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émanant des établissements d’enseignement et de
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Abstract

The estimation of variance-based importance measures (called Sobol’ indices) of the

input variables of a numerical model can require a large number of model evaluations.

It turns to be unacceptable for high-dimensional model involving a large number of

input variables (typically more than ten). Recently, Sobol and Kucherenko have

proposed the Derivative-based Global Sensitivity Measures (DGSM), defined as the

integral of the squared derivatives of the model output, showing that it can help to

solve the problem of dimensionality in some cases. We provide a general inequality

link between DGSM and total Sobol’ indices for input variables belonging to the

class of Boltzmann probability measures, thus extending the previous results of Sobol

and Kucherenko for uniform and normal measures. The special case of log-concave

measures is also described. This link provides a DGSM-based maximal bound for

the total Sobol indices. Numerical tests show the performance of the bound and its

usefulness in practice.

Keywords: Boltzmann measure; Derivative based global sensitivity measure;

Global sensitivity analysis; Log-concave measure; Poincaré inequality; Sobol’

indices

1. Introduction1

With the advent of computing technology and numerical methods, computer2

models are now widely used to make predictions on little-known physical phenomena,3

to solve optimization problems or to perform sensitivity studies. These complex4

models often include hundreds or thousands uncertain inputs, whose uncertainties5

can strongly impact the model outputs (De Rocquigny et al . [5], Kleijnen [11], Patelli6

1Corresponding author: bertrand.iooss@edf.fr, Phone: +33 1877969, Fax: +33 130878213
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et al . [15]). In fact, it is well known that, in many cases, only a small number of1

input variables really act in the model (Saltelli et al . [19]). This number is referred2

to the notion of the effective dimension of a function (Caflish et al . [4]), which is a3

useful way to deal with the curse of dimensionality in practical applications.4

Global Sensitivity Analysis (GSA) methods (Sobol [20], Saltelli et al . [19]) are5

used to quantify the influence of model input variables (and their interaction effects)6

on a model reponse. It is also an objective way to determine the effective dimen-7

sion by using the model simulations (Kucherenko et al . [12]). A first class of GSA8

methods, called “screening” methods, aim at dealing with a large number of input9

variables (from tens to hundreds). An example of screening method is the Morris’10

method (Morris [14]), which allows a coarse estimation of the main effects using11

only a few model evaluations. While taking into account the interactions between12

the indices, the basic form of the Morris method did not compute precise sensitiv-13

ity indices associated to the interactions between inputs. The second class of GSA14

methods are the popular quantitative methods, mainly based on the decomposition15

of the model output variance, which leads to the so-called variance-based methods16

and Sobol’ sensitivity indices. It allows computing the main and total effects (called17

first order and total Sobol’ indices) of each input variable, as well as interaction ef-18

fects. However, for functions with non linear and interaction effects, the estimation19

procedures become particularly expensive in terms of number of required model eval-20

uations. Hence, for this kind of model, variance-based methods can only be applied21

to a limited number of input variables (less than tens).22

Recently, Sobol and Kucherenko [23, 24] have proposed the so-called Derivative-23

based Global Sensitivity Measures (DGSM), which can be seen as a kind of general-24

ization of the Morris screening method. DGSM seem computationally more tractable25

than variance-based measures, specially for high-dimensional models. They also the-26

oretically proved an inequality linking DGSM to total Sobol’ indices in the case of27

uniform or Gaussian input variables.28
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In this paper, we investigate this close relationship between total Sobol’ indices1

and DGSM, by extending this inequality to a large class of Boltzmann probability2

measures. We also obtain result for the class of log-concave measures. The paper is3

organized as follows: Section 2 recalls some useful definitions of Sobol’ indices and4

DGSM. Section 3 establishes an inequality between these indices for a large class5

of Boltzmann (resp. log-concave) probability measures. Section 4 provides some6

numerical simulations on two test models, illustrating how DGSM can be used in7

practice. We conclude in Section 5.8

2. Global sensitivity indices definition9

2.1. Variance-based sensitivity indices10

Let Y = f(X) be a model output with d random input variables X = (X1, . . . , Xd).11

If the input variables are independent (assumption A1) and E (f 2(X)) < +∞ (as-12

sumption A2), we have the following unique Hoeffding decomposition (Efron and13

Stein [6]) of f(X):14

f(X) = f0 +
d∑

j

fj(Xj) +
d∑

i<j

fij(Xi, Xj) + . . .+ f1...d(X1, . . . , Xd) (2.1)

=
∑

u⊂{1,2,...d}

fu(Xu), (2.2)

where f0 = E [f(X)] corresponds to the empty subset; fj(Xj) = E [f(X)|Xj] − f015

and fu(Xu) = E [f(X)|Xu]−
∑

v⊂u

fv(Xv) for any subset u ⊂ {1, 2, . . . , d} .16

By regrouping all the terms in equation (2.1) that contain the variable Xj (j =17

1, 2, . . . , d) in the function called g(·):18

g(Xj,X∼j) =
∑

u∋j

fu(Xu) , (2.3)
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we have the following decomposition:1

f(X) = f0 + g(Xj,X∼j) + h(X∼j), (2.4)

where X∼j denotes the vector containing all variables except Xj and h(·) = f(·)−2

f0 − g(·). Notice that this decomposition is also unique under assumptions A1 and3

A2. The function g(·), itself, suffices to compute the total sensitivity indices. Indeed,4

it contains all information relating f(X) to Xj .5

Definition 2.1. Assume that A1, A2 hold, let µ(X) = µ(X1, . . . , Xd) be the dis-
tribution of the input variables. For any non empty subset u ⊆ {1, 2, . . . , d}, set
first

D =

∫
f 2(x)dµ(x)− f 2

0 ,

Du =

∫
f 2
u(xu)dµ(xu) ,

6

Dtot
u =

∫ ∑

v⊇u

f 2
v (xv)dµ(xv) . (2.5)

Further, the first order Sobol sensitivity indices (Sobol [20]) of Xu is7

Su =
Du

D
, (2.6)

The total sensitivity Sobol index of Xu (Homma and Saltelli [8]) is8

STu
=

Dtot
u

D
. (2.7)

The following proposition gives another way to compute the total sensitivity9

indices.10

Proposition 2.1. Under assumptions A1 and A2, the total sensitivity indices of11

variable Xj (j = 1, 2, . . . , d) is obtained by the following formulas:12

Dtot
j =

∫
g2(xj ,x∼j)dµ(x) (2.8)

and13

Dtot
j =

1

2

∫ [
f(x)− f(x′

j ,x∼j)
]2
dµ(x)dµ(x′

j) . (2.9)

Proof 2.1. The first formula is an obvious consequence of equation (2.4), and it14

is obtained by using the orthogonality of the summands in equation (2.1). Indeed,15
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Dtot
j =

∫ ∑

v⊇j

f 2
v (xv)dµ(xv) =

∫ [
∑

v⊇j

fv(xv)

]2

dµ(x) =

∫
g2(xj ,x∼j)dµ(x). The1

later formula is proved in Sobol [21].2

2.2. Derivative-based sensitivity indices3

Derivative-based global sensitivity method uses the second moment of model4

derivatives as importance measure. This method is motivated by the fact that a5

high value of the derivative of the model output with respect to some input variable6

means that a big variation of model output is expected for a variation of the variable.7

This method extends the Morris method (Morris [14]). Indeed, it allows to capture8

any small variation of the model output due to input variables.9

DGSM have been first proposed in Sobol and Gresham [22]. Then, they have10

been largely studied in Kucherenko et al . [13], Sobol and Kucherenko [23, 24] and11

Patelli et al . [16]. From now on, we assume that the function f is differentiable.12

Two kind of DGSM are defined below:13

Definition 2.2. Assume that A1 holds and that
∂f(X)

∂xj

is square-integrable (as-14

sumption A3). Then, for j = 1, 2, . . . d, we define the DGSM indices by:15

νj = E

[(
∂f(X)

∂xj

)2
]

(2.10)

=

∫ (
∂f(x)

∂xj

)2

dµ(x) .

Let w(·) is be a bounded measurable function. A weighted version of the last indices16

is:17

τj =

∫ (
∂f(x)

∂xj

)2

w(xj)dµ(x). (2.11)

Remark 2.1. Sobol and Kucherenko [24] showed that, for a specific weighting func-18

tion w(xj) =
1− 3xj + 3x2

j

6
and for a class of linear model with respect to each input19

variable (following a uniform distribution over [0, 1]), we have τj = Dtot
j .20

Remark 2.2. By bearing in mind the decomposition in equation (2.4), we can re-21

place in equations (2.10 ) and (2.11) the function f(·) by g(·). In general, g(·) is a22
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d1 (d1 ≤ d) dimension function, and this can drastically reduce the number of model1

evaluations for the numerical computation of ν or τ . Thus, we have:2

νj =

∫ (
∂g(x)

∂xj

)2

dµ(x) . (2.12)

3

τj =

∫ (
∂g(x)

∂xj

)2

w(xj)dµ(x), (2.13)

3. Variance-based sensitivity indices vs. derivative-based sensitivity in-4

dices5

As DGSM estimations need much less model evaluations than total Sobol’ in-6

dices estimations (Kucherenko et al . [13]), it would be interesting to use the DGSM,7

instead of total Sobol’ indices, for factors fixing setting. A formal link is there-8

fore necessary to provide a mathematical relation between total Sobol’ indices and9

DGSM. Sobol and Kucherenko [23] have established an inequality linking these two10

indices for uniform and Gaussian random variables (maximal bound for STj
). In11

this section, we extend the inequality for Sobolev’ space model whith the marginal12

distribution of input variables belonging to the class of Boltzmann measure on13

R (assumption A4). A measure δ on R is said to be a Boltzmann measure if14

it is absolutely continuous with respect to the Lebesgue measure and its density15

dδ(x) = ρ(x)dx = c exp[−v(x)]dx. Here v(·) is a continuous function and c a nor-16

malizing constant. Many classical continuous probability measures used in practice17

are Boltzmann measures (see de Rocquigny et al . [5] and Saltelli et al . [19]).18

The class of Boltzmann probability measures includes the well known class of log-19

concave probability measures. In this case, v(·) is a convex function (assumption20

A5). In other words, a twice differentiable probability density function ρ(x) is said21

to be log-concave if, and only if,22

d2

dx2
[log ρ(x)] ≤ 0 . (3.14)

Note that the probability measure of uniform density on a finite interval is not23
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continuous on R. So it cannot be considered in the class of log-concave probability1

measure, nor in the class of Boltzmann probability measures.2

The two following propositions give the formal link between Sobol’ indices and3

derivative-based sensitivity indices.4

Theorem 3.1. Under assumptions A1, A2, A3 and A4, we have:5

Dtot
j ≤ C(µj)νj (3.15)

with C(µj) = 4C2
1 and C1 = sup

x∈R

min(Fj(x), 1− Fj(x))

ρj(x)
the Cheeger constant, Fj(·)6

the cumulative probability function of Xj and ρj(·) the density of Xj.7

We recall the four assumptions:8

• A1: independence between inputs X1, X2, . . . , Xd,9

• A2: f ∈ L2(R),10

• A3:
∂f

∂xj

∈ L2(R),11

• A4: the distribution of Xj is a Boltzmann probability measure.12

Proof 3.1. The resulting inequality (3.15) is based on a one-dimensional L2-Poincaré13

inequality of the type ‖u‖L2 ≤ C‖∇u‖L2 for u a Sobolev’ space function (see for ex-14

ample [7]). It is applied here to the function g(·) (equation (2.3), with

∫
g2(xj ,x∼j)dµ(x) =15

Dtot
j (equation (2.8)) and

∫ (
∂g(x)

∂xj

)2

dµ(x) = νj (equation (2.12)). The constant16

is obtained in Bobkov [3], and Fougères [7] for the one-dimensional Poincaré in-17

equality. A proof of the d-dimensional Poincaré inequality is given in Bakry et al .18

[2].19

Theorem 3.2. Under assumptions A1, A2, A3 and A5, we have:20

Dtot
j ≤ [exp(v(m))]2 νj , (3.16)

with C1 =
exp(v(m))

2
the Cheeger constant and m the median of the measure µj21

(such that µ(Xj ≤ m) = µ(Xj > m)).22

We recall the assumption A5: the distribution of Xj is a log-concave probability23

measure.24
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Proof 3.2. See proof 3.1.1

Table 1 shows Cheeger constant for some log-concave probability distributions2

that are used in practice for uncertainty and sensitivity analyses. We also give3

their medians and the functions v(·). We obtain the same results for the normal4

distribution N (µ, σ2) similar to Sobol and Kucherenko [23] but we prove them in5

another way (in this case, v(m) = log(σ)). For uniform distribution U [a b], Sobol6

and Kucherenko [23] obtained via direct integral manipulations the inequality Dtot
j ≤7

(b− a)2

π2
νj . This relation is the classical Poincaré or Writtinger inequality (Ane et al .8

[1]).9

Distribution v(x) m C1

Normal N (µ, σ2)
(x− µ)2

2σ2
+ log(σ) µ

σ

2

Exponential E(λ),
λ > 0

λx− log(λ)
log 2

λ

1

λ

Beta B(α, β),
α, β ≥ 1

log
[
x1−α(1− x)1−β

]
No expression —

Gamma Γ(α, β),
scale α ≥ 1, shape
β > 0

log
(
x1−αΓ(α)

)
+

x

β
+ α log β No expression —

Gumbel G(µ, β),
scale β > 0

x− µ

β
+ log β + exp

(
−
x− µ

β

)
µ− β log(log 2)

β

log 2

Weibull W(k, λ),
shape k ≥ 1,
scale λ > 0

log

(
λ

k

)
+ (1− k) log

(x
λ

)
+
(x
λ

)k

λ(log 2)1/k
λ(log 2)(1−k)/k

k

Table 1: Standard log-concave probability distributions: v(·) function, median m and Cheeger
constant C1 (see Theorem 3.2).

For general log-concave measures, no analytical expressions are available for the10

Cheeger constant. In this latter case or in case of non log-concave but Boltzmann11

measure, we can estimate the Cheeger constant by numerically evaluating the ex-12
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pression supx∈R
min(Fj(x),1−Fj(x))

ρj(x)
.1

4. Numerical tests2

4.1. Derivative sensitivity indices estimates3

A classical estimator for the DGSM is the empirical one and is given below:4

ν̂j =
1

n

n∑

i=1

(
∂f(X(i))

∂xj

)2

. (4.17)

Experimental convergence properties of this estimator are given in Sobol and Kucherenko5

[23].6

From definition (2.4), we know that
∂f(X(i))

∂xj
=

∂g(X(i))

∂xj
. Estimator of Dtot

j7

(see equation (2.8)) and estimator (4.17) are based on the same function g(·) and8

it seems that estimations of these two indices will require approximately the same9

number of model evaluations in order to converge towards their respective values.10

Computation of DGSM and Sobol’ indices can be performed with Monte Carlo-11

like algorithm, such as Latin Hypercube Sampling, quasi-Monte Carlo and Monte12

Carlo Markov Chain sampling. Kucherenko et al . [13] have shown that quasi-Monte13

Carlo outperforms Monte Carlo when model has a low effective dimension. Com-14

putation of DGSM needs model gradient estimation. For complex models, model15

gradient computation can easily be obtained by finite difference method. Patelli and16

Pradlwarter [15] proposed a Monte Carlo estimation of gradient in high dimension.17

They used an unbiased estimator for gradients and have shown that the number of18

Monte Carlo evaluations n ≤ d is sufficient for gradient computations. In the worst19

case, their procedure requires the same number of model evaluations than the finite20

difference method. The method is very efficient when the model has a low effective21

dimension.22

In the following Sections, we compare the estimates of the Sobol indices (Sj and23

STj
) and the upper bound of STj

(see inequality (3.15)). let denote Υj , the total24
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sensitivity upper bound:1

Υj = C
νj

D
, (4.18)

where D is the variance of the model output f(X) and C = 4C2
1 . The goal of our2

numerical tests is just to compare the differences in terms of ranking and not to3

study the speed of convergence of the estimates.4

4.2. Test on the Morris function5

As a first test, we consider the Morris function (Morris [14]) that includes 206

independent and uniform input variables. The Morris function is defined by the7

following equation:8

y = β0+
20∑

i=1

βiwi+
20∑

i<j

βi,jwiwj +
20∑

i<j<l

βi,j,lwiwjwl+
20∑

i<j<l<s

βi,j,l,swiwjwlws , (4.19)

where wi = 2

(
xi −

1

2

)
except for i = 3, 5, 7 where wi = 2

(
1.1

xi

xi + 1
−

1

2

)
. The9

coefficient values are:10

βi = 20 for i = 1, 2, . . . , 10,11

βi,j = −15 for i, j = 1, 2, . . . , 6, i < j12

βi,j,l = −10 for i, j, l = 1, 2, . . . , 5, i < j < l13

and β1,2,3,4 = 5.14

The remaining first and second order coefficients were generated independently from15

the normal distribution N (0, 1) and the remaining third and fourth coefficient were16

set to 0.17

We replace the uniform distributions associated with several input variables by18

different log-concave measures of the Table 1 in order to show how the bounds can19

be used in practical sensitivity analysis. Table 2 shows the probability distributions20

associated to each input of the Morris function.21

We have performed some simulations that allow computing the DGSM indices22

and the Sobol’ indices for the 20 independent factors. Sobol’ indices Sj and STj
are23
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Input Probability distribution Input Probability distribution
X1 U [0, 1] X11 U [0, 1]
X2 N (0.5, 0.1) X12 N (0.5, 0.1)
X3 E(4) X13 E(4)
X4 G(0.2, 0.2) X14 G(0.2, 0.2)
X5 W(2, 0.5) X15 W(2, 0.5)
X6 U [0, 1] X16 U [0, 1]
X7 U [0, 1] X17 U [0, 1]
X8 U [0, 1] X18 U [0, 1]
X9 U [0, 1] X19 U [0, 1]
X10 U [0, 1] X20 U [0, 1]

Table 2: Probability distributions of the input variables of the Morris function

obtained with the principles described in Saltelli [17], i.e. using two initial Monte1

Carlo samples of size 104. For more efficient convergence properties (specially for2

the case of small indices), the improved formulas proposed by Sobol et al . [25] for3

Si and by Saltelli et al . [18] for STi
are used. The approximation errors of these4

Monte Carlo estimates are calculated by repeating 20 times the indices estimation5

and the mean is taken as the estimate. With d = 20 input variables, it leads to6

20 × 104 × (d + 2) = 4.4 × 106 model evaluations. In fact, the size of the Monte7

Carlo samples have been fitted to achieve acceptable absolute errors (smaller than8

1%). However, the objective here is not to compare the algorithmic performances9

of DGSM and Sobol’ indices in terms of computational cost, but just to look at the10

inputs ranking.11

The total Sobol’ indices are used in this paper as a reference. It shows that12

only the first 10 inputs have some influence. Model derivatives are evaluated for13

each input on a Monte Carlo sample of size 1 × 104 by the finite-difference method14

(perturbation of 0.01%). Then, DGSM νj require 2.1 × 105 model evaluations. Υj15

is then computed using equation (4.18) where the variance of the Morris function is16

estimated to D = 991.521. The results are gathered in Table 3.17

In Table 3, we can first observe that the total sensitivity upper bounds Υj are18

always greater than the total sensitivity indices as expected. For each input, we19

11



Input Sj sd STj
sd νj C Υj

X1 0.043 0.009 0.173 0.008 2043.820 0.101 0.209
X2 0.007 0.003 0.029 0.002 2856.580 0.01 0.029
X3 0.066 0.009 0.165 0.006 31653.270 0.250 7.981
X4 0.002 0.006 0.134 0.007 2025.950 0.333 0.680
X5 0.035 0.005 0.055 0.003 4203.060 0.360 1.526
X6 0.039 0.007 0.114 0.006 1337.100 0.101 0.137
X7 0.068 0.003 0.069 0.003 6605.960 0.101 0.675
X8 0.156 0.007 0.157 0.007 1826.390 0.101 0.187
X9 0.189 0.008 0.192 0.009 2249.770 0.101 0.230
X10 0.145 0.005 0.146 0.005 1730.400 0.101 0.177
X11 0.000 0.001 0.002 0.001 22.630 0.101 0.002
X12 0.000 0.000 0.000 0.000 23.940 0.01 0.000
X13 0.000 0.001 0.001 0.000 17.670 0.250 0.004
X14 0.001 0.001 0.003 0.001 42.850 0.333 0.014
X15 0.000 0.001 0.001 0.001 19.870 0.360 0.007
X16 0.000 0.001 0.002 0.001 18.860 0.101 0.002
X17 0.000 0.001 0.002 0.001 21.400 0.101 0.002
X18 0.000 0.001 0.002 0.001 19.950 0.101 0.002
X19 0.000 0.001 0.004 0.001 54.380 0.101 0.006
X20 0.000 0.001 0.004 0.001 42.250 0.101 0.004

Table 3: Sensitivity indices (Sobol’ and DGSM) for the Morris function. For the Sobol’ indices Sj

and STj
, 20 replicates has been used to get the standard deviation (sd).

distinguish several situations that can occur:1

1. First order and total Sobol’ indices are negligible (inputs X11 to X20). In this2

case, we observe that the bound Υj is always negligible. For all the inputs,3

this test shows the high efficiency of the bound: a negligible bound warrants4

that the input has no influence.5

2. First order and total Sobol’ indices significantly differ from zero and have6

approximately the same value (inputs X7 to X10). This means that the input7

has some influence but no interactions with other inputs. In this case, the8

bound Υj is relevant (close to STj
), except for X7. The interpretation of the9

bound gives a useful information about the total influence of the input.10

3. First order Sobol’ index is negligible while total Sobol’ index significantly dif-11

fers from zero (inputs X1 to X6). In this case, the bound Υj largely oversti-12

12



mates the total Sobol’ index STj
for X3, X4 and X5. However, for X4, we1

have Υ4 < 1 and this coarse information is still usefull. For the three other2

inputs, the bound is relevant.3

For two inputs (X3 and X5), results can be judged as strongly unsatisfactory4

as the bound is useless (larger than 1 which is the maximal value for a sensitivity5

index). We suspect that these results come from:6

• the model non linearity with respect to these inputs (see equation (4.19)),7

• the input distributions (exponential and Weibull).8

The second explanation seems to be the more convincing as these types of dis-9

tribution can provide larger values during Monte Carlo simulations. In this case,10

departures from the central part of the input domain leads to uncontrolled derivative11

values of the Morris function. Indeed, it can be seen that νj is particularly large for12

X3 and X5, because of high derivative values in the estimation samples. Moreover,13

we have no observed the same results for X1, X2 and X4.14

As a conclusion of this first test, we argue that the bound Υj is well-suited for15

a screening purpose. Moreover, coupling Υj interpretation with first order Sobol’16

indices Sj (estimated at low cost using a smoothing technique or a metamodel, see17

[19, 9]) can bring useful information about the presence or absence of interaction.18

For inputs following uniform, normal and exponential distributions,the bound is19

extremely efficient. In these particular cases, the bound is the best one and cannot20

be improved.21

4.3. A case study: a flood model22

To illustrate how the Cheeger constant can be used for factors prioritization,23

when we use the DGSM, we consider a simple application model that simulates the24

height of a river compared to the height of a dyke. When the height of a river25

is over the height of the dyke, flooding occurs. This academic model is used as a26

13



pedagogical example in Iooss [9]. The model is based on a crude simplification of1

the 1D hydro-dynamical equations of SaintVenant under the assumptions of uniform2

and constant flowrate and large rectangular sections. It consists of an equation that3

involves the characteristics of the river stretch:4

S = Zv +H −Hd − Cb with H =


 Q

BKs

√
Zm−Zv

L




0.6

, (4.20)

with S the maximal annual overflow (in meters) and H the maximal annual height5

of the river (in meters).6

The model has 8 input variables, each one follows a specific probability distribu-7

tion (see Table 4). Among the input variables of the model, Hd is a design parameter.8

The randomness of the other variables is due to their spatio-temporal variability, our9

ignorance of their true value or some inaccuracies of their estimation. We suppose10

that the input variables are independent.

Input Description Unit Probability distribution
Q Maximal annual flowrate m3/s Truncated Gumbel G(1013, 558) on [500, 3000]
Ks Strickler coefficient - Truncated normal N (30, 8) on [15,+∞[
Zv River downstream level m Triangular T (49, 50, 51)
Zm River upstream level m Triangular T (54, 55, 56)
Hd Dyke height m Uniform U [7, 9]
Cb Bank level m Triangular T (55, 55.5, 56)
L Length of the river stretch m Triangular T (4990, 5000, 5010)
B River width m Triangular T (295, 300, 305)

Table 4: Input variables of the flood model and their probability distributions

11

We also consider another model output: the associated cost (in million euros) of12

the dyke presence,13

Cp = 1IS>0 +
[
0.2 + 0.8

(
1− exp− 1000

S4

)]
1IS≤0 +

1

20
(Hd1IHd>8 + 81IHd≤8) , (4.21)

with 1IA(x) the indicator function which is equal to 1 for x ∈ A and 0 otherwise. In14

this equation, the first term represents the cost due to a flooding (S > 0) which is15

14



1 million euros, the second term corresponds to the cost of the dyke maintenance1

(S ≤ 0) and the third term is the investment cost related to the construction of the2

dyke. The latter cost is constant for a height of dyke less than 8 m and is growing3

proportionally with respect to the dyke height otherwise.4

Sobol’ indices are estimated with the same algorithms than for the Morris func-5

tion, using two initial Monte Carlo samples of size 105 and 20 replicates of the6

estimates. It leads to 2 × 107 model evaluations in order to compute first order7

indices Sj and total indices STj
(by taking the mean of the 20 replicates). For es-8

timating the DGSM (νj , weighted DGSM τj and the total sensitivity upper bound9

Υj), a Sobol sequence is used with 1× 104 model evaluations.10

Results of global sensitivity analysis and derivative-based global sensitivity anal-11

ysis for respectively the overflow S and the cost Cp outputs are listed in Tables 512

and 6. Global sensitivity indices show small interaction among input variables for13

the overflow and the cost outputs. Four input variables (Q, Hd, Ks, Zv) drive the14

overflow and the cost outputs. This variable classification will serve as reference for15

comparison issue.16

Input Sj STj
νj τj Υj

Q 0.343 0.353 1.296e-06 1.072 2.807
Ks 0.130 0.139 3.286e-03 1.033 0.198
Zv 0.185 0.186 1.123e+00 1377.41 0.561
Zm 0.003 0.003 2.279e-02 33.742 0.011
Hd 0.276 0.276 8.389e-01 23.77 0.340
Cb 0.036 0.036 8.389e-01 1268.90 0.105
L 0.000 0.000 2.147e-08 0.268 0.000
B 0.000 0.000 2.386e-05 1.070 0.000

Table 5: Sensitivity indices for the overflow output of the flood model.

Based on derivative sensitivity indices (νj) or weighted derivative sensitivity in-17

dices (τj) we have obtained another subset of the most influential variables that18

are Zv, Cb, Hd, Zm. These results mean that, for example, the maximum annual19

flowrate (Q) does not have any impact on the overflow and the cost output. If we20

15



Input Sj STj
νj τj Υj

Q 0.346 0.460 1.3906e-06 2.013 3.011e+00
Ks 0.172 0.269 8.5307e-03 1.926 5.129e-01
Zv 0.187 0.229 1.3891e+00 1715.89 6.932e-01
Zm 0.006 0.012 4.6038e-02 68.17 2.29e-02
Hd 0.118 0.179 1.5366e+00 44.04 6.227e-01
Cb 0.026 0.039 9.4628e-01 1428.69 1.180e-01
L 0.000 0.000 4.0276e-08 0.503 2.009e-06
B 0.001 0.001 4.4788e-05 2.007 5.587e-04

Table 6: Sensitivity indices for the cost ouput of the flood model.

compare these results to the global sensitivity indices, we can infer that they are1

obviously wrong. This is easily explained by the fact that the input variables have2

different unities and that the indices νj and τj have not been renormalized by the3

constant depending on the probability distribution of Xj .4

By looking at the total sensitivity upper bound Υj, the most influential variables5

are the following: Q, Zv, Hd, Ks for the overflow output and for the cost output. It6

gives the same subset of the most influential variables with some slight differences7

for the prioritization of the most influential variables. In conclusion, we state that8

Υj can provide correct information on input variance-based sensitivities.9

5. Conclusion10

Global sensitivity analysis, that allows exploring numerically complex model and11

factors fixing setting, requires a large number of model evaluations. Derivative-based12

global sensitivity method needs a much smaller number of model evaluations (gain13

factor of 10 to 100). The reduction of the number of model evaluations becomes more14

significant when the model output is controlled by a small number of input variables15

and when the model does not include much interaction among input variables. This16

is often the case in practice.17

In this paper, we have produced an inequality linking the total Sobol’ index and18

a derivative-based sensitivity measure for a large class of probability distributions19

16



(Boltzmann measures). The new sensitivity index Υj, which is defined as a con-1

stant times the crude derivative-based sensitivity, is a maximal bound of the total2

Sobol’ index. It improves factors fixing setting by using derivative-based sensitivities3

instead of variance-based sensitivities.4

Two numerical tests have confirmed that the bound Υj is well-suited for a screen-5

ing purpose. When total Sobol’ indices cannot be estimated because of a cpu time6

expensive model, Υj can provide correct information on input sensitivities. Previous7

studies have shown that estimating DGSM with a small derivatives’ sample (with8

size from tens to hundreds) allows to detect non influent inputs. In subsequent9

works, we propose to use jointly DGSM and first order Sobol’ indices. With these10

information, an efficient methodology of global sensitivity analysis can be applied11

and brings useful information about the presence or absence of interaction (see Iooss12

et al . [10]).13
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