., DATE 2007]
C. Claus, J. Zeppenfeld, F. Müller, W. Stechele, Using partial-run-time reconfigurable hardware to
accelerate video processing in driver assistance systems, Proceedings of the Conference and Exhibition
on Design, Automation, and Test in Europe, pp. 498–503, 2007.

[Claus et al., IT 2007]
C. Claus, W. Stechele, A. Herkersdorf, Autovision – A run-time reconfigurable MPSoC architecture for
future driver assistance systems, Information Technology, vol. 49, no. 3, pp. 181-187, 2007.

[Garcia et al., FCCM 2009]
R. Garcia, A. Gordon-Ross, A. George, Exploiting partially reconfigurable FPGAs for situation-based
reconfiguration in wireless sensor networks, Proceedings of the IEEE Symposium on Field Programmable
Custom Computing Machines, pp.243-246, 2009.

[Huebner and Becker, JICS 2006]
M. Huebner, J. Becker, Dynamic and partial FPGA self-reconfiguration using real-time LUT-based
network-on-chip adaptive topologies for Xilinx FPGAs, Journal Integrated Circuits and Systems, vol. 1,
no. 4, pp. 43-53, 2006.

[Huebner et al., FPL 2004]
M. Huebner, M. Ullmann, L. Braun, A. Klausmann, J. Becker, Scalable application-dependent network
on chip adaptivity for dynamical reconfigurable real-time systems, Proc. Int. Conf. on Field Programmable
Logic and Applications, LNCS, vol. 3203, pp. 1037-1041, Springer-Verlag, 2004.

[Jara-Berrocal and Gordon-Ross, DATE 2009]
A. Jara-Berrocal, A. Gordon-Ross, SCORES: A scalable and parametric streams-based communication
architecture for modular reconfigurable systems, Proceedings of the Conference and Exhibition on
Design, Automation, and Test in Europe, pp. 268-273, 2009.

[Jara-Berrocal and Gordon-Ross, DATE 2010]
A. Jara-Berrocal, A. Gordon-Ross, VAPRES: A virtual architecture for partially reconfigurable embedded
systems, Proc. Conf. and Exhibition on Design, Automation, and Test in Europe, pp. 837-842, 2010.

[Jara-Berrocal and Gordon-Ross, ReConFig 2009]
A. Jara-Berrocal, A. Gordon-Ross, Runtime temporal partitioning assembly to reduce FPGA
reconfiguration time, Proc. Int. Conf. on Reconfigurable Computing and FPGAs, pp. 374-379, 2009.

[Kuzmanov et al., SAMOS 2003]
G. Kuzmanov, G.N. Gaydadjiev, S. Vassiliadis, Loading rm-code: Design considerations, Proceedings of
the International Workshop on Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
LNCS, vol. 3133, pp. 11-19, Springer-Verlag, 2003.

[Kuzmanov et al., SAMOS 2004]
G.K. Kuzmanov, G.N. Gaydadjiev, S. Vassiliadis, The Virtex II Pro™ MOLEN processor, Proceedings of the
International Workshop on Computer Systems: Architectures, Modelling, and Simulation, LNCS, vol.
3133, pp. 192-202, Springer-Verlag, 2004.

[Majer et al., VLSI 2007]
M. Majer, J. Teich, A. Ahmadinia, C. Bobda, The Erlangen Slot Machine: A dynamically reconfigurable
FPGA-based computer, The Journal of VLSI Signal Processing, vol. 47, no. 1, pp. 15-31, 2007.

[Moscu et al., TECS 2007]
E. Moscu Panainte, K. Bertels, S. Vassiliadis, The Molen compiler for reconfigurable processors, ACM
Transactions in Embedded Computing Systems, vol. 6, no. 1, pp. 1-18, 2007.

[Platzner et al., Springer 2010]
M. Platzner, J. Teich, N. Wehn (Eds.), Dynamically reconfigurable systems - Architectures, design
methods and applications, Springer, ISBN 978-90-481-3484-7, 2010.

[Ullmann et al., FPL 2004]
M. Ullmann, M. Hübner, B. Grimm, J. Becker, On-demand FPGA run-time system for dynamical
reconfiguration with adaptive priorities, Proc. of the Int.Conference on Field Programmable Logic and
Applications, LNCS, vol. 3203, pp. 454-463, Springer-Verlag, 2004.

[Ullmann et al., IPDPS 2004]
M. Ullmann, M. Hübner, B. Grimm, J. Becker, An FPGA run-time system for dynamic on-demand
reconfiguration, Proceedings of the International Parallel and Distributed Processing Symposium, 2004.

[Vassiliadis et al., TC 2004]
S. Vassiliadis, G. Gaydadjiev, G. Kuzmanov, The MOLEN polymorphic processor, IEEE Transactions on
Computers, vol. 53, no. 11, pp. 1363-1375, 2004.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 85

Chapter 5

Reconfiguration engine

This chapter focuses on the mechanism which allows an SRAM-based programmable
logic device to partially or fully reconfigure its logic resources at run-time, while the rest
of its non-reconfigured/non-reconfigurable resources continue in operation without
suffering any interruption (i.e., operation discontinuity) or affectation (i.e., malfunction),
and making the reconfigured blocks –just after concluding the reconfiguration– restart
their activity to join thus the rest of device already in operation. As part of the functional
components which constitute the embedded reconfigurable system architecture
promoted in the previous chapter, next it is presented the design features of the
reconfiguration engine as well as the technological characteristics demanded to the
SRAM-based programmable logic device that shall harbour it. After evaluating different
closed (e.g. Atmel, Altera) and open (e.g. Xilinx) reconfiguration engine solutions applied
to embedded systems based on FPGA or PSoC devices, the author details step by step the
modeling of the reconfiguration engine proposed.

5.1 Reconfiguration design parameters

As introduced in chapter 4, given an embedded system based on an SRAM-based
programmable logic device provided with run-time reconfigurable hardware technology,
the reconfiguration engine is is one of the basic components in the system architecture.
Apart from the bitstreams repository, typically composed of an external non-volatile or
volatile memory chip, the reconfiguration engine is constituted by three functional blocks
which build the reconfiguration datapath, as illustrated in Figure 4.1: the SRAM-based
configuration memory of the programmable logic device, the PR partitions which delimit
the set of resources subject to be reconfigured at run-time, and the reconfiguration
controller which manages the transfer of the partial bitstreams from the repository to the
internal configuration memory. Attending to features of the reconfiguration controller,
certain programmable logic devices allow conducting the dynamic reconfiguration of their
resources by themselves, that is, in an autonomous way – without requiring the help of
any external logic. For this, these devices include in their fabric the complete
reconfiguration logic. Other approaches are based on the use of external devices to
implement the logic that controls the reconfiguration, for instance through an external
processor or MCU responsible for carrying out the bistream transfer, or by means of an
external CPLD which implements the specific controller, or even embedding this
controller in the repository memory chip (e.g. platform flash PROM devices, composed of
flash memory and a controller provided with an integrated bitstream delivery mechanism
adapted to the transfer protocol of the Xilinx FPGA devices). Figure 5.1 shows these two
different reconfiguration approaches: self-reconfiguration and external reconfiguration, in
function of whether the reconfiguration controller is placed inside the FPGA or outside.
In the block diagram, the reconfiguration controller is shown split in two parts, making a
clear distinction between the functional block that takes care of translating the FPGA
raw data received through the bitstream frames to be loaded into the internal FPGA
configuration memory –called reconfiguration logic– and the logic block responsible for
handling the high-level control and handshake of the bitstream transfer between the
external memory and the FPGA – called reconfiguration controller. Both logic blocks are
connected via the reconfiguration port.
The reconfiguration efficiency is function of a large number of design parameters that
shall be carefully evaluated, as discussed in chapter 2. Design parameters related to the
technology of the programmable logic device –like reconfiguration granularity, bitstream

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 86

RECONF.
CONTROLLER

RECONF. PORT

FPGA
CONFIGURATION

MEMORY

RECONF. LOGIC

EXTERNAL
MEMORY

BITSTREAM
REPOSITORY

RECONF.
CONTROLLER

RECONF. PORT

FPGA
CONFIGURATION

MEMORY

RECONF. LOGIC

EXTERNAL
MEMORY

BITSTREAM
REPOSITORY

FPGA

FPGA

format, reconfiguration bandwidth (intimately linked to memory interface features like
data bus size and operation frequency), or others related to the tasks partitioning of the
end-user application (size of the reconfigurable region, resultant bitstream complexity of
the reconfigurable module placed in the PRR, time elapsed between consecutive
reconfigurations of one or several PRRs, etc), or even others that influence the system
architecture like workload of the reconfiguration bus and the bitstream repository–
affect, in the end, the reconfiguration latency of the PR module to be placed and
performed at run-time in a shared region of hardware resources of the programmable
logic device. Although some of these design parameters are unchangeable in a device and
therefore they cannot be modified or manipulated by the system architect, there are
others that are flexible, giving certain freedom to design the reconfiguration controller in
the most efficient way possible and meet thus the constrains imposed by the end-user
application. In fact, the design of a reconfiguration controller is a design space that has
attracted numerous research groups in the past. Nowadays, a big effort is being
addressed to this topic. The research community is aware of the importance of all these
aspects to succeed in the implementation of embedded electronic systems driven by run-
time reconfigurable hardware.

Figure 5.1 Self-reconfigurable FPGA versus externally-reconfigurable FPGA

5.2 State-of-the-art reconfiguration controllers: a survey

In the implementation of an end-user application partitioned in a set of functional tasks
that are processed one after another, if such application is implemented in software
executed by one core processor, the transition from one task to the next one is typically
performed by the sequential switching of functions, having several consecutive function
calls in the program flow. This switching mechanism is practically negligible in terms of
time consumption; the processor spends just some few assembler instructions to leave a
function by recovering the previous execution context from the stack and performing the
jump to the next function, stacking again its new context before starting its execution.
This operation takes typically some few clock cycles. The level of efficiency of tasks

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 87

switching reached when these tasks are synthesized in software would be a priori
expected also when these tasks are implemented in reconfigurable hardware on a PR
partition. However, this short latency is not feasible in case of switching hardware tasks
in a partially reconfigurable FPGA, especially if the processing unit instantiated in the PR
partition is large. Physically, this switching consists in transferring a partial bitstream
from the repository to the configuration memory of the programmable logic device, that
is, to read data from one memory and write them into another memory. Such transaction
takes a specific time delimited by the amount of data to be transferred, the bandwidth of
the input and output memories, etc. In function of all these parameters, the
reconfiguration time can result non-negligible, being even much longer than the time
spent afterwards processing that task in the PR partition. As the time required by this
physical transaction cannot be avoided, the strategic solution to this issue in partially
reconfigurable FPGA devices consists in hiding this operation in background while other
tasks are performed in foreground. This hiding mechanism can be achieved only if the
reconfigurable system is a multi-processing system, composed of two or more hardware
or software controllers able to reach a concurrent processing of several threads in
parallel, in order to overlap the reconfiguration of one task with the execution of another
task. In this way, one processor or coprocessor can perform the reconfiguration of a PRR
to fit there a task Tj while other processor is simultaneously executing the functional
task Ti scheduled at that time placed outside that PRR (i.e., either in software, or in
hardware inside another PRR). Once the task currently in execution Ti finishes, the
application flow can switch to process the next task Tj scheduled in the reconfigured
PRR. As the reconfiguration has been performed in advance, the tasks switching is now
immediate and practically does not penalize in time. Attending to the viability of hiding
the reconfiguration process during the execution of an application, the system
architecture can be classified in two types:

� System architectures with unhidden reconfiguration latency
In partially reconfigurable FPGAs composed of one PR partition, the reconfiguration
cannot be hidden since the PRR is not operative while it is reconfigured (during the
reconfiguration it stays in reset or transient state). Therefore, to the time required to
process the hardware tasks it is necessary to add now the time required to reconfigure
each one of these tasks into the PRR, resulting in a time overhead for the application
execution. In such a case, the implementation efficiency of the reconfiguration engine
is a key design factor, especially in real-time or time-critical embedded applications.

� System architectures with hidden reconfiguration latency
In partially reconfigurable FPGAs with two PR partitions and in multi-context FPGAs,
the reconfiguration latency can be hidden by reconfiguring one PRR or context while
another is in operation. In this way, the system can see one hardware task running at
any time. The price to pay in order to reach this linear execution of tasks is however
quantified in area, i.e. hardware resources. The uninterrupted sequential processing of
application tasks, without interleaving wait states originated by the reconfiguration
process, is achievable in a single hardware context composed of two PRRs at expenses
of having one of two PRRs inoperative whenever it is reconfigured, fact that involves an
area overhead that the system must afford. In multi-context FPGAs, the context swap
time is basically null –one clock cycle is usually enough to switch from one hardware
context to the next one, although the time required to transfer the new bitstream from
the repository shall be considered too– but to hide the reconfiguration time there is an
evident overhead of resources since the device is architected with two or more
hardware contexts and only one context is active at one time. Another approach is the
use of partially reconfigurable FPGAs with more than two PR partitions, where two or
more hardware tasks can be executed simultaneously in different PRRs. However,
these systems can require a higher reconfiguration bandwidth in order to support the
concurrent execution of several PR modules.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 88

Current state-of-the-art programmable logic devices provide a limited solution regarding
run-time partial reconfiguration efficiency. Some devices integrate solutions totally closed
from the architectural viewpoint, without offering any chance to the system architect to
improve some design aspects of the reconfiguration controller. Other devices offer more
open solutions where the system architect can still tailor the reconfiguration controller.
Just in these cases, however, the reconfiguration controller is not a standard IP
selectable from a library which can be parameterized automatically supported by EDA
tools. In open platforms, these reconfiguration controllers are designed by hand today.
Many research groups address the design of custom reconfiguration controllers to embed
them in their designs. The next sections show a survey of the current reconfiguration
controllers used in the most advanced reconfigurable systems available in the scientific
literature. Besides, the work conducted focuses on several commercial families of PSoC
and FPGA devices from different vendors –Atmel, Altera and Xilinx– which have been
deeply investigated in this dissertation. Some experiments have been carried out with
those devices, prototyping real applications based on run-time self-reconfiguration.

5.2.1 Closed reconfiguration controller solutions

Some programmable logic devices, especially SoCs provided with an MCU and an FPGA
in a single chip, offer a hard-coded reconfiguration controller solution through which the
MCU can manage the reconfiguration of the FPGA at run-time. In this approach, the
hard-core processor of the MCU stays active while the FPGA can be fully or partially
reconfigured. This solution is totally closed from an architectural viewpoint since the
FPGA configuration memory is accessible only through such hard-wired interface at run-
time. Therefore, only the MCU can perform the reconfiguration by transferring the
bitstream to the FPGA configuration memory through such specific interface. Two similar
approaches, one from Atmel and another from Altera, are described next.

A. Atmel AT94K/AT94S FPSLIC

The Atmel AT94K Field Programmable System Level Integration Circuit (FPSLIC) is a
family of programmable SoC devices which combines an Atmel 8-bit AVR RISC hard-core
MCU and an Atmel AT40K SRAM-based FPGA. The on-chip FPGA configuration memory
is accessible from the MCU core to support in-system dynamic full or partial FPGA
reconfiguration, trademarked as Cache Logic by Atmel Corporation [Atmel Corp., AN1088
1998]. The AT94K family supports the writing and reading of design specific data to or
from the configuration SRAM by means of a simple single port synchronous SRAM type
interface. This configuration interface consists of a clock, a write/read control line, an
error flag line, a 24-bit address bus and an 8-bit data bus. The CPU has direct access to
the data buses of the FPGA configuration SRAM and is able to download bitstreams as
required [Atmel Corp., RM1138 2008]. This interface is depicted next.

Figure 5.2 Internal FPGA configuration port in Atmel AT94K FPSLIC

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 89

The Cache Logic port in the MCU is located in the I/O memory map. Three write-only
registers (FPGAX, FPGAY and FPGAZ) control the address to access to a specific
reconfigurable resource inside the FPGA whereas other register (FPGAD) controls the
data [Atmel Corp., AN1009 2002]. The FPGAD I/O address is not physically supported by
a register; it is simply the I/O address which, if written to, triggers the FPGA cache I/O
write strobe operation. In this way, the CACHEIOWE signal is a qualified version of the
AVR IOWE (input output write enable) signal which is only active if an OUT or ST (store-
to) AVR instruction references the FPGAD I/O address. As result, the 32-bit word
composed by the address and data buses constitutes a configuration word that is latched
at each configuration clock. These 32-bits are decomposed into a 2D address, i.e., two 8-
bit horizontal (FPGAX) and vertical (FPGAY) coordinates which address the physical
position of the resource in the FPGA plane, a third coordinate (FPGAZ) or depth
dimension to codify the specific type of resource pointed out, and finally, the 8-bit SRAM
configuration data (FPGAD) to be mapped on that address given by the 3D (X,Y,Z)
coordinates. With this, the MCU manages in software the transfer of the bitstream to the
FPGA configuration memory through a dedicated 24-bit address and 8-bit data interface
so that the entire FPGA or selected portions can be reconfigured at run-time [Atmel
Corp., AN2313 2001]. This programming format, so-called Mode 4, provides complete
configuration data with explicit address information to perform a synchronous access the
SRAM configuration memory. Therefore, this interface does not require any complex
configuration state machine during the download process. During write/read cycles,
data, address and control signals are presented simultaneously to the configuration
SRAM and the writing/reading cycle occurs on the falling or rising edges of the clock.
The FPGA bitstream format can be obtained from [Atmel Corp., AN2323 2001], made
available only under non-disclosure agreement by Atmel to protect customers from
reverse engineering their FPGA designs. The smallest unit of configuration data which
can be programmed is one byte (8-bit data bus wide), although the minimum
reconfiguration change is one bit if the other seven bits of the data byte keep unchanged
with regard to the previous value stored, achieving a fine reconfiguration granularity. As
additional reconfiguration features, the maximum reconfiguration frequency is restricted
to 25 MHz, transmitting 8 bits of data per clock. However, managed from the MCU, the
reconfiguration of an 8-bit resource requires typically four instructions to access the
resource in its specific location (addressX, addressY, addressZ) and overwrite the
value dataReconf there, since such implicit 32-bits word addressing is managed from an
8-bit CPU, as shown in the piece of code next.

 #define FPGAX (*(volatile unsigned char*)(BASE + 0x18)) /* FPGA Cache X Address Reg. */
 #define FPGAY (*(volatile unsigned char*)(BASE + 0x19)) /* FPGA Cache Y Address Reg. */
 #define FPGAZ (*(volatile unsigned char*)(BASE + 0x1A)) /* FPGA Cache Z Address Reg. */
 #define FPGAD (*(volatile unsigned char*)(BASE + 0x1B)) /* FPGA Cache Data Register */

 FPGAX = addressX;
 FPGAY = addressY;
 FPGAZ = addressZ;
 FPGAD = dataReconf;

Code 5.1 Reconfiguration of an 8-bit resource of the FPGA via the MCU software code

Moreover, each one of these C instructions, once compiled, results disassembled into two
AVR instructions –according to the addressing mode supported by the AVR processor for
I/O access– of the processor instruction set: the data is loaded first in a general-purpose
register (LDI Rx, data) and from this is transferred then to the specified address (OUT
address, Rx). In this way, the writing to any of these FPGA registers takes 2 AVR clock
cycles and therefore the total execution time of the four generic C code instructions
shown above is 8 clock cycles. In conclusion, although this device has a great flexibility
thanks to its fine reconfiguration granularity (up to 1-bit of the configuration memory
can be changed at one time), its reconfiguration throughput is low. Table 5.1
summarises the more relevant features of the Atmel FPSLIC AT94K reconfiguration

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 90

controller architecture. In the part IV of this dissertation, some reconfigurable
applications are deployed in the AT94K FPSLIC aimed at exploring the performance of
this architecture. The main drawback of this PSoC device is, however, its limited size
(only 40 Kgates in the AT94K40 device), enabling only the development of small
embedded applications.

Table 5.1 Atmel AT94K/AT94S FPSLIC reconfiguration controller

DEVICE
FAMILY

RECONF.
WORD

MAX. RECONF.
FREQUENCY

CONFIG.
INTERFACE

RECONF.
LATENCY

RECONF.
GRAIN

AT94K / AT94S

8 bits 25 MHz explicit word address+data 4 memory accesses per data byte 1 bit SRAM

B. Altera Excalibur EPXA SoPC

Altera developed the family of Excalibur system-on-programmable-chip devices which
combine a 32-bit RISC ARM9 MCU with an Altera APEX20KE FPGA on a single chip
[Altera Corp. HRMEPXA 2002]. The embedded MCU consists of a hard core 32-bit
ARM922T processor, on-chip SRAM and dual-port SRAM memories and standard
peripherals such as timers, UART or SDRAM controllers, all interconnected through two
AMBA AHB buses, AHB1 and AHB2. Besides, external non-volatile and volatile memories
(used to store the CPU program and the application data, as well as the FPGA
bitstreams) can be linked to the SoPC device through both a SDRAM controller and an
expansion bus interface (EBI) internally connected to the AHB buses. All these
components compose a typical MCU-based computing platform. In addition to the MCU,
an FPGA device is connected to the system through some internal dual-port memories
(DPRAM) and also AHB bus interfaces which enable the communication among
peripherals of the embedded MCU and custom hardware processors implemented by the
designer in the FPGA. In addition, the shared DPRAM allows the logic in the FPGA to
interface with the MCU. Besides, a reconfiguration controller is connected to the AHB2
bus to carry out the reconfiguration of the FPGA at run-time. This reconfiguration
controller is managed by the ARM9 processor through a set of configuration registers
placed in the system memory map. One of these registers is used to buffer the bitstream
to the internal FPGA configuration memory. The other control and status configuration
registers are connected to the logic of the configuration controller to handle the transfer
of the full bitstream from the MCU data buffer register to the FPGA configuration
memory adapted to the specific configuration protocol of the APEX20KE device. In this
way, the reconfiguration controller provides the configuration port (control, data and
status signals) for the specific FPGA interface.
The system bitstream contains the configuration data for all the system, i.e., the
embedded MCU configuration and its program code, and also the FPGA configuration
data. This FPGA admits only a full reconfiguration of the device; a partial reconfiguration
is not possible. In this way, the configuration controller takes charge of all the boot
process of the Excalibur device, such as configuring the PLLs, the memory map and even
the embedded MCU and its cache memories, although the last step related to the FPGA
configuration is performed by the embedded MCU itself. In fact, during the
reconfiguration, the FPGA is not operative while the MCU keeps in operation and takes
charge of the reconfiguration process [Altera Corp., AN187 2003]. The set of
configuration registers accessible by the ARM9 CPU to transfer the full bitstream to the
configuration memory of the APEX 20KE FPGA are detailed next:
� The CFG_DATA register is the input buffer through which the reconfiguration

controller receives synchronously the FPGA bitstream,
� The CFG_CLCK register lets configure the clock frequency used to transfer the

bitstream to the FPGA,

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 91

ARM9 CPU RECONF.
LOGIC

CFG_UNLK

32 bits

CFG_DATA

CFG_CLCK

CFG_CTRL

nSTATUS

DATA[7:0]

DCLK

CONFIG_DONE

APEX 20KE FPGA

32 bits

32 bits

32 bits CONFIG_ENABLE

RECONF.
CONTROLLER

CONFIG.
LOGIC

� The CFG_CTRL register performs all the handshake necessary between the ARM9 CPU
and the FPGA reconfiguration controller, and finally,

� The CFG_UNLK register is used as a protection mechanism against unintended
accesses to the FPGA configuration port, only admitting configuration data to initiate
the reconfiguration if the configuration logic is unlocked.

The configuration port of the FPGA and its connection to the MCU through the
reconfiguration logic is illustrated in Figure 5.3, where the reconfiguration controller is
managed in software by the MCU through the four control and status registers and the
reconfiguration logic is mapped as a hard core in the fabric to adapt the four registers
interface to the reconfiguration port of the FPGA and its configuration logic.

Figure 5.3 Altera Excalibur EPXA reconfiguration controller architecture

The APEX20KE is reconfigured in Passive Parallel Synchronous (PPS) mode [Altera Corp.,
AN116 2000]. The reconfiguration port of the FPGA constituted by the control lines
CONFIG_DONE, CONFIG_ENABLE, nSTATUS, DCLK and the DATA bus is connected to the
FPGA configuration logic to access thus the SRAM configuration memory. To begin the
FPGA configuration, CONFIG_ENABLE is given a low-to-high transition and the
configuration data is transferred from the reconfiguration controller to the FPGA via the
DATA bus. This configuration data is synchronized to the DCLK input. On the first rising
edge of DCLK, a byte of configuration data is latched into the FPGA. Eight falling edges of
DCLK are required then to internally serialize the 8-bit data in the FPGA and reach thus
the configuration memory. Like this, the 32-bit data word received from the MCU register
by the reconfiguration controller is split first in four 8-bit words to be transferred in this
format to the FPGA reconfiguration logic; afterwards, these 8-bit words are serialized
with DCLK to meet in the end the 1-bit serial synchronous interface of the internal FPGA
configuration memory. Thus, new data shall be presented by the reconfiguration
controller and latched by the FPGA every eight clock cycles, and this process continues
until the full FPGA bitstream is transferred. A status pin nSTATUS on the FPGA indicates
when it is serializing data and when it is ready to accept the next data byte (ready/busy).
The reconfiguration controller senses this low signal to send bitstream bytes only when
the FPGA is ready. Moreover, if an error occurs during configuration, the nSTATUS pin
drives low. Once the full bitstream is configured successfully, the FPGA releases the
CONFIG_DONE pin. When CONFIG_DONE goes high, it indicates that configuration is
complete. After the last data byte, the DCLK pin must be clocked 40 times for the
APEX20KE device to release CONFIG_DONE and initialize the FPGA.
According to the reconfiguration protocol described, the effective configuration
throughput is 1 bit/clock. Besides, the maximum configuration frequency of the
APEX20KE is 16 MHz –programmable through the CFG_CLCK register– and results in a
maximum reconfiguration bandwidth of 16 Mbps. Due to the reconfiguration system
architecture, the FPGA is reconfigured by the ARM9 processor via the reconfiguration
controller managed in software. The ARM9 core runs in software the transfer of the
binary file stored in memory related to the full FPGA bitstream [Altera Corp., AN298
2003]. The embedded MCU configures the FPGA by transferring the bitstream through
the CFG_DATA register. This transfer is partitioned in 32-bit words via AHB2.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 92

Nonetheless, CFG_DATA is only a holding register and the data stored in this register are
then loaded serially (1-bit data per clock cycle) into the FPGA configuration memory
[Altera Corp., DSAPEX20K 2003]. The program code of the full reconfiguration is shown
next.

 #define CFG_CTRL (*(volatile unsigned long*)(BASE + 0x140)) /* FPGA control cfg reg. */
 #define CFG_CLCK (*(volatile unsigned long*)(BASE + 0x144)) /* FPGA clock cfg reg. */
 #define CFG_DATA (*(volatile unsigned long*)(BASE + 0x148)) /* FPGA data cfg reg. */
 #define CFG_ULCK (*(volatile unsigned long*)(BASE + 0x14C)) /* FPGA unlock cfg reg. */

 CFG_ULCK = CONFIG_UNLOCK_MASK; /* unlock configuration logic */
 while (CFG_CTRL & CONFIG_LOCK_MASK); /* wait until configuration logic unlocked */
 CFG_CLCK = CONFIG_CLOCK_FREQ; /* set configuration logic clock frequency */
 CFG_CTRL = CONFIG_ENABLE_MASK; /* enable configuration */
 while (sbiAddress <= sbiAddressEnd) /* full bitstream transfer from ext. memory to FPGA */
 {
 while (CFG_CTRL & CONFIG_BUSY_MASK); /* check busy status bit */
 CFG_DATA = *(unsigned long *)sbiAddress; /* 32-bit data from bitstream sbi file to buffer */
 sbiAddress ++; /* point to the next 32-bit bitstream data word */
 }
 while (CFG_CTRL & CONFIG_ENABLE_MASK); /* wait until configuration is complete */

Code 5.2 Reconfiguration of the FPGA via the MCU software code

In Excalibur devices, the FPGA is configured by the MCU not only at the start up
sequence, after power-on reset, but it is also possible in any moment during normal
execution. The FPGA is stopped while the MCU continues active, reconfiguring the
programmable logic by transferring configuration data from a flash memory. During the
system initialization, which occurs immediately after configuration, the FPGA resets its
registers first and then, once the initialization is complete, the system begins to operate.
That means that the intermediate data obtained during the execution of a hardware
context are lost when a new hardware context is downloaded and initialized. This
initialization of the content of registers is relevant from a point of view of the development
of reconfigurable systems since if this information is required to remain from one
reconfiguration to another then it shall be saved in memory on purpose, for instance in
the internal DPRAM shared by MCU and FPGA in the SoPC device, and be recovered then
to be used in the next hardware context after reconfiguration.
Furthermore, the bitstream is composed of an array of data where each bit in the
sequence corresponds to a specific reconfigurable resource of the FPGA. This bitstream
format does not admit then a partial reconfiguration of the device since the absolute
address for each configuration bit is not explicitly specified in the bitstream format but it
is calculated through the sequential order in which the bits are transferred to the FPGA
configuration memory. In this way, the bitstream size related to each FPGA device of the
Excalibur family is fixed, independently of the design implemented inside the FPGA.
Furthermore, to the best of the author’s knowledge, Altera never released public
information about the bitstream format of the APEX20KE FPGA placed inside the
Excalibur SoPC device so there is no chance for system developers to make big research
progress in this direction to try to improve the efficiency of the reconfiguration process.
Furthermore, the configuration port is not accessible from the FPGA logic but only from
the MCU, therefore it is not possible for the system architect to modify the technical
characteristics of this reconfiguration engine. The more relevant technical features of the
reconfiguration engine architecture is shown next in Table 5.2.

Table 5.2 Altera Excalibur EPXA reconfiguration controller

DEVICE
FAMILY

RECONF.
WORD

MAX. RECONF.
FREQUENCY

CONFIG.
INTERFACE

RECONF.
LATENCY

RECONF.
GRAIN

EPXA1, EPXA4, EPXA10

32 bits 16 MHz
sequencial data stream
(implicit addressing)

1 clock per data bit Full SRAM

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 93

The Excalibur device has been used in some application examples conducted in this
dissertation, partitioning the application in functional tasks synthesized in specific
coprocessors that are performed in the APEX220KE FPGA and reconfigured dynamically
by the ARM9 processor. Furthermore, some reconfiguration experiments based on
overclocking have been also performed, running the full FPGA reconfiguration at 50 MHz
instead of the maximum frequency specified by Altera of 16 MHz, reaching a
reconfiguration speed up factor of 3.125 without realizing any failure.
Although the Altera Excalibur family is nowadays deprecated, this device remains one of
the few commercial SoPCs –along with the Atmel FPSLIC AT94K– which admitted the
exploitation of run-time reconfigurable computing already ten years ago, constituted by
an ARM processor and an FPGA in the same package. Novel SoC devices recently
announced like Altera Cyclone-V and Arria-V SoC FPGAs or Xilinx Zynq-7000 EPPs keep
strong similarities with this SoPC device.

5.2.2 Open reconfiguration controller solutions

The reconfigurable platforms overviewed up to now offer a closed, hard-wired solution
regarding its reconfiguration engine. Other opposite alternative in commercial FPGAs is
to offer the reconfiguration engine as an accessible block, left open to customization after
manufacturing the device. Thus, in this case the system architect can design the
reconfiguration controller together with the end-user application. This more flexible
design approach is possible today with Xilinx FPGA devices, where the reconfiguration
controller can be designed as a soft-core IP at post-fabrication.

A. Xilinx Virtex/Spartan FPGAs

Xilinx is the FPGA vendor with the longest experience in the exploitation of run-time
partial reconfiguration in programmable logic devices. Concerning the reconfiguration
granularity of the Xilinx FPGA devices, the grain has been evolving with the launch of
new families of devices. As example, the fist Virtex families of FPGA devices (e.g. Virtex-II)
are arranged in frames that are tiled about the device. That is, the internal configuration
memory is partitioned into vertical segments of one-bit wide called frames. Thus, a frame
is the atomic unit of configuration –it is the smallest portion of the configuration memory
that can be written to or read from– and all operations must therefore act upon whole
configuration frames, while the number and size of frames varies with the device. More
recent families of Virtex devices (e.g. Virtex-4) admit a grain composed of a portion (some
CLB tall inside the same clock region) of a frame whereas in the Spartan families (e.g.
Spartan-3) the grain is increased to a full column, wich is composed of several frames.
Thus, depending on the family used, the reconfiguration grain of the programmable logic
device is restricted to a specific size. Although a single CLB LUT or flip-flop can be
modified, the underlying reconfiguration mechanism does not permit the writing to the
configuration memory by addressing a resource lower than the smallest grain. That
means that the reconfiguration of a 1-bit resource to change it from 0 to 1 (or 1 to 0) is
not possible unless the entire or partial column or frame where this resource is fitted is
reconfigured, changing only the target 1-bit resource and overwriting the rest of
resources with exactly the same values. As a consequence of this reconfiguration grain,
Xilinx FPGAs can be classified in two types from the point of view of partial
reconfiguration technology: PR glitchless and non-glitchless devices. Focusing on the
devices currently in the market, the PR non-glitchless devices are the Spartan-3 and the
extended Spartan-3A/3AN/3A DSP FPGA families. On the contrary, the latest Spartan-6
and the Virtex families Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5 and Virtex-6, in addition
to the 7-Series FPGAs and Zynq-7000 EPP devices are built with PR glitchless
technology. This is a crucial aspect concerning partial reconfiguration feasibility. PR
glitchless technology means that when an FPGA memory cell (logic or routing resource) is
reconfigured with the same value (0 or 1) than it has already stored, the memory cell
keeps such value constant (0 or 1) before, during and after the reconfiguration, therefore

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 94

CONFIGURATION
LOGIC

Serial

‘SYNC’ PATTERN RECOGNITION

MUX

JTAG

SelectMAP

ICAP

the resource controlled by that bit will not experience any discontinuity in operation.
This is not the case in PR non-glitchless technology, especially when the value rewritten
is 1: in this case it can be observed some transition to 0 in such signal that in terms of
functionality can originate some malfunction or unexpected glitch. Therefore, PR
glitchless technology is required in order to enable static routing resources cross a PR
partition with resources reserved for reconfiguration, a key condition for the automatic
place and route tools in order to make easier the routing of the reconfigurable system.
Xilinx devices offer a big flexibility regarding configuration interfaces. In general, each
device has several interfaces available to access to its configuration memory, from serial
to parallel. Most of these devices are also equipped with an internal configuration access
port (ICAP) interface to access the configuration memory. Each FPGA family holds
different characteristics concerning reconfiguration data width, reconfiguration frequency
and reconfiguration granularity. All these features are collected in Table 5.3.

Table 5.3 Partial Reconfiguration features of Xilinx FPGAs

DEVICE
FAMILY

MAX. RECONF. BANDWIDTH
(BUS SIZE & RECONF. FREQ.)

CONFIGURATION
INTERFACE

RECONF.
GRAIN

GLITCHLESS
PR TECH.

SPARTAN-3 400 Mbps (8 bits x 50 MHz) serial, JTAG, selectMAP full column no

SPARTAN-3E 400 Mbps (8 bits x 50 MHz) serial, JTAG, SPI, BPI, selectMAP full column no

VIRTEX-II/ II PRO 400 Mbps (8 bits x 50 MHz) serial, boundary scan, selectMAP, ICAP full frame yes

SPARTAN-3A/3AN/3A DSP 640 Mbps (8 bits x 80 MHz) serial, JTAG, SPI, BPI, selectMAP, ICAP full column no

VIRTEX-4 3.2 Gbps (32 bits x 100 MHz)
serial, JTAG, boundary scan, selectMAP,
ICAP

fraction of frame
of 16 CLB tall

yes

VIRTEX-5 3.2 Gbps (32 bits x 100 MHz)
serial, JTAG, boundary scan, SPI, BPI,
selectMAP, ICAP

fraction of frame
of 20 CLB tall

yes

SPARTAN-6 320 Mbps (16 bit x 20 MHz) serial, JTAG, SPI, BPI, selectMAP, ICAP
fraction of frame
of 16 CLB tall

yes

VIRTEX-6 3.2 Gbps (32 bits x 100 MHz)
serial, JTAG, boundary scan, SPI, BPI,
selectMAP & ICAP

fraction of frame
of 40 CLB tall

yes

Several configuration interfaces can access the configuration logic of the FPGA. The
arbitration mechanism to ensure that the access to the configuration memory is granted
only to one interface at one time is controlled through a word of synchronism
(0xAA995566) sent first within the bitstream (bit file). Inside the configuration logic, all
the configuration interfaces have a kind of pattern recognition block in charge of
detecting the SYNC word in the data stream. Once the SYNC word is found, such pattern
recognition block enables the corresponding data path to the configuration logic while all
other paths are automatically disabled at that time. This arbitration mechanism is
illustrated in Figure 5.4.

Figure 5.4 Arbitration of configuration interfaces in Xilinx FPGAs

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 95

RECONF.
CONTROLLER

ICAP

32, 16 or 8 bits

DATA OUT

WE

CE

DATA IN

FPGA
CONFIGURATION

MEMORY

BUSY

RECONF.
LOGIC

CLK

32, 16 or 8 bits

EXTERNAL
MEMORY

BITSTREAM
REPOSITORY

OPEN SOLUTION
(PROGRAMMABLE)

FIXED SOLUTION
(HARD FABRIC)

Undoubtedly, from all the reconfiguration interfaces available, the most attractive for PR
design is the ICAP primitive because it is accessible from inside the FPGA and offers the
maximum reconfiguration bandwidth possible. The ICAP interface is composed of the
control lines CLK (clock), CE (clock enable) and WR (write enable), a status signal BUSY
for handshake, and a data bus split in input IN and output OUT, both of 8, 16 or 32 bits
depending on the FPGA family. The block diagram of the reconfiguration controller
implementable in the Xilinx FPGAs via the internal ICAP interface is depicted below.

Figure 5.5 Xilinx FPGA reconfiguration controller architecture

The reconfiguration engine is split in a fixed logic or hard fabric (reconfiguration logic)
and a part built in flexible logic customizable by the system designer (reconfiguration
controller). The configuration logic consists of a packet processor, a set of registers, and
global signals that are controlled by the configuration registers. The packet processor
controls the flow of data from the configuration interface to the appropriate register. The
registers control all other aspects of configuration. The format of the Xilinx bitstreams is
organized in commands and configuration data. All bitstream commands are executed by
reading or writing to the configuration registers. The hard-coded reconfiguration logic in
contact with the ICAP and the FPGA configuration memory takes charge of decodifying
the bitstream. The flexible part implements the FSM related to the transmission of the
bitstream from the repository to the ICAP interface following the specific communication
protocol expected by the FPGA device.
The flexibility granted to Xilinx FPGAs regarding their open reconfiguration engine
architecture has allowed the research community to get involved in this topic
contributing with big efforts in search of efficient designs of reconfiguration engines for
embedded applications. This has been and remains still today a topic of high interest
among the scientific community, basically due to the relevant impact of the
reconfiguration latency on the performance of the applications based on dynamically
reconfigurable FPGAs. Some of the most relevant works on this area are presented next.

B. Research on reconfiguration controllers based on Xilinx FPGAs

First PR approaches carried out with Xilinx devices were focused on Spartan-3, starting
with low performance reconfiguration interfaces, for instance the JTAG interface
managed in software by an internal soft-core processor connected by GPIOs to the
external JTAG pins and reaching an extremely low reconfiguration rate of 2 Mbps
[Paulsson et al., FPL 2007], or even deploying the same approach but replacing the JTAG
by the external SelectMAP interface managed from custom logic inside the FPGA,
increasing thus the data bus width, although reaching yet a slow rate of 16.5 Mbps
[Gonzalez et al., MICRO 2007]. A weak point in those controllers is the fact that the
bitstream transfer is totally managed by the host processor in software, fact that reduces
the application performance since the reconfiguration task is not hidden to the own
functional processing of the application and furthermore this task can highly influence

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 96

the application scheduling. This reconfiguration time, usually carried out in one shot –
without interruptions in between– to accelerate thus the swapping of PR modules, could
provoke some difficulties to fit a long non-preemptive task devoted to reconfiguration in
the scheduling of applications like digital signal processing that demand a cyclic signal
sampling/computation at high frequencies. Just for this reason, intended to minimize
the impact of the reconfiguration over the application processing itself and not to degrade
the CPU performance with excessive additional workload, it results advisable to design a
master reconfiguration processor to manage all the transfer by itself, freeing thus the
system CPU. All these advances are applied in [Bayar and Yurdakul, HiPEAC 2008], still
under Spartan-3, based on a stand-alone hardware reconfiguration controller which
downloads the partial bitstream via the SelectMAP interface. Although it reaches the
maximum reconfiguration throughput of Spartan-3 FPGAs (8-bit data at 50 MHz, i.e. 400
Mbps), the main drawback of this solution is that the partial bitstream has to be
preloaded in BRAM (internal RAM blocks of the FPGA) because the controller retrieves
the data from there. This fact restricts this solution to extremely small partial bitstreams
given that, in general, the amount of RAM blocks available inside a FPGA is very limited.
Hence, this solution is only suitable for small PR regions. Another approach based on
Spartan-3 is presented in [Cantó et al., FPL 2009] where it is developed a custom
reconfiguration controller connected to the LMB-EMC bus. This controller retrieves 32-
bit words from an external SRAM or Flash memory using a LMB-EMC memory controller
and drives the 8-bit SelectMAP interface under a system clock of 40 MHz, reaching a
reconfiguration throughput of 319.8 Mbps.
Apart from Spartan-3 devices, other works have been conducted on Virtex-II Pro devices.
A NoC system equipped with a custom ICAP-based configuration controller under Virtex-
II Pro is presented in [Möller et al., ReCoSoC 2007], reaching a reconfiguration
throughput of around 80 Mbps. This reconfiguration throughput is achieved also in
[Bomel et al., ARCS 2009] with an embedded application running over Ethernet at 100
Mbps where the reconfiguration controller retrieve from remote servers the partial
bitstreams to be downloaded in the FPGA. This solution is prototyped in a Virtex-II Pro
device running at 100 MHz and the reconfiguration controller is implemented in software
by the PPC405 core and supported by DMA transfers. Both the processor and the
Ethernet controller are connected to the CoreConnect PLB bus and from there the
bitstream is bridged to the OPB bus where the ICAP interface resides. Another work
based on Virtex-II Pro and detailed in [Van der Bok et al., ProRISC 2007] concerns to the
implementation of an ICAP-based reconfiguration controller able to reconfigure a PRR at
its maximum throughput of 400 Mbps (8-bit data interface operating at 50 MHz).
However, such reconfiguration controller is designed in the way that it is connected to
the repository of reconfigurable bitstreams in an exclusive mode, i.e., an external
memory device is used as a dedicated resource connected only to the reconfiguration
controller by means of a specific memory controller –so-called partial reconfiguration
management unit (PRMU) – and connected to the external memory. The fact of using a
dedicated memory instead of a shared one to store the partial bitstreams can notoriously
increase the cost of the embedded solution since other processors in the system, e.g. the
CPU, do not have access to that data source and probably will require access to extensive
data, demanding thus the presence a second memory source in the system. Apart from
this drawback, as advantage, the dedicated bus to connect the reconfiguration controller
to the memory releases the processor bus, freeing it to other processors. Going on with
the overview of Virtex-II Pro based reconfiguration controllers, a master CoreConnect PLB
ICAP controller is developed in [Claus et al., IPDPS 2007]. It is equipped with DMA
capability to work independently of the CPU. The PLB and ICAP are clocked at 100 MHz.
This ICAP overclocking is possible by using a simple handshake protocol based on the
BUSY signal of the ICAP. This signal informs when it is possible to flow data through the
ICAP port. When the ICAP is busy, it is necessary to insert wait states as a result of
overclocking the ICAP above its specified frequency. In these conditions, it was possible
to achieve an effective throughput of 760 Mbps.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 97

As summary of the works on Spartan-3 and Virtex-II Pro devices, none of the approaches
discussed above fulfils all the requirements demanded to an efficient reconfiguration
controller; some of those controllers achieved some requirements but not all them at the
same time. The performance evaluation of all these solutions is presented in Table 5.4.

Table 5.4 Reconfiguration controllers implemented on Spartan-3 and Virtex-II Pro devices

Research work Reconfiguration controller FPGA
Memory type

(dedicated/shared2)
Reconf.

freq. (MHz)
Reconf.

bus (bits)
Througput
(Mbps1)

[Paulson, FPL 2007] CoreConnect-OPB JTAG Spartan-3 SRAM (d) 10 1 2.0

[Gonzalez, MICRO 2007] SelectMAP Spartan-3 SDRAM (d) 65 8 16.5

[Bayar, HiPEAC 2008] SelectMAP Spartan-3 BRAM (d) 50 8 400.0

[Cantó, FPL 2009] LMB-EMC SelectMAP Spartan-3 SRAM/FLASH (s) 40 8 319.8

[Möller, ReCoSoC 2007] ICAP Virtex-II Pro SRAM (d) 50 8 80.0

[Bomel, ARCS 2009] CoreConnect-OPB ICAP Virtex-II Pro Ethernet 100 8 80.0

[Van der Bok, ProRISC 2007] ICAP Virtex-II Pro PRMU (d) 50 8 400.0

[Claus, IPDPS 2007] CoreConnect-PLB ICAP Virtex-II Pro DDR-SDRAM (s) 100 32 760.0

(1) Mbit expressed in SI system (decimal base: 106), not in IEC 60027 system (binarly base: 220).
(2) Type of memory used to store the partial bitstreams: (d) dedicated and exclusively accessed by the reconfiguration controller or (s)

shared and accessible by other controllers from the system.

Of all the devices addressed up to now, Virtex-II Pro ICAP features the highest
throughtput. Its successors Virtex-4, Virtex-5, Virtex-6 and 7-series FPGA families did a
great advance concerning PR performance, delivering the maximum reconfiguration
bandwidth today in the market. Somehow, these devices symbolize the transition from
the early-access era to the mature era of partial reconfiguration. The PR early-access era
has been developed basically at the academia while the started mature era, although still
driven mainly by the research community, begins to gain ground also in the industry.
The research works conducted with these devices are covered in the next sections.

5.3 Reconfiguration engine architecture and modelling

This section presents the design of a reconfiguration controller suitable for state-of-the-
art programmable logic devices. The goal is to design a generic reconfiguration controller
easily portable to most of the embedded PR applications based on Xilinx FPGAs, aimed at
being a reference design or standard IP core to be used in many types of end-user
embedded applications. This approach has been prototyped in a Virtex-4 device.
The standard embedded system architecture presented in chapter 4 requires a master
reconfiguration controller provided with an efficient communication link to transfer
bitstream data from outside the FPGA to its internal configuration memory. This process
is carried out via an automatic direct memory access (DMA) transfer of data conducted in
background by the reconfiguration controller, concurrently to the host processor activity,
without causing any impact on the CPU load. In fact, the reconfiguration controller shall
be processor-independent; in foreground, the CPU runs the software program flow and
does not take part in the reconfiguration process except for configuring the transaction
settings (i.e., base address and size of the bitstream), ordering the start command, and
being notified by the reconfiguration controller just when the process has finished.

5.3.1 Reconfiguration controller architecture

The design of an efficient reconfiguration controller is a key aspect to succeed in the
development of partially reconfigurable embedded systems. It must take into account
some design constraints:
� It shall provide the maximum reconfiguration bandwidth possible to minimize thus the

reconfiguration latency whenever the application switches from one PRM to another.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 98

� The number of resources involved in its implementation shall be minimized since the
reconfiguration engine constitutes the only functional block in the system architecture
that differentiates a standard non-reconfigurable system from another reconfigurable
at run-time, as detailed in chapter 4.

� The operation of the reconfiguration engine shall be transparent to the end-used
application; an application designed in a traditional way with HW/SW co-design
should be portable to a PR implementation without too much effort, based on the
standard architecture proposed.

� In order to gain flexibility, the reconfiguration controller must be a modular IP core,
able to be parameterized and adjusted to different platforms.

The basic idea is to establish a permanent datapath between the memory that stores the
partial bitstreams and the FPGA configuration memory. The concept proposed is to insert
a FIFO memory as intermediate buffer between the bitstream repository and the FPGA
configuration memory in order to obtain a decoupling effect between the reconfiguration
logic subsystem and the memory storage subsystem. The write and read ports of the
FIFO let split the datapath in two isolated domains with different data bandwidth since
each port can be configured at different data bus size and frequency. Like this, while the
reconfiguration logic follows the specific proprietary protocol of Xilinx devices, the way
the bitstream is recovered from the external memory to be transferred to the FIFO is a
flexible characteristic in hands of the system designer. With this FIFO, the hardware-
dependent logic (restricted by the bitstream protocol and the ICAP) gets decoupled from
the service oriented to move data between memories, as illustrated in Figure 5.6.

Figure 5.6 Decoupling of bitstream provider and consumer via a simple dual-port FIFO

Next it is described the modelling of the FIFO memory concerning data bus size, depth
and operation frequency taking into account the restrictions imposed to the system.

Frequency F1
Data Bus D1

Frequency F2
Data Bus D2

FPGA
CONFIGURATION

MEMORY

SYSTEM
SHARED
MEMORY

(Bitstreams)

FIFO

RECONFIGURATION CONTROLLER
(Master MMU)

WR_CLK
RD_EN WR_EN
RD_CLK

EMPTY FULL
PROG_EMPTY PROG_FULL

RST

DATA_IN [0:n] DATA_OUT [0:m]

FIFO

WRITE PORT READ PORT

D2

F2

D1

F1

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 99

5.3.2 Analytical model formulation

The decoupling of data bandwidth between the write port and the read port of the FIFO
memory is achieved by designing both parameters –data bus size and operation
frequency– of each port individually, according to particular restrictions imposed to every
side of the FIFO, i.e., the memory storage and the reconfiguration logic itself. The side
related to the bistreams repository, which operates the write port of the FIFO, is usually
managed by a memory management unit (MMU). We use this acronym to refer to terms
of this part. The other side affected by the read port of the FIFO involves to the
configuration logic; likewise, the parameters related to this side will be designated by the
acronym CFG in the following mathematical development. In a first formulation, it is
presented the study of throughput aimed at minimizing the reconfiguration time.

A. Minimum reconfiguration time

Given a module described in HDL to implement a specific functionality in programmable
logic, once it is mapped in a certain FPGA technology and placed and routed in a specific
PRR, this PRM is abstracted in a binary file or bitstream. The resultant length of this
bitstream depends on the area bounded by the PRR (i.e., type and number of
programmable resources affected) and on the complexity of the PRM to synthesize such
functionality on those specific resources of the FPGA. Compilation tools perform all this
process automatically to convert the HDL code in binary data. This bistream must be as
short of possible to optimise thus two metrics: memory space and reconfiguration time.
Given a PRM defined by a partial bitstream of n bits, its reconfiguration into a specific
PRR consists in transferring the n bits to the configuration logic. The configuration logic
decodifies the n bits of the bitstream –usually decomposed in instructions, addresses and
configuration data– to store thus each configuration bit into the specific address of the
FPGA configuration memory. In order to minimize the reconfiguration time, the transfer
of data to the configuration logic must be performed at the maximum throughput
admitted, which is obtained when combining the maximum bandwidth (i.e., maximum
operation frequency f and maximum data bus width w of the configuration logic
interface) and furthermore transferring the n bits continuously at one word per clock
until the end, without interrupting this process by inserting wait states in between.
Thus, given a FIFO parameterized by the features shown next where the write port is
connected to the MMU and the read port is connected to the configuration logic (CFG):

Write Port

[]
[]Hz

T
ffrequency

bitswword

MMU
MMU

MMU

1==

=
 (5.1)

Read Port

[]
[]Hz

T
ffrequency

bitswword

CFG
CFG

CFG

1==

=
 (5.2)

in order to achieve the minimum reconfiguration latency, fCFG and wCFG shall match both
the respective maximum values admitted. Additionally, once the bitstream transaction
starts and the first word is received in the FIFO, the data flow must continue until the n
bits are transferred to the configuration logic. This condition implies that the FIFO
memory must not get empty until the transfer ends, so that the read port is continuously
sourcing data to the configuration logic. This condition can be expressed in the form that
the write port of the FIFO (MMU domain) shall provide a throughput or effective

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 100

bandwidth higher or equal to the one of the read port of the FIFO in the configuration
logic (CFG) domain. Matematically formulated:

≥
s

bits
ThroughputThroughput

CFGMMU
 (5.3)

In this analysis, two possible cases shall be distinguished: the case of having a bitstream
memory exclusively dedicated to the reconfiguration controller (dedicated resource) or the
case in which this memory is accessed by multiple processors at the same time,
becoming then a shared resource that needs arbitration to avoid data contention.

Case I. Dedicated resource (no arbitration)

In this condition, if the bitstream repository is a single data rate memory resource (e.g.
SRAM or Flash) managed exclusively by the reconfiguration controller or MMU connected
to the write port of the FIFO, the memory bandwidth is exclusively dedicated to the
MMU. The equation (5.3) is expressed as:

CFGCFGMMUMMU fwfw ⋅≥⋅ (5.4)

And the minimum reconfiguration time required to tranferring the n-bits bitstream is:

CFG
CFG

RECONF T
w

n
t ⋅

= (5.5)

Case II. Shared resource (arbitration)

In case that the memory used to store the partial bitstream is a shared resource whith
concurrent access by different processors, this resource shall be arbitrated. This fact
originates a possible loss of throughput. Besides, SDRAM memory is particularly suited
for data-intensive and cost-sensitive embedded applications because it provides low cost
large storage memory space, although it penalizes with some time overhead in the
reading and writing to SDRAM due to its internal buffering, pipeline, etc.
It is considered the MMU reads the shared memory by means of N-bits burst accesses.
Then, on average, the latency required to reach the resource in each burst transfer is
quantified in L clocks at fMMU. This latency is the result of considering the time overhead
factors mentioned above like resource arbitration and latency of the memory itself.

[]
[]MMUclocksLlatencyburst

bitsNlengthburst

=
=

 (5.6)

Therefore, the time Tburst spent in performing a burst transaction in these conditions is:

MMU
MMU

burst T
w

N
LT ⋅

+= (5.7)

In this context, the equation (5.3) is rewritten as:

CFG
CFG

MMU
MMU

T
w

N
N

T
w

N
L

N

⋅
≥

⋅

+

 (5.8)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 101

The left side of the equation determines the number of bits per second transmited in a
read burst transaction to move the data from the external memory to the write port of the
internal FIFO. The right side determines how many bits per second can be read from the
read port of the FIFO and provided to the ICAP. The equation can be reworked as follows:

CFGCFGMMU
MMU

MMU fwf
NwL

wN ⋅≥⋅
+⋅

⋅
 (5.9)

This condition must be met to guarantee the minimum reconfiguration time to
tranferring the n-bits bitstream partitioned in N-bit bursts, each burst transaction with a
latency L. If the equation (5.9) is fulfilled then the minimum reconfiguration time is:

CFG
CFG

RECONF T
w

n
t ⋅

= (5.10)

Otherwise, if the condition (5.9) is not fulfilled, the reconfiguration time increases
because the FIFO gets empty at some point of the n-bits transmission, resulting in
additional wait states included in the read domain of the FIFO during the bitstream
download. As remark, the equation (5.4) is a particular case of equation (5.9) when the
latency L is null. The latency L depends on the arbitration algorithm and the type of
memory addressed (e.g. SRAM, SDRAM, DDR-SDRAM, DDR2-SDRAM, etc).
Apart from designing the data bandwidth of both ports of the FIFO, other relevant design
parameter is the FIFO depth. It delimits the time that the filling of the FIFO in the write
domain can be unattended without affecting the continuous emptying conducted in
parallel in the read domain. The minimum time elapsed from the instant the FIFO is full
until it gets empty is a critical parameter in those systems where the memory which
stores the bitstreams is a shared resource accessed concurrently by more than one
controller. When the FIFO is full or not empty, there exists a gap of time in which the
memory that stores the bitstream can be released from the reconfiguration controller and
be used by other master controller connected to the memory to attend other write/read
requests while the reconfiguration is in progress. This strategy permits to manage the
transfer of the bitstream to the FIFO scheduled in bursts transactions spaced a certain
period of time. In this way, the bursts of the reconfiguration process can be interleaved
with other accesses to the shared memory done by other processing tasks which coexist
in the system. In these conditions, the reconfiguration engine can schedule a cyclic
reconfiguration task to perform a burst transaction periodically, leaving a time T between
two consecutive bursts. Other functional tasks that require a cyclic access to the shared
memory have also the time window they require. This study is described next.

B. Reconfiguration process scheduled in a cyclic task

The difference of speed between the simultaneous filling and emptying of the FIFO
generates an accumulated buffer of data inside the FIFO when the filling is faster than
the emptying. Therefore, the FIFO depth lets compensate the difference in throughput of
both domains. This buffer lets architect the reconfiguration process to download the
partial bitstream split in spaced and cyclic burst transactions instead of performing the
downloading of the n-bits of the bitstream in one shot, collapsing the access to the
shared memory resource for a long time.
Given a FIFO of N bits of capacity and initially full of data, the minimum time T spent by
the FIFO to be emptied is denoted by the expression:

CFG
CFG

T
w

N
T ⋅= (5.11)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 102

This time delimits the period of the task scheduled to perform the downloading of a n-
bits bitstream organized in burst transactions of N-bits size and freeing up the memory
access after each burst to other resources accessing the shared memory, with a latency L
to access the shared resource. The free time Tfree between two consecutive bursts is
obtained from equations (5.7) and (5.11) as follows:

MMU
MMU

CFG
CFG

burstfree T
w

N
LT

w

N
TTT ⋅

+−⋅=−= (5.12)

This free time of the shared resource can be used by other master controllers in the
systems to access the memory while the reconfiguration is conducted. This interleaving
of tasks is interesting in order to hide the reconfiguration process of one PRM while other
tasks are processed concurrently. Furthermore, this reconfiguration can be hidden by
other hardware tasks processed in other PRRs while one of the PRRs is reconfigured.

5.3.3 System integration and proof of feasibility

The reconfiguration controller modelled in the previous section has been prototyped in a
Xilinx Virtex-4 FPGA. The platform used is the Xilinx ML401 evaluation board composed
of the XC4VLX25 FPGA. Following the minimalist system architecture proposed in
chapter 4, the embedded system is composed of a host processor (MicroBlaze sof-core),
the reconfiguration controller and a PR region. Besides, a DDR-SDRAM chip is managed
by a MPMC synthesized in the FPGA connected to four buses: a 64-bit Native Port
Interface (NPI), a 32-bit PLBv46, and two Xilinx Cache Link (XCL) buses, where the
system designer can define the priority given to each of the buses [Xilinx Inc., DS643
2008]. The NPI is connected to the master MMU. The PLBv46 is the multiprocessor bus
of the system, used by the host processor and its peripherals. The other two XCL buses
are oriented to fast instructions and data caches of the host processor, respectively.
These caches are built with internal RAM blocks of the FPGA. Although the system also
has Flash memory, the system uses DDR-SDRAM as repository of bitstreams since, in a
generic case, the bitstream can come also from an external communication link in case
of a remote system update. In this way, it is considered that the bitstream will be moved
to the DDR-SDRAM before starting the reconfiguration process. This DDR-SDRAM
memory stores the program code, the settings or application data required by the
different controllers of the system and the partial bitstreams. Therefore, this memory is a
shared resource accessible by the host processor, the PRMs and the reconfiguration
engine at any time. Due to this reason, it is connected to a MPMC from which it can be
accessed either by the host processor –from the PLBv46 system bus or the XCL buses– or
by the reconfiguration controller or PRM – via the NPI bus connected to a master MMU
specifically designed for establishing a fast link between the external DDR-SDRAM
repository and both the ICAP primitive and the PRR. The block diagram of the system is
shown in Figure 5.7.
The designed master MMU handles the data transaction between the DDR-SDRAM
memory and up to three internal FIFOs, one connected to the FPGA configuration
memory and the others to the PRR, via the NPI protocol. The NPI is configured with a 64-
bits data bus. This 64-bit data bus is connected to the write port of the FIFO inserted in
the datapath of the FPGA configuration memory. The counterpart read port of such FIFO
uses a data bus length of 32-bit since this is the maximum length admitted by the ICAP
primitive in Virtex-4 devices. Regarding operation frequencies, both write and read ports
of the FIFO, i.e. NPI and ICAP sides, work at 100 MHz, although the NPI side could work
at a higher rate if necessary. The maximum frequency admitted by the ICAP interface is
100 MHz. Concerning capacity, the FIFO has a depth of 1024 words of 32 bits, delimited
basically by the size (total RAM bits) and flexible geometry (width and depth) admitted by
the RAM blocks in the Virtex-4 technology.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 103

Figure 5.7 Block diagram of the system architecture deployed in the ML401 platform

PL
AT

FO
R

M

FL
AS

H

PL
B

H
O

ST
 P

R
O

C
ES

SO
R

M
M

U
 M

ST

Se
le

ct
M

AP

FP
G

A
C

O
N

FI
G

U
R

AT
IO

N
M

EM
O

R
Y

FI
FO

FI
FO

FI
FO

PA
R

TI
AL

LY
R

EC
O

N
FI

G
U

R
AB

LE
R

EG
IO

N

M
M

U
 S

LV

N
PI

D
D

R
-S

D
R

AM

M
PM

C

IN
T

C
N

TR
L

TI
M

ER
C

O
M

R
S-

23
2

G
PI

O
LI

N
EA

R

FL
AS

H

R
EC

O
N

F.

LO
G

IC

M
U

X

IC
AP

R
EC

O
N

F.
C

TR
L

P
L
B
 v
4.
6

C
TR

L
&

 S
TT

S
R

E
G

.

BU
S

M
AC

R
O

BU
S

M
AC

R
O

10
0

M
H

z

10
0

M
H

z

10
0

M
H

z

50
 M

H
z

10
0

M
H

z

50
 M

H
z

64
 b

it
64

 b
it

64
 b

it

32
 b

it
32

 b
it

32
 b

it

XC
L

XC
L

I-C
AC

H
E

PR
O

G
R

AM

C
O

U
N

TE
R

IN
ST

R
.

BU
FF

ER

IN
ST

R
.

D
EC

O
D

E

R
EG

IS
TE

R
FI

LE
32

 x
 3

2
bi

ts

AL
U

M
U

LT

SP
EC

IA
L

PU
R

PO
SE

R
EG

IS
TE

R
S

D
-L

M
B

LO
C

AL
M

EM
.

BR
AM

D
-C

AC
H

E

I-L
M

B

LO
C

AL
M

EM
.

BR
AM

PL
AT

FO
R

M

FL
AS

H

PL
B

H
O

ST
 P

R
O

C
ES

SO
R

M
M

U
 M

ST

Se
le

ct
M

AP

FP
G

A
C

O
N

FI
G

U
R

AT
IO

N
M

EM
O

R
Y

FI
FO

FI
FO

FI
FO

PA
R

TI
AL

LY
R

EC
O

N
FI

G
U

R
AB

LE
R

EG
IO

N

M
M

U
 S

LV

N
PI

D
D

R
-S

D
R

AM

M
PM

C

IN
T

C
N

TR
L

TI
M

ER
C

O
M

R
S-

23
2

G
PI

O
LI

N
EA

R

FL
AS

H

R
EC

O
N

F.

LO
G

IC

M
U

X

IC
AP

R
EC

O
N

F.
C

TR
L

P
L
B
 v
4.
6

C
TR

L
&

 S
TT

S
R

E
G

.

BU
S

M
AC

R
O

BU
S

M
AC

R
O

10
0

M
H

z

10
0

M
H

z

10
0

M
H

z

50
 M

H
z

10
0

M
H

z

50
 M

H
z

64
 b

it
64

 b
it

64
 b

it

32
 b

it
32

 b
it

32
 b

it

XC
L

XC
L

I-C
AC

H
E

PR
O

G
R

AM

C
O

U
N

TE
R

IN
ST

R
.

BU
FF

ER

IN
ST

R
.

D
EC

O
D

E

R
EG

IS
TE

R
FI

LE
32

 x
 3

2
bi

ts

AL
U

M
U

LT

SP
EC

IA
L

PU
R

PO
SE

R
EG

IS
TE

R
S

D
-L

M
B

LO
C

AL
M

EM
.

BR
AM

D
-C

AC
H

E

I-L
M

B

LO
C

AL
M

EM
.

BR
AM

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 104

In order to reduce the transfer latency at minimum, the master MMU performs the
bitstream reconfiguration in burst transfers of the maximum size possible to the internal
FIFO. In this way, it is reduced the number of requests to access the shared resource.
The maximum number of words (32-bits) transferred in each burst is 64 words. NPI
throughput increases with burst size so the 64 word bursts offer the highest throughput.
In the other side, the reconfiguration controller reads the stored FIFO data and transfers
them in 32-bit format to the ICAP primitive as long as the FIFO is not empty. The read
port of this FIFO is dedicated to the ICAP only. In summary, the master MMU is handling
the direct memory access to huge DDR-SDRAM memory to download the bitstream into
the FPGA in an autonomous way to not overhead the host processor during the
reconfiguration. The other two bidirectional FIFOs are connected directly to the PRR.
They are used by the end-user application as a fast communication channel between the
static side (MCU) and the reconfigurable module placed in the PRR, especially if intensive
transfers of data are required, and constitute a full-duplex link.
The slave MMU implemented as a part of the reconfiguration engine and connected to the
PLBv46 bus is based on a set of control and status registers which link the
reconfiguration engine with the host processor. Some of these registers are written by the
master MMU or the PRM and read by the host processor. The other registers work in the
opposite direction, i.e., they are written by the CPU to be read then by the master MMU
or the PRM. In addition, some of these registers are used by the CPU to directly control
the enable lines of the bus macros, aimed at putting in high impedance the output lines
of the PRR while the reconfiguration is in progress, to prevent the PRR could alter the
static part of the design during its reconfiguration. In this way, the dynamic region is
decoupled from the static region when that region is reconfigured. Moreover, the PRR is
tied to reset –also through a control line managed from the slave MMU registers– during
the reconfiguration, and this reset line is released once the reconfiguration has finished
in order to make the new PRM start its execution.
As observed in Figure 5.7, the PRR is connected to two types of interfaces: FIFOs,
capable of transferring huge amounts of data, and registers, used as control and
configuration signals during the reconfiguration and the execution of the PR
coprocessors. These two types of interfaces lets cover most of the demands regarding
transfer of information between the two processing units (MCU and PR unit) required by
a broad range of embedded applications. Apart from the registers, the master MMU uses
an interrupt source connected to the interrupt controller through which it can notify the
CPU when a specific event occurs, usually the one related to the completion of a data
transaction between the ICAP or the PRR and the DDR-SDRAM. Other interrupt source
connectable to the interrupt controller could be a timer in case the software applications
need to perform some processing following a scheduling of periodic tasks. The slave MMU
and the interrupt controller, both connected to the PLBv46, constitute the physical link
between the host processor and the reconfiguration engine. Additionaly to this, the DDR-
SDRAM data is also a shared resource between both engines.
The reconfiguration process is organized in the following way: the host processor
manages the application flow and triggers the reconfiguration when required. After this
trigger, the reconfiguration controller starts the downloading of the specific bitstream to
the FPGA configuration memory by means of the master MMU. This instruction is given
by the host CPU through the configuration registers of the slave MMU. The host
processor only needs to configure the initial address and size of the partial bitstream to
be downloaded in the PRR and then give the go ahead to the master MMU to start the
reconfiguration process. Then, the master MMU starts the bitstream DMA transfer to the
internal FIFO and from this to the ICAP primitive. Once the transfer is finished, the host
processor is notified either through some flag read from the status registers of the slave
MMU in case of making use of a polling strategy, or attending an interrupt service
routine (ISR) related to the interrupt source of the master MMU. Both options are
possible. Thanks to the use of a dedicated master MMU, the host CPU only takes charge
of ordering the start of the reconfiguration process but is not involved in the transfer. In

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 105

this way, the reconfiguration is practically transparent to the processing of tasks of the
end-user application. From a software point of view, the reconfiguration process seen by
the host processor can be abstracted by a simple function call inserted in the program
flow of the application whenever a new task must be processed in hardware in the PRR.
The prototype of this generic function is shown next in Code 5.3.

 void reconf(u32* bitstreamAddress, u32 bitstreamSize);

Code 5.3 Reconfiguration function used by the host processor

The master MMU continuosly check a flag from the slave MMU registers that triggers the
data transfer from the external DDR-SDRAM to the FPGA configuration memory. If this
flag is set then it initializes the process by reading the initial address and size of the
partial bitstream placed in DDR-SDRAM to start the data transaction by means of DMA
transfers without requiring CPU intervention. Once this transaction is concluded, the
master MMU either raises an interrupt or sets a flag in one of the registers of the slave
MMU to notify the CPU. A part from the interrupt source and the slave MMU registers to
link the reconfiguration engine with the host processor, other way of communication is
the shared memory.
As observed in the system block diagram, the host processor is connected to the DDR-
SRAM not only via the PLBv46 bus but also through the XCL buses of instructions and
data caches. These caches let the host CPU accelerate the software processing by
reducing the access to memory (access to dedicated cache memory instead of to a
shared, bursted and arbitrated memory) but also let minimize the access to the DDR-
SDRAM by the CPU, fact that goes in benefit of all the system and especially of the
reconfiguration engine since the probability of collisions for accessing the shared DDR-
SDRAM memory –involving retries and therefore increasing latencies– is reduced. If the
CPU minimizes the access to DDR-SDRAM, then the other resources have more effective
time to access the shared memory while the application is in progress. Moreover, special
care shall be taken in case the host processor is connected to the shared DDR-SDRAM
memory and is caching data that can be modified by both CPU and master MMU
concurrently. In certain processing applications, the CPU and the PRMs can share some
data in the DDR-SDRAM. In that case, if there is a possibility that some data is modified
by the PRM in DDR-SDRAM whereas the CPU is using an obsolete copy of such data
from DCACHE, for avoiding this desyncronization, the portion of data memory written by
the PRM and read by the CPU should not be cached, to ensure the CPU works at any
time with data up-to-date by accessing always those data directly from DDR-SDRAM.
Another option is to cache those data but making the CPU to enable and disable the
cache during the application execution, performing a flush to refresh the data in
DCACHE before using them if it is known that the PRM could have modified them. The
second option described is the one used in the proof of concept conducted in our
experiments.
In designs with a stringent demand on low power consumption, if the use of the PRR is
not very high and the PRR keeps in idle state for long periods of time, in this case it
could be necessary to reconfigure the PRR module with a blank bitstream once the PRM
finishes its processing just to contribute to reduce power consumption (both static and
dynamic terms), specially when the PRR is of big dimensions. In this way, the execution
of the task related to that PRM processing task involves two reconfiguration processes
instead of one, that is: PRM reconfiguration + PRM task processing + PRR blank
reconfiguration. Otherwise, if the hardware tasks scheduled in the PRR are swapped and
processed one after the other without idle states in between, then in this case one
hardware task is replaced by the next one in the chain and therefore the execution of
each task would involve only one reconfiguration, that is: PRM reconfiguration + PRM task
processing. The model of the reconfiguration engine has been prototyped and evaluated
in a real platform. The analysis of the experimental results achieved follows next.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 106

Figure 5.8 PR design flow (EDA tools, source code files and resultant bitstreams)

(b
us

 m
ac

ro
s)

.xm
p

.xm
p

B
S

B
-w

iz
a
rd

(E
D

K
)

B
S

B
-w

iz
a
rd

(E
D

K
)

.uc
f

.uc
f

.m
ss

.m
ss

.m
hs

.m
hs

ED
K

lib
ra

ry
ED

K
lib

ra
ry

.m
ss

.m
ss

.m
hs

.m
hs

lib
g
e
n

(X
P

S
)

lib
g
e
n

(X
P

S
)

.a.a
.h.h

.s.s
.a.a

a
s-

as
se

m
bl

e
r

(G
N

U
)

a
s-

as
se

m
bl

e
r

(G
N

U
)

.h.h
.c.c

.a.a
.h.h

.a.a
.o.o

g
cc

-c
om

p
ile

r

(G
N

U
)

g
cc

-c
om

p
ile

r

(G
N

U
)

ld
-l
in

ke
r

(G
N

U
)

ld
-l
in

ke
r

(G
N

U
)

o
b
jc

o
p
y

(G
N

U
)

o
b
jc

o
p
y

(G
N

U
)

.el
f

.el
f

.he
x

.he
x

.m
hs

.m
hs

p
la

tg
e
n

(X
S

T
)

p
la

tg
e
n

(X
S

T
)

.bm
m

.bm
m

.vh
d

.vh
d

.vh
d

.vh
d

.nm
c

.nm
c

.bm
m

.bm
m

.vh
d

.vh
d

sy
n
th

e
si

s
(X

S
T

)
sy

n
th

e
si

s
(X

S
T

)
.bm

m
.bm

m
.ng

c
.ng

c

.xc
o

.xc
o

co
re

g
en

e
ra

to
r

(I
S

E
)

co
re

g
en

e
ra

to
r

(I
S

E
)

.ng
c

.ng
c

.uc
f

.uc
f

h
d
b
u
ild

(P
la

n
A

he
ad

)
h
d
b
u
ild

(P
la

n
A

he
ad

)
.uc

f
.uc

f

.bm
m

.bm
m

.ng
c

.ng
c

n
g
d
b
u
ild

(X
S

T
)

n
g
d
b
u
ild

(X
S

T
)

.ng
d

.ng
d

.bm
m

.bm
m

.ng
c

.ng
c

.uc
f

.uc
f

M
A

P
(X

S
T

)
M

A
P

(X
S

T
)

P
A

R
(X

S
T

)
P

A
R

(X
S

T
)

.nc
d

.nc
d

.nc
d

.nc
d

b
itg

e
n

(X
S

T
)

b
itg

e
n

(X
S

T
)

.bi
t

.bi
t

.nm
c

.nm
c

.vh
d

.vh
d

.ng
c

.ng
c

sy
n
th

e
si

s
(X

S
T

)
sy

n
th

e
si

s
(X

S
T

)

.xc
o

.xc
o

co
re

g
en

e
ra

to
r

(I
S

E
)

co
re

g
en

e
ra

to
r

(I
S

E
)

.ng
c

.ng
c

.uc
f

.uc
f

h
d
b
u
ild

(P
la

n
A

he
ad

)
h
d
b
u
ild

(P
la

n
A

he
ad

)
.uc

f
.uc

f

.ng
c

.ng
c

.ng
c

.ng
c

n
g
d
b
u
ild

(X
S

T
)

n
g
d
b
u
ild

(X
S

T
)

.ng
d

.ng
d

M
A

P
(X

S
T

)
M

A
P

(X
S

T
)

P
A

R
(X

S
T

)
P

A
R

(X
S

T
)

.nc
d

.nc
d

.nc
d

.nc
d

b
itg

e
n

(X
S

T
)

b
itg

e
n

(X
S

T
)

.bi
t

.bi
t

b
itg

e
n

(X
S

T
)

b
itg

e
n

(X
S

T
)

.bi
t

.bi
t

.nc
d

.nc
d

.bm
m

.bm
m

.el
f

.el
f

d
a
ta

2
m

e
m

(X
S

T
)

d
a
ta

2
m

e
m

(X
S

T
)

.bi
t

.bi
t

.bi
t

.bi
t

E
D
K
 9
.2
.0
2i

E
D
K
 9
.2
.0
2i

E
D
K
 9
.2
.0
2i

E
D
K
 9
.2
.0
2i

IS
E
 9
.2
.0
4i

IS
E
 9
.2
.0
4i

IS
E
 9
.2
.0
4i
_P
R
12

P
la
n
A
h
ea
d
9.
2.
7

P
la
n
A
h
ea
d
9.
2.
7

–
IS
E
 9
.2
.0
4i

I S
E
 9
.2
.0
4i

IS
E
 9
.2
.0
4i

P
la
n
A
h
ea
d
9.
2.
7

P
la
n
A
h
ea
d
9.
2.
7

–
IS
E
 9
.2
.0
4i

.uc
f

.uc
f

.uc
f

.uc
f

(s
ta

tic
.u

se
d)

(a
rc

s.
ex

cl
ud

e)

(to
p.

uc
f)

.uc
f

.uc
f

flo
or

pl
a

nn
e

r
(P

la
n

A
he

ad
)

flo
or

pl
a

nn
e

r
(P

la
n

A
he

ad
)

.uc
f

.uc
f

P
la
n
A
h
ea
d
9.
2.
7

.uc
f

.uc
f

flo
or

pl
a

nn
e

r
(P

la
n

A
he

ad
)

flo
or

pl
a

nn
e

r
(P

la
n

A
he

ad
)

P
la
n
A
h
ea
d
9.
2.
7

.uc
f

.uc
f

.uc
f

.uc
f

.nc
d

.nc
d

IS
E
 9
.2
.0
4i

(H
W

 p
ar

tia
lb

its
tre

am
PR

M
)

(H
W

 fu
ll

bi
ts

tre
am

ST
AT

IC
+P

R
M

)

(H
W

+S
W

 fu
ll

bi
ts

tre
am

)

(H
W

 p
ar

tia
lb

its
tre

am
ST

AT
IC

)

.nc
d

.nc
d

m
e
rg

e
d
e
s

(P
R

)
m

e
rg

e
d
e
s

(P
R

)
.nc

d
.nc

d
.nc

d
.nc

d
IS
E
 9
.2
.0
4i
_P
R
12

IS
E
 9
.2
.0
4i

(p
ar

tia
l)

.nc
d

.nc
d

(fu
ll)

IS
E
 9
.2
.0
4i

U
S
E
R
 F
IL
E
S

T
O
P

S
T
A
T
IC

P
R
M
i

P
R
 B
IT
S
T
R
E
A
M
S

PR

lib
ra

ry
PR

lib

ra
ry

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 107

A. Performance evaluation

The proof of feasibility of the reconfiguration engine has been conducted in a Xilinx
ML401 development platform composed of a XC4VLX25 Virtex-4 FPGA from Xilinx and
two 256-Mbit HYB25D256160BT-7 DDR-SDRAM devices from Infineon. The system has
been mainly described in VHDL and synthesized, mapped, placed and routed with the
Xilinx toolset from the Early Access Partial Reconfiguration lounge based on a modular
design methodology (http://www.xilinx.com/support/prealounge/protected/index.htm).
The processor system has been implemented with EDK 9.2.02i. The floorplanning of all
the modules has been performed with PlanAhead 9.2.7. The generation of the full and
partial bitstreams has been carried out with ISE 9.2.04i and the PR patch PR12. In
addition, the design of specific hard macros has been done with the Xilinx Core
Generator toolset, for instance the FIFOs, built with the FIFO Generator v3.3 tool. This
tool enables the customization of both depth and width of the FIFO and the selection of
distributed memory or embedded RAM blocks. Besides, the ChipScope Pro tool has been
used for debugging, validation and verification of the design. This tool has been of big
help to test the real latency and performance of the reconfiguration controller. By
inserting a ChipScope ICON (integrated controller) core and a ChipScope ILA (integrated
logic analyser) core in the design it has been possible to verify the real performance of the
reconfiguration controller by monitoring the lines of the ICAP and the NPI buses during
the operation. Figure 5.8 shows the PR methodology and design flow followed.
The main goal of our approach is to ensure the maximum reconfiguration throughput. As
presented above, Virtex-4 technology admits a reconfiguration bandwidth of 3.2 Gbps
when running the ICAP controller at 32 bits and 100 MHz. Several scenarios have been
evaluated: the first test consists in performing a reconfiguration of the PRR guided by the
master MMU while the host processor is not accessing the DDR-SDRAM, just to see
which throughput can be achieved in these conditions. The second case evaluates the
worst case by forcing the continuous access to DDR-SDRAM from the host processor
while the master MMU is reconfiguring a PRR. The results are detailed next.

Case I. Shared memory accessed by MMU only (no data contention)

It is programmed an application where the host processor starts a reconfiguration of the
PRR and keeps in a waiting loop until the master MMU confirms the end of the bitstream
transaction from the external memory to the ICAP. It is necessary to ensure that the code
related to the active waiting is executed from the DCACHE, without requiring the CPU to
access the DDR-SDRAM. In these conditions, it is observed that once the reconfiguration
FIFO is not empty it starts the transfer to the ICAP without suffering any interruption
due to lack of data in the FIFO during all the process. The bistream download is
conducted through consecutive bursts of 64 words of 32 bits. The equation (5.9) is next
particularized to the specific case as follows:

[]
[]

[]
[]

[]bitsN

MHzf

MHzf

bitsw

bitsw

CFG

MMU

CFG

MMU

20483264

100

100

32

64

=⋅=
=
=
=
=

CFGCFGMMU
MMU

MMU fwf
NwL

wN ⋅≥⋅
+⋅

⋅

[]MMU
MMUCFGCFG

MMU clocks
w

N

fw

fN
L 32

64

2048

10032

1002048 =−
⋅

⋅=−
⋅

⋅≤

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 108

It means that, in these conditions, the latency of each read burst shall be less than or
equal to 32 clocks to guarantee the minimum reconfiguration time. The latency L
obtained experimentally is 24 clocks for each 64-word read burst performed, measured
with the support of the Chipscope ILA logic analyser core. Therefore, starting at the
instant that the FIFO receives the first data, the transfer is performed at 3.2 Gbps.
The latency achieved experimentally can also be analysed theoretically by examining the
interface between the FPGA and the DDR-SDRAM as well as the technical features of this
memory. The external DDR-SDRAM is constituted by two 256-Mbit HYB25D256160BT-7
DDR-SDRAM devices [Xilinx Inc., UG080 2006]. Each device is organized in a 16-bit data
bus and they are connected in parallel, with the same addressing, in order to reach thus
a data bus of 32 bits. Internally, read and write accesses to this DDR-SDRAM are burst
oriented, with the burst length being programmable. The burst length determines the
maximum number of column locations that can be accessed for a given read or write
command. Burst lengths of 2, 4 or 8 locations are available. Therefore, accesses start at
a selected location and continue for the programmed number of locations in a sequence.
Furthermore, this memory has a read latency of 2.5 clocks and its dual data rate
characteristic permit to read or write at both rising and falling edges of the memory clock
[Infinieon Tech., DS HYB25D256 2003]. Wih these features, each 64-word (32-bit) NPI
read burst commanded by the master MMU is decomposed in 8 consecutive 8-word (32-
bit) read bursts in the DDR-SDRAM. In one clock, the two 32-bit words read by the DDR-
SDRAM (one at each edge) compose one 64-bit word that can be stored in the 64-bit read
FIFO of the NPI interface. Only from the 8 DDR-SDRAM bursts it is obtained a read
latency related to the memory itself of 20 clocks (8 x 2.5) and the other 4 clocks are spent
in the arbitration and the NPI protocol. Therefore, the total time measured in a NPI read
burst, according to equation (5.7), is:

[]
[]

[]
[]MMU

MMU

MMU

clocksL

bitsN

MHzf

bitsw

24

2048

100

64

=
=

=
=

[]nsT
w

N
LT MMU

MMU
burst 56010

64

2048
24 =⋅

 +=⋅

+=

Case II. Shared memory accessed by MMU and CPU with data contention

The reconfiguration test of case I has been repeated now but making the CPU to
continuously write or read the DDR-SDRAM memory while the master MMU is carrying
out the reconfiguration, aimed at seeing how much the reconfiguration process can be
slowed due to the collisions. In this case, the latency L observed amounts to 40 clocks,
measured with the Chipscope ILA logic analyser core. This 64-word read burst latency is
detached in 20 clocks due to memory latency itself as in case I and other 20 clocks due
to the arbitration of the collisioned requests between the reconfiguration controller and
the host processor to access the shared memory. This latency higher than 32 clocks
means that in these conditions it is not possible to perform the reconfiguration at the
maximum rate of Virtex-4. However, this extreme situation can be skipped through the
use of the cache memory by the CPU. In order to avoid the loss of performance observed
in this test, it is convenient to cache the program code executed by the host processor
when a reconfiguration is in progress in order to not impact on the reconfiguration
latency. If the software host processor is cached, then it is possible to eradicate the
additional latency due to the arbitration of the memory resource since the CPU will run
the program code from the ICACHE instead of DDR-SDRAM. With this, the DDR-SDRAM
is leaved to the master MMU and only from time to time the CPU will access to DDR-

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 109

SDRAM to perform some data update. By caching the CPU data and program code, the
probability of collision in the access to the shared external memory by the CPU and the
master MMU is notoriously reduced. In this way, this architecture lets execute the two
tasks, partial reconfiguration and software execution, in parallel without impacting the
DDR-SDRAM. Another possibility to improve the efficiency could be the use of a DDR-
SDRAM with lower read latency.
Anyhow, as conclusion, this reconfiguration engine architecture achieves to transfer the
partial bitstream at the maximum throughput of Virtex-4 technology, even if the DDR-
SDRAM is accessed by the CPU via XCL or PLBv46 buses at the same time given that, in
the end, the CPU runs the program flow in internal BRAM cache, freeing thus the access
to the external DDR-SDRAM to the reconfiguration controller. To the best of the author’s
knowledge, at the time of finishing the implementation of this reconfiguration controller,
around the beginning of 2009, this was the first work to achieve a controller able to self-
reconfigure any PR region of the FPGA at the maximum throughput specified by Xilinx
technology, overcoming the time performance achieved by other works published until
then in the scientist literature by the research community. This design lets attain a
bandwidth of 3.2 Gbps with no restrictions on the partial bitstreams size, and residing
the downloadable bitstream files stored in external low-cost SDRAM where, moreover,
this memory works as a shared resource in the system, i.e. accessible at any time not
only by the reconfiguration controller but by any other processor (CPU) connected to the
multiprocessor bus. As remark, the designed reconfiguration controller is not using the
readback capability, that is, it does not make use of the read port available in the ICAP.
However, in case it was necessary, it could be included in the design with no major
changes. Finally, the reconfiguration controller modeled and validated in this work is
submitted next to benchmarking of other relevant works found in the literature.

5.3.4 Comparison with state-of-the-art architectures

Virtex-4 devices, together with their successors Virtex-5, Virtex-6 and Virtex-7, are at
present the state-of-the-art on the subject of commercially available high-performance
dynamic partial self-reconfiguration technology. Virtex-4 FPGAs meant a serious advance
regarding reconfiguration bandwidth: it comes with a 32-bit data bus ICAP interface
qualified to self-reconfigure at run-time any portion of the device at a frequency of 100
MHz, what puts the reconfiguration rate to 3.2 Gbps – the highest bandwidth today in
the market. As benchmark, the reconfiguration model proposed in this chapter and
prototyped in Virtex-4 is compared next with the latest works found in the scientist
literature also based on Virtex-4 technology.
As introduction, the Xilinx FPGA vendor made some ICAP controller proposals to be
connected to the OPB or PLBv46 buses like OPB HWICAP [Xilinx Inc., DS280 2004] and
XPS HWICAP [Xilinx Inc., DS586 2010], respectively. However, in both cases the
bitstream transfer from the repository to the ICAP interface is performed by the system
CPU, fact that limits the reconfiguration throughput. In the XPS HWICAP controller, for
instance, the CPU bursts the required bitstream data directly from main memory.
Incoming data is stored within a write FIFO in the reconfiguration controller, from where
it can be fed to the ICAP. The XPS HWICAP also provides for read back of configuration
resource states. In this case, the frames are read back into the read FIFO one at a time
and the CPU reads the data frame directly from there. Experiments with these controllers
found in the literature reveal a low reconfiguration throughput. Going on with further
examples, the work presented in [Hübner et al., RAW 2010] targets a cost-effective
implementation of the reconfiguration controller in terms of resources consumed, leaving
in a second term the reconfiguration throughput. Taking into account such goal, the host
processor is responsible for performing the bitstream transfer from external memory
connected to the ICAP interface. The host processor is connected to the external
repository through a MPMC via XCL or PLB buses to internal registers of the core
processor and from here to the ICAP interface through a Fast Simplex Link (FSL)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 110

managed by the core processor. The main disadvantage of this architecture is the fact
that the core processor is totally blocked during the the reconfiguration process since it
performs the bitstream transfer. The throughput reached is 226 Mbps. In [Claus et al.,
FPL 2008], it is proposed a CoreConnect PLB ICAP controller with DMA capability via
PLB bus to accesss the repository and fetch a bitstream through burst transfers, and
without involving the CPU, thus off-loading it. The throughput achieved is 2.36 Gbps. In
the work [Liu et al., FPL 2009], it is proposed a reconfiguration controller connected to
the PLB bus where the partial bitstream is stored in internal RAM blocks of the FPGA,
with the subsequent restriction of this solution to small bitstreams of 64 Kbytes as
maximum. The highest reconfiguration speed attainable with this solution is 2.97 Gbps.
Another approach is deployed in [Manet et al., JES 2008]. This time the ICAP-based
reconfiguration controller is based on the CoreConnect OPB bus architecture. The
custom controller is equipped with DMA capability and reaches a reconfiguration
throughput of 3.0 Gbps. The work presented in [Nabina and Nuñez-Yañez, FPL 2010]
develops a system based on the AMBA multiprocessor bus, where the main processor –
LEON3 soft-core– and the memory controller are connected to the AMBA AHB bus
together with the ICAP controller. As novelty, the reconfiguration controller proposed
incudes –in addition to DMA, burst transfers and end transaction notification via
interrupt to the host processor– a bitstream decompressor in the datapath. In this way,
as the bitstream is stored compressed in the repository, the latency experimented in the
transfer from the off-chip memory repository to an internal FIFO buffer present in the
reconfiguration controller is decreased since the number of accesses to memory is
reduced in comparison to the case of storing the same bitstream uncompressed. The
system is implemented in a Virtex-5 device. The low bus efficienty of this system is
compensated by the high compression ratio of the bitstream, obtaining a maximum
throughput of 3.08 Gbps. This bitstream compression strategy, however, is only effective
in case the reconfiguration bottleneck is in the access to the off-chip memory since the
bitstream must be transferred uncompressed to the FPGA configuration memory.
Another approach which incorpores the bitstream decompression phase in the
reconfiguration datapath to improve the transfer rate of the bitstream from the external
memory (SRAM) to the reconfiguration controller is [Liu et al., MSR-TR-2009-150]. In this
system architecture proposed by Microsoft Research, the decompression operation
involves a two-cycle overhead that makes not possible to achieve the theoretical
maximum throughput. The tests conducted show a throughput that ranges from 2.99 to
3.14 Gbps. Following a different research line, one approach that makes use of ICAP
overclocking is presented in [Shelburne et al., FPL 2008]. The reconfiguration controller
is implemented in a Virtex-4 device and admits two types of operations: readback and
configuration. Here, the configuration engine is used as a NoC without requiring routing
the nodes but communicating them by means of the reconfiguration controller, moving
data from one internal RAM block (BRAM) to another through the reconfiguration. That
is, the configuration information of the BRAM connected to a node of the network is read
by the reconfiguration controller and written to another BRAM related to another node
afterwards. In this approach, in order to accelerate the reconfiguration process, the ICAP
interface is overclocked at a frequency of 144 MHz and is capable of providing a
reconfiguration throughput of 1.75 Gbps.
Up to now, none of the implementations assessed have reached the theoretical maximum
reconfiguration speed of Virtex-4 technology. The following ones met this target and even
overpass it by means of overclocking strategies. In [Delorme et al., ReConFig 2009], it is
proposed a reconfiguration controller based on three components: an external SRAM
memory exclusively dedicated to store the partial bitstreams, a custom custom
reconfiguration controller with access to the ICAP interface, and a MicroBlaze processor
interfaced via the CoreConnect OPB bus to the reconfiguration controller through several
configuration registers. The reconfiguration controller, after receiving the configuration
commands from MicroBlaze, performs the reconfiguration process autonomously. With
this architecture, it is achieved the maximum reconfiguration throughput in Virtex-4

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 111

running at 100 MHz and 32 bits. Besides, the same reconfiguration approach is tested
on a Virtex-5 overclocking the ICAP interface at 125 MHz, reaching a throughput of 4
Gbps. Although this model reaches an excellent reconfiguration performance in terms of
time, concerning cost the fact that the reconfiguration controller is based on a dedicated
external SRAM memory to store the bitstreams accessible only by the reconfiguration
controller –not by MicroBlaze– could mean some handicap to certain types of
applications. The exclusive use of this FPGA for storing only bitstreams can be an
expensive solution if the application requires other external memory devices for storing
application data. Just for this reason, the model proposed in this dissertation makes use
of a generic low-cost external memory where any kind of data (program code, application
data, partial bitstreams) can be stored and accessed by any of the controllers present in
the system. Going on with more examples, the work presented in [Hoffman and Pattichis,
IJRC 2011] copes with the implementation of an ICAP-based reconfiguration engine
which introduces the use of overclocking with active feedback. During overclocking, it
receives active feedback from the System Monitor IP [Xilinx Inc., UG192 2011] to ensure
that the device voltage and temperature are within nominal operating conditions. The
custom reconfiguration controller leads to a bandwidth of 3.4 Gbps for both reads and
writes to the ICAP port. A similar reconfiguration engine approach to the one proposed in
this dissertation is the one proposed in [Claus et al., ARC 2010] and [Claus et al., XCell
2010] oriented to a video-based driver assistance system. The PR region lodges different
image processing coprocessors multiplexed in time. These hardware accelerators are
attached as bus masters to the PLB bus. Thus, the PR region is connected to the system
through the PLB interface by means of two separate read and write data buses, each 64-
bit wide. With this, the reconfigurable coprocessors can perform direct memory accesses
without involving the host CPU. The reconfiguration controller is connected to external
DDR-SRAM by means of a MPMC and linked to a NPI bus. It also uses an intermediate
FIFO for data buffering. This FIFO permits to split the bitstream datapath in two clock
domains, one for the external memory and the other for the ICAP. The ICAP controller
can initiate data transactions using DMA and burst transfers. By means of overclocking
the ICAP interface, it is obtained a high reconfiguration throughput. Furthermore, the
reconfiguration controller includes an online verification module to ensure the
reconfiguration is performed correctly in overclocking conditions. The verification
consists in a CRC IP module connected between the FIFO output port and the ICAP port
to check the data fed into the ICAP. Like this, while the bitstream is pushed into the
ICAP, the system calculates in parallel a cyclic redundancy check to ensure the
bitstream integrity. If the bitstream was corrupted during the transfer it would be
detected by this module and the configuration could be stopped. The reconfiguration
throughput reached in a Virtex-4 device at 140 MHz is 4.48 Gbps and a Virtex-5 device
at 300 MHz is 9.6 Gbps. Still in the field of ICAP overclocking, in [Hansen et al., IPDPS
2011] it is proposed the design –built with the Xilinx FPGA Editor tool– of an enhanced
extension of the Xilinx native ICAP primitive. By extending the ICAP with custom logic it
is designed an enhanced ICAP hard macro provided with 64-bit input and output ports.
Its function is to widen the data path size of the original ICAP primitive from 32 bits to
64 bits in order to gain configuration throughput. Thus, the enhanced ICAP hard macro
can be seen as a 64-to-32 bit data multiplexer that takes 64-bit input data at one data
rate and multiplex it out as two 32-bit output data at twice the data rate. This concept is
similar to the one proposed by the author in this dissertation by means of the FIFO
managed by the master MMU of Figure 5.7. The main progress of this work is that it has
explored the limit sustainable by the ICAP, verifying that it is possible to overclock the
ICAP interface at up to 550 MHz without malfunction, achieving thus a maximum
reconfiguration speed of 17.6 Gbps, a value 5.5 times higher than the default
reconfiguration throughput specified by Xilinx. However, the main drawback of this
reconfiguration engine is the fact that it does not solve the paradigm related to the data
path connection between the bitstream repository and the ICAP interface: the enhanced
ICAP hard macro makes use of 64 Kbytes FIFO for temporary storing the partial

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 112

bitstream, fact that restricts the size of the reconfigurable modules usable for the system
to 64 Kbytes as maximum. Apart from Virtex-4 and Virtex-5 devices, there are other
works based on Spartan-6. As example, in [Bayar and Tukel, ReCoSoC 2011] it is
presented a reconfiguration engine entirely written in VHDL and connected to the 16-bit
ICAP interface operated at 100 MHz, reaching thus the maximum throughput achievable
with these devices of 1.6 Gbps. This engine uses a decompressor unit to decompress on
the fly the bitstream during reconfiguration. However, it makes use of internal BRAM to
store the compressed partial bitstreams, fact that restricts its use to small partial
bitstreams only.
The features of each of the reconfiguration controllers explored by the research
community are summarised in Table 5.5. Although further reconfiguration controller
approaches exist in the literature, the ones presented in this section cover the most
significant variants or alternatives regarding architectural aspects. They are thus a good
overview of the state of the art in this topic. The reconfiguration engine deployed in this
chapter shares many of the qualities offered by most of the solutions overviewed here.

Table 5.5 Reconfiguration controllers implemented on Virtex-4/-5 and Spartan-6 devices

Research work Reconfiguration controller FPGA
Memory type

(dedicated/shared2)
Freq.
(MHz)

ICAP bus
(bits)

Througput
(Gbps1)

[Hübner, RAW 2010] FSL ICAP Virtex-4 DDR-SDRAM (s) 100 32 0.23

[Claus, FPL 2008] CoreConnect-PLB ICAP Virtex-4 DDR2-SDRAM (d) 100 32 2.36

[Liu, FPL 2009] CoreConnect-PLB ICAP Virtex-4 BRAM (d) 100 32 2.97

[Manet, JES 2008] CoreConnect-OPB ICAP Virtex-4 DDR-SDRAM (s) 100 32 3.00

[Nabina, FPL 2010] AMBA-AHB ICAP Virtex-4 SDRAM (s) 100 32 3.08

[Liu, MSR-TR-2009-150] Dedicated SRAM ICAP Virtex-4 SRAM (d) 100 32 3.14

[Shelburne, FPL 2008] Dedicated BRAM ICAP Virtex-4 BRAM (d) 144 32 1.75

[Delorme, ReConFig 2009] Dedicated SRAM ICAP Virtex-4, -5 SRAM (d) 125 32 4.00

[Hoffman, IJRC 2011] LocalLink ICAP Virtex-4, -5 DDR-SRAM (s) 133 32 3.40

[Claus, ARC 2010] NPI ICAP Virtex-4, -5 DDR-SDRAM (s) 300 32 9.60

[Hansen, IPDPS 2011] Dedicated BRAM ICAP Virtex-5 BRAM (d) 550 32 17.60

[Bayar, ReCoSoC 2011] Dedicated BRAM ICAP Spartan-6 BRAM (d) 100 16 1.60

Fons, 2009 NPI ICAP Virtex-4 DDR-SDRAM (s) 100 32 3.20

(1) Gbit expressed in SI system (decimal base: 109), not in IEC 60027 system (binarly base: 230).
(2) Type of memory used to store the partial bitstreams: (d) dedicated and exclusively accessed by the reconfiguration controller or (s)

shared and accessible by other controllers from the system.

5.3.5 Next generation reconfiguration engines

Finally, in this section it is briefly overviewed the reconfiguration features of the latest
programmable logic devices announced or recently shipped to the market by both Altera
and Xilinx vendors, all of them equipped with partial reconfiguration technology. The
new Xilinx devices present a new ICAP primitive called ICAPE2, provided with the same
reconfiguration features than the original ICAP. In Altera devices, partial reconfiguration
is supported through the Fast Passive Parallel (FPP) configuration interface. By first time
in Altera devices, it is possible to reconfigure logic blocks, DSP blocks and memory
blocks (apart from transceivers and PLL blocks) at run-time.

Table 5.6 Reconfiguration features of the next generation Xilinx and Altera devices

DEVICE FAMILY RECONF. DATA WORD MAX. RECONF. FREQ. RECONF. GRANULARITY

ARTIX-7, KINTEX-7, VIRTEX-7, ZYNQ-7000 EPP 32 bits 100 MHz region 50 CLBs high by 1 CLB wide

STRATIX-V, ARRIA-V, CYCLONE-V 16 bits 125 MHz (Not disclosed)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 113

5.4 Summary

Going on with the conception of a standard embedded system architecture driven by
run-time reconfigurable hardware started in chapter 4, this chapter focuses its attention
in the design of the reconfiguration engine. Aimed at minimizing the reconfiguration
latency by achieving a high bandwidth link between the bitstream repository and the
FPGA configuration memory, the design of this system component is an active research
field which has attracted great attention. Hence, this chapter reviews first the technical
features of the reconfiguration controllers embedded in commercial devices like Atmel
AT94K FPSLIC, Altera Excalibur SoPC and Xilinx Virtex-4 FPGA. Although the first two
SoCs offer only a closed engine solution, the third one allows the designer to customize
the reconfiguration controller to the application needs. Thus, afterwards, a
reconfiguration engine has been modelled and verified on Virtex-4. To the best of the
author’s knowledge, this work is a pioneer in terms of achieving the maximum
reconfiguration throughput specified by Virtex-4 technology (i.e. 3.2 Gbps – the highest
rate of existing devices in the industry today) with no constraints on the partial bitstream
size, and being the downloadable bitstream file stored in an external SDRAM memory
architected as a shared resource in the system (i.e. not dedicated) accessible
concurrently by several processors. Finally, in the part IV of this dissertation, the three
reconfiguration engines from different FPGA vendors studied in this chapter have been
deeply evaluated by prototyping them in several real applications and verifying the
validity of the reconfiguration engine model developed.

References

[Altera Corp., AN116 2000]
Altera Corp., Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices, App. Note 116 (v1.03), 2000.

[Altera Corp., AN187 2003]
Altera Corp., Booting Excalibur Devices, Application Note 187 (v1.2), 2003.

[Altera Corp., AN298 2003]
Altera Corp., Reconfiguring Excalibur devices under processor control, Application Note 298 (v1.0), 2003.

[Altera Corp., DSAPEX20K 2003]
Altera Corp., APEX 20K programmable logic device family, Data Sheet (v5.1), 2004.

[Altera Corp., HRMEPXA 2002]
Altera Corp., Excalibur devices hardware reference manual, Reference Manual (v3.1), 2002.

[Atmel Corp., AN1009 2002]
Atmel Corp., AT40K series configuration, Application Note 1009, 2002.

[Atmel Corp., AN1088 1998]
Atmel Corp., AT40K series Cache Logic (mode 4) configuration, Application Note 1088, 1998.

[Atmel Corp., AN2313 2001]
Atmel Corp., AT94K series configuration, Application Note 2313, 2001.

[Atmel Corp., AN2323 2001]
Atmel Corp., AT94K series Cache Logic (mode 4) configuration, Application Note 2323, 2001.

[Atmel Corp., RM1138 2008]
Atmel Corp., AT94KAL Series Field Programmable System Level Integrated Circuit, Ref. Man. 1138, 2008.

[Bayar and Tukel, ReCoSoC 2011]
S. Bayar, M. Tukel, A self-reconfigurable platform for general purpose image processing systems on low-
cost Spartan-6 FPGAs, Proc. Int. Workshop on Reconf. Communication-centric SoC, pp. 1-9, 2011.

[Bayar and Yurdakul, HiPEAC 2008]
S. Bayar, A. Yurdakul, Dynamic partial self-reconfiguration on Spartan-III FPGAs via a parallel
configuration access port (PCAP), Proc. HiPEAC Workshop on Reconfigurable Computing, pp. 1-10, 2008.

[Bomel et al., ARCS 2009]
P. Bomel, J. Crenne, L. Ye, J.P. Diguet, G. Gogniat, Ultra-fast downloading of partial bitstreams through
Ethernet, Int. Conf. on Architecture of Computing Systems, LNCS, vol. 5455, pp. 72-83, Springer, 2009.

[Cantó et al., FPL 2009]
E. Cantó, M. Fons, M. López, R. Ramos, Acceleration of complex algorithms on a fast reconfigurable
embedded system on Spartan-3, Proc. Int. Conf. on Field Prog. Logic & Applications, pp. 429-434, 2009.

[Claus et al., ARC 2010]
C. Claus, R. Ahmed, F. Altenried, W. Stechele, Towards rapid dynamic partial reconfiguration in video-
based driver assistance systems, International Symposium on Applied Reconfigurable Computing,
LNCS, vol. 5992, pp. 55-67, Springer-Verlag, 2010.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 114

[Claus et al., FPL 2008]
C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hübner, J. Becker, A multi-platform controller allowing for
maximum dynamic partial reconfiguration throughput, Proc. Int. Conf. on Field Programmable Logic and
Applications, pp. 535-538, 2008.

[Claus et al., IPDPS 2007]
C. Claus, F.H. Müller, J. Zeppenfeld, W. Stechele, A new framework to accelerate Virtex-II Pro dynamic
partial self-reconfiguration, Proc. IEEE Int. Parallel & Distributed Processing Symposium, pp. 1-7, 2007.

[Claus et al., XCell 2010]
C. Claus, F. Altenried, W. Stechele, Dynamic partial reconfiguration of Xilinx FPGAs lets system adapt on
the fly, Xcell Journal, issue 70, pp. 18-23, Xilinx Inc., First Quarter 2010.

[Delorme et al., ReConFig 2009]
J. Delorme, A. Nafkha, P. Leray, C. Moy, New OPBHWICAP interface for realtime partial reconfiguration of
FPGA, Proc. of the Int. Conference of Reconfigurable Computing and FPGAs, pp. 386-391, 2009.

[Gonzalez et al., MICRO 2007]
I. Gonzalez, E. Aguayo, S. Lopez-Buedo, Self-reconfigurable embedded systems on low-cost FPGAs,
MICRO, IEEE, pp. 49-57, 2007.

[Hansen et al., IPDPS 2011]
S.G. Hansen, D. Koch, J. Torresen, High speed partial run-time reconfiguration using enhanced ICAP hard
macro, Proc. of the IEEE Int. Parallel and Distributed Processing Symposium, pp. 174-180, 2011.

[Hoffman and Pattichis, IJRC 2011]
J.C. Hoffman, M.S. Pattichis, A high-speed dynamic partial reconfiguration controller using direct memory
access through a multiport memory controller and overclocking with active feedback, International Journal
of Reconfigurable Computing, vol. 2011, pp. 1-10, 2011.

[Hübner et al., RAW 2010]
M. Hübner, D. Göhringer, J. Noguera, J. Becker, Fast dynamic and partial reconfiguration data path with
low hardware overhead on Xilinx FPGAs, Proc. Reconfigurable Architectures Workshop, pp. 1-8, 2010.

[Infinieon Tech., DS HYB25D256 2003]
Infineon, HYB25D256[400/800/160]B[T/C](L) 256-Mbit DDR SDRAM, Datasheet (v1.1), 2003.

[Liu et al., FPL 2009]
M. Liu, W. Kuehn, Z. Lu, A. Jantsch, Run-time partial reconfiguration speed investigation and
architectural design space exploration, Proc. Int. Conf. on Field Prog. Logic and App., pp. 498-502, 2009.

[Liu et al., MSR-TR-2009-150]
S. Liu, R. Neil Pittman, A. Forin, Minimizing partial reconfiguration overhead with fully streaming DMA
engines and intelligent ICAP controller, Microsoft Research, Technical Report MSR-TR-2009-150, pp. 1-
33, 2009.

[Manet et al., JES 2008]
P. Manet, D. Maufroid, L. Tosi, G. Gailliard, O. Mulertt, M. Di Ciano, J.D. Legat, D. Aulagnier, C.
Gamrat, R. Liberati, V. La Barba, P. Cuvelier, B. Rousseau, P. Gelineau, An evaluation of dynamic partial
reconfiguration for signal and image processing in professional electronics applications, EURASIP Journal
on Embedded Systems, pp.1-11, 2008.

[Möller et al., ReCoSoC 2007]
L. Möller, I. Grehs, E. Carvalho, R. Soares, N. Calazans, F. Moraes, A NoC-based infrastructure to enable
dynamic self reconfigurable system, Proc. Int. Workshop ReCoSoC, pp. 23-30, 2007.

[Nabina and Nuñez-Yañez, FPL 2010]
A. Nabina, J.L. Nuñez-Yañez, Dynamic reconfiguration optimisation with streaming data decompression,
Proc. of the Int. Conference on Field-Programmable Logic and Applications, pp. 602-607, 2010.

[Paulsson et al., FPL 2007]
K. Paulsson, M. Hübner, G. Auer, M. Dreschmann, L. Chen, J. Becker, Implementation of a virtual
internal configuration access port (JCAP) for enabling partial self-reconfiguration on Xilinx Spartan III
FPGAs, Proc. of the Int. Conference on Field Programmable Logic and Applications, pp. 351-356, 2007.

[Shelburne et al., FPL 2008]
M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin, R. Fong, MetaWire: Using FPGA
configuration crcuitry to emulate a network-on-chip, Proc. of the Int. Conf. on Field Programmable Logic
and Applications, pp. 257-262, 2008.

[Van der Bok et al., ProRISC 2007]
K. van der Bok, R. Chaves, G. Kuzmanov, L. Sousa, A. van Genderen, Dynamic FPGA reconfigurations
with run-time region delimitation, Proc. Workshop on Circuits, Syst. & Signal Proc., pp. 201-207, 2007.

[Xilinx Inc., DS280 2004]
Xilinx Inc., OPB HWICAP, Datasheet 280 (v1.3), 2004.

[Xilinx Inc., DS586 2010]
Xilinx Inc., LogiCORE IP XPS HWICAP, Datasheet 586 (v5.00a), 2010.

[Xilinx Inc., DS643 2008]
Xilinx Inc., Multi-Port Memory Controller (MPMC), Datasheet 643 (v4.02.a), 2008.

[Xilinx Inc., UG080 2006]
Xilinx Inc., ML401/ML402/ML403 Evaluation Platform, User Guide 80 (v2.5), 2006.

[Xilinx Inc., UG192 2011]
Xilinx Inc., Virtex-5 FPGA System Monitor, User Guide 192 (v1.7.1), 2011

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

Part IV

Proofs of Concept
& Use Cases

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 117

Chapter 6

Exploration and exploitation

From long time ago, the scientific community has been actively involved in the search
and exploration of potential killer applications for run-time reconfigurable hardware
technology. Reconfigurable computing fits well in many application fields and, in this
chapter, application domains that benefit from this technology are pointed out. Its
potential has been demonstrated in numerous research works, gaining up to several
orders of magnitude in performance/cost benefits compared to other traditional
implementation alternatives based on static hardware. A survey of potential applications
and successful stories of commercial products based on this technology is presented
next. In summary, these examples share a common vision about the importance of
reconfigurable computing and some very exciting ideas and directions for future work.
After this outlook, the next chapters of the part IV of the dissertation encompass the
design of specific solutions based on run-time reconfigurable hardware to solve six
particular engineering problems. Through these experimental examples developed, the
author aims at extracting a compelling methodology to exploit run-time reconfigurable
hardware and give evidences of its proof-of-feasibility. It is an attempt to brigde the gap
between the theoretical math of engineering apps and the design issues to make it
possible in practice with current FPGA devices. They show how to translate an algorithm
to a circuit using techniques which match the advantages of area and time multiplexing.

6.1 Potential applications

The goal of this section is to collect a comprehensive list of current computing and
engineering applications which, deployed in reconfigurable hardware technology, can
contribute to add value to real solutions in both industrial and academic areas.
Software-defined radio, cryptography or high-performance computing are among the
system applications beginning to use partial reconfiguration today. Furthermore,
because this field is still growing, new fields of application are likely to be developed in
the future.

6.1.1 Space applications

Electronic systems specifically designed to carry out space applications under strong
operating environments (e.g. telecom, military or avionics) are submitted to aggressive
requirements and qualification tests concerning features like low-power consumption,
reduced weight and size, electromagnetic compatibility (EMC) and, mainly, immunity and
tolerance to single event upset (SEU) due to the exposition of the silicon area to cosmic
radiation. The atmosphere contains several types of subatomic energetic particles that
whether collide with semiconductor devices can cause them some kind of damage,
interfering thus with the normal operation of those electronic components. These
particles –basically high-energy protons, neutrons and heavy ions– are the result of the
collision of both solar and galactic cosmic rays with the oxygen and nitrogen atoms in
the Earth’s atmosphere. The single event upsets are radiation-induced errors in
microelectronics circuits caused when these charged particles lose energy by ionising the
medium through which they pass, leaving behind a wake of electron-hole pairs. If these
charges generated in the silicon substrate in CMOS devices are located near to a
transistor can be then collected by its source and drain producing a current pulse which,
if it is large enough, can finally change the state of a memory cell or configuration bit
from logic 1 to logic 0 and vice versa.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 118

Despite SRAM-based FPGAs are more susceptible to particle-induced SEUs than Flash or
anti-fuse FPGAs, they are gaining relevance due to its high potential as on-orbit
fully/partially reconfigurable systems [Osterloh et al., AHS 2009]. There exists a clear
trend towards re-designing the control electronics of space applications up till now based
on mask-programmable or one-time programmable (OTP) silicon platforms, such as
ASICs or antifuse-based FPGAs (e.g. Actel FPGAs), by introducing SRAM-based FPGAs
(e.g. Xilinx and Atmel FPGAs). The reasons are their higher performance and
reconfiguration capabilities, as well as the considerable reduction of development time
and costs. Besides, SRAM-based FPGAs provide the flexibility to update processing
algorithms as needed during the development cycle and even post–launch by replacing
faulty/outdated designs at different stages of a mission. That is, reconfigurability can be
used to change the resources where a particular function is implemented, upon the
successful detection and diagnosis of a fault affecting the area of the device in which it
had been originally placed. It is relevant to note here that space qualification for printed
circuit boards (PCB) restricts to only a maximum of three soldering and de-soldering
cycles for any given pad, therefore the use of SRAM-based programmable logic devices
lets skip these constraints since they can be in-system reconfigured repeatedly, once the
device is soldered onto the PCB. An additional reason is that the FPGA vendors have
already begun to develop SEU mitigation techniques in order to make their devices
usable in space applications: the European Space Agency (ESA) is activelly working with
the European provider of FPGAs Atmel, which develops radiation-hardened versions of
SRAM-based (rad-hard) FPGA devices admitting also run-time reconfiguration
(http://spacefpga.atmel-nantes.fr/spacefpga), and the National Aeronautics and Space
Administration (NASA) is working with Xilinx FPGAs. Apart from this, it is expected that
future space missions will require measurements from high data rate instruments.
Recent internal studies at NASA’s Jet Propulsion Laboratory estimate approximately a
transaction of 1–5 Terabytes of raw data (uncompressed) per day. Implementations of on-
board processing algorithms to perform lossless data reduction are required to drastically
reduce data volumes to within the downlink capabilities of the spacecraft and existing
ground stations. Reconfigurable FPGAs can include embedded processors thereby
providing a flexible hardware and software co–design architecture to meet the on–board
processing challenges of these missions while reducing the critical spacecraft resources
of mass and volume of earlier generation flight–qualified single board computers. With
satellite lifetimes increased far beyond ten years –much longer than the validity of
telecom standards– re-programmability in flight becomes a stringent requirement. If
software solutions are not possible, dynamically reconfigurable FPGAs may soon be the
only solution. In summary, they offer flexibility for changing requirements, in-system and
on-orbit programmability as well as potential recovery of in-flight failures.

6.1.2 Bio-inspired applications

Nature has always inspired humans. As proof of this, reconfigurable technology is
allowing the physical implementation of bio-inspired systems, emulating the structure,
the behavior and the mechanisms of biological organisms. Natural capabilities such as
growth, evolution, learning, healing, self-replication or reasoning can be modelled by
hardware systems to reach an approach of what could be called artificial life. From a
global viewpoint it can be considered that these basic principles are structured around
three main axes: phylogenesis (evolution), ontogenesis (growth, self-replication, self-
repair) and epigenesis (learning). These three axes are the key representatives of a new
hardware conception paradigm known as bio-inspired hardware and, analogous to
nature, the space of bio-inspired hardware system can be partitioned along them: the
phylogenesis encompasses all the processes which result in what is usually called
natural evolution, i.e., the history of the evolution of the species, the development of
living species and populations driven by the pressure exerted by the environment. If one
considers the specific case of phylogenetic hardware, one finds the domain of evolvable

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 119

hardware. The ontogenesis involves the development of a single individual from its own
genetic code, essentially without environmental interactions. The self-replication and
self-repair capabilities that can be usually observed in living beings and cellular systems
are based on the concept of ontogeny, where a single mother cell gives rise, through
multiple divisions, to a multiple cellular organism. Ontogenetic hardware mainly involves
hardware implementations of self-replicating and self-repairing cellular systems. Finally,
the epigenesis handles the learning through environmental interactions that take place
after formation of the individual. It consists in the development of an individual through
learning processes influenced by both genetic code (the innate) and environment (the
acquired). Epigenetic hardware mainly involves artificial neural network hardware
architectures. Therefore, these three organisation principles have provided a
longstanding inspiration for solving an extensive list of engineering problems as
navigation management in autonomous robots, evolutive artificial neural models in
applications where an autonomous system reacts and learn in real-time from the
environment, the design of fault-tolerant integrated circuits due the continuous
semiconductor technology scaling, or online repairing strategies for electronic systems in
hostile environments that may damage the device such as space applications discussed
above. Many bio-inspired projects have been carried out in the last years on
reconfigurable logic architectures. BioWall is an excellent example of a bio-inspired
electronic tissue composed by an array of 5700 Xilinx Spartan FPGAs that replicates
biological functions in digital hardware [Tempesti and Teuscher, Xcell 2003]. Other
research projects are POEtic, which develops an electronic tissue in the form of an ASIC
[Moreno et al., MIXDES 2006], and PERPLEXUS, an project that implements a scalable
hardware platform made of custom reconfigurable devices for designing systems able to
grow by means of cellular replication, where, by using a small configuration bitstream
(describing a single cell), it is possible to generate a complete highly complex organism
composed of several cells [Thoma et al., ARCS 2007].

6.1.3 Data security applications

With the continuous and rapid expansion of internet and wireless-based
communications across open networks, the value of data as a corporate asset itself is
growing and data security becomes a mandatory element required in almost any new
system architecture. Applications such as electronic banking, electronic commerce,
healthcare practice supported by electronic processes and communication, or virtual
private networks (VPNs) require an efficient and cost-effective way to address security
over public domains. Security, in the context of information technology, refers basically
to properties like: confidentiality or assurance that information is not disclosed to
unauthorised individuals; integrity, i.e. ensuring that information retains its original
level of accuracy; authentication –recognizing/verifying valid users to allow them access
to certain system privileges– and non-repudiation. Consequently, cryptography is the
fundamental component for securing such confidential data. The security level provided
by cryptographic systems depends on aspects as the mathematical features of the
algorithm itself, the way it is implemented (e.g. its power consumption and its prevention
of power analysis attacks), the management and length of the keys, etc, and these
cryptographic algorithms can impose tremendous processing power demands.
Furthermore, the swapping between several encryption algorithms at run-time is a
feature highly demanded in many communication systems, therefore the cryptographic
implementation must support different algorithms or standards, as well as rapid changes
of them being upgradeable in the field since, otherwise, interoperability among different
systems is prohibited and any upgrade results in excessive cost. In addition, each
security association or link is restricted by its lifetime, after the expiration of which, a
new security association has to be established by dynamically negotiating the security
parameters between the communicating entities. The ultimate solution for cryptography
in terms of flexibility and data transfer rates in line with these demands is an adaptive

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 120

cryptographic processor. Just this target is reachable by means of reconfigurable
hardware technology.
Encryption applications, which involve repetitive computation and have inherent
parallelism of large data, are specifically well suited to the use of FPGAs. Reconfigurable
hardware emerges as a superior implementation platform with which to address these
high-computational algorithms to reach secure applications and overcome the drawbacks
of software-based alternatives. Besides, at lowest level, some inherent implementation
features of the encryption/decryption algorithm as the change of keys and sub-keys
generation, data permutations, data shift, or dynamic changes of constant coefficient
multipliers (KCM) and constant coefficient adders (KCA), and the exploitation of hash
functions, e.g. Secure Hash Algorithm (SHA), to implement a cryptosystem which can
switch between several hash functions are all well-suited to be handled through
reconfigurable hardware. Summarizing, reconfigurable hardware devices such as SRAM-
based FPGAs combine potential advantages of SW and HW implementations in
cryptographic applications. As examples, many works exist which show the benefits of
deploying cryptographic systems based on reconfigurable hardware for IDEA and AES
algorithms [Gonzalez et al., FPL 2003], [Granado et al., MEJ 2009], aimed at using the
hardware resources in an optimal way. Moreover, other viewpoint is presented in
[Mentens et al., CHES 2008], where it is exploited the use of dynamic reconfiguration to
improve the resistance of cryptographic systems against physical attacks. A new class of
countermeasures are introduced which provides increased resistance, in particular
against fault attacks, by randomly changing the physical location of functional blocks on
the chip area at run-time –introducing in this way spatial jitter by means of random
relocation of the functional blocks– and by randomly positioning registers in between
functional blocks by means of a dynamically reconfigurable switch matrix to introduce
delays – countermeasures that aim at introducing temporal jitter into the sequence of
operations in order to desynchronize the observations of power consumption. Therefore,
in order to improve the resistance of the implementation against fault analysis attacks, it
is proposed a dynamically architecture in which both the location of the subfunctions
and the addition of intermediate registers is altered randomly based on a true random
number generator to introduce a spatial and temporal jitter.

6.1.4 Thermal self-protected systems

If an integrated circuit is submitted to a severe thermal stress, for instance leading the
chip to an increased junction temperature or to the presence of regions that dissipate
excessive amounts of heat (hotspots), this overtemperature unleashes negative effects in
the device like performance degradation or increase in its leakage current. Hence, the
thermal testing/monitoring of an electronic design plays a vital role to ensure safe and
reliable thermal operating conditions. In addition to static techniques to remove the heat
from the die and reduce the temperature (e.g. sophisticated chip packaging techniques),
dynamic techniques of thermal management are essential. Such techniques rely on
accurate on-chip temperature information. Thermal monitoring by employing thermal
sensors is a widely used technique for assessing thermal behavior of integrated circuits
and providing thus preventive measures at run-time to ensure a reliable operation of the
device and make it to self-adapt to the environment in case of overtemperature.
Traditionally, microprocessors operate only at a single frequency and voltage, thus
always consuming full power; however, state-of-the-art microprocessors are built to allow
their voltage and frequency to be scaled to decrement power usage before the chip
overheats and improve thus the battery life in laptops and handheld devices where they
are used (e.g. Intel Xeon processor). Similarly, in the field of programmable logic devices,
FPGA circuits can operate at reconfigurable operating frequencies. Besides, their power
dissipation depends on the characteristics of the specific application placed and routed
in the FPGA. In order to obtain the termograph of either the whole FPGA device or a
specific region, an array of on-chip thermal sensors should be distributed along the area

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 121

under study. A way to measure chip heating is to construct a ring oscillator and calibrate
its output drift in MHz/ºC. A ring oscillator consists of a feedback loop that includes an
odd number of inverters needed to produce the phase shifting that maintains the
oscillation, with the particularity that the resulting period is twice the sum of the delays
of all elements that compose the loop. Ring oscillators are extensively used for
implementing thermal sensors on the FPGA fabric since their advantages as thermal
transducers are multiple: they can be implemented with few hardware resources (the
inverters can be easily synthesized as gates “not” in LUTs of the FPGA) and they can be
placed in virtually any position of the chip; moreover, they can be inserted, moved or
eliminated by means of dynamic reconfiguration, making possible the construction of a
thermal map of the die without requiring any external equipment; also, they do measure
the junction temperature and not the package temperature, and unlike reusing specific
thermal sensing diodes or I/O pad clamping diodes present in some FPGAs, no I/O pads
are necessary to measure the die temperature, hence it is not necessary to make any
PCB modification. As application examples, López-Buedo et al. present a thermal
monitoring strategy suitable for FPGA-based systems based on the idea that a fully
digital temperature transducer can be dynamically inserted, operated, and eliminated
from the circuit under test using reconfiguration [López-Buedo et al., TCPT 2002].
Similarly, Jones et al. exploit these ideas on an image processing application
implemented on a Xilinx Virtex-4 FPGA [Jones et al., FPL 2007]. By time-multiplexing the
system between running the application and making a temperature measurement, they
present an adaptive mechanism that automatically adjusts some system operating
parameters to yield the best performance for the given environmental conditions,
overcoming thus the performance loss in such systems due to overtemperature. The
image recognition system sustains a safe operational temperature by automatically
adjusting its frequency and output quality to self-regulate its temperature. Like this, the
circuit sacrifices output performance and quality to lower its internal temperature as the
ambient temperature increases, and can leverage cooler temperatures by increasing
output performance and quality. The adaptive application firstly reduces its frequency
and secondly the number of cores as well as their size and functional characteristics in
order to operate safety under worst-case thermal conditions. In this way, this solution
adaptively reacts to changing environmental conditions to obtain the highest possible
performance while maintaining a safe temperature. Furthermore, the circuit is able to
shutdown if the ambient temperature becomes too hot for the device to function properly;
this is performed by downloading a blank bitstream to the FPGA. As summary, thermal
monitoring is a valid application field for reconfigurable hardware. The reconfiguration
capability of FPGAs transforms these devices into a powerful tool for the study of thermal
aspects of ICs and packaging, making possible new alternatives for building thermally
self-protected systems.

6.1.5 Software defined radio

In the last years, there has been a strong push to replace analog radio systems by digital
radio systems. The Joint Tactical Radio System (JTRS) program of the US Department of
Defense shifted the emphasis on the development of software-defined radio (SDR) aimed
at doing an essential step towards the unification of radio communication systems, the
transparency of services and the exchangeability of components. Like this, SDR is
considered a key technology expected to play a decisive role in the wireless
communication evolution and spectrum management. It basically refers to a set of
techniques that permit the reconfiguration of a communication system without the need
to change any hardware system element. The goal is to solve incompatible wireless
network issues by implementing radio functionalities as software modules running on
generic hardware platforms. The key point is the fact that this adaptation shall be
dynamic, in real-time, and even on the fly in case service continuity is required (e.g.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 122

roaming, reconfiguring the terminal to change from one network to another without
losing the connection).
Although the idea of having a single versatile hand-held device supporting a large
number of wireless standards and enabling ubiquitous connectivity through seamless
handovers is not new, still today the major bottleneck is the need for low cost, low power
consumption, multi-purpose chipsets that support a large variety of bit rates,
modulation formats, physical bandwidths and carrier frequencies. Nevertheless, multi-
purpose SDR systems turn out to be the only viable option to enable cost-effective mobile
terminals incorporating multiple wireless technologies. Only recently, semiconductor
technology has evolved to make SDR possible. Although typical architectures implement
waveforms in the digital domain using MCUs and DSPs, today the new generation of
partially and dynamically reconfigurable FPGAs have specific features which enable SDR
implementation. Conceptually, a SDR is a radio communication system which can tune
to any frequency band (e.g. GSM, DECT, WLAN) and receive any data modulation (e.g.
BPSK, QPSK, OFDM) across a large frequency spectrum by means of programmable
hardware controlled by software. Some examples of SDR platforms synthesized in run-
time reconfigurable hardware are [Delahaye et al., WSR 2004], where the system is
composed of one TI DSP C6201 and one Xilinx FPGA Virtex 1000E driven by run-time
partial reconfiguration, and [Rauwerda and Smit, ProRISC 2004], where it is used a
coarse-grained reconfigurable MONTIUM processor. Thus, in general, the adaptivity
features of the SDR falls into four broad classifications, ordered in an increasing level of
both adaptivity and sophistication: functions (e.g. basic building blocks such as
Kahlman filters, fast Fourier transforms (FFT) and finite impulse response (FIR) filters),
components (e.g. digital down converters and digital up converters which adapt to
waveforms that support different bit rates or sampling rates), applications (e.g.
modulators) and services (e.g. radio services, network awareness services, ad-hoc
networking and even anti-jam services) shall be able to adapt to changing conditions as
needed. These levels of adaptivity are possible with PR-FPGAs, although the SDR
platforms are still in their early development stages and many issues must be solved to
reach the flexibility, scalability and reconfigurability demanded. However, this research
field has attracted a large expectation of both industry and academia, and the advances
in FPGAs lets be a step closer toward the deployment of reconfigurable radios.

6.1.6 Control applications

There are many application fields which build real-time control systems based on PID,
fuzzy logic, artificial neural networks (ANN) or state-space controllers. The need for a
transparent and straightforward design methodology of controllers often leads to
software implementations, that is, microprocessor programs described in a high-level
language using floating-point arithmetic. This approach, however, is inappropriate for
some applications that require high sampling rates with short computational times. Like
this, FPGA technology exploiting run-time reconfiguration has been explored in the field
of control applications, resulting in an efficient alternative to controllers executed by
either software-based processors or synthesized in fixed hardware. Many industrial
processes, due to their nature, present a dynamic behavior modelled by a set of operating
regimes. Each of these regimes is delimited by a series of environment conditions
(temperature, humidity, etc) in which the system can be immersed. Thus, depending on
the changing environment, the plant must change its operating regime at real-time by
adapting its plant controller (either small changes as modifying some parameters of a
controller or big structural changes like adding and removing some processing units) to
the new operation conditions. With conventional methods it might be possible to design a
controller able to control the plant in all operating regimes, but often it is not possible to
guarantee optimal working conditions in all the operational range. Parameter adaptive
controllers could be used, but they might respond too slowly to abrupt changes of the
plant’s dynamic behavior. In this case, it is possible a multiple-model approach

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 123

composed of a set of controller modules implemented in static hardware, each optimized
for a special operating regime of the plant, with a supervisor module responsible for
switching among the controller modules to determine the active module. However, in this
multi-controller architecture, although all modules are instantiated in parallel, only one
controller module is active at one time, leading to an inefficient design in terms of area
and power consumption. Partial run-time reconfiguration can increase the resource
efficiency by keeping the currently active controller on the FPGA while inactive
controllers are stored in an external NVM. As example, the University of Paderbon
proposed an architecture where two controller modules coexist in hardware, one in
foreground and the other in background, in order to hide the reconfiguration time typical
of the controller switching during normal operation. This architecture takes advantage of
the inherent features of the reconfigurable hardware [Danne et al., FPL 2003]. A similar
approach exploiting the benefits of partial reconfiguration is found in the work of
Rümmele-Werner et al. oriented to the design of a real-time multi-object-tracker. The
system is able to track three objects simultaneously by using different algorithms to get
the best result. By using the dynamic partial reconfiguration capability of FPGAs, the
algorithms can be exchanged during run-time without interrupting the object-tracking
process [Rümmele-Werner et al., ISCAS 2011]. Other example of controller that can
benefit from run-time reconfigurable hardware technology is the design of artificial
neural networks since this technology provides designers with a very flexible platform for
the development of adaptive digital circuits. Most types of neural networks have two
operation modes which are processed depending on the moment of the execution:
training and operation. As the algorithm used in each mode is different, it is possible to
switch from one mode to another by implementing the two specific hardware circuits in a
reconfigurable FPGA. Moreover, many neural networks training algorithms, in turn, can
be partitioned into a series of smaller sub-algorithms that are sequentially executed. This
partitioning can be exploited by FPGAs because only one of the sub-algorithms needs to
be implemented in hardware at any time. Moreover, some types of neural networks have
many different types of training algorithms, and each one of these algorithms would
require its own special hardware. This allows a more effective use of hardware resources.
All these criteria were put in practice by the Reconfigurable Logic Laboratory at the
Brigham Young University (BYU) to develop the so-called Run-Time Reconfiguration
Artificial Neural Network (RRANN and RRANN2) as a proof-of-concept system that
demonstrates the effectiveness of run-time reconfigurable FPGAs for implementing
neural networks [Eldredge and Hutchings, VLSI 1996]. The RRANN architecture,
designed on Xilinx XC3090 FPGAs, divides the backpropagation algorithm into the
sequential execution of three time-exclusive stages known as feed-forward,
backpropagation, and update. This work was extended later in the RRANN2 project,
implementing theANN on a fine-grained SRAM-based FPGA with run-time partial
reconfiguration –the National Semiconductor CLAy31 FPGA– where the reconfiguration
process entails only reconfiguring those portions of the FPGA that change between two
consecutive configurations [Hadley and Hutchings, FCCM 1995].

6.1.7 Hardware emulation and rapid prototyping

Today’s embedded systems design has to deal with the growing complexity implied by the
combination of emerging technologies and the increasing need for reconfigurability
motivated by the combination of the backward compatibility demanded to the current
products and the emergence of new protocols/standards or functionality in general. With
this, one of the most difficult tasks in the design of modern complex embedded systems
is the validation phase. In this sense, the use of FPGA dynamic reconfiguration
technology allows having an early analysis of the behavior of the system under almost
real conditions while providing an extreme flexibility for embedded validation by adding
or modifying the design: different specific peripherals or trace mechanisms can be
included on the FPGA on demand to improve the observability and even controllability of

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 124

the system. This specific data path to extract information from the device under test can
be configured and removed on-the-fly adapted to different test situations. The system can
then run during long tests, where different operations are performed and different
equipment is connected, without having to stop the whole system. This concept can also
be extended to the debug phase, where traditionally there has been a problem of visibility
of internal signals. This limited visibility can be overcome by adding reconfigurable
monitoring IPs on the fly on the design under test. Such adaptable system design offered
by the reconfigurable hardware has been particularly popular among test equipment
manufacturers since reconfigurable FPGAs can be used to adapt the same hardware to
perform varying types of tests. Moreover, another valuable feature exploited by run-time
reconfigurable hardware is the system failure injection [Antoni et al., DFT 2000].

6.1.8 Digital signal processing and arithmetic computing

Many embedded applications implement digital signal processing algorithms to perform
certain functionality. In specific domains, software-based implementations do not attain
the level of performance required. In such cases, characterized typically by aggressive
real-time constraints, hardware coprocessors provided with a high level of parallelism
and attached to the host processor are often the solution. Many of these coprocessing
architectures, furthermore, demand a level of flexibility and versatility not reachable with
static hardware. Run-time reconfigurable hardware technology fits well in such
applications oriented to signal filtering, data transmission, arithmetic computing, etc. As
examples, in the field of digital filtering, the capability of reconfiguring a filter at run-time
is of special interest for applications such as wireless communications or SDR [Delahaye
et al., MWCS 2007]. Llamoca et al. developed a 1D FIR filtering system on distributed
arithmetic of an FPGA platform that lets, by means of dynamic partial reconfiguration, to
reconfigure either only the filter coefficients or the full filter core architecture, modifying
the number of coefficients as well as the coefficient values [Llamoca et al., IJRC 2010].
The same concept based on run-time reconfigurable hardware has been successfully
applied to the implementation of other use cases like discrete wavelet transform, fast
Fourier transform (FFT), discrete cosine transform (DCT), etc. In the area of arithmetic
computation, reconfigurable systems achieve significant increases in performance by
adapting to computations that are not so well supported by general-purpose processors.
Such computational systems are based on processing units customized to the
requirements of a particular application. In this context, special attention is given to
problems in the area of combinatorial optimization. Among them, the boolean
satisfiability (SAT) problem stands out because of the extremely wide range of practical
applications in a variety of engineering areas, including the testing of electronic circuits,
pattern recognition, logic synthesis, etc. SAT is a very well-known combinatorial problem
that consists of determining whether for a given boolean formula, composed of a set of
clauses and variables, there exists an assignment of values to the variables which makes
the given formula true. Implementations based on reconfigurable hardware enable the
primary operations of the respective algorithms to be executed in parallel. Consequently,
the effect of exponential growth in the computation time can be delayed, thus allowing
larger size instances of SAT to be solved. Recently, several research groups have explored
different approaches to solve the SAT problem with the aid of reconfigurable hardware
[Skiliarova and De Brito, TOC 2004].

6.1.9 Image processing and multimedia applications

Real-time image processing systems are finding many new applications in areas such as
real-time video processing, medical instrumentation or multimedia. Most of these
systems are commonly implemented on general-purpose processors; however, an
alternative solution is the use of reconfigurable computing systems, which have
demonstrated their efficiency to execute complex algorithms satisfying the simultaneous

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 125

application needs of performance and flexibility. Moreover, computer vision algorithms
are characterized by complex and repetitive operations on large amounts of data
involving a variety of data interactions (e.g., point operations but also neighbourhood
operations) and they can be efficiently synthesized in dedicated hardware coprocessors.
Apart from image processing, in the multimedia and consumer electronics domain, audio
processing is also of relevance. The boom of sales of portable multimedia devices in the
past years went joined with the appearance in the market of many emerging compression
and communication technologies adopted in standards organizations such as ISO, ITU
and IEEE. As example, the MPEG and JPEG groups have developed standards to address
the compression needs of audio and video. These compression standards address a
broad range of application areas, such as digital video broadcast, medical imaging, video
surveillance and digital cinema. In this direction, new standards offer unprecedented
levels of performance but at a computational cost that favors FPGA technology over
traditional processor-based solutions. Besides, the tremendous growth of formats makes
dynamic reconfigurable FPGAs an effective platform for this kind of applications to
support and play whatever new multimedia format under the same hardware platform.
As use case, in [Castillo et al., ReConFig 2006], it is presented a multimedia player
system that can be self-reconfigured with appropriate hardware codec to perform the
audio and video reproduction depending on the multimedia file to be played, e.g. audio
coding formats like WAV (Waveform Audio Format) and MP3 (MPEG-1 Audio Layer 3), or
video formats such as JPEG (Joint Photographic Experts Group) and MPEG-2 (Moving
Picture Experts Group). Still in the field of multimedia applications, the expansion of
wired and wireless network infrastructures and advancement of electronic devices enable
the society to enjoy a new life style where we download added-value contents from
remote servers and play them on local PCs or embedded appliances such as smart
phones. As example, IMEC developed a reconfigurable Internet camera called Cam-E-
Leon, combining reconfigurable hardware and embedded software. The appliance
implements a secure VPN (Virtual Private Network) with 3DES encryption and an
Internet camera server (including JPEG compression), which is run-time reconfigurable
by the client, allowing to switch among several available image manipulation functions
from a web browser [Desmet et al., SAMOS 2002]. Other work related to video
compression is the one performed in [Ramachandran and Srinivasan, VLSID 2002],
where a dynamically reconfigurable video encoder lets switch among JPEG, MPEG-1,
MPEG-2 and H.263 standards through the partitioning of the algorithm using dynamic
reconfiguration. The video encoder is implemented on the Atmel AT6000 FPGA and the
dynamic reconfigurability for the entire encoder system is confined to only a portion of a
Variable Length Coder (VLC) module residing in the FPGA. This video encoder presents a
flexible solution to dynamically switch from one standard to another, changing program
features like colour, picture size and channel rate to achieve the desired image quality.

6.1.10 Telecommunications and networking

The recent proliferation of wireless communication systems has highlighted the need to
dynamically adapt communications architectures at the hardware level, characterized via
a set of configurable parameters. Many other application fields arise in the area of
telecom and networking, like data error recovery. The use of error-correcting codes has
proven to be an effective way to overcome data corruption in digital communication
channels. For this, the system is composed of an encoder and a decoder, separated one
from the other by a communication channel exposed to different sources of noise.
Encoding is accomplished through the addition of redundant bits into the binary
information sequence that is transmitted over the communication channel. These
redundant bits provide the decoder with the capability to detect and correct transmission
errors originated by the effects of noise and interference into the communication
channel. Thus, values received at the decoder may differ from values sent by the encoder
due to the noisy and error-prone channel, affected by characteristics such as weather

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 126

(wireless communication), distance or battery-power. The changes in these parameters
result in a change in the signal-to-noise ratio (SNR). The function of the decoder is to
attempt to reconstruct the input sequence transmitted by the encoder by evaluating the
received channel output, and the performance of this decoder is characterized by the bit
error rate (BER), i.e., the ratio of the number of decoded output bits in error to the total
number of bits transmitted. The ability of error correction codes to increase the signal to
noise ratio of a communication channel depends on the code chosen. Several of these
coding/decoding (CODEC) strategies implemented on reconfigurable hardware are
presented next.
� Viterbi and Adaptive Viterbi decoders are some of the most extensively used

techniques for detecting and correcting error in communication systems based on
convolutional codes. Their implementation is typically accomplished by means of shift
registers and logic (XOR) functions. As example, Swaminathan et al. proposed the
implementation of a dynamically reconfigurable adaptive Viterbi decoder implemented
in reconfigurable hardware [Swaminathan et al., FPGA 2002]. In this way, if the
channel noise increases, a more accurate but slower running decoder is swapped into
the FPGA hardware. Reduced channel noise leads to the opposite effect, downloading
in hardware a decoder version of reduced computation and memory to support faster
performance and achieve the same decode accuracy.

� Turbo codes are other error-correction codes based on redundant data transmission.
The component encoder consists of a shift register augmented with generator
functions (AND and XOR) to compose one or more parity bits per each input bit. Liang
et al. developed a dynamically reconfigurable ASOVA (Adaptive Soft Output Viterbi
Architecture) turbo decoder mapped on an Altera Stratix FPGA [Liang et al., FCCM
2004]. Dynamic reconfiguration is used to ensure that, in response to changing
channel conditions, the lowest-power decoder that meets the required BER is present
in the FPGA at any time, while saving power in comparison to a static implementation.

� Reed-Solomon (RS) codes are further examples of codes used to perform Forward Error
Correction (FEC) by introducing redundancy in data before they are transmitted. The
fundamental operations in RS encoding and decoding involve Galois field arithmetic.
These codes are particularly well suited to correct burst errors, in which a continuous
sequence of bits is received with errors. Haase et al. developed a Reed-Solomon
coder/decoder taking advantage of the partial dynamic reconfiguration of Xilinx Virtex
FPGA devices [Haase et al., DATE 2002].

Apart from error correction algorithms, in the field of networked applications, the always
increasing demands of the Internet directly affect the requirements of networking routers
and firewalls in aspects like data bandwidth and flexibility to support the implementation
of new features and functions, e.g. new protocols, enhanced security, all of course
without involving prohibitive costs. On the one hand, existing router architectures that
provide sufficient flexibility and data-flow processing employ software-based platforms
containing multiple RISC cores, therefore some features can be added or removed in the
router by upgrading the software in the system. The sequential nature of the
microprocessor, however, can limit the system throughput. On the other hand, existing
high-performance router architectures capable of data processing at optical line speeds
employ ASICs to perform parallel computations in hardware. Nevertheless, these
architectures often provide limited flexibility for the deployment of new applications or
protocols due to the static nature of the ASIC circuit and consequently they need longer
design cycles and higher costs than software-based solutions. In this context, the
diversity of networking applications and data flows suggests dynamically reconfigurable
hardware to cover this potential design space. As example, the Applied Research Lab
from the Washington University developed the Field Programmable Port Extender (FPX),
a prototype which enables customized packet processing functions to be implemented as
modules which can be dynamically loaded into hardware over a network. Each of these
modules, called Dynamic Hardware Plugins (DHP), is deployed in the physical router.
The DHP architecture employs reconfigurable hardware to provide a flexible hardware

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 127

processing environment for programmable multi-port routers, allowing multiple
hardware applications to be dynamically loaded into a single device and run in parallel.
The modular design of the FPX makes the system of interest for active networking
systems as it allows customized applications to achieve the higher performance via
hardware acceleration while these modular components can be dynamically reconfigured
over the Internet [Taylor et al., OPENARCH 2001].

6.1.11 Automotive applications

There exist many potential applications in the automotive industry which can take
advantage of run-time reconfigurable computing like driver assistance, infotainment
(information & entertainment), telematics (the convergence of mobile telecommunications
and information processing in vehicles) or the traditional body control and engine
management functions. Today, the automobile is provided with novel functionality;
linked to this trend, the percentage of vehicle added-value due to mechanical parts is
constantly decreasing while the percentage related to electronic components goes just in
the opposite direction embedded in the electronic control units (ECUs) present in the
vehicle. These ECUs are requested to increase their computational power to join and take
charge of much more functionality. In an attempt to manage this complexity,
DaimlerChrysler AG in cooperation with the Institute for Information Processing
Technology (ITIV) of the University of Karlsruhe investigated the design of an automotive
ECU based on the usage of dynamic and partially reconfigurable hardware [Becker et al.,
IEEE 2007]. Partial and dynamic run-time self-reconfiguration of FPGA devices enables
the development of adaptive hardware for a huge variety of applications. In this
approach, the typical microcontroller as central component of an ECU is replaced by a
dynamically and partially reconfigurable FPGA able to provide vehicle functions on
demand. This approach is based on the fact that not all vehicle functions must be
available or needed at the same time –in fact, this neither happens today in a vehicle
when several functions or tasks are sequentially executed by the same MCU within an
ECU– therefore it should be possible to identify an adequate subset of functions which
can be operated on the same reconfigurable resource by applying a kind of flexible
demand-driven time-multiplexing. This fact makes possible to save hardware resources
and power consumption. In the work conducted by Daimler and ITIV, the system
consists of a run-time module controller, implemented on a MicroBlaze soft-core
processor and four reconfigurable module slots where the different hardware-based
application functions are dynamically downloaded and executed on-demand. The system
is prototyped in a Xilinx Virtex-II FPGA device. In the static region of the FPGA, a
MicroBlaze sof-core processor is the host CPU of the system. The system is connected to
its environment via a Controller Area Network (CAN) bus, which is a well established
communication interface in the automotive domain. The CPU manages the execution of
the different applications or tasks requested via CAN frames in the different
reconfigurable regions or partitions of the FPGA. If the task requested via CAN requires a
dedicated processor that is not placed at that time in the partially reconfigurable regions,
then the reconfiguration controller looks for a free partition and handles the
reconfiguration by downloading its bitstream from external Flash memory. This system
was implanted in a real car for conducting system tests in a real-world scenario to deploy
body functions like seat memory, window lifter or rear mirrors. The results prove that the
reduction of power dissipation by adapting the hardware to the actual demand of the
application is possible with reconfigurable hardware by means of a dynamically and
partially reconfigurable FPGA.

6.1.12 High-performance computing

The potential of FPGAs for scientific computation, high-performance computing or
supercomputing is well understood today although their long implementation cycles have

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 128

hindered their faster adoption for numerically intensive applications. At present, various
key research contributions and initiatives propel FPGA-based computation from the
embedded space into scientific computing. A large set of examples can be found in the
literature, such as bioinformatics and computational biology, financial computing,
astrophysics simulations or weather and climate modelling. Pattern matching, for
instance, is an application domain extended in the area of bioinformatics, speech
recognition, or in search engines. In many cases, regular expression pattern matching
needs to support high processing throughput at lowest possible hardware cost. When
performance is critical, software platforms may not be able to provide efficient regular
expression implementations. It is a fact that they can be more than one order of
magnitude slower than hardware implementations, their performance does not scale well
as the number of regular expressions increases and their memory requirements may be
substantially large. Parallel hardware architectures offer large advantages in time
performance compared to software designs, due to easily extracted parallelism in the
intrusion detection string-matching problem. A generic ASIC design would be fast but
not suitable due to the dynamic nature of the ruleset –as new vulnerabilities and attacks
are identified, new rules must be added to the database and the device configuration
must be regenerated. Compared to CPU- or ASIC-based designs, an FPGA allows for
exceptional performance due to the parallel hardware nature of execution as well as the
ability to customize the device for a particular set of patterns through on-the-fly
reconfiguration of a new ruleset. FPGAs can operate at hardware speed and exploit
parallelism. Moreover, they provide the required flexibility to change the regular
expression ruleset implementation on demand. As the size of the regular expressions set
grows, conventional CPU performance may deteriorate appreciably compared to an
FPGA-based approach. Consequently, regular expression pattern matching is an
application field suitable to best exploit the advantages of reconfigurable hardware.

6.2 Success cases of commercial products and industrial
applications

The potentiality of all these applications fields enumerated in the previous section has
encouraged the FPGA vendors, supported by research groups in universities, to develop
this technology to definitely move it from research to industry. In this sense, additional
indicators which confirm the acceptance of run-time reconfigurable hardware is the slow
but progressive emergence in the market of commercial products or real use cases that
take advantage of this technology in the way of end applications. Nowadays, a very
reduced set of commercial products and industrial apps have revealed that make use of
run-time reconfigurable hardware technology. These success stories can be probably
turned out into the beginning of a new computing wave.

6.2.1 Consumer electronics

Sony Corp. released in 2003 the industry’s first consumer electronics product –the
Network Walkman NW-MS70D– driven by run-time hardware reconfiguration technology
(so-called Virtual Mobile Engine or VME) for audio codecs. Other commercial products
from Sony which integrate run-time reconfigurable hardware are the PlayStation Portable
console (PSP) or the Network Walkman NW-E405, deployed through VME technology
[Sony Corp., CX-NEWS 2009].

6.2.2 Computing platforms

FPGAs have become commonplace in embedded systems and are now beginning to
appear in high-performance, server-class computing applications as well. This shift
toward HPRC has been driven by the continuous growth of FPGA device capabilities. As
example, in the area of computation, the SwitchBack reconfigurable PC from RMT Inc.,

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 129

deployed with the Black Diamond Advanced Technology [Lewis, Xcell 2009], or the
supercomputer Altix 4700 from SGI, based on its Reconfigurable Application-Specific
Computing (RASC) technology [Silicon Graphics Inc., www 2005], are pioneer computing
architectures powered by reconfigurable SRAM-based FPGA devices.

6.2.3 NASA/ESA aerospace missions

In the aerospace field, the SpaceCube computing platform, an on-board science data
processing system developed at the NASA Goddard Space Flight Center, successfully
proved the feasibility of SRAM-based FPGA technology in the space through the STS-125
and STS-129 missions carried out in May and November 2009, respectively [Flatley,
ESTF 2010]. The SpaceCube incorporates commercial rad-tolerant SRAM-based FPGA
technology (Xilinx Virtex-4 or Virtex-5 devices) and couples it with an upset mitigation
software architecture to provide improvements in computing power quantified between
one and two orders of magnitude over traditional rad-hard flight systems. Methods for
fault mitigation, circuit redundancy and fault scrubbing have definitively enabled the use
of SRAM-based FPGAs in space making use of run-time partial reconfiguration. Thus,
the system is partially reconfigurable in flight, through either ground commanding or
autonomously in response to detected events in the instrument data stream [Flatley, GTT
2009]. On the other hand, in Europe, the ESA, under the research project called "FPGA
based generic module and dynamic reconfigurator", focuses on reconfigurable hardware
devices for exploiting run-time adaptability and processing performance of payload
onboard processing systems. Since performance requirements for onboard processing of
satellite instrument data are steadily increasing and the data volume generated by the
next generation of earth observation instrumentation can hardly be transmitted to
ground (because science data downlinks offer limited capacity only), a dynamically
reconfigurable processing module demonstrator based on Xilinx Virtex-4 FPGAs is
developed which exploits and unveils partial and dynamic reconfigurability of SRAM-
based FPGAs for space applications, including advanced concepts for mitigating
radiation effects [Dittmann et al., SpaceWire 2010].

6.2.4 Signal processing at CERN

Another real use case of run-time reconfigurable computing is found at CERN (European
Council for Nuclear Research) with the high energy physic experiments for particle
accelerators, e.g. ALICE, where it must be possible to change at run-time the
functionality of filters and other processing units of data acquisition systems along the
life cycle of such experiments [Abel et al., TNS 2010].

6.2.5 Software defined radio

Over 90 new satellites are projected to be launched by 2013 which will provide global
navigation satellite system (GNSS) signals on many different frequencies and with dozens
of different code types. Under this context, NAVSYS Corp., a company specialized in
developing next generation global positioning system (GPS) technology, is currently
leveraging its development efforts to design a miniaturized SDR architecture with low-
power design features and dynamic reconfiguration of the receiver channels to allow
different GNSS frequency bands and signal codes to be processed by each channel. By
using dynamic reconfiguration of the GNSS receiver channels rather than a conventional
fixed ASIC design approach, the channel resources can be reallocated to operate with
any GNSS code/frequency pair in order to compute the optimum navigation solution
from a subset of the many visible GNSS satellites. The SDR design is flexible enough to
cover the GNSS frequency bands for L1 and L2 operation and the new civil L5
frequencies using either the military or civil codes. The entire receiver baseband
processing is being implemented on a single Xilinx Virtex-6 FPGA. The base band

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 130

processing system is able to switch among six different receiver channels managed by a
navigation and host processor. In its turn, each of these FPGA receiver channels in the
GNSS SDR can be dynamically reconfigured to track a different GPS frequency or
satellite signal. For this, once triggered by the host processor, an encrypted bitstream of
the receiver channel is downloaded into the appropriate FPGA reconfigurable region from
external flash memory by a crypto core, being the channel reconfigured in approximately
1.5 milliseconds. The design, oriented to the United States GPS, is flexible enough to
handle in the future the signals from other GNSS constellations such as the European
Galileo, the Russian GLONASS, the Japanese QZSS, the Indian GAGAN or the Chinese
CNNS [Brown and Reed, GNSS 2011].

6.2.6 Cryptography

Nallatech Ltd., a company specialized in the development of reconfigurable computing
systems, designed a reconfigurable video encryption system oriented to military
applications for the UK Ministry of Defence (MOD). Using FPGAs, Nallatech successfully
designed a reconfigurable system that proved how the MOD could replace one or more
components of its original video encryption platform without affecting the rest of the
system and software. To prove this flexible concept, Nallatech designed a reconfigurable
video encryption system on a FPGA device by creating two identical designs with different
encryption cores. For the first encryption core, Nallatech chose a modified Enigma
encryption algorithm used by German military and intelligence communications during
World War II. For the second core, they chose the Advanced Encryption System (AES)
algorithm. The original system was updated with a new encryption core by fully
reconfiguring the FPGA [Denning et al., FPL 2003]. Thus, they successfully demonstrated
the feasibility of IP obsolescence protection and update by means of reconfigurable
hardware technology.

6.3 Summary

FPGA dynamic partial reconfiguration has attracted high attention from both academia
and industry in recent years. The advances in run-time reconfigurable hardware
technology have been nototious, moving from a very early and inmature level some years
ago –when only a minor group of curious researchers and FPGA vendors payed attention
on it– to starting recently to be a respected technology in disruptive sectors of the
industry like aerospace, military and defense, telecommunications or networking.
Reconfigurable computing changes the way computing systems are designed, built, and
even used, in favour of qualities like the efficiency in cost and power consumption. As
design space exploration, this chapter has showed many potential application domains
which can take benefit of reconfigurable computing technology, fact that demonstrates
the momentum of this technology, with real applications starting to exploit this
technology in the market on fields like SDR, consumer electronics, high-performance
computing platforms and aerospace missions.

References

[Abel et al., TNS 2010]
N. Abel, S. Manz, F. Grüll, U. Kebschull, Increasing design changeability using dynamic partial
reconfiguration, IEEE Transactions on Nuclear Science, vol. 57, no. 2, pp. 602-209, 2010.

[Antoni et al., DFT 2000]
L. Antoni, R. Leveugle, B. Fehér, Using run-time reconfiguration for fault injection in hardware
prototypes, Proc. of the IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems,
pp. 405-413, 2000.

[Becker et al., IEEE 2007]
J. Becker, M. Hübner, G. Hettich, R. Constapel, J. Eisenmann, J. Luka, Dynamic and partial FPGA
exploitation, Proceedings of the IEEE, vol. 95, no. 2, pp. 438-452, 2007.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 131

[Brown and Reed, GNSS 2011]
A.K. Brown, D. Reed, Dynamic reconfiguration in a GNSS software defined radio for multi-constellation
operation, Proc. of Institute of Navigation Global Navigation Satellite System Conference, pp. 1-8, 2011.

[Castillo et al., ReConFig 2006]
J. Castillo, P. Huerta, C. Pedraza, J.I. Martínez, A self-reconfigurable multimedia player on FPGA, Proc. of
the IEEE International Conference on Reconfigurable Computing and FPGAs, pp. 1-6, 2006.

[Danne et al., FPL 2003]
K. Danne, C. Bobda, H. Kalte, Run-time exchange of mechatronic controllers using partial hardware
reconfiguration, Proceedings of the International Conference on Field Programmable Logic and
Applications, LNCS, vol. 2778, pp. 272–281, Springer-Verlag, 2003.

[Delahaye et al., MWCS 2007]
J.P. Delahaye, J. Palicot, C. Moy, Pierre Leray, Partial reconfiguration of FPGAs for dynamical
reconfiguration of a software radio platform, Proc. of the IST Mobile and Wireless Communications
Summit, pp. 1-5, 2007.

[Delahaye et al., WSR 2004]
J. P. Delahaye, G. Gogniat, C. Roland, P. Bomel, Software radio and dynamic reconfiguration on a
DSP/FPGA platform, Proceedings of the Karlsruhe Workshop on Software Radios, pp. 143-151, 2004.

[Denning et al., FPL 2003]
D. Denning, N. Harold, M. Devlin, J. Irvine, Using System Generator to design a reconfigurable video
encryption system, Proceedings of the International Conference on Field Programmable Logic and
Applications, LNCS, vol. 2778, pp. 1-10, Springer-Verlag, 2003.

[Desmet et al., SAMOS 2002]
D. Desmet, P. Avasare, P. Coene, S. Decneut, F. Hendrickx, T. Marescaux, J.Y. Mignolet, R. Pasko, P.
Schaumont, D. Verkest, Design of Cam-E-leon, a run-time reconfigurable web camera, Proc. of the Int.
Conf. on Embedded Computer Systems: Architectures, Modelling and Simulation, LNCS, vol. 2268, pp.
274-290, Springer-Verlag, 2002.

[Dittmann et al., SpaceWire 2010]
F. Dittmann, M. Linke, J. Harris, J. Ilstad, Implementation of a dynamically reconfigurable processing
module for SpaceWire networks, Proc. of the International SpaceWire Conference, pp. 193-196, 2010.

[Eldredge and Hutchings, VLSI 1996]
J.G. Eldredge , B.L. Hutchings, Run-time reconfiguration: a method for enhancing the functional density
of SRAM-based FPGAs, Journal of VLSI Signal Processing, vol. 12, no. 1, pp. 67-86, 1996.

[Flatley, ESTF 2010]
T. Flatley, Advanced hybrid on-board science data processor - SpaceCube 2.0, NASA Earth Science
Technology Forum, 2010.

[Flatley, GTT 2009]
T.P. Flatley, What would you rather have: more data or perfect data?, Goddard Tech Trends, vol. 5, no. 3,
pp. 7–7, 2009.

[Gonzalez et al., FPL 2003]
I. Gonzalez, S. Lopez-Buedo, F.J. Gomez, J. Martinez, Using partial reconfiguration in cryptographic
applications: an implementation of the IDEA algorithm, FPL 2003, Lectura Notes in Computer Science,
vol. 2778, pp. 194–203, Springer-Verlag, 2003.

[Granado et al., MEJ 2009]
J.M. Granado, M.A. Vega-Rodríguez, J.M. Sánchez-Pérez, J.A. Gómez-Pulido, IDEA and AES, two
cryptographic algorithms implemented using partial and dynamic reconfiguration, Microelectronics
Journal, vol. 40, no. 6, pp. 1032–1040, 2009.

[Haase et al., DATE 2002]
A. Haase, C. Kretzschmar, R. Siegmund, D. Müller, J. Schneider, M. Boden, M. Langer, Design of a Reed
Solomon decoder using partial dynamic reconfiguration of xilinx virtex fpgas – a case study, Proceedings of
the Design, Automation and Test in Europe Conference, pp. 1-4, 2002.

[Hadley and Hutchings, FCCM 1995]
J.D. Hadley, B.L. Hutchings, Design methodologies for partially reconfigured systems, Proceedings of the
IEEE Symposium on FPGAs for Custom Computing Machines, pp. 78-84, 1995.

[Jones et al., FPL 2007]
P.H. Jones, J. Moscola, Y.H. Cho, J.W. Lockwood, Adaptive thermoregulation for applications on
reconfigurable devices, Proc. Int. Conf. Field Programmable Logic and Applications, pp. 246-253, 2007.

[Lewis, Xcell 2009]
S. Lewis, Virtex-5 powers reconfigurable, Rugged PC, Xcell Journal, issue 68, pp. 28–31, Xilinx Inc., First
Quarter 2009.

[Liang et al., FCCM 2004]
Jian Liang, Russell Tessier, Dennis Goeckel, A dynamically reconfigurable, power-efficient Turbo decoder,
Proc. of the IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 91-100, 2004.

[Llamocca et al., IJRC 2010]
D. LLamocca, M. Pattichis, G. Alonzo Vera, Partial reconfigurable FIR filtering system using distributed
arithmetic, International Journal of Reconfigurable Computing, Hindawi, vol. 2010, pp. 1-14, 2010.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 132

[López-Buedo et al., TCPT 2002]
S. López-Buedo, J. Garrido, E.I. Boemo, Dynamically inserting, operating, and eliminating thermal
sensors of FPGA-based systems, IEEE Transactions on Components and Packaging Technologies, vol.
25, no. 4, pp. 561-566, 2002.

[Mentens et al., CHES 2008]
 N. Mentens, B. Gierlichs, I. Verbauwhede, Power and fault analysis resistance in hardware through

dynamic reconfiguration, Proceedings of the International Workshop on Cryptographic Hardware and
Embedded Systems, LNCS, vol. 5154, pp. 346-362, 2008.

[Moreno et al., MIXDES 2006]
J.M. Moreno, Y. Thoma, E. Sanchez: POEtic: A hardware prototyping platform with bio-inspired
capabilities, Proc. Int. Conf. on Mixed Design of Integrated Circuits and Systems, pp. 363-368, 2006.

[Osterloh et al., AHS 2009]
B. Osterloh, H. Michalik, S. Alexander Habinc, B. Fiethe, Dynamic partial reconfiguration in space
applications, Proc. NASA/ESA Conference on Adaptive Hardware and Systems, pp. 336-343, 2009.

[Ramachandran and Srinivasan, VLSID, 2002]
S. Ramachandran, S. Srinivasan, A dynamically reconfigurable video compression scheme using FPGAs
with coarse-grain parallelism, VLSI Design, vol. 15, no. 2, pp. 521-528, Hindawi, 2002.

[Rauwerda and Smit, ProRISC 2004]
G.K. Rauwerda, G.J.M. Smit, Software defined radio and heterogeneous reconfigurable hardware,
Proceedings of the Workshop on Circuits, Systems and Signal Processing, pp. 125-132, 2004.

[Rümmele-Werner et al., ISCAS 2011]
M. Rümmele-Werner, T. Perschke, L. Braun, M. Hübner, J. Becker, A FPGA based fast runtime
reconfigurable real-time multi-object-tracker, Proc. of the IEEE Int. Symposium on Circuits and Systems,
pp. 853-856, 2011.

[Silicon Graphics Inc., www 2005]
http://www.sgi.com/company_info/newsroom/press_releases/2005/september/rasc.html

[Skiliarova and De Brito, TOC 2004]
I. Skliarova, A. de Brito Ferrari, Reconfigurable hardware SAT solvers: a survey of systems, IEEE Trans.
on Computers, vol. 53, no. 11, pp. 1449-1461, 2004.

[Sony Corp., CX-NEWS 2009]
Sony Corp., CX-NEWS Sony Semiconductor & LCD News (web magazine), vol. 42, November 2005,
http://www.sony.net/Products/SC-HP/cx_news/vol42/sideview.html

[Swaminathan et al., FPGA 2002]
Sriram Swaminathan, Russell Tessier, Dennis Goeckel, Wayne Burleson, A dynamically reconfigurable
adaptive Viterbi decoder, Proceedings of the FPGA Conference, pp. 227-236, 2002.

[Taylor et al., OPENARCH 2001]
D.E. Taylor, J.S. Turner, J.W. Lockwood, Dynamic hardware plugins (DHP): Exploiting reconfigurable
hardware for high-performance programmable routers, Proceedings of the IEEE Conference on Open
Architectures and Network Programming, pp. 2-34, 2001.

[Tempesti and Teuscher, Xcell 2003]
G. Tempesti, C. Teuscher, Biology goes digital, Xcell Journal, issue 47, pp. 40-45, Xilinx Inc., Fall 2003.

[Thoma et al., ARCS 2007]
Y. Thoma, A. Upegui, A. Perez-Uribe, E. Sanchez, Self-replication mechanism by means of self-
reconfiguration, Proc. of the Int. Conference on Architecture of Computing Systems, pp. 105-112, 2007.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 133

Chapter 7

PID controller

PID compensation is the most commonly used control law in Engineering. Despite
numerous advanced control methods such as Fuzzy Logic or Artificial Neural Networks
have been introduced into the automatic control field, the PID (Proportional-Integral-
Derivative) and its variations (P, PI, PD) are still widely applied, mainly because of their
efficiency and their simplicity, remaining the latter reduced to the adjustment of three
parameters: the proportional, the integral and the derivative coefficients. Nowadays, a
large percentage of the totality of closed-loop control systems running in the industry
makes use of the PID algorithm.
The design and development of a PID controller involves two major tasks: on the one
hand, the method for determining the optimal PID parameters aimed at guaranteeing a
specific dynamic response in the control of a plant; on the other hand, the efficient
physical implementation of this controller and its integration to the system to run
coupled to the plant. The first task –named PID tuning– consists in the modelling of the
whole system to describe the behaviour of the plant as a mathematical function
parameterized by the set of physical variables and system constants that are relevant.
The modeller, supported usually by simulation tools (e.g. Matlab), determines which are
the best P, D and I gains for the PID algorithm. The second task deals with the specific
implementation of the PID controller able to carry out the compensation at the specific
rate and accuracy required by the system. This task is often implemented directly in
software by means of DSP or RISC/CISC processors although another alternative is to
synthesize the PID controller in dedicated hardware or even in hardware/software co-
design on a SoC or FPGA device.
As an introductory example to the exploitation of run-time partial reconfiguration in real-
life applications, this chapter focuses on the implementation of a general-purpose PID
controller on a small SoC device. The example is intended to be as simple as possible.
Just for this reason, the run-time reconfiguration affects a minimalist region of the
programmable logic device which is reconfigured four times per PID cycle. To be exact,
the resources which are reconfigured at run-time are the two 3-inputs LUTs present in a
logic cell of the FPGA, used to time-multiplex the P, I and D contexts of the PID
algorithm. The whole system has been prototyped and validated in an Atmel AT94K40
FPSLIC device.

7.1 Introduction

The basic idea for controlling a plant is to take influence on its dynamic behaviour via a
control feedback loop introduced into the system. A controller takes measurements from
the plant and computes new input variables to the system. This results in a typical
feedback or closed-loop structure. The PID algorithm is one of the most common forms of
closed-loop control. Given a plant defined by an input u(t) and an output y(t), the
continuous signal y(t) is function of the input injected to the plant u(t) and the
characteristics of the plant itself. This plant can be connected to a control loop to ensure
it delivers a controlled reference output r(t) at any time, even when the system suffers
some kind of external disturbance or perturbance that is compensated with a specific
dynamic response by the controller. For this aim, the output y(t) is read by a sensor to be
taken into consideration in the computation performed by the controller. The controller
manages the input signal u(t) injected to the plant taking as input data the instantaneous
error e(t) which exists between the target output or reference r(t) and the real output

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 134

value y(t) at any time. The block diagram of a general-purpose PID-based control system
exemplified through a liquid level control system is shown in Figure 7.1.

Figure 7.1 Block diagram of a closed-loop control system based on a PID controller

In general, embedded control designers need to go through three phases in the design of
digital control systems: first, it is necessary the modelling and simulation of the dynamic
system usually supported by an environment such as Matlab/Simulink; afterwards, the
system is implemented by means of hardware/software co-design techniques; finally, the
system is validated with both co-verification tools and real tests performed in target. In
the next section, it is presented the first stage related to the modelling of the PID
controller.

7.1.1 PID algorithm

The PID controller is described in a differential equation as:

⋅+⋅⋅+⋅= ∫ dt

tde
Tdtte

T
teKtu d

t

i
p

)(
)(

1
)()(

0
 (7.1)

where Kp is the proportional gain, Ti is the integral time constant and Td is the derivative
time constant.
The general use of digital computers allowed increasing the interest for the modeling of
continuous dynamic systems to controlling them, in the end, in a discrete way. For a
small sample interval T, the equation (7.1), which is continuous in time, can be turned
into a difference equation by discretization. The derivative term is simply replaced by a
first-order difference expression and the integral by a sum. Thus, the equation (7.1) can
be discretized in the equation (7.2) as follows:

()

−−⋅+⋅+⋅= ∑

=

n

j

d

i
p nene

T

T
je

T

T
neKnu

0

]1[][][][][(7.2)

This translation from the continuous world to the discrete world leads the analog signals
to be converted into discrete digital samples acquired at a period T, cyclically, and the
calculations to be completed before the next sample time begins. Furthermore, equation
(7.2) can be rewritten to compact the constant terms as:

PID
Algorithm

Valve & Tank

Float

CONTROLLER PLANT

SENSOR

ref level
r(t)

error
e(t)

control
u(t)

real level
y(t) +

_

6037285914

Reference
Level

Float
Sensor

Pneumatic
Valve

Liquid
Tank

Input
Flow

Output
Flow

PID Controller

Real Level

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 135

()]1[][][][][
0

−−⋅+⋅+⋅= ∑
=

neneKjeKneKnu d

n

j
ip (7.3)

where Ki = Kp·T/Ti is the integral gain, and Kd = Kp·Td/T is the derivative gain. This
difference equation can now be easily implemented by a digital system, either in
hardware or in software. It is a matter of cyclically acquiring e[n] and performing the
products and additions required. The pseudo-code of the PID algorithm is shown next:

 /* Initialization stage */
 Kp = PrpConstant /* Configuration of the proportional gain */
 Ki = IntConstant /* Configuration of the integral gain */
 Kd = DerConstant /* Configuration of the derivative gain */
 Em = 0 /* Error Em=e[n-1] initialized to zero */
 SumEm = 0 /* SumEm=e[0]+e[1]+...+e[n-1] initialized to zero */

 /* Cyclic operation */
 Loop
 En = error /* Error En=e[n]=r[n]-y[n], acquisition */
 Un = Kp·En+Ki·(En+SumEm)+Kd·(En-Em) /* Control Un=u[n], closed-loop control */
 SumEm = En+SumEm
 Em = En
 Wait T /* Sampling period T */
 End loop

Code 7.1 PID algorithm

Therefore, the PID controller compensates the error between the desired and the real
value of the output signal. The closed loop inserted makes the plant to be self-fed by an
input consisting of the sum of three terms: a proportional factor responsible for adjusting
the control signal in the same percentage than the instantaneous error, a derivative
factor that contributes proportionally to the rate of change of such error, and an integral
term with the role of integrating the instantaneous error along the time.
In PID control, increasing the proportional gain can increase system response speed and
it can decrease steady-state error but not eliminate it completely. Additionally, the
performance of the closed-loop system becomes more oscillatory and takes longer to
settle down after being disturbed as the gain is increased. To avoid these difficulties,
integral control and derivative control can eliminate steady-state error and improve
system stability, respectively. Thus, the three terms help to cancel any deviation or
disturbance present or appeared at any time in the system and maintain therefore the
equilibrium, achieving the tracking of the reference level with a dynamic response in
accordance with the fixed characteristics of the whole plant-controller.

7.2 Related work

PID control is widely used in the industry. The implementation of PID controllers has
gone through several stages of evolution, from early mechanical and pneumatic designs
to microprocessor-based systems. Recently, FPGAs have become an alternative solution
for the realization of digital control systems, which were previously dominated by
general-purpose microprocessor systems. The PID algorithm has been proposed to be
implemented in hardware in many occasions in the literature. This section describes
some of these works.
Samet et al. do research into three different PID hardware architectures (serial, parallel
and mixed) in the XC4000 family of Xilinx FPGA devices [Samet et al., ICECS 1998]. The
PID computation time fluctuates from one clock of 220 ns period in the parallel
architecture to 28 clock cycles at 120 ns in the serial approach (3360 ns), having as an
intermediate solution the mixed architecture that needs 6 clocks at 115 ns (690 ns) to
complete the PID computation.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 136

The PID controller presented in [Astarloa et al., IECON 2006] is implemented in a Xilinx
Spartan-3 FPGA and integrated in a motor multi-axis control system. The system
constitutes a four axis controller and each axis is controlled by a PID unit. A 32-bit host
processor manages all the application while four PID controllers take charge of the
trajectory managed by four local tiny soft processors. In this system, the PID
computation is the most intensive task and is performed in hardware while other less
demanding tasks like the trajectory computation are performed in software. The PID
controller is implemented in a 3-stages pipeline and the processing of the proportional,
integral and derivative terms is performed in parallel by means of three embedded
hardware multipliers included in the FPGA. Additionally, the program of the tiny
processor and the PID control constants can be replaced using dynamic partial
reconfiguration. This reconfiguration is handled by the tiny processor interfaced to the
reconfiguration controller. The sampling rate of this system is 50 MHz.
Chen et al. implemented a complete electric wheelchair controller on an Altera Flex 10K
FPGA device and partitioned in several independent functional blocks [Chen et al., TIE
2000]. The PID control block is the largest block of the system occupying 740 logic cells,
figure that represents the 73% of the resources used by the whole system. It constitutes
a parallel and pipelined PID controller composed of an accumulator, some registers
working as delay elements, four adders and three multipliers. The control cycle is set to
128 Hz.
A distributed-arithmetic (DA) based PID controller algorithm is proposed in [Chan et al.,
TIE 2007] to be applied in a temperature control system. The DA-based PID controller
demonstrates 80% savings in hardware utilization and 40% savings in power
consumption compared to the multiplier-based scheme. The synthesized DA-based PID is
implemented in a Xilinx Spartan-IIE FPGA and allows a maximum clock frequency of 47
MHz with 456 mW power consumption. The frequency and the power consumed by the
synthesized multiplier-based PID are 25 MHz and 765 mW, respectively, and it is
implemented in a Xilinx Spartan-3 FPGA provided with embedded 18x18 multipliers. It
should be noted that, due to the serial nature of the DA method, the DA-based PID
controller needs 17 clock cycles or 361 ns computation time while the design using
multipliers needs one clock cycle or 67 ns.
In [Zhao et al., ICAR 2005], it is researched the design of a digital control system
implemented in reconfigurable hardware in a Xilinx Spartan-II FPGA platform and
applied to small-scale robots. Specifically, the authors looked at closed-loop
proportitonal-integral-derivative control for a robot with high degrees-of-freedom, which
when implemented in software requires a lot of CPU time and a real-time operating
system. By moving control to hardware, the robot can dedicate the CPU time to other
tasks. They analize the different design trade-offs in terms of area, power consumption
and execution time. In this work, equation (7.3) is rewritten and implemented as an
alternative recursive algorithm where the calculation of u[n] is based on u[n-1]. The
authors propose a parallel and a serial design: for the parallel approach, each basic
operation has its own arithmetic unit (either an adder or a multiplier) and the design
requires four adders and three multipliers in total, apart from registers and other logic
that constitutes the datapath; for the serial design, however, all operations share only
one adder and one multiplier. As result, the PID computation takes four clocks in a serial
approach and one clock in a parallel approach. Nevertheless, the critical path delay of
the parallel design is quite long relative to the serial design and it includes the delay of
one multiplier and three adders of different operands size. The parallel design is mainly a
combinational logic requiring only a single cycle to complete where the delay is around
50 ns so the sampling cycle is set to 20 MHz. In the serial design, thee delay is close to
30 ns and each PID computation requires four cycles so the minimum sampling period
results in 120 ns, that is, a sampling frequency of 8.33 MHz. Furthermore, whereas all
the prior works are for one channel control, in this work different designs for the closed-
loop PID control algorithm are implemented on an FPGA for one channel and also for
multiple channels. In multiple-channel design, either a PID unit is dedicated to each

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 137

channel, referred to as channel-level parallel design, or one PID unit is shared by all
channels, referred to as channel-level serial design. A parallel design occupies quite a
large area as the number of channels increase whereas a serial design requires a more
complex control unit and obviously takes longer to compute all channels. In a channel-
level serial design, context switching must occur prior to the computation of each
channel output. In this context switching, the computed results u[n] , e[n] and the PID
parameters must be stored and recovered for each PID channel computation, using for
this RAM blocks or distributed RAM. This context switching penalizes in two clock cycles
added to the clocks required by the PID computation itself (one and four clocks in the
parallel and serial approaches, respectively): one read cycle is required before the start of
the PID algorithm to load both the previous computation results and the channel-specific
parameters from RAM and one write cycle is required after completion of the PID
algorithm to store those data.
As observed though all these works, the implementation of closed-loop control systems
based on the PID algorithm on FPGA platforms is today an extended practice widely used
in different fields such as aerospace, process control, manufacturing, robotics,
automation or transportation systems, among others.

7.3 Implementation

Digital compensation of closed-loop systems is a consolidated application area for
embedded MCUs, e.g. Intel 8051, or DSPs, e.g. TI TMS320. Although low-cost processors
are the habitual choice in control applications, often these software-based approaches do
not offer enough processing power for real-time constraints. Even though they are well
suited for applications in which the format of data to be processed matches their word
width, their performance drops in other cases. Moreover, the increase of cost demanded
to jump from an 8-bit processor to a bigger one because of computational reasons in only
one small part of the application is, sometimes, not sufficiently justifiable. Instead, small
processors can handle the level of performance demanded whether they are equipped
with dedicated coprocessors to speed up the arithmetic-logic operations. Under this idea,
it is presented the hardware/software co-design of a PID controller implemented in the
AT94K40 FPSLIC that, in the presence of two control units, makes possible a concurrent
execution of the closed-loop processing: a specific coprocessor synthesized in the FPGA
assumes the multiply-add computing effort of the PID algorithm whereas the AVR
processor takes charge of managing the full application, transferring operands and
results from and to the coprocessor, as well as reconfiguring such coprocessor when
required. This tasks partitioning pursues to distribute the processing load between both
devices and to obtain thus better performance than a purely software approach on the
AVR processor itself.

7.3.1 Atmel AT94K field programmable system level integrated circuit

Before going into detail through the PID controller implementation, it is convenient to
highlight first the most important features of the AT94K40 FPSLIC device used in this
proof-of-concept, apart from its Cache Logic capability already presented in chapter 5.
The AT94K series FPSLIC family is a combination of the Atmel AT40K series SRAM-based
FPGAs and the Atmel AVR 8-bit RISC processor with standard peripherals, as well as 36
Kbytes of dual-port RAM shared by the CPU and the FPGA. Concerning the FPGA, it is
composed basically of logic cells, IO cells and RAM blocks. The RAM blocks are
constituted by 32 x 4 bits of dual-port RAM and are distributed along the FPGA plane.
The IO cells are bidirectional and composed of two flip-flops, one in the output datapath
and the other in the input. The logic cells consist basically of two 3-input LUTs and one
flip-flop, apart from other routing resources. The architecture of the AT40K logic cell is
depicted in Figure 7.2.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 138

YL

WL

ZL

Y

Z

X

XL

X-LUT

D

Q

Y-LUT

MUX

M
U
X

MUX

MUX

AND

MUX

MUX

MUX

MUX

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X L

V1

V2

V3

V4

V5

H1

H2

H3

H4

H5

OEV

OEH

“1”

“0”

“1”

“1”

“1”

“1” “1”

ORTHOGONAL
NEIGHBOURS

(N, S, E, W)

DIAGONAL
NEIGHBOURS

(NW, NE, SE, SW)

clk
rst

a0 a1 a2 a2 a1 a0

outout

X Y

W

YL

WL

ZL

Y

Z

X

XL

X-LUT

D

Q

Y-LUT

MUX

M
U
X

MUX

MUX

AND

MUX

MUX

MUX

MUX

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X L

V1

V2

V3

V4

V5

H1

H2

H3

H4

H5

OEV

OEH

“1”

“0”

“1”

“1”

“1”

“1” “1”

ORTHOGONAL
NEIGHBOURS

(N, S, E, W)

DIAGONAL
NEIGHBOURS

(NW, NE, SE, SW)

clk
rst

a0 a1 a2 a2 a1 a0

outout

X Y

W

Figure 7.2 AT40K logic cell based on two 3-input LUTs and one 1-bit flip-flop

The full architecture of the AT94K FPSLIC is shown in Figure 7.3.

Figure 7.3 AT94K series architecture

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 139

Of special interest in this work are the signal interfaces between the MCU and the FPGA,
as illustrated above:
� The MCU 8-bit data bus interfaces directly into the FPGA resources, effectively treating

the FPGA as a large I/O device. Hence, the system designer has complete flexibility on
placing and routing additional peripherals inside the FPGA logic linked with the MCU.

� Four memory locations in the AVR memory map are decoded into 16 select lines and
are presented to the FPGA along the AVR 8-bit data bus.

� Besides, there are up to 16 interrupt lines from the FPGA back into the MCU interrupt
controller. In this way, custom processors placed in the FPGA can make use of them.

These interfaces will be used in the PID application for transferring both configuration
data and computation results from the MCU to the FPGA and vice versa. In this way, the
FPGA can be used to synthesize there specific peripherals or coprocessors attached to
the host CPU to perform dedicated computing tasks. In the PID application example, the
FPGA synthesizes a specific coprocessor responsible for the PID calculus.

7.3.2 HW/SW co-design and run-time reconfiguration

The PID platform developed in this work is basically composed of two electronic devices:
the AT94K40 SoC and the AT17LV002 EEPROM. The first one constitutes the digital
computing core of the system whereas the second one is the bitstream repository used to
configure the full SoC device at power up. The SoC is configured by downloading the PID
application in the way of both the hardware circuitry placed in the FPGA resources and
the software –data and program code placed in the SRAM shared by the AVR and the
FPGA– that runs in the MCU.
Concerning functionality, the PID application flow is controlled by the MCU. Thus, apart
from the closed-loop control itself, the MCU can perform other generic actions proper of a
control application like activating certain indicators or alarms in case that some events
occur, showing the level of the output variable in some specific format (numerically,
graphically, etc) in some panel, and so on. The only activity that is left to the FPGA
responsibility is the PID computation loop since this calculus decomposed in products
and additions involve operands that surpass the 8-bit word size of the MCU, and in that
case the performance of the MCU to carry out this computation in software decreases
notoriously. Furthermore, this basic PID computation shall be performed at each
sampling time so this computation latency delimits the operation frequency of the entire
control loop – usually not less than or in the order of some thousands of samples per
second, i.e., KS/s. Like this, a custom hardware coprocessor specialized in the
computation of the equation (7.3) is implemented in the programmable logic. In
summary, the CPU plays the role of the host processor, it manages the application flow
and sends the operands to the FPGA when the PID computation is required. The FPGA
works as a custom coprocessor attached to the host CPU that performs the PID calculus
and sends back the result to the CPU.
Given that the equation (7.3) can be decomposed in two basic operations, it is proposed
to instantiate one product and one addition in the FPGA. Although all the operation
could be performed in parallel by instantiating several multipliers and adders, the aim is
to reduce the number of resources in use in the FPGA in order to fit the design in the
lowest possible device of the AT94K family.
One possible way of processing the equation (7.3) split in one product and one addition is
shown in Figure 7.4. As observed, four products and four additions are required. A PID
cycle is executed in four steps and these steps are repeated for each PID cycle.

Figure 7.4 Scheduling of the PID algoritm performed with a multiplier and an adder

En+SumEmP+I+D

cycle n = 0

Kp�En=P -1�Em Ki�(En+SumEm)=I Kd�(En-Em)= D

En+SumEm En-Em

PRODUCT

ADDITION P+I

Kp�En -1�Em Ki�(En+SumEm) Kd�(En-Em)

En-Em P+I P+I+D

Kp�En -1�Em

En+SumEm ...

...

cycle n = 1 cycle n = 2

En+SumEmP+I+D

cycle n = 0

Kp�En=P -1�Em Ki�(En+SumEm)=I Kd�(En-Em)= D

En+SumEm En-Em

PRODUCT

ADDITION P+I

Kp�En -1�Em Ki�(En+SumEm) Kd�(En-Em)

En-Em P+I P+I+D

Kp�En -1�Em

En+SumEm ...

...

cycle n = 1 cycle n = 2

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 140

As depicted in the scheduling, the operands of both product and addition cores are
different in each stage of the PID cycle and most of the partial results obtained in a stage
are used in the next stage until obtaining, in the last stage, the resultant PID value to be
applied to the plant. Furthermore, just to optimize the use of the adder and the
multiplier, the negation of Em is performed by a product instead of generating the two’s
complement of Em (by bit-wise complementing and adding 1). In this way, the resources
are not increased to perform this negation and this additional product operation fits well
in the balance of products and additions of the PID scheduling, keeping both resources
always in operation. Besides, the critical path keeps reduced basically to the delay of one
multiplier or one adder. Regarding the accumulator registers, they are provided with
reset signal to be initialized to zero when the PID compensation restarts at each cycle.
Going one with the design, it is proposed the use of partial reconfiguration to swap the
operands of the multiplier and adder in each computation step. In this way, the selection
or assignment of operands in each multiply-add stage will be done by partial
reconfiguration. For this, the MCU will perform the reconfiguration of a specific part of
the PID hardware coprocessor in order to switch from one set of operands to another,
following the sequence described in Figure 7.4, and without disturbing the operation of
the rest of the system during the reconfiguration process. Figure 7.5 shows the block
diagram of the PID system.

Figure 7.5 Block diagram of the PID coprocessor implemented in the FPGA

Concerning the hardware design, the computing units –an 8x24-bit multiplier and a 32-
bit adder– are hard macros generated with the Atmel IDS Macro Generator tool, which
provides optimized technology-dependant modules. Both arithmetic integer units have
about the same delay (38.6 ns the adder and 43 ns the multiplier), what makes feasible
to schedule a parallel processing of the two operations running at the same frequency.
The software functions involved in this algorithm are the PID initialization, which
consists in transferring the constant gains Kp, Ki and Kd from the CPU to the FPGA
coprocessor, and the cyclic computation of the PID compensation output u[n] to be
applied to the plant in function of the instantaneous input e[n] and the historic and
dynamic evolution of the system. This error value is calculated by the CPU and
transferred to the FPGA in each sampling cycle. As result of the computation, the FPGA
coprocessor returns the value u[n] to the CPU. Both function prototypes are shown next.

 void InitPID (char Kp, char Ki, char Kd)
 void CyclicPIDTask (char En)

Code 7.2 PID software function prototypes

AT94K40 SYSTEM-ON-CHIP

AT40K40 FPGA

MUL
&

ADD

INPUT
INTERFACE

OUTPUT
INTERFACE

FLEXIBLE
HARDWARE

CONFIGURATION
CONTROLLER

AT17LV002
SERIAL

EEPROM
(bitstream)

AVR MCU

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 141

The FPGA coprocessor is organized in a series of registers to store the parameters coming
from the CPU (Kp, Ki, Kd, En) and the intermediate results calculated in each multiply-
add stage of a PID cycle, as well as the final result that is sent back to the CPU. Most of
these registers are the arithmetic operands that shall be connected to the adder or
multiplier. Just these registers are generated as tristate and controllable by an output
enable (OE) signal. In this way, by controlling the OE signals of these registers, it is
possible to multiplex the operands of the adder and the multiplier in each of the four
steps of a PID computation cycle, as illustrated in Figure 7.4. To this aim, four OE
signals are necessary to select between four data in each of the two operands of the
adder and the multiplier.
The part of the PID controller which handles the selection of the operands is managed by
the CPU through partial reconfiguration. For this, it is designed a kind of dynamic
selector that lets choose one set of operands or other by controlling the OE signals. This
control is conducted by means of partial reconfiguration. This OE signals controller is
composed of one LUT of two inputs and two outputs (one logic cell) and one ROM of two
inputs and four outputs (two logic cells). These two components are built as hard macros
and play a specific role:
� On the one hand, the ROM 2x4 performs the conversion of the 2-inputs {00, 01, 10, 11}
into the 4-ouputs {0001, 0010, 0100, 1000}, respectively. These four outputs correspond
to the four output enable (OE) signals used to select the operands connected to the
multiplier and the adder.
� On the other hand, the LUT 2x2 constitutes the reconfigurable element of the PID
controller. This LUT is synthesized through the two 3-input LUTs present in a logic cell of
the FPGA (XLUT and YLUT of Figure 7.2). Each of these LUTs configures the function
out=f(a0,a1,a2)=a0, one in the XLUT and the other in the YLUT. However, in the design,
these two inputs a0 of the LUT 2x2 are permanently tied to ground so a priori the output
would never change. Lets clarify here the reconfiguration strategy adopted in this work.
In a conventional design, the instantaneous outputs of a LUT are the result of applying
their instantaneous inputs against the truth table. If the inputs change, the outputs will
change in accordance to the truth table relationship. The point proposed now with
partial reconfiguration is different. In this new approach, the inputs are kept constant
and the change in the outputs is achieved by reconfiguring the LUT itsef, that is, the
truth table. Initially, the LUT function was out=a0 and given that a0 is permanently tied to
ground it is 0. It is possible to reconfigure the LUT function as out=not(a0). In such a case,
the output would result 1 since a0 remains 0. By applying this reconfiguration strategy to
the two LUTs, it is possible to obtain the four combinations required in the outputs: {00,
01, 10, 11}. These two outputs are connected to the inputs of the ROM 2x4. Therefore, by
reconfiguring the LUT 2x2 we reach to select the operands involved in the arithmetic
operations. The architecture of the dynamic multiplexor is depicted next in Figure 7.6.

Figure 7.6 Reconfigurable operands selector

The architecture of the PID coprocessor, including the reconfigurable operands
multiplexor is shown in Figure 7.7.

LUT 2X2

TRUTH TABLE

Inputs Outputs
BA Reconf0 HG Reconf1 HG Reconf2 HG Reconf3 HG

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

ROM 2x4

TRUTH TABLE

Inputs Outputs
IN(1:0) OE(3:0)

00 0001
01 0010
10 0100
11 1000

OE(3)

OE(2)

OE(1)

OE(0)

IN(1)

IN(0)

B

A

H

G

RECONF
G = a / not a
H = b / not b

0

0

LUT 2X2

TRUTH TABLE

Inputs Outputs
BA Reconf0 HG Reconf1 HG Reconf2 HG Reconf3 HG

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

ROM 2x4

TRUTH TABLE

Inputs Outputs
IN(1:0) OE(3:0)

00 0001
01 0010
10 0100
11 1000

OE(3)

OE(2)

OE(1)

OE(0)

IN(1)

IN(0)

B

A

H

G

RECONF
G = a / not a
H = b / not b

0

0

LUT 2X2

TRUTH TABLE

Inputs Outputs
BA Reconf0 HG Reconf1 HG Reconf2 HG Reconf3 HG

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

ROM 2x4

TRUTH TABLE

Inputs Outputs
IN(1:0) OE(3:0)

00 0001
01 0010
10 0100
11 1000

OE(3)

OE(2)

OE(1)

OE(0)

IN(1)

IN(0)

B

A

H

G

RECONF
G = a / not a
H = b / not b

0

0

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 142

Figure 7.7 PID coprocessor

As observed in Figure 7.7, two types of interfaces coexist between the CPU and the FPGA:
a conventional I/O interface for transferring application data and a reconfiguration
interface to conduct the reconfiguration of the LUT 2x2 for performing the switching of
the operands. In the next section it is presented the experimental work.

7.3.3 System prototyping

A prototype board has been developed in order to implement the PID controller system. It
is illustraded in Figure 7.8.

Figure 7.8 AT94K prototype board developed

En-Em

MCU

PRODUCT

Kd

ADDITION

I

RECONF

Frequency Divider

D_FPGA

Ki

-1

Kp

En+SumEm

Em

En P+I

P

SumEm

D

P+I+D

8-bit 24-bit

32-bit

32-bit 32-bit

32-bit

CLK

DATAIN

DATAOUT

FPGAY
FPGAX
FPGAZ
FPGAD

- Em

OE(3)

OE(2)

OE(1)

OE(0)

En-Em

MCU

PRODUCT

Kd

ADDITION

I

RECONF

Frequency Divider

D_FPGA

Ki

-1

Kp

En+SumEm

Em

En P+I

P

SumEm

D

P+I+D

8-bit 24-bit

32-bit

32-bit 32-bit

32-bit

CLK

DATAIN

DATAOUT

FPGAY
FPGAX
FPGAZ
FPGAD

- Em

OE(3)

OE(2)

OE(1)

OE(0)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 143

The system is composed of an AT94K40 SoC, an AT17LV002 EEPROM memory, a voltage
regulator responsible for supplying the energy to the system, a 25 MHz clock oscillator, a
RS232 serial interface to connect the board with the external world (e.g. serial connection
with a host PC) and some debug and expansion interfaces composed by switches, LEDs
and connectors, in line with the universal reconfigurable system architecture presented
in chapter 4. The FPGA is connected to the external clock oscillator of 25 MHz. Internally
to the FPGA logic, it is implemented a frequency divider to provide a clock of 12.5 MHz to
the AVR MCU. In this way, the FPGA logic runs at 25 MHz while the AVR code runs at
12.5 MHz. The floorplanning, placement and routing of the FPGA coprocessor is depicted
in Figure 7.9.

Figure 7.9 Floorplanning, placement and routing of the PID app in the AT94K40 FPSLIC

As observed in the floorplanning, most of the components have been synthesized first as
hard macros (each one with the perimeter highlighted in blue) and then they have been
placed in the AT94K40 layout. From all the hard macros, the 8x24 signed multiplier
located near the center of the fabric is the component that consumes more logic cells.
The rest of hard macros are the 32-bit adder, some 8-bit, 24-bit or 32-bit registers
(vertical columns), a 4x8 multiplexor to transfer the PID result form the FPGA to the AVR
trhough the 8-bit data bus, and the reconfigurable region constituted by the LUT 3x2
and the ROM 2x4. In the figure above it is shown only the FPGA resources. The AVR
CPU, its peripherals and the shared memory are not shown. The right side of the figure –
the only one not surrounded by IO pads– corresponds to the interface between the FPGA
resources and the AVR MCU system. Thus, near to the right side of the floorplanning
there are located for instance some 8-bit registers that correspond to the constants Kp, Ki
and Kd coming from the AVR interface.
The detail of the reconfigurable operands selector composed of one logic cell for
implementing the LUT 2x2 and two logic cells to synthesize the ROM 2x4 is shown next
in Figure 7.10. After placing and routing the full design, the LUT 2x2 (named lut3x2GaHb
in the figure) is mapped in a logic cell of the FPGA plane that is located in a specific
position (X,Y). This position will be addressed by the MCU in the run-time
reconfiguration process through the FPGAX and FPGAY registers. Besides, the resources
to be reconfigured are the two LUTs present in such logic cell so the FPGAZ register
which refers to the resource type will point to the 3-inputs XLUT and YLUT respectively.
Finally, the FPGAD will contain the 8-bit data related to the 23 combinations or truth
table configured in each case in those LUTs.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 144

Figure 7.10 Reconfigurable selector of the operands of the multiplier and the adder

The piece of code handled by the AVR processor to perform the four reconfigurations of a
PID cycle is described next.

 /* PID initialization */
 FISCR=0x02; /* Configuration Kp, Ki & Kd */
 FISUA=Kp; /* AVR->FPGA CS02: Kp */
 FISUB=Ki; /* AVR->FPGA CS06: Ki */
 FISUC=Kd; /* AVR->FPGA CS10: Kd */

 FISCR=0x00;
 FPGAY=0x0B; /* Addressing the reconfigurable LUT 2x2 */
 FPGAX=0x19;

 CyclicPIDTask(En) /* PID function call with argument En */
 {
 /* Transfer of En from CPU to FPGA */
 FISUA=En; /* AVR->FPGA CS00: error[n] */

 /* PID processing with 4-steps reconfiguration */
 FPGAZ=0x06; /* YLUT */
 FPGAD=0x55; /* Reconfiguration step #1 */
 FPGAZ=0x07; /* XLUT */
 FPGAD=0x55; /* Reconfiguration step #2 */
 FPGAZ=0x06; /* YLUT */
 FPGAD=0xAA; /* Reconfiguration step #3 */
 FPGAZ=0x07; /* XLUT */
 FPGAD=0xAA; /* Reconfiguration step #4 */

 /* Transfer of the PID computation result from FPGA to CPU */
 FISUB=0x00; /* AVR->FPGA CS08: MUX channel 0 */
 PID3=FISUD; /* FPGA->AVR: PID(31..24) */
 FISUB=0x01; /* AVR->FPGA CS08: MUX channel 1 */
 PID2=FISUD; /* FPGA->AVR: PID(23..16) */
 FISUB=0x02; /* AVR->FPGA CS08: MUX channel 2 */
 PID1=FISUD; /* FPGA->AVR: PID(15..8) */
 FISUB=0x03; /* AVR->FPGA CS08: MUX channel 3 */
 PID0=FISUD; /* FPGA->AVR: PID(7..0), control u[n]=PID(31..0) */
 }

Code 7.3 Reconfiguration of the logic cell’s XLUT and YLUT in each PID cycle

Since the reconfiguration process affects only to one logic cell, the addressed X an Y
position of such logic cell keeps fixed and only the Z term shall be modified to address
either the XLUT or the YLUT. Besides, several select signals are used through the FISCR,
FISUA, FISUB, FISUC and FISUD registers to access to the PID configuration registers
placed in the FPGA (Kp, Ki, Kd, En and P+I+D shown in Figure 7.7). The analysis of the
results obtained in the experimental tests conducted is described in the next section.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 145

7.3.4 Experimental results

The PID system has been described in VHDL and C languages. The hardware design is
split into a static skeleton and a dynamic part which is reconfigured four times per PID
cycle. The reconfiguration latency of the PID controller to switch the operands and the
result of both multiplier and adder modules is 4 clocks. Thus, a PID cycle is performed in
34 clocks cycles: 16 for dynamic partial reconfiguration and 18 for MCU-FPGA data
transfer. A study focused on software-based computing showed that the time involved in
the integer processing of a PID cycle would be unacceptable in most of high-speed digital
control system applications. Instead, the HW/SW co-design approached improves the
performance, as depicted in Table 7.1 taking into account the clock frequency of the
different platforms tested. Due to the existing area-time trade-off and given that the
FPGA cost is made conditional on its size, the proposed design pursues to distribute the
workload of the MCU and the FPGA, giving a balanced serial-parallel implementation
through a four-stages scheduling. Hardware and software parts have been co-simulated
together by the EDA System Designer tool. Finally, the resultant bitstream has been
downloaded into the prototype board developed for carrying out an automatic test. Apart
from the SoC and the external EEPROM, this board has a serial RS232 transceiver
connected to the UART of the MCU. Through this serial interface, the developer, from a
host PC, is able to stimulate the system by entering input data and analyzing how the
system responds according to its tuned PID parameters. Continuous PID cycles can be
executed. As verification test, at the same time the PID controller is computed by the
SoC, the same computation is performed by a PC software application and both outputs
are compared to validate the design.

Table 7.1 PID computation in different HW/SW platforms

Computing Platform Time (ns) Development Tools

Personal Computer (Windows XP)
Pentium 4 @ 2.66 GHz

1350

Microsoft Visual C++ v6.0
(Win32)

Personal Computer (MS-DOS)
AMD K6-2 @ 450 MHz

1840

Borland C++ v3.1
(MS-DOS)

SoC Atmel AT94K40
MCU @ 12.5 MHz / FPGA @ 25 MHz

2720

IAR Embedded Workbench
Atmel EDA System Designer

MCU Atmel AVR @ 12.5 MHz 24960 IAR Embedded Workbench

MCU Intel 80C188EB @ 25 MHz 58000 Borland C++ v3.1 (MS-DOS)

As observed in Table 7.1, although the AVR is provided with a hardware multiplier of 8-
bit operands and an ALU to perform the additions, in case the operands are higher than
8 bits as in the PID scenario, such multiplier and ALU –together with the compiler– is too
inefficient. Therefore, the option of using custom coprocessors when the word length of
the processor does not match that of the application data is a valid alternative in
programmable logic devices to perform each product or addition in only one clock.
The resources used in the implementation of the PID controller are shown in Table 7.2.
With them, the proposed solution reaches a speed up of almost one order of magnitude
compared to a purely software solution on the AVR processor.
While high-performance computing platforms like desktop PCs perform the PID
computation at a higher rate due basically to their higher operation frequency and the
presence of an efficient ALU, embedded microcontrollers without multiplier (e.g. Intel
80C188) do such operation through a series of shifts and additions, spending many clock
periods (in the order of 40 clocks or more) to perform the same one-word multiplication.
Embedded microcontrollers trying to do the multiplication with a hardware multiplier
that mismatches the word width (e.g. 8-bit multiplier in the AVR processor of the AT94K
FPSLIC to perform a 8-bit x 24-bit product) is also inefficient. This drawback is overcome

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 146

in this approach with a PID coprocessor design synthesized in only 808 logic cells,
broken down in 353 flip-flops, 361 LUTs and 94 logic cells used as routing resources.

Table 7.2 Hardware resources used in the PID controller implementation

AT94K40 Resources Used

Logic Cells (total: 2304)
 LC used as 1-bit flip-flop resource
 LC used as logic resource (2x3-input LUT)
 LC used as routing resource

808
353
361

94

32x4 RAM Cells (total: 144) 0

IO Cells (total: 442) 33

7.4 Summary

Modern controller design methods aim to support the design of controllers in an
automatic way. The need for a transparent and straightforward design process often
leads to software implementations of controllers, that is, microprocessor programs
specified in high-level programming languages. This approach, however, is inappropriate
for applications with high sampling rates (i.e., with frequency higher than 20 KHz). Here,
FPGA technology is a way to perform high-speed controllers with high flexibility. With
high-level EDA tools, the rapid prototyping of complex control systems on FPGA
technology is possible. In this landscape, today many field applications demand to merge
control and computing processes. While a low-cost CPU can manage the control tasks, a
powerful ALU is required to accelerate the computing operations. A generic prototype of
PID controller has been implemented on an AT94K SoC device. Partial reconfiguration
has been introduced by exploring the fine-grain reconfiguration of the device, affecting
only the XLUT and YLUT of a logic cell. The reconfiguration is performed by the AVR
processor at run-time, while the PID computation is in progress and without interrupting
the operation of the FPGA coprocessor. This HW/SW solution has been compared with
other software-based approaches and the good performance obtained makes it suitable
for being ported to real industrial applications. The PID controller designed is able to
carry out the regulation of a system at a sampling rate of the order of 350 KHz.
In the framework of this dissertation, the implementation of a closed-loop control system
based on run-time reconfigurable hardware aims to be an introductory example, as
simple as possible, of the potential exploitation of dynamic partial reconfiguration of
FPGA devices in real applications.

References

[Astarloa et al., IECON 2006]
A. Astarloa, J. Lázaro, U. Bidarte, J. Jiménez, J. Arias, Run-time reconfigurable hardware-software
architecture for PID motor control IP cores, Proceedings of the IEEE Industrial Electronics Conference, pp.
3105-3110, 2006.

[Chan et al., TIE 2007]
Y.F. Chan, M. Moallem, W. Wang, Design and implementation of modular FPGA-based PID controllers,
IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1898-1906, 2007.

[Chen et al., TIE 2000]
R.X. Chen, L.G. Chen, L. Chen, System design consideration for digital wheelchair controller, IEEE
Transactions on Industrial Electronics, vol. 47, no. 4, pp. 898-907, 2000.

[Samet et al., ICECS 1998]
L. Samet, N. Masmoudi, M.W. Kharrat, L. Kamoun, A digital PID controller for real time and multi loop
control: a comparative study, Proceedings of the IEEE international Conference on Electronics, Circuits
and Systems, pp. 291-296, 1998.

[Zhao et al., ICAR 2005]
W. Zhao, B. Hwa Kim, A.C. Larson, R.M. Voyles, FPGA implementation of closed-loop control system for
small-scale robot, Proceedings of the International Conference on Advanced Robotics, pp. 70-77, 2005.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 147

Chapter 8

Fuzzy logic controller

Fuzzy Logic is a control technique widely extended today in nonlinear control system
applications. The facility of fuzzy logic controllers (FLCs) to capture the knowledge of
human experts and translate it into robust control strategies without the need of a
mathematical model of the plant has led to a significant increase in the number of
control applications using fuzzy inference techniques in the last decades. These fuzzy
control systems can be implemented following different approaches, ranging from fully
software or hardware solutions to hybrid strategies that allow reaching adequate trade-
offs between flexibility and inference speed. Hybrid realizations require a processor for
software tasks execution and dedicated hardware for implementing complex time-
consuming tasks, i.e., typically the fuzzy inference process.
This work adds a new point-of-view to the continuous efforts in search of an optimized
hardware-software co-design of a dual-input single-output fuzzy logic controller. Our
approach breaks up with the classical three-stage implementation process –fuzzification,
fuzzy rule inference and defuzzification cores– to focus it on directly synthesizing the
resultant control surface. An innovative design methodology is defined by firstly splitting
the total area in rectangular sectors to, afterwards, model each of them by second-order
polynomial functions. The algorithm is finally embedded in an MCU-FPGA platform to
achieve a balanced cost-performance solution inspired by efficient concepts in terms of
run-time and silicon-area as parallel processing and dynamic partial reconfiguration,
respectively. The result is a standard FLC where the control surface is parameterized and
handled through a simple data file appended to the design bitstream in the way of
initialized SRAM memory. This HW/SW architecture therefore provides a general-
purpose solution able to customize whichever fuzzy application by only updating the data
which model the particular control surface segmented in rectangular sectors.

8.1 Introduction

Fuzzy Logic theory, formally introduced in 1965 by Lotfi A. Zadeh, has been successfully
applied to many engineering problems from its birth until today [Zadeh, IC 1965]. It
emerges as a really useful alternative in those scenarios where the mathematical model
of the system is either unattainable or, on the contrary, in spite of reaching it, its
inherent complexity makes unsuitable its use. In recent years, this technique has
become more and more popular mainly because of two reasons: it offers a universal
solution to convert human knowledge into functional rules that, even though they handle
imprecise information, may give rise to accurate results; in addition, the intuitive
reasoning methodology in which it is inspired allows the easy interpretation and
traceability of these results.
The mathematical framework of fuzzy inference techniques provides systematic and
deterministic algorithms that can be easily described with high-level programming
languages or implemented as electronic circuits. Thus, there are basically two
alternatives for fuzzy controller implementation: one based on software and the other on
hardware, apart from the co-design of both hardware and software together. Software
solutions offer flexibility as one of their main features (the designer can choose any type
of fuzzy sets, operators, and rules). For this reason, many of the first fuzzy controllers
were implemented in software on general-purpose computers. In applications in which
size, weight, power, or cost are constrained, as occurs with consumer electronics,
standard microcontrollers have been usually employed. The main drawback of software
implementations of FLCs is speed limitation due to the sequential program execution and

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 148

the fact that standard processors do not directly support many fuzzy operations. In order
to reduce the lack of fuzzy operations, some MCUs like the Motorola MC68HC12 and the
ST FIVE 508 family from ST Microelectronics modified the architecture of standard
processors to support fuzzy computation. Although the specific hardware added to these
commercial devices speeds up fuzzy computation by at least one order of magnitude over
standard processors, these software solutions are still not fast enough for some time-
critical applications, where a dedicated hardware structure must be used. The first
hardware implementations of a FLC were the full-custom digital design reported in 1986
at AT&T Bell Laboratories [Togai and Watanabe, Expert 1986] and the analog
implementation of Yamagawa and Miki based on the standard CMOS process in
nonlinear analog current-mode circuits [Yamakawa and Miki, TC 1986]. Since then,
many microelectronic implementations of fuzzy controllers have emerged. Both digital
and analog design techniques have been employed, with the digital approaches being the
most widely used due to the availability of well-established design methodologies and
CAD tools. In order to accelerate fuzzy computation, many hardware solutions implement
the inference module or some of its units on a dedicated integrated circuit, so they need
to be connected to a general-purpose processing system to complete their operation.
These hardware implementations, known as fuzzy accelerators or fuzzy coprocessors,
were very popular at the end of the 1990s. Some examples of commercially available
fuzzy coprocessors are the SAE 81C99 and SAE 81C991 families from Siemens or the
FP1000, FP3000, and FP5000 fuzzy coprocessors from Omron. Nowadays, fuzzy
coprocessors are seldom used, and most of them have disappeared from the market as a
consequence of the increasing speed of conventional processors, which makes possible to
execute the simple fuzzy algorithms required by many applications.
Recent advances in silicon technologies allow integrating a complex fuzzy logic control
system on a single chip. The rapid evolution of silicon technologies has allowed that
programmable logic devices reduce their die sizes and therefore their cost, so hardware
platforms like FPGAs can be used not only as rapid prototyping approaches but also as
final solutions that greatly shorten the time-to-market of new consumer products. As a
consequence, the availability of both low-cost large-capacity FPGAs and many standard
system components described as IP modules make possible the whole development of a
system-on-chip solution which, depending on the application and the number of chips to
be fabricated, may become more attractive than an ASIC.
This chapter describes a new and generic design methodology to efficiently develop a FLC
in a SoC platform. As novelty, this solution exploits the fine-grain partial reconfiguration
of the programmable logic. Next sections briefly introduce the fundamentals of fuzzy
control and present the classical fuzzy design flow with emphasis on the resultant
control surface. The algorithmic aspects and the development considerations of the FLC
as well as its porting to a SoC device and the experimental results achieved are also
presented later.

8.1.1 Fuzzy logic fundamentals

Fuzzy Logic is not fuzzy logic; it is a precise logic of imprecision. The potential to
linguistically describe with simple rules the experience and knowledge of a human expert
in order to control a plant without the need of mathematical models has caused a great
increase of engineering applications at present based on fuzzy techniques. Given a plant
or process as scenario, it is planned to control it under certain behavioral specifications
to get a suitable real-time dynamic response. For this, it is necessary to connect the
plant to a controller that is going to carry out the closed-loop control of the system, as
shown in Figure 8.1. The introduction to fuzzy logic that follows is particularized to two-
inputs one-ouput control systems, although it could be generalized to other MIMO
configurations. Therefore, the controller interface is composed of two inputs x-y and one
output z, and the dynamics of the whole plant-controller would be modeled by functional
rules aimed at the plant output v0 tracking the reference input vref in real-time.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 149

Figure 8.1 Fuzzy-based control system constituted by two inputs and one output

Three sequential layers set up the classical fuzzy development process. The first stage is
the fuzzification where the input variables of the controller are quantified in fuzzy sets (of
triangular, trapezoidal or rectangular shapes) that define the membership functions, as
NM (negative medium), NS (negative small), ZE (zero), PS (positive small) and PM (positive
medium) of Figure 8.2. Next, the fuzzy inference procedure works with IF-THEN rules
where the fuzzified inputs, linked by AND/OR fuzzy operators, are evaluated. All the
inference rules are computed together and the result is aggregated into a single fuzzy set
of the output variable. This partial result is finally processed in the third stage, called
defuzzification, where several options are possible to obtain a single number as crisp
output: middle-of-maximum, center-of-gravity, largest-of-maximum, Takagi-Sugeno
method, etc. As noticed, the three layers offer certain flexibility in choosing the more
appropriate strategy and this decision is up to the expert developer according to his/her
background of the particular application. But independently of the methods used, the
result is always a function in charge of computing an output value z for each x-y pair
input. When all the inputs range is covered, a control surface is obtained which
describes the behavior of the controller, as depicted in Figure 8.3. This control surface
specifies how the controller shall behave for each x-y pair input as result of the
fuzzification, fuzzy inference and defuzzification stages defined. Like this, this control
surface defines the dynamics response of the system.

Figure 8.2 Three-stage fuzzy process

Next section presents some use cases reported in the literature related to the
implementation of fuzzy control systems in real applications.

8.2 Related work

Concerning implementation architectures of fuzzy systems, several technological
alternatives coexist at present in many application fields: flexible software-based
solutions oriented to stand-alone RISC, CISC or DSP processors, dedicated hardware
circuits based on ASIC or ASSP devices that high-perform the fuzzy algorithm by means

FUZZY LOGIC

CONTROLLER D/A PLANTA/D

VO(t)

VREF(t)

d/dt

u(t)z(k)

x(k)

y(k)

e(t)

de(t)

Σ
+ _ FUZZY LOGIC

CONTROLLER D/A PLANTA/D

VO(t)

VREF(t)

d/dt

u(t)z(k)

x(k)

y(k)

e(t)

de(t)

Σ
+ _

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 150

of customized VLSI implementations [Watanabe et al., JSSC 1990], or even mixed
HW/SW platforms where a sensible MCU-FPGA partitioning lets schedule the algorithm
through different tasks and perform them in parallel [Sánchez-Solano et al., RSP 2002],
[Hung, FUZZ 1994]. Our work is included into this third group and the digital fuzzy
controller is embedded in an Atmel AT94K40 SoC: a MCU plays the role of master of the
multiprocessor system and is responsible for handling the control and supervisory tasks
of the algorithm while an FPGA synthesizes a slave multiply-and-accumulate coprocessor
that takes charge of the intensive arithmetic computing. As novelty, our design does not
follow the traditional implementation process based on directly synthesizing the three
fuzzy stages but it contributes to optimize the physical HW/SW resources by placing just
the control function product of all that theoretical three-stage study previously modeled
off-line. As application example, the work pays attention to a two-input one-output fuzzy
system given that many control applications in the industry make use of this topology;
additionally, the feature of handling only three variables in total allows us to show and
assimilate the results in a graphical 3D representation.
There exist many application examples of controllers that implement fuzzy surfaces in
systems where it is really complex to obtain an accurate mathematical model that
describes their behaviour. Some of them are presented next:
In [Zhao et al., ICVES 2006] and [Aly, ICMA 2010], it is proposed a fuzzy control surface
applied to an anti-lock braking system (ABS) which takes into consideration the
conditions of the road surface. According to the capability of fuzzy logic of dealing with
dynamic systems having complexity, uncertainty and nonlinear characteristics, a Takagi-
Sugeno fuzzy identification model is introduced to detect the current road conditions and
generate corresponding optimal slip. An ABS fuzzy control algorithm is proposed to offer
an appropriate command braking pressure signal, based on current slip ratio and road
conditions as well as brake pressure, to detect wheel blockage immediately, avoid
excessive slipping and minimize the stopping distance under emergency braking
conditions. When the road surface is identified, the optimum target slip value can be
modified according to the type of surface. This optimal slip value corresponds to the
maximum road coefficient of adhesion for a given surface. The fuzzy control output u(t) is
expressed as a function of the error e(t) and the change-in-error de(t) giving rise to a
control surface u=f(e, de).
In [Hai-ru and Zhi-min, IPTC 2010], a fuzzy control surface is proposed to implement an
automobile controller responsible for avoiding collision between vehicles. For this, the
fuzzy logic controller regulates the speed of a vehicle taking into account the distance
and the distance difference between such vehicle and another vehicle running in front of
it –in the same direction– in a road.
The work described in [Matas et al., ICFS 1997] deals with the design of a monolithic
CMOS analog function synthesizer based on current mode techniques and applied to the
implementation of fuzzy logic controllers. The fuzzy strategy defines a control surface
which is then approximated by planes. The integrated circuit realizes the implicit
equation of each plane whose coefficients are previously introduced in a static RAM
memory. As proof of concept, this controller is applied to the control of a DC-DC
switching regulator.
Inspired in the Mamdani fuzzy control strategy, Shao-yi presents a two-input single-
output fuzzy controller aimed at improving the control effect of automotive semi-active
suspension based on damping control [Shao-yi, CCCM 2009]. Both speed and
acceleration of the vehicle compose the inputs of the fuzzy controller whereas the
adjustable damping is its output.
Besides, many two-input one-output control applications are implemented in FPGAs,
mainly as static hardware designs which stay invariant for all the application lifetime:
Tzafestas et al. present a system-on-chip intended for the path following task of
autonomous non-holonomic mobile robots and implemented on a Spartan-3 XC3S1500-
4FG676 device [Tzafestas et al., RAS 2010]. The SoC consists of a parameterized digital
fuzzy logic controller core and a flow control algorithm that runs under the Xilinx

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 151

Microblaze soft-core processor. The FLC plays the role of a co-processor and supports the
fuzzy path tracking algorithm. It is connected to the Microblaze via the FSL bus. The
placing and routing of the full system occupies 4021 slices, 11 block multipliers and 16
block RAMs. This design achieves a system clock operating frequency of 71 MHz.
In [Cortés et al., MICAI 2010], an FPGA implementation of fuzzy system with parametric
membership functions and conjunctions is proposed. The implemented system is based
on a Sugeno fuzzy model with two input variables. The fuzzy control system is
implemented in an Altera Cyclone II EP2C35F672C6.
Sánchez-Solano et al. present the hardware/software co-design of a fuzzy control system
applied to solving the navigation tasks of an autonomous vehicle [Sánchez-Solano et al.,
TIE 2007]. The hardware realization of this FLC consumes 3438 slices of the Spartan-
xc3s1000 FPGA. The 60% of these resources are required to implement the MicroBlaze
processing system and its associated components. The remaining 40% correspond to the
fuzzy inference module. The system works at 50 MHz. Once the fuzzy inputs are
established, the fuzzy inference module completes the inference process and provides a
valid output after 16 clock cycles (320 ns).
Although there exist a large amount of FLC designs based on an FPGA or SoC device,
very few approaches of fuzzy control systems are implemented in programmable logic
platforms that furthermore make use of run-time partial reconfiguration:
Mermoud et al. present a fuzzy control system implemented on a Xilinx FPGA platform
that is able to evolve at run-time [Mermoud et al., IWANN 2005]. Herein, they concentrate
it research in reaching a system architecture able to perform the tuning of system
parameters on the fly. In that architecture, parameter tuning implies modifying only
some LUT functions. They use the Xilinx difference-based reconfiguration flow since only
small modifications are required. With the difference based flow the designer must
manually edit low-level changes such as look-up-table equations, internal RAM contents,
I/O standards, multiplexers, flip-flop initialization and reset values. Then, a partial
bitstream is generated, containing only the differences between the before and the after
designs. To this aim, they created three hard macros using LUTs for each evolvable part
of the platform: the input membership functions parameters, the inference rules, the
aggregation configuration and the output membership functions parameters. By using
hard macros location constraints, it is possible to locate each LUT and hence modify it by
using difference-based reconfiguration, as described in [Xilinx Inc., XAPP290 2007]. As
result, the fuzzy system gets totally defined by an array of bits that configure the
different LUTs of the different modules of the fuzzy logic controller.
In [Economakos and Economakos, MED 2007], it is proposed a fuzzy logic PID controller
where the fuzzy module takes charge of calculating the Kp, Ki and Kd parameters of the
PID controller whenever the system is submitted to changes with respect to external
conditions. These parameters are then reconfigured at run-time. The system is
implemented in a Xilinx Virtex-4 device. The fuzzy logic module is implemented in
software by means of an embedded soft-core host processor while the PID controller is
implemented in hardware. The host processor –MicroBlaze soft-core instance– calculates
the fuzzy gain parameters for PID control and also generates all reconfiguration
information to perform parameter changes. The PID parameters are stored in a single
reconfiguration frame of the FPGA; this constrained placement is intended to reduce the
reconfiguration time to a minimum, in accordance with the reconfiguration grain of the
Virtex-4 device. The reconfiguration is performed through the ICAP interface by means of
the HWICAP controller and managed by MicroBlaze. When the fuzzy logic module
calculates new values for the PID parameters, these can be written directly to the
appropriate place within the reconfiguration frame and then be exchanged in the FPGA
configuration memory through HWICAP. The main advantage of this approach is that by
reconfiguring small parts of the application (only the PID parameters) the reconfiguration
does not impose time overheads that make online reconfiguration not practical.
The FLC proposed in this chapter keeps some similarities with some of these works
regarding the use of run-time partial reconfiguration.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 152

8.3 Hardware/Software co-design

Getting the support of simulation tools is a habitual practice in the development of fuzzy
control systems; Matlab-Simulink, for instance, offers a toolbox that permits one to
perform all the fuzzy logic stages. Once the controller is modelled with the help of these
tools, the physical implementation of the three-stage algorithm can be carried out in
software and/or hardware. Many research efforts have been addressed to find strategies
able to optimize the implementation and accelerate the processing. In the particular case
of two-input one-ouput control systems, instead of going through the specific hardware
or software implementation of the fuzzifier, rules-based inference engine and defuzzifier
the work presented in this chapter proposes a new approach focused on directly
implementing the resultant fuzzy control surface z=f(x,y). Hence, this approach does not
demand a concrete fuzzification or defuzzification method since it takes as input just the
resultant control surface coming from the theoretical fuzzy model. This feature adds
flexibility to the design, without loosing generality, in search of a universality-oriented
FLC. The proposed controller is then deployed through HW/SW tasks partitioning in the
Atmel AT94K40 FPSLIC: the CPU manages the application flow in software while a
hardware coprocessor mapped in the FPGA takes charge of the fuzzy control surface
computation. Following it is described how this system is synthesized in programmable
logic aimed at computing the z=f(x,y) function in a cost- and time-efficient way.

8.3.1 Fuzzy algorithm

Nonlinear surfaces result when designing a two-inputs one-output FLC for controlling a
nonlinear system. An option for implementing this 2D function would be to directly store
the control surface point-by-point into a LUT but this approach would require an
intolerable amount of memory in most cases [Dharia et al., IJCNN 2002]. Our challenge
then is to split the control surface z=f(x,y) in a set of n rectangular areas and model each
of them through a second-order function through multiple polynomial regression, that is,

22),(yfxeyxdycxbayxfz ⋅+⋅+⋅⋅+⋅+⋅+== (8.1)

where the surface of each rectangular sector, limited by its two extreme up-left and
down-right vertexes (xul,yul) and (xdr,ydr), yul ≤ y ≤ ydr, xul ≤ x ≤ xdr, becomes totally defined by 6
coefficients { a, b, c, d, e, f }. The key point of this approach is to find the convenient n
rectangles in which the surface should be split in order to reach the modeling of the
partial surfaces as similar to the original fuzzy control surface as possible, within an
acceptable error ε. Mathematical-statistical software tools can assist this development
task, e.g. Minitab. The number of rectangles n and their sizes, i.e. (x0,x1,…xi), (y0, y1,…yj)
partitions, are a function of the control surface, which obviously depends, in the last
term, on the features of the whole plant-controller, as depicted in Figure 8.1. The
partitioning of the surface into rectangular parts shall make feasible its subsequent
storage and indexing in memory (2D-coordinates and polynomial coefficients). In fact, the
resultant n rectangular sectors that comprise the whole control surface are indexed and
stored in increasing order into SRAM –as a function of the Y and X components of their
extreme vertexes, and considering the component Y of higher weight than the component
X– as illustrated in Figure 8.3. Moreover, this flexibility in segmenting the surface
permits to cover not only continuous surfaces but also discontinuous ones typical of
nonlinear systems (saturation effects, etc). All this conditioning must enable later to use
a binary search algorithm to find in real-time at which sector falls each periodic sampling
point (xp,yp). Besides, it is important to note in this approach that, until now, both fuzzy
development process and surface polynomial modeling are tasks carried out off-line; in
fact, they constitute the theoretical analysis/study previous to the system
implementation, and the fact of skipping all this fuzzy preprocessing in the
implementation aims to simplify the HW/SW design as well as reduce costs.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 153

Y

X
0 x0 x1 x2 x3 x4 x5 x6 ... xj

y0
0

1

2
3 4 5

6
7

8 9

10

11 12 13

14 15

y1

y2

y3

y4

y5

y6

yk

...

Z

X
Y

Y

X
0 x0 x1 x2 x3 x4 x5 x6 ... xj

y0
0

1

2
3 4 5

6
7

8 9

10

11 12 13

14 15

y1

y2

y3

y4

y5

y6

yk

...

Y

X
0 x0 x1 x2 x3 x4 x5 x6 ... xj

y0
0

1

2
3 4 5

6
7

8 9

10

11 12 13

14 15

y1

y2

y3

y4

y5

y6

yk

...

Z

X
Y

Z

X
Y

Figure 8.3 Fuzzy control surface z=f(x,y) obtained in the fuzzification, rule inference and

defuzzification stages (left). Segmentation and indexing of the surface (right)

Our fuzzy control algorithm is split in two main processing tasks: binary search and
arithmetic computing. The algorithm is periodically executed to determine the output z
based on the instantaneous inputs x and y acquired at a given sampling period. For each
point (x,y) sampled, the control loop has to trace first the surface sector where it is
contained in accordance with its characteristic extremes (xul,yul), (xdr,ydr). Thus, given the
control variables x and y and the resultant control surface z=f(x,y) that covers all the
range of points (x,y) divided into n sectors, the binary search must find the sector that
includes the sampling point (xi,yi) in only n/2 iterations, as shown in Code 8.1. Afterwards,
once the sector is identified, it is applied the particular second-order function –defined by
its custom coefficients (a, b, c, d, e, f)– to compute and release the output z.

/* Xp: 16-bit, Yp: 16-bit, YpXp: 32-bit, YpXp= (Yp(15)..Yp(0)Xp(15)..Xp(0)) */
unsigned short Xl[0x100], Yi, Xi;
unsigned long YuXl[0x100], YdXr[0x100], YiXi;
void BinarySearch(void)
{

unsigned char bit, ind, mask;
bit=7;
ind=0;

 do {
 mask=(1<<bit);
 ind |= mask;
 if ((YiXi < YuXl[ind])||((YiXi < YdXr[ind]) &&(Xi < Xl[ind])))
 {
 ind &= (~mask);
 }
 }while (bit--);
}

Code 8.1 Binary search algorithm based on a 256-sectors surface

Given the control surface, the FLC implementation starts by running it totally in SW in
an MCU. This phase reveals important features to take into account in the next design
step which deals with the partitioning and scheduling of the application into HW and SW
tasks. In fact, the tasks profiling highlights that the most time consuming task running
in the MCU platform is the arithmetic computing. Hence, this task is then ported to a
custom HW implementation to speed it up while the binary search keeps programmed in
SW. The architecture HW/SW breakdown is addressed in the next section.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 154

8.3.2 System architecture

The FLC is embedded into the AT94K40 FPSLIC composed of an 8-bit AVR MCU, a 40
kgates AT40K40 FPGA with full/partial dynamic reconfiguration and up to 36 kbytes of
dual-port SRAM memory shared between MCU and FPGA. The algorithm is partitioned in
SW tasks executed by the MCU and HW tasks carried out by the FPGA. Furthermore, the
whole surface fragmented in rectangular sectors is stored into the dual-port SRAM
accessible by both MCU and FPGA. The MCU takes charge of acquiring the current input
point (x,y) and finding in which sector it gets comprised, performing the binary search in
accordance with the reference segmentation arrays (x0,x1,…,xi) and (y0,y1,…,yj) which define
the complete surface z. Once the pointed sector is found, the input point (x,y) as well as
the specific parameterized constants { a, b, c, d, e, f } that define that sector are transferred
to the FPGA as operands required for the computing of the output z. In our case, each
rectangular surface is defined in SRAM by the parameterized variables xul, yul, xdr, ydr, a, b,
c, d, e and f, where the coordinates are 15-bit and the coefficients 16-bit wide.
 (8.2)

≤≤≤≤∀⋅+⋅+⋅⋅+⋅+⋅+=

≤≤≤≤∀⋅+⋅+⋅⋅+⋅+⋅+=
≤≤≤≤∀⋅+⋅+⋅⋅+⋅+⋅+=

=

nnnn druldrulnnnnnnn

druldrul

druldrul

yyyxxxyxyfxeyxdycxbayxf

yyyxxxyxyfxeyxdycxbayxf

yyyxxxyxyfxeyxdycxbayxf

z

,),(,),(

...

,),(,),(

,),(,),(

22

2
2

2
222222

2
1

2
111111

2222

1111

In this way, the surface gets segmented, parameterized and indexed in blocks as follows:

}{
}{

}{),(),,(),,,,,,(

...

),(),,(),,,,,,(

),(),,(),,,,,,(

2222

1111

2222222

1111111

nnnn drdrululnnnnnnn

drdrulul

drdrulul

yxyxfedcbaz

yxyxfedcbaz

yxyxfedcbaz

=

=
=

 (8.3)

The block diagram of the FLC is depicted next. Instead of using a powerful 32-bit MCU, it
is used a low-cost 8-bit MCU for handling the control tasks but supported by an FPGA-
based coprocessor customized to the data length required by the particular computation.

Figure 8.4 Block diagram of the AT94K40-based FLC

AT94K40 SYSTEM-ON-CHIP

AT40K40 FPGAAVR MCU
binary
search

AT17LV002
SERIAL

EEPROM
(bitstream)

MAC
UNIT

arithmetic
computing

INPUT
INTERFACE

OUTPUT
INTERFACE

FLEXIBLE
HARDWARE

CONFIGURATION
CONTROLLER

DUAL-PORT
SRAM
control
surface

AT94K40 SYSTEM-ON-CHIP

AT40K40 FPGAAVR MCU
binary
search

AT17LV002
SERIAL

EEPROM
(bitstream)

MAC
UNIT

arithmetic
computing

INPUT
INTERFACE

OUTPUT
INTERFACE

FLEXIBLE
HARDWARE

CONFIGURATION
CONTROLLER

DUAL-PORT
SRAM
control
surface

x,y,a,b,c,d,e,f

z = f(x,y,a,b,c,d,e,f)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 155

Figure 8.5 Block diagram of the FLC embedded in the AT94K40 FPSLIC

The FLC consists of two processing units: the AVR processor constitutes the master unit
and linked to it there is a slave ALU/MAC coprocessor synthesized on the FPGA. The
MAC unit integrates a 16x32-bit signed multiplier and a 52-bit adder. Its implementation
reaches a good balance of area and time; all the operands share a common routing where
the arithmetic computing cycle z described in equation (8.1) consists of 12 products and
6 additions. Once the fuzzy parameters are loaded into the FPGA, the fuzzy computation
starts and the control loop z=f(x,y) is performed in some few cycles, as depicted in the
sequence of the control lines handled by the FPGA through a dedicated FSM next.

Figure 8.6 Scheduling of the fuzzy computing

Concerning the I/O interface, the computing result flows from FPGA to MCU through an
8-bit data bus along a multiplexer whereas the arithmetic operands are transferred –split
in 8-bit data– from MCU to FPGA through the configuration controller. That is, instead of
establishing a dedicated hard-wired interface for transferring data from MCU to FPGA,

di

AT17LV002
EEPROM

(bitstream)

PROCESSOR
(MCU)

COPROCESSOR (FPGA)FPGAX

FPGAY

FPGAZ

FPGAD

8-bit OUTPUT

CS

CLKAVR

CONFIGURATION
CONTROLLER

FSM

CLKAT40K

FREQ.
DIVIDER

fCLK/2 zi = f(xi,yi) = ai + bixi + ciyi + dixiyi + eixi
2 + fiyi

2

DUAL-PORT
SRAM

(control surface)

MUL 16x32

ai

bi

ci

ei

fi

00000001

WR EN

PWM
Zi

PORT D

PORT E
Yi

Xi

q(47)&q(47) &q(47)&q(47)
&q(47..0)

LUT-based
DR-ROM 8x16

DATA OUT

ADDRESS

WR EN

ADDRESS

RD EN

WR EN

DATA

CLKAVR CLKAT40K

8-bit
DATA
24-bit

ADDRESS

16-bit

DATA IN

IOWE

INIT

CON

SDATA

CCLK

yi

xi

32-bit

MULACC
ffD32

PRODUCT
ffD48

ADDACC
ffD52

ADD 52

52-bit 52-bit

MUX
2x8

MUX
8x8

LUT-based
DR-MIXER 8x8

IORE

enfsm(2..0)

ldfsm(1..0)

rdfsm(2..0)

zi (07..00)

zi (15..08)

zi (23..16)

zi (31..24)

zi (39..32)

zi (47..40)

zi (55..48)

swap(7..0)

opfsm(2..0)

rdfsm(2..0)

opfsm(2..0)

CLKAT40K

D

Q

ldfsm(0)

MUX
2x52

CLKAT40K
CLKAT40K

QQ

DD

ldfsm(1)

enfsm(0)

enfsm(1)enfsm(2)

addacc(51..0),
zi (51..0)

000...000

selfsm(2..0)

selfsm(2..0)

swap(7..0)

8-bit DR-INPUT

yi xi ai bi ci di ei fi

ch7

ch0

di

AT17LV002
EEPROM

(bitstream)

PROCESSOR
(MCU)

COPROCESSOR (FPGA)FPGAX

FPGAY

FPGAZ

FPGAD

8-bit OUTPUT

CS

CLKAVR

CONFIGURATION
CONTROLLER

FSM

CLKAT40K

FREQ.
DIVIDER

fCLK/2 zi = f(xi,yi) = ai + bixi + ciyi + dixiyi + eixi
2 + fiyi

2

DUAL-PORT
SRAM

(control surface)

MUL 16x32

ai

bi

ci

ei

fi

00000001

WR EN

PWM
Zi

PORT D

PORT E
Yi

Xi

q(47)&q(47) &q(47)&q(47)
&q(47..0)
q(47)&q(47) &q(47)&q(47)
&q(47..0)

LUT-based
DR-ROM 8x16

DATA OUT

ADDRESS

WR EN

ADDRESS

RD EN

WR EN

DATA

CLKAVR CLKAT40K

8-bit
DATA
24-bit

ADDRESS

16-bit

DATA IN

IOWE

INIT

CON

SDATA

CCLK

yi

xi

32-bit

MULACC
ffD32

PRODUCT
ffD48

ADDACC
ffD52

ADD 52

52-bit 52-bit

MUX
2x8

MUX
8x8

LUT-based
DR-MIXER 8x8

IORE

enfsm(2..0)

ldfsm(1..0)

rdfsm(2..0)

zi (07..00)

zi (15..08)

zi (23..16)

zi (31..24)

zi (39..32)

zi (47..40)

zi (55..48)

swap(7..0)

opfsm(2..0)

rdfsm(2..0)

opfsm(2..0)

CLKAT40K

D

Q

ldfsm(0)

MUX
2x52

CLKAT40K
CLKAT40K

QQ

DD

ldfsm(1)

enfsm(0)

enfsm(1)enfsm(2)

addacc(51..0),
zi (51..0)
addacc(51..0),
zi (51..0)

000...000

selfsm(2..0)

selfsm(2..0)

swap(7..0)

8-bit DR-INPUT

yi xi ai bi ci di ei fi

ch7

ch0

FPGA

MCU

opfsm(2..0)

clkAVR

in R, @ in R, @ in R, @ in R, @ in R, @ in R, @ in R, @

application code

out @, RASM

b6=fisucfisua=0
C

b4=fisuc b3=fisuc b2=fisuc b1=fisuc b0=fisuc

ldi R, 0 out @, R

fisub=0

ldi R, 0

b5=fisuc

001-x 011-b 001-x 110-e 000-y 100-c 000-y 111-f 010-a 001-x 000-y 101-d 000-y

110 101 100 011 010 001 000111

clkAT40K

ldsfsm(0)

enfsm(0)

enfsm(2)

ldsfsm(1)

enfsm(1)

1 1x xx 1 1y yy 1 1x xy

xyd1ayyfycxxexb

z=z+xbz=0 z=z+xxe z=z+yc z=z+yyf z=z+1a z=z+xyd

rdfsm(2..0)

FPGA

MCU

opfsm(2..0)

clkAVR

in R, @ in R, @ in R, @ in R, @ in R, @ in R, @ in R, @

application code

out @, RASM

b6=fisucfisua=0
C

b4=fisuc b3=fisuc b2=fisuc b1=fisuc b0=fisuc

ldi R, 0 out @, R

fisub=0

ldi R, 0

b5=fisuc

001-x 011-b 001-x 110-e 000-y 100-c 000-y 111-f 010-a 001-x 000-y 101-d 000-y

110 101 100 011 010 001 000111

clkAT40K

ldsfsm(0)

enfsm(0)

enfsm(2)

ldsfsm(1)

enfsm(1)

1 1x xx 1 1y yy 1 1x xy

xyd1ayyfycxxexb

z=z+xbz=0 z=z+xxe z=z+yc z=z+yyf z=z+1a z=z+xyd

rdfsm(2..0)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 156

the design makes use of the reconfiguration interface accessible by the MCU. Thus, the
run-time reconfigurable fuzzy parameters are placed in specific LUTs of the FPGA by the
MCU which reconfigures these LUTs at run-time, once per fuzzy computing cycle. Like
this, the MAC unit gives rise to a static hardware design with the exception of two flexible
blocks that are reconfigured at run-time by the MCU while the rest of the SoC keeps
active. The details of how the parameters of each surface section are uploaded into the
FPGA coprocessor by means of dynamic partial reconfiguration are detailed next.

8.3.3 FPGA dynamic partial reconfiguration

After a power up or reset, the bitstream –composed of the MCU program code, the
hardware design placed on the FPGA as well as the parameters of the n sectors that
define the fuzzy control surface located in DP-SRAM– is downloaded from EEPROM
memory to the SoC device and the system is initialized. Afterwards, MCU and FPGA run
concurrently organized in a sensible tasks scheduling-partitioning. Two flexible blocks
allow an efficient hardware implementation of the FLC through time-multiplexing the
silicon resources. A dynamically reconfigurable LUT-based ROM macro (DR-ROM)
permits to upload this reserved memory with the parameters required in each computing
cycle. Previously to this, a second reconfigurable logic engine (DR-MIXER) is necessary to
process the parameters stored into DP-SRAM and conditionate them to the data format
required for the FPGA computing. This data conditioning is performed directly in
hardware instead of software due to time overhead reasons. Both flexible blocks are
reconfigured while other modules present on the FPGA continue operating undisturbed.
For this, the MCU handles the control buses of the FPSLIC configuration controller and
addresses the hardware resource to be reconfigured, as described in chapter 5. Moreover,
the reconfigurable blocks do not have any input interface since the input data are
directly loaded in the LUTs of these blocks through the configuration controller. This is
just an advantage given that those interfaces can be avoided in the user design, saving
routing resources and reducing power consumption.

DR-MIXER

x
y
a
b
c
d
e
f

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

FSM

111 110 101 100 011 010 001 000

bit0 bit8
bit1 bit9
bit2 bit10
bit3 bit11
bit4 bit12
bit5 bit13
bit6 bit14
bit7 bit15

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

f e d c b a y x

FSM

111 110 101 100 011 010 001 000

DR-ROM

TRUTH TABLE
Inputs Output
C B A F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

LUT 3x1

F

C

B

A

DR-MIXER

x
y
a
b
c
d
e
f

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

FSM

111 110 101 100 011 010 001 000

bit0 bit8
bit1 bit9
bit2 bit10
bit3 bit11
bit4 bit12
bit5 bit13
bit6 bit14
bit7 bit15

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

f e d c b a y x

FSM

111 110 101 100 011 010 001 000

DR-ROM

DR-MIXER

x
y
a
b
c
d
e
f

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

FSM

111 110 101 100 011 010 001 000

x
y
a
b
c
d
e
f

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

FSM

111 110 101 100 011 010 001 000

bit0 bit8
bit1 bit9
bit2 bit10
bit3 bit11
bit4 bit12
bit5 bit13
bit6 bit14
bit7 bit15

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

f e d c b a y x

FSM

111 110 101 100 011 010 001 000

bit0 bit8
bit1 bit9
bit2 bit10
bit3 bit11
bit4 bit12
bit5 bit13
bit6 bit14
bit7 bit15

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

LUT
3x1

f e d c b a y x

FSM

111 110 101 100 011 010 001 000

DR-ROM

TRUTH TABLE
Inputs Output
C B A F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

LUT 3x1

F

C

B

A

TRUTH TABLE
Inputs Output
C B A F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

LUT 3x1

F

C

B

A

Figure 8.7 DR-MIXER and DR-ROM modules

The AT40K FPGA family supports dynamic full/partial reconfiguration suitable for
building adaptive systems. Its architecture is a symmetrical array of identical cells. The
structure of the FPGA core element or logic cell basically consists of two LUTs of three
inputs and one output each, a set of multiplexers and demultiplexers, a D flip-flop and a

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 157

bus interface, as illustrated in Figure 7.2. The core can implement either one logic
function of four inputs or two functions of three inputs where one of these core outputs
can be registered. Each FPGA core is directly connected to its eight immediate
neighbours (horizontal, vertical and diagonal links) while each core can also
communicate with any other core through bus routing resources. Our interest is focused
on the 1x4 or 2x3 synthesizable truth tables of the logic cells. These LUTs, like most of
the select lines of multiplexers and vertical and horizontal local buses connections, are
reconfigurable bits that can be accessed from the MCU program code through the
configuration controller interface (FPGAX, FPGAY, FPGAZ and FPGAD registers) shown in
Figure 8.5. The management of the fuzzy operands is performed taking advantage of the
fine-grain dynamic partial reconfiguration feature of the FPGA. A dynamic DR-MIXER
engine is build to handle –by evolving some 8-bit LUTs– the surface parameters before
downloading them into a dynamically reconfigurable ROM (DR-ROM) from where these
arithmetic operands are transferred to the MAC unit. To build the data that must be
uploaded in the DR-ROM following the format required by the reconfiguration, it is
necessary to mix the bits of the different parameters x, y, a, b, c, d, e and f to compose the
reconfiguration words. This process is performed in the FPGA with the DR-MIXER.
Although the x and y surface coordinates are 15-bit wide and the surface parameters a, b,
c, d, e and f are 16-bit wide, for the mixing process all of them are dealed as 16-bit wide
split in two parts, the most significant byte (MSB) and the least significant byte (LSB).
Initially, the MSB of the 8 surface parameters are reconfigured in the 8 3x1 LUTs of the
DR-MIXER. Once uploaded, a FSM is transitioned to release in 8 cycles the composition
of the merged words (f15,e15,d15,c15,b15,a15,y15,x15), …, (f8,e8,d8,c8,b8,a8,y8,x8). These 8-bit words are
transferred then from the FPGA to the MCU via the multiplexer instantiated in the fuzzy
coprocessor. These data are afterwards uploaded in the DR-ROM by the MCU via the
reconfiguration interface. Similarly, this operation is repeated with the LSB of the
parameters to compose the words (f7,e7,d7,c7,b7,a7,y7,x7), …, (f0,e0,d0,c0,b0,a0,y0,x0) that are then
downloaded in the other 8 3x1 LUTs of the DR-ROM. Figure 8.7 shows this process. With
this strategy we obtain a ROM memory that delivers any of the 16-bit x, y, a, b, c, d, e and
f parameters by handling the proper address. These parameters are read following the
specific scheduling shown in Figure 8.6 to perform the surface computation making use
of the multiplier and adder instantiated in the fuzzy coprocessor.

8.4 Performance evaluation

The system has been described in C and VHDL languages. For the online validation, a
prototype board has been developed to verify the design through an automatic test.
Through the UART-based serial link available in the MCU, a software application runs in
a host PC to check the FLC behavior. It cyclically delivers the (x,y) input to the FLC board
and receives the resultant z output. This computation processed by the FLC is performed
also in the PC to compare the results. Our debug platform is mainly composed of the SoC
device, a configuration EEPROM memory that stores the bitstream and a RS232 interface
to connect the MCU UART with the PC serial port, as shown in Figure 8.8.

Table 8.1 Hardware resources used in the fuzzy logic controller implementation

AT94K40 Resources Used

Logic Cells (total: 2304)
 LC used as 1-bit flip-flop resource
 LC used as logic resource (2x3-input LUT)
 LC used as routing resource

926
149
733

44

32x4 RAM Cells (total: 144) 0

IO Cells (total: 442) 22

SRAM (total: 36 Kbytes)
 MCU SW program
 SRAM surface data

36
20
16

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 158

Figure 8.8 Automatic testing of the FLC design

This setup along with the prototype board made possible to evaluate all the fuzzy design
methodology. Table 8.1 summarizes the physical resources involved, where a 38% of the
FPGA resources are used. The MAC coprocessor is synthesized in 926 logic cells and is
able to process two physical variables (x, y) of up to 15-bit range, operated with 16-bit
constant parameters (a, b, c, d, e, f) to give as result an output z of 52-bit precision.
Concerning time performance, the computing of a control cycle typically takes 121 µs,
i.e., a sampling frequency of about 8 kHz. The time breakdown is shown in Table 8.2.

Table 8.2 Time breakdown of the FLC tasks

Tasks breakdown Time (µs)

MCU @ 12.5 MHz
 Operands transfer (reconfiguration)
 Binary search

27
90

FPGA @ 25 MHz
 Fuzzy computation cycle

4

The floorplanning, placement and routing of the FLC is illustrated in Figure 8.9.

Figure 8.9 Floorplanning of the fuzzy logic controller in the AT94K40 FPSLIC

USER
DEBUG
INTERFACE

RS232
INTERFACE

DEVELOPMENT
BOARD

AT17LV002 Eeprom
(bitstream)

AT94K40 System-on-Chip
(AVR MCU + AT40K40 FPGA)

Xi ,Yi

Zi

CLOSED-LOOP

PLANT FLC

USER
DEBUG
INTERFACE

RS232
INTERFACE

DEVELOPMENT
BOARD

AT17LV002 Eeprom
(bitstream)

AT94K40 System-on-Chip
(AVR MCU + AT40K40 FPGA)

Xi ,Yi

Zi

CLOSED-LOOP

PLANT FLC

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 159

8.5 Summary

In the research field of control systems, the development of decision strategies necessary
for autonomous operation plays a central role. Many studies focus on behavior-based
approaches, in which the reactivity to unforeseeable circumstances is achieved with
computationally simple algorithms that process sensory information in real-time by
means of high-level inference mechanisms. In this context, fuzzy logic is often adopted to
overcome the difficulties of modeling the unstructured, dynamically changing
environment which is difficult to express using mathematical equations. Fuzzy control
becomes a practical alternative for the design of a great variety of control applications. It
provides an advisable method for the synthesis of non-linear controllers using heuristic
information. The relatively simple architecture of the FLC processing algorithm naturally
leads to straightforward implementations in dedicated hardware instead of software-
based approaches. In fact, its execution on an instruction-set processor is often too slow.
FPGAs, on the other hand, deliver true parallel execution and make possible to exceed
the computing power of processors executing programs just by breaking the paradigm of
sequential execution and accomplishing more per clock cycle. Flexibility is another of the
strong points of these control systems; this feature is accentuated in run-time partially
reconfigurable FPGAs by allowing hardware to be adjusted on-demand.
This work presents a novel methodology for developing two-input one-output fuzzy
controllers taking into account the fact that a clear trade-off shall be met between the
accuracy of the computing results and the implementation costs. The commercial
success or failure of this product will highly depend on this compromise. In this
direction, the design flow is conceptually split in two basic stages: a first phase of
intensive study performed off-line which includes the traditional three-stage fuzzy system
simulation followed by a multiple polynomial regression of the output function, and a
second phase where this resultant mathematic model is implemented through HW/SW
co-design in search of a cost-effective and generic solution that lets reduce the fuzzy
computing to a simple binary search process followed by a multiply-and-accumulate
arithmetic operation. As application example, a general-purpose dual-input single-output
FLC has been embedded in a SoC suitable for whichever industrial application: by only
changing the RAM data of the control surface it can switch from one application to
another, converting this approach into a universal and field-customizable solution. The
parameterized surface information is included into the bitstream as a simple data file
with the rectangular sectors composed of their border coordinates and function
polynomial coefficients. These data are swapped in the coprocessor by exploiting fine-
grain partial reconfiguration.
As summary, this chapter shows an application example of the embedded CPU+FPGA
system architecture proposed in this dissertation. A simple run-time reconfigurable
hardware arithmetic coprocessor attached to a small 8-bit MCU –all integrated in a SoC
device– is a valid alternative in terms of performance-cost to a purely software solution
based on a more powerful (32-bit) MCU to take charge of the real-time FLC computation.
Besides, this work demonstrates the feasibility of use of reconfigurable computing in the
industry.

References

[Aly, ICMA 2010]
A.A. Aly, Intelligent fuzzy control for antilock brake system with road-surfaces identifier, Proceedings of
the International Conference on Mechatronics and Automation, pp. 699-705, 2010.

[Cortés et al., MICAI 2010]
P. Cortés Antonio, I. Batyrshin, H. Molina Lozano, L.A. Villa Vargas, I. Rudas, FPGA implementation of
fuzzy system with parametric membership functions and parametric conjunctions, Proc. of the Mexican
International Conference on Artificial Intelligence, LNCS, vol. 6438, pp. 487–499, Springer, 2010.

[Dharia et al., IJCNN 2002]
N. Dharia, J. Gownipalli, O. Kaynak, B.M. Wilamowski, Fuzzy controller with second order defuzzification
algorithm, Proc. of the Int. Joint Conference on Neural Networks, vol. 3, pp. 2327-2332, 2002.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 160

[Economakos and Economakos, MED 2007]
G. Economakos, C. Economakos, A run-time reconfigurable fuzzy PID controller based on modern FPGA
devices, Proceedings of the Mediterranean Conference on Control and Automation, pp. 1-6, 2007.

[Hai-ru and Zhi-min, IPTC 2010]
G. Hai-ru, L. Zhi-min, An intelligent controller design for automobile anti-collision based on fuzzy network,
Proc. Int. Symposium on Intelligence Information Processing and Trusted Computing, pp. 305-308,
2010.

[Hung, FUZZ 1994]
D.L. Hung, Custom design of a hardware fuzzy logic controller, Proceedings of the IEEE Conference on
Fuzzy Systems, vol. 3, pp. 1781-1785, 1994.

[Matas et al., ICFS 1997]
J. Matas, L. García de Vicuña, M. Castilla, A synthesys of fuzzy control surfaces in CMOS technology,
Proceedings of the IEEE International Conference on Fuzzy Systems, vol. 2, pp. 641-646, 1997.

[Mermoud et al., IWANN 2005]
G. Mermoud, A. Upegui, C.A. Peña, E. Sanchez, A dynamically-reconfigurable FPGA platform for evolving
fuzzy systems, Proc. of the Int. Work-Conference on Artificial Neural Network, LNCS, vol. 3512, pp. 572–
581, Springer, 2005.

[Sánchez-Solano et al., RSP 2002]
S. Sánchez-Solano, R. Senhadji, A. Cabrera, I. Baturone, C.J. Jiménez, A. Barriga, Prototyping of fuzzy
logic-based controllers using standard FPGA development boards, Proceedings of the IEEE International
Workshop on Rapid System Prototyping, pp. 25-32, 2002.

[Sánchez-Solano et al., TIE 2007]
S. Sánchez-Solano, A.J. Cabrera, I. Baturone, F.J. Moreno-Velo, M. Brox, FPGA implementation of
embedded fuzzy controllers for robotic applications, IEEE Transactions on Industrial Electronics, vol. 54,
no. 4, pp. 1937-1945, 2007.

[Shao-yi, CCCM 2009]
B. Shao-yi, Fuzzy controller for automotive semi-active suspension based on damping control, Proc. of the
ISECS Int. Colloquium on Computing, Communication, Control, and Management, pp.296-299, 2009.

[Togai and Watanabe, Expert 1986]
M. Togai, H. Watanabe, Expert system on a chip: an engine for real-time approximate reasoning, IEEE
Expert Magazine, vol. 1, no. 3, pp. 55–62, 1986.

[Tzafestas et al., RAS 2010]
S.G. Tzafestas, K.M. Deliparaschos, G.P. Moustri, Fuzzy logic path tracking control for autonomous non-
holonomic mobile robots: design of system on a chip, Robotics and Autonomous Systems, vol. 58, pp.
1017-1027, 2010.

[Watanabe et al., JSSC 1990]
H. Watanabe, W.D. Dettloff, K.E. Yount, A VLSI fuzzy logic controller with reconfigurable, cascadable
architecture, IEEE Journal of Solid-State Circuits, vol. 25, no. 2, pp. 376-382, 1990.

[Xilinx Inc., XAPP290 2007]
E. Eto, Difference-based partial reconfiguration, Xilinx Inc, Application Note XAPP290 (v2.0), 2007.

[Yamakawa and Miki, TC 1986]
T. Yamakawa, T. Miki, The current mode fuzzy logic integrated circuits fabricated by the standard CMOS
process, IEEE Transactions on Computers, vol. 35, no. 2, pp. 161–167, 1986.

[Zadeh, IC 1965]
L.A. Zadeh, Fuzzy Sets, Information and Control, vol. 8, no. 3, pp. 338–353, 1965.

[Zhao et al., ICVES 2006]
Z. Zhao, Z. Yu, Z. Sun, Research on fuzzy road surface identification and logic control for anti-lock braking
system, Proc. of the IEEE Int. Conference on Vehicular Electronics and Safety, pp. 380-387, 2006.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 161

Chapter 9

2D convolution processor

Two-dimensional (2D) convolution is a basic operation in digital signal processing,
especially in image and video applications. Although its computation is conceptually
simple, a sum of products of constants by variables, its implementation is high-
demanding in terms of computational power, especially when addressed to real-time
embedded systems. This chapter brings an innovative approach oriented to dynamically
reconfigurable hardware. A flexible 2D convolver is deployed on an SRAM-based FPGA
split in two parts: a static region and a partially reconfigurable region (PRR). Just to
provide a universal solution, all the configurable aspects of the convolver (kernel
dimensions, operands resolution, constant coefficients, pipeline stages, etc) fit allocated
in the PRR. In this way, the computer can self-adapt its structure on the fly, according to
the characteristics of the image to be processed each time. Although there are many
research articles in the literature encompassing the design of 2D convolution computers,
to the best of the author’s knowledge, this is the first work that implements a 2D
convolver based on run-time reconfigurable hardware, while other approaches synthesize
it either directly in software or in hardware as fully static designs. This pioneer
alternative –exploiting key implementation aspects like parallelism, pipeline, flexibility
and functional density– overcomes both computational performance of software solutions
and cost-effectiveness of static hardware designs, while delivering an outstanding level of
adaptability. The balanced time-area trade-off achieved with this technology makes it
appropriate for high-performance low-cost embedded systems.

9.1 Introduction

General-purpose microprocessors founded on Harvard or Von Neumann architectures
are often addressed to compute 2D convolutions in software. Although it is a flexible
solution, the transformation of the convolution algorithm from its innate parallel
computational conception to a sequential software flow significantly degrades its
efficiency. This architectural mismatch is hidden in high-performance computing
platforms like PCs operating at frequencies in the range of GHz. However, when porting
such an algorithm to microcontrollers running at tens of MHz, its inappropriate
architecture is made visible now in the way of poor performance. This fact advises the
designer to reject a pure software approach in favor of hardware/software co-design in
application scenarios oriented to embedded systems with time-critical constraints. On
the other hand, an extremely rigid approach focused on a hardware 2D convolver with
hard-wired design parameters like kernel dimensions (J,I), constants of the filter (Kj,i) or
signal bit-depth offer a particular solution only, far from being adaptable to different
convolution requirements claimed at the same time in an image processing application.
By nature, a 2D image convolution delimited by a spatial J x I kernel (J=2n+1, I=2m+1,
n>0, m>0) demands a high level of parallelism of both product and addition operations,
just as its mathematical expression denotes:

∑ ∑
−= −=

++⋅=
n

nj

m

mi

ixjypijKxyp),(),(),(' (9.1)

where p is a generic pixel of the input Y x X image, Kj,i are the kernel weights applied to
the J x I neighbourhood of pixels centred at p, and p’ is the resultant convolved pixel of
the output image. Moreover, a high bandwidth is needed for transferring data as long as
they are processed by the convolver, fact that points out towards a pipeline

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 162

implementation. Nevertheless, parallelism and pipelining are not the only design
concerns; a further characteristic, flexibility, is demanded to the 2D convolution
computer. Flexibility plays a fundamental role to empower the 2D convolver to support a
large range of signal processing applications. Although from a structural point of view it
holds its computational skeleton invariant, depending on the processing stage, certain
aspects like constant values (convolution function), type of filter (e.g. isotropic, quadrant
symmetric, etc), or kernel size (neighborhood) originate functional changes in the
convolver which shall be tailored to each particular case. All these requirements fit very
well with run-time reconfigurable computing technology, available today in the market
through self-reconfigurable FPGAs. Run-time partially reconfigurable FPGAs let balance
all these design parameters in an optimal way, exploiting hardware advantages such as
parallelism and pipelining but without neglecting, in its turn, the flexibility delivered by
software. Furthermore, along with the flexibility aspect of the reconfigurable hardware,
other important characteristics of partial reconfiguration are its cost-effectiveness,
derived from the increased functional density of the hardware resources, and its
potential to reduce power consumption in contrast to the classical approaches based on
static hardware designs. With these criteria in mind, this chapter explores the
performance and architectural trade-off involved in the design of a reconfigurable 2D
convolution processor in line with the standardized embedded system architecture
proposed in chapters 4 and 5 of this dissertation.

9.2 Related work

Software architectures oriented to 2D convolutions are usually discarded in time-critical
scenarios such as image processing applications. The reason is, basically, the high
penalty in time caused by the sequential execution of code to perform an arithmetic sum
of products on a Harvard machine. Another option in the market is the use of DSP
processors. Even with their multiple single-cycle multiply-and-accumulate capability at
GHz clock rates, e.g. Texas Instruments TMS320C6457 device, the fact of completing the
full 2D convolution in several instruction cycles results in an inadmissible overhead for
certain applications. Once discarded sequential alternatives, the design of efficient
architectures oriented to parallel 2D convolution processors has received a great deal of
interest in the last years, and a lot of approaches have been proposed for optimizing
performance. Although there are many examples of parallel 2D convolvers in the
literature, only a reduced number of them pay special attention on flexibility aspects for
targeting adaptive computers, as presented next:
In [Jamro and Wiatr, FPL 2002], for example, it is proposed a 2D convolver where the
configurable kernel constants are stored in RAM instead of ROM, fact that enables the
dynamic change of such kernel coefficients.
In other hardware approaches, the flexibility is reached at expenses of more static
hardware resources to let choose among several alternatives at the same time [Strollo et
al., ICECS 2001].
The 3 x 3 2D convolver presented in [Bosi et al., VLSI 1999] is restricted to kernels with
constant weights to be chosen among only 7 fixed values. This approach does not permit
to modify neither those constant coefficients nor the data bit resolution (length),
although it admits to obtain different scalable kernel sizes by concatenating 3 x 3
convolvers. However, the ease of design offered by the dissection of a large convolution
kernel into smaller size kernels is obtained at the price of a larger overall complexity.
The work presented in [Perri and Corsonello, CDS 2003] deals with the implementation
of a 2D convolver oriented to isotropic kernels. As noted there, if several adjacent
convolutions are processed in parallel, then some partial additions are repeated in the
computing of those adjacent pixels in the image, what permits to perform this addition
only once and reuse its result many times. However, the solution presented is limited to
3 x 3 isotropic kernels, with no chance to modify the kernel size.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 163

A different approach of a 3 x 3 2D convolver is developed in [Perri et al., MAPLD 2003]. In
that case, the convolver is characterized by the use of single instruction multiple data
(SIMD) arithmetic circuits on an FPGA. It configures the bit resolution of pixels and
kernel constants, selecting either the convolution of one 3 x 3 kernel of 16-bit weights
with 16-bit pixels or the processing in parallel of two adjacent 3 x 3 convolutions on 8-bit
pixels and 8-bit kernel weights. This selection is made by means of a control line
connected to the convolver. Later on, that work is extended in [Perri et al., MICPRO 2005]
by adding a new control line that lets select the size of the kernel. This new flexibility is
reached by interconnecting several copies of the basic 3 x 3 convolver in a 2D grid. In
this way, the new 2D convolver supports both 3 x 3 and 5 x 5 convolutions for both 16-
bit and 8-bit data.
In these modular designs [Bosi et al., VLSI 1999], [Perri et al., MICPRO 2005], the
connection of modules is not transparent and some additional shift registers –used as
delay lines to temporarily hold data– or multiplexers are needed to interconnect them.
The main drawback of these architectures is probably the high dependency of the
convolver design with the own width of the image kernel to be processed.
In other direction, in [Sriram and Kearney, PDCAT 2007], it is proposed a 2D convolver
that permits to change the constants of the kernel at real-time through a convolver
implementation consisting of two components, namely a kernel generator which
produces new kernel coefficients every clock cycle, and a convolver which performs the
computation. Nevertheless, the transfer of the new kernels constants from the generator
to the convolver itself penalize in the way of a high latency before the first convolution
can be performed.
Despite their titles, all the works overviewed until now are far from delivering a good level
of adaptability; that is, they offer only a very limited flexibility and just for this reason
they cannot be considered as general-purpose 2D convolution solutions. The work
presented in this chapter pay special attention on this issue aimed at implementing a
totally flexible solution based on an SRAM-based FPGA powered by run-time partial
reconfiguration technology. This work encompasses the design of a universal 2D
convolver by building a library of hardware modules, described in VHDL hardware
description language, to be processed in a PR FPGA. The convolver placed and routed in
the FPGA can be reconfigured at run-time –while the rest of the system continues
operating unaffected– in order to reach a fine-tuning of the spatial filter applied, and
using for this the same hardware resources but adapted to the new circuitry required
each time. Therefore, the 2D convolver design space exploration carried out in this work
provides a series of generic IP blocks that let compose any 2D convolution of any kernel
size and data resolution, only limited by the own number of resources available in the
defined PRR where they are placed. Each of these IP blocks is organized as a pipelined
stage of the convolver architecture proposed.

9.3 FPGA-based design

Since their introduction, FPGAs have attracted a special interest due to their potential as
reconfigurable logic. Being the fastest growing segment of the microelectronics sector,
FPGA devices are rapidly moving into practically every application field, such as
automotive, telecommunications, defence, medical, chemistry, molecular biology,
astrophysics and many others. Among them, specific niches like software defined radio,
cryptography, aerospace missions or optical transport network solutions have showed
their firm interest in exploiting PR. Taking into account all these features, the author
proposes the design of a flexible 2D convolution processor. In this chapter, it is described
how a 2D convolution computer can be designed making use of PR technology to
integrate some flexible features of the processor into a reconfigurable region of the
programmable logic device. This processor is finally prototyped in a Xilinx Virtex-4 FPGA
device on the ML401 evaluation board, guided by the architectural concepts provided in
chapter 4 and the reconfiguration engine proposed in chapter 5.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 164

Figure 9.1 ML401 evaluation board used in the prototyping of the 2D convolver

9.3.1 System architecture

The system architecture of the 2D convolution computer fits well with the standard
architecture presented in chapter 4, confirming that such generic approach is easily
portable to many high-performance low-cost embedded applications. Conceptually, our
adaptive 2D convolver can be seen as a specific coprocessor linked to a system CPU or
master processor with the special characteristic that it can be reconfigured on the fly due
to the fact that it is instantiated in a reconfigurable region of an SRAM-based
programmable logic device. The computational units of the system are embedded in the
Xilinx Virtex-4 XC4VLX25 FPGA. This device obeys, in our example, to a spatial
partitioning of resources organized in two regions: a PRR, where the 2D convolver is
placed and reconfigured at run-time –as long as the application advances– by simply
changing the specific modules instantiated there to process different convolutions in
each moment; and a static region, which keeps invariant for all the application life cycle,
composed basically of a soft-core 32-bit MicroBlaze processor playing the role of host
CPU, and a reconfiguration engine responsible for reconfiguring the PRR on demand.
The system components’ breakdown and their interconnections are depicted in Figure
9.2. In gray it is shown the different chips out of the FPGA, i.e. external memories and a
communications transceiver that enables the link with the exterior world. The rest of
functional blocks in white correspond to different modules synthesized and mapped on
resources of the FPGA. The MicroBlaze processor is equipped with standard peripherals
like an interrupt controller, a timer, or a UART, all of them synthesized in the FPGA. The
memory controllers, required to access to the external non-volatile (Flash) and DDR-
SDRAM memories, are also implemented in the FPGA. All these components are
interconnected through a CoreConnect PLBv46 multiprocessor bus. Furthermore,
MicroBlaze is provided with instruction and data memory caches in order to speed up the
processing of the program flow. Thus, both code and data are transferred from external
memory to cache built with internal RAM blocks of the FPGA.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 165

Apart from these generic controllers and standard peripherals, the system is composed of
two custom memory management units (MMU), one master and another slave, both
implemented in VHDL. The master MMU is used to allow a DMA transfer of data from the
DDR-SRAM where the image is stored to the PRR where the 2D convolver is processed. In
this way, it is possible to move the image data to the coprocessor placed in the PRR
without involving the CPU, freeing it of this time-consuming task. In fact, the MicroBlaze
processor only takes part in accessing to the slave MMU to configure some registers used
as configuration parameters of the 2D convolver, for instance the initial memory address
of the input image to be processed, or the size X·Y of that image. Once the configuration
of the 2D convolver is done, the CPU only needs to give the go-ahead command to the
master MMU. From that moment on, the MMU starts the transfer of both input and
output images to/from the 2D convolver while this one carries out the image convolution.
Finally, when the computation is finished, this fact is notified to the system CPU, either
through a flag set by the 2D convolver and read by the CPU via the slave MMU, or by
directly triggering a hardware event to the CPU via the interrupt controller.
In addition to the FIFOs which connect the external DDR-SDRAM with the PRR, another
FIFO is used in the implementation of the reconfiguration controller. This FIFO lets link
the external DDR-SDRAM –used as bitstreams repository– with the ICAP interface of the
Virtex-4 device and connected to the configuration memory of the FPGA. Through this
FIFO, the master MMU can start the reconfiguration of the PRR by transferring the
partial bitstream from the external repository to the FPGA. In a similar way to the start of
the 2D convolution computation, MicroBlaze configures first some specific registers of
the slave MMU to determine the initial address and the size of the partial bitstream
corresponding to the specific 2D convolution coprocessor to be downloaded in the PRR.
The system stores in external memory the different types of 2D convolvers required by
the application, each one with specific features (kernel size, filter coefficients, maximum
image dimensions, etc), and the CPU will decide which convolution shall be processed at
each moment according to its application flow. The reconfiguration engine used in this
proof of concept has been deeply described in chapter 5.

Figure 9.2 System architecture and functional components breakdown

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 166

Concerning the interconnection between the static region and the reconfigurable region,
two different interfaces are noted: bidirectional registers, used to allow the
writing/reading of configuration settings of the reconfigurable coprocessor (for instance,
in our 2D convolver, the size of the image to be processed, the start command or the end
process notification), and two bidirectional FIFO memories to allow the efficient
transmission of raw data in and out of the reconfigurable region (e.g. the original and
convolved images). Both types of interfaces connect the static and the reconfigurable
regions through bus macros (BM). These bus macros, implemented by means of LUTs
and provided with enable signals, let isolate the PRR from the static region just while the
reconfiguration is in progress.
As shown in Figure 9.2, this embedded system is totally autonomous, that is, the
MicroBlaze processor instantiated in the FPGA can order the reconfiguration of the PRR
to change some of the features of the 2D convolver coprocessor synthesized there, and
this occurs while the rest of static functional components continue in operation. In this
way, the system CPU manages the program flow and orders some reconfigurations when
necessary whereas the coprocessor placed in the PRR takes charge of the compute-
intensive 2D convolution. This HW/SW co-design gives rise to an efficient partitioning of
processing tasks to balance the computational load. Moreover, the temporal partitioning
of the application in sequential stages occurs in the time-multiplexed hardware
resources of the PRR, where the application can compute different 2D convolutions (e.g.
image filtering, edge detection, FIR signal filtering, etc) along the time.

9.3.2 Adaptive 2D convolver

The 2D convolution coprocessor is fully described in VHDL hardware description
language and deployed in a made-to-measure PR region of the Xilinx Virtex-4 device. In
this way, the 2D convolver can be self-adapted to new computational demands in real-
time by reconfiguring some of its structural features such as kernel size (both J and I
dimensions), pixel depth (e.g. 1-bit for binary or 8-bit for 256 gray-scale images), as well
as both kernel coefficients (e.g. Gaussian or Gabor filters) and their data depth (4-bit, 16-
bit, etc). Apart from these general aspects, other architectural factors can be tailored, for
instance the number of pipeline stages of the convolver. As the kernel dimensions
increase, the number of additions and products grows exponentially. If these operations
are performed in parallel, then the circuitry, the data path and the propagation time get
enlarged. New chains of registers can be inserted in the pipeline to reduce the critical
path and extend thus the operation frequency. But not only this, it is even possible to
change the operation frequency assigned to the 2D convolution processor since it is
feasible to select a different clock each time the PRR is reconfigured. Another option
demanded to this computer is the possibility to synthesize it with or without multipliers.
Our solution admits several approaches, for instance to use multipliers by means of DSP
blocks or to synthesize them in logic with shift and add operations. All this flexibility is
reached by modifying in our library of IP modules some generic attributes of those VHDL
entities to customize them to a particular design. Once the IP modules are tailored, they
are interconnected to compose the different pipeline stages of the 2D convolver. All these
design aspects can be customized for each particular 2D convolver and the resultant
bitstream is stored in the system repository to be downloaded in the PRR on demand.
A further requirement of our universal 2D convolver is that it shall be easily portable to
any system platform. For this, it makes use of a generic I/O interface based on FIFOs
and registers, depicted in Figure 9.2, instead of using a particular multiprocessor bus
like CoreConnect, AMBA or Wishbone, among others. In this way, it is designed standard
and platform-independent 2D convolution processors that can be ported to whatever
FPGA platform, without taking care of the bus architecture used by the system processor
(ARM, LEON3, PPC, etc) to transfer the image from the repository to the 2D convolver.
Like this, the interfaces handled by the 2D convolver in the PRR side are simple,
constituted by {dataInput, readEnable and emptyFlag} signals for the input FIFO interface and

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 167

by {dataOutput, fullFlag and writeEnable} for the output FIFO interface. The counterpart FIFO
ports handled in the static region also manage the same signals interface. However,
optionally, one more signal can be added there, progEmptyFlag and progFullFlag
respectively, in case the static side of the convolver makes use of multi-word bursts to
transfer data from/to the repository.

ADD

ADD

ADD

ADD

ADD ∑

ADD

ADD

∏

X

Y

MUX

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM

MUL

MUL

MUL

MUL

KLUT

KLUT

KLUT

KLUT

Figure 9.3 2D convolution split in four stacked functional blocks

The 2D convolver is split in four flexible IP blocks, depicted in Figure 9.3, each one
responsible for one specific pipelined task:
� Internal RAM cache. The first stage of the 2D convolver consists in transferring the
input image from the input FIFO to an internal data buffer of RAM blocks configured as
simple dual-port (one read and one write ports) memories, where the image gets finally
distributed according to the proper kernel size. The reason behind this is that, from that
moment on, the computer will work with the specific word length related to the kernel J
size, independently of the data size used in the FIFO interface, aimed at reaching one
convolved pixel per clock cycle or even more if more than one 2D convolution are
instantiated and processed in parallel in the PRR. In this way, the image will be
computed one row of one or more kernels at a clock, in accordance with the pipeline.
This processing stage is basically composed of several RAM blocks and some MUXes
connected to their outputs. With the MUXes it is reached the effect of a circular array of
data to handle the shift of columns Y of the whole image. The depth of the RAM blocks is
constrained to the maximum height X of the input image. Regarding the number of RAM
blocks instantiated, this design parameter directly depends on the dimension J of the
kernel, i.e., on the number of neighbor pixels considered in the Y direction, and the
number of 2D convolver aimed to run in parallel. This first layer is responsible for

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 168

shifting the whole image in direction Y with a particular observation: each pixels of the
image is transferred only once from its repository to the input FIFO of the 2D convolver.
This point shall be noted here because of the need to not stress unnecessarily the
bandwidth required in the data transfer from the repository to the input FIFO, given that
the repository is usually a shared resource accessible by the core processor and other
master controllers in the system, like the 2D convolver. Once a pixel reaches the FIFO
and is transferred to the internal RAM cache, it keeps there until it is not required any
more, since that pixel takes part in the convolution of the pixel itself and their neighbors
limited by the kernel dimensions.
� The second layer of the pipelined 2D convolver is one or more two-dimensional grids J x
I of shift registers organized in columns and with a depth of I registers, delimited by the X
coordinate of the kernel in use. As soon as the first (J-1) RAM blocks are filled in with
their X pixels and the Jth RAM block receives its first pixel, the start signal is given to the
shift registers to start the image shifting row by row in X direction. Once started, this
shifting continues for each clock, evolving all the registers together, until the whole
image is transferred. The goal of this second layer, concatenated to the previous one in
pipeline, consists in shifting the image in the X direction. The composition of these two
first stages gives as result the displacement of the image in both Y and X directions,
where the control logic for loading the pipe is linear and simple, as shown in Figure 9.4.
� The third layer takes charge of the product operation. Normally, in modern FPGAs, this
operation is performed via hard-wired multipliers located in DSP blocks. Another
alternative would be to implement multipliers by consuming logic resources of the FPGA.
It is convenient to remark here the possibility of adding in this layer a stage of pre-adders
if the kernel has some constant coefficients repeated, e.g. in isotropic filters. This layer of
pre-adders lets reduce the effective 2D-convolution, minimizing not only the amount of
operations but also the number of parallel hardware multipliers and adders required, as
shown later in this work in a concrete implementation example.
� The last stage is the adder tree where all the partial products are summed. Depending
on the kernel dimensions, this stage can require some chains of registers following
pipeline and retiming rules. The result of this stage is finally transferred to the output
FIFO. Both third and fourth stages can also be implemented together via a vector
multiplier approach [Atmel Corp., AN0764, 1999].

Figure 9.4 Parallelism and 4-stage pipeline of the 2D convolver placed in the PRR

These four reconfigurable stages of the 2D convolver are placed in the PRR integrated
with the rest of system which resides in the static region as highlighted in the block
diagram of Figure 9.2. These four generic blocks are connected in pipeline, although
depending on the structure of the 2D convolver in some configurations it is not possible
to deliver an output in each one clock but in some of them. The interface that connects
one stage with the next one consists of a reduced set of data and control lines, typically
composed of the inputs {dataInput, enableInput, dataValidInput and enableOutput} and the
outputs {dataOutput and dataValidOutput}. Figure 9.4 shows the four stages scheduled in
time and their connections with the FIFO memories placed in the static region.

FIFO

Y pipe load

X pipe load

Y

X

∏

∑

CLK

n p yx
pixels/clk

n p’yx
pixels/clk FIFO

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 169

9.4 Experimental results

Several 2D convolution examples have been carried out in this section. Thus, the
performance evaluation of this proof-of-concept has been compared with other
alternatives by means of a set of experiments. Our 2D convolution processing system,
implemented in a Xilinx Virtex-4 XC4VLX25 FPGA, exploits both hardware/software co-
design and run-time reconfigurable computing techniques in search of a cost-effective
solution able to be integrated in whatever low cost, high performance embedded
application. Next, it is described the main PR features of the Virtex-4 device.

9.4.1 Virtex-4 FPGA

This section shows a brief overview of the Virtex-4 FPGA from a pure PR perspective,
highlighting those features which have a notorious impact on the dynamic partial self-
reconfiguration concept exploited in this work:
� Virtex-4 devices have glitchless reconfiguration. This feature enables static routes to
cross PR regions, fact that simplifies the routing constraints for building a PR design and
permits to optimize the system placement and routing. Thus, although in the PRR all the
combinational (LUTs) and sequential (flip flops) resources of the configurable logic blocks
(CLBs) are automatically reserved to the PR modules, the routing resources are enabled
to be used by the static region, which must stay invariant in all the reconfigured PRMs.
In this way, they will not be affected by the run-time reconfiguration; that is, as long as
the static routes are implemented identically in every PRM, no glitches will occur on
them when overwriting these bits with the same values they already have. Therefore,
these static routes in the PRR are not affected when PRMs are reconfigured.
� Regarding reconfiguration grain, Virtex-4 admits a PR granularity of a bit-wise frame of
16 CLBs tall, where a configuration frame consists of forty-one 32-bit words. In this way,
it is feasible to dynamically reconfigure 2D regions as small as 16 CLBs rows high and 1-
bit wide.
� Virtex-4 devices are equipped with an internal interface called ICAP (Internal
Configuration Access Port) which enables the device itself to carry out the reconfiguration
of some region of the device –just the one not affecting the ICAP circuitry– through a
specific reconfiguration controller synthesized with own resources of the device, and at
run-time, while the rest of the device continues the operation undisturbed. Furthermore,
the ICAP interface of Virtex-4 devices delivers a greater bandwidth in comparison to
former FPGA families. This aspect is especially relevant for run-time PR applications. The
internal reconfiguration port admits 32-bit data bus to transfer the partial bitstreams at
a maximum frequency of 100MHz.
Both features, finer reconfiguration granularity and higher reconfiguration bandwidth
lets minimize the impact in time of the reconfiguration latency on any time-critical
compute-intensive application. Although Virtex-4, -5 and -6 FPGA families deliver the
same maximum reconfiguration rate, Virtex-4 was the first and only family which fully
supported a mature PR design flow at the moment of developing this work, especially
regarding toolset availability. The tools for the other two families, Virtex-5 and Virtex-6,
although also incorporated to the PR design flow, were still in development in the
moment this work was carried out. Just for this reason, this work focused on Virtex-4 to
implement a reconfigurable 2D convolution computer.

9.4.2 Performance evaluation

Virtex-4 is probably the first device equipped with a level of PR performance –both
technological aspects and supported development tools– acceptable for industrial and
commercial perspectives. The design flow followed is based on modular design: it allows
designs to be split into modules that are coded, synthesized, mapped, placed and routed
independently. The toolset used in this work, available in the Xilinx Early Access Partial

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 170

Reconfiguration lounge, is composed of EDK 9.2.02i to build the PLBv46 bus processor
system based on the MicroBlaze processor, PlanAhead 9.2.7 to constraint the floorplan in
a friendly graphical way, ISE 9.2.04i_PR12 to generate the full and partial bitstreams, as
well as ChipScope Pro 9.2i to facilitate the system debugging.
The 2D convolver implemented in the Xilinx Virtex-4 FPGA is split in a static region and
a PR region where different PR modules (PRMs) can be multiplexed in time. The PRR,
shown in the floorplan of Figure 9.7, comprises around the 52% of the area of the FPGA
and there it is placed the flexible part of the 2D convolver organized in pipeline stages,
where each stage is tailored by an IP hardware module. The spatial partitioning of the
XC4VLX25 FPGA –the second smallest chip of the Virtex-4 LX family– in both static and
reconfigurable regions is collected in Table 9.1. While the logic cells (flip-flops and LUTs)
of the PRR are used in a similar proportion in the implementation of the four stages of
the 2D convolver, the RAM blocks are mainly addressed to implement the Y shift stage
and the DSP blocks are practically consumed in the multipliers stage.

Table 9.1 FPGA spatial partitioning

Spatial Partitioning
FPGA

Resources
Virtex-4

XC4VLX25
Static Region PR Region

1-bit flip-flops 21504 10240 11264

4-input LUTs 21504 10240 11264

18-Kbit RAMB16 72 50 22

DSP48 block 48 4 44

The four IP blocks of the custom 2D convolver are merged giving rise to a configuration
bitstream. This partial bistream keeps stored in non-volatile memory while it is not
required and is updated into the FPGA on demand, by configuring the logic resources
allocated into the PRR to perform there the specific convolution. After its execution, it will
be replaced by a new 2D convolver which will take charge of the next computing task
scheduled by the application. To put this concept in practice, several image processing
tasks used in real image processing applications have been developed. Thus, an 8-bit
gray-scale image of 268x460 pixels is submitted to some consecutive processing stages.
First, edge detection is performed making use of 2D convolvers to process 5 x 5 Sobel
masks in both Y and X directions. Afterwards, a noise filtering stage is applied to the
image based on a 2D convolution with an isotropic kernel 13 x 13. Other processing
carried out is the image binarization, where the gray-scale image is convolved with a
kernel 7 x 7 to result in a white/black image. Finally, the binary image is smoothed
through a new two-dimensional filter 7 x 7. Regarding I/O interfaces of the 2D convolver,
the write port of the input FIFO and the read port of the output FIFO, controlled from the
static region by a MMU controller, operate at 100 MHz and are configured with a data
bus of 64-bits. The MMU is responsible for filling in and emptying both input and output
FIFOs via bursts transfers of up to 256 bytes. Concurrently, the counterparts read port
of the input FIFO and write port of the output FIFO, controlled from the PRR, are both
running at 50MHz and configured as 32-bit data ports. This data length lets pack 4 8-bit
gray-scale (or 32 1-bit binary) pixels in one word. In order to optimize this data
bandwidth, it is possible to synthesize up to 4 (or 32) 2D convolvers in the PRR to
process thus all the input pixels in parallel.
Table 9.2 collects the most relevant results of this work concerning time performance.
This self-reconfigurable 2D convolver has been contrasted with other software-based
implementations on different platforms like a 32-bit MicroBlaze processor operating at
100 MHz and a personal computer. Performance results speak by themselves; a small
FPGA powered by PR technology operating at 50/100 MHz is able to overcome a PC
platform based on a dual-core processor (Intel Core 2 Duo T5600) running at 1.83 GHz.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 171

Table 9.2 Processing time of the different tasks

Reconfigurable Hardware Approach Software Approaches
Image

Processing Reconfiguration
(100MHz)

Execution
(50MHz)

Total Time
(Virtex-4@50/100 MHz)

Embedded System
(MicroBlaze@100MHz)

HPC Platform
(IntelCore2Duo@1.83GHz)

Edge Detection 1045 us 672 us 1717 us 232046 us 2810 us

Noise Filtering 1045 us 2563 us 3608 us 512171 us 7030 us

Binarization 1107 us 2465 us 3572 us 774750 us 13440 us

Smoothing 1045 us 447 us 1492 us 287507 us 12500 us

Concerning area performance, Table 9.3 shows how many resources of the PRR are
required to build each one of the specific 2D convolution processors implemented
through the reconfigurable computing approach. As noted from Tables 9.1 and 9.3, the
four particular 2D convolvers implemented in this experiment would not fit in a Virtex-4
XC4VLX25 FPGA if implemented as a fully static hardware design. However, they do fit in
the mentioned FPGA when implemented in a reconfigurable way, multiplexed in time. If
the four types of 2D convolvers are not required at the same time by a specific image
processing application but they are mutually exclusive processing tasks then our run-
time reconfigurable solution lets carry out the entire system implementation in this small
device, so it is not necessary to choose a bigger, more expensive and power-hungry FPGA
as in a purely static hardware approach. In this sense, the PR implementation lets reach
a more cost-effective solution for such image processing embedded system.

Table 9.3 Use of FPGA hardware resources

Hardware Resources

Processing Breakdown
1-bit

flip-flops
4-input
LUTs

18-Kbit
RAMB16

DSP48
block

Static Region – Application Flow Control 7005 8888 41 4

PRM1 - Edge Detection 4978 4612 8 20

PRM2 - Noise Filtering 5275 5831 5 28

PRM3 - Binarization 5462 4166 17 29

PRM4 - Smoothing 4892 3265 8 0

Total Resources (Static + PR Regions) 27612 26762 79 81

Other relevant information extracted from this experiment is the size of the kernels and
the operands involved in each of these specific 2D convolution PRMs, as well as the size
of the partial bitstreams downloaded into the PRR, shown next in Table 9.4.

Table 9.4 Hardware implementation features

Image
Processing

J x I
Kernel
(pixels)

Kji
Word
(bits)

pji
Word
(bits)

Partial
Bitstream

(bytes)

Edge Detection 5x5 3 8 417792

Noise Filtering 13x13 18 8 417792

Binarization 7x7 16 8 442368

Smoothing 7x7 1 1 417792

All the convolution operations are performed in integer data, not in floating point. While
in hardware you can adjust the bit length of the operands for each specific mathematical

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 172

operation, the same computation in software can only adjust the size of the operands to
the standard integer types, restricted typically to 8-bit (char), 16-bit (short), 32-bit (long)
and 64-bit (long long) lengths. These operations are performed in software in more or less
efficiency depending on the word length of the processor and the optimization features of
the software compiler used.
As an example of the 2D convolver implementation, next it is described in detail one of
the specific 2D convolvers developed in this work, just the one used in the noise filtering
computation based on an isotropic filter. The filter is composed of a kernel 13x13 defined
by the following tap coefficients:

−−−−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−−−

=

162360117174199174117602361

640154406788116613281166788406154406

23154593155430014420502844203001155459315423

6040615542008165228905430289016522008155440660

117788300116527597252363661925236759716523001788117

1741166442028902523668372927466837225236289044201166174

19913285028543036619927469274636619543050281328199

174116644202890252366837225236289044201166174

1177883001165275972523616523001788117

604061554200816522890155440660

2315459315543001442015423

64015440678811666

162360117174

2

1
20, 124739

9274668372

36619252367597

5430289016522008

5028442030011554593

1328116678840615440

199174117602361

ijK

The 13x13 constants Kj,i of the filter can be reduced to only 28 tap Kq,p coefficients if all
the pixels located in relative positions with the same coefficient are pre-added first before
the stage of products. They are highlighted in bold in the matrix above. The graphical
view of the filter is illustrated in Figure 9.5.
The same convolution algorithm has been implemented following two different
approaches: a purely-SW implementation and a PR-HW/SW co-design. Code 9.1 below
shows the software implementation. The same algorithm implemented in hardware is
shown in Figure 9.6. The maximum X size of the image that can be processed with this
design depends on the depth of the DP-RAM used in the Y shift module. It was set to 512
words in this example. Regarding the maximum Y size of the image, there are no
restrictions here since the Y shifter work as an endless circular array. These processing
images are stored in a huge DDR-SDRAM repository so basically there are no restrictions
concerning number of images that can be processed.
As deduced from Figure 9.6, the flexibility of our approach can be reached by modifying
certain features of the hardware modules used. For instance, the 2D convolver
customized to the isotropic kernel 13 x 13 could be converted into a new 2D convolver of
kernel 9 x 9 by only removing one 32-bit DPRAM block and one MUX in the Y shift stage,
reducing the X shift matrices of shift registers from 13 x 13 to 9 x 9, changing the new K
coefficients by resizing and updating the Kq,p LUT and so on. These modifications are
performed by means of minor changes in the VHDL code of the four IP modules.
Both implementations have been executed in their respective platforms and both systems
reach the same logical results, that is, the same output image as result of convolving
certain input image with the isotropic filter detailed in Figure 9.5. However, the
processing time differs dramatically, as shown in Table 9.2.
It is important to highlight that in the PR hardware approach, the reconfiguration time of
each 2D convolver is a constant while the processing time is function of the size of the
image to be processed, i.e. the bigger the image, the longer the processing time.
Therefore, the reconfiguration overhead decreases as the image size (and its processing
time) increases.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 173

y0-
6

y0-
5

y0-
4

y0-
3

y0-
2

y0-
1

y0

y0+
1

y0+
2

y0+
3

y0+
4

y0+
5

y0+
6 x0-6

x0-5
x0-4

x0-3

x0-2
x0-1

x0
x0+1

x0+2
x0+3

x0+4
x0+5

x0+6-0,02

0

0,02

0,04

0,06

0,08

0,1

0,12

Figure 9.5 Isotropic filter Kj,i of kernel 13x13 with 28 common taps coefficients

const long Kqp[]= { -1, -6, -23, -60, -117, -174, -199,
 -40, -154, -406, -788, -1166, -1328,
 -593, -1554, -3001, -4420, -5028,
 -2008, -1652, 2890, 5430,
 7597, 25236, 36619,
 68372, 92746,
 124739}; /* 28 tap coefficients of isotropic kernel 13x13 */

void NoiseFiltering(unsigned char *bmp) {

 /* X ^
 | bmp: input image of size Y*X organized in an 1D-array
 | of 8-bit pixels packed in 32-bit words in 2D-format as
 | bits{31:00) -> P(j,i)=b[31:24], P(j,i+1)=b[23:16] P(j,i+2)=b[15:08], P(j,i+3)= b[07:00]
 +------> Y */

 for (y=YSTT; y<YEND; y+=4) {
 for (x=XSTT; x<=XEND; x++) {
 for (z=0; z<4; z++) {

 pi=&(bmp[((y+z)*X)+x]); /* input pixel */

 /* preadders */
 p000C=pi[-6X-6]+pi[-6X+6];p010B=pi[-6X-5]+pi[-6X+5];p020A=pi[-6X-4]+pi[-6X+4];p0309=pi[-6X-3]+pi[-6X+3];p0408=pi[-6X-2]+pi[-6X+2];p0507=pi[-6X-1]+pi[-6X+1];
 p101C=pi[-5X-6]+pi[-5X+6];p111B=pi[-5X-5]+pi[-5X+5];p121A=pi[-5X-4]+pi[-5X+4];p1319=pi[-5X-3]+pi[-5X+3];p1418=pi[-5X-2]+pi[-5X+2];p1517=pi[-5X-1]+pi[-5X+1];
 p202C=pi[-4X-6]+pi[-4X+6];p212B=pi[-4X-5]+pi[-4X+5];p222A=pi[-4X-4]+pi[-4X+4];p2329=pi[-4X-3]+pi[-4X+3];p2428=pi[-4X-2]+pi[-4X+2];p2527=pi[-4X-1]+pi[-4X+1];
 p303C=pi[-3X-6]+pi[-3X+6];p313B=pi[-3X-5]+pi[-3X+5];p323A=pi[-3X-4]+pi[-3X+4];p3339=pi[-3X-3]+pi[-3X+3];p3438=pi[-3X-2]+pi[-3X+2];p3537=pi[-3X-1]+pi[-3X+1];
 p404C=pi[-2X-6]+pi[-2X+6];p414B=pi[-2X-5]+pi[-2X+5];p424A=pi[-2X-4]+pi[-2X+4];p4349=pi[-2X-3]+pi[-2X+3];p4448=pi[-2X-2]+pi[-2X+2];p4547=pi[-2X-1]+pi[-2X+1];
 p505C=pi[-1X-6]+pi[-1X+6];p515B=pi[-1X-5]+pi[-1X+5];p525A=pi[-1X-4]+pi[-1X+4];p5359=pi[-1X-3]+pi[-1X+3];p5458=pi[-1X-2]+pi[-1X+2];p5557=pi[-1X-1]+pi[-1X+1];
 p606C=pi[0X-6]+pi[0X+6];p616B=pi[0X-5]+pi[0X+5];p626A=pi[0X-4]+pi[0X+4];p6369=pi[0X-3]+pi[0X+3];p6468=pi[0X-2]+pi[0X+2];p6567=pi[0X-1]+pi[0X+1];
 p707C=pi[1X-6]+pi[1X+6];p717B=pi[1X-5]+pi[1X+5];p727A=pi[1X-4]+pi[1X+4];p7379=pi[1X-3]+pi[1X+3];p7478=pi[1X-2]+pi[1X+2];p7577=pi[1X-1]+pi[1X+1];
 p808C=pi[2X-6]+pi[2X+6];p818B=pi[2X-5]+pi[2X+5];p828A=pi[2X-4]+pi[2X+4];p8389=pi[2X-3]+pi[2X+3];p8488=pi[2X-2]+pi[2X+2];p8587=pi[2X-1]+pi[2X+1];
 p909C=pi[3X-6]+pi[3X+6];p919B=pi[3X-5]+pi[3X+5];p929A=pi[3X-4]+pi[3X+4];p9399=pi[3X-3]+pi[3X+3];p9498=pi[3X-2]+pi[3X+2];p9597=pi[3X-1]+pi[3X+1];
 pA0AC=pi[4X-6]+pi[4X+6];pA1AB=pi[4X-5]+pi[4X+5];pA2AA=pi[4X-4]+pi[4X+4];pA3A9=pi[4X-3]+pi[4X+3];pA4A8=pi[4X-2]+pi[4X+2];pA5A7=pi[4X-1]+pi[4X+1];
 pB0BC=pi[5X-6]+pi[5X+6];pB1BB=pi[5X-5]+pi[5X+5];pB2BA=pi[5X-4]+pi[5X+4];pB3B9=pi[5X-3]+pi[5X+3];pB4B8=pi[5X-2]+pi[5X+2];pB5B7=pi[5X-1]+pi[5X+1];
 pC0CC=pi[6X-6]+pi[6X+6];pC1CB=pi[6X-5]+pi[6X+5];pC2CA=pi[6X-4]+pi[6X+4];pC3C9=pi[6X-3]+pi[6X+3];pC4C8=pi[6X-2]+pi[6X+2];pC5C7=pi[6X-1]+pi[6X+1];

 p00C0=p000C+pC0CC; p01C1=p010B+pC1CB; p02C2=p020A+pC2CA; p03C3=p0309+pC3C9; p04C4=p0408+pC4C8; p05C5=p0507+pC5C7; p06C6=pi[-6X]+pi[6X];
 p10B0=p101C+pB0BC; p11B1=p111B+pB1BB; p12B2=p121A+pB2BA; p13B3=p1319+pB3B9; p14B4=p1418+pB4B8; p15B5=p1517+pB5B7; p16B6=pi[-5X]+pi[5X];
 p20A0=p202C+pA0AC; p21A1=p212B+pA1AB; p22A2=p222A+pA2AA; p23A3=p2329+pA3A9; p24A4=p2428+pA4A8; p25A5=p2527+pA5A7; p26A6=pi[-4X]+pi[4X];
 p3090=p303C+p909C; p3191=p313B+p919B; p3292=p323A+p929A; p3393=p3339+p9399; p3494=p3438+p9498; p3595=p3537+p9597; p3696=pi[-3X]+pi[3X];
 p4080=p404C+p808C; p4181=p414B+p818B; p4282=p424A+p828A; p4383=p4349+p8389; p4484=p4448+p8488; p4585=p4547+p8587; p4686=pi[-2X]+pi[2X];
 p5070=p505C+p707C; p5171=p515B+p717B; p5272=p525A+p727A; p5373=p5359+p7379; p5474=p5458+p7478; p5575=p5557+p7577; p5676=pi[-1X]+pi[1X];

 p00=p00C0; p01=p01C1+p10B0; p02=p02C2+p20A0; p03=p03C3+p3090; p04=p04C4+p4080; p05=p05C5+p5070; p06=p06C6+p606C;
 p11=p11B1; p12=p12B2+p21A1; p13=p13B3+p3191; p14=p14B4+p4181; p15=p15B5+p5171; p16=p16B6+p616B;
 p22=p22A2; p23=p23A3+p3292; p24=p24A4+p4282; p25=p25A5+p5272; p26=p26A6+p626A;
 p33=p3393; p34=p3494+p4383; p35=p3595+p5373; p36=p3696+p6369;
 p44=p4484; p45=p4585+p5474; p46=p4686+p6468;
 p55=p5575; p56=p5676+p6567;
 p66=pi[0];

 /* 28-tap convolution */
 po[((y+z)*X)+x] = (((p00*Kqp[0])+(p01*Kqp[1])+(p02*Kqp[2])+(p03*Kqp[3])+(p04*Kqp[4])+(p05*Kqp[5])+(p06*Kqp[6])
 +(p11*Kqp[7])+(p12*Kqp[8])+(p13*Kqp[9])+(p14*Kqp[10])+(p15*Kqp[11])+(p16*Kqp[12])
 +(p22*Kqp[13])+(p23*Kqp[14])+(p24*Kqp[15])+(p25*Kqp[16])+(p26*Kqp[17])
 +(p33*Kqp[18])+(p34*Kqp[19])+(p35*Kqp[20])+(p36*Kqp[21])
 +(p44*Kqp[22])+(p45*Kqp[23])+(p46*Kqp[24])
 +(p55*Kqp[25])+(p56*Kqp[26])
 +(p66*Kqp[27]))>>20); /* output pixel */ }}}}

Code 9.1 Pseudo code of a 13x13 isotropic filter 2D convolution implemented in SW

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 174

Figure 9.6 Example of image 2D convolution based on an isotropic filter of kernel 13x13

with processing of 4 pixels in parallel into the PRR

Configuration Memory
(Reconfigurable Region)

DPRAM

SEL[1:0]

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

Pj+3,i

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

Pj+2,i

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

Pj+1,i

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

Pj,i

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

DPRAM DPRAM DPRAM

32 32 32 32

0 1 2 3

MUX

0 1 2 3

MUX

0 1 2 3

MUX

0 1 2 3

MUX

32 32 32 32

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

32

CTRL FSM

PREADD

MUX

16 8-bit pixels

4 kernels 13x13 8-bit

LUT
Kq,p

PREADD

MUL

ADD

8 8

FIFO

32

REG REG

BM BM BM

BM

.

.

Y SHIFT

PREADD

PREADD

28 operands Oq,p

28 constants

28 operands Oq+1,p

28 operands Oq+3,p

28 operands Oq+2,p

28 products

4 p’yx (convolved 8-bit pixels)

4 p yx (8-bit pixels)

X SHIFT

PRODUCT

ADDITION

kernel Pj,i
kernel Pj+1,i kernel Pj+2,i

kernel Pj+3,i

D Q
8

D Q
8

D Q D Q

28 operands

FIFO

SELK[1:0]

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 175

Regarding the PR approach, the spatial partitioning of the FPGA resources into a PR
region and a static region and the resultant partial bitstreams of the four 2D convolvers
is depicted in Figure 9.7. The PRR shapes a rectangle in the left down side of the FPGA
layout whereas the rest of resources constitute the static region.

Figure 9.7 Partial bitstreams of image processors based on different 2D convolution

features. FPGA floorplanning and partitioning into static and PR regions

The full design that is operative at one time is constituted by the merging of the static
base design placed in the static region and the specific 2D convolution coprocessor
instantiated in the PRR. Thus, at one instant, the instantiated circuitry operative in the
FPGA corresponds to the fusion of the two functional partitions through the partial
bitstreams related to the base design and the PR module, as illustrated in Figure 9.8.

= +

Figure 9.8 Composition of the full bitstream (right) placed in the FPGA at a given time split

in the static region (left) and the 2D convolver located in the PRR (centre)

9.5 Summary

Nowadays, two-dimensional convolution is a basic primitive demanded in many digital
signal processing applications. This work focuses on the design of a flexible 2D convolver
aimed at delivering a universal solution able to self-adapt its features at run-time and be

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 176

used thus by different processing stages in a same application. After reviewing the start-
of-the-art regarding the design of 2D convolvers, it is noted that the level of flexibility
conceded today to these processors is extremely poor. The proposed approach aims to fill
up this gap through run-time partial reconfiguration technology. With that goal in mind,
an adaptive FPGA-based 2D convolver has been presented, composed of different
pipelined HW functional units, and placed in a PRR of the FPGA giving rise to a linear
implementation. By reconfiguring the logic resources of the PRR at run-time, the 2D
convolver is customized to a particular digital signal processing, on the fly, residing in
hardware only the specific circuitry required at that moment. A set of HDL libraries has
been developed which enables the application designer to tailor off-line the different 2D
convolvers needed in a particular application. This collection of 2D convolvers is then
stored in the application repository in the way of partial bitstreams, as illustrated in
Figure 9.8, which can be downloaded into the PRR at any moment during the execution.
This approach delivers a high level of versatility to the application while implementing it
as a cost-effective embedded solution. The system is composed of a small FPGA which
deploys the convolution operation and a large external memory for storing both
bitstreams and images.
Run-time partial reconfiguration technology definitively offers a competitive advantage in
the design of adaptive image processors. As far as the author knows, after comparing
this approach with the state-of-the-art 2D convolution processors reported until today in
the scientific literature, this work exploits the highest level of adaptability ever reached in
2D convolver designs at low cost. This fact proves that run-time partial reconfiguration
technology can definitely give a competitive advantage in the design of adaptive image
processors.

References

[Atmel Corp., AN0764, 1999]
Atmel Corp., 3x3 convolver with run-time reconfigurable vector multiplier in Atmel AT6000 FPGAs,
Application Note 0764, 1999.

[Bosi et al., VLSI 1999]
B. Bosi, G. Bois, Y. Savaria, Reconfigurable pipelined 2-D convolvers for fast digital signal processing,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 3, pp. 299-308, 1999.

[Jamro and Wiatr, FPL 2002]
E. Jamro, K. Wiatr, Dynamic constant coefficient convolvers implemented in FPGAs, Proc. of the Int. Conf.
on Field Programmable Logic and Applications, LNCS, vol. 2438, pp. 1110-1113, Springer, 2002.

[Perri and Corsonello, CDS 2003]
S. Perri, P. Corsonello, VLSI implementations of efficient isotropic flexible 2D convolvers, IET Circuits,
Devices and Systems, vol. 1, no. 4, pp. 263-269, 2007.

[Perri et al., MAPLD 2003]
S. Perri, M. Lanuzza, P. Corsonello, G. Cocorullo, SIMD 2-D convolver for fast FPGA-based image and
video processors, Proc. of the Military and Aerospace Programmable Logic Devices Conf., pp. 1-4, 2003.

[Perri et al., MICPRO 2005]
S. Perri, M. Lanuzza, P. Corsonello, G. Cocorullo, A high-performance fully reconfigurable FPGA-based 2D
convolution processor, Microprocessors and Microsystems, pp. 381-391, 2005.

[Sriram and Kearney, PDCAT 2007]
V. Sriram, D. Kearney, A FPGA implementation of variable kernel convolution, Proc. of the Int. Conf. on
Parallel and Distributed Computing, Applications and Technologies, pp. 105-109, 2007.

[Strollo et al., ICECS 2001]
A.G.M. Strollo, E. Napoli, D. De Caro, G.P. Saggese, A reconfigurable 2D convolver for real-time SAR
imaging, Proc. of the IEEE Int. Conference on Electronics, Circuits and Systems, pp. 741-744, 2001.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 177

Chapter 10

Trigonometric CORDIC computer

Trigonometrics is present in many signal processing fields. An implementation
alternative of the trigonometric computing is the CORDIC (COordinate Rotation DIgital
Computer) algorithm. Essentially, by rotating a two-dimensional vector in linear, circular
and hyperbolic coordinate systems, CORDIC lets perform products/divisions,
trigonometric and hyperbolic functions, respectively. The rotation is carried out through
a sequence of iterations; one micro rotation of a prefixed elementary angle is performed
for each iteration by means of addition-shift operations, being the rotated vector scaled
by a constant factor that is then compensated. CORDIC is attractive for the computing of
elementary functions due to its simplicity and accuracy. However, the main benefit of the
CORDIC algorithm is its easy implementation in hardware, consisting basically of three
adders-substractors, two shift registers and one LUT of precomputed elementary angles.
Besides, this iterative algorithm can be synthesized unrolled by inserting registers in
each adder-substractor stage, enabling thus a pipelined computation.
This chapter deals with the implementation of a trigonometric CORDIC computer making
use of run-time reconfigurable hardware. Two approaches are presented: one exploiting
the fine-grain reconfiguration of the different CORDIC elementary functions and the
other exploiting the coarse-grain reconfiguration of the full computing unit. The first
option permits to implement different mathematical functions over the same
computational hardware skeleton, achieving a versatile computer thanks to small
functional changes performed with run-time reconfiguration. The other approach
describes the implementation of a trigonometric CORDIC coprocessor which is swapped
in and out of a partially reconfigurable region of the computing system where different
coprocessors are multiplexed in time during the execution of an application.

10.1 Introduction

Nowadays, the trigonometric computing is exploited in many engineering fields. As
example, global positioning and navigation systems responsible for calculating
trajectories in real-time (robots, satellites, radars, etc) make use of Trigonometrics. A
well-known technique for trigonometric calculus is the CORDIC algorithm, characterized
by its implementation simplicity, efficiency and elegance. Originally credited to Volder
[Volder, IRETEC 1959] and generalized later by Walther [Walther, SJCC 1971], the
CORDIC concept consists in rotating a 2D vector a desired angle φ along a circular, linear
or hyperbolic coordinate system decomposing it into a sum of predefined elementary
angles φi such that, iteratively in each step i, the rotated angle φi can be expressed as a
value that depends on the i-th power of 2, what finally is computed by simple binary
shifts and additions, and where the result is more and more accurate as the number of
iterations increases since the vector orientation is successively closer to its target or
convergence point.
The use of FPGAs emerged as a viable means of offsetting microprocessor performance
limitations in applications that require high-speed processing of large data, as CORDIC
computing. Standard DSP processors can be ill-suited to perform at the required rates
due to the serial nature of their architecture or to the lack of certain instructions set
extension. FPGAs have been successfully used to mitigate these problems by performing
them in hardware, bypassing the sequential stored-program techniques in favour of
parallel and dedicated logic functions. Moreover, the multi-purpose CORDIC algorithm
exhibits additional characteristics useful to implement by evolvable hardware because of
the high similarity among its different operation modes. Implementation examples of

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 178

CORDIC-based trigonometric functions can be found in scientific calculators like the
Hewlett-Packard HP-9100 and the HP-35 [Walther, VLSI 2000], in computing chips like
the Intel 80x87 coprocessor [Timmermann et al., JSSC 1991], or in navigation systems
like the B-58 aircraft [Volder, VLSI 2000]. Broadband communication systems based on
802.11 a/g and HiperLAN/2 WLAN are also an example where the CORDIC algorithm
can be reused up to three times along the application to make the receiver, based on
orthogonal frequency division multiplexing (OFDM), perform the computation of three
different tasks: first, an angle is calculated to estimate the frequency offset; second, the
received preamble and symbols are rotated by the estimated frequency offset; third, part
of the received preamble is inverted to estimate the channel [Angarita et al., FPL 2005].
Another field of interest is robotics. In [Vachhani et al., TIE 2009], it is presented an
FPGA-based CORDIC implementation for two common operations in robotics: rotating a
vector in a 2D plane, and aligning a vector in the plane with a specific axis.
The next section describes the theoretical foundations of the CORDIC algorithm
particularized to the rotation of a two-dimensional vector in a circular coordinate system,
giving rise to the computing of trigonometric elementary functions.

10.1.1 CORDIC algorithm applied to trigonometrics

Given a vector in a 2D coordinate system, the CORDIC method permits to compute
trigonometric functions such as sine-cosine of the angle φ described by the vector in the
coordinate system and its magnitude-phase components. The circular rotation φ that
moves the vector from (x0,y0) to (xn,yn) is defined by the equations matrix [Vladimirova and
Tiggeler, MAPLD 1999]:

θtan1

1
cos

y

x

1tan

tan1

tan1

1

y

x

cossin

sincos

y

x
2

0

0

2
0

0

n

n

+
=

⋅

 −
⋅

+
=

⋅

 −
=

 φ
φ

φ
φφφ

φφ
, . (10.1)

The CORDIC algorithm is inspired on performing this effective rotation φ as an iterative
process based on successive rotations through which the initial vector (x0,y0) is rotated by
predetermined step angles φi. This mechanism can operate in two different modes:
� In rotation mode, the initial components (x0,y0) of the vector and the effective rotation

angle z0=φ are given to compute the new coordinate components of the resultant
rotated vector. For this, in each rotation step i, fixed angles are subtracted or added
from/to the angle accumulator z so that this remainder angle approaches to zero.

� In vectoring mode, the coordinate components of the vector (x0,y0) are known and the
magnitude and phase of this original vector are computed by rotating the input vector
to the X axis at the same time as storing the accumulated angle of this trajectory.

Taking in mind that any angle φ can be decomposed into a set of n step angles φi in a
certain accuracy (10.2), the successive rotations of the algorithm are quantified such that
tanφi represents a series of powers of 2, that is, angle steps φi of value atan2-i that
arithmetically amount to successive binary shifts and additions left in a good place to be
efficiently implemented by hardware:

1n...,3,,21,0,i1},1,{s,2stanεs i
i

ii

1n

0i
ii −=+−∈⋅=+⋅= −

−

=
∑ φφφ , (10.2)

where si represents the sign or direction of each rotation i, and the error ε converges to
zero when n is big enough. Therefore, the rotation from i to i+1 results in:

2ii
i

i

i
i

i
i

i
i

i

i

i

i
2

1i

1i

21
k

y

x

12s

2s1
k

y

x

1tan

tan1

tan1

1

y

x
−−

−

+

+

+
=

⋅

⋅
⋅−

⋅=

⋅

 −
⋅

+
=

 1
,

φ
φ

φ
. (10.3)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 179

This rotation is illustrated next in Figure 10.1.

Figure 10.1 Circular CORDIC rotation of a vector in a 2D coordinate system

If the factors ki are removed from equation (10.3) and an auxiliary variable zi is
introduced to compute the accumulated angle, finally the called CORDIC micro-rotations
are obtained:

i
ii1i

i
iii1i

i
iii1i atan2szz2xsyy2ysxx −

+
−

+
−

+ ⋅−=⋅⋅+=⋅⋅−= ,, (10.4)

These three difference equations, restricted to angles comprised within the range –90º ≤ φ
≤ +90º due to convergence reasons, define the CORDIC algorithm for trigonometric
computing. The fact of not considering the removed ki factors in the final equations
makes a CORDIC micro-rotation be not a pure rotation but a rotation with an intrinsic
increase of the magnitude r of the resultant vector shown in Figure 10.1 that is
quantified by the term An. Thus, in a CORDIC rotation, after n iterations:
 (10.5)

n

1n

0i
in

1n

0i
i

2
n

0

0

1n

0i
ii

1n

0i
ii

1n

0i
ii

1n

0i
ii

n
n

n A1kKtan1A
y

x

scosssin

ssinscos
A

y

x
==+=

⋅

 ⋅

 ⋅

 ⋅−

 ⋅
⋅=

 ∏∏
∑∑

∑∑ −

=

−

=
−

=

−

=

−

=

−

= ,, φ
φφ

φφ
.

Although the distortion or scale factor An depends on the number of iterations n (micro
rotations), this term approaches to the constant 1.6467 as the number of iterations goes
to infinity. On the other hand, in a real rotation its value would be 1.
In rotation mode, the angle accumulator z is initiated with the target angle φ and the
decision concerning the direction of rotation taken at each iteration is made to reduce
the magnitude of the residual angle present in that angle accumulator. This criterion is
therefore based on the sign of the resultant angle after each step. The sign rules along
with the resultant outputs are as follows:

−=
≥+
<−

= 1n...1,0,i
0z1,

0z1,
s

i

i

i , (10.6)

() () ∞→→⋅+⋅⋅=⋅−⋅⋅= nwhen0zsinzxcoszyAysinzycoszxAx n0000nn0000nn ,, .

Y

xixi+1

yi

yi+1

αi

r i+1=Air i

2
i

2
ii yxr +=

X

Y

xixi+1

yi

yi+1

αi

r i+1=Air i

2
i

2
ii yxr +=

X

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 180

The elementary functions sine and cosine can be computed from equation (10.6): if the
initial vector is of magnitude 1/An and is aligned with the abscissa, that is, x0=1/An, y0=0
and the angle accumulator is initialized to z0=φ, then the results obtained in xn and yn
equals to cosφ (x path) and sinφ (y path). The initial magnitude 1/An is needed to
compensate the scaling factor An originated in the CORDIC rotations. Thus, in the
particular case of x0=1/An, y0=0, z0=φ, the equation (10.6) can be rewritten as:

∞→→== nwhen0zsinycosx nnn ,, φφ (10.7)

In vectoring mode, the input vector (x0,y0) is rotated until the resultant vector gets aligned
to the X axis. For this, the term y of the vector is step-by-step minimized until converging
to zero. If the angle accumulator is started with zero (z0=0), at the end of the rotation
loops it will contain the effective rotated angle φ=atan(y0/x0). Apart from the angle, another
simultaneous result obtained is the magnitude of the original vector scaled by the gain
An, which is stored into the component x. Thus, the vectoring mode provides the
magnitude and the phase of the original vector involved in the cartesian to polar
coordinates conversion. In this iterative mechanism, the sign of the residual component y
determines the direction of the following rotation step in accordance with the rule:

−=
≥−
<+

= 1n...1,0,i
0y1,

0y1,
s

i

i

i , (10.8)

() ∞→→+=+⋅= nwhen0yxyatanzzyxAx n000n
2
0

2
0nn ,, .

The scaling factor An can be corrected if the initial vector is multiplied by Kn, resulting the
initial coordinates x0=x/An, y0=y/An. Hence, in the case of x0=x/An, y0=y/An, z0=0, the term An
originated in the CORDIC rotations is compensated and the equation (10.8) is now:

() ∞→→=+= nwhen0yxyatanzyxx nn
22

n ,, (10.9)

As deduced from equations (10.7) and (10.9), depending on the sign criteria used in the
rotation and vectoring modes described in equations (10.6) and (10.8), it is possible to
compute the trigonometric functions sine, cosine, arctangent and square root. This
functional versatility can be implemented by means of run-time partial reconfiguration,
as proposed in this chapter. To the best of the author’s knowledge, this is a pioneer
initiative, not found in the literature before, to reach an efficient and cost-effective
implementation of such trigonometric functions in a versatile CORDIC computing unit.

10.2 Related work

The CORDIC algorithm has been broadly exploited in real-life applications from its birth
around 50 years ago [Meher et al., TCAS-I 2009]. A proof of its use is the fact that FPGA
development tools integrate CORDIC core generators as customizable IPs. The Xilinx
LogiCORE IP CORDIC core lets generate automatically IPs that perform computations
like sin, cos, sinh, cosh, atan, atanh or sqrt optimized to be mapped on the Xilinx FPGA
families. Through an application wizard, the user configures the features of the IP and
the VHDL code is generated automatically [Xilinx Inc., DS249 2009].
An application field that has attracted a considerable research interest in the last years
is software defined radio. A SDR system, for instance, requires the generation of sine and
cosine waves for modulation and demodulation of digital signals. Although there are
several ways of generating digital sine and cosine waves, e.g. through precomputed LUTs,
the CORDIC approach is an excellent alternative in terms of minimization of hardware
resources. In [Garcia et al., ICEEE 2006], it is presented the design of a CORDIC sine

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 181

and cosine wave generator. It is proposed a pipelined implementation of the CORDIC
algorithm working in rotation mode to provide an output sample at every clock cycle. The
full design is targeted into a Spartan-3 XC3S200-5FT256 device and it is synthesized in
two ways: speed optimization and area optimization. In speed optimization, the
maximum frequency of operation is estimated in 154.69 MHz and the resources used are
1104 slices, 615 flip-flops, 1748 4-input LUTs and 43 IOBs. In area optimization, the
maximum frequency remains at 124.67 MHz and the resources involved are 1075 slices,
570 flip-flops, 1737 4-input LUTs and 43 IOBs.
Vachhani et al. propose two CORDIC algorithms with an angular resolution of 1º
[Vachhani et al., TCAS-II 2009]. The two architectures are mapped on a Xilinx Spartan
XC2S200E FPGA device. The first one eliminates the use of ROM and requires 3 adders-
substractors. It occupies 186 slices decomposed in 350 LUTs and 97 flip-flops/latches.
The second one eliminates the use of barrel shifters and requires 2 adders-substractors
and a ROM. It is composed of 203 slices with a total of 378 LUTs and 73 flip-
flops/latches. Both algorithms require 10 iterations in the worst case to converge within
1º, although they take 7 or fewer iterations for about the 80% of the angles. The
operation frequency is 54.35 MHz for the first algorithm and 60.80 MHz for the second.
In [Adiono and Saut, ICEEI 2009], it is presented a pipelined datapath architecture of a
14-iteration CORDIC computer on an Altera Cyclone-II EP2C35F672C6N FPGA device. It
operates with 16-bit fixed point data reaching an error of 0.058533 and 0.060059 for the
X and Y components, while no error is obtained in the angle. Synthesis results show that
the design fits in the 9% of the total logic elements of the FPGA and runs at 81.31 MHz.
The implementation approaches seen up to now are based on conventional radix-2
CORDIC architectures. The development of high-radix CORDIC algorithm arises as a
valid alternative intended for reducing the number of iterations, i.e., CORDIC calculation
latency, with a reasonable increment of hardware complexity in high-speed applications.
With the increment of radix, the number of iterations for a given precision is reduced,
resulting in a potentially faster execution. In [Bhattacharyya et al., MICPRO 2010], it is
proposed a radix-4 CORDIC processor implemented in a Xilinx XCV1000-6BG560 FPGA.
The latency of the architecture is n/2 clock cycles and the throughput rate is one valid
result per n/2 clocks for n bit precision. Thus, a 16-bit radix-4 CORDIC is implemented
with the corresponding latency of eight clock cycles. It occupies 797 slices, 1554 LUTs,
85 flip-flops and 118 IOBs and operates at 56.96 MHz.
All the related works introduced above are implemented in FPGA devices giving rise to a
static hardware design. To the best of the author’s knowledge, the CORDIC
implementation proposed in this chapter is the first one in the scientific literature that
exploits the run-time reconfigurable features of modern FPGA devices. After this
approach, other works conducted by the research community have appeared that
implement a CORDIC processor able to be reconfigured on the fly, some of them inspired
in part by the work presented in this chapter. Thus, Wang et al. present a CORDIC core
mapped on a dynamically reconfigurable FPGA device oriented to a multiple input
multiple output (MIMO) square root decoder for wireless applications [Wang et al., IPDPS
2007], [Wang et al., ICC 2008]. Similarly, Jianwen and Chuen propose a partially
reconfigurable FPGA platform for computing the matrix inversion operation based on a
run-time reconfigurable CORDIC computer [Jianwen and Ching, ISIC 2007].
The next section describes two implementation approaches of a trigonometric CORDIC
computer implemented in two comercial run-time self-reconfigurable FPGA platforms.

10.3 Run-time reconfigurable hardware implementation

Despite the habitual trend of implementing signal processing algorithms through DSPs
or GPPs, the CORDIC algorithm is optimized through dedicated hardware owing to its
potential customizable parallelism and other reasons listed next [Andraka, FPGA 1998]:
� The algorithm presents an iterative mechanism easily synthesizable in an FPGA. Many

of the involved elementary functions such as trigonometric, exponential and

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 182

logarithmic operations, on the contrary, cannot be efficiently evaluated with multiply-
accumulate (MAC) units present in DSP processors. Consequently, whenever
algorithms incorporate these functions, it is not unusual to observe significant
performance degradation.

� The accuracy of the result depends basically on the number of iterations done by the
algorithm and the data size of the operands involved in the computations. This
characteristic demands to increase the word width to the necessary length in
accordance with the desirable precision, and this fact, unlike the microprocessor
architecture, can be customized in an ASIC or FPGA. In an MCU, computations
involving operands or data length longer than the MCU word penalize dramatically the
system performance achievable in software.

Additionally, a relevant characteristic is noticed from the theoretical study shown above:
the difference between the sine/cosine and the arctangent/magnitude functions is found
only in the sign criterion, given that the three CORDIC equations (10.4) remain invariable
in both rotation and vectoring modes. This fact inspires the author to perform a CORDIC
implementation under a SoC/FPGA device based on partial reconfiguration: the
computing unit is partitioned in a static circuitry or hardware skeleton that remains
unchanged and a dynamically reconfigurable block that can evolve at run-time
depending on the mathematic function to compute. Another idea exploited in this
chapter consists in synthesizing specific trigonometric computers that are downloaded
into a PR region of the FPGA when required and are switched with other computers or
coprocessors executed multiplexed in time in the PRR while the application progresses.
These concepts are explored in detail in the next sections.

10.3.1 Hardware/Software co-design and run-time reconfiguration

This chapter evaluates the implementation of a radix-2 CORDIC-based trigonometric
computer on different platforms attending to the reconfiguration granularity of the FPGA
device in use. Two implementation approaches are presented:
� On the one hand, it is proposed the implementation of a general-purpose trigonometric

computer that allows synthesizing different trigonometric functions under a fixed
architectural skeleton provided with some reconfigurable modules which via dynamic
reconfiguration can switch among different trigonometric functions. This fine-grain
reconfiguration solution is conducted in an Atmel AT94K FPSLIC and permits to
perfom operations like sin(φ), cos(φ), atan(y,x) and sqrt(x2+y2).

� On the other hand, a second approach is proposed aimed at integrating a specific
trigonometric computer responsible for the atan(y,x) function implemented in a Xilinx
Virtex-4 FPGA in accordance with the general-purpose system architecture proposed
in chapter 4. This second alternative, unlike the fine-grain approach in FPSLIC,
corresponds to a coarse-grain reconfiguration alternative where the trigonometric
computer is instantiated in a PRR when required. Once such computation is finished,
the application can decide to replace the current trigonometric computer by another
specific coprocessor in the PRR. In this option, the reconfiguration of the CORDIC
processor is conducted as a whole.

These two CORDIC implementation approaches are detailed in sections 10.4 and 10.5.

10.4 Unified fine-grain reconfigurable implementation

The chosen platform is the Atmel AT94K40 especially due to its single-chip architecture
composed of an 8-bit AVR MCU and an AT40K40 FPGA and its fine configuration
granularity, supporting full and partial dynamic reconfiguration. The entire device or
selected portions can be reconfigured at run-time by the MCU or the FPGA itself through
the internal configuration controller. In this way, MCU and FPGA work seamlessly in
computing elementary functions of the trigonometric CORDIC algorithm such as sin(z0),
cos(z0), atan(y0/x0) and magn(y0,x0). The API or function prototypes are described next.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 183

 long sin(char);
 long cos(char);
 long atan(char, char);
 long magn(char, char);

Code 10.1 Prototypes of the trigonometric functions

These functions are instantiated by the MCU and processed by hardware in the FPGA to
speed up the computation. The MCU reconfigures the FPGA to synthesize the required IP
core depending on the function called by the software code. The FPGA execution is
performed when demanded by a user program: when the application invokes a function
that is supported in hardware, this results in starting an automatic mechanism that
handles the MCU-FPGA data transfer and FPGA partial reconfiguration to download the
specific hardware computer into the FPGA and perform the trigonometric operation. For
this, the software is organized in a model of two layers: a high-level or application layer
and a low-level or hardware abstraction layer. While the application layer relates to the
high level functionality and can be exported to other hardware platforms keeping a full
compatibility, the hardware abstraction layer takes charge of carrying out the platform
customization. Thus, the platform-dependant routines shown in Code 10.1 make both
data transfer and partial reconfiguration tasks transparent to the high-level programmer,
who does not care about their implementation but only needs to call their APIs.

AT94K40 SYSTEM-ON-CHIP

AT40K40 FPGAAVR MCU

AT17LV002
SERIAL

EEPROM
(bitstream)

CORDIC
CORE

INPUT
INTERFACE

OUTPUT
INTERFACE

FLEXIBLE
HARDWARE

CONFIGURATION
CONTROLLER

AT94K40 SYSTEM-ON-CHIP

AT40K40 FPGAAVR MCU

AT17LV002
SERIAL

EEPROM
(bitstream)

CORDIC
CORE

INPUT
INTERFACE

OUTPUT
INTERFACE

FLEXIBLE
HARDWARE

CONFIGURATION
CONTROLLER

Figure 10.2 Block diagram of the AT94K40-based trigonometric CORDIC coprocessor

10.4.1 Coprocessor architecture

Many research efforts have been addressed to develop CORDIC-based architectures for
computing applications [Hen Hu, SP 1992]. Two types of architectures are considered
depending on the speed-area trade-off intended by the application, and both types of can
be synthesized with bit-serial or bit-parallel data paths.
� Iterative CORDIC implementation. An iterative architecture is simply obtained by
synthesizing in hardware each of the three difference equations (10.4). The processing is
composed of binary shifts and arithmetic additions/subtractions where the partial
results of each loop are stored in accumulator registers.
� Unrolled CORDIC topology. The previous n-iterative architecture can be unrolled n
times, giving rise to an online implementation. Unrolling the processor results in several
significant changes: the need for accumulator registers is eliminated, the n-shifters are

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 184

wired and the look-up values for the angle accumulator are implemented distributed as
hard-wired constants. Besides, the unrolled processor shall insert registers in each stage
of adders-substractors in order to reach thus a pipelined implementation.

Figure 10.3 Internal structure of the CORDIC coprocessor

Our trigonometric coprocessor is based on an iterative bit-parallel CORDIC architecture.
It is divided in several blocks, as illustrated in Figure 10.2:
� MCU. The 8-bit AVR is responsible for executing the C program which contains the

different calls to the trigonometric functions directly computed on the FPGA. With
regard to the hardware/software partitioning, the hardware coprocessor monopolizes
the arithmetic functions whereas the low-cost MCU assumes the data management
under a master-slave topology.

� Input interface. The input interface is used by the MCU to transfer the function
arguments to the FPGA registers.

� Output interface. The FPGA performs the computing and the result is send back to the
MCU through the output interface. Afterwards, the FPGA remains inactive until a new
hardware-supported function is called from the C code of the user application.

� CORDIC core. The trigonometric calculus is implemented in an iterative and parallel
hardware architecture. Together with the hardware skeleton there is a finite state
machine that handles the computing iterations until obtaining the final result.

� RECONF block. This block is directly managed by the MCU and makes possible to
modify, through partial reconfiguration, the input, CORDIC and output blocks to
customize the coprocessor to the concrete trigonometric function in execution.

This architecture composed of reconfigurable components makes possible the
computation of the CORDIC algorithm in both rotation and vectoring modes. All the
components in the FPGA are static except the KRECONF, SIGNRECONF and DMUXRECONF blocks
depicted in Figure 10.3. The design, described in C and VHDL languages, has been
divided in two stages: a first stage consisting in developing the entire algorithm
exclusively in SW on a PC platform encompasses the study of accuracy required by our

KRECONF In reg

Processor
(MCU)

Coprocessor
(FPGA)

FPGAX

FPGAY

FPGAZ

FPGAD

D[7:0]

CS[5:0]

 CLKAVR

x0

xn

yn

yi

zn

zi

xi

z0

y0

MUL

ADD/SUB

ADD/SUB

ADD/SUB

SIGNRECONF

DMUXRECONF

ROM

Kz∗
atan2-i

MUX

MUX

MUX

MUX

Config.
Control

FSM
In

SHIFT
>>i

SHIFT
>>i

 CLKAT40K

FSM
Core

FSM
Out

Y reg

fCLK/2

Z reg X reg

8-bit

24-bit

32-bit

32-bit

32-bit

8-bit

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 185

coprocessor according to the precision of the data and the number of iterations
considered; the second stage goes deeply into the HW/SW co-design of the algorithm.
The software profiling of tasks obtained in the first stage lets identify now the bottlenecks
of the application and design a reasonable HW/SW partitioning. Thus, the coprocessor
operates with 8-bit integer data as inputs and gives a result of 32-bit data in fixed-point
representation. Concerning the input data range analysis, the input values for sine and
cosine functions go from –90º to +90º, and for magnitude and arctangent any 8-bit
integers that give rise to an angle fitted within the first or fourth quadrant. The precision
of the results is determined by both angular and truncation errors. The angular error
depends on the number of iterations performed whereas the truncation error is function
of the data width established for the operands involved in the calculus, due to limited
storage capability or area restrictions. Our CORDIC implementation operates with 32-bit
data and carries out 32 iterations. The hardware design comprises 1423 logic cells, i.e.,
the 61.8% of the FPGA resources. Concerning the dynamic partial reconfiguration
aspects of the design, in general, the design is partitioned in a static circuitry or skeleton
and three flexible blocks which are customized on demand to the particular
trigonometric function:

� Input RECONF block.
As discussed in section 1, the results of the CORDIC equations are affected by the gain
factor An defined in equation (10.5). Its inverse, Kn, in our design is a pre-calculated
constant applied to the initial values x0 and y0 to compensate this amplifier effect. A
multiplier synthesized at the input block does this operation, as shown in Figure 10.3.
The application takes n=32, giving rise to K32=0.607252935. The coprocessor works with
data in fixed-point numbering format, to be exact, in 6 decimal digits. Thus, the scaling
factor applied to the terms x and y results in 607252.935. In the same way, the angle is
expressed in degrees but to 6 decimal places, what means a factor of 106 for the term z.
After doing a data range analysis, finally these constants are shifted 3 bits to the left. The
resultant multiplication factors are shown next.

Table 10.1 Numerical representation of the CORDIC corrective constants K32

Variable Kcordic (dec) Kcordic (hex) Kcordic (bin)

X 4858023 4A20A7 0100 1010 0010 0000 1010 0111

Y 4858023 4A20A7 0100 1010 0010 0000 1010 0111

Z 8000000 7A1200 0111 1010 0001 0010 0000 0000

These constants are assigned in function of the variable to be transferred. Instead of
multiplexing them with a mux2x24, this can be performed by reconfiguring an only logic
cell of the FPGA. In fact, taking advantage of the fine-grain FPGA characteristics and the
easy access to the configurable resources by the configuration controller, it is not
necessary to synthesize a generic MUX with its select lines controlled by a dedicated
FSM; this can be handled by the MCU through reconfiguring the LUT of a logic cell in
order to negate or not its input and in this way generate two outputs that are applied to
the bits that differ from a constant to another, as depicted in Figure 10.4.

Figure 10.4 Multiplexing of KCORDIC by dynamic partial reconfiguration

LUT 3x2 - TRUTH TABLE
0

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

1

0

1

0

1

1

1

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

0

fG=a
fH=not a

fG=not a
fH=a

a

b

c

fG

fH

 Inputs Outputs
 c b a fG fH fG fH

0 0 0 0 1 1 0
0 0 1 1 0 0 1
0 1 0 0 1 1 0
0 1 1 1 0 0 1
1 0 0 0 1 1 0
1 0 1 1 0 0 1
1 1 0 0 1 1 0
1 1 1 1 0 0 1

 Reconf Reconf
 X, Y Z

1

0

1

0

1

0

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 186

The input is permanently tied to ‘0’ and the output switching takes place by
reconfiguring the logic function. Following this strategy, the routing of the design is fixed
and only some logic resources change. Hence, each time a value has to be loaded from
the MCU to the computing registers, the MCU previously reconfigures on the fly the
corrective factor K accordingly: two partial reconfigurations are performed in each
trigonometric calculus, one for both variables x and y, and another for z.

� Sign RECONF block.
Rotation and vectoring modes only differ in the sign criterion applied. In rotation mode, zi
is considered for taking the addition/subtraction decision as shown in equation (10.6)
whereas in vectoring mode the variable yi becomes the selection key in accordance with
equation (10.8). Like this, the sign criterion can be implemented through an only logic
cell combining a LUT of 2 inputs, the signs of yi and zi. By solely reconfiguring the 8-bit
truth table of this logic cell, one of both sign criteria is applied to the three
adder/subtract modules present in the coprocessor shown in Figure 10.3.

Figure 10.5 Sign controller: static version (a) versus dynamic version (b)

� Output RECONF block.
The result of the CORDIC computation is located in one of the three 32-bit registers xi, yi
and zi, depending on the function selected. These registers are sequentially transferred to
the MCU through a bidirectional 8-bit data bus. According to this restriction, a smaller
static mux4x8 is implemented to select each of the four bytes that compound the 32-bit
data, and the selection among the three 32-bit registers is done by other 32 dynamic
mux3x1, each of them implemented in a logic cell using a reconfigurable LUT. In FPSLIC,
taking into account the internal logic cell structure based on a 4x1 or 3x2 LUT, a static
mux3x1 is implemented with two logic cells since five inputs are required. On the other
hand, this same mux3x1 can be synthesized dynamically in only one logic cell, what
represents a 50% of area saving (even more if the FSM necessary to control the select
lines of the multiplexer are also considered, whereas in a dynamic multiplexer it is not
needed since it is done by the MCU) and also a considerable time reduction (inertial time
and mainly transport time due to the inherent routing simplification) of the data path.
Hence, reconfiguring this dynamic multiplexer of 32 mux3x1 involves rewriting 32 LUTs.

Figure 10.6 Static 3x1-multiplexer (a) versus dynamic 3x1-multiplexer (b)

sel

yi(31)

 (a) (b)

LUT 3x1 – TRUTH TABLE

a

b

c

f

 Inputs Output
 c b a f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

zi(31)

sel

si

yi(31)

LUT 3x1 – TRUTH TABLE

a

b

c

f

 Inputs Output
 c b a fSEL=0 fSEL=1

0 0 0 0 1
0 0 1 1 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 1
1 0 1 1 1
1 1 0 0 0
1 1 1 1 0

zi(31)

si

FSM

zi(31)

yi(31)

MUX
2x1

0 = vectoring
1 = rotation

0

1

SIGN CONTROLLER

0 = sub
1 = add

si

x(i)

 (a) (b)

LUT 3x1 – TRUTH TABLE

a

b

c

f

 Inputs Output
 c b a f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

y(i)

sel(0)

LUT 3x1 – TRUTH TABLE

a

b

c

f

z(i)

FSM

z(i)

x(i)

out(i)

MUX
3x1

 sel(1) sel(0)

0

1

2

y(i)

x(i)

LUT 3x1 – TRUTH TABLE

a

b

c

f

 Inputs Output
 c b a fSEL=0 fSEL=1 fSEL=2

0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 1 1 1 1

y(i)

sel(1)

 Inputs Output
 c b a f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

out(i)

out(i)

z(i)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 187

10.4.2 Performance evaluation

In order to realize the benefits of the HW/SW co-design of the CORDIC algorithm, the
efficiency of this computer has been compared against a shift-add software-based
implementation running on several PC platforms. Table 10.2 shows the performance
obtained in computing an identical trigonometric calculus under different systems.
Taking in mind the lower working frequency of our prototype, our system is able to
process the trigonometric calculus in fewer clock cycles than whichever software-oriented
approach. Our multiprocessor platform reduces the execution time through the
scheduling of concurrent MCU-FPGA tasks. Table 10.3 shows the time breakdown of the
different computing tasks involved. The FPGA only needs 32 cycles to perform the
calculus (32 iterations). On the other hand, the number of clock cycles is deeply
extended in a software-oriented implementation, getting the critical part of the CORDIC
execution.

Table 10.2 Comparison of different HW/SW implementations of the CORDIC algorithm

Computing Platform Time (ns) Development Tools

Personal Computer (Windows XP)
Pentium 4 @ 2.66 GHz

5050

Microsoft Visual C++ v6.0
(Win32)

Personal Computer (MS-DOS)
AMD K6-2 @ 450 MHz

13200

Borland C++ v3.1
(MS-DOS)

Atmel AT94K40 FPSLIC
MCU @ 12.5 MHz / FPGA @ 25 MHz

(*) 5840 / 17040

IAR Embedded Workbench
Atmel EDA System Designer

(*) best/worst case depending on the number of hardware modules reconfigured to perform the trigonometric
 calculus (KRECONF = 960ns, SIGNRECONF = 640ns, MUXRECONF = 10560ns).

Table 10.3 Time breakdown of the execution tasks

Tasks Execution Time (ns)

Data-Control I/O 3920

Reconfiguration Kmul 960

Reconfiguration Sign 640

Reconfiguration Dmux 10560

In order to obtain a reduced error, the integer operands are represented in fixed point.
Table 10.4 shows the computation errors obtained.

Table 10.4 Computation error

Trigonometric Computation Error

Sine ≤ 10-6

Cosine ≤ 10-6

Arctangent ≤ 10-6

Square Root (magnitude) ≤ 2�10-6

Concerning the area saving, this reconfigurable strategy offers advantages due to the
high similarity between the rotation and vectoring modes of the algorithm. Although the
design is feasible without flexible hardware, in a partially reconfigurable FPGA the
interface for accessing all the routing and logic reconfigurable resources is already
available and it is not necessary to design neither some control lines (wr/rd, en, etc) nor
the FSM for controlling them. This simplifies the design, the routing and, in turn,
minimizes the critical path. As result, it is obtained a very compact design of a

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 188

trigonometric CORDIC computer. The hardware-based design fits in 1423 logic cells as
detailed in Table 10.5. The reduced amount of resources required makes it an ideal
solution for space and cost sensitive embedded applications.

Table 10.5 Hardware resources used in the CORDIC computer implementation

AT94K40 Resources Used

Logic Cells (total: 2304)
 LC used as 1-bit flip-flop resource
 LC used as logic resource (2x3-input LUT)
 LC used as routing resource

1423
125

1177
121

32x4 RAM Cells (total: 144) 0

IO Cells (total: 442) 33

The layout of the CORDIC computer is illustrated in Figure 10.7. The three
reconfigurable blocks have been designed as hard macros that have been constrained in
specific logic cell positions of the FPGA layout. These logic cells are then accessed by the
MCU at run-time to be reconfigured when required according to the trigonometric
function requested by the user application. This partial reconfiguration is conducted
through the FPSLIC reconfiguration controller described in chapter 5.

Figure 10.7 Floorplanning of the trigonometric CORDIC computer in the AT94K40 FPSLIC

10.5 Specific coarse-grain reconfigurable implementation

In the previous section it has been presented the implementation of a CORDIC computer
composed of small run-time reconfigurable modules. Another design approach is
presented now in this section where the CORDIC coprocessor is reconfigured as a whole.
In this occasion, the CORDIC computer is customized to perform the atan(y/x) operation.
It has been synthesized in a Xilinx Virtex-4 XC4VLX25 FPGA device.

10.5.1 Coprocessor architecture

The coprocessor architecture is similar to the one showed in Figure 10.3. The radix-2
CORDIC computer performs the atan(y/x) operation through 8 iterations and reaches an
angular resolution of 1º. The operands y and x are of 32 bits and the resultant angle is

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 189

delivered in 32-bit format. The reconfigurable components used in Figure 10.3 are not
required now since the computer is architected to work only in vectoring mode.
In this approach, the trigonometric computer becomes a coprocessor that is instantiated
in the PR region of the standard and minimalist reconfigurable system architecture
presented in chapter 4 (in section 4.4.1, Figure 4.4). Therefore, the whole CORDIC
coprocessor is downloaded in the PRR when the application flow managed in software
requires computing the arctangent function. Following the same application flow than in
the FPSLIC solution, here the MicroBlaze processor takes charge of transferring the
operands to the PRR and reading the computation result. Once this computation is
performed, the application can decide to download new coprocessors in the PRR since
this region is used as a time-shared resource.

10.5.2 Performance evaluation

The resources involved in the synthesis of this coprocessor placed in the PRR are shown
next in Table 10.6. In this occasion, the microprocessor runs at 100 MHz whereas the
coprocessor placed in the PRR works at 50 MHz. Since the computation of the arctangent
is performed in 8 iterations and each iteration is performed in one clock, an output angle
is obtained each 160 ns.

Table 10.6 Hardware resources used in the CORDIC atan(y/x) computer implementation

XC4VLX25 Resources Used

Slices (total: 10752) 529

 1-bit flip-flop (total: 21504) 284

 4-input LUT (total: 21504) 945

18-kbit RAMB16 block (total: 72) 0

DSP48 block (total: 48) 0

Bonded IOBs (total: 448) 0

10.6 Summary

The beauty of CORDIC lies in the fact that by simple shift-add operations, it can perform
several computing tasks such as trigonometric, hyperbolic and logarithmic functions,
real and complex multiplications, divisions, square roots and many others. Moreover,
accurate computations can be performed in hardware-efficient implementations without
employing time- and area-consuming divisions and floating-point calculations. Taking
into account the inherent flexibility of the CORDIC algorithm to implement different
types of computations, this work describes the design of a dynamically reconfigurable
trigonometric coprocessor mapped in two different SoC/FPGA platforms where, while a
low-cost CPU runs the program flow, a hardware coprocessor takes charge of the
computing. Two implementation approaches are explored: fine-grain reconfiguration,
where the design pursues to optimize the placement and routing of the computer by
reconfiguring on the fly only specific LUT-based blocks, and coarse-grain reconfiguration,
where the CORDIC coprocessor –treated as an IP core– is reconfigured as a whole in a
specific PR region of the FPGA when that specific trigonometric computation is required
by the application. The concept reached is a single-chip cost-effective embedded system
that just running at a low frequency perfoms sine, cosine, arctangent and square root
operations at rates comparable to PC platform.
The proof-of-feasibility conducted in this work demonstrates that PR is a powerful
technology with an enormous potential that can dramatically extend the capabilities of
programmable logic devices. The system architecture presented is specially suited to
cost-sensitive time-critical embedded applications.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 190

References

[Adiono and Saut, ICEEI 2009]
T. Adiono, R. Saut Purba, Scalable pipelined CORDIC architecture design and implementation in FPGA,
Proc. of the International Conference on Electrical Engineering and Informatics, pp. 646-649, 2009.

[Andraka, FPGA 1998]
R. Andraka, A survey of CORDIC algorithms for FPGA based computers, Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pp.191-200, 1998.

[Angarita et al., FPL 2005]
F. Angarita, A. Perez-Pascual, T. Sansaloni, J. Valls, Efficient FPGA implementation of CORDIC algorithm
for circular and linear coordinates, Proc. Int. Conf. on Field Programmable Logic and Applications, pp.
535-538, 2005.

[Bhattacharyya et al., MICPRO 2010]
K. Bhattacharyya, R. Biswas, A.S. Dhar, S. Banerjee, Architectural design and FPGA implementation of
radix-4 CORDIC processor, Microprocessor and Microsystems, vol. 34, no.2-4, pp. 96-101, 2010.

[Garcia et al., ICEEE 2006]
E.O. Garcia, R. Cumplido, M. Arias, Pipelined CORDIC design on FPGA for a digital sine and cosine
waves generator, Proc. of the Int. Conf. on Electrical and Electronics Engineering, pp. 104-107, 2006.

[Hen Hu, SP 1992]
Y. Hen Hu, CORDIC-based VLSI architectures for digital signal processing, IEEE Signal Processing
Magazine, pp.16-35, 1992.

[Jianwen and Ching, ISIC 2007]
L. Jianwen, J. Ching Chuen, A System-on-Chip dynamically reconfigurable FPGA platform for matrix
inversion, Proceedings of the IEEE International Symposium on Integrated Circuits, pp. 465-468, 2007.

[Meher et al., TCAS-I 2009]
P.K. Meher, J. Valls, T.B. Juang, K. Sridharan, K. Maharatna, 50 years of CORDIC: algorithms,
architectures, and applications, IEEE Trans. of Circuits and Systems I, vol. 56, no. 9, pp. 1893-1907,
2009.

[Timmermann et al., JSSC 1991]
D. Timmermann, H. Hahn, B.J. Hosticka, G. Schimdt, A programmable CORDIC chip for digital signal
processing applications, IEEE Journal of Solid-State Circuits, vol. 26, no. 9, pp. 1317-1321, 1991.

[Vachhani et al., TCAS-II 2009]
L. Vachhani, K. Sridharan, P.K. Meher, Efficient CORDIC algorithms and architectures for low area and
high throughput implementation, IEEE Trans. on Circuits and Systems II, vol. 56, no. 1, pp. 61-65, 2009.

[Vachhani et al., TIE 2009]
L. Vachhani, K. Sridharan, P.K. Meher, Efficient FPGA realization of CORDIC with application to robotic
exploration, IEEE Transactions on Industrial Electronics, vol. 56, no. 12, pp. 4915-4929, 2009.

[Vladimirova and Tiggeler, MAPLD 1999]
T. Vladimirova, H. Tiggeler, FPGA implementation of sine and cosine generators using the CORDIC
algorithm, Proc. of Military & Aerospace Applications of Prog. Devices and Technologies Conf., 1999.

[Volder, IRETEC 1959]
J.E. Volder, The CORDIC trigonometric computing technique, IRE Transactions on Electronic Computers,
vol. EC-8, no. 3, pp. 330–334, 1959.

[Volder, VLSI 2000]
J.E. Volder, The birth of CORDIC, Journal of VLSI Signal Processing, vol. 25, no. 2, pp. 101-105, 2000.

[Walther, SJCC 1971]
J.S. Walther, A unified algorithm for elementary functions, Proceedings of Spring Joint Computer
Conference, pp. 379–385, 1971.

[Walther, VLSI 2000]
J.S. Walther, The story of unified CORDIC, Journal of VLSI Signal Processing, vol. 25, no. 2, pp. 107-
112, 2000.

[Wang et al., ICC 2008]
H. Wang, P. Leray, J. Palicot, An efficient MIMO V-BLAST decoder based on a dynamically reconfigurable
FPGA including its reconfiguration management, Proc. IEEE Int. Conf. on Communications, pp. 746-750,
2008.

[Wang et al., IPDPS 2007]
H. Wang, J.P. Delahaye, P. Leray, J. Palicot, Managing dynamic reconfiguration on MIMO decoder, Proc.
of the IEEE International Parallel and Distributed Processing Symposium, pp. 1-8, 2007.

[Xilinx Inc., DS249 2009]
Xilinx Inc., CORDIC v4.0, Datasheet 249, 2009.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 191

Chapter 11

Automatic fingerprint authentication system

In the current era of communications and information technologies, embedded security
is a feature highly demanded to systems that manage confidential, sensitive or critical
data. More and more, our society needs secure applications which, as prerequisite, verify
their users before authorizing them to access certain privileges stored there. It is not
difficult to find real application examples in our daily lives; electronic tellers, computer
networks, mobile phones or even automobiles are use cases that perform such
authorization before granting access to the system. Under this context, many end-user
applications that demand better levels of security than PINs, passwords or ID cards
address personal recognition algorithms based on biometric (physiological or behavioral)
characteristics.
Today, automatic biometric-based personal recognition systems comprise high-
performance signal- and image-processing applications with time-critical constraints,
motivated especially by quality-of-service and ergonomic reasons. Moreover, biometric
personal recognition is an appropriate example of compute-intensive algorithm
decomposed in a series of processing tasks executed in a sequential order. The natural
batch process observed in the execution of the biometric algorithm enables the use of
run-time reconfiguration technology in an attempt to synthesize this application
efficiently. In fact, as suggested in this chapter, run-time reconfigurable hardware
technology brings key advantages in the design of automatic personal recognition
systems, especially when oriented to consumer applications with stringent demands on
real-time and low-cost. To the best of the author’s knowledge, this work is pioneer in
regard to the introduction of run-time reconfigurable hardware to address the design and
development of biometric recognition systems; although it is known the existence of
biometric applications implemented in static hardware exploiting parallelism, e.g. on
ASIC, ASSP or FPGA devices, this is probably the first time these applications are
furthermore synthesized in hardware that evolves at run-time, aimed at sharing the
available computational resources throughout the execution of mutually exclusive tasks
of the application. The experimental results achieved prove it is possible to embed a full
and highly demanding biometric recognition algorithm in a small electronic platform
composed of a programmable logic device, processing such algorithm at real-time,
preserving data accuracy and precision in the computation, and multiplexing
functionality on the fly over a reduced set of physical resources reaching thus a low cost
solution. Furthermore, the proven maturity experienced in this work regarding both run-
time reconfiguration technology and EDA toolset supporting the design flow lets predict
that the spread of this technology from research to industry is not far.

11.1 Introduction

Computationally complex applications processed in real-time, driven at low rates of
power consumption and synthesized at low cost are unavoidable requirements today in
the design and development of embedded systems, particularly when addressed to mass-
production niches. Under this context, dynamic partial reconfiguration of SRAM-based
FPGAs arises as a firm technological alternative, able to deliver a high functional density
of resources to efficiently balance all those demands for time-, power- and cost-sensitive
applications. Software-defined radio, aerospace missions and cryptography are some of
the known applications that exploit the benefits of dynamic partial reconfiguration of
programmable logic devices today. Following this line, this work applies now PR to a new
application space that has not traditionally leveraged it: biometrics.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 192

There exist basically three methodologies for authenticating or identifying a user,
depending on: something you have, for instance a key or an ID card; something you
know, as a password or a PIN; and something you are – namely, biometrics. In spite of
the three strategies available, the last one delivers the highest safety level against
external attacks or frauds since biometric information, unlike keys or passwords, cannot
be lost, stolen or forgotten. Hence, as security has become a major issue in today’s digital
information environment, especially for application fields like e-commerce, ehealth, e-
passports, e-banking or e-voting, among others, the author believes the use of PR in
biometrics holds great promise.
As humans, we all use our natural abilities to recognize people through their faces,
fingerprints, voices and other genuine traits. Electronic systems, on the other hand,
must be algorithmically instructed in how to use this same observable information to
perform human recognition. Technological advances in the biometric field are helping to
close the gap between human perception and machine recognition. A priority goal of
using biometrics is to provide identity assurance –or the capability to accurately
recognize individuals– with great reliability and speed, in addition to low cost. As a proof
of concept in introducing run-time reconfigurable computing in high-performance
applications, an automatic fingerprint authentication system (AFAS) has been
implemented in two different programmable logic platforms: first in a SoPC composed of
a hard-core MCU and an FPGA, and afterwards in a dynamically reconfigurable FPGA
partitioned in a static region –which allocates a soft-core processor, some standard
peripherals and a reconfiguration controller– and a partially reconfigurable region where
different custom biometric IPs can be swapped in and out along the time. In both cases,
all the tasks that compose the biometric algorithm are partitioned and synthesized first
in a series of coprocessors that are then instantiated and executed multiplexed in time
on the logic resources of the programmable logic device. Thus, the work conducted in
this chapter presents the design of a full biometric recognition application driven by
hardware/software co-design and reconfigurable hardware giving place to a collection of
hardware IPs that are processed multiplexed in time in a set of shared resources in the
programmable logic device.

11.1.1 Basics of biometrics

Biometric recognition systems offer automated methods for identity verification on the
principle of measurable physiological or behavioral characteristics. Well-known personal
biometric modalities include voice, face, gait, signature, fingerprint, iris, hand geometry,
etc. From a commercial perspective, the market of biometric applications has gained
significant attention in the last years:
� First, ensuring the safety of the citizens has become a major concern for most of our

governments.
� Besides, a great deal of IT applications such as e-commerce, e-banking and e-health

have triggered a real need for reliable, user-friendly, and widely acceptable control
mechanisms for checking the identity of an individual.

Nowadays, fingerprint recognition is one of the biometric modalities most implanted in
the society due to its acceptable identification rate, ease-of-use, ergonomics and
efficiency in acquiring the biometric features, mainly oriented to silicon or optical
(touchless) sensors, which let obtain a fingerprint image with good accuracy at an
acceptable cost. Since long time ago, commercial products based on biometrics are
available from different vendors and there exist many real application examples coming
from official institutions all over the world that make use of fingerprint features, like the
Federal Bureau of Investigation (FBI) or the US-Visit program from the U.S. Department
of Homeland Security. Nevertheless, field deployment has raised many technical and
non-technical issues which need to be tackled. Regarding embedded fingerprint-based
recognition applications, basically two technical concerns are still open:

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 193

� On the one hand, the theoretical aspects applied to the recognition algorithm do not
guarantee yet a free-of-errors authentication rate today. The last fingerprint
verification competitions (FVC), conducted by both industry and academia, showed
errors around 2.2% in both false acceptance and false rejection rates (FAR and FRR,
respectively). The accuracy of the current state-of-the-art biometric recognition
algorithms is still far from guaranteeing definitive levels of confidence. In this
direction, a considerable research effort is still needed in signal and image processing
in order to enhance the fingerprint recognition algorithms so that reduce those figures,
aimed at providing a 100% of success in automatic machines to take the correct
decision in authenticating/identifying a user. This fact would give even a major
confidence to biometrics technology to extend its use in new potential application
fields.

� On the other hand, intimately related to the previous issue, the physical
implementation of such biometric recognition algorithm in a cost-effective electronic
platform and processed at acceptable ergonomic rates (i.e., performing the
authentication/identification process at real-time, that usually means around 2 or 3
seconds) is today a really hard requirement only achievable through HPC platforms
with prohibitive prices, fact that obstructs the deployment of such security level into
certain cost-sensitive applications. Technological aspects focused on finding an
electronic computing platform restricted in cost and compliant with the strict real-time
specifications of the AFAS application are still non-solved, especially in embedded
system domains addressed to manage medium or large fingerprint databases and
perform the user identification in critical time. In this sense, increasing performance
by lowering cost is one of the biggest technical issues that the developers of embedded
AFAS face today.

This work concentrates its efforts in the second open issue mentioned above. However,
biometrics, from a computational point of view, is complex. It requires stringent and
computationally intensive image/signal processing in real-time, along with a great deal of
flexibility. In addition, personal recognition algorithms are in continuous evolution. As
the research community expends major effort in this field, error rates are decreasing. As
a consequence, consumers are growing more confident about biometric systems, and
acceptance is increasing. On the other hand, given that progress in biometrics
technology is expected to continue in the future, biometric products already in the
market will have to admit upgrades in the field just to avoid getting obsolete, and for this
they require open system architectures. In this regard, the flexible hardware found in
run-time reconfigurable FPGA devices meets the versatility and scalability needed.
Moreover, cost-effectiveness is probably the most important reason for biometrics to
make use of partial reconfigurability. In aggressive markets like consumer electronics or
automotive, vendors must market their systems at a competitive cost. Customers
demand products with the highest level of security at the lowest possible price point and
the way to improve security and reliability is by increasing the computational power of
the biometric recognition algorithm. This increment of computation usually involves a
like increment in execution time and also in cost (resources). However, the cost is hardly
affected in those scenarios where the design is based on dynamic-partial-reconfiguration
technology. Using PR, designers can partition that new computation and schedule it as
new processing stages added to the current sequential execution flow of the application.
Thus, cost often can be held invariant to functional changes of the algorithm. Designers
can partition the biometric recognition algorithm into a series of mutually exclusive
stages that are processed sequentially, where the outputs or results of one stage become
the input data for the next. This sequential order means designers can multiplex
hardware resources in time and customize them to execute a different task or role at
each moment, increasing their functional density and thus keeping constant the total
number of resources needed to process the entire algorithm. Moreover, the
reconfiguration overhead is short enough so as not to eclipse the benefits gained by
hardware acceleration, and reconfiguring one set of resources on the fly will not interrupt

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 194

the rest of the resources available in the FPGA. In this way, the resources that are not
reconfigured continue to operate and guarantee the permanent link with the exterior
world for the entire life cycle of the application.
The challenge of this work consists in demonstrating that PR fits well in the development
of complex personal recognition algorithms based on biometric characteristics, making
use of a two-dimensional design abstraction level through which the functionality is
managed not only in space but also in time. How the author emcompasses this target is
described in the next sections.

11.1.2 Automatic fingerprint authentication system

Fingerprint verification is one of the most popular and reliable biometric techniques used
in automatic personal recognition. Essentially, the technique splits the AFAS application
in two processes or stages carried out at different times and in different conditions:
enrollment and recognition.
� Enrollment is the system configuration process through which the user gets

registered. Generally, the user exposes his/her fingerprint to the system, which
submits it to a set of computationally intensive image processing phases aimed at
extracting all relevant, permanent and distinctive information that will permit the
system to unequivocally recognize the fingerprint’s genuine owner. This set of
characteristics becomes the user ID, which the system stores in its database. This
process is normally conducted off-line, in a secure environment and under the
guidance of expert staff.

� Once the user is registered, the next time his/her fingerprint is exposed to the system
in the recognition stage, the system will check if it corresponds with any authorized
member within the database. All the processing tasks performed in the enrollment are
repeated now to again extract those distinctive characteristics from the live fingerprint
sample. The system then compares these characteristics with the information stored
as user templates in the database to conclude whether the live scan matches any of
the registered templates. Recognition comes in two modalities depending on the size of
the database: authentication, when a one-to-one (or one-to-few) matching is
processed; and identification, when the matching is one-to-many due to the fact that
many users are registered in the system. Recognition is normally performed online in a
less-secure environment and under real-time constraints.

Each of these stages is, in its turn, partitioned into a series of processing tasks designed
to extract from the fingerprint image such information as will distinguish one user from
the others. With that object in view, the system carries out specific computations, such
as image processing (2D convolution, morphologic operations), trigonometrics (sin, cos,
atan) or statistics (mean, variance).

11.2 Related work

In the arena of real-time secure media, cryptography and biometrics are two engineering
fields intimately connected to each other, mainly due to several evident concerns:
security is more and more demanded today; to deliver high levels of confidence it is
required complex and compute-intensive processing; however, such computational
demand shall not penalize in ergonomics, i.e., it must not impact on real-time
performance of the end-user application. Like this, most applications that require the
highest levels of security make use of these two closely related disciplines: on the one
hand, the personal authentication/identification of a user becomes a necessary condition
to grant access into a secure system and, on the other hand, in case this system needs to
share some information with the exterior world, any shared information spread outside
shall be encrypted in order to make difficult the interception and interpretation of such
raw data through any kind of attack, for instance in wireless communication. More and
more, both algorithms are natural candidates for being implemented through run-time

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 195

reconfigurable computing technology. In fact, some research works have already
encompassed the development of cryptographic IPs of IDEA and AES algorithms on FPGA
devices making use of run-time reconfigurable hardware. In the same direction, however,
the author did not find any research work in the literature oriented to the development of
biometric recognition algorithms deployed through dynamic partial reconfiguration.
Although it is common to find biometric applications developed in software, as far as the
author knows, it does not exist yet any work addressing biometric recognition through
run-time reconfigurable computing technology, although they do exist some based on
HW/SW co-design over FPGA devices used as permanent static hardware designs [Ratha
and Jain, TPDS 1999], [Danese et al., DSD 2009], [Danese et al., MICPRO 2011],
[Rodríguez et al., ARC 2006], [Jiang and Crookes, JRTIP 2008]. Thus, this work
introduces the exploitation of run-time reconfigurable computing in the biometric field.
The reasons behind this innovative approach are many, a described along this work,
especially when oriented to time-critical and cost-sensitive embedded applications.
This research work aims to highlight all those technical aspects to be taken into account
when applying PR technology in real embedded applications. All these ideas are put in
practice to deploy a particular high-performance application such as an automatic
fingerprint authentication system. With certainty, this kind of biometric recognition
application will gain more and more interest in the coming years, especially due to the
relevance conceded to the security in whatever aspect of our IT society. This case study,
oriented to image processing, shows how HW/SW co-design and run-time reconfigurable
computing let efficiently synthesize the biometric recognition algorithm in a small SRAM-
based FPGA. HW/SW co-design focuses on execution time and contributes to accelerate
–through parallelism and pipeline– the processing of the involved functionality to achieve
real-time performance. Run-time partial reconfiguration, in its turn, pushes on cost-
effectiveness by emphasizing, already in the early phases of the design, key features like
high functional density and low reconfiguration latency of hardware resources. This
solution is submitted to test by comparing it with a purely software implementation of
the identical algorithm on an embedded MCU and on a PC platform, to assess thus the
performance reached by each architectural approach. The obtained results prove it is
possible to embed a real-time AFAS application in a small FPGA/SoPC if it exploits
dynamic reconfiguration. On the contrary, such real-time constraints imposed to this
application attending to quality of service or ergonomic reasons are not achieved when
the same algorithm is processed on SW-based platforms, especially in embedded ones.
The performance degradation experienced in SW is clearly overcome by the FPGA-based
design owing in large part to its major levels of parallelism and low-level customization,
even running at much lower operation frequency, fact that helps to minimize the power
consumption. In this way, the achieved results prove that dynamic self-reconfiguration is
a very helpful instrument in the design of low-cost embedded electronic applications.

11.3 Design and development

The embedded automatic fingerprint authentication system developed in this chapter is
essentially a high performance image processing engine with time-critical constraints.
From an ergonomic standpoint, the application itself imposes a strong restriction of time,
for instance not to exceed 2 or 3 seconds in the authentication process of any user, and
this requirement definitively determines the architecture and the technology of the
system. The work encompasses two different stages of design and development: the first
part consists in defining an accurate algorithm and validating it over a fingerprint images
database large enough to contrast its effectivity. Afterwards, the second stage consists in
deploying the resultant algorithm on an efficient electronic platform making use of the
more convenient technology.
� The first design stage has been conducted in high-level software programming language
under Matlab on a PC platform. The project is analysed from a system point of view. At
this abstraction level, the biometric recognition algorithm has been fully designed, taking

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 196

as guide or reference certain state-of-the-art biometric computing algorithms found in
the literature. Hence, the different processing stages required to ensure a good level of
confidency in performing the recognition of the fingerprint samples are defined at this
stage clearly focused on algorithmic aspects, and the biometric algorithm is fully
validated submitting it to large databases of public fingerprint images.
� The second stage turns around the efficient implementation on an electronic embedded
system able to support the resultant algorithm designed in the previous stage. For this,
first of all the software algorithm described in Matlab is rewritten in C programming
language under Microsoft Visual Studio v6.0 (Visual C++) environment in order to be
ported and adapted to the characteristics of an embedded software platform. This new
version of the algorithm is executed first on the PC platform, just to confirm that we
obtain the same logical results than when executed in Matlab. In this way it is confirmed
the porting from Matlab code to C code is correct.
Once the algorithm is described in C code and the different tasks of this batch process
are properly identified, it is feasible to make a first profiling of the different stages
involved in the recognition algorithm already on a PC platform to identify the more time
consuming functions. However, the same algorithm described in C is also ported to
several embedded microprocessor platforms in order to make a more accurate and
realistic profiling since as final goal this algorithm is intended to be lodged in embedded
platforms instead of HPC platforms. This fact implies to optimize the implementation
already at this point, for instance considering necessary the usage of integers instead of
floating-point data if with this decision it is possible to improve performance without
degradating data accuracy. Other design rules adopted here are not to use certain
powerful but expensive libraries of signal processing if they involve too much resources
when running on an embedded platform, or not to use excessive RAM data to store
intermediate data/images if this amount is not be available in the platform where it is
finally decided to synthesize the application, etc.
The analysis of this software-based solution brings an important feedback concerning
costs (execution time, memory requirements, etc) of each task involved in the algorithm,
information that is used to decide key architectural aspects like the HW/SW partitioning
of tasks and the proper dimensioning of the communication interfaces. Just in this step,
through the profiling of the application, it is possible to find out which are the more
compute-intensive tasks to be implemented in hardware whereas the less time-critical
tasks can be kept in software. With all this information, the SW tasks are described in C
programming language and the HW tasks in VHDL hardware description language over
logic programmable resources. Concurrently, both hardware co-processors and software
functions are co-verified with appropiate SoC development tools.
Until now the system is designed statically, i.e. with coprocessors that stay in the system
for all the application lifetime. The following step of the design flow consists in the
temporal partitioning of the application by updating the HW tasks in the same set of
shared resources of the programmable logic device. For this, from all the tasks identified
in the bach process, the ones implemented in hardware can share in time their hardware
resources if they are not required at the same time, and dynamically while the rest of the
system is running. The aim of this stage is to optimize the hardware costs of the system,
multiplexing in time the silicon area of the FPGA and being able, thus, to implement the
application in a smaller FPGA device. By temporally partitioning the algorithm, the
system can locate different logical circuitries into the same device every time, what
makes possible to save area. In this way, the MCU downloads the bitstream to the partial
or total part of the FPGA in order to change its functional behavior at the same time as
the system is evolving without stopping the processing. Finally, once the system is
verified and validated, a prototype can be implemented either designing a new PCB or
just using a commercial evaluation board equipped with the resources needed, where
basically only one chip performs all the digital processing of the biometric algorithm.
As a final integration test, the system prototype has been validated on real fingerprint
images acquired by the system as well as on other fingerprint images that exist in public

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 197

databases of the Fingerprint Verification Competition (FVC 2004) based on the same
fingerprint sweeping sensor. The design flow described follows a top-down design
methodology, as illustrated next.

Figure 11.1 Design flow of the embedded AFAS application

With the FPGA logic and the CPU both in the same chip, it is possible to develop
hardware and software concurrently, having the ability of making HW/SW trade-offs and
co-verifying the interaction and effects of them prior to building the final system board.
Both hardware and software teams can work together as depicted in Figure 11.1. All this
advantages are translated finally into a reduced time-to-market of the end product.

11.3.1 Batch process of mutually exclusive tasks

The fingerprint recognition algorithm is decomposed in a set of computing tasks that
follow a batch processing. Figure 11.2 enumerates the tasks that take place in the
presented algorithm. Of relevant interest is to notice the inherent sequential execution of
tasks in which this algorithm is split. This temporal partitioning fits well in the space
and time sharing considerations entrusted to dynamic partial reconfiguration technology.
A remark here is the fact that the fingerprint recognition algorithm presented in this
work is a collection of the classical fingerprint image processing stages typically used and
disseminated by the research community. Thus, the proposed algorithm is not developed
from scratch but inspired in some existing works referenced in the scientist literature
based on standard image processing techniques. Besides, it is prudent to note that this
work does not go in search of finding the best biometric algorithm (in fact, the FAR/FRR
of this algorithm could still be improved by adding new processing stages) but it focuses
on reaching its best electronic implementation, i.e., achieving the fastest execution of
such functionality at the lowest cost possible, aimed at bringing PR technology to any
kind of secure embedded applications, even to cost-sensitive consumer electronics. Thus,
this application example wants to be a definitive solution with regard to system

HW/SW
CO-DESIGN

HIGH-LEVEL
SIMULATION

BOARD
PROTOTYPING

EMBEDDED
PROGRAMMING

Matlab

and Fingerprint Public Databases

SOFTWARE
Programming (C)

HARDWARE
Synthesis (VHDL)

Software-based Implementation

HW/SW PARTITIONING & INTERFACING

CO-VERIFICATION

Physical Implementation (PCB)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 198

architecture, and not so much regarding the biometric algorithm itself, although to be a
realistic work it focused on state-of-the-art biometric processing.
Following, it is shown a classical approach of fingerprint recognition algorithm
overviewing the different image processing stages involved as well as the type of
computing performed in each stage. The main steps that take place in both enrolment
and authentication stages are detailed in Figure 11.2. As a result of the fusion of all
these steps, a hybrid fingerprint matching algorithm is obtained that makes use of
several fingerprint features such as minutia points and ridge or field orientation map
characteristics [Tico and Kuosmanen, TPAMI 2003], [Ross et al., PR 2003], [Jain et al.,
Computer 2010] extracted from the fingerprints as the genuine marks of identity of any
individual.

Figure 11.2 Image processing tasks breakdown of the AFAS algorithm

The first task is the image acquisition. Depending on the size of the silicon sensor, a
system may acquire the whole image at one touch (complete image sensor) or in slices
(sweeping sensor). In the second scenario –the case used in this work– an additional
image reconstruction phase is necessary. The full fingerprint image gets composed by the
set of consecutive and partially overlapped slices acquired. Once the whole image is
reconstructed, the next task consists of segmenting it in the foreground (i.e., the region
of interest, based on the ridges and valleys of the fingertip skin) from the background.
This process is performed by convolving the image, pixel by pixel, with directional filters
made up of Sobel masks of kernel 5x5 [Hong et al., TPAMI 1998]. Afterwards, the image
is normalized at a specific mean and variance. Next, the normalized image is enhanced
through an isotropic filtering, which retrieves relevant image information from some
potential regions of the captured image initially lost or disturbed by the noise in the
acquisition phase [Cheng and Tian, PRL 2004], making use of a kernel 13x13. Once this
step has improved the quality of the image, the next task is to compute the field
orientation map, which determines the dominant direction of ridges and valleys in each
local region of the image foreground [Rao and Schunck, CVPR 1989]. The resultant field
orientation is then submitted to a new filtering stage (kernel 5x5) to obtain a refined field
orientation map. Until this point, the image has been worked at 8-bit gray scale. Now, in
the binarization process, Gabor directional filters of kernel 7x7 convolve the gray-scale
image to improve the definition of the ridges and valleys and convert each of the gray-
scale pixels to a 1-bit binary (black or white) dot. The image is then submitted to a new

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 199

loop to smooth and redraw the shapes of the resultant ridges and valleys [Ratha et al.,
PR 1995]. Later, the thinning or skeletonization task converts the black-and-white image
to one with black ridges one pixel wide [Lam et al., TPAMI 1992], [Guo and Hall, ACM
1989]. From that image it is not difficult to extract the fingerprint characteristic points or
minutiae, that is, the ridge endings and bifurcations. Finally, with the minutiae and the
field orientation data already obtained, the fingerprint template and sample can be
aligned. The first way of accomplishing this is through a brute-force algorithm that
moves one image over the other –taking into consideration both translation and rotation
movements as well as some admissible tolerances due to the image distortion coming
from the skin elasticity in the acquisition phase– to find the best alignment between
them [Wakahara et al., SCJ 2007]. The next step is to match the sample and template to
obtain a level of similarity, which the automatic system will use to issue the verdict of
whether both images correspond to the same person.
All this processing, illustrated in Figure 11.3, is performed on fingerprint images of 500-
dpi resolution, 8-bit gray scale and up to 280 x 512 pixels, acquired through sweeping
technology [Mainguet et al., ICBA 2004] via the thermal fingerprint sensor FingerChip
from Atmel Corp. and computed in the programmable logic device, either in an Altera
Excalibur EPXA10 SoPC or in the Xilinx Virtex-4 XC4VLX25 FPGA. Thus, the biometric
application is organized in a set of tasks that are processed following a sequential flow. A
task cannot start unless the previous task has finished, since the output data of a given
task is the input data for the next one in the chain. Moreover, most of these tasks are
repeated in both enrollment and recognition stages. This batch process allows the use of
the FPGA as a shared resource to perform different tasks at different time.

A,B A,B1,2

3 3

1,2
4,5 4,5

6 6

7 7

8,9 8,9

A,B A,B1,2

3 3

1,2
4,5 4,5

6 6

7 7

8,9 8,9

Figure 11.3 Fingerprint image processing stages

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 200

APP CNTRL
(STATIC MCU)

MATCH
(PR-MODULE B)

ALGN
(PR-MODULE A)

EXTRCT
(PR-MODULE 9)

 THIN
(PR-MODULE 8)

SMTH
(PR-MODULE 7)

 BIN
(PR-MODULE 6)

FLTRDORNT
(PR-MODULE 5)

FLDORNT
(PR-MODULE 4)

loop ENROLMENT

 ENH
(PR-MODULE 3)

loop AUTHENTICATION

NORM
(PR-MODULE 2)

SGMNT
(PR-MODULE 1)

ACQ

START SGMNT

END SGMNT (IRQ)

START NORM

END NORM (IRQ)

START ENH

END ENH (IRQ)

START FLDORNT

END FLDORNT (IRQ)

START FLTRDORNT

END FLTRDORNT (IRQ)

START BIN

END BIN (IRQ)

START SMTH

END SMTH (IRQ)

START THIN

END THIN (IRQ)

START EXTRCT

END EXTRCT (IRQ)

ACQ

START SGMNT

END SGMNT (IRQ)

START NORM

END NORM (IRQ)

START ENH

END ENH (IRQ)

START FLDORNT

END FLDORNT (IRQ)

START FLTRDORNT

END FLTRDORNT (IRQ)

START BIN

END BIN (IRQ)

START SMTH

END SMTH (IRQ)

START THIN

END THIN (IRQ)

START EXTRCT

END EXTRCT (IRQ)

START ALGN

END ALGN (IRQ)

START MATCH

END MATCH (IRQ)

Figure 11.4 Sequential execution flow (temporal partitioning) distributed in static- and PR-
regions (spatial partitioning)

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 201

11.3.2 Spatial and temporal partitioning of tasks

Figure 11.2 identifies the different processing stages of the AFAS application. Each of
these sequential stages, in its turn, can be implemented in a set of hardware and
software tasks processed in serial or parallel. The software tasks are left to the host CPU
of the system. The hardware tasks are performed in several custom master or slave
coprocessors in connection with the CPU.
Figure 11.4 shows the partitioning of tasks identifying up to 12 sequential stages. From
these stages, the first one (acquisition) and the last two (alignment and matching)
combine tasks in software and hardware at the same time. The other 10 out of 12 stages
are described in VHDL to be totally synthesized in custom hardware. All these
coprocessors are designed following a pipelined architecture and the implementation
exhibits a great deal of parallelism in order to guarantee a real-time authentication
response. Furthermore, since all these stages are mutually exclusive as depicted in the
sequence diagram of Figure 11.4, they can be multiplexed in time in an area of the
programmable logic device, becoming this area a shared resource. This strategy
enhances the functional density of the resources in use, in exchange for minimizing the
number of resources required. However, as overhead, the reconfiguration latency of these
shared resources is added to the original processing time of each computational stage.
The spatial partitioning of the application in static hardware and reconfigurable
hardware has been experimented in two different platforms. First, in a SoPC device
composed of a hard-core host processor and an FPGA that admits to perform a full
reconfiguration conducted by the host CPU. The second option is based on a run-time
partially reconfigurable FPGA partitioned in a static region and a PR region. In this case,
the static region lodges a soft-core processor and the PR region is addressed to allocate
the different hardware coprocessors. In this way the PR region of the FPGA device can be
reconfigured on the fly while this reconfiguration process is managed from the static
region. These two different implementation approaches carried out in this work are
detailed in the next section.

11.4 Experimental results

Two scenarios have been evaluated, both exploring run-time reconfiguration. In the first
one, the system is embedded in an Altera Excalibur SoPC device composed of a hard-core
processor (ARM9) and an FPGA. In this case, the FPGA –an Altera APEX20KE– is totally
reconfigured in several stages to swap there in and out new coprocessors each time. In
the second approach, the same concept is applied to an FPGA device provided with
dynamic partial reconfiguration capability, to be exact the Xilinx Virtex-4 LX device. In
this case, the system is composed of a soft-core processor (MicroBlaze) instantiated in a
static region of the FPGA and a partially reconfigurable region is used as a shared
resource where different coprocessors can be placed and removed along the execution of
the application. In this second approach, the shared resource is not all the FPGA but
only a partition. For this, the FPGA is built with PR glitchless technology and admits
run-time partial reconfiguration.
The technical features of the reconfiguration engine of these two platforms –Excalibur
SoPC and Virtex-4 FPGA– have been described in detail in chapter 5. From the point of
view of reconfiguration granularity for the application, in the first approach several
hardware coprocessors coexist at the same time in one context of the FPGA and they are
swapped by other set of coprocessors when the FPGA is fully reconfigured. In the second
approach this reconfiguration granularity is reduced to only one coprocessor that fits in
a more reduced area consisting of a PR region of the FPGA.
The reason to implement compute intensive tasks in hardware instead of software is due
basically to reduce the execution time of the application, to perform it at real-time by
exploiting parallelism. The two run-time reconfiguration alternatives –based on full or
partial reconfiguration of an FPGA device– pursue to minimize the programmable logic

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 202

resources required to implement the AFAS solution given that a full AFAS approach
implemented with all the hardware accelerators synthesized in a static and permanent
way on silicon would penalize too much in cost in comparison to a software-based
solution on a MCU device. Furthermore, in the reconfigurable solution proposed, the
time spent on the (full or partial) FPGA reconfiguration is part of the application
execution time and shall be minimized.
The implementation benchmark of the AFAS either as a pure software approach on a PC
platform under a dual-core processor (Intel Core 2 Duo T5600 at 1.83 GHz) or as a
reconfigurable SoPC/FPGA co-design (identical algorithm partitioned in HW/SW tasks
operating in the range of tens of MHz on the the Altera Excalibur EPXA10 SoPC or the
Xilinx Virtex-4 XC4VLX25 FPGA) highlights a speed-up of one order of magnitude in
favor of the SoPC/FPGA alternative. This acceleration rate grows up to two orders of
magnitude when such run-time reconfigurable alternative is compared with a SW
solution based on an embedded MCU platform running at hundreds of MHz instead of a
PC system running at GHz. These results let point out biometric recognition as a sensible
killer application for run-time reconfigurable computing, mainly in terms of efficiently
balancing computational power, functional flexibility and cost. Such features, reached
through dynamic reconfiguration, are easily portable today to a broad range of embedded
applications with identical system architecture.

11.4.1 Approach I: Full FPGA reconfiguration on Excalibur SoPC

The combination of hardware acceleration and flexibility makes reconfigurable SRAM-
based FPGAs key devices for implementing efficient computing systems. These, when
interfaced to a microcontroller unit, let move the most demanding processing tasks into
dedicated HW coprocessors. Thus, the traditional way of implementing algorithms only in
SW is nowadays a more and more obsolete practice, especially in the image processing
field where the current generation of FPGAs, with reconfigurable digital signal processing
resources as well as embedded processors, is gradually attracting the interest of this
market with powerful SoC platforms. In this direction, this work looks for exploiting the
benefits of developing an embedded AFAS prototype able to achieve good levels of
security at low cost under an efficient HW-SW architecture.
The development platform is constituted by the Altera Excalibur EPXA10 SoPC, as
illustrated in Figure 11.5. This device integrates an ARM922T core processor, standard
peripherals, programmable logic resources collected in a 1Mgates APEX20KE FPGA and
both on-chip single-port and dual-port SRAM memory blocks shared by the ARM
processor and the FPGA. All these components are linked through two internal AMBA
AHB interfaces. In addition to the EPXA10 device, the development setup is equipped
with an Atmel FingerChip FCD4B14 fingerprint sensor, which is directly connected to the
FPGA by means of a dedicated HW controller in order to acquire the fingerprint images of
the user. Next, external SDRAM memory, interfaced to a SDRAM controller present in the
SoPC, stores the fingerprint images and lets access to them from both MCU (considering
the embedded stripe composed of ARM core, memory and peripherals) and FPGA sides.
Another external memory available in our AFAS prototype is Flash. This non-volatile
memory stores several bitstreams corresponding to the different HW contexts that are
sequentially downloaded into the FPGA while the biometric algorithm is in progress. Just
for this, the EPXA10 SoPC integrates a configuration controller from where the MCU can
handle the reconfiguration of the FPGA resources at any time during system operation.
Thus, inside the FPGA, it is instantiated a dedicated arithmetic coprocessor to perform
the specific computation needed each time. This evolvable coprocessor is connected to
the internal DP-SRAM accessible by the ARM processor and the FPGA through an Altera
AVALON controller. This dual-port memory is used to store partial data computed in a
task that could be accessed or shared by both processors in some other task.
Furthermore, it has been implemented an AHB master controller in the FPGA to access
to the AHB-based devices, especially the SDRAM controller which connects with the

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 203

external SDRAM. An AHB slave controller is also instantiated in the FPGA. With this
controller, the MCU can configure some registers located in the FPGA used as
parameters of the synthesized HW computer. Some examples are the dimensions Y-X of
the image or some threshold values used by the algorithm that the MCU can set up just
before starting a processing task. Finally, in connection with all these HW interfaces,
there is a flexible coprocessor that evolves in each phase of the recognition algorithm.
This coprocessor, although is customized in every of these phases, typically consists of
internal dual-port RAM memory (LPM DPRAM) to store intermediate results and a
specific arithmetic-logic unit (ALU) managed by a finite state machine (FSM).

Figure 11.5 AFAS development platform

In order to identify what are the computationally most critical tasks, first the entire
recognition algorithm has been developed only in SW and executed by the MCU. Code
profiling lets obtain the execution load of each task of the software application to realize
where the processor is spending most of its execution time. With this information, it is
possible to balance resources versus performance to meet an efficient embedded system
implementation. Consequently, those more time-consuming tasks are processed in HW
by specific coprocessors instead of SW in order to optimise the application scheduling.
Under this idea, the hardware coprocessors involved in the fingerprint image recognition
cover the set of computational tasks needed to convert the gray-scale fingerprint image
captured through the sensor in a good-quality image with a well-defined structure of
binarized ridges and valleys defined by their field orientation and the set of minutia (ridge
endings and bifurcations) points.
Figure 11.6 illustrates the block diagram of the AFAS synthesized in the Altera Excalibur
EPXA10 SoPC device. The static side of the device is composed by the MCU system

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 204

connected to other static peripherals through two AHB AMBA buses. These two buses
along with an additional Altera AVALON bus compose the interfaces with the
reconfigurable APEX20KE FPGA. In spite of this fact, the biometric coprocessors are
organized so that they are interfaced with the rest of the system blocks by means of
standard registers and FIFOs.

Figure 11.6 System architecture of the reconfigurable fingerprint recognition processor

11.4.2 Approach II: Partial FPGA reconfiguration on Virtex-4

The Virtex-4 FPGA device becomes the computational unit of the second system
architecture evaluated for the AFAS platform. In a similar way to the previous approach,
the flash memory plays the role of system database, storing non-volatile information like
bitstreams as well as specific application data such as user fingerprint templates or
configuration settings of the biometric algorithm. The system also uses DDR-SDRAM
memory to temporarily store intermediate data or images obtained in each processing
stage. Besides, it is implemented a serial communication link based on an RS-232
transceiver connected to a UART controller –the latter synthesized in the resources of the
FPGA– for debugging purposes, just to transfer the resulting image of each stage to a PC
in order to visualize and analyse offline the fingerprint images or results of each step.
Finally, a sweeping fingerprint sensor, intended to capture the biometric characteristic of
the user, acts as input of the recognition algorithm.
The full system has been prototyped in a ML401 development board based on a Xilinx
XC4VLX25 FPGA – the second smallest chip of the Virtex-4 LX family. The components
breakdown is depicted in Figure 11.7. The block diagram of the system is depicted in two
colors: all the functional components synthesized inside the FPGA are drawn in white
whereas the components in gray are external resources (specifically, some memories, the
communication transceiver and the fingerprint sensor). The system is basically composed
of a host CPU with standard peripherals linked to a multiprocessor CoreConnect PLBv46
bus, a specific controller which handles the fingerprint sensor, a reconfigurable region
where different biometric coprocessors or PR modules (PRMs) can be placed to carry out
specific processing, and the reconfiguration engine responsible for swapping in and out,
on the fly, such hardware accelerators required at each instant in the PRR. The host CPU
consists in a MicroBlaze soft-core processor instantiated in the own resources of the
FPGA. This CPU is equipped with data/instruction caches synthesized through internal
RAM blocks. Regarding PR, two memory management units (MMUs) are implemented,
one master connected to DDR-SDRAM via a NPI bus and another slave connected to
PLBv46. The PRR can be accessed from the static region via two kinds of interfaces: (a)

FINGERPRINT
SENSOR

AUTOMATIC
FINGERPRINT
AUTHENTICATION
SYSTEM

APEX20KE FPGA

EXCALIBUR EPXA10 SYSTEM-ON-CHIP

AMBA AHB1

AMBA AHB2

SDRAM
CONTROLLER

ARM922T
CORE

DP-SRAM
(data)

SRAM
(program code)

AHB
BRIDGE

EXPANSION
BUS INTERFACE

CONFIG.
CONTROLLER

AHB
BRIDGE

AHB
BRIDGE

AHB
SLAVE

AHB
MASTER

LPM
DPRAM

SPECIFIC
ALU-COMPUTER

AVALON
CONTROLLER

UART
CONTROLLER

COMPUTER
PARAMETERS

FSM
CONTROLLER

SDRAM
(fingerprints)

FLASH
(bitstreams)

EXTERNAL

LINK

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 205

FIFO memories for raw data transfers between the DDR-SDRAM and the PRR, and (b)
specific registers, which are managed by the CPU from the slave MMU and act as
configurable settings for the PRMs. Besides, an additional FIFO directly connected to the
PRR plays the role of an inter-PRMs buffer or cache to temporarily store data in the
internal RAM of the FPGA instead of in external memory, which is comparatively slower
than being recovered from this internal dedicated memory. This FIFO was not included
in the minimalist standard system architecture proposed in chapter 4 and used as
reference in this approach. Besides, during the reconfiguration process, the PRR is
isolated from the static region by disabling the bus macros (BM) that connect both sides.
Under this architecture, the CPU manages the application flow in software while the
most time-consuming tasks are processed by custom hardware accelerators in the PRR.
For this, the reconfiguration engine transfers the partial bitstreams corresponding to the
image processing tasks of the biometric algorithm (segmentation, normalization, and so
on) from the repository located in external DDR-SDRAM to the internal FPGA
configuration memory through the ICAP. Following the sequential flow dictated by the
biometric algorithm, the different image processing tasks are ordered by the host CPU to
be processed into the PRR instantiated in the way of biometric coprocessors, while, in
foreground, the CPU holds at real-time, and undisturbed by the partial reconfiguration,
any communication link (e.g., via RS232) with the external world.
Regarding the computation unit, the FPGA is detached in two regions, as shown in
Figure 11.8: a static region occupied by a whole multiprocessor IBM CoreConnect bus
system; and a partially reconfigurable region that is used to place –on demand and
multiplexed in time as long as the processing advances– the custom biometric
coprocessors or IPs responsible for the different sequential tasks of the recognition
algorithm. The multiprocessor CoreConnect bus system mainly comprises a MicroBlaze
processor and other standard peripherals along with a custom reconfiguration controller,
this one linked to the ICAP interface.

Figure 11.7 Biometric recognition system architecture in a Virtex-4 FPGA

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 206

Figure 11.8 Spatial partitioning and floorplanning of the AFAS in one static region and
one reconfigurable region of the FPGA. Temporal partitioning of the
application in sequential stages performed in the reconfigurable region

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 207

All the processing tasks are enumerated from 0 (static) to B in Figure 11.2, according to
sequential execution order. Custom hardware coprocessors implement all the tasks in
the PRR, with the exception of the fingerprint acquisition process which is performed in
software by MicroBlaze. The reason behind this specific hardware/software partitioning
is that the sweeping sensor needs an integration time of 5 milliseconds to acquire
consecutive slices. That is enough time for it to perform the image reconstruction on the
fly directly in software under MicroBlaze control. Therefore, it is not necessary to
implement this image reconstruction with a custom hardware coprocessor. The image
acquisition consists of capturing 100 slices at a rate of 5 ms per slice, with each slice
consisting of 280 x 8 pixels. Software handles the reconstruction in real-time by
detecting the overlapping of rows of pixels between each two consecutives image slices.
The rest of the tasks, however, are implemented as custom hardware coprocessors in the
PRR of the FPGA simply because of real-time constraints. Moreover, regarding tasks
partitioning, each task involves the transfer of many data –typically the full fingerprint
image– from external memory to the PRR where it is processed and back to external
memory. Each of these tasks has been scheduled in a different coprocessor. Once the
processing of each particular task is finished, the reconfiguration controller –located on
the static region of the device and instructed by the MicroBlaze processor– replaces the
coprocessor currently instantiated in the PRR by the one corresponding to the next stage
of the biometric algorithm. The reconfiguration controller does this job by simply
downloading the new partial bitstream into the PRR and transferring this data directly
from DDR-SDRAM to the internal FPGA configuration memory via the ICAP interface.
It is important to note that it is used a standard interface based on FIFO memories and
flip-flop registers between the static and the reconfigurable regions. This allows to
develop standard biometric coprocessors or IPs placed in the PRR which are independent
of the multiprocessor bus the system uses, be it AMBA, CoreConnect, Wishbone or some
other, as depicted in Figure 11.7. This point is fundamental in order to guarantee
standardization and portability of the biometric algorithm to different platforms.

11.4.3 Performance evaluation

The AFAS application can be classified as a high-performance image processing
transaction since it exhibits a great deal of parallelism and demands a real-time
authentication response, what from an ergonomic standpoint means not to exceed some
few seconds. Furthermore, despite the implementation trade-off between processing time
and consumed resources, a low cost solution is mandatory if we pursue to port this
technical proposal also to high volume consumer applications. Submitted to all these
constraints, the system architecture presented in our approach is centered in a
computation unit driven by hardware/software co-design and run-time reconfiguration
technologies applied to programmable logic devices.
In general, the verification efficiency of two different biometric algorithms can be
compared by evaluating their accuracy in identifying (or rejecting) a same set of genuine
(or fraudulent) users trying to access to the system. The equal error rate (EER), false
acceptance rate (FAR) or false rejection rate (FRR) are addressed to this aim. However, to
assess the implementation efficiency of an algorithm against different technological
approaches (e.g., software-oriented solutions on a GPU or MCU, or HW/SW co-design on
an FPGA), the metrics in use are mainly the execution time spent (i.e., ergonomics) and
the physical resources involved (i.e., cost). Just for this reason, we have submitted our
algorithm to several implementation approaches under different platforms: a SW-based
implementation on a PC first and on several embedded MCUs later, and a HW/SW co-
design of the same algorithm on a SoPC and on an FPGA in the end making use of PR.
As introduced in section 11.3, the design flow entails several development loops. Initially,
we fully developed the algorithm in software in Matlab on a PC platform. Afterward, we
ported this software code to embedded software in the C programming language and
executed it first in the same PC, just to confirm that we would obtain the same results,

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 208

and then on an embedded microprocessor like ARM9 in the Excalibur SoPC or
MicroBlaze in the Virtex-4 FPGA. In such embedded software approach, the hard- or
soft-core processor deploys a purely software solution on a Harvard architecture, without
any custom hardware coprocessor in use and without reaching real-time performance. To
improve the time, and based on the resultant tasks profiling obtained, the next step
consisted in switching to a HW/SW co-design solution introducing custom biometric
coprocessors decribed in VHDL and making use of run-time reconfiguration.
Some recognition tests with 8-bit gray-scale fingerprint images of 268 x 460 pixels have
been conducted in three platforms: in the Excalibur SoPC platform, in the PR system
based on Virtex-4 and also in a personal computer based on an Intel Core 2 Duo T5600
processor. The same algorithm is processed either implemented purely in software or by
combining software with flexible hardware just to compare the performance in both
enrollment and recognition stages.
We obtained identical recognition results in the three platforms, as expected. However,
the processing time spent in each case differed dramatically. Table 11.1 shows the time
needed when the algorithm is deployed on the three different platforms and
architectures: a software approach on the Intel Core 2 Duo PC platform; HW/SW co-
design on an Excalibur EPXA10 SoPC; and HW/SW co-design on a Virtex-4 XC4VLX25
FPGA platform equipped with dedicated and on-the-fly reconfigurable biometric
coprocessors instantiated on demand in programmable logic.

Table 11.1 Processing time breakdown of the different tasks executed in different AFAS

platforms. Tasks performance comparison: (i) SW-only approach on a personal
computer platform based on an Intel Core 2 Duo processor @ 1.83GHz, (ii)
HW/SW co-design on an Altera Excalibur EPXA10 SoPC based on an ARM9
processor @ 200MHz and custom hardware coprocessors @ 24MHz/48MHz,
and (iii) PR-HW/SW co-design on a Xilinx Virtex-4 XC4VLX25 FPGA based on
a Microblaze processor @ 100MHz and custom reconfigurable hardware
coprocessors @ 50MHz/100MHz

Time (ms)

PC Platform
Intel Core 2 Duo

(SW-ONLY)

Embedded Platform
Excalibur EPAX10

(DYNAMIC FULL RECONF.)

Embedded Platform
Xilinx Virtex-4 FPGA

(DYNAMIC PARTIAL RECONF.)

Task

ID

Automatic Fingerprint
Authentication System

Processing Stages

Processing
(1.83 GHz)

Reconf.
(50 MHz)

Processing
(MCU 200 MHz,

FPGA 24/48 MHz)

Reconf.
(100 MHz)

Processing
(CPU 100 MHz,

PRR 50/100 MHz)

Task 0 Image acquisition and reconstruction (SW) 500.000 (SW) 500.000 (SW) 500.000

Task 1 Image segmentation (SW) 2.810 (HW) 1.288 (HW) 0.672

Task 2 Image normalization (SW) 0.470 (HW) 2.267 0.841 (HW) 0.850

Task 3 Image enhancement (isotropic filtering) (SW) 7.030 (HW) 2.179 1.045 (HW) 2.563

Task 4 Field orientation (SW) 2.500 (HW) 1.288 1.025 (HW) 0.669

Task 5 Filtered field orientation (SW) 0.620 (SW) 105.479 1.046 (HW) 0.419

Task 6 Directional filtering based binarization (SW) 15.940 179.918 (HW) 1.337 1.107 (HW) 2.465

Task 7 Image smoothing (SW) 14.220 179.918 (HW) 1.407 1.045 (HW) 0.447

Task 8 Image thinning (SW) 1.410 (HW) 1.441 0.974 (HW) 0.820

Task 9 Minutiae extraction and filtering (SW) 0.630 (SW) 95.395 0.943 (HW) 7.606

Task A Field orientation maps alignment (SW) 3224.530 (HW/SW) 312.074 1.045 (HW/SW) 57.671

Task B
Minutiae alignment, matching
and authentication

(SW) 4.220 (HW/SW) 71.851 1.035 (HW/SW) 20.737

RECONF. & PROCESS. TIME BREAKDOWN 3774.380 359.836 1096.006 10.106 694.919

TOTAL AFAS EXECUTION TIME (1) 3274.380 955.842 205.025

(1) Task 0 is not included in the computation of the total execution time.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 209

The reconfiguration interface in the Excalibur SoPC is composed of a 1-bit data bus
operated at 50 MHz, giving rise to a reconfiguration bandwidth of 50 Mbps. In the Virtex-
4 FPGA, the physical features of such interface are 32-bit and 100 MHz, what results in
3.2 Gbps. As deduced from Table 11.1, even though HW/SW approaches add a penalty
in time due to the reconfiguration latency (2 full FPGA reconfigurations in the Excalibur
approach and up to 10 partial reconfigurations of the PRR in the Virtex-4 approach), this
overhead is overcome by the hardware parallelism reached with custom hardware
coprocessors. In comparison to the sequential execution of code under a purely software
implementation approach in a Harvard-based CPU architecture, an important
acceleration rate is achieved with custom coprocessors. As a result, the reconfiguration
time is negligible in comparison to the total processing time of the biometric recognition
application.
Without considering the acquisition task, which is fixed at 500 ms due to the physical
sweeping-sensor restrictions (100 slices captured with an integration time of 5 ms and
image reconstructed from them on the fly), the reconfigurable system architectures on
Excalibur and Virtex-4 let reduce the application execution time due to the rest of the
processing tasks to 956 ms and 205 ms respectively. That compares with the latency of
3,274 ms in the pure-software approach on the PC, which means a speedup of 3.4x and
16x in favor of the run-time reconfiguration solution. Thus, Table 11.1 makes it evident
that real-time authentication is feasible with HW/SW co-design that exploits parallelism
and pipeline techniques, along with run-time reconfigurable hardware technology,
thanks to its low reconfiguration latency.
But it is not only addressed time in this solution. By means of dynamic reconfiguration,
it is intended to reduce cost to the minimum, minimizing the number of resources
involved in the design that let achieve the real-time requirements demanded to the
application. It has been also carefully considered cost-effectiveness by means of the time-
sharing of computational resources. In the first HW/SW co-design prototype based on
Excalibur, several coprocessors are synthesized at the same time in the programmable
logic to minimize the number of full reconfigurations of the FPGA. In the second
prototype on Virtex-4, the number of coprocessors placed at one time is reduced to one
and the number of reconfigurations is then increased. This second approach is however
the one that reaches a better performance-cost trade-off. The XC4VLX25 FPGA device
contains 21,504 slice flip-flops, 21,504 four-input LUTs, 72 18-kbit RAMB16 blocks and
48 DSP48 blocks. Regarding the partitioning of resources in both static and
reconfigurable regions, the reconfigurable region takes 11,264 slice flip-flops, 11,264
four-input LUTs, 22 18-kbit RAMB16 blocks and 44 DSP48 blocks, while the rest of the
resources of the device keep static for the entire life cycle of the application.
The PRR is in charge of the execution of up to 11 different sequential tasks of the
recognition algorithm. As shown in Table 11.2, the same application synthesized on a
fully static design would not fit fully on the XC4VLX25 FPGA; therefore, that would
typically force designers to choose a bigger and more expensive device with the proper
amount of resources. However, using PR eliminates this issue. Table 11.2 definitely
demonstrates that automatic personal authentication can be performed at low cost today
with the reuse of logic resources thanks to PR technology, basically with only an
additional time overhead related to the reconfiguration latency. This delta of time,
however, is quantified in 10 ms in Table 11.1. This means only a 1.4% of the whole
authentication time and, therefore, practically does not degrade the real-time constraints
of the target application. On the contrary, the contribution in cost savings of FPGA
resources are valued between 59 and 142%, just the delta of price that would mean to
move the design from the XC4VLX25 FPGA device used in our approach to a bigger
device of the XC4VLX family –XC4VLX40 or XC4VLX60, respectively– which would be
required in case of synthesizing the same AFAS algorithm through HW/SW co-design but
implementing all the hardware coprocessors in a static way instead of multiplexing them
in time in a PRR of the FPGA. This impact in cost takes only into account the device
exchange, i.e., the savings in resources. Other factors like reduction of power

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 210

consumption derived from the reconfigurable approach are not considered in this
estimation. Despite this, only the savings in silicon area are relevant enough to become a
definitive reason to bet on PR technology and make run-time reconfigurable computing
an advantageous implementation alternative of electronic biometric-based embedded
systems.

Table 11.2 Balance of resources in the AFAS application based on Virtex-4 FPGA

Hardware Resources
Task ID

AFAS Processing Stage

1-bit
flip-flop

4-input
LUT

RAMB16
block

DSP48
block

 Application control flow (static hardware) 7005 8888 41 4

Task 0 Image acquisition and reconstruction

Task 1 Image segmentation 4978 4612 8 20

Task 2 Image normalization 371 334 0 8

Task 3 Image enhancement (isotropic filtering) 5275 5831 5 28

Task 4 Field orientation 3339 3166 5 8

Task 5 Filtered field orientation 2857 2983 7 0

Task 6 Directional filtering based binarization 5462 4166 17 29

Task 7 Image smoothing 4892 3265 8 0

Task 8 Image thinning 1013 2821 13 0

Task 9 Minutiae extraction and filtering 487 3379 3 0

Task A Field orientation maps alignment 2632 8943 21 0

Task B Minutiae alignment, matching and authentication 642 4379 14 5

TOTAL RESOURCES USED IN THE AFAS DESIGN 38953 52767 142 102

TOTAL RESOURCES OF VIRTEX-4 LX25 FPGA 21504 21504 72 48

A detailed description of the different hardware accelerators/coprocessors synthesized in
the AFAS application and mapped in the different reconfigurable platforms can be found
in the PhD dissertation from Mariano Fons Lluís, entitled “Hardware accelerators for
embedded fingerprint-based personal recognition systems” and submitted to the
Department of Electronic, Electrical and Automatic Control Engineering of the University
Rovira i Virgili.

11.5 Summary

By definition, embedded systems require optimal balance of time, physical resources and
energy to be implemented as compact and cost-effective designs. Run-time reconfigurable
hardware technology shares natural qualities to meet these specifications. The
heterogeneous computational resources of SRAM-based FPGAs, their online reusability,
adaptivity, and the potential for implementing large circuits on limited hardware
resources are all important vectors in the design space that make run-time
reconfigurable hardware technology an excellent choice for implementing a wide range of
embedded applications.
In an era of ever-increasing security concerns, biometrics has drawn substantial
attention from both industrial and scientist communities: a lot of research groups are
nowadays focused on developing accurate electronic computing systems capable of
recognizing the identity of a person at real-time and with good levels of trust. The
biometrics market is estimated to grow at an compound annual growth rate (CAGR) of
21.6% from 2010 to 2015. The growth of the biometrics market is mainly due to
increasing concerns of the countries in terms of strengthening national security.
Amongst all the biometrics modalities, automated fingerprint identification system (AFIS)
market is foreseen to generate the highest revenue. In this direction, our case study

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 211

encompasses fingerprint-based recognition. It is presented the design and development
of a fingerprint image computer able to deploy all the typical processing stages involved
in a classical biometric recognition algorithm.
This work aims to be a best practice example of run-time partial reconfiguration for
embedded applications. The concept of temporal partitioning of an application into tasks
processed in a sequential order on a subset of shared resources of an FPGA fits well in
the two technological disciplines involved in real-time embedded security: cryptography
and biometric personal recognition. Both computing disciplines admit a temporal
breakdown of serial or parallel tasks that can be processed in space on a shared region
of an FPGA. On the one hand, cryptography has already been exploited through PR by
the research community reaching good results, as presented in chapter 6. On the other
hand, for the first time in the scientific community, it is proposed now to address the
development of an automatic personal recognition system based on biometric features
through run-time reconfigurable hardware technology, aimed at achieving a well-
balanced price-performance trade-off. In this pioneer conception, the compute-intensive
tasks of the biometric personal recognition algorithm are partitioned and synthesized
first in a series of coprocessors that are then instantiated and executed multiplexed in
time on a partially reconfigurable region of the FPGA. The implementation benchmark of
the AFAS either as a pure software approach on a PC platform under a dual-core
processor (Intel Core 2 Duo T5600 at 1.83 GHz) or as a reconfigurable FPGA co-design
(identical algorithm partitioned in HW/SW tasks operating at 50 or 100 MHz on the
second smallest device of the Xilinx Virtex-4 LX family) highlights a speed-up of one
order of magnitude in favor of the FPGA alternative. The proposed FPGA-based
architecture is able to handle a biometric recognition system at real-time. Specifically,
the proposed architecture running at 50–100 MHz delivers a processing speed up of 16
in comparison to an instruction-set processor clocked at 1.83 GHz. Furthermore, this
design strategy based on run-time reconfigurable computing allows to save an important
amount of silicon area in contrast to the number of resources which would be needed in
case of a traditional solution based on a static hardware implementation of the whole
system (with all the hardware computers mapped on silicon at the same time and
present for all the execution time), while still fulfilling stringent real-time characteristics
demanded by this type of ergonomic applications. Thus, this work is a sensible
demonstration that a high-demanding (time-critical) AFAS application can be embedded
into a small and low-cost FPGA device. These results let point out biometric recognition
as a sensible killer application for run-time reconfigurable computing, mainly in terms of
efficiently balancing computational power, functional flexibility and cost. In this sense,
the results of this work can leverage embedded biometric applications in the market to
propel the implementation of highly efficient recognition algorithms at an affordable cost,
fact that should definitively allow embedding them into many consumer applications or
portable equipments and introduce thus run-time reconfigurable hardware technology in
commercial products.
The infallibility of the biometric recognition is today an open issue. The results of FAR
2.2% and FRR 2.2% obtained in the last edition of the Fingerprint Verification
Competition (FVC 2006) prove that the state-of-the-art in algorithmics does not
guarantee yet an error-free authentication/identification rate. In order to improve these
figures, the complexity of the biometric algorithm seems will have to increase, fact that
will lead to increase the processing power of the system intended to execute such
computations. Many research groups from both academia and industria are joining
efforts in search of the whole free-of-errors solution, fact that should help to increase the
acceptance of these biometric systems in the society. This work proves the fact that PR
technology is in a well position to contribute to the efficient implementation of biometric
processing. The results obtained in this work let appoint run-time partial reconfiguration
as a valid alternative to overcome the growing complexity of the embedded applications at
low-cost, by simply translating the future new computational tasks that will probably
require the applications into new hardware coprocessors to be processed on the same set

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 212

of shared resources, just to not impact on system cost. Although there are many works
published by the research community that disseminate the use of programmable logic
(FPGA or SoC) devices to implement biometric algorithms, as far as the author knows,
this work is the pioneer in spreading the use of run-time flexible hardware in the
implementation of automatic personal recognition systems. The concept applied to
fingerprints can also be extrapolated to multi-modal biometrics, where other
physiological or behavioral features such as iris, face or voice can be processed over a
partition of time-shared resources of a reconfigurable-programmable logic device to
execute specific signal processing stages at real-time.

References

[Cheng and Tian, PRL 2004]
J. Cheng, J. Tian, Fingerprint enhancement with dyadic scale-space, Pattern Recognition Letters, vol. 25,
no. 11, p. 1273-1284, 2004.

[Danese et al., DSD 2009]
G. Danese, M. Giachero, F. Leporati, G. Matrone, N. Nazzicari, An FPGA-based embedded system for
fingerprint matching using phase-only correlation algorithm, Euromicro Conference on Digital System
Design, Architectures, Methods and Tools, pp. 672-679, 2009.

[Danese et al., MICPRO 2011]
G. Danese, M. Giachero, F. Leporati, N. Nazzicari, An embedded multi-core biometric identification
system, Microprocessors and Microsystems, vol. 35, no. 5, pp. 510-521, 2011.

[Guo and Hall, ACM 1989]
Z. Guo, W.R. Hall, Parallel thinning with two-subiteration algorithm, Communications of the ACM, vol.
32, no. 3, pp. 359-373, 1989.

[Hong et al., TPAMI 1998]
L. Hong, Y. Wan, A. Jain, Fingerprint image enhancement: algorithm and performance evaluation, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 777-789, 1998.

[Jain et al., Computer 2010]
A. K. Jain, J. Feng, K. Nandakumar, Fingerprint matching, IEEE Computer, February 2010.

[Jiang and Crookes, JRTIP 2008]
R.M. Jiang, D. Crookes, FPGA-based minutia matching for biometric fingerprint image database retrieval,
Journal of Real-Time Image Processing, vol. 3, no. 3, pp. 177-182, Springer-Verlag, 2008.

[Lam et al., TPAMI 1992]
L. Lam, S. W. Lee, C.Y. Suen, Thinning methodologies. A comprehensive survey, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 14, no. 9, pp. 869-885, 1992.

[Mainguet et al., ICBA 2004]
J.F. Mainguet, W. Gong, A. Wang, Reducing silicon fingerprint sensor area, Proc. of the Int. Conference
on Biometric Authentication, LNCS, vol. 3072, pp. 301-308, 2004.

[Ratha and Jain, TPDS 1999]
N.K. Ratha, A.K. Jain, Computer vision algorithms on reconfigurable logic arrays, IEEE Transactions on
Parallel and Distributed Systems, vol. 10, no. 1, pp. 29–43, 1999.

[Rao and Schunck, CVPR 1989]
A. Ravishankar Rao, B.G. Schunck, Computing oriented texture fields, IEEE International Conference on
Computer Vision and Pattern Recognition, pp. 61-68, 1989.

[Ratha et al., PR 1995]
N.K. Ratha, S. Chen, A.K. Jain, Adaptive flow orientation-based feature extraction in fingerprint images,
Pattern Recognition, vol. 28, no. 11, pp. 1657-1672, 1995.

[Ross et al., PR 2003]
A. Ross, A. Jain, J. Reisman, A hybrid fingerprint matcher, Pattern Recognition, vol. 36, no. 7, pp. 1661-
1673, 2003.

[Rodríguez et al., ARC 2006]
D. Rodríguez, J.M. Sánchez, A. Duran, Mobile fingerprint identification using a hardware accelerated
biometric service provider, Reconfigurable Computing: Architectures and Applications, LNCS, vol. 3985,
pp. 383-388, Springer, 2006.

[Tico and Kuosmanen, TPAMI 2003]
M. Tico, P. Kuosmanen, Fingerprint matching using an orientation-based minutia descriptor, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 1009-1014, 2003.

[Wakahara et al., SCJ 2007]
T. Wakahara, Y. Kimura, A. Suzuki, A. Shio, M. Sano, Fingerprint verification using ridge direction
distribution and minutiae correspondence, Journal Systems and Computers in Japan, vol. 28, no. 3, pp.
72–82, 2007.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 213

Chapter 12

Automotive electronic control unit

Nowadays, the use of electronics is the basis for introducing competitive advantages in
the automobile industry. Leading companies must constantly innovate by providing new
end-user functionality, typically synthesized in hardware and software in the way of
electronic control units (ECUs). On the one hand the escalating competition among cars
manufacturers to offer exclusive technological features to their customers and, on the
other hand, the strict safety and environmental regulations imposed by the legislation
have led to the explosive growth of the automotive electronics industry. In this scenario,
AUTOSAR (Automotive Open System Architecture) and Functional Safety (ISO 26262)
standards are today the two hottest topics in the automotive field which articulate the
technical and architectural bases of design of ECUs.
At the same time as the automotive electronics density increases to satisfy the growing
functional demand for new vehicles, FPGA manufacturers are delivering bigger devices –
capable already of integrating a full embedded application inside– at a more competitive
price. This trend makes feasible the expansion of reconfigurable computing technology in
the automotive industry. In this direction, the author addresses in this chapter a
pioneering approach to architect an automotive ECU on a programmable logic device
deploying both AUTOSAR and ISO 26262 standards. The author highlights the
advantages of synthesizing an AUTOSAR-compliant ECU provided with safety-related
functions on a SoC/FPGA instead of on a typical single-core/dual-core MCU. Hence, this
work spreads a computing paradigm change based on the replacement of a software-only
solution by an alternative driven by hardware/software co-design and reconfigurable
computing techniques in specific ECU scenarios where a purely sofware approach is not
feasible due to performance-complexity reasons.

12.1 Introduction

Due to the growing electronic content of vehicles, the automotive industry is expected to
become increasingly important to semiconductor manufacturers. Analysts predict that
the market for semiconductors in automotive applications will increase at a CAGR of 8%
in the coming five years. One of the fastest-growing segments relates to MCUs and
FPGAs. This would come as a result of the wide range and greater number of emerging
applications for motor vehicles, including safety and driver assistance, car-to-car
communications, driver monitoring, comfort and control functions, navigation systems,
entertainment and the popular spectrum of hybrid-electric technologies. In such a
landscape, the evolution of automotive electronics is expanding at a rapid rate and the
automobile has been transformed from a primarily electro-mechanical device into an
integrated machine controlled by electronics, with embedded hardware and software in
all its major subsystems, including engine control, power train, energy management,
body functions and infotainment. The computational power present in a vehicle is today
distributed through ECUs interconnected via several communication networks. In
modern cars, one can find more than 70 ECUs which manage lots of embedded functions
like fuel injection, anti-lock braking system (ABS) or battery state-of-charge/state-of-
health monitoring, to name just a few. Automotive leading manufacturers realized soon
the unavoidable need to address the growing complexity of designing and managing
automotive systems in an effective way. Today and also in the future, both AUTOSAR and
ISO 26262 standards constraint the way hardware and software systems are architected,
designed, developed and deployed in real automotive ECUs.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 214

12.1.1 AUTOSAR

AUTOSAR is an initiative conducted by the automobile industry that represents a step
forward towards the definition of a standard system architecture for the electronic
control units distributed in vehicles. It is a partnership of manufacturers and suppliers
working together to develop and establish a de-facto open industry standard for
automotive electrical/electronic (E/E) architectures. From a technical point of view,
several major issues are intended to be addressed: manage the growing complexity of
automotive E/E systems associated with the continuous increase of functionality;
improve flexibility for product modification, upgrade and update; improve scalability of
solutions within and across product lines; improve quality and reliability of E/E systems;
and enable detection of errors in early design phases.
Since 2003, this development partnership of car manufacturers, suppliers and other
companies from the electronics, semiconductor and software industry have been working
on the basis for reliably controlling the growing complexity of the E/E systems in motor
vehicles, as well as improving cost efficiency without compromising quality. The core
partners of AUTOSAR are the BMW Group, Bosch, Continental, Daimler, Ford, General
Motors, PSA Peugeot Citroën, Toyota and the Volkswagen Group. In addition to these
companies, more than 160 members play an important role in the success of the
partnership. Their common objective is to create a basis for industry collaboration on
basic functions while providing a platform which continues to encourage competition on
innovative functions. Under the slogan “cooperate on standards, compete on
implementation”, automotive manufacturers and suppliers work together to develop and
establish an open industry standard aimed at being a breakthrough in automotive E/E
design (http://www.autosar.org).

12.1.2 ISO 26262

During the last years, mechanical components within vehicles have been more and more
displaced by electronic components which are taking over additional control, monitoring
and diagnostic functions. These higher levels of complexity together with shorter product
development cycles result in product failures. Functional safety turns out to be one of
the key issues of present and future automobile development as new safety-critical
functions increasingly emerge. Since August 2004, the International Electrotechnical
Commission’s IEC 61508 is a master, accepted worldwide standard for functional safety
of electrical, electronic and programmable electronic (E/E/PE) safety-related systems
and components. It contains a generic solution for all activities during the safety life
cycle of E/E/PE equipment that is performing safety functions. Based on the various
fields of application of all these safety-related systems, tailored standards have been
established. Among them, the International Organization for Standardization's ISO
26262 is an adaptation of the IEC 61508 for automotive E/E systems, in place since the
end of 2011. It is a regulation that provides the automotive industry with support for the
safe development of automotive software and hardware system architectures. The entire
D&D life cycle is thus governed by standards that demand systematic processes. The
bases of functional safety are the avoidance of faults (e.g. systematic software faults) or
the detection and handling of faults (e.g. random hardware faults) in order to mitigate
their effects and thus prevent the violation of any established safety goal. The basic idea
behind reducing risk emanating from vehicle systems is that based on the severity of
possible accidents, the probability of exposure to certain driving situation and the risk
reduction due to external measures, an automotive safety integrity level (ASIL) is defined
which, in case that all requirements are satisfied, reduces the intolerable risk to a
tolerable residual risk. In this context, the term risk is defined as the combination of the
probability of a harm/damage occurring and its severity, and during the engineering
development phase all potential hazards and risks shall be assessed in advance and take
suitable measures to minimize them.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 215

This standard is aligned to automotive industry use cases and definitions of acceptable
risks and intends to prevent failures that could result in a catastrophe. Manufacturers
as well as suppliers need to prove to their customers and accreditation authorities that
despite increasing complexity and software determination their electronic systems will
deliver the required functionality safely and reliably, according to industry-specific
regulations (http://www.iso.org/iso/).

12.2 Related work

Recently, the automotive sector has been working actively in defining the design rules of
the automobile of the future driven by AUTOSAR and ISO 26262 standards. At the same
time that these standards have been defined, the semiconductor companies have worked
hard to launch new devices adapted to these new requirements. In this direction,
suppliers of microcontrollers like STMicroelectronics or Freescale Semiconductor have
jointly develop new families of MPC560/SPC560 processors based on a PowerPC
architecture and adapted to the AUTOSAR demands, as well as keeping specific
reliability/safety functions implemented in hardware like memory protection units (MPU)
and error correction codes (ECC). In parallel, Texas Instruments Inc. has introduced the
automotive TMS570 microcontroller, an ARM Cortex-R4F lock step dual-core processor
specifically designed to meet the IEC 61508 SIL3 or ISO 26262 ASIL D safety levels. A
similar approach has been conducted by Freescale Semiconductor with its Leopard
MPC564xL MCU composed of a dual-core PowerPC processor admitting both lock step
and dual parallel modes, certified according to IEC 61508 SIL3 and equipped with core
hardware enhancements for self-test, redundant computation mechanisms, MPUs,
redundant voltage monitor, ECC on all memories, etc.
Other companies focused on the development of embedded software have developed their
solutions to offer AUTOSAR-based applications with safety-related functions certified to
specific ASIL levels, like Vector Informatik GmbH and its MICROSAR Safe solution,
containing safety integrity functions such as program flow monitoring for safety-related
SWCs, reliable intra- and inter-ECU communication, periodic hardware checking during
operation, and so on.
Other initiatives are research projects. The DysCAS (dynamically self-configuring
automotive systems) project, funded by the Sixth Framework Programme (FP6) of the
European Commission and composed of partners from both academia and industry –
including automakers like Volvo Technology AB and Daimler AG– targets the self-
configuration of automotive embedded systems. The main work of the project has been
the development of a reference middleware architecture that, unlike the common static
design-time configurations, is able to adapt itself after its production –in driving, stand-
still or in the dealer– to changing internal and external conditions. In the project,
corresponding middleware implementations have been realized based on several different
real-time operating systems, networks and processors. The main result is the reference
architecture which provides sophisticated capabilities to configure itself in context-aware
ways to meet the quality-of-service requirements of applications, to automatically
optimize resource usage, and to dynamically detect and resolve certain categories of
faults. In this way, the DySCAS project, although mainly oriented to infotainment
applications, represents a first step towards self-managing automotive systems [Anthony
et al., EIK 2006].
Up to now, it has been overviewed approaches based on MCUs. On the other extreme,
the use of programmable logic oriented to take part in AUTOSAR and functional safety
solutions has been also promoted by other groups. In the field of FPGA-based ECU
designs in the automotive industry based on programmable logic, many FPGA suppliers
like Xilinx and Altera have qualified devices for automotive applications. Most of these
devices are used across driver assistance, driver information and infotainment systems.
Besides, EDA tools providers like Mathworks show interest for this field [Sharma and
Chen, SAE 2009]. As example of functional safety deployment on FPGAs, TÜV Rheinland

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 216

–a company dedicated to technical safety services and consulting– qualified the FPGA
design methodology and tools of Altera aimed at enabling the implementation of FPGA-
based safety-related systems. This FPGA-based design methodology allows FPGA users to
design their own customized safety controllers and provides a significant competitive
advantage over traditional MCU- or ASIC-based designs concerning flexibility and
simplicity in complex safety systems [Altera Corp., WP01123 2010]. Besides, in [Salewski
and Kowalewski, TII 2008] a comparison of MCUs and FPGAs with respect to safety and
reliability properties is presented. With regard to the handling of hardware faults, no
major differences are identified between those two hardware platforms, therefore there is
not any technical obstacle or stopper in the use of FPGA technology in automotive safety-
critical applications. In [Conmy and Bate, TII 2010], it is shown how a modular design
embedded on an FPGA can be exhaustively analyzed from a safety perspective. It traces
very low-level FPGA faults to high-level system hazards. This is achieved by performing
exhaustive bottom-up failure analysis of the FPGA circuit to determine how potentially
hazardous outputs can occur at the I/O pins of the FPGA device. A hierarchical
component-based approach is then used to manage scale.
Concerning automotive applications based on FPGA devices used as static hardware
designs, in [Hong-qiang et al., ICVES 2007] it is designed a door module ECU that
integrates a window lifter controller with anti-trap protection. The whole system is
embedded in an Altera Stratix EP1S40 FPGA composed of a soft-core 8051 CPU and a
CAN controller, both described in VHDL.
In the area of FPGA-based automotive applications exploiting dynamic reconfiguration,
not too many initiatives have been conducted up to now. Within the research project
ReCoNets [Teich et al., DATE 2006], concepts like self-adaptation and fault-tolerance in
automotive control architectures are addressed by bringing FPGA reconfiguration in
ECUs. The idea proposed consists in allowing the reallocation of functionality in
hardware or software in case of detecting ECU faults to repair quickly the fault and reach
a proper balance of computational load among functional nodes. As proof-of-concept,
this approach is demonstrated in a self-adaptive driver assistance system. In another
work, Toyota evaluates the use of FPGA dynamic reconfiguration for reaching fail-safe
ECU systems [Chujo, TCRDL 2002]. An FPGA-based subsystem is configured to monitor
and detect failures under normal operation conditions. If a fault is detected, the FPGA is
dynamically reconfigured to be a backup circuit to the faulty control circuit. The proof of
feasibility is conducted in a Xilinx 6216 FPGA. Still another use case, in [Becker et al.,
IEEE 2007], the University of Karlsruhe and Daimler AG worked together on a
cooperative research project concerning the usage of dynamic and partially
reconfigurable hardware for automotive applications. The project is oriented to the design
of an automotive ECU concept implemented in a run-time reconfigurable FPGA platform.
The proof of concept, applied to a body controller ECU responsible for the control of
actuators like window lifters, seats or rear mirrors, shows that dynamically
reconfigurable FPGAs can be exploited to reduce power dissipation and increase the
adaptivity of such embedded systems. Concerning AUTOSAR and reconfigurable
computing, the work carried out by Pham et al. focuses on assuring fault-tolerant
communication among automotive ECUs by the use of FPGA dynamic partial
reconfiguration, integrating this approach inside the AUTOSAR system architecture
[Pham et al., ITST 2009]. The proof of feasibility is based on the use of FlexRay and CAN
standard communication protocols. They propose a method for switching from one bus to
another if some error occurs in one of them. In that case, the change of communication
protocol is performed by reconfiguring the communication IP. For this, the ECU is
prototyped in a Xilinx Virtex-5 XC5VSX50T FPGA provided with a PR region where it is
placed the partition of the COM stack that can be reconfigured on the fly. In order to
integrate the partial reconfiguration into the AUTOSAR architecture, it is exploited the
post-build AUTOSAR attribute. Although this application example is applied only to a
minor part of the ECU system, it is an early concept about integrating a dynamically
reconfigurable architecture in AUTOSAR environments.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 217

Now, aimed at going one step further in the spread of reconfigurable computing in the
automotive industry, the work proposed in this chapter describes the use of FPGA
hardware resources to complement the AUTOSAR architecture originated for a MCU
device with new standard and custom peripherals –implemented in reconfigurable
hardware– that make easier and more flexible the design of an ECU system, including
furthermore the deployment of safety components derived from the implementation of the
ISO 26262 standard, and synthesizing all these components either in hardware or in
software depending on the specific functional requirements demanded. Like this, the
approach presented in the next sections, although it is only an early concept, is pioneer
in terms of merging both AUTOSAR and functional safety with run-time reconfigurable
hardware to implement a full automotive ECU embedded system. In fact, although today
reconfigurable hardware is not covered in AUTOSAR, this possibility can not be
discarded in the future. A clear example of this assumption is for instance the fact that
run-time reconfigurable hardware is already used in aerospace applications, and the
automotive field has been following and adopting, in many aspects and during many
occasions in the past, the trends put in practice previously in the aerospace field.

12.3 System architecture

As introduced in the previous sections, this chapter addresses an open issue highlighted
from time ago by automakers regarding the increasing system complexity in the
automobile and the need for handling this complexity in an effective way. Automotive
manufacturers face the challenge of having to integrate a growing amount of software,
mechanical and electronic technologies across a vast ecosystem of suppliers. AUTOSAR
and ISO 26262 directives are mainly led from a software development perspective and
oriented to computing platforms based on microcontroller units. However, the inclusion
of hardware/software co-design and reconfigurable computing techniques can bring
some advantages in this landscape. While nowadays standard MCUs are the dominant
hardware platform in automotive ECUs, as price for programmable logic devices come
down, the FPGA/SoC devices are seeing broader acceptance in the automotive markets.
That is particularly true in the infotainment sector today, where high speeds for digital-
signal processing are opening doors for the technology. This work aims to put together all
the advantages of use of reconfigurable hardware in automotive applications. For this,
the author describes in this chapter the potential of this technology through a use case
oriented to one of the most important ECUs found in the automobile concerning
deployment of end-user functions: a body control module or BCM. Important reasons
support this innovative approach, as expounded next.

12.3.1 Real scenario

The standardization of the ECU architecture proposed by AUTOSAR is necessary in order
to manage the increasing functional complexity in a cost-efficient way. It enables a high
integration of functions and the reusability of software components or applications. The
main goal of AUTOSAR is to define a uniform software architecture for ECUs and
decouple the hardware from the software. Like this, AUTOSAR promotes the reuse of
software by defining interfaces that are hardware independent, that is, a software
component that has been written in accordance with the AUTOSAR standard should
work on any vendor’s microcontroller provided it has been properly integrated into an
AUTOSAR-compliant run-time environment (RTE). This fact delivers increased flexibility
to the automaker, which can exchange the same software modules developed by different
suppliers in a transparent way, thanks to its plug and play characteristics, and without
affecting the behavior of the vehicle. Thus, hardware and software reach to be widely
independent of each other. This decoupling is achieved by means of a system
architecture composed of software layers. Figure 12.1 shows the system architecture
promoted by AUTOSAR decomposed in functional layers.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 218

Figure 12.1 AUTOSAR layer-based model

The basic concept underlying the AUTOSAR software architecture is that abstraction of
the hardware will be done in layers and managed with standard APIs:
� The lowest layer, in black, is the hardware or physical layer composed by the MCU
itself, i.e., the CPU and the internal peripherals attached.
� Above the microcontroller layer it is found the basic software (BSW) decomposed in
three layers: microcontroller abstraction layer (MCAL) in pink, ECU abstraction layer
(ECUAL) and complex drivers in green, and services layer (SRV) in purple, which
moreover, are are split is several vertical columns or stacks (e.g. system, memory,
communication, input/output). Closest to the hardware is the MCAL; as the name
suggests, this layer abstracts the microcontroller. The next layer is the ECUAL and its
purpose is to abstract the other components on the ECU printed circuit board. The third
layer is the SRV; this layer is almost hardware independent and its role is to handle the
different background services needed (e.g. NVRAM handling, watchdog, etc).
� The next layer is the run-time environment (RTE). It provides communication services
to the application software. The RTE is composed of a set of signals (sender/receiver
ports) and functions (client/server ports) accessible from the upper layer of the BSW and
the application layer. The RTE abstracts the application from the BSW; it permits to fully
isolate and decouple the software application from the hardware platform. Therefore, all
software components running above the RTE are hardware independent.
� Above the RTE the software architecture style changes from layered to component-
based through the application layer (APP). The software which implements the
automotive functionality is mainly encapsulated in software components (SWCs). Thus,
the standardization of the interfaces for AUTOSAR SWCs is a central element to support
scalability and transferability of functions across ECUs of different vehicle platforms. The
standard specifies the APIs and features of these modules, except for complex drivers.
After overviewing the different AUTOSAR layers, next it is discussed the benefits which
can be extracted from this architecture if deployed in programmable logic, first focusing
the study on designs based on custom static hardware only and later extending the
approach to dynamically reconfigurable hardware implementations.

Run-Time Environment (RTE)

Microcontroller

Complex
Drivers

I/O Hardware
Abstraction

I/O Drivers

Communication
Services

Communication
Drivers

Communication
Hardware

Abstraction

Memory
Services

Memory
Drivers

Memory
Hardware

Abstraction

Microcontroller
Drivers

Onboard
Device

Abstraction

System Services

Application Layer

SWC

#1

SWC

#2

SWC

#3

SWC

#n

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 219

12.3.2 ECU deployment on FPGA-based static hardware

The AUTOSAR architecture fits well in a system-on-chip platform decomposed in a CPU,
memory and programmable logic. A CPU or host processor can be dedicated to process
the different functions distributed in SWCs and located in the APP layer while the MCU
layer and part of the BSW layers can be synthesized in hardware in the fabric. Moreover,
in addition to implementing standard peripherals attached to the CPU, other custom
peripherals and coprocessors can coexist synthesized in hardware. The custom
coprocessors are suitable from the point of view of functional safety too since they can
implement functionality with inherent freedom from interference. Finally, the
intermediate RTE layer can be synthesized in either RAM blocks distributed along the
FPGA or flip-flops embedded in the logic cells of the device. The RTE interfaces can be
designed to allow both read/write operations (via single port memories) or restricted to
only read or only write transactions (by means of dedicated single dual-port memories
with two independent read and write ports) as a protective measure like in their
counterpart sender and receiver software ports defined in AUTOSAR.
Figure 12.2 shows the porting of the AUTOSAR-layered architecture to a SoC/FPGA. It is
observed a clear partitioning of the system in layers where the RTE is the key element of
AUTOSAR. Below this we have the operating system (OS), memory stack, communication
stack, I/O stack, etc. Above the RTE we have the SWCs which implement the
applications and communicate with the RTE through AUTOSAR interfaces.

Figure 12.2 Porting of the AUTOSAR ECU architecture to a SoC/FPGA platform

Due to the inherent complexity of the AUTOSAR architecture, ECU systems based on
small 8-bit or 16-bit MCUs can result in a non-practical implementation platform since
only the deployment of the system skeleton in AUTOSAR layers can surpass the limits of
resources or performance reachable by those devices, penalizing too much the
architectural needs over the application itself. In conclusion, the deployment of the
AUTOSAR architecture demands powerful embedded computing platforms –typically not
inferior to 32-bit processors– over MCU, FPGA or SoC devices.

 Basic
 Software

 AUTOSAR
 Software

Application

SWC

AUTOSAR
Interface

Application

SWC

AUTOSAR
Interface

Actuator

SWC

AUTOSAR
Interface

Sensor
SWC

AUTOSAR
Interface

AUTOSAR Run-Time Environment (RTE)

AUTOSAR
Interface

Programmable
Logic

 CPU
 Software

Memory & Registers

BSW
CPU

Processor

Standard
Hardware

Coprocessor

Memory
Block

HOST

Processor

Memory
Block

Custom

Hardware
Coprocessor

or
Accelerator

Standard
Hardware
Peripheral

ECU

Abstraction

AUTOSAR
Interface

Standardized
Interface

MCU

Abstraction

Standardized
Interface

Operating
System

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Services

Standardized
AUTOSAR
Interface

Standardized
Interface

Complex
Drivers

ECU-Hardware

Standardized
interface

SOC/FPGA
PLATFORM

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 220

Today, the typical ECU implementation is based on a single- or dual-core processor on a
MCU platform. However, more and more, a single core is not enough to face up all the
computational power demanded. On the other hand, the use of multicore CPUs can
involve a notable loss of performance if they share the program/data memory through a
multiprocessor bus, giving place to a sophisticated solution. The author proposes a new
alternative based on programmable logic and consisting in designing a computing system
composed of only one single core processor playing the role of host CPU but surrounded
by more intelligent peripherals, coprocessors or even slave processors. All these
computing units can be instantiated in the FPGA fabric as soft-core processors which
run their own code from dedicated RAM blocks of the FPGA (separated soft-core
processors with dedicated program memories each) or even they can be implemented as
made-to-measure hardware accelerators distributed in the FPGA. In both cases, the
topology is one host CPU with smart peripherals aimed at offloading the CPU at the same
time as reducing the complexity of the system. The host CPU manages the whole APP
layer in software while the smart peripherals take charge of the BSW layer implemented
in hardware and software. Thus, the system complexity can be reduced by granting
major level of intelligence to the peripherals and coprocessors synthesized in the MCU
and BSW layers. Moreover, these custom peripherals can be built to make the software
execution of the host CPU more linear, i.e., without excessive interrupt sources coming
from the peripherals and requesting the CPU attention via interrupt service routines
(ISRs). In the end, this results in a cyclic and sequential execution of the host program or
tasks scheduling while the peripherals of the BSW layer take charge of preprocessing
their hardware events and update the results in the RTE to not disturb in excess the
host CPU. In this way, the isolation of software and hardware is clear: the host processes
the APP while the peripherals take charge of the BSW and run independently of each
other, in parallel and autonomously. This scheme is possible by exploiting the flexibility
and versatility of programmable logic. Figure 12.3 shows the block diagram of the system
and its components breakdown into functional units synthesized in a SoC/FPGA device.
There, the RTE is composed of external memory and also internal memory blocks or
registers of the device. As result, this approach can reach a system performance
comparable to a multiprocessor platform but with the level of simplicity (regarding
software development and maintenance) of a single-core processor. This trade-off is
possible thanks to the use of reconfigurable hardware to build more powerful custom
coprocessors that work in parallel with the host processor.

Figure 12.3 Block diagram of an automotive ECU deployed in programmable logic

Some highlights and remarks can be extracted from this technical concept driven by
reconfigurable computing:
� As introduced before, ECUs encompass more functionality each time and this fact leads
to increase the system complexity. In this landscape, the architecture of these systems
can be simplified in two main layers –the high layer and the low layer– separated by the
RTE interface. The high layer corresponds to the application layer of AUTOSAR composed

SYSTEM BUS

HOST
CPU

Flash
Memory

RAM
Memory

Standard
Peripherals

Custom
Coprocessors

I/O
Registers

Interrupt
Controller

System
Timer

Functional
Safety Cores

RTE

RTE

RTE

RTE

RTE

RTE

RTE

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 221

by software components that manage the end-user functions. The low layer comprises
the MCAL and the basic software up to the RTE link. The application layer can represent
around the 70-90% of the high-level functionality within the vehicle and all this source
code –above the RTE– is reusable. At the same time, the low layer comprises all those
features that grant flexibility and versatility to the high layer. That is, the low layer
performs the customization of all that reusable functionality in a particular hardware
platform. As such, the high layer is essentially a set of software functions that implement
the control of some vehicle loads, sensors and actuators by means of algorithms
implemented in FSMs. These algorithms are executed cyclically by a CPU and scheduled
in software tasks that the OS controls. The low layer is also responsible for implementing
the drivers of all the standard peripherals attached to the CPU –for example, A/D
converter, PWM controller, timer or memory controller– to make the abstraction of the
high layer feasible. This low layer involves the management of events that need to be
served in real-time. In this regard, programmable logic can bring some added value. The
idea is to reach a host CPU able to process the application as a simple sequence of
software functions not influenced by external events typically derived from hardware, but
reading or writing RTE signals periodically to evolve the FSMs accordingly. The low layer
would hide these hardware events, preprocessing them and updating certain signals in
the RTE or performing certain actions in real-time, following its specific tasks scheduling.
� The design of custom hardware controllers attached to the system CPU lets reduce the
need of shared resources in the system, fact that from an operating system point of view
should help to reduce the system complexity (avoiding arbitration, access collisions,
latencies, retry mechanisms, and so on).
� Another advantage is that dedicated hardware can more simply implement certain
functionality that is typically performed in software through multithreading, since
concurrency is a feature more inherent to hardware than to software. Furthermore, the
flexible hardware can be used to reduce execution time by hardwiring computationally
intensive parts of the algorithm via parallel and pipelined hardware implementations
instead of sequential software approaches on an instruction-set processor.
� In parallel to the growing complexity of the ECUs, the number of I/O control lines
demanded to the system is also increasing. With this regard, an FPGA chip brings a clear
advantage over the MCU since it is released with a bigger number of user pins. This point
is often a key factor in MCU-based ECUs because they usually need to extend the digital
pins of the MCU with external chips like analog multiplexors or digital shift registers. The
use of an FPGA device lets skip all these satellite components, reducing thus the BOM as
well as the PCB dimensions of the electronic board.
� A relevant characteristic which increases the feasibility of introducing programmable
logic devices in certain automotive applications is the fact that some state-of-the-art
FPGA or SoC devices incorporate already ADC converters. This fact is really interesting in
automotive since many of the ECUs found in a vehicle make use of analog signals (e.g.
battery voltage) to implement part of the entrusted functionality. The presence of ADC
converters in programmable logic devices opens new application fields for FPGAs and
permits to neutralize a disadvantage in this point versus automotive MCUs (which
typically integrate this peripheral).
� An ECU that embeds a function qualified as safety relevant with a specific ASIL
classification demands to all the hardware and software which takes part in its
implementation to fulfill certain level of protection in line with such ASIL, and ensure for
instance the freedom from interference; that is, it is necessary to ensure that code
running in the ECU classified as non-safety-relevant will not corrupt the operation of the
other code classified as safety-relevant running side-by-side on the same ECU, in order
to not violate in the end the safety goal. All these measures can be managed more
efficiently with programmable logic devices than with rigid MCUs.
� The possibility of introducing custom hardware solutions in the ECU is a big
advantage, mainly concerning safety-related aspects. In this direction, for instance with
regard to I/O pins and GPIO controllers, the pinout involved in safety functions can be

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 222

grouped in made-to-measure I/O ports accessed exclusively by safety components inside
the ECU. This approach permits to decouple the safety-critical pins from the non-safety-
critical pins of the system, assuring the intended freedom from interference by design.
This idea is depicted in Figure 12.4. Besides, the size of each GPIO port can be designed
at the measure of the SWC which manages it. In this way, each application managed by
a different SWC (e.g. window lifter, wiper/washer, etc) could have its specific port
mapped in specific registers within the system memory map. In MCUs this is not possible
since their ports have a fixed size (typically 8, 16 or 32 bits wide) and are addressed in a
word-wise mode, not bit-wise, therefore it becomes a shared resource accessed by several
SWCs at the same time. This strategy applied to a GPIO controller can be extended to
other standard peripherals too (e.g. PWM controllers, ADC converters, etc).

Figure 12.4 HW/SW co-design of a safety architecture that isolates the safety-relevant
ports from non-safety ports to guarantee the freedom from interference

� The same decoupling strategy disclosed above for MCU standard peripherals can be
applied to all the safety channels or data paths of a safety function. A typical way of
implementating a certain ASIL necessary to reach a defined safety goal is by means of the
ASIL decomposition strategy: a high level ASIL like C or D can be decomposed in
redundant partitions of lower ASIL level so that each of these parts performed in
duplicate is then implemented according to its new level. This safety strategy based on
redundancy is a sensible argument for recurring to hardware, where several identical
processing engines can be instantiated multiple times in the same programmable logic
device. Moreover, the fulfilment of certain ASIL level is always clearer to prove with
architectural approaches (hardware) than by means of software functionality.
� Other characteristic derived from the flexibility of programmable logic and applicable to
functional safety is the possibility of implementing triple module redundancy (TMR)
strategies. This is a commonly known method for single event upsets (SEU) mitigation.
Such scheme involves three identical logic circuits performing the same task in parallel
and with the corresponding outputs being compared through a majority voter circuit,
being this strategy implemented very efficiently in hardware.
� A convincing advantage in the introduction of reconfigurable hardware in automotive
ECUs is the fact that SoC/FPGA devices lets introduce this hardware feature
progressively in a design. That is, the developer can design the system in software like
typically would do for a MCU-based platform and then do the porting of certain parts
originally implemented in software to hardware on the programmable logic resources.
This methodology enables the designer to build different versions of a solution and
realize the advantages of synthesizing some functions in custom hardware with respect
to a purely software-based approach.

RTE

GPIO registers

BSW

oen out in

RTE

GPIO registers

BSW

oen out in

SAFETY
SHELL

SAFETY-RELATED PATH

SW

HW

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 223

12.3.3 ECU deployment on run-time reconfigurable hardware

After exploring the advantages of implementing ECUs in static hardware and software via
programmable logic, some additional advantages are enumerated next in case that such
solution exploits run-time partial reconfiguration technology.
� One advantage of run-time partially reconfigurable FPGAs against static FPGA designs
is the fact that the startup time of the system can be reduced if the FPGA is composed of
some PR regions that do not need to be configured at startup, for instance when the ECU
wakes up. FPGAs which do not support active reconfiguration have to configure the
whole FPGA resources at power up and this implies a considerable configuration latency
to download the full bitstream. This latency can be notoriously reduced in systems based
on big FPGAs equipped with run-time partial reconfiguration technology. In that case, it
is possible to configure only the minimalist system at power up and initialize the rest of
the system later when required. This startup process split in two phases lets speed up
the initialization in case the system needs a fast response at power up or wakeup.
� Besides, if PRR regions are disabled, then it is possible to reduce the power
consumption of the device. Power-saving modes are especially relevant in automotive
battery-powered ECUs. For this reason, automotive MCUs make use of low-power modes
to keep the ECU power consumption to a minimum when the vehicle is inactive (that is,
in sleep mode). Analogously, the use of blank bitstreams to disable portions of the FPGA
when not required reduces logic activity and consequently, dynamic power consumption.
� Inherited from the aerospace application field, the scrubbing technique can be used in
automotive to recover the system in case of detecting failures on SRAM resources
originated by SEU. By means of periodically reconfiguring the hardware peripherals it is
guaranteed that in case of a malfunction the system is self-repaired and the maximum
time the malfunction is present is restricted to the scrubbing period.
� Another promising feature coming from the flexibility of run-time partial reconfigurable
technology is the fault recovery by means of function relocation in case of permanent or
non-repairing circuit failures. Once a hardware or software fault has been identified, it is
possible to automatically relocate the required functionality to another part of the
programmable logic device inside the same ECU or even in another ECU.
� The most powerful characteristic of reconfigurable computing technology applicable in
the automotive sector is, beyond doubt, the time-multiplexing of functionality on shared
hardware resources on the fly. Time-sharing of functional applications processed in the
same computing resources inside an ECU if these applications are mutually exclusive
(for example, deployment of a lane-departure warning while a vehicle is running straight
ahead and switching to a rear-camera view or park-assistance application when it is
backing up) is an idea that could help to reduce the cost and complexity of such
embedded systems, as well as freeing space and reducing weight in the vehicle.
� Porting the previous concept to its extreme, it is possible to envision a universal
automotive ECU that is configured in the manufacturing line to customize it to a specific
ECU for a specific automobile platform. This idea, technically feasible through
reconfigurable hardware, would simplify to the minimum the stocks and logistics in the
manufacturing plants since the module assembled in the production line from the
hardware point of view would be the same for all the vehicle platforms, only the software
or bitstream would change to make the ECU functional differentiation.

12.4 Summary

Nowadays, around 90 percent of innovation in the automotive sector is nowadays driven
by electronics, and there is no end in sight. While in-vehicle functions grow in number
and complexity, it is expected that the car of the future will be based on very advanced
embedded software and hardware technologies. Moreover, controlling the cost of
automotive embedded systems is extremely important for automobile suppliers
competing in a very high-volume industry. As a result, one approach shared by many

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 224

OEMs in the automobile industry is to reduce the number of ECUs present in the vehicle
in exchange for delivering major functionality per unit. This is a goal that demands more
powerful computing platforms, creating highly integrated ECUs as domain controllers
aimed at reducing the system complexity. Besides, new design constraints have been
inherited from the recent introduction of the AUTOSAR and ISO 26262 standards. All
these trends permit to think about the possible introduction of reconfigurable hardware
in the design of ECUs as a mean of facing up the complexity of these systems to reach a
bearable solution in terms of performance and cost, just in a moment where FPGA
vendors launch their new generation of devices at higher performance and lower costs.
As a measure to keep the ever-increasing complexity in automotive electronics at bay, the
author proposes in this chapter the use of programmable logic in the design of a flexible
automotive ECU, alerted by the fact that on the one hand automotive design standards
and on the other hand FPGA technology are gaining momentum in the automotive field.
All together, this incessant increment of performance demanded to such systems along
with the the continuous drop in price of the programmable logic, should make the
change of MCU by reconfigurable hardware viable. This is a pioneer approach which
claims how to adapt an FPGA/SoC device to implement an ECU under AUTOSAR and
ISO 26262 standards, highlighting the competitive advantages derived from this
approach. Nevertheless, it is difficult to predict how long it takes for advanced concepts
to reach production vehicles; the reasons include the strong traditions and rather long
time constants that characterize the automotive industry since before a paradigm shift
can occur, new infrastructures, devices, people, processes and tools need to be in place.
Despite this, the author firmly belives that such date, in a highly competitive domain like
the automotive industry, is not far.

References

[Altera Corp., WP01123 2010]
Altera Corp., Developing functional safety systems with TÜV-qualified FPGAs, White Paper 01123 (v1.1),
2010.

[Anthony et al., EIK 2006]
R. Anthony, A. Leonhardi, C. Ekelin, D. Chen, M. Törngren, G. de Boer, I. Jahnich, S. Burton, O. Redell,
A. Weber, V. Vollmer, A future dynamically reconfigurable automotive software system, Proc. of the
Elektronik im Kraftfahrzeug, (Systeme von Morgen - Technische Innovationen und Entwicklungstrends)
Conference, 2006.

[Becker et al., IEEE 2007]
J. Becker, M. Hübner, G. Hettich, R. Constapel, J. Eisenmann, J. Luka, Dynamic and partial FPGA
exploitation, Proceedings of the IEEE, vol. 95, no. 2, pp. 438-452, 2007.

[Chujo, TCRDL 2002]
N. Chujo, Fail-safe ECU system using dynamic reconfiguration of FPGA, R&D Review of Toyota CRDL, vol.
37, no. 2, pp. 54-60, 2002.

[Conmy and Bate, TII 2010]
P. Conmy, I. Bate, Component-based safety analysis of FPGAs, IEEE Transactions on Industrial
Informatics, vol. 6, no. 2, pp.195-205, 2010.

[Hong-qiang et al., ICVES 2007]
L. Hong-qiang, M. Chang-yun, W. Hua-ping, System-on-a-chip design of electronic control unit for car
body control, Proc. of the IEEE Int. Conference on Vehicular Electronics and Safety, pp. 1-6, 2007.

[Pham et al., ITST 2009]
H.M. Pham, S. Pillement, D. Demigny, Reconfigurable ECU communications in Autosar environment, Proc.
of the Int. Conference on Intelligent Transport Systems Telecommunications, pp. 581-585, 2009.

[Salewski and Kowalewski, TII 2008]
F. Salewski, S. Kowalewski, Hardware/software design considerations for automotive embedded
systems, IEEE Transactions on Industrial Informatics, vol. 4, no. 3, pp. 156-163, 2008.

[Sharma and Chen, SAE 2009]
S. Sharma, W. Chen, Using model-based design to accelerate FPGA development for automotive
applications, SAE Int. Journal of Passenger Cars-Electronic and Electrical Systems, vol. 2, no. 1, pp.
150-158, 2009.

[Teich et al., DATE 2006]
J. Teich, C. Haulbelt, D. Koch, T. Streichert, Concepts for self-adaptive automotive control architectures,
Workshop on Future Trends in Automotive Electronics and Tool Integration, Conference on Design,
Automation, and Test in Europe, 2006.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

Part V

Conclusions

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 227

Chapter 13

Reconfigurable hardware technology today:
strengths and weaknesses

Since reconfigurable hardware is unlikely to be the best solution for implementing
electronically each and every functional application arisen in embedded computing, it
makes sense to identify its limitations along with the added value it provides. This
chapter aims to summarise the more or less common understanding of the research
community about the state-of-health of reconfigurable computing today, enumerating
those benefits that make run-time reconfigurable hardware a clear competitive advantage
over other more classical implementation alternatives, but also pointing out all those
technical drawbacks and open issues that need to be overcome in the near future to
consolidate this technology as an efficient instrument to build embedded applications.
This chapter collects a merged vision from the perspectives of research, industry and
education, personalized also by the particular author’s viewpoint acquired along all these
years of being in direct contact with such technology, highlighting those awesome pros
which captivated him but also the cons he faced during the development of this work.

13.1 Benefits of run-time reconfigurable hardware

The last decade has experienced an increasing interest concerning the use of FPGAs in
embedded systems. With the progress in manufacturing technology, FPGAs are bigger,
faster, cheaper and more power efficient than in the past. All these features lead FPGAs
to replace traditional ASIC, ASSP or MCU devices in specific applications field. According
to the advances FPGA vendors are carrying out today, this trend is going to be
maintained at least in a medium term. As example, nowadays it is possible to have a SoC
device composed of a dual-core processor and a 28 nm programmable logic fabric at a
price lower than $15. Although this target is still unacceptable in certain very high-
volume aggressive products, this performance-cost rate is extremely competitive in other
markets. Furthermore, in fields where power and cost are crucial design criteria,
dynamic partial reconfiguration brings convincing arguments to address electronic
designs [Xilinx Inc., WP374 2010]. All these strengths are detailed next.

13.1.1 FPGA technology

Reconfigurable computing and FPGA technology have become major subjects of research
in computing and electrical/electronic engineering in the last years as they have been
identified as powerful alternatives for creating highly efficient electronic systems. They
offer substantial performance improvements when compared against traditional
processing architectures, derived from the custom design and the flexible reconfiguration
capability of such technology.
With a given processor technology, the highest performance is achieved for an
application if the user can program at the gate level minimizing the architectural
overheads associated with a general-purpose processor. By tailoring the architecture for
the application in mind, performance is maximized. This is the approach in designing
ASICs. However, this approach is costly, time consuming, and is often irreversible to
incorporate design changes and improvements. The other end of the spectrum is general-
purpose processing. At the price of general programmability for many applications,
performance is sacrificed. There are many novel architectural refinements that have been
incorporated in the currently available GPPs to improve their performance: reduced-
instruction set computing (RISC) paradigm is being preferred over complex-intrucction

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 228

set computing (CISC) paradigm; also, pipelining is very well-known practice for
performance improvement; architectural features including data cache and and on-chip
support for floating point operations; and even the use of superscalar processors. The
main goal of all these features is to reduce the average number of clock cycles per
instruction. These improvements can account for about an order of magnitude higher
performance on a GPP. Applications in need of more compute power have to resort to
other means such as parallel processing and reconfigurable computing. Reconfigurable
computing attempts to combine the advantages of both of the above mentioned
approaches: it allows user-level programmability at a very low level and supports
general-purpose computing by virtue of its reconfigurability [Ratha and Jain, TPDS
1999]. Dynamic partial reconfigurable FPGAs are hardware on one hand and can be
changed after manufacturing like software on the other. Final design microstructure can
be modified after shipping and the circuit still has the basic advantages of a hardware
execution model like massive parallelism [Schallenberg et al., Springer 2005].

13.1.2 Time-to-solution and life cycle

Nowadays, most of embedded system applications exhibit market characteristics similar
to those of consumer products: short time to market, short time in market and changing
product specifications [Xilinx Inc., WP194 2002]. As example, the rapid evolution of the
telecommunication market forces manufacturers of high-end telecommunication
equipment to develop their new products using draft versions of standards since the
standardization processes and specification of new features always take a very long time.
In order to secure market segments, manufacturers must release their products as
quickly as possible. In many cases, a well working product can be launched with less
functionality first and later it can be upgraded in the field to incorporate new
functionalities. These trends lead reconfigurable technology to an advantageous position
in very flexible markets since post-fabrication customisable parts allow system designers
to get new ideas into the market faster. FPGAs eliminate the custom silicon design time,
fabrication time and manufacturing verification time typically needed for an ASIC. The
customisation is now in code (both hardware description and software program), leaving
open the possibility of hardware-software updates once the product is already in the
customer’s hands. As a logical consequence, production and shipment can start earlier
when compared with conventional systems, and it is possible to shorten the time to
market and increase the time in market of the end products based on this technology.

13.1.3 Portability and immunity against components obsolescence

Obsolescence is an important concern in electronic design. After a product is launched to
the market, it has to be produced and maintained for its entire lifetime program,
modifying/adding new functional features by means of running changes, model years or
even cost technical optimization (CTO) loops, and being active in the field even after the
end-of-production, e.g. as spare parts. If some of the electronic components of this
product get obsolete before such product reaches its end, the product supplier can be in
troubles to guarantee the product supply to its customers. Often, the solution to this
problem is to redesign the product by replacing the obsolete component, what involves
affording further unexpected D&D costs. Moreover, a habitual practice in some
consumer products such as mobile phones is to force them to be obsoleted at relatively
short time to stimulate sales of the latest and greatest products.
FPGAs offer the ability to create adaptable, obsolescence-proof designs. As example, the
change of a microcontroller in a product has a relevant impact on both software and
hardware aspects: even if the application has been coded in C programming language –
which is seen as a portable code– there are always architecture specific instructions and
features which hamper the porting from the obsolete processor to the next generation
device. Besides, if the new processor has a different package or I/O configuration, it can

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 229

involve performing a complete PCB redesign. Finally, the new product must be submitted
to a new verification and validation phase. A robust solution to eradicate processor
obsolescence and preserve many years of legacy code and development is to use soft-core
processors embedded into an FPGA fabric [Xilinx Inc., WP169 2002]. Many IP cores are
in use in the industry in the way of synthesisable HDL models like the ARM7 from ARM
or LEON3 from Gaisler. Moreover, the fact of describing these IPs in HDL delivers a high
portability between different programmable logic technologies.

13.1.4 System versatility, adaptability and self-adaptibity

Embedded systems grow in functionality. To the inherent complexity of implementing an
application, the fact of multiplexing such original application with novel applications
increases the system complexity. An example of this trend is observed in the
development of personal hand-held devices which require a performance which exceeds
the levels of current desktop computers, with enough flexibility to handle a variety of
multimedia services and standards and the adaptability to accommodate to the nomadic
environment [Smit et al., HUC 1999]. This approach also applies to products with system
requirements that change very quickly. Thus, adaptation reflects the capability of a
system to maintain or improve its performance in the context of internal or external
changes, such as different users and preferences, modifications of standards and
requirements, etc. Adaptation at hardware level increases the system capabilities beyond
what is possible with software-only solutions [Tredennick and Shimamoto, Spectrum
2003]. Moreover, self-adaptivity –defined as the ability of a system to adapt to its
environment and change its behaviour in order to preserve or improve the operation of
the system in front of situations like faults and degradations, interferences, etc– requires
the ability to sense both the environment and the state of some system parameters
through run-time monitoring and this feature can be reached through reconfigurable
hardware [Paulsson et al., FPL 2007].

13.1.5 Early system validation

One of the most difficult tasks in the design of embedded systems is the validation
phase. In this context, the use of FPGA technology has the potential to allow early
analysis of the behaviour of the system. Dynamic reconfiguration of FPGAs provides even
more capabilities for the validation of this kind of systems: specific peripherals for
information extraction and debugging can be included in the FPGA, configured and
removed on the fly [Herrholz et al., FPL 2007]. One example is the Xilinx Chipscope
approach, with which it is possible to embed a logic analyser inside the FPGA custom
design for tracing purposes during development stages.
On the other hand, the industrial demands of future electronic systems rely on systems
to be fault-tolerant, since the system complexity will increase to the point that it is
impossible to detect all errors during the design phase. The ability for a system to recover
from a failure requires that incorrect system operation can be detected and analysed
during run-time. To achieve this, methods for performing tests of functionalities and
components must be dynamically incorporated into the system during the design phase.
By exploiting the ability of dynamic and partial reconfiguration, reconfigurable hardware
fits well in this scenario [Paulsson et al., ISVLSI 2006].

13.1.6 Performance improvement, acceleration and parallelism

Contemporary microprocessor architectures are sometimes poorly matched to the
applications they run. For almost any application, one can conjecture additions or
modifications to prevalent microprocessor architectures which would significantly
enhance the application performance. However, the additions differ from application to
application, and there is insufficient commonality among applications to merit inclusion

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 230

of such additions in a microprocessor with a broad application base. Incorporating
reconfigurable logic into the general-purpose microprocessor allows applications to
specialize the processing hardware to match the application requirements while allowing
a single microprocessor design to maintain its appeal across a broad range of application
bases. Special-purpose architectures have been recognized as one path to higher
performance application-specific computing systems [DeHon, FCCM, 1994]. Parallelism
is another key factor to reach performance and accelerate the processing of a given
functionality. It is handled in two ways: in space (replication: multiple instances
operating concurrently) and in time (pipeline: multiple steps of the computation
operating concurrently). Both ways are available to the designer using FPGAs. By off-
loading some compute-intensive tasks onto hardware, the throughput of a system can be
greatly enhanced.

13.1.7 Hardware customisation

Hardware customisation is a feature highly demanded in embedded systems. An example
is when certain functions synthesized on a general-purpose processor operate on bit-
widths that are different from the processor’s basic word size. In such case, the
undesirable overhead of a general-purpose and fixed instruction set machine can
penalize too much the performance. Experienced programmers often desire to tune
instructions to meet their needs in order to satisfy application demands. High
performance for an application can be achieved by exploiting the principle of providing
an efficient architectural support for the more frequently executed code where it is spent
the most portion of execution time. Based on this principle, it is possible to achieve high
performance by identifying the core parts of the application that need architectural
support and instruction-level support via reconfigurable hardware [Ratha and Jain,
TPDS 1999]. Traditionally, instruction set architectures (ISAs) have been designed to
provide primitives that facilitate low cost and low complexity implementations while
offering high performance for a broad spectrum of applications. However, as discussed
above, in some cases offering specialized operations tailored toward specific application
domains can result in significant performance benefits. Such operations are specialized
enough to allow significant performance improvement, and at the same time, they are
general enough to be useful for a variety of applications. Reconfigurable hardware has
the potential for providing a convenient way to address most of the aforementioned
concerns [Ye et al., ISCA 2000].

13.1.8 Hardware reuse and functional density

The flexibility of SRAM-based FPGAs emerges from the fact that these devices can be
dynamically reconfigured, on the fly. It is possible to configure on-demand a subset of
functional units from a larger set of units and wire them up during execution time. Thus,
each functional unit runs on the target device at different time intervals by utilizing the
same hardware resources. With this ability, a portion of the FPGA can be partially
reconfigured without stopping the functionality of the unchanged sections, enabling the
FPGA to fully and rapidly adapt to the user needs. This fact makes feasible to increase
the hardware density of the system. Such density is the ratio between the sum of the
resources used by all the functional units mapped during the application execution and
the available resources on the programmable device.

13.1.9 Reduction of complexity, space, weight and cost

The reconfigurable computing design flow emphasizes a fundamental requirement in
reconfigurable design: it must be profitable. In this sense, the fact of partitioning a whole
design into a set of n nested subdesigns that are sequentially loaded into the same
hardware lets reduce the resultant effort and system complexity. A big design is divided

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 231

in n smaller designs that can be architected simpler. This strategy means a beneficial
impact on the compiler and place & route tools as well as in the development time.
Furthermore, the fact of splitting the whole system in smaller time shared modules
processed sequentially results in a design more modular and the test and maintenance of
the full system is more manageable. Inherent to this aspect, space, weight and cost are
also reduced [Butel et al., Xcell 2004].

13.1.10 Power consumption

Power consumption has become a primary concern for today’s designs. Like size and
cost, it is a metric with strict limits in most systems. Despite its many advantages,
FPGAs are not commonly used in today’s battery-powered applications because they
consume more power than ASIC, ASSP, DSP or MCU devices and lack power
management features. Hence, high-power consumption, in particular high standby
power, has prevented FPGAs from being widely adopted in ultra-low-power products
[Tuan et al., TCAD 2007]. Nevertheless, FPGAs have done a big progress on reducing
these figures as the technology advances. The target is a stand-alone extremely low cost,
ultra-low-power reconfigurable fabric. Intermediate steps toward this goal are nowadays
the new 28 nm FPGA devices. The power optimization by means of reconfiguration has
two aspects. The first one is the reduction of the static power or leakage current by fitting
the design in one smaller device. Shrinking the design to smaller or fewer parts reduces
static power consumption. The second one is the reduction of dynamic power
consumption through the dynamic shutdown of unused functional blocks. The self-
reconfiguration of FPGAs let reduce the power dissipation by storing functionality to
external memory. The fact of removing or replacing power-hungry functions when those
functions are not needed allows reducing dynamic power consumption too, just
switching that logic and registers off by downloading a blank partial bitstream there
[Xilinx Inc., WP374 2010]. Even though the power dissipation during reconfiguration
cannot be neglected, the total power consumption of the system can be decreased
compared to a static design. Besides, many designs must be able to run at very fast
speed but that maximum performance might only be needed a small percentage of the
time. To save power, it is possible to use partial reconfiguration to swap out a high
performance design with a low power version of the same design – instead of designing
for maximum performance 100% of time. The system can switch back to the high
performance design when it is needed. This principle can also apply to I/O standards,
especially when a high power interface is not required 100% of the time. For instance, it
is possible to use partial reconfiguration to change the I/O form LVDS –a high power
interface– to a low power interface such as LVCMOS when the highest performance is not
required, and then switch back to LVDS when high speed transmissions are required.

13.1.11 System survivability and self-healing

Certain critical applications need to be able to operate in harsh environments. In such
cases, the survivability and self-healing of the applications is a crucial issue even when
exceeding the operating range limits. The reconfiguration can be used to detect, correct
or relocate damaged functions. Moreover, the dynamic system test is a major issue for
critical application in harsh environments. Upon the survivability requirements, the
control of the functionality of the application by an external process is suitable to
evaluate its ability to continue to operate. In this scope, reconfiguration can be useful.

13.1.12 Rapid prototyping platform but also end-user product

Rapid prototyping is certainly one of the most important fields of application of
reconfiguration, for instance the use of FPGA-based computation in ASIC logic
emulation, which allows a device to be tested in real hardware before the final

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 232

production, as proof-of-concept. A reconfigurable device is useful in this scenario
because it can implement different versions of the final product until an error-free
version is attained. Moreover, such device can be tested under real operating conditions.
In the past, reconfigurable logic has been used for development and rapid prototyping
purposes whereas the deployment in the final product has been avoided because of its
higher cost compared to off-the-shelf standard ASICs. Nevertheless, nowadays there
exists an effective cost reduction of these devices and the gap between FPGAs and ASICs
is getting shorter and shorter. In this way, the initial rapid prototyping platform
developed for a project can become the final product too; this feature lets shorten the
product development cycle [Ullmann et al., IPDPS 2004].

13.1.13 Technology accessibility

A further advantage of reconfigurable computing technology is its accessibility. It is open
to everybody, not only to big companies able to assign a huge budget on resources and
tools. The affordable toolset of reconfigurable devices promise tremendous perspectives
for industrial users, especially SMEs [Becker et al., FPL 1998].

13.1.14 Host coupling

Reconfigurable systems are able to achieve significant speedups for some applications.
However, purely FPGA-based systems are usually unsuitable for complete algorithm
implementation. In most computations there is a large amount of functionality that is
executed relatively rarely, and attempting to map all these functions into
reprogrammable logic would result very hardware inefficient. The solution to this issue is
to combine the advantages of both CPU and FPGA devices. It is more and more frequent
to find programmable logic attached to CPU platforms to increase the computing power
of the embedded platform. The CPU is used to support the bulk of the functionality in
software as well as controlling the entire application flow. For its part, the reconfigurable
logic is used to accelerate only the most critical computational tasks of the application.
For all these systems, the interface between the fixed and reconfigurable logic is one of
the most important aspects of the composite architecture since it has a critical effect on
the communication overhead between the fixed and the reconfigurable logic [Todman et
al., CDT 2005]. Several topologies are possible like external stand-alone processing units,
i.e. discrete MCU and FPGA devices joined in a PCB, attached processors (e.g. PAM,
SPLASH and DISC devices), coprocessors (e.g. GARP and NAPA-1000), reconfigurable
functional unit architectures where the fabric is on the main processor’s datapath (for
instance in approaches like PRISC, Chimaera, Molen and ONE-CHIP, allowing custom
instructions to be executed) or even embedding the processor inside the programmable
fabric, either as a hard-wired core or as a soft core. All these approaches go in search of
an efficient data-transfer bandwidth [DeHon, FCCM 1994].

13.2 Weak points of reconfigurable hardware technology

As said, reconfigurable hardware is not the best solution for all the technical
computational problems; in fact, it is not valid for some application domains. Hence, a
list of weak points or simply open points pending to be solved is presented next,
highlighting the more relevant FPGA implementation challenges that need to be tackled
by the scientist community in the near future in order to definitively put this technology
to the service of the industry on a massive scale.

13.2.1 Low ease of use and designer productivity

Nowadays, it is encouraging to realize that some commercial products in the market rely
on reconfigurability as an efficient mechanism to provide application performance.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 233

Despite this fact, the primary challenge in reconfigurable computing relates to ease of
use: an effective design toolset is still needed to fully exploit the capabilities of this
technology and reach a convincing productivity. The high complexity of the CAD tools
required to implement solutions based on reconfigurable hardware is not comparable to
the medium or low complexity of the compilers required to develop solutions based on
general-purpose processors; the time required by the CAD tools to place and route a
design into a physical device can be extremely long, e.g. it can take some hours or even
days, and it has been one of the main barriers preventing wider usage of FPGA devices.
In fact, the complexity of embedded systems increases at a rate that is not met by the
development of advanced CAD tools for managing such a large design space. This is not
surprising considering how many generations of computer architectures became obsolete
before compiler technology and computers could coexist efficiently. Almost two decades
passed before optimizing the compiler technology and the processor architecture in use
today. Although the progress in the reconfigurable computing world will continue to
move forward, there exists the risk that this progress remains only in research
prototypes and some few products but it does not advance enough to be commercially
exploited in mass production. The natural properties of this technology along with the
proper toolset to support the reconfigurable computing workflow are the only two
elements able to decline the markets trends in favour of reconfigurable hardware
[Mangione-Smith and Hutchings, RAW 1997]. Increasingly, there is a need to develop
more complex digital systems and more quickly to reduce development time and cost and
to get a new product to market first. In this context, a clear aspect which reinforces the
bet on FPGA technology is the recent advances in high-level synthesis (HLS) tools to raise
the level of abstraction beyond register transfer level (RTL). State-of-art C-to-FPGA
synthesis solutions like AutoESL, which let convert original C/C++ source code in RTL,
are achieving an improved design productivity compared to hand-coded design and can
be of help in the near future to increase productivity by raising the level of abstraction.

13.2.2 Advances in design flow and development tools still needed

Software tools are the main enablers for the efficient exploitation of the reconfigurable
hardware capabilities for the construction of self-adaptive and self-healing systems. In
the past there has been a clear lack of tools; at that time, the progress conducted in
reconfigurable computing applications has been performed only through heroic acts of a
small set of highly skilled designers handling algorithms at low level abstractions. Thus,
the success of reconfigurable computing systems highly depends on the efficiency of their
development tools. Despite there is a lot of work to do, the quality of the current tools
can be catalogued as valid to exploit reconfigurable hardware technology in the industry.
The development tools have matured a lot in the last decade and the latest PR tools
released by Xilinx have dramatically improved usability. However, it is admitted there is
a gap for improvement that is still necessary to cover in order to boost all the potential of
run-time reconfigurable hardware technology. The research community, aware of the fact
that the lack of suitable design tools can slow the ramp up of this technology, is working
hard on this topic [Paulsson et al., FPL 2007].

13.2.3 Lack of commercial devices with better reconfiguration features

Even though there are still many restrictions and limitations to overcome, dynamic
partial reconfigurable FPGAs let increase the flexibility of a system implementation. Some
improvements are still required on the current programmable logic devices in order to
exploit the run-time reconfiguration features at maximum; it is needed to pay special
attention to certain technical aspects of the device. In this direction, the reconfiguration
engine is a basic component that can be improved in order to make run-time
reconfigurable hardware technology more accessible to specific application fields; design
parameters like the maximum reconfiguration frequency admissible or the

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 234

reconfiguration data bus width are key points to ensure a high reconfiguration rate able
to reduce the reconfiguration latency of the application. Other aspects which can be
optimized are the reconfiguration grain and the bitstream format in order to reach a
more flexible architecture of logic resources with a more efficient reconfiguration process.
All these aspects should be improved in the next generation of FPGA devices.

13.2.4 Software but also hardware skills needed

Programming FPGAs is significantly more complex than programming microprocessors or
GPUs. It shall be clearly undertood the fact that when working with reconfigurable
hardware technology the development effort required to get any application to produce
even modest performance is high compared with a purely software implementation, and
any seemingly small detail can easily result in a significant performance degradation.
Since the beginning of run-time reconfigurable computing, only an experienced and
skilled designer can succeed in embedding computationally intensive applications in
dynamically reconfigurable hardware devices because, regardless of the existence of valid
devices and tools, this job remains in essence an expert job and the designer shall know
the restrictions imposed by the silicon. Despite this fact, this scenario has been
progressively changing in the last few years by easing the design flow of reconfigurable
hardware technology. Thus, after performing recently intensive progresses in the design
flow and tools, this technology is more close to beginner designers but a deep knowledge
of the FPGA technology and the RTL hardware design expertise is still unavoidable to
exploit run-time reconfigurable hardware on embedded systems.
Besides, while the economic importance of reconfigurable computing and FPGAs is
widely acknowledged, the strategic dimension of reconfigurable hardware has not been
appreciated until recently. The academia has somehow failed to pay sufficient attention
to the education of a community of high-quality system designers and programmers
using such platforms. This has motivated a recent but ever growing interest in the
question of educating specialists in this domain and this has also been recognized as a
particularly difficult problem. It seems that a sufficiently large programmer population
qualified for such computing paradigm change does not exist yet today.

13.2.5 Component cost

The price of FPGAs is still not comparable with the price of other alternaltive devices like
MCUs in certain embedded applications. The cost of FPGAs currently prevents their use
in cost-sensitive high-volume products. It is necessary that the FPGA costs continue
growing down to massively introduce reconfigurable computing in practically any market
niche of embedded electronic systems.

13.2.6 Lack of killer applications in place

Although some application examples can be identified today which take full advantage of
run-time reconfigurable hardware technology, the lack of a killer application in the past
delayed a lot the bet on this technology by the programmable logic industry. This fact
made that, despite its outstanding potential, this technology was seen for many years by
the FPGA vendors and the research community as an immature alternative unable to
attract the interest of the market, thus limiting its acceptance in the industry. Despite
this missing step, research kept going on. A lot of work has been done in the last decade.
However, it seems that the commercial relevance of reconfigurable computing technology
still remains in doubt nowadays. Applications that can benefit from parallelism and
promote the widespread use of reconfigurable computing like SDR, cryptography or
accelerators for scientific computing shall be consolidated in the near future. Enabling
these killer applications hold great promise to force a definitive shift on the horizon for
this technology [Bouldin, ERSA 2005].

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 235

13.2.7 Energy management is increasingly demanded

Nowadays, the demand for low power systems is a must. For portable and battery-
operated applications, power consumption has always been the greatest challenge since
the battery life of the electronic system has a direct impact on the success of the product
itself. As a result, FPGAs used in these applications shall meet low-power consumption
requirements. Many MCU devices oriented to embedded applications are equipped with a
powerful energy management subsystem that lets put the device in several operation
modes from the power consumption point of view (low power modes like standby, sleep,
shutdown, stop, idle, etc). In contrast, existing FPGAs designed for high-throughput and
high-duty-cycle applications have few or no power management features [Tuan et al.,
TCAD 2007]. These features would be of great interest in reconfigurable logic devices to
face new applications niches restricted to very low power consumption rates. This target
is still far in partial reconfiguration technology and few FPGAs implement ways to reduce
static power consumption utilizing sleep modes today.

13.2.8 Embedded security aspects

The fact that the design synthesized in an FPGA device shall be stored and downloaded
to the FPGA in the way of raw data as a full or partial bitstream when required, at power
on reset or at run-time, involves a series of risks. As this information can be intercepted,
it is convenient to transfer this information encrypted. Current state-of-the-art FPGA
devices are equipped with cryptographic hard cores integrated in the FPGA which take
care of decrypting the received bitstream. However, the fact that most of bitstream
repositories are placed in an external NVM outsite the FPGA shows an architectural
weakness. In this direction, only a few SoC devices integrate NVM inside the chip to
make a more secure solution. Besides, protection mechanism against power monitoring
attacks shall be considered in these devices.

13.3 Summary

Demands for high-performance computing with both flexibility and low energy
consumption are dramatically growing in the embedded systems industry.
Reconfigurable computing systems driven by FPGAs are attracting great interest due to
their flexibility and good balance of performance-cost. Nevertheless, to exploit such
technologies, design and programming methodologies are more and more important. This
chapter focuses on the analysis of the main issues to be faced in the near future in order
to design heterogeneous customisable embedded systems for modern demanding
applications able to deliver high performance, high flexibility and low energy
consumption at the same time. In this direction, partial reconfiguration can dramatically
extend the capabilities of programmable logic devices. Although this technology is
definitely mature enough for industrial use, some open issues have to be addressed yet
to put all its potential to the service of the society. With design complexity and power
consumption being the main concerns among FPGA designers, traditional
implementation tool flows and methodologies continue to be disjointed and often
inadequate in meeting goals such as performance, area, power efficiency, and IP
integration. Specific powerful software tools are needed to take advantage of the many
different complex hardware resources included in current FPGAs as well as keep under
control its management of power consumption. In this direction, the key to success
probably will lie in improving designer productivity and the associated toolset ecosystem.
If the remainder effort is properly addressed by the research community, this technology
could become the natural replacement of other more conventional technologies currently
in use. This chapter somehow highlights the direction towards which the scientist
community is addressing its efforts in the coming years in search of conclusive advances
in this field.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 236

References

[Becker et al., FPL 1998]
J. Becker, A. Kirschbaum, F.M. Renner, M. Glesner, Perspectives of reconfigurable computing in research,
industry and education, Field-Programmable Logic and Applications – From FPGAs to Computing
Paradigm, LNCS, vol. 1482, pp. 39-48, 1998.

[Bouldin, ERSA 2005]
D.W. Bouldin, Enabling killer applications of reconfigurable systems, Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algorithms, pp. 7-16, 2005.

[Butel et al., Xcell 2004]
P. Butel, G. Habay, A. Rachet, Managing partial dynamic reconfiguration in virtex-II pro fpgas, Xcell
Journal, pp. 32-37, Xilinx Inc., 2004.

[DeHon, FCCM, 1994]
A. DeHon, DPGA-coupled microprocessors: commodity ICs for the early 21st Century, Proceedings of the
IEEE International Symposium on Field-Programmable Custom Computing Machines, pp. 31-39, 1994.

[Herrholz et al., FPL 2007]
A. Herrholz, F. Oppenheimer, P. A. Hartmann, A. Schallenberg, W. Nebel, C. Grimm, M. Damm, J.
Haase, F. Brame, F. Herrera, E. Villar, I. Sander, A. Jantsch, A.M. Fouilliart, M. Martinez, The ANDRES
project: analysis and design of run-time reconfigurable, heterogeneous systems, Proceedings of the
International Conference on Field-Programmable Logic and Applications, pp. 1-6, 2007.

[Mangione-Smith and Hutchings, RAW 1997]
W.H. Mangione-Smith, B.L. Hutchings, Configurable computing: the road ahead, Proceedings of the
Reconfigurable Architectures Workshop, pp. 81-96, 1997.

[Paulsson et al., FPL 2007]
K. Paulsson, M. Hübner, J. Becker, J.M. Philippe, C. Gamrat, On-line routing of reconfigurable functions
for future self-adaptive systems - Investigations within the ÆTHER project, Proc. of the Int. Conference on
Field Programmable Logic and Applications, pp. 415-422, 2007.

[Paulsson et al., ISVLSI 2006]
K. Paulsson, M. Hübner, M. Jung, J. Becker, Methods for run-time failure recognition and recovery in
dynamic and partial reconfigurable systems based on Xilinx Virtex-II Pro FPGAs, IEEE Computer Society
Annual Symposium on VLSI: Emerging VLSI Technologies and Architectures, pp.159-166, 2006.

[Ratha and Jain, TPDS 1999]
N.K. Ratha, A.K. Jain, Computer vision algorithms on reconfigurable logic arrays, IEEE Transactions on
Parallel and Distributed Systems, vol. 10, no. 1, pp. 29-43, 1999.

[Schallenberg et al., Springer 2005]
A. Schallenberg, W. Nebel, F. Oppenheimer, Designing for dynamic partially reconfigurable FPGAS with
SystemC and OSSS, Pierre Boulet (Ed.) Advances in design and specification languages for SoCs, pp.
183-198, Springer, 2005

[Smit et al., HUC 1999]
G.J.M. Smit, T. Bos, P.J.M. Havinga, S.J. Mullender, J. Smit, Chameleon - reconfigurability in hand-held
multimedia computers, Proc. Int. Symposium on Handheld and Ubiquitous Computing, pp. 1-3, 1999.

[Todman et al., CDT 2005]
T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, P.Y.K. Cheung, Reconfigurable
computing: architectures and design methods, IEE Proceedings on Computer and Digital Techniques, vol.
152, no. 2, pp. 193-207, 2005.

[Tredennick and Shimamoto, Spectrum 2003]
N. Tredennick, B. Shimamoto, Go reconfigure, IEEE Spectrum, vol. 40, no. 12, pp. 36-40, 2003.

[Tuan et al., TCAD 2007]
T. Tuan, A. Rahman, S. Das, S. Trimberger, S. Kao, A 90-nm low-power fpga for battery-powered
applications, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 2, pp. 296-300, 2007.

[Ullmann et al., IPDPS 2004]
M. Ullmann, M. Hübner, B. Grimm, J. Becker, An FPGA run-time system for dynamical on-demand
reconfiguration, Proc. of the International Parallel and Distributed Processing Symposium, pp. 1-8, 2004.

[Xilinx Inc., WP169 2002]
K. Parnell, Could automotive processor obsolescence be history?, Xilinx Inc., White Paper WP169 (v1.0),
2002.

[Xilinx Inc., WP194 2002]
K. Parnell, Telematics digital convergence – How to cope with emerging standards and protocols, Xilinx
Inc., White Paper WP194 (v1.0), 2003.

[Xilinx Inc., WP374 2010]
D. Dye, Partial reconfiguration of Virtex FPGAs in ISE 12, Xilinx Inc., White Paper WP374 (v1.0), 2010.

[Ye et al., ISCA 2000]
Z.A. Ye, A. Moshovos, S. Hauck, P. Banerjee, CHIMAERA: a high-performance architecture with a tightly-
coupled reconfigurable functional unit, Proc. Int. Symp. on Computer Architecture, pp. 225-235, 2000.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 237

Chapter 14

Conclusions and future work

Run-time reconfigurable hardware technology has experienced an enourmous progress
in the last decade, just at the same time this PhD work has been carried out. The author
has lived by himself the transition of this technology, moving from being considered at
the beginning a hobbie of some passionate research engineers to definitively become a
mature cutting edge technology today, able to reach levels of performance that other
technologies can not reach. From the author perspective, this PhD research work has
meant a hard and extremely long road to walk but at the same time a challenging and
motivating experience. Somehow, the author feels fortunate to have started this work at
that time, just at the moment this technology has been put in the spotlight of the
scientist community and the industry in general, enjoying a big momentum. In fact, the
society has recently started to face new technological problems that demand new
solutions and they can be achieved by means of reconfigurable computing technology.

14.1 Conclusions

Although the idea of creating computing systems with flexible hardware dates back to the
the early 1960s through the work done by Gerald Estrin, it was the emergence of SRAM-
based FPGAs in the 1980s by Xilinx Inc. that boosted reconfigurable computing as a
research and engineering field, converting such devices into the leading technology
capable of putting that computing paradigm discovered in the past into practice. Since
then, reconfigurable computing has become a vibrant field with an increasingly growing
research community. This dissertation aims to help driving and stimulating product
design innovation and creativity through the exploitation of run-time reconfigurable
hardware, expecting that this technology is rapidly transformed into benefits and added
value for the citizens and the industry.
Along this work, it has been modeled a standard system architecture based on run-time
reconfigurable hardware technology to synthesize embedded electronic applications. The
key component in this architecture is the reconfiguration engine, which has been deeply
investigated to minimize the achievable reconfiguration latency. It enables the time
multiplexing of functional tasks in a partition of the programmable logic device, aimed at
delivering a solution able to gain a competitive advantage concerning processing time,
functional density of resources, cost and power consumption in contrast to other
technical alternatives oriented to static hardware implementations.
Fully programmable architectures –like general-purpose processors– are flexible, i.e.,
they can be used to compute virtually any algorithm, but, unfortunately, the overhead
caused by this flexibility makes them sometimes inefficient. Application-specific
architectures, on the other hand, are very efficient although they offer little flexibility
because –by definition– are not programmable. The concession done by reconfigurable
architectures is to limit the flexibility to a particular algorithm domain: a domain-specific
reconfigurable architecture is efficient and flexible within its algorithm domain. Hence,
this PhD work follows a domain-specific approach, where several electronic design
solutions have been optimised for specific problems found in particular application
domains. Several embedded applications have been deployed on reconfigurable hardware
architectures exploiting both partial and full reconfiguration techniques. The complexity
of the applications under test goes from simple computing systems to extremely complex
ones, and ranging the level of dynamic hardware adaptation from parameter tuning to
major structural modifications, intended to bring out thus all the levels of difficulty of
this technology.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 238

All these application examples have been evaluated in different real use cases, conducted
over the most relevant FPGA and SoC platforms available in the market provided with
dynamic partial reconfiguration capabilities, mainly Atmel, Altera and Xilinx devices, and
making use of state of the art commercial tools. Each one of the applications evaluated
comprises all the phases of the electronic development cycle, from the analysis of the
functional requirements to the architecture definition, implementation, prototyping and
online system validation. Across the different applications evaluated (basically digital
control, non-linear and arithmetic computing and image/signal processing), the author
has gone deeply into reconfigurable computing architectures. Several commercial
platforms have been used to assess all those concepts under state-of-the-art FPGA and
SoC devices, as listed in Table 14.1.

Table 14.1 Development platforms used in the different research works

SYSTEM-ONCHIP PLATFORM FPGA MCU

Atmel AT94K40 FPSLIC SoC Atmel AT40K40 Atmel 8-bit AVR hard-core processor

Altera EPXA1 Excalibur SoC Altera APEX20K100E ARM 32-bit ARM922T hard-core processor

Altera EPXA10 Excalibur SoC Altera APEX20K1000E ARM 32-bit ARM922T hard-core processor

Xilinx Spartan-3AN FPGA Xilinx XC3S700AN Xilinx 32-bit Microblaze soft-core processor

Xilinx Virtex-4 LX FPGA Xilinx XC4VLX25 Xilinx 32-bit Microblaze soft-core processor

Each of the platforms listed in Table 14.1 involves working with a specific EDA design
flow and specific CAD tools: System Designer for Atmel devices, Quartus-II and SOPC
Builder for Altera products, and ISE, EDK and PlanAhead for Xilinx. The evaluation of
the main commercial devices and tools available in this area gave to the author a realistic
view about the reality and the real status of this technology today.
The results achieved in the design and development of the different run-time
reconfigurable hardware applications evaluated highlight dynamic partial reconfiguration
as a potential technology to lead the next computing wave in the industry. For this, to
fully exploit the possibilities created by this powerful computing paradigm, an
appropriate mix of the theoretical foundations and practical considerations of this
technology –including architectures and tools supporting soft/hard, partial/full,
static/run-time reconfiguration– is essential.
By passing the one million LUTs barrier, FPGA technology enters a new era of challenges
and opportunities, accentuating the advantages of exploiting programmable hardware
not statically but in a dynamic and partially reconfigurable way. Dynamic partial FPGA
reconfiguration lets address inherent drawbacks derived from this natural growing like
long configuration time, increasing leakage current of the device or accentuated
vulnerability to single event upsets. The strengths of this technology go in line with the
new emerging demands for consideration to drive the future like reduced power
consumption, safety-critical aspects, fault tolerance techniques and self-repairing
mechanisms. In this direction, leading processor and mainframe companies are gaining
more awareness of reconfigurable computing technology due to the increasing energy
and cost constraints of current embedded electronic systems. Dynamic and partial
reconfiguration has progressed from academic labs to scientific, research and technology
centres in the industry, exploing adaptivity, scalability and reliability for a range of
applications.
For all these years of research in the university dealing with this PhD work, the author in
parallel has been also carrying out his professional career in the industry. Being a
simultaneous team player of both research and industry worlds, sharing the time

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 239

between two different and high demanding disciplines –PhD candidate in the Department
of Electronic, Electrical and Automatic Control Engineering at the University Rovira i
Virgili, and a full position as embedded electronic engineer in the industry–, has been a
hard challenge not easy to carry ahead. However, with this dual view of the embedded
electronic design world the author could gain experience and understanding on how new
technologies are introduced in the industry. Under this perspective, the author believes
that the level of maturity reached nowadays by the run-time reconfigurable hardware
technology is good enough to be exploited –already in a professional way– in embedded
applications of the real life.
Through this PhD dissertation, the author uncovers the state of health of run-time
reconfigurable hardware technology. At present, many potential killer apps, research
projects and works disseminated in books, journals and conferences highlight the
strengths of run-time reconfigurable hardware. Many researchers believe dynamically
reconfigurable architectures are called to become platforms of choice for many
applications in the not-to-distant future. One thing is true: the interest shown today by
the scientific community for this technology is much higher than the interest shown
some years ago, when the author started this research. Therefore, the advances done in
this field are encouraging. However, in the modest opinion of the author, it is pending yet
that the industry makes public more success stories in the professional use of this
technology to definitively give a strong push of confidence on it.

14.2 Research projects

During all these years of work, the author, as an active member of the Development of
Embedded Systems (DES) research group, has combined his research work with the
participation in several European and Spanish funded research projects aligned with the
interests of the PhD topic, where the DES research group has taken responsibility for
tasks, work packages or other project deliverables. The author’s work falls within the
scope of all these projects, as noted in the brief description of each of these projects that
follows next. The list of projects is enumerated below in Table 1. Besides, the
dissemination of results through books and journals, and the participation in
International and National conferences have been regular and consolidated activities
conducted for all this period.

Table 14.2 European and Spanish research projects framework of this PhD dissertation

ACRONYM FULL PROJECT NAME SCOPE REFERENCE

TRUST-eS

Technology Responses to Ubiquitous
Security Threads for e-Security

European project

FIT-070000-2003-930 and FIT-360000-2005-13
(MCyT, PROFIT, MEDEA+ A-306)

DELFIN

Development of a Fingerprint Co-processing
System

Spanish project

SEG-2004-05592
(Plan Nacional de Investigación y Desarrollo, MCyT)

PIBES

Perfeccionamiento de la Identificación
Biométrica y Evaluación de su Seguridad

Spanish project TEC2006-12365-C02-02 (MCyT)

14.2.1 TRUST-eS

During the past decade, Europe has led the development of smart-cards into complex
media able to store, compute and securely manage multiple applications. However, there
is a need to overcome technological limitations currently encountered in card-based
transaction platforms to provide reliable and cost-effective solutions for e-security and e-
government applications. In fact, cards employing conventional identity verification –
passwords and PINs– are easily compromised while used in conjunction with biometrics
offers one of the most reliable methods of determining individuals’ identities.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 240

TRUST-eS (technology responses to ubiquitous security threads for e-security) is a
MEDEA+ (A-306) project comprising a consortium of European industrial players, small
and medium sized enterprises, and academic partners which target authentication
technologies addressing multimode identification with smart-card-based biometrics. It
pushes smart-card performance and adds new features by addressing technological
developments from the SoC component level to interfaces with external network
architectures. This project tackles the current technology limitations or bottlenecks
encountered in secure transactions platforms and develops technology responses or
breakthroughs that will leverage future security solutions needed for e-Security and e-
Government applications in the next years. The project, composed of 20 partners from
France and Spain, has been leaded by Gemplus (today Gemalto), while the activity of the
Spanish members has been coordinated by Telefónica I+D. The Spanish branch of the
project is funded by the Ministerio de Ciencia y Tecnología (MCyT), Programa de Fomento
de la Investigación Tecnológica (PROFIT), FIT-070000-2003-930 and FIT-360000-2005-
13. TRUST-eS focuses on five main areas:
� System architecture. This entails in-depth analysis of SoC designs and design of

reconfigurable blocks for improved security or greater silicon efficiency in terms of
performance, portability, attack detection and resistance.

� Client/server applications. The card is integrated into distributed architectures so it
can function as a server or securely run applications that do not reside on the card
itself. In the past, even the most high-end smart-cards have been developed in a fully
card-centric manner, which poses serious limitations on their proliferation in the
established information and communication technologies world. TRUST-eS develops
new hardware/software resources to bridge this gap, entailing a totally different
organisation of communication protocols, memory management and allocations on the
card, as well as of the commands to the card.

� Reconfigurable blocks for secure SoCs, making the card more customisable and secure
by integrating a configurable hardware block and software-embedded driver. The
target is a robust, flexible platform offering reduced customisation costs.

� Authentication techniques and technologies essentially addressing fingerprint sensor
technology, new multimode fused biometric identification algorithms and biometric
systems architecture based on smart-cards. Enhancing sensor resistance to fake-
finger fraud is an important aspect in extending the potential for secure services
through unattended terminals and mobile phones. The goal is to reach a stage where
biometrics can replace PIN code identification on the card and decoupled with
cryptography for applications such as e-signatures.

� Integration of smart-card interfaces in systems environments combining highly
secured embedded technology with connectivity to secure smart-card interface
platforms. Besides, reliable and integrated contactless features are developed for cards
and platforms.

The work packages entrusted to the Universitat Rovira i Virgili encompass the
development, by means of hardware/software co-design techniques, of both biometric
and cryptographic algorithms to be integrated in smart-cards. As work products, a set of
hardware coprocessors or IPs synthesized on reconfigurable logic devices, mainly FPGAs,
have been implememented to perform the fingerprint authentication/identification
process at real-time and in a secure way. Industrial partners in TRUST-eS pursue to
exploit project results in their own product lines, while vertical co-operation among
partners enable them to determine optimal solutions for interfacing the various elements
into complete systems for e-government applications. Thus, MEDEA+ focuses on
enabling technologies for the Information Society and aims to make Europe a leader in
system innovation on silicon for the e-economy.

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 241

14.2.2 DELFIN

DELFIN (development of a fingerprint co-processing system) is a Spanish project funded
by the Plan Nacional de Investigación y Desarrollo from the Ministerio de Ciencia y
Tecnología (McyT) under grant SEG-2004-05592, jointly developed by the Universitat
Rovira i Virgili and the Universitat Politècnica de Catalunya. The goal of the project is the
development of a low-power low-cost SoC platform so-called FICOS (FIngerprint
COprocessing System) composed of an embedded processor with its corresponding data
and program memories, and specific co-processors supporting the execution of the
primitive operations of any access control system based on fingerprint biometrics,
namely enrolment and matching. FICOS is connected to the external world through two
interfaces: on the one hand, the fingerprint image is assumed to be stored in an external
memory-like circuit (graphical interface); on the other hand, it receives commands and
data from some external host processor (application interface). The definition of the
corresponding communication protocols is part of the project. Internally FICOS includes
a segmented flash memory able to store the features extracted from some reduced
number of fingerprints. In some applications one or several of the flash memory
segments are used for storing another type of confidential data, for example a private key
used in some authentication protocol. The program executed by the embedded processor
(firmware) depends on the particular application so that it is stored in another field-
programmable non-volatile memory. A first prototype is built with an FPGA-based fast-
prototyping board. A subsequent task is the evaluation of several lower cost solutions,
among others: integration of the complete system within some type of commercial
embedded array including the firmware and the flash memory, use of a low-cost sweep
sensor and internal image reconstruction, and use of a dynamically programmable
component, e.g. a SoC device, provided with dynamic partial reconfiguration capability.
Furthermore, in order to evaluate the processor performance, a generic application is
developed.

14.2.3 PIBES

Recent improvements in electronics and computer science have led to the consolidation
of emerging technologies like biometrics. However, some initiatives for using biometrics
in real applications have shown open issues that must be solved to enable its deployment
and integration at large scale in everyday systems. PIBES (perfeccionamiento de la
identificación biométrica y evaluación de su seguridad) is a Spanish project funded by the
MCyT and split in two subprojects entitled “PIBES: Algorithmos Biométricos y
Metodología de Evaluación” (TEC2006-12365-C02-01), coordinated by the University
Carlos III, and “PIBES: Desarrollo de Coprocesadores Biométricos en Hardware
Autoreconfigurable” (TEC2006-12365-C02-02), carried out by the Universitat Politècnica
de Catalunya in conjunction with the Universitat Rovira i Virgili. PIBES approach tries to
contribute to the improvement and validation of biometric systems in four major
research lines:
� Solving some punctual problems currently unsolved in some biometric techniques, in

order to improve their performance and/or usability.
� Progress in developing multimodal biometric systems and increasing the verification

rates.
� Building biometric ID devices (biometric ID tokens) at lower cost and with higher

performance.
� Developing the design methodology and tools for the evaluation of the security of

biometric systems.
The PIBES project pursues to improve the state-of-the-art of biometrics in some ways,
providing interesting contributions to the scientific community in terms of new
algorithms aimed at reducing the recognition error rates, making progresses in multi-
modal biometrics as well as match-on-token, extract-on-token or even sensor-on-token

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

 242

devices, and delivering new guidelines and leassons learned focused on evaluation
methodologies oriented to biometrics. From a social point of view, the project’s profits
aims to bring biometrics identification closer to the citizens, so that they get familiar with
this technology and have a bigger confidence in its techniques.
Focused on the work conducted by UPC-URV group, at present, the implementation of
biometric identification systems is usually based on high-performance and expensive
general-purpose microprocessors or DSPs. The complex extraction and matching
algorithms are normally designed or adapted to be executed with acceptable latencies
over these kinds of platforms. However, these systems lack the presence of coprocessors
specially designed for the execution of the compute intensive operations typically needed
by the biometric algorithms. The UPC-URV group is focused in making interesting
contributions in the development of embedded systems and hardware coprocessors
designed for analyzing and processing extraction and matching biometric characteristics,
devoted for developing low cost biometric recognition devices with extraction on token
(EoT) and matching on token (MoT) capabilities. The system architecture proposed is
based on a low-cost FPGA composed of a software host processor and several dedicated
hardware coprocessors used for the resolution of the most time-critical tasks. This
system architecture has proved to be competitive in terms of cost and very efficient in
solving fingerprint algorithms and it is expected that similar hardware solutions can be
applied to other biometric techniques, obtaining the advantages offered by this
architecture. In fact, this possibility opens a novel research area, to be dealt in this
project, based on developing specific tokens (single-mode) for different biometrics (voice,
hand geometry, iris, etc) that can be integrated in low cost devices with high
computational capabilities. Additionally, FPGAs are suited for applying dynamic self-
reconfiguration techniques, which allow increasing the functional density of the
programmable device in use. This characteristic, not used up to that moment in the
development of biometric systems, enables the dynamic reconfiguration of a section of
the FPGA, which works as a dynamic coprocessor able to map different functions in real-
time, while the rest of the device maintains its static behaviour configured as an
embedded microprocessor that controls the reconfiguration process and executes the
non-time-critical tasks. The most important result of this approach is the significant
reduction of the total area occupied by the system if compared with the area that would
be obtained implementing the same system over a static and non-reconfigurable device.
Dynamic self-reconfiguration is not only suitable for designing single-mode biometric
tokens, but also for developing multimodal tokens (with two o more biometrics
characteristics), a research line that is considered as one of the objectives of this project.

14.3 Future work

As future work, the author pursues to contribute to this research field in finding new
opportunities for the deployment of run-time reconfigurable hardware technology in the
industry – in the way of projects, applications or commercial products. The author
belives that one effective way to consolidate the acceptance of this technology is to
disseminate its potential through success stories in the industry/market. Exciting times
lie ahead in the computing field and there will be plenty of computational problems and
challenges to face where reconfigurable computing technology can help to solve them. �

UNIVERSITAT ROVIRA I VIRGILI
EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE
Francisco Fons Lluís
DL: T. 877-2012

