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A B S T R A C T

The PAWN index is gaining traction among the modelling community as a sensitivity measure. However,
the robustness to its design parameters has not yet been scrutinized: the size (𝑁) and sampling (𝜀) of the
model output, the number of conditioning intervals (𝑛) or the summary statistic (𝜃). Here we fill this gap by
running a sensitivity analysis of a PAWN-based sensitivity analysis. We compare the results with the design
uncertainties of the Sobol’ total-order index (𝑆∗

𝑇 𝑖). Unlike in 𝑆∗
𝑇 𝑖, the design uncertainties in PAWN create non-

negligible chances of producing biased results when ranking or screening inputs. The dependence of PAWN
upon (𝑁, 𝑛, 𝜀, 𝜃) is difficult to tame, as these parameters interact with one another. Even in an ideal setting
in which the optimum choice for (𝑁, 𝑛, 𝜀, 𝜃) is known in advance, PAWN might not allow to distinguish an
influential, non-additive model input from a truly non-influential model input.

1. Introduction

Pianosi and Wagener (2015, 2018) have recently published in En-
vironmental Modelling & Software a new measure for sensitivity anal-
ysis, the PAWN index. Like other moment-independent approaches
(i.e. entropy-based (Liu et al., 2006), density-based (Borgonovo et al.,
2014; Borgonovo, 2007)), PAWN does not resort to statistical second-
order moments such as variance to apportion output uncertainty to the
model parameters. Instead, it relies on Cumulative Distribution Func-
tions (CDFs) to characterize the maximum distance between the uncon-
ditional output distribution 𝑌𝑈 , i.e. obtained by moving all parameters
simultaneously, and the conditional output distribution 𝑌𝐶𝑖𝑗

, i.e. ob-
tained by fixing the 𝑖th parameter to 𝑗 = 1, 2,… , 𝑛 values or intervals
within its uncertainty range. The difference between 𝑌𝑈 and 𝑌𝐶𝑖𝑗

is as-
sessed via the Kolmogorov–Smirnov test, although other distance-based
tests, such as the Anderson–Darling’s, may also be used (Khorashadi
Zadeh et al., 2017). The final PAWN index for a given parameter is
obtained by calculating the mean, the median, the maximum or any
other summary statistic over all the KS values computed between 𝑌𝑈
and 𝑌𝐶𝑖𝑗

.
The most up-to-date approximation to the PAWN index, named ‘‘the

generic approach’’ (Pianosi and Wagener, 2018), is as follows: let there
be an 𝐀 matrix with 𝑣 = 1, 2,… , 𝑁 rows and 𝑖 = 1, 2,… , 𝑘 parameters.
After computing the model output 𝑌 , the range of variation of the
𝑖th parameter is split into 𝑗 = 1, 2,… , 𝑛 intervals of size 𝑁𝑐 (where
𝑁𝑐 ≈ 𝑁∕𝑛). The model output linked to the 𝑗th interval is used as the

∗ Corresponding author at: Department of Ecology and Evolutionary Biology, M31 Guyot Hall, Princeton University, NJ 08544, USA.
E-mail address: apuy@princeton.edu (A. Puy).

conditional model output 𝑌𝐶𝑖𝑗
. The unconditional model output 𝑌𝑈 can

concur with the whole model output or can be a random sub-sample
of the same size as 𝑁𝑐 . With this approach, the total number of model
runs to compute PAWN is fully determined by 𝑁 (Pianosi and Wagener,
2018).

Based on trials with the Liu et al. (2006) function, the Ishigami and
Homma (1990) function, the SWAT model (Khorashadi Zadeh et al.,
2017) or a wind-energy converter model (Holl et al., 2016), it has been
observed that PAWN might reach convergence much faster than Sobol’
indices. A key question, however, is to know how the selection of 𝑁, 𝑛,
the sampling of 𝑌𝑈 or the summary statistic affects the accuracy of
PAWN. This is timely given the widespread adoption of the index: since
its inception in 2015, PAWN has been cited 94 times, with the number
of citations stably increasing from 5 in 2015 to 31 in 2019. Most of
the works quoting PAWN are from the environmental sciences (53),
followed by engineering (24) and computer science (23) (Scopus search
on September 25 2019). Gaining a systematic insight into the internal
functioning of PAWN shall thus allow the modelling community to
better appraise its robustness, thus increasing its transparency as well
as our awareness of its advantages and limitations.

Here we assess the sensitivity of PAWN to the main structural uncer-
tainties involving its calculation, an exercise that might be termed ‘‘a
sensitivity analysis of a sensitivity analysis’’ (SA of SA). This expression
was used by Paleari and Confalonieri (2016) to study how sensitivity in-
dices are affected by uncertainties in the probability distributions used
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Fig. 1. Model output of the Liu et al. (2006), Ishigami and Homma (1990), Sobol’ (1998) and Morris (1991) functions. 𝑁 = 4000.

to describe the model inputs, a work that actually falls into the tradition
of ‘‘probability of probability’’ or ‘‘probability of frequency’’ described
in Kaplan and Garrick (1981) (see also Aven (2020)). A similar analysis
of the sensitivity of results to changes in the range of input factors
can be found in Shin et al. (2013). Other approaches include exploring
several sensitivity measures Saltelli and Homma (1992), Saltelli et al.
(1993), Pappenberger et al. (2008). More recently, Noacco et al. (2019)
included considerations of form of the output, sample size, choice of
method, measuring interactions, range of distributions, inclusion or
exclusion of non-behavioural runs (simulations), and use of dummy
variables.

Our experiment departs from these studies in that it assesses the
uncertainties embedded in the structural design of sensitivity indices,
PAWN in that case. We thus explore the implications of the last ring
in the chain of uncertainties characterizing any sensitivity analysis, the
last stretches of the garden of forking paths that need to be crossed to
arrive at a result in any modelling exercise (Borges, 1941; Gelman and
Loken, 2013). Exploring all sources of uncertainty is indeed an impor-
tant pursuit, including the notions of context, purpose and motivations
as suggested in sensitivity auditing (Saltelli et al., 2013). However,
we believe that the papers just reviewed (Paleari and Confalonieri,
2016; Pappenberger et al., 2008; Shin et al., 2013; Noacco et al.,
2019) are not a SA of a SA but more general instances of uncertainty
exploration. We take the meaning of SA literally (i.e. the analysis of the
sensitivity of a sensitivity analysis to its own design parameters), and
thus exclude in this paper the exploration of sensitivities to changing
methods, assumptions or model designs, however worthy these analyses
might be.

2. Materials and methods

In order to cross-check our approach, we match the design un-
certainties of PAWN against the design uncertainties of the Sobol’
total-order index (𝑆∗

𝑇 𝑖), a well-established measure to determine how
much a given model parameter interacts with the rest.1 Although
different in scope and nature, the fact that unconditional CDFs are also
affected by interactions paves the way for the uncertainties in PAWN
and 𝑆∗

𝑇 𝑖 to be explored in parallel.
For PAWN, we focused on four uncertain parameters: the total

number of model runs (𝑁), the number of conditioning intervals (𝑛),
the randomness derived from the sampling of the unconditional model
output 𝑌𝑈 (𝜀), and the summary statistic (𝜃). For 𝑆∗

𝑇 𝑖, we focused on
two: 𝑁 and 𝜃, the latter reflecting the different estimators existing
to compute the total-order effect (Jansen, 1999; Homma and Saltelli,
1996; Sobol’, 2007) (Table 1). We assessed how different combinations
of values for these uncertain parameters condition the PAWN/𝑆∗

𝑇 𝑖 index

1 The asterisk in 𝑆∗
𝑇 𝑖 is used to differentiate between Sobol’ total-order index

(𝑆∗
𝑇 𝑖), i.e. the index against which PAWN is matched, and the index used to

assess the extent to which 𝑆∗
𝑇 𝑖 interacts with its design parameters (𝑁, 𝜃), 𝑆𝑇 𝑖.

Table 1
Summary of the parameters and their distribution for both PAWN (𝑁, 𝑛, 𝜀, 𝜃) and 𝑆∗

𝑇 𝑖
(𝑁, 𝜃). 𝐷𝑈 stands for discrete uniform.

Parameter Description Distribution

𝑁 Total number of runs U(200, 2000)
𝑛 Number of conditioning intervals U(5, 20)
𝜀 Randomness in the sampling of 𝑌𝑈 U(1, 103)
𝜃 Summary statistic/estimator DU(1, 3)

using four different test functions that yield a skewed model output
(Fig. 1): the Liu et al. (2006)’s, which reads as

𝑌 = 𝑋1∕𝑋2 (1)

where 𝑋1 ∼ 𝜒2(10) and 𝑋2 ∼ 𝜒2(13.978); the Ishigami and Homma
(1990)’s, which reads as

𝑌 = sin(𝑋1) + 𝑎 sin(𝑋2)2 + 𝑏𝑋4
3 sin(𝑋1) (2)

where 𝑎 = 2, 𝑏 = 1 and (𝑋1, 𝑋2, 𝑋3) ∼  (−𝜋,+𝜋); the Sobol’ (1998)’s,
which reads as

𝑌 =
𝑘
∏

𝑖=1

|4𝑋𝑖 − 2| + 𝑎𝑖
1 + 𝑎𝑖

(3)

where 𝑘 = 8, 𝑋𝑖 ∼  (0, 1) and 𝑎 = (0, 1, 4.5, 9, 99, 99, 99, 99); and the
Morris (1991) function, which reads as

𝑌 =𝛽0 +
20
∑

𝑖=1
𝛽𝑖𝑤𝑖 +

20
∑

𝑖<𝑗
𝛽𝑖,𝑗𝑤𝑖𝑤𝑗

+
20
∑

𝑖<𝑗<𝑙
𝛽𝑖,𝑗,𝑙𝑤𝑖𝑤𝑗𝑤𝑙

+
20
∑

𝑖<𝑗<𝑙<𝑠
𝛽𝑖,𝑗,𝑙,𝑠𝑤𝑖𝑤𝑗𝑤𝑙𝑤𝑠

(4)

where 𝑤𝑖 = 2(𝑋𝑖 − 0.5) for all 𝑖 except for 𝑖 = 4, 5, 7, where 𝑤𝑖 =
2(1.1𝑋𝑖∕(𝑋𝑖 + 0.1) − 0.5), 𝑋𝑖 ∼  (0, 1), and

𝛽𝑖 = 20, 𝑖 = 1, 2,… , 10,
𝛽𝑖,𝑗 = −15, 𝑖 = 1, 2,… , 6,
𝛽𝑖,𝑗,𝑙 = −10, 𝑖 = 1, 2,… , 5,
𝛽𝑖,𝑗,𝑙,𝑠 = 5, 𝑖 = 1, 2,… , 4 (Campolongo et al., 2011).
We chose these four skewed benchmark functions in order to pro-

vide PAWN with a favourable test ground: density-based measures
might better characterize the uncertainty in skewed model outputs than
variance-based measures as the former do not rely on any statistical
moment (Borgonovo et al., 2011).

We selected the distributions of (𝑁, 𝑛, 𝜀, 𝜃) based on previous work
on PAWN and the 𝑆∗

𝑇 𝑖 index (Pianosi and Wagener, 2015, 2018; Saltelli
et al., 2010) and some preliminary tests. Firstly, we observed that
𝑁 ≈ 2000 was sufficient for the PAWN index of many model inputs to
be very close to convergence. Sobol’ 𝑆∗

𝑇 𝑖, on the other hand, required
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a larger number of runs (Fig. S1). This corroborated previous obser-
vations on the faster convergence rate of PAWN compared to Sobol’
indices (Pianosi and Wagener, 2015; Khorashadi Zadeh et al., 2017).
By defining 𝑁 ∼  (200, 2000) we set our study in a scenario where the
uncertainty with regards to the required sample size needed to compute
robust PAWN indices is moderate. Indeed, this is usually the case: the
analyst might have a cap on the total number of model runs available
with the computing resources at hand, but no prior information on the
minimum sample size required to ensure stable sensitivity indices for
all model inputs.

We defined the distribution of 𝑛 based on Pianosi and Wagener
(2018), who suggested to start with 𝑛 = 10 and vary 𝑛 some units up
and down to check its effect (provided that 𝑛 > 5).

For 𝜀, we set 103 different starting points (seeds) for the pseudo-
random number sequence used to generate the indices (from 1 to 𝑁)
to sample 𝑌𝑈 . This ensured (1) negligible chances of the same seed
overlapping with the same value for 𝑁 , thus introducing determinism
into a process that should be mainly stochastic, and (2) that the
randomness in the sampling of 𝑌𝑈 is assessed in terms of its relative
influence in the computation of PAWN.

With regards to 𝜃, for PAWN we used the mean, the median and the
maximum as a summary statistic for the KS values when 𝜃 = 1, 𝜃 = 2
and 𝜃 = 3. For 𝑆∗

𝑇 𝑖, we used the estimators by Jansen (1999), Homma
and Saltelli (1996) and Sobol’ (2007) when 𝜃 = 1, 𝜃 = 2 and 𝜃 = 3
respectively.

In order to estimate the uncertainty propagated by (𝑁, 𝑛, 𝜀, 𝜃) (resp.
𝑁, 𝜃) to PAWN (resp. 𝑆∗

𝑇 𝑖), we created a (213, 2𝑘) sample matrix for each
function using Sobol’ quasi-random number sequences, where 𝑘 = 4
(resp. 𝑘 = 2), and transformed the columns into their appropriate
distributions (Table 1). The first 𝑘 matrix was labelled 𝐀 and the second
𝑘 matrix, 𝐁. Our model ran row-wise in both the 𝐀 and 𝐁 matrices, as
follows: based on the information contained in the 𝑣th row, it created
a Sobol’ matrix of size 𝑁 (𝑣) for PAWN [of size 𝑖𝑛𝑡(𝑁 (𝑣)∕(𝑘+1)) for 𝑆∗

𝑇 𝑖],
and computed either the Liu et al. (2006), the Ishigami and Homma
(1990), the Sobol’ (1998) or the Morris (1991) function. Then, for each
model input 𝑖, it either calculated the PAWN(𝑣) index following the
conditions set by 𝑛(𝑣), 𝜀(𝑣) and 𝜃(𝑣), or the 𝑆∗(𝑣)

𝑇 𝑖 index according to 𝜃(𝑣).
We estimated how sensitive PAWN (𝑆∗

𝑇 𝑖) indices are to uncertainty
in (𝑁, 𝑛, 𝜀, 𝜃) (resp. 𝑁, 𝜃) by means of Sobol’ indices (Sobol’, 1993).
For a model of the form 𝑌 = 𝑓 (𝑋1, 𝑋2,… , 𝑋𝑘), where 𝑌 is a scalar
and 𝑋1, 𝑋2,… , 𝑋𝑘 are independent parameters described by known
probability distributions, we can measure how sensible 𝑌 is to a given
parameter 𝑋𝑖 with

𝑉𝑖 = 𝑉𝑋𝑖

[

𝐸𝐗∼𝑖
(𝑌 |𝑋𝑖)

]

(5)

where 𝐸𝐗∼𝑖
(𝑌 |𝑋𝑖) is the expected value of 𝑌 calculated over all possible

values of all parameters except the 𝑖th, which is kept fixed. By dividing
Eq. (5) by the unconditional model output variance, we obtain the
first order sensitivity index for 𝑋𝑖, which describes the proportion of
variance in the model output caused by 𝑋𝑖:

𝑆𝑖 =
𝑉𝑖
𝑉𝑌

(6)

We can then decompose the unconditional model output variance
𝑌 as the sum of conditional variances up to the 𝑘th order:

𝑉𝑌 =
𝑘
∑

𝑖=1
𝑉𝑖 +

∑

𝑖

∑

𝑖<𝑗
𝑉𝑖𝑗 +⋯ + 𝑉1,2,…,𝑘 (7)

where
𝑉𝑖𝑗 =𝑉𝑋𝑖 ,𝑋𝑗

[

𝐸𝐗∼𝑖,𝑗
(𝑌 |𝑋𝑖, 𝑋𝑗 )

]

− 𝑉𝑋𝑖

[

𝐸𝐗∼𝑖
(𝑌 |𝑋𝑖)

]

− 𝑉𝑋𝑗

[

𝐸𝐗∼𝑗
(𝑌 |𝑋𝑗 )

]

(8)

From this, we can derive the second-order index 𝑆𝑖𝑗 , which explains
the proportion of variance due to the interaction between 𝑋𝑖 and 𝑋𝑗 :

𝑆𝑖𝑗 =
𝑉𝑖𝑗
𝑉𝑌

(9)

and so on until order 𝑘. However, estimating all terms in Eq. (7) is
impractical when 𝑘 is large, as they result in 2𝑘−1. In this case, we can
compute the total order index or 𝑆𝑇 𝑖, which measures the proportion of
variance due to the first-order effect of 𝑋𝑖 jointly with its interactions
with the other parameters (Homma and Saltelli, 1996):

𝑆𝑇 𝑖 =
𝐸𝑋∼𝑖

[

𝑉𝑋𝑖
(𝑌 |𝑋∼𝑖)

]

𝑉𝑌
(10)

For PAWN, since 𝑘 = 4, we computed first (𝑆𝑖), second (𝑆𝑖𝑗), third
(𝑆𝑖𝑗𝑘) and total-order (𝑆𝑇 𝑖) Sobol’ indices of (𝑁, 𝑛, 𝜀, 𝜃). For 𝑆∗

𝑇 𝑖, since
𝑘 = 2, we just computed 𝑆𝑖 and 𝑆𝑇 𝑖. In both settings we used the Saltelli
et al. (2010) and the Jansen (1999) estimators to compute 𝑆𝑖 and 𝑆𝑇 𝑖
respectively, as per the established best practices. All the workflow
is summarized in Fig. S2 and the 𝑅 code to replicate our results is
available in GitHub.

3. Results

3.1. Uncertainty analysis

Fig. 2 presents the uncertainty distribution of PAWN and 𝑆∗
𝑇 𝑖 for

each model input and function. The results can be matched against Fig.
S3, where we display how PAWN and Sobol’ indices look like once their
design parameters are fixed and the total number of model runs is set
at 𝑁 = 4000.

For PAWN, we ran three simulations (Fig. 2a):

1. With 𝜃 including the mean, the median and the maximum as
possible summary statistics (𝑚𝑎𝑥 ∈ 𝜃 setting).

2. With 𝜃 including the mean and the median only (𝑚𝑎𝑥 ∉ 𝜃 set-
ting). This aimed at isolating the effect that extreme KS values,
which might be obtained for specific conditioning intervals, have
in the final PAWN index.

3. With 𝑁 ∼  (2500, 4000), 𝑛 ∼  (15, 20) and (𝑚𝑎𝑥 ∉ 𝜃) (‘‘Opti-
mum’’ setting). This latter run reflects an ideal scenario, one in
which the number of model runs needed to achieve convergence
is known in advance and the uncertainty in 𝑛 and 𝜃 is reduced
to the minimum expression.

For 𝑆∗
𝑇 𝑖 we run one simulation to assess its sensitivity to the un-

certainty in the total number of model runs and the estimator (𝑁, 𝜃)
[with 𝑁 ∼ (200, 2000)] (Fig. 2b). Sobol’ indices might eventually take on
values outside the range [0, 1] due to numerical artefacts created during
the computation. This is widely known among sensitivity analysts and
managed by considering (𝑆∗

𝑇 𝑖 < 0) ≈ 0 and (𝑆∗
𝑇 𝑖 > 1) ≈ 1. Fig. 2b only

presents 𝑆∗
𝑇 𝑖 ∈ [0, 1] to allow for a better comparison with the values

produced by the PAWN index. A plot showing the distribution of values
with 𝑆∗

𝑇 𝑖 ∉ [0, 1] is presented in Fig. S4.

3.1.1. Factor prioritization
Fig. 2 shows that, in a factor prioritization context, i.e. when the aim

is to sort the parameters according to their contribution to the model
output variance (Saltelli et al., 2007), the uncertainty in the value of
the design parameters might cause model inputs to overlap, thus raising
the likelihood of producing a biased ranking. In order to get precise
figures for this overlap, we computed the coefficient of overlapping,
i.e. the area lying under the density curves of two different model
inputs, following Pastore (2018) (see Fig. S5 for a presentation of Fig. 2
with density curves instead).

In the case of the Ishigami and Homma (1990) function, the overlap
between 𝑋2 and 𝑋3 is of 10% if PAWN is used under 𝑚𝑎𝑥 ∈ 𝜃 (4% under
𝑚𝑎𝑥 ∉ 𝜃), despite 𝑋2 being non-influential. The overlap with 𝑆∗

𝑇 𝑖 is 0.
With the Sobol’ (1998) G function, PAWN mistakes 𝑋1 for 𝑋2 and 𝑋2
for 𝑋3 11% and 20% of the time respectively if 𝑚𝑎𝑥 ∈ 𝜃 (4% and 10%
if 𝑚𝑎𝑥 ∉ 𝜃), and might even bias the ranking of 𝑋2 and 𝑋4 (14% and
9% overlap in 𝑚𝑎𝑥 ∈ 𝜃 and 𝑚𝑎𝑥 ∉ 𝜃 respectively). On the contrary, if

https://github.com/arnaldpuy/pawn_uncertainty
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Fig. 2. Uncertainty in the computation of the sensitivity indices. Outliers are shown in red. (a) PAWN. (b) 𝑆∗
𝑇 𝑖.

𝑆∗
𝑇 𝑖 is used, the overlap between 𝑋1 −𝑋2, 𝑋2 −𝑋3 and 𝑋2 −𝑋4 is ∼0%,

2% and 1% respectively.
The case of the Liu et al. (2006) function deserves a specific com-

ment. Fig. 2 shows that 29% of 𝑋1 and 𝑋2 values overlap if using PAWN
under 𝑚𝑎𝑥 ∈ 𝜃 (13% if 𝑚𝑎𝑥 ∉ 𝜃), whereas for 𝑆∗

𝑇 𝑖 the degree of overlap
is 55%. Liu et al. (2006), however, stated that 𝑋1 was more influential
than 𝑋2 based on relative-entropy sensitivity methods. Pianosi and
Wagener (2015) used the Liu et al. (2006) function to back up their

claim of PAWN outperforming Sobol’ indices due to the former being
able to discriminate the higher influence of 𝑋1 much better than 𝑆∗

𝑇 𝑖.
However, the analytical values of 𝑆∗

𝑇 𝑖 in the Liu et al. (2006) function
are identical at 𝑋1 = 𝑋2 = 0.546 (see Table 2 in Liu et al. (2006)).
This means that the overlap between 𝑋1 and 𝑋2 shown in Fig. 2b is
to be expected and does not result from the sensitivity of 𝑆∗

𝑇 𝑖 to the
uncertainties in its own structural design.
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Fig. 3. Sobol’ indices. (a) PAWN. (b) 𝑆∗
𝑇 𝑖.

3.1.2. Factor screening
In a factor screening context, i.e. when the aim is to distinguish

influential from non-influential parameters (Saltelli et al., 2007), the
uncertainty in the PAWN design parameters might also lead to erro-
neous results, regardless of whether 𝑚𝑎𝑥 ∈ 𝜃 or 𝑚𝑎𝑥 ∉ 𝜃. In the case
of the Sobol’ (1998) G function, 10%–14% (7%–8%) of the probability
density of 𝑋2, which has a non-nihil effect, overlaps with 𝑋4,… , 𝑋8,
which have no effect at all. The overlap between influential and non-
influential model inputs if 𝑆∗

𝑇 𝑖 is used, on the other side, ranges between
∼0% and 2%.

The poor screening power of PAWN stands out in the case of
the Morris (1991) function: 18%–25% (1%–8% in 𝑚𝑎𝑥 ∉ 𝜃) of the
probability density of 𝑋8,… , 𝑋10, which have a moderate first-order
effect, overlap with that of 𝑋11,… , 𝑋20, which are non-influential (Fig.
S2A). In the case of 𝑆∗

𝑇 𝑖, the overlap ranges in 0%–5%. The chances of
PAWN mistaking relevant for non-relevant parameters is even higher in
the case of parameters whose influence in the model output is through
interactions only: this is the case of 𝑋1,… , 𝑋6 in the Morris (1991)
function, whose degree of overlap with 𝑋11,… , 𝑋20, which are non-
influential, range between 75%–95% (Figs. 2-S3). In all these cases, the
uncertainty in the design parameters of 𝑆∗

𝑇 𝑖 leads to a 0%–4% overlap
between influential and non-influential parameters.

Fig. 2 shows that in the ‘‘Optimum’’ setting the overlap between
the model inputs is considerably reduced for PAWN. In the case of
the Liu et al. (2006) and the Ishigami and Homma (1990) functions,
the percentage of overlap goes down to zero. However, the chances
of wrongly ranking/screening the model inputs remain non-negligible
for both the Sobol’ (1998) G and the Morris (1991) functions. In the
former, there is 17%–28% overlap between the slightly influential
model input 𝑋3 and 𝑋4,… , 𝑋8, whose effect cannot be differentiated
from the approximation error. With regards to the Morris (1991) func-
tion, the chances of characterizing as non-influential parameters that
have a significant non-additive effect in the model output remain very
high: the overlap of 𝑋1,… , 𝑋6 with 𝑋11,… , 𝑋20, for instance, range
between 35%–90% (Fig. 2). As shown in Fig. S3, the volatility in the
computation of PAWN does not allow to distinguish 𝑋11,… , 𝑋20 from
a dummy, non-influential model input.

3.2. Sensitivity analysis

Fig. 3 presents the Sobol’ first (𝑆𝑖) and total (𝑆𝑇 𝑖) indices for each
of the settings of our analysis after pooling the values from all func-
tions and parameters [the Sobol’ indices for each function and design
parameter are shown in Figs. S6–S7 (PAWN), and Figs. S8–S9 (𝑆∗

𝑇 𝑖)].
Fig. 3 thus informs on how much uncertainty each design parameter
contributes to each sensitivity index. In Fig. S10 of the Supplementary
Information file, we prove that the results displayed in Fig. 3 are robust
without having to correct the stronger weight that the Morris function
might have in defining the trends due to its much larger number of
model inputs.

As shown in Fig. 3a, the first-order effect of 𝜃 and 𝑁 is much
more variable in the 𝑚𝑎𝑥 ∈ 𝜃 setting, suggesting that their degree
of contribution to the PAWN index uncertainty might considerably be
function-dependent. This variability is highly reduced in the 𝑚𝑎𝑥 ∉ 𝜃
setting, which provides a more robust account of the extent to which
each design parameter contributes to define the PAWN index. In this
setting, the selection of the total number of model runs (𝑁) and the
number of conditioning intervals (𝑛) convey up to c. 60% and c. 20%
of the PAWN index uncertainty respectively. The stochasticity in the
sampling of 𝑌𝑈 (𝜀) is mostly influential through interactions in both
settings, whereas the selection of the summary statistic (𝜃) has a nearly
nihil effect in the 𝑚𝑎𝑥 ∉ 𝜃 setting. Remarkably, interactions are also
significant in the ‘‘Optimum’’ setting, especially those involving 𝜀, 𝑛
and 𝑁 .

To gain further insights into the structure of the non-additivities in
PAWN, we computed second and third-order effects, shown in Fig. 4
(the second and third-order Sobol’ indices for each function and pa-
rameter are shown in Figs. S11–S14). In the max ∉ 𝜃 setting, the
interactions that have a significant effect on the model output involve
the initial sample size (𝑁) with the number of conditioning intervals (𝑛)
or the stochasticity in the sampling of 𝑌𝑈 (𝜀). Such second-order effects
might contribute up to 15% of the PAWN index uncertainty. This also
applies to the ‘‘Optimum’’ setting, where the interaction between 𝑁 and
𝜀 or 𝑛 and 𝜀 has an even higher effect (up to 25% uncertainty). These
three design parameters have significant third-order interactions in all
three settings (Fig. 4b).

Regarding 𝑆∗
𝑇 𝑖 (Fig. 3b), both 𝑁 and 𝜃 have a non-negligible first-

order effect on the index. The wide boxplots suggest that both the
extent of their influence and the degree of non-additivities in defining
the final 𝑆∗

𝑇 𝑖 index depends on the model under scrutiny (Figs. S8–S9).

4. Discussion and conclusions

Sensitivity analysis is an important tool to check the robustness of a
model in the context of its validation. However, also the measurement
of the sensitivity of the output variables to input parameters rests on
modelling hypotheses, i.e. sensitivity analysis is a modelling process per
se, based on the use of an algorithm — like the models being investi-
gated. Here we tested the robustness of this aspect of the modelling
process by assessing the dependency of the PAWN index to its design
parameters, and matched the results against the Sobol’ total-order index
(𝑆∗

𝑇 𝑖). Our work thus sheds some light on the uncertainties concealed
in the last stage of any sensitivity analysis: the implementation of the
sensitivity algorithm. This practice could help ensuring the adequacy
and the range of applicability of the tools which modellers deploy to
improve the quality of their modelling exercises.

Two elements emerge from our work: the PAWN index is more
sensitive to the design parameters than 𝑆∗

𝑇 𝑖, and this sensitivity has a
complex pattern which makes the use of PAWN, or better the tuning of
the PAWN design parameters, a delicate task. The chances of incurring
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Fig. 4. High-order interactions between the PAWN design parameters. Only those boxplots with all values above the red dashed horizontal line reflect a true effect. (a) Second-order
interactions. (b) Third-order interactions.

in false positives (mistaking a non-influential parameter for influential,
with a waste of computational resources) and/or false negatives (mis-
taking an influential parameter for non-influential, with a loss of useful
information) are significant even when the design parameter space
does not include the maximum as a possible summary statistic, but
only measures of central tendency. Even in an ideal setting, where the
uncertainty in 𝑛 and 𝜃 is highly reduced and 𝑁 ensures convergence,
the PAWN index might be incapable to differentiate between non-
influential model inputs and influential model inputs whose effect in
the model output is fully through interactions. Mora et al. (2019) also
observed that the high level of noise in PAWN might produce biased
rankings when the model inputs have different orders of magnitude in
their contribution to the response.

PAWN especially underperformed when used in the Sobol’ (1998)
(𝑘 = 8) and the Morris (1991) function (𝑘 = 20). This raises a red
flag for analysts when using PAWN in high-dimensional models such
as those commonly being employed in the Earth and Environmental
Sciences domain, which might easily include tens of parameters (Sheik-
holeslami et al., 2019). In these contexts, the use of PAWN might indeed
allow to significantly reduce the number of model runs required to
conduct a sensitivity analysis, but at the expense of significant risks
of obtaining a biased result due to its structural design.

The fact that the sensitivity of PAWN to its design parameters is
complex, including important interactions up to the third order effect,
implies that finding the perfect range of design parameters to use
PAWN safely and efficiently is not easy. The significant non-additivity
of PAWN only unfolds once the values of its main design parameters
are moved simultaneously within reasonable uncertainty ranges; this
is, when all the forking paths and divergences leading towards its
computation are assessed at once. Instead, in the paper where the
‘‘generic approach’’ is presented, Pianosi and Wagener (2018) analysed
the influence of (𝑁, 𝑛, 𝜃) on PAWN by combining different discrete
point-estimates for 𝑁 and 𝑛 (see their Fig. 3), or by changing the value
for either 𝑁 or 𝑛 while keeping the other design parameters fixed (see
their Figs. 6 and 7). This approach is very similar to a one-at-a-time
(OAT) sensitivity analysis, a method that may fail to detect interactions
between model parameters due to its incomplete examination of the
uncertainty space (Saltelli and Annoni, 2010). Our work shows that
even by increasing 𝑁 , ensuring a ‘‘high’’ 𝑁∕𝑛 ratio or fixing 𝜃 at a
central tendency measure, significant interactions between 𝑁 and 𝑛,
𝑁 and 𝜀 or between 𝑁 , 𝑛 and 𝜀 make PAWN considerably difficult to
tame.

In our study we also observed the existence of potential interactions
between the total number of model runs 𝑁 and the estimator 𝜃 for
𝑆∗
𝑇 𝑖. However, the variance in 𝑆∗

𝑇 𝑖 deriving from the uncertainty in its
design parameters is comparatively much smaller, thus reducing the
chances of obtaining a biased ranking or producing a wrong screening.
It should be stated that our research design for 𝑆∗

𝑇 𝑖 included the use of
different estimators out of our willingness to fully explore its potential

uncertainty space. However, there is actually no uncertainty in 𝜃 when
computing Sobol’ total-order indices: Saltelli et al. (2010) showed that
the best estimate of the degree to which a given model input interacts
with the rest is obtained with the Jansen (1999) estimator, which
should be the default choice. This means that the uncertainty in the
design parameters of 𝑆∗

𝑇 𝑖 actually narrows down to the total number of
model runs 𝑁 only. It is thus to be expected that given two algorithms,
the one depending on a higher number of design parameters will be the
more delicate to use. A similar discussion led Campolongo et al. (2011)
to conclude that the screening method of Morris could be effectively
substituted by 𝑆∗

𝑇 𝑖.
We would like to stress that there are many other uncertainties

beyond those embedded in sensitivity indices that have the potential to
condition the results of a given sensitivity analysis. These do not only
involve quantifiable elements such as the selection of the distributions,
sample size or the model output form (Kaplan and Garrick, 1981; Aven,
2020; Noacco et al., 2019), but also uncertainties in the entire knowl-
edge and model-generating processes (Saltelli et al., 2013). Algorithmic
uncertainties ingrained in the design parameters of sensitivity indices,
however, are especially important for they condition the computational
path towards the final sensitivity value. Although several alternative
routes might be available, these multiple options are eliminated once
the computation is triggered, yielding the illusion of a deterministic
process. We believe that a good way to know whether a sensitivity
index is robust is to check how volatile it is when all paths involved
in its effective computation are walked at once.

The present findings do not suggest discarding PAWN as a sensitivity
measure. Moment independent measures have a role to play in sensitiv-
ity analysis of output with long-tailed distributions. Additionally, they
may find an ideal use in settings where the output of interest is itself
in the form of a difference between two cumulative distributions. The
present analysis aims at encouraging developers of sensitivity indices
to fully explore the structural uncertainty of their algorithms in order
to deliver transparent and robust sensitivity tools.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.envsoft.2020.104679.
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