
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática
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Resumo

Nos últimos anos, as redes de sensores sem fios conheceram um grande impulso em
variadas áreas, nomeadamente na monitorização industrial e ambiental e, mais recente-
mente, na logı́stica e noutas aplicações que envolvem processos de negócio e a chamada
Internet das Coisas e dos Serviços. Contudo, e apesar dos avanços que se têm verificado
tanto em termos de hardware como de software, estas redes são difı́ceis de programar,
testar e instalar. A simulação de redes de sensores é frequentemente utilizada para tes-
tar e depurar aplicações para redes de sensores, pois permite testar a execução de das
aplicações em ambientes virtuais.

Esta tese aborda um problema que diz respeito a testar estas redes através de simulação:
a definição (manual) de modelos. A nossa abordagem aponta para a geração de modelos
de simulação directamente a partir de aplicações redes de sensores, em particular, mod-
elos para o simulador VisualSense criados a partir de aplicações escritas em Callas, uma
linguagem de programação para as redes de sensores. Para tal, criamos uma ferramenta
capaz de gerar modelos que é paramétrica pelos modelos de rede e modelos sensores
da rede que se pretende modelar, e ainda por um conjunto extensı́vel de parâmetros de
simulação. As nossas experiências mostraram resultados encorajadores na simulação de
redes de grande escala, uma vez que conseguimos executar simulações com até 5000 nós.

À medida que as redes de sensores sem fios começam a ser utilizadas em processos
de negócio, a informação que recolhem do ambiente tem cada vez mais influência no
decurso dos fluxos de trabalho associados aos processos de negócio. De um modo geral,
os testes levados a cabo em fluxos de trabalho fazem uso de informação gravada em fluxos
de trabalho executados previamente, tornando difı́cil testar o sistema como um todo. Em
alternativa, e como uma segunda proposta desta tese, propomos testar fluxos de trabalho
através da incorporação de resultados obtidos nas simulações das aplicações das redes de
sensores. Além de cobrir os casos cobertos pela primeira abordagem, esta técnica permite
testar novos fluxos de trabalho, bem como as mudanças ocorridas num determinado fluxo
de trabalho por acontecimentos no ambiente.

Palavras-chave: redes de sensores, simulação, sistemas de gestão de fluxos de trabalho
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Abstract

In recent years, Wireless Sensor Networks have gaining momentum in several fields,
notably in industrial and environmental monitoring and, more recently, in logistics. How-
ever, and in spite of the advances in hardware and software, Wireless Sensor Networks are
still hard to program, test, and deploy. Simulation is often used for testing and debugging
sensor networks because they allow us to perform deployments in virtual environments.

This paper addresses a key problem of testing such networks using simulation: (man-
ual) model definition. Our approach is to generate simulation models directly from WSN
applications, in particular, VisualSense simulator models from applications written in
Callas, a programming language for WSN. For that purpose, we create a model gener-
ator tool that is parameterisable by network and sensor templates, and by an extensible
set of simulation parameters. Our experiments show encouraging results on simulating
large scale networks, as we are able to handle WSN with as many as 5000 nodes.

As Wireless Sensor Networks begin to play some role in business processes, the in-
formation they gather from the environment influences the execution of workflows. Gen-
erally, the tests carried out on these systems make use of recorded information in earlier
workflow executions, making it difficult to test the system as a whole. Alternatively, and
as a second proposal of this thesis, we propose testing such workflows by incorporating
results obtained from the simulation of sensor network applications. Besides covering the
situations described in the first approach, this technique allows the testing of new work-
flows, as well as the changes made to a given workflow by events in the environment.

Keywords: sensor networks, simulation, workflow management systems
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Chapter 1

Introduction

A sensor network is a collection of devices that can collectively measure some scalar or
vector field and communicate the resulting data to a base station, for instance, or to an
actuator that can perform some action on the environment. Wireless Sensor Networks
(WSN) are a special case of sensor networks where the communication is, as the name
implies, wireless, the number of nodes is usually large, and the nodes have very limited
computational power and energy autonomy.

WSN are a promising field in terms of practical implications of technology on our ev-
eryday life. Current WSN applications include environmental monitoring, extreme pre-
cision farming, health care, warfare, security, and logistics, to name a few. Envisioned
applications include biomedical research and space exploration.

The topic of WSN has attracted the attention of both companies and research groups.
The challenges raised in terms of hardware, such as device miniaturisation, or energy
autonomy improvement, are as important as those raised at the software level, particularly
in what concerns the operating systems and the programming languages for these devices.
In spite of the advances in both areas [4, 49, 85], programming is still seen as the weakest
link in WSN [55].

A typical WSN would have nodes running nesC [28] code on TinyOS [32], an event-
driven operating system. This approach is somewhat low level and has disadvantages in
terms of network reconfiguration, for instance. While there have been some attempts to
provide an abstraction level on top of TinyOS, most are not formal-based, which makes
it impossible to prove their correctness. A notable exception is Callas [54], a (type-)safe
programming language for WSN that may serve as an intermediate language upon which
high-level, type-safe programming abstractions may be encoded.

Simulation is another active research area in WSN. The potentially large number of
nodes compromises the testing of applications for WSN, moreover, WSN are often de-
ployed at remote locations, making physical access to the devices difficult, or even impos-
sible. For such applications, simulation may play a decisive role in what concerns testing
and debugging [22]. WSN simulators are computer systems that run WSN applications in
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Chapter 1. Introduction 2

virtual environments where geographical properties, radio communication, and physical
phenomena are modeled. There are several WSN simulators, with different characteris-
tics. In this work, VisualSense [7], an Open Source, generic (not specific to a given node
architecture) simulator is used.

Creating simulation models is a laborious task. It is necessary to define the sensor
nodes (or at least the sensor nodes properties) and to specify their positions, the WSN
application, the physical environment, the radio properties, and other aspects. Ideally,
one would be able to automatically generate simulation models from WSN applications
and a set of simulation parameters.

This thesis explores automatic simulation model generation. In particular, an approach
for generating VisualSense models from Callas applications is presented. We present a
generator tool that creates simulation models, for the VisualSense simulator, from Callas
applications. We have presented this tool in [72] In addition, we present a means of
integrating VisualSense models in a workflow management system. This integration, that
we have presented in [73, 74] aims at easing the simulation of business processes in areas
where WSN have applications, such as logistics.

Motivation

Sensor networks are gaining momentum in various fields, notably in industrial and envi-
ronmental monitoring, and more recently in health care, logistics, and other areas. Being
a relatively novel subject, WSN are under active research, whether in terms of hardware,
communication protocols, operating systems, and programming languages.

Wireless sensor networks are hard to program, deploy, and test. Testing WSN is hard
because the networks are usually large and can be deployed in wide areas, or in harsh
environments. WSN simulators are often used to test the applications prior to deployment.
A simulator serves as a sandbox where it is possible to control virtually all aspects of a
WSN, namely, the physical environment, nodes, application, and physical phenomena.

This work addresses a key problem of testing WSN using a simulator: simulation
model definition, a laborious (manual) task. The general goal is to automatically gener-
ate simulation models directly from WSN applications and a set of simulation parame-
ters, thus easing WSN testing and deployment. Furthermore, this thesis addresses testing
higher level applications based on information from WSN, a topic that can only grow in
importance as the number of applications for WSN continues to rise.

Goals

We explore an approach towards the goal of achieving simulation model generation. It
consists of i) adapting the Callas Virtual Machine in VisualSense, adapting its interface
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in a simulator component, ii) defining generic network and sensor model templates that
serve as building blocks for Callas network models, and iii) creating a simulation model
generator tool for this approach. Moreover, this thesis explores the possibilities of using
WSN simulation at higher (application) levels and presents one of such possibilities: inte-
grating Visualsense’s sensor network simulations directly into the execution of workflows
in the Kepler workflow management system.

Structure of the document

The structure of this thesis is as follows. Chapter 2 introduces the subject of WSN, giving
some insight into WSN applications, devices, communication, and programming models.
Chapter 3 explores WSN simulation, presents a comparison of WSN simulators, and then
details the VisualSense simulator, used through the rest of the thesis. Chapter 4 presents
the Callas WSN language, along with examples, and the Callas Virtual Machine, that
serves as a run-time system for Callas. In Chapter 5, we pave the way for automatic
simulation model generator and present the generator tool. In Chapter 6, we integrate
WSN simulation model in workflow execution and testing. Finally, Chapter 7 concludes
the thesis and outlines future work.





Chapter 2

Wireless Sensor Networks

A Wireless Sensor Network is a potentially large collection of tiny devices that have
physical sensing capabilities, and communicate wirelessly. In a WSN there are special
nodes that leverage on the information gathered by the sensing nodes, namely, actuators
and sinks (or base stations). Actuators perform some kind of action on the environment,
based on the information received from the sensors; for instance, an actuator may trigger
the cooling process of a nuclear reactor when a given temperature is reached. Sinks
are usually nodes with much greater computational power than the sensors that usually
serve as sensor network’s base stations. A sink may log the information harnessed by the
sensors, or even (re)configure the network.

WSN can be used for many purposes, ranging from industrial monitoring to biomedi-
cal research [4]. However, their widespread usage is still restrained by difficulties such as
the very limited energy autonomy and computational capabilities of the sensor nodes, the
the need for specialised communication protocols. In addition, testing and debugging net-
works composed of large numbers of nodes, or networks deployed in harsh environments,
is hard, if not impossible.

In this chapter, we present an overview of WSN. Section 2.1 presents some of the
current and envisioned WSN applications. Section 2.2 summarises the state of the art in
sensor devices. Sections 2.3 and 2.4 give some insight into the communication aspects
and into the programming models. Finally, in Section 2.5, presents the main research
topics in the field.

2.1 Applications

The diversity of WSN applications stems from the variety of physical phenomena that
can be sensed: temperature, sound, wind speed, magnetic fields, acceleration, light and
non visible radiation, and concentration of substances in a given medium, to name a
few [4]. WSN sensing capabilities are used for environmental monitoring, extreme pre-
cision farming, security, warfare, and scientific research. More modest, but nonetheless
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commercially relevant applications, include heating and ventilating [4]. In spite of the
aforementioned diversity, WSN applications can be classified into three categories: mon-
itoring (e.g., temperature monitoring), tracking (e.g., vehicle tracking) and research (e.g.,
space exploration). In the remainder of this Section, some current and envisioned appli-
cations are presented.

2.1.1 Current Applications

Current applications usually fall under the monitoring and tracking categories. The fol-
lowing project (and product) examples represent a very small fraction of what is already
done with WSN.

Forest Fire Detection SISVIA [18], developed by the spanish company dimap [17], is
the first real-world WSN-based forest fire detection system. It was deployed in a northern
region of Spain, in 2009, and covers 2 km2 with 90 waspmote [46] sensors that monitor
temperature, relative humidity, carbon monoxide, and carbon dioxide every 5 minutes.
These parameters are communicated to a control centre by 2 special nodes that act as
gateways. Each node is connected to a solar panel that recharges the battery, making the
WSN autonomous in terms of energy.

Ocean Monitoring The ARGO [62] project provides ocean data that is being used to
understand the ocean currents. Its network consists of 3,000 nodes, distributed in all
the oceans, that can dive to a depth of 2,000 meters, and then emerge and transmit the
collected data (pressure, temperature, and salinity) to a satellite.

Glacier Monitoring PermaSense [66] is a geo-monitoring system that provides data
about the permafrost at the Swiss Alps, allowing to perform hazard assessment to tourist
resorts and other man-made infrastructures. The network remains unattended for most of
the year because of the extreme weather conditions. The nodes endure temperatures as
low as -30o C.

Wildlife Monitoring In Kenya, at the Mpala Research CenterKenya, the ZebraNet [62]
project takes advantage of a WSN to study the behaviour of wild horse, zebra, and lion
populations. The sensors used in the animals are able to receive GPS information and to
measure the ambient light, allowing to estimate the movement patterns of single animals
and groups, as well as interactions between species. Whenever two sensors are in range,
they exchange their data. On a regular basis, a mobile sink reads the data from the sensors
in range.
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Health Monitoring Sleep Safe [84] is a monitoring system that can help prevent Sud-
den Infant Death Syndrome. A sensor monitors the infant’s sleeping position and alerts
the parents when the infant is lying in its stomach.

Industrial Monitoring Soflinx Corporation, a security sensor network supplier, pro-
vides a perimeter security system that enables real-time detection of several hazardous
substances in industrial environments. The system includes actuators that react automati-
cally based on the collected data [4].

Mining Monitoring Mining is a dangerous activity in great part because even slight
structural changes in tunnels may cause collapses. SASA [45] is a WSN based monitoring
system that can detect, locate, and report collapse holes. The system can automatically
detect and reconfigure nodes displaced by a collapse.

Military Tracking There are several WSN systems for tracking military ground vehi-
cles. The nodes can be deployed from unmanned aircrafts and are able to cooperatively
estimate the path of the vehicles and then transmit the results to another unmanned aircraft
that flies by in order to collect the data [62].

2.1.2 Envisioned Applications

The future holds many applications for WSN. As the following examples demonstrate,
the key factors holding back envisioned applications are the sensor node’s size and energy
autonomy.

Health Monitoring Implanted wireless biomedical sensors in diabetic patients could
be used to assess the glucose levels in the blood. The device could also be an actuator that
injected insulin as needed [4].

Biomedical Research Some envisioned applications require much smaller sensors to
be developed. This is especially true in nanomedicine [3], where sensors smaller than a
cell would provide data for the analysis of cell functions at the molecular level.

Space Exploration WSN could act as a distributed probe, making measurements in (or
around) celestial bodies. WSN could also replace much of the wiring in spacecrafts [20].

2.2 Sensor Devices

A basic sensor device is composed by four components: processor, transceiver, power
source, and sensing unit [4]. More complex devices may have external memory, or ac-
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Program Memory External Memory

CPUTransceiver Sensing Unit

Actuators

Power Source

Figure 2.1: Generic sensor node hardware architecture

Table 2.1: Characteristics and prices (as of 2010) of five sensor devices

Sensor C.P.U. Program
Mem.

External
Mem.

Programming Max.
Auton.

Unit
Price
(Eur)

Particles
uPart

Microchip
12F675

64 bytes 1.75 KB Flash In circuit 6 years 15

WeBee3 Intel
8051

8 KB 128 KB Flash C 10 years 10

Waspmote Atmega
128L

8 KB 128 KB Flash
2GB SD Card

C
Processing

1 year 99

SunSpot ARM
920T

512 KB 4 MB Flash Java
(Squawk JVM)

1 day 210

IMote 2.0 ARM 11 32 MB 32 MB Flash NesC
C# (.Net Micro)

NA NA

tuators [55]. Figure 2.1 illustrates a generic architecture of a sensor device. The dotted
lines around some components indicate that they can be replaced. This is not true for the
smallest, cheapest node, but is common in the more larger, configurable nodes.

The main concerns in sensor devices are energy autonomy, computational power, size,
and cost. These are, naturally, intertangled. Although there have been improvements on
sensor hardware and miniaturisation, there is still a long path to run [4, 22]. For example,
a device with an increased computational power is tipically less (energy) autonomous.

Many sensor devices have been developed, both academically, and commercially. Five
devices representing the current sensor market are described in Table 2.1, in terms of Cen-
tral Processing Unit, program memory, external memory, programming model/language,
maximum energy autonomy, and unit price (as of 2010). In almost every parameter there
is a very significative variance; program memory, for instance, ranges from 64 bytes to 32
MBytes. The table also depicts the correlation between computational power and energy
autonomy: nodes with higher computational power deplete their batteries much faster.
Table 2.2 summarises the strong points of the considered sensor devices.
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Table 2.2: Strong points of five sensor devices

Sensor Evaluation
Particles uPart Very small size (less than 1 cm3, battery included).
WeBee3 Very low price;

Extended battery lifetime.
Waspmote A balanced choice between computational power, battery lifetime, and

price;
Modular architecture, allowing to add/remove sensor and communica-
tion boards;
Plenty of accessories, including a solar panel that turns the node virtu-
ally autonomous;
Commercial support.

SunSpot Computational power.
IMote 2.0 Computational power.

Since there is yet no glimpse of an ideal sensor, it is not possible to dissociate the
sensor device from the WSN purpose and, therefore, must choose devices by selecting
the desired features at the expense of others.

2.2.1 Nanosensors

Nanotechnology is to become an enabling technology in sensor development. Once ac-
complished, nanosensors (sensors in the nanometer scale) will make use of the unique
properties of nanomaterials and nanoparticles to detect and measure events in the na-
noscale. Nanoactuators, like “normal” actuators, will perform some kind of action on
the environment, based on the data provided by the nanosensor nodes. Depending on
the nature of the sensing capabilities, nanosensors and nanoactuators can be classified as
physical, chemical, or biological [53].

Wireless Nano Sensor Networks (WNSNs) can have environmental, industrial, mili-
tary, and biomedical applications. In particular, WNSN can have a large impact in health
monitoring systems: sodium, glucose, cholesterol, cancer biomarkers, and other sub-
stances may be monitored in blood by means of nanosensors. For instance, nanosensors
could monitor the glucose level in blood and transmit the data wirelessly to a cellphone
wich, in turn, could forward the data to a healthcare provider [3].

In recent years, many advances have been accomplished in nanotechnology. In Berke-
ley, a nanoradio of about ten nanometers in diameter (and several hundred nanometers
long) was built and used to perform a FM broadcast across a room [38]. In Harvard, a
method for assembling and disassembling nanowires was created [83]. In spite, many
more advances must be made before nanosensors can become a reality [3].

As with normal sensors, energy autonomy is a key issue in nanosensors. Although
nanomaterials could be used to manufacture nanobatteries with high power density, every
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battery needs to be recharged. The concept of self-powered, nano-devices has been re-
cently introduced as a solution to overcome the energy autonomy problem. Nanosensors
could harvest mechanical (e.g., from human body movements), vibrational (e.g., from
acoustic waves), or hydraulic (e.g., blood flow) energy from the environment and convert
it into electric energy [3].

2.3 Communication

A typical WSN is a) a wireless ad-hoc network, meaning that there is no preexisting in-
frastructure, and b) a multi-hop network, meaning that several nodes may forward a given
message from a node to a sink. WSN communication can be characterised in terms of the
path in which it takes place: forward and reverse. The former concerns the flow from the
sensors to the sink, while the latter concerns the flow from the sink to the sensors. Gener-
ally speaking, the reverse path requires higher reliability, because messages may contain
code to be deployed, for instance. However, the forward path may also require high relia-
bility, specially if some events in the environment must be detected and forwarded to the
sink [4].

Transmitting is, arguably, what drains more power from the node’s battery, and, there-
fore, what influences most the network lifetime. The approach used to characterise the
network lifetime may be based on the first node to wear out its battery, or some other
more complex criteria that analyses the network connectivity, regardless of individual
nodes with depleted batteries. Power preservation is vital to extend the network lifetime,
hence communication protocols must be very efficient [8].

2.3.1 Protocols

WSN require communication protocols that take into account power conservation and the
potentially large number of nodes. Furthermore, the choice, or development, of a protocol
is determined by the purpose of the network, or class of networks. Table 2.3 presents the
main communication concerns and protocols for WSN, grouped by layer. Further details
on the protocols therein can be found in [86].

Not all WSN protocols follow the (traditional) layered approach. Cross-layered proto-
cols minimise overhead and can be more energy efficient [84] than their counterparts. In
this kind of protocol, the layer interaction varies: SP unifies the Network and Data Link
layers, while JOCP unifies all the Transport, Network, Data Link, and Physical layers.

Security Networks can be subject of passive attacks, where there is no traffic modi-
fication (e.g., eavesdropping) and active attacks, such as denial-of-service (inhibition of
communication), masquerading (access to resources by an attacker pretending to be an
authorised user), replay (retransmission of stored messages), and message modification
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Table 2.3: Network concerns and protocols for WSN, grouped by network layer

Layer Concerns Protocols
Transport Congestion

Reliability
Energy conservation

STCP
PORT
GARUDA
CODA
DST
PSFQ
ESRT

Network Routing
Scalability
Synchronisation
Data cache
Data aggregation
Computation overhead
Communication overhead
Data security
Energy requirements

Geographical Routing
ALS
SecRout
SCR

Data Link Channel access mode
Time synchronisation
Protocol type (TDMA, CSMA, CA)
Energy conservation

TRAMA
B-MAC
Z-MAC
Low Power reservation based
Low Power distributed MAC
CC-MAC

Physical Bandwith choice
Radio
Modelation scheme
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Table 2.4: Main standards and technologies for WSN, grouped by network layer

Layers Standards Technologies
Transport
Network
Upper layer of Data-Link

ZigBee [87]
WirelessHART [39]
Wibree [82]

Lower level of Data-Link
Physical

IEEE 802.15.1 [35]
IEEE 802.15.3 [36]
IEEE 802.15.4 [37]

(new, changed, or re-ordered messages are sent to the network). Some protocols address
the security issue: SPINS (Security Protocols for Sensor Networks), for instance, en-
sures data confidentiality, two-party data authentication, data freshness, and authenticated
broadcast.

2.3.2 Standards and Technologies

Several standards have been proposed for WSN communication. As with protocols, the
choice, or development, of a standard is determined by the purpose of the network, or
class of networks. Table 2.4 presents some of the WSN standards, technologies, and their
relation to the protocol stack.

IEEE 802.15.1 Specifies the physical layer and the medium access control (MAC, lower
level of the data-link layer) for Bluetooth communication, where the radio operates at 2.4
GHz.

IEEE 802.15.3 This standard targets real-time, multi-media streaming. It specifies the
physical layer and MAC for high data rate for Wireless Personal Area Networks (WPAN).
The physical layer operates on a 2.4 GHz radio and supports data rates from 11 to 55
Mbps.

IEEE 802.15.4 Specifies the physical layer and the MAC for low data rate WPAN. The
physical layer supports the 868/915 MHz low bands and the 2.4 GHz high band, and MAC
uses the CSMA-CA protocol. This standard addresses wireless sensor applications that
require short range communication, low energy requirements, and low cost.

ZigBee Builds on IEEE 802.15.4, defining the higher layers of the protocol stack. It is
intended to enable networks containing thousands of low cost, low power devices. ZigBee
devices are divided into three types: i) coordinators, nodes that initiate network formation
and can bridge networks together, ii) routers, that allow multi-hop communication, and
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iii) end-devices, sensor or actuator nodes that communicate solely with the routers and
coordinators.

WirelessHART This standard targets process measurement and control applications.
Like ZigBee, it builds on IEE 802.15.4.

Wibree This technology builds on the IEE 802.15.1 standard, providing low cost and
low energy communication for Bluetooth devices.

DASH7 This technology implements the ISO/IEC 18000-7 standard for RFID. By op-
erating on the 433 MHz frequency, DASH7 devices have a range of more than 1 Km,
use less power, and can transmit through concrete and water. DASH7 does not support
streaming, nor synchronisation.

2.3.3 Gathering

Gathering is the process of transmitting data from the sensor nodes to the sink, possibly
over multiple hops. In order to achieve extended network lifetime and scalability, this pro-
cess must be efficient. Clustering, aggregation, and inference are techniques that improve
gathering efficiency by reducing the number of messages on the network.

Clustering protocols, such as LEACH, allow networks to dynamically form clusters
in which a head node is responsible for the communication with neighbour clusters).
Aggregation protocols use several approaches to limit the number of nodes that a given
node is allowed to communicate with. For instance, using PEDAP, the sink node computes
routing tables based on the location of the nodes. Whenever a node fails, a new routing
table must be computed.

For many applications not all the collected data set is useful. In fact, for applications
like temperature monitoring, only a small set of values is necessary, e.g., the maximum
and minimum temperatures. Inference is a distributed computing technique that can help
reduce the network traffic. For instance, a node could only forward a message if it has a
bigger value that the last maximum received, or smaller than the last minimum received.

2.4 Programming Wireless Sensor Networks

Programming WSN is difficult because applications these type of networks are (large-
scale) distributed programs that must run on devices that are very limited in terms of
hardware and also in terms of energy autonomy [55]. Presently, most sensor nodes run
module-based operating systems (e.g., TinyOS [32]) and are programmed in nesC [28]
or TinyScript/Maté [42]. There are important limitations in this low-level approach [8],
namely:



Chapter 2. Wireless Sensor Networks 14

• Lack of a global vision of a sensor network application;

• Absence of a dynamic means of network reprogramming, resulting in the necessity
of individual sensor reprogramming, which is unfeasible for large WSN, where
massive code deployment is desirable;

• Absence of a rigorous model of the sensor network at the programming level, which
would allow for formal verification of program correctness.

Although these limitations are well known and there has been a number of proposals
that aim to surpass them, very few WSN rely on higher-level programming models [55].

2.4.1 Operating Systems

A typical WSN operating system provides few abstractions; it supports a programming
language, and a low level communication facility. In order to reduce overhead and mem-
ory usage, usually only a selection of the operating system modules are deployed to sensor
nodes, according to the application needs.

Most current sensor networks run on top of the TinyOS [32] operating system and its
sibling programming language nesC [28]. TinyOS provides a very simple, event-based,
single-threaded execution-model with non-preemptive tasks. The system is loaded onto
the sensor nodes as a set of modules to be used by a target application.

Other operating systems for WSN have been proposed. Contiki [21] is also event-
driven, but, unlike TinyOS, supports multi-threaded execution, and dynamic loading of
program modules. MANTIS [10], Nano-RK [24], and BTnut [9] operating systems sup-
port preemptive multi-threading, meaning that the operating system, not the application
programmer, manages the CPU. As a side note, Nano-RK provides control to hardware
resources in order to support real-time WSN applications.

There are also systems, such as the Squawk JVM [65] that run directly on the hard-
ware, without operating system support. The Squawk JVM supports preemptive multi-
threading.

2.4.2 Programming Models and Languages

Traditionally, WSN have been programmed at a very low-level of abstraction, however,
there is a growing trend towards the development of high-level programming models and
abstractions for these networks. A programming model reflects a given point of view. In
the following we present four programming models common in WSN:

• Stream. The programmer sees the network as a data stream, with no perception of
the underlying hardware;
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• Region. The network can be partitioned into groups of sensors, according to some
membership criteria, and programmed on a partition base;

• Database. The network is seen as a dynamic data repository that may be queried
by declarative languages such as SQL;

• Computing. The programmer perceives the network as a distributed system that
may perform online computation, by hosting autonomous mobile agents, for in-
stance.

A programming model can be implemented by a programming language in various
ways, therefore, it is not sufficient to classify a language. In order to be able to classify
the main WSN programming languages, we follow the criteria on [48]. It is based on
three items: hardware interaction, network perception, and data acquisition, summarised
below. Table 2.5 lists several languages classified according to this criteria.

Hardware Interaction i) Low-level, system-level programming of the sensor networks,
where programs make direct calls to the operating system, ii) Virtual Machine, programs
run on a software infra-structure that creates an abstraction layer over sensor specific hard-
ware and operating system, while allowing the programmer to retain some fine grained
control of the applications, iii) Middleware, programming using an API, provided by an
underlying middleware, that hides the details of the sensor network from the programmer,
and iv) High-level, programming with very high-level abstractions of the network that
hide all networking and communication details. Programs are distributed applications
that are generally not targeted at a specific sensor network architecture or configuration.

Network Perception i) Macroprogramming, WSN applications are developed as typ-
ical distributed applications, without requiring the developer to specify the behaviour of
each computing node individually. The low-level details of communication and network
architecture are abstracted away, and ii) Sensor-based, WSN applications are developed
with the network architecture and, in some cases, with node hardware details in mind.

Data Acquisition i) Communication-centric, lowest level data abstraction where data
in the network is seen as messages; ii) Data-centric, high-level data abstractions, namely
streams and databases; and iv) Computation-centric, mobile agents evolve to allow com-
munication and in-network re-programming.

Generally, high-level languages such as TinyDB [52] are compiled into low-level lan-
guages, in the case, nesC [28]. It is rather difficult to ensure that the semantics of the
high-level application is equivalent to the semantics of its low-level version. Moreover,
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Table 2.5: A classification of WSN programming languages

Language Hardware Interaction Network Perception Data Acquisition
Abstract Regions [51] Low-level Macroprogramming Message
Agilla [26] High-level Sensor-based Mobile Agent
Cougar [27] High-level Macroprogramming Database
Deluge [33] Low-level Sensor-based Message
DTM [64] Virtual Machine Macroprogramming Message
EnviroTrack [1] Middleware Sensor-based Message
HOOD [81] Low-level Macroprogramming Message
Impala [47] Middleware Sensor-based Message
IrisNet [59] High-level Macroprogramming Database
Kairos [30] High-level Macroprogramming Stream
Maté [42] Virtual Machine Sensor-based Message
Mottle [43] High-level Sensor-based Message
nesC [28] Low-level Sensor-based Message
Regiment [56] High-level Macroprogramming Stream
SensorWare [11] High-level Sensor-based Mobile Agent
SpacialViews [57] High-level Sensor-based Mobile Agent
Squawk [65] Virtual Machine Sensor-based Message
TinyDB [52] High-level Macroprogramming Database

the low-level programming languages lack a formal specification, making it difficult to
reason about program properties.

This situation emerges from the absence of an adequate hardware abstraction, e.g., a
virtual machine, that allows a complete formal specification for the semantics of sensor
network applications. Some important work has been made in this direction, most notably
Maté and the Squawk JVM. The problem of lack of specification at the language level is
tackled by Callas, a formal-based, type-safe language for WSN that we use along this
thesis.

2.5 Research Topics

WSN are a relatively novel subject. While they have drawn a lot of attention in recent
years, the constraints imposed by current hardware, communication protocols, and energy
autonomy, for example, lead to believe that the subject is to remain under active research.

Below, we highlight some research topics. Some concerns, such as energy autonomy,
or cost, are transversal to most of the research topics.

Sensor Devices Current sensor devices are very limited. An ideal sensor would be
cheap, small, have enough battery to allow its operation for many years, or be able to
harvest energy from the environment, have a reasonable computational power, in order to
allow the deployment of higher level applications, and would be resilient, in order to allow
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large scale deployments from aeroplanes, boats, and other vehicles. Furthermore, for
many envisioned applications, sensors must be developed in the micro and nano scale [3,
4].

Communication Protocols and Security Communication protocols must have better
performance and energy efficiency, while providing Quality-of-Service. Protocols must
also be secure, ensuring that all the stack layers are safe from malicious attacks (current
secure protocols address mainly the data-link and network layers) [84].

Programming Abstractions and Correctness Most programming languages for WSN
provide few abstractions, whether in terms of language constructs, or in terms of commu-
nication [55]. Furthermore, the abstractions are typically not formal based, hence, their
correctness is not guaranteed [54].

Fault Tolerance Faults in WSN can be originated by hardware, nodes running out of
power, and temporary erroneous readings (transient faults). Currently, the exclusion of
nodes with depleted batteries does not obey to time bounds, for example, and there is
little support for the detection of erroneous readings [55].

Node Mobility Mobile nodes and sinks have special requirements, such as dynamic net-
work topology and delay tolerance, that are not expressed in programming abstractions.
Therefore, neighbour discovery and other concerns are dealt with in a per-application
basis [55].

Debugging and Testing Debugging and testing WSN is carried out using testbeds and
simulators. There is currently no support for debugging and testing at the programming
level [55].





Chapter 3

Wireless Sensor Network Simulation

The deployment of WSN poses great challenges. At the node level, the communicational
and the computational capabilities are constrained by severe energy and hardware limi-
tations. At the network level, the potentially large number of nodes implies that it may
be onerous or even unfeasible to test an already deployed network. WSN simulators are
computer systems that allow us to deploy and test networks in virtual environments that
serve as sandboxes to experiment with communication protocols, radio signal properties,
and physical sensing. Therefore, by providing a way of testing and debugging WSN ap-
plications in (simulated) environments, simulation can play a decisive role in WSN during
testing and deployment.

Another approach towards WSN testing consists of using physical testbeds, such as
GNOMES [80], or S-Net [13]. Physical testbeds consist of a set of devices to which sensor
nodes are connected in order to be monitored. The gathered data can then be used to
infer the network behaviour. Naturally, physical testbeds are not suited for large network
testing, because a lot of effort (and hardware) would be required. Some authors note that
there has been improvements in mathematical analysis and experimental deployments but,
however, simulation is still the preferred tool for the study of WSN [22].

In this Chapter, section 3.1 introduces the topic of WSN simulation and draws a com-
parison of popular WSN simulators. Section 3.2 presents the VisualSense WSN simulator,
giving some insight into the simulator internals and model definition.

3.1 Wireless Sensor Network Simulators

WSN simulators are complex programs. A simulator should handle large numbers of
nodes without degrading performance significantly, model the radio channel, battery dis-
charge, physical environment, and support different communication protocols [22]. Ide-
ally, it should also provide a graphical interface. Table 3.1 presents the main concerns
regarding WSN simulation, grouped by communication protocol support, environment
modelling, and graphical support.

19
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Table 3.1: Main concerns in wireless sensor network simulators
Protocol support Environment Modelling Graphical Support

C Classical (e.g., TCP/IP, Ether-
net)

B Battery E Edition

A Ad-hoc (e.g., MANET proto-
cols, AODV, DSR)

PP Physical Phenomena A Animation

W Wireless (e.g., propagation, mo-
bility, IEEE802.11)

PE Physical Environment D Debugging

WSN Some common WSN Protocols
(e.g., Directed Diffusion, S-
MAC)

WSN simulators are typically based on discrete event simulation. In this type of sim-
ulation, the operation of a system is represented as a chronological sequence of (discrete)
events. An event occurs at a given instant in time and sets a new state in the system [1].
The new state may trigger another event, and so on. Discrete event simulation requires
a global clock and an event queue to manage the chronological sequence of events. Al-
though discrete event simulation can model many systems, it is naturally not suited for
every class of system. For instance, physical phenomena and battery discharge requires
continuous time simulation. Modelling systems that have discrete and continuous time
components is far from trivial.

WSN simulators can be divided into two categories: architecture specific, that model
WSN for a given node architecture (e.g., TOSSIM [44], for the Berkeley Motes), and gen-
eral simulators, that allow user-defined sensor nodes (e.g.VisualSense [7]). Architecture
specific simulators include ATEMU [61], EMStar [29], TOSSIM [44], Avrora [68]. These
are not subject of study, since this work aims at a device-independent view of WSN simu-
lation. Non specific but also non Open Source simulators include QualNet [77], and OP-
NET [25]. These are also not covered here. There are a number of general, Open Source
simulators, however, most of them are either abandoned projects (such as JSim [75], Sen-
sorSim [60], and Sidh [14]) or do not provide important features such as an advanced
GUI and environment modelling. Table 3.2 presents a summary of the features and char-
acteristics of general, Open Source simulators, is presented. The characterisation is made
against the concerns depicted in Table 3.1.

When choosing a WSN simulator, it is also necessary to assess the project status. In
fact, many WSN simulators have been developed, but few remain active projects. An-
other important aspect is that node definition is usually done programmatically, thus, the
programming language of the node definition API may also be critical. Table 3.3 presents
the programming language and project status of the simulators in Table 3.2.
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Table 3.2: A characterisation of Open Source, generic WSN simulators

Simulator Protocol
Support

Environment
Modelling

Visualisation Additional Notes

JiST/SWANS W/A - A
(Javis/NAM)

OMNET++ C/W/A - E(lim)/A/D
SENS W B/PE -
SENSE W/A/WSN B A
GloMoSim C/W/A/WSN - - Gave origin to a commercial

WSN simulator, QualNet.
ns-2 C/W/A/WSN - A/D

(using nam)
SSFNet C/W/A/WSN - Proprietary
NCTUns C/W/A/WSN - E/A/D
PAWiS C/W/A/WSN B E(lim)/A/D Extends OMNET++
Castalia C/W/A/WSN B/PP/PE E(lim)/A/D Extends OMNET++
J-Sim C/W/A/WSN B/PP/PE E/A/D
VisualSense C/W/A/WSN B/PP/PE E/A/D VisualSense is part of the

Ptolemy II project.

Table 3.3: Project information of Open Source, generic WSN simulators

Language Latest Release Active
JiST/SWANS Java/Jython 1.0.6 (03/2005) Yes, under development.
OMNET++ C++/NED 4.1 (06/2010) Yes, under development.
SENS C++ - (01/2005) No.
SENSE C++ 3.0.3 (04/2008) Yes, maintenance only.
GloMoSim Parsec 2.0 (12/2000) No.
ns-2 C++/OTcl 2.34 (06/2009) Yes. A newer version, ns-

3, is under development.
SSFNet C++/DML/Java 2.0 (01/2004) No.
NCTUns C 6.0 (01/2010) Yes, under development.
PAWiS C++/NED 2.0 (07/2008) No.
Castalia C++/NED 3.0 (08/2010) Yes, under development.
J-Sim Java/Jacl 1.3 (02/2004) No. A patch was released

in 07/2006.
VisualSense Java 7.01 (04/2008) Yes, under development.
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def Counter ( value )
case operation of

get : ( c l i e n t )
send value to c l i e n t

increment : ( )
become new Counter ( value + 1)

end case

l e t c = new Counter ( 0 ) in
send increment to c

Figure 3.1: A counter program written in Simple Actor Language

3.2 The VisualSense Simulator

VisualSense is a modelling and simulation framework for WSN that extends the (actor
oriented) Ptolemy II framework [23]. Here, the actor model is briefly presented, focus-
ing in the aspects relevant for the understanding of VisualSense. Then, the simulator is
addressed.

3.2.1 The Actor Model

The actor model is a concurrent computational model proposed by Carl Hewitt [31], and
later formalised by Gul Agha [2], where the computational primitives are called actors.
An actor executes independently and interacts with other actors solely by asynchronous
message passing, therefore, it does not share state.

An actor is defined by a mail address that identifies it, a mail queue that holds the
incoming messages, and a behaviour that determines how to handle the messages in the
queue and that only accepts a given set of message patterns, thus defining the actor in-
terface. Messages that do not comply with the behaviour are ignored. The behaviour
maps each accepted message pattern with an operation. While performing an operation,
an actor can send messages and create new actors. When the operation is completed, the
actor updates its behaviour, whether to a behaviour specified in the operation, or to the
same one it previously had, if no replacement was specified in the operation. The newly
specified behaviour will be used to handle the next message in the mail queue.

Within an actor system, or configuration, an actor can only send messages to its ac-
quaintances: actors whose mail addresses are known to it. Acquaintances may be actors
that a given actor knows from its creation (given as parameters), actors that it creates, or
actors that it learns of while interacting with other actors. In the actor model, a compu-
tation is always triggered by an incoming message. This implies that there must be an
external message to boot a given configuration. The actors whose mail address is know
outside the configuration are said to be receptionist actors.

To better illustrate the actor model, Figure 3.1 presents a counter actor. It is written in
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Simple Actor Language (SAL) [2], an actor model programming language. The Counter

behaviour is defined with a parametric acquaintance, value, that is used to hold the counter
state. The actor supports two operations: get and increment. The get operation is triggered
by a message with two parameters: the name of the operation to perform, get, and client ,
the mail address of the requesting actor. The increment operation is triggered by a message
with one parameter, precisely the name of the operation increment. The last two lines in the
counter program are not part of the behaviour definition, they serve to create the counter
actor, with zero as value, and increment it to one.

The get operation executes as one would expect from an asynchronous counter: a
message with the current value is sent to the client . The increment operation shows an
important aspect of the actor model: the counter becomes another counter, with an updated
value, while maintaining its mail address. An actor must always replace its behaviour at
the end of an operation, either explicitly, as in the increment operation, or implicitly, as in
the get operation, where a become self command would be automatically issued.

Although an actor must replace its behaviour after processing a message, it can still
maintain a state if the replacement behaviour is always the same and if acquaintances are
used to hold the state between replacements. In this example, the acquaintance is a built-in
value, while the counter would be an acquaintance of some other actor. The acquaintance
relations can be used to achieve actor composition, in the sense that an actor uses other
actors as its components.

In the actor model there is unbounded nondeterminism because the arrival order of
the messages is arbitrary and the mail queues are unbounded. However, there is also
fairness, since all messages are guaranteed to be delivered. This does not mean that a
given message will be meaningful when it arrives, since the destination actor may have
changed its behaviour in the meantime.

The support for the actor model in programming languages varies in nature. Some
languages, such as Clara [19], might be called pure actor languages. Other languages,
such as SALSA [71] and Stage [6], extend or modify existing languages (Java and Python,
respectively). There are also languages that provide actor libraries, e.g., Scala [58].

The actor model is frequently used in modelling and simulation frameworks. It en-
ables composition (using other actors, acquaintances), and encapsulation (message pass-
ing is the only form of communication). Therefore, it eases reusability. Besides Ptolemy II,
the Simulink [78], LabView [76], and VHDL [79] frameworks are based on the actor
model as well.

3.2.2 Ptolemy II

Ptolemy II is an actor-oriented component assembly framework for modelling, simula-
tion, and design of concurrent, real-time, and embedded systems [23]. In Ptolemy II,
an actor configuration is called a model and is persisted in Modelling Markup Language
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Figure 3.2: A Ptolemy II model with atomic actors

(MoML), an XML dialect. The framework has a GUI that allows drag-and-drop model
definition, provides access to a library of Ptolemy II actors that perform operations rang-
ing from signal analysis to matrix handling, and supports loading user-defined actors writ-
ten in Java.

The two key concepts of the framework are actors and domains. Although commu-
nication is asynchronous in the actor model, synchronous interaction can be achieved as
a special case of the more general asynchronous interaction. Communication can also
be described in terms of being discrete or continuous in nature. In spite of executing
independently and not sharing state, actors may share some aspects of their behaviours,
particularly in what concerns communication. Ptolemy II captures these different patterns
and concerns as domains.

A domain is implemented by a special component called Director that governs the
communication between actors. For example, the Discrete Event domain is suitable to
simulate digital circuits, where the communication is discrete, while the Continuous Time
Model is appropriate to simulate analog circuits, where the communication has a continu-
ous nature. The latter is also useful for modelling physical systems that can be described
with differential equations.

In the “pure” actor model, the behaviour can be seen as an interface that defines the
acceptable message patterns, whereas in Ptolemy II, the actor interface defines both the
input and output message patterns, as ports. Also, actors do not interact directly, instead,
the connections between them are mediated by relations (a sort of wires for actors) to
which the actor ports are linked. In Ptolemy II, actor ports are typed in order to enable
type safety. The type system ensures that a port only receives messages of its type, or sub-
type. Figure 3.2 presents a Ptolemy II (discrete event) model containing i) a Discrete Event
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Figure 3.3: A Ptolemy II model with a composite actor

director, ii) a Single Event actor, configured to send the value “1” at the start of the sim-
ulation execution, iii) a Successor actor, that adds “1” to every value received, and iv) a
Display actor, that prints the incoming messages in a GUI window.

A Ptolemy II actor may be atomic, or composite, where an actor contains other actors.
In Figure 3.3, the Successor actor is replaced by the CompositeSuccessor, that limits the
maximum output value to “10”. The notion of actor composition in Ptolemy II is similar,
although more restrictive, than the notion of acquaintance in the actor model. In fact,
while in the pure actor model acquaintances are used both to connect actors and to com-
pose actors, in Ptolemy II acquaintances are established among actors at the same level of
hierarchy, but composition is accomplished by composing actors themselves.

Besides reusability and encapsulation, actor composition serves a very important pur-
pose: domain heterogeneity. An actor may contain a model that implements another
domain. This is useful, for example, to model a sensor that reads some physical value
from the surrounding environment. The environment would be modelled using the Con-
tinuous Time domain and would be embedded in the Discrete Event where the sensor
would be modelled. Ptolemy provides actors that take care of the interaction between the
different domains. In more abstract terms, a model is a hierarchical graph where actors
are the entities and relations are the arcs. An entity may be either atomic or composite. In
the latter case, the entity defines a scope where a domain may be applied.

It is important to distinguish simulated time from simulation time. The former refers
to the time interval that is simulated, for instance, ten minutes of a temperature sensing
WSN, while the latter refers to the amount of time that it takes for the simulator to perform
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Figure 3.4: A VisualSense network analysis model

the simulation. It may be less than, equal to, or more than the simulated time, depending
on the model complexity, the simulator settings, and the hardware platform.

In discrete event simulation, at each simulation clock tick, the events scheduled for
that time are triggered (the clock may also “jump” to next queued event). The triggered
events will eventually cause the scheduling of other events, simulating the model’s (dis-
crete event) behaviour. The Discrete Event director handles simultaneous events by deter-
ministically adding an index i to the event time-stamp st, obtaining st,i. The simulation
time is therefore two dimensional; the events ea, eb, ec, with time-stamps s1,1, s1,2, s1,3 all
occur at t = 1, but in an ordered fashion (first ea, then eb, and finally ec). This ensures
that the simulation execution and results are repeatable.

3.2.3 VisualSense

VisualSense extends Ptolemy II by introducing the Wireless Director (an extension of the
Discrete Event Director), that allows for both wired and wireless connections between the
nodes. Typically, wireless connections are used among nodes, and wired connections are
used inside the nodes, although other configurations are possible.

In the Wireless Domain, rather than directly linked to relations, ports are bounded to
Wireless Channels that can simulate radio communication. Wireless Channels are param-
eterised in terms of radio signal properties, namely, range, power, propagation speed, loss
probability, and propagation factor, that may be overridden by individual ports. When a
bounded output port sends a message, the Wireless Channel decides which ports are to
receive it, and when, based on the nodes positions, the signal properties, the terrain, and
the individual port specifications.
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Figure 3.5: A VisualSense sensor node model

VisualSense comes with a library of actors that ease the task of simulation, such as
CollisionDetector, LinkVisualizer, GraphicalLocator, and NodeRandomizer. Figure 3.4 shows a
network analysis model. On the upper left corner of the model, there is a WirelessDirector,
and a NodeRandomizer actor that distributes, at the start of the simulation, the nodes ran-
domly over a given area. At the centre, there is a user defined node called Initiator , that
broadcasts the first message. The other nodes around it forward the message, becoming
red if they received it directly from the initiator, green if they received it via another node,
and staying white if they never receive a message. The model uses two wireless channels:
Channel, for the inter-node communication, and ReportChannel, to feed the data analysis
actors. Multiple channels can be used to simulate different frequencies, or technologies.

Since VisualSense is a generic WSN simulator, there are no pre-defined sensor node
actors. Instead, sensors are modelled from a very high-level, abstract view, using actors.
Figure 3.5 shows a model of a node that receives a message on its in port, prints it on
a GUI window (Display), then retrieves the signal properties as a record (GetProperties),
extracts only the signal power (RecordDisassembler), scales it according to the antenna
area (with a Scale actor, renamed to Times Antenna Area), and, finally, generates a timed
plot of the signal power (TimedPlotter).

Regardless of the operation triggered by a received message, the actor performs an-
other operation. A Clock actor generates periodic events that are used to generate the new
position (Ramp and Expression), of the node in the model (actor SetVariable is configured
to set the location attribute of the node).

It is out of the scope of this work to further explore VisualSense’s capabilities in terms
of terrain modelling, continuous time modelling, or radio communication. VisualSense is
a very powerful simulator. Being generic, it enables to model virtually any sensor node,
or WSN, at the cost of having to define the sensor node, the WSN, and the application it
runs.





Chapter 4

The Callas Programming Language

Callas [54] is a programming language for WSN, based on the formalism of a process
calculus [50, 54], with the goal of establishing a foundation for developing programming
languages and run-time systems for sensor networks. Callas may be used as an inter-
mediate language upon which high-level programming abstractions may be encoded as
semantics preserving, derived constructs. The language offers constructs to describe sen-
sor computations, code mobility, and code update.

Callas is type-safe, which means that well-typed (Callas) programs do not produce
protocol run-time errors. Language type-safety is of utmost importance in WSN, since
it allows premature (static) detection of potential errors, thus minimising the amount of
debugging required for an application once it is deployed.

The Callas Virtual Machine (CVM) is a stack-based machine that serves as the run-
time system for Callas. The CVM guarantees run-time soundness, i.e., that the low-level
language (byte-code) it executes preserves the semantics of Callas programs [15].

In Section 4.1, we explain the Callas syntax and semantics along with examples. Sec-
tion 4.2 presents an overview of the CVM.

4.1 Programming Language

Section 2.4 classifies programming languages for WSN according to three criteria that
can now be applied to Callas. In terms of hardware interaction, Callas falls on the Virtual
Machine category, in terms of network perception, it falls on the sensor-based category,
and, regarding data acquisition, it is communication-centric.

A Callas program is a sequence of terms whose components are type and module
declarations, assignments, expressions, and conditionals. Its syntax is line-oriented, with
syntactic terms demarcated by the number of spaces in the beginning of a line (indenta-
tion), much like in Python’s programming language.

The Callas syntax and semantics are introduced here by the example of a tempera-
ture monitoring application. Figure 4.1 declares three module types that are used in the

29



Chapter 4. The Callas Programming Language 30

# file: types.caltype

defmodule N i l :
pass

defmodule SenseTemp :
N i l sample ( )
N i l gather ( str ing mac, long t ime , double temp )

defmodule Deploy :
N i l deploy (SenseTemp senseTemp )

Figure 4.1: Callas type declarations

application. Nil is an empty module type, denoted with keyword pass in its declaration;
SenseTemp is a module type with two functions, sample and gather. The former has no
parameters and returns a Nil module; the latter receives a mac address (as string), a time
(as long), and a temp(erature) (as double), returning a Nil module. Finally, the Deploy

module type contains the function deploy that receives a SenseTemp module, and returns a
Nil module.

# file: iface.caltype

from types import ∗

defmodule Sensor ( Deploy , SenseTemp ) :
N i l l i s t e n ( )

Figure 4.2: A Callas type declaration that serves as a network interface

Type declarations are used to define interfaces. In a Callas network, all nodes share the
same (public) interface. This restriction seems plausible because, since nodes collaborate
in retransmitting messages from distant nodes to the sink, it is necessary to guarantee, at
compile time, that messages sent amongst nodes are always understood. In Figure 4.2,
the Sensor type declaration extends the Deploy and SenseTemp types, and declares listen ,
a function with no parameters and Nil return.

Although all nodes share the same interface, they may have different behaviors, ac-
cording to their role in the WSN. For instance, the sink node in this example application
must have a different behaviour from a sensing node because, instead of sensing temper-
atures, it must log the readings from rest of the network. The two following sub-sections
present a Callas program for the sensing device, and another program for the sink device.
The details on the abstract syntax, operational semantics, and type system can be found
in [54].
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# file: node.callas

from i f a c e import ∗

module m of Sensor :
def l i s t e n ( se l f ) :

receive

def deploy ( sel f , code ) :
extern l o g S t r i n g ( ” Received deployed code . ” )
mem = load
mem = mem | | code
store mem

def gather ( sel f , mac , t ime , temp ) :
pass

def sample ( se l f ) :
pass

store m

l i s t e n ( ) every 500 expire 600000
extern l o g S t r i n g ( ” node i s l i s t e n i n g . ” )

Figure 4.3: A Callas program for a sensing node

4.1.1 A Callas Program for a Sensor Node

The Callas code depicted in Figure 4.3 is meant to be deployed in all network nodes,
except for the sink. The program starts by importing the (interface) types. Then, it im-
plements a module of type Sensor, binding it to variable m. Thereafter, it stores mod-
ule m in memory (store m). The language can define timed functions; the expression
listen () every 500 expire 600000 sets up a timer that triggers a call to function listen every
500 time units for a period of 600000 time units. The last expression of the sensor node
program calls an external function that logs a message in the sensor’s log file. The external

expression allows for the interaction between Callas programs and sensor internals: the
program passes control to the underlying virtual machine and expects a result (in this case
the program disregards the result from the call). The type system checks that the external
functions are called correctly, i.e., that the node’s native function signatures and return
types are observed.

All functions receive, as first parameter, a reference to the module where the call is
being made: self. This argument is passed automatically by the run-time system and
allows functions to call other functions in its own module, or themselves recursively.

The functions defined in module m (of type Sensor) are now detailed. Each node is
equipped with an incoming and an outgoing queue for interaction with the network. Func-
tion listen executes a receive expression that explicitly takes a message from the node’s
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incoming message queue and places it in the CVM’s run queue; the program continues
executing even if there are no incoming messages. Function deploy receives a module
and installs it in the node’s memory. For that, it loads the node’s memory to a variable
mem, using expression load, updates the module by joining it with the code received as an
argument, and stores the updated module back into the node’s memory using expression
store. The module joining operation (mem || code) creates a new module that contains all
functions from module mem replaced by the correspondent function from module code.
For the functions in code that are not a member of mem, the joining operator simply adds
them to the resulting module. Functions gather and sample are left empty.

4.1.2 A Callas Program for a Sink Node

Similarly to the sensor program, the sink program (Figure 4.4) starts by importing the
interface and implementing the Sensor module. However, it provides a different imple-
mentation. The deploy function is empty, since the sink does not install code remotely
from the network, the sample function broadcasts (using the send expression) a sample

remote call, and gather logs the received messages.
The program then defines module toDeploy, of type SenseTemp, intended to be de-

ployed in the network. Functions gather and sample, once module toDeploy is installed
on the sensing nodes, replace the corresponding functions in the sensor program. The
implementation of gather and sample could be provided in the sensor program up front, it
is provided here to demonstrate code deployment in Callas.

In module toDeploy, the gather function broadcasts a call to gather with the same argu-
ments it receives, thus eventually routing values from distant nodes to the sink; function
sample uses external functions to get the node MAC address, the current time, and the
current temperature. It then calls gather in order to broadcast the node values.

In the last part of the program, a call to deploy with module toDeploy as argument is
broadcasted, redefining the network application. Finally, timers to listen and sample are
set up. The former periodically places incoming messages on the CVM’s run queue, while
the latter “queries” the network, possibly resulting in gather messages coming to the sink.

4.1.3 Callas Network Application

A Callas network application may be composed of several files. In this Chapter’s example
application there are five: i) types.caltype, that defines the Callas types, ii) iface . callas,
that defines the (public) functions available for each sensor, iii) node.callas, a file with the
Callas program for the sensor nodes, iv) sink. callas, a file with the Callas program for the
sink node, and v) network.calnet (in Figure 4.5), that describes the network, by specifying
its interface and programs. The compilation of this calnet file results in files node.calbc

and sink.calbc, respectively, the byte-code versions of node.callas and sink. callas.
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# file: sink.callas

from i f a c e import ∗

module m of Sensor : # make sure we have an initial memory
def l i s t e n ( se l f ) :

receive

def deploy ( sel f , tempSense ) :
pass

def sample ( se l f ) :
send sample ( )

def gather ( sel f , mac , t ime , temp ) :
extern l o g S t r i n g (mac)
extern logLong ( t ime )
extern logDouble ( temp )
extern l o g S t r i n g ( ” ” )

store m

module toDeploy of SenseTemp :
def gather ( sel f , mac , t ime , temp ) :

send gather (mac , t ime , temp )

def sample ( se l f ) :
mac = extern macAddr ( )
t ime = extern getTime ( )
temp = extern getTemperature ( )
send gather (mac , t ime , temp )

extern l o g S t r i n g ( ” deploy ing module . ” )
send deploy ( toDeploy )
l i s t e n ( ) every 500 expire 600000
extern l o g S t r i n g ( ” t r i g g e r sample . ” )
sample ( ) every 30000 expire 300000
extern l o g S t r i n g ( ” wa i t i ng f o r gather . ” )

Figure 4.4: A Callas program for a sink node

# file: network.calnet

i n t e r f a c e = i f a c e . ca l t ype # network’s interface

sensor :
code = node . c a l l a s # program for the node

sensor :
code = s ink . c a l l a s # program for the sink

Figure 4.5: A Callas network program
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4.2 Virtual Machine

The Callas Virtual Machine is a stack-based machine that serves as the run-time system
for Callas. The machine state is divided into:

• an internal clock Q that uses arbitrary time units t;

• a module M that represents the shared memory of the device. The code of its
functions can be altered during the execution of the device, but, since all nodes must
always adhere to the network interface, functions cannot be added or removed;

• a set of programmed timed function calls T ;

• a call-stack C whose components, called call-frames, are divided into a program
counter, an environment frame E , an operands stack S, a byte-code B, and a con-
stants array U ;

• a (run-)queue of pending callsR.

• an incoming and an outgoing queues I/O of serialised calls that enable interaction
with the lower layers of the network protocol.

CVM executes a low-level language (byte-code) that defines an instruction set. There are
instructions for manipulating modules, making calls, moving data, network input/output,
control-flow, and basic arithmetic and logic operations. The instruction set, byte-code,
and CVM’s internals are not in the scope of this work and can be found in [15].



Chapter 5

Simulation of Callas Applications

This chapter presents an approach towards the generation of simulation models. It consists
of creating VisualSense simulation models from Callas applications. The first step in this
approach is to embed the Callas Virtual Machine (CVM) in VisualSense, configuring it,
and adapt its interface in a VisualSense actor. Besides input/output message handling,
this step comprises devising means of parameterising the CVM clock with the simulation
clock, and of dealing with native operations. The second step is to define generic network
and sensor model templates that serve as configurable, extensible building blocks for
Callas simulation models. The third (and last) step is to create a model generator. We
create an extensible characterisation of WSN that conveys information needed for the
automatic simulation models generation.

Section 5.1 addresses the subject of embedding the CVM in a VisualSense actor. Sec-
tion 5.2 presents generic network and node simulation models, and, Section 5.3, presents
the simulation model generator. Finally, Section 5.4 addresses the performance and scal-
ability of the generated simulation models.

5.1 The Callas Virtual Machine as a VisualSense Actor

The Callas programming language follows the event-oriented programming paradigm,
therefore, it is natural that, in VisualSense, an event-oriented computation domain is a
more suitable execution environment for an actor that adapts the CVM. VisualSense’s
Discrete Event domain makes use of a simulation clock and of a (time-ordered) queue
with (time-stamped) events to simulate event-oriented systems.

In order to adapt the CVM in a discrete event actor, it is necessary to assess how
the CVM state is affected during the computation. The CVM state (introduced in sub-
section 4.2) can be divided into two parts: i) clock and network layer, comprising pre-
cisely a clock Q and a network interface I/O, is the part of the state that can be directly
altered by the simulator, and ii) machine state, encompassing a call-stack C, a run-queue
R, a set of timers T , and a collection of modulesM, is the part of the state that is isolated
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Visual Sense VM

Callas VM

Execution Engine
(includes R and C)
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Figure 5.1: Configuration of VisualSenseVM and of the adapted CVM

from the simulator and that interacts with the clock and network layer.
The CVM is parameterised by a native operations object that wraps the physical de-

vice operations. Some native operations have side-effects (e.g., turning on a LED), while
others do not (e.g., getting the node MAC address). To simulate a given device, it is nec-
essary to create an object that is able to mimic the device native operations in VisualSense
(including side-effects), and parameterise the adapted CVM with it.

Given a clock and a network layer, the machine state is agnostic of the execution
environment and of the native operations. In fact, the native operations module is not a
special module amongM, since, like other modules, it abides to an interface, and that the
side-effects of its operations are not known to the internal state.

The CVM is adapted in an actor called VisualSenseVM, parameterised with a CVM, a
native operations object, and the path to a Callas byte-code file. Figure 5.1 represents the
VisualSenseVM actor internal configuration and the adapted CVM.

The VisualSenseVM actor has two input ports and two output ports. Ports in (input) and
out represent the network interface of the CVM. Port clock (input) is used to parameterise
the execution engine with the simulation time. Finally, port externalOut is an output port
that is used by the native operations object to externalise the native operations side-effects.

VisualSenseVM is an adapter that converts the messages received in its in port to the
CVM message format and places them in the CVM input queue, I. Conversely, the
messages on the CVM output queue O are converted to Ptolemy II messages and sent to
the actor out port. The CVM execution engine is then responsible for retrieving messages
from I and placing messages on O. The strategy for externalising the native operations
consists of encoding side effects as messages sent to the externalOut port, thus delegating
the simulation of side-effects to specialised actors that handle such messages.

The CVM must keep pace with the simulation clock. If VisualSense takes one minute
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(of simulation time) to simulate one second (of simulated time), then the CVM must be
synchronised with the simulator clock, and not with the hardware platform clock, oth-
erwise, the CVM would be, as far as VisualSense is concerned, running in the future,
because its internal clock would run 60 times faster than the simulation clock. One way
to synchronise the CVM with the simulator clock is to parameterise time. Instead of
executing instructions based on its own clock ticks, the CVM execution engine receives
tokens (simulating ticks) from an external clock. The external clock is a VisualSense ac-
tor, synchronised with the simulator clock by design, and is able to send a parameterisable
number of tokens per second, which can be used to simulate nodes running at different
clock rates. Also, clocks can be configured to start ticking at distinct times, yielding nodes
that start executing at distinct times.

The VisualSenseVM actor controls the CVM execution. When a token is received in
the clock port, simulating a hardware clock tick, VisualSenseVM performs the following
actions (in this order):

• Tells the Callas VM to run a computation step (a single operation) based on the
current simulation time. Timed calls (T ) are managed by the execution engine and
are, therefore, also triggered according to the simulation clock;

• If there is a message for an external operation, converts it to the Ptolemy II format
and sends it to the externalOut port;

• If there is a message on the Callas VM output queue, converts it to the Ptolemy II
format and sends it to the VisualSenseVM out port.

The computation step is performed first because it may result in a new message on the
CVM output queue that must be sent to the out port, or in a new message from the native
operations object that must be sent to the externalOut port, in both cases, at the current
simulation time. Since the CVM runs a single step per clock tick, the VisualSenseVM gets
at most one message from the CVM, therefore, the order of message handling (the last
two actions) is irrelevant.

5.2 Network and Node Simulation Models

The models presented in this section are building blocks for simulation model generation.
The simulation as a hole is parametric in a model that defines the network, a model for
each type of sensor, and specific model parameters. The network model defines a con-
tainer for node actors and communication channels. Each node is, in itself, a simulation
model of a physical device running Callas. Both the network and sensor models can be
configured or extended. The network model, for instance, may also comprise environment
models, or auxiliary actors that can perform network analysis.
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Figure 5.2: A VisualSense model of a network containing five nodes

Figure 5.3: A generic VisualSense model of a node

5.2.1 Network Model

The (basic) network model consists of a Wireless Director and a Wireless Channel. In
Figure 5.2 depicts a network model consisting of a WirelessDirector, a PowerLossChannel,
and five nodes. Each node is represented in the GUI by a (blue) box with a (red) spot
on the centre marking its exact position, and a row of (black) squares, modelling a LED
array. The wide (light-blue) circle around the node represents its transmission range. In
this representation, it is possible to perceive that the lowermost node is isolated from the
other nodes: its transmission range is insufficient to reach any of them, and the others
cannot reach it as well.

5.2.2 Node Model

A node has an input port in, and an output port out, bound to the wireless channel, simulat-
ing signal transmission. The node model (depicted in Figure 5.3) is composite; it contains
a set of (atomic) actors that define its behaviour. Next, we detail each actor.
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Clock

Is a Ptolemy II actor that simulates a hardware clock. It is parameterised by the tick period
value. Setting the tick period to 0.01 seconds, for instance, yields a 100 Hz hardware
clock. Hence, this actor sends one hundred tokens trough its output port, per simulation
second. Each sensor has its own clock, allowing to simulate a network where nodes run
at different clock rates.

VisualSenseVM

The VisualSenseVM actor, detailed in Section 5.1, adapts the CVM by managing its net-
work interface, by providing an implementation of the native operations for the node, and
by controlling the execution engine via the Clock actor.

Dispatcher

Dispatches messages coming from the VisualSenseVM externalOut port to the actors that
simulate native operations with side-effects. The input port accepts record tokens in the
form ”operation”: opToken, ”arguments”: argsToken that map an operation to its arguments.
For each token received, the Dispatcher breaks the record and sends the argsToken to an
output port that has the same name as the value of the opToken.

This actor can be extended in order to support any native operation. It suffices to create
a new output port, with the same name as the operation, and set its type accordingly to
the argsToken. This can be accomplished with little effort using the VisualSense GUI.

LED

Responsible for performing the operations needed to update the sensor graphical repre-
sentation in a manner that simulates turning LEDs on and off.

Log

Prints log entries to a GUI window. The Log actor can be replaced by another actor that
can perform something more elaborate, such as writing to a file, or feeding a database.

Summarising the node actor, VisualSenseVM adapts the CVM, thus holding the pro-
gram memory and acting as a processing unit, running at a clock rate given by the Clock
actor. VisualsenseVM parameterises the CVM with a native operations object that mim-
ics a given device native operations and routes the messages representing side-effects to
the externalOut port. These messages are then sent by the Dispatcher to specialised actors
that simulate side-effects (e.g., LED). This model can be extended in order to support
virtually any sensor device by simply providing a native operations implementation, the
corresponding set of native operation actors, and configuring the Dispatcher.
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5.3 Automatic Generation of Simulation Models

This section addresses the simulation model generator tool and an extensible characteri-
sation of WSN simulation, which is used to automatise the model generation.

Callas applications are defined in calnet files. A calnet file is a mapping of parameters
to arguments, where the argument may either be a single value, or a mapping of keys
to values. Figure 4.5 presented a calnet file for the temperature monitoring application
example of Section 4. The information in that file is used to compile and type check
the network. Given that the Callas compiler ignores the parameters it does not need, the
same file can be used to convey a WSN characterisation that enables automatic model
generation. Such characterisation, piggybacked on the calnet file, includes indicating how
many nodes (and of which types) compose the network, their positionings, communica-
tion range, etc.

The characterisation consists of a set of generator parameters that may be of two
types: i) simulation parameters, mandatory, specified in the form parameter = value, and ii)
actor parameters, optional, specified in the form ActorName.parameter = value. Figure 5.4
depicts a calnet file, containing generator parameters. This file is an extended version of
the one presented in Figure 4.5, from which only three lines (identified in the Figure) are
taken. From such file, the simulation model generator tool creates a MoML (persistent
format of Ptolemy II models, introduced in Chapter 3) file. The generator parameters
may also be global, when declared for the network as a whole (outside sensor definitions,
like template = network.moml), or local, when declared for specific groups of nodes (inside
sensor definitions, like Clock.period = 0.001).

The second parameter template, configures the generator tool to use the network.moml

as the model for the network. The third, CallasPowerLossChannel.lossProbability (optional),
redefines the lossProbability parameter of the CallasPowerLossChannel, an extension of the
PowerLossChannel that eliminates repeated messages on the network.

Each sensor definition encloses a set of parameters that determines the common prop-
erties of a group of nodes. The size parameter tells the generator tool how many nodes run
the specified code, and the template is used to get the node MoML model. The range pa-
rameter determines the node’s transmission range and the the position specifies how they
are distributed in the field. It can have three forms:

• explicit x1, y1 ... [xn, yn], explicitly defines the positions for all the nodes;

• uniform x1, y1 to x2, y2, uniformly distributes nodes within a bounding box defined
by the arguments;

• random x1, y1 to x2, y2, like the former, but with a random distribution.

The simulation model generator tool does not have any hard-coded models. It creates
simulation models from calnet files decorated with (mandatory) simulation parameters.
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# file: networkReadyForSimulation.calnet

i n t e r f a c e = i f a c e . ca l t ype # from network.calnet

template = network . moml
CallasPowerLossChannel . l o s s P r o b a b i l i t y = 0.0

sensor :
code = node . c a l l a s # from network.calnet
s ize = 100
range = 250
p o s i t i o n = random 0 ,0 to 1000,1000
template = genericNode . moml
Clock . per iod = 0.001

sensor :
code = s ink . c a l l a s # from network.calnet
s ize = 1
range = 5000
p o s i t i o n = e x p l i c i t 0 ,0
template = genericNode . moml
Clock . per iod = 0.001

Figure 5.4: A Callas network file extended with generator parameters

The (optional) actor parameters are not predefined. The generator tool will search for
actors whose names match the actor name in actorName.parameter = value and set the pa-
rameter’s value accordingly, therefore, actor parameters provide a means of configuring
any actor defined (at any hierarchical level) in the models. These are design decision that
we believe make the generator tool very flexible.

5.4 Performance and Scalability

For a fixed number of nodes, the performance and scalability of a simulation may vary
greatly accordingly to the number of messages exchanged and to the complexity of the
signal, terrain, and physical phenomena being modelled. It is out of the scope of this work
to evaluate simulation models for a set of WSN use cases.

We choose the model generated from networkReadyForSimulation.calnet to evaluate per-
formance and scalability. This model does not account for physical phenomena or terrain
modelling, and uses a simple signal without loss or collision. Furthermore, it uses an
unrealistic temperature model. However, our goal is to evaluate the aforementioned re-
quirements regarding the number of nodes and number of messages exchanged. Naturally,
more complex and “real” models will yield simulations with lower performance and scal-
ability.

Other MoML models were created for the same Callas application, but with larger
network sizes, sink ranges, and wider node distributions. Table 5.1 lists the number of
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Table 5.1: Measurings of simulation duration and memory footprint
Nodes moml (MB) Duration (m) Memory (MB)

100 1.0 3.5 250
200 2.2 12.48 228
300 3.4 17.88 220
400 4.7 28.90 259
500 5.9 43.47 307
600 6.9 52.02 314
700 7.9 60.18 371
800 8.9 68.95 418
900 9.9 77.63 441

1000 10.9 85.94 464
2000 21.8 3.80 870
3000 32.7 6.65 1440
4000 43.6 9.97 2140
5000 54.5 15.9 2550

Figure 5.5: Simulation duration and memory footprint

nodes, MoML file size (in MB), simulation duration (in minutes), and memory footprint
(also in MB) for the different networks. Figure 5.5 plots the same values in a graph. The
results were obtained with VisualSense 7.01 on a Linux based PC with an Intel QuadCore
2.66GHz CPU and 3.4GB of RAM. We did not take into account the amount of time it
takes to generate such models, since it is negligible.

In terms of scalability, our experiments show that simulation duration has a quadratic
growth, while memory footprint grows linearly. We believe that simulation duration is
not a critical factor, as one would expect to wait for a few hours before having results for
a 5000 node network.

Memory footprint is very important since it limits the network size. At this point no
optimisations were made, so we expect to reduce the network size to memory footprint
ratio, enabling to simulate even larger sensor networks in an out-of-the-shelf computer.



Chapter 6

Integrating WSN Simulation into
Workflow Testing and Execution

One of the latest application areas of sensor networks is the Internet of Things and Ser-
vices (ITS), which aims at integrating the state of the world seen from the eyes of sensors
in high-level applications available on the Internet. An ITS application may benefit from
environment observations and tailor its behaviour accordingly. For example, a home au-
tomation system may extend its features and, in addition to the traditional task scheduling
(e.g., turning on and off a given device according to a predetermined plan), react to envi-
ronmental conditions or to behavioural rules of the inhabitants. Another application area
is logistics, where, for example, we may want to alter a delivery process according both
to the actual conditions of the goods being transported and to the traffic information in the
route to the destination. In this case, the information obtained from the sensors can lead
to modifications in the delivery process, such as a change in the order by which the goods
are delivered.

Applications that encode workflows are difficult to test because their behaviour de-
pends on external events (the world) that are, in the general case, nondeterministic. For
workflows that involve WSN, simulation may ease testing and execution by allowing to
separate the WSN concern from the workflow, and to provide fresh data for the workflow.

This Chapter presents a scenario in logistics that illustrates both an application for
WSN simulation, and the use of workflow management systems. The VisualSense sim-
ulation of the scenario is integrated with a workflow management system, providing a
means of integrating WSN data into the workflow execution and testing.

6.1 A Logistics Scenario

The scenario used in this chapter describes a workflow process integrated with environ-
mental readings obtained from a WSN. A truck departs from Lisbon with two vaccine
containers, each equipped with a temperature sensor. In both containers the tempera-
ture should not exceed 10

oC, otherwise the quality of the vaccines may be compromised.
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# file: types.caltype

defmodule N i l : pass

defmodule AlertTemp :
N i l sample ( )
N i l a l e r t ( str ing mac, long t ime , double temp )

Figure 6.1: Callas types for a logistics application

# file: iface.caltype
from types import ∗

defmodule Sensor ( AlertTemp ) :
N i l l i s t e n ( )

Figure 6.2: Interface type for a logistics application

The first container is to be delivered in Coimbra and the second in Porto. The truck is
equipped with a base station that periodically polls the sensors for the temperature in the
containers and informs the control centre, via GSM, if any reading exceeds 10oC. In the
control centre a new workflow is initiated when a communication from the truck is re-
ceived, possibly determining changes to the delivery order. Testing this workflow using
the traditional approach requires a method to replay the communications with the truck.
However, this is not required if the simulation of sensor networks is integrated with the
workflow execution. Furthermore, the integration may allow the use of simulation data
from sensor networks in richer scenarios than the one just described.

An implementation of the WSN application for this scenario is presented to further
introduce Callas and demonstrate simulation model generation. Figures 6.1 and 6.2 depict
the Callas types and network interface for the application. All nodes in the network share
the same type, Sensor, that extends type AlertTemp by adding function listen .

The file node.callas (Figure 6.3) defines the program for the nodes, that is, for the
sensors in the containers. The program imports the interface iface .caltype, defines module
M that implements Sensor, installs it in the sensor memory (store m), and schedules the
periodic execution of function listen . Module m implements i) function listen for reading
messages from the input queue (receive), ii) function sample, that emits a network call to
function alert (mac, time, temp), with the sensed values, and iii) function alert , empty.

Program sink. callas (Figure 6.4) implements the same interface, but with a different
behaviour from the program running on the sensors. In the sink, function Sample only
sends to the network a call to sample(). Function alert records the values received and,
if the temperature raises above 10

oC, sends a message by GSM to the control centre. In
addition to the periodic scheduling to function listen , it also schedules function sample,
which polls the temperature values from the network.
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# file: node.callas
from i f a c e import ∗

module m of Sensor :
def l i s t e n ( se l f ) :

receive

def sample ( se l f ) :
mac = extern macAddr ( )
t ime = extern getTime ( )
temp = extern getTemperature ( )
send a l e r t (mac , t ime , temp )

def a l e r t ( sel f , mac , t ime , temp ) :
pass

store m
l i s t e n ( ) every 30000 expire 36000000

Figure 6.3: Sensing node program for a logistics application

# file: sink.callas
from i f a c e import ∗

module m of Sensor :
def l i s t e n ( se l f ) :

receive

def sample ( se l f ) :
send sample ( )

def a l e r t ( sel f , mac , t ime , temp ) :
extern l o g S t r i n g (mac)
extern logLong ( t ime )
extern logDouble ( temp )
extern l o g S t r i n g ( ” ” )
i f temp > 10 .0 :

extern sendGSM(mac , time , temp )

store m
l i s t e n ( ) every 30000 expire 36000000
sample ( ) every 30000 expire 36000000

Figure 6.4: Sink node program for a logistics application
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# file: network.calnet

i n t e r f a c e = i f a c e . ca l t ype

template = conta inerNetwork . model

sensor :
code = node . c a l l a s
s ize = 2
range = 50
p o s i t i o n = random 0 , 0 to 10 , 10
template = conta inerSensor . moml

sensor :
code = s ink . c a l l a s
s ize = 1
range = 50
p o s i t i o n = e x p l i c i t 0 , 0
template = gsmSink . moml

Figure 6.5: Callas application for a logistics scenario

The simulation model for the logistics WSN application is generated from the file
network.calnet (Figure 6.5).

6.2 Workflow Execution Integrating WSN Simulation

Workflow testing and execution is aided with specialised computer systems called work-
flow management systems. These systems, such as YAWL System [70], are mainly used
to analyse business processes, but can also be used for design-time business process vali-
dation [63].

Scientific workflow management systems are a specialisation of the more general type
that allow to execute scientific workflows (for instance, a structured set of operations over
environment measurement data). Among such systems are Taverna [34], Triana [67], and
Kepler [5]. Kepler supports GUI modelling and execution, workflow composition, dis-
tributed computation, and access to data repositories and web services. Like VisualSense,
Kepler is a Ptolemy II specialisation.

In Kepler, the workflow execution is determined by a computation domain. For ex-
ample, in the Synchronous Dataflow domain, the execution is synchronous and occurs in
a pre-calculated sequence; in the Process Networks domain it is parallel, meaning that
one or more components may run simultaneously; and, in the Discrete Event domain,
workflow execution is triggered by events and takes time into account.

Kepler and VisualSense may use the same components interchangeably. Therefore, it
should be possible to include simulation models from VisualSense in Kepler workflows,
obtaining a means of integrating information from the sensor network simulation into the
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Figure 6.6: Simulation model to be integrated in Kepler

workflow execution. Furthermore, we are able to generate VisualSense simulation models
from Callas applications, which eases all the simulation-related work from the workflow
tester/executor perspective.

6.2.1 Integrating WSN Simulation in Kepler

Section 6.1 presented an environment monitoring application for a WSN. From that appli-
cation (defined in file network.calnet), a simulation model is automatically generated. The
network template used allows the integration of the model as an actor in another model
defining an output port for the model.

Figure 6.6 depicts the generated model. The two temperature sensors, Node1 and
Node2, in blue, execute the code in node.callas (Figure 6.3). Periodically, they send the
temperature in each container to the base station, represented in green. The base station
(sink) executes the code in sink. callas. It is possible to identify the nodes communication
ranges, as well as their relative positions.

The communication between the sensor nodes and the base station is made through
channel CalasPowerLossChannel. Ports in/out of all the represented nodes receive/send
messages through CalasPowerLossChannel. The communication of the base station with
the control centre is simulated by the GSMChannel. The base station is the only node that
can send messages on GSMChannel, namely output messages, making use of its gsmOut

port.
The workflow described in Figure 6.7 calculates the best path for the deliveries, tak-

ing into account the container temperatures, and the truck location. The sensor network
integration is made by encapsulating the network model in a Kepler actor (TruckNetwork),
that acts as a data source. The workflow execution is, in this case, triggered by a mes-
sage received from TruckNetwork. In a different workflow, the execution could be started
by another event, possibly being altered by an incoming message from the sensor net-
work. In the top right corner of Figure 6.6, there is the WirelessToWired actor, that re-
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Figure 6.7: Kepler workflow where TruckNetwork encapsulates the WSN model

ceives the messages sent through GSMChannel and dispatches them through the outPort of
TruckNetwork, depicted in Figure 6.7. In the workflow integration, this message is routed to
a MessageDisassembler actor that extracts the containerID and truckPosition values, needed
for the CalculateBestPath workflow. It should be mentioned that the WirelessToWired actor
(that connects the sensor network to the workflow) is independent of the network and of
the workflow; it is only a message broker.

The difficulties of integrating VisualSense’s sensor network models in Kepler lie in the
(possible) computation domain heterogeneity. WSN simulation is done in the Wireless
domain, an extension of the Discrete Event domain that is not suited for all types of
workflows. However, there should be no difficulties in the type of business processes that
we are interested in simulating, because they are usually event oriented.

6.2.2 Workflow Interoperability

A way to mitigate integration difficulties, and to use WSN simulation models in more
workflow management systems is to create robust mechanisms of workflow interoperabil-
ity, i.e., the ability to execute workflows in a distributed way, using two or more distinct
workflow management systems. The available variety of workflow management system
engines and description languages hinders workflow interoperability. For example, Tav-
erna [34] interprets the Simple Conceptual Unified Flow Language [34] (SCUFL), Kepler
uses the Modelling Markup Language [12] (MoML), Yawl system [70] uses Yet Another
Workflow Language [69] (YAWL), and Triana [67] interprets, in addition to its proprietary
format, the Business Process Execution Language [40] (BPEL). Summing to the afore-
mentioned difficulties (the variety of description languages and of execution platforms),
workflow specification languages usually have different degrees of expressiveness, mak-
ing the translation among them not always possible, which compromises interoperability
by language translation.

Workflow interoperability could be achieved by standardising the specification/exe-
cution language. There has been such attempts, for example, the Workflow Management
Coalition created XPDL [40], and Microsoft and IBM have created BPEL, both aiming
to become the standard. Another way to achieve interoperability of workflows is by inte-
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grating workflow engines so that it is possible to run each workflow in its execution envi-
ronment, but being able to interact with other workflows, running in other environments.
Such an approach is proposed by Kukla et al. [41]. The authors see workflow manage-
ment systems as (legacy) applications embedded in a Grid Computing environment, in
the case, GEMLCA [16] (Grid Execution Management for Legacy Code Applications).





Chapter 7

Conclusion

Wireless Sensor Networks are becoming an increasingly important topic as the number
(and complexity) of their applications increase. The advances in hardware and software
for WSN allow for cheaper devices, improved energetic autonomy, greater computational
capabilities, efficient communication protocols, and higher-level programming models. It
is often stated that WSN will become ubiquitous in a very near future, since they can be
an enabling factor for new services, such as for the Internet of Things and Services. In
spite of the advances in this field, deployment is still one of the main difficulties regarding
WSN, notably because testing and debugging WSN applications is hard.

Simulation allows us to define virtual environments where experimental deployments
can be done, tested, and analysed. Therefore, it can play an important role in testing
and debugging. However, defining simulation models is a laborious task. This thesis ad-
dresses that problem by proposing automatic generation of simulation models for WSN
directly from the source code of WSN applications. In particular, we generate simulation
models for the VisualSense simulator, from Callas applications. For that purpose, we i)
adapt the Callas Virtual Machine in a VisualSense component (actor), ii) define simulation
models for generic WSN and devices, and iii) create a model generator tool that can be
parameterised in a very complete and flexible way. In particular, we can parameterise not
only the models to be used for the network and each type of node, but also each individ-
ual actor therein. The generated models may, for instance, have distinct nodes, possibly
running distinct applications (although Callas ensures that they abide to the network in-
terface), with different clock ratios, be turned on and off anytime during simulation. Our
approach for simulating Callas WSN has good performance and scalability, as depicted
in Figure 5.5. We are able to simulate networks with several hundreds of nodes using
out-of-the-shelf hardware.

This thesis also presents an approach to integrate sensor network simulations into
the execution of workflows (in workflow management systems), thus providing a way
of testing higher level applications based on information from things in the world. Our
proposal integrates the simulation of sensor networks of VisualSense [7] in the Kepler
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workflow management system [5], exploiting the interoperability of components (actors)
between the two systems. This approach is feasible because both systems are extensions
of the Ptolemy II modelling and simulation platform [23]. We believe that our approach is
a valuable contribution for testing applications (not only those based on workflows) that
depend on environmental values.

We foresee that this work can be extended in several different ways. A possible ex-
tension regards the simulation model generation, it is our goal to extend the network and
sensor models (with the ability to account for battery models, for example) in order to fur-
ther ease network and sensor template model definition; this will also allow us to measure
network lifetime and to experiment with energy conservation. Another extension impacts
the performance of the model. We anticipate that two facts contribute definitely for such
optimisation: the reduction of the generated model file size and the decrease of the Callas
Virtual Machine actor memory footprint, that would also improve the scalability of the
simulation.

Regarding the integration of sensor network simulation in workflow testing and ex-
ecution, our initial focus will be on the validation of the proposed integration model, as
well as on obtaining results that allow us to evaluate the proposed solution. Another inter-
esting point that deserves further attention is workflow interoperability, i.e., the ability to
execute workflows in a distributed way, using two or more distinct workflow management
systems. As discussed in Chapter 6, we intend to investigate the possibility of integrat-
ing distinct workflow engines in a Grid Computation system that may serve as a meta
workflow management system. This would allow us to extend the integration of WSN
simulation to other workflow management systems.

Finally, another direction for future work concerns with the availability of sensor in-
formation via web, this does not seem complicated and we envision what it could be
easily achieved using web services: we would need to create an interface that exposes the
VisualSense simulator as a web service so that it can be accessed remotely.
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