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Abstract

Although integer linear programming problems are typically difficult to solve, there
exist some easier problems, where the linear programming relaxation is integer.
This thesis sheds light on a drayage problem which is supposed to have this nice
feature, after extensive computational experiments. This thesis aims to provide a
theoretical understanding of these results by the analysis of the algebraic structures
of the mathematical formulation. Three reformulations are presented to prove if
the constraint matrix is totally unimodular. We will show which experimental con-
ditions are necessary and sufficient (or only sufficient or only necessary) for total
unimodularity.
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Chapter 1

Introduction

Integer linear programming (ILP) problems concern the maximization or minimiza-
tion of a linear function of variables, which are required to obey inequality and
equality linear constraints and integrality restrictions on the variables. A large
number of real problems can be represented by integer linear programs, such as fa-
cility location, network design, freight distribution, lot sizing and Vehicle Routing
Problems. Unfortunately, no general polynomial algorithm has been discovered for
these problems. Most of them are N P-complete and, thus, there is a little hope
of find efficient exact procedures for them. Solving these ILP-problems is generally
very time-consuming and even finding the first feasible solution may be a difficult
task.

However, there is a desired property of constraint matrices that makes these
problems much easier to solve: the total unimodularity (TU). In fact, when the
constraint matrix is TU, linear program relaxations admit integral optimal solutions.
As a consequence, one can solve integer problem as a linear problem, by polynomial
algorithms embedded in linear programming .

This thesis is motivated by a conjecture on the total unimodularity of the con-
straint matrix in a formulation of a drayage problem, proposed by [24]. In fact,
extensive computational experiments show that the linear relaxation is always inte-
ger, when all vehicles are supposed to carry one container and have the same costs.
This thesis aims to shed light on the theoretical aspects that may explain these
experimental results by the analysis of the algebraic properties of this mathematical
model. We reformulate this model to determine necessary and sufficient conditions
for TU.

In Chapters 2 we briefly recall the basic concepts of integer and linear pro-
gramming. Chapter 3 reviews Vehicles Routing Problem and Drayage problems,
particularly.
The contributions of the thesis are clustered in Chapter 4, where the following ques-
tions are made:

• Is the assumption one-container pr truck necessary for TU?
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• If so, is it also sufficient?

• Is the assumption of identical truck costs fundamental for TU?

This thesis aims to answer these questions.



Chapter 2

Integer Linear Programming and
Continuous Relaxation

An integer programming problem consists of maximizing or minimizing a real func-
tion of many variables, subject to inequality and equality constraints and integrality
restrictions on some or all of the variables. If the function that must be maximized
or minimized and inequality and equality constraints are linear, the problem is called
integer linear programming problem (ILP). A great number of real problems can be
represented by integer and combinatorial optimization: facility location, transporta-
tion network design, distribution of goods, production scheduling and in general
Vehicle Routing Problems, that will be analyzed in detail in Chapter 3.

2.1 Integer Linear Programming

We can write a general linear mixed-integer programming (MIP) problem as follows:

max{cx+ hy : Ax+Gy ≤ b, x ∈ Zn
+, y ∈ Rp

+}

where x = (x1, . . . , xn), y = (y1, . . . , yp) are the variables, c is a n-vector, h a p-
vector, A an m× n matrix, G an m× p matrix and b an m-vector. An instance of
the problem is a set of data (c, h, A,G, b). Because of the presence of both integer
and continuous (real) variables, this problem is called mixed. Moreover, it can
be observed that minimizing a function is equivalent to maximizing the negative
of the same function and that an equality constraint can be represented by two
inequalities.
The set S = {x ∈ Zn

+, y ∈ Rp
+, Ax + Gy ≤ b} is called the feasible region, and

an (x, y) ∈ S is called a feasible solution. An instance is said to be feasible if
S 6= ∅. The function z = cx + hy is called the objective function. A feasible
point (x0, y0) for which the objective function has the maximum value, that is,
cx0 + hy0 ≥ cx + hy ∀(x, y) ∈ S, is called an optimal solution. If (x0, y0) is an
optimal solution, cx0 + hy0 is called the optimal value or weight of the solution.
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A feasible instance of MIP may not have an optimal solution. It can be said that
an instance is unbounded if there is an (x, y) ∈ S such that cx + hy ≥ ω, for any
ω ∈ R1. In this case we use the notation z = ∞. If one solves an instance of MIP
it is possible to obtain an optimal solution or show that it is either unbounded or
infeasible.

When there are no continuous variables we have a special case of MIP called
linear (pure) integer programming problem (ILP):

max{cx : Ax ≤ b, x ∈ Zn
+}

On the other hand, when there are no integer variables we obtain a linear program-
ming problem (LP)

max{hy : Gy ≤ b, y ∈ Rp
+}

We have an other important frequent case, when the integer variables are used to
represent logical relationships. Consequently they can only be equal to 0 or 1. Thus
we obtain the 0-1 MIP (respectively 0 -1 IP) in which x ∈ Zn

+ is replaced by x ∈ Bn,
where Bn is the set of n-dimensional binary vectors.
For example, we use of 0-1 variables to represent binary choice, if we have to choose
between two possibilities, as an event that can or cannot occur. In the model of this
problem it is introduced a binary variable x, that assume the value 1 if the event
occurs, and 0 otherwise.

The study of theory and algorithms of linear programming is fundamental to
understand integer programming. It is well known that solving an integer program-
ming problem is much more difficult than a linear programming problem, since the
theory and the computational aspects of integer programming are less developed
than the ones of linear programming. For this reason the theory of linear program-
ming represents a guide for developing results for integer programming. Moreover,
linear programming algorithms are very often used as a subroutine in integer pro-
gramming algorithms to obtain upper bounds on the value of the integer program.
Let

zIP = max{cx : Ax ≤ b, x ∈ Zn
+}

and note that zLP ≥ zIP since Zn
+ ⊂ Rn

+. The upper bound zLP can be used to
prove optimality for IP; that is, if x0 is a feasible solution to IP and cx0 = zLP , then
x0 is an optimal solution to IP. (see [39] for an exhaustive description of the topic)

2.2 Continuous Relaxation

Let zIP = max{cx : Ax ≤ b, x ∈ Zn
+} be an integer problem. If we remove integrality

restrictions we obtain the following problem:

zLP = max{cx : Ax ≤ b, x ∈ Rn
+},
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called continuous relaxation of the original problem. Generally, the continuous re-
laxation problem is easier to solve and it has a lower execution time than the integer
problem associated.

Let S and S∗ be feasible regions of zIP and zLP , respectively. Then S = S∗∩Zn.
Consequently:

• S may be the empty set, though S∗ is different to empty set,

• if S∗ is bounded, then S is finite.

It follows that the optimal solution could be found calculating the value that the
objective function f assumes in every point (x, y) ∈ S and choosing the maximum
value of f . Obviously, this method is allowed only if the cardinality of S is very small.
One might remove integrality constraints and approximate the optimal solution of
the continuous relaxation. However, this approach is useless for two reasons:

• the approximate solution may be infeasible;

• the approximate solution may be feasible, but very far from the optimal so-
lution (when variables assume very small optimum values, for example if we
have binary variables).

Both cases are shown in Fig. 2.1.

Figure 2.1: Continuous relaxation
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Usually, we need an alternative approach using the continuous relaxation, that
can be solved with the simplex method. In the paragraph 2.4 we analyze two of
these methods: branch-and-bound and cutting-plane.

2.3 Dual Problem

Given a linear programming problem there is another linear programming problem
associated, called the dual problem. The dual linear program possesses many im-
portant properties relative to the original (primal) linear program. There are two
important definitions of duality: the canonical form of duality and the standard form
of duality. These two forms are completely equivalent. They arise from the canon-
ical and the standard representation of linear programming problems respectively.
We state the primal problem as

zLP = max{cx : Ax ≤ b, x ∈ Rn
+}

Its dual is defined as the linear program

wLP = min{ub : uA ≥ c, u ∈ Rm
+}

Note that there is exactly one dual variable for each primal constraint and exactly
one dual constraint for each primal variable. We can use the following table to
compute the dual of a primal problem given.

MINIMIZATION PROBLEM MAXIMIZATION PROBLEM

Variables ≥ 0 ←→ Constraints ≤ 0
Variables ≤ 0 ←→ Constraints ≥ 0

Variables Unrestricted ←→ Constraints = 0

Constraints ≥ 0 ←→ Variables ≥ 0
Constraints ≤ 0 ←→ Variables ≤ 0
Constraints = 0 ←→ Variables Unrestricted

Property:

1. (involutory property of duality) The dual of the dual is the primal.
This property indicates that the definitions may be applied in reverse. The
terms ”primal” and ”dual” are relative to the frame of reference we choose.

2. (Weak Duality). If x∗ is primal feasible and u∗ is dual feasible, then

cx∗ ≤ zLP ≤ wLP ≤ u∗b.
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3. If problem P has unbounded optimal value, then D is infeasible. This property
indicates that unboundedness in one problem implies infeasibility in the other
problem. The conversely is not true. This property is not symmetric.

4. (Strong Duality). If zLP or wLP is finite, then both P and D have finite optimal
value and zLP = wLP .

There are only four possibilities for a dual pair of problems P (primal) and D
(dual).

• zLP and wLP are finite and equal.
If one problem possesses an optimal solution, then both problems possess
optimal solutions and the two optimal objective values are equal.

• zLP =∞ and D is infeasible.

• wLP = −∞ and P is infeasible.

• Both P and D are infeasible.

(see [1] for an exhaustive description of the topic)

2.4 Exact Methods for ILP

Linear programming problems and in particular integer linear programming prob-
lems are very difficult to solve.
Algorithms for integer programming problems can be divided in three main sets:

• Exact algorithms, as cutting-planes, branch-and-bound, and dynamic pro-
gramming (for some MIPs), that guarantee to find an optimal solution; how-
ever the number of iterations may be often exponential.

• Heuristic algorithms that produce a suboptimal solution, but does not ensure
its quality. Even if the running time may not be polynomial, empirical evidence
shows that exists (meta)heuristics find good solutions quickly.

• Approximation algorithms that assure in polynomial time a suboptimal solu-
tion and a bound on the degree of sub-optimality.

In this section we analyze two exact method: branch-and-bound and cutting plane.
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2.4.1 Branch and bound

Branch-and-bound was developed by Land and Doig [25] and by Dakin [10]. In this
methods is very important to have an upper bound for the maximum value of ILP,
easy to compute and not far from the optimum value. Gomory’ s cutting plane
method is one method of obtaining an upper bound.
We report a general branch-and-bound algorithm for solving IP. In the description
of the algorithm, L is a collection of integer programs {IPi}, each of which is of
the form ziIP = max{cx : x ∈ Si} where Si ⊆ S. Associated with each problem in
L is an upper bound zi ≥ ziIP .

General Branch-and-Bound Algorithm:

1. (Initialization): L = {IP}, S0 = S, z0 =∞, and zIP = −∞.

2. (Termination test): If L = ∅, then the solution x0 that yielded zIP = cxo is
optimal.

3. (Problem selection and relaxation): Select and delete a problem IPi from L .
Solve its relaxation RPi. Let ziR be the optimal value of the relaxation and
let xiR be an optimal solution if one exists.

4. (Pruning):

(a) If ziR ≤ zIP , go to Step 2. (Note if the relaxation is solved by a dual
algorithm, then the step is applicable as soon as the dual value reaches
or falls below zIP )

(b) If xiR 6∈ Si , go to Step 5.

(c) If xiR ∈ Si and cxiR > zIP , let zIP = cxiR. Delete from L all problems
with z ≤ zIP . If cxiR = ziR, go to Step 2; otherwise go to Step 5.

5. (Division): Let {Sij}kj=1 be a division of Si. Add problems {IPij}kj=1 to L ,
where zij = ziR for j= 1, ... ,k. Go to Step 2.

Now we give the basic algorithm used by all commercial codes for solving mixed-
integer programming problems. For simplicity of notation, we consider only the IP.
Let

zIP = max{cx : x ∈ S}, where S = {x ∈ Zn
+ : Ax ≤ b}

be the general integer programming problem. In the initial relaxation, S is replaced
by S0LP = {x ∈ Rn

+ : Ax ≤ b}. We also take zR(x) = cx in each relaxation.
When solving linear programming relaxations we can apply the following pruning

criteria of infeasibility, optimality, and value dominance.
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S

S0 S1

S10 S11

S110 S111

x1 = 0 x1 = 1

x2 = 0 x2 = 1

x3 = 0 x3 = 1

Figure 2.2: Example of branch-and-bound method

Proposition 1. The enumeration tree can be pruned at the node corresponding to
Si if any of the following three conditions holds.

• RPi is infeasible.

• An optimal solution xiR to RPi satisfies xiR ∈ Si and ziR = cxiR.

• ziR ≤ zIP where zIP is the value of some feasible solution of IP .

Proposition 2. The enumeration tree can be pruned at the node corresponding to
Si if one of the following two conditions holds.

• The objective value of DPi (dual problem of IPi) is unbounded from below.

• DPi has a feasible solution of value equal to or less than zIP .

Suppose the linear programming relaxation at node i of the enumeration tree is

ziLP = max{cx : x ∈ SiLP}, where SiLP = {x ∈ Rn
+ : Aix ≤ bi}.

If LPi has an optimal solution, we denote the one found by xi. The pruning condi-
tions are:

1. SiLP = ∅ (infeasibility);

2. xi ∈ Zn
+ (optimality);
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3. ziLP ≤ zIP where zIP is the value of a known feasible solution to IP (value
dominance). Moreover if LPi is solved by a dual algorithm, it is possible to
prune before an optimal solution to LPi is found. Also, we might use the
weaker condition ziLP ≤ zIP + ε for some given tolerance ε > 0.

Since we use a linear programming relaxation at each node, the division is
obtained by adding linear constraints. An natural way to do this is to consider
S = S1∪S2 with S1 = S∩{x ∈ Rn

+ : dx ≤ d0} and S2 = S∩{x ∈ Rn
+ : dx ≥ d0 +1},

where (d, do) ∈ Zn+1. If x0 is the solution to the relaxation

z0LP = max{cx : x ∈ Rn
+, Ax ≤ b}

we can choose (d, d0) so that d0 < dx0 < d0 + 1. This is expected because it yields
x0 /∈ S1LP ∪ S2LP and therefore gives the possibility that for i = 1, 2 we will obtain
ziLP = max{cx : x ∈ Si

LP} < z0LP . In practice, only very special choices of (d, d0)
are used, for example:

• Variable dichotomy. We consider d = ej for some j ∈ N. Then x0 may be
infeasible in the relaxations if x0j /∈ Z1 and d0 = bx0jc. A very important
advantage of this division is that only simple lower- and upper- bound con-
straints are added to the linear programming relaxation. Therefore the size of
the basis does not increase.

• If xj is bounded (0 ≤ xj ≤ kj), we can take each integral value of xj separately.
This approach is not used in commercial integer programming codes.

Note that each of the previous divisions is a partition.
Given a list L of active subproblems we have to choose which node should be

examined in detail next. There are two basic options:

• a priori rules that determine, previously, the order in which the tree will be
developed;

• adaptive rules that choose a node using information about the status of the
active nodes.

An example of an a priori rule is depth-first search plus backtracking. In depth-first
search, if the current node is not pruned, the next node considered is one of its two
sons. Backtracking means that when a node is pruned, we go back on the path from
this node toward the root until we find the first node that has a son that has not
yet been considered. Depth-first search plus backtracking is a completely a priori
rule if we fix a rule for choosing branching variables and specify that the left son is
considered before the right son. This rule has several advantages:

• The linear programming relaxation for a son is obtained from the linear pro-
gramming relaxation of its father by adding a simple lower- or upper-bound
constraint. Then, given the optimal solution for the father node, it is possible
to reoptimize by the dual simplex algorithm.
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• Empirical results show that feasible solutions are more likely to be found deep
in the tree than at nods near the root. The good result of a branch-and-
bound algorithm is very dependent on having a good lower-bound zIP for
value dominance pruning.

The default option in most commercial codes is depth first when the current node
is not pruned. At least one son is considered immediately. Typically, when a node
is pruned, the next node is not determined by the backtracking strategy.

There is an other very important example of a priori rule: the breadth-first
search. In this case all of the nodes at a given level are considered before any nodes
at the next lower level. While this means of node selection is not practical for
solving general integer programs using linear programming relaxations, it has some
interesting properties, one of which is its use in heuristics. One can choose an active
node using the following criteria:

• Choose a node that has to be considered in any case. There is a unique node
with the largest upper bound it must be considered. When a node has been
pruned, next select from all active nodes one that has the largest upper bound.
Hence if L is the set of active nodes, determine an i ∈ L that maximizes z̄i.

• Choose a node that is more likely to contain an optimal solution. The reason
for this is that once we have found an optimal solution, even if we are unable to
prove immediately that it is optimal, we will have obtained the largest possible
value of zIP . This is very important for subsequent pruning. Suppose ẑi ≤ z̄i
is an estimate of ziIP . The rule best estimate is to choose an i ∈ L that
maximizes ẑi.

• Try to find quickly a feasible solution x̂ such that cx̂ > zIP . The criterion

max
i∈L

z̄i − zIP
z̄i − ẑi

is called quick improvement. Note that node i with ẑi > zIP will be preferred
to node j with ẑj ≤ zIP . Moreover, preference will be given to nodes for which
z̄i − ẑi is small. One expects that such nodes will yield a feasible solution
quickly. Quick improvement is used in some commercial codes as the default
option once a feasible solution is known.

Hypothesize we have chosen an active node i. There is a the linear programming
solution xi associated with it. Secondly, we must select a variable to define the
division. We restrict it to the index set N i = {j ∈ N : xij /∈ Z1}. Experimental
evidence shows that the choice of a j ∈ N i can be very important to the running
time of the algorithm. Since robust methods for determining such variables have not
been established, a common way of choosing a branching variable is by user-specified
priorities. This means that an ordering of the variables is specified as part of the
input and that branching variables are selected from N i according to this order.
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Other possibilities involve degradations or penalties. Degradation attempts to
estimate the decrease in z̄i that is caused by requiring xj to be integral. Suppose
xj = xij = bxijc+f i

j and f i
j > 0. Then by branching on xj, we estimate a decrease of

D−ij = p−ij for the left son and D+i
j = p+i

j (1− f i
j) for the right son. The coefficients

{p−ij , p
+i
j } can be specified as part of the input or estimated in several different ways.

Given {D−ij , D
+i
j } for j ∈ N i, a common way to choose the branching variable

is by the criterion
max
j∈N i

min{D−ij , D
+i
j }.

The idea is that a variable whose smallest degradation is largest is most important
for achieving integrality. When D−ij = f i

j and D+i
j = 1 − f i

j , criterion is called
maximum integer infeasibility.

Other rules are also used, for example, maxj∈N i max{D−ij , D
+i
j }. Here the idea

is that one branch may easily be pruned by value dominance.

2.4.2 Cutting-plane method

Let zIP be a linear integer programming problem, x∗ the optimal solution (optimal
value z∗), zLP the continuous relaxation of zIP , x0 the optimal solution of zLP
(optimal value z0). An hyperplane ax ≥ a0 is called cutting plane if:

• x0 is unfeasible (ax0 < a0)

• is feasible for all optimal integer solution of the original problem (ax ≥ a0,∀x
feasible and integer)

Cutting planes algorithm:

begin

1. solve zLP obtaining x0

2. if zLP is unbounded or impossible then stop;

3. while x0 is not integer do

4. determine a cutting plane ax ≥ a0 and add it to constraints of P

5. solve zLP obtaining x0

6. if zLP is impossible then stop;

7. end while
end (you have x∗ = x0)
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Figure 2.3: Example of feasible and unfeasible cutting plane

This method has some disadvantages: first of all, its computational complexity
is not polynomial. The feasible region of an ILP problem may be determined by
constraints that can be more or less stringent. In these cases the formulation of
ILP are equivalent, but if you remove integrality constraints, generally, you obtain
different optimal solutions, as shown in Fig. 2.4. To understand which is the ideal

Figure 2.4: Example of different feasible regions of the same ILP

formulation we need the following definition:
Given a set S ⊆ Rn, a point x ∈ Rn is a convex combination of points of S if there
exists a finite set of points {xi}ti = l ∈ S and a λ ∈ Rt

+ with
∑t

i=l λi = 1 and

x =
∑t

i=l λixi.
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The convex hull of S, denoted by conv(S), is the set of all points that are convex
combinations of points in S. If S ⊆ Zn, conv(S) represents a polytope P ′ with
every corner is an integer point. Given S it is possible to find A′, d′, subject to
P ′ = {x ∈ Rn : A′x ≥ d′, x ≥ 0} = conv(S) and it means that min{cTx : x ∈ S} =
min{cTx : A′x ≥ d, x ≥ 0}
In this case you can solve the ILP through simplex method.
Unfortunately, to determine conv(S) is very difficult, because in general, the system
A′x ≥ d′ has a large number of constraints. However, there is a case in which
the natural formulation of ILP is equivalent to the ideal formulation: when the
constraint matrix fulfills an important property, i.e., if it is totally unimodular. We
analyze this property in detail in section 2.5.

Figure 2.5: Convex hull

2.5 Total Unimodularity

In this paragraph an important property of constraint matrix will be analyzed.
A matrix A ∈ Zmxn is totally unimodular (TU) if the determinant of every square

submatrix is { 0,1,-1 }.
The following statements are equivalent.

1. A is TU.

2. The transpose of A is TU.

3. (A, l) is TU.

4. A matrix obtained by deleting a unit row (column) of A is TU.

5. A matrix obtained by multiplying a row (column) of A by -1 is TU.

6. A matrix obtained by interchanging two rows (columns) of A is TU.

7. A matrix obtained by duplicating columns (rows) of A is TU.
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8. A matrix obtained by a pivot operation on A is TU.

Properties:

• Let A be totally unimodular. If b ∈ Zm, then P := {x ∈ Rn|Ax ≤ b} is an
integral polyhedron.

• The linear program max{cx : Ax ≤ b, x ∈ Rn
+} has an integral optimal solution

for all integer vectors b for which it has a finite optimal value if and only if A
is totally unimodular.

• If A is totally unimodular and b and w are integer vectors, then both sides of
the LP-duality equation
max{wx|Ax ≤ b} = min{yb|y ≥ 0, yA = w}
have integer optimum solutions[17].

• Let A be a matrix of full row rank. Then the following are equivalent :

– for each basis B of A, the matrix B−1A is integral;

– for each basis B of A, the matrix B−1A is totally unimodular;

– there exists a basis B of A for which B−1A is totally unimodular.

• The following characterization is due to Chandrasekaran [6]: a matrix A is
totally unimodular if and only if for each nonsingular submatrix B of A and
for each nonzero (0, ± 1)-vector y, the g.c.d. of the entries in yB is 1.

We now report a result by Ghouila- Houri [15] to prove that the continuous relaxation
of the model (4.32)-(4.35) always admits an integer optimal solution.

Theorem 1. Let A ∈ Zmxn. A is totally unimodular if and only if the following
property holds:
Let C ⊆ N = {1, ..., n}. Then ∃ a partition of C into C1 and C2 subject to

|
∑
c1∈C1

aic1 −
∑
c2∈C2

aic2| ≤ 1 ∀i.

Proof. =⇒ Let C be an arbitrary subset of N. Define z by zc = 1 if c ∈ C, zc = 0
otherwise. Also let d′ = 0, d = z, g = Az, b′i = bi = −1/2gi if gi is even, and
b′i = −1/2(gi− 1), bi = b′i + 1 if gi is odd. Now consider

P (b, b′, d, d′) = {x ∈ Rn
+ : b′ ≤ Ax ≤ b, d′ ≤ x ≤ d}.

Note that x = z/2 ∈ P (b, b′, d, d′). Since A is TU, we have b′, b ∈ Zm, d′, d ∈ Zn

and P 6= ∅. Then P is integral. Thus there exists x0 ∈ P ∩ Bn with x0c = 0 for



30CHAPTER 2. INTEGER LINEAR PROGRAMMING AND CONTINUOUS RELAXATION

c ∈ N C and x0c ∈ {0, 1} for c ∈ C. Note that zc − 2xc = ±1 for c ∈ C. Let
C1 = {c ∈ C : zc − 2x0c = 1} and C2 = {c ∈ C : zc − 2x0c = −1}. We have∑

c1∈C1

aic1 −
∑
c2∈C2

aic2 =
∑
c∈C

aic(zc − 2x0c) =

{
gi − gi = 0 ifgiiseven

gi − (gi ± 1) = ±1 ifgiisodd

Thus ∑
c1∈C1

aic1 −
∑
c2∈C2

aic2 ≤ 1 ∀i

⇐= If |C| = 1 we have aic ∈ {0,±1} ∀i, ∀c. The proof is by induction on the size of
the nonsingular submatrices of A using the hypothesis that the determinant of every
(k − 1) × (k − 1) submatrix of A is equal to 0,±1. Let B be a k × k nonsingular
submatrix of A, and let r = |detB|. Our goal is to prove that r = 1. By the
induction hypothesis and Cramer’s rule, we have B−1 = B∗/r, where b∗ic = {0,±1}.
By the definition of B∗ we have Bb∗i = re1 where b∗1 is the first column of B∗ Let
C = {i : b∗i1 6= 0} and C ′1 = {i ∈ C : b∗i1 = 1}. Hence for i = 2, . . . , k, we have

(Bb∗1)i =
∑
c∈C′

1

bic −
∑

c∈C−C′
1

bic = 0.

Thus |{i ∈ C : bic 6= 0}| is even; so for any partition (C̃1, C̃2) of C, it follows that∑
c∈C̃1

bic−
∑

c∈C̃2
bic is even for i = 2, ..., k. Now by hypothesis, there is a partition

(C1, C2) of C such that |
∑

c∈C1
bic −

∑
c∈C2

bic| ≤ 1. Then∑
c∈C1

bic −
∑
c∈C2

bic = 0, i = 2, ..., k.

Now consider the value of α1 = |
∑

c∈C1
b1c −

∑
c∈C2

b1c|. If α1l = 0, define y ∈ Rk

by yi = 1 for i ∈ C1, yi = −1 for i ∈ C2, and yi = 0 otherwise. Since By = 0 and B
is nonsingular, we have y = 0, which contradicts C 6= ∅ . Hence by hypothesis we
have α1 = 1 and By = ±e1. However, Bb∗i = re1. Since y and b∗1 are (0,±1) vectors,
it follows that b∗i = ±y and |r| = 1.

Since A is TU if and only if its transpose is TU, Theorem 1 holds also if we
consider a partition of rows of A.

We here itemize some basic examples of totally unimodular matrices, in partic-
ular network matrices:

1. Bipartite graphs. Let G = (V,E) be an undirected graph, and let M be
the V × E -incidence matrix of G (i.e. M is the (0, 1)-matrix with rows and
columns indexed by the vertices and edges of G, respectively, where Mv,e = 1
if and only if v ∈ e ). Then:
M is totally unimodular if and only if G is bipartite.
So M is totally unimodular if and only if the rows of M can be split into two
classes so that each column contains a 1 in each of these classes. Assertion
easily follows from Ghouila-Houris characterization 1.



2.5. TOTAL UNIMODULARITY 31

2. Directed graphs. Let D = (V,A) be a directed graph, and let M be the V ×A-
incidence matrix of D (i.e. M is a (0,±1)-matrix with rows and columns in-
dexed by the vertices and arcs of D, respectively, where Mu,a = +1(= −1) if
and only if a enters (leaves) u ). Then M is totally unimodular. So a (0,±1)-
matrix with in each column exactly one + 1 and exactly one - 1 is totally
unimodular.
Again with Hoffman and Kruskals theorem, the total unimodularity of in-
cidence matrices of digraphs implies several graph-theoretical results, like
Mengers theorem, the max-flow min-cut theorem, Hoffmans circulation theo-
rem, and Dilworths theorem.

3. Network matrices. Let D = (V,A) be a directed graph and let T = (V,A) be a
directed tree on V . Let M be the A0×A-matrix defined by, for a = (v, w) ∈ A
and a ∈ A0: M

′
a, a

• + 1 if the unique v-w-path in T passes through a forwardly;

• - 1 if the unique v-w-path in T passes through a backwardly;

• 0 if the unique v-w-path in T does not pass through a.

Matrices arising in this way are called network matrices. If M,T, and D are
as above, we say that T and D represent M . Note that the class of network
matrices is closed under taking submatrices: deleting a column corresponds to
deleting an arc of D, while deleting a row corresponds to contracting an arc
of T .
Network matrices are totally unimodular.

4. Minimum-cost network flow.

The constraint matrix A of a minimum-cost flow problem is totally unimodu-
lar. We consider the node-arc incidence matrix A; since all entries are ±1 or
0, every |x| submatrix has determinant ±1 or 0. Hence, by induction, suppose
that this property is true for every square submatrix of size (k− 1)× (k− 1),
and let Ak be any k × k submatrix of A, where k > 2. We must show that
det Ak = ±1 or 0. Note that each column of Ak has either all zeros or only a
single nonzero entry that is +1 or −1 , or it has exactly two nonzero entries,
namely a +1 and a −1. If any column of Ak is zero, then det Ak = 0. If any
column of Ak has a single nonzero entry, then expanding the determinant of
Ak by the minors of that column, we get det Ak = ±detAk−1, where Ak−1 is a
square submatrix of size (k − 1) × (k − 1). By the induction hypothesis, det
Ak−1 = ±1 or 0, and hence det Ak = ±1 or 0. Otherwise, every column of Ak

must have a +1 and a −1 . In this case, since the rows of Ak add up to the
zero vector, we have that det Ak = 0. Then, A is totally unimodular.

(see [32] for an exhaustive description of the topic)
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2.6 Computational Complexity

There are several ways of defining a concept of running time, to indicate the num-
ber of elementary bit operations in the execution of an algorithm by a computer or
computer model. In practice, this time will depend on the eventual implementation
of the algorithm. An algorithm is called polynomial if its running time function
is polynomially bounded. A problem is said to be solvable in polynomial time
or polynomially solvable if the problem can be solved by a polynomial algorithm.
The class of decision problems solvable in polynomial time is denoted by P. An-
other, possibly larger, complexity class is the class N P, that means solvable by a
Non-deterministic Turing machine in Polynomial time, and not for nonpolynomial.
Informally, the class N P can be described as the class of those decision problems
L satisfying: for any z ∈ L , the fact that z is in L has a proof of length poly-
nomially bounded by the size of z. It can be shown that certain problems in the
class N P are the hardest among all problems in N P, under a certain ordering of
problems by difficulty, like the integer linear programming problem. These problems
are called N P-complete.
The simplex method was designed by Dantzig [11], and it is the main method used
to solve linear programming. Although some artificial examples show exponential
running time, in practice and on the average the method is very efficient. It is not
a polynomial-time method, because in the worst case its computational complexity
is exponential. However, in practice the simplex method is very fast and experience
suggests that the number of pivot steps is about linear in the problem dimensions.



Chapter 3

Vehicle Routing Problems

Vehicle Routing Problems (VRP) or Vehicle Scheduling Problems are problems in
which some goods are distributed between a set of depots and a set of customers by
a set of vehicles, operated by a set of drivers who can move on a given road network.
There are a large number of different real applications: solid waste collection, street
cleaning, delivery and collection of goods, school bus routing, dial-a-ride systems,
transportation of handicapped persons, routing of salespeople. The VRP generalizes
one of the most famous and important combinatorial optimization problems: the
traveling salesman problem (TSP)
The objective is to determine a set of routes, one for each vehicle that starts and ends
at its own depot, such that all customers’ requirements and operational constraints
are satisfied and global transportations costs are minimized. The road network,
used for the delivery or collection of goods, can be described through a graph where
the arcs are roads and nodes are junctions between them and correspond with the
depot and customer locations. Each arc has an associated cost which is generally
its length or travel time. The arcs may be directed or undirected if they can be
traversed in only one direction or in both direction respectively. For example, we
have a directed arc if it correspond to a one way street or if the cost are different in
each direction.

A customers is characterized by:

• his location, corresponding to vertex position of the graph

• the demand, quantity of freights that must be delivered or collected

• time windows, period of the day in which customer must be serviced

• unloading or loading times, if goods must be delivered or collected respectively

• subset of vehicles that can be used to serve the customer

A vehicle is characterized by:
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Figure 3.1: A VRP graph

• home depot of the vehicle, and the possibility to end service at a depot other
than the home one;

• capacity of the vehicle, expressed as the maximum weight, or volume, or num-
ber of pallets, the vehicle can load;

• possible subdivision of the vehicle into compartments, each characterized by
its capacity and by the types of goods that can be carried;

• devices available for the loading and unloading operations;

• subset of arcs of the road graph which can be traversed by the vehicle; and

• costs associated with utilization of the vehicle (per distance unit, per time
unit, per route, etc.).

In a VRP problem, as previously mentioned, we can have different depots and
each of these is characterized by the number and the types of vehicles. In real
applications, a set of customers can be assigned to only one depot. In this way, we
obtain a decomposition of the problem into several independent VRP problems, one
for each different depot in the road network. Drivers must comply various constraints
laid down by union contracts and company regulations, as working periods during
the day, number and duration of breaks during service, maximum duration of driving
periods, overtime.

Routes must satisfy several operational constraints, as the following:

• along each route, the current load of the associated vehicle must be lower than
the vehicle capacity;

• the customers served in a route can require only the delivery or the collection
of goods, or both possibilities;
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• customers can be served only within pre established time windows;

• the duration of any route must be lower than a work shift duration.

Sometimes it is impossible to fully satisfy the demand of each customer. May be
necessary to reduce the amount of goods or do not satisfy all customers. In this case
we can associate different priority to customers.

Some of the most important basic vehicle routing problems are the following:

• Capacitated VRP (CVRP). The basic version of VRP is the Capacitated VRP.
In the CVRP, all the customers correspond to deliveries and the demands
are deterministic, known in advance, and may not be split. The vehicles are
identical and based at a single central depot, and only the capacity restrictions
for the vehicles are imposed. The objective is to minimize the total cost (i.e.,
a weighted function of the number of routes and their length or travel time) to
serve all the customers. The CVRP may be described as the following graph
theoretic problem. Let G = (V,A) be a complete graph, where V = {0, . . . , n}
is the vertex set and A is the arc set. Vertices i = 1, . . . , n correspond to the
customers, whereas vertex 0 corresponds to the depot. Sometimes the depot
is associated with vertex n + 1. A nonnegative cost, ctj, is associated with
each arc(i, j) e A and represents the travel cost spent to go from vertex i to
vertex j. Generally, the use of the loop arcs, (i, i),is not allowed and this is
imposed by defining cii = ∞ ∀i ∈ V . If G is a directed graph, the cost
matrix c is asymmetric, and the corresponding problem is called asymmetric
CVRP (ACVRP). Otherwise, we have cij = cji ∀(i, j) ∈ A, the problem is
called symmetric CVRP (SCVRP), and the arc set A is generally replaced by
a set of undirected edges, E.

In several practical cases, the cost matrix satisfies the triangle inequality,

cik + ckj ≥ cij ∀i, j, k ∈ V.

In other words, it is not convenient to deviate from the direct link between two
vertices i and j. The presence of the triangle inequality is sometimes required
by the algorithms for CVRP.
The CVRP consists of finding a collection of exactly K simple circuits (each
corresponding to a vehicle route) with minimum cost, defined as the sum of
the costs of the arcs belonging to the circuits, and such that

– each circuit visits the depot vertex;

– each customer vertex is visited by exactly one circuit; and

– the sum of the demands of the vertices visited by a circuit does not exceed
the vehicle capacity, C.
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• VRP with Backhauls.

The VRP with Backhauls (VRPB) is the extension of the CVRP in which the
customer set V \0 is partitioned into two subsets. The first subset, L, contains
n Linehaul customers, each requiring a given quantity of product to be deliv-
ered. The second subset, B, contains m Backhaul customers, where a given
quantity of inbound product must be picked up. Customers are numbered so
that L = {1, . . . , n} and B = {n+ 1, . . . , n+m}. In the VRPB, a precedence
constraint between linehaul and backhaul customers exists: whenever a route
serves both types of customer, all the linehaul customers must be served be-
fore any backhaul customer may be served. A nonnegative demand, di, to be
delivered or collected depending on its type, is associated with each customer
i, and the depot is associated with a fictitious demand d0 = 0

D

L3

B2

L1

L2

B1

Figure 3.2: A VRP with Backhauls

• VRP with Pickup and Delivery The VRP with Pickup and Delivery consists
of finding a collection of exactly K simple circuits with minimum cost, and
such that:

– each circuit visits the depot vertex;

– each customer vertex is visited by exactly one circuit;

– the current load of the vehicle along the circuit must be nonnegative and
may never exceed the vehicle capacity C;

– for each customer i, the customer Oi, when different from the depot, must
be served in the same circuit and before customer i;

– for each customer i, the customer Di, when different from the depot,
must be served in the same circuit and after customer i.

• VRP with Time Windows The VRP with Time Windows (VRPTW) is the
extension of the CVRP in which capacity constraints are imposed and each
customer i is associated with a time interval [ai, bi], called a time window.

(see [34] for an exhaustive description of the topic)
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3.1 Drayage & VRP with Full Container Loads

In the field of intermodal freight transportation, the distribution of containers by
trucks between importers, exporters and intermodal terminals is called drayage.
Drayage is a critical part of the service provided by liner shipping companies. While
their vessels carry thousands of containers in maritime networks, the supply of door-
to-door services between intermodal terminals and customers must be performed by
trucks carrying one or two containers. Therefore, drayage problems are much more
resource-intensive and energy-consuming than the maritime counterpart [29].

In container drayage, mostly 20-foot and 40-foot standard containers are trans-
ported, and usually only up to two 20-foot containers or one single 40-foot container
can be carried by a truck [35]. In recent years the literature on drayage has increased
significantly, and many problem settings have been investigated.

Drayage problems were often faced by optimization methods in a variant of VRP,
called Vehicle Routing Problem with Full Container Loads(VRPFC), in order to plan
how to serve the requests of import and export customers, who must receive and
ship container loads, respectively. In its basic setting, the VRPCF can be defined
as follows: given a homogeneous container type and a fleet of trucks with possibly
different hauling costs, the objective is to find the optimal assignment of vehicles to
a set of delivery and pickup point pairs (hereafter referred to as DP pairs), in order
to minimize the total distribution cost.

The VRPCF belongs to the field of pickup and delivery problems, because there
are two types of customers needing to ship or receive container loads ([30]). When
all deliveries must be performed before all pickups in each route, this VRP variant
belongs to the class of Vehicle Routing Problems with Clustered Backhauls, accord-
ing to the problem classification in [28] or One-to-many-to-one pickup and delivery
problems with Single Demands and Backhauls in accordance with [2].

When customers can be visited in any order the drayage problem is classified as
Vehicle Routing Problem with Mixed Linehauls and Backhauls (VRPMB) in [28] or
One-to-many-to-one pickup and delivery problems with Single Demands and Mixed
Solutions in[2].

In the vast literature on VRPFC, two types of transportation requests are in-
vestigated: drop&pick and stay-with. In the first case, while containers are left at
customer locations, drivers can move to other customers, thus bypassing packing
and unpacking operations [38, 21, 43, 46, 3, 27]. Conversely, in stay-with operations
drivers wait for containers and trucks carry the same container(s) throughout their
routes [29, 19, 5].

In what follows we summarize the main features of the most important papers
in the field of VRPFC.
Wang and Regan (2002) [38] considered a local truckload pickup and delivery prob-
lems with a fixed number of vehicles; they developed a solution method based on
windows partition.
Gronalt et al. (2003) [16] dealt with the pickup and delivery of full truckloads be-
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tween distribution centers with time window constraints. The objective function
is to minimize empty vehicle movements, as these use resources without directly
adding value to the products transported. They proposed an exact formulation of
the problem and a relaxed problem formulation based on network flows, which can
be used to calculate a lower bound to the solution value. Finally, they used four
different savings based heuristics for the problem.
Jula et al. (2005) [21] presented a drayage problem as an asymmetric multi-traveling
salesman problem with time windows constraints for container movements. The con-
tainers (loaded and empty) move from an intermodal facility to a customer and vice
versa. The problem is solved using a hybrid method of dynamic programming and
genetic algorithm.
Ileri et al. (2006) [18] presented a daily drayage problem, which is a complex real-
word problem, where loaded or empty equipments move between customer locations
and rail ramps. They solved the problem by an exact approach, through a formula-
tion consists on a set partitioning model whose columns represent routes.
Chung et al. (2007) [8] dealt with the workflow in container transportation and
then developed mathematical models integrating the various operating and design
characteristics for the container transportation problem in Korean trucking indus-
tries. They presented several formulations that utilize the standard formulations of
Traveling Salesman Problem and VRP, and also heuristic algorithms to solve these
models.
Francis et al. (2007) [13] proposed modeling and solution method improvements
for the Multi-Resource Routing Problem. They presented a heuristic approach that
uses randomized route generation with flexible tasks.
Imai et al. (2007) [19] investigated a VRP with pickups and deliveries, more specifi-
cally a VRPFC with own and chartered vehicles incident to an intermodal terminal
and time lengths constraints. They solved the problem using a heuristic based on a
Lagrangian relaxation which allows to identify a near optimal solution. The heuristic
consists of some sub-problems, which are the classical and the generalized assign-
ment problem. This procedure is tested on a great number of problem examples
and results demonstrate that it can be used to solve a large number of instances.
Namboothiri and Erera (2008) [26] considered the management of vehicles providing
container pickup and delivery service to a port with an appointment-based access
control system. They proposed a heuristic approach determining pickup and deliv-
ery sequences for daily drayage operations with minimum transportation cost.
Caris and Janssens (2009) [5] investigated a drayage problem of containers in the ser-
vice area of an intermodal terminal, that is modelled as a full truckload pickup and
delivery problem with time windows. They proposed a two-phase insertion heuristic
to construct an initial solution, that is improved with a local search heuristic based
on three neighbourhoods.
Zhang et al. (2009) [45] considered a truck scheduling problem in which empty con-
tainers are considered as a transportation resource. A cluster method and a reactive
tabu search algorithm have been developed to solve the problem.
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Zhang et al. (2010) [43] investigated a problem in which containers move between
multiple depots and multiple terminals. They modeled the problem as an extension
of the multiple traveling salesman problem with double-side time windows of loads
at both the origin and the destination.
Vidovic et al. (2011) [36] studied a problem that is closely related to the vehicle
routing problem with backhauls (VRPB), in oder to determine an optimal set of or-
ders (or routes) visiting deliveries (linehauls) and pickups (backhauls). Containers
of different sizes, but mostly 20ft, and 40ft empty and/or loaded should be delivered
to, or collected from the customers.
Zhang et al. (2011) [46] dealt with a multiple traveling salesman problem with time
windows with resource constraints. They developed a heuristic approach based on
a reactive tabu search.
Braekers et al. (2013) [3] studied a VRP for transporting loaded and empty contain-
ers in drayage operations. They formulated the problem as an asymmetric multiple
vehicle traveling salesman problem with time windows and proposed two solution
approaches.
Sterzik and Kopfer (2013) [33] analyzed the movement of full and empty containers
among a number of terminals, depots and customers. A trucking company with
a homogeneous fleet of trucks has to serve customers which either receive goods
by inbound containers or ship goods by outbound containers. They solved vehicle
routing and scheduling problem in container drayage operations with tabu search
metaheuristics.
Wang and Yun (2013) [37] investigated a container transportation problem by truck
and train with time windows constraints. Containers are classified into four types ac-
cording to the direction (inbound containers and outbound containers) and container
state (full containers or empty containers). The authors developed a mathematical
model by a graph model and proposed a hybrid tabu search.
Nossack and Pesch (2013) [27] dealt with a truck scheduling problem that arises in
intermodal container transportation, where containers move between customers and
container terminals and vice versa. The problem is formulated as Full-Truckload
Pickup and Delivery Problem with time windows and is solved by a 2-stage heuris-
tic solution approach.
Braekers et al. (2014) [4] investigated a full truckload vehicle routing problem in
drayage operations around intermodal container. The problem is formulated as an
asymmetric multiple vehicle Traveling Salesman Problem with time windows. The
authors proposed a two-phase hybrid deterministic annealing and tabu search algo-
rithm.
Xue et al. (2014) [41] examined a Local Container Drayage Problem (LCDP) under
an operation mode in which a tractor can be detached from its companion trailer
and assigned to a new task. They solved the problem with a tabu search algorithm.
Zhang et al. (2014) [42] studied a container drayage problem with flexible orders
defined by requiring and releasing attributes as a unified formulation of various order
types. A determined-activities-on-vertex graph introduces a temporary vertex set
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to formulate different truck statuses. The problem is formulated as a mixed-integer
nonlinear programming model based on the graph.
Lai et al. (2015) [22] proposed an Adaptive Guidance metaheuristic to investigate
the use of a homogeneous fleet of large vehicles, which can be adopted to face the
problem presented by[24].
Xue et al. (2015) [40] studied a Local Container Drayage Problem under a special
operation mode in which tractors and trailers can be separated; tractors can be
assigned to a new task at another location while trailers are waiting for packing or
unpacking. The containers for pickup and delivery customers are owned by different
shippers. The problem is formulated as a vehicle routing and scheduling problem
with temporal constraints.
Zhang et al. (2015) [44] presented a multi-size container truck transportation prob-
lem in which a truck can carry one 40 ft or two 20 ft containers. This problem
considers both fixed and flexible drayage orders. The problem is modeled as a
sequence-dependent multiple-traveling salesman problem with social constraints in
which the distances between cities depend on the sequence of cities visited before.
Funke and Kopfer (2016) [14] investigated a routing problem in which trucks can
transport up to two 20-foot or one 40-foot container at a time along routes with
various pickup and delivery locations. A mixed-integer linear program for this prob-
lem is presented using two alternative objective functions: minimization of the total
travel distance and minimization of the total operation time of the trucks.
Reinhardt et al. (2016) [29] proposed an intermodal transportation problem arising
in the liner shipping industry. The authors proposed several different mathematical
models for optimizing a one-day schedule covering all import and export orders.
Vidovic et al. (2016) [35] studied a problem of vehicle routing in drayage opera-
tions, where vehicles can carry containers of different sizes. This multisize container
drayage problem with time windows is modeled as a multiple matching problem
and formulated as a mixed integer linear program model. They solved larger sized
problems using a variable neighborhood search heuristic.
To summarize, all papers in the field of VRPFC aimed at solving specific variants of
this problem. The objective of this thesis is different: it aims to investigates why the
continuous relaxations of several formulations of VRPFC admit an integer optimal
solution.
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The analysis of algebraic
structures in a VRPFC

4.1 Problem Description

Consider a fleet of trucks and containers based at the port. Trucks can carry up one
or two containers to serve two types of customers: importers and exporters. In the
first case the transportation request consists in the delivery of container loads from
the port to the importers; in the second case it consists of the shipment of container
loads from the exporters to the port. Typically, each customer needs to ship or
receive more-than-one container load. Therefore, usually each customer must be
visited by more than one truck.
It is important to note that in this problem containers are never unloaded or reloaded
from the chassis of the truck along a route. They are brought to the customers, where
they are packed or unpacked and moved away by the same trucks. Therefore, while
containers are emptied at importer locations, drivers wait for empty containers to be
returned. Similarly, trucks move empty containers to export customers and drivers
wait for loaded containers to be returned, while packing operations are performed.
Trucks and containers are coupled in the sense that the truck carries the same set
of containers throughout the route.
Although customers cannot be provided with large time windows for loading or un-
loading, this practice is perceived as a high quality service, because the integrity
and the content of the cargo can be immediately verified by drivers. More precisely,
they supervise the unloading operations making promptly sure that the container
loads are the correct ones, in the right quantity and there are not damages. The
number of claims and cargo returns is therefore limited. From the carrier’s point
of view, this policy improves container safety and integrity, because containers are
never left unsupervised at customer locations.
The carrier is aware of the fact that leaving containers at customer locations would
save drivers the time to supervise loading and unloading operations and they could
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move to other customers in the meanwhile ([7]). However, possible cargo problems
may be noticed only after truck departures and corrective actions may not be taken
rapidly. Moreover, when containers are left at customer locations without chassis,
special equipment is required for decoupling and coupling the container to the chas-
sis, whereas in this case study the carrier’s policy demands customers to be equipped
only with forklift trucks for packing and unpacking operations.
As expected from carrier’s policy, importers must be service before exporters. The
use of containers emptied at importers to collect cargoes from the exporters ([20],
[12]) is also called street-turn. Since the number of container loads to be delivered to
importers and picked from exporters is typically different, street-turns are typically
insufficient to meet all customer requests and additional empty containers must be
picked up or returned to the port with loaded containers. More precisely, when the
number of container loads to be delivered is larger than the number of container
loads to be picked up, trucks return empty containers back to the port. Conversely,
trucks leave the port carrying empty containers when the container loads of ex-
porters are larger than those of importers. We assume there is always a number of
containers at the port sufficient to serve all import and export requests.

If each truck carries one container, it can service two customers (one importer
and one exporter) at most. Three possible routes are allowed in this case:

• moving a loaded container from the port to an importer and the empty con-
tainer from the importer to the port;

• moving a loaded container from the port to an importer, the empty container
from the importer to an exporter and, finally, the loaded container from the
exporter to the port;

• moving an empty container from the port to an exporter and the loaded con-
tainer from the exporter to the port.

There are costs generated by the movement of trucks: routing costs and handling
costs. Routing costs depend on the distance and on the trucks. In this problem
trucks with capacity two have higher costs then trucks with capacity one. Handling
costs are paid to put containers on trucks at the port. The objective is to determine
routes minimizing routing and handling costs.

4.2 Initial formulation of the problem

We recall the general model proposed in [24]. We consider a port p, a set of Importers
I, a set of Exporters E, a set of trucks K.

Given a graph G(N, A), where N = p ∪ I ∪E and A = A1 ∪A2, A1 = {(i, j)|i ∈
I ∪ p, j ∈ N, i 6= j}, A2 = {(i, j)|i ∈ E, j ∈ E ∪ p, i 6= j}, the following decision
variables are defined:
xkij is the routing selection variable, which is equal to 1 if arc (i, j) ∈ A is traversed
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by truck k ∈ K, 0 otherwise;
ykij represents the number of loaded containers moved along arc (i, j) ∈ A by truck
k ∈ K;
zkij represents the number of empty containers moved along arc (i, j) ∈ A by truck
k ∈ K;
Moreover, let ckij be the routing cost of truck k ∈ K moving along arc (i, j) ∈ A, hkpi
the handling cost of a container put on truck k ∈ K at the port p to serve customer
i ∈ I∪E, di ≥ 0 the number of containers used to serve customer i ∈ I∪E, and uk the
maximum number of containers carried by truck k ∈ K. In container drayage one or
two containers are typically carried by conventional trucks (i.e. uk = 1∨uk = 2). A
large number of containers can be carried by specialized vehicles, if their circulation
is allowed [23]. The optimization model is reported hereafter:
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min
∑
k∈K

 ∑
(i,j)∈A

ckijx
k
ij +

∑
i∈N

hkpi(y
k
pi + zkpi)

 (4.1)

∑
k∈K

∑
l∈N

ykil =
∑
k∈K

∑
j∈p∪I

ykji − di ∀i ∈ I (4.2)∑
k∈K

∑
l∈N

zkil =
∑
k∈K

∑
j∈p∪I

zkji + di ∀i ∈ I (4.3)∑
l∈N

ykil ≤
∑
j∈p∪I

ykji ∀i ∈ I,∀k ∈ K (4.4)∑
l∈N

zkil ≥
∑
j∈p∪I

zkji ∀i ∈ I,∀k ∈ K (4.5)∑
k∈K

∑
l∈p∪E

ykil =
∑
k∈K

∑
j∈N

ykji + di ∀i ∈ E (4.6)∑
k∈K

∑
l∈p∪E

zkil =
∑
k∈K

∑
j∈N

zkji − di ∀i ∈ E (4.7)∑
l∈p∪E

ykil ≥
∑
j∈N

ykji ∀i ∈ E,∀k ∈ K (4.8)∑
l∈p∪E

zkil ≤
∑
j∈N

zkji ∀i ∈ E,∀k ∈ K (4.9)∑
(ji)∈A

(ykji + zkji) =
∑
(il)∈A

(ykil + zkil) ∀i ∈ I ∪ E,∀k ∈ K (4.10)

ykij + zkij ≤ ukx
k
ij ∀(i, j) ∈ A, ∀k ∈ K (4.11)∑

j∈N

xkji −
∑
l∈N

xkil = 0 ∀i ∈ N, ∀k ∈ K (4.12)∑
j∈N

xkpj ≤ 1 ∀k ∈ K (4.13)∑
k∈K

∑
i∈I∪E

zkip −
∑
k∈K

∑
i∈I∪E

zkpi =
∑
i∈I

di −
∑
i∈E

di (4.14)

xkij ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K (4.15)

ykij ∈ Z+ ∀(i, j) ∈ A, ∀k ∈ K (4.16)

zkij ∈ Z+ ∀(i, j) ∈ A, ∀k ∈ K (4.17)

Constraints (4.2) and (4.3) are the flow conservation constraints of loaded and empty
containers at each importer, respectively. Constraints (4.4) and (4.5) guarantee that
the number of loaded containers cannot be increased after a service at each importer
and the number of empty containers cannot be reduced. Constraints (4.6) and
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(4.7) are the flow conservation constraints of loaded and empty containers at each
exporter, respectively. Constraints (4.8) and constraints (4.9) guarantee that the
number of loaded containers cannot be reduced after a service at each exporter and
the number of empty containers cannot be increased. Constraints (4.10) guarantee
that the number of containers carried by each truck is not changed throughout its
route. Constraints (4.11) impose that the number of containers carried by each
truck is not larger than its transportation capacity uk. Constraints (4.12) represent
flow conservation constraints for trucks at each node; constraints (4.13) impose that
trucks are not used more than once; constraint (4.14) is the flow conservation of
empty containers at port p. Finally, (4.15), (4.16) and (4.17) describe the domain
of the decision variables.

A feasible solution was built by an adaptation of the Clarke and Wright (1964)
algorithm [9] and was improved using two neighborhoods with a best improvement
strategy. In the first phase a feasible solution is determined by a variant of the
Clarke and Wright method, in which routes are merged and assigned to trucks. In
the second phase,, this solution is improved by several local search phases. The
search space of the local search phases is the set of truck assignments to routes
satisfying all constraints. Two neighborhoods are used: in the first, a node is moved
from its current route and inserted into another route by the best-insertion method
and trucks are reassigned to routes involved in this local move. In the second, two
nodes are swapped between two different routes and trucks are reassigned to routes
involved in this local move.

4.3 Experimentation and a conjecture on TU

In this Section we solve the previous model in the case of one-container per truck
and identical routing costs for each vehicle. The reported experimentation is carried
out on 35 artificial instances, in which the coordinates of customers and the number
of containers to be shipped or received are taken from [24]. These instances are
divided into five classes:

• 3 instances with 10 customers, who must be served by 28 containers;

• 5 instances with 20 customers, who must be served by 61 containers;

• 7 instances with 30 customers, who must be served by 88 containers;

• 9 instances with 40 customers, who must be served by 125 containers;

The model and its continuous relaxation have been solved by Cplex 12.5 on a Work-
station with Windows 8 64 bit, Intel i7-4700 MQ 2.40 Ghz processor, 8 GB of RAM,
default parameter settings and maximum running time of 1 hour1. The outcomes
are reported in the following table:
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|I| |E| |K| opt-sol IP opt-sol LP GAP IP/ LP ex-time IP ex-time LP
2 8 19 29444.821 29444.821 0 1.718 0.219
5 5 16 30012.495 30012.495 0 1.296 0.766
8 2 23 30067.104 30067.104 0 2.031 1.047
2 18 52 62406.297 62406.297 0 17.553 6.765
5 15 45 36048.282 34590.210 0 601.508 3.047
10 10 33 48782.049 48782.049 0 11.974 3.598
15 5 45 56692.138 56692.138 0 15.539 5.551
18 2 53 65765.831 65765.831 0 16.393 7.016
2 28 79 97366.504 97366.504 0 74.977 25.715
5 25 72 90911.344 90911.344 0 63.678 22.14
10 20 60 79011.592 79011.592 0 44.992 17.426
15 15 45 74324.637 74324.637 0 36.603 11.203
2 28 79 80744.698 80744.698 0 53.882 16.139
25 5 75 93938.997 93938.997 0 62.359 23.509
28 2 84 102584.528 102584.528 0 79.991 25.824
2 38 118 146631.032 146631.032 0 143.077 63.944
5 35 108 135257.555 135257.555 0 161.381 57.963
10 30 89 114334.017 114334.017 0 130.588 41.536
15 25 74 102522.340 102522.340 0 95.578 33.283
20 20 70 105772.860 105772.860 0 108.078 32.351
25 15 86 115210.468 115210.468 0 123.025 39.325
30 10 102 132274.337 132274.337 0 149.433 47.878
35 5 115 146420.060 146420.060 0 167.167 52.319
38 2 121 152394.732 152394.732 0 164.022 58.271

Table 4.1: First experimentation

Table 4.1 shows that the continuous relaxation is always integer. This outcome
was also observed in extensive computational experiments which are not reported
in this thesis. Therefore, one can assume that the constraint matrix of the previous
model is TU. It is worth noting that the condition one container per truck (uk = 1,
∀k ∈ K) is necessary for TU. In fact, in (4.11), if uk 6= 1 the constraint matrix has
some entries different to 1, 0 or -1, then it is not totally unimodular. In sections 4.4
and 4.5 we discuss if the condition of one-container per truck is sufficient to prove
this property.

4.4 Alternative formulations of the model to ver-

ify the conjecture

As mentioned previously, in this section we reformulate the model (4.1)-(4.17) pro-
posed by [24], in order to investigate the properties of constraint matrix and verify
if it is TU. First of all, in paragraph 4.4.1 we reformulate the problem in the case
uk = 1. In paragraph 4.4.2 we propose an other reformulation, obtained by the
model (4.26)-(4.30) adding the condition that all vehicles have the same costs.
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4.4.1 Case with one-container per truck and heterogeneous
vehicles

If all vehicles carry one container, the model (4.1)-(4.17) can be reformulated as
shown in this section. The variables on loaded and empty containers can be removed,
because each vehicle has a one-to-one relationship with a container. Moreover, the
flows of loaded or empty containers between any pair of nodes can be recognized by
the type of nodes. To clarify:

• A truck moving from a port to any importer can carry a loaded container only.

• A truck moving from an importer to the port can carry an empty container
only.

• A truck moving from a port to any exporter can carry an empty container
only.

• A truck moving from any exporter to the port can carry a loaded container
only.

• A truck moving from an importer to any exporter can carry an empty container
only.

When the capacity of the trucks is one, the model can be simplified. The number of
variables can be reduced and associated with one-to-one correspondence to possible
routes.

i

l

p

Figure 4.1: Possible routes

In Fig. 4.1 we show the allowed routes: red lines represent the route starting
from the port to an importer and from the importer to the port ; green lines show
the route starting from the port to an importer, from the importer to an exporter,
from the exporter to the port ; finally, blue lines indicate the route starting from
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the port to an exporter and from the exporter to the port (blue lines); dashed and
solid lines represent loaded containers and empty containers respectively.

The variable ykij is equal to xkij if i = p, j ∈ I, or i ∈ E, j = p, 0 otherwise; zkij is
equal to xkij if i ∈ {p} ∪ I, j ∈ {p} ∪ E, 0 otherwise.
Then, the previous model can be rewritten as follows:

min
∑
k∈K

(
∑

i∈I;l∈E

(ckpi + ckil + cklp + hkpi)x
k
il

+
∑
i∈I

(ckpi + ckip + hkpi)x
k
ip +

∑
l∈E

(ckpl + cklp + hkpl)x
k
pl)) (4.18)

xkpi −
∑

l∈{p}∪E

xkil = 0 ∀i ∈ I,∀k ∈ K (4.19)

∑
j∈{p}∪I

xkjl − xklp = 0 ∀l ∈ E,∀k ∈ K (4.20)

∑
j∈I∪E

xkjp −
∑
i∈I∪E

xkpi = 0 ∀k ∈ K (4.21)∑
i∈I∪E

xkpi ≤ 1 ∀k ∈ K (4.22)∑
k∈K

xkpi = di ∀i ∈ I (4.23)∑
k∈K

xklp = dl ∀l ∈ E (4.24)

xkpj, x
k
ip, x

k
ij ∈ {0, 1} ∀i ∈ I,∀j ∈ E,∀k ∈ K

(4.25)

It is worth noting that (4.18) has a lower number of variables as opposed to (4.1).
Generally speaking, there are three types of routes:

• routes with one importer and one exporter, which are characterized by the
connections from the importer to the exporter, i.e. by variable xkil, with i ∈
I, l ∈ E

• routes with one importer, which are characterized by the connections from the
importer to the port, i.e. by variable xkip, with i ∈ I

• routes with one exporter, which are characterized by the connections from the
port to the exporter, i.e. by variable xkpl, with l ∈ E

Constraints (4.19) and (4.20) enforce the flow conservation of vehicles at each im-
porter and exporter, respectively. Constraints (4.21) are flow conservation of trucks
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in the port, constraints (4.22) guarantee that trucks are not used more than once.
Constraints (4.23) and (4.24) guarantee to service the requested number of contain-
ers for each importer and exporter, respectively. Constraints (4.25) describe the
domain of decision variables.

Considering the constraints (4.19) and (4.20) we obtain:

xkpi =
∑

l∈{p}∪E

xkil ∀i ∈ I,∀k ∈ K

xklp =
∑

j∈{p}∪I

xkjl ∀l ∈ E,∀k ∈ K

Now, we replace variables xkpi and xklp into constraints (4.21), (4.22), (4.23), (4.24).
Constraint (4.21) results be an identity:∑

j∈I x
k
jp +

∑
j∈E x

k
jp −

∑
i∈I x

k
pi −

∑
i∈E x

k
pi = 0 ∀k ∈ K∑

j∈I x
k
jp +

∑
i∈E

∑
j∈{p}∪I x

k
ji −

∑
i∈I

∑
l∈{p}∪E x

k
il −

∑
i∈E x

k
pi = 0 ∀k ∈ K∑

j∈I x
k
jp +

∑
i∈E x

k
pi +

∑
i∈E

∑
j∈I x

k
ji −

∑
i∈I x

k
ip −

∑
i∈I

∑
l∈E x

k
il −

∑
i∈E x

k
pi = 0

∀k ∈ K∑
i∈E

∑
j∈I x

k
ji −

∑
i∈I

∑
l∈E x

k
il = 0 ∀k ∈ K

Therefore, the first reformulation can be rewritten as follows in the so-called second
reformulation:

min
∑
k∈K

(
∑

i∈I;l∈E

(ckpi + ckil + cklp + hkpi)x
k
il

+
∑
i∈I

(ckpi + ckip + hkpi)x
k
ip +

∑
l∈E

(ckpl + cklp + hkpl)x
k
pl)) (4.26)

∑
k∈K

(xkip +
∑
l∈E

xkil) = di ∀i ∈ I (4.27)∑
k∈K

(xkpl +
∑
j∈I

xkjl) = dl ∀l ∈ E (4.28)∑
i∈I

∑
l∈E

xkil +
∑
i∈I

xkip +
∑
i∈E

xkpi ≤ 1 ∀k ∈ K (4.29)

xkij ∈ {0, 1} (4.30)
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The objective function (4.26) is equal to (4.18). Constraints (4.27) and (4.28) enforce
demand satisfaction for each importer and exporter, respectively. Constraints (4.29)
guarantee that trucks are not used more than once. Constraints (4.30) describe the
domain of decision variables.

4.4.2 Case with one-container per truck and homogeneous
vehicles (third reformulation)

If routing costs are equal for each truck, we can modify the definition of decision
variables as follows:

tij =
∑

k∈K x
k
ij : number of trucks moved along arc (i, j) ∈ A

We redefine costs accordingly:

cij routing cost of arc (i, j) ∈ A

hpi handling cost for each container put on a truck at port p to serve customer i.

Therefore, in the case of one-container per truck and homogeneous vehicles, the
previous model can be rewritten as follows:

min(
∑

i∈I;l∈E

(cpi + cil + clp + hpi)til

+
∑
i∈I

(cpi + cip + hpi)tip +
∑
l∈E

(cpl + clp + hpl)tpl) (4.31)

tip +
∑
l∈E

til = di ∀i ∈ I (4.32)

tpl +
∑
j∈I

tjl = dl ∀l ∈ E (4.33)∑
i∈I

∑
l∈E

til +
∑
i∈I

tip +
∑
i∈E

tpi ≤ |K| (4.34)

tij ∈ Z (4.35)

The objective function (4.31) minimize routing and handling costs. Constraints
(4.32) and (4.33) enforce demand satisfaction at each importer and exporter,
respectively; constraint (4.34) guarantees that the number of routes is not larger
than the number of available vehicles; constraints (4.35) describe the domain of
decision variables.
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4.5 Algebraic properties of the new formulations

In order to investigate if the matrix constraint of the model (4.32)-(4.35) is TU, its
representation is reported in Table 4.2, where n,m are the cardinalities of sets I, E,
respectively. Therefore, lines from i1 to in are associated with constraints (4.32),
lines from j1 to jm with constraints (4.33), the last line with constraints (4.34). The

i1j1 i1j2 . . . i2j1 i2j2 . . . injm i1p i2p . . . inp pj1 pj2 . . . pjm

i1 1 1 . . . 0 0 . . . 0 1 0 . . . 0 0 0 . . . 0
i2 0 0 . . . 1 1 . . . 0 0 1 . . . 0 0 0 . . . 0
..
.
in 0 0 . . . 0 0 . . . 1 0 0 . . . 1 0 0 . . . 0

j1 1 0 . . . 1 0 . . . . . . 0 0 . . . 0 1 0 . . . 0
j2 0 1 . . . 0 1 . . . . . . 0 0 . . . 0 0 1 . . . 0
...

jm 0 0 . . . 0 0 . . . 1 0 0 . . . 0 0 0 . . . 1

k1 1 1 . . . 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1

Table 4.2: Constraint matrix A of the model (4.32)-(4.35)

following theorem represents the main result of this thesis.

Theorem 2. The constraint matrix of reformulation (4.32) - (4.35) is totally uni-
modular.

Proof. Let us denote with A the constraint matrix of (4.32)-(4.35). This matrix
is depicted in Tab.4.2 as the restriction of matrix M limited to rows indexed by
I ∪ J ∪ {k1}, where I = {i1, . . . , in} and J = {j1, . . . , jm}, and the columns indexed
by set A1∪A2∪A3, where A1 = {(i, j, k1)|i ∈ I, j ∈ J}, A2 = {(i, p, k1)|i ∈ I}, A3 =
{(p, j, k1)|j ∈ J}. Let I ′ and J ′ be two subsets of I and J respectively.

We will use Theorem 1 to prove that A is totally unimodular. We distinguished
two cases.

• Case 1 : The subset of A is indexed by the set I ′ ∪ J ′ ∪ {k1}
We can choose the partition: C1 = I ′ ∪ J ′, C2 = {k1} In Table 4.3 we indi-
cated the sums of the elements of each column. For every column indexed

A1 A2 A3∑
c1∈I′ ac1j 1 ∨ 0 1 ∨ 0 0

+
∑

c1∈J′ ac1j 1 ∨ 0 0 1 ∨ 0

-
∑

c2∈C2
ac2j 1 1 1

= 1 ∨ 0 ∨ -1 0 ∨ -1 0 ∨ -1

Table 4.3: Case: C = I ′ ∪ J ′ ∪ {k1}
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by (i, j, k) ∈ A1 ∪ A2 ∪ A3 the sum of the elements in I ′ ∪ J ′ may be 2, 1 or
0. Subtracting the row indexed by k1, we obtain 1, 0,−1. Then Theorem 1
applies.

• Case 2: The subset of A is indexed by the set I ′ ∪ J ′
We can consider the partition: C1 = I ′, C2 = J ′

A1 A2 A3∑
c1∈C1

ac1j 1 ∨ 0 1 ∨ 0 0

-
∑

c2∈C2
ac2j 1 ∨ 0 0 1 ∨ 0

= 1 ∨ 0 ∨ -1 0 ∨ -1 0 ∨ -1

Table 4.4: Case: C = I ′ ∪ J ′

We obtain
|
∑
c1∈C1

ac1j −
∑
c2∈C2

ac2j| ≤ 1 ∀j.

For every column indexed by (i, j, k) ∈ A1 ∪ A2 ∪ A3 the sum of the elements
in I ′ may be 1 or 0. Subtracting the row indexed by J ′, we obtain 1, 0,−1.
Then Theorem 1 applies.

We can conclude that A is totally unimodular.

Therefore, one may wonder if the assumption of one-container pr truck is nec-
essary and sufficient (without any assumption on vehicle costs)to prove the total
unimodularity of the constraint matrix in the formulation (4.26)-(4.30). To answer
this question, we consider the representation of the model (4.26)-(4.30) shown in
tab 4.5, when we have only two trucks. As in the previous case, lines from i1 to in
are associated with constraints (4.27), lines from j1 to jm with constraints (4.28),
lines k1, k2 with constraints (4.29).

k1 k1 k1 k2 k2 k2
i1j1 i1j2 . . . injm i1p . . . inp pj1 . . . pjm i1j1 i1j2 . . . injm i1p . . . inp pj1 . . . pjm

i1 1 1 . . . 0 1 . . . 0 0 . . . 0 1 1 . . . 0 1 . . . 0 0 . . . 0

i2 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0
...

in 0 0 . . . 1 0 . . . 1 0 . . . 0 0 0 . . . 1 0 . . . 1 0 . . . 0

j1 1 0 . . . . . . 0 . . . 0 1 . . . 0 1 0 . . . . . . 0 . . . 0 1 . . . 0

j2 0 1 . . . . . . 0 . . . 0 0 . . . 0 0 1 . . . . . . 0 . . . 0 0 . . . 0
...

jm 0 0 . . . 1 0 . . . 0 0 . . . 1 0 0 . . . 1 0 . . . 0 0 . . . 1

k1 1 1 . . . 1 1 . . . 1 1 . . . 1 0 0 . . . 0 0 . . . 0 0 . . . 0

k2 0 0 . . . 0 0 . . . 0 0 . . . 0 1 1 . . . 1 1 . . . 1 1 . . . 1

Table 4.5: Constraint matrix M in the case |K| = 2

More generally, if the cardinality of K is equal to r, the constraint matrix can
be represented as follows in Table 4.6. The constraint matrix of this model can be
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k1 k1 k1 k2 . . .
i1j1 i1j2 . . . i2j1 i2j2 . . . injm i1p i2p . . . inp pj1 pj2 . . . pjm . . .

i1 1 1 . . . 0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 . . .
i2 0 0 . . . 1 1 . . . 0 0 1 . . . 0 0 0 . . . 0 . . .
... . . .
in 0 0 . . . 0 0 . . . 1 0 0 . . . 1 0 0 . . . 0 . . .

j1 1 0 . . . 1 0 . . . . . . 0 0 . . . 0 1 0 . . . 0 . . .
j2 0 1 . . . 0 1 . . . . . . 0 0 . . . 0 0 1 . . . 0 . . .
... . . .
jm 0 0 . . . 0 0 . . . 1 0 0 . . . 0 0 0 . . . 1 . . .

k1 1 1 . . . 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 . . .
k2 0 0 . . . 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 . . .
...

...
...

... . . .
kr 0 0 . . . 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 . . .

Table 4.6: Constraint matrix M in the case |K| = r

written with the following blockstructure :

B B B . . . B
E1 E2 E3 . . . Er

Where B ∈ R(n+m)×(n×m+m+n) and E1, ..., Er ∈ Rr×(n×m+m+n).
The part of the matrix in Table 4.6 corresponding to rows indexed by i1 to jm and
by all the columns associated with a vehicle of set K, represents the block B. The
block E1 is represented by the rows indexed by k1, . . . , kr and by all the columns
associated with vehicle k1. In general, the matrix Er has all rows equal to zero,
except the row k that has all entries equal to 1.
At this stage it is worth recalling that if there exists a subdeterminant of M , different
to 0, 1,−1, M is not TU. We consider the submatrix of M reported in Table 4.7. Its

xk1
i1p

xk1
pj1

xk2
i1j1

i1 1 0 1
j1 0 1 1
k1 1 1 0

Table 4.7: A submatrix of M

determinant is −2, then M is not totally unimodular. Hence, vehicles are required
to have the same costs to guarantee that the TU of the matrix M .

However, we can prove that also the continuous relaxations of formulation (4.18)-
(4.25) and of formulation (4.26)-(4.30) admit an integer optimal solution when the
arc costs are equal for all vehicles [31].
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Proposition 3. If the costs ckij and hkpj do not depend on k, then the continuous
relaxation of formulation (4.26)-(4.30) admits an integer optimal solution.

Proof. If the costs ckij and hkpj do not depend on the choice of the truck k, it follows
that we can define fil = fk

il , fpi = fk
pi, and flp = fk

lp for any k ∈ K, where

• fk
il = (ckpi + hkpi) + ckil + cklp, route p→ i→ l→ p, for i ∈ I, l ∈ E, k ∈ K;

• fk
ip = (ckpi + hkpi) + ckip, route p→ i→ p, for i ∈ I, k ∈ K;

• fk
pl = (ckpl + hkpl) + cklp, route p→ l→ p, for l ∈ E, k ∈ K.

By Theorem 2, (4.31)-(4.35) admits an integer optimal solution t∗ for its re-
laxation. Associated with t∗ there exists a dual optimal solution (λ∗, µ∗) with
λ∗ ∈ R|I|+|E| and µ∗ ∈ R such that∑

i∈I;l∈E

filt
∗
il +

∑
i∈I

fipt
∗
ip +

∑
l∈E

fplt
∗
pl =

∑
i∈I

diλ
∗
i +

∑
l∈E

dlλ
∗
l + |K|µ∗, (4.36)

fil − λ∗i − λ∗l − µ∗ ≥ 0 i ∈ I, l ∈ E, (4.37)

fip − λ∗i − µ∗ ≥ 0 i ∈ I, (4.38)

fpl − λ∗l − µ∗ ≥ 0 l ∈ E, (4.39)

where condition (4.36) states that primal objective function value of (4.31)-(4.35) is
equal to its dual objective function value, and (4.37)-(4.39) are the dual constraints
for variables til, tip, tpl, i ∈ I, l ∈ E, respectively.

Then we can define a solution x̃ and a corresponding dual solution for (4.26)-
(4.30) as follows:

• for each variable t∗il > 0 (t∗ip > 0, t∗pl > 0) define a set of vehicles Kil (Kip, Kpl,
respectively) such that |Kil| = t∗il (|Kip| = t∗ip, |Kpl| = t∗pl, respectively); each
vehicle k ∈ K belongs to at most one set in the family FK = {Kil|i ∈ I, l ∈
E} ∪ {Kip|i ∈ I} ∪ {Kpl|l ∈ E};

• set x̃kil = 1 for k ∈ Kil, x̃
k
ip = 1 for k ∈ Kip, x̃

k
pl = 1 for k ∈ Kpl, and

x̃kil = 0, x̃kip = 0, x̃kpl = 0, otherwise;

• define the dual solution for the relaxation of (4.26)-(4.30) as (λ̃, µ̃) ∈
R|I|+|E|+|K| such that λ̃ = λ∗ and µ̃k = µ∗ for each k ∈ K.

We check that (x̃, λ̃, µ̃) satisfies primal and dual constraints for (4.26)-(4.30) and
attains the same objective function value for the relaxation of (4.26)-(4.30) and
for its dual, respectively. Primal feasibility for (4.27) and (4.28) is straightforward
because

∑
k∈K x̃

k
il = t∗il,

∑
k∈K x̃

k
ip = t∗ip,

∑
k∈K x̃

k
pl = t∗pl; primal feasibiliy for (4.29)

comes from the condition that the sets Kil, Kip, Kpl are pairwise disjoint for all
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i ∈ I, l ∈ E, so at most one variable in (4.29) takes value 1. The dual constraints of
the continuous relaxation (4.26)-(4.30) are the following:

fk
il − λ̃i − λ̃l − µ̃k ≥ 0 i ∈ I, l ∈ E, k ∈ K,

fk
ip − λ̃i − µ̃k ≥ 0 i ∈ I, k ∈ K,
fk
pl − λ̃l − µ̃k ≥ 0 l ∈ E, k ∈ K.

Dual feasibility of (λ̃, µ̃) comes from definition of λ̃ and µ̃k and from conditions
(4.37)-(4.39). Finally, we check that with respect to reformulation (4.26)-(4.30) the
dual objective value for (λ̃, µ̃) is equal to its primal objective value for x̃:∑

k∈K µ̃
k +

∑
i∈I λ̃idi +

∑
l∈E λ̃ldl =

= µ∗|K|+
∑

i∈I λ
∗
i di +

∑
l∈E λ

∗
l dl =

=
∑

i∈I;l∈E filt
∗
il +

∑
i∈I fipt

∗
ip +

∑
l∈E fplt

∗
pl =

=
∑

i∈I;l∈E fil
∑

k∈K x̃
k
il +

∑
i∈I fip

∑
k∈K x̃

k
ip +

∑
l∈E fpl

∑
k∈K x̃

k
pl,

and as consequence x̃ and (λ̃, µ̃) are a pair of primal-dual optimal solutions for the
relaxation of (4.26)-(4.30) and x̃ is integer by construction.

An easy consequence of Proposition 3 is that also the continuous relaxation of
reformulation (4.18)-(4.25) admits an integer optimal solution when the arc costs
do not depend on the vehicle. Indeed, it is sufficient to first determine the solution
for (4.26)-(4.30) and then set the variables xkpi and xklp by using constraints (4.19)
and (4.20). This can be summarized in the following corollary:

Corollary 1. If the costs ckij and hkpj do not depend on k, then the continuous
relaxation of reformulation (4.18)-(4.25) admits an integer optimal solution.
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Chapter 5

Conclusions and Research
Developments

Total unimodularity is a desired property for anyone in dealing with the determi-
nation of exact solutions of integer programming problems. When the constraint
matrix is TU, the feasible region is equal to the convex hull, thus one can ignore
the integrality constraint and solve the associated linear programming relaxation,
because integral solutions are always obtained in this case. As a consequence, TU
allows to optimally solve integer problems by effective linear programming solvers.
This thesis was motivated by a conjecture on total unimodularity of the constraint
matrix in the formulation of [24], when it is run under specific experimental con-
ditions. To clarify, when all vehicles are supposed to carry one container and have
the same costs, the linear programming relaxation was observed to be integer. This
thesis aims to provide a theoretical understanding of these results through the anal-
ysis of the algebraic properties of this model. Three reformulations are proposed
for this model in order to determine necessary and sufficient conditions for TU. The
contributions of this thesis can be summarized as follows:

• Carrying one container per truck is a necessary condition for TU of the con-
straint matrix in [24]. However, in this case the problem is reformulated by
a mathematical model (the second reformulation), where TU does not hold.
Then, also the constraint matrices of the first and the second reformulations
are not TU.

• When all vehicles have the same costs and carry one container each, the prob-
lem in [24] can be reformulated by a mathematical model (the third reformu-
lation) where TU holds.

• Even in the first and the second reformulations the optimal solutions of the
linear programming relaxation is integer, when all vehicles have the same costs.

At the moment, several research developments are in progress. Firstly, it is of
interest to prove if the continuous relaxation of the formulation in [24] admits an
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integral optimal solution when all trucks carry one container and have the same costs.
Secondly, it will be of interest to reformulate the problem as a equivalent circulation
problem, that can be solved by effective network flows algorithms. Thirdly, more
complex problem settings will be investigated to account for more realistic attributes
of drayage problems, such as multiple trips for each vehicle and planning horizons
with several days.
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