33,760 research outputs found

    Derivative based global sensitivity measures

    Full text link
    The method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices S_itotS\_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of S_itotS\_{i}^{tot} . Several examples are used to illustrate an application of DGSM

    Derivative-based global sensitivity measures: general links with Sobol' indices and numerical tests

    Get PDF
    The estimation of variance-based importance measures (called Sobol' indices) of the input variables of a numerical model can require a large number of model evaluations. It turns to be unacceptable for high-dimensional model involving a large number of input variables (typically more than ten). Recently, Sobol and Kucherenko have proposed the Derivative-based Global Sensitivity Measures (DGSM), defined as the integral of the squared derivatives of the model output, showing that it can help to solve the problem of dimensionality in some cases. We provide a general inequality link between DGSM and total Sobol' indices for input variables belonging to the class of Boltzmann probability measures, thus extending the previous results of Sobol and Kucherenko for uniform and normal measures. The special case of log-concave measures is also described. This link provides a DGSM-based maximal bound for the total Sobol indices. Numerical tests show the performance of the bound and its usefulness in practice

    A sensitivity analysis of the PAWN sensitivity index

    Get PDF
    The PAWN index is gaining traction among the modelling community as a sensitivity measure. However, the robustness to its design parameters has not yet been scrutinized: the size (N) and sampling (Δ) of the model output, the number of conditioning intervals (n) or the summary statistic (Ξ). Here we fill this gap by running a sensitivity analysis of a PAWN-based sensitivity analysis. We compare the results with the design uncertainties of the Sobol’ total-order index (S*Ti). Unlike in S*Ti, the design uncertainties in PAWN create non-negligible chances of producing biased results when ranking or screening inputs. The dependence of PAWN upon (N, n, Δ, Ξ) is difficult to tame, as these parameters interact with one another. Even in an ideal setting in which the optimum choice for (N, n, Δ, Ξ) is known in advance, PAWN might not allow to distinguish an influential, non-additive model input from a truly non-influential model input

    Sensitivity Analysis of Composite Indicators through Mixed Model Anova

    Get PDF
    The paper proposes a new approach for analysing the stability of Composite Indicators. Starting from the consideration that different subjective choices occur in their construction, the paper emphasizes the importance of investigating the possible alternatives in order to have a clear and objective picture of the phenomenon under investigation. Methods dealing with Composite Indicator stability are known in literature as Sensitivity Analysis. In such a framework, the paper presents a new approach based on a combination of explorative and confirmative analysis aiming to investigate the impact of the different subjective choices on the Composite Indicator variability and the related individual differences among the statistical units as well.sensitivity analysis,composite indicators,analysis of variance,principal component analysis

    Input variable selection in time-critical knowledge integration applications: A review, analysis, and recommendation paper

    Get PDF
    This is the post-print version of the final paper published in Advanced Engineering Informatics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.The purpose of this research is twofold: first, to undertake a thorough appraisal of existing Input Variable Selection (IVS) methods within the context of time-critical and computation resource-limited dimensionality reduction problems; second, to demonstrate improvements to, and the application of, a recently proposed time-critical sensitivity analysis method called EventTracker to an environment science industrial use-case, i.e., sub-surface drilling. Producing time-critical accurate knowledge about the state of a system (effect) under computational and data acquisition (cause) constraints is a major challenge, especially if the knowledge required is critical to the system operation where the safety of operators or integrity of costly equipment is at stake. Understanding and interpreting, a chain of interrelated events, predicted or unpredicted, that may or may not result in a specific state of the system, is the core challenge of this research. The main objective is then to identify which set of input data signals has a significant impact on the set of system state information (i.e. output). Through a cause-effect analysis technique, the proposed technique supports the filtering of unsolicited data that can otherwise clog up the communication and computational capabilities of a standard supervisory control and data acquisition system. The paper analyzes the performance of input variable selection techniques from a series of perspectives. It then expands the categorization and assessment of sensitivity analysis methods in a structured framework that takes into account the relationship between inputs and outputs, the nature of their time series, and the computational effort required. The outcome of this analysis is that established methods have a limited suitability for use by time-critical variable selection applications. By way of a geological drilling monitoring scenario, the suitability of the proposed EventTracker Sensitivity Analysis method for use in high volume and time critical input variable selection problems is demonstrated.E

    Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters

    Get PDF
    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions
    • 

    corecore