
A TRUST SUPPORTIVE FRAMEWORK FOR PERVASIVE COMPUTING SYSTEMS

by

Dichao Peng

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Information Technology

Charlotte

2009

Approved by:

Dr. Zhaoyu Liu

Dr. Yuliang Zheng

Dr. Teresa Dahlberg

Dr. Yu Wang

Dr. Robert Cox

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345079854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

c©2009
Dichao Peng

ALL RIGHTS RESERVED

iii

ABSTRACT

DICHAO PENG. A trust supportive framework for pervasive computing systems.
(Under the direction of DR. ZHAOYU LIU)

Recent years have witnessed the emergence and rapid growth of pervasive comput-

ing technologies such as mobile ad hoc networks, radio frequency identification (RFID),

Wi-Fi etc. Many researches are proposed to provide services while hiding the comput-

ing systems into the background environment. Trust is of critical importance to protect

service integrity & availability as well as user privacies. In our research, we design a trust-

supportive framework for heterogeneous pervasive devices to collaborate with high security

confidence while vanishing the details to the background. We design the overall system ar-

chitecture and investigate its components and their relations, then we jump into details of

the critical components such as authentication and/or identification and trust management.

With our trust-supportive framework, the pervasive computing system can have low-cost,

privacy-friendly and secure environment for its vast amount of services.

iv

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: SYSTEM ARCHITECTURE OVERVIEW 4

2.1 Authentication and Access Control 6

2.2 User Identification 8

2.3 Trust Maintenance 9

CHAPTER 3: USER RECOGNITION 12

3.1 Authentication 13

3.1.1 Challenges and Privacy Issues 14

3.1.1.1 Threat to Data Secrecy 16

3.1.1.2 Threat to Data Integrity 19

3.1.1.3 Threat to Data Availability 19

3.1.2 A Secure Identity Reporting Protocol 19

3.1.2.1 Physical Attacks Analysis: Motivation 19

3.1.2.2 A Secure Identity Reporting Protocol 23

3.1.3 Performance and Security Analysis 26

3.1.3.1 Performance Study 26

3.1.3.2 Security Analysis 27

3.2 Identification 32

3.2.1 User Behavior Identification and Profile Establishment 33

3.2.1.1 System Logging and Monitoring 34

3.2.1.2 Profile Establishment and Management 36

3.2.1.3 Suspicious User Detection 39

3.2.2 Simulations and Performance Studies 41

3.2.2.1 Simulation Setup 41

3.2.2.2 Performance Study 44

3.2.3 Dynamic Reactions to Suspicious User Behaviors 45

v

CHAPTER 4: TRUST MANAGEMENT 47

4.1 Trust Model 47

4.1.1 Trust Model Overview 48

4.1.2 Trust Value Calculation 51

4.2 Trust Relation Establishment 54

4.2.1 Active Automated Trust Negotiation 54

4.2.2 Agent-based Infrastructure for Trust Negotiation 57

4.2.3 Trust Maintenance 65

4.3 Trust Propagation 69

4.3.1 Desired Properties of Trust Propagation 69

4.3.2 Trust Propagation Algorithm 72

4.4 Threat Models and Simulation Results 75

4.4.1 No Trust Model 76

4.4.2 Simulation Result of Our Trust Model 77

4.4.2.1 Transaction Success Rate 77

4.4.2.2 Service Load Balance 79

4.4.3 On-Off Attack 81

4.4.4 Independent Bad Mouthing Attack 82

4.4.5 Collaborative Bad Mouthing Attack 83

4.4.6 Conflict Behavior Attack 84

4.4.7 Simulation Results for Variations on Trust Calculation Scheme 84

4.4.8 Simulation Summary 87

CHAPTER 5: RELATED WORK 89

5.1 Authentication in RFID Systems 89

5.2 User Identification in Decentralized Systems 90

5.3 Trust Modeling and Negotiations 91

CHAPTER 6: CONCLUSIONS 93

vi

BIBLIOGRAPHY 95

CHAPTER 1: INTRODUCTION

With the rapid development of distributed and open infrastructures, including the inter-

net and various types of wireless networks, computing systems are moving toward the next

era, pervasive computing, in which various devices, software agents and services are all ex-

pected to seamlessly integrate and cooperate for achieving user objectives in an anywhere-

and-anytime fashion.

The principle of pervasive computing is for computing devices to weave themselves

into the fabric of everyday life until they are indistinguishable from it [78]. The computing

nodes, either big as a laptop or small as an RFID tag, will use resources on demand for

communication, information retrieval, and computation, in a manner of taking advantages

of pervasive resources, instead of depending on personal computing platforms. Physical

and temporal boundaries will fade away and people can access information transparently

and freely.

So far, many research groups are making progress on smoothly and efficiently pro-

viding unanimous services by coordinating dynamic coalitions between heterogeneous de-

vices. But due to the open infrastructure of pervasive computing spaces, to provide trusted

coalition is different than traditional static infrastructures such as the Internet. In pervasive

computing systems, supporting efficient and trusted dynamic coalitions without security

and privacy violations is challenging due to the following difficulties:

• Limited system resources. Pervasive computing systems involve heterogeneous de-

vices with limited computational power. Many devices (e.g. passive RFID tags)

neither have enough power supply nor the computational ability to afford security

functions, such as executing cryptographic algorithms, storing security policies, etc.

2

• Open air communication. “Always-on" wireless connectivity makes the network

communication supporting pervasive environment more susceptible to eavesdrop-

ping and packet hijacking than any other computation environment.

• Dynamic population. Service providers as well as service consumers constantly

move in and out of the space boundary, which results in the difficulty of evaluat-

ing the trustworthiness of a new member.

• Privacy violation. Pervasive computing devices are usually physically located around

their users, which makes it possible for attackers to easily infer their privacies by

collecting data from multiple resources.

Take this application scenario as an example: a student walks into a smart room and

wants to send some documents on her PDA to print. But since this is the first time she

uses the services in the smart room, her PDA and the printer do not know about each other.

The PDA may have security concerns about whether the printer is dishonest, with some

spyware installed to secretly copy the documents printed. The printer, on the other hand,

wants to protect itself from malicious users who aims to exhaust its ink by sending lengthy

jobs and also causes denial of services to other legitimate users. Although both the PDA

and the printer have security polices to protect themselves, the trustworthiness between

them should not easily fail solely because they are strangers to each other (which is very

common in pervasive computing systems). In addition, the printer may have very limited

computational resources to store its dynamic security policies and perform cryptographic

functions. Thus to ensure the communication secrecy and data integrity becomes another

challenge.

Our research provides a trust-supportive framework to address these challenges in per-

vasive computing systems. Our framework architecture relies on reconfigurable and on-

demand-assembled security components collaborating with each other. We will explain the

architecture and investigate the critical components such as user authentication & identifi-

3

cation, trust negotiation and maintenance.

The rest of the thesis is organized as follows. Chapter 2 presents an overview of the

trust-supportive architecture at the system level. We elaborate the role of our system within

the pervasive computing environment and briefly explain the components that make up the

system. Chapter 3 dives more into one of the key components, user recognition and dis-

cuss the major methods: user authentication and identification. We explain in details the

challenges specific to pervasive computing and present our solutions. Chapter 4 discusses

another critical component of how trust relations will be managed in our system. We elab-

orate the trust model, the process of trust negotiation and present a systematic algorithm

for trust calculation. Related work is presented in Chapter 5 and Chapter 6 concludes the

thesis.

Before we move to the next chapter, we would like to acknowledge the places where

our publications appeared. The work on architecture design of the trust-supportive systems

appeared as [49]. The work on user authentication/identification in chapter 3 appeared as

[48, 50, 51, 52, 53].The work on trust management in chapter 4 appeared as [54].

CHAPTER 2: SYSTEM ARCHITECTURE OVERVIEW

In the context of Pervasive Computing, the dynamic computing devices cooperate to

seamlessly provide services while hiding themselves in the background environment. Thus

it is a nice feature of the system to be able to have on-demand resembled service compo-

nents to fulfill the ever-changing environment and user requirement. We propose a middle-

ware based approach to abstract and represent security requirements as several middleware

components. These reconfigurable components reside on a layer of the actual pervasive

computing devices, between the applications (either client or service) and the operating

system and networks. These components provide reconfigurable security services for the

application, such as user identification, trust establishment and management, data encryp-

tion, security service discovery, etc.

Our trust middleware architecture (Figure 2.1) is compatible with general middleware

components. For example, in Gaia [68] reconfigurable middleware components aggregate

to provide a service on demand. Our trust-supportive middleware components is in parallel

with these service components and supports various security functions. Similar to gen-

eral middleware architecture, on top of the architecture is the application layer, including

both the service consumer and provider’s applications. Beneath the application layer is

the middleware framework, composed of both general service middleware and the security

middleware, which includes the trust management framework that will be explained in the

following chapters.

These on-demand-assembled security components compose of the set of security ser-

vices that one pervasive computing system supports. For example, the encryption compo-

nent provides data encryption with popular standard algorithms, as well as user specified

algorithms; an intrusion detection component provides a device with diagnostic interfaces

5

Security Middleware Components

Operating Systems & Networks

Trust Management Framework
Trust MaintenanceAccess Control

Ot
he

r S
ec

uri
ty

Co
mp

on
en

ts

Trust Rating
Management

Termination ServiceAttack Responding Repairing
Dynamic Trust Policies

Ge
ne

ral
 S

erv
ice

 M
idd

lew
are

Co

mp
on

en
t
…

Pervasive Applications

Situation Sensor

Ge
ne

ral
 S

erv
ice

 M
idd

lew
are

Co

mp
on

en
tUser Recognition

Authen-tication Identification

Authentication RFID Secure ID Report Behavior InspectionActivity MonitoringUserIdentification
Registration

User DB
Trust PropagationTrust Calculation

Figure 2.1: Trust Supportive Framework Architecture

6

to identify intrusions. Of all the security components, trust management is especially a

challenging and important one because of the dynamic characteristic of pervasive comput-

ing [81]. It is a fundamental component dedicated to support establishing and maintaining

trust between applications on heterogeneous devices. We will focus on the designing details

of the trust management framework and elaborate its components.

The trust management framework handles service requests from application layer and

instantiate a trust establishment agent to establish mutual trust. There are three compo-

nents available for the mission: access control, user recognition and trust maintenance.

Obviously trust maintenance plays a key role in this framework: it handles trust level

calculation, trust relation propagation, adaptation to the environment context, exception

responding and etc. But before the trust relation can be established, it is also critical to

verify the user’s identity so that the computing agents know exactly who they are trust-

ing. We acknowledge this component as user recognition. Depending on whether there is

available pre-shared profile, user recognition can be roughly divided into two categories:

authentication and identification. The authentication component behaves the same as the

widely adopted registration-authentication based security model, which takes advantage of

the previously established user profile through registration to challenge and verify the user’s

identity. We will not dive into this topic due to the existing full-fledged researches. Instead,

we are in more concern about user recognition in the case where no previous knowledge

is available, which could be very common for pervasive computing systems. Finally with

properly established trust, the access control component restricts resource access based on

the trust level and applicable policies.

2.1 Authentication and Access Control

As we discussed, authentication and access control are among the most popular schemes

adopted by many research approaches to secure pervasive computing systems.

In terms of access control component, we propose an access control system following

the traditional Mandatory Access Control (MAC) approach. In our model, we assign each

7

service a sensitivity label, suggesting the required level of trust for access. This sensitivity

label is dynamically changing with the variation of environment and coalition relationships,

according to the service’s reconfigurable trust policy. For example, the smart card door

locker service will be marked with higher sensitivity label during the night than when it is

daytime. A visitor who can walk into a building freely in the morning may be denied by

the door locker in the night without proof of adequate trust level. For another example, a

user’s PDA may set the air conditioner to her preferred temperature when she is the only

one in the room. But when the smart room detects more than one people present, the air

conditioner may require higher trust level to perform the same action since the temperature

will affect the comfortableness of everybody in the room.

On the other hand, each client obtains a sensitivity label through trust establishment,

which specifies its level of trust. In order to access a given service, the client must have a

sensitivity level equal to or higher than the requested service.

Here the terms “service" and “client" are relative: a projector in the conference room

can be a service when dealing with request from laptops for a slides show; but when it

requests the smart room to turn off the lights, the projector becomes a client. Thus the

projector can have a sensitivity label indicating its trust level, while its security policy may

maintain another label as requirement for computing nodes who wants to use its display

service.

Since this MAC access control component requires trust level as input, it relies on

one of the two trust establishment models: traditional authentication method and/or user

identification.

Although the term “authentication" varies from simple identity reporting such as pas-

sive RFID badge authentication, to the most complicated PKI-based user-password au-

thentication, the underlying essence is the same: using previously established user profile

to claim and prove identity. Authentication plays an important role to secure pervasive

computing systems, especially in systems with less dynamic idiosyncrasy. It is a natural

8

way of establishing trust by identifying a user device with previously known reputation and

its user role within the system. But as we discussed, in some cases previously established

user profiles are not available, where identification becomes handy, standing in parallel

with authentication to address this problem.

2.2 User Identification

A well-established trust management system should be able to recognize a bad computing

node (either a client or service node) and limit its access to the resources afterwards. But

due to the nature of pervasive computing system of dynamic population, a user should not

be rejected only because she is new to the computing space. Thus the attacker can move her

device out of the pervasive computing space, modify the identity related information such

as physical address of its networking interface and move back in again claiming herself

as a newcomer. Or she may simply use another device so that the logged historical bad

behavior of the old one will be useless: instead of being a notorious user with bad histories,

she becomes a newcomer that should deserve a warm welcome.

We propose a user identification component to address this issue by recognizing a user

even if the onboard device has been changed. The user identification component is designed

based on the assumption that every user behaves uniquely during a connection session. The

hours of day one usually comes, the displaying devices one prefers, the networking traffic

compositions, the preferred access point (may suggest preferred position/location), the ser-

vice set one uses, the temperature one prefers and so on, all the information together can

help identify a user. Our user identification component creates profiles for each detected

ill-behaved device and its user, with a matrix of the user preferences. When a self-claimed

newcomer is trying to enter the pervasive computing space, a signature based inspection

will be applied to the matrix of every attacker profiles. A dishonest veteran that claims

itself as a newcomer will be denied for further services.

To recognize dishonest behavior that tries to harm the system and to support trust rat-

ing component’s evaluation, the activity monitoring and logging component is dedicated to

9

track user behavior and log this information for further inspection and evaluation. The de-

signing principle of activity monitoring component is to make the logging information thin

and efficient. To keep the logging database thin, only critical activities such as login fail-

ures should be stored for a reasonably long time (e.g. one year). Other logging information

will only stay in the repository for a short time and then be deleted.

Based on the logging information collected by activity monitoring component, behav-

ior inspection applies both abnormality based and signature based inspection methods to

recognize security breaches. For example, if a supermarket customer is exploring the RFID

product querying system by scanning hundreds of items per minute with an RFID reader,

the abnormality analysis engine on activity monitoring component will generate an alarm,

indicating the customer is behaving abnormally. This alarm may be applied to reevaluate

client trustworthiness as a feedback to the trust rating management component.

2.3 Trust Maintenance

When a user’s identity is successfully recognized, either by authentication or identification,

the trust maintenance component will be activated to start monitoring and managing trust

of both client and service. Since the service is at a public position, making it more vulner-

able to malicious attacks compared to the client, the trust maintenance component is more

service-oriented to protect service resources from malicious clients.

Lying in the center of trust maintenance is the trust rating management component. It

adopts a rating based approach to assign a “trust value" to a given service on a specific

computing node. The trust rating management component should be situation-aware and

highly adaptable so that the dynamically changing environment such as time of the day

can be taken into consideration for trust value calculation. Inside the rating management,

there are two major components: trust calculation which quantify the trust level and trust

propagation which enables trust calculation based on others’ observations.

The trust calculation component follows a simple model that uses incentives to reward

good behaviors while punishing bad ones. It provides a feedback interface for each service

10

to evaluate the client’s behavior in the transaction when the service session is completed.

In addition to the service’s evaluation, a client’s rating is also adjusted by the server’s

monitoring component. The rating matrix of one node’s trust value over others can be

stored on one’s local storage space; or the pervasive computing space repository can help

cache the most recent trust rating matrix.

As trust calculation methods handles trust rating calculation based on one’s own ob-

servation, the trust propagation component gathers trust information about a target node in

order to evaluate its trust value even if no previous trust rating is available. This involves

a complicated trust model we proposed to analyze the trust relation. More details on this

topic will be discussed in Chapter 4.

To cut the detected users with insufficient trust value from further endangering the

system, termination service is assigned to shut down an ongoing service session, under

the circumstance that one’s trustworthiness remarkably declines to an unacceptable level

during the service session. The trust level drop may result from an observation of the

node itself, or from a trusted node who report the target to be highly untrustable. Because

the termination service shuts down ongoing services, which can seriously affects service

quality if the user is innocent, it should only be summoned with high enough confidence.

In some cases complete prevention of bad behavior can be infeasible. When the system

is compromised or damaged, the attack responding and repairing components are activated

to minimize the loss. When the attack comes from a client, the responding and repair-

ing components immediately shut down its service and build up a special profile for the

attacker, including its conventional behavior and preferences, for future identifying the at-

tacker again and even further lawsuit purposes. If the attack is from an ill-behaved service,

the responding and repairing components may warn all distributed clients to lower the trust

evaluation to prevent further loss.

To conclude our discussion on trust management framework, it is highly reliable on

two critical components’ functions: user recognition and trust maintenance. The former

11

keeps track of a user’s true identity and make sure it is who it claims to be, while the latter

evaluates a user’s trust value based on observations and recommendations. We are going to

elaborate these two components in the next two chapters.

CHAPTER 3: USER RECOGNITION

To achieve successful trust management, the first and foremost task is to correctly rec-

ognize the users involved in the pervasive computing transactions. As we discussed be-

fore, due to the dynamic characteristic of pervasive computing systems, both the service

providers and consumers can be constantly moving in and out of the computing space

boundary, which may create a big challenge for recognizing the user’s true identity. In ad-

dition to that, due to the fact that most communications are performed in the open air, eaves-

dropping becomes a viable option for the identity thieves. To make things even worse, the

computing devices are usually equipped with very limited system resources such as CPU

and memory, preventing them from performing complicated cryptographic calculations.

In this chapter we are going to address these challenges and elaborate our solution

towards successful user recognition. We categorize the general term “user recognition"

into two classes depending on whether there is pre-shared/registered information available

to help achieve this task. In cases where such information is available, we refer to it as

“authentication" while the term “user identification" will be used otherwise. According to

this classification, technologies such as radio frequency identification (RFID) are falling

in to the category of “authentication" rather than “user identification" as suggested in its

name. After all RFID is more close to traditional authentication techniques compared to

those abnormity based identity detection techniques.

In the following sections we are going to discuss our proposal towards recognizing users

in pervasive computing systems under the situations of authentication and identification

13

respectively.

3.1 Authentication

In the context of secure computer communications, authentication has been studied for

many years since 1970s [41, 22, 58, 23, 59, 63, 30, 55, 45, 42, 75, 80, 31, 20, 44, 79, 84].

According to [58], authentication is defined as the process of verifying the identity of the

communicating principals to one another. Since then use of cryptology to achieve au-

thenticated communication in computer networks has been thoroughly studied. Protocols

are proposed for the establishment of authenticated connections, for the management of

authenticated mail, and for signature verification and document integrity assurance. Con-

ventional and public-key encryption algorithms are studied and become the basis of au-

thentication protocols. In the 1990s research on authentication reaches its climate when

Kerberos v5 [60] gets published and widely adopted.

The technology of authentication seems to be full-fledged until new challenges have

been posted by pervasive computing. Although modern authentication techniques provide

resistance against eavesdropping over the wireless media of pervasive computing, they are

too expensive to afford for some of the low-cost computing devices. For example, Kerberos

requires public key cryptosystems to be available, which can be too costly for low-cost

devices such as sensor network nodes [69] and RFID tags [36].

The budget problem of sensor networks is better than RFID and recent years have wit-

nessed the trend of adopting PKI cryptosystems onto sensor nodes [56]. But RFID still

can not afford such complicated authentication technologies due to its low budget: only

when the price per tag can lower to $0.10 per tag can RFID be financially accepted by the

industry [77].

In this section we will first analyze the privacy and security challenges to RFID secure

authentication and then present an attack model. Finally we will present our low-cost

authentication protocol followed by a performance and security analysis.

14

RF-Reader RF-Tag

Backend
Database

Secure
Channel

Insecure

RF-Channel

Secure
Channel

Secure
Channel

Insecure
RF-Channel

Insecure
RF-Channel

RF-Reader RF-Reader

RF-Tag

RF-Tag

RF-Tag
RF-Tag

RF-Tag

Figure 3.1: RFID System

3.1.1 Challenges and Privacy Issues

Radio Frequency Identification (RFID) technologies are widely regarded as the successor

of optical bar codes and one of the forerunners of pervasive computing. Industries of man-

ufacturing, supply chain management, and inventory control can benefit this technology to

help reduce the costs wherever bar codes used to dominate. In a report released in May

2005, the US Government Accountability Office found that thirteen government agencies

are using or plan to use Radio Frequency Identification tags [65].

The RFID system is a contactless recognition system composed of three parts: RFID

tags, readers and a backend database (Figure 3.1). The tag (also called the transponder)

consists of a passive integrated circuit and an antenna. Since it is not equipped with any

power supply, the tag is quiet most of the time. Only when it receives a reader’s query,

the tag becomes activated and makes use of the energy absorbed from the reader’s query

signal to respond with this limited power. The reader is a device that sends query signal and

identifies the tag from its response according to their communication protocol. The reader

is usually connected to a centralized backend database running on a secure server, where

all tags’ information is stored. For security reasons, the data that a tag sends directly to the

reader should not contain any identity information in plaintext. Only the authentic readers

15

connected to the backend database can extract the tag ID from its response.

The communication channels between readers and the backend database can be pro-

tected by common security technologies and we will assume these channels to be safe and

secure. On the other hand, the radio frequency communication channel between reader

and tags is vulnerable to various attacks. Especially, because of the abundant power of the

reader, the channel from reader to tag can be very easily overheard by adversaries.

The threat to user privacy is a major hurdle to the expansion of RFID industry. The

US State Department is even considering backing off its RFID passport program due to the

potential threat of unauthorized data access.

In many adopted RFID systems, the tag responds to the reader’s query with its unique

serial number, without verifying the reader’s authenticity. This unique number can act as a

clue for the adversaries to identify the tag carrier, thus threatening the user privacy. Due to

this reason, many boycotts [1, 2, 6] are lunched against RFID technology. RF-Dump [8],

a project in practice, has made the anxiety of privacy violation come true. With a normal

RFID reader connected to a laptop via serial port, RF-Dump can collect tag ID without

hacking anything.

Many approaches have been proposed to address the privacy issue. Most of them adopt

similar schemes based on secret-sharing between tags and the database to achieve secure

identity reporting. These approaches are designed to protect user privacy from various

attacks such as eavesdropping. Most of them can solve the problem if there are no physical

attacks performed by dedicated attackers, who can break into the tag memory by force and

steal the shared secret information [61, 77]. With this derived information, the attacker can

later differentiate this victim tag from thousands of tags’ response so as to track the tag’s

carrier. Our research is motivated by the threat of physical attacks. We thoroughly analyze

physical attacks to propose a secure identity reporting protocol to prevent various attacks.

In the following section, we will present a threat model to identify these attacks.

16

3.1.1.1 Threat to Data Secrecy

The major threat to RFID system is the potential violation of data secrecy, which comes

from the illegal reader’s attempt to query tag identity. Technically the adversary’s goal is to

identify a victim tag from its peers to assist social analysis towards compromising the tag

owner’s privacy.

The attacks performed by the adversary can be generally divided into two phases. The

first phase is the process of critical information collecting: the adversary chooses a victim

tag to attack and try to collect any tag related information for later identification. During

Phase II the adversary sends queries to unknown tags and collects their responses. She then

analyzes the collected responses to distinguish the victim tag, with the help of information

collected in Phase I. Phase I attack is usually carried out before Phase II, but not necessarily.

1) Phase I, Critical Information Collecting

During the attack preparation phase, the identity of the victim tag is known to the ad-

versary, who is trying to break security obstacles to obtain critical information related to

this specific tag. The attacker’s goal in Phase I is to collect enough identifying information

of the victim so as to recognize it from the wild later. According to the RFID systems

architecture, we categorize the possible attacks into the following classes:

• Eavesdropping

• Message Hijacking

• Physical Attacks

Eavesdropping is the most cost-efficient and practical form of attack because the at-

tacker only needs an RFID reader to passively listen on the communication channel be-

tween the authentic reader and a victim tag that she wants to track. The overheard message

will then be analyzed so as to assist later re-recognition of the victim tag. The analysis

of this message could be cryptanalysis such as off-line guessing the encryption keys (if

17

applicable), trying to find out the relations of different responses from the same tags and

etc. Since this analysis is a ciphertext-only-attack, it presents very little threat to most mod-

ern cryptographic algorithms. However, when combined with other attacks, eavesdropping

may become powerful.

Most current researches assume that only the simplex channel from reader to tag is

easy to be eavesdropped due to the low transmission power of tags. We believe that a

robust protocol should also resist eavesdropping on the reverse channel, since the attacker

may manage to achieve enough proximity to the tag in some application scenarios. For

example, an attacker may pretend to check out a book at the library gateway just behind the

person who she wants to track. Thus the communication between the tag on the victim’s

book and the library’s RFID reader can be easily overheard by the attacker’s device.

Additionally, the attackers can hijack the communication packets between reader and

tag. They can not only eavesdrop on the message sending from the reader, but block the tag

from hearing it by adding noise and generate a fake message to spoof the tag. This hijacked

message may contain reader authentication information for tag management, depending

on the protocol design. A special form of message hijack is record-and-replay attack, in

which the attacker first blocks the tag from hearing the reader and later replays it in order

to impersonate the reader. In addition, message hijack attacks can also be performed in

the reverse direction (tampering the tag to reader packets). However, this attack will less

affect the potential exposure of the tag’s identity since only the legitimate reader is spoofed.

However, we do not consider impersonating the tag is an active issue. There are two reasons

for this: first, comparable attacks such as physically cloning a tag is always possible and

second, for the RFID’s precursor - optical bar codes, impersonating is much easier but not

many complains have been heard about this issue.

Finally, a more dedicated attacker can even achieve physical access to a tag and com-

promise its memory. By the means of shaped charges, laser etching, iron-probe etc [70, 76],

attackers can derive critical information such as identity number, authentication keys etc.

18

from the tag’s memory. This attack was not given enough respect in the current researches.

However, as we will discuss later, physical attack is a feasible option for dedicated attackers

and the cost of attack is moderate.

2) Phase II, Query

During the Phase I attacks, the adversary tries to obtain critical information of the victim

tag. At that time the tag’s identity is known to the attacker and she wants to later identify

the victim after sending it back to the wild. While collecting victim information is the main

task of Phase I, Phase II is dedicated to query thousands of tags in the wild and distinguish

the victim.

To achieve this goal, the attacker may install one or several fake readers at different

places in the outside world, which follow the normal query protocol as legitimate readers

does and collect tag responses. Then the attacker applies the previously collected informa-

tion obtained in Phase I to distinguish the victim tag among thousands of tag responses.

This fake reader’s query is different from eavesdropping attacks though they may share

similar devices. With eavesdropping attacks, the adversary only passively listens on the

communication channel between the tag and legitimate readers, while during the query the

fake reader actively send messages to ask the tag to respond. Moreover, during eavesdrop-

ping attack the victim’s identity is known to the attacker and in the query process, the attack

has no idea if the queried tag is just the victim that she wants to track.

Since in most proposed schemes the reader’s query is a general plaintext message with

no authenticity information for the tag to verify, to generate a fake query is very simple

and requires no attack techniques. In addition, the tag can not distinguish queries from

legitimate readers or fake ones. So the attacker’s query can never be prevented. To protect

the tag identity from being leaked, protocols based on cryptographic algorithms should be

proposed to set barrier to the attacks in Phase I.

19

3.1.1.2 Threat to Data Integrity

In addition to the majority attacks of Phase I and II that attempt to violate user privacy,

an additional minor threat is the potential compromise of data integrity and availability, as

discussed below.

The threat to data integrity comes from the adversary’s attempt to tamper the data,

either by hijacking the message or physically tampering the tag’s memory. As X. Zhang et

al. discussed in [85], we should put two aspects of integrity need into consideration: first

is how well the protocol resists unauthorized modification (including physical attacks) and

the second is how to detect such tampering. Theoretically, the first criteria can not be met

because we can neither stop attackers hijacking the message in the open air, nor prevent

people from physically analyzing tag’s logic component, reverse engineering the IC chips

or modifying the data in the memory. But it is possible to satisfy the second criteria and

detect unauthorized modification, which is the best achievable data integrity.

3.1.1.3 Threat to Data Availability

Additionally attackers can also disable the tag to threaten the data availability. The simplest

way to do that is to use a Blocker tag [38] to temporarily block the tags in a small area. A

more destructive attacker can even use an electromagnetic weapon to physically damage a

tag [36]. This Denial of Service attacks is a general problem to all cryptographic protocols

and the discussion of preventing such attacks is beyond the scope of this paper.

3.1.2 A Secure Identity Reporting Protocol

In this section, we present a thorough analysis of physical attacks which motivates our

research. Then we propose a secure identity reporting protocol to address this problem,

together with other threats discussed in the previous section.

3.1.2.1 Physical Attacks Analysis: Motivation

1) Attack Scenario

20

Hereby we use this RFID scenario as an example: Bob wants to know what his friend

Alice is doing everyday. Bob knows that recently Alice has borrowed an RFID embedded

handbook from the local library. So he installed a few RFID readers in places where Alice

might show up, since he knows the handbook is always carried along with Alice. A couple

of weeks later, Alice returns the book to the library and Bob, of course, becomes its next

“reader". He uses special devices to access the tag memory and successfully digs out the

secret key of this tag. With the help of data collected by his RFID readers and this secret

key, Bob can filter the data that his readers have collected over these days and clearly

see where Alice has been. When she gets up and left home, how often she goes out for

shopping, when and how long she takes part in a club etc. Alice’s private life is under

surveillance by the RFID book she carries. If this attack is not severe enough, critical

articles such as RFID tagged banknotes [37, 15, 83, 85] can be tracked in the same way to

help criminals committing a robbery.

2) Attack Feasibility

According to the attack scenario, we define physical attacks in RFID systems as fol-

lows: attacks that use special devices to read tag memory and obtain/change identification-

related information so as to compromise identity reporting protocols. Though attackers

may also take advantages of these devices to physically access other item-related informa-

tion stored in tag memory such as product price, book title, check out time, etc. that is not

the physical attacks we are discussing about.

Generally speaking, all embedded systems without occasional human surveillance should

give consideration to physical attacks. In addition, due to the price limit, RFID tags can

afford no special provisions for secure storage areas where secrets are kept, which makes

physical attacks even easier.

Physical attacks have been seen on various median to small sized IC chips such as USB

tokens [40] and smartcards [17]. Up till now, no physical attacks on RFID chips have been

published. However, since there is no significant difference between the IC design of RFID

21

tags and smartcards at the chip level, similar attacks performed in [17] can be deployed on

the RFID tags. For example, the attacker can also use fuming nitric acid to remove the resin

coat of the tag, disconnect the microprocessor and attach one single micro-probing needle

to the data bus. Then providing the address signal on the address bus, the secret EEPROM

content can be accessed.

In many RFID applications, the tags can be temporarily possessed by the adversaries,

e.g. in RFID library systems. Then the tags can be physically attacked and returned to the

legitimate owner. This physical attack can be carefully performed so that the legitimate

owner will not notice that it has been attacked. Even if the attacker has to damage a tag in

order to access it memory, she can clone one since the data in tag memory is known.

Another simple but efficient way to achieve tracking is to attach a new tag to the vic-

tim other than "wasting time" to perform physical attacks to the legitimate tag. However,

attaching a new tag to the item and returning it to the legitimate user plays a risk of being

detected, especially when the item that carries tags are small and in "clear" form, e.g. bank

notes. Correspondingly, physical attack can be used to track the victim without leaving

evidence. So physical attack is still a safe option for the attackers, though the attacker has

to pay higher cost.

From the discussion above, we can see that physical attack is a feasible attack with

moderate cost. It has the potential to compromise user privacy in RFID systems. Although

no physical attack incidents have been reported, as this technology’s fast and widely de-

ployment in, profitable gains will finally attract attackers’ attention to put it into practice in

the future.

3) Countermeasures against Physical Attacks

Generally there are two research directions towards preventions of physical attacks.

One is hardware approach, applying tamper resistance property [12] to the system; the

other is software approach, focusing on cryptographic ways to solve the problem.

Applying tamper resistance property to the tag is an effective way to prevent physical

22

attacks. However, due to the current price ceiling of $0.10 per tag [77], tamper resistance

is too luxurious to be deployed on RFID tags [61].

To resist physical attacks by the means of software, an important rule is that no authen-

tication keys should be shared between tag and the backend database, because the secret

key in tag memory is susceptible to physical attacks and can be utilized to compromise the

protocol and track the victim. However, some necessary information needs to be shared for

the backend database to identify the tag. We focus on minimizing the impact of physical

attacks on the shared secret to prevent long term tracking.

4) Resistance Classification

To better evaluate the system protection over physical attacks, we classify RFID identity

reporting protocol’s resistance into three levels:

• Level I (insecure): Adversaries can perform physical attacks once and track the vic-

tim tag forever. If we set the time of physical attack as a time line, either the queried

data before or after this time can be used to track the victim tag.

• Level II (backward secure): Through physical attacks, adversaries can not trace the

data back through past events in which the tag was involved before physical attacks.

But they can still use the secret information, which was compromised by physical

attacks, to pass subsequent authentication and track the tags afterwards.

• Level III (secure): Adversaries can not compromise the identity reporting protocol

through physical attacks.

Level III is the most secure, but Level II resistance is enough in some practical scenar-

ios. For example, in our scenario, since Bob can not predict which book Alice will borrow

from the library, he has to collect the tag’s response first and later physically attack the

tag when Alice has returned the book. In such application scenarios, backward security is

acceptable.

23

Physical attacks are not a concern in many existing protocols that follows shared secret

schemes, thus their resistant lies in Level I in our categorization. However, a simple but

efficient improvement can level up their resistance. In most of these protocols some secret

information (e.g. an encryption key) is shared between reader and each tag for authentica-

tion purposes but it is never changed. To prevent physical attackers from "hacking once,

tracking forever", the tag can periodically ask the legitimate reader to refresh the secret in-

formation (e.g. update the key) after the reader is authenticated. This scheme is similar to

some web system periodically asks its users to change password. In this way the resistance

to physical attacks can be enhanced. Though this does not solve the physical attacks prob-

lem, such an information refreshing scheme is useful in scenarios where tags are frequently

reused, e.g. in library RFID systems.

3.1.2.2 A Secure Identity Reporting Protocol

In this section we will propose a secure identity reporting protocol that can resist various

attacks such as eavesdropping, message hijacking and physical attacks. We will propose

the protocol and analyze its performance. The security analysis of the protocol will be

presented in the next section.

As discussed above, to design a secure RFID identity report protocol, a few hardware

limitations should be considered.

• Only cheap hardware implementations can be afforded by RFID tags. The price per

tag limits the number of logic gates for security purpose to a few thousands, which

can only support cheap functions such as one way hash. Though recent hardware

development implements AES into low-cost RFID tags [29], public key cipher, e.g.

RSA, is not an affordable option for a low-cost tag for the IC industry in the foresee-

able future.

• The communication channel between backend database and the reader is secure from

eavesdropping. The backend database is secured by authentication and authorization

24

2. Em(ID||Ri||s)

7. Hash Ri to verity
and update token array

6. Ri, (Token||pad') xorpad

Backend
Database Reader Tag

E
m
(ID||R

i
||s) Hash(R

i
)

E
m
(ID||R

j
||s) Hash(R

j
)

Tag Data

T
0

T
1

T
k-1

T
j

1. Query

3. Em(ID||Ri||s)

4. Decrypt and get
ID, Ri; Generate

new tokens

E
m
(ID||R

i+1
||s) Hash(R

i+1
)

E
m
(ID||R

i+k-1
||s) Hash(R

i+k-1
)

… … … …

pad

5. ID, Ri, (Token||pad') xorpad

m

Database
entres

s1

s
2

s3

s4

...

sn

ID1

ID
2

ID3

ID4

...

IDn

pad1

pad
2

pad3

pad4

...

padn

8. Hash(pad)
9. Hash(pad)

R
e
a
d
e
r

Figure 3.2: A Secure Identity Report Protocol

technologies so that only authentic readers can request the database to extract the tag

identity.

Besides these hardware limitations, several designing principles should be followed to

propose a secure identity reporting protocol. First of all, the tag’s response to the reader

should be ideally randomized. That is, no one should be able to tell whether two responses

are from the same tag or not. Secondly, the protocol should scale with large number of

tags in a system. For example, if the tag simply hashes its ID together with a random

number and sends it back to the reader, the backend database has to exhaustively search

every entry to find a match, which is not scalable to a large number of tags. Finally, after

the reader successfully located the tag’s data from its backend database, it should convince

the tag of its authenticity to further manage the tag. A secure way for the reader to prove

its authenticity to the tag should be developed. In this section we will propose a protocol

concerning about these principles and the hardware limitations.

1) Initial Setup

Our proposed protocol relies upon a few tokens ((T0...Tk−1)) pre-stored in tag memory

during setup (Figure 3.2). Each token is composed of two parts. The first part is the tag ID,

a random number Ri and the token serial number s, encrypted by the backend database with

25

its master key m. The second part is the one way hash of Ri. During setup, the backend

database (the only party that knows m) generates k tokens (T0...Tk−1) for each tag.

Besides the k normal tokens, one extra token Tj is generated the same way and stored

on the tag. This extra token is for second channel recovery only and will not be sent out

when queried. Besides, each tag shares the value pad,s with the database, which is used

as a one time pad to mask the token update. The backend database consists of entries of

each tag’s ID and the corresponding pad,s, as well as other information related to each tag

carrier, such as product name, producing date, last check out time, etc., depending on the

application requirement (optional). The shared value pad is used as a one time pad to mask

the token update, while s is the token serial number used to synchronize the token version

to prevent tampering and many other attacks. The function of s will be discussed in detail

in Section 3.1.3.2.

2) Protocol Execution

Same as most existing protocols, our protocol starts with the reader’s plaintext query to

tag. On receiving the query signal, the tag sends its first token T0 back to the reader. When

it receives the tag’s response, the reader forward the token to the backend database and

request a token decryption. The backend database verifies the authenticity of reader with

normal authentication techniques and generates k new tokens using its master key m and

a new pad′ for token update. It then expand the existing pad to the length of token||pad′

and XOR it with them. This encrypted token update will be returned to the reader together

with the extracted ID and Ri. The reader removes ID in the message and forwards the rest

of message to the tag.

On receiving the token update, the tag will first check the validity of this message by

hashing the authenticator Ri. If the hash of returned Ri equals to the corresponding value in

token T0, the tag will decrypt the token updates and place these new tokens as well as new

pad′ into its memory. Otherwise this message is discarded. To acknowledge the database

that the pad is successfully updated, the tag sends the hash of pad back to complete the

26

protocol.

3) Exception Recovery

If all the tokens T0...Tk−1 are consumed by unsuccessful query with no valid token up-

dates received, the tag will respond a message “main channel halt" to further query and the

second channel becomes active. The second channel could be a physical contact interface

[72] or a radio frequency channel with a greatly attenuated power that can only be heard

within a few centimeters.

It is reasonable to assume that the attacker can not track the tag within such proximity

that she can almost contact the tag. So the second channel can safely respond every query

with the same token Tj (See the shadow part in Figure 3.2) without being afraid to be

tracked by this token. The tag then waits until a reader send back the right authenticator

R j for the token Tj and recharge the tag with plenty of new tokens, following the standard

identity reporting protocol in Figure 3.2. Through this second channel replenishment, the

tag gets recharged again.

3.1.3 Performance and Security Analysis

3.1.3.1 Performance Study

The performance study in this section will show that our proposed protocol has light-

weighted hardware complexity and good scalability, but with lower system reliability.

The first criterion to evaluate the protocol performance is the hardware complexity of

the tag, which can seriously affect the price per tag and thus its practicability. In our

proposed protocol, only two computational functions: one way hash and exclusive-OR, are

implemented in the tag. The entire encryption/decryption burden is left for the backend

database to provide the secrecy of tag ID. The tag follows very simple logic to perform

transmitting/receiving message, hashing and updating memory. Though some redundant

bits are used to store multiple tokens, the hardware complexity is moderate and the price

per tag still remains at a low level.

27

Secondly for the criterion of protocol complexity, our approach adds three more com-

munication rounds (message 6, 8 and 9) to most existing schemes. More communication

round may suggest lower system reliability, or specifically, lower successful rates of iden-

tity reporting. Further implementation research is requisite to evaluate the degree of system

reliability degradation.

For the scalability criterion, in our approach the computational complexity on the database

side is O(1), as our database always does only one decryption per authentication to derive

the value of ID. Compared with the O(log(n)) complexity in [57] and O(n) complexity in

[61, 66, 77] (where n is the number of tags within a system), our protocol is scalable with

the gigantic size of RFID system in practice.

Another benefit of our approach can make its performance more attractive. Though not

economical, some RFID systems require item-related information (e.g. product name, last

check-out time) stored on tag other than in the centralized database. It is not a good practice

to store such information in plaintext because the attacker can physically attack the tag and

access this data. In our approach, this item-related information can be stored in cipher text

within each token, (i.e. Em(ID||Ri||s||ItemIn f o)) which can provide confidentiality of the

data.

3.1.3.2 Security Analysis

In this section we will evaluate the resistance of possible attacks of the proposed protocol

according to our threat model. As we discussed, the potential attacks that may threaten user

privacy are eavesdropping, message hijacking and physical attacks. In addition the attacker

can also compromise the data integrity and availability by other means such as denial of

service attacks.

1) Resistance against Physical Attacks

The main advantage of our protocol is its resistance to physical attacks. In our scheme,

the only data stored in tag memory is the array of tokens and the pad. We assume Carol,

the intruder, can compromise the tokens and use them to analyze the response from tag.

28

For the first part of token: Em(ID||Ri||s), provided the encryption algorithm E is secure

(e.g. AES-128), it is infeasible for her to get either ID or Ri without knowing the master key

m. Thus she is not able to track the victim by extracting ID. However, Carol can memorize

all the k tokens and send query to see if these tokens returned back so as to track it for a

maximum of k times. If the tag meets legitimate readers before been tracked k times, all

tokens will be refreshed and Carol will lost the track of victim tag. We call this fruitless

attack “physical read tracking", which is totally different from regular physical attacks that

compromise the authentication keys once and track the tag forever.

The above discussion is based on the premise that Carol can only read tag memory to

compromise user privacy. If Carol can tamper the token content (i.e. attack against the

data integrity), she may generate fake tokens to replace the existing ones in order to gain

completely control over the victim tag. As we discussed in Section 3.1.1, this tampering

attack could not be prevented under the assumption that physical attack is possible. The

best resistance to tampering attack is to detect it. In our protocol, the backend database can

not derive a valid ID by decrypting the fake token generated by the tempering attackers so

that the attack can be detected when the tag meets the authentic reader.

2) Eavesdropping Attacks

In our proposed protocol, message 6 is a meaningful reader to tag message, which can

be eavesdropped by the attackers. This message is composed of two parts, an authenticator

Ri and the padded token update. Because the token update is encrypted by a one time pad,

we assume the eavesdropper can not remove the pad to derive the token update as long as

the pad is secret.

However, according to our security assumption, the pad on tag memory can be com-

promised by physical attacks, with a higher cost. Thus physical attacks combined with

eavesdropping can successfully track a victim because subsequent pads can be decrypted

by the current pad thus forms a vicious circle. Though this attack the adversary can track

the victim for k− 1 times per eavesdropping (she has to leave at least one token available

29

for the legitimate reader to query). However, this combined attack has a very high premise

that the attacker has to eavesdrop on every single session when the tag communicates with

any legitimate reader. Once the attacker missed one communication session, she will lose

the trail of pad thus lose the track of the tag, which can make the physical attack very

fruitless. Moreover, another active way to defeat this combined attack is that the database

can track the number of remaining tokens on each tag. If one tag shows abnormally small

number of remaining tokens, the database will send a warning to the reader and ask it to

refresh the tokens in a more eavesdropping-resistant way, such as using the second channel.

3) Message Hijacking

As discussed in our threat model, a more dedicated eavesdropper can hijack message 6

by replacing the token updates with a fake one. Since the authenticator Ri in the hijacked

message can pass the validity check, the tag will update the fake tokens according to the

hijacked message. This message hijacking attack can successfully compromise the data

integrity, but it brings very little threat to user privacy. Without knowing the current pad,

the attacker can not determine the token value after the hijacked message is padded with

pad, thus she is not able to track the tag.

A more powerful attacker who is able to obtain the pad by physical attacks can strengthen

the power of message hijacking. She can hijack the token update message and replace the

new tokens with exactly the same existing tokens in the tag (i.e. prevent the tag from up-

dating tokens). Later when her fake readers find a tag sending T0 to respond query, the

attacker knows it is from her victim. She will again prevent the tag from updating tokens

in the same way since the authenticator Ri for T0 is already known to her. Thus the attacker

can circularly track the victim.

However, this combined attack also has a high premise that the attacker has to hijack

the token update message in every single session when the tag communicates with any

legitimate readers. Otherwise she will lose the control of the victim tag, until another

physical attack is performed again to obtain the pad. This can make the combined attack

30

fruitless.

As we discussed in Section 3.1.1, the best resistance to tampering attacks is to detect

it because we can neither prevent attackers physically tampering the tag memory nor stop

them hijacking a message in the air. The discussed combined attack to our protocol can

be detected by tracking the token serial number s in each token. The token serial number

s is a growing version of the token and the s of last successful authentication is stored

together with each tag’s ID in the database. When the backend database detects a tag

returns one token with an incorrect serial number s, it can inform the reader that the tag

has been attacked. In that case the reader can take actions to prevent further tracking by

communicating with the tag in a hijacking-resistant way (e.g. using the second channel).

4) Denial of Service Attacks

One potential threat to our token based scheme is the denial of service attacks: an

adversary can send a mass of queries to quickly consume the tokens. Although user privacy

is not compromised, this process can disable tags from responding, thus threatening the data

integrity.

This denial of service attack is very similar to the DoS attacks discussed by Ari Juels

in [36]. In [36] Ari argues that DoS is not considered as an active issue because there exist

other simple but effective physical ways to achieve comparable DoS attacks. For example,

an adversary with an electromagnetic weapon need not resort to breaking down the protocol

in order to disable tags, especially if the tags are protected by some countermeasures of

unintentional query, as will be explained in the next section.

Though DoS attack is not an active issue, RF-tags can be unintentionally scanned by

readers that are not associated with their designated reader. (E.g. a reader of Company A

may inadvertently read tags of Company B.) This unintentional query, though not belong-

ing to any forms of attacks, has the same effect as DoS attacks. In our proposed approach,

we resort to other schemes to minimize the impact of unintentional query, as discussed

below.

31

One possible solution to unintentional query is to use different query message for dif-

ferent association. For example, in airport luggage flow control systems, different airline

companies can query tags with their own query message. In this way a tag will never

respond to unintentional query from unknown readers of other companies.

This scheme of association-specific query fulfills the privacy requirement in some ap-

plication scenarios, but may have potential threat in some other scenarios. For instance, a

person carrying 3 books of library A, 2 books of library B and 4 books from library C may

suffer from probabilistic tracking: the attacker can send query of library A, B and C to see

if another person also return 3, 2, 4 responses of the three libraries respectively. If such

responds are found, the attacker can conclude with high confidence that this person is the

victim that she wants to track. More detailed discussion of this “set of tags characterizing

a person" has been highlighted in [18].

If the unintentional query is inevitable, we should provide means to recover the tag. As

we discussed Section 3.1.2.2, the second channel is used to recharge a tag that died from

unintentional query. When the tag is running out of token, it will respond “main channel

halt" in the main channel and opens the second channel as an interface to recharge the tag

with new tokens.

To conclude this section, we presented our threat model of RFID systems and thorough

analysis of physical attacks to RFID tags. Based on the threat model we propose a secure

identity reporting protocol to address the possible attacks. In our proposed protocol, the tag

responds to readers with pre-stored one-time tokens. The tokens contain the tag’s encrypted

ID that can only be decrypted by a legitimate reader. The reader sends back dynamically

created new tokens to the tag. The new tokens are encrypted by a one-time pad, which is

also dynamically updated by the reader. We analyze that our scheme can resist physical

attacks, in addition to other security attacks. The performance analysis shows that our

protocol is scalable for large RFID systems with huge volume of tags.

32

3.2 Identification

In the previous section, we discussed authentication techniques and dive into RFID for a

secure authentication solution. In this section we are going to cover identification, where

no pre-shared information is available for the system to verify the identity of a user.

As we discussed in Chapter 1, dynamic population in pervasive computing system may

suggest that the infrastructure has to be friendly to new users [33]. The service providers

should put basic initial trust on a stranger client, who might turn out to be a malicious

attacker later. This will encourage attackers whose fame (in terms of trust level) in the

community has gone notorious to come back and claim themselves as new users, which

wipes bad reputation to neutral very easily.

In addition to that, inside threat [34, 71] coming from compromised nodes and mali-

cious outsider attackers can compromise the user identity by controlling the user’s com-

puting devices. Especially if the compromised nodes had a high trust level within the

computing space before the attack, compromising user identity can result in serious chaos

the trust management system.

Besides the challenges, pervasive computing systems also have some nice features that

can help us to achieve trusted coalition. For example, there are usually some powerful

nodes (compared to ad hoc networks) that can help to perform distributed management and

broadcast the result to benefit the community. Some pervasive computing systems may

even have some centralized control services that can be trusted by other nodes. Also the

population of the pervasive computing system is relatively low than Internet, which make

it easier to achieve profile management of different groups of users.

Take this application scenario as an example. Two famous bank robbers want to steal

some valuable jewelry that is secured in the bank. First they want to take a look inside

the bank to assist their next action. So they just claim themselves as new bank customers

and walks into the bank. Their PDAs then start to communicate with the computing nodes

inside the bank lobby via the pervasive computing environments provided to assist bank

33

customers. By talking with the other nodes, their PDAs may collect some important infor-

mation such as how video cameras are installed in the system, where is the blind point of

the infrared sensor, when is the best time to take the action, etc. But because the robbers

will not do anything harmful to the bank at this moment, and their true identities as famous

robbers are hidden behind the “new users", the bank security system will not take special

notice upon them.

As another attack scenario, the robbers may try to hijack one bank manager’s identity

(e.g. stealing her ID card, threatening her family, etc.) and easily find and steal the valu-

ables by taking advantage of the fake identity. In both scenarios the failure to detect and

prevent the robbers are due to the failure of identity recognition of the robbers. Thus the

trust management system that works upon the failed identification system can not protect

the bank property. Traditional intrusion detection techniques will not be able to solve the

problem since the attackers have not started the process of robbing the bank yet.

In this section, we assume that user identity is already compromised by either of the two

methods above (i.e. stealing identity or claiming as new user). We are going to propose

our user behavior identification schemes based on behavioral matching and profile man-

agement systems to identify those identity violations and fire an early warning. Our user

behavior identification approach can be roughly divided into three correlated parts: system

logging/monitoring, user behavior profile establishment/maintenance, and malicious user

detection. These modules will be built within the trust supportive framework [49] among

pervasive computing nodes.

3.2.1 User Behavior Identification and Profile Establishment

As we stated before, we will assume that user identity is already compromised by steal-

ing identity (e.g. controlling the victim nodes) or simply claiming as new users. As

shown in Figure 3.3, our proposed user behavior identification approach can be roughly

divided into three correlated parts: system logging/monitoring, user behavior profile es-

tablishment/maintenance, and malicious user detection. In order to identify these identity

34

ProfileEstablishment/Maintenance
ExistingUser
New User

Actions/EventsActions/EventsActions/EventsActions/EventsActions/EventsActions/Events

ActivityLogsSystem Logging/Monitoring
Malicious UserDetectionDetectionEngine AnalysisResult FurtherActions

UserProfile
Figure 3.3: User Identification Approach Overview

threats, the first task is to gather information related to user identities.

3.2.1.1 System Logging and Monitoring

The system logging and monitoring module is responsible to collect information of daily

user actions and events. This can be roughly divided into two parts: logging normal daily

system events and monitoring potential malicious actions.

1) Logging System Events

Traditionally system logs automatically record events in a certain scope in order to

provide an audit trail that can be used to diagnose problems. Different operating systems

and multitudinous computer programs include different forms of logging subsystem. Some

operating systems provide a syslog service [9], which allows the filtering and recording of

log messages to be performed by a separate dedicated subsystem.

In a pervasive computing space, a computing node may also perform similar functions

35

to track down system activities and events generated by different users. Since these logs

will be utilized to analyze user identities, they will focus on taking information related to

various user behavior signatures as inputs, such as:

• User login events. Different users may have discrepancy on their active time pe-

riod within a pervasive computing space. So their login and logout to the pervasive

computing systems can serve as important log information for further identification

purposes. Information such as their login time of a day, login frequencies will be

recorded into the logs.

• System resource utilization. Users will most likely try to access services that they

are interested in. For example, in our scenario the robbers may frequently access the

digital camera while normal bank customers are barely interested in that.

• Networking signatures. The networking traffic is also specific that can help iden-

tify a user or even a group of users. For example, a user with high packet internet

groper(PING) value is very likely to have laggy network connection next time. Be-

sides, the traffic style such as transport protocol one is using and the preferred access

point one usually connects to can also be signatures of specific users.

• Other signatures. In addition to the signature information above, there is also other

information that can be logged, such as which operating system one is using, which

antivirus software, web browser one has installed, which email service one is con-

necting through, which news group one is actively interacting with.

The inputs types of system logs should not be static. Rather, they should be dynami-

cally tuned according to the application scenario. For example, in our scenario the system

resource utilization collects more behavior signatures than the networking signatures. If

one type of logs is considered more useful within a system, its corresponding information

collection module should be allowed to use more system resources to get more detailed

data.

36

2) Monitoring Potential Malicious Actions

As we discussed, the system logging is responsible to collect user identity related infor-

mation though logging normal system events generated by daily user actions. In addition,

if a user behaves abnormally/maliciously, the system should also take it down since the

way in which a group of attackers try to attack the system could be idiographic than others.

Generally the monitoring of malicious actions can be traced by traditional intrusion

detection systems (IDS), such as Snort [10, 67]. But the traditional IDS acts like a black

box, which takes user action/events inputs and gives out intrusion warnings. In order to

profile similar attackers when they come back in the future, we also need to record the

information of how one is performing attacks. This could be done by exploring into detail

of the IDS black box and extracting useful information to identify an attack.

With the detailed daily system logs and the attacking information collected by the ded-

icated IDS, the information collection layer will pass down the collected data to the profile

management layer for further process.

3.2.1.2 Profile Establishment and Management

With the profile information collected by the system logging and monitoring components,

the profile establishment and management module is responsible to parse them and build

up profiles for malicious users.

The process of establishing user profile is shown in Figure 3.4. As we discussed, the

pervasive computing service with a login interface usually will also allow users to register

for a new account and earn some initial trust to use the service. So if the information

collected belongs to an existing user, the profile management system will directly find the

profile that it belongs to and update corresponding data. If the user claims itself as a new

user, the profile maintenance module will first create a new entry in the profile database for

this user. But when the malicious user detection module recognizes that the user profile

signatures matches existing malicious user behaviors, it will send a feedback to the profile

management module and request a profile merge.

37

Activity LogsSystem Logging/Monitoring

Profile Establishment/MaintenanceMalicious User Detection

Logs of New User Logs of Existing UserCreate new profile
Feedback Honest?Yes: add as new profile User Profile Database

User Profile No: Merge into existing profle Add into existing profile
Figure 3.4: Profile Establishment and Management

38

There are some on-going researches on user behavior modeling towards establishing

user profiles. Nathan and Sandy at MIT’s Media Lab proposed a system called Eigenbe-

haviors to use limited user behavior information to predict the daily behavior and determine

the social allegiances of study participants [26]. Our user behavior modeling will follow

the major trend of current researches and model the user behavior at the data attribute level.

A user’s profile will include the distribution of each behavioral data type, e.g. login time,

system resource utilization.

Although each user may have its own profile in the database, it is neither infeasible nor

necessary to match an unknown user to one specific user’s profile in the database, especially

if the user pool is very large. Instead, the user profile management system will classify sim-

ilar malicious user profiles and treat profiles of the same category as a whole for signature

matching. For example, in our scenario the bank robbers are classified in one profile. Their

system resources utilization and the critical information that they are interested can be their

behavior signatures. So instead of identifying another user as one specific former attacker,

the system can simply identify the user that is similar to this attacker category, which is

more feasible and practical.

Though the logic of profile management system is simple, the inside management of

profile database is tricky. First, the user signature information of the same type may have

conflict with each other. For example, one attacker logs in twice, once with an 80% con-

nection of HTTP protocol but the other time only 10% is HTTP data packets. To make the

profile more accurate, the system should record more samples of same type of information

in a long run. If the data is consistent for a long while, the piece of inconsistent data will be

simply ignored; but if the data is varying from time to time, this information type will be

not very useful for recognizing a user and will be given a low weight for the final user iden-

tification evaluation calculation. Moreover, the profile database is growing as time goes

on. It is necessary to keep it in a reasonable size by regularly deleting some out-of-date

profiles.

39

3.2.1.3 Suspicious User Detection

When the profile database is well updated and has collected enough user profile informa-

tion, the suspicious user detection module is going to identify suspicious users by matching

their actions to existing malicious user profiles, which was obtained from IDS, or the train-

ing data with specified attacker identities. This matching process involves pattern match-

ing techniques as is used in most intrusion detection systems, composed of a series of

algorithms. As a simple example, the pattern matching process can use the following two

different algorithms to model the matching process.

Because each user profile contains various types of information, such as user login

events, network usage signatures, frequently used system resources etc., there should be

different matching algorithms for different data types. Here we introduce Matching Score

(MS) to quantify this likelihood. A Matching Score is a real number between 0 and 1. The

closer MS is to 0, the more likely the two compared users are of the same identity. MS of

different data types should be calculated in different methods:

For quantitative data types, such as the network traffic composition, the matching score

will be calculated as in Equation 3.1. Here MSi stands for the matching score of this data

type. Pi means the profile data value of the existing malicious user group and Ni is the

data value of the current new user. Maxi and Mini stands for the possible maximum and

minimum value of this data type. For example, one existing malicious user group has a

signature of 90% network traffic to be UDP (e.g. due to some special attacking technique

they use). And the current user under test has only 5% UDP in total traffic. We know

the possible value of this data type varies from 0% to 100%, so the matching score is

calculated as |90%−5%|
100%−0% =0.85, which means this new user has a 0.85 unlikelihood to belong

to the specified malicious user group in terms of this data type.

MSi =
|Pi−Ni|

Maxi−Mini
(3.1)

40

For discrete data types, such as preferred system services that the user is accessing,

the matching score is calculated as in Equation 3.2. In this equation, Eq(a,b) is a evalu-

ation function of two discrete data: if a and b has the same value, Eq(a,b)=0; otherwise

Eq(a,b)=1. So the output of Eq(Pi,Ni) reflects the unlikelihood that the user’s action sig-

nature (Ni) is same with the matched profile signature (Pi). However, since this data type

is discrete, the possibility that Ni happened to be the same as Pi is not neglectable. So we

adjust the matching score by adding the probability that the two to be the same by chance,

which is 1
Total(Pi)

, where Total(Pi) is the total number of possible values of this discrete

data type. But since the matching score should be a value between 0 and 1, we refine

this result by using a Min() function to make the result conform to the MS range. For

example, one existing malicious user is using Linux operating systems and the user under

test is using Mac OS X. So here Eq(Pi,Ni)=1 since they have different values. Suppose

the matching system will recognize Windows, Linux, Mac OS, BSD, Solaris, and other

unix-like OS as a whole. So there will be 6 possible values of the adjustment part in total:

1
Total(Pi)

=1
6 . Finally we do the Min function and derive the matching score of this data type:

MSi = Min(1,1+ 1
6)=1.

MSi = Min(1,Eq(Pi,Ni)+
1

Total(Pi)
) (3.2)

We have discussed how to calculate the matching score of a new user’s signature on

one data type (MSi). Usually there are multiple types of signatures in a user’s profile. A

method is needed to calculate the final matching score combining all these profile signa-

tures. Because different signature types have different importance in terms of identifying a

user, we assign each signature type a weight (Wi) to reflect its impact. The final matching

score of one user identity’s similarity to a given user profile is calculated as Equation 3.3.

Here MSi stands for the result of matching score calculated in data signature type i. Since

each MSi is in the range of 0..1, the result of MS will also have to be a real number between

0 and 1. The closer MS is to 0, the more likely the testified user has the same identity with

41

the target user profile, and vice versa.

MS = ∑MSi ∗Wi

∑Wi
(3.3)

The system will have a threshold value (e.g. 0.2) of acceptable MS value. When a

new user comes in, the user identification system will try to analyze its behavior signatures

according to the active attacker profiles (one by one) in its profile database. If the user

signature matches any of the attacker profiles, it will be blocked from further services and

its profile database will be updated for better identifying this user in the future.

3.2.2 Simulations and Performance Studies

To test the performance of our behavior based user recognition model, we conducted a se-

ries of simulations. The simulation is done based upon a dataset collected in real world

applications. Ideally, the dataset would cover a middle-sized user base over a large time

period, with rich user behavior related context data. Should users and their behavior be

recorded by the dataset, we can testify if our user recognition model can successfully rec-

ognize a specific user from their profiles established following our model.

3.2.2.1 Simulation Setup

In order to evaluate the performance of our user identity recognition model, we utilized a

trace of node contacts from the MIT Reality Mining project [7, 27, 28].

The Reality Mining project represents the largest mobile phone experiment ever at-

tempted in academia, which collected an unprecedented amount of data on human behavior

and group interactions. The data is anonymous and made available to the general academic

community. By the end of the experiment, this dataset contains over 500,000 hours (60

years) of continuous data on daily human behavior. Figure 3.5 shows a partial and sample

view of the data collected by Reality Mining project.

The dataset consists of one hundred Nokia-6600 smart phones pre-installed with several

pieces of software they have developed as well as a version of the context application which

42

Figure 3.5: A Sample View of Reality Mining Dataset

provides rich user behavioral and context data. Seventy-five users are either students or fac-

ulty in the MIT Media Laboratory, while the remaining twenty-five are students at the MIT

Sloan business school. Of the seventy-five users at the lab, twenty are master students and

five are MIT freshman. The information collected includes call logs, Bluetooth devices in

proximity, cell tower IDs, application usage, and phone status (such as charging and idle),

which comes primarily from the Context software installed on the Nokia smart phone. The

study generated data collected by one hundred human subjects over the course of nine

months and represent approximately 500,000 hours of data on users’ location, communi-

cation and device usage behavior. Upon completion of the study, the dataset is anonymized

and made public in MySQL database format to the general academic community.

For our simulation, we extracted ten types of user information from the dataset as our

profile signatures:

• Activities per day. This is a log of how many times a user use the phone per day,

including utilizing all phone functions from making phone calls to simply checking

43

the time. This information is collected by the phone software that logs the event that

the phone exits idle state.

• Intimate users per day. The dataset contains information about how many bluetooth

devices are in the intimate range of the current user. We use this number of users as

a user behavior signature.

• Tower switch per day. This is the number of how many base station one user will

switch between for a single day. This suggests the mobility of a user, frequency of

movement and location preferences.

• Calls made per day. How many phone calls a user made for a single day is clearly a

signature of that user.

• Voice call percentage. This is a signature of phone usage pattern, suggesting how

many percentage of a user’s connection usage is used for voice call (other than data

packages and text messaging).

• Outgoing calls percentage. This logs the percentage of phone calls made that are

outgoing (other than incoming or missed).

• Missed calls percentage. Similarly this tracks the percentage of incoming phone calls

that is missed by the user.

• Short phone calls percentage. This is a signature tracking the percentage of phone

calls made that lasts less than three minutes, which suggests the user’s social prefer-

ence on phone calls.

• Text messaging percentage. This is the equivalent of Voice call percentage, suggest-

ing the percentage of phone usage on text messaging.

• Outgoing text messaging percentage. Similar to Outgoing calls percentage, this logs

the percentage of text messages that are received other than sent.

44

Figure 3.6: A Sample Profile of One User’s Behavior

With these user behavior signatures extracted from the dataset, we can build profiles for

all the one hundred users. A sample profile of two users is displayed in Figure 3.6.

3.2.2.2 Performance Study

Under the simulation setup, we did a series of performance study to evaluate our user

identity recognition model. We use the Matching Score algorithm described in Section

3.2.1.3 to calculate the matching score of one user’s behavioral similarity to another. We

consider the first few months as the profile training period, during which the profile data

of all the ten profile parameters are collected and/or calculated. Starting from the next day

after this training period, we randomly pick a user and generate her identity signatures of

the same ten profile parameters. Then her signature is compared to the other one hundred

user’s profiles collected in the last few months: The one with lowest matching score is the

match found by our algorithm. Now we will reveal the true identity of the randomly picked

user and see if the matching is correct. This “pick and match" process is then repeated

and we collect the success rate of our algorithm in terms of correctly identifying the true

identity of the user. Sometimes for the specified time period, there can be no data of the

specified user. This is normal because the user may fail to turn on the phone for some

reason. In such cases the study for this user is terminated and it will not affect the final

result.

The simulation result is displayed in Figure 3.7. As we can see from the Figure, our user

recognition model achieves a successful recognition rate of over 80% when enough data

45

Successful User
Recognition Rate

20%40%60%80%100%
Training

Period Length
Months

27.1
1 Month

64.0 72.5 77.4 79.3

2 Months 3 Months 4 Months5 Months 6 Months

93.9 82.7

7 Months 8 Months

84.4

Figure 3.7: Simulation Result based on Training Period Length

is collected to build up profiles. The figure also shows that while the profile is gradually

established, the recognition success rate is increasing accordingly. We noticed that the

result of 6-months profile data is higher than the others, even better than the 7-months

and 8-months’ performance. We further investigated the problem and find out that this is

because of the lack of data profiles for the 6-month simulation: a lot of users do not have

any record during the time period we are investigating. Due to this lack of user data, the

total number of simulations during this time period is dramatically decreased, which could

have caused the result to become more random than the others.

3.2.3 Dynamic Reactions to Suspicious User Behaviors

The direct influence of the user behavior identification process is to trigger a reevaluation

of the suspicious user’s trust level. The trust management system [49] will take the result

from the user behavior identification system and broadcast the result to the community and

advise other nodes to downgrade the trust level of the suspicious user. While it is the other

nodes’ own decisions of whether to trust this early warning or not, this will have negative

effects of the trust evaluation of the suspicious user as a whole.

46

Besides the trust management, the system also needs to take some countermeasures to

address the potential threat. The first reaction of the system is to keep close watch on the

suspicious users. For legal issues, it is not legitimate to directly stop the suspicious user

from further services before they start to put the attack into practice. For example, in our

scenario, the potential bank robbers should not be rejected from the pervasive computing

services from the bank lobby space. But the system can start monitoring the suspicious

users right after their behaviors matching the malicious user signatures. With the powerful

security system resources dedicated to monitor a few suspicious nodes, it is much easier to

take a timely first reaction once the suspicious user starts to perform illegal actions.

In addition to the monitoring, the reaction module should also collect possible crime

evidence generated by the suspicious users, such as the actions they take, the resources they

access, the data they send and receive, etc. These forensics logs can record very detailed

information about each suspicious user without taking too much system resources.

Finally the reaction system can also feed the suspicious user with some poison infor-

mation that is harmless to normal users. For example, in our scenario, the bank system can

generate fake information about the bank security setup to mislead the potential robbers in

order to protect its property.

To conclude this section, we introduced a user behavior identification system to find out

suspicious users by logging malicious user behavior into a profile database and comparing

user behavior signatures with these profiles. Our simulation shows that our user recognition

model can help identify a user from its behavioral profile. Our reaction module will take

actions to prevent further possible malicious actions by those suspicious users. The user

behavior identification system, together with the authentication technologies, can be very

helpful for pervasive computing system to recognize a user’s true identity in order to help

we manage the trust relations.

CHAPTER 4: TRUST MANAGEMENT

In the previous chapter, we discussed about our solution towards user recognition,

which paves the way for a successful trust management. In this chapter, we will focus

on the definition of trust and propose a trust model for pervasive computing systems. Then

we will discuss the trust relation propagation and present our algorithm. Finally we will

discuss attack schemes against the trust model and show our simulation result of our trust

model’s robustness against such attacks.

4.1 Trust Model

In this section, we present the details of our trust model. As we discussed previously,

various trust models have been developed from different application perspectives in current

research literature. A major challenge for a trust model is that trust is application-dependent

and hence we need trust models that provide customized trust information to applications.

The following desired properties need to be considered in a trust model:

• Trust is specific to the service being provided by the trustee entities. For example,

entity A may trust entity B on providing a reliable web service, but not a file storage

service. So trust depends on the tasks that each party is expected to perform in the

context of a particular application.

• Trust is a measurable belief. There are different degrees of trust. For example, party

A may trust party B more than A trusts party C for the same service. This property

emphasizes the need for a suitable metric to evaluate trust. Such metric is based on

evidence, experience and perception. The measurement can be quantitative (e.g., a

probability assignment) or relative (e.g., by means of a partial order).

48

S

D

A BC
E F

0.7 0.8 -0.90.80.2 1
<0.8,featureVector><1,featureVector> <0.7,featureVector>

DT:CoR: <0.8,featureVctor>0.8
-0.5

1<0.2,featureVector>
0.8

Figure 4.1: A Global Trust Graph

• Trust has limited time duration and evolves over time. The fact that party A trusted

party B in the past does not guarantee that A will trust B in the future. B’s per-

formance and other relevant information may lead A to re-evaluate the trust on B.

During a service interaction, the more A realizes that A can depend on B for service

X, the more A trusts B. On the other hand, A’s trust in B may decrease if B proves to

be less dependable than anticipated by A.

A good trust model needs to be designed in such a way to fulfill all the properties above.

4.1.1 Trust Model Overview

The core of our proposed trust model is based on the notion of trust relationships among

collaborative entities. Entities in our model can be of various types and be specified at

different levels of granularity. For example, an entity can be an organization, a department

within an organization, or a single individual. We model the trust relationship as a directed

trust graph as shown in Figure 4.1. In the model, there is an edge from entity A, referred to

as the trustor, to entity B, referred to as the trustee, if and only if A has a trust relation with

B. A trust graph is not necessarily same as the connection graph of a network, such as the

routing graph of an ad hoc network or connectivity graph of a P2P network. Though being

49

neighbors on the connection graph may help two nodes establish trust relations easily, the

trust graph can be completely distinctive from the connection graph.

In most application scenarios there is a concept of a global trust graph. The edges and

vertices of the global trust graph is real-time changing. Most of time, it is neither feasible

nor necessary for a single entity to maintain the global trust graph unless there is a central

entity. Instead, each entity maintains a local trust graph. The local trust graph is a subgraph

of the global graph at some point of time, but only contains trust relations that an entity

is aware of. There are two types of edges in a trust graph representing two basic types

of trust, Direct Trust (DT) relationship (in solid line on Figure 4.1) and Confidence of

Recommendation (CoR) relationship (in dashed line).

CoR represents the degree of confidence on a trustee to provide accurate recommenda-

tion. CoR is labeled with a trust value. A trust value is a measurable degree of trust. It

is a real number within [-1, 1], where 1 means the most trustable and -1 means the most

distrusted. The trust value is the measurement of an entity’s “honesty” degree on recom-

mendation. There are other approaches that use a real number from 0 to 1 as a trust value.

Mathematically speaking, these two representation are equivalent through a one-to-one

mapping between them.

DT represents a direct trust relationship between a trustor and a trustee for various

services provided by the trustee. DT is constrained by some conditions and service aspects,

such as the trustee granularity, preconditions, and events that can change the trust relation.

We propose to use feature vector to specify and describe such constrain information in a

DT. In our trust graph, DT is labeled with <trustValue, featureVector>. Similar to CoR,

the trust value is ranged between -1 and 1. The feature vector records all relevant aspects

affecting the trust relationship represented by the edge. In particular, a feature vector is

an abstract description of various aspects of the trust relationship, including the following

items:

• Trustee Specification. This item specifies the granularity of the trustee. The gran-

50<!ELEMENT FeatureVector (TrusteeSpecification, Precondition, TemporalConstrains)><!ELEMENT TrusteeSpecification (GranularityLevel, Trustee)><!ELEMENT Precondition (ConditionDescription*)><!ELEMENT TemporalConstrains (ExpirationTime, BlackoutTime)><!ELEMENT GranularityLevel (#PCDATA)><!ELEMENT Trustee (#PCDATA)><!ELEMENT ConditionDescription (#PCDATA)><!ELEMENT ExpirationTime (#PCDATA)><!ELEMENT BlackoutTime (#PCDATA)>
Figure 4.2: DTD for Trust Feature Vector<!ELEMENT TrustEvaluationFunction(Function, TrustHistory)><!ELEMENT Function (#PCDATA)><!ELEMENT TrustHistory (HistoryDataItem)><!ELEMENT HistoryDataItem (Record, RecordTime, TrustValue)><!ELEMENT Record (GoodTransaction, TotalTransaction)><!ELEMENT RecordTime (#PCDATA)><!ELEMENT TrustValue (#PCDATA)><!ELEMENT GoodTransaction(#PCDATA)><!ELEMENT TotalTransaction(#PCDATA)>

Figure 4.3: DTD for Trust Evaluation Function

ularity level could be a computing node, one of node’s services, or even one trust

requirement of a service.

• Preconditions. When a trust evaluation process is initiated, the preconditions are

evaluated first. Those conditions are the prerequisite that must hold for the trust

relation. A parser can be used to help the application understand these conditions

and evaluate them accordingly.

• Temporal Constrains. The temporal constrains specifies the valid lifetime of the trust

relation. Specifically, it describes the expiration time and the blackout time of the

trust relation.

The challenge is to define feature vectors for trust relationships within a distributed

service infrastructure. We introduce an XML based language to describe feature vectors.

We use Document Type Definition (DTD) schema language [13] to define the feature vector

format (Figure 4.2). According to the DTD template, we use XML based languages [14] to

51

specify the constrains in a feature vector in a uniform and standard way so that they can be

transmitted and understood by system entities. This feature enables trust propagation for

the case when no prior trust between trustor and the trustee is available.

In addition to these constrains, the trustor also specifies its trust evaluation function on

exactly how the trust value of a DT and a CoR is calculated. The trust evaluation functions

are specified in a separate XML document. This separation facilitates trust propagation.

While the trust value and its constrains need to be distributed to other nodes to build up

their local trust graphs, the evaluation algorithm of how trust is calculated is usually kept

secretly. The Document Type Definition template for trust evaluation function is shown in

Figure 4.3.

4.1.2 Trust Value Calculation

As we discussed, trust is a measurable belief. There are different degrees of trust. The mea-

surement can be based on evidence, experience and perception. The measurement results

can be quantitative (e.g., a probability assignment) or relative (e.g., by means of a par-

tial order). In our model, we use trust value to represent the degree of trust. Most current

research on trust value evaluation are from some mathematical models, such as probability-

based models and information theory models. The trust values from such models cannot

always satisfy all desired properties. In order to address this problem, extra factors and pa-

rameters outside the models need to be introduced. Such an introduction somehow weakens

the purpose and validity of the mathematical models.

Unlike most current research, our trust value formulae start from the basic properties,

and consider both the objective and subjective parts. An example of objective parts is

the probability of good actions, similar to the current probability-based trust models. An

example of the subjective part can be the amount of reward (penalty) of a good (bad) action.

We incorporate the following desired properties into our trust value evaluation:

• Trust value evolves over time and is time sensitive. More recent actions should have

52

CoR =

Min(CoR0*β + RWD*(1+RAT), CoR0+(1-CoR0)*CVG)

Max(CoR0*β - PNT*(2-RAT), -1)

if recommendation==good

if recommendation==bad

RAT=
NumOf(GoodRecommendations)NumOf(TotalRecommendations)

Δt
Δt

Figure 4.4: Calculation of CoR

more impact on the trust value.

• Trust value should increase with good actions and decrease with bad actions. Further-

more, in most application scenarios, good actions should increase the value slower

and bad actions should decrease the value faster.

• Trust value should encourage a good trust history. An entity, with a better trust

history than another entity, will have more increase on trust value with a good action,

and less decrease on trust value with a bad action.

• Trust value evaluation can be customized by applications. For example, the penalty

of a bad action in a security-sensitive service can be more severe than in ad hoc

routing service.

We present a trust calculation method in compliance to these properties. We first dis-

cuss the trust value formula for the CoR. There are several inputs for the CoR evaluation:

the previous CoR value, the quality of this recommendation (good or bad), the overall good

recommendation rate (good recommendations over all recommendations), the time inter-

val between the current evaluation and previous evaluation, and the trust value from the

recommender to the recommendee. Our proposed CoR formula is shown in Figure 4.4.

In the formula, CoR0 stands for the cached pervious CoR value. β is the forgetting

53

factor for time in the range of (0, 1], which is used to help entities “forget" out-of-date trust

events and put more weights to recent actions on trust evaluation. ∆t is the time interval

between current time and the time when CoR0 is cached. RWD is the reward factor for a

good recommendation and PNT is the penalty factor for a bad one. A typical value for

RWD is 0.1 and 0.2 for PNT . RAT is the ratio of historical good recommendation over all

recommendations, and CV G is a parameter to control the convergence speed of CoR.

When the trustee of one CoR made a good recommendation (by either giving positive

recommendation to good nodes or negative recommendation to bad nodes), the trustor will

try to reward the trustee. The first part of the formula is the multiplication of its cached

previous CoR value by the amount of β ∆t , which helps “forget" the previous value a little

bit. The second part is RWD∗ (1+RAT), the reward of this good recommendation. Since

RAT is the good over all recommendation rate, ranging from 0 to 1, a good node with

RAT = 1 will have two times more reward in trust value than a bad node with RAT = 0. This

helps make our calculation scheme satisfy the third property. Finally since the rewarding

of a trust value may cause the result be out of the valid range of CoR ([-1, 1]), we apply a

cap CoR0 +(1−CoR0)∗CV G on this calculated result. CV G is a tunable parameter within

(0,1], which controls the convergence speed of CoR when it is growing. A typical value

for CVG is 0.1, which means that whenever the CoR grows, it can only increase by 10% of

the difference between the current CoR and 1. If CV G is set to 1, the cap of CoR becomes

1, thus the CoR value can grow to 1 within limited rewards. The calculation scheme for

penalizing a bad recommendation is similar to rewarding. The only difference is that we

use -1 as the lower cap for the calculation result.

The parameters β , RWD, PNT and CV G can be adjusted by the application. For exam-

ple, when a good node may change its performance from time to time due to environmental

factors, we may consider adjusting the forgetting factor so that recent actions take much

more weight. On the other hand, if computing nodes are constantly moving in and out of

the system, we need to increase the base reward and penalty amount, so that a newcomer

54

can quickly establish enough trust. Applications can customize the values of these parame-

ters based on their needs or even adjust them dynamically during run time based on the trust

system performance. For example, if an entity senses that there is an increase of malicious

users, it can increase the penalty of a bad action, making malicious users being detected

more quickly.

The trust value calculation of DT will be similar to that of CoR. The additional con-

sideration is service-related. A services can introduce an application-specific factor for the

reward and penalty.

4.2 Trust Relation Establishment

The previous section defined trust relationship together with a trust model. In this section,

we will discuss the trust relationship establishment in a general context: we will investigate

how the system determines the trustworthiness of a client after collecting and evaluating

the trust evidence about the client. Trust establishment between two entities is grounded

in one’s evaluation on another’s ability, benevolence and integrity, and the trust evaluation

is based on trust evidences that describe the client’s intention or behavior pattern. Three

types of client trust evidences are identified to be used for trust establishment: credentials,

environment context, and behavior records. We will analyze these types of trust evidences

in the following sections by presenting our automated trust negotiation strategy.

4.2.1 Active Automated Trust Negotiation

The main challenges for automated trust negotiation are how to define, maintain, and ac-

quire the interoperable trust negotiation strategies and protocols. In this section, we first

look at the general considerations for defining , maintaining, and acquiring the trust nego-

tiation strategies, then presents an effective approach, active trust negotiation scheme, for

automated trust negotiation.

As we mentioned, the trust negotiation process requires both the client and the system

must have the interoperable negotiation strategies and protocols in place before the negoti-

55

ation starts. Due to the computing space or domain limitations, the client usually does not

have all the trust negotiation strategies when the client intends to negotiate for accessing

the resources in the system. In this case, the client needs to acquire them from the system

or other resources when trust negotiation is on demand. Otherwise, the trust negotiation

cannot proceed.

The interoperable trust negotiation strategies are in a family, and any two of them can

be used by the client and the system to ensure the trust negotiation process to proceed. One

special case is that the client and system are using one same trust negotiation strategy so

that the interoperability is definitely ensured. This property is what we expect and provides

an option for use to choose trust negotiation strategies.

The trust negotiation strategy and protocol for a resource in the system is mainly de-

termined by the trust control polices of the resource. In other words, each trust policy in

the system with negotiation ability should specifies a trust negotiation strategy to be used

when trust negotiation is on demand. If the client intends to negotiate to access a resource

in a system, both the client and system can use the same trust negotiation strategy specified

by the trust control policy for the resource in the system.

For the performance and security reason, the negotiation strategies and protocols for the

resources are usually defined and maintained in the same system as the policies reside. Be-

cause trust negotiation strategies are used locally to help maintain and control the release

sequence of local credentials, they must be under the control of local environments for

efficiency and security. One effective and dynamic way for the client to get the trust nego-

tiation strategy from the system is to download the trust negotiation strategy on-line when

the client cannot find an interoperable trust negotiation strategy and protocol locally. This

leads to our active automated trust negotiation scheme, which operates in two stages: setup

stage - trust negotiation strategy download phase, and execution stage - trust negotiation

execution phase.

The active trust negotiation scheme includes two stages: trust negotiation strategy

56

download and trust negotiation execution. The process in each stage poses challenges in

the implementation. In the following subsections, we will discuss the general procedures

in each stage and the main issues concerned.

In this stage, the client and system will go through the following procedures in se-

quence:

1. The client requests to access a resource in the system, and both the client and system

realizes that trust negotiation is needed.

2. The system notifies the client what trust strategy and protocol is used for the trust

negotiation, and the client is searching for an interoperable trust strategy and protocol

locally.

3. If the client does not find an interoperable trust negotiation strategy and protocol, it

requests to download the trust strategy from the system so that the client and system

share the same trust negotiation strategy and protocol. Else, the client will use its

local interoperable trust negotiation strategy.

4. Both the client and system notify each other after loading the trust negotiation strate-

gies, respectively.

During this setup stage, the following issues should be put into consideration for secu-

rity and compatibility:

• Download process should be secure enough so that it ensures that the downloaded

codes from a system do not include the malicious codes. This needs a secure and

reliable download protocol.

• The trust strategy and protocol being downloaded should be applicable and compati-

ble with the client system, i.e. the client system can understand what the strategy and

protocol denote and use them to execute the trust negotiation.

57

After the client has found an local interoperable trust negotiation strategy or down-

loaded the trust negotiation strategy from the system, both the client and system will load

the trust negotiation strategy and protocol and start the trust negotiation. The client and the

system will go through the following procedures.

1. Both the client and the system exchange credentials as requested by the trust con-

trol polices, which is guided by the trust negotiation strategy and is using the trust

negotiation protocol for messages transfer.

2. If the trust negotiation code executer (normally the client) is not confident of the code

security, it may use sandbox technologies to help protect itself from malicious code.

3. If the client’s credentials meet the requirement of the trust polices for accessing the

requested resource, the system grants the access rights for the client and the client

will perform the allowable actions on the resource. Else, no trust can be established.

Trust negotiation strategies and protocols are related to the trust control policies in the

system. In our case, trust negotiation strategies will be downloaded to the clients, so one

important thing to be considered is to make the trust negotiation strategies compatible with

the local trust control policies in the client.

Although there are still more research work to be done in providing secure and efficient

trust negotiation strategies, it is not our focus of our research. We assume that there are

valid trust negotiation strategies being stored in the system and specified by trust control

policies.

4.2.2 Agent-based Infrastructure for Trust Negotiation

The concept for the active automated trust negotiation provides a way for trust negoti-

ation for the mobile entities in pervasive computing environments theoretically. As we

mentioned, there are several issues concerned such as download protocols, trust policy lan-

guage and trust negotiation strategy encoding. In this section, an agent-based infrastructure

58Service ControlSecurityAgentStrategyRepositoryCredentialRepositoryPolicyRepository TrustNegotiationAgentCommunicationControl
Figure 4.5: Overview of Agent-based Infrastructure for Trust Management

for trust management is proposed to implement the active trust negotiation scheme and

provide the corresponding solutions to the related issues.

We first present the overview of the framework and the main components in this frame-

work, then concentrate on the trust negotiation agent design and the detailed mechanisms

to resolve the implementation issues for the active trust negotiation scheme in the infras-

tructure.

Figure 4.5 illustrates our agent-based infrastructure for trust management in pervasive

computing environments. As described below, this infrastructure is aimed to realize trust

management with different trust management strategies for different application scenarios

such as trust negotiation, trust recommendation and etc. In this section, we will focus on

trust negotiation and discuss the design of trust negotiation agent and the implementation

of the active trust negotiation scheme.

The main components in this trust management infrastructure include service control,

communication control, security agent, various repositories, and different trust agents such

as trust negotiation agent, trust recommendation agents and so on.

Service control works as a general controller and is the main interface to communi-

59

cate with the external entities. All the service requests from clients should go through the

service control. The service control will consult with the security agent for the security

enforcement. It is service control that initiates the corresponding trust management pro-

cesses based on the consulting result from the security agent. The service control requests

the communication control to allocate the communication protocols and channels for spe-

cific tasks or specific components in the systems (e.g. trust negotiation is done through

the negotiation communication channels). In this way, some components (e.g. trust nego-

tiation agents) will communicate with the external entities through the specified channels.

The service control also keeps all the current clients and manages communication session

information.

Security agent enforces the security of the local system. It maintains the policy repos-

itory, the credential repository and the strategy repository and uses the trust control po-

lices and digital signatures of credentials to perform trust management. All the regular

authentication and authorization are supported by the security agent. The security agent

also delegates the trust evaluation tasks to the specific agents based on different trust evi-

dences types and application scenarios. By synthesizing the evaluation results from all the

available agents, it concludes the trustworthiness of the clients and makes the decision for

granting the access rights for the client so that the client can perform on the resources.

Communication control is a component for allocating the communication channels and

protocols. It usually receives the requests from the service control or the security agent for

allocating the communication channels and protocols and monitoring the data traffics. The

commonly used channels and protocols are specified by the service control when the sys-

tem starts. Specific agents such as trust negotiation agents are allocated specific channels

respectively.

The policy repository stores the rules and polices which are used by the security agent to

enforce the system security. The credential repository keeps the credential information and

the account information for the system itself and clients. The negotiation strategy reposi-

60

tory keeps all the trust negotiation strategies and protocols, which are specified by the trust

control policies and used for trust negotiation. All these repositories and the information

stored in them are controlled by the security agents and can be queried by the other agents.

These agents are the specific agents for handling the trust evaluation tasks for different

application scenarios and trust evidence types. Since different application scenarios need

different methods for collecting trust evidences and use different criteria for evaluating

trust evidences, different agents are used to implement these different trust establishment

mechanisms respectively. Since our focus is on trust negotiation process, we will describe

its detailed implementation and how it realizes our two-stage active trust negotiation strate-

gies.

Trust negotiation agent in the trust management infrastructure is responsible for trust

negotiation. It receives the delegated task from Security Agent and Service Control for

negotiating to establish trust relationship with the other party. Following our active trust

negotiation scheme, trust negotiation agent will do the following main things:

• Downloading the trust negotiation strategies

• Loading the trust strategies locally

• Executing the trust negotiation based on the trust strategies.

The detail implementation are related to trust control policies and languages, trust ne-

gotiation protocols, trust negotiation strategies, secure download protocol, and negotiation

agent design. In the following subsections, detailed implementation considerations are pre-

sented for each component and protocols.

Trust negotiation process is to exchange the credentials (i.e. trust evidences) for trust

establishment. It gets involved in the request for credentials and the release of credentials,

which in turn needs the trust policies to specify what the requested credentials should be,

and relies on the trust negotiation strategies and protocols to determine how to guide and

control the request and release of the credentials.

61

Trust negotiation must start with some common non-critical credential exchanges, then

proceed on critical credential exchanges guided by trust control policies and trust negoti-

ation strategies. In other words, trust negotiation is not a zero knowledge based process.

Trust control policies, trust negotiation strategies and protocols are related to how to de-

scribe the credentials or handle the credentials, so compatible languages are needed for

semantic consistency when describing the credentials and action types. Therefore, the fol-

lowing assumptions are made for simplicity.

• The trust negotiation discussed is not a zero knowledge based process. The client

and the system must have some common base or non-critical credentials (e.g. known

identifications) to start with.

• The same trust policy language is used for defining trust or access control policies so

that the concept or vocabulary in the trust control policies can be understood by the

trust negotiation strategies.

• The same protocol language is used for defining the trust negotiation protocol and

encoding the messages, whose concept and vocabulary are the same as (or compatible

with) the ones in trust control policies.

• These trust negotiation strategies and protocols are defined and stored in the systems

and downloaded to the client.

Trust control policy of a resource in the system specifies the context and the required

credentials for the client to present for trust evaluation. The system can grant the client

to access the resource if the client’s credentials meet the requirements specified by the

trust control policy. In trust negotiation process, in order not to release the content of

trust control policies of the system totally, the trust control policies should be designed to

request the client’s credentials gradually from the non-critical ones, less critical ones to the

more critical ones. Meanwhile, the trust policies in the client may also specify the gradual

62

request sequence for some system credentials before the client’s credentials are released

to the system. The trust control policies are also called disclosure polices (or negotiation

policies), which define the gradual disclosure sequences of the contents of policies and

credentials for trust negotiation. We still call it trust control policies.

Trust control polices are defined by policy languages. For simplicity, we assume that

trust policies are defined using one same policy language in our implementation. An XML-

based trust policy language similar to the trust Language TRN-X defined in [25] or TPL in

[16] can be an appropriate option due to its applicability and flexibility.

Trust negotiation protocol defines the format for trust negotiation messages, which in-

cludes the requests for credentials, the replies for the requests, and the command to start or

halt the trust negotiations as well as the contents of messages such as credentials and poli-

cies. We assume that protocols are written in XML to encode all the commands, credentials

and polices in the messages, which match the trust policy language in both vocabulary and

semantics. The negotiation protocols are stored in the system together with the trust nego-

tiation strategy and will be downloaded to the clients.

Trust negotiation strategies are the algorithms for controlling the credential disclosure

based on the trust control policies. So this requires the trust negotiation strategies to inter-

pret the trust control polices, maintain the acquired credentials and arrange the credentials

disclosure sequence during trust negotiation. Since a trust negotiation strategy is an algo-

rithm, it should be implemented as an integral program that can be executed by the calling

environment. A client will download the program, load it into the local running environ-

ment and execute the program. Also, the trust negotiation strategies should be under the

control of trust negotiation agents and security agent.

For this purpose, we extend the concept of Active Capability given in [46, 47] and de-

fine Security Capsule to encode the trust negotiation strategies. A Security Capsule is an

executable code that encodes the negotiation strategy and protocol. It includes the data

types and algorithm of the trust negotiation strategy and can be loaded and executed by

63

Negotiation Agent Security Capsule

Istrategy

StrategyInterpreterCredentialMaintainer

1
1..*

1
1..*

Figure 4.6: The Relationship between Trust Negotiation Agent and Security Capsule

the negotiation agent. For the compatibility and integrity of the trust negotiation strategy,

Security Capsules implement a common interface with the negotiation agent. The nego-

tiation agent queries or receives the information about the credential request or disclosure

sequence to form the negotiation messages according to the negotiation protocols. In this

way, the Security Capsule is transparent to negotiation agents and can be loaded to any trust

negotiation system if the negotiation agents import the common interface.

The relationship between the negotiation agent and Security Capsule is illustrated us-

ing UML component diagram in Figure 4.6, in which Istrategy represents the common

interface that is implemented by all the Security Capsule components, StrategyMaintainer

object is responsible for interpreting the trust control policies and controlling the credential

release based on the control polices, and CredentialMaintainer is responsible to maintain

the external credentials provided by the counter party and the local credentials that have

been released to the counter party.

In general, the Security Capsules have the following advantages by extending the con-

cept of Active Capability:

• Mobility - they can be downloaded from the system on-line dynamically.

• Ready for use - they are programs that can be executed when being loaded into the

run-time and can be reused by moving to any systems or clients.

64Host Service ControlSecurityAgent TrustNegotiationAgentTrustPoliciesNegotiationStrategies SecurityCapsuleSecurityCapsule
ClientService Control SecurityAgentTrustNegotiationAgent TrustPoliciesNegotiationStrategiesSecurityCapsuleSecurityCapsuleProcessNegotiationVerify/DownloadSecurity CapsuleInitiateNegotiationLoad/update Load/update

Figure 4.7: Negotiation Process

• Configurability - a Security capsule interacts with Negotiation Agent through the

common interface. Any updating in the internal objects is transparent to the Ne-

gotiation Agent. So a Security Capsule can be used for different applications by

reconfiguring it if it is designed so.

When the client downloads the security capsules, it should ensure that security capsules

do not contain any malicious codes. This involves the following two step operations.

• The download protocol should ensure the integrity of the downloaded security cap-

sule, which requires the protocol to have a checking mechanisms for verification.

The security hash method of MD5 can provide this functionality.

• The security capsule can only communicate with the negotiation agent locally through

the common interface and it cannot leak any information and compromise the local

environments. This can be realized by the local security policies and security domain

such as the sandboxes.

• The security capsule will be verified using some bench trust control policies for its

validity.

65

Trust negotiation agent is responsible for trust negotiation task in our agent-based trust

management infrastructure. During the two-stage trust negotiation process, when the Ser-

vice Control receives a request for access to a resources, it consults with the security agent

and concludes that trust negotiation is needed, then delegate the task to the trust negotia-

tion agent. Then the trust negotiation agents from both sides will check whether the trust

negotiation strategies required by the trust policy can be found locally. If the client cannot

find a compatible one locally, its trust negotiation agent will request download the security

capsule for the trust strategies from the host. When the trust strategies are present with the

security capsules and ready for use, the trust negotiation agents will start to execute the ne-

gotiation process and begin exchanging credentials, which is guided by the trust negotiation

strategies. The general trust negotiation process is illustrated in Figure 4.7.

As illustrated in Figure 4.7, the client most times needs to download the trust negotia-

tion strategies. Therefore, the trust negotiation agent needs to maintains a reliable download

protocol in addition to the trust negotiation protocols. All these protocols should be com-

patible with the vocabulary and semantics of the trust control policies and trust negotiation

strategies, which are usually defined using the policy languages.

4.2.3 Trust Maintenance

Besides an effective trust negotiation scheme, the next important research is to ensure trust

maintenance after trust relations are established. In pervasive computing systems, because

the nodes are moving in and out the computing space constantly, this dynamic characteristic

requires mighty trust maintenance schemes to guarantee that the established trust is not

abused.

The proposed trust maintenance and management module is composed of several col-

laborative components (Figure 4.8), which resides on different computing devices and

works in a on-demand-assembling fashion to fulfill the security demand of certain ser-

vices. Some of the components identifies a user, monitors its behavior to detect potential

threats and intervenes the service execution; while others manage the established trust in a

66Trust Synchroni-zationTrust Rating ManagementTermination ServiceAttack Responding Activity Monitoring/LoggingBehavior InspectionUserIdentification
Repairing

DynamicTrust Policies Situation Sensor
Figure 4.8: Trust Maintenance and Management

distributed manner.

Trust synchronization component keeps the trust repositories on different virtual servers

up-to-date. To ensure the system stableness and reliableness, one pervasive computing

space may adopt multiple virtual servers running at the same time, each virtually providing

all available services. These proxies may host trust establishment with several clients at the

same time. Since there is high probability that a newly enrolled client may immediately

access other services residing in the same space, the client profile on each virtual server

needs to be synchronized with each other to avoid the client repeatedly negotiating trust

with these services.

Trust rating component uses incentives that reward good behaviors while punishing

bad ones. Trust rating system provides a feedback interface for each service to evaluate

the client’s behavior in the transaction when the service session is completed. Besides the

service’s evaluation, a client’s rating score is also adjusted by the virtual server’s monitoring

component. The rating score is distributed in the system repositories. The client may also

request a copy of its rating certificate signed by the pervasive computing space and keep it

67

as a future credential for other services. Correspondingly, a low trust rating of a client can

have negative effects on its future resource accessing or even result in the shut done of the

ongoing service.

To cut the realtime-detected malicious users from further endangering the system, ter-

mination service is designed to shut down an ongoing service session, under the circum-

stance that one’s trustworthiness remarkably declines to an unacceptable level during the

service session. The trust level drop may result from an abnormal behavior, detected by the

behavior inspection component, or from user identification component suggesting that the

client tries to hide its dishonest history. Because the termination service shuts down on-

going services, which can seriously affects service quality if the user is innocent, it should

only be called with high enough confidence.

Complete prevention of bad behavior is be infeasible. When the system is compromised

or damaged, the attack responding and repairing components are activated to minimize

the loss. When the attack comes from a client, the responding and repairing components

immediately shut down its service and build up a special profile for the attacker, including

its conventional behavior and preferences, for future identifying the attacker again and

even further lawsuit purposes. If the attack is from an ill-behaved service, the responding

and repairing components notify all distributed virtual servers to block it from clients and

perform further inspections.

Because pervasive computing environments involve very dynamic population, it is dif-

ficult to identify a user or her devices. Attackers can change its identity after its reputation

(in terms of trust rating scores) has fallen lower than initial value [24]. We propose a user

identification component to address this issue to recognizing a user. The user identification

component is designed based on the assumption that every user behaves uniquely during

a connection session. The hours of day one usually comes, the displaying devices one

prefers, the networking traffic compositions, the preferred access point (may suggest pre-

ferred position/location), the service set one uses, the temperature one prefers and so on,

68

all the information together can uniquely identity a user. Our user identification component

creates profiles for each detected ill-behaved device and its user, with a matrix of the user

preferences. When a self-claimed newcomer is trying to enter the pervasive computing

space, a signature based inspection will be applied to the matrix of every attacker profiles.

A dishonest veteran that claims itself as a newcomer will be denied for further services.

To recognize dishonest behavior that tries to harm the system and to support trust rat-

ing component’s evaluation, the activity monitoring and logging component is dedicated to

track user behavior and log this information for further inspection and evaluation. The de-

signing principle of activity monitoring component is to make the logging information thin

and efficient. To keep the logging database thin, only critical activities such as login fail-

ures should be stored for a reasonably long time (e.g. one year). Other logging information

will only stay in the repository for a short time and then be deleted.

Based on the logging information collected by activity monitoring component, behav-

ior inspection applies both abnormality based and signature based inspection methods to

recognize security breaches. For example, if a supermarket customer is exploring the RFID

product querying system by scanning hundreds of items per minute, the abnormality anal-

ysis engine on activity monitoring component will generate an alarm, indicating the cus-

tomer is behaving abnormally. This alarm may be applied to reevaluate client trustworthi-

ness as a feedback to the trust rating management component.

Trust maintenance and management components may be physically residing on dis-

tributed computing devices, collaborating to provide trust support. Though the trust main-

tenance as a whole is a on-demand-assembled component in the architecture, its subcompo-

nents are themselves optionally re-combinable. According to the requirements of a service

session, these subcomponents will aggregate to form a trust maintenance component to

fulfill the security demand.

69

4.3 Trust Propagation

The previous section discussed the establishment of a trust relation. In this section, we

will focus on how an existing trust relation can propagate on the trust graph and be utilized

by third parties other than the trustor and trustee. In distributed service infrastructures, a

single node’s observation on one specific trustee is not sufficient to make a decision. Even

sometimes there are no existing direct trust relation between the trustor and trustee before

they start a transaction. Therefore trust propagation is needed to calculate the trustee’s trust

value based on the trustor’s local trust graph.

Trust propagation includes two aspects: concatenation and aggregation. Concatenation

is the process to generate a trust value along one single trust path, starting from the trustor

all the way to the trustee. Aggregation, on the other hand, combines the evaluation results

of different trust paths and derives the final results of trust evaluation.

4.3.1 Desired Properties of Trust Propagation

Before proposing a trust propagation algorithm, we first discuss the following desired prop-

erties that a trust propagation approach needs to satisfy:

• When there is only a single trust path, the result of trust propagation should not

be more than any of the trust values along the path. As shown in Figure 4.9, the

calculated result of the first diagram should be no more than CoRA−B, which is the

smallest trust value along the single path.

The meaning of this property is that a propagated trust should not have higher trust

value than any of the intermediate trust value. Otherwise it would be overconfident

on some entity according to the intermediate recommendations.

• When there are multiple trust paths, the result of trust propagation should be no less

than that of the case when only the worst trust path exists. As shown in the second

diagram of Figure 4.9, the evaluation result of left trust graph should be more or

equal than the value calculated only from path S-A-D.

70

S B D1

Property 1: For single trust path, Result <=Min (CoRi, DT)DTA 0.80.9
CoRCoR

S

B

D
1

A

1

0.1 1

Property 4: The increase of a good recommender’s CoR will
not decrease the Result, if the good recommender is making
perfect positive recommendation: ResultLeft<=ResultRight

S

B

D
1

A

1

0.2 1

S

B

D
1

A

0.9

-0.5 0.3
S

B

D
10.9

Property 5: A bad recommender’s recommendation should
not affect the Result: ResultLeft=ResultRight

S

B

D
1

A

0.8

0.1 0.7

Property 2: For multiple trust path, the Result should be no
less than the case when there is only the path with worst
result: ResultLeft>=Min(ResultRight-Up, ResultRight-Down)

S DA0.1 0.7

S DB0.8 1

S

B

D
1

A

0.8

0.1 0.7

Property 3: The more trustable node's recommendation
should take more weight than less trustable node.

Figure 4.9: Desired Properties for Trust Propagation Algorithm

71

This property comes from the understanding that more positive evaluation of trust

will not decrease the final trust value by combining them with the existing evaluation.

• When there are multiple trust paths, the recommendation of more trustable node

should take more weight than that of less trustable node. In the third diagram of

Figure 4.9, the path S-B-D should take more weight than S-A-D, since B is more

trustable than A in the view of S.

The underlying principle for this property is simple: the more reliable the source is,

the more weight it takes in the final consideration.

• The increase of a good recommender’s CoR will not decrease the result of trust prop-

agation, if the recommender is making a perfect recommendation. In the fourth dia-

gram of Figure 4.9, due to the increase of CoRS−A, the evaluation result of the right

trust graph should be more or equal than the left one.

This property simply suggests that when a recommendation node’s reliability is in-

creasing, its suggestion should not take the propagation result down if this suggestion

is perfect (with a trust value of 1). This simple but reasonable property can not be

fulfilled by many current trust propagation approaches.

• A recommender’s advice should not affect the result at all if the recommender is

not trustable. In the fifth diagram of Figure 4.9, due to the negative CoRS−A, A’s

recommendation has no value for S. So A’s recommendation should not affect the

result of propagation. The two trust graphs should have the same evaluation result.

An intermediate node with negative trust value suggests that the trustor does not

believe in it. Thus any recommendation from this node should not be considered.

There are some debates on whether we should take this intermediate node’s recom-

mendation in the opposite way or should we simple ignore it. We think ignoring this

distrustable recommendation is more similar to human behaviors: although your en-

72

S

A

B

E
D

0.8

0.2

0.8
0.9

-1

DT

F

C

0.9

0.5

0.6

0.8

0.6

0.12

0.8 0.72
0.45

TrustS-D=RPD=(WE*DTE-D+WF*DTF-D)*Max(RPE, RPF)
WE=

RPE + RPFRPE WF= RPE + RPFRPF
Figure 4.10: Trust Propagation Example

emy’s enemy could be your friend, people usually do not rely on the enemy’s words

to find out if someone is your friend.

4.3.2 Trust Propagation Algorithm

In this section we propose an algorithms to calculate the trust value along the trust paths.

This algorithm should meet the properties discussed above. First we need to generate a

subgraph from the local trust graph of the trustor, which contains all paths connecting the

trustor to the trustee. Different DTs generate different subgraphs. The last hop of the trust

paths must be a DT while the rest are CoRs. An example is shown in Figure 4.10. Node E

73

and F have direct trust on node D. Their opinions can be opposite to each other. Also node

S also has its CoRs pointing to E and F indirectly, suggesting how E’s and F’s opinions are

trustable. We use this subgraph as an example to discuss our proposed trust propagation

algorithm. The algorithm combines the trust values (CoRs and DTs) to yield the trust value

of node D in the view of S.

Figure 4.11 presents the pseudo code for our trust propagation algorithm based on mod-

ified weighted addition (A simple weighted addition formula can easily be shown that it

does not satisfy all the above properties). We define an attribute named Recommendation

Point (RP) for every node in the graph (underlined numbers besides each node in Figure

4.10). The RP of one node represents its recommendation validity in the view of node S.

Thus S’s RP by default is 1. The trust value propagation algorithm is the procedure for S

to calculate other nodes’ RP from S all the way to D. In this algorithm we simply treat DT

the same way as we do for CoR, unless specifically pointing out. A node’s RP is calculated

as follows:

• When there is only one single edge pointing to the node, this node’s RP is calculated

by multiplying the previous node’s RP and the trust value of the CoR. For example,

RPA = RPS ∗CoRS−A = 1∗0.8 = 0.8.

• If there are multiple edges pointing to a node, this node’s RP is calculated as follows.

First we check if the trustors of these CoRs are of same distance from node S. If

they are not, we simply ignore the CoRs from nodes who are further away from S.

This “shortest path dominance" rule comes from the intuition that people puts short

links over long ones when taking recommendations. Our simulation discussed later

shows this assumption is reasonable. In Figure 4.10, to calculate node C’s RP, we

see that both node S and A have CoR pointing to C. However, since A is one hop

away from S while S is 0 hop away from itself, the opinion of A is simply ignored.

So RPC = RPS ∗CoRS−C = 0.6.

74

Function CalcRP(nodeD){ If (nodeD==nodeS)return 1;Find all the nodei satisfying the following conditions:1)nodei trusts nodeD and2)HopsBetween(nodeS,nodei) equals to the minimum hopsbetween nodeS and any nodeiFor all the found nodei do{ Wi=CalcRP(nodei)/(CalcRP(node1)+…+CalcRP(noden));}RPD=(W1*Trust1-D+W2*Trust2-D+… +Wn*Trustn-D)*Max(CalcRP(nodei));If(RPD<0){ For all TrustD-jDelete TrustD-j from the trust graph}return (RPD);}� NodeS is the node calculating the RP.� Trusti-j=the trust value that node i trusts node j, can be CoR or DT� HopsBetween(A,B) calculates the shortest hops between node A and B
Figure 4.11: Pseudo Code for Trust Propagation Algorithm

75

• If one node’s RP is negative, its opinion will be ignored. This is in consistent with

Property 5 in Figure 4.9. As a result all the edges starting from this node with neg-

ative RP will be deleted from the trust graph. This does not mean that the trust

relations with negative trust values should be deleted. A negative CoR does not nec-

essarily imply the trustee of this CoR will have negative RP, especially when there are

multiple nodes which put positive reviews on this trustee. In such cases this trustee’s

recommendation is still useful as long as its calculated RP is positive.

• If there are multiple trust paths to a node with the same shortest length, we use the

following algorithm to combine them for calculating its RP: first we do a weighted

addition of all the CoR values, with the RPs of the previous hop nodes as the weight;

then this result is multiplied by the maximum value of the previous hop nodes’ RPs.

For example, to calculate the RP of node D, we first add the two DT values from

node E and F, with the RP of E and F as the weight; then the result is multiplied by

RPF , since it is bigger than RPE . Finally when we reach the trustee D, the resulted

trust value is the RP of D (TrustS−D = RPD).

Using the examples in Figure 4.9, it can be shown that the algorithm satisfies all the

properties in the figure. Also it can be seen that our approach does not endorse the notation

that enemy’s enemy is a friend. This notation would be true from the view of a probability

model. Compared to many current trust propagation algorithms, this modified weighted

addition algorithm can fulfill the desired properties we present above.

4.4 Threat Models and Simulation Results

In this section we will evaluate the performance of our system in a distributed service envi-

ronment. We will analyze several strategies that malicious entities can use to compromise

the trust relationships in the environment and evaluate the performance of our trust model

against these attacks.

In our simulation, we build a service-oriented computing environment, with a total of

76

Total number of
nodes 50 Service nodes 10

Malicious client
nodes 6, tunable Malicious service

nodes 4, tunable

Base reward
amount (RWD) 0.1 Base penalty

amount (PNT) 0.25

Forgetting factor 0.99 Trust threshold 0.7

Rate that a good node is providing unsuccessful service 5% Convergence controlling factor (CVG) 0.1

Figure 4.12: Simulation Parameters

50 nodes, 10 of which are service nodes (Figure 4.12). These service nodes can provide

up to 5 different types of services. While each service can be provided by multiple nodes,

every single service node can also provide multiple services. The default number of bad

nodes within the system is set to 10, 4 of which are service nodes and 6 are client nodes.

The number of bad nodes is tunable in our simulation in order to test the robustness of our

trust model against large number of malicious nodes. The base reward (RWD) and penalty

(PNT) amount for a transaction is set as 0.1 and 0.25 respectively and the forgetting factor

is set to 0.99. The threshold trust value for a node to be regarded as “trustable" is 0.7. In

our simulation, we make the good service node having 95% chance to perform successful

transactions, while the bad node will act differently in different attack scenarios.

In the following subsections, we will analyze our simulation results and discuss the

impact of simulation parameters’ variations on the results.

4.4.1 No Trust Model

When there is no trust model, the bad service nodes simply do unsuccessful transactions

while the good ones perform successful transactions with a high possibility (95%). A client

has to randomly pick up a service provider that can do the transaction it needs. The simu-

77

lation result shows that the transaction success rate is decided by the number of malicious

service nodes and their coverage of service types. When there is no bad service node, the

success rate is 95%. If the services nodes are all malicious, the rate goes down to 0%. In

our simulation set-up, when 4 service nodes are malicious in the default setup, the success

rate varies around 60%, depending on the distribution of these bad nodes among different

service types. More detailed data are shown in Figure 4.13, for different configurations.

4.4.2 Simulation Result of Our Trust Model

In this subsection, we discuss the simulation of our trust model under a simple malicious

environment. We assume the bad nodes act independently: a bad service node simply does

unsuccessful transactions for others, and a bad client simply gives useless references for

others.

4.4.2.1 Transaction Success Rate

We initialize the system with zero trust value between the 50 computing nodes, which

means there is no pre-established trust relation at the beginning. So for the first few trans-

actions, the clients have to do a blind guessing to select a service, without knowing whether

the service node is good or bad. But when more service transactions are made, more trust

relations will be established and the trust graph is becoming more and more stabilized. The

simulation shows that after about 2000 service transactions are made, the system reaches a

stabilized state and the transaction success rate becomes stable. The observed stable trans-

action success rate is around 94%. This suggests that even if 4 out of 10 service nodes

are malicious, our trust model can help clients to reach a high transaction success rate. In

the following discussions, the transaction success rates are all collected after the system

becomes stable, unless specified otherwise.

Figure 4.13 shows the simulation result of our trust model, compared with the case

when there is no trust model. First we did a simulation when all 10 service nodes are

providing the same type of service. As shown in the figure, when the number of bad service

78

Transaction
Success Rate

20%40%60%80%100%

Number of Bad
Service Nodes

95.0

0 1 4 6 9 10

95.0 84.694.7 94.4 94.2 94.2
54.0 35.1 8.3

No Trust ModelOur Trust Model
1 Service Type, 10 Service Nodes

Transaction
Success Rate

20%40%60%80%100% 95.0

0 1 4 6 9 10

95.0 84.994.6 94.2 82.7
38.463.0 40.2 11.5

No Trust ModelOur Trust Model

5 Service Type, 10 Service Nodes

Number of Bad
Service Nodes

Result variation due to different bad nodes distribution over service types
Figure 4.13: Simulation Results With Our Trust Model and Without a Trust Model

79

nodes are growing, the possibility that a client can receive a good service is going straight

down if there is no protection from our trust model. But with our trust model, the services

can maintain a very high success rate (around 94%) even though 9 out of 10 of the service

nodes are compromised. The transaction success rate is close to 95% because the good

nodes have a 5% possibility to make unsuccessful transactions. This suggests that our trust

model is robust in tough environment: even when there is only 1 out of 10 service nodes is

functioning correctly, our model can help most computing nodes to find that service node.

To further test our trust model, we simulated the system with 10 service nodes providing

5 different type of services, thus 5 different types of DTs are used. The simulation result

for small number of bad nodes is similar to the result where all service nodes are providing

one type of service. But as the number of bad nodes is growing, the simulation results show

some variations from simulation to simulation, as shown in second part of Figure 4.13. The

variation comes from the fact that the bad nodes’ distribution over service type is different.

For example, 4 malicious nodes could cover 100% of one type of service, which makes all

transactions of this type of service fail, no matter whether or not a trust model is used. Still

our trust model can clearly help the system to achieve a much better overall transaction

success rate. For easier presentation and discussion purpose, in the following sections we

will analyze the simulation results based on one type of service, unless specified otherwise.

4.4.2.2 Service Load Balance

Besides the transaction success rate, the load balance among service nodes is also an im-

portant factor that affects the system performance for most trust based systems. When a

trust based system selects a service node among several service providers, if the node with

highest trust value will be always selected, eventually one node will accumulate all the

trust and gets all the service requests. This will cause a highly unbalanced load for service

nodes. In an ideal situation, the service load should be distributed equally to all the good

service nodes so that no one is exhausted due to a high load.

We introduced an balancing scheme into our trust model that sacrifices potentially a

80

20%
40%
60%
80%

100%

Percentage of
Transaction Made

Service
Node ID0 3 4 5 6

0%
2 8 971

With balancing
scheme

Without balancing
scheme

Figure 4.14: Transaction Balance among Service Nodes

small amount of transactions by not selecting the best available node all the time. This

would avoid dominance of a few good service nodes, and give new good service nodes a

chance to increase their trust values. In our balancing scheme, when several services are

available for one transaction, we will first calculate the trust value of these service nodes.

Then we look up those nodes whose trust value is higher than the predefined threshold

and refer them as “trustable" nodes. Next, if there is any trustable node among the candi-

dates, we have a 95% chance to select the service node from those trustable nodes, with

a probability proportional to their trust value: the higher trust value, the bigger chance to

be selected. For the other 5% chance, we will select one node from the nodes that are not

trustable, also according to their trust values. But if there is no “trustable" node, we will

select from all the nodes, again with a probability proportional to the trust value.

Figure 4.14 shows the simulation result of load balance of our balancing scheme: the

white bar represents transaction load when our scheme is applied, while the dark bar depicts

when there is no such scheme. In both cases the bad nodes (node 2 3 6 8) have low

transaction load, which is consistent with the overall high transaction success rate. This

81

20%
40%
60%
80%

100%

Transaction
Successful Rate

Percentage of time
when attacker is
doing successful
transactions

10% 30% 50% 70% 90% 100%

94.4 94.5 94.1 94.4 93.2 97.5

Figure 4.15: Simulation Results for On-Off Attack

figure also shows that our balancing scheme successfully helps the system distribute the

transaction load almost equally among the good service nodes. We have performed similar

balance simulation on the various attack models discussed later and the results show that

our balancing scheme can help balance the service load in all the attack scenarios.

4.4.3 On-Off Attack

In the following sections we are going to discuss several attack models. In these attack

models, the attackers are not simply uncooperative. In addition, they try to hide them-

selves among the good nodes to avoid detection. We divide their attack scheme into several

categories, analyze the attack and present our simulation result.

The first attack scenario we will discuss is the on-off attack. In an on-off attack, a

bad node will try to hide itself into the crowd and only do bad transactions occasionally,

i.e. switching attack mode on and off. By doing this, the attacker is trying to confuse the

trust model by making the node performing trust evaluation frustrated since our trust model

is based on observation. In our simulation, we fix the number of malicious nodes (4 bad

service and 6 bad clients) and tune the percentage of time that the bad nodes do good things

in order to hide themselves.

82

The simulation results (Figure 4.15) show that the transaction success rate remains

higher than 93% no matter how much percentage of time the attackers try to behave good to

hide themselves, which suggests that our model is highly resistance against on-off attack. In

Figure 4.15, the simulation result of attackers being 90% of the time good is slightly lower

than the others. The reason is that our trust model could not effectively help the clients

recognize the bad nodes when they hide deep enough. However, the overall transaction

success rate still remains high since the attackers can not effectively damage the system

by hiding too deep (i.e being good most of time). When the attacker performs success

transactions with a rate higher than 95%, the observed transaction success rate is even

better than where there is no attacking model, because the attackers are behaving even

better than the supposed good nodes (with 95% success rate).

4.4.4 Independent Bad Mouthing Attack

The second attack scenario we will discuss is called independent bad mouthing attack.

In an independent bad mouthing attack, the bad node (either client or service) will try

to compromise the trust system by giving negative trust value to the good nodes. The

attacker is expecting to compromise the trust propagation algorithm by adding negative

CoRs and DTs into the trust graph. This attack scheme is by natural defeated by our trust

model because these malicious nodes will have negative CoRs if they always give useless

evaluation. The honest nodes will eventually ignore the opinion of malicious nodes’ bad

mouthing. Our simulation result shows a transaction success rate of 95% in the default

parameter set-up. When we tune the number of malicious nodes higher than the default

set-up, the observed transaction success rate remains stably 95%. As we discussed, this

independent bad mouthing attack is naturally defeated by our model. But if the attackers

can form an alliance and attack the system by gossiping the set of good nodes together, it

can create a threat.

83

20%

40%

60%

80%

100%

Transaction
Successful Rate

Number of
Bad Nodes5 10 20 40

95.1 95.1 94.8 94.6

Figure 4.16: Simulation Results for Collaborative Bad Mouthing Attack

4.4.5 Collaborative Bad Mouthing Attack

In this attack scenario, we assume that the bad nodes can cooperate by giving positive

reference to each other, while giving negative reference to the good ones. As expected, it is

harder to defend than the independent badmouthing attack because once a node accidentally

trusts a bad node, the collaborative bad nodes will eventually lead her to a bad service over

their malicious references network.

In our simulation, we gradually increase the number of bad clients nodes to test the

robustness of our trust model against multiple attackers. The simulation results show a

strong resistance of our trust model against the attack. As shown in Figure 4.16, our model

achieves 95% transaction success rate, a perfect resistance to this attack. Even when the

malicious nodes are dominating the computing system (40 out of 50 client nodes are at-

tackers), the trust model still generates a very high transaction success rate of 94.6%.

84

4.4.6 Conflict Behavior Attack

The last and most sophisticated attack scenario is the conflict behavior attack. In such attack

scenario, the malicious service node will behave well (perform successful transaction, give

correct recommendation) to a subset of the nodes while behaving badly to the others. By

doing this, the attacker is trying to develop opposite opinions among these two sets of good

nodes in order to confuse them and finally to compromise the trust system.

The simulation is done under our default parameter setup, with the number of mali-

cious nodes tuned. In addition, we divide the good nodes equally into to two subsets: one

will always receive good services from the malicious service nodes and one will receive

unsuccessful service transactions. Our simulation result is displayed in Figure 4.17. The

observed transaction success rate shows a strong resistance of our trust model against con-

flict behavior attack, especially when the number of bad nodes is low. When the bad nodes

becomes dominating the system, the good ones will have harder times to find the right ser-

vice, but still with a transaction success rate over 85% even when majority of the nodes

are maliciously forwarding bad recommendations. The observed transaction success rate

is higher than when there is no attack model because the malicious nodes are sometimes

performing good transactions, which helped enhancing the overall success rate.

4.4.7 Simulation Results for Variations on Trust Calculation Scheme

In our simulations, when our trust system is stabilized, the trust graph becomes a saturated

graph where every single client has one DT to every service node. According to our trust

calculation scheme (where shortest path has priority), at this stage the trust value calcula-

tion are mostly relied on the DTs. This is because we ignore the longer trust path when

there are shorter ones. Obviously when there is a DT existing between the trustor and

trustee, any CoR will be ignored because it will only lengthen the trust path. So when a

system is running for long enough time, the trust value will be stabilized and CoR will be

seldom used to calculate the trust value.

85

20%

40%

60%

80%

100%

Transaction
Successful Rate

Number of
Bad Nodes5 10 20 30 40

97.7 95.8 90.2 86.8 85.2

Figure 4.17: Simulation Results for Conflict Behavior Attack

Though CoR may seem to be useless in such scenario, it is not true when it comes to the

real pervasive environment, where the computing nodes are mobile and population of the

system is dynamic. The simulations conducted above assume a static enclosed environment

where computing nodes can not enter or leave the system. We need to further investigate

our trust model in the dynamic environment, where the system might not become stabilized

before some computing nodes are joining or leaving the system. Our expectation was that

CoR would play an important role in such a scenario due to the system’s immature nature.

To investigate the impact of CoR and make our trust model complete, we design several

schemes for trust evaluations:

• Scheme 1: DT only. In this scheme, no CoR will be used. All trust evaluation is

only based on the direct trust relation. That is, when a good transaction happens, the

client will reward the service node with some DT increment, while penalty will be

given to service node doing bad transactions. For consistence, the way they reward

and penalize a DT is the same as the other schemes. No recommendation will be

made in this scheme, so there is no CoR involved.

86

20%

40%

60%

80%

100%

Transaction
Success Rate

No Attack
Model

On-Off
Attack

Independent
Bad Mouthing

Attack
Collaborated
Bad Mouthing

Attack
Conflict
Behavior
Attack

Scheme 1: DT onlyScheme 2: Shortest path priorityScheme 3: Shortest path and second shortest path94.793.9 92.8 94.393.787.1 90.7 89.6 92.288.985.9 91.0 85.7 93.187.3

Figure 4.18: Comparison on Variations of Trust Calculation Scheme (Dynamic Environ-
ment)

• Scheme 2: Shortest path priority. In this scheme, CoR will be taken into considera-

tion. However, only the trust path with shortest length from the client to service node

will be considered. This implies that when the system is running for long enough

time and become stabilized, the CoRs will be ignored since there will be DTs be-

tween almost every pair of client and service nodes. This is the scheme that we have

described and used.

• Scheme 3: Shortest path and second shortest path. This scheme is similar to Scheme

2. The only difference is that, when we calculate the trust value of one node, we

will consider the trust path that is shortest and the path that is only one hop longer

than the shortest path. This will enforce the client to combine more trust relations,

especially CoRs, even when the system is stabilized.

First of all, we simulated all the three schemes under all the attack models we dis-

cussed in the static environment, where no node is joining or leaving the environment. The

87

simulation results show that all schemes can generate a very high transaction success rate

over 90% under all the attack models. In other words, when the system is stabilized, most

computing nodes can recognize the bad nodes no matter which scheme the trust model

uses.

Then we simulation in the dynamic environment to study these above three schemes. In

the dynamic environment certain percentage of nodes are constantly flowing in and out of

the system. We tune the environment such that the nodes are not flowing too fast (otherwise

most nodes do not have enough time to establish trust with the newcomers before next

group of nodes flows in), or too slow (otherwise it will be the same as a static environment).

In such a dynamic environment, it is harder for a client to find a good service because it will

be more common that either the client or the service node is new to the system. Figure 4.18

shows the simulation result for such a dynamic computing environment. From this figure

we can see that the schemes with CoR involved (Scheme 2 and 3) has higher transaction

success rate than that with no CoR (Scheme 1). This demonstrates that CoR is useful to help

the system to achieve stabilized state. Also result of Scheme 3 is slightly better result than

that of Scheme 2, but the difference is marginal. This suggests that our scheme of choosing

the shortest trust path over longer ones is acceptable, while it reduces the computation

overhead at each node.

4.4.8 Simulation Summary

Our simulation results show that our trust model can greatly improve the total transaction

success rate in a system with malicious nodes. Our model can achieve an almost perfect

success rate even if the computing system is dominated by malicious nodes.

When the malicious nodes starts to take strategies to avoid being detected, the simu-

lation shows that our trust model is very robust against these attack strategies. When the

number of malicious nodes is not prevalent in the computing environment, our trust model

can achieve a almost perfect transaction success rate. When the bad nodes are becoming

dominate in the system, our model can achieve considerable mitigation and greatly help the

88

computing nodes finding the best available service in such situations.

CHAPTER 5: RELATED WORK

This work is related to many research areas, including access control, authentication &

identification, privacy protection and trust management in distributed systems. Much work

has been done in each of these areas, and it is impossible to cover all of them thoroughly in

this chapter. In the following, we describe the work most related to ours, especially in the

field of authentication in RFID systems, user identification in decentralized systems, trust

modeling and management.

5.1 Authentication in RFID Systems

Many cryptographic protocols [19, 29, 32, 36, 57, 61, 66, 77] have been proposed to ad-

dress the privacy issue. They deploy relatively cheap implementation such as exclusive-OR

and one way hash function on tags to achieve secure identity reports. Most of the proposed

protocols address the threat of eavesdropping and physical attacks receive very few consid-

erations.

A secret key based protocol is proposed in [57], which mainly deals with the threat of

eavesdropping. In this protocol, every single tag pre-shares a secret with the reader system.

When the tag receives a query, it will first generate a pseudo random mask with this secret

key, apply the mask to its real ID and send it back to the reader. The reader will use this

masked ID to locate a corresponding entry in its backend database and authenticate itself to

the tag if necessary. This protocol (and many other following approaches [29, 32, 66, 77])

perfectly resists eavesdropping by using a shared secret to a pseudo random function to

generate a response that can not be reversed without knowing the secret.

A token based approach named minimalist cryptography is proposed in [36], which

is similar to our scheme. This approach follows a token reuse scheme that a token is

90

not discarded after unsuccessful authentication but only recycled to reuse again. Token

reuse scheme does not suffer from token exhaustion due to unexpected queries. The main

potential threat of this scheme is that an attacker can send a few queries to obtain all the

tokens on a tag and use these tokens to track this tag until the tag meets a legitimate reader

again. In our proposed scheme, every token is used only once and we use several ways, as

discussed in Section 3.1.3.2, to handle unintentional normal queries

The hash-chain protocol [61] is proposed to achieve Level II resistance (As we dis-

cussed in Chapter 3.1.2.1) to physical attacks. When the tag receives a query, it hashes

a shared secret with two different hash functions and replaces the secret with its hashed

result. The tag returns the current hashed value on its hash chain back to the reader as an

authenticator. The backend database performs the same hash functions on its entries for

each tag to find a match and recognize the tag. Though this protocol has scalability prob-

lems, a subsequent approach [19] called time-memory trade-off is proposed to improve

the performance. The hash-chain scheme can resist eavesdropping, message hijacking and

physical attacks at resistant Level II only.

Our research was motivated by the potential threat of physical attacks. We propose an

approach to address this issue while resisting eavesdropping and message hijacking, which

was achieved by most current schemes. We adopt a token based scheme to provide a means

for the database to recognize the tag while minimizing the impact of tracking a tag by this

necessarily shared information. Our proposed protocol resists physical attacks and other

forms of attacks such as eavesdropping.

5.2 User Identification in Decentralized Systems

There are many research groups conducting studies on user identifications. Some of them

are using authentication technologies [58, 82], in which users provide the system with pre-

shared common secret to prove its identity. This research area has been thoroughly studied

since cryptography is introduced. But authentication technology does not well fit in our

user identification challenge because 1) a user’s authentication key can be compromised

91

and thus his/her identity can be stolen and 2) for convenience purposes, many pervasive

systems do not even require mandatory authentication.

There are some identification studies based on biological and behavioral techniques. In

[21, 64] researchers propose approaches to identify a user by recognizing its typing pattern

via keystrokes. The smart floor project [62] use special techniques to identify users by their

footstep force profiles. These studies are still progressing on better identification of users,

but only biological and social behavior based identifications are insufficient for recognizing

a user in pervasive computing environments.

The Honeynet Project [4] proposes a scheme of setting traps to detect and deflect at-

tempts at unauthorized use of information systems for better countermeasures. A Honeypot

sets up a virtual environment to trap malicious users to study and analyze their behaviors

to better know the enemy. Instead, our system monitors the user behavior in a real com-

puting environment. We analyze the their behaviors to establish malicious user profile to

recognize suspicious users in the future.

Intrusion detection technologies [3, 5, 10, 11] are very widely adopted to monitor mali-

cious behaviors. The difference between our approach and intrusion detection technologies

is that IDS only collects malicious user signatures, while our approach also logs normal sys-

tem events as user behavior signatures. Thus IDS can only detect an attack when it happens,

but our approach can provide an early warning before the actual attacks starts. Moreover,

on the perspective of trust management, an IDS treat trust as a binary relation: either trust

or distrust. Our user behavior identification approach, instead, treat trust as a continuous

variable. The detected suspicious behavior of a user is different than confirmed malicious

actions detected by IDS, which may not deserve a remarkable trust level degradation.

5.3 Trust Modeling and Negotiations

Many researchers follow the real life intuition that trust is a probability [39, 73, 74] that one

can expect the other to behave properly. The advantageous of treating probability as trust is

obvious: trust has a physical and mathematical meaning, i.e. the expectation for the event

92

to happen based on previous observations. But simply putting an equal mark between trust

and probability makes it hard to fulfill some basic properties that a trust relation should

have. For example, an event taking place recently should have more effects on the trust

evaluation than that happened long ago. Since probability inherently has to treat every

event equally, it has to compromise the physical meaning to make the model practical.

Besides the probability based models, there are many other approaches such as [35, 43]

that try to find out the intrinsic nature of the trust relation in order to find a proper way to

define and describe the relation. These approaches locate the desired properties that a trust

relation should comply with and try to propose a way to model trust to fulfill these prop-

erties. Simulation results of these approaches suggests that they are largely advantageous

than the system without a trust management. There is no systematical approach to address

the desired trust properties and provide a framework to fulfill them.

For those approaches that try to catch the properties of trust by intuition and then model

it in a mathematical way, there are many parameters that need to be tuned since there is no

strict math foundation for these approaches. The best parameters may change with the

application scenarios, such as the population level, malicious user proportion, and many

other application factors. We believe it is a better practice to let trust management system

to intelligently decide these parameters dynamically during run time. We will investigate

this issue further in our future research.

Most approaches in the literature evaluate trust based on the best available information

collected by the trustor, which is only a subset of the global trust information. The approach

in [39] proposes to calculate the trust value in a centralized view, using the global trust

information. Though in many application scenarios, it is too luxurious to have such global

information, it still can be acquired in some applications with centralized control. On the

other hand, users may be more interested for personalized, distributed trust which can be

more useful to users’ needs.

CHAPTER 6: CONCLUSIONS

Pervasive computing systems is becoming widespread as the next generation of com-

puting systems as the rapid growth of distributed and open infrastructures, including the

Internet, Grid, and wireless networks.

In such a computing environment, computing devices try to weave themselves into the

fabric of everyday life until they are indistinguishable from it. Most computation will

use resources on demand for communication, information retrieval, and computation, in

a manner of taking advantages of pervasive resources, instead of depending on personal

computing platforms. Physical and temporal boundaries will fade away and people can

access information transparently and freely.

Due to the open infrastructure of pervasive computing spaces, to provide security and

trusted coalition is different than traditional static infrastructures such as the Internet. In

pervasive computing systems, supporting efficient and trusted dynamic coalitions without

security and privacy violations is challenging due to the difficulties of limited resources,

dynamic population, wireless communication and so on.

In this thesis, we present a trust supportive architecture to address these challenges and

secure the pervasive computing systems. We elaborate our reconfigurable trust frameworks

by concreting identity and trust management components. Specifically, we resolved the

user authentication challenges in low-cost RFID systems against various attack models

including physical attack. We propose a user identification model to help detect a user’s true

identity without the help of registration. We define a trust model in pervasive computing

context and propose trust propagation methods and algorithms to achieve successful trust

management.

As we mentioned before, the full deployment of trust support depends on the resolution

94

of many challenging problems. In our future work in this area, we plan to explore the

following directions.

1. In pervasive computing systems, different applications may have different under-

standings of and requirements for trust and trust management. Synchronization between

components within the trust supportive framework might be a good start point of future

research. We plan to investigate the information exchange between trust establishment

module and user identification module. That is, when a malicious user is identified, the

trust module can take some response to lower the trust level of that user in accordance with

the user identification module’s judgment. We are expecting that this cooperative system

would generate a better result.

2. Our simulation for user identification is currently based on an attack-free dataset

collected by 100 normal users. Though this simulation proves that our user identification

model is functioning, further experiments need to be done in order to test how robust our

system is against attacker’s attempts to hide their identities. Theoretically an attacker can

perfectly hide her true identity if she can mimic the behavior of any known good user

with no doubt. But this can be very hard because human beings are unique in nature. We

plan to apply our model onto a dataset with more aggressive attackers and investigate its

performance.

Trust is a very critical component in pervasive computing systems. In this thesis, we

present a trust-supportive framework to address the security challenges and privacy con-

cerns to help unknown entities establish trust. With our on-demand-assembled security

components such as user authentication & identification, trust negotiation and maintenance

collaborating, we believe the pervasive computing system can become more secure and

privacy-friendly.

95

BIBLIOGRAPHY

[1] Boycott against clothes with rfid tags.
http://www.boycottbenetton.com.

[2] Boycott rfid enabled products.
http://www.boycotttesco.com.

[3] Cisco intrusion prevention system.
http://www.cisco.com/en/US/products/sw/secursw/ps2113/index.html.

[4] The honeynet project.
http://www.honeynet.org/.

[5] Mcafee intrushield.
http://www.mcafee.com/us/smb/products/network_intrusion_prevention/index.html.

[6] Protest against rfid.
http://www.spychips.com.

[7] Reality mining project at mit.
http://reality.media.mit.edu/.

[8] Rf-dump.
http://www.rf-dump.org.

[9] Rfc 3164 the bsd syslog protocol.
http://tools.ietf.org/html/rfc3164.

[10] Snort intrusion detection project.
http://www.snort.org.

[11] Symantec intrusion protection.
http://www.symantec.com/Products/enterprise?c=prodcat&refId=1005.

[12] Tamper lab.
http://www.cl.cam.ac.uk/Research/Security/tamper.

[13] W3c document type definition sites.
http://www.w3.org/TR/html401/sgml/dtd.html.

[14] W3c extensible markup language sites.
http://www.w3.org/XML/.

[15] Security technology: Where’s the smart money? The Economist, 2002.

[16] Y. Mass D. Naor A. Herzberg, J. Mihaeli and Y. Ravid. Access control meets public
infrastructure, or: Assigning roles to strangers. Proceedings of IEEE Symposium
Security and Privacy, 2000.

96

[17] R. Anderson and M. Kuhn. Tamper resistance- a cautionary note. Proceedings of the
Second Usenix Workshop on Electronic Commerce, 1996.

[18] G. Avoine and P. Oechslin. Rfid traceability: A multilayer problem. The 9th Interna-
tional Conference on Financial Cryptography, 2005.

[19] G. Avoine and P. Oechslin. A scalable and provably secure hash-based rfid protocol.
IEEE International Workshop on Pervasive Computing and Communication Security,
2005.

[20] C. Bodei, P. Degano, R. Focardi, and C. Priami. Authentication primitives for secure
protocol specifications. Future Gener. Comput. Syst., 21(5):645–653, 2005.

[21] M. Brown and S. J. Rogers. User identification via keystroke characteristics of typed
names using neural networks. International Journal of Man-Machine Studies, 1993.

[22] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transac-
tions on Computer Systems, 1990.

[23] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication.
ACM Trans. Comput. Syst., 8(1):18–36, 1990.

[24] D. Denning. Information warfare and security. Addison Wesley - ACM Press Books,
1999.

[25] E. Ferrari E. Bertino and A.C. Squicciarinii. Trust-x: A peer-to-peer framework for
trust establishment. IEEE Transactions on Knowledge and Data Engingeering, 2004.

[26] N. Eagle and A. Pentland. Eigenbehaviors: Identifying structure in routine. MIT
Media Lab Vision and Modeling Technical Report, 2005.

[27] N. Eagle and A. Pentland. Social serendipity: Mobilizing social software. IEEE
Pervasive Computing, 2005.

[28] N. Eagle and A. Pentland. Reality mining: Sensing complex social systems. Personal
and Ubiquitous Computing, 2006.

[29] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication for rfid sys-
tems using the aes algorithm. Workshop on Cryptographic Hardware and Embedded
Systems, 2004.

[30] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure of
bundles. Theor. Comput. Sci., 283(2):333–380, 2002.

[31] Alan Harbitter and Daniel A. Menascé. A methodology for analyzing the performance
of authentication protocols. ACM Trans. Inf. Syst. Secur., 5(4):458–491, 2002.

[32] D. Henrici and P. Muller. Hash-based enhancement of location privacy for radiofre-
quency identification devices using varying identifiers. Workshop on Pervasive Com-
puting and Communications Security, 2004.

97

[33] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling context information
in pervasive computing systems. Proceedings of First International Conference on
Pervasive Computing, 2002.

[34] G. Hulme. The threat from inside. Information Week, 2003.

[35] A. Josang and R. Ismail. The beta reputation system. Proceedings of 15th Bled
Electronics Commerce Conferece, 2002.

[36] A. Juels. Minimalist cryptography for rfid tags. Security of Communication Networks
(SCN), 2004.

[37] A. Juels and R. Pappu. Squealing euros: Privacy protection in rfid-enabled banknotes.
Financial Cryptography, 2003.

[38] A. Juels, RL Rivest, and M. Szydlo. The blocker tag: Selective blocking of rfid tags
for consumer privacy. Proceedings of ACM Conference on Computer and Communi-
cations Security, 2003.

[39] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for
reputation management in p2p networks. Proceedings of 12th International World
Wide Web Conference, 2003.

[40] J. Grand (Kingpin). Attacks on and countermeasures for usb hardware token devices.
Proceedings of the Fifth Nordic Workshop on Secure IT Systems, 2000.

[41] L. Lamport. Password authentication with insecure communication. Communications
of the ACM, 1981.

[42] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber. Authentica-
tion in distributed systems: theory and practice. SIGOPS Oper. Syst. Rev., 25(5):165–
182, 1991.

[43] Z. Liang and W. Shi. Pet: A personalized trust model with reputation and risk eval-
uation for p2p resource sharing. Proceedings of Hawaii International Conference on
System Sciences, 2005.

[44] Armin Liebl. Authentication in distributed systems: a bibliography. SIGOPS Oper.
Syst. Rev., 27(4):31–41, 1993.

[45] Hung-Yu Lin and Lein Harn. Authentication protocols for personal communication
systems. SIGCOMM Comput. Commun. Rev., 25(4):256–261, 1995.

[46] Z. Liu, R. H. Campbell, and M. D. Mickunas. Active security support for active
networks. IEEE Transactions on Systems, Man, and Cybernetics. Part C: Applications
and Reviews, 33(4), 2003.

[47] Z. Liu, T. Joy, and R. Thomson. A dynamic trust model for mobile ad hoc networks.
Proceedings of 10th IEEE International Workshop on Future Trends of Distributed
Computing Systems, 2004.

98

[48] Z. Liu and D. Peng. A secure rfid identity reporting protocol for physical attack
resistance. Journal of Communications, 2006.

[49] Z. Liu and D. Peng. A security middleware architecture for pervasive computing sys-
tems. Proceedings of 2nd IEEE International Symposium on Dependable, Autonomic
and Secure Computing, 2006.

[50] Z. Liu and D. Peng. True random number generator in rfid systems against traceabil-
ity. IEEE Consumer Communications and Networking Conference (CCNC), 2006.

[51] Z. Liu and D. Peng. Towards mobile user identification for trust support. Mobile
Intelligence: When Computational Intelligence Meets Mobile Paradigm, 2007.

[52] Z. Liu and D. Peng. User behavior identification for trust management in pervasive
computing systems. IEEE International Workshop on Future Trends of Distributed
Computing Systems, 2007.

[53] Z. Liu, D. Xiu, and D. Peng. Agent based automated trust negotiation in pervasive
computing environments. Handbook on Mobile and Ubiquitous Computing: Innova-
tions and Perspectives, American Scientific Publishers, 2007.

[54] Z. Liu, S. S. Yau, D. Peng, and Y. Yin. A flexible trust model for distributed ser-
vice infrastructures. IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, 2008.

[55] Ji Ma and Mehmet A. Orgun. Formalising theories of trust for authentication proto-
cols. Information Systems Frontiers, 10(1):19–32, 2008.

[56] D. J. Malan, M. Welsh, and M. D. Smith. Implementing public-key infrastructure for
sensor networks. ACM Transactions on Sensor Networks, 2008.

[57] D. Molnar and D. Wagner. Privacy and security in library rfid: Issues, practices, and
architectures. Conference on Computer and Communications Security CCS, 2004.

[58] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 1978.

[59] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication
in large networks of computers. Commun. ACM, 21(12):993–999, 1978.

[60] B. C Neuman and T. Ts’o. Kerberos: An authentication service for computer net-
works. IEEE Communications Magazine, 1994.

[61] M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic approach to a privacy
friendly tag. RFID Privacy Workshop, 2003.

[62] R. J. Orr and G. D. Abowd. The smart floor: a mechanism for natural user identifica-
tion and tracking. Conference on Human Factors in Computing Systems, 2000.

 99

[63] Dave Otway and Owen Rees. Efficient and timely mutual authentication. SIGOPS
Oper. Syst. Rev., 21(1):8–10, 1987.

[64] A. Peacock and M. Wilkerson X. Ke. Typing patterns: A key to user identification.
IEEE Security and Privacy, 2004.

[65] Government report. Radio frequency identification technology in the federal govern-
ment.
http://www.gao.gov/new.items/d05551.pdf, 2005.

[66] K. Rhee, J. Kwak, S. Kim, and D. Won. Challenge-response based rfid authentication
protocol for distributed database environment. Proceedings of International Confer-
ence on Security in Pervasive Computing, 2005.

[67] M. Roesch. Snort: Lightweight intrusion detection for networks. Proceedings of
USENIX LISA, 1999.

[68] M. Román, C. Hess, R. Cerqueira, A. Ranganat, R. Campbell, and K. Nahrstedt. Gaia:
A middleware infrastructure to enable active spaces. IEEE Pervasive Computing,
October-December 2002.

[69] R. Roman and C. Alcaraz. Applicability of public key infrastructures in wireless
sensor networks. European PKI Workshop, 2007.

[70] D. Samyde, S. Skorobogatov, R. Anderson, and J. Quisquater. On a new way to read
data from memory. First International IEEE Security in Storage Workshop, 2002.

[71] E. Shaw, K.G. Ruby, and J.M. Post. The insider threat to information systems. Secu-
rity Awareness Bulletin, 1998.

[72] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ad-hoc
wireless networks. International Workshop on Security Protocols, 1999.

[73] Y. Sun, Z. Han, W. Yu, , and K. J. Ray Liu. A trust evaluation framework in distributed
networks: Vulnerability analysis and defense against attacks. Proceedings of IEEE
INFOCOM, 2006.

[74] Y. Sun and Y. Yang. Trust establishment in distributed networks: Analysis and mod-
eling. IEEE International Conference on Communications, 2007.

[75] Zhi-Jia Tzeng and Wen-Guey Tzeng. Authentication of mobile users in third genera-
tion mobile systems. Wirel. Pers. Commun., 16(1):35–50, 2001.

[76] S. H. Weigart. Physical security devices for computer subsystems: A survey of attacks
and defenses. Workshop on Cryptographic Hardware and Embedded Systems, 2000.

[77] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels. Security and privacy aspects
of low-cost radio frequency identification systems. Security in Pervasive Computing,
2003.

100

[78] M. Weiser. The computer for the twenty-first century. Scientific American, 265(3):94–
104, 1991.

[79] Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed systems. Com-
puter, 25(1):39–52, 1992.

[80] Thomas Y. C. Woo and Simon S. Lam. A lesson on authentication protocol design.
SIGOPS Oper. Syst. Rev., 28(3):24–37, 1994.

[81] D. Xiu and Z. Liu. A formal definition for trust in distributed systems. The 8th
Information Security Conference (ISC), 2005.

[82] T. Ylonen. Ssh-secure login connections over the internet. Proceedings of the 6th
USENIX Security Symposium, 1996.

[83] J. Yoshida. Euro banknotes to embed rfid chips by 2005. EE Times, 2001.

[84] Chang N. Zhang and Chunren Lai. A systematic approach for encryption and authen-
tication with fault tolerance. Comput. Netw., 45(2):143–154, 2004.

[85] X. Zhang and B. King. Integrity improvements to an rfid privacy protection protocol
for anti-counterfeiting. The 8th Information Security Conference (ISC), 2005.

