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University, Manchester, UK The development of sixth-generation (6G) wireless communication technology
is expected to provide super high-speed data transmission, and advanced net-
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Edited by: Kim-Kwang Raymond Choo, blockchain technology, pervasive biomedical informatics and smart cities built
Editor on the digital infrastructure backbone of the Internet of Things (IoT). The ubig-
uitous nature of this large-scale 6G-enabled IoT that offers faster connectivity
capabilities and integrates both terrestrial and non-terrestrial networks will not
only create new data security and privacy issues but also provide a treasure trove
of digital evidence useful for digital forensic examiners investigating security
incidents and cybercrime. However, for digital forensic examiners, evidence col-
lection, preservation and analysis will become a priority in the successful deploy-
ment of 6G IoT networks. In this study, we define key applications of 6G
network technology to the Internet of Things and its existing architectures. The
survey introduces potential digital forensic challenges and related issues affect-
ing digital forensic investigations specific to 6G IoT networks. Finally, we high-
light and discuss forensic readiness and future research directions for identified
challenges within the 6G IoT network environments.
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1 | INTRODUCTION

Fifth-generation (5G) wireless communication technology has been a key enabler in the proliferation and growth of
Internet of Things (IoT) applications (S. Li et al., 2018) which has seen billion of devices connected by wireless commu-
nication technologies. Compared to wireless technologies, such as 2G/3G/4G, Wi-Fi, Bluetooth, and so forth, 5G offers
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improved latency, spectrum efficiency, reliability, and a transmission rate of between 10 and 20 Gps which is 100 times
higher than 4G (Gai et al., 2021; Lu & Zheng, 2020). It has also taken communication previously limited to only
humans to communication between humans and objects. However, the full potential of promising new IoT services
from extended reality (XR), artificial intelligence (AI), autonomous systems, and telemedicine to underwater sea-based
communication and intelligent vehicular ad hoc networks (VANETS) cannot be realized with 5G (Saad et al., 2020).
These services are mostly based on ultra-high reliability, high data rates, unmanned mobility management, and long-
distance communication (L. U. Khan et al., 2020), which exposes the limitations in the inherent properties of 5G.

These limitations have birthed the development of the sixth generation (6G) wireless network communication
which aims to provide performance improvements required by these services. Another aspect of 6G is that it will create
a large-scale heterogeneous network integrating terrestrial networks, space satellite networks, and marine networks.
6G will have a high peak rate of between 100 Gps and 1 Tbps, low latency, 0.1 ms on-time processing, spectrum effi-
ciency of about 2-3 times better than 5G and overall network efficiency of 200 bits/J compared to 100 bits/J offered by
the current 5G (Lu & Zheng, 2020).

These high-performance requirements are currently needed to unlock the mainstream adoption of augmented/
virtual reality (AR/VR), 3D Holographic Display, real-time telemedicine, upscale the industry 4.0 revolution and meet
the demands of autonomous transportation systems (Giordani et al., 2020; Meshram & Patil, 2020; Servetnyk &
Servetnyk, 2021; Wollschlaeger et al., 2017; Z. Zhang et al., 2019). 6G will allow the proliferation and expansion of Al-
powered IoT devices that will enhance end-user experience with increased human-to-object interactions. Statistics show
that the global market of 6G is estimated to reach $1773.09 billion by 2035 (Global News Wire, 2021a) with the majority
of smart and IoT devices operating on 6G networks or considered 6G “ready.”

Existing security issues and privacy challenges in 5G networks such as authentication, access control, integrity,
identity management, confidentiality and non-repudiation have also been identified in emerging 6G technologies
(Sicari et al., 2020; M. Wang et al., 2020). Current 5G networks have not only increased the ubiquity of IoT devices but
also the advent of IoT bot malware and botnets. Therefore, the ability to forensically analyze IoT malware-infected
devices is very critical in 5G networks and beyond (X. Zhang, Upton, et al., 2020).

Moreover, newer forensic analysis challenges will also emerge in the state-of-the-art technologies enabled by 6G
that include faster ubiquitous IoT services and applications, where various sensors and networks based on big data and
deep learning are interconnected in real and virtual environments (Lu & Zheng, 2020). Hence this increase in IoT con-
nectivity will not only expose the network communication surface area to exacerbate threats currently seen in 5G net-
works but also create a spike in prevalent and persistent security-related attacks and incidents that require different
digital forensic investigation approaches in 6G networks.

As more connected objects and autonomous systems communicate seamlessly over an increasing system bandwidth
and improved spectrum efficiency provided by 6G networks, the forensic investigation and incident response, as well as
the attack or deficit attribution, would become more challenging in this vast network environment. Moreover, sifting
through the sheer amount of data for valuable forensic artifacts to provide an end-to-end analysis of evidential data is
not just difficult but will become increasingly challenging and close to impossible in fully distributed autonomous sys-
tems, underwater locations, and virtual and XR environments. Therefore, forensic examiners and incident responders
will require specialized methods, procedures, and tools for identifying, collecting, preserving, and analyzing evidential
data in large-scale heterogeneous 6G IoT network environments.

1.1 | Related studies

The rapid increase in IoT network connectivity has been enabled by the development of wireless communication tech-
nologies. However, to meet future promises of high-performance, autonomous, and heterogeneous networks that
include reliable object-to-object communication, a much more efficient and reliable wireless communication has been
proposed in the form of 6G. Recent research studies have focused specifically on the development of 6G and its enabling
technologies (de Alwis et al., 2021; Giordani et al., 2020; W. Jiang, Han, et al., 2021; Nguyen et al., 2022; Xiaohu
et al., 2020; Z. Zhang et al., 2019) including security and privacy challenges of 6G-enabled networks (Lu & Zheng, 2020;
M. Wang et al., 2020). Moreover, researchers have also focused on the forensic challenges and opportunities in several
IoT networks (Akinbi & Berry, 2020; Alenezi et al., 2019; Baggili et al., 2015; Choo, 2021; Conti et al., 2018; Dawson &
Akinbi, 2021; Lutta et al., 2021; MacDermott et al., 2018; Oriwoh et al., 2013; Sandvik et al., 2023; Servida &
Casey, 2019; Stoyanova et al., 2020).
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The common theme of these previous studies is that the IoT networks are currently enabled by Wi-Fi, RF,
3G/4G/5G, Bluetooth and ZigBee network technologies. The methods and approaches used for forensic investigations
in these studies can be generalized based on these underlying network technologies and infrastructure. Moreover, the
existing studies do not highlight digital forensic challenges in future large-scale IoT heterogeneous networks that will
integrate terrestrial networks, space satellite networks, and underwater/marine networks that are proposed to be
enabled by key 6G wireless network technologies. Therefore, for future 6G networks, digital forensics and incident
response will require different approaches specific to the key enabling technologies the network communication tech-
nology has been proposed to use. This article is the first of its kind to introduce digital forensic challenges and prepared-
ness toward digital investigations for future 6G IoT network environments.

1.2 | Research contribution

In this article, a broad overview of the digital forensic challenges related to 6G IoT networks is first introduced. We dis-
cuss the key enabling technologies for 6G networks including an overview of 6G-enabled environments to help under-
stand why conducting digital forensic investigations in these environments will require a different approach.

Hence, the key contributions of this survey can be summarized as follows:

1. The promising smart IoT network environments that 6G wireless communication technology will support are
outlined.

2. The digital forensics issues and challenges in the key areas of the 6G IoT networks are identified and presented with
a detailed discussion on specific digital forensic investigation challenges.

3. We highlight forensic readiness and future research directions toward conducting digital forensic investigations in
these large-scale heterogeneous 6G-enabled IoT networks.

The rest of this article is organized as follows. A discussion of the methodology, results and related works is pres-
ented in Section 2. Section 3 provides a brief overview of 6G key technologies. In Section 4, we discuss the application
of 6G wireless communication technology in IoT environments. In Section 5, we discuss the forensic challenges in 6G
IoT networks. Forensic readiness and future research directions are presented in Section 6. Finally, Section 7 concludes
the article.

2 | METHODOLOGY

In this article, we followed a fundamental procedure to select and filter the most relevant literature about 6G and
IoT. The method used in this study follows the guideline and principles for conducting systematic surveys in soft-
ware engineering as proposed by Petersen et al. (2008) and updated by Petersen et al. (2015). The aim is to obtain
the most relevant studies related to 6G key enabling technologies (Section 3) and their application to the IoT
(Section 4).

The search strategy was carried out across three databases and online libraries. The online libraries consulted
include IEEE Explore, Google Scholar, and ScienceDirect, using keywords/strings, “6G” and “IoT,” to obtain the
most relevant studies related to the research study. These digital libraries are appropriate to conduct searches that
cover the most relevant topics and selection of journals in computer networks, computer science and software
engineering.

From the initial search conducted, a total of 157 articles (journal papers, conference proceedings, and early
access articles) were generated. Specifically, we considered only publications from 1st January 2020 up to 30th April
2023 to obtain up-to-date papers relevant to the study. Specifically, there were 112 articles recovered from IEEE
Explore, 61 articles from Google Scholar, and 40 articles from ScienceDirect. From the returned search results, we
observed some publications were irrelevant or unqualified articles for selection based on our inclusion and exclusion
criteria presented in the title, keywords and abstract. Publications that did not focus on 6G including its enabling
technologies and application to IoT were removed. Secondly, papers not written in English or duplicates were
deleted. Finally, 109 articles met the qualification which are IEEE Explore (71), Google Scholar (12), and
ScienceDirect (26).
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2.1 | Results

From the final 109 articles selected; the number of articles published since 2021 is the largest despite our search being
conducted in March 2022. The results also show that IEEE Explore conferences and journals are the major sources for
6G development and research. From the selected articles, the percentage of the publications' theme could be split into
concepts and opportunities accounting for 68%, key enabling technologies accounting for 96%, application of 6G
accounting for 77%, and challenges accounting for 65%. It should be noted there is an overlap between the various
themes in the 109 articles selected. In general, the selected publications show that the development of 6G wireless com-
munication is in its nascent stages. However, research and interest in the academic community are growing at a very
fast pace.

3 | 6GKEY ENABLING TECHNOLOGIES

To better understand the digital forensic challenges and approaches for evidence collection, preservation, and analysis
in future 6G enabled IoT networks, we highlight several key enabling technologies that will be integrated to support
the functionalities for future 6G network communications. The key enabling technologies briefly described in this
section highlight network communication, data processing and storage in ecosystems of smart and highly heteroge-
neous 6G enabled IoT devices.

3.1 | Wireless network communication and performance technologies

To enable and integrate geo-wireless mobile communications, especially terrestrial, space, and underwater autonomous
network communication, 6G will need to provide full wireless coverage and ultra-long-distance wireless connectivity
with a delay of less than 1 ms (Chowdhury, Hossan, & Jang, 2018; H. Guo, Zhou, et al., 2021; Ji, Han, et al., 2021; Zhao
et al., 2019). 6G will also need to support massive Ultra-reliable Low Latency Communications (mURLLC) in extreme
or emergency events with spatially and temporally changing device densities, traffic patterns, spectrum, and infrastruc-
ture availability (Letaief et al., 2019). This includes promising solutions to the current communication spectrum which
6G will benefit from. The use of full-duplex (Terahertz) THz-based communications to ensure reliability and high spec-
tral efficiency has been proposed (Bariah et al., 2020; Y. Yang, Yamagami, et al., 2020; Yu et al., 2020; S. Zhang, Liu,
et al., 2020). This use of a wide spectrum bandwidth allows for wideband channels, low latency, ultra-high bandwidth,
and support data transfer at very high speed (Allam & Jones, 2021; Alsharif et al., 2020; Yuan et al., 2020).

Other identified key enabling technologies include the use and application of channel coding, edge caching, non-
orthogonal multiple access (NOMA) in the context of millimeter-wave (mmWave) communication (Lu & Zheng, 2020;
Ziegler & Yrjola, 2020), and optical wireless communication (OWC) systems such as visible light communication (VLC)
infrared radiation (IR), or ultraviolet (UV) spectra. OWC's excellent features make it a promising complementary option
to radiofrequency (RF) based wireless communication systems (Chowdhury et al., 2020) and as such it has been identi-
fied as an enabling technology for future 6G network communications. One of the most promising OWC technologies
includes optical camera communication (OCC), free-space optical (FSO) communication and VLC. VLC propagates
data transfer via visible light beam, can offer high indoor speed, guarantees transmission privacy and security, and as
such can be deployed in a wide range of the spectrum. VLCs possess the ability to provide illumination and wireless
broadband communication simultaneously (Al-Kinani et al., 2018). Several research platforms such as OpenVLC have
also been developed to accelerate the application and validation of VLC designs (Cui et al., 2020; Galisteo et al., 2019).
Its successful deployment has already been achieved in the streaming of high-quality HD videos (X. Lin & Zhang, 2020;
Ray, 2021) and implementation in light-fidelity (Li-Fi) (X. Wu, Zhou, & Yang, 2017). Li-Fi is strongly judged to be more
suitable for underwater communication because radio waves cannot be used underwater as the waves are strongly
absorbed by water within a few feet of transmission.

In addition, 6G will include the application of deep learning and machine learning (ML) enabled solutions to
achieve maximum network optimization (Letaief et al., 2019; H. Yang, Alphones, et al., 2020; S. Zhang & Zhu, 2020;
Zorzi et al., 2015). The use of deep learning and machine learning, edge intelligence (Deng et al., 2020; Z. Zhou
et al., 2019) and reconfigurable intelligent surfaces (RISs) (C. Pan et al., 2021) will help in maintaining the increased
efficiency as inherent problems in wireless networks. Current wireless network communication problems that are
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solved by applying sets of rules derived from system analysis will no longer be applicable. The implementation of
multiple-input and multiple-output (MIMO) channel estimation and detection (Y. Chen, Yan, et al.,, 2021; Huang
et al., 2018; Ye et al., 2018), intelligent spectrum sharing (Matinmikko-Blue et al., 2020), modular recognition (West &
O'Shea, 2017), channel decoding has been proposed to improve the state of network performance in 6G architectures.

3.2 | Transceiver and antenna technologies

To deliver reliable wireless network communication performance in proposed 6G networks, novel transmitters, trans-
ceivers, and antenna designs and developments for THz communication are crucial. Especially designing and develop-
ing large-scale antennas that will improve spectrum efficiency of wireless mobile communication systems (Lu &
Zheng, 2020; Zong et al., 2019). The use of either-or combined electronics-based and photonics-based devices that can
accommodate the transmission and delivery of high-rate data wirelessly needs to be designed and developed. Alterna-
tively, integrated hybrid transceiver systems that can leverage and use multi-mode base stations across several frequen-
cies including microwave, mmWave and THz spectra are needed (Saad et al., 2020; Xiao et al., 2017). In addition, the
development of multi-modal micro-LED transmitters would be required to support high-speed VLC and OWC
(Griffiths et al., 2020; Haas et al., 2020).

6G networks will also extend beyond the current 5G data access and storage from data centers to the edge through
the use of both mobile base stations and fixed base stations for serving network operation centers (Ray, 2021) for terres-
trial space-underwater networks. As a large amount of big data is being generated, transmitted, and shared in real-time,
access to virtual networks in the cloud would be needed to extend the capabilities of content delivery networks (CDN5s)
to the use of underwater base stations, unmanned aerial vehicles (UAVs) and aerial satellites for 6G networks. Seamless
integration of both mobile and fixed base stations which consists of satellite communication architectures, UAV/drone-
based/balloons-assisted communication systems and underwater acoustic, optical and RF communication have already
been identified (Alzidaneen et al., 2020; Dang et al., 2020; Ray, 2021). Due to their strong line-of-sight connection links
(F. Guo, Yu, et al., 2021), mobility, flexibility, and ability to provide support in areas where cellular base stations are
absent or not functioning, the use of UAV/drone-based/balloons systems have been considered crucial to future 6G
architectures.

3.3 | Data processing and storage technologies

Current 5G IoT networks utilize cloud computing and centralized data storage infrastructures for processing and stor-
ing huge IoT data. With 6G, edge and distributed computing will become mainstream technologies to enable effective
data mobility, scalability, access, and distribution (F. Guo, Yu, et al., 2021; Merluzzi et al., 2020). Low energy and secure
data storage technologies have been proposed which apply the use of decentralized, serverless and trustworthy infra-
structure solutions to process and store data in 6G IoT networks. The traditional client-server boundary will be elimi-
nated, and each network node (including various terminals, base stations, gateways, routers, servers, etc.) will act not
only as an information publisher but also as an information consumer (X. Qiao et al., 2020). Data storage will expand
from traditional cloud infrastructures to edge networks and ubiquitous end devices to reduce latency and improve reli-
ability by eliminating geographic distance (Cao et al., 2020; Huh & Seo, 2019). Edge computing servers will become a
common infrastructure used to process data generated by 6G IoT network devices thus reducing data overload and
latency. The use of off-chain databases that utilize the inherent properties of blockchain has also been proposed. In
Gupta, Nair, et al. (2021), the use of UAVs that can communicate securely using blockchain among each other and with
the ground station servers on the edge network was presented.

4 | 6GENABLED IOT ENVIRONMENTS

Several identified IoT environments where 6G will be applied include intelligent VANETs and autonomous driving,
UAVs, satellite IoT, smart healthcare IoT, industrial IoT, and extended, augmented and virtual reality IoT. For forensic
investigators, these 6G enabled environments introduce new and extended environments of current IoT networks
where forensic evidence collection, preservation and analysis will conduct for digital forensics and incident response.
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In this section, we review and summarize the state-of-the-art application of 6G IoT environments.

Figure 1 illustrates an overview of several applications of 6G wireless technology to several IoT environments
including Intelligent VANETSs and autonomous driving, UAVs, Satellite IoT, Smart healthcare 10T, Industrial IoT and
Extended, Augmented and Virtual Reality IoT environments.

41 | Intelligent VANETSs and autonomous driving

As global businesses, government representatives and organizations commit toward the rapid acceleration and transi-
tion to zero-carbon emission vehicles by 2035 (Committee on Climate Change, 2020), the goal of developing safe and
fully autonomous vehicles has also been accelerated in tandem. Current terrestrial wireless networks are unable to
meet the demands of future VANETSs and will require both air and space satellite networks to compensate to achieve
seamless communication of autonomous vehicles anywhere on the planet (H. Guo, Zhou, et al., 2021). Existing wireless
networks including RF-based technology and 5G suffer communication and data packet loss due to deficiencies caused
by the increase in the number of vehicles, high mobility and the large volume of network traffic generated and dis-
persed among vehicle-to-vehicle (V2V) communication (J. Hu et al., 2021; Kalalas & Alonso-Zarate, 2020; Lv
et al., 2021; Mukhtaruzzaman & Atiquzzaman, 2020; Xu et al., 2021; Yao et al., 2013; Zhu et al., 2021). The resolve the
issue, research developments have proposed a hybrid solution that includes RF and VLC technologies as a solution
(Geng et al., 2022). However, the current 5G technology does not include VLC as an integrated technology for VANETS
and 6G is envisioned to include and integrate VLC as an enabling technology for vehicular communications (Caputo
et al., 2022).

Hence, to support intelligent VANETs and the safety of autonomous vehicles, an increase in reliability and low
latency of V2V communication can only be met by the inherent properties and development infrastructure of 6G net-
works. 6G technology coupled with the application of deep learning (X. Chen, Leng, et al., 2021; F. Tang et al., 2020),
Al-based clustering algorithms (Barbieri et al., 2021; Mukhtaruzzaman & Atiquzzaman, 2020; X. Zhou et al., 2021),
edge intelligence, OWC, THz high-speed communication (He et al., 2021), and network-driven optimization using
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machine learning algorithms (Sliwa et al., 2021) all provide a viable solution to resolving the current network commu-
nication inadequacies in VANETS.

4.2 | Unmanned aerial vehicles

Several recent studies have explored the application of 6G for UAVs. The studies (Dong et al., 2021; X. Jiang, Sheng,
et al., 2021; R. Kumar & Agrawal, 2021; Qi et al., 2021; Sodhro, Pirbhulal, et al., 2021; S. Tang et al., 2021; H. Yang,
Zhao, et al., 2021; Zhu et al., 2021) highlighted the role of UAVs in the delivery of ubiquitous network coverage of 6G
wireless communication due to their low cost, deployment flexibility and low energy consumption. UAVs will act as
edge network devices, and sensor devices and will be able to communicate seamlessly with other UAVs for real-time
network updates across air-space geo locations especially in emergencies and transmit data between themselves and
other base stations. This communication can only get achieved with better and more reliable connectivity provided by
6G technology. The study by Aggarwal et al. (2021) and Gupta, Nair, et al. (2021) describes how future UAVs utilizing
6G wireless communication could securely share and store data (captured high-quality videos and images) on distrib-
uted blockchain networks in real-time saving data storage space, processing and battery power which are inherently
limited on UAVs such as drones. UAVs equipped with communication transceivers will be unrestricted to specific loca-
tions and obstacles, which allows them to provide wider cellular coverage in desirable locations and altitudes (J. Hu
et al., 2021). Hence, UAVs will be very useful in assisting 6G IoT networks including intelligent VANETSs and autono-
mous driving infrastructures.

4.3 | Satellite IoT

Extending terrestrial network communication coverage to non-terrestrial altitudes using low-orbit satellites will be
feasible with 6G technology (C. Liu et al., 2021; Ziegler & Yrjola, 2020). This new 6G-enabled IoT network environ-
ment of non-terrestrial infrastructures includes the use of satellites and UAVs where conventional mobile/cellular
technologies are difficult if not impossible to implement. The study by Chu et al. (2021) proposed models that
address power consumption issues in future 6G satellite IoT networks using non-orthogonal multiple access
(NOMA) schemes for low-orbit satellite internet communication. Hence, enabled by THz communication and low
power consumption, a large number of low-orbit satellites can be deployed to extend internet coverage, deliver
real-time internet access in remote locations, and also support marine/underwater networks. This new edge com-
puting environment of satellites communicating in real-time using high-speed bandwidth will not only complement
existing 4G and 5G terrestrial ecosystems but will be fully integrated to create a large-scale heterogeneous IoT
network.

4.4 | Smart healthcare IoT

IoT is being applied in various areas to improve the provision and delivery of healthcare services. These include remote
real-time health monitoring, telemedicine, home, and elderly healthcare and the detection and prevention of chronic
diseases. Wearables, bio-integrated devices, and bio-nano intelligent systems are being developed with rapid speed to
facilitate real-time healthcare services (Barakat et al., 2021; Bhat & Algahtani, 2021; Hewa et al., 2020; Mardini
et al., 2021; Mucchi et al., 2020; Nayak & Patgiri, 2020; Padhi & Charrua-Santos, 2021a). These IoT devices such as the
ones described in Nasrollahzadeh et al. (2020) and Strobel and Mittnacht (2021) help to sense biological and chemical
changes around a patient and send the collated data to edge or fog data center environments for further processing
(Al-Turjman, 2020). However, its acceleration and progress are hindered by the reliability and latency of data communi-
cation by functioning sensors and nodes that transfer data to these data centers. These 10T devices currently use short-
range communication standards like Bluetooth Low Energy (BLE) and ZigBee which incur significant delays. Although
ZigBee is well suited for smart health applications, it poses a risk to the security of sensitive patient data that is being
exchanged over the network and is not commonly implemented on smartphones compared to BLE (Baker et al., 2017).
Similarly, long-range communications standards like Wi-Fi and NB-IoT operating on GSM, LTE, 4G and 5G networks
do not offer reliable low-latency or high-speed communications compared to potential 6G technologies such as THz,
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mURLLC or VLC. Studies conducted by Aggarwal et al. (2021), W. Guo (2020), Gupta et al. (2020), Hadi et al. (2020),
Janjua et al. (2020), Kaiser et al. (2021) described the potential use of blockchain and Al-assisted UAVs in the future
6G-enabled smart health and telesurgery applications to better facilitate remote, reliable, and secure smart healthcare
service delivery.

4.5 | Industrial IoT

The potential application of 6G wireless communication technology to Industrial IoT (IIoT) for optimizing better large-
scale industrial operations and manufacturing processes has been identified and discussed in these studies (Ji, Wang,
et al., 2021; Mukherjee et al., 2021; Padhi & Charrua-santos, 2021b; Peng et al., 2020; Sodhro, Zahid, et al., 2021). Specif-
ically, the application of Al-enabled 6G technology can be used to achieve and accelerate smart automation and
improve low carbon emissions and industry efficiency. Security and privacy considerations have also been the driving
force behind the application of 6G-enabled technologies to IIOT. Certain network communication between industrial
control systems and plants can be replaced using OWC such as VLC (Zakrzewski & Laga, 2020). VLC is considered to
be much more secure due to data being transmitted at a straight line of sight which maintains a high data density and
fewer data distortion compared to current radio wave communication.

4.6 | Extended, augmented, and virtual reality IoT

One environment where the application of 6G technology will be significantly commercialized is with Extended,
Augmented, and Virtual realities (XR, AR and VR). It is predicted that the market size for this technology will
reach an estimated $393 billion by 2025 (Global News Wire, 2021b) and will spread into more diverse environments
such as entertainment, Al, robotics (L. Qiao et al., 2021), and healthcare with extensive near-term growth potential.
Newer IoT devices will be integrated with Al-enabled 6G-ready technology that allows the use of these devices to
overlay objects into the real world. In healthcare, applied AR with high-speed 6G wireless communication will be
used for telemedicine, telemonitoring and telesurgery practices (M. L. Jin et al., 2021). Major drawbacks have been
identified in existing 5G telesurgery systems such as Virtual Interactive Presence and Augmented reality (VIPAR)
(Davis et al., 2016), which include latency and poor data and network communication between remote and local
stations. 6G technology has also been predicted to power next-generation consumer entertainment, especially in
gaming and social media applications. Recent developments using VR to immerse a user into virtual worlds such as
digital theme parks and first-person perspective or shooter (FPS) 3D games are becoming common features. Fac-
ebook's Metaverse (Sparkes, 2021) is one of such recent developments in social media VR/XR environments. Current
5G systems fall short of supporting these emerging applications. To enhance the commercial potential, it is
envisioned that the current 5G URLLC will further evolve as enhanced-URLLC (e-URLLC) in 6G wireless commu-
nication networks (Nawaz et al., 2021). Studies Chakrabarti (2021) and Tripathi et al. (2021) highlight mobile AR
driven by ultra-high bandwidth such as mmWave and THz spectrum provided by 6G. The application of AI and
deep learning to effectively distribute and optimize user experience is being considered in prospective future 6G XR,
AR, and VR IoT networks.

5 | FORENSICS CHALLENGESIN 6G IOT ENVIRONMENTS

6G wireless communication is promised to be a game-changer not just in extending wireless network technology from
terrestrial to non-terrestrial architectures but will also provide superior user experience, service delivery and network
optimization through fully autonomous and intelligent IoT networks and systems than current 5G technologies. This
predicted high-speed, low latency, large-scale heterogeneous networks of devices transmitting, receiving, processing,
and storing data in real-time will consist of valuable evidential data and forensic artifacts that could be relevant to digi-
tal forensics and incident response. However, the huge challenge for forensic examiners is the identification, collection,
preservation, and reporting of digital evidence in these vast IoT environments. In this section, we introduce the main
challenges of 6G IoT network environments.
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5.1 | Forensic challenges in XR and VR environments

6G IoT network communication will make XR and VR much more mainstream, with autonomous and real-time com-
munication between various network nodes in virtual worlds. This will create alternative realities where users can rep-
resent themselves as they wish, in just about any format they desire through their avatars (Freedom Fear
Magazine, 2021). The application of 6G technology in the virtual world will undoubtedly not only improve user adop-
tion and experience but will also increase the proliferation of virtual cybercrimes, cyber deviances, and cyber harms
(Parti, 2010; Williams, 2006). Real-world crimes are perpetrated daily in virtual worlds, including money laundering,
theft of digital assets such as non-fungible tokens (NFTs), sexual harassment and exploitation (virtual rape), intimida-
tion or stalking, exchange of child abuse images and simulated sexual misconduct with an individual's avatar. In 2016,
a gamer described being virtually groped by another avatar on QuiVr VR multi-player game (Jordan Belamire, 2016).
Avatars are not autonomous but controlled by real people and can be susceptible to manipulation similar to real indi-
viduals (Papagiannidis et al., 2008). There are already reported cases of theft of virtual items that can be traded for vir-
tual or actual cash and of sexual groping by one avatar by another (Schuyler Moore, 2017). Also, general issues of legal
regulation regarding the application of VR technologies have emerged (Dremliuga et al., 2020). Real-world experiments
have also been performed to demonstrate the feasibility of side-channel attacks in virtual environments (al Arafat
et al., 2021; Ling et al., 2019). For these reasons, future virtual worlds present a unique set of challenges not just for the
criminal justice system but also for digital forensic investigators in the collection, preservation, correlation, and analysis
of forensic evidence.

Digital forensic investigation challenges have been previously identified for existing online platforms such as
MMORPGs (Massive Multiplayer Online Role-Playing Games) (Taylor et al., 2019). However, the concept of conducting
forensics investigations perpetrated in extended and virtual reality (XR/VR) environments is a new domain for most
law enforcement agencies around the world. The lack of jurisdiction and geographical boundaries in these environ-
ments also makes forensic investigation significantly challenging. Therefore, making it difficult if not impossible to
identify the scope of digital forensic investigations and the boundaries of a crime scene. Suggestions including surveil-
lance actions by organizations that will play the same role as police, investigators and government in virtual worlds
have been proposed (Park & Kim, 2022). However, at present, research focused on forensic methodologies, and tech-
niques to collect evidential artifacts in virtual reality environments is still in its nascent stage (Yarramreddy
et al., 2018). Moreover, there are not many digital forensic tools suitable for IoT and VR systems forensic investigations
due to compatibility with the system that is being examined and also given the variety of existing firmware and operat-
ing systems (Castelo Gémez et al., 2021). Hence, forensic readiness and future research into frameworks and the devel-
opment of tools to enable investigators to conduct sound forensic investigations in the near future are crucial.

5.2 | Forensic challenges of satellite IoT and UAVs

Digital forensic evidence identification, collection, preservation, correlation, and analysis of satellite IoT devices includ-
ing UAVs will be very challenging considering the devices will be designed to work autonomously, in real-time and in
non-terrestrial altitudes and underwater locations. Forensic analysis on a variety of UAVs including drones has been
conducted in an attempt to extract, analyze, and process forensic artifacts (Al-Room et al., 2021; Hamdi et al., 2019;
R. Kumar & Agrawal, 2021; Thornton & Bagheri Zadeh, 2022). The common theme in these studies is that in most
cases, investigators require recovery of the physical devices and access to the OEM (Original Equipment Manufacturer)
including flight logs and location data that can be found in the integrated memory of the drones.

However, the challenges in 6G-enabled IoT environments will include the physical recovery of damaged or com-
promised UAVs and satellite IoT devices deployed in non-terrestrial environments such as underwater locations and
high altitudes as shown in Figure 1. The components of UAVs that constitute physical evidence can be potentially
scattered across various locations (Bouafif et al., 2020; Horsman, 2016). Therefore, establishing a sound forensic link
between a recovered UAV and the associated radio or ground controller to determine ownership can be challenging.

In some scenarios where investigators have been able to recover forensic evidence, it is often not possible to link the
drone to a suspect based on data only extracted from the drone (Thornton & Bagheri Zadeh, 2022). Moreover, forensic
artifacts are saved in a variety of file formats depending upon the OEM of the drone that cannot be analyzed using tra-
ditional digital forensic tools (R. Kumar & Agrawal, 2021). In most cases, investigators rely on a variety of open-source
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tools that are not specifically designed for drone forensic analysis. Continuous and future research directions in UAV
forensics with consideration for devices deployed in non-terrestrial altitudes are required to address these challenges.

5.3 | Forensic challenges in heterogeneous optical wireless networks

The convergence of heterogeneous networks consisting of both RF and optical wireless-based networks will play a lead-
ing role in the provision and delivery of high-quality of service (QoS) expected in 6G-enabled wireless communication
networks (Chowdhury et al., 2020). This includes the hybrid approach of integrating two or more wireless technologies
for reliability, increased uptime, efficiency, reduced interference, network load balancing and improvements, especially
for remote and non-terrestrial environments. For example, a hybrid-dual approach could include RF/optical, Wi-Fi/Li-
Fi, free-space optical (FSO)/VLC, Li-Fi/OCC, femtocell/VLC, power-line communication (PLC)/VLC, and so forth
(Baig et al., 2018; Buyukcorak & Karabulut Kurt, 2017; Hu et al., 2016; Jin et al., 2015; Kashef et al., 2018; Khan
et al., 2017; Li et al., 2016; Rahaim et al., 2017; Sharma et al., 2018; Vats et al., 2017; Wang et al., 2015, 2018; Wu &
Haas, 2017).

However, the seamless integration of existing RF wireless networks with optical wireless networks requires dynamic
network management technology such as software-defined networking (SDN), which is based on the principles of net-
work virtualization and the establishment of separate control planes and data planes (Haas et al., 2020). A typical
hybrid system as described in Chowdhury et al. (2020), G. Pan et al. (2017), Rahaim et al. (2011), Rakia et al. (2016),
W. Wu, Safari, and Haas (2017), and Yan et al. (2016), consists of scenarios where a device/mobile terminal (receiver,
transmitter, or transceiver) has access to both networks/access points (APs) simultaneously for uplink and downlink.
Another scenario described in such a hybrid system is when one network/AP is used for uplink and another network
exclusively for downlink. Access to a specific network can also vary based on the traffic type as different applications
require different levels of QoS, supported by a variety of networks. Figure 2 shows a typical hybrid/heterogeneous net-
work topology.

This type of hybrid/heterogeneous network topology in future 6G IoT networks creates difficulties for network
forensics in identifying, capturing, and preserving all network packets from multiple networks and terminal nodes
operating at a high-speed transmission rate. The difficulty also lies in the isolation, filtering and decoding of specific
data packets considering a heterogeneous network will consist of various network protocols and metadata that are
completely independent of one another but working together in tandem. If a network breach or an anomaly is detected
on one network, it may be difficult to attribute the incident to that specific network alone. Moreover, ascertaining the
integrity of data captured on a heterogeneous network is a critical and difficult task for network forensics. The scope,
size and complexity of data make it challenging for investigators to maintain the integrity of the data.

(a) (b) (©)

—————— Link for network 1
Link for network 2
FIGURE 2 Hybrid/heterogeneous network topology: (a) both networks for uplink and downlink, (b) network-1 for downlink and

network-2 for uplink, (c) network-1 for both uplink and downlink and network-2 for downlink. Source: Adapted from Chowdhury
et al. (2020).
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Each of the OWC technologies has unique architectures, that differ from one another in terms of modulation tech-
nique, transmitting system, receiving system and communication system (Chowdhury, Hossan, Islam, & Jang, 2018).
The use of encryption and transmission of high-throughput OWC signals will be very challenging if not impossible.

Current studies for OWC especially the IEEE 802.15.7 standard of VLC have mainly focused on performance evalua-
tion and optimization to improve the reliability and coverage of future IoT network communication in indoor and out-
door environments (Feng et al., 2019; Jani et al., 2019; Kashef et al., 2018; A. Kumar & Ghorai, 2020; M. Li & Lin, 2015;
Ndjiongue et al., 2017; Sheng et al., 2022). However, no research studies focused on digital forensics and incident
response approaches for OWC networks. Moreover, conducting sound network forensics will require a variety of spe-
cialized tools and techniques for deep packet inspection and analysis in 6G IoT heterogeneous networks.

5.4 | Forensic challenges in 6G edge computing environments

As discussed in Section 3, the key enabling technologies that will support heterogeneous 6G-enabled IoT networks will
be housed in edge computing environments that constitute huge data centers and databases to the network's periphery,
where it will be closer to devices and sensors (Iftikhar et al., 2023; Singh et al., 2021; Vu Khanh et al., 2023). Aggregated
data stored on numerous edge computing servers from multiple IoT networks, could be difficult to identify and collect
due to the sheer volume and complexity of the data. For example, some of the data may be stored in different formats
or encrypted and could require real-time network monitoring which makes it more challenging for forensic investiga-
tors. Moreover, due to the limited computing and storage capacities of edge computing environments, edge nodes often
offload computation tasks to the cloud if they lack the computation resources needed to meet performance require-
ments so that the end device can get a response within a reasonable latency (Chuang & Hung, 2023; R. Lin et al., 2023).
Hence, relevant forensic artifacts may be volatile or non-persistent on edge servers and database locations. Evidential
data may be spread across multiple cloud servers making collection and preservation challenging or impossible in cer-
tain scenarios. Therefore, novel digital forensic approaches and methods must be considered to enable coordinated and
sound forensic investigations to be carried out on these heterogeneous 6G-enabled IoT networks.

6 | FORENSIC READINESS AND FUTURE RESEARCH DIRECTIONS

There is no doubt that the development and deployment of 6G wireless technology will have a profound impact on the
future of wireless communication and enable the Internet of Everything. However, as we have identified from this sur-
vey, forensic investigators face many significant digital forensic challenges. In this section, we highlight several digital
forensic approaches and research directions toward addressing these challenges. We also discuss forensic investigation
opportunities and readiness for future 6G and beyond IoT networks.

6.1 | Edge intelligence forensics

Future 6G network communication will utilize wireless edge networks to provide not only low-latency content delivery
and computation services but also localized data acquisition, aggregation, and processing (J. Zhang & Letaief, 2020).
Recent studies have proposed the use of federated learning (FL) and machine learning (ML) approaches to optimize
network performance, and low latency and improve user data privacy in IoT autonomous environments and envisioned
6G wireless networks (X. Chen, Leng, et al., 2021; Deng et al., 2020; Fadlullah & Kato, 2020; Gupta, Reebadiya, &
Tanwar, 2021; Huh & Seo, 2019; Y. Liu et al., 2020; Qu et al., 2021; Samarakoon et al., 2018, 2020; Xianjia et al., 2021;
Z. Yang, Chen, et al., 2021; X. Zhou et al., 2021). In digital forensics, machine learning (ML) approaches and methodol-
ogies have been proposed to address the ever-increasing volume, complexity, and diversity of data (Abraham
et al., 2021; Lanagan & Choo, 2021; Rathore et al., 2021; Serhal & Le-Khac, 2021). These approaches when combined
could enable the seamless identification and collection of forensic data from 6G IoT edge networks. Edge intelligence
forensics offers intelligence at the edge to identify and collect evidential forensic artifacts from large 6G IoT network
datasets for forensic analysis and examination using state-of-the-art federated and machine learning approaches.

For example, one viable approach to edge intelligence forensics will be the application of Al to identify and collect
forensic evidence using self-learning ML models from vastly distributed 6G IoT network edge servers as shown in
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FIGURE 3 Edge intelligence forensics in 6G IoT networks.

Figure 3. In the given scenario, the UAVs as edge devices, provide an extension to the 6G wireless network communica-
tion. For intelligent VANETSs and autonomous systems, UAVs are unable to provide path planning or make intelligent
decisions due to high computation, data processing, and energy consumption. Due to these constraints, the UAVs for-
ward data communication to the nearby edge servers (having higher capabilities) to perform these actions. Smart vehi-
cles and intelligent traffic systems also forward data captured to nearby edge servers for autonomous driving decisions
and real-time traffic management.

Similarly, in marine and underwater locations, UAVs forward data packets to nearby edge servers and caches for
real-time data communication. In each scenario, the edge servers are deployed locally with adaptive forensic ML
models based on FL anomaly detection which is governed by an edge intelligence controller. This approach allows the
accurate identification and classification of attacks on the 6G IoT networks which can be monitored, collected, and ana-
lyzed by the forensic examiner through the controller. Due to the high volume and complexity of data, edge intelligence
forensics can help investigators save time in big data analysis during forensic investigations, assist in real-time incident
response to known attacks and facilitate the detection of network traffic anomalies. The ML models can be trained for
specific 6G IoT network environments to identify network patterns and signatures for forensic analysis.

6.2 | XR/VR forensics

The development of 6G wireless communication technology will proliferate the use of XR/VR applications in contrast
to the current 4G and 5G networks. Therefore, sound forensic methodologies and tools to recover evidential data and
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reconstruct user activities in virtual environments are required. Current research studies have focused on how virtual
reality could be used to support police investigations (Norman et al., 2020) or used to teach digital forensics concepts
(Hassenfeldt et al., 2020). However, there is a lack of research studies that focus on digital forensic investigations in
XR/VR environments. Moreover, there is a lack of forensic tools specifically for the identification, collection, preserva-
tion, and analysis of digital artifacts in XR/VR environments. In Yarramreddy et al. (2018), a forensic analysis of
immersive virtual reality social applications was conducted. The authors recovered client-side and network-based arti-
facts generated using the HTC Vive and the Oculus Rift. The VR applications analyzed include Steam, Bigscreen, Rec
Room, Altspacevr, and Facebook Spaces. Limited evidential data relating to users' activities were recovered from log
files generated by the VR applications installed on a Windows PC workstation. Data remnants of forensic value were
only successfully recovered from the network packet inspection of a single VR application in their experiments. Consid-
ering in the not-so-distant future, the development of XR/VR will move toward the full implementation of virtual expe-
riences, assets and environments including “the metaverse,” the study concludes that there is room for further research
and development of tools in this nascent domain of digital forensics.

6.3 | Optical wireless network forensics

In scenarios that require digital forensics and incident response to cyber-attacks including injection and message replay
attacks in OWC network topologies (Soderi et al., 2022), conducting network forensics using specialized tools will be
required. Unlike traditional RF-based signals, sniffing, capturing, and decoding OWC signals require specialized hard-
ware and software. In the study by Cui et al. (2020), a receiver coil, signal processing and frame decoding, spanning
across multiple hardware and software were designed to successfully sniff and capture VLC signals based on Variable
Pulse Position Modulation (VPPM) and On-Off Keying (OOK) modulation schemes. However, sniffing VLC signals
based on other schemes including Color Shift Keying (CSK) and advanced modulation schemes such as DCO-OFDM
(direct-current-biased optical OFDM) and ACO-OFDM (asymmetrically clipped optical OFDM) will require a different
approach. A previous study by Marin-Garcia et al. (2016) described the complexity of sniffing VLC data for analysis.
The study required the use of a sophisticated device setup that includes a telescope and a PIN photodiode followed by a
trans-impedance amplifier at a distance of 30 m to sniff data in a VLC scenario. This further highlights the need for the
development of simpler and less complicated tools for sniffing VLC network traffic for analysis. At the time of writing,
there is a lack of development in tools for VLC data capture and analysis.

Since visible light cannot penetrate objects, VLC channels can be easily blocked during live traffic capture even with
the application of MIMO techniques to mitigate atmospheric absorption, loss of sight (LOS) and the shadowing effect
(Lian et al., 2019). This inevitably makes network sniffing problematic for forensic investigators.

Future research agendas will also need to focus on novel methods and tools required to capture and analyze net-
work data in other OWC systems including underwater optical wireless communications (UOWCs) that transmit data
using carriers such as acoustic waves, RF waves, and optical waves, especially in underwater locations that may be
prone to signal interference or loss.

7 | CONCLUSION

6G wireless communication technology is expected to outperform current wireless network technologies by providing
revolutionary support and application via the IoT. Its envisioned development and application create a variety of digital
forensics challenges. In this article, we presented and discussed the major forensic challenges of 6G IoT networks along
with potential forensic readiness approaches, opportunities, and future research directions. At the time of writing, there
are no studies that have presented forensic challenges specific to future 6G IoT networks. This study highlights the need
for more in-depth studies, and the development of scientifically validated forensic methodologies and tools to ensure
successful digital investigations in future 6G IoT environments.
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