32 research outputs found

    A matheuristic approach to the integration of three-dimensional Bin Packing Problem and vehicle routing problem with simultaneous delivery and pickup

    Get PDF
    This work presents a hybrid approach to solve a distribution problem of a Portuguese company in the automotive industry. The objective is to determine the minimum cost for daily distribution operations, such as collecting and delivering goods to multiple suppliers. Additional constraints are explicitly considered, such as time windows and loading constraints due to the limited capacity of the fleet in terms of weight and volume. An exhaustive review of the state of the art was conducted, presenting different typology schemes from the literature for the pickup and delivery problems in the distribution field. Two mathematical models were integrated within a matheuristic approach. One model reflects the combination of the Vehicle Routing Problem with Simultaneous Delivery and Pickup with the Capacitated Vehicle Routing Problem with Time Windows. The second one aims to pack all the items to be delivered onto the pallets, reflecting a three-dimensional single bin size Bin Packing Problem. Both formulations proposed—a commodity-flow model and a formulation of the Three-Dimensional Packing Problem must be solved within the matheuristic. All the approaches were tested using real instances from data provided by the company. Additional computational experiments using benchmark instances were also performed.This research was funded by national funds through FCT—Fundação para a Ciência e a Tecnologia, under the projects UIDB/00285/2020, UIDB/00319/2020. This work was supported by the Research Unit on Governance, Competitiveness and Public Policies (UIDB/04058/2020) + (UIDP/04058/2020), funded by national funds through the Foundation for Science and Technology, IP. This work was also funded by FEDER in the frame of COMPETE 2020 under the project POCI-01-0247-FEDER-072638

    Models and advanced optimization algorithms for the integrated management of logistics operations

    Get PDF
    Tese de Doutoramento em Engenharia Industrial e de Sistemas.In this thesis, we propose a set of algorithms regarding real combinatorial optimization problems in the context of transportation of goods. These problems consist in the combination of the vehicle routing problem with the two-dimensional bin-packing problem, which is also known as the vehicle routing problem with two-dimensional loading constraints. We also analyzed two related problems, namely the elementary shortest path and the vehicle routing problem with mixed linehauls and backhauls. In both problems, two-dimensional loading constraints are explicitly considered. Two column generation based approaches are proposed for the vehicle routing problem with two-dimensional constraints. The rst one relies on a branch-and-price algorithm with di erent branching schemes. A family of dual valid inequalities is also de ned, aiming to accelerate the convergence of the algorithm. The second approach is based on a set of di erent heuristics strategies, which are applied to the reformulated model. The elementary shortest path problem with two-dimensional constraints is addressed due to its importance in solving the subproblem of the column generation algorithms. To the best of our knowledge, we contribute with the rst approach for this problem, through di erent constructive strategies to achieve feasible solutions, and a variable neighborhood search algorithm in order to search for improved solutions. In what concerns the vehicle routing problem with mixed linehaul and backhauls and two-dimensional loading constraints, di erent variable neighborhood search algorithms are proposed. These algorithms explored various neighborhood structures, being some of those developed based on the features of the problem. All the proposed methods were implemented and experimentally tested. An exhaustive set of computational tests was conducted, using, for this purpose, a large group of benchmark instances. In some cases, a large set of benchmark instances was adapted in order asses the quality of the proposed models. All the obtained results are presented and discussed.Nesta tese, propomos um conjunto de algoritmos sobre problemas reais de otimiza c~ao combinat oria no contexto do transporte de bens. Estes problemas consistem na combina c~ao do problema de planeamento de rotas de ve culos com o problema de empacotamento bidimensional, que tamb em e conhecido como o problema de planeamento de rotas de ve culos com restri c~oes de carregamento bidimensional. Analisamos tamb em dois problemas relacionados, nomeadamente o problema de caminho mais curto e o problema de planeamento de rotas ve culos com entregas e recolhas indiferenciadas. Em ambos os problemas, s~ao explicitamente consideradas restri c~oes de carregamento bidimensional. Duas abordagens baseadas em gera c~ao de colunas s~ao propostas para o problema de planeamento de rotas de ve culos com restri c~oes de carregamento bidimensional. O primeiro baseia-se num algoritmo de parti c~ao e gera c~ao de colunas com diferentes estrat egias de parti c~ao. Uma fam lia de desigualdades duais v alidas e tamb em apresentada, com o objetivo de acelerar a converg^encia do algoritmo. A segunda abordagem baseia-se num conjunto de diferentes estrat egias heur sticas, que s~ao aplicadas ao modelo reformulado. O problema do caminho mais curto com restri c~oes de carregamento bidimensional e abordado devido a sua import^ancia na resolu c~ao do subproblema dos aos algoritmos de gera c~ao de colunas. De acordo com o nosso conhecimento, contribu mos com a primeira abordagem para este problema, atrav es de diferentes estrat egias construtivas para obter solu c~oes v alidas, e um algoritmo de pesquisa em vizinhan ca vari avel, com o objetivo de encontrar solu c~oes de melhor qualidade. No que concerne ao problema de planeamento de rotas de ve culos com entregas e recolhas indiferenciadas, diferentes algoritmos de pesquisa em vizinhan ca vari avel s~ao propostos. Estes algoritmos exploram v arias estruturas de vizinhan ca, sendo algumas destas desenvolvidas com base nas caracter sticas do problema. Todos os m etodos propostos foram implementados e testados experimentalmente. Um extenso conjunto de testes computacionais foi efetuado, utilizando um grande grupo de inst^ancias descritas na literatura. Em alguns casos, um grande conjunto de inst^ancias descritas na literatura foi adaptado com o objetivo de avaliar a qualidade dos m etodos propostos

    A hybrid algorithm for the vehicle routing problem with three-dimensional loading constraints and mixed backhauls

    Get PDF
    In this paper, a variant of the vehicle routing problem with mixed backhauls (VRPMB) is presented, i.e. goods have to be delivered from a central depot to linehaul customers, and, at the same time, goods have to be picked up from backhaul customers and brought to the depot. Both types of customers can be visited in mixed sequences. The goods to be delivered or picked up are three-dimensional (cuboid) items. Hence, in addition to a routing plan, a feasible packing plan for each tour has to be provided considering a number of loading constraints. The resulting problem is the vehicle routing problem with three-dimensional loading constraints and mixed backhauls (3L-VRPMB)

    Algebraic structural analysis of a vehicle routing problem of heterogeneous trucks. Identification of the properties allowing an exact approach.

    Get PDF
    Although integer linear programming problems are typically difficult to solve, there exist some easier problems, where the linear programming relaxation is integer. This thesis sheds light on a drayage problem which is supposed to have this nice feature, after extensive computational experiments. This thesis aims to provide a theoretical understanding of these results by the analysis of the algebraic structures of the mathematical formulation. Three reformulations are presented to prove if the constraint matrix is totally unimodular. We will show which experimental conditions are necessary and sufficient (or only sufficient or only necessary) for total unimodularity

    Ambulance routing problems with rich constraints and multiple objectives

    Get PDF
    Humanitäre non-profit Organisationen im Bereich des Patiententransports sehen sich dazu verpflichtet alle möglichen Einsparungs- und Optimierungspotentiale auszuloten um ihre Ausgaben zu reduzieren. Im Gegensatz zu Notfalleinsatzfahrten, bei denen ein Zusammenlegen mehrerer Transportaufträge normalerweise nicht möglich ist, besteht bei regulären Patiententransporten durchaus Einsparungspotential. Diese Tatsache gibt Anlass zur wissenschaftlichen Analyse jener Problemstellung, welche die täglich notwendige Planung regulärer Patiententransportaufträge umfasst. Solche Aufgabenstellungen werden als Dial-A-Ride-Probleme modelliert. Eine angemessene Service-Qualität kann entweder durch entsprechende Nebenbedingungen gewährleistet oder durch eine zusätzliche Zielfunktion minimiert werden. Beide Herangehensweisen werden hier untersucht. Zuerst wird eine vereinfachte Problemstellung aus der Literatur behandelt und ein kompetitives heuristisches Lösungsverfahren entwickelt. Diese vereinfachte Problemstellung wird in zwei Richtungen erweitert. Einerseits wird, zusätzlich zur Minimierung der Gesamtkosten, eine zweite benutzerorientierte Zielfunktion eingeführt. Andererseits werden eine heterogene Fahrzeugflotte und unterschiedliche Patiententypen in die Standardproblemstellung integriert. Letztendlich wird das reale Patiententransportproblem, basierend auf Informationen des Roten Kreuzes, definiert und gelöst. Neben heterogenen Fahrzeugen und unterschiedlichen Patienten, werden nun auch die Zuordnung von Fahrern und sonstigem Personal zu den verschiedenen Fahrzeugen, Mittagspausen und weitere Aufenthalte am Depot berücksichtigt. Alle eingesetzten exakten Methoden, obwohl sie auf neuesten Erkenntnissen aus der Literatur aufbauen, können Instanzen von realistischer Größe nicht lösen. Dieser Umstand macht die Entwicklung von passenden heuristischen Verfahren nach wie vor unumgänglich. In der vorliegenden Arbeit wird ein relativ generisches System basierend auf der Variable Neighborhood Search Idee entwickelt, das auf alle behandelten Einzielproblemversionen angewandt werden kann; auch für die bi-kriterielle Problemstellung, in Kombination mit Path Relinking, werden gute Ergebnisse erzielt.Humanitarian non-profit ambulance dispatching organizations are committed to look at cost reduction potentials in order to decrease their expenses. While in the context of emergency transportation cost reduction cannot be achieved by means of combined passenger routes, this can be done when dealing with regular patients. This research work is motivated by the problem situation faced by ambulance dispatchers in the field of patient transportation. Problems of this kind are modeled as dial-a-ride problems. In the field of patient transportation, the provision of a certain quality of service is necessary; the term “user inconvenience” is used in this context. User inconvenience can either be considered in terms of additional constraints or in terms of additional objectives. Both approaches are investigated in this book. The aim is to model and solve the real world problem based on available information from the Austrian Red Cross. In a first step, a competitive heuristic solution method for a simplified problem version is developed. This problem version is extended in two ways. On the one hand, besides routing costs, a user-oriented objective, minimizing user inconvenience, in terms of mean user ride time, is introduced. On the other hand, heterogeneous patient types and a heterogeneous vehicle fleet are integrated into the standard dial-a-ride model. In a final step, in addition to heterogeneous patients and vehicles, the assignment of drivers and other staff members to vehicles, the scheduling of lunch breaks, and additional stops at the depot are considered. All exact methods employed, although based on state of the art concepts, are not capable of solving instances of realistic size. This fact makes the development of according heuristic solution methods necessary. In this book a rather generic variable neighborhood search framework is proposed. It is able to accommodate all single objective problem versions and also proves to work well when applied to the bi-objective problem in combination with path relinking

    The Pickup and Multiple Delivery Problem

    Get PDF
    This thesis presents my work on the pickup and multiple delivery problem, a real-world vehicle routing and scheduling problem with soft time windows, working time and last-in-first-out constraints, developed in collaboration with Transfaction Ltd., who conduct logistics analysis for several large retailers in the UK. A summary of relevant background literature is presented highlighting where my research fits into and contributes to the broader academic landscape. I present a detailed model of the problem and thoroughly analyse a case-study data set, obtaining distributions used for further research. A new variable neighbourhood descent with memory hyper-heuristic is presented and shown to be an effective technique for solving instances of the real-world problem. I analyse strategies for cooperation and competition amongst haulage companies and quantify their effectiveness. The value of time and timely information for planning pickup and delivery requests is investigated. The insights gained are of real industrial relevance, highlighting how a variety of business decisions can produce significant cost savings
    corecore