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Summary

In this thesis, we propose a set of algorithms regarding real combinatorial optimization

problems in the context of transportation of goods. These problems consist in the

combination of the vehicle routing problem with the two-dimensional bin-packing

problem, which is also known as the vehicle routing problem with two-dimensional

loading constraints. We also analyzed two related problems, namely the elementary

shortest path and the vehicle routing problem with mixed linehauls and backhauls.

In both problems, two-dimensional loading constraints are explicitly considered.

Two column generation based approaches are proposed for the vehicle routing

problem with two-dimensional constraints. The first one relies on a branch-and-price

algorithm with different branching schemes. A family of dual valid inequalities is also

defined, aiming to accelerate the convergence of the algorithm. The second approach

is based on a set of different heuristics strategies, which are applied to the reformulated

model.

The elementary shortest path problem with two-dimensional constraints is ad-

dressed due to its importance in solving the subproblem of the column generation

algorithms. To the best of our knowledge, we contribute with the first approach for

this problem, through different constructive strategies to achieve feasible solutions,

and a variable neighborhood search algorithm in order to search for improved solu-

tions.

In what concerns the vehicle routing problem with mixed linehaul and backhauls

and two-dimensional loading constraints, different variable neighborhood search al-

gorithms are proposed. These algorithms explored various neighborhood structures,

being some of those developed based on the features of the problem.

All the proposed methods were implemented and experimentally tested. An ex-
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haustive set of computational tests was conducted, using, for this purpose, a large

group of benchmark instances. In some cases, a large set of benchmark instances was

adapted in order asses the quality of the proposed models. All the obtained results

are presented and discussed.



Resumo

Nesta tese, propomos um conjunto de algoritmos sobre problemas reais de otimização

combinatória no contexto do transporte de bens. Estes problemas consistem na com-

binação do problema de planeamento de rotas de véıculos com o problema de empaco-

tamento bidimensional, que também é conhecido como o problema de planeamento de

rotas de véıculos com restrições de carregamento bidimensional. Analisamos também

dois problemas relacionados, nomeadamente o problema de caminho mais curto e o

problema de planeamento de rotas véıculos com entregas e recolhas indiferenciadas.

Em ambos os problemas, são explicitamente consideradas restrições de carregamento

bidimensional.

Duas abordagens baseadas em geração de colunas são propostas para o problema

de planeamento de rotas de véıculos com restrições de carregamento bidimensional.

O primeiro baseia-se num algoritmo de partição e geração de colunas com diferentes

estratégias de partição. Uma famı́lia de desigualdades duais válidas é também apre-

sentada, com o objetivo de acelerar a convergência do algoritmo. A segunda abor-

dagem baseia-se num conjunto de diferentes estratégias heuŕısticas, que são aplicadas

ao modelo reformulado.

O problema do caminho mais curto com restrições de carregamento bidimensional

é abordado devido à sua importância na resolução do subproblema dos aos algoritmos

de geração de colunas. De acordo com o nosso conhecimento, contribúımos com a

primeira abordagem para este problema, através de diferentes estratégias construtivas

para obter soluções válidas, e um algoritmo de pesquisa em vizinhança variável, com

o objetivo de encontrar soluções de melhor qualidade.

No que concerne ao problema de planeamento de rotas de véıculos com entregas e

recolhas indiferenciadas, diferentes algoritmos de pesquisa em vizinhança variável são
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propostos. Estes algoritmos exploram várias estruturas de vizinhança, sendo algumas

destas desenvolvidas com base nas caracteŕısticas do problema.

Todos os métodos propostos foram implementados e testados experimentalmente.

Um extenso conjunto de testes computacionais foi efetuado, utilizando um grande

grupo de instâncias descritas na literatura. Em alguns casos, um grande conjunto de

instâncias descritas na literatura foi adaptado com o objetivo de avaliar a qualidade

dos métodos propostos.
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”Dans la vie, il n’y a pas de solutions.

Il y a des forces en marche: il faut les

créer, et les solutions suivent.”

Antoine de Saint-Exupéry, Vol de Nuit
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2 1. Introduction

1.1 Motivation and objectives

Vehicle routing plays a major role in the transportation and operations research field.

The proposed approaches for this problem are not only relevant for the scientific

community, but also for real-world situations since they impact significantly on the

final cost of goods and commodities. It has been observed that the part corresponding

to transportation represents from 10% to 20% of these final costs [142]. An efficient

planning of routes seems very hard to achieve without the adequate analytical and

technological tools [136]. The results of applying such tools are very much commented

through the literature. In some cases, they may rise up to 20% as referred to in [142].

The economical waste that results from unnecessary or excess travel is also well

documented. King and Mast [87] defined the excess travel as the difference between

the real travel time and the potential travel time if all the travelled routes are optimal.

They conclude that only in United States of America, this excess travel amounts to

7% of all the travel time. From all these observations, it seems clear that there is a

true potential for improvements with both economic and environmental benefits [2].

The optimization problem that is behind this thematic is called the vehicle routing

problem. It was proposed first in [45] as a generalization of the Travelling Salesman

Problem (TSP). Applications of the vehicle routing problem are not restricted to

logistics. The conceptual model that underlies this problem finds applications in

diverse fields including computer networking and robotics.

Broadly speaking, the vehicle routing problem consists of finding the best set of

routes of a fleet of vehicles that must visit a set of customers, taking into account

operational constraints and human limitations resulting from the maximum time for

the drivers work, or the compulsory breaks for example. Additional constraints can

be added to this general problem. One of the most usual constraints that are related

in the literature is concerned to the capacity of the vehicles. However, as will be

stated below, this type of constraints are not sufficient to reflect the complexity of

some real systems.

The objective of this thesis is to develop a set of optimization tools for a family

of combinatorial optimization problems that apply to the field of transportation and
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supply chain management in general. The focus is on routing problems with a concern

on the real constraints that apply to these problems. One of the issues that is typically

neglected by those that addressed the general vehicle routing problems is related to

the loading component of these problems, concerning the shapes of the loads. When

the loads are small compared to the size of the vehicles, one may characterize them

through a single measure such as weight or volume. Most of the contributions in

the literature follow this approach. In these cases, the capacities of the vehicles are

represented by a single value. On another hand, when the loads are large compared

to the sizes of the vehicles, deciding how to place them in the vehicle becomes a part

of the problem. The former approaches may produce infeasible solutions for these

problems. Indeed, it may happen that a given load whose weight (for example) does

not exceed the capacity of a vehicle does not fit in the vehicle because of its dimensions.

The related optimization problem is known in the literature as then vehicle routing

problem with loading constraints. This problem integrates two hard combinatorial

optimization problems, resulting in a very challenging optimization problem. Indeed,

the methods applied to this variant have to consider both the definition of the routes

and the packing problem in either two- or three-dimensions.

1.2 Outline

The thesis is organized in 8 chapters, including the present one. In some cases, the

applied methods in a given chapter rely on those presented in earlier ones. In the

sequel, we describe the following chapters.

In Chapter 2, we provide a description of the problems that will be addressed in

this thesis, and the context in which they arise. More precisely, we describe the vehicle

routing problem and some of its variants. We give special focus to routing problems

with loading constraints, and we completely define the problems that will be tackled

in the following chapters. Since the vehicle routing problem with loading constraints

result from the combination of routing with packing problems, we also provide a brief

description of cutting and packing problems, and we present some variants of these

problems dealing explicitly with constraints arising in the routing field.
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Chapter 3 provides an exhaustive survey in the field of routing problems with

loading constraints. Special emphasis is given to the developed approaches for the ca-

pacitated vehicle routing problem with two- or three-dimensional loading constraints.

Some real-world applications of these problems are also presented as well as other

problems that explicitly consider loading constraints. In the latter case, and among

them, very different assumptions are taken into account, due to the different opera-

tional constraints arising in each problem.

In Chapter 4, we address the elementary shortest path problem with two-dimensional

loading constraints. The objective of this problem is to find the shortest path in a

graph, visiting each customer at most once. The cost of the edges may be negative

and the demand of each node is composed by two-dimensional items. The overall

approach relies on different constructive heuristics to generate feasible solutions, and

on a variable neighborhood search algorithm to improve the former solutions. This

approach can be seen as the first step to build a column generation algorithm, since

the referred to above problem corresponds to the subproblem of the capacitated ve-

hicle routing problem with two-dimensional loading constraints. To the best of our

knowledge, this approach is the first one tackling this problem.

In Chapter 5, we present a branch-and-price algorithm for the capacitated vehicle

routing problem with two-dimensional loading constraints. There are several column

generation based approaches for many variants of the vehicle routing problem. In con-

trast, approaches for the variant with loading constraints through column generation

are not quite explored. We apply the Dantzig-Wolfe decomposition to the original

problem, resulting in a reformulated model and in a pricing subproblem which is

solved using the approach described in Chapter 4. A family of dual inequalities is

used, aiming to accelerate the convergence of the branch-and-price approach.

Chapter 6 addresses the same problem as in Chapter 5. We make use of the

reformulated model obtained in that chapter in order to develop a set of heuristic

approaches. These heuristics work in the formulation of the master problem, by

iteratively selecting a feasible route, using either the solution provided by linear pro-

gramming relaxation of the reformulated model, or the solution provided by mixed

integer programming models after enforcing integrality in some variables.
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In Chapter 7, we consider a pickup and delivery problem with two-dimensional

loading constraints. More precisely, we address the capacitated vehicle routing prob-

lem with loading constraints and mixed linehauls and backhauls. The main difference

between this problem and the one addressed both in chapters 5 and 6 is that customers

are divided into two different sets: the ones which require a given demand, and the

ones which provide a given supply. The demands can only be provided by the depot,

which is also the only destination of items provided by backhaul customers. Both

the demand and the supply are composed by two-dimensional items. We suggest an

insertion heuristic for generating feasible solutions, and three different variants of the

variable neighborhood search algorithm in order to search for improved solutions.

Finally, in Chapter 8, we draw some conclusions, and we present the main contri-

butions provided by the work presented in this thesis. Additionally, we present some

future research directions.
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2.1 The vehicle routing problem

The Vehicle Routing Problem (VRP) is one of the most well-known and studied combi-

natorial optimization problems. The first work related to VRP was published in 1959

[45] by Dantzig and Ramser. In their work, the authors presented a generalization of

the Travelling Salesman Problem applied in the context of gasoline distribution. The

authors considered both the return to a so-called terminal point (which is nowadays

known as depot) and the demand associated to each point, except for the terminal

point. The total demand is greater than the capacity of the vehicle and thus it is not

possible to satisfy the demand of each point in a single visit. The authors called this

problem as the truck dispatching problem. Since then, a huge number of contribu-

tions in this field appeared in the literature, reporting a wide diversity of variants and

extensions, resulting in an increased closeness between the proposed methods and the

real context in which these problems arise. This feature can justify the success of the

VRP [106]. In fact, the application context of VRP is huge and it is not confined

to the distribution of goods, since many contributions arise in different situations as

the public transport, the waste and kerbside collection, or less frequently in robotic

networks [122] and in agriculture [19, 18].

The VRP is a combinatorial optimization problem which consists in determining

a set of routes, beginning and ending at the depot or depots, to be covered by a fleet

of vehicles which must serve a set of customers, satisfying all the operational and

human constraints, while taking into account a given objective. The most common

objective is to minimize the involved transportation cost. However, and as stressed

in [142], other objectives can be considered as the minimization of the used vehicles,

minimization of number of drivers, minimization of the penalties associated to each

incomplete demand, or the maximization of the balance of the load or travel time

of the different routes. Additionally, more than one objective may be considered, by

combining the mentioned objectives or others. Some exhaustive surveys and anno-

tated bibliographies in the context of VRP can be found in [89, 143, 106, 67]. In the

next subsections, we review some variants of the VRP.
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2.1.1 Capacity constraints

The most usual and basic constraints treated in the literature have been with no

doubt related to the capacities of the vehicles. This capacity is usually expressed in

terms of maximum weight, area, volume or units (pallets or stacks) of items which

the vehicle can carry. The corresponding problem is known as Capacitated Vehicle

Routing Problem (CVRP). In the CVRP, a single depot is considered as the source of a

set of K identical vehicles and their returning point. One customer is visited exactly

once and its demand is satisfied only from the depot where the items are loaded.

Therefore, it is not possible to split the demand. The objective of the CVRP is to

serve all customers within a single visit using exactly K vehicles without exceeding

their capacity, while minimizing the involved transportation cost.

2.1.2 Type of service

In some problems, serving one customer can be performed in more than a single visit.

As a consequence, the demand of one or more customers may exceed the capacity of the

vehicle. Such problems are called Split Delivery Vehicle Routing Problem (SDVRP).

The SDVRP is distinct from the problems in which customers are visited with a certain

frequency. Those situations require to have a plan of routes to be performed within a

given period. Such problems are known as Period Vehicle Routing Problem (PVRP).

A review on PVRP and real applications can be found in [60]. Other well-known

variant require to visit each customer within a specific time interval. These problems

are known as Vehicle Routing Problems with Time Windows (VRPTW). Usually,

this time interval is expressed in units for both the earliest and the latest time to

serve a given customer, assuming that the vehicle leaves the depot at the instant zero.

Additionally, each arc has an associated travel time. The amount of time required to

serve a given customer is quantified and it relies on the customer to be served. This

service may start within this interval, even though that earlier arrivals are allowed.

In these cases the vehicle must wait the earliest time to serve such customer. Serving

one customer may include delivering demands, collecting orders or both. This kind

of variants belong to the so-called Pickup and Deliver Problems (PDP) which will be
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analyzed in depth in Section 2.2.

2.1.3 Operational constraints

In some real contexts, and in opposition to the CVRP, the available fleet is com-

posed by a set of vehicles with different capacities. The corresponding problems are

known as Heterogeneous Fleet VRP (HFVRP). The diversity of vehicles is sometimes

necessary due to difficult access areas or restricting traffic rules to certain type of

vehicles in the customer surrounding area. A review on HFVRP, its variants and on

approaches to tackle this problem can be found in [7]. Another real and well-known

variant combines the routing aspects with inventory management. These problems

are known as Inventory Routing Problems (IRP) [34, 14]. The IRP consists in the

stock management of both customers and supplier in order to remain the store-level

under the maximum capacity avoiding stock failures, using capacitated vehicles to

serve customers from the supplier. Therefore, two types of costs should be taken into

account in the IRP context: the transportation/routing costs and the holding costs

at customers and at the supplier.

2.1.4 Other assumptions

In some variants of the VRP, other assumptions can be taken into account due to

the multiplicity of aspects in real situations. For instance, one may assume that

one vehicle can perform more than one route (Multi-Trip VRP) or more than one

depot is available to supply the set of customers (Multi-Depot VRP). Other problems

consider the uncertainty given to the problem data, usually the demand of customers

or travel times. The variants of VRP that deal with these stochastic information

are known as Stochastic Vehicle Routing Problem (SVRP). Some efforts have been

made to deal with VRP in which information may only be known and updated during

routing operations in real time. Such problems are known as Dynamic Vehicle Routing

Problems (DVRP) [123].

The variants defined above assume representations where customers are points

where the service may occur, and the routing paths used by vehicles are edges (arcs)
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crossing two customers or one customer and the depot. In some real situations, such

as kerbside collection or the street sweeping, it is suitable to assume that the service

is performed along the edges instead of considering that such service is performed in

nodes. Such problems are known as Capacitated Arc Routing Problems. In [152] the

authors present a review with special emphasis on the decade 1998-2008.

2.2 Pickup and delivery problems

In the last decades, Pickup and Delivery Problems (PDP) deserved attention by the

scientific community in the transportation field. The PDP can be briefly defined by

the routing problems where goods or even people must be collected and distributed

from an origin to a destination. Due to the extensive number of approaches and

denominations in this field, Parragh et al. [120, 121] suggested a classification where

the general Pickup and Delivery Problem is divided in two classes. The first class

considers the problems in which delivered goods (or, respectively, the picked goods)

are only loaded (or, respectively, unloaded) at one or more depots, meaning that

the transport of goods is only performed from or to the depot. The second class

considers the transportation of goods from pickup customers to delivery customers.

The problems of the first class are usually known as Vehicle Routing Problems with

Backhauls (VRPB) whereas the ones belonging to the second class are known as

Vehicle Routing Problems with Pickups and Deliveries (VRPPD).

The first class (VRPB), is divided in four subclasses. In the first subclass, cus-

tomers are assigned to one and only one of two disjoint clusters: the one for the

delivery customers (also known as linehaul customers) and another one for the pickup

customers (also known as backhaul customers). In this subclass, in each route of

the solution backhaul customers can only be visited after visiting all linehaul cus-

tomers assigned to that route. The problems belonging to this subclass are named

as Vehicle Routing Problem with Clustered Backhauls (VRPCB). In the second sub-

class, this constraint does not apply, even though the division into disjoint sets of

delivery and pickup customers is still mandatory. Since customers of both clusters

can be indistinctly visited without that precedence constraint, the authors referred to
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the problems of this subclass as Vehicle Routing Problems with Mixed Linehauls and

Backhauls (VRPMB). The last two subclasses consider the situations where customers

require both a quantity to be delivered and a quantity to be picked up. However, in

the third subclass, a given customer can be visited once or twice. If it is visited twice,

the visits can be divided in one visit to deliver goods and another one to pick up

goods. The problems of this subclass are known as Vehicle Routing Problems with

Divisible Delivery and Pickup (VRPDDP). On the contrary, in the fourth subclass,

both loading and unloading operations must be performed simultaneously in exactly

one visit, and then the authors called these problems as Vehicle Routing Problems

with Simultaneous Delivery and Pickup (VRPSDP).

The second class of this classification (VRPPD) can be divided in two subclasses

based on the relation between pickup and delivery customers. The first VRPPD

subclass refers to the situations in which collected goods from any pickup customer

are available to satisfy the demand of any delivery customer, and so the linehaul

customers and backhaul customers are unpaired. The problems of this subclass are

denoted by Pickup and Delivery Vehicle Routing Problems. On the contrary, the

second subclass refers to the cases in which the transported goods or people have

a specific origin and a specific destination (paired origins and destinations vertices).

This subclass includes the Pickup and Delivery Problem (PDP) and the Dial-A-Ride

Problem (DARP). It is worth noting that each class of this classification includes the

respective version for the single vehicle cases.

Another comprehensive survey and classification for the static pickup and delivery

problems is presented in [12]. The static denomination is due to the fact that all

information about the problem is deterministic and known before the construction of

the solutions. In this classification, the scheme [x|y|z] is used, where x defines the

relation between the origins and the destinations:

many-to-many (M-M): if any customer or the depot can be the origin or the

destination of goods;

one-to-many-to-one (1-M-1): if the source of delivered goods and the destination

of picked goods is only the depot;
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one-to-one (1-1): if each good has to be transported from a single origin to a single

destination.

The y field defines how the loading operations must be performed. If one customer

is visited exactly once and loading and unloading operations must be performed si-

multaneously, the authors used the denomination ”PD”. On the contrary, if this

requirement does not apply, these operations can be combined or not (”P-D”). If at

each customer it is only possible to deliver or to collect, then the notation ”P/D” is

used instead. It is also in the y field that problems with transshipments are defined by

associating the letter ”T”. The last field of this classification scheme, z, corresponds

to the number of used vehicles. For the cases in which it is not possible to represent

a field, the authors use the notation ”-”.

As in VRP, in some pickup and deliver contexts the information is dynamic mean-

ing that it is not known in advance or it is updated when performing the routes.

These problems are known as dynamic pickup and delivery problems. In [13], a com-

prehensive survey on these problems is presented.

2.3 Routing with loading constraints

In the context of the CVRP, the majority of the approaches in the literature assume

that the capacity of the vehicle is a simple one-dimensional measure (typically a

maximum weight or volume). In many real applications, this approach may not be

adequate. That happens for example when the vehicles travel with their maximum

load. In these cases, distributing the loads among the available space may be a real

issue due to the loading constraints, which take into account the shape of the loads.

Therefore, it can be possible to satisfy the weight capacity while it can be impossible

to reach a feasible layout for all the loads.

In this sense, and in order to incorporate the loading specificities, some works were

presented in the last decade, by integrating the multi-dimensional bin packing problem

with the CVRP. The resulting problem is described in the literature as CVRP with

loading constraints (L-CVRP). The L-CVRP is NP-hard since it integrates two NP-

hard combinatorial problems, resulting in a very challenging optimization problem.



14 2. Vehicle routing problems with loading constraints

Indeed, the methods applied to this variant have to consider both the definition of

the routes and the loading of the items in the vehicle in either two- (2L-CVRP) or

three-dimensions (3L-CVRP).

The loading component of the L-CVRP is treated as a multi-dimensional packing

problem such as Bin Packing Problem, Orthogonal Packing Problem or Strip Packing

Problem. For the three-dimensional case, the loading component can be treated as a

Container Loading Problem.

2.3.1 Definition of the 2L-CVRP

In the 2L-CVRP, there is a homogeneous fleet with a two-dimensional rectangular

loading surface. The demand of each customer is composed by a finite number of

two-dimensional rectangular items and by the weight of all items. The 2L-CVRP

consists in finding a set of routes starting and ending at the depot which minimize

the total travel cost, satisfying the following constraints:

(C1) The number of routes in the solution cannot be greater than the fleet size;

(C2) All customers must be served in a single visit, i.e., the demand of each customer

cannot be split;

(C3) A feasible orthogonal loading is required for each used vehicle, i.e., the items

must be completely within the surface, must not overlap, and the edges of the

items must be parallel to the surface edges;

Some additional issues can be considered in the 2L-CVRP, such as the weight

capacity constraints, demands composed by circular items, pickup and delivery sce-

narios, among others.

2.3.1.1 Sequential constraints

An important issue that must be taken into account in the L-CVRP is the relative

position of the items in the vehicles, and its relation with the sequence of visits that

the vehicle has to do. In practice, it is important that the delivery of an item to

a customer does not require moving the other items for customers which are served
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later. Therefore, the items must be placed inside the vehicle according to the order

by which the customers will be visited.

Formally, the sequential constraints impose that unloading an item in the customer

must be performed in a straight movement, through a free passage towards the door,

and whose width is greater than or equal to the width of the item. This means that

no lateral movements are allowed for the items to be delivered to other customers to

unblock the passage of the items of the mentioned customer. During the unloading

operation, the item must preserve its edges parallel to the edges of the surface. Note

that there are no sequential constraints between items for the same customer.

Figure 2.1 depicts this situation, where Ii,j represents the item j of customer i:

unloading items for customer 1 can be done by a straight move for each item. However,

in (a), when unloading items for customer 2, item I3,1 blocks the passage of item I2,1.

Therefore, in (a), the loading is sequential infeasible. In (b), the sequential constraints

are satisfied, since items belonging to the same customer can be unloaded in a straight

movement without rearranging items to be delivered.

The advantage of these constraints in the real context is clear. Unloading items is

less time consuming since only a single movement is necessary, without rearranging

items nor unloading and loading items from other customers.

The problems that consider explicitly these constraints are known as sequential

2L-CVRP. For these problems which do not include these constraints, the designation

unrestricted 2L-CVRP is used instead. Some authors called these constraints as rear

loading constraints or LIFO (last in, first out) constraints. This later denomination

is due to the fact that if the items are loaded into the vehicle in the opposite way in

which they are unloaded, the sequential constraints are always satisfied.

2.3.1.2 Orientation constraints

The items may have a fixed or variable orientation. Usually, these constraints are

related to the way the vehicles are loaded. Indeed, they can be either rear-loaded,

side-loaded or loaded in both ways. In this latter case, the maximum size of the door

may only block an item for a given orientation.

If items have a fixed orientation, they must not be rotated in the surface. These
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Figure 2.1: Sequential constraints in the 2L-CVRP context

cases happen in some real situations, where the weight, the size or the nature of cargo

operations may preclude the rotation of items.

The problems in which this constraint arises are known as oriented problems. In

contrast, in the rotated problems, the items are allowed to be rotated in the surface,

usually by 90 degrees. These constraints are known as horizontal constraints, since

an item can only be rotated in the horizontal plane.

2.3.2 Definition of the 3L-CVRP

The 3L-CVRP is a natural extension of 2L-CVRP to the three-dimensional axis.

The routing aspects of the problem are preserved. However, each vehicle of the fleet

must be seen as a three-dimensional rectangular loading container. Additionally,

the demand of each customer is composed by three-dimensional rectangular items

(boxes). Therefore, the 3L-CVRP calls for the determination of a set of optimal

routes starting and ending at the depot which minimize the total travel cost while

satisfying the constraints (C1) and (C2) presented in Section 2.3.1, and:

(C3’) A feasible orthogonal loading is required for each used vehicle, i.e., the items

must be completely within the container, must not overlap, and the edges of the

items must be parallel to the container edges.
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Some additional constraints can be applied due to the dimension of the problem.

We explore these constraints in next subsections.

2.3.2.1 Multi-drop and sequential constraints

Some authors addressed the 3L-CVRP with multi-drop constraints. These constraints

were defined by Bischoff and Ratcliff [17] for scenarios in which subsets of items have

different destinations. In these cases, unloading operations can be favoured if items

of the same subset are close together and if the arrangement of the subsets is related

as much as possible with the sequence of delivery of such subsets.

Some works deal with the multi-drop constraints by defining a maximum distance

which can be reached over the existing layout in order to rearrange items for a given

customer served earlier [82, 83]. This strategy can take advantage of empty spaces

left during loading operations.

The sequential constraints referred to above in Section 2.3.1.1 can be seen as a

specific multi-drop condition [24]. We recall that sequential constraints ensure that

unloading one item from a given customer does not require to move other items to be

delivered to other customers. In the context of the 3L-CVRP, it is not sufficient to

have a free passage between items and the rear side of the vehicle. It is also required

that no items from other customers are on top of those being unloaded, even if they

are not in contact. In Figure 2.2, two examples are presented, assuming the route 0-1-

2-3-0. The layout (a) is sequential infeasible since item I2,1 is blocking item I1,1, and

in addition, item I2,2 is on top of item I1,1. A possible feasible solution is represented

in (b).

2.3.2.2 Load stability

The load stability is a classical issue in the Container Loading Problem. This issue

aims to prevent significant moves of the items during the transport or during the

loading and unloading operations [17]. The importance of the stability is twofold

since it avoids the damage in the items and prevents personnel injuries [24].

Bortfedlt and Wäscher [24] presented the difference between the vertical and hor-

izontal stability. The former requires that the loading pattern is not modified by the
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Figure 2.2: Sequential constraints in the 3L-CVRP context

fall of items through the action of the gravity force only, and thus, considering that

the vehicle is not moving. Therefore, some authors called this issue as static stabil-

ity. In contrast, the horizontal or dynamic stability considers that items may not be

shifted in the horizontal plane when the vehicle is moving.

In the context of the 3L-CVRP, the vertical stability of the cargo inside the vehicle

is always considered and it is ensured by the so-called supporting constraints. These

constraints guarantee that the bottom edge of the box must be completely or partially

supported by the other items or by the floor of the container. For the cases in which

the full support is not mandatory but the supporting constraints are required, at least

a given percentage of the area of the bottom face of the box must be supported by

other items or by the floor of the container. For both full and partial support cases,

if the item is placed on the floor, the supporting constraints are obviously satisfied.

The horizontal stability in the 3L-CVRP is not as common as the vertical stability.

However, some works consider that a given percentage of the lateral sides of the item
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must be in contact with other items or with the walls of the container.

2.3.2.3 Orientation

In Section 2.3.1.2, horizontal orientation constraints were introduced in the context

of the 2L-CVRP. In the 3L-CVRP, both horizontal and vertical orientation can be

considered. The horizontal constraints refer to the rotation of items in the loading

area of the vehicle.

In the vast majority of approaches, items have a fixed vertical orientation. This

constraint arises in contexts in which items have to remain stand up straight and

cannot be placed upside-down. In this sense, vertical orientation constraints are

useful in order to preserve both the integrity of the items and the loading stability,

since the strength of the box can be different when the item is turned upside down

[24].

2.3.2.4 Load bearing and fragility

By definition, a three-dimensional loading pattern is usually composed of items on top

of each other. However, stacking items can damage the items that are underneath,

due to their physical strength. Indeed, a given box has a limit of pressure which can

support, and from which the integrity of both the items and the layout is not guar-

anteed. In order to avoid this situation, load bearing constraints can be considered.

These constraints are also inherited from the Container Loading Problem and can be

defined as the maximum pressure or weight that an item can support. This weight

or pressure is due to the item or items that are on top of the considered item, and

it is measured in units of force per area unit. Usually, for a sake of simplicity, this

parameter corresponds to the pressure that can be applied at any point of the top

face of the item.

In the literature, the load bearing constraints are also known as stacking con-

straints. However, in many approaches, when one wants to place items on top of each

other, it is usual to consider the so-called fragility constraints.

The fragility of items can be seen as a particular case of load bearing, in which the

items are flagged as fragile or non-fragile. The non-fragile items can only be placed
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on top of items which are also non-fragile, while fragile items can be placed on top of

fragile or non-fragile items.

It is important to note that in some scenarios of the 3L-CVRP, it may happen

that all items of a given order cannot be placed over each other. These situations

are usual when, for instance, the transported items are refrigerators. In this case, the

problem reduces to a 2L-CVRP.

2.3.3 Classification

Fuellerer et al. [61] proposed a problem classification according to the loading aspects

for the Capacitated Vehicle Routing Problem with loading constraints. This typology

consists in the three-field classification scheme x|yz|L where x represents the dimen-

sion of loading constraints (two- or three-dimensional), y represents the denomination

resulting from the consideration or not of sequential constraints (S for Sequential or U

for Unrestricted, respectively) and z represents the orientation aspects of the problem

(O for fixed orientation and R for rotated problems). Using this scheme, eight possi-

ble classification can be distinguished for the 2L-CVRP and 3l-CVRP. The resulting

problems are presented in table 2.1.

Table 2.1: L-CVRP classification according to Fuellerer et al. [61]

Dimension Sequential Constraints
Orientation Constraints

Oriented Rotated

Two
Sequential 2|SO|L 2|SR|L

Unrestricted 2|UO|L 2|UR|L

Three
Sequential 3|SO|L 3|SR|L

Unrestricted 3|UO|L 3|UR|L

2.3.4 A modified version - M3L-CVRP

Some works consider a different definition of the sequential constraints. Consequently,

such modification gives rise to a new version of the 3L-CVRP which is called M3L-

CVRP.
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Figure 2.3: Side view of the vehicle (adapted from [141])

This version takes into account a less restrictive LIFO policy, in which items for

customers to be served before can be under the items to be served later and have

overlapping projections in the horizontal plane, but their edges cannot be in contact

since, in detail, items to be served before may not support items to be served later.

In contrast, this assumption is forbidden in the 3L-CVRP even if items to be served

before are not supporting items to be served later. An example of a valid layout is

presented in Figure 2.3: the layout is clearly infeasible for the 3L-CVRP, but it is

feasible for the M3L-CVRP.

The first M3L-CVRP approach was suggested in [141] and it was also adopted

in [158, 28]. The authors claim that the M3L-CVRP is suitable for manual loading

operations in contrast with 3L-CVRP. Indeed, as can be seen in Figure 2.3, it is clear

that item I1,1 can be manually unloaded without rearranging items since this item is

not supporting item I2,1. However, if it is required to carry up items in a lifter, item

I1,1 must not be unloaded before item I2,1.

2.3.5 Elementary shortest path problem with loading con-

straints

Iori and Martello [77] considered the use of column generation techniques as an open

perspective to tackle routing problem with loading constraints.

Several works considered the application of column generation to the CVRP, and
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presented the application of the Dantzig-Wolfe decomposition to a CVRP. As a result,

one can obtain a restricted master problem (RMP) and a pricing subproblem which

is a shortest path problem with resource constraints. These resource constraints are

directly related with the capacity of vehicle for the CVRP. However, in the classical

CVRP, the customer must be visited once. Since the solution of the pricing sub-

problem must be a valid solution of the CVRP, the obtained shortest path must be

elementary.

The Elementary Shortest Path Problem with Resource Constraints (ESPPRC) is

NP-hard and it can be effective in the resolution of the pricing problem of a column

generation algorithm for VRP [57, 131, 133]. In this sense, it is possible to apply a

Dantzig-Wolfe decomposition to the 2L-CVRP and then obtain an Elementary Short-

est Path Problem with two-dimensional Loading Constraints (2L-ESPP). To the best

of our knowledge, there is no approaches for the 2L-ESPP.

2.3.6 2L-CVRP with mixed linehauls and backhauls

As referred to in Section 2.2, the Vehicle Routing Problem with Mixed Linehauls

and Backhauls (VRPMB) is a subclass of problems belonging to the Vehicle Routing

Problem with Backhauls (VRPB), in which the customers are divided in two different

groups: linehaul and backhaul customers. Each linehaul customer has a given demand

quantity that can only be provided by the depot, while each backhaul customer has a

given supply quantity which the only destination is the depot. In the VRPMB, both

the linehaul and backhaul customers can be indistinctly visited, which means that

within the same route, it is not required to visit all linehauls customers before visiting

backhauls customers.

The Capacitated Vehicle Routing Problem with Mixed Linehauls and Backhauls

with two-dimensional Loading constraints (2L-CVRPMB) is an extension of the 2L-

CVRP where each linehaul customer (or, respectively, each backhaul customer) has a

demand (or, respectively, a supply) composed by two-dimensional rectangular items.

The 2L-CVRPMB consists in finding the set of optimal routes, each one starting and

ending at the depot and satisfying the following constraints:
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(C1) The number of used vehicles cannot be greater than the fleet size;

(C2) Each customer is visited exactly once;

(C3) The weight of items in each vehicle and in each arc of the solution cannot exceed

the weight capacity;

(C4) Items have a fixed orientation in the loading area, i.e., items cannot be rotated;

(C5) In each vehicle, the items must be completely within the surface, must not

overlap, and the edges of each items must be parallel to the loading area edges;

(C6) Unloading an item at a given customer must be performed in a straight move-

ment, without moving items of other customers, and thus the loaded items from

backhaul customers cannot block items to be delivered.

2.4 Cutting and packing problems

Cutting and packing problems are combinatorial optimization problems which arise in

several real-world contexts. Examples of cutting and packing problems can be found

in a wide number of situations in the industry like cutting of large rolls in smaller

ones, packing boxes into a vehicle or, less intuitively, assigning personal shifts to an

organizational schedule.

In the standard problem, two sets are considered: a set of small items and a

set of large objects. The set of small items must be assigned to the set of large

objects, without overlapping, in order to optimize a given criterion, while satisfying

the measurements of the large objects.

Due to the huge number of works, extensions and variants of the standard prob-

lem using different classifications, Dyckhoff [55] proposed a typology of cutting and

packing problems, in order to categorise these problems. This classification is based

in four criteria:

1. Dimensionality

(1) one-dimensional
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(2) two-dimensional

(3) three-dimensional

(N) N-dimensional (N > 3)

2. Kind of assignment

(B) all large objects and a selection of small items

(V) a selection of large objects and all small items

3. Assortment of large objects

(O) one large object

(I) many identical large objects

(D) several different large objects

4. Assortment of small items

(F) few small items of different figures

(M) many small items of many different figures

(R) many small items of relatively few different figures

(C) many identical small items

Later, Wäscher et al. [147] mentioned that despite the relevance of the Dyckhoff’s

typology, some limitations were found. The ambiguity arises when a problem may

belong to different categories. Furthermore, these categories are not always homo-

geneous. Due to these considerations, Wäscher et al. proposed a so-called improved

typology for cutting and packing problems [147] based on the Dyckhoff’s typology. In

order to ensure the quality of their classification, this improved typology was applied

to 445 problems from 413 works published between 1995 and 2004.

The typology suggested by Wäscher et al. consists in 5 main criteria. The first one

is the dimensionality, which is similar to the one proposed Dyckhoff’s typology, but

the problems with more than 3 dimensions are considered as variants. The kind of

assignment is also similar to the first typology presented above, and it considers two
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different situations: the output maximization and the input minimization. The former

considers the case where a subset of small items has to be assigned to a given set of

large objects, while the latter considers that all small items are assigned to a subset

of large objects. The assortment of small items considers three cases: identical small

items, weakly heterogeneous assortment of small items or a strongly heterogeneous

assortment of small items. The assortment of large objects considers one large object

or several objects. Finally, the last criterion is the shape of the small items which

can be regular or irregular. Clearly, this criterion is only considered for the two- or

three-dimensional problems.

The application of two criteria, namely, the kind of assignment and the assortment

of small items, results in the definition of six basic problem types. For each of those

problems, the application of the criterion assortment of large objects results in four-

teen intermediate problem types. Again, the application of the two criteria, namely,

the dimensionality and the shape of small items, results in refined problem types.

Wäscher et al. [147] stressed that from the general definition of cutting and packing

problems, there are several variants and extended problems. The variants are related

to the assumptions of the problem which are different, while the extended problems

consider additional features not related to the cutting or packing. For instance, a

variant arise when a large object is composed of a heterogeneous material, whereas a

problem which deals with sequencing of the patterns performs a extended problem.

2.4.1 Packing problems as a L-CVRP subproblem

The loading part of the L-CVRP is in fact a subproblem of the L-CVRP. To tackle

this subproblem, some authors proposed approaches for different problems as the Bin

Packing Problem (BPP), Strip Packing Problem (SPP), or the Orthogonal Packing

Problem (OPP), in which unloading constraints must be considered. The BPP con-

sists in packing a set of small and rectangular items into a set of large items (known

as bins) so as to minimize the number of used bins. On the other hand, the SPP

consists in packing a set of small and rectangular items into a strip of finite width

and virtual infinite height. The OPP consists in finding if a set of small items fits on

a large item.
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Some works in the literature consider packing problems with sequential constraints,

which can be seen as a problem that forms part of the L-CVRP. To tackle this type of

problems, some contributions are proposed in the literature for the strip packing prob-

lem, the orthogonal packing problem or the knapsack problem, in which unloading

constraints must be considered. In these problems and in contrast to the L-CVRP, the

sequence in which items must be unloaded is known in advance. The first approxima-

tion approach for the strip packing problem with unloading constraints is presented in

[44], the authors present a 5.745-approximation algorithm which starts to pack items

into bins using a level bin packing method, according to the opposite order in which

the items will be unloaded, defined as a class of the item. Afterwards each bin is con-

catenated forming a feasible packing solution. In [43], a similar approach to [44] was

performed for the rotated version of the problem, in a 6.75-approximation algorithm.

Additionally, the authors proposed an adaptation of the so-called first-fit decreasing

height algorithm which is applied to the subset of items belonging to a same class, and

in which no rotations are allowed. The authors proved that this approach is a 1.75

asymptotic approximation algorithm if the number of class is bounded by a constant.

Finally, the authors proposed a greedy randomized adaptive search algorithm which

is based on [1] with modifications in order to consider the unloading constraints.
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3.1 Introduction

In this chapter a survey in routing problems with loading constraints is provided.

Special focus is given to the capacitated vehicle routing problems with two- or three-

dimensional loading constraints, denoted hereafter by 2L-CVRP and 3L-CVRP, re-

spectively. Approaches for the 2L-CVRP and 3L-CVRP are reviewed in Section 3.2

and in Section 3.3, respectively. Both sections are divided by either the adopted

methods, or the additional constraints arising in the L-CVRP context. The explicit

consideration of loading constraints is not confined to the capacitated vehicle routing

field and, in this sense, other routing problems with loading constraints are presented

in Section 3.5.

3.2 Approaches for the 2L-CVRP

The Capacitated Vehicle Routing Problem with Two-dimensional Loading constraints

(2L-CVRP) was formally presented in Chapter 2. Since it is a NP-hard problem, the

vast majority of contributions presented in the literature are based in heuristics. Few

works tackled the 2L-CVRP by using exact methods. In Section 3.2.1, these methods

are reviewed and an integer programming formulation presented in the literature is

described. The remaining works suggested methods that are based in heuristics either

for the routing part, or for the packing component. Among these, meta-heuristics are

more common, some with nature-inspired algorithms. The inclusion of additional con-

straints in the 2L-CVRP, such as partial conflicts (Section 3.2.9), stochastic demand

(Section 3.2.10), and time windows (Section 3.2.11) is also analyzed.

3.2.1 Exact approaches

The first 2L-CVRP approach is due to Iori et al. [78]. The authors proposed an integer

model formulation adapted from the vehicle flow model for the CVRP with decision

variables with a single index [142]. They considered a set of nodes V (depot is node

0), a set of edges E and K vehicles. The cost of travelling along the edge e ∈ E is

denoted by ce. The decision variables ze are binary and take the value one if a vehicle
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uses edge e in its route, and value zero otherwise. Additionally, δ(S) represents the

set of edges with one endpoint in S and the other in V \{S}, σ represents the bijection

which defines the order by which the customers are visited, and Σ(S) represents the

collection of sequences σ (σ(i) is the order of visit of customer i) in which (S,σ) is a

feasible route, and E(S, σ) is the set of edges of that route. Finally, r(S) represents

the minimum number of vehicles required to serve all the customers in S. The model

of Iori et al. is presented next.

min
∑
e∈E

ceze (3.1)

s.t.
∑
e∈δ(i)

ze = 2 ∀i ∈ V \{0} (3.2)

∑
e∈δ(0)

ze = 2K (3.3)

∑
e∈δ(S)

ze ≥ 2r(S) ∀S ⊆∈ V \{0}, S 6= ∅ (3.4)

∑
e∈E(S,σ)

ze ≤ |S| − 1 ∀(S, σ) s.t. σ /∈ Σ(S) (3.5)

ze ∈ {0, 1} ∀e ∈ E\δ(0) (3.6)

ze ∈ {0, 1, 2} ∀e ∈ δ(0) (3.7)

The set of constraints (3.2) impose one and exactly one visit to all customers since

two edges are incident to each node, while constraint (3.3) refers to the exit and return

of exactly K vehicles. The set of constraints (3.4) are denominated by capacity cut-

constraints and impose connectivity and the satisfaction of capacity limits [142]. The

set of constraints (3.5) impose the loading feasibility of each route. The constraints

(3.6) and (3.7) define the decision variable values.

Firstly, a relaxed version of model (3.1)-(3.7) is solved by removing constraints

(3.4) and (3.5). The linear programming (LP) relaxation is strengthened using multi-

star inequalities. Then, a branching scheme starts by applying separation procedures

for the removed constraints.

Concerning the constraint set (3.4), the separation procedures consist in heuristic

algorithms adapted from [117]. The objective is to find violated inequalities using
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minimum-cuts and if they exist, they are added to the model. When no violated

inequalities are found, and the current solution is integer, then an exact algorithm

verifies the feasibility of each route.

Additionally, a heuristic procedure is applied in order to update the incumbent

solution. However, while computing this heuristic, it is also possible to detect invalid

inequalities of type (3.5), and then the associated constraints can be added to the

model. In the sequel, we describe this heuristic algorithm and the exact procedure to

check the loading feasibility.

The heuristic procedure is based in the insertion of customers one by one, start-

ing from the customer which is farther from the depot, and then adding customers

according to a modified insertion cost. This cost is a weighted function with three

parts: routing cost, residual loading area and residual weight capacity. If a feasible

solution is achieved, a first-improvement local search procedure seeks for an improved

solution. This heuristic runs 10 times with different weights for the three parts re-

ferred to above, and the best one is selected. If its value is better than the current

best solution, the loading feasibility is tested through a branch-and-bound algorithm.

If any route is infeasible, the constraint associated to that violation is added to the

model.

As stated, the procedure to check the loading feasibility of each route relies on

a branch-and-bound approach. At the root, lower bounds for the two-dimensional

bin packing problem are computed [108]. If the greatest lower bound is greater than

one, clearly at least two vehicles are necessary for that route, and thus the route is

infeasible. Otherwise, if the lower bound is less than or equal to one, items are sorted

according to the customer they are demanded, in the reversed order of visit. The

items to be delivered to the same customer are sorted according to non-increasing

width, breaking ties by non-increasing height. A bottom-left heuristic is applied to

this sequence taking into account all the loading constraints.

If it is not possible to derive a valid packing, a search tree is used. At the root node

an empty loading area is considered. For each item a descendent node is created by

placing the item at the bottom-most and leftmost position. For each of these nodes,

a child node is created for each item to be placed in each feasible position.



3.2. Approaches for the 2L-CVRP 31

The authors defined a set of instances for the 2L-CVRP [76, 78, 64] extended

from CVRP instances [130, 142], using the same complete graph, the weight demand

of each customer, and the weight capacity of each vehicle. The loading surface is

rectangular with height H equal to 40 and width W equal to 20.

In order to establish the number of items required by each customer and their

sizes, five classes were created for each CVRP instance:

• Class 1: Each customer demands a single item with both width and height size

equal to one. This class corresponds to pure CRVP instances.

• Class 2 to 5: The number of items required by each customer is obtained

by a uniform distribution in the interval [1,n] where n is the number of the

class. For each item one of the three shape categories (vertical, homogeneous or

horizontal) is selected with equal probability. For each class and for each shape,

a range is defined in Table 3.1. In this table, mi corresponds to the number of

items of customer i, hil is the height of item l of customer i, and wil corresponds

to the width of item l of customer i. The dimensions of each item are uniformly

generated according to the given range.

Vertical Homogeneous Horizontal

Class mi hil wil hil wil hil wil

1 1 1 1 1 1 1 1

2 [1,2] [4H
10
, 9H

10
] [W

10
, 2W

10
] [2H

10
, 5H

10
] [2W

10
, 5W

10
] [H

10
, 2H

10
] [4W

10
, 9W

10
]

3 [1,3] [3H
10
, 8H

10
] [W

10
, 2W

10
] [2H

10
, 4H

10
] [2W

10
, 4W

10
] [H

10
, 2H

10
] [3W

10
, 8W

10
]

4 [1,4] [2H
10
, 7H

10
] [W

10
, 2W

10
] [H

10
, 4H

10
] [W

10
, 4W

10
] [H

10
, 2H

10
] [2W

10
, 7W

10
]

5 [1,5] [H
10
, 6H

10
] [W

10
, 2W

10
] [H

10
, 3H

10
] [W

10
, 3W

10
] [H

10
, 2H

10
] [W

10
, 6W

10
]

Table 3.1: Ranges for items sizes in 2L-CVRP instances [76, 78, 64]

From the 180 instances obtained (36 instances for each class), the authors tested

their approach in 60 instances (12 CVRP extended instances for each class). It was

able to solve instances with up to 25 customers in less than one hour. Furthermore, it

was possible to achieve the optimal solution in 55 out of 60 instances. The instances
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proposed in this work will be the comparison point for the vast majority of the 2L-

CVRP approaches.

Recently, based on this branch-and-cut approach, another exact method was pre-

sented in [74] for the 2L-CVRP and 3L-CVRP. The authors analyzed different rout-

ing and packing separation procedures. After deriving an integer solution provided

by branch-and-bound, each route is verified concerning its feasibility. Furthermore,

the authors suggested a strategy to find infeasible routes from a non-integer solu-

tion. To prove the feasibility of a given route, the authors resort to several heuristic

methods. If these fail to prove its feasibility, exact methods can be used based in

branch-and-bound [107] and in constraint programming [33].

Other exact approach for a variant was addressed by Pollaris et al. [126]. In this

problem, pallets have to be sequenced in order to satisfy axle weight constraints. The

pallets are alternately loaded into two horizontal stacks. The authors stressed that

axle weight constraints are important since its violation causes not only an infringe-

ment of traffic regulations but also a risk to road safety.

3.2.2 Tabu search

Tabu search was successfully applied to the 2L-CVRP by Gendreau et al. [64] who ad-

dressed the unrestricted and sequential version of the problem (2L|UO|L and 2L|SO|L,

respectively). The initial solution is obtained through two heuristics: one for the gen-

erality of instances and another which is also executed for Euclidean instances. Both

heuristics were adapted in order to be able to deal with loading and sequential con-

straints. The former is adapted from the classical savings algorithm of Clarke and

Wright [32], but when the routes are associated and the capacity constraint is sat-

isfied, then a loading algorithm is executed to check the loading packing feasibility

either for the sequential or unrestricted sequential case. If the number of used vehicles

is greater than the fleet size, the process is repeated accepting infeasible loading pack-

ings. The latter algorithm is adapted from [37] and it consists in randomly selecting a

ray and considering segments linking each customer to the depot. The customers are

assigned to a vehicle as the angle between the ray and the corresponding customer

segment increases. The capacity constraint has to be satisfied and a loading algorithm
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is executed to check the loading packing feasibility (sequential or unrestricted). It is

only possible to accept a loading infeasible packing for the last assigned vehicle.

The loading check algorithm referred to above for both heuristics works as follows.

The items are sorted according to both their sizes and the visit sequence of the

customers. Thus, customers are sorted by the reverse order of visit and for each

customer the items are sorted by decreasing order of width, breaking ties by decreasing

order of height. The first item is placed at the origin (0, 0) and the following items

are placed in the position that maximizes the touching perimeter [94] satisfying the

loading constraints and not exceeding the height of the vehicle. If it is only possible to

satisfy the loading constraints, the item is placed in the position which minimizes the

required height. If no such position exists, the algorithm returns an infinite height.

The movements that characterize the neighborhood structure consist in exchang-

ing a customer from a route to another route. After they have been applied, the

movements are inserted into the tabu list. Infeasible routes are allowed in the sense

that the weight or the height of the loading area can be exceeded. In these cases, the

movements are penalized according to the dimension of this violation.

The results reported by the authors show that this approach is competitive with

exact approaches, finding the optimal solution in roughly 50% of the number of opti-

mal solutions obtained by the exact approach in [78].

3.2.2.1 Guided Tabu Search

In 2009, a guided tabu search algorithm was proposed by Zachariadis et al. [154]

for the 2L-CVRP considering items with fixed orientation and both sequential and

unrestricted versions of the problem.

To verify the loading feasibility of the problem the authors presented a heuristic

bundle composed by five packing heuristics. All these heuristics start from a sequence

of items. For the sequential version, this sequence is obtained by sorting customers

by the reverse order of visit. For each customer, the items are sorted by decreasing

order of area. For the unrestricted version, it is only necessary to sort the items by

decreasing order of their values of area. Although these five packing heuristics share

the same sequence, they differ in the way the loading position is chosen.
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In this heuristic bundle, there are two heuristics based on the bottom-left, being

each one applied to an axis: one axis parallel to the rear-side of the vehicle, and

another perpendicular to it [31]. The third and fourth heuristics aim to maximize the

touching perimeter: one of them considers the walls as part of the touching perimeter

and the other excludes the walls [94]. Finally, the fifth proposed heuristic consists

in computing a rectangular surface for each possible loading position coordinate, and

selecting the position whose surface area is smaller.

The referred to above heuristic is successively applied until a feasible solution is

found. If at the end of the last heuristic a valid solution is not achieved, the route is

considered to be infeasible.

The initial solution is obtained by a constructive heuristic. An empty route is

generated for each vehicle. The customers are sorted by decreasing order of the

values of their demanded area, and by this order, the insertion of each customer in

all positions of the routes is tested. The feasibility of the routes is verified through

the bundle of packing heuristic referred to above. The customer is assigned to the

feasible route that minimizes the free area of the vehicle after loading its items. Its

position in the route is the one in which the additional cost is minimized.

After they have been applied, the movements are inserted into the tabu list. In-

feasible routes are allowed in the sense that the weight or the height of the loading

area can be exceeded. In these cases, the movements are penalized according to the

dimension of this violation.

The guided tabu search algorithm starts from the initial solution referred to above.

The guided denomination is due to the fact that the objective function incorporated

in the tabu search algorithm is modified in order to increase diversification, guiding

the search to unexplored solutions. The diversification is performed by penalizing

long arcs in the solution. For this purpose, a utility function is used to find the arcs

to be penalized in the objective function. In Figure 3.1, a scheme aims to represent

the guided local search mechanism: each si represents a valid solution in iteration i.

The penalization of the objective function is represented in dashes, and it guides the

algorithm to optimal solution s∗.

The neighborhood structures are defined by three types of movements based on
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Figure 3.1: Guided local search (adapted from [47])

[41, 93]. The first consists in shifting the position of one customer within a route

or shifting one customer from a route to another route [148]. The second type of

movement consists in exchanging the position of a pair of customers within the same

route or between two routes [148]. Finally, the last movement is based on the route

interchanging, commonly denominated by 2-opt [41, 93]. If it is applied within the

same route, two non-consecutive arcs are removed and the sequence of customers

between these arcs is reversed. Two new arcs are created to link this new sequence

to the other customers. On the other hand, if this movement is applied between two

routes, one arc is removed in each route. Then, the first part of one route is linked

with the second part of the other route.

One of the three movements is performed to a feasible neighbour solution only if

such move is not included in the tabu list or if it is the best solution ever achieved.

In order to accelerate the convergence of the algorithm, the authors proposed two

procedures: the neighborhood is reduced in each iteration, and information relative to

the feasibility of the routes is stored. Thus, it is not necessary to re-evaluate whether

the solution is feasible or not.

The computational performance of this approach was tested with the instances

proposed in [64]. The authors compared their results with the results presented in [64],

concluding that there is an improvement of 1,54% of the solution values of instances of
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class 1. Considering instances of class 2 to class 5, for the unrestricted and sequential

versions the enhancements were on average 1,62% and 1,62% respectively.

3.2.2.2 Extended guided tabu search

Based on the work of Zachariadis et al. [154], Leung et al. [92] proposed an Extended

Guided Tabu Search (EGTS) for the 2L-CVRP. This approach aims to apply a guided

local search extension suggested by Millis et al. [111]: if one move can lead to a new

best solution, then the penalty associated to that move is removed. Millis et al. [111]

denominated this process by aspiration move. They demonstrate that this procedure

can enhance the performance of the algorithm.

The initial solution method relies on the guided tabu search starting solution of

Zachariadis et al. [154], but with modifications for the case when there is no valid

route for a given customer. In these cases, the customer is exchanged with another

customer already assigned to one route, selected stochastically.

To check the loading feasibility, the authors applied the heuristic bundle presented

by Zachariadis et al. [154], and one more packing algorithm named Lowest Reference

Line Best-Fit Heuristic (LBFH). The LBFH can be described as follows. The lowest

reference line is the one under which no items can be placed. In this line, two endpoints

are considered to place the item. The item must be placed at the bottom corner of the

envelope which maximizes the touching perimeter. The selection of an item relies on

the quality of the fitness which is evaluated considering the corner points that fit the

placement. Consequently, this loading heuristic aims to promote the minimization

of the number of resulting corner points. An example of this process is presented in

Figure 3.2. In (a) four corner points are represented. In (b) an item X is placed at

the right corner of the lowest reference line while in (c) other item Y is placed at

the same point. Therefore, layout (c) is more suitable since two corner points fit the

placement of piece Y .

The quality of this approach was tested on benchmark instances [76, 78, 64]. The

computational results considering the extended guided tabu search without LFBH

(Classes 2 to 5), outperform the guided tabu search approach [154] by 0,58% and

0,26% on average, for the sequential an unrestricted versions, respectively. The com-
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Figure 3.2: Lowest reference line best-fit heuristic (adapted from [92])

putational results obtained for EGTS with LFBH are more significant. For classes 2

to 5, the obtained results outperform the guided tabu search on average 1,28% and

1,06% for the sequential and unrestricted cases, respectively.

3.2.3 Ant colony optimization

The first work reporting on the 2L-CVRP whose items may have a variable orientation

is due to Fuellerer et al. [61]. In this case, items are allowed to be rotated 90 degrees

in the horizontal plane. The rotation version increases the complexity of the problem.

However, a higher number of valid packings is achieved and consequently the routing

costs can be reduced. An example of a possible advantage of the inclusion of rotation

is shown in Figure 3.3. In (a), no rotation of items is allowed and the obtained

packing is infeasible, since not all items are completely within the loading area. In

(b), a possible improvement can be achieved if rotation is possible.

In the mentioned work, the authors describe an Ant Colony Optimization algo-
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Figure 3.3: Possible improvement when considering rotated items

rithm (ACO) for the 2L-CVRP, which is an extension of the ACO for the CVRP

[129].

The generation of solutions relies on the classical Savings Algorithm of Clarke

and Wright [32]. From the perspective that combining pairs of customers in the

same route produces a saving, a list of savings for all pairs of customers is built.

However, whereas the classical Savings Algorithm has a full list of savings obtained

by combining customers, in this approach, the authors suggested a restricted list of

feasible and more profitable combinations of customers at each step.

Concerning the overall approach, each ant of the population stochastically selects a

combination from this list. The probability of selecting a certain combination depends

on a mathematical formula. For the CVRP, this formula takes into account the savings

and the pheromone information. This formula was adapted to the 2L-CVRP in order

to consider the items area, and thus favour a better filling of the bin.

After merging the routes, the restricted list is updated and the process is repeated



3.2. Approaches for the 2L-CVRP 39

until a heuristic solution is found. Then, a local search is applied to each ant through

movements. During the local search procedure, if any solution requires more vehi-

cles than those that compose the fleet, the objective function is penalized and the

pheromone information will not be updated.

In order to provide the loading feasibility of one route, the authors resort to lower

bounds based on the procedure described in [108], but extended to the case in which

the items have a variable orientation. If it is not possible to prove the infeasibility of

the route using the lower bounds, the items are sorted and then two heuristic already

referred to above are applied: a bottom-left filling heuristic and a maximum touching

perimeter algorithm. If both these heuristics fail, a local search algorithm is applied,

switching items in the sequence of input, and executing the two heuristics again. If

this alternative fails, a truncated branch-and-bound method is then applied.

The authors tested their approach in the benchmark instances referred to above

[76, 78, 64]. For small size instances (less than 40 customers) and considering the

sequential constraint and oriented items (2|SO|L), this approach was able to find the

optimal solution in 46 out 58 optimal solutions obtained in [78]. In the overall set

of instances, and comparing with the tabu search approach [64], there is an average

improvement of 3,65%.

In order to evaluate the impact of the loading constraints in the overall approach,

the authors relaxed two constraints. If the unrestricted version of the problem is

considered (2|UO|L), an average improvement of 3,27% is achieved. If the rotation of

items is allowed (2|SO|L), the average improvement is slightly better (3,38%). For the

unrestricted and non-oriented problem (2|UR|L) the average improvement is 5,06%.

3.2.4 Simulated annealing

Leung et al. [91] proposed a new simulated annealing approach for the 2L-CVRP,

considering both sequential and unrestricted versions and fixed orientation.

The initial solution is constructed using the same procedure as in [92], and the

neighborhood structures are the ones suggested in [154]. To verify the loading feasi-

bility of a given solution, the authors used the heuristic bundle presented in [92]. In

order to accelerate the simulated annealing algorithm, the authors implemented an
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effective data structure to keep the information about the feasibility or infeasibility

of a given route.

The average results considering the instances in classes 2 to 5 present an improve-

ment of 3,19% and 1,38% compared to the tabu search approach [64] and to the

guided tabu search approach [154], respectively. Similar improvements are reached in

the sequential version.

The simulated annealing was also successfully applied to a realistic variant of

the 2L-CVRP which considers a heterogeneous fleet [90]. Since the vehicles have

different capacities and dimensions, they also have different fixed and variable costs.

Other constraints remain the same, and both sequential and unrestricted versions are

considered. The main innovative feature of this work is the inclusion of heuristic local

search algorithms in the simulated annealing method. In this approach, one movement

is performed to a feasible solution, by randomly selecting with equal probability one

of three neighborhoods structures. These neighbour structures are based on those

presented in [92], and as stated above. However, it is worth noting that in these

neighborhoods structures exchanges are only allowed if they occur between vehicles of

the same type, due to the infeasible solutions that could be obtained if this assumption

was not considered.

If the obtained solution is better than the current solution, then the current so-

lution is automatically updated. Otherwise, the obtained solution is only accepted

based on the simulated annealing acceptance chance. Then, and with a probability of

5%, three local search methods are applied, each one based on a neighborhood struc-

ture defined above and using a first criterion improvement. Based on the benchmark

instances for the 2L-CVRP [76, 78, 64], a new set of instances was created aiming to

embed the new problem requirements, namely the heterogeneous fleet and costs. The

authors provided a comparative analysis between the enhanced simulated annealing

algorithm and without the local search heuristic. This analysis demonstrates both

a marked improvement and a computational time decrease when such methods are

embedded in the overall approach, with an improvement of more than 23% for all the

classes and for both unrestricted and sequential versions. Furthermore, this approach

was also tested on benchmark instances, and the obtained results are competitive with
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those obtained in other approaches.

3.2.5 Biased-randomized algorithm

Dominguez et al. [52] presented a biased-randomized algorithm for the unrestricted

2L-CVRP whose items are allowed to be rotated (2|UO|L and 2|UR|L).

The overall approach starts through one procedure based on the Clarke and Wright

savings list, which is sorted by decreasing order, and at each iteration, an edge is

chosen using a biased probability. This probability leads to different solutions at

each call, but still aims to favour higher savings. Whenever an edge is selected, the

merging of the two routes is only performed if the obtained route is valid concerning

the capacity and the loading constraints. To verify the feasibility of the loading, the

authors suggested a multi-start biased-randomized version of the best-fit heuristic

with items rotation proposed in [26] which consists in applying the biased process to

the items order. The process runs while the savings list is not empty.

For the rotated version of the problem, the authors provided a comparison with

[61], obtaining improvements for each class that vary from 0,04% to 1,11% (average

values of generated solutions in 10 runs). For the oriented problem, competitive results

with those in other approaches presented so far were achieved.

3.2.6 Evolutionary local search

Duhamel et al. [54] proposed a multi-start evolutionary local search for the 2L-CVRP

considering only the unrestricted version of the problem, and oriented items (2|UO|L).

One of the innovative features of this approach is the handling of loading constraints,

which are transformed in constraints of a Resource Constrained Project Scheduling

Problem (RCPSP) with a single resource and with no precedence constraint. In-

deed, and as stressed in [54], the RCPSP is less constrained than the two-dimensional

orthogonal packing problem and, consequently, can be less difficult to solve. This

process is shown in Figure 3.4: a valid layout (unrestricted oriented) presented in (a)

is converted in a RCPSP instance.

The overall approach is based on a modified Greedy Randomized Adaptive Search
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Figure 3.4: Conversion of a two-dimensional layout to RCPSP (adapted from [54])

Procedure (GRASP) whose local search procedure is performed with an Evolutionary

Local Search (ELS) algorithm. During the execution of the denominated ”GRASP

x ELS” algorithm, only the constraints related to RCSPSP and to the capacity of

the vehicle (weight) are considered. To solve the RCPSP, the authors suggest a

randomized activity selection.

The GRASP x ELS algorithm is applied to solutions that alternate between two

different representations (inspired in [128]): a set of routes or a giant route result-

ing from the concatenation of this set. The initial solution is obtained through one

heuristic procedure which iteratively applies four heuristics: a randomized version

of the classical Clarke and Wright savings algorithm [32], an adaptation of the path

scanning algorithm [66], an adaptation of the randomized version of path scanning

and, finally, a random generation heuristic.
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For both path scanning and its randomized version, the used criteria are based

on the maximal or minimal values of the total weight to deliver, the total demanded

area to deliver, or the distance to the depot (with or without considering if the vehicle

area is half-loaded). Immediately after generating initial solutions, the set of routes

is concatenated into a giant route. The ELS algorithm iteratively performs mutation

and local search procedures during a given number of iterations which is also the

number of generated solutions.

The mutation is performed on the giant route referred to above, which has a

smaller solution space. Then, the giant route is divided into a set of routes and a

local search is applied to this set. The neighborhood structures consist in 2-opt and

swap moves which are both applied inside a single route and between two routes.

Finally, the set is converted back to the concatenated version in order to proceed with

the remaining iterations of ELS.

For each iteration of ELS, if an improvement is achieved, the solution is kept into

a list of the best solutions. All the solutions of this list are transformed back into

2L-CVRP solutions, and the best one is selected.

The computational results of this approach presented new best known solutions

in some instances in all classes (10 for the Class 1 and more than 20 for each of the

other classes). The average values also outperformed the average values obtained in

[64].

3.2.7 Compact metaheuristic

Zachariadis et al. [156] proposed a compact metaheuristic algorithm for the 2L-CVRP

in both versions, sequential (2|SO|L) and unrestricted (2|SO|L).

The initial solution is performed through starting from one empty route for each

vehicle. A utility function is defined aiming to maximize the area utilization. The pair

route/customer, which maximizes the utility function, is selected and the customer is

assigned to the route in the sequence point that minimizes the route cost.

The overall approach is based on local search, using a Static Move Descriptor

(SMD) representation, originally proposed in [153]. From the perspective that only a

subset of arcs of the solution will be removed and replaced, re-evaluating all the solu-
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tion is not necessary since the other arcs of the solution remain unmodified. Therefore,

each local search move can be encoded into a SMD instance, including the type of the

move to be performed, the point where the move is applied and the inherent difference

in the objective function (denominated by cost tag). This cost takes into account only

the removed and generated arcs: the cost tag is equal to the total costs of new arcs

minus the total cost of the removed arcs. Thus, it is not necessary to recalculate the

overall cost of the solution at each local search movement.

Three possible moves are allowed, based on the (1) relocation or (2) swap moves

of one customer and on the (3) route crossover and one Fibonacci heap is associated

to each move type. All moves are applied and the corresponding SMD instances are

kept in Fibonacci heaps, according to their cost. One move is randomly selected

(all the moves have the same probability of being selected), and the SMD instances

are verified regarding the diversification status and the feasibility of the 2L-CVRP

constraints. The best move is then applied.

To ascertain the packing feasibility of the solution, the authors proposed a heuris-

tic procedure using a list of available positions which is updated at each iteration

based on [40]. These points are named as extreme points. The list of available po-

sitions is initialized with the origin, and the pair item/position which maximizes a

utility function based on two terms (or three) for the unrestricted version (sequential

version, respectively). For the unrestricted version, the utility function is composed

by the touching perimeter [94] of the corresponding pair item/position (aiming a fea-

sible loading) minus a large positive constant multiplied by the number of times in

which the pair was examined (leading the search for unexplored loadings). The se-

quential version includes both terms referred to above and another one to give higher

priority for items of customers served later. In order to reduce repeated operations,

the authors implemented memory structures (based on hash tables), that keep the

(partial) feasible loadings configurations.

The authors tested their approach in the Gendreau et al. instances [64] and com-

pared the results with those proposed in [92, 61, 54]. The results concerning the

unrestricted version show an average improvement in 21 of 36 benchmark instances,

reaching the best solution in 9 cases. Considering the sequential version of the prob-
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lem, an average improvement of 1,21% occurred in 30 out of 36 instances.

3.2.8 Variable neighborhood search

Another recent approach for the 2L-CVRP is proposed in [151] for sequential and

unrestricted versions based on the Variable Neighborhood Search (VNS).

The initial solution is obtained by a process similar to the one proposed in [154, 92],

presented above. Briefly, in this process the customers are sorted by decreasing order

of the area of their demanded items, and successively inserted in the feasible route

that minimizes the free area of the vehicle after loading their items. The insertion

position for the customer is the one that minimizes the insertion cost. If this procedure

is unable to insert one given customer, the customer insertion order is modified by

exchanging positions between that customer and another one randomly chosen.

The authors introduced some modifications to the classical VNS procedure. Firstly,

the shaking phase, i.e., the generation of random neighbour solutions, is repeated a

certain number of times, providing different solutions for the local search procedure.

At this shaking phase, the neighborhood structures are both based in exchanging se-

quences of two or three consecutive customers and in the six neighborhoods structures

presented in [154] and already described in Section 3.2.2.1. It is worth noting that

these six suggested neighborhoods structures will be used in the local search. In that

phase, a first improvement strategy is performed, which means that all neighborhoods

are explored in a random order until a better solution is found.

Additionally, the VNS is also enhanced with a diversification procedure which is

applied each time it is not possible to achieve a better solution. From the incumbent

solution, some customers are randomly selected to be removed. These customers are

sorted according to the area of their demanded items, and then reinserted using a

similar procedure of obtaining an initial solution, which is referred to above. The

number of customers to be removed is the minimum between 50% of the total set

of customers and 10% of these plus the number of iterations without improvements.

Therefore, a larger the number of iterations without improvement will provide greater

diversity by removing more customers. This diversity feature provides different initial

solutions and it is suitable to avoid local optimal solutions.
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In order to evaluate the packing feasibility of a given route, the authors proposed

a tabu procedure adapted from [149], which can be summarized as follows. An initial

sequence for packing the items is obtained by sorting the items of each customer

using three rules: in decreasing order of area, width and length, respectively. For the

sequential version, the customers are sorted in reversed order of visit, which will have a

direct impact in the sequence of items. A skyline packing heuristic [149] tries to derive

a valid packing for this sequence. If it is not possible to achieve a feasible packing,

a set of sequences is generated from that sequence by swapping the position of two

items. From this set, the sequence that maximizes the area utilization is selected to

establish the order in which the items will be placed by the packing heuristic. If it is

not possible to derive a feasible layout, the swapped items are stored in a tabu list.

As referred to above, the packing heuristic is based in [149]. In that work, the

current layout is represented by a contour denominated by skyline. The skyline results

from the junction of vertical strips, each two strips having the same x-coordinate but

different y-coordinate. The candidate positions for placing items are a set of points

in this skyline. An example of this representation is presented in Figure 3.5. The

authors claim that this representation is more efficient. However some portions of the

loading area are not considered to place items.

For a given sequence each item is selected to be placed in the loading area. All

possible positions are evaluated using a fitness function that takes into account, among

other components, the wasted area with the insertion of the related item. The position

that maximizes this fitness function is selected to place the item and the skyline is

modified in order to incorporate this modification.

The computational results for the unrestricted version could find better values for

65 out of 144 instances when compared with previous approaches presented in the

literature.

3.2.9 2L-CVRP with partial conflicts

The Two-dimensional Bin Packing Problem with Conflicts (2BPPC) was firstly pro-

posed by Khanafer et al. [85] aiming to minimize the number of bins used to pack a

set of two-dimensional items taking into account incompatibilities between items that
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could not be packed in the same bin.

Some authors addressed one similar problem where the conflict items may be

packed into the same bin, however they must keep a minimum distance between

them. This problem is known as Two-dimensional Bin Packing Problem with Partial

Conflicts (2BPPC), as proposed in [68].

Hamdi-Dhaoui et al. [69] extended the 2L-CVRP by including the constraints of

the 2BPPC. The resulting problem is a two-dimensional vehicle routing problem with

partial conflicts (2LPC-CVRP). The authors proposed a bi-objective algorithm based

on the Non-dominated Sorting Genetic Algorithm II (NGSA-II) [48]. Therefore, the

objective is twofold aiming to minimize the total transportation costs and to minimize

the loading difference between the most loaded and the least loaded route.

3.2.10 2L-CVRP with stochastic demand

As referred to in Chapter 2, one variant in the routing field is the one that deals

with uncertainty. In the L-CVRP context, to the best of our knowledge, only one
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work deals with stochastic data [42], more precisely the weight and the size of items

are only known when loading the vehicle. Therefore, if items could not be loaded

due to the lack of space, then it is assumed that these items should be left on the

dock. Consequently, there is a cost associated to this non-compliance situation, which

relies on the number of customers whose demand was not completely satisfied. The

objective is to minimize both routing and non-compliance costs.

Although information about the size and the weight of items is not completely

known, there is a finite number of values for these parameters. For each of these

values, a probability is associated.

The suggested problem is solved by the so-called L-Shaped method, which consists

in relaxing the constraints related to the capacity and to the loading and in replac-

ing the non-compliance costs by a lower bound. Then, a branch-and-cut method is

applied, with new lower bounding functionals, which are in fact lower bounds for

non-compliance costs.

In addition to the stochastic instances, this approach was tested in the set of

(deterministic) benchmark instances [76, 78, 64]. The results pointed out that this

algorithm solved instances with about 70 customers and 200 items in a small amount

of time.

3.2.11 2L-CVRP with time windows

As referred to in Chapter 2, the Vehicle Routing Problem with Time Windows

(VRPTW) is an extension of the Capacitated Vehicle Routing Problem (CVRP) in

which each customer must be served within a specific time interval. Some works of

L-CVRP consider these extension in addition to loading constraints.

One of these approaches is due to Khebbache-Hadji et al. [86] who addressed

the 2L-CVRP with time windows using heuristic and memetic algorithms. Memetic

algorithms are hybrid methods that combine genetic algorithms with local search

procedures, and were firstly proposed in [113]. In [86], no sequential constraints were

considered, and items are not allowed to be rotated (2|UO|L).

Regarding the heuristic methods, the authors combine two routing heuristics and

three packing procedures presented in the literature, resulting in six heuristic algo-



3.3. Approaches for the 3L-CVRP 49

rithms. The objective of the implementation of these algorithms is twofold. On the

one hand, it is possible to compare the six approaches. On the other hand, these

heuristics will provide initial solutions for the memetic algorithm.

Considering this memetic method, the local search is applied with a given prob-

ability to a child right after the crossover operations and before the mutation. The

local search phase includes four neighborhood structures. Among these structures,

two can be applied within the same route or between two routes by moving one

customer or a sequence of two consecutive customers, and by swapping one or two

customers. The other two movements include inverting the sequence of visits (2-Opt)

and interchanging the last part of two routes.

The heuristic and memetic methods were tested in an adapted subset of benchmark

instances proposed in [64]. The memetic algorithm improves the solutions provided

by heuristics in 205 seconds on average.

3.3 Approaches for the 3L-CVRP

In Section 3.2, we reviewed the approaches for the 2L-CVRP presented in the liter-

ature. Some of those algorithms were extended to tackle the 3L-CVRP. The main

features of original approaches were preserved. As a consequence, in Section 3.3.1 we

present such extensions giving special emphasis for the specific aspects included when

applying the same method to three-dimensional problem. For a better understand-

ing, we refer to the original approach in each 3L-CVRP contribution. The following

sections provide a survey on the methods of 3L-CVRP.

3.3.1 Generalization of 2L-CVRP approaches

The first work referring to the combination of CVRP with three-dimensional loading

constraints was proposed in 2006 [63] by only considering the sequential version of

the problem. Additional constraints are considered such as fragility constraints and

supporting area constraints. The items can be rotated 90 degrees in the horizontal

plane, but they have a fixed vertical orientation.

The authors proposed a tabu search algorithm that allows movements that produce
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infeasible solutions, generalizing the algorithm proposed for the 2L-CVRP [64]. Fur-

thermore, the loading component of the problem is performed by an inner tabu search

algorithm whose movements, which characterize the neighborhood structure, consist

in exchanging the loading sequence of the items. From this new sequence, two heuris-

tic procedures are applied. These heuristics are extended versions of two-dimensional

heuristics: the bottom-left algorithm [6] and the touching perimeter algorithm [94].

Two sets of computational results are reported: one for instances provided in the

literature, and another set of real-world instances provided from the furniture industry

in Italy.

In order to compare the impact of each type of constraint, the authors presented

the solution values relaxing one loading constraint type at a time. They concluded

that relaxing sequential constraints or supporting area constraints lead to an aver-

age improvement (8,74% and 9,86%, respectively) that is greater than relaxing the

fragility constraints (2,66%). Relaxing the three set of constraints leads to an average

improvement of 15,87%.

Based on the guided tabu search for the 2L-CVRP [154], Tarantilis et al. [141]

extended this approach to the 3L-CVRP. In this approach, fragility and supporting

area constraints are considered, and items must have a fixed vertical orientation, but

can be rotated 90 degrees in the horizontal plane.

Some modifications were applied to tackle the three-dimensionality of the problem.

The initial solution is obtained in an analogous process for the 2L-CVRP [154]. How-

ever, in each insertion, the customer is assigned to the feasible route that minimizes

the free volume of the vehicle after loading the customer items.

In order to test if the loading constraints are satisfied, six packing heuristics are

suggested, each one having a different criterion to select the position to place the

item. This bundle is composed by heuristics extended from the ones presented by the

same authors for the 2L-CVRP [154]. The first and the second heuristics promote the

selection of the position with minimum value at a certain axis (L-axis and W -axis,

respectively) breaking ties with the minimum values of the other two axes. The third

heuristic aims to maximize the touching area between the item and either the current

layout or the walls of the container of the vehicle, excluding the bottom face. As in
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[154], a version that excludes the walls of the container was also considered in the

fourth heuristic. In these two last heuristics, if two or more positions have the same

touching area, the position with the minimum W -axis value is selected. Hence, two

heuristics were created based on the third and fourth heuristics referred to above,

sharing almost the same methods, but using the minimum L-axis value to break the

ties.

The suggested extended approach was applied to the instances suggested in [63]

and to a new set composed of twelve instances. The obtained results point out an

improvement of 21 out of the 27 best results in [63], with an average improvement of

3,54%. Improvement is larger for larger instances.

As in [63], it was observed that relaxing one loading constraints at a time leads

to an improvement. For the instances proposed in [63], the average improvement of

the solution is 2,85% if one fragility constraint is not considered, while sequential

constraint and supporting area constraint have a more effective impact if they are not

considered (4,61% and 5,61%, respectively).

In this work, the authors also considered the M3L-CVRP. This problem was de-

fined in Section 2.3.4. As stated before, this version takes into account a less restrictive

definition of sequential constraints.

Lacomme et al. [88] generalized the GRAPxELS approach for the unrestricted

3L-CVRP considering both the oriented and rotated versions. However, instead of

solving the three-dimensional packing problem through the RCPSP, a new three-

dimensional packing two-step heuristic procedure is suggested. In the first step, only

two dimensions are considered, and thus the height is considered as a cost. The

objective is to find a position to each item in the two-dimensional bin, taking into

account that the packing has to be orthogonal and the cost resulting from the sum of

the overlapping is limited to capacity of the bin (which is the height of the vehicle).

The second step aims to find the third coordinate position such that the result is a

feasible three-dimensional packing.

The authors report on results considering benchmark instances and real instances

based on the travel distance among 96 French cities. For the 27 benchmark instances

[63], and considering the unrestricted 3L-CVRP with rotations, this approach was
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able to achieve 16 best solutions. A slightly impact on the quality of the solutions

is observed if the horizontal rotation of items is allowed. It is worth noting that

evolutionary local search was also effective for a similar problem in which instead of

minimizing the distance, it is required to minimize the fuel consumption [157].

Finally, Fuellerer et al. [62] extended their Ant Colony Optimization approach

[61] to the 3L-CVRP with sequential, fragility and supporting constraints. The items

can be rotated in the horizontal plane, but they are oriented concerning the vertical

orientation.

As in [61], lower bounds are computed to avoid unnecessary calls to loading heuris-

tics. The feasibility of loading is assessed by extending the two-dimensional heuristics,

namely the bottom-left and the touching perimeter heuristics. The savings are com-

puted taking into account both the cost savings and the density of the packing, using

for the latter component the volume of items. The authors compared the obtained

results with the tabu search algorithm presented in [63]. The ACO algorithm was

able to produce an average improvement of 5.77% within a lower amount of time, in

spite of using distinct machines for the two compared approaches. Additionally, by

relaxing the fragility, sequential and supporting constraints, this approach achieves

better results when compared with tabu search.

3.3.2 Exact approach

Junqueira et al. [83] proposed an integer linear programming model for the 3L-CVRP

with additional loading constraints.

These constraints include vertical load stability, multi-drop situations and load

bearing. It is worth noting that the authors considered not only load bearing by im-

posing a maximum number of boxes that can be stacked, but also considered fragility

constraints by preventing any placement upon a fragile item.

As explained before, multi-drop constraints ensure that items belonging to the

same customer are placed near to each other in order to both simplify unloading op-

erations and avoid rearranging the items in the vehicle. Additionally, the order of visit

must be taken into account when loading the vehicle. Taking into account a partial

layout, when loading items for a customer to be served earlier, the authors proposed a
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threshold that corresponds to the maximum distance that can be performed in order

to arrange those items. This assumption takes advantage of empty holes that have

been created in the layout.

The authors extended the time-dependent formulation for the Travelling Sales-

man Problem [59] for the 3L-CVRP. The authors assessed the effectiveness of their

approach in randomly generated instances. They concluded that such formulation is

suitable for medium-size problems.

3.3.3 Tabu search

Zhu et al. [158] proposed a two-stage Tabu Search (TS) for the 3L-CVRP. To verify

the feasibility of the loading a local search procedure is adopted. A loading sequence

is created by sorting items firstly by the reverse order of the visit sequence. For

items of the same customer, non-fragile items are before the fragile items, breaking

ties using the volume of items (bulky items first). Then, an improved version of both

Deepest-Bottom-Left-Fill (DBLF) and Maximum Touching Area (MTA) heuristic are

applied to this sequence.

The initial solution is obtained through the savings algorithm [32]. Whenever

two routes are merged, the feasibility of the resulting route (capacity and loading

constraints) must be assessed (using heuristic to be presented below). If the number of

obtained routes is greater than the fleet size, another iteration of the savings algorithm

is performed but relaxing the capacity constraints and allowing loadings that require

a length size greater than the length of the vehicle.

The movements that define the neighbour structure consist in 2-opt and 2-swap

applied in one route, moving one customer from one route to another, crossing-over

between two routes and finally splitting one route into two routes.

The two-stage denomination is due to the first phase of the algorithm that is

applied if the starting solution is infeasible. In this case, the excessive weight and

length are penalized in the objective function during this phase. The phase two is

only applied to feasible solutions and only generates feasible solutions. This phase

aims to minimize the total cost.

The authors compared their approach with [63, 141, 62], reaching better results
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in 20 out of the 27 instances with an average improvement of 0,57%. The impact

of the constraints in the performance of the approach is, on average, higher for the

sequential constraints (average improvement of 7,73% if these constraints are not

considered) and it represents roughly 65% of the achieved improvement if fragility,

support and sequential constraints are not considered. As in [154], a M3L-CVRP was

presented. The obtained results reached better results in 8 out of the 12 instances of

Tarantilis et al. [141] with an average improvement of 1,28%.

A tabu search algorithm was successfully applied in [110] for the 3L-CVRP with

fragility and supporting constraints (3|SR|L). However, such application is only de-

voted to the loading component, while the routing part is solved by means of a

genetic algorithm. The packing heuristic is applied for a given route by reversing

the order of visit of all customers. For each customer, non-fragile items have priority

over fragile items. Using this sequence, a front-left-bottom heuristic (based in two-

dimensional heuristic proposed in [6]) and a touching-area heuristic (also based in a

two-dimensional approach suggested in [94]) are used attempting to derive a feasible

packing. If it is not possible to derive a feasible solution, the items are divided in

two groups: the ones that completely fit in the vehicle and the ones that are placed

outside the vehicle, even partially. Each pair of items belonging to different groups

is evaluated to be exchanged using a score function taking into account the possible

new routing cost and the number of times that items were already exchanged. The

items belonging to the pair with the best score are exchanged. Additionally, these

items are forbidden to be exchanged within a certain number of iterations.

The effectiveness of this approach was tested in the set of 27 instances presented

in [63]. The obtained results improve the solutions presented in [63] for all instances

(with an average improvement of 8.98%) and in [141] for 20 instances (with an average

improvement of 4.84%). Furthermore, this approach was also able to outperform

16 solutions obtained in [62] with an average improvement of 1.84%. The authors

stressed that computational time is reduced in more than 96% when compared with

[63, 141, 62].

Concerning the analysis of each type of constraint, the authors presented aver-

age improvements that are quite similar when relaxing sequential or supporting con-
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straints (4.24% and 4.08%, respectively). Less significant improvements are obtained

when the fragility constraint is not considered. Relaxing all the constraints referred

to above leads to an average improvement of 11.20%

In [140] a 3L-CVRP approach is addressed, considering fragility, supporting and

sequential constraints. Tabu search is used in the routing part of the problem while

the loading component is solved by two heuristics: the least waste heuristic and the

touching area algorithm. The innovative feature of this work is a new mechanism to

update the loading points to place the items. The authors claim that this mechanism

can lead to a greater utilisation of the loading space.

The effectiveness of this approach was also assessed in benchmark instances [63,

141]. The authors presented lower average costs when comparing with many 3L-CVRP

approaches. This approach was also able to achieve new best solutions.

3.3.4 Hybrid algorithm

Bortfeldt [20] proposed a hybrid approach for the 3L-CVRP (3|SR|L) considering as

additional constraints the fragility and support constraints. The overall approach con-

sists in a tabu search procedure for defining the routes and in a tree search algorithm

for the loading problem.

The tabu search approach is initialized according to a multi-start randomized

savings algorithm. Four movements are allowed if they lead to feasible solutions,

including swap positions for two customers on the same rote (1) or from two different

routes (2), and shift one customer to any position of the same route (3) or to any

position in another route (4).

Starting from the initial solution referred to above, the author divides the overall

approach in two phases. The first phase aims to reduce the number of used vehicles

until a certain threshold, and for that reason, only movements performed between

two routes are allowed (swap and shift moves involving two routes). At this stage,

the evaluation/selection of the best move relies on the packed volume: one move is

better than another if it leads to a smaller packed volume.

Once the referred to above threshold is reached, the second phase begins, aiming

to reduce the total travel cost. At this point, all moves are allowed.
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In order to avoid calculating the packing feasibility of all feasible moves, the au-

thor suggests generating all moves without evaluating the packing feasibility at the

beginning. All moves are sorted by decreasing order of their quality, considering the

phase in which they are performed. The feasibility of a route resulting from each

move is verified, until a given number of feasible moves is reached.

As referred to above, to assess the packing feasibility of each route, a tree search

algorithm using a depth-first search strategy is proposed. Each node provides in-

formation about the current packing, the items to place, and the list of potential

placements. A list of the denominated current placements is derived from the list

of potential placements taking into account filtering rules based both on the ranking

of the items (which is greater if the item belongs to a customer to be visited later)

and on the reference points of the placements. Each current placement is alterna-

tively performed, and thus the set of items to place and the potential placements are

updated.

This approach was tested in two sets: the 27 instances proposed in [63] and the

set instances presented in [141]), reaching 35 new best solutions for both sets.

Concerning the first set of instances, the hybrid approach presents an average

improvement of 8% compared to GTS, 3,9% compared to [141], and 0,8% compared

to [62]. The second set of experiments shows an average improvement of 3,8%.

As in other works, the impact of the loading constraints was tested through the

relaxation of one loading constraint type at a time for both sets of instances. The

results for the first set of instances show that the average improvements obtained

relaxing supporting constraints and sequence constraints are greater than relaxing the

fragility constraints. Relaxing all these constraints leads to an average improvement

of 9,7%. For the second set of instances, relaxing loading constraints has a higher

impact.

3.3.5 3L-CVRP with time windows

Moura and Oliveira [115] developed two approaches for the 3L-CVRP with time win-

dows: a sequential method and a hierarchical method. The sequential method con-

sists in building a sequential candidate list (SCL) that is used by three distinct search
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methods. The first one is a Monte Carlo procedure that generates random solutions

from the SCL. The second method is based on the local search heuristic through the

2-opt strategy whose neighborhood is composed by the SCL. Finally, the sequential

approach is also composed by a GRASP procedure whose elite list is built according

to a given ranking. The local search phase of this GRASP procedure is based on a

2-opt strategy.

The hierarchical approach is composed by three phases: constructive, post-constructive

and local search. In the constructive phase, a GRASP algorithm is used only to build

the routes. Then, a post-constructive phase tries to minimize the number of routes.

In the local search phase, a 2-opt procedure is applied on the routes and between the

routes.

The authors proposed a set of instances to test their approach by considering

the variation of customers demand. Through the analysis of the results, the authors

conclude that for a smaller number of boxes, sequential and hierarchical approaches

are similar. However, if the number of boxes is higher, the GRASP algorithm from

the sequential approach leads to better solutions.

Another approach for the 3L-CVRP with time windows is based in a multi-

objective genetic algorithm [114]. The initial population is obtained through the

application of the sequential approach referred to above [115]. The chromosome of

this genetic algorithm is represented by a string of equal length of the sequential

candidate list. Each gene of a given chromosome represents a candidate of this list.

To evaluate a given solution, two objectives are considered: the number of vehicles

and the distance. These objectives are analyzed through a Pareto ranking procedure,

which is used to build potential non-nominated solutions. From this list, two solutions

will be randomly chosen to recombination.

The author reports on computational experiments using the instances described

in [115]. The obtained results show that this multi-objective genetic approach is

competitive with [115] by decreasing the number of used vehicles in some instances,

especially in contrast with the hierarchical approach.

Bortfeldt and Homberger [23] tackled the same variant of the problem, by dividing

the overall approach into three steps as follows. Firstly, only the loading packing is
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considered and thus, for each customer, a three-dimensional strip packing problem

(3D-SPP) is solved, obtaining so many packing configurations as customers. Then,

a vehicle routing problem with time windows (VRPTW) is solved considering that a

route is only feasible if the sum of all loading lengths is not greater than the vehicle

length. Lastly, a final packing is reached by sorting customers by the reverse order of

visit and placing their loading configurations side by side.

In the first phase, each 3D-SPP is solved by a tabu search algorithm described in

[21] whereas the VRPTW is solved by a hybrid heuristic including an evolutionary

strategy to minimize the number of used vehicles, and a tabu search approach to

minimize the total distance [75].

The computational experiments were performed with both the 46 instances pro-

posed in [115] and a new set of 120 instances. By comparing with [115], this approach

was able to save 51 vehicles in the total set of 46 instances, saving roughly 34% of the

total distance.

3.3.6 Honey bee mating optimization

Recently, another nature-inspired search method for the resolution of the 3L-CVRP

was proposed in [134], based on a Honey Bee Mating Optimization (HBMO) algorithm

and motivated by the good results obtained by this algorithm for the CVRP [104, 105].

In this work, stability, fragility and sequential constraints were also considered.

The initial population of honey bees is obtained through a modified Greedy Ran-

domized Adaptive Search Procedure (GRASP), denominated by Multiple Phase Neigh-

borhood Search GRASP (MPNS-GRASP). As happens with the HBMO, the MPNS-

GRASP was successfully applied to the CVRP [103]. The advantage of this modified

version of the GRASP algorithm is that instead of using a single greedy function, the

MPNS-GRASP uses different greedy functions in each iteration or even a combination

of these functions. Furthermore, the Expanding Neighborhood Search (ENS) is used

in order to provide more flexibility to the local search phase.

From the obtained initial population, the solution with the minimum cost is se-

lected to represent the queen of the hive. All the other solutions are considered as

drones. New broods, which are in fact new solutions, are obtained by crossing queen
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and drones genotypes. Then, local search is applied to each obtained solution, rep-

resenting the workers of the hive. If a new solution improves the solution associated

to the queen, then the queen is replaced by the new brood, which corresponds to the

new best solution.

The overall approach consists in a hybrid algorithm which integrates the HBMO

algorithm with six packing heuristics. While the HBMO intends to improve the

solutions of the VRP in terms of distance and satisfying both the capacity and the

volume constraints, the packing heuristics verify the loading feasibility of each route.

These heuristics are based on those proposed in [141], and were already described

above.

The authors used the 27 benchmark instances in order to compare the described

approach with Tabu Search (TS) [63], Guided Tabu Search (GTS) [141] and Ant

Colony Optimization (ACO) approaches [62]. The obtained results present an im-

provement when compared with those obtained with TS and GTS with an average

improvement of 7,00% and 3,58%, respectively. When compared with the ACO, the

hybrid approach improvement is less significant, with an average value of 0,68%.

3.3.7 3L-CVRP with heterogeneous fleet

A Variable Neighborhood Search (VNS) approach for the 2L-CVRP [151] was pre-

sented in Section 3.2.8. However, there is an earlier contribution that suggested a

VNS algorithm for an extension of 3L-CVRP in which different types of vehicles were

considered [150]. This is the first 3L-CVRP approach which explicitly considers this

type of constraint.

Each type of vehicle can be described by a given weight capacity, by a certain

fixed cost, and by values of height, length and width of the vehicle container. As a

consequence, and since different vehicles represent distinct consumptions, the cost of

travelling along a given edge relies on the vehicle traversing it. Therefore, the cost of

a given route is represented as the sum of fixed cost with the cost of edges covered by

a given vehicle.

The overall approach is called adaptive VNS and is similar to the one presented in

[151]. We recall that such approach is composed by a VNS algorithm enhanced with
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diversification procedures when no better solutions can be found. The diversification

is greater for larger number of iterations without improvements.

The loading feasibility of a route is assessed by one of two heuristics relying on the

total number of items in the route. If this number is less than a given threshold defined

by the user, then all permutations of items are used as input for an extreme point

based heuristic [40]. Otherwise, a random local search procedure is used by swapping

the position of two items in the sequence. Additionally, the authors implemented a

tree data structure, denoted as trie, in order to keep the loading feasibility information

as well as the number of times that such route is evaluated.

This adaptive VNS was tested in 27 instances presented in [63] and in 12 instances

proposed in [141]. For the first set, the obtained results show an average improvement

when compared with other works [63, 141, 62, 158, 20, 134]. From those works, only

in [141, 158, 20] was the second set of instances tested. The adaptive VNS was able

to produce better solutions in 10 instances, since two instances could not be solved

because no solution was found complying with the allowed number of vehicles.

3.4 Applications of L-CVRP

Ceschia et al. [28] addressed a real-world problem from an industrial company that

considers split deliveries. The sizes of the demanded items are not quite different and

a heterogeneous fleet is considered. Load bearing constraints are also considered. The

sequence constraint is adapted in order to achieve a problem closer to the real context.

A so-called reachability constraint is added to the problem imposing a maximum

distance between any item and the loading operator (or forklift), taking into account

the current layout. To exemplify this situation, an example is described in Figure 3.6.

If the maximum distance is greater than or equal d1, but less than d2, it is possible

to unload item I1,1 but it is impossible to unload item I1,2. Consequently, this layout

violates the reachability constraint.

The so-called robust stability constraints are also considered. The main difference

between these constraints and the stability constraints is that each item must have

a minimum supporting area, considering not only the item (or items) below and in
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Figure 3.6: Reachability constraint (adapted from [28])

contact with it, but also all items in the stack below its surface. These types of

constraints prevent leaning stacks of items.

The overall approach is based in alternating between a simulated annealing al-

gorithm and a large neighborhood search. As in other approaches, movements for

infeasible solutions are accepted (only for the loadings whose weight or volume are

excessive) and penalized accordingly.

The approach was tested in a new set of real instances provided by the company

referred to above. In order to establish comparisons with other approaches, the set of

instances proposed in [63] was also used in the computational experiments, obtaining

results competitive with those obtained in [63, 141].

Another application of the 3L-CVRP can be found in [3]. In this work, Aprile

et al. addressed the 3L-CVRP arising in the production of sofas. Besides the three-

dimensional packing constraints, no additional constraints were required, meaning

that no sequential, fragility or supporting constraints were taken into account. The

authors tackled this real problem in three steps. Firstly, a loading pre-computation

phase is performed by packing the items of each customer separately at the vehicle. In

practice, this phase is equivalent to solving a three-dimensional strip packing problem

for each customer. At the second step, all pairs of combinations of customers are

evaluated. The best matching configurations were used in the third phase, which is

in fact a heuristic based in simulated annealing. The proposed algorithm was able to

solve instances with up to 100 customers in roundly 90 seconds.
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Attanasio et al. [5] addressed a case study of a company which produces semi-

finished films in Italy. Sequential constraints, time windows and due dates are also

considered in a multi-day scheduling. The authors considered two-dimensional items

with the same size and can be rotated in the loading area. The authors suggested a

simplified model in which additional cuts are added when a heuristic fails to prove

the feasibility of a route.

Mart́ınez and Amaya [109] addressed one problem provided by a company in their

food delivery service. The items are circular since they correspond to Spanish dishes

which are delivered in specific and circular pans with different sizes. Time windows

and multiple trips were also considered. The authors developed two approaches. The

first approach consists in a linear model. The second relies on a sequential insertion

heuristic to find an initial solution and in a tabu search approach to improve such

solution.

Junqueira and Morabito [81] proposed heuristic methods for a 3L-CVRP arising

in a Brazilian carrier. The suggested methods were adapted from the combination of

classical heuristics, and can tackle large-size instances.

3.5 Other routing problems with loading constraints

Other routing problems deal with different type of loading constraints when compared

with those presented for the L-CVRP. In some of those problems, routing aspects are

similar but the vehicle is replaced by a ship or the cargo is palletized and, consequently,

the pallets are items to be loaded in the vehicles. In other situations, items may not

be in contact and thus they cannot be transported in the same compartment or even

in the same vehicle. However, other problems must combine loading constraints with

pickup and delivery. In the following subsections, we review some of these routing

problems with loading constraints.

3.5.1 Palletized items

Palletized items arise in many situations, such as the distribution of chip-boards.

It is considered that demand of each customer is composed by different types of
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chip-boards. The chip-boards of the same type for the same customer are jointly

palletized, performing an item. The items are delivered to customers using a fleet

usually composed by the same type of vehicles, each one divided in a given number

of piles (stacks). However, long chip-boards may occupy more than one pile, and

thus different chip-board types may require a different number of occupied piles.

Additionally, sequential constraints are imposed. Consequently, it is clear that some

holes may arise in the layout, and this fact may cause load instability. In these cases,

such holes may be filled by bulk material and thus supporting constraints can be

ignored.

The described problem is denominated by One Vehicle Loading Problem (1-VLP).

The first work addressing the 1-VLP is due to Doerner et al. [51]. The authors

proposed a tabu search and an ant colony optimization algorithm. Tricoire et al.

[144] proposed a Variable Neighborhood Approach (VNS) that provided an upper

bound and possible valid cuts for a branch-and-cut algorithm. Both works referred

to above were tested in real instances provided by an Austrian timber distribution

company.

Another problem considering palletized items is presented in [155]. The demand of

each customer is composed by three-dimensional items that are previously assigned to

a given pallet. It is considered that one pallet is sufficient to carry the total demand

of a given customer. The pallets are then loaded into the vehicle. As stated by

the authors, this problem corresponds to solving, for each customer, an instance of

3L-CVRP with supporting constraints and variable orientation of items. Sequential

constraints are not considered since the vehicle driver is able to reach the pallets.

3.5.2 Heterogeneous and conflicting items

Some routing problems deal with situations in which it is common to transport goods

that are incompatible in the sense that they may not share the same space in the

vehicle. In such cases, items may be transported in the same vehicle but in differ-

ent compartments. The corresponding problem is known as the Multi-Compartment

Vehicle Routing Problem (MC-VRP).

The main difference between MC-VRP and the 1-VLP defined in Section 3.5.1
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is that items belonging to different compartments are not in contact, while in the

MP-VRP one item may occupy more than a single pile. This feature may be suitable

for transporting conflicting or strongly heterogeneous items within the same vehicle.

Some real applications for this problem can be found in the gasoline distribution,

when a single vehicle transports different types of petrol products [38, 39, 25]. Addi-

tionally, legal requirements must impose that items must be transported in different

compartments. One example of this situation is the transportation of provisions to

farms where, despite the separation in different compartments, the food for a given

specie must be loaded in the same compartment in future transportations, as referred

to in [56].

Other situations arise when items need different transport conditions, as it happens

when serving convenience stores with dry, refrigerated and frozen items within the

same vehicle [30]. A similar problem is proposed in [11]. However, items may not be

transported within the same vehicle and thus multiple trips must be performed. The

authors denominated this problem as minimum multiple trip vehicle routing problem.

Time windows for different type of items are also considered.

3.5.3 Loading and ship routing

Routing and loading scenarios are not limited to the road transportation. In fact, some

loading constraints can be found in the maritime logistics. The Container Stowage

Problem (CSP) consists in determining the way a set of containers must be placed

in a set of possible positions of a container ship while minimizing the transportation

cost. Additional constraints may be considered as the stability of the container ship,

due dates and sequential constraints. On the other hand, the Ship Routing Problem

(SRP) consists in a particular Capacitated Vehicle Routing Problem in which vehicles

are replaced by ships.

In [116], the CSP was integrated with SRP resulting in the denominated Container

Stowage and Ship Routing Problem (CSSRP). The authors considered the cases in

which due dates are applied to the containers. They stated that, since the costs

strongly rely on handling operations, incorporating sequential constraints (LIFO pol-

icy) naturally reduces the amount of time in unloading operations.
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3.5.4 Auto-carrier transportation

The Auto-carrier transportation problem arises in the car industry when it is nec-

essary to transport a set of vehicles or trucks from a depot to a set of customers

(more precisely, car dealers). Usually, the fleet is heterogeneous and each auto-carrier

is composed by upper and lower platforms to increase the number of transported

cars. Trailers may be also considered. Additional constraints are considered in the

literature, such as due dates and loading constraints.

Due to the features of both cars and auto-carriers, it is clear that sequential

constraints play an important role: lateral shifts are not possible and cars can only

be loaded or unloaded in the back side of the vehicle. Furthermore, translation and

rotation operations may be performed to unload vehicles from upper platforms.

The first approach to the auto-carrier problem was presented in 2002 and it is due

to Tadei et al. [139] who addressed a real problem which arises in an Italian company.

This model is decomposed by assigning auto-carriers to geographical regions. For

each one, a constructive heuristic computes a valid solution which is improved with

first improvement local search.

There also recent works that tackled the auto-carrier transportation problem [49,

36]. It is noteworthy that the contributions in the literature for the auto-carrier

problem have a strong focus on practical applications since the instances are provided

by the vehicle production industry.

3.5.5 Pickup and delivery with loading

As stated in Section 2.2, PDP are divided in two classes: one in which the transporta-

tion is performed from or to the depot, and another one in which the transportation is

performed between vertices. This section is devoted to the second class. The pickup

and delivery problems with loading constraints in the field of the first class will be

analyzed later.

For instance, the Pickup and Delivery Travelling Salesman Problem with Loading

constraints (PDTSPL) considers the transportation from pickup vertices to delivery

vertices and the assumption that pickups and deliveries are performed according to
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a LIFO or a FIFO policy. Since only one dimension is considered, the vehicle can

be seen as a single stack where the items are placed on its top. Consequently, LIFO

constraints are only satisfied if when serving one customer, the item for this customer

is on top of the stack, i.e., no items are between the item to be unloaded and the

rear side of the vehicle. On the other hand, FIFO constraints impose that items are

unloaded by the sequence in which they were loaded.

Some works extended the PDTSPL with LIFO constraints to the case in which

two routes are considered: one to collect items from pickup customers and another

one to deliver them to delivery customers. Additionally items are placed on multiple

stacks. These problems are known as Double Travelling Salesman with Multiple Stacks

(DTSMS). A survey for PDTSL and DTSMS can be found in [127]. Few contributions

addressed pickup and delivery problems with two- or three-dimensional items. These

problems will be analyzed in depth in Chapter 7.

3.6 Conclusion

In this chapter, a survey in routing problems with loading constraints was presented.

Considering the L-CVRP, three aspects are worth noting. Firstly, and regardless of

the complexity of the problem, the number of contributions for the L-CVRP along

the recent years is increasing. Together with the growth of publications in this field,

the number of new optimal solutions for benchmark instances is also growing. Sec-

ondly, the L-CVRP has diverse practical application. In this chapter, some real-world

situations arising in the context of L-CVRP were presented. These applications gave

rise to methods which were applied in real instances. Finally, and due to inherent

complexity of this problem, the vast majority of approaches are based on heuristic

methods. Solving the L-CVRP to optimality for large size instances remains a true

challenge.
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4.1 Introduction

In this chapter, we address the elementary shortest path problem with 2-dimensional

loading constraints. The aim is to find the path with the smallest cost on a graph

where the nodes represent clients whose items may have different heights and widths.

Beyond its practical relevance, this problem appears as a subproblem in vehicle routing

problems with loading constraints where feasible routes have to be generated dynam-

ically. To the best of our knowledge, there are no results reported in the literature

related to this problem. Here, we explore a variable neighborhood search approach

for this problem. The method relies on constructive heuristics to generate feasible

paths, while improved incumbents are sought in different neighborhoods of a given

solution through a variable neighborhood search procedure. The resulting variants

of the algorithm were tested extensively on benchmark instances from the literature.

The results are reported and discussed at the end of the chapter.

4.2 Elementary shortest path problem with

2-dimensional loading constraints

The elementary shortest path problem with loading constraints arises in particular in

the context of vehicle routing problems where the items have at least two dimensions,

and the capacity of the vehicles is a strong constraint. The problem occurs typically

when feasible routes have to be generated dynamically as happens for example in

column generation based approaches.

Some attempts in solving the 2L-CVRP exactly through column generation are

reported in [124], while this approach is seen by Iori and Martello in [77] as worthwhile

of investigation in order to determine effectively exact solutions for this problem.

The Dantzig-Wolfe decomposition principle on which column generation approaches

are based has been extensively applied to vehicle routing problems. The standard

reformulation that results from this decomposition is a set partitioning problem which

is solved typically by dynamic column generation. The related pricing subproblem

is an elementary shortest path problem with additional resource constraints. This
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problem has received much attention in the literature [58, 132, 133]. Applying the

Dantzig-Wolfe decomposition to the L-CVRP yields also a set partitioning problem

which can be solved through column generation. The pricing subproblem remains

an elementary shortest path problem, but now the resource constraints become 2- or

3-dimensional packing constraints which are much more difficult to handle than other

standard constraints as the capacity constraints, for example.

To the best of our knowledge, the elementary shortest path problem with loading

constraints has never been addressed in the literature. In this chapter, we describe and

analyze a solution approach based on variable neighborhood search for the problem

with 2-dimensional items and sequential constraints. To generate feasible routes,

we use different constructive methods that handle the packing part of the problem

through alternative strategies based on bottom-left and level packing placement rules.

Local search is supported on several neighborhoods defined from both the routing

and packing definition of the solutions. The combination of the different strategies

described in this chapter leads to different variants of the variable neighborhood search

algorithm. The performance of these variants is evaluated and compared through

extensive computational experiments on benchmark instances from the literature for

the 2L-CVRP.

The elementary shortest path problem with 2-dimensional loading constraints (2L-

ESPP) is defined on a graph G = (V,E) with the set of nodes V representing the n

clients of the problem plus the depot 0 from which the vehicle leaves initially and to

which it should come back at the end of the visits, and E representing the set of edges

of the graph. The travelling cost associated to the edges (i, j) ∈ E will be denoted by

cij. The loading area of the vehicle has a total width denoted by W and a maximum

height of H units. Each client i ∈ V \ {0} has bi 2-dimensional items of width and

height respectively equal to wi and hi. The visit of a client implies that all its items

are loaded on the vehicle. Hence, we assume that the load associated to any client

i ∈ V \ {0} fits in the vehicle. The 2L-ESPP consists in finding the minimum cost

route for the vehicle that starts and ends at the depot 0 and that visits at most once

the clients in V . Note that here we assume that there are negative costs for some

edges of the graph, which happens typically when the problem is defined as a pricing
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subproblem of a column generation model for the 2L-CVRP.

In this chapter, we address the case where the items of the clients have a fixed

rotation, and where the sequential or LIFO constraint applies. The latter implies

that, during the loading and unloading of the items of a given client, the items of

all the other clients that are already in the vehicle cannot be moved. Furthermore,

lateral movements of the items inside the vehicle are forbidden. Hence, the loading

and unloading operations can only be done in a direction that is parallel to the left and

right sides of the vehicle. Figure 4.2 illustrates the case of a feasible and an infeasible

loading pattern for the instance of Example 1 according to this sequential constraint.

In the example represented in this figure, the sequence of visits is (0, 2, 1, 0). However,

in the pattern (b) of Figure 4.2, one of the items of client 2 cannot be unloaded without

moving first the items of client 1.

A solution for the 2L-ESPP is defined as a sequence of clients that starts and

ends at the depot 0, together with a placement position for each item of the clients

that are visited. Alternatively, the latter can be replaced by defining the sequence by

which the items of each client should be loaded on the vehicle, and by defining the

placement rule that is used. Let S denote the sequence of clients visited in a solution

of the 2L-ESPP. We have

S = (s1, s2, . . . , s|S|),

with s1 = s|S| = 0, while s2, . . . , s|S|−1 represent the clients visited by the correspond-

ing route. The cost of the solution associated to S will be denoted by z(S), i.e.

z(S) =
∑|S|−1

i=1 csisi+1
. Moreover, let P define the order by which the items of the

clients of S are placed in the vehicles, such that

P = (p2, . . . , p|S|−1),

with pi = (p1
i , p

2
i , . . . , p

bsi
i ), i = 2, . . . , |S| − 1, and pji representing the index of the jth

item of client si to be placed in the vehicle.

The following example illustrates through a small instance the details related to

the definition of the 2L-ESPP and its solutions.
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Example 1 Consider the instance of the 2L-ESPP represented in Figure 4.1. The

set of nodes V is composed by n = 4 clients and the depot 0, i.e. V = {0, 1, 2, 3, 4}.

The costs cij, (i, j) ∈ E, are shown beside the edges of the graph. The items of each

client are identified through the tuple (i, k), with i representing the item and k the

index of the item (k = 1, . . . , bi). A feasible solution for this instance is the following:

S = (0, 2, 1, 0) and P = ((1, 3, 2), (1, 2)).

assuming that a standard bottom-left rule is used to place the items. The corresponding

loading pattern is illustrated in Figure 4.2-(a). The cost of this solution is z(S) = −5.

It is easy to see that all the items of the clients can be unloaded from the vehicle

without lateral movements or moving the items of the other clients. Figure 4.2-(b)

shows an alternative loading pattern that violates this sequential constraint.

4.3 Feasible solutions with constructive heuristics

To build an initial solution for the problem, we adopted a constructive approach in

which the clients are added one by one to the route. The next client to be evaluated is

inserted in the current route only if all its items can be loaded on the vehicle according

to the constraints that apply to the loading patterns. The clients are evaluated fol-

lowing a nearest neighbor approach. Starting from the depot, two different strategies

were considered to select the first client:

(FN) the first client to be evaluated is the one that is nearest to the depot 0 (i.e.

argmin{c0i : i = 1, . . . , n});

(FR) the first client to be evaluated is selected randomly.

The acronyms (FN) and (FR) used above will be used later to distinguish between

the variants that we obtain by using one of these two strategies. After selecting the

first client, the remaining ones are evaluated by non-decreasing order of the cost of

the edge that connects them to the last client in the current route. The client that is

evaluated is inserted in the route if all its items can be loaded on the vehicle. If no
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Figure 4.1: Instance of the 2L-ESPP (Example 1)

more clients can be inserted, the route is closed by connecting the last client to the

depot.

The hardest part when building a solution for the 2L-ESPP is to find (if it exists)

a feasible arrangement of the items on the vehicle such that there are no overlaps,

all the items are put inside the boundaries of the vehicle without rotation, and the

sequential constraint is satisfied. To address this issue, we considered three different

strategies:
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Figure 4.2: Feasible (a) and infeasible loading pattern (b) (Example 1)

(BL) a standard bottom-left placement rule;

(RBL) a revised bottom-left procedure;

(LP ) a level packing approach.

The strategy (BL) consists in placing the next item in the bottom and leftmost free

position of the vehicle that ensures that all the loading constraints that apply are

satisfied. Each time an item is placed on the vehicle, at most four orthogonal free

spaces are generated identifying the different areas of the vehicle where the next items

can be placed. In turn, after placing an item in a free space, this free space (and all

the others that are intersected by the item) is removed, and replaced by an updated

set of free spaces. Placing an item according to the strategy (BL) is equivalent to

finding the free space whose width and height are equal to or larger than the size of

the item, and whose bottom and leftmost position is the smallest among all the free

spaces provided that it leads to a feasible placement. After finding this free space, the

item is placed in its bottom and leftmost position. Figure 4.3 illustrates the concept
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of free space. Free space 1 and 2 (black dotted lines) are the free spaces respectively

at the left and right of the item generated after its placement on the vehicle. Free

spaces 3 and 4 (grey dashed lines) are the free spaces respectively above and below

the item.

Figure 4.3: Free spaces

The revised bottom-left procedure (RBL) consists in selecting the free space where

the item produces the best fit, and then in placing the item in the bottom and leftmost

position of this free space. The free space with the best fit is the one whose area is

the nearest to the area of the item. The idea is to place the items in the areas of

the vehicle where the packing generates the least possible waste, thus favouring the

filling of holes. Again, only the free spaces whose bottom and leftmost position yields

a feasible placement are considered for selection.

The last strategy (LP ) that we explored consists in placing the items of the selected

client in horizontal levels, and then in placing the levels on the vehicle one above

another. The first item to be placed in a level determines the maximum height of the

items that can be placed after it in that level. To select the level where the next item

will be placed, we considered the following two strategies:
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(LP.FF ) the next item is placed in the first open level where it fits;

(LP.BF ) the next item is placed in the open level where it best fits.

The level that was placed in the upmost position of the vehicle for the previous client

is considered as an open level when placing the items of the next client. After placing

all the items on the levels, the levels are placed on the vehicle so that the one with the

largest remaining space is placed in the upmost position. One of the advantages of

level packing approaches is that they ensure that the patterns satisfy the sequential

constraint, thus avoiding the necessity of checking the placement positions before

placing the items. The loading patterns resulting from this level packing approach

are similar to the cutting patterns that arise in 2-dimensional guillotine cutting stock

problems.

After choosing a client to insert in the route, its items are selected one by one,

and placed in the vehicle according to the strategies described above. The next item

to be placed is selected according to two different orderings based on the following

criteria:

(OH) height of the items;

(OA) area of the items.

In both cases, the items are ordered in non-increasing order of their height and area,

respectively.

4.4 Variable neighborhood search algorithm

The strategies described in the previous section yield different variants of a construc-

tive method for building feasible solutions for the 2L-ESPP. In order to improve the

solutions generated by these algorithms, we developed a local search approach embed-

ded into a variable neighborhood search (VNS) algorithm. The VNS metaheuristic

was described first by Mladenovic and Hansen in [112], and since then, it has been

applied with success to solve different combinatorial optimization problems [72]. The

aim of VNS is to explore systematically different neighborhoods of the solutions to
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diversify the search and escape from local optima. Here, VNS is used to drive the

search into 7 alternative neighborhoods of the solutions generated through the con-

structive algorithms arising from the combination of the different strategies described

above. In the following section, we define the neighborhood structures that we used

to support the local search procedures. The details of our VNS algorithm are given

in Section 4.4.2.

4.4.1 Neighborhood structures

The representation of the solutions of the 2L-ESPP defined in Section 4.2 relies on two

main elements: the sequence by which the clients are visited in a given route, and the

characterization of the loading pattern used to arrange the corresponding items in the

vehicle so that all the loading constraints that apply (no overlaps, fixed orientation and

the sequential constraint) are satisfied. To explore the search spaces defined through

these two aspects of the solutions, we defined 7 neighborhood structures that can be

divided into routing neighborhoods and packing neighborhoods. The definition of the

neighborhood structures relies on the constructive algorithms defined above. Let CH

denote the constructive heuristic used to build the initial solution for the instance,

and which is obtained by combining the strategies described in Section 4.3. In our

implementation, we assumed that the constructive heuristic CH used to generate the

initial solution is also the one that is used to define the neighbors of a given solution.

When generating the neighbors, the difference is that part of the sequences of clients

(and the corresponding sequence by which the items are placed in the vehicle) is fixed.

The neighborhood structures are defined in the sequel.

Routing neighborhoods

NS1 Swapping two clients in the route

Given a solution whose sequence of visited clients is S (as defined in Section 4.2),

the neighbors of this solution consist in all the feasible solutions obtained by

swapping two clients in this route, by applying CH with the resulting sequence

of clients (keeping the sequence of items for each client), and by adding more

clients from the last one forward in the route using CH. Let Sc denote the
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sequence of clients in the route associated to the current solution, such that:

Sc = (s1, s2, s3, . . . , s|Sc|−1, s|Sc|),

One of the neighbors of this solution obtained by swapping s2 and s|Sc|−1 is the

following:

S ′c = (s1, s|Sc|−1, s3, . . . , s2, s|Sc|),

provided that the items of the clients in S ′c can be put in the vehicle using CH,

and no more clients can be added at the end of S ′c. Moreover, if Pc defines the

sequences by which the clients of Sc are placed in the vehicle (again as defined

in Section 4.2), i.e.

Pc = (p2, p3, . . . , p|Sc|−1),

then the corresponding sequences of items associated to S ′c will be

P ′c = (p|Sc|−1, p3, . . . , p2).

NS2 Shifting a client in the route

The neighbors of a solution whose sequence of clients is S are obtained by choos-

ing an item and placing it in a different position of the sequence, by applying

CH with the resulting sequence of clients (keeping the sequence of items for

each client), and by adding more clients from the last one forward in the route

using CH. The following solution is a neighbor of the solution Sc defined above

obtained by selecting the client s2 and by placing it in the third position of the

sequence, i.e.

S ′c = (s1, s3, s2, . . . , s|Sc|−1, s|Sc|).

Again, in this case, we are assuming that no more clients can be added at the

end of the route by applying CH.

NS3 Removing a client from the route

The neighbors of a solution are obtained by removing a client from the route,
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by applying CH with the resulting sequence of clients in the same conditions

as in the previous neighborhood structures, and by inserting clients at the end

of the sequence (before the depot and if they fit in the vehicle) using again

CH. Considering the solution defined above Sc, a neighbor can be obtained by

removing s2, and by adding a new client snew at the end of the sequence using

CH, assuming that snew is not in Sc, i.e.

S ′c = (s1, s3, . . . , s|Sc|−1, snew, s|Sc|).

NS4 Removing a client and all its successors from the route

The neighbors of a solution are obtained by removing all the clients from a

given position of the sequence up to the end, by adding a selected client at the

end of the sequence and by placing its items using CH. The vehicle is filled

by applying strictly the heuristic CH starting from the last client that was

inserted. Considering again the solution Sc, a neighbor is obtained by removing

all the clients from s3 up to the end, and by adding a new client snew using CH,

assuming that this new client is not in Sc, i.e.

S ′c = (s1, s2, snew, s|Sc|).

NS5 Exchanging a client by another in the route

The neighbors of a solution are obtained by exchanging a client by another

that is not in the sequence, by placing the items of the clients in the resulting

sequence using CH, and by adding other clients at the end of the sequence

(before the depot) using again CH. Note that the sequence by which the items

of the clients are placed in the vehicle remains unchanged for all the clients that

were already in the route. A possible neighbor of the solution Sc defined above

is obtained by exchanging s3 by a new client snew that is not in Sc, as follows:

S ′c = (s1, s2, snew, . . . , s|Sc|−1, s|Sc|).

In this case, it is also assumed that no more clients can be added at the end of

sequence using CH.

Packing neighborhoods
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NS6 Swapping two items

The neighbors of a solution are obtained by selecting a client in the route and

by swapping two items in the sequence that defines the order by which its items

are placed in the vehicle. Then, the heuristic CH is used to build the solution

that corresponds to these sequences of clients and items (if possible), and to

add other clients at the end of the sequence (before the depot) if they fit in the

vehicle. Let Sc be the sequence of visited clients in the current solution, and

let P c denote the corresponding sequences by which the items are placed in the

vehicle. As an example, let Sc and P c be defined respectively as follows:

Sc = (s1, s2, s3, s4, s5),

with s1 = s5 = 0, and

Pc = ((p1
2, p

2
2), (p1

3, p
2
3, p

3
3), (p1

4)).

A possible neighbor S ′c of this solution is defined as follows:

S ′c = Sc and P ′c = ((p1
2, p

2
2), (p2

3, p
1
3, p

3
3), (p1

4)).

It is obtained by swapping the first and second item of s3 in Pc, provided that

all the items can be placed according to P ′c in the vehicle by applying CH, and

that no more clients can be added at the end of the sequence.

NS7 Shifting an item

The neighbors of a solution are obtained by selecting a client in the route and

by placing one of its items in a different position in the sequence that defines

the order by which the items of this client were inserted in the vehicle. As in the

previous neighborhood structure, the heuristic CH is used to build the solution

associated to these sequences of clients and items. The same heuristic is used

to add other clients at the end of the sequence and before the depot, if possible.

The following solution S ′c is a neighbor of the solution Sc defined above for NS6,

and it is obtained by placing the third item of s3 in the first position, i.e.

S ′c = Sc and P ′c = ((p1
2, p

2
2), (p3

3, p
1
3, p

2
3), (p1

4)).



80 4. Elementary shortest path problem with loading constraints

4.4.2 Variable neighborhood search

To explore the search spaces defined through the neighborhood structures described

in the previous section, we developed a variable neighborhood search algorithm that

applies local search on these 7 neighborhoods. The initial solution is generated by ap-

plying one of the constructive heuristics that result from the combination of the differ-

ent strategies described in Section 4.3, namely {(FN), (FR)}, {(BL), (RBL), (LP )},

{(LP.FF ), (LP.BF )} (if (LP ) has been selected), and {(OH), (OA)}. Then, the 7

neighborhoods are explored in cycle until a maximum computing time limit is reached.

A solution is generated in a shaking phase from the current incumbent solution in

the neighborhood that is being explored, and a local search procedure is applied right

after in the same neighborhood to determine an improved solution. In our implemen-

tation, we resorted to a first improvement local search procedure that stops when it

finds a solution that is better than the solution generated in the shaking phase, or if

no better solution exists in this neighborhood. Note that all the solutions that are

explored are necessarily feasible solutions for the problem. Our variable neighborhood

search algorithm is described in Algorithm 1. The constructive heuristic is denoted

by findInitialSolution(), while the shaking and local search procedures are repre-

sented respectively by shaking((S, P ), NSk) and firstImprovement((S ′, P ′), NSk),

with (S, P ) denoting the current incumbent solution, (S ′, P ′) the solution generated

in the shaking phase, and NSk the neighborhood that is being explored.

4.5 Computational experiments

To evaluate and compare the performance of the different variants of our variable

neighborhood search algorithm, we conducted an extensive set of computational ex-

periments on 180 benchmark instances of the 2L-CVRP used by Iori et al. in [78] and

by Gendreau et al. in [64]. Note that, in the former, the largest instances were not

used due to their complexity. The number n of clients of these instances ranges from

15 up to 255, while the total number of items varies between 15 and 786. A complete

description of the instances can be found in [64]. For our experiments, we multiplied

all the costs (distances) associated to the edges by −1. The algorithms were coded



4.5. Computational experiments 81

Algorithm 1: Variable neighborhood search algorithm
Input:

I: instance of the 2L-ESPP;

CH: constructive heuristic defined from the combination of the different

strategies {(FN), (FR)}, {(BL), (RBL), (LP )}, {(LP.FF ), (LP.BF )}

(if (LP ) has been selected), and {(OH), (OA)};

Set of neighborhood structures NS = {NS1, NS2, . . . , NS7};

Limit tmax on the total computing time;

Output:

Feasible solution (S, P ) of value z(S);

(S, P ):=findInitialSolution();

repeat

k := 1;

while k ≤ 7 do

(S′, P ′) := shaking((S, P ), NSk);

(S′′, P ′′) := firstImprovement((S′, P ′), NSk);

if z(S′′) ≤ z(S) then

(S, P ) := (S′′, P ′′);

k := 1;

end

else

k:=k+1;

end

end

until cpuTime() > tmax;

return (S, P ) ;

in C++, and the tests were run on a PC with an i7 CPU with 2.9 GHz and 8 GB of

RAM.

We tested the 16 variants of our algorithm resulting from the combination of

the strategies described in Section 4.3, namely {(FN), (FR)}, {(BL), (RBL), (LP )},

{(LP.FF ), (LP.BF )} (if (LP ) has been selected), and {(OH), (OA)}. The instances

were divided in 22 groups according to the number of clients. The average results

for each group are reported in Tables 4.1-4.4. In Table 4.1, we report on the results

obtained with the standard bottom-left placement rule (BL) for all the possible com-
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binations of strategies involving (FN), (FR), (OH) and (OA). Table 4.2 provides

the results achieved with the revised bottom-left placement rule (RBL), while Table

4.3 gives the results when the level packing procedure (LP ) is used with (LP.FF ).

In table 4.4, we report on the results of the combination of the level packing proce-

dure (LP ) with the best-fit rule (LP.BF ). All the tests were run with a maximum

computing time limit of 3 seconds. The meaning of the columns in these tables is the

following:

n: number of clients;

M : average number of items;

inst: number of instances in the corresponding group;

ord: criterion used to order the items of a client ((OH) or (OA));

zCH : average value of the initial solution generated using the constructive heuristic

resulting from the combination of the strategies described in Section 4.3;

%CH
fill : average percentage of space used in the vehicle by the initial solution generated

using the constructive heuristic;

zV NS: average value of the best solution obtained with the variable neighborhood

search algorithm described in Algorithm 1;

%V NS
fill : average percentage of space used in the vehicle by the best solution obtained

with the variable neighborhood search algorithm;

imp: percentage of improvement achieved with the variable neighborhood search al-

gorithm, i.e. imp = (zV NS − zCH)/zCH .

Additionally, in Tables 4.1-4.3, the average results for all the instances are reported

in the line avg.

The constructive heuristic runs typically in a very few milliseconds, and hence most

of the computing time is spent in the local search phase of the algorithm. Despite the

small value used in our experiments for the maximum computing time, the results

show that the variable neighborhood search algorithm can improve significantly the



4.5. Computational experiments 83

(FN) (FR)

n M inst ord zCH %CH
fill zV NS %V NS

fill imp zCH %CH
fill zV NS %V NS

fill imp

15 31,1 10 (OH) -335,30 61,26 -349,30 65,07 4,18 -318,90 61,21 -341,30 63,87 7,02

20 39,5 10 -423,80 60,82 -483,00 67,33 13,97 -435,30 63,02 -475,70 66,56 9,28

21 39,4 10 -561,90 63,93 -621,70 69,91 10,64 -542,70 65,63 -594,00 66,81 9,45

22 39,4 10 -940,80 62,23 -1076,70 68,42 14,45 -966,50 64,32 -1049,40 68,26 8,58

25 56,0 5 -532,20 60,12 -561,80 66,56 5,56 -452,00 61,12 -550,60 67,96 21,81

29 57,8 10 -984,70 63,54 -1137,00 69,39 15,47 -969,90 62,10 -1149,50 65,53 18,52

30 63,8 5 -512,40 62,72 -561,00 69,22 9,48 -497,60 65,70 -556,20 69,92 11,78

32 62,5 15 -1718,87 61,84 -1831,33 69,02 6,54 -1619,07 60,55 -1858,00 69,52 14,76

35 74,4 5 -576,20 60,74 -648,80 68,46 12,60 -554,40 62,68 -639,80 63,40 15,40

40 79,2 5 -611,60 57,78 -754,20 71,58 23,32 -643,60 63,26 -766,80 69,46 19,14

44 86,2 5 -1250,40 58,76 -1432,00 70,46 14,52 -1262,80 63,70 -1431,00 70,26 13,32

50 105,2 5 -770,80 62,14 -853,60 70,30 10,74 -717,20 63,42 -826,20 71,18 15,20

71 146,0 5 -542,00 61,40 -607,00 70,20 11,99 -548,60 68,76 -602,20 72,96 9,77

75 150,3 20 -1068,45 64,47 -1215,80 70,75 13,79 -1038,85 63,16 -1201,70 70,69 15,68

100 204,3 15 -1399,80 65,99 -1561,00 72,73 11,52 -1376,00 65,90 -1554,40 72,47 12,97

120 245,6 5 -2552,20 70,72 -2659,00 73,26 4,18 -2483,40 68,16 -2711,20 73,06 9,17

134 271,4 5 -2545,80 70,42 -2805,00 73,52 10,18 -2545,80 69,58 -2748,20 76,90 7,95

150 294,4 5 -1880,40 70,14 -2026,40 74,20 7,76 -1838,20 65,48 -2025,80 71,90 10,21

199 399,6 15 -2308,40 67,25 -2490,47 74,90 7,89 -2225,07 68,77 -2442,20 72,68 9,76

240 484,8 5 -1133,00 64,64 -1247,80 74,98 10,13 -1138,20 73,66 -1228,40 76,54 7,92

252 504,4 5 -1439,60 65,14 -1521,00 77,68 5,65 -1416,60 62,96 -1516,80 77,80 7,07

255 509,0 5 -1022,00 67,26 -1124,80 77,54 10,06 -1030,80 71,20 -1092,00 77,42 5,94

avg. -1141,39 63,79 -1253,12 71,16 10,67 -1119,16 65,20 -1243,70 70,69 11,85

15 31,1 10 (OA) -331,40 60,03 -351,40 62,74 6,04 -288,30 57,59 -348,00 65,21 20,71

20 39,5 10 -412,10 60,50 -477,10 66,77 15,77 -398,90 63,40 -468,90 66,70 17,55

21 39,4 10 -546,50 61,69 -612,10 67,42 12,00 -554,40 62,60 -619,30 69,18 11,71

22 39,4 10 -958,20 64,97 -1042,20 68,73 8,77 -914,90 60,91 -1052,10 67,20 15,00

25 56,0 5 -539,80 64,60 -576,20 67,60 6,74 -498,20 63,44 -581,40 70,00 16,70

29 57,8 10 -947,70 62,79 -1146,50 69,05 20,98 -980,80 62,76 -1145,10 67,06 16,75

30 63,8 5 -519,00 64,88 -541,60 66,46 4,35 -505,40 62,72 -542,20 67,98 7,28

32 62,5 15 -1718,93 60,99 -1852,87 67,44 7,79 -1617,80 61,50 -1891,47 69,35 16,92

35 74,4 5 -614,40 61,28 -651,00 66,64 5,96 -622,00 65,72 -666,80 69,14 7,20

40 79,2 5 -669,40 64,90 -727,60 70,74 8,69 -690,20 63,78 -740,20 69,06 7,24

44 86,2 5 -1250,40 58,76 -1468,00 68,66 17,40 -1226,40 64,44 -1411,40 67,84 15,08

50 105,2 5 -777,60 66,76 -826,60 66,28 6,30 -763,60 67,10 -865,40 70,86 13,33

71 146,0 5 -542,80 59,98 -587,60 72,30 8,25 -550,40 61,26 -614,60 71,64 11,66

75 150,3 20 -1098,30 67,02 -1211,10 73,04 10,27 -1032,45 63,61 -1207,85 70,57 16,99

100 204,3 15 -1411,00 67,97 -1575,00 72,86 11,62 -1414,87 70,09 -1573,73 72,59 11,23

120 245,6 5 -2548,60 71,56 -2706,60 73,10 6,20 -2389,20 69,76 -2680,60 72,44 12,20

134 271,4 5 -2562,40 71,24 -2724,00 71,46 6,31 -2365,40 71,04 -2710,40 72,84 14,59

150 294,4 5 -1884,80 70,00 -2003,80 74,18 6,31 -1788,00 66,22 -1965,20 75,50 9,91

199 399,6 15 -2286,27 69,96 -2448,40 76,00 7,09 -2252,60 70,74 -2477,67 74,36 9,99

240 484,8 5 -1157,00 71,94 -1227,00 77,50 6,05 -1153,20 73,22 -1249,60 76,54 8,36

252 504,4 5 -1427,60 60,56 -1529,60 76,60 7,14 -1443,40 73,22 -1551,00 77,56 7,45

255 509,0 5 -1044,40 75,38 -1093,60 78,94 4,71 -1018,20 73,76 -1084,20 76,78 6,48

avg. -1147,66 65,35 -1244,54 70,66 8,85 -1112,21 65,86 -1247,60 70,93 12,47

Table 4.1: Computational results with (BL)
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(FN) (FR)

n M inst ord zCH %CH
fill zV NS %V NS

fill imp zCH %CH
fill zV NS %V NS

fill imp

15 31,1 10 (OH) -269,80 48,18 -339,30 61,98 25,76 -278,90 52,02 -339,60 61,92 21,76

20 39,5 10 -385,90 50,06 -460,50 61,63 19,33 -392,00 53,38 -452,70 60,74 15,48

21 39,4 10 -538,00 57,77 -595,70 64,20 10,72 -519,50 53,51 -607,70 67,10 16,98

22 39,4 10 -934,50 57,98 -1049,00 66,27 12,25 -890,50 60,76 -1034,90 63,75 16,22

25 56,0 5 -519,60 56,20 -571,80 67,92 10,05 -386,00 42,70 -552,20 68,46 43,06

29 57,8 10 -880,70 53,33 -1115,20 65,33 26,63 -893,10 56,23 -1087,90 66,37 21,81

30 63,8 5 -472,20 57,54 -552,80 71,52 17,07 -467,80 50,16 -553,00 64,96 18,21

32 62,5 15 -1564,73 54,04 -1828,80 65,40 16,88 -1561,93 55,82 -1881,33 67,51 20,45

35 74,4 5 -570,40 51,24 -648,20 65,74 13,64 -518,20 58,04 -653,40 65,90 26,09

40 79,2 5 -603,20 49,22 -703,00 68,38 16,55 -642,20 53,62 -712,80 67,58 10,99

44 86,2 5 -1243,00 53,34 -1409,40 67,56 13,39 -1119,20 50,90 -1378,20 67,04 23,14

50 105,2 5 -752,80 59,20 -790,80 66,22 5,05 -688,00 56,20 -797,20 67,94 15,87

71 146,0 5 -516,20 49,46 -609,20 68,18 18,02 -545,40 60,78 -622,20 73,04 14,08

75 150,3 20 -1026,05 59,16 -1175,25 67,61 14,54 -986,55 57,35 -1161,60 68,79 17,74

100 204,3 15 -1359,07 56,15 -1553,07 70,36 14,27 -1306,93 57,04 -1540,87 71,47 17,90

120 245,6 5 -2390,20 64,56 -2683,60 71,18 12,28 -2354,00 65,14 -2736,60 69,92 16,25

134 271,4 5 -2449,20 64,56 -2809,20 72,54 14,70 -2310,40 55,76 -2745,00 73,86 18,81

150 294,4 5 -1791,60 60,40 -1965,20 72,54 9,69 -1771,00 57,00 -1955,60 72,36 10,42

199 399,6 15 -2240,87 62,76 -2425,13 72,35 8,22 -2181,33 59,96 -2434,13 73,62 11,59

240 484,8 5 -1124,40 56,52 -1196,40 71,02 6,40 -1135,80 66,26 -1232,00 76,32 8,47

252 504,4 5 -1400,60 56,58 -1497,40 74,96 6,91 -1380,60 64,90 -1507,20 73,92 9,17

255 509,0 5 -1012,20 58,48 -1069,00 76,54 5,61 -974,20 55,86 -1098,40 74,52 12,75

avg. -1092,96 56,21 -1229,45 68,61 13,54 -1059,25 56,52 -1231,12 68,96 17,60

15 31,1 10 (OA) -277,20 47,84 -335,20 64,64 20,92 -302,30 56,79 -341,90 64,97 13,10

20 39,5 10 -419,90 57,21 -460,60 66,86 9,69 -405,90 62,27 -452,80 63,39 11,55

21 39,4 10 -530,50 56,60 -601,90 65,96 13,46 -478,90 55,61 -603,90 65,52 26,10

22 39,4 10 -920,00 57,42 -1026,50 64,77 11,58 -805,80 50,90 -1003,20 64,28 24,50

25 56,0 5 -542,40 59,90 -553,20 65,62 1,99 -520,00 60,04 -588,00 67,96 13,08

29 57,8 10 -949,80 61,93 -1136,20 68,34 19,63 -883,30 56,59 -1134,20 66,34 28,40

30 63,8 5 -501,40 61,24 -555,40 68,74 10,77 -428,20 52,26 -546,40 65,58 27,60

32 62,5 15 -1623,93 55,68 -1873,07 67,30 15,34 -1545,73 57,83 -1821,27 67,06 17,83

35 74,4 5 -582,60 55,40 -625,00 69,32 7,28 -518,40 52,38 -646,80 67,54 24,77

40 79,2 5 -576,20 46,54 -712,80 68,70 23,71 -646,40 57,82 -715,20 67,90 10,64

44 86,2 5 -1272,20 58,42 -1452,60 65,58 14,18 -1149,80 51,56 -1451,80 69,58 26,27

50 105,2 5 -727,80 53,86 -806,80 69,18 10,85 -723,80 60,16 -797,80 66,12 10,22

71 146,0 5 -544,80 57,90 -601,40 72,34 10,39 -536,00 60,50 -604,40 70,12 12,76

75 150,3 20 -1038,00 59,69 -1206,15 69,42 16,20 -1042,10 61,34 -1185,75 69,85 13,78

100 204,3 15 -1380,80 60,09 -1561,20 71,57 13,06 -1366,20 61,53 -1470,87 69,83 7,66

120 245,6 5 -2351,40 59,96 -2648,40 72,50 12,63 -2339,00 54,56 -2750,60 72,30 17,60

134 271,4 5 -2582,00 67,64 -2723,40 72,74 5,48 -2280,00 66,50 -2669,20 73,94 17,07

150 294,4 5 -1867,20 64,46 -1990,40 71,82 6,60 -1785,60 68,32 -1951,40 74,38 9,29

199 399,6 15 -2244,80 62,98 -2419,67 74,59 7,79 -2196,80 61,68 -2468,33 74,16 12,36

240 484,8 5 -1161,40 70,04 -1233,80 74,10 6,23 -1102,80 58,10 -1232,40 79,26 11,75

252 504,4 5 -1403,60 58,66 -1500,20 72,10 6,88 -1411,00 62,82 -1531,00 72,40 8,50

255 509,0 5 -1033,20 64,10 -1082,00 76,36 4,72 -994,60 64,56 -1078,20 70,84 8,41

avg. -1115,05 58,98 -1232,09 69,66 11,34 -1066,48 58,82 -1229,34 69,24 16,06

Table 4.2: Computational results with (RBL)
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(FN) (FR)

n M inst ord zCH %CH
fill zV NS %V NS

fill imp zCH %CH
fill zV NS %V NS

fill imp

15 31,1 10 (OH) -246,40 39,03 -293,80 51,74 19,24 -256,10 39,35 -293,30 51,00 14,53

20 39,5 10 -332,40 38,31 -394,40 54,39 18,65 -331,50 42,05 -399,70 50,76 20,57

21 39,4 10 -487,50 48,08 -526,70 51,37 8,04 -445,30 42,42 -539,90 54,67 21,24

22 39,4 10 -772,70 42,13 -901,80 50,89 16,71 -773,70 42,51 -897,70 52,67 16,03

25 56,0 5 -437,80 45,26 -475,00 51,22 8,50 -400,60 47,74 -477,20 49,16 19,12

29 57,8 10 -840,70 45,14 -1018,40 52,99 21,14 -816,40 40,43 -973,30 50,08 19,22

30 63,8 5 -431,40 46,90 -501,00 56,42 16,13 -419,00 46,62 -464,40 54,48 10,84

32 62,5 15 -1462,47 46,86 -1554,40 51,45 6,29 -1452,93 46,20 -1631,53 51,47 12,29

35 74,4 5 -532,40 43,68 -587,00 55,40 10,26 -468,20 37,52 -563,60 53,64 20,38

40 79,2 5 -556,60 39,88 -619,40 50,78 11,28 -541,60 46,42 -645,40 54,32 19,17

44 86,2 5 -1113,80 40,56 -1217,60 52,68 9,32 -1018,60 46,16 -1311,20 56,12 28,73

50 105,2 5 -666,60 41,30 -740,40 52,68 11,07 -667,40 41,84 -759,80 54,34 13,84

71 146,0 5 -519,20 49,80 -563,40 58,78 8,51 -477,40 43,30 -555,80 53,96 16,42

75 150,3 20 -984,20 46,16 -1095,85 54,78 11,34 -927,70 43,20 -1087,70 57,22 17,25

100 204,3 15 -1313,40 49,90 -1410,00 58,85 7,35 -1260,87 48,48 -1384,33 55,43 9,79

120 245,6 5 -2302,40 50,54 -2635,80 62,06 14,48 -2223,00 48,96 -2558,60 59,52 15,10

134 271,4 5 -2258,20 55,56 -2510,40 61,70 11,17 -2194,60 52,60 -2392,20 62,02 9,00

150 294,4 5 -1724,00 49,64 -1935,40 62,02 12,26 -1743,60 51,02 -1806,20 64,92 3,59

199 399,6 15 -2180,60 48,18 -2374,33 62,55 8,88 -2179,53 53,97 -2371,60 66,35 8,81

240 484,8 5 -1116,20 55,44 -1192,80 68,30 6,86 -1074,80 48,44 -1188,00 62,98 10,53

252 504,4 5 -1365,80 46,74 -1468,60 70,78 7,53 -1335,60 51,02 -1464,40 63,90 9,64

255 509,0 5 -986,20 50,70 -1039,80 65,70 5,44 -981,40 54,02 -1038,20 63,24 5,79

avg. -1028,68 46,35 -1138,92 57,16 11,38 -999,54 46,10 -1127,46 56,47 14,63

15 31,1 10 (OA) -250,22 36,92 -295,78 50,67 18,21 -252,11 36,67 -287,78 46,26 14,15

20 39,5 10 -346,50 37,75 -395,10 50,59 14,03 -339,20 42,76 -412,80 51,44 21,70

21 39,4 10 -486,60 46,81 -538,10 51,53 10,58 -450,80 45,31 -549,70 51,89 21,94

22 39,4 10 -756,20 40,47 -895,30 51,72 18,39 -769,20 43,04 -879,10 48,35 14,29

25 56,0 5 -493,75 41,73 -525,75 51,18 6,48 -423,20 44,20 -476,40 54,86 12,57

29 57,8 10 -965,00 40,43 -1054,75 45,96 9,30 -815,00 45,36 -1026,20 50,45 25,91

30 63,8 5 -430,00 45,14 -490,80 55,38 14,14 -410,40 40,04 -483,20 55,86 17,74

32 62,5 15 -1427,80 42,59 -1581,13 51,43 10,74 -1412,64 43,27 -1683,79 50,77 19,19

35 74,4 5 -532,40 43,68 -591,00 51,36 11,01 -492,20 41,90 -563,00 51,52 14,38

40 79,2 5 -638,75 37,30 -692,25 43,70 8,38 -556,80 42,84 -642,40 55,06 15,37

44 86,2 5 -1121,80 41,66 -1253,60 57,18 11,75 -1067,20 38,30 -1312,00 58,38 22,94

50 105,2 5 -658,80 40,36 -754,20 54,00 14,48 -653,40 47,52 -748,40 55,02 14,54

71 146,0 5 -502,20 46,98 -554,40 54,72 10,39 -497,00 41,76 -555,00 49,10 11,67

75 150,3 20 -1032,58 46,18 -1119,79 53,54 8,45 -924,65 40,84 -1090,60 57,05 17,95

100 204,3 15 -1291,27 48,62 -1463,00 60,69 13,30 -1282,93 47,11 -1422,40 58,85 10,87

120 245,6 5 -2288,00 47,74 -2524,40 61,88 10,33 -2236,20 45,16 -2555,00 61,74 14,26

134 271,4 5 -2309,40 49,20 -2579,20 58,62 11,68 -2555,75 43,00 -2847,50 56,80 11,42

150 294,4 5 -1708,80 49,54 -1871,40 59,36 9,52 -1673,00 44,42 -1898,20 62,82 13,46

199 399,6 15 -2178,00 47,87 -2355,53 61,90 8,15 -2149,33 49,75 -2353,27 62,86 9,49

240 484,8 5 -1378,25 59,38 -1423,75 64,83 3,30 -1086,40 45,42 -1194,40 62,14 9,94

252 504,4 5 -1373,40 48,76 -1442,80 61,60 5,05 -1359,40 51,14 -1477,80 63,08 8,71

255 509,0 5 -974,00 43,44 -1031,00 57,68 5,85 -1194,75 53,03 -1262,75 66,70 5,69

avg. -1051,99 44,66 -1156,05 54,98 10,61 -1027,34 44,22 -1169,17 55,95 14,92

Table 4.3: Computational results with (LP ) and (LP.FF )
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Table 4.4: Computational results with (LP ) and (LP.BF )

(FN) (FR)

n M inst ord zCH %CH
fill zV NS %V NS

fill imp zCH %CH
fill zV NS %V NS

fill imp

15 31,1 10 (OH) -246,40 39,03 -289,20 48,70 17,37 -238,20 40,59 -295,20 49,58 23,93

20 39,5 10 -332,40 38,31 -390,80 51,70 17,57 -373,40 46,24 -410,80 53,67 10,02

21 39,4 10 -487,50 48,08 -530,50 51,34 8,82 -417,80 41,47 -533,60 50,04 27,72

22 39,4 10 -772,70 42,13 -888,00 51,79 14,92 -710,50 41,95 -876,80 50,98 23,41

25 56,0 5 -437,80 45,26 -496,20 51,62 13,34 -376,20 42,16 -478,00 51,62 27,06

29 57,8 10 -840,70 45,14 -982,90 49,60 16,91 -825,60 41,02 -965,00 50,52 16,88

30 63,8 5 -431,40 46,90 -487,00 54,94 12,89 -384,20 43,20 -473,80 49,80 23,32

32 62,5 15 -1462,47 46,86 -1564,13 49,47 6,95 -1347,07 44,41 -1642,47 53,89 21,93

35 74,4 5 -532,40 43,68 -588,80 55,14 10,59 -456,20 39,70 -581,60 51,08 27,49

40 79,2 5 -556,60 39,88 -625,80 49,04 12,43 -560,20 40,22 -653,20 54,16 16,60

44 86,2 5 -1113,80 40,56 -1209,20 50,16 8,57 -1040,40 42,04 -1264,00 58,70 21,49

50 105,2 5 -666,60 41,30 -766,80 57,52 15,03 -694,20 49,08 -758,40 56,98 9,25

71 146,0 5 -519,20 49,80 -565,20 56,90 8,86 -480,60 40,70 -545,00 56,68 13,40

75 150,3 20 -984,20 46,16 -1088,00 55,01 10,55 -938,10 47,56 -1094,95 57,15 16,72

100 204,3 15 -1313,40 49,90 -1425,53 59,68 8,54 -1279,47 48,59 -1443,93 59,88 12,85

120 245,6 5 -2302,40 50,54 -2560,80 63,20 11,22 -2261,20 46,62 -2427,20 55,82 7,34

134 271,4 5 -2258,20 55,56 -2465,80 57,24 9,19 -2246,20 49,18 -2516,20 56,64 12,02

150 294,4 5 -1724,00 49,64 -1892,60 62,48 9,78 -1665,60 49,88 -1847,00 60,68 10,89

199 399,6 15 -2180,60 48,18 -2353,00 62,36 7,91 -2126,47 51,90 -2362,60 63,29 11,10

240 484,8 5 -1116,20 55,44 -1191,60 67,18 6,76 -1097,20 49,68 -1204,00 64,76 9,73

252 504,4 5 -1365,80 46,74 -1465,00 62,62 7,26 -1364,60 47,48 -1437,60 67,00 5,35

255 509,0 5 -986,20 50,70 -1033,40 59,18 4,79 -991,00 51,52 -1058,00 66,22 6,76

avg. -1028,68 46,35 -1130,01 55,77 10,92 -994,29 45,24 -1130,43 56,32 16,15

15 31,1 10 (OA) -250,22 36,92 -284,67 46,58 13,77 -237,80 37,08 -270,60 41,82 13,79

20 39,5 10 -346,50 37,75 -408,40 53,49 17,86 -352,70 40,67 -411,30 49,06 16,61

21 39,4 10 -486,60 46,81 -530,40 49,97 9,00 -435,80 42,03 -542,80 53,04 24,55

22 39,4 10 -756,20 40,47 -872,60 49,36 15,39 -671,10 43,02 -878,60 49,67 30,92

25 56,0 5 -493,75 41,73 -540,50 44,15 9,47 -446,20 44,02 -470,00 51,58 5,33

29 57,8 10 -965,00 40,43 -1097,38 46,89 13,72 -807,00 41,90 -989,50 50,19 22,61

30 63,8 5 -430,00 45,14 -479,20 57,02 11,44 -495,50 46,40 -540,75 50,13 9,13

32 62,5 15 -1427,80 42,59 -1558,13 51,59 9,13 -1413,47 43,84 -1614,80 51,61 14,24

35 74,4 5 -532,40 43,68 -580,20 53,52 8,98 -548,00 41,28 -663,25 56,28 21,03

40 79,2 5 -638,75 37,30 -707,00 44,30 10,68 -502,80 39,50 -642,60 57,78 27,80

44 86,2 5 -1121,80 41,66 -1212,20 51,34 8,06 -1046,80 41,94 -1260,60 58,62 20,42

50 105,2 5 -658,80 40,36 -737,80 54,38 11,99 -656,40 47,82 -716,20 52,84 9,11

71 146,0 5 -502,20 46,98 -553,60 55,46 10,23 -492,00 43,90 -537,40 55,44 9,23

75 150,3 20 -1032,58 46,18 -1138,95 55,53 10,30 -948,15 44,34 -1096,90 57,55 15,69

100 204,3 15 -1291,27 48,62 -1467,33 61,37 13,64 -1264,40 49,39 -1463,87 61,06 15,78

120 245,6 5 -2288,00 47,74 -2530,40 59,92 10,59 -2270,60 49,00 -2490,00 59,86 9,66

134 271,4 5 -2309,40 49,20 -2497,40 56,40 8,14 -2107,40 45,84 -2545,40 60,08 20,78

150 294,4 5 -1708,80 49,54 -1936,60 62,60 13,33 -1686,60 42,34 -1879,20 59,70 11,42

199 399,6 15 -2178,00 47,87 -2354,87 62,77 8,12 -2167,80 53,61 -2381,07 64,03 9,84

240 484,8 5 -1378,25 59,38 -1428,75 63,70 3,66 -1324,25 54,55 -1397,75 66,53 5,55

252 504,4 5 -1373,40 48,76 -1493,60 70,96 8,75 -1383,60 53,32 -1493,40 66,48 7,94

255 509,0 5 -974,00 43,44 -1036,00 58,62 6,37 -982,80 56,64 -1048,20 67,96 6,65

avg. -1051,99 44,66 -1156,64 55,00 10,57 -1010,96 45,56 -1151,55 56,42 14,91
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value of the solution. Depending on the quality of the initial solution the percentage

of improvement goes up to nearly 43%. This percentage tends to be larger when the

level packing procedure is used to build the loading patterns.

The best average results are obtained using the strategies (BL), (FN) and (OH).

The strategy (FN) that consists in inserting first the client that is nearest to the

depot generates usually the best initial solutions when compared to (FR). In some

cases, choosing randomly the first client to insert in the route yields better initial

solutions, but even in these cases, the local search procedure tends to reach better

solutions at the end of the computing time with the strategy (FN) than it does with

the strategy (FR). Ordering the items by height (OH) or by area (OA) has a more

significant impact when the level packing procedure is used to place the items in the

vehicle. When the bottom-left based strategies (BL) and (RBL) are used, these two

orderings yield results that are not significantly different for these instances. The

results concerning the level packing procedure with the best-fit rule (LP.BF ) are

very near from those obtained with the level packing approach with the first-fit rule

(LP.FF ) for these instances.

The variants of the algorithm based on the bottom-left placement procedures find

solutions with a high percentage of used space in the vehicles. This percentage is

typically higher for the largest instances. It goes up to 78.94% when the strategies

(BL), (FN) and (OA) are used on the instances with 255 clients and an average

of 509 items per instance. The percentage of used space tends to decrease with the

level packing procedures. This trend was expectable given that the loading patterns

generated through the level packing procedure are more constrained (guillotinable

patterns) than those generated with the approaches relying on the bottom-left rules.

In general, the results obtained with level packing procedure are outperformed by

those achieved with the bottom-left based approaches.

4.6 Conclusion

In this chapter, we explored the first solution algorithm for the 2L-ESPP. The ap-

proach is based on constructive heuristics to generate initial feasible solutions for
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the problem, and on variable neighborhood search to look for improved incumbents.

We described different alternative neighborhood structures based on the routing and

packing characteristics of the solution. We provided also the first results concerning

the resolution of this problem for a large set of benchmark instances of the 2L-CVRP.

The results illustrate the effectiveness of the variable neighborhood search procedure

in improving the solutions of the constructive heuristics. These results allowed the

comparison between the different strategies described in this chapter. Besides the

practical relevance of the problem, these results may contribute for the resolution of

the 2L-CVRP through column generation algorithms since the 2L-ESPP is the pric-

ing subproblem that results from the corresponding Dantzig-Wolfe decomposition of

this problem. This decomposition will be analyzed in the next two chapters, and in

this sense, the VNS algorithm will be used for solving the subproblem of a column

generation algorithm.
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5.1 Introduction

In this chapter, we present a column generation approach for the Capacitated Vehicle

Routing Problem with Two-dimensional Loading constraints (2L-CVRP), defined in

Section 2.3.1, and assuming a virtually unlimited number of vehicles. The subproblem

is solved heuristically through variable neighborhood search. Branch-and-price is used

when it is not possible to add more attractive columns and the solution remains

fractional. In order to accelerate the convergence of the algorithm, a family of valid

dual inequalities is proposed.

5.1.1 Exact methods to the L-CVRP

The first exact method for the 2L-CVRP is due to Iori et al. [78]. This work was

analyzed in Section 3.2.1. The authors proposed a branch-and-cut approach for the

2L-CVRP. Firstly, the integer model formulation is solved without considering loading

or capacity-cut constraints. In what concerns the capacity-cut constraints, separation

procedures adapted from [117] are then applied. These procedures consist in heuristics

methods to the minimum-cut problem in order to find violated inequalities. When

an integer solution is obtained, the feasibility of the packing is verified through a

branch-and-bound algorithm. Additionally, a heuristic method is used to verify if it

is possible to achieve a better solution. If the heuristic achieves a better solution,

the loading feasibility of each route is verified with the branch-and-bound algorithm.

If all the routes are feasible, then the best solution is updated. Otherwise, a new

constraint for each invalid route is added to the model.

To the best of our knowledge, the first column generation formulation for the

2L-CVRP was presented in [35]. The authors proposed a branch-and-cut-and-price

algorithm whose subproblem only deals with area and capacity constraints. For this

purpose, an elementary shortest path problem is solved by only considering the area

and the capacity as resources. Then, valid inequalities are added to the master prob-

lem in order to ensure the loading feasibility of routes.

Other authors also considered a simpler subproblem, but in contrast to the work

presented in [35], no constraints are added to the master problem. It is the case of
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the contributions presented in [137] for the 2L-CVRP or the work suggested in [101]

for the 3L-CRVRP.

Concerning the approach presented in [137], the restricted master problem is ini-

tialized with a set of valid solutions obtained through both constructive heuristics and

local search methods. These methods consist in iterated local search algorithms [95]

applied to the solutions provided by constructive methods. Two general approaches

were developed. In the first approach, each inserted column corresponds to a feasible

solution concerning the loading constraints. The feasibility of a route is verified by

a heuristic bundle proposed in [154]. When no more columns can be added to the

restricted master problem, a branch-and-bound is used in order to obtain an integer

solution. On the other hand, in the second approach, the packing feasibility of each

route is only verified after the column generation method and after the branch-and-

bound method. If the solution includes routes that are infeasible concerning loading

constraints, the corresponding columns are removed from the restricted master prob-

lem. To verify the feasibility the authors resort to the bundle referred to above and to

a branch-and-bound algorithm adapted from [78]. For both approaches, and in order

to solve the subproblem, four heuristics are successively applied in order to derive one

solution with negative reduced cost. If they fail, the label correcting algorithm [57] is

used instead.

As referred to above, a column generation approach for the 3L-CVRP is proposed

in [101]. The restricted master problem is initialized with each customer assigned

to one route. The pricing subproblem is solved with one of two methods. The first

method consists in relaxing loading constraints and in solving an instance of the

elementary shortest path problem with resource constraints considering the volume

and the capacity as resources. For this purpose, the authors resort to the label

correcting algorithm [57]. The feasibility of the obtained route is verified by the

extreme point based heuristic [40]. If it is not feasible, then customers are successively

removed until a valid solution is found or until the reduced cost turns positive. The

second method relies on a heuristic method, which aim to generate a list of feasible

routes corresponding to a negative reduced cost, even though there is not any route

corresponding to the minimum reduced cost. The obtained results are competitive
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with those obtained with tabu search approaches.

Recently, and based on the work branch-and-cut approach of Iori et al. [78], an-

other exact method was presented in [74] for both the 2L-CVRP and 3L-CVRP. Again,

a relaxed version of the integer programming formulation is solved. Concerning the

routing component, multiple separation procedures are applied. Moreover, when no

more cuts are found, separation procedures concerning the packing are applied. These

procedures are divided in two main strategies. The first strategy is applied right after

reaching an integer solution provided by the branch-and-bound, by verifying the fea-

sibility of each route included in the solution. On the contrary, the second strategy

does not require the execution of the branch-and-bound since it relies on a procedure

to find infeasible routes of a non-integer solution. The feasibility of a given route is

firstly verified by several heuristics procedures. Additionally, the authors suggested

two exact approaches that can be applied if the heuristics referred to above fail to

prove the feasibility of a given route. These approaches are based on the branch-and-

bound algorithm for packing problems [107] and in constraint programming for the

orthogonal packing [33].

Finally, Junqueira et al. [83] proposed the first mathematical formulation for the

3L-CVRP. The authors extended the time-dependent formulation for the Travelling

Salesman Problem [59] for this problem. Additional constraints are considered such

as vertical load stability, multi-drop situations and load bearing. These constraints

arise frequently in real-world situations. The authors assessed the effectiveness of

their approach in randomly generated instances. They concluded that their approach

is able to deal with medium-size problems, but presents obvious limitations for large-

size instances.

5.1.2 Column generation and routing

As in a wide variety of optimization problems, column generation approaches were

successfully applied in the routing field. The subproblem of a column generation

algorithm for a vehicle routing problem with additional constraints corresponds to

an Elementary Shortest Path Problem with Resource Constraints (ESPPRC). This

problem intends to find the elementary shortest path, beginning and ending at the
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depot and satisfying the capacity constraints. Additionally, as an elementary path,

each customer belonging to the path can only be visited once. Exact approaches

for the ESPPRC can be found in [57, 131, 133, 8]. Since ESPPRC is NP-hard [53],

in some approaches the elementary constraint is relaxed. In this case, the solution

generated by the subproblem may include cycles due to the negative reduced costs in

the edges. In [79], the authors presented some strategies to eliminate cycles of length

greater than 3.

Techniques based on column generation tackled several variants and extensions of

the vehicle routing problem, and they were effective in dealing with a multiplicity of

constraints. One good example is the inclusion of specific constraints in order to adapt

the problem formulation to a given real-world scenario. In the literature, some authors

refer to these problems as rich routing problems. In the following, we review some

works in which the column generation framework was effective in complex routing

problems with a great diversity of assumptions.

Ceselli et al. [29] addressed the multi-depot vehicle routing with heterogeneous

fleet and time windows. Additional considerations were taken into account such as

splitting the orders, incompatibilities between items and between these and locations,

maximum route length, among others. The authors suggested a heuristic column

generation operating sequentially in three phases: in the first phase no orders can

be split, in the second phase some orders can be split, and in the third phase all

orders are allowed to be split. The subproblem is solved through a heuristic method

consisting in an adaptation of the dominance criteria within the bidirectional dynamic

programming [131].

In [15], a branch-and-cut-and-price algorithm is proposed for a multi-depot vehicle

routing problem considering heterogeneous fleet and time windows. The authors

claim that this approach is the first exact method for this problem. The restricted

master problem is initialized with one column for each customer, a set of columns

provided by a greedy heuristic and a dummy column. The subproblem is solved by

three sequential methods. The first one is a greedy heuristic. If this heuristic fails to

achieve one column with negative reduced cost, then a heuristic dynamic programming

procedure is used, and if it is not sufficient to find such column, the authors resort to
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an exact algorithm proposed in [131] enhanced with decremental state space relaxation

[133]. The authors used two branching strategies, namely branching on the number

of vehicles and branching on arcs.

Another rich routing problem solved with a branch-and-price algorithm was ad-

dressed in [119]. The problem consists in a livestock collection problem, which incor-

porates inventory constraints in a capacitated vehicle routing problem. The fleet is

heterogeneous and each vehicle may perform multiple trips. An interesting feature of

this contribution is the loading problem that arises when transporting animals from

different types. Each vehicle has different compartments and may have an upper and

lower levels. Since each animal type needs specific height and floor space, and dif-

ferent types of animal may not share the same compartment, different configurations

are needed in the vehicle. The authors stated that the order that animals are loaded

into the vehicle will have impact in the capacity of the vehicle. Furthermore, some

precedence constraints are enforced.

As it can be seen, column generation frameworks were applied in a vast diversity

of routing problems. In many of them, specific constraints arising from real-world

applications are incorporated. Despite the inherent complexity resulting from the

inclusion of real assumptions, the column generation approaches proved to be effective

in dealing with such complexity. This success strongly motivated the contribution

presented in this chapter.

5.2 Column generation and branch-and-price frame-

works

5.2.1 Dantzig-Wolfe decomposition

Decomposition methods may rely on the reformulation of hard optimization problems

into smaller ones, which can be easier to solve, and then on the combination of their

solutions within the scope of the original problem. Among the different decomposition

methods, the Dantzig-Wolfe decomposition [46] is one of the most well-known. In their

renowned work [46], Dantzig and Wolfe formally presented a decomposition principle
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to be applied to a linear programming with the following form:

min cx (5.1)

subject to Ax ≥ b, (5.2)

x ∈ X, (5.3)

x ∈ Rn
+, (5.4)

According to the theorem of Minkowski, any polyhedron X can be expressed as the

convex combination of the extreme points of X (P1, P2, . . . , Pn) plus a non-negative

combination of its extreme rays (R1, R2, . . . , Rp), as follows:

X =

{
x ∈ Rn

+ :
n∑
i=1

λiPi +

p∑
j=1

µjRj,

n∑
i=1

λi = 1, λi ≥ 0,∀i, µj ≥ 0,∀j

}
(5.5)

If the polyhedron is bounded, it can be defined solely by the convex combination of

its extreme points:

X =

{
x ∈ Rn

+ :
n∑
i=1

λiPi,
n∑
i=1

λi = 1, λi ≥ 0,∀i

}
. (5.6)

By replacing this definition in the original formulation, we obtain a reformulated

model with decision variables λi, each one corresponding to an extreme point. This

reformulated model has less constraints than the original formulation, but in contrast,

it may have an exponential number of variables due to the exponential number of ex-

treme points. A clear advantage of the Dantzig-Wolfe decomposition is that if the

polyhedron X has not the integrality property, the Linear Programming (LP) relax-

ation of the reformulated method may be better than LP-relaxation of the original

model. For this reason, it is usual to state that the formulations provided by Dantzig-

Wolfe decomposition are stronger than the ones derived by linear programming. If X

has the integrality property, the reformulation is as stronger as the LP relaxation.

It is important to note that we may have more than one set of constraints of type

(5.3). Such cases correspond to constraints that do not include the same decision

variables, and thus they can be seen as independent blocks with different polyhedra

Xi (i = 1, 2, . . . , s) defining their domains. In contrast, constraints (5.2) cover all the

decision variables. This structure is denominated by an angular block structure.
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5.2.2 Column generation

As referred to above, applying Dantzig-Wolfe decomposition to a bounded model may

result in a reformulated model, the master problem, with an exponential number of de-

cision variables (extreme points). Therefore, column generation is inextricably linked

to the resulting formulations since it only deals with a subset of decision variables,

avoiding its explicitly enumeration.

The column generation algorithm is based on two main elements: a master problem

and a set of subproblems. Constraints of type (5.2) are usually tackled in the master

problem, while each subproblem is associated to one polyhedron Xi (i = 1, 2, . . . , s).

The master problem is initialized with a restricted set of decision variables. For

this reason, in the literature it is usual to denominate the master problem as Restricted

Master Problem (RMP).

In each iteration, solving the RMP will provide the information (more precisely the

dual variables) in order to verify if any variable (extreme point) within the polyhedron

or polyhedra is attractive. This can be formulated as one or more subproblems (one

for each defined polyhedron), whose aim is to find attractive variables within their

domains. The most attractive variable among all subproblems, or more than one

attractive variable, may be added to the RMP.

The RMP is re-optimized, providing again the dual variables to be used by sub-

problems. The process is repeated until no attractive variables are found by subprob-

lems. In this case, the solution associated to the RMP is optimal. The Figure 5.1

attempts to represent the interaction between problem and subproblems.

Concerning the RMP, some strategies are used to build the initial set of columns

in an early stage as the use of heuristics or random solutions. Alternatively, if there

are no columns at the beginning, an artificial variable can be used. This variable

corresponds to a column with a high cost, which ensures the feasibility of the RMP,

even if it corresponds to an infeasible solution in the scope of the original problem.

The use of an artificial column also guarantees feasibility of the problem within the

branch-and-bound method: the set of columns at a given node can be insufficient to

derive a valid solution when considering the branching constraint. Since the cost of

this variable is very high, it will only be used if no other columns are able to derive
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Master 
Problem

Subproblem 1

Subproblem 2

Subproblem s

 

attractive columns

Figure 5.1: Column generation algorithm

a valid solution.

On the other hand, for complex subproblems it can be difficult to achieve the

optimal solution. It is possible to use heuristics to solve the subproblem, but there is

no guarantee that this method returns a solution with negative reduced cost. Other

strategies include the relaxation of some constraints in the subproblem. Clearly, this

may lead to an infeasible solution provided by the column generation algorithm. As

referred to in Section, some works tackled such situations by verifying the feasibility of

the final solution and by removing the columns that are associated to that infeasible

solution [137].

5.2.3 Branch-and-price

At the end of the column generation algorithm, there is no guarantee that the optimal

solution of the reformulated model is an integer solution. Indeed, the obtained solution

corresponds to the linear programming relaxation, and thus the set of columns at the
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RMP may not be sufficient to derive an integer solution.

In order to derive an integer solution, it is necessary to combine the branch-and-

bound approach with the column generation. At the root of the branching tree, the

LP of the reformulated model is provided with a specific number of columns. Thus,

branching constraints are introduced. At lower levels of the tree, new columns may be

needed, as many as required to solve the LP relaxation of that node. This integrated

method is denominated by branch-and-price.

An important issue of branch-and-price is the branching scheme. Branching

schemes based on the variables of the reformulated model may provide the regenera-

tion of some columns: if a given decision variable is turned to zero, the corresponding

column will be set to zero and it may happen that the subproblem returns that vari-

able as the most attractive. Therefore, regeneration leads to deadlock situations. To

overcome this situation, the vast majority of branch-and-price approaches suggest

that the branching partitions must be applied to the original variables of the original

model.

5.3 Column generation model for the 2L-CVRP

5.3.1 Original formulation

In Section 2.3.1 the 2L-CVRP was described. The first mathematical formulation

for this problem is due to Iori et al. [78]. We adapted their formulation in order to

consider the two-indexed binary variables.

Let G = (V,A) be a complete directed graph where V represents a set of n + 1

nodes and A represents the set of arcs. The set V includes the depot (denoted by 0)

and a set of n customers (N). We will consider a homogeneous fleet with a virtually

unlimited number of vehicles. Additionally, let σ represent the bijection which defines

the order by which the customers are visited, and Σ(S) represents the collection of

sequences σ in which (S,σ) is a feasible route. The set of edges of such route is defined

by A(S, σ). Each binary decision variable xij takes value 1 if the arc (i, j) is traversed

by one vehicle, and it takes value 0 otherwise. Travelling through this arc has a cost

cij. Additionally, let δ+(i) be the set of customers linked to i in which i is their
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origin. Analogously, let δ−(i) be the set of customers linked to i in which i is their

destination.

min
∑

(i,j)∈A

cijxij (5.7)

subject to
∑

j∈δ+(i)

xij = 1,∀i ∈ N (5.8)

∑
i∈δ−(j)

xij −
∑

j∈δ−(i)

xji = 0,∀j ∈ V (5.9)

∑
(i,j)∈A(S,σ)

xij ≤ |S| − 1 ∀(S, σ) such that σ /∈ Σ(S) (5.10)

xij ∈ {0, 1},∀(i, j) ∈ A (5.11)

The set of constraints (5.8) imposes that each customer must be visited once. The

set of constraints (5.9) imposes flow conservation while the set of constraints (5.10)

imposes the loading feasibility of each route. The constraints (5.11) define the decision

variable values.

5.3.2 Master problem

After applying the Dantzig-Wolfe decomposition [46] to the formulation presented in

(5.7)-(5.11), the master problem is an integer programming model composed by par-

titioning constraints, while remaining constraints are considered in the subproblem.

Note that convexity constraint is omitted since the fleet is homogeneous and virtually

infinite.

Let Ω be the set of all valid routes, i.e., the set of all extreme points. Each decision

variable of the master problem corresponds to a column and it is defined by λr (r ∈ Ω).

Therefore, the each decision variable takes value 1 if it is included in the solution, and

0 otherwise. Each column represents a feasible route, and since the subproblem is

limited, a given column corresponds to an extreme point of the valid space. Each

route r has a cost cr and it can be described by a vector (a1r, a2r, . . . , anr)
T where

each coefficient air takes value 1 if customer i (i ∈ N) is visited in route r (r ∈ Ω),

and it takes value 0 otherwise. In Table 6.1 we present an example of the simplex
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representation of the master problem.

min
∑
r∈Ω

crλr (5.12)

subject to
∑
r∈Ω

airλr = 1,∀i ∈ N (5.13)

yr ∈ {0, 1}, ∀r ∈ Ω (5.14)

Table 5.1: Simplex representation of the master problem

customers λ1 λ2 λ3 . . . λ|Ω|−1 λ|Ω|

1 a11 a12 a13 . . . a1,|Ω|−1 a1,|Ω| = 1

2 a21 a22 a23 . . . a2,|Ω|−1 a2,|Ω| = 1

3 a31 a32 a33 . . . a3,|Ω|−1 a3,|Ω| = 1

4 a41 a42 a43 . . . a4,|Ω|−1 a4,|Ω| = 1

5 a51 a52 a53 . . . a5,|Ω|−1 a5,|Ω| = 1

6 a61 a62 a63 . . . a6,|Ω|−1 a6,|Ω| = 1

. . . . . . . . . . . . . . . . . . . . . . . .

m− 1 am−1,1 am−1,2 am−1,3 . . . am−1,|Ω|−1 am−1,|Ω| = 1

m am,1 am,2 am,3 . . . am,|Ω|−1 am,|Ω| = 1

c1 c2 c3 . . . c|Ω|−1 c|Ω|

5.3.3 Initialization

The column generation approach for the 2L-CVRP begins with a subset of columns,

which corresponds to a subset of valid routes. In order to build this subset, we

used three strategies. The first strategy consists in the generation of single customer

routes. One route is associated to one and only one customer. With this strategy we

generate as many columns as the number of customers in the instance. No feasibility

tests are required since it is assumed that the demand of each customer fits in one

vehicle. The third second relies on the dual valid inequalities to be presented in

Section 5.4. Following this strategy it is possible to derive at most n2 columns, where
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n is the number of customers. Finally, the third strategy consists in the use of a meta-

heuristic to derive routes with a high percentage of used space in the vehicle. In this

sense, we resort to the Variable Neighborhood Search algorithm for the elementary

shortest path problem with two-dimensional loading constraints presented in Chapter

4. Briefly, this algorithm relies on constructive procedures to generate initial solutions,

and in different packing and routing neighborhood structures to improve the former

solutions. In order to generate routes with compact layout, the costs of all arcs are

set at -1. The solution provided by the VNS algorithm will consist in a route with a

desirable compact layout and the corresponding column will be added to the RMP.

Then, the arcs of the inserted route will take a very high cost, and the process is

repeated according to a parameter ninit. We also used an artificial variable. As stated

in Section 5.2.2, this variable ensures the feasibility of the restricted master problem.

5.3.4 Subproblem

The subproblem corresponds to an Elementary Shortest Path Problem with Resource

and Sequential Constraints (ESPPRSC). The ESPPRSC intends to find the column

with most negative reduced cost. The solution consists in an elementary shortest path,

beginning and ending at the depot, satisfying the loading constraints, and visiting each

customer at most once.

After solving the LP-relaxation of the RMP of formulation (5.12)-(5.14), one can

obtain the dual variables πi (i ∈ N) associated to each constraint of type (5.13). The

expression of the reduced cost c′r for a given route r ∈ Ω is given by:

c′r = cr −
∑
i∈N

πiair.

Considering Pr the sequence of traversed arcs in route r (r ∈ Ω) such that Pr =

{(0, i1), (i1, i2), . . . , (i|Pr|−1, 0)}, the expression of the reduced cost can be reformulated

as follows:

c′r =
∑

(i,j)∈Pr,i 6=0

(cij − πi) + c0,i1 .
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Let xij be the decision variable, which takes value 1 if arc (i, j) ∈ A is part of the

solution, and it takes value 0 otherwise. Therefore, the subproblem can be formulated

as follows.

min
∑

(i,j)∈A

c′ijxij (5.15)

subject to
∑

j∈δ+(0)

x0j = 1 (5.16)

∑
i∈δ−(0)

xi0 = 1 (5.17)

∑
i∈δ−(j)

xij −
∑

j∈δ−(i)

xji = 0,∀j ∈ N (5.18)

∑
(i,j)∈A(S,σ)

xij ≤ |S| − 1 ∀(S, σ) such that σ /∈ Σ(S) (5.19)

xij ∈ {0, 1},∀(i, j) ∈ A (5.20)

where

c′ij =

cij − πi, ∀(i, j) ∈ A, i 6= 0

cij, ∀(0, j) ∈ A

The constraints (5.16)-(5.17) impose that the vehicle exits and returns to the

depot. The set of constraints (5.18) require flow conservation while the set of con-

straints (5.19) impose the loading feasibility of routes. The constraints (5.20) define

the decision variable values.

The subproblem is solved using the variable neighborhood search algorithm for the

elementary shortest path problem with two-dimensional loading constraints presented

in Chapter 4.

5.4 Stabilization strategies

Despite the effectiveness of column generation algorithms, they may present a slow

convergence. Some strategies that are commonly used to improve the efficiency of
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column generation algorithms can be found in [97, 96]. Among these strategies, re-

stricting the dual space proved to be effective in accelerating the convergence of the

algorithm.

During the column generation algorithm, the subproblem iteratively suggests one

or more attractive columns which are added to the RMP. Each column that is added

to the RMP corresponds to a constraint in the dual space of the problem. Therefore,

adding columns to the RMP can restrict the dual space of the problem. Consequently,

the subset of columns that the subproblem can find can also be limited. In this sense,

it is possible to derive valid dual cuts which may be inserted in the RMP before its

LP-relaxation. Thus, the dual space is restricted right at the initialization stage.

In [145], a family of dual cuts for the cutting stock problem was presented. The

author stated that from a primal point of view, each dual cut corresponds to the use

of one item in order to cut other items, only if the sum of their widths is less than

or equal to the width of the former item. In the following, we describe the procedure

in order to derive valid cuts in the scope of the column generation approach for the

2L-CVRP. Since one route corresponds to a sequence of visit, it is possible to replace

one customer i ∈ N by other customer j ∈ N (i 6= j) in the position of the route

provided that:

D1 the number of items of customer j is less than or equal to the number of items

of customer i;

D2 the area of one item of customer i can be used to place at most one item of

customer j, without exceeding the height and width of the former item;

D3 all the items of customer j can be placed in the vehicle satisfying the previous

condition.

The idea besides these three conditions is that the loading area of the vehicle, which

is occupied with items of customer i, can be used to place the items of customer j.

We apply this procedure to all the customers in order to verify all pairs of customers

i and j (i, j ∈ N, i 6= j) that satisfy these three conditions.
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At this step, it is required to compute the cost of replacing customer i by customer

j in the sequence of the route. Since this route is not known, it is not possible to

determine this cost effectively. In this sense, we compute c̄ij as the cost difference

between the two less costly arcs that are incident to i and the two higher costly arcs

that are incident to j. Let i1 and i2 be, respectively, the first and the second closer

customers to customer i. Let j1 and j2 be, respectively, the first and second customer

which are more far from j. Thus,

c̄ij = cj1,j + cj2,j − ci1,i − ci2,i (5.21)

Let πi and πj be the dual variables of constraints (5.13) of the RMP associated to

customers i and j, respectively.

Proposition 5.1 A family of valid dual cuts for the 2L-CVRP can be expressed as:

−πi + πj ≤ c̄ij, ∀i, j ∈ N, i 6= j, (5.22)

if customers i and j satisfy the conditions (D1)-(D3), referred to above.

Proof. The proof is based on the one for a family of dual inequalities, in the scope

of the vehicle routing problem with different service constraints, presented in [98]. The

proof starts by establishing valid conditions in the dual space and it demonstrates,

by contradiction, that, in the scope of an invalid cut in the dual space, the validity

conditions are not obeyed.

Let Ω be the set of columns corresponding to routes. Then,∑
m∈N

amr ≤ cr,∀r ∈ Ω. (5.23)

In the optimal solution, customer i is associated to exactly one route. Let Ar =

(a1r, . . . , 1, . . . , 0, . . . , amr)
T with an unit coefficient in row i. This route has a reduced

cost equal to zero. Therefore, according to the expression referred in (5.15), cr =∑
m∈N πmamr. Let s be another route such that As = (a1s, . . . , 0, . . . , 1, . . . , ams)

T ,

i.e., ais = 0 and ajs = 1, and all the other coefficients equal to the ones in Ar. Then,

cs − cr ≤ c̄ij. (5.24)
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If there is a cut which is not valid, then, −πi + πj > c̄ij. Thus, −πi + πj > cs − cr.

Consequently, −πi + πj > cs −
∑

m∈N πmamr. Since −πi + πj = −
∑

m∈N πmamr +∑
m∈N πmams, then,

∑
m∈N ams > cs, not satisfying (5.23).

From the primal standpoint, each dual inequality of type (5.22) corresponds to the

use of the space left by items of customer i in order to dispose items of customer j. It

is worth noting that applying this procedure gives rise to a route which is necessarily

feasible: all the packing constraints are obeyed since the placed items fit within the

space of the removed items. Consequently, the unloading sequence of other items

remains unchanged and sequential constraints are satisfied.

Example 5.1 An example is provided in Figure 5.2: customer 2 can be replaced by

customer 4, satisfying the conditions referred to above. Therefore, −π2 + π4 ≤ c̄24 is

a valid dual.

I
3,2

I
3,1

I1,1

I1,2

1

2

3

0

4

I3,2

I3,1

I
2,1

I2,2

I1,1

I1,2 I4,2

I4,1

Rear sideRear side

Figure 5.2: An example of primal standpoint of a valid dual cut

For an instance with n customers, it is possible to add at most n2 valid dual cuts.

These dual cuts correspond to columns of type (a1r, a2r, . . . , air, . . . , ajr, . . . , anr)
T =

(0, 0, . . . ,−1, . . . , 1, . . . , 0)T with cost c̄ij. These columns are added to the RMP in

the initialization phase, i.e., before solving its LP-relaxation.
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5.5 Branching schemes

5.5.1 Basics

As referred to in Section 5.2.3, it is important to select good branching schemes,

which do not damage the structure of the subproblem. A branching scheme for the

vehicle routing problem with time windows is presented in [50]. The authors suggested

branching on a single arc. Each arc of the subproblem network is fixed. In one branch,

a given arc (i, j) is fixed and takes value 1. Other arcs, whose destination is the node

j, are removed as well as the arcs whose origin is the node i. The cost of these

removed arcs is penalized. Therefore, the cost of the columns that correspond to

solutions using such arcs is updated, imposing the use of arc (i, j) instead of using

the alternative arcs due to their higher cost. In the other branch, the same arc (i, j)

is removed. Similarly, the cost of this arc is penalized, and consequently, the cost

of columns corresponding to solutions where arc (i, j) is used is updated. Therefore,

columns corresponding to solutions including arc (i, j) may not be part of the optimal

solution.

In order to deal with cycles, arcs associated to customers visited more than once

are scored according to their flow. The highest scored arc is selected to partition. If

there are no cycles, columns with fractional values are analyzed only if there is any

arc with a flow different of the value 1. The columns are scored according to the

variables value and each arc is scored according to the flow value.

It is important to note that in the context of the vehicle routing problem with time

windows, if a given arc (i, j) takes the value 1, the total demand of customers i and

j must not exceed the capacity of the vehicle and, additionally, it must be possible

to serve both customers within their time window. These conditions are also applied

to other customers already linked to i or j: at upper levels of the branching tree, it

is possible to have branching rules that impose the use of an arc whose destination

is i or whose origin is j. In this case, the conditions referred to above are applied to

the set of customers that are being linked. In [84], a review of branching schemes is

presented, namely branching on the number of vehicles, branching on flow variables

and branching on resource windows.
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5.5.2 Branching rules

The advantage of branching on the variables of the original problem is twofold. On

the one hand, the structure of the subproblem is not modified. On the other hand,

convergence is ensured. Our branching strategies rely in both single arc branching

and in the flow branching. In the former case, the branching is performed in one

variable of the original problem which corresponds to an arc. In the latter case, more

than one original variable may be selected. In the following we present the partition

rules for both cases.

5.5.2.1 Partition rules based on a single variable

BB1.1 Among all the arcs of the solution, the one that has the highest fractional

flow is selected to branch, i.e.,

(i′, j′) = arg max(i,j)∈A{xij − bxijc | bxijc 6= 0, bxijc 6= 1}. (5.25)

This rule aims to explore the branching tree guided by the solution provided by

the linear relaxation of the RMP.

BB1.2 Among all customers, the one that is visited in more routes of the LP solution

is selected; among all incident arcs to the selected customer, the one that has

the highest fractional flow is selected to branch.

Let Ω′ ⊆ Ω be the set of columns at the current node. We are interested in

finding the customer k′ such that:

k′ = arg maxk∈N

{∑
r∈Ω′

akr

∣∣∣∣∣λr > 0, r ∈ Ω′

}
. (5.26)

This rule aims to explore the difficulty that the model may have in assigning a

given customer to a single route. On the one hand, by fixing the arc with the

highest flow incident to that customer to take the value 1, we are fixing the arc

to be part of all forthcoming solutions on that branch. If the selected customer is

the starting point of the selected arc (or, respectively, its end point), then all the

arcs whose starting point (or, respectively, whose end point) correspond to such

customer, are excluded from the optimal solution. On the other hand, fixing
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the selected arc to take value 0 will exclude it from the forthcoming solutions

on the other branch. This will force a subset of arcs incident to the customer

to take different values since the fractional flow of the excluded arc must be

redistributed.

BB1.3 Among all customers, the one that is visited in less routes of the LP solution

is selected; among all arcs that are incident to selected customer, the one that

has the highest fractional flow is selected. Again, we consider Ω′ ⊆ Ω as the set

of columns at the current node. We are interested in finding the customer k′

such that:

k′ = arg mink∈N

{∑
r∈Ω′

akr

∣∣∣∣∣λr > 0, r ∈ Ω′

}
. (5.27)

BB1.4 Among all arcs with fractional flow, the one that has the lowest cost is se-

lected, i.e.,

(i′, j′) = arg min(i,j)∈A {cij | bxijc 6= 0, bxijc 6= 1} . (5.28)

This rule aims to fix the arcs by the increasing order of cost.

BB1.5 Among all routes of the LP solution, the one that visits more customers is

selected; from the set of arcs traversed by this route, the arc that has the highest

fractional flow is selected. Let r′ be selected route, and Ω′ ⊆ Ω be the set of

columns at the current node. Thus,

r′ = arg maxr∈Ω′

{∑
i∈N

air

∣∣∣∣∣λr > 0

}
. (5.29)

It is expected that the selected route has a good layout since it combines the

maximum number of customers. Since the loading component is the most critical

in the context of the problem, this rule aims to promote the fixation of arcs

belonging to these type of routes. In this sense, it could be advantageous to fix

the arcs belonging to such routes.

BB1.6 Among all arcs that are incident to the depot, the one that has the highest

fractional flow is selected.

(i′, j′) = arg max
(i,j)∈A,i=0∨j=0

{xij − bxijc | bxijc 6= 0, bxijc 6= 1}. (5.30)
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If there are no arcs satisfying this condition, then the rule BB1.1 is applied.

This rule aims to fix the values of the arcs from the depot, which are in fact the

origin of the flow.

After selecting the arc, a binary branching is performed, creating two nodes. Let (i, j)

be the selected arc, and xij the current fractional flow in that arc. In one branch, the

following constraint is enforced:

xij = 1 (5.31)

while in the other branch it is provided that

xij = 0. (5.32)

On the one hand, with constraint (5.31), the arc must be included in the solution,

and possibly it can be added to an existing sub-route. Consequently, customer j will

be visited right after customer i. On the other hand, in opposition, constraint (5.32)

imposes that the arc is excluded from any solution in the corresponding branch.

The insertion of each branching constraint consists in adding one row in the

RMP. Let Ω′ be the set of columns at the current node (with Ω′ ⊂ Ω) and let

(i′, j′) the selected arc. The left hand side of the inserted row corresponds to a

vector anew = (anew,1, anew,2, anew,3, . . . , anew,|Ω′|−1, anew,|Ω′|) where each element anew,r

(r = 1, 2, ..., |Ω′|) takes value 1 if the arc (i′, j′) is traversed by route r, and it takes

value 0 otherwise. The right hand side of the row takes value 1 if it imposed to

traverse such arc, and it takes value zero otherwise.

5.5.2.2 Partition rules based on sets of variables

Using the rules with a single variable may lead to a branching tree with several levels.

As referred to above, one may branch on the flow of a subset of arcs instead of a

single variable. In these cases a set of original variables is selected. The sum of their

flows will be selected to branch and then it is possible to have a greater impact in the

solution. In one branch, the flow between these arcs must be increased, while in the
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other branch the opposite is imposed. In the following, we present the rules used to

select those arcs.

BB2.1 Among the set of routes of the solution, the one that has the highest fractional

value is selected. The sum of the flow in the arcs traversed by this route is

computed. Let r be the selected route and Pr be the sequence of arcs traversed

in route r. In one branch it is imposed that:

∑
(i,j)∈Pr

xij ≥


∑

(i,j)∈Pr

xij

 , (5.33)

while in the other branch the following constraint is applied:

∑
(i,j)∈Pr

xij ≤

 ∑
(i,j)∈Pr

xij

 . (5.34)

Guided by the solution provided by the linear relaxation of the RMP, this rule

aims to explore the branching tree by fixing the sum of the flow of the arcs

belonging to routes with highest fractional value.

BB2.2 Among the set of arcs of the solution, a subset of arcs with the highest

flow is selected. Let A′ ⊂ A be that subset, whose cardinality is a parameter

(marcs = |A′|). Then a binary branching is performed by imposing in one branch

that ∑
(i,j)∈A′

xij ≥


∑

(i,j)∈A′
xij

 , (5.35)

while in the other branch it is provided that

∑
(i,j)∈A′

xij ≤

 ∑
(i,j)∈A′

xij

 . (5.36)

BB2.3 Among the set of arcs of the solution, a subset of arcs with the lowest flow is

selected. Then, the branching is performed with the same branching constraints

presented in rule BB2.2.

BB2.4 Among the set of routes of the solution, the one that has more visited cus-

tomers is selected. The branching is performed with the same branching con-

straints presented in rule BB2.1.



5.6. Partial enumeration algorithms 111

The insertion of branching constraints resulting from partition rules with more

than one original variable relies on the same method as the one used in single arc

branching.

5.6 Partial enumeration algorithms

Taking into account the set of partition rules, it is necessary to define how to apply

and combine them, and, in this sense, which strategies are used to explore the nodes

of the branching tree. All of them rely on a depth-first search strategy for choosing

the node of the branching tree to explore. Whenever it is not possible to dive down

a given node, the search continues at the upper level of the branching tree. This

happens when the LP relaxation of the RMP associated to the node is infeasible. It is

worth noting that it is not possible to leave unexplored a node when the value of the

LP relaxation of the RMP is greater than the value of the incumbent solution. This

is due to the fact that the solution provided by the RMP relies on column generation

based heuristic. Consequently, there is no guarantee that the value provided by the

RMP is in fact a lower bound. In the following, we describe the three strategies

implemented.

(Single rule) The branch-and-price is performed using only one partition rule. This

means that in a given node, whenever there are no attractive columns and the

solutions remains fractional, the search space is divided into two distinct search

spaces according to the selected partition rule. The partition rule is always the

same within all the branching tree. With this strategy, a different branching

tree is derived for each branching rule.

(Random strategy) According to this strategy, a different partition rule is used in

each branching operation: whenever is necessary to branch, a partition rule is

randomly selected. This strategy provides greater diversity of the divided search

spaces in each branch.

(Sequential strategy) In this strategy, the ten partition rules are sequenced accord-

ing to the order they are presented in Section 5.5.2.1, i.e., from the rule BB1.1
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to the rule BB2.4. Then, the first partition rule of this sequence is selected to

perform branching. The partition rule remains the same within the next nmax

branching executions without improvement of the incumbent solution. When

nmax is reached, the second partition rule is adopted from the current node for

the next nmax iterations. The process is repeated by sequentially crossing all

elements of the sequence. If all partition rules are used, the sequence is crossed

again starting from the first rule.

5.7 Computational results

To evaluate and compare the performance of the different enumeration algorithms

presented in Section 5.6, we conducted a set of preliminary computational experiments

on 25 instances of the 2L-CVRP proposed in [76, 78, 64]. This set is described in Table

5.2, where m represents the number of customers while it represents the number of

items. Additionally, the height and the width of the vehicle are presented in the last

two columns.

The algorithms were coded in C++, and the tests were run on an Intel Xeon

Processor E5-1620 v3 with 3.50 GHz and 64 GB of RAM.

5.7.1 Preliminary computational experiments

In the preliminary tests, we imposed a time limit of 300 seconds in the LP relaxation

of the RMP, and a time limit of 1800 seconds in the branch-and-price. The parameters

ninit, marcs and nmax are set at 50, 10 and 10, respectively.

In Table 5.3, we report on the average results for the 10 strategies described

in Section 5.6, namely the Single Rule (SR), the Random Strategy (RS) and the

Sequential Strategy (SS). It is important to note that strategy SR consists in 10

different runs, each one considering one partition rule. There is always an integer

incumbent solution, which is initialized with a single customer route for each customer.

Strategies SR BB1.2 and SR BB1.3 are omitted, since they not lead to improved

results. The meaning of the columns in Table 5.3 is the following:

• Inst: number of the instance according to Table 5.2;
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Table 5.2: Set of instances
Instance Name Class m it height width

1 E016-03m 1 15 15 40 20
2 E016-03m 2 15 24 40 20
3 E016-03m 3 15 31 40 20
4 E016-03m 4 15 37 40 20
5 E016-03m 5 15 45 40 20
6 E026-08m 1 25 25 40 20
7 E026-08m 2 25 40 40 20
8 E026-08m 3 25 61 40 20
9 E026-08m 4 25 63 40 20
10 E026-08m 5 25 91 40 20
11 E051-05e 1 50 50 40 20
12 E051-05e 2 50 82 40 20
13 E051-05e 3 50 103 40 20
14 E051-05e 4 50 134 40 20
15 E051-05e 5 50 157 40 20
16 E076-08s 1 75 75 40 20
17 E076-08s 2 75 112 40 20
18 E076-08s 3 75 154 40 20
19 E076-08s 4 75 198 40 20
20 E076-08s 5 75 236 40 20
21 E151-12b 1 150 150 40 20
22 E151-12b 2 150 225 40 20
23 E151-12b 3 150 298 40 20
24 E151-12b 4 150 366 40 20
25 E151-12b 5 150 433 40 20

• IOPT : number of the instances (according to column Inst) in which the algo-

rithm was able to achieve solutions that are better than the initial incumbent;

• spLP : number of subproblems solved before branching;

• colsLP : number of generated columns during the LP relaxation of the RMP;

• spBB: number of subproblems solved in the branch-and-price;

• colsBB: number of generated columns in the branch-and-price;

• nodBB: number of branching nodes generated during branch-and-price, exclud-

ing the root;

• zLP cost of the LP solution;

• zOPT value of the best solution achieved.

The obtained results show that strategies based only on one rule (SR) lead to

values of cost of the LP solution similar to the ones obtained with random and se-
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Table 5.3: Computational results for the preliminary set of tests
Inst IOPT spLP colsLP spBB colsBB nodBB zLP zOPT

SR (BB1.1)

1 to 5 1; 2; 4; 5 46 44 74 64 10 281,09 343

5 to 10 1;3 63 61 111 101 10 530,64 976

11 to 15 1;5 71 69 171 164 6 1016,76 2000

16 to 20 1 82 80 243 240 3 1523,21 3015

21 to 25 1 81 79 422 421 1 3737,07 5998

avg. 69 67 204 198 6 1417,75 2466

SR (BB1.4)

1 to 5 1; 2; 3; 4; 5 40 38 101 91 11 282,47 298

5 to 10 1; 2; 3; 4; 5 62 60 80 74 6 535,88 549

11 to 15 1 75 73 187 184 3 977,48 2001

16 to 20 1 82 80 250 248 2 1511,51 3012

21 to 25 1 81 79 424 423 1 3705,37 5997

avg. 68 66 208 204 5 1402,54 2371

SR (BB1.5)

1 to 5 1; 2 45 43 31 9 22 277,21 461

5 to 10 1 63 61 63 42 20 530,04 1129

11 to 15 1 75 73 150 142 8 986,43 2006

16 to 20 1 82 80 235 233 2 1547,96 3008

21 to 25 1 82 80 418 417 1 3722,53 5997

avg. 69 67 179 169 11 1412,83 2520

SR (BB1.6)

1 to 5 1; 2; 3; 4; 5 44 42 23 19 4 278,87 278

5 to 10 1; 3; 4; 5 62 60 99 91 8 541,77 663

11 to 15 1 73 71 166 160 6 1023,62 2001

16 to 20 1 82 80 237 234 3 1501,04 3011

21 to 25 1 81 79 421 420 1 3749,97 5997

avg. 69 67 189 185 4 1419,05 2390

SR (BB2.1)

1 to 5 1; 2; 3; 4; 5 47 45 49 43 6 277,67 282

5 to 10 1; 2; 3; 5 65 63 118 110 8 533,56 695

11 to 15 1 77 75 196 191 5 999,07 2006

16 to 20 1 83 81 232 228 3 1529,20 3010

21 to 25 1 82 80 405 404 1 3773,60 5998

avg. 71 69 200 195 5 1422,62 2398

SR (BB2.2)

1 to 5 1; 2; 4; 5 44 42 70 62 7 279,99 343

5 to 10 1 59 57 126 121 5 530,78 1127

11 to 15 1 74 72 199 197 3 1000,01 2007

16 to 20 1 82 80 269 267 2 1523,10 3012

21 to 25 1 82 80 417 417 1 3722,49 5996

avg. 68 66 216 213 4 1411,27 2497

SR (BB2.3)

1 to 5 1; 2; 4 46 44 72 68 4 280,50 404

5 to 10 1 59 57 145 141 4 544,71 1132

11 to 15 1 75 73 208 205 2 987,18 2001

16 to 20 1 83 81 263 262 1 1518,59 3014

21 to 25 1 81 79 425 424 1 3729,47 5997

avg. 69 67 222 220 2 1412,09 2510

SR (BB2.4)

1 to 5 1; 2; 3; 4; 5 46 44 83 74 10 283,91 299

5 to 10 1; 2; 3; 4; 5 64 62 116 106 10 531,53 549

11 to 15 1 77 75 178 175 3 999,46 2001

16 to 20 1 82 80 255 253 2 1534,11 3012

21 to 25 1 81 79 425 425 1 3737,81 5998

avg. 70 68 211 206 5 1417,36 2372

RS

1 to 5 1; 2; 4 47 45 68 63 4 277,82 403

5 to 10 1; 4 62 60 133 128 6 524,79 972

11 to 15 1 74 72 189 185 3 985,05 2008

16 to 20 1 81 79 250 248 2 1513,53 3012

21 to 25 1 81 79 430 429 1 3742,99 5996

avg. 69 67 214 211 3 1408,83 2478

SS

1 to 5 1; 2; 3; 4; 5 45 43 76 67 9 283,12 285

5 to 10 1 62 60 119 109 9 541,35 1130

11 to 15 1 75 73 167 160 7 977,43 2004

16 to 20 1 82 80 243 241 3 1528,39 3012

21 to 25 1 82 80 419 418 1 3798,95 5998

avg. 69 67 205 1969 6 1425,81 2486
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quential schemes. Considering the values obtained with branch-and-price, the strate-

gies SR (BB1.4) and SR (BB2.4) provide better average values. Not surprisingly,

these strategies are also the ones providing a higher number of instances where the

best solution is better than the initial incumbent (instances 1-11, 16, and 21). The

number of generated columns tends to be greater for instances with a higher number

of customers. In these instances, it is more difficult to achieve a solution better than

the incumbent. Therefore, the branching continues giving rise to larger branching

trees. However, within strategy SR (BB1.1), it was possible to update the incum-

bent for instance 15, which has 50 customers and more than 150 items. The strategy

SR (BB1.5) leads to the worst average cost values. Indeed, with the exception of the

pure CVRP instances, the algorithm was able to update the initial incumbent only

for instance 2. Similar results were found by strategy SR (BB2.3). Finally, results

concerning the random strategy and sequential strategy (RS and SS) lead to similar

results.

5.7.2 Second set of computational experiments

Considering the preliminary results, we conducted a second set of computational

experiments. For this purpose, we considered three subset of instances. According

to Table 5.2, we selected the instances with 15, 50 and 150 customers, in order to

build a set of instances with different sizes. Additionally, the time limit for the LP

relaxation was increased to 450 seconds, as well as the branch-and-price duration, set

to a maximum of 3600 seconds. The values of the remaining parameters were not

modified.

In Tables 5.4 - 5.11, we present the second set of computational experiments for the

single rule strategy, according to the different partition rules. Strategies SR BB1.2

and SR BB1.3 are omitted, since they not lead to improved results. Table 5.12

corresponds to the random strategy, while Table 5.13 presents the obtained results

for the sequential strategy. In all the following tables, we use the same columns defined

in Section 5.7.1, and the additional notation:

• tPP : computing time for the initialization of the RMP (in seconds);
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• tLP : computing time for the LP relaxation (in seconds);

• tBB: computing time for the branch-and-price phase (in seconds);

• ttot: total computing time (in seconds).

Note that there is always an incumbent solution that is integer since its value is

initialized with the cost corresponding to a single customer route for each customer.

In this sense, all instances where an integer solution better than this initial value was

found, were highlighted in bold (column zopt). It must be observed that for the vast

majority of the cases in which it was not possible to update the initial incumbent,

the branch-and-price phase generates hundreds of columns while a small number of

nodes is analyzed.

The subproblem is solved through heuristic methods, and then the LP-relaxation

value cannot be used as a lower bound. Indeed, it is possible to achieve an integer

solution better than the LP relaxation, as it can be seen, for example, in Table 5.4

for instance 2.

In some cases an integer solution is found without having to resort to branch-

and-price. It is the case of all instances belonging to Class 1 (pure CVRP instances).

Additionally, it is also the case of instance 2 (for strategies SR (BB1.5), SR (BB1.6),

SR (BB2.2), SR (BB2.3), and SS) and the case of instance 4 (for the strategies

SR (BB1.1), SR (BB1.4) and SR (BB2.2)).

Although all the cases reported to above are related to instances of 15 customers,

an integer solution without having to resort to branch-and-price was obtained for in-

stance 14, which has 50 customers and more than 130 items (considering the sequential

strategy in Table 5.13).

The obtained results for strategy SR (BB1.1) show an average improvement in the

cost of the best solution achieved for instances 1 to 5 (roughly 17%), when compared

with the preliminary tests. For the remaining instances, the values are very close to

those obtained in the preliminary tests for the same strategy. Similar improvements

were found within strategy SR (BB1.4) for instances 11 to 15, reaching an average

improvement of roughly 12,69%.



5.7. Computational results 117

The values for strategy SR (BB1.5) are very similar to those obtained in the

preliminary phase. The strategy SR (BB2.1) presents the worst average values con-

cerning instances with 15 customers, but presents important improvements for the

instances with 50 customers (roughly 14%). The strategy SR (BB2.3) leads to an av-

erage improvement of 12,17% considering 15 customers. For instances with a greater

number of customers, the average improvement is less significant.

Table 5.4: Computational results for the single rule strategy with partition rule BB1.1
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 5 3 0 0 0 237,00 237 3,00 117,21 0,00 120,21
2 48 46 39 37 2 291,00 281 18,01 345,18 456,27 819,46
3 66 64 235 214 21 282,96 314 30,01 474,26 3604,86 4109,13
4 64 62 0 0 0 301,00 301 21,02 459,21 0,00 480,23
5 60 58 267 236 31 279,82 282 36,03 408,24 3611,06 4055,32

avg. 49 47 108 97 11 278,36 283 21,61 360,82 1534,44 1916,87
11 9 7 0 0 0 541,00 541 3,03 211,77 0,00 214,80
12 136 134 261 241 20 925,99 2366 3,00 456,30 3605,24 4064,55
13 143 141 263 237 26 929,77 2366 3,00 465,35 3614,31 4082,66
14 119 117 300 279 21 1142,25 2366 3,00 462,44 3608,71 4074,15
15 147 145 373 352 21 932,08 2366 3,01 453,81 3626,37 4083,20

avg. 111 109 239 222 18 894,22 2001 3,01 409,93 2890,93 3303,87
21 10 8 0 0 0 1002,00 1002 3,31 191,77 0,00 195,08
22 151 149 689 685 4 3358,14 7244 3,01 455,69 3600,68 4059,38
23 150 148 676 674 2 3810,80 7244 3,06 454,58 3636,97 4094,61
24 150 148 756 752 4 4154,27 7244 3,02 453,70 3607,88 4064,59
25 147 145 834 833 1 4029,55 7244 3,24 455,27 3613,75 4072,26

avg. 122 120 591 589 2 3270,95 5996 3,13 402,20 2891,86 3297,18

Table 5.5: Computational results for the single rule strategy with partition rule BB1.4
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 6 4 0 0 0 231,00 231 3,02 129,19 0,00 132,21
2 60 58 232 203 29 289,75 324 33,01 465,22 3610,62 4108,85
3 74 72 212 178 34 282,80 315 27,01 501,22 3601,90 4130,13
4 48 46 0 0 0 306,00 306 18,01 390,16 0,00 408,17
5 64 62 306 283 23 272,25 341 48,03 417,26 3614,09 4079,38

avg. 50 48 150 133 17 276,36 303 25,82 380,61 2165,32 2571,75
11 5 3 0 0 0 565,00 565 3,07 151,12 0,00 154,19
12 138 136 384 372 12 914,30 2366 3,00 453,26 3602,19 4058,46
13 128 126 373 356 17 964,53 2366 3,01 453,35 3605,53 4061,89
14 113 111 288 271 17 1230,99 1074 3,01 456,32 3602,65 4061,98
15 143 141 469 460 9 980,54 2366 3,01 453,69 3605,07 4061,76

avg. 105 103 303 292 11 931,07 1747 3,02 393,55 2883,09 3279,66
21 10 8 0 0 0 1011,00 1011 3,35 240,29 0,00 243,65
22 150 148 724 722 2 3418,31 7244 3,01 453,05 3604,88 4060,94
23 150 148 670 667 3 3907,73 7244 3,03 454,68 3618,04 4075,75
24 150 148 761 759 2 4310,32 7244 3,02 453,40 3607,51 4063,93
25 145 143 856 855 1 4101,26 7244 3,48 455,74 3600,24 4059,46

avg. 121 119 602 601 2 3349,72 5997 3,18 411,43 2886,13 3300,74
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Table 5.6: Computational results for the single rule strategy with partition rule BB1.5
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 5 3 0 0 0 241,00 241 3,02 105,12 0,00 108,14
2 54 52 0 0 0 281,00 281 30,02 336,19 0,00 366,21
3 65 63 88 17 71 283,08 596 15,01 492,22 3601,79 4109,02
4 52 50 103 30 73 299,08 596 21,01 456,22 3631,54 4108,76
5 70 68 91 24 67 281,89 596 36,02 489,27 3614,03 4139,32

avg. 49 47 56 14 42 277,21 462 21,02 375,80 2169,47 2566,29
11 8 6 0 0 0 554,00 554 3,03 217,57 0,00 220,59
12 133 131 149 100 49 898,71 2366 3,01 456,31 3611,25 4070,57
13 142 140 219 175 44 974,18 2366 3,01 459,39 3623,24 4085,63
14 92 90 253 223 30 1304,55 2366 3,01 459,35 3611,38 4073,73
15 145 143 270 236 34 964,77 2366 3,01 453,79 3607,14 4063,93

avg. 104 102 178 147 31 939,24 2004 3,01 409,28 2890,60 3302,89
21 9 7 0 0 0 1007,00 1007 3,23 234,20 0,00 237,43
22 150 148 702 699 3 3421,42 7244 3,02 453,11 3609,84 4065,97
23 150 148 663 660 3 3970,45 7244 3,02 455,67 3601,60 4060,28
24 148 146 686 683 3 4111,08 7244 3,03 453,19 3603,75 4059,97
25 147 145 852 851 1 4078,67 7244 3,90 453,91 3617,98 4075,78

avg. 121 119 581 579 2 3317,72 5997 3,24 410,02 2886,63 3299,89

Table 5.7: Computational results for the single rule strategy with partition rule BB1.6
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 5 3 0 0 0 234,00 234 3,03 135,24 0,00 138,27
2 73 71 0 0 0 281,00 281 24,01 477,20 0,00 501,22
3 67 65 148 120 28 277,67 286 39,02 420,23 2590,37 3049,61
4 55 53 64 54 10 303,67 291 21,01 456,25 1077,53 1554,79
5 69 67 277 250 27 279,60 287 30,01 483,28 3608,12 4121,41

avg. 54 52 98 85 13 275,19 276 23,42 394,44 1455,20 1873,06
11 7 5 0 0 0 539,00 539 3,01 184,34 0,00 187,35
12 137 135 263 243 20 920,34 2366 3,01 456,32 3611,21 4070,54
13 138 136 338 314 24 991,39 2366 3,01 453,40 3620,61 4077,02
14 109 107 265 243 22 1209,19 2366 3,00 459,37 3620,74 4083,11
15 146 144 372 353 19 935,54 2366 3,00 468,65 3638,63 4110,28

avg. 107 105 248 231 17 919,09 2001 3,01 404,42 2898,24 3305,66
21 10 8 0 0 0 1002,00 1002 3,34 245,57 0,00 248,91
22 151 149 668 664 4 3310,02 7244 3,01 456,01 3617,66 4076,68
23 150 148 669 666 3 3944,82 7244 3,40 453,74 3606,99 4064,12
24 149 147 681 676 5 4185,00 7244 3,01 454,05 3616,07 4073,14
25 146 144 810 808 2 4096,23 7244 3,05 454,22 3614,74 4072,01

avg. 121 119 566 563 3 3307,61 5996 3,16 412,72 2891,09 3306,97

Table 5.8: Computational results for the single rule strategy (partition rule BB2.1)
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 7 5 0 0 0 231,00 231 3,03 141,20 0,00 144,22
2 52 50 38 34 4 291,75 281 30,02 342,15 468,24 840,41
3 75 73 158 109 49 287,09 379 39,02 462,24 3607,77 4109,03
4 57 55 170 133 37 300,67 304 21,02 459,20 3637,76 4117,98
5 79 77 242 211 31 276,33 287 48,04 543,33 3647,06 4238,42

avg. 54 52 122 97 24 277,37 296 28,22 389,62 2272,17 2690,01
11 9 7 0 0 0 542,00 542 3,04 163,37 0,00 166,41
12 134 132 359 349 10 918,25 2366 3,00 459,35 3614,25 4076,60
13 144 142 424 410 14 955,76 987 3,01 459,34 3623,74 4086,09
14 97 95 324 312 12 1277,18 2366 3,01 453,33 3603,17 4059,51
15 142 140 490 481 9 956,15 2366 3,01 459,81 3632,39 4095,20

avg. 105 103 319 310 9 929,87 1725 3,01 399,04 2894,71 3296,76
21 10 8 0 0 0 1008,00 1008 3,38 215,35 0,00 218,73
22 150 148 679 676 3 3269,48 7244 3,04 453,13 3604,17 4060,34
23 150 148 681 678 3 3950,66 7244 3,03 455,85 3611,00 4069,88
24 150 148 684 680 4 4198,37 7244 3,34 455,58 3624,29 4083,21
25 148 146 834 833 1 4129,13 7244 3,04 454,10 3607,23 4064,37

avg. 122 120 576 573 2 3311,13 5997 3,17 406,80 2889,34 3299,31
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Table 5.9: Computational results for the single rule strategy (partition rule BB2.2)
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 7 5 0 0 0 229,00 229 3,01 138,58 0,00 141,59
2 51 49 0 0 0 293,00 293 18,07 427,53 0,00 445,60
3 75 73 193 158 35 280,00 287 33,12 520,89 3619,07 4173,07
4 64 62 0 0 0 293,00 293 18,07 484,76 0,00 502,82
5 56 54 318 295 23 276,91 596 42,15 397,46 3622,09 4061,70

avg. 51 49 102 91 12 274,38 340 22,88 393,84 1448,23 1864,96
11 8 6 0 0 0 555,00 555 3,14 157,67 0,00 160,81
12 131 129 461 453 8 930,87 2366 3,03 454,65 3601,10 4058,77
13 141 139 393 381 12 972,83 2366 3,01 460,68 3610,27 4073,96
14 95 93 319 306 13 1333,76 2366 3,01 454,63 3604,04 4061,69
15 141 139 511 505 6 979,88 2366 3,01 454,85 3602,41 4060,27

avg. 103 101 337 329 8 954,47 2004 3,04 396,50 2883,56 3283,10
21 6 4 0 0 0 997,00 997 3,32 174,25 0,00 177,58
22 150 148 703 701 2 3400,55 7244 3,03 455,94 3604,00 4062,97
23 150 148 655 651 4 4030,92 7244 3,32 455,38 3603,15 4061,86
24 149 147 747 743 4 4151,91 7244 3,60 454,98 3603,17 4061,75
25 147 145 818 817 1 3979,01 7244 3,11 455,07 3605,65 4063,82

avg. 120 118 585 582 2 3311,88 5995 3,28 399,12 2883,19 3285,59

Table 5.10: Computational results for the single rule strategy (partition rule BB2.3)
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 6 4 0 0 0 224,00 224 3,01 150,57 0,00 153,58
2 63 61 0 0 0 287,00 287 33,12 460,67 0,00 493,79
3 66 64 266 241 25 283,33 596 15,05 505,85 3607,05 4127,95
4 67 65 162 115 47 301,50 596 21,08 472,70 3619,05 4112,82
5 69 67 323 304 19 284,50 596 48,17 460,65 3604,09 4112,92

avg. 54 52 150 132 18 276,07 460 24,09 410,09 2166,04 2600,21
11 6 4 0 0 0 576,00 576 3,07 178,92 0,00 181,99
12 130 128 580 577 3 947,96 2366 3,01 472,71 3607,12 4082,84
13 139 137 494 489 5 948,00 2366 3,01 457,71 3601,02 4061,73
14 104 102 284 275 9 1243,83 2366 3,03 454,65 3604,17 4061,84
15 130 128 363 361 2 1025,44 2366 3,03 454,76 3601,67 4059,45

avg. 102 100 344 340 4 948,25 2008 3,03 403,75 2882,79 3289,57
21 11 9 0 0 0 1007,00 1007 3,56 258,17 0,00 261,72
22 149 147 1013 1012 1 3320,85 7244 3,03 453,23 3602,93 4059,19
23 150 148 769 768 1 3809,33 7244 3,46 455,52 3600,09 4059,07
24 149 147 803 801 2 4210,57 7244 3,01 454,87 3602,47 4060,36
25 146 144 875 874 1 4093,24 7244 3,65 453,35 3606,43 4063,43

avg. 121 119 692 691 1 3288,20 5997 3,34 415,03 2882,39 3300,75

Table 5.11: Computational results for the single rule strategy (partition rule BB2.4)
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 6 4 0 0 0 229,00 229 3,01 195,81 0,00 198,82
2 60 58 74 66 8 288,19 281 30,11 460,67 1050,82 1541,60
3 67 65 131 73 58 277,00 297 24,09 493,77 3622,20 4140,06
4 59 57 157 107 50 307,00 342 18,07 475,72 3622,11 4115,90
5 68 66 248 222 26 278,67 291 48,17 406,46 3628,13 4082,76

avg. 52 50 122 94 28 275,97 288 24,69 406,49 2384,65 2815,83
11 5 3 0 0 0 542,00 542 3,01 114,88 0,00 117,89
12 135 133 375 366 9 919,32 1104 3,01 460,67 3604,17 4067,85
13 146 144 359 340 19 949,63 1102 3,03 457,69 3601,06 4061,78
14 95 93 295 273 22 1315,12 1098 3,01 478,73 3619,21 4100,95
15 144 142 307 299 8 931,42 1027 3,01 455,04 3605,14 4063,18

avg. 105 103 267 256 12 931,50 975 3,01 393,40 2885,91 3282,33
21 6 4 0 0 0 998,00 998 3,34 148,56 0,00 151,90
22 150 148 764 760 4 3467,62 7244 3,03 455,08 3600,19 4058,30
23 150 148 737 734 3 3965,66 7244 3,24 455,83 3600,71 4059,78
24 149 147 784 782 2 4147,36 7244 3,71 453,82 3609,44 4066,97
25 147 145 867 866 1 4019,73 7244 3,23 455,69 3603,31 4062,23

avg. 120 118 630 628 2 3319,67 5995 3,31 393,80 2882,73 3279,84
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Table 5.12: Computational results for the random strategy
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 7 5 0 0 0 235,00 235 3,01 156,70 0,00 159,71
2 59 57 243 215 28 288,83 308 12,04 478,75 3610,08 4100,87
3 63 61 230 203 27 279,71 315 33,024 522,26 3620,18 4175,45
4 56 54 40 34 6 291,00 291 21,08 409,49 680,47 1111,03
5 86 84 324 301 23 281,20 295 21,08 535,94 3613,03 4170,04

avg. 52 50 152 138 14 274,01 282 14,30 395,22 1975,90 2385,42
11 10 8 0 0 0 539,00 539 3,03 251,19 0,00 254,22
12 139 137 409 402 7 916,75 2366 3,03 457,66 3601,00 4061,69
13 143 141 409 399 10 942,41 990 3,03 454,63 3613,06 4070,72
14 84 82 315 300 15 1351,32 1227 3,01 469,70 3625,31 4098,02
15 144 142 466 456 10 942,17 2366 3,01 454,96 3602,09 4060,06

avg. 104 102 320 311 8 938,33 1498 3,02 417,63 2888,29 3308,94
21 6 4 0 0 0 1016,00 1016 3,29 147,58 0,00 150,87
22 150 148 706 705 1 3483,78 7244 3,03 454,45 3601,31 4058,78
23 149 147 664 661 3 3899,39 7244 3,01 453,63 3636,90 4093,54
24 149 147 748 744 4 4622,28 7244 3,23 453,20 3604,66 4061,09
25 146 144 840 839 1 4055,50 7244 3,25 453,13 3619,83 4076,21

avg. 120 118 592 590 2 3415,39 5998 3,16 392,40 2892,54 3288,10

Table 5.13: Computational results for the sequential strategy
Inst spLP colslp spBB colsBB nodBB zLP zopt tPP tLP tBB ttot

1 9 7 0 0 0 238,00 238 3,01 189,23 0,00 192,24
2 55 53 0 0 0 287,00 287 39,02 420,39 0,00 459,41
3 75 73 150 130 20 277,33 286 24,02 507,55 2335,31 2866,87
4 60 58 0 0 0 293,00 293 21,08 532,91 0,00 553,99
5 74 72 255 231 24 278,27 287 18,07 460,64 3600,14 4078,85

avg. 55 53 81 72 9 274,72 278 21,04 422,14 1187,09 1630,27
11 8 6 0 0 0 542,00 542 3,03 221,16 0,00 224,19
12 139 137 343 322 21 933,66 2366 3,01 454,66 3634,09 4091,76
13 134 132 365 349 16 989,20 2366 3,01 454,65 3607,13 4064,79
14 96 94 0 0 0 1238,00 1238 3,03 457,64 0,00 460,67
15 140 138 384 369 15 935,56 2366 3,04 455,01 3605,04 4063,09

avg. 103 101 218 208 10 927,68 1776 3,02 408,62 2169,25 2580,90
21 4 2 0 0 0 998,00 998 3,32 116,31 0,00 119,64
22 150 148 660 657 3 3295,23 7244 3,21 454,16 3603,89 4061,26
23 150 148 659 657 2 3946,71 7244 3,04 454,63 3606,37 4064,04
24 150 148 699 697 2 4133,27 7244 3,01 454,82 3601,69 4059,52
25 147 145 871 870 1 3990,57 7244 3,18 454,27 3608,32 4065,77

avg. 120 118 578 576 2 3272,76 5995 3,15 386,84 2884,05 3274,05
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5.8 Conclusions

In this chapter, we presented a column generation based heuristic algorithm for the

Capacitated Vehicle Routing Problem with Two-dimensional Loading constraints (2L-

CVRP). The master problem relies on a set partitioning formulation, while the sub-

problem corresponds to an elementary shortest path problem with loading constraints.

In order to solve the subproblem, we use the variable neighborhood search algorithm

described in Chapter 4. The overall approach includes the generation of valid dual

inequalities in order to accelerate the convergence. A branch-and-price approach was

also implemented. We conducted an extensive computational results using benchmark

instances from literature. The obtained results provided good solutions for small size

instances. However, for instances with a greater number of customers, the algorithm

tends to have more difficulty in finding integer solutions with acceptable values.
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6.1 Introduction

In the previous chapter, it became clear that column generation algorithm for the

2L-CVRP has some limitations, particularly when dealing with a large number of

customers. To overcome this limitation, in this chapter, we explore a set of new

heuristic strategies integrated within the column generation algorithm, to solve the

problem described in Section 2.3.1. These heuristics rely on constructive procedures

that iteratively build a solution using the solution of LP relaxation or the solutions

provided by a mixed integer programming model. In the latter case, some variables

are selected, and enforced to be integer. The pricing subproblem is also heuristically

solved, using the variable neighborhood search algorithm described in Chapter 4.

6.2 Heuristics based on mathematical programming

Due to the complexity of many problems, heuristics based on mathematical program-

ming can be effective in achieving good solutions in acceptable time. Ball [9] defined

four classes of heuristics based on mathematical programming. The first class includes

the decomposition methods, which are applied to a original problem, dividing it into

a set of subproblems that are solved up to optimality. It is desirable that this pro-

cedure turns the original problem in a set of smaller size subproblems. The second

class refers to the improvement heuristics. These heuristics consist in methods that

make use of an initial solution in order to derive a better one, using a mathematical

programming model. The third class corresponds to the methods that use mathemat-

ical programming algorithms in order to derive approximate solutions. Some of the

methods included in this class can be used for column generation approaches, such as

diving heuristics, that we will describe in next section. Finally, the last class refers

to the relaxation of the original problem. Some relaxation methods are mentioned by

the author as the Lagrangian relaxation based heuristics or rounding the solution to

a liner programming solution, among others.



6.2. Heuristics based on mathematical programming 125

6.2.1 Column generation based heuristics

Column generation algorithms may have very slow convergence for hard optimization

problems. This limitation motivated several column generation based heuristics ap-

proaches. In some cases, the pricing subproblem is solved through heuristic methods,

as presented in Chapter 5. In other cases, the heuristics are applied in the space of

the master problem, ensuring that the subproblem remains tractable. In this chapter,

we will give special emphasis to the latter type of heuristic methods.

Joncour et al. [80] analyzed two different methods. The first one is the so-called

restricted master heuristic which consists in confining the RMP to a subset of columns

and solving it as an integer programming formulation. The authors stated that this

subset can be heuristically created or it can rely on the columns generated within

the LP relaxation. Additionally, this confined subset can result from the combination

of both procedures. However, the simple selection of a subset of columns can lead

to infeasible solutions, and in this sense, some additional procedures may be needed.

The use of this method was recently proposed for the routing problem with profits [4]

or for the distance constrained multiple vehicle traveling purchaser problem [16].

In contrast to the first method, the second one starts from an empty solution.

It relies on the definition of heuristic procedures to select columns to be added to

the RMP until a feasible solution is reached. As an example of this second method,

the authors presented the rounding heuristics, which consists in iteratively fixing a

column with fractional value to an integer value. Rounding heuristics are commonly

used in a wide range of problems. Concerning the recent approaches for the routing

field, this rounding method was applied in the overall approach proposed by Spliet and

Desaulniers [138] for the discrete time window assignment vehicle routing problem, or

in the algorithm proposed by Macedo et al. for the multi-trip location routing [100].

However, and as stressed in [80], it can be difficult to achieve a feasible solution,

and to overcome this limitation, several works make use of diving heuristics. These

heuristics consist in fixing the variables to take a given value and solving again the LP

relaxation of the RMP, which corresponds to a depth-first heuristic in the branching

tree.
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6.3 Column generation based heuristics for the 2L-

CVRP

In this section, six different column generation heuristics are presented. With the

exception of the first one, all the other approaches have the same principle: the

solution is iteratively built, based on the selection of a given column provided by the

solution of the set-partitioning problem (5.12)-(5.14) formulated in Chapter 5. In

some approaches, the column is selected among those generated during the solution

of the LP relaxation. In others, the column is selected only after fixing some variables

to be integer, and solving the restricted master problem as a static Mixed Integer

Programming (MIP) model.

Again, with the exception for the first strategy, different criteria were used to

select one column to be added to a partial solution. After selecting a given column,

which corresponds to a route, all the customers visited by the route associated to

that column are removed from the formulation, and the LP relaxation is solved for

the new formulation. This procedure will iteratively tackle a problem smaller than

the previous one, and can help the convergence of the algorithm.

6.3.1 Approach I

In a first step, the LP-relaxation is solved using the column generation approach pro-

vided in Chapter 5, without branch-and-price, i.e., the LP-relaxation is solved only

at the root of the branching tree. Generally speaking, the approach defined in that

chapter consists in a restricted master problem with a set-partitioning structure and

a subproblem modelled as an elementary shortest path problem with two-dimensional

loading constraints. The subproblem is solved with a variable neighborhood search al-

gorithm, and some valid dual inequalities are used aiming to speed up the convergence

of the algorithm.

After obtaining the optimal LP solution, and using all the columns of the restricted

master problem, all the variables are enforced to take an integer value, i.e., the re-

stricted master problem is solved as a static integer programming (IP) model. This

procedure corresponds to the restricted master heuristic but using all the columns
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generated during the LP-relaxation.

With this procedure, we aim to obtain a fast solution. However, enforcing inte-

grality right after the LP relaxation of the restricted master problem can lead to very

poor quality solutions. In the following approaches, other methods are described,

which may expectably overcome this issue.

6.3.2 Approach II

Packing is the key feature of the 2L-CVRP, and it is known that good quality solutions

for the 2L-CVRP are related with higher usage of the loading area of vehicles. Since

the solution provided by Approach I (Section 6.3.1) is feasible, it can be analyzed in

terms of usage of the vehicle loading area. In this sense, the column corresponding to

the route with the highest usage is added to the final solution.

After adding a route to the final solution, the size of the model formulation is

reduced. Whenever a route is selected as a part of the final solution, all the constraints

of type (5.13) associated to the customers visited in the route are removed from the

master problem formulation. Then, the LP relaxation of the new restricted master

problem is solved and the procedure is repeated. This approach is summarized in

Algorithm 2.

The procedures referred to above aim to iteratively add to the final solution the

best combinations of customers, i.e., the customers which provide the best usage of

the loading area. The best usage route of the LP relaxation corresponds to a route

combining the optimization of area usage and the distance cost. From a constructive

standpoint, in each iteration, the best route will be added to the partial solution.

Then, the model will recombine the remaining customers.

6.3.3 Approach III

It is clear that the solution provided by LP relaxation is at least as good as the solution

provided by MIP when fixing all the variables to be integer. However, the former

solution may contain variables with fractional values, and therefore, the solution is

not feasible in the context of the 2L-CVRP. Nevertheless, each variable corresponds
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Algorithm 2: Approach II

Input: N : set of customers;

Output: S: Feasible solution of the 2L− CV RP ;

S = ∅

repeat
.Solve the LP relaxation;

.Solve RMP as a static IP;

.Select the best usage route r;

.Add r to partial solution S;

.Remove customers visited in r from N;

.Resize the master problem formulation;

until N = ∅;

return S;

to a feasible route.

It is possible to select routes to be added to a partial solution right after obtaining

the LP relaxation of the RMP. At this step, it is necessary to define a rule to select

the routes to be added. The iterative inclusion of routes associated to decision vari-

ables whose values are close to one may provide good approximations to the optimal

solution. This is due to the fact that if those values are close to one, then a solution

where they are in fact one may not be too far from the LP solution.

In this approach, not all variables whose values are close to one are added to the

partial solution. It can be profitable to add just a subset of routes and to solve again

the LP-relaxation. This is due to the fact that an integer solution can be obtained

with the insertion of that subset. Furthermore, it can happen that variables that are

not close to one in the beginning of the algorithm, can achieve that value in following

iterations.

Let Ω be the set of all variables (λ1, λ2, . . . , λp) generated in the LP relaxation.

Each variable corresponds to one route. Then, nfix variables are selected among those

which comply to the following constraint:
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λi ≥ 1− ε3, λi ∈ Ω. (6.1)

Typical values for ε3 are between 0.1 and 0.25. The nfix routes are fixed to one

to be part of the final solution. As happens in Section 6.3.2, after adding this subset

of routes to the final solution, the size of the model is reduced by removing the

constraints associated with each customer belonging to the set of nfix routes. The

LP relaxation of the new restricted master problem is solved and the procedure is

repeated until all customers are part of the final solution or until there are no routes

satisfying condition (6.1). In the former case, a feasible solution is obtained. In the

latter case, the last RMP is solved as a static IP model. This strategy is outlined in

Algorithm 3.

Algorithm 3: Approach III

Input: N : set of customers;

nfix: maximum number of routes added in each iteration;

ε3: parameter for selecting variables;

Output: S: Feasible solution of the 2L− CV RP ;

S = ∅

repeat
.Solve the LP relaxation;

.Select up to nfix routes satisfying condition (6.1);

.Add the selected routes to partial solution S;

.Remove customers visited in selected routes from N;

.Resize the master problem formulation;

until N = ∅
∨
6 ∃λi ∈ Ω satisfying condition (6.1);

if N 6= ∅ then
.Solve RMP as a static IP;

end

return S;

An example is presented in Figure 6.1. For the sake of simplicity, only a partial

solution is presented. Table 6.1 corresponds to the partial LP relaxation solution. In
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this example, it is assumed ε3 = 0.1 and nfix is equal to one.
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Figure 6.1: An example of Approach III

Table 6.1: Partial Solution of LP relaxation

customer λ1 . . . λ5 . . . λ8 λ9 . . .

1 1 . . . 1 . . . . . . = 1

2 1 . . . . . . 1 . . . = 1

3 . . . 1 . . . 1 . . . = 1

4 . . . . . . . . . = 1

5 1 . . . . . . 1 . . . = 1

6 . . . . . . . . . = 1

7 . . . 1 . . . 1 . . . = 1

8 . . . . . . 1 1 . . . = 1

9 . . . . . . . . . = 1

0,1 . . . 0,9 . . . 0,2 0,1 . . .

6.3.4 Approach IV

In the fourth approach, the solution of the LP relaxation is also analyzed. In this

solution, variables taking values close to an integer value (0 or 1) suggest that one

may have a good approximation to the optimal solution, when those variables are in

fact integer. Therefore, forcing those variables to be integer and solving the RMP as

a static MIP can provide a good quality solution that is not far from the LP solution.
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In other words, this procedure will require the decision of including or not the routes

corresponding to those variables in the solution. If they are in fact included, it can

mean that a good quality solution includes this route. Thus, it is possible to build a

heuristic procedure which iteratively adds routes with this MIP formulation.

All variables whose values are close to zero or close to one are enforced to be

integer. More precisely, and assuming the notation above, we enforce integrality to

all variables satisfying the condition

λi ≥ 1− ε4,∀λi ∈ Ω, (6.2)

or the condition

λi ≤ ε4,∀λi ∈ Ω. (6.3)

Typical values for ε4 are between 0.1 and 0.25. After solving the MIP model, the

decision variables which were enforced to be integer and take now value one correspond

to routes which will be added to the partial solution. Therefore, the customers of

these routes are removed from the model. The size of the model is reduced since all

the constraints associated to these customers are removed from the master problem

formulation.

At this step, we solve the LP relaxation of the new master problem, and the process

is repeated from the beginning, until all customers are assigned to the partial solution

or until there are no columns satisfying the condition 6.2 or 6.3. In the former case, a

final heuristic solution is obtained. In the latter case, the last RMP is solved resorting

to the Approach I. This strategy is outlined in Algorithm 4.

6.3.5 Approach V

In the previous approach, it can happen that there are no variables satisfying the

conditions (6.2) or (6.3). Consequently, the overall method is confined to solve the

RMP as an IP model, hence reducing to the Approach I. These situations happen

when the value of the variables are not close to zero or one. Thus, it is possible to

adapt Approach IV, but, instead of selecting variables with values close to zero or one,
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Algorithm 4: Approach IV

Input:

N : set of customers;

ε4: parameter for selecting variables; typically, ε4 ∈ [0.1, 0.25];

Output:

S: Feasible solution of the 2L− CV RP ;

repeat
.Solve the LP relaxation;

.Enforce integrality for all variables satisfying condition

(6.2) or (6.3);

.Solve RMP as a static MIP;

.Add routes for the selected variables taking value 1 to S

.Remove customers assigned to S from N;

.Resize the master problem formulation;

until N = ∅
∨
6 ∃λi ∈ Ω satisfying condition (6.2) or (6.3);

if N 6= ∅ then
.Solve RMP as a static IP;

end

return S;

selecting those that have values more distant from integer values. This procedure will

enforce the model to select or not these variables to be part of the solution.

More precisely, and taking into account the notation on previous approach, after

solving the LP relaxation we enforce integrality to all variables which satisfy the

following condition:

ε5 ≤ λi ≤ 1− ε5,∀λi ∈ Ω. (6.4)

Typical values for ε5 are between 0.35 and 0.4. As in the previous approach, the

master problem is solved as a static MIP model, and the decision variables (i.e., the

routes) which take value one are added to the partial solution. The model is resized

and the LP relaxation of the new model is solved. Again, the process is repeated
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until all customers are assigned to the partial solution or until there are no columns

satisfying the condition 6.4. In this last case, the restricted master problem is solved

as a static integer programming model.

6.3.6 Approach VI

If the solution obtained with LP relaxation includes more than one route visiting

the same customer, then the variables of the columns corresponding to those routes

have fractional values. If all these values were integer, then there would be only one

route for assigning each customer. Based on this idea, it is possible to build a heuristic

solution by selecting one and only one route for customers belonging to several routes.

Indeed, this approach aims to iteratively enforce the model to select only one route

for each customer assigned to more than one route.

More precisely, after solving the LP relaxation, we select the customer that is as-

signed to more fractional routes. A possible interpretation is that this these customers

are the ones which the model has more difficult to assign. The decision variables that

are associated to routes visiting this customer are enforced to be integer and the

restricted master problem is solved as a static MIP model.

From the obtained solution, among the variables which were enforced to be integer,

we select the one which takes value one. This variable corresponds to a route which

is added to the partial solution. Therefore, the model is reformulated by removing

all constraints related to the customers visited in the selected route. Then, the LP

relaxation is solved and the process is repeated until all customers are assigned to the

partial solution.

With this procedure, the MIP model will provide only one route for a given selected

customer. Consequently, all the other combinations are forbidden, which can simplify

the remaining problem in next iterations. This approach is summarized in Algorithm

5.
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Algorithm 5: Approach VI

Input:

N : set of customers;

Output:

S: Feasible solution of the 2L− CV RP ;

repeat
.Solve the LP relaxation;

.Select the customer visited in more routes;

.Enforce integrality to all the variables associated to that

customer;

.Solve RMP as a static MIP;

.Add routes for the selected variables taking value 1 to S

.Remove customers from N

.Resize the master problem formulation

until N = ∅;

return S;

6.3.7 Approach VII

It is clear that selecting the customer which is more divided among the routes, and

imposing integrality for all the decision variables associated to that routes will enforce

the model to select one and only one variable to take value 1. All the other variables

will take value 0.

This can lead to a MIP solution which is significantly different of the LP solution:

a possibly great number of columns may be excluded from the solution, while the value

of one variable may be increased. In this last case, if the value of this variable in the LP

solution is lower than 0.5, the cost of the MIP solution is increased more than the cost

of such variable. In order to avoid a significant difference between the LP and MIP

solutions, the last approach starts by selecting the customer assigned to less routes in

the LP solution. Thus, the solution of the MIP model will iteratively selects the best

route for the less divided customer by enforcing all the variables corresponding to

routes visiting that customer to be integer. After solving the resulting MIP problem,
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among these integer variables, the one (i.e., route) selected to take value one will be

added to the partial solution. The model is resized and the procedure is repeated

until all customers are assigned to the partial solution.

6.4 Computational experiments

6.4.1 Set of instances

In order to assess the quality of the six approaches we use a subset of instances

proposed for the 2L-CVRP [76, 78, 64], which were described in detail in Section

3.2.1. In Table 6.2, we present the 90 instances used in our tests, using the following

notation:

• Instance: original name of the instance;

• Class: class of the instance;

• m: number of customers;

• #it: number of items of all customers;

• H: height of the loading area of the vehicle;

• W : width of the loading area of the vehicle.

The algorithms were coded in C++, and the tests were run on an Intel Xeon

Processor E5-1620 v3 with 3.50 GHz and 64 GB of RAM.

6.4.2 Performance of the approaches

We conducted two set of computational experiments. In the first set, we ran all

instances for all strategies with a time limit of 60 seconds for the LP relaxation. All

the parameters were fixed to the values as follows: nfix = 5, ε3 = 0.1, ε4 = 0.1,

ε5 = 0.35. In Table 6.3 we present the results for the first set of experiments. We

present the results obtained in Approach I, II, VI and VII. The strategies not covered

in this table produce results that are outperformed by the three strategies II, VI and
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Table 6.2: Set of instances used in computational experiments
Instance Class m #it H W Instance Class m #it H W

E016-03m 1 15 15 40 20 E045-04f 1 44 44 40 20
2 15 24 40 20 2 44 66 40 20
3 15 31 40 20 3 44 87 40 20
4 15 37 40 20 4 44 112 40 20
5 15 45 40 20 5 44 122 40 20

E021-04m 1 20 20 40 20 E051-05e 1 50 50 40 20
2 20 29 40 20 2 50 82 40 20
3 20 46 40 20 3 50 103 40 20
4 20 44 40 20 4 50 134 40 20
5 20 49 40 20 5 50 157 40 20

E022-04g 1 21 21 40 20 E072-04f 1 71 71 40 20
2 21 31 40 20 2 71 104 40 20
3 21 37 40 20 3 71 151 40 20
4 21 41 40 20 4 71 178 40 20
5 21 57 40 20 5 71 226 40 20

E023-03g 1 22 22 40 20 E076-07s 1 75 75 40 20
2 22 32 40 20 2 75 114 40 20
3 22 41 40 20 3 75 164 40 20
4 22 51 40 20 4 75 168 40 20
5 22 55 40 20 5 75 202 40 20

E026-08m 1 25 25 40 20 E101-08e 1 100 100 40 20
2 25 40 40 20 2 100 157 40 20
3 25 61 40 20 3 100 212 40 20
4 25 63 40 20 4 100 254 40 20
5 25 91 40 20 5 100 311 40 20

E031-09h 1 30 30 40 20 E121-07c 1 120 120 40 20
2 30 50 40 20 2 120 183 40 20
3 30 56 40 20 3 120 242 40 20
4 30 82 40 20 4 120 299 40 20
5 30 101 40 20 5 120 384 40 20

E033-03n 1 32 32 40 20 E135-07f 1 134 134 40 20
2 32 44 40 20 2 134 197 40 20
3 32 56 40 20 3 134 262 40 20
4 32 78 40 20 4 134 342 40 20
5 32 102 40 20 5 134 422 40 20

E036-11h 1 35 35 40 20 E151-12b 1 150 150 40 20
2 35 56 40 20 2 150 225 40 20
3 35 74 40 20 3 150 298 40 20
4 35 93 40 20 4 150 366 40 20
5 35 114 40 20 5 150 433 40 20

E041-14h 1 40 40 40 20 E200-16b 1 199 199 40 20
2 40 60 40 20 2 199 307 40 20
3 40 73 40 20 3 199 402 40 20
4 40 96 40 20 4 199 513 40 20
5 40 127 40 20 5 199 602 40 20

VII. The results are grouped according to the number of customers of the instances.

In this sense, we present the average values for each 5 instances with the same number

of customers. In Table 6.3 we use the following notation:
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• m: number of customers;

• spLP : average number of call of the subproblem;

• colsLP : average number of generated columns during the LP relaxation of the

RMP;

• zLP cost of the LP solution;

• zOPT value of the best solution achieved;

• tPP : computing time for the initialization of the RMP (in seconds);

• tLP : computing time for the LP relaxation (in seconds);

• tTOT : total computing time (in seconds);

• avg.: average of each column.

The computational results presented in Table 6.3 show that the LP relaxation pro-

vides similar solutions in all approaches. This is not surprising since all the approaches

have the same maximum computing time. However, these values are not equal due

to the application of heuristic methods (including random procedures) applied to the

subproblem. Strategies II, VI and VII tend to present best average values of cost.

Among the best strategies, approach II seems to be more effective for instances con-

taining a moderate number of customers, providing the best average results for the

groups of 15 to 32, 40 and 44 customers. On the contrary, approach VI leads to the

best average results for the groups of 35, 50, 71, and 100 to 199 customers. Only one

group (75 customers) achieves the best average result using strategy VI.

The number of columns generated in the LP relaxation tends to be greater for the

best strategies when compared to Approach I. Consequently, the number of calls to

the subproblems also shows the same trend. Note that Approach I relies on the strict

resolution of RMP as a static IP. The Approach VII tends to present a greater number

of generated columns when compared to Approach II, with few exceptions. One of

these exceptions is the group of 134 customers: approach VII presents a solution that
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Table 6.3: Computational results for the first set of tests (approaches I, II, VI and

VII)

Approach I Approach II

m spLP colsLP zLP zOPT tPP tLP tTOT spLP colsLP zLP zOPT tPP tLP tTOT

15 17 15 321,17 359 22,28 63,84 63,84 45 40 317,01 316 20,48 76,51 254,15
20 17 15 481,67 524 3,01 80,12 80,13 55 47 488,19 490 3,01 65,66 415,59
21 18 16 516,35 623 3,01 68,09 68,10 72 64 499,86 562 3,02 69,90 473,40
22 18 16 913,88 1078 3,02 69,86 69,87 76 69 903,75 940 3,02 78,29 426,97
25 17 15 682,63 746 3,01 70,48 70,48 99 91 694,17 652 3,02 68,62 489,31
30 18 16 702,15 744 3,01 72,91 72,92 105 95 687,40 608 3,01 78,73 570,50
32 18 16 4290,78 4769 3,02 72,32 72,33 101 90 4215,88 3904 3,01 70,31 631,17
35 18 16 842,75 924 3,01 63,26 63,27 121 107 833,66 806 3,02 64,30 806,60
40 18 16 949,57 1028 3,03 71,83 71,84 132 117 983,59 879 3,02 75,19 862,69
44 18 16 1816,52 2033 3,03 71,78 71,79 170 154 1859,76 1521 3,01 71,56 924,57
50 17 15 1404,45 1485 3,03 66,97 66,98 137 124 1387,97 1201 3,01 81,33 836,17
71 18 16 1164,09 1270 3,03 72,77 72,81 251 219 1211,75 1020 3,11 70,55 2039,36
75 18 16 2194,40 2363 3,10 75,98 76,01 307 274 2210,74 1951 3,08 85,10 2065,52

100 18 16 3189,54 3358 3,21 68,48 68,51 409 365 3222,93 2601 3,04 66,47 2753,74
120 18 16 7199,96 7884 3,18 75,55 75,57 804 743 7109,46 5730 3,14 71,61 3731,95
134 17 15 5866,38 6204 3,17 66,13 66,17 1195 1113 5779,80 5256 3,31 65,22 5063,94
150 18 16 4933,87 5219 3,29 73,72 73,77 1077 1003 4926,47 4065 3,17 66,54 4583,58
199 17 15 6669,47 6852 3,33 66,27 66,29 1348 1240 6737,48 5475 3,26 73,29 6727,62
avg. 18 16 2452,20 2637 4,16 70,57 70,59 361 331 2448,33 2110 4,04 72,18 1869,83

Approach VI Approach VII

m spLP colsLP zLP zOPT tPP tLP tTOT spLP colsLP zLP zOPT tPP tLP tTOT

15 37 33 313,71 353 19,82 66,64 212,54 46 42 309,88 327 22,22 77,47 245,62
20 64 56 477,22 677 3,01 80,47 492,50 56 50 488,96 644 3,01 70,27 306,26
21 71 63 517,92 595 3,01 70,90 410,85 68 62 502,30 615 3,01 69,67 305,70
22 73 65 923,39 1233 3,00 75,07 477,44 83 76 929,38 1480 3,01 71,48 399,97
25 90 81 695,73 732 3,02 72,68 499,71 109 99 680,13 674 3,01 72,69 529,61
30 73 67 686,32 713 3,01 72,71 348,39 104 96 680,78 689 3,01 72,12 494,37
32 137 124 4239,58 4503 3,02 79,33 779,66 138 126 4219,03 4326 3,01 76,34 719,06
35 118 105 831,88 865 3,01 65,48 860,26 121 110 813,34 796 3,02 67,35 657,94
40 128 116 961,57 1009 3,02 67,36 690,49 177 162 971,45 939 3,05 59,59 847,47
44 168 153 1889,62 2093 3,02 83,04 922,84 201 182 1889,66 1598 3,12 74,59 1173,14
50 142 128 1374,74 1345 3,03 77,63 860,39 214 197 1377,84 1129 3,03 71,01 1022,46
71 194 170 1180,70 1115 3,08 77,86 1449,91 368 341 1208,82 995 3,05 67,54 1595,80
75 305 275 2209,33 1844 3,10 80,26 1919,15 449 416 2210,53 2014 3,06 70,05 2010,07

100 345 302 3263,95 2812 3,21 73,26 2754,58 570 530 3265,44 2372 3,11 76,65 2437,03
120 559 497 7121,63 6584 3,18 85,91 4033,85 821 764 7153,81 5677 3,12 78,01 3510,57
134 869 787 5784,90 5945 3,20 71,89 5154,94 864 802 5791,41 4607 3,12 71,17 3878,26
150 686 612 4888,39 4312 3,24 73,95 4771,62 1122 1057 4909,62 3679 3,18 63,20 3953,57
199 1145 1031 6677,52 5754 3,49 82,60 7281,25 1561 1468 6726,44 4951 3,25 66,23 5708,50
avg. 289 259 2446,56 2360 4,03 75,39 1884,47 393 365 2451,60 2084 4,13 70,86 1655,30
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outperforms the one obtained in Approach II in roughly 12,35%, while the number of

generated columns is less than 300 when compared to the second approach.

As it can be seen, the Approach I presents similar computing time for each group.

These value are clearly outperformed in the best strategies (more than 1800 on average

for Approach II and more than 1600 seconds on average for Approach VII). Generally,

the amount of computational time tends to increase with the number of customers,

with few exceptions.

All groups where Approach VII finds the best average cost present average com-

puting time lower than the ones provided by Approach II, with an exception for the

group of 50 customers.

In the second set of computational experiments, we ran all the instances for all

strategies with an increased time limit for the LP-relaxation (120 seconds). All the

parameters referred to above are still the same. Table 6.4 presents the average results

for this set of experiments

When comparing the results in Table 6.3 and Table 6.4, it can be seen that the

total average computing time increases roughly 1000 seconds for approaches II, VI

and VII. Approach II leads to the best average results. Indeed, this approach was

able to find the best solution in the groups of 15 to 120 customers. Approach VII was

only able to outperform the solutions of Approach II for three groups (134, 150 and

199 customers). When comparing these two approaches, the best solution for each

group is also the one that is obtained in less computing time, with few exceptions.

When compared with Approach I, Approach II achieves an average improvement

of 25,7% in terms of costs, while Approach VI achieves an average improvement of

23,38%. Approach VI does not lead to any best solution among all groups. However,

this approach yields better results than Approach VII for 3 groups (22, 25 and 50).

Among all strategies, Approach VII leads often to longer computing time.

6.5 Conclusions

In this chapter, we presented a set of column generation heuristics. All these heuristics

rely on decisions that are taken considering the set partitioning problem formulation
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Table 6.4: Computational results for the second set of tests (approaches I, II, VI and

VII)

Approach I Approach II

m spLP colsLP zLP zOPT tPP tLP tTOT spLP colsLP zLP zOPT tPP tLP tTOT

15 31 29 294,38 314 22,22 130,34 130,35 59 55 290,29 286 22,82 112,90 392,67
20 32 30 435,28 476 3,01 127,35 127,36 73 67 433,37 456 3,02 103,36 589,71
21 33 31 456,35 523 3,01 126,16 126,18 90 83 452,56 493 3,01 79,92 652,22
22 33 31 831,57 958 3,01 129,14 129,17 110 104 822,15 851 3,00 109,31 584,31
25 34 32 596,46 665 3,02 126,14 126,16 123 115 584,13 573 3,01 99,11 826,78
30 34 32 606,14 675 3,02 129,85 129,87 141 134 605,98 569 3,02 112,37 813,75
32 33 31 3584,84 4171 3,01 119,54 119,57 129 120 3526,05 3682 3,03 99,77 1007,97
35 33 31 744,57 832 3,02 123,83 123,85 144 134 751,41 718 3,02 99,19 1125,48
40 34 32 859,25 978 3,02 123,91 123,95 177 166 811,29 783 3,04 84,96 1118,23
44 34 32 1587,42 1850 3,02 131,85 131,90 196 183 1586,20 1431 3,02 97,43 1408,80
50 33 31 1215,57 1319 3,01 132,42 132,46 220 206 1232,22 1044 3,03 98,70 1635,28
71 34 32 1022,43 1172 3,03 129,90 129,95 271 249 1021,00 810 3,04 96,23 2162,89
75 34 32 1940,19 2166 3,09 128,73 128,78 291 270 1925,00 1516 3,06 101,41 2204,67

100 34 32 2884,20 3089 3,20 123,33 123,38 379 351 2870,73 2043 3,16 79,61 2914,82
120 34 32 6122,04 7027 3,11 127,96 128,02 736 691 6114,27 4331 3,31 109,44 5288,78
134 34 32 5071,79 5776 3,34 125,47 125,54 1487 1421 4974,82 4357 3,30 129,42 8090,24
150 34 32 4494,79 4795 3,19 125,03 125,09 972 915 4506,92 3377 3,15 121,22 6904,29
199 34 32 6224,09 6557 3,41 129,01 129,07 2039 1943 6211,37 4890 3,18 130,52 11650,70
avg. 33 31 2165,08 2408 4,15 127,22 127,26 424 400 2151,10 1789 4,18 103,60 2742,87

Approach VI Approach VII

m spLP colsLP zLP zOPT tPP tLP tTOT spLP colsLP zLP zOPT tPP tLP tTOT

15 61 57 292,84 355 25,22 117,69 374,65 61 57 288,82 307 21,02 122,49 422,07
20 84 79 433,62 652 3,01 132,13 596,91 81 75 439,71 517 3,01 117,15 623,93
21 97 92 461,98 643 3,01 129,19 537,05 92 87 456,62 612 3,01 132,76 504,53
22 100 94 823,73 1051 3,01 122,52 640,75 113 106 827,87 1213 3,01 100,91 648,59
25 112 104 579,84 608 3,01 96,14 791,43 112 104 587,68 642 3,00 100,89 743,92
30 171 161 602,50 707 3,01 137,58 1112,17 154 145 593,96 614 3,01 114,80 953,65
32 167 158 3554,57 4551 3,01 129,78 1015,78 167 157 3563,73 3825 3,01 135,23 1116,67
35 156 144 732,32 859 3,01 94,99 1198,15 183 172 748,45 797 3,02 108,18 1312,84
40 168 157 838,43 1061 3,02 81,81 1072,28 222 211 834,63 853 3,05 111,98 1289,51
44 181 167 1578,11 1767 3,11 100,54 1351,72 234 218 1553,89 1633 3,04 106,53 1702,56
50 268 251 1196,61 1212 3,02 120,94 2018,79 295 279 1233,31 1230 3,01 116,14 1915,24
71 361 336 1022,41 993 3,05 108,87 2602,38 485 463 997,48 931 3,10 128,30 2672,91
75 418 391 1976,58 1988 3,04 87,43 2842,66 550 525 1961,94 1679 3,04 87,94 2934,80

100 565 527 2851,18 2629 3,10 128,08 4175,26 693 663 2918,53 2192 3,06 119,20 3628,36
120 818 760 6109,69 6140 3,21 67,32 6238,98 1003 956 6146,09 4703 3,08 133,71 5688,23
134 1027 960 5060,90 5144 3,02 100,56 7918,90 1206 1153 5088,19 4079 3,15 128,20 6445,16
150 1178 1117 4535,65 4025 3,13 104,90 7097,51 1577 1524 4508,18 3167 3,17 127,20 6413,79
199 1623 1532 6122,94 5113 3,30 141,70 11189,22 2152 2080 6172,22 4217 3,64 125,72 8781,53
avg. 420 394 2154,11 2194 4,29 111,23 2931,92 521 499 2162,29 1845 4,08 117,63 2655,46
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of the master problem. The basic idea in each one of them was to build a feasible

solution from the one obtained from the LP-relaxation. This was performed by fixing

some fractional variables to become part of the solution, or by solving a MIP model

with some of these variables enforced to be integer. Iteratively, the model is resized

and it becomes smaller, which can make it less difficult to solve.
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7.1 Introduction

In this chapter, a capacitated vehicle routing problem with loading constraints and

mixed linehauls and backhauls is presented. The addressed problem belongs to the

subclass of pickup and delivery problems. Two-dimensional loading constraints are

also considered.

These constraints arise in many real-world situations, and can improve efficiency

since backhaul customers do not need to be delayed in a route when it is possible to

load their items earlier and without rearrangements of the items.

To tackle this problem, we present a computational study on variants of the vari-

able neighborhood search. The initial solution relies on an insertion heuristic. Both

the shaking and local search phases resort to ten neighborhood structures. Some of

those structures were specially developed for this problem. The validation of routes

is heuristically obtained with a classical bottom-left method enhanced to tackle the

explicit consideration of loading constraints.

All the strategies that are presented were tested. An exhaustive computational

study is performed on instances adapted from benchmark instances of integrated

routing and loading problems.

This chapter is organized as follows. In Section 7.2, we describe the Capacitated

Vehicle Routing Problem with 2-dimensional Loading constraints and Mixed linehauls

and Backhauls (2L-CVRPMB). In Section 7.3 a state of the art is provided. In

Section 7.8.1, we represent the solution while in Section 7.6 the method to find an

initial solution is presented. The neighborhood structures and the variants of the

variable neighborhood search algorithm are presented in Section 7.7 and in Section 7.8,

respectively. In Section 7.9 the computational results of this approach are presented

and discussed. Finally, some conclusions are drawn in Section 7.10.

7.2 Problem definition

The Capacitated Vehicle Routing Problem with 2-dimensional Loading constraints

and Mixed Linehauls and Backhauls (2L-CVRPMB) can be described as follows. Let

G = (V,E) be a complete graph, where V = {0, 1, . . . , l, l+ 1, l+ 2, l+ b} is the set of



7.2. Problem definition 145

nodes and E is the set of edges. The set V includes n+1 vertices corresponding to the

depot (vertex 0) and to the n customers including l linehaul customers and b backhaul

customers. The set E includes all pair of vertices such that E = {(i, j) : i, j ∈ V, i 6=

j}. Let cij be the non-negative cost of traversing the edge (i, j). There is a set of

K identical vehicles, each one having a weight capacity C and a two-dimensional

rectangular loading area with height H and width W . Each linehaul customer i (or,

respectively, each backhaul customer i) has a demand (or, respectively, a supply)

composed by mi two-dimensional rectangular items. Each item j (j = 1, 2, . . . ,mi) of

customer i (i = 1, 2, . . . , l + 1, l + 2, l + b) is denoted by Ii,j.

The 2L-CVRPMB consists in finding the set of optimal routes, each one starting

and ending at the depot and satisfying the following constraints:

(C1) the number of used vehicles cannot be greater than K;

(C2) each customer is visited exactly once;

(C3) the total weight associated to each arc of each route cannot exceeded the weight

capacity of the vehicle;

(C4) items have a fixed orientation in the loading area, i.e., items cannot be rotated;

(C5) in each vehicle, the items must be completely within the surface, must not

overlap, and the edges of each items must be parallel to the loading area edges;

(C6) unloading an item at a given customer must be performed in a straight move-

ment, without moving items of other customers, and the loaded items from

backhaul customers cannot block items to be delivered nor be moved after be-

ing positioned in the loading area (sequential constraints).

An example of the 2L-CVRPMB is presented in Figure 7.1. Only one route is

considered.
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Figure 7.1: An instance of the 2L-CVRPMB
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7.3 State of the art

7.3.1 The vehicle routing problem with mixed linehauls and

backhauls

The Vehicle Routing Problem with Mixed Linehauls and Backhauls (VRPMB) is

a subclass of problems belonging to the Vehicle Routing Problem with Backhauls

(VRPB), in which the customers are divided in two different groups: linehaul and

backhaul customers. Each linehaul customer has a given demand that can only be

provided by the depot, while each backhaul customer provides a given supply whose

only destination is the depot. In the VRPMB, both the linehaul and backhaul cus-

tomers can be indistinctly visited, which means that within the same route, it is not

required to visit all linehaul customers before visiting backhaul customers.

In [65], the Clarke and Wright method is applied to assign all linehaul customers to

the routes. Then, an insertion-based heuristic evaluates the insertion of each backhaul

customer in all route points where that customer can be feasibly inserted. This

insertion cost is obtained by the additional routing cost when inserting that customer

in a given arc, and by adding the product of a penalty multiplier with the number of

delivers after that insertion. The minimum cost defines the backhaul customer and

its insertion point. The process is repeated until all backhaul customers are visited.

The insertion cost was revised in [27] by subtracting a value which is proportional

to the distance between the backhaul customer to be inserted and the depot, and by

adding the product of a penalty multiplier with the quantity still to be delivered after

the insertion point.

Based on this insertion cost suggested in [27], a more concise formula is proposed

in [135]. The multiplier associated to the remaining load that has to be delivered is

calculated in distance units. The authors proposed four heuristics procedures. Each

heuristic starts from a solution where all linehaul customers are already assigned

to the routes. The first heuristic is based on [65] and in [27] by computing the

insertion cost of each customer/arc and inserting the customer with the least cost.

The second heuristic computes both the insertion cost for each customer/arc as in

the first heuristic and the insertion cost of each pair of backhaul customers. The
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least cost defines the insertion of one or two customers. This procedure allows small

improvements when two backhaul customers are near each other. Since this situation

can happen with more than two customers, the authors suggested two more heuristics

in which clusters of backhaul customers can be inserted. In these heuristics, the

insertion costs for each customer, for each pair of customers, and for each cluster

are computed in each iteration, and the best cost defines the customer (or group of

customers) and its position in a route. The analysis of the insertion costs will allow

to have the perception, at each iteration, if each customer with a smaller insertion

cost is inserted alone or associated with another customer. In order to define the

clusters, the authors defined a graph of all backhaul customers, where all customers

that are better inserted in pairs are linked by an edge. The difference between the two

last heuristics is the strategy to build clusters. For the third heuristic, only customers

which form a complete graph can be grouped in a cluster, while in the fourth heuristic,

it is sufficient for customers to form a connected graph to be grouped in a cluster.

An improved insertion heuristic is presented in [146]. It is also possible to insert

one or two customers at each iteration, depending on the least insertion cost. This

approach is improved with a so-called restriction percentage. The restriction per-

centage is defined by the user and it is based on his/her experience to define how

backhaul and linehaul customers can appear mixed in a route. This percentage value

is used when evaluating the insertion of a backhaul customer in a given arc. The

percentage of linehaul goods already delivered must be greater than or equal to the

restriction percentage, in order to enable the insertion of a backhaul customer in that

arc. Otherwise, the insertion on that arc is not be evaluated again.

A heuristic for the VRPMB and for the Vehicle Routing Problem with Simultane-

ous Delivery and Pickup (VRPSDP) is suggested in [118]. As referred to in Section

2.2, the VRPSDP is a pickup and delivery problem in which customers require both a

quantity to be delivered and a quantity to be picked up, and in which customers must

be served in a single visit. The heuristic starts by obtaining a so-called weakly feasible

solution. One solution is weakly feasible if it satisfies the maximum route length, and

if the capacity of the vehicle is not exceeded by the total load to be delivered or by

the total load to be picked up. In contrast, a strongly feasible solution satisfies the
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maximum route length and, additionally, the vehicle capacity is not exceeded in each

arc of the route. Some improvements are then performed by applying local search

on the initial solution, and turning the solution in a strongly feasible solution. Addi-

tional local search procedures are applied, improving the quality of the solution while

keeping it as strongly feasible.

7.3.2 Pickup and delivery with loading

The interest of Pickup and Delivery Problems (PDP) in which loading constraints

are considered has been increasing. Some examples include the Pickup and Deliv-

ery Travelling Salesman Problem with loading constraints and the Double Travelling

Salesman with Multiple Stacks, as defined in Section 3.5.5.

Other approaches addressed PDP considering more than a single dimension of the

goods, generalizing the capacitated vehicle routing problem with loading constraints

defined in Section 2.3. A constraint programming model based on the scheduling field

for the two-dimensional loading with sequential constraints is presented in [102].

The PDP with three-dimensional loading constraints was addressed in [10]. The

approach is based on a local search method defined by swapping the vertices if that

leads to a lower route length. After deriving a valid packing solution, another local

search procedure is performed by assigning customers to other routes.

It is important to note that for both approaches referred to above, the transporta-

tion of goods is performed between the customers. In contrast, transportation from

and to the depot is considered in [22]. These authors addressed in particular the 3L-

CVRP with clustered backhauls. As referred to before, backhaul customers should

be visited after the linehaul customers within the same route. Sequential constraints

are taken into account, and these constraints should be satisfied also when visiting

backhaul customers. In this work, two procedures were suggested and, in both of

them, routing and packing were solved by different procedures, and then integrated

to compose a solution. The routing component is solved by two algorithms. The

first algorithm is based on the adaptive large neighborhood search, while the second

relies on a variable neighbourhood search. The packing component of both problems

is tackled through a tree search heuristic presented in [20].
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7.4 Solution representation

In the context of the 2L-CVRPMB, a feasible solution S with value z(S) can be

represented by a sequence of routes, as follows:

S = (S1, S2, . . . , S|S|),

with Si = (c1, c2, c3, . . . , c|Si|−1, c|Si|) corresponding to the order in which customers

c2, c3, . . . , c|Si|−1 are visited in route Si, with c1 = c|Si| = 0, since each route starts and

ends at the depot. Additionally, Pi defines the order by which the items of customers

of Si are placed in the vehicle using the heuristic proposed in Section 7.5, i.e.,

Pi = (p2, . . . , p|Si|−1),

with pj = (p1
j , p

2
j , . . . , p

mcj

j ), j = 2, . . . , |Si| − 1, and pkj representing the index of the

kth item of customer cj to be placed in the vehicle. The relative position of each item

in the vehicle is obtained by the strict application of the mentioned heuristic to the

order Pi. We will

7.5 Feasibility of routes

The capacity constraints in terms of weight are ensured not only by imposing a weight

limit to the weight of items to deliver, but also by limiting the load to the weight

capacity of the vehicles in each arc of the route. The same idea applies to the total

area of loaded items. On the other hand, the feasibility of each route in terms of

packing and sequential constraints is required not only to build an initial solution,

but also in each iteration of the variable neighborhood search algorithm.

In order to assess the feasibility of one route in the context of 2L-CVRPMB, we

adapted the classical bottom-left heuristic by incorporating procedures to deal with

sequential constraints for different types of customers.

Some authors addressing loading constraints in problems with clustered backhauls

[22] impose LIFO constraints for both linehaul customers and backhaul customers.

Imposing LIFO constraints for backhaul customers comes from the assumption that

an item is loaded in a given position of the loading area, and hence it cannot be
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rearranged. Note that one layout with items to be delivered to linehaul customer can

be seen as the layout of the vehicle when it leaves the depot. Similarly, the layout

of the vehicle when it returns to the depot only has items provided by backhaul

customers.

In contrast to the case of clustered backhauls, the feasibility of one route with

mixed customers results from ensuring a feasible layout for linehaul customers and

also from ensuring that every collected items of backhaul customers does not block

items to be delivered. As a consequence, the collected items cannot be placed between

the rear-side of the vehicle and the items to deliver.

In order to manage the relative position of the items in the loading area, we resort

to the concept of free spaces, as presented in Chapter 4. The loading area is considered

to be the first free space. When an item is placed in the loading area, at most four

free spaces are created. These free spaces identify the places where the next items

can be placed. The original free space where the item was placed is removed from

the list of free spaces. Taking into account all the free spaces, we select the bottom-

most and leftmost position where the item fits, such that the capacity and sequencing

constraints are satisfied. The item is placed in such a way that its bottom-left corner

matches the bottom-left corner of the free space.

The modified bottom-left heuristic starts by attempting to derive valid packing

layouts only for the linehaul customers. If it is not possible to achieve a valid packing

for the linehaul customers of the route, then clearly the original route is infeasible.

If a feasible layout for linehaul customers is achieved, the obtained layout will be

analyzed seeking one or more free spaces with height H, since it means that one item

from a backhaul customer can be placed without blocking any item for a linehaul one.

This procedure allows to know if the vehicle has a free space available for backhaul

customers right after leaving the depot. If one or more free spaces with this height are

found, they are added to a list of free spaces devoted to collected items from backhaul

customers.

Thereafter, the customers of the route are successively analyzed by the order in

which they are visited. If the analyzed customer is a linehaul customer, then their

items will be removed from the layout and the original free spaces of that items are
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recovered. Otherwise, if it is a backhaul customer, then we try to place their items

in a free space for collected items, ensuring that all the constraints are obeyed. The

process runs until all backhaul items are loaded on the vehicle, or until it is impossible

to place a given item. In this last case the route is infeasible.

7.6 Initial solution

In this section, we describe how to build an initial solution heuristic for the 2L-

CVRPMB. This approach is based on the insertion heuristic presented in [135].

First, a set of routes is built only for linehaul customers. For this purpose, we resort

to the method using feasible solutions of the 2L-CVRP suggested in [154]. In this

process, an empty route is generated for each vehicle. The set of linehaul customers is

sorted according to the area of their demands. Each customer is successively inserted

in one route by this order.

From the set of routes in which the customer can be inserted in a feasible way, the

one which leads to the minimum remaining free area after that insertion is selected.

The feasibility of this insertion is evaluated by the heuristic presented in Section 7.5.

The route point, in which the insertion is valid, and it minimizes the insertion cost,

is selected to insert the customer.

After deriving routes for all linehaul customers, the backhaul customers are then

inserted using insertion heuristics based on [135]. However, the cost expression sug-

gested in this work was modified. In [135], the cost of inserting a given backhaul

customer in a given arc is based on the additional routing cost, on the distance be-

tween the customer and the depot, and on the remaining quantity (in terms of weight)

to deliver. This last part is multiplied by the total length of the route which contains

the arc. Let Lb be the quantity to deliver after customer b, Tab be the route length of

route which contains arc (a, b), and MQ be the capacity of the vehicle. The cost of

inserting a backhaul customer c in the arc (a, b) is expressed as Cabc, and is given by:

Cabc = dac + dcb − dab − αd0c + βLb

(
Tab
MQ

)
, (7.1)
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where dij corresponds to the distance between node i and j. The parameters α and

β are penalty parameters. In [135], the default values for the penalty parameters α

and β are 1.5 and 1, respectively. The role of the penalty parameter β is to delay the

insertion of backhaul customers in the context of the VRPMB [27, 135, 146]. This

procedure is to prevent situations where the vehicles are full or a rearrangement of

items may be needed. In our approach, for the 2L-CVRPMB, the loading constraints

are incorporated and therefore such rearrangements are prevented. In this sense, the

last part of the cost expression is removed, i.e.,

Cabc = dac + dcb − dab − αd0c. (7.2)

In [135], the authors extended the single insertion to the insertion of a pair of

customers. Additionally, and as suggested in their work, we compute the cost of

inserting two backhaul customers. Again, no penalties are associated to delay the

insertion. Therefore the insertion cost for a pair of backhaul customers c and d in

each arc (a, b) is computed, using the expression

Cabcd = min (dad + dcb; dac + ddb)− dab + dcd −
α (d0c + d0d)√

2
. (7.3)

From the list of all backhaul customers, and using the cost expression (7.2), we

find the customer and the arc leading to the best insertion cost. Similarly, using cost

expression (7.3) we find the best cost for the insertion of a pair of customers and

the corresponding arc. Between these two costs, the minimum cost defines both the

insertion point and, if a single customer or a pair of customers is inserted. The process

is repeated until all backhaul customers are assigned to the routes. One special case

arises when there is no feasible position in any route for a given customer. In such

case, the customer is assigned to a new route.

7.7 Neighborhood structures

In this section, we present the neighborhood structures that will be used by the VNS

algorithms to explore the search space. We defined 10 neighborhood structures: nine

of them are only based on routing structures while one can be seen as a packing and

routing neighborhood structure.
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As referred to in Section 7.8.1, the representation of the position of items in one

layout relies on the order of placement using a packing heuristic. In this sense, a

packing neighborhood structure must rely on this order.

Note that movements based exclusively on the order of placement have no impact

on the costs of the 2L-CVRPMB, since the objective function relies only on routing

costs. All the movements lead to infeasible or feasible solutions sharing the same ob-

jective function value since the sequence of visit remains unchanged. Consequently, we

suggest a packing and routing neighborhood in which, besides swapping the position

of two items in the order of placement within the same customer, another customer

of the same type is inserted.

Routing neighborhoods

NS1 Swapping two linehaul customers within the route

The neighbors of a solution S in the neighborhood NS1(S) consist in all the

feasible solutions obtained by swapping the position of two linehaul within the

same route, while keeping the sequence of items of each customer in S. Figure

7.2 presents a movement within NS1, defined by swapping customer c2 and c4.

NS2 Swapping two backhaul customers within the route

The neighbors of a solution S in the neighborhood NS2(S) consist in all the

feasible solutions obtained by swapping the position of two backhaul customers

within the same route, while keeping the sequence of items of each customer in

S. Figure 7.2 presents a movement within NS2, by swapping customer c3 and

c5.

NS3 Shifting one customer within the route

The neighbors of a solution S in the neighborhood NS3(S) consist in all the

feasible solutions obtained by shifting the position of one customer of any type

within the same route, while keeping the sequence of items of each customer in

S. Figure 7.2 presents a movement within NS3, by shifting customer c4 to the

first position of the route.

NS4 Shifting one customer for another route

The neighbors of a solution S in the neighborhoodNS4(S) consist in all the feasi-
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0 0c3c1 c2 c5c4

0 0c3c1 c4 c5c2S    NS1(S)

linehaul customer backhaul customer

S 

0 depot

0 0c5c1 c2 c3c4S    NS2(S)

0 0c5S    NS3(S) c4 c3c1 c2

Figure 7.2: Example of movements in neighborhood structures NS1, NS2 and NS3

ble solutions obtained by removing one customer from its position and inserting

it in one position of another route. The sequence of items of each customer is

not modified. Figure 7.3 presents a movement within NS4, by shifting customer

c3 from route S1 to the first position of route S2.

NS5 Swapping two consecutive customers of different type

The neighbors of a solution S in the neighborhood NS5(S) consist in all the

feasible solutions obtained by swapping a sequence of two consecutive customers

of one route (being the first a backhaul customer and the second a linehaul

customer), with a sequence of two consecutive customers of any type of another

route. The sequence of items of each customer is not modified. Figure 7.3

presents a movement within NS5, defined by swapping customers c3 and c4

from route S1 with customers c8 and c9 from route S2.

NS6 Swapping three consecutive customers of different type

The neighbors of a solution S in the neighborhood NS6(S) consist in all the fea-

sible solutions obtained by swapping a sequence of three consecutive customers
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0 0c3c1 c2 c5c4
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0 0c1 c2 c5
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S1 c8 c9
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Figure 7.3: Example of movements in neighborhood structures NS4 and NS5

of one route (being the first a backhaul customer and the third a linehaul cus-

tomer), with a sequence of three consecutive customers of any type of another

route. The sequence of items of each customer is not modified. Figure 7.4

presents a movement within NS6, by swapping customers c3, c4 and c5 from

route S1 with customers c7, c8 and c9 from route S2.

NS7 Swapping two consecutive customers of any type

The neighbors of a solution S in the neighborhood NS7(S) consist in all the
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feasible solutions obtained by swapping a sequence of two consecutive customers

of one route with a sequence of two consecutive customers of another route. The

sequences may be composed of customers of any type. The sequence of items

of each customer is not modified. Figure 7.4 presents a movement within NS7,

obtained by swapping customers c4 and c5 from route S1 with customers c6 and

c7 from route S2.

0 0c3c1 c2 c4

S    NS6(S)

0 0c8c6 c7S2 c9

S1
S

S2

S1

linehaul customer backhaul customer 0 depot

c5

0 0c1 c2

0 0c6 c3 c4 c5

c8c7 c9

0 0c3c1 c2 c6

0 0c8c4 c5S2 c9

S1 c7

S    NS7(S)

Figure 7.4: Example of movements in neighborhood structures NS6 and NS7

NS8 Shifting two consecutive customers
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The neighbors of a solution S in the neighborhood NS8(S) consist in all the

feasible solutions obtained by removing a sequence of two consecutive customers

from its position and inserting it in a different position within the same route,

while keeping the sequence of items of each customer in S. Figure 7.5 presents

a movement within NS8, obtained by shifting customer c1 and c2 to the third

position and fourth position of the route S.

NS9 Shifting three consecutive customers

The neighbors of a solution S in the neighborhood NS9(S) consist in all the fea-

sible solutions obtained by removing a sequence of three consecutive customers

from its position and inserting it in a different position within the same route,

while keeping the sequence of items of each customer in S. Figure 7.5 presents

a movement within NS9, by shifting customer c2, c3 and c4 to the third, fourth

and fifth position of the route.

0 0c3c1 c2 c5c4

linehaul customer backhaul customer

S 

0 depot

S    NS8(S)

S    NS9(S)

0 0c3 c1 c2 c5c4

0 0c1 c5 c3c2 c4

Figure 7.5: Example of movements in neighborhood structures NS8 and NS9

Packing and routing neighborhood
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NS10 Swapping two items and inserting one customer

The neighbors of a solution S in the neighborhood NS10(S) consist in all the

feasible solutions obtained by swapping the order of insertion of items of one

customer in one route, and by inserting another customer of the same type in

the same route. If the type of both customers is linehaul, then the customer

is inserted at the beginning of the route, i.e., between the depot and the first

visited customer. Otherwise, the customer is inserted at the end of the route.

Figure 7.6 presents a movement within NS10, by swapping the insertion position

of item I3,1 with I3,2 of customer c3 and by shifting customer c7 from route S2

to the last position of route S1.

7.8 Variable neighborhood search approaches for

the 2L-CVRPMB

7.8.1 Variable neighborhood Search

The Variable Neighborhood Search (VNS) is a meta-heuristic initially suggested in

[112], which consists in a systematic exploration of neighborhood structures. Gener-

ally speaking, the VNS can be divided in two main phases: the shaking phase and

the local search phase.

In order to improve the solutions generated by the insertion heuristic (Section

7.6), in this section we propose a VNS algorithm for the 2L-CVRPMB. From the

initial solution (S, P ), as defined in Section , the VNS drives the search using the

ten neighborhoods structures (NSk with k = 1, 2, . . . , 10) presented in Section 7.7.

These structures are sequentially explored by the order they were presented. At each

iteration, a neighbor solution (S ′, P ′) is randomly generated from the kth neighborhood

of (S, P ). A local search method is applied to (S ′, P ′) in the same neighborhood

structure, obtaining (S ′′, P ′′). We adopt a first improvement strategy (also known

as first descent heuristic), i.e., when the value of (S ′′, P ′′) is better than the value

of (S, P ), then (S, P ) is updated and the search restarts from the first neighborhood

(k = 1). Otherwise, the process is iterated using the next neighborhood (k = k + 1).
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Figure 7.6: Example of a movement in neighborhood structure NS10

The described process is repeated until a stopping condition is met. In this approach

we impose a time limit tmax. It is worth noting that every neighbor solutions must be

a feasible solution for the 2L-CVRPMB, and consequently we validate all the obtained

solutions with the heuristic presented in Section 7.5.

The VNS algorithm for the 2L-CVRPMB is summarized in Algorithm 6. The

insertion heuristic (Section 7.6) is denoted by findInitialSolution(). The shaking

phase is represented by shaking((S, P ), NSk), while the local search phase is denoted

by firstImprovement((S ′, P ′), NSk).
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Algorithm 6: VNS algortihm for the 2L-CVRPMB

Input:

I: instance of the 2L-CVRPMB;

Set of neighborhood structures NS = {NS1, NS2, . . . , NS10};

Limit tmax on the total computing time;

Output:

Feasible solution (S, P ) for the 2L-CVRPMB of value z(S);

(S, P ):=findInitialSolution();

repeat

k := 1;

while k ≤ 10 do

(S ′, P ′) := shaking((S, P ), NSk);

(S ′′, P ′′) := firstImprovement((S ′, P ′), NSk);

if z(S ′′) ≤ z(S) then

(S, P ) := (S ′′, P ′′);

k := 1;

end

else

k:=k+1;

end

end

until cpuTime() > tmax;

return (S, P ) ;

7.8.2 General VNS

Additionally, we explored an approach based on a General Variable Neighborhood

Search algorithm (GVNS) for the 2L-CVRPMB. In contrast to the VNS (Section

7.8.1) that uses a first improvement heuristic, the local search phase of the GVNS

is performed by a Variable Neighborhood Descent (VND) method. The successful

application of this algorithm in many works [73] motivated its use in the context of
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the 2L-CVRPMB.

The VND method consists in the sequential exploration of neighborhoods, selecting

in each one the direction of steepest descent within the neighborhood structure [71]. In

other words, the VND explores each neighborhood l (l = 1, 2, . . . , 10) finding the best

neighbor (S ′′, P ′′) within such structure. If the obtained solution (S ′′, P ′′) is better

than the solution provided by the shaking phase (S ′, P ′), then this solution is updated

and the VND restarts from the first neighborhood structure (l = 1). Otherwise, the

process is iterated using the next neighborhood (l = l + 1).

Apart from the local search phase, the rest of the algorithm relies on the algorithm

described in Section 7.8.1. As happens with the VNS, only feasible solutions are

explored. The GVNS algorithm for the 2L-CVRPMB is summarized in Algorithm

7. The insertion heuristic (Section 7.6) is denoted by findInitialSolution(). The

shaking phase is represented by shaking((S, P ), NSk) while the process to find the

best neighbor is denoted by bestImprovement((S ′, P ′), NSk).

7.8.3 Skewed general VNS

Hansen et al. [70] suggested an extension of the basic VNS that explores regions that

are quite far from the incumbent solution. For that purpose, the incumbent solution

can be updated with slightly worse solutions if they are relatively different from the

incumbent, while keeping the best solution obtained so far.

In this section, we describe a Skewed General Variable Neighborhood Search

(SGVNS) for the 2L-CVRPMB.

In order to evaluate the difference between two solutions, we propose a distance

function ρ(S, S ′′) that expresses the difference between the incumbent solution S and

the local optimum S ′′. Since the 2L-CVRPMB considers two type of customers, we

define a difference function relying on the variation of customers of the same type

within one route. More precisely, if σ(Si) and γ(Si) corresponds, respectively, to the

number of linehaul and backhaul customers visited in route Si, the difference function

can be defined as follows:

ρ (S, S ′′) =

∑|S|
i=1 |σ(Si)− σ(S ′′i )|+

∑|S|
i=1 |γ(Si)− γ(S ′′i )|

l + b
, (7.4)
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Algorithm 7: GVNS algortihm for the 2L-CVRPMB

Input:

I: instance of the 2L-CVRPMB;

Set of neighborhood structures NS = {NS1, NS2, . . . , NS10};
Limit tmax on the total computing time;

Output:

Feasible solution (S, P ) for the 2L-CVRPMB of value z(S);

(S, P ):=findInitialSolution();

repeat

k := 1;

while k ≤ 10 do

(S ′, P ′) := shaking((S, P ), NSk);

while l ≤ 10 do

(S ′′, P ′′) := bestImprovement((S ′, P ′), NSl);

if z(S ′′) ≤ z(S ′) then

(S ′, P ′) := (S ′′, P ′′);

l := 1;

end

else

l:=l+1;

end

end

if z(S ′′) ≤ z(S) then

(S, P ) := (S ′′, P ′′);

k := 1;

end

else

k:=k+1;

end

end

until cpuTime() > tmax;

return (S, P ) ;
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where l and b correspond, respectively, to the number of linehaul and backhaul cus-

tomers of the solution. Generally, worse solutions are accepted if

z(S ′′) < z(S) + αρ(S, S ′′), (7.5)

where z(s) corresponds to the value of solution S. However, and motivated by the

work presented in [99], we accept worse solutions if

z(S ′′) < (1 + αρ(S, S ′′)) z(S). (7.6)

With this procedure, we accept to update the incumbent with a worse value if

the incumbent solution is sufficiently different from the local optimum solution. The

greater the difference between them, the worse the quality of the accepted solution. As

happens with the approaches defined in Section 7.8.1 and Section 7.8.2, only feasible

solutions are explored. Algorithm 8 summarizes the SGVNS.

7.9 Computational experiments

7.9.1 Instances

The VNS approaches presented in Sections 7.8.1, 7.8.2, 7.8.3 were tested using in-

stances derived from benchmark instances for the capacitated vehicle routing prob-

lem with two-dimensional loading constraints (2L-CVRP) [76, 78, 64]. These instances

consider five classes. The first class has a single item width and height equal to one.

For the other classes (2 to 5), the number of items ranges from 1 to the number of

the class. The number of customers varies between 15 and 255, while the number of

items ranges from 15 to 786. The vehicle has a loading area with a height equal to 40

units and width equal to 20 units.

Note that the 2L-CVRP does not include backhaul customers, motivating its adap-

tation to the 2L-CVRPMB. Based on the generation of instances for the VRPMB

proposed in [135], we adapted the 2L-CVRP benchmark instances by replicating each

one three times in order to obtain three instances. Each one has 50%, 25% and 10%

of backhaul customers compared to the total number of customers. Hereafter, we will
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Algorithm 8: Skewed GVNS algortihm for the 2L-CVRPMB

Input:

I: instance of the 2L-CVRPMB;

Set of neighborhood structures NS = {NS1, NS2, . . . , NS10};
Limit tmax on the total computing time;

Output:

Feasible solution (S, P ) for the 2L-CVRPMB of value z(S);

(S, P ):=findInitialSolution();

(Sopt, Popt):=(S, P );

repeat

k := 1;

while k ≤ 10 do

(S ′, P ′) := shaking((S, P ), NSk);

while l ≤ 10 do

(S ′′, P ′′) := bestImprovement((S ′, P ′), NSl);

if z(S ′′) ≤ z(S ′) then

(S ′, P ′) := (S ′′, P ′′);

l := 1;

end

else

l := l + 1;

end

end

if z(S ′′) ≤ z(Sopt) then

(Sopt, Popt) := (S ′′, P ′′);

end

if z(S ′′) < (1 + αρ(S, S ′′))z(S) then

(S, P ) := (S ′′, P ′′);

k := 1;

end

else
k := k + 1

end

end

until cpuTime() > tmax;

return (S, P ) ;
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denote by Group A, B and C the instances which consider respectively 50%, 25%,

and 10% of backhaul customers.

In order to build the Group C, and taking into account the order in which the

customers appear in the instance, we assign as backhaul customers the ones whose

ordinal number is multiple of 10. Similarly, for Group A, we assign as backhaul

customers the ones whose ordinal number is multiple of 10 or 4. Finally, for Group

A, we assign as backhaul customers the ones whose ordinal number is multiple of 10,

4 or 2. The demand of a given customer that is assigned to be a backhaul customer

is converted into the supply of the same customer. For each instance, the number of

vehicles is used to generate empty routes, when building the initial solution. However,

and as stated in Section 7.6, it is possible to increase the number of vehicles when

there is no available routes to a given customer.

As referred to in Section 2.3.6, sequential constraints apply to this problem. Ap-

plying these constraints with items in original instances may reduce how the set of

customers that appear mixed in the route. These happens because each loaded item

has a direct impact in loading and unloading operations. One the one hand, each

loaded item cannot block items to be delivered. On the other hand, all the loaded

items block the space between themselves and the bottom side of the vehicle. Since

the width of items ranges between 2 and 18 units and the vehicle has 20 units of

width, it is clear that mixing different types of customers is more difficult. In this

sense, we adapted the width of each item, and considered only items with 30% of

their original width.

With the mentioned procedure, we obtained 540 instances (180 instances for each

group). The value of α in the difference function is set at 0.1. The algorithms were

coded in C++, and the tests were run on a PC with an i7 CPU with 3.50 GHz and

32 GB of RAM. All the tests were run with a maximum computing time limit of 120

seconds. Partial results were reported during this limit. The instances were divided

in 22 sets according to the number of customers. The average results for each set

are reported in Tables 7.1-7.3. In Table 7.1, we report on the results obtained with

VNS, GVNS and SGVNS for instances of Group A. The results for the same strategies

applied to Group B and C are reported in Table 7.2 and Table 7.3. The meaning of
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the columns in these tables is the following:

n: number of customers;

b: number of backhaul customers;

#I: number of instances in the corresponding set;

#it: average number of item in the corresponding set;

zINS: average value of the initial solution generated using the insertion heuristic de-

scribed in Section 7.6;

zV 5: average value obtained by VNS algorithm within a time limit of 5 seconds;

similarly, zV 30, zV 60, zV 120 corresponds to the same value within 30, 60 and 120

seconds;

zG5: average value obtained by GVNS algorithm within a time limit of 5 seconds;

similarly, zG30, zG60, zG120 corresponds to the same value within 30, 60 and 120

seconds;

zS5: average value obtained by SVNS algorithm within a time limit of 5 seconds;

similarly, zS30, zS60, zS120 corresponds to the same value within 30, 60 and 120

seconds;

impV : percentage of improvement achieved with the VNS algorithm in 120 seconds,

i.e., imp = |zV 120 − zINS|/zINS ∗ 100; similarly, impG and impS corresponds to

the same percentage for the GVNS and SGVNS, respectively.
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Table 7.1: Computational results for Group A

VNS GVNS SGVNS

n b #I #it zINS zV 5 zV 30 zV 60 zV 120 impV zG5 zG30 zG60 zG120 impG zS5 zS30 zS60 zS120 impS

15 7 10 31 295 279 271 269 269 8,7 253 250 250 250 15,2 253 250 250 250 15,2

20 10 10 40 413 393 380 372 368 11,1 335 333 333 333 19,5 337 333 332 328 20,6

21 10 10 39 484 446 402 398 391 19,2 359 353 353 352 27,4 362 352 352 352 27,3

22 11 10 39 592 550 530 528 528 10,8 522 518 518 518 12,5 519 519 519 519 12,4

25 12 5 56 590 544 514 500 493 16,5 469 456 456 456 22,8 451 449 449 449 23,9

29 14 10 58 666 604 564 543 531 20,3 432 419 419 418 37,2 429 426 426 426 36,1

30 15 5 64 632 582 526 519 508 19,6 456 448 446 446 29,4 456 447 447 446 29,5

32 16 15 62 1470 1359 1266 1216 1187 19,2 1107 1094 1092 1091 25,8 1093 1080 1078 1073 27,0

35 17 5 74 719 698 633 613 569 20,8 536 530 523 519 27,8 538 519 506 506 29,5

40 20 5 79 850 787 703 691 665 21,7 627 618 612 609 28,3 624 611 610 608 28,5

44 22 5 86 987 954 918 866 820 16,9 723 699 699 697 29,3 714 690 686 686 30,5

50 25 5 105 715 704 668 655 609 14,8 504 488 480 480 32,9 491 478 474 470 34,3

71 35 5 146 486 437 424 401 381 21,6 301 278 274 269 44,8 314 279 276 276 43,3

75 37 20 150 1124 1097 1038 1005 967 14,0 722 689 680 672 40,3 737 693 673 660 41,3

100 50 15 204 1415 1378 1307 1249 1192 15,8 963 864 843 828 41,4 981 880 841 817 42,3

120 60 5 246 2071 2020 1689 1583 1486 28,2 1250 1138 1120 1113 46,2 1252 1200 1167 1115 46,1

134 67 5 271 2340 2238 2105 2038 1997 14,7 1599 1261 1190 1121 52,1 1620 1363 1304 1233 47,3

150 75 5 294 1886 1840 1709 1658 1579 16,3 1199 1055 1015 988 47,6 1225 1078 1046 997 47,1

199 99 15 400 2415 2322 2175 2109 2000 17,2 1853 1387 1311 1237 48,8 2255 1459 1370 1280 47,0

240 120 5 485 1116 1094 1030 976 912 18,3 992 618 568 526 52,8 1077 639 593 558 50,0

252 126 5 504 1345 1322 1262 1191 1159 13,8 1316 843 790 763 43,3 1318 891 850 798 40,6

255 127 5 509 1064 1048 955 913 854 19,7 1052 663 634 623 41,5 1046 680 635 611 42,5

Average 1076 1032 958 922 885 17,2 799 682 664 650 34,9 822 696 677 657 34,7
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Table 7.2: Computational results for Group B

VNS GVNS SGVNS

n b #I #it zINS zV 5 zV 30 zV 60 zV 120 impV zG5 zG30 zG60 zG120 impG zS5 zS30 zS60 zS120 impS

15 3 10 31 343 316 301 301 300 12,5 284 280 272 272 20,6 282 276 273 271 20,9

20 5 10 40 473 421 393 384 378 20,1 338 338 338 338 28,6 341 340 339 339 28,4

21 5 10 39 514 485 441 432 430 16,4 397 387 387 385 25,1 381 377 377 377 26,5

22 5 10 39 729 676 641 625 625 14,4 560 554 553 550 24,6 556 547 547 543 25,6

25 6 5 56 736 621 592 581 580 21,1 549 539 535 533 27,5 547 541 540 539 26,7

29 7 10 58 829 717 637 619 604 27,1 478 471 471 470 43,3 480 473 473 473 43,0

30 7 5 64 718 645 591 579 563 21,6 517 496 494 490 31,7 516 506 498 485 32,4

32 8 15 62 1659 1534 1429 1308 1254 24,4 1136 1129 1124 1123 32,3 1151 1137 1126 1120 32,5

35 8 5 74 836 777 724 693 686 17,9 640 626 609 594 29,0 623 601 597 596 28,8

40 10 5 79 1059 910 817 785 769 27,4 744 703 692 692 34,7 725 704 699 695 34,4

44 11 5 86 1291 1137 976 916 893 30,8 718 704 704 704 45,4 721 700 699 695 46,1

50 12 5 105 870 818 768 732 701 19,5 511 503 500 499 42,7 535 502 496 493 43,4

71 17 5 146 634 506 451 416 402 36,6 316 289 277 273 57,0 316 294 274 271 57,3

75 18 20 150 1430 1358 1201 1112 1044 27,0 780 750 743 734 48,7 779 743 734 726 49,2

100 25 15 204 1825 1690 1505 1408 1324 27,5 933 866 852 834 54,3 952 861 848 837 54,2

120 30 5 246 2699 2578 2164 2000 1775 34,2 1763 1311 1261 1244 53,9 1826 1372 1307 1256 53,4

134 33 5 271 3166 2904 2294 2062 1962 38,0 1912 1557 1372 1309 58,6 2413 1498 1403 1271 59,9

150 37 5 294 2498 2427 2194 2029 1903 23,8 1189 1104 1056 1021 59,1 1213 1085 1019 1000 60,0

199 49 15 400 3268 3192 2957 2723 2501 23,5 2838 1429 1332 1260 61,5 3074 1467 1370 1304 60,1

240 60 5 485 1462 1447 1337 1270 1161 20,6 1396 841 617 579 60,4 1399 852 669 614 58,0

252 63 5 504 1895 1842 1745 1668 1518 19,9 1864 912 865 824 56,5 1863 983 932 872 54,0

255 63 5 509 1430 1367 1200 1113 1090 23,8 1405 1260 1060 898 37,2 1405 1270 1079 916 35,9

Average 1380 1289 1153 1080 1021 24,0 967 775 733 710 42,4 1004 779 741 713 42,3
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Table 7.3: Computational results for Group C

VNS GVNS SGVNS

n b #I #it zINS zV 5 zV 30 zV 60 zV 120 impV zG5 zG30 zG60 zG120 impG zS5 zS30 zS60 zS120 impS

15 1 10 31 380 360 345 345 340 10,5 312 310 310 310 18,3 314 310 310 310 18,3

20 2 10 40 516 433 407 402 396 23,4 370 367 367 367 28,9 372 369 367 367 28,9

21 2 10 39 606 515 463 446 429 29,3 417 414 414 413 31,9 413 409 408 407 32,8

22 2 10 39 803 626 579 571 563 29,9 532 513 503 500 37,7 518 506 506 502 37,4

25 2 5 56 809 680 656 652 651 19,5 596 587 587 587 27,4 612 588 581 581 28,1

29 2 10 58 868 763 672 626 611 29,5 534 516 516 516 40,5 532 518 517 514 40,7

30 3 5 64 822 731 638 635 621 24,4 569 552 552 552 32,8 586 564 560 557 32,3

32 3 15 62 1976 1779 1498 1436 1375 30,4 1261 1227 1215 1215 38,5 1223 1204 1202 1202 39,2

35 3 5 74 1019 826 755 745 704 30,9 707 690 674 671 34,2 702 673 667 667 34,6

40 4 5 79 1138 976 918 883 865 23,9 824 815 804 797 29,9 823 793 788 780 31,4

44 4 5 86 1598 1298 995 955 909 43,1 736 733 729 729 54,4 758 731 724 717 55,1

50 5 5 105 1014 886 744 700 681 32,9 545 515 513 513 49,4 529 519 517 515 49,3

71 7 5 146 706 629 512 464 423 40,1 327 315 299 295 58,3 358 332 312 298 57,8

75 7 20 150 1611 1464 1259 1180 1100 31,7 862 818 805 796 50,6 858 813 800 790 51,0

100 10 15 204 2121 1993 1720 1555 1408 33,6 989 939 924 909 57,1 1039 938 912 899 57,6

120 12 5 246 3278 2915 2366 2120 1995 39,1 1793 1456 1413 1374 58,1 2018 1554 1431 1396 57,4

134 13 5 271 3441 3168 2571 2171 2026 41,1 1775 1500 1373 1307 62,0 2589 1464 1349 1300 62,2

150 15 5 294 2919 2748 2465 2244 2064 29,3 1653 1137 1078 1057 63,8 2315 1195 1105 1065 63,5

199 19 15 400 3866 3656 3250 3103 2806 27,4 3564 1472 1412 1362 64,8 3582 1541 1449 1374 64,5

240 24 5 485 1831 1791 1662 1495 1304 28,8 1747 697 655 632 65,5 1748 725 679 646 64,7

252 25 5 504 2239 2223 2109 2012 1779 20,6 2210 993 950 888 60,4 2212 1027 963 930 58,5

255 25 5 509 1711 1667 1468 1335 1232 28,0 1685 1293 1103 898 47,5 1683 1509 1127 938 45,2

Average 1603 1460 1275 1185 1104 29,4 1091 812 782 758 46,0 1172 831 785 762 45,9



7.9. Computational experiments 171

7.9.2 Computational results and discussion

The results show that three variable neighborhood search algorithms improve signifi-

cantly the value of the initial solution in all sets of all groups. Important improvements

were achieved within a computing time of 5 seconds.

The achieved results for the all the sets of Group A show an average improvement

of 17.2% using VNS algorithm. The lowest average improvement is observed for

the set of 15 customers (8.7%), while the best average improvement is observed for

the set of 120 customers (28.2%). This set includes 60 backhaul customers and 246

items on average. These results are clearly outperformed by the GVNS algorithm

which presents an average improvement of 34.9% compared to the initial solution.

Within this algorithm, the highest improvement is 52.8%, and it is obtained for the

set of 240 customers (including 120 backhaul customers and 485 items on average).

The lowest improvement is 12.5%, and it occurs for the set of 15 customers which

includes 7 backhaul customers and 39 items. Similar results are found for the SGVNS

algorithm, with an average improvement of 34.7%. For sets with a greater number of

customers, both GVNS and SGVNS algorithms tend to present higher improvements.

For these two strategies, the improvement is on average greater than 40% for all sets

with more than 71 customers. It is worth noting that within only 5 seconds, both

algorithms led to an average improvement greater than 20%.

Concerning the Group B (25% of backhaul customers in each instance), all the

algorithms led to better improvement values when compared with Group A. Indeed,

the VNS presents an average improvement of 24% while the GVNS achieves more than

42%. This latter strategy led to very similar values of those obtained by SGVNS. The

SGVNS was able to produce slightly better values in 11 of 22 sets when comparing to

the GVNS algorithm. These two strategies present significant improvements within

only 5 seconds (more than 27%), and the best values are achieved in the set of 199

customers with an average improvement greater than 60%.

The instances belonging to Group C present the greatest average improvements.

For the VNS algorithm, the best average improvement is observed for the set of 44

customers (43.1%). For the GVNS and SGVNS, the best average improvements are

achieved for the set of 240 customers (average improvement of roughly 65%). For
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these two methods, the average improvement is greater than 45% for sets with 44 or

more customers. Considering all sets, it is possible to achieve an average improvement

of 8.9%, 31.9% and 26.9% for the VNS, GVNS and SGVNS, respectively. Concerning

all groups, improvements tend to be more significant when the number of backhaul

customer is reduced.

As referred to in Section 7.6, the number of used vehicles can be greater than the

fleet size proposed in benchmark instances. Such situations arises when building the

initial solution, and it is not possible to insert a given customer in the set of routes.

It was observed that these situations happen only in two instances out of the 180 of

Group C. However, the VNS and GVNS solutions present a number of vehicles that

is not above the fleet size proposed in benchmark instances for both instances. The

same behaviour is presented by the SGVNS algorithm for one of the two cases. For the

other case, the number of used vehicles remains greater by one unit. The reduction

of routes is due to the neighborhood structures including movements of customers to

other routes, which could lead to the elimination of a given route.

One important feature in problems with mixed types of customers may be the

position of the first backhaul customer within one route. If one vehicle is able to visit

backhaul customers earlier, then it is possible to reduce routing costs. Indeed, savings

may be lost if it is profitable to visit a given backhaul customer, but this visit is for-

bidden due to the packing layout configuration of linehaul items. Figure 7.7 presents

the position variation of the first backhaul customer in the routes. Only instances of

Group A were considered (50% of the number of customers are backhaul). Clearly, the

GVNS and SGVNS algorithms present solutions in which backhaul customers start

to be inserted earlier in one route. This reduction tends to stabilize after 30 seconds.

The VNS presents a moderate reduction of the average position. Thus, the methods

that provided higher improvements led also to solutions in which backhaul customers

are visited earlier in the routes.
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Figure 7.7: Average position of the first backhaul customer

7.10 Conclusion

In this chapter, a capacitated vehicle routing problem with loading constraints and

mixed linehauls and backhauls was presented. Both the initial solution and the fea-

sibility of the routes are provided by heuristics adapted from classical approaches

described in the literature. We presented three variants of the well-known variable

neighborhood search algorithm. In all of these algorithms, we proposed 10 neighbor-

hood structures, including structures that were specifically developed for this prob-

lem. The computational experiments were conducted on several instances derived

from benchmark instances from the literature. The obtained results show significant

improvements for instances with many customers.
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8.1 Contributions

In this thesis, we developed a set of optimization tools for the vehicle routing problem

with loading constraints. We also explored different variants of the problem that

are characterized by their set of constraints on the loading and routing part of the

problem. The developed methods are based on column generation models and on

metaheuristics.

With this thesis, we are contributing with new algorithms to increase the effi-

ciency in transportation and supply chain management, since it could improve the

competitiveness companies which intend to differentiate its service level, taking into

account complex constraints that can be found in real-world situations, while mini-

mizing costs. In this sense, the contributions of this thesis are expected to have both

scientific and practical relevance.

In Chapter 4, and to the best of our knowledge, we contributed with the first set of

results for the elementary shortest path with two-dimensional loading constraints. We

suggested different constructive strategies in order to build initial solutions. We also

suggested various neighborhood structures, some of them based on packing features

of the problem. We presented a computational study on a variant of the variable

neighborhood search, using a large set of benchmark instances. Furthermore, the

contribution of this approach is not confined to the problem itself. Indeed, the ad-

dressed problem may correspond to the subproblem of the vehicle routing problem

with two-dimensional constraints, when Dantzig-Wolfe decomposition is applied. In

this sense, the proposed methods were also used throughout the thesis.

In Chapter 5, we contributed with a branch-and-price algorithm for the vehi-

cle routing problem with two-dimensional loading constraints. Column generation

approaches for this problem are not frequently used. Therefore, we intended to con-

tribute with new features such as different partition strategies of the branching tree.

We also suggested a family of valid cuts that may accelerate the convergence of the

algorithm.

We also contributed with a new set of column generation based heuristic methods

for the vehicle routing with two-dimensional constraints, as presented in Chapter
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6. These heuristics operate in the Dantzig-Wolfe reformulated model, and can be

seen as constructive heuristics, which iteratively select one route to the solution,

while reducing the complexity of the problem. We conducted on an exhaustive set

of computational experiments, using for that purpose a large set of computational

experiments.

In the final part of the thesis, in Chapter 7, we contributed with three algorithms

for a pickup and delivery variant of the routing problem with loading constraints.

These algorithms consist in variants of the variable neighborhood search, and resort

to different neighborhood structures. Some of these structures were particularly de-

veloped for the suggested problem. We adapted a large set of benchmark instances, in

order to consider the explicit consideration of integrated routing and loading features.

8.2 Future research

During the execution of this thesis, many ideas emerged that will be analyzed in a

near future. Regarding the presented column generation approach, it is out purpose

to analyze other acceleration strategies, in order to further enhance the convergence

of the algorithm. Additionally, other heuristics in the space of the reformulated model

will be explored such as the feasibility pump heuristics.

Concerning the subproblem, we aim to explore strong and exact models to the ele-

mentary shortest path problem with loading constraints. Despite both the complexity

of the problem, and the promising results obtained, the use of metaheuristics leads

to a solution not necessary optimal. This feature is important in branch-and-price:

it is not possible to derive lower bounds from the LP relaxation, and consequently,

we may dive deeply in the branching tree, and we still analyze not promising nodes.

Additionally, we aim to explore new lower bounds and valid inequalities for routing

problems with loading constraints, using for this purpose promising tools, namely the

dual feasible functions.

In what concerns the proposed problems, we aim to explore further variants of

the standard vehicle routing problem with two dimensional loading constraints, with

additional restrictions and features such as multiple trips and time windows. For this
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purpose, we may extend some of the approaches developed in this thesis. Finally, we

intend to apply the developed models to real instances arising in real applications of

the problem, so that we can rigorously assess their adequacy.
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[71] P. Hansen and N. Mladenović. Variable Neighborhood Search, pages 211–238.

Springer US, Boston, MA, 2005. ISBN 978-0-387-28356-2.
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