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Abstract

The paper proposes a new approach for analysing the stability of

Composite Indicators. Starting from the consideration that di�erent

subjective choices occur in their construction, the paper emphasizes

the importance of investigating the possible alternatives in order to

have a clear and objective picture of the phenomenon under investiga-

tion. Methods dealing with Composite Indicator stability are known

in literature as Sensitivity Analysis. In such a framework, the paper

presents a new approach based on a combination of explorative and

con�rmative analysis aiming to investigate the impact of the di�er-

ent subjective choices on the Composite Indicator variability and the

related individual di�erences among the statistical units as well.
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1 Introduction

The aim of the paper is to develop a new approach for the analysis of Com-

posite Indicators (CIs) in the theoretical framework of explorative and con-

�rmative analysis.

It is a matter of fact that the requirement to synthetize univariate indi-

cators by means of a CI is becoming more and more common in all those

contexts where the interesting phenomenon cannot be directly observed and

measured due to the presence of several and di�erent concurrent factors.

Once a CI is constructed, a post-analysis of its stability is advisable before

employing it in a decision process. The values of a CI and/or the ranking

deriving from these values depend on the methodological choices faced in

its construction. These choices are well known in literature as uncertainty

factors (Nardo et al., 2008) and they involve all the steps followed in the CI

de�nition process: de�nition of the phenomenon to be measured (selection

of factors, indicators and statistical units), pre-processing of the original in-

dicators (missing data imputation, indicator transformations), construction

of the CI (identi�cation of the system of weights, selection of the aggregation

method).

The paper is embedded in the Sensitivity Analysis (SA) (Saltelli et al.,

2008) framework where the aim is to identify the contribution of each uncer-

tainty factor on the obtained CI.

The proposal of the present contribution is to present an innovative CI

Sensitivity Analysis based on a combination of Mixed Model Analysis of

Variance models (McCulloch et al., 2001) and multivariate methods (Mardia

et al., 1979). This strategy has already been proposed by Naes (Naes et al.,

2010) in the context of consumers' preferences. Aim of the present work is

to adapt such approach to the CI Sensitivity Analysis framework.

Besides the evaluation of the impact of the uncertainty factors on the CI

variability, the proposed approach allows to highlight the individual di�er-

ences among the observations as well. Classical sensitivity methods and the

proposed approach will be compared by means of a case study based on the

Technology Achievement Index (Desai et al., 2002).
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2 Constructing Composite Indicators

A Composite Indicator is obtained by synthetizing individual indicators (quan-

titative/qualitative measures observed on a set of units) into a single index.

The requirement to synthesize univariate indicators by means of CIs is be-

coming more and more urgent in all those contexts, e.g. social, sanitary and

economic, where the object of analysis cannot be directly observed and mea-

sured due to the presence of several and di�erent concurrent factors acting

as determinants. Examples of CIs proposed over the years by international

organizations in di�erent �elds of applications are listed below:

• Human Development Index 2: a CI which takes into account the three

main dimensions of the human development (life expectation, education,

income).

• Human Poverty Index 3: it is computed di�erently for speci�c group

of countries (developing countries and selected OECD countries) and it

measures the standard of living of a country according to the longevity,

knowledge, standard of living and social exclusion.

• Global Risk Index 4: it measures the �nancial risk connected to invest-

ments and it is based on the volatility index of 34 �nancial assets.

• Economic Competitiveness Index 5: it measures the ability of a nation

to guarantee favorable economical conditions for �rm competitiveness.

• Index of Healthy Conditions 6: it combines 6 healthy conditions in order

to measure the healthy state of PAN American countries.

These and other additional examples of CIs give rise to an increasing interest

on the topic among the politicians, the workers from the di�erent socio-

economic sectors, the researchers, the news agencies and the public opinion.

It is a matter of fact that CIs are recognized as fundamental tools accord-

ing to which important political decisions, often aiming to share �nancial

resources, are made. They are also widely used to communicate the relative

performance of countries.

2http : //hdr.undp.org/docs/statistics/indices/technote1.pdf
3http : //hdr.undp.org/docs/statistics/indices/technote1.pdf
4http : //www.weforum.org/en/initiatives/globalrisk/index.htm
5http : //www.cforic.org/pages/european− competitiveness.php
6http : //www.paho.org/English/D/Annual −Report1996/ops96ar4.htm
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Whatever the applicative context is, the construction of CIs involves

stages where subjective decisions have to be taken. The �rst requirement

pertains to the characterization of the dimensions underlying the concept to

be measured. Once these have been identi�ed, the quantitative and qualita-

tive variables (indicators) able to measure each dimension must be speci�ed.

A pre-processing of the univariate indicators is then performed to deal, for

example, with missing values and transformation of raw values. Finally, sev-

eral aggregation methods and systems of weights can be adopted. A full

checklist for building composite indicators is provided by OECD Handbook

(Nardo et al., 2008). All the required choices are de�ned uncertainty or input

factors since they introduce variability in the model output, namely in the

Composite Indicator.

A list of possible uncertainty factors in case of quantitative observed indi-

cators, with their corresponding alternatives (levels), is presented in Table

1.

Table 1: Uncertainty Factors and levels
Factors Levels

Normalization raw, ranking, standardization, minmax,

distance to a reference unit

Aggregation linear, geometric, multi criteria (Munda, 2007)

Weighting equal, factorial analysis, participatory approaches

(budget allocation process - BAP (Moldan et al., 1997),

analytic hierarchy process - AHP (Saaty, 1987))

In order to introduce some basic notation, let X(N×P ) be a data matrix

of P indicators observed on N units, Y(N × 1) the CI and Zh (h = 1, ..., H)

the generic uncertainty factor assuming di�erent levels (lh). According to the

choices occurring in the CI construction, the output Y will vary obtaining as

many di�erent outputs as the number of possible levels combinations (l1 ×
l2 . . .×lH). For instance if the selected combination of levels is Znormalization =

raw(r), Zaggregation = geometric(g), Zweights = equal(e), the resulting CI for

the generic unit n (n = 1, . . . , N) will be:

Y rge
n =

P∏
p=1

Xnp (1)
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3 Uncertainty and sensitivity analysis

Studies on Uncertainty and Sensitivity analysis �nd their origin in the ex-

perimental sciences where the value of the variable in itself is the prominent

uncertainty input factor. Thus, di�erent methods have been proposed over

the years for handling this type of uncertainty. More recently, these meth-

ods have been generalized to the context of the CIs (Nardo et al., 2008):

Uncertainty Analysis aims to quantify the uncertainty associated to the CI

while Sensitivity Analysis aims to identify the contribution of each factor

involved in the construction of the CI (weighting schemes, aggregation meth-

ods, etc. . .) on its variability.

Sensitivity methods can be classi�ed into three categories (Saltelli et al.,

2000):

• Factor screening

• Local sensitivity analysis

• Global sensitivity analysis

The methods belonging to the �rst group are very useful in case of many

input factors and they allow preliminary evaluations on the input factors

aiming to identify the most important ones. Typical screening methods are

represented by one-at-a-time (OAT) experiments (Daniel, 1958) and factorial

experiments (Box et al., 1978). All of them provide a ranking of the input

factors according to their importance but they do not quantify the impact

of each input factor on the composite indicator. This aim can be achieved

by the local sensitivity analysis methods which measure the exact impact

of the input factors on the model output. They are based on the computa-

tion of partial derivatives of the output functions with respect to the input

factors. Even if local sensitivity methods are computationally e�cient, they

are strongly dependent from the speci�c point (nominal value of each input

factor) investigated in the space of parameters.

Global sensitivity analysis methods are the most widespread approaches

to sensitivity analysis. They allow overcoming the main drawbacks of the

previously mentioned methods and they measure the uncertainty of the out-

put deriving from the uncertainty of each input factor. The term global refers

to the capability of such methods to simultaneously analyze all input factors

and to inspect their entire distribution. Global sensitivity analysis methods

are performed via simulation techniques such as Monte Carlo methods be-
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cause it is necessary to generate multiple evaluations of the model output

according to randomly selected model inputs.

In order to perform a global sensitivity analysis it is �rstly necessary to

de�ne a probability distribution function for each input factor. This phase

is strongly dependent from expert's subjective choices and it in�uences both

the next phases and the �nal results. Once a probability distribution function

is identi�ed for each input factor, a sampling procedure must be chosen to

select a sample form those distributions. Several sampling procedures can

be functional to such phase: random sampling, strati�ed sampling, quasi

random sampling, etc. The generated samples are used to evaluate the model

output in terms of sequences of output values or rankings of the output

values or di�erences between the output values and a benchmark reference

output. Finally, a global sensitivity analysis closes with the evaluation of the

uncertainty and of the sensitivity of the model output to the input factors.

In particular uncertainty analysis aims to quantify the uncertainty of the

model output through the analysis of simple statistics such as the expected

value and the variance of the output or its density function.

Sensitivity analysis, instead, aims to identify the contribution of each input

factor on the uncertainty of the model output. Several tools and methods

have been proposed to perform a sensitivity analysis. The simplest one is

represented by the inspection of the scatter plot displaying the output and

input values generated by the Monte Carlo procedure. It is a matter of fact

that a careful inspection of the scatter plot can reveal the presence or the

absence of a relationship between the variables and, in case of a relationship,

its form (linear or not). A further investigation can be performed through

a regression analysis between inputs and outputs thus providing a regres-

sion coe�cient measuring the e�ect of a unitary variation of the input on

the model output. Regression analysis can be executed on data replaced by

ranks in case of non linear relationships between variables. Variance-based

methods represent a widespread class of methods to perform a global sensi-

tivity analysis. They provide, for each input factor, a measure of the impact

of the given factor on the model output.

3.1 Variance based methods

Variance based methods (VBM) provide quantitative measures evaluating

the variability in the model output, for each sources of uncertainty. The
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underlying concept is that �xing one important source of variation to a given

value (Z lh
h , where lh is one of the levels of the h factor), the variance of

the model output (V ar(Y |Z lh
h ), conditional variance) should be less than

the total variance of the composite indicator (Var(Y), total or unconditional

variance).

The origins of VBM date back to the proposal of Cukier (Cukier et al.,

1973) based on Fourier transformations (Fourier Amplitude Sensitivity Test).

It was followed by the introduction of measures of importance such as the

one proposed by Hora and Iman (1986).

In the 90s, total sensitivity indexes were introduced by Homma and

Saltelli (1996) after the Sobol (1990) systematization of the theory about

variance-based methods.

Whatever the variance-based method is used, all the steps for a global

sensitivity analysis must be performed for each observed unit:

• De�nition of a probability density function (f) for each h uncertainty

factor (h = 1, ..., H):

Zh ∼ fh(θh) (2)

• Selection of an R dimension random sample for each fh, one indepen-

dently from the other: Z(R×H). Each row of the Z matrix represents a

sample corresponding to a given combination of levels of the H factors.

• For each row of the Z matrix, evaluation of the CI: Yr (r = 1, ..., R).

The �rst order sensitivity index is computed evaluating for each source of

uncertainty Zh with lh levels the following quantities:

• Compute the CI values corresponding to a given level lh of the Zh factor:

Y |Z lh
h .

• Take the expected value on the conditioned Y values: E(Y |Z lh
h ).

• Measure the variance of the expected values over the lh levels of the Zh

factor: Vh = V arZh
(E(Y |Z lh

h ))

• Compute the fractional contribution to the model output variance due

to the uncertainty in Zh:

Sh =
Vh

V
(3)

where V=Var(Y).
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First order sensitivity indexes refer to an additive model without interac-

tions among factors and where V =
∑H

h=1 Vh and
∑H

h=1 Sh = 1. In order to

take into account interaction e�ects in case of non additive models, a total

e�ect index is introduced (Homma and Saltelli, 1996). For example, in case

of H = 3 uncertainty factors, the total e�ect index of the �rst uncertainty

factor is: ST1 = S1 + S12 + S13 + S123 where S1 is the �rst order sensitivity

index and all the other terms are sensitivity indexes based on the interactions

among factors.

A technical drawback of the VBM is its computational cost since it requires

many simulations of the CIs. Moreover, these methods provide information

on the di�erent uncertainty factors without highlighting the role of the cor-

responding levels. This lack of information also a�ects the analysis of the

interactions since it is limited to verify how much a factor is sensitive to the

interactions with the others but no information is provided on which are the

a�ecting factors and levels.

4 The proposed approach: ANOVA-PCA based method

The main focus of this paper is to propose an alternative method for Sensi-

tivity Analysis of CIs which investigates the impact of the di�erent sources of

uncertainty in the CI construction (factors, levels, units), taking also into ac-

count external information available for each statistical unit (e.g., continent,

dimension, etc. . .). The use of external information is of crucial importance

in this type of analysis since it provides additional information very useful

for a suitable interpretation of the �nal results.

The proposed strategy consists of a simultaneous approach combining both

explicative and explorative methods. Speci�cally, the approach consists of

two main steps:

1. evaluation of the signi�cance of uncertainty factors and additional in-

formation by Analysis of Variance (ANOVA):

estimating the e�ect of each uncertainty factor on the CI variability by

means of a Mixed Model ANOVA with units as random factor;

2. exploration of interactions among factors and units by Principal Com-

ponent Analysis (PCA):

(a) estimating a Mixed Model ANOVA without the units factor and

taking the residuals;
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(b) exploring individual di�erences among units by PCA on the ob-

tained residuals.

4.1 Evaluation of the signi�cance of uncertainty factors and ad-

ditional information by ANOVA

Analysis of Variance is a very useful method when the objective is an as-

sessment of the impact of some controllable factors (categorical variables)

on a speci�c response (continuous variable) (Searle, 1997). The impact is

signi�cant if the variability between the groups de�ned by the factor levels

(categories) is much larger than the variability within the groups. ANOVA

model is equivalent to a linear model where the response variable becomes

the dependent variable, and each of the factors is transformed into dummy

variables according to the number of levels.

Given the data matrix X (N × P) of P indicators observed on N units as

introduced in section (2), let's consider for simplicity only two uncertainty

factors Z
′
and Z

′′
, respectively with I and J levels. The units factor U will

consist of as many levels as the number of observed units and it is nested

in the external information factor δ, with M levels. A factor is nested when

subgroups of units match only one of the levels of the nesting factor and not

each one of them, as usually happens in a crossed design. The model can

then be written as:

yijn = µ+ z
′

i + z
′′

j + un(δ) + z
′
z

′′

ij + z
′
uin + z

′′
ujn + eijn (4)

where yijn is the nth observation obtained using the ith (i=1,...I ) level of

the z
′
factor and the jth (j=1,...J ) level of the z

′′
factor. In model (4), the

general mean is represented by µ, while z
′
i and z

′′
j are the main e�ects of the

two uncertainty factors and z
′
z

′′
ij is their interaction e�ect. All these factors

are considered �xed. The main e�ect of the factor represented by the units

and nested in the external information factor δ is un, while z
′
uin and z

′′
ujn are

the interactions between units and the two uncertainty factors. Finally, the

term eijn is the random error. As the set of units can be viewed as one speci�c

`sample' of the whole population of statistical units, the related factor is a

random factor. An ANOVA model including both �xed and random factors

is called Mixed Model ANOVA.

Model (4) corresponds to a simultaneous ANOVA for all statistical units and

it is estimated by stacking in a pile the same matrix containing the di�erent
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combinations of factor levels and the corresponding CI obtained for each

statistical unit.

Results from model (4) show which uncertainty factors strongly a�ect or not

the stability of the CI and also the impact of these e�ects on each single unit.

In order to better explore such di�erences and similarities among the units,

a PCA exploiting all the advantages of the factorial methods is performed

on the residuals of an ANOVA model without the units factor, as shown in

the next section.

4.2 Exploration of interactions among factors and units by Prin-

cipal Component Analysis

A study of the di�erences among the units in their CI values is already

achieved by introducing the units e�ect as random factor in the joint ANOVA

(4). In fact, the variance components for the random e�ects provide infor-

mation on the relative size of the individual di�erences in the model, whilst

the main e�ects and the interaction e�ects plots show graphically such di�er-

ences. However, in case of many statistical units these plots are unreadable

and more sophisticated exploratory methods are required. Principal Com-

ponent Analysis is very appropriate at this aim since it allows to synthetize

multivariate data in a few linear combinations to be plotted by means of

factorial planes. Speci�cally, individual di�erences will be explored by PCA

on the residuals obtained in a model with only �xed uncertainty factors and

the random unit e�ect:

yijn = µ+ z
′

i + z
′′

j + z
′
z

′′

ij + un(δm) + eijn (5)

Residuals from this second model contain information on individual di�er-

ences among units with respect to the uncertainty factors plus the random

error. The same individual di�erences are modeled di�erently in model (4)

as interactions between the units and the uncertainty factors.

In order to run the PCA on the residuals from model (5), these have to be

rearranged in a data matrix (N × (I × J)) with the units as rows and the

CIs, corresponding to the di�erent combinations among the uncertainty fac-

tors levels, as columns. Results from this PCA will highlight units with CI

values, due to a speci�c combination of uncertainty factor, either higher or

lower than the average unit. These units will be identi�ed as those which are

more sensitive to a speci�c uncertainty factors combination. The impact of
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the external information is investigated by including it in the PCA as sup-

plementary variable and projecting it on the factorial planes obtained by the

residuals from model (5).

5 Case study

5.1 The Technology Achievement Index

The Technology Achievement Index (TAI) is a composite indicator developed

by the United Nations for the Human Development Report (United Nations,

2001) aiming to assess the national capacities in technology of a certain

number of countries.

It is composed by 8 individual indicators observed on 72 countries:

• patents: the number of patents granted per capita, to re�ect the cur-

rent level of invention activity (per million people);

• royalties: receipt of royalty and license fees from abroad per capita, to

re�ect the stock of successful past innovations still useful (US$ per 1000

people);

• internet: Internet host (per 1000 people);

• exports: exports of high-technology and medium-technology products

(as % of all total goods exports);

• telephones (log): expressing the measure in logarithms ensures that,

as the level increases, it contributes less to the index (mainlines and

cellular per 1000 people);

• electricity (log): expressing the measure in logarithms ensures that,

as the level increases, it contributes less to the index (kWh consumption

per capita);

• schooling: mean years of schooling as proxy for basic education to

develop cognitive skills and skills in science and mathematics (age 15

and older);

• university: enrolment in tertiary education in science, mathematics

and engineering (ratio %).

For the purpose of the paper only the �rst 23 of the 72 original countries

measured by the TAI are considered and listed in Table 2:
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Table 2: Countries analyzed for the TAI
Finland (Fi) United States (US) Sweden (Sw) Japan (Ja)

Korea (Ko) Netherlands (Ne) United Kingdom (UK) Canada (Ca)

Australia (Aul) Singapore (Si) Germany (Ge) Norway (No)

Ireland (Ir) Belgium (Be) New Zealand (NZ) Austria (Au)

France (Fr) Israel (Is) Spain (Sp) Italy (It)

Czech Republic (CzR) Hungary (Hu) Slovenia (Sl)

Countries can be classi�ed according to the region as belonging to Eu-

rope or not. In the following this information on the region will be used in

modeling data as external information.

Descriptive statistics of the eight TAI indicators are presented in Table 3.

Table 3: Descriptive Statistics of the TAI indicators
indicator mean variation coe�cient skewness (Pearson)

Patents 182 1.3 2.5

Royalties 54 1 0.8

Internet 80 0.7 0.7

Exports 52 0.3 −0.9

Telephones (log) 3 0.0 −0.6

Electricity (log) 4 0.1 0.8

Schooling 10 0.2 −0.1

University 15 0.4 1.2

The �rst 3 indicators have the highest coe�cient of variation; in addition

Patents also presents a relevant positive skewness.

Results from the PCA on the standardized raw data highlight similarities

and di�erences among the countries with respect to the simple indicators.

Factorial planes in Figure 1 show how indicators span only three of the four

quadrants. Speci�cally, all the indicators with the exception of Patents, Roy-

alties and Exports, which characterize the second principal component, are

highly correlated to the �rst principal component discriminating between

coutries with high values for almost all individual TAI indicators and coun-

tries performing in the opposite way.
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Figure 1: Variables (a) and units (b) �rst factorial plane from the PCA on

the TAI indicators

The methodology used to calculate the TAI consists in a simple average

of the observed indicators whose values are normalized to a scale from 0 to

1 according to the minmax normalization (see table 1):

Xp =
Xp −min(Xp)

max(Xp)−min(Xp)
(6)

Yn =

∑P
p=1Xnp

P
(7)

Figure 2 shows the TAI values calculated according to equations (6) and (7)

for each country.

5.2 Uncertainty and sensitivity analysis for TAI

The methodology used for TAI calculation considers as uncertainty factors

the normalization in (6), the aggregation in (7) and equal weights. As a

matter of fact, this is only one of the possible strategies and a study of the

sensitivity of the TAI distribution over the coutries is advisable. At this

aim, the evaluation of TAI sensitivity is proposed according to the global

sensitivity analysis procedure presented in section (3) and it is performed

through the following steps:

14
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Figure 2: TAI distribution over the countries

• De�nition of three uncertainty input factors: normalization, aggrega-

tion, weights.

• De�nition of factor levels: the minmax transformation (MinMax) and

the distance to the average (NI) are considered as normalization meth-

ods together with the linear (LIN) and the geometric (GEOM) aggrega-

tion methods. Two systems of weights are taken into account: budget

allocation process (BAP) and Analytic Hierarchy Process (AHP).

• De�nition of the probability distribution function for each input factor:

uniform distribution in [0, 1] (Table 4).

• Selection of a sample from those distributions according to a sampling

procedure: a random sample of 10.000 levels combinations of normal-

ization, aggregation and weighting.

• Evaluation of the model outputs: 10.000 TAI values for each country

corresponding to di�erent combinations of uncertainty factors.

• Evaluation of the uncertainty and of the sensitivity of the model output

to the input factors.

In order to investigate the variability of the simulated TAI values for each

country and to have comparable measures, the values are tranformed in ranks

15
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Table 4: Reference scheme of the Uncertainty Analysis
Factor De�nition pdf Levels

X1 Normalization Uniform [0, 1] [0, 0.5] = NI; (0.5, 1] = MinMax

X2 Aggregation Uniform [0, 1] [0, 0.5] = LIN ; (0.5, 1] = GEOM

X3 Weighting Uniform [0, 1] [0, 0.5] = BAP ; (0.5, 1] = AHP

which are graphically represented by boxplots in Figure 3 (countries are

ordered according to the original TAI values). Results in Figure 3 show

Figure 3: TAI Unceratinty Analysis results

how the variability is related to the position in the ranking: the higher/lower

the ranks the lower the variability. Singapore and Korea present the most

variable position with ranks going from the higher to the lower positions in

the ranking.

Once explored the uncertainty in the CI values, SA is used to investigate

which uncertainty facors are more responsible for such variability. At this aim

the sensitivity measures Sh and STh
introduced in section (3.1) are computed

for each country and represented in percentage in Figures 4 and 5.
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Figure 4: TAI First Order Sensitivity Measures

Figure 5: TAI Total Order Sensitivity Measures

First order sensitivity measures in Figure 4 highlight the importance of

the normalization factor on the variation of the TAI values for all countries.

The aggregation factor also gives a little contribution, especially for Korea

and Singapore. The choice of the weighting scheme does not a�ect the TAI

values variability.

17



Cristina Davino, Rosaria Romano / WP n.32 DiSSE, University of Macerata

However, the total order sensitivity measures in Figure 5 point out that the

aggregation and the weights factors are involved in the interactions with the

others factors.

5.3 The ANOVA-PCA based method for TAI

In order to evaluate the signi�cance of the uncertainty factors, a full ANOVA

model with all uncertainty factors, external information and individual fac-

tors is estimated and the results are presentd in Table 5.

Table 5: Full ANOVA results
Source Type F Pr > F

Normalization Fixed 8115.9 < 0.0001

Aggregation Fixed 598.9 < 0.0001

Weighting Fixed 1.0 0.324

Country Random 377.6 < 0.0001

Norm*Agg Fixed 6.6 0.012

Norm*Weig Fixed 1.7 0.200

Norm*Country Random 29.8 < 0.0001

Agg*Weig Fixed 0.1 0.712

Agg*Country Random 23.1 < 0.0001

Weig*Country Random 2.1 0.009

The normalization has the strongest e�ect on the CI variability, followed by

a signi�cant e�ect of aggregation while weighthing has no e�ect. Speci�cally,

the TAI average value (Figure 6) increses in case of NI normalization and

linear aggregation while behaves in the opposite way in case of the other two

levels of the respective uncertainty factors. Table 5 also shows a signi�cant

interaction e�ect between normalization and aggregation. Note that these

results are coeherent with results from the variance based method. The sig-

ni�cant country factor and its interactions with all uncertainty factors point

out individual di�erences among countries in their own TAI values and in

their behaviour with respect to the di�erent choices occurring in the TAI

composite indicator construction.

The second step of the proposed approach consists in exploring residu-

als from the model using only the uncertainty factors, their interactions and
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Figure 6: ANOVA means plots

the country factor. These residuals are computed and arranged into a ma-

trix with the countries as rows and the di�erent combinations of the three

uncertainty factors on the columns. A PCA is then run on these data, in-

cluding region as supplementary categorical variable and the related score

and loading plots are shown in Figure 7.

The explained variance for the �rst two components is 94%. The score

plot shows which countries are sensitive to the di�erent uncertainty factor

combinations represented in the related loading plot. For instance, United

States increases its position in the ranking if the TAI is built by using the NI

normalization combined with the geometric aggregation, while its position

decreases if the minmax normalization and the linear aggregation are used.

Note that there are no signi�cant di�erences in the TAI values between eu-

ropean and not european countries since the two modalities fall in the middle

of the score plot meaning that the two averages are very close to each other.

Moreover a di�erent system of weights does not cause variations on the TAI

values whatever the normalization and aggregation method is used.
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Figure 7: Loading (a) and score (b) �rst factorial plot from the PCA on the

ANOVA residuals

6 Conclusion

The proposed approach aims to investigate the impact of the di�erent sources

of uncertainty in the CI construction taking into account external informa-

tion too. In addition to classical Sensitivity Analysis uncertainty sources, the

e�ect of units (e.g. countries) is also evaluated. All such uncertainty factors

are simultaneosly analysed through a multidimensional approach combining

inferential and exploratory methods. Computational and graphical poten-

tiality of the proposed approach guarantees its use also in case of many

observations where classical Sensitivity Analysis requires an individual in-

spection of the factors and units.

Exploration of the �nal visualization can be considered as a decision support

tool for analysts and especially politicians as they can easily verify the e�ects

of a given policy adopted to construct a CI.

Further developments will regard the inclusion of additional uncertainty fac-

tors in the model such as the inclusion/exclusion of each indicators, but also

the analysis of more complex CI where indicators are structured in subgroups

(dimensions) and the role of such dimensions must be evaluated too.
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