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1 Introduction

Humanitarian non-profit ambulance dispatching organizations are committed to tap the full

potential of possible cost reduction in order to decrease their expenses. Taking the Austrian

Red Cross (ARC), Austria’s major ambulance dispatcher, as an example the following fig-

ures are available. In 2006 more than two million transportation requests, including both

emergency and regular patient transports, were answered by the vehicle fleet of the ARC.

Regular requests, which are known well ahead of the planning period, amount to about 80%

of the total number of transports (Österreichisches Rotes Kreuz, 2006). While in the con-

text of emergency transportation cost reduction cannot be achieved by means of combined

passenger routes, this can be done when dealing with regular patients. In many companies

requests are still assigned to vehicles by a dispatcher by hand, leading to routing plans of

varying quality, depending on the dispatcher’s knowledge of the region and his/her experi-

ence in dispatching. This situation calls for a decision support system that assists ambulance

dispatchers in their day-to-day work. The research work summarized in this book represents

a first step towards the development of such a tool.

Ambulance routing problems belong to the large class of vehicle routing problems involv-

ing pickups as well as deliveries. In the literature, problems involving passenger or patient

transportation are usually referred to as dial-a-ride problems. A literature survey in two

parts (Parragh et al., 2008a,b) resulted from the research work dedicated to the definition

of a classification scheme for vehicle routing problems involving pickups as well as deliveries.

In this book only a short summary of this work will be presented. The focus will lie on the

review of research work belonging to the dial-a-ride problem class; since the formulation of

different versions of this problem and the development of according solution methods form

the main content of this thesis.

While in standard pickup and delivery problems goods are transported, in ambulance

routing or dial-a-ride problem situations people are subject to transportation. Therefore,

it is necessary to make sure that a certain quality of service is provided. This raises the

question of what is perceived as quality of service by the persons transported. Usually,

the term “user inconvenience” is used in this context. Low user inconvenience is linked to

high quality of service, while high user inconvenience entails low quality of service. Low

user inconvenience relates to punctual service and short individual ride times. A certain

trade-off between user inconvenience and total operating costs can be observed. Lower user

inconvenience usually entails higher operating costs and vice versa. User inconvenience can

1
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Figure 1.1: Outline

either be considered in terms of additional constraints or in terms of additional objectives.

Both approaches are subject to investigation in this thesis.

In a first step, a solution method based on Variable Neighborhood Search (VNS) (Mlade-

novic and Hansen, 1997) for a rather standard Dial-A-Ride Problem (DARP) version will

be developed in Chapter 3. A vehicle fleet of fixed size, time windows, maximum user ride

times, and a route duration limit are among the constraints considered. This “standard”

DARP will be extended in two ways, as shown in Figure 1.1.

In Chapter 4, besides routing costs, a user-oriented objective, minimizing user inconve-

nience, in terms of mean user ride time, will be introduced. This results in a problem

version we will denote as Multi-Objective Dial-A-Ride-Problem (MO-DARP). An exact

and a heuristic solution method will be devised. The heuristic solution method integrates

VNS and Path Relinking (PR) (Glover and Laguna, 1997) in a two-phase scheme. The

exact method iteratively solves single objective problems to optimality within a so-called

ǫ-constraint framework (Laumanns et al., 2006). The developed procedures will provide

the ambulance dispatcher with a number of transportation plans, which are incomparable

across each other: neither will be better than any other transportation plan in both objec-

tives. Information regarding their respective quality of service level as well as cost will be

provided. In this case, the task of choosing a transportation plan out of the set of these

efficient transportation plans is left with the person in charge.

In Chapter 5, in order to decrease the gap between theory and practice, heterogeneous

patient types and a heterogeneous vehicle fleet, as employed by the ARC, will be added to the

standard dial-a-ride model, resulting in a Heterogeneous Dial-A-Ride Problem (HDARP).

Two mathematical problem formulations will be presented. Each of these will serve as the

basis for a branch and cut algorithm. The previously developed VNS will also be adapted

to HDARP.

In Chapter 6, the HDARP will be extended to the dHDARP, i.e. the heterogeneous dial-a-

ride problem with driver related constraints, which corresponds to the real world ambulance

routing problem faced by the ARC. Based on available information, staff related conditions

will be introduced into the problem. These refer to the assignment of drivers and other
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staff members to vehicles, and to the scheduling of lunch breaks and additional stops at the

depot. An exact column generation procedure will be devised to compute lower bounds.

These bounds will serve to assess the solution quality of the proposed VNS. In this case,

further adaptations will be necessary in order to accommodate all real-world characteristics.

This book is organized as follows. In Chapter 2, first, a classification scheme for vehicle

routing problems with pickups and deliveries is proposed. Then, a short introduction to

the different solution paradigms applied in this field is given. This is followed by a brief

review of the different solution methods proposed for each problem class. Each of the

four subsequent chapters is dedicated to one of the above described ambulance routing

problems. Each chapter contains a formal definition of the problem, the description of the

developed solution procedure(s), and computational results for up to three (adapted) data

sets from the literature. In Chapter 6 also real world instances are considered. At the end

of each chapter, a short summary of the respective findings is given. The book closes with

a conclusion, summarizing the obtained results and indicating future research directions.
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2 Summarizing the state-of-the-art

2.1 Introduction

Over the past decades extensive research has been dedicated to modeling aspects as well as

optimization methods in the field of vehicle routing. Especially transportation problems,

involving both, pickups and deliveries, have received considerable attention. This is mainly

due to the need for improved efficiency, as the traffic volume increases much faster than the

street network grows (cf. Eurostat, 2004, 2006, for data on the European situation). Along

with the increasing use of geographical information systems, companies seek to improve

their transportation networks in order to tap the full potential of possible cost reduction.

Ambulance routing problems, considering the transportation of people between pre-specified

pickup and drop off locations, belong to the above mentioned problem class.

The rapidly growing body of research in the field of vehicle routing involving pickups as

well as deliveries has led to a somewhat confusing terminology. Indeed, the same problem

types are denoted by various names and different problem classes are referred to by the

same denotations. The problem we will denote traveling salesman problem with mixed

backhauls, e.g., has been denoted as Traveling Salesman Problem (TSP) with pickup and

delivery (Mosheiov, 1994), TSP with delivery and backhauls (Anily and Mosheiov, 1994),

and as TSP with deliveries and collections (Baldacci et al., 2003). Its multi vehicle version

has been referred to as mixed Vehicle Routing Problem (VRP) with backhauls (Ropke

and Pisinger, 2006b; Salhi and Nagy, 1999), as VRP with backhauls with mixed load (e.g.

Dethloff, 2002), and as pickup and delivery problem (Mosheiov, 1998). Despite the fact that

the naming pickup and delivery problem has most often been used to refer to an entirely

different problem class (see below). This situation calls for a clear classification scheme and

naming.

In this chapter we will introduce such a classification scheme. Thereafter, a short intro-

duction to solution concepts (exact methods, heuristics, and metaheuristics) applied in the

vehicle routing field will be given. This is followed by a condensed overview of solution

methods developed in the pickup and delivery problem domain, following the developed

classification scheme, while focusing on those works related to the static ambulance routing

field. For further details on the different vehicle routing problem classes involving pickups as

well as deliveries we refer to the two articles (Parragh et al., 2008a,b). They form the basis

of this chapter. A recent work by Berbeglia et al. (2007) provides a different classification
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General Pickup and Delivery

Problems (GPDP)

transportation from/to a depot

(VRPB)

TSPCB TSPMB TSPDDP TSPSDP
VRPCB VRPMB VRPDDP VRPSDP

transportation between

customers (VRPPD)

unpaired paired

PDTSP SPDP SDARP
PDVRP PDP DARP

Figure 2.1: A classification scheme

scheme and survey for static vehicle routing problems involving pickups as well as deliveries.

This work has been compiled in parallel to our two-part article.

2.2 Classification

We distinguish two problem classes. The first class refers to situations where all goods

delivered have to be loaded at one or several depots and all goods picked up have to be

transported to one or several depots. Problems of this class are usually referred to as VRP

with Backhauls (VRPB), a term coined by Goetschalckx and Jacobs-Blecha (1989). The

second class comprises all those problems where goods (passengers) are transported between

pickup and delivery customers (points) and will be referred to as VRP with Pickups and

Deliveries (VRPPD). The two pickup and delivery problem classes are depicted in Figure 2.1.

Their subclasses are described in the following.

2.2.1 VRPB subclass definitions

The VRPB can be further divided into four subclasses. In the first two subclasses, customers

are either delivery or pickup customers but cannot be both. In the last two subclasses,

each customer requires a delivery and a pickup. The first subclass is characterized by the

requirement that the group or cluster of delivery customers has to be served before the first

pickup customer can be visited. Delivery customers are also denoted as linehaul customers,

pickup customers as backhaul customers. We will refer to this problem class as VRP with

Clustered Backhauls (VRPCB). Its single vehicle case will be denoted as TSP with Clustered

Backhauls (TSPCB).

The second VRPB subclass does not consider a clustering restriction. Mixed visiting

sequences are explicitly allowed. We will denote this problem class as VRP with Mixed
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linehauls and Backhauls (VRPMB) in the multi vehicle case, and TSP with Mixed linehauls

and Backhauls (TSPMB) in the single vehicle case.

The third VRPB subclass describes situations where customers can be associated with

both a linehaul and a backhaul quantity but, in contrast to subclass four, it is not required

that every customer is only visited once. Rather, two visits, one for delivery and one for

pickup are possible. In this case, so called lasso solutions can occur, in which first a few

customers are visited for delivery service only, in order to empty the vehicle partially. Then,

in the “loop of the lasso”, customers are visited for both pickup and delivery service. In

the end, the pickups are performed for the customers initially visited for delivery. We will

refer to the single vehicle case as TSP with Divisible Delivery and Pickup (TSPDDP) and

to the multi vehicle case as VRP with Divisible Delivery and Pickup (VRPDDP) in order to

emphasize that a customer can either be visited once for both pickup and delivery or twice,

first for delivery and then for pickup.

The fourth VRPB subclass covers situations where every customer may be associated with

a linehaul as well as a backhaul quantity. It is imposed that every customer can only be

visited exactly once. We will denote this problem class as VRP with Simultaneous Delivery

and Pickup (VRPSDP), its single vehicle version as TSP with Simultaneous Delivery and

Pickup (TSPSDP).

2.2.2 VRPPD subclass definitions

The class we denote VRPPD refers to problems where goods are transported from pickup

to delivery points. It can be further divided into two subclasses (see Figure 2.1). The

first subclass refers to situations where pickup and delivery locations are unpaired. A

homogeneous good is considered. Each unit picked up can be used to fulfill the demand

of any delivery customer. In the literature mostly the single vehicle case is tackled. Since

also a multi vehicle application has been reported (see Dror et al., 1998) we will denote

this problem class as Pickup and Delivery VRP (PDVRP) and Pickup and Delivery TSP

(PDTSP), in the multi and in the single vehicle case, respectively.

The second VRPPD subclass comprises the classical Pickup and Delivery Problem (PDP)

and the Dial-A-Ride Problem (DARP). Both consider transportation requests, each asso-

ciated with an origin and a destination, resulting in paired pickup and delivery points.

The PDP deals with the transportation of goods while the DARP deals with passenger

transportation. This difference is usually expressed in terms of additional constraints or

objectives that take user (in)convenience into account. A majority of the work published

denotes this problem class as Pickup and Delivery Problem (PDP) (see e.g. Dumas et al.,

1991; van der Bruggen et al., 1993). We will follow this naming. Dial-a-ride problems are

also mostly referred to as such. We denote the single vehicle case of the PDP as SPDP,

the single vehicle case of the DARP as SDARP. All problems dealt with in the subsequent
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chapters of this book belong to the DARP class.

2.3 Solution methods

In general, two different types of solution methods can be distinguished. These are exact

algorithms yielding an optimal solution to the problem handled and heuristic algorithms,

computing (hopefully) near optimal solutions within short or at least acceptable computa-

tion times.

2.3.1 Exact methods

Exact solution methods applied to vehicle routing problems considering both pickups as

well as deliveries involve well known solution paradigms in combinatorial optimization; such

as, among others, branch and bound, branch and cut, and branch and price algorithms.

In branch and bound algorithms, first the according Linear Programming (LP) relaxation

to the respective problem formulated as a (mixed) Integer Program (IP) is solved. The

solution of the LP relaxation will provide a lower bound for the solution of the original

IP (in the context of minimization). In case the obtained solution is integer, the optimal

solution to the original IP has been found. Otherwise, a branch and bound tree is built.

From the root node two child nodes are generated by branching. At each child node, a

new LP is solved with an additional constraint; either an upper or a lower bound on one

of the variables which are supposed to be integer but are associated with a fractional value

in the current solution is set. In the subsequent iterations each child node serves as the

parent node for two new child nodes in the tree. The tree is explored in a branch and bound

fashion; bounds are obtained by the optimal solution values to the LP at the nodes of the

search tree. If the lower bound at some node of the search tree is greater than the upper

bound obtained at another node, the former node can be excluded from the search.

An alternative method to the branch and bound method is the so-called cutting plane

algorithm. First, as in branch and bound, the LP relaxation of the original IP is solved.

In case the obtained solution is not integer, a cut is generated that separates the optimal

solution from the true feasible set. A valid cut has two properties. First, any feasible point

of the IP satisfies the cut; and second, the current optimal solution to the LP will violate

the cut (Winston, 1994). This is illustrated in Figure 2.2. The gray space corresponds to

the feasible region of the LP relaxation; the black dots to the set of feasible solutions of the

original IP. The dashed line represents the objective function. The optimal solution to the

LP relaxation corresponds to the lower left corner of the feasible region and yields a lower

bound. A cutting plane, as given by the dotted line, separates this solution but does not

cut off any of the IP feasible points. Also the optimal solution of the original IP is shown

(x1 = 1, x2 = 2). Cuts are thus iteratively added to the LP relaxation until an integer
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Figure 2.2: A lower bound and a cutting plane

solution is obtained.

Branch and cut methods combine the branch and bound and the cutting plane idea. In

difference to branch and bound only a subset of the original constraints are considered in

the LP relaxation. Typically, all constraint families of exponential size are not included.

So-called separation algorithms will check the solution of the LP relaxation at the current

node in the search tree for violations of the omitted constraints. In case none of the omitted

constraints are violated, an optimal solution to the LP has been found. Otherwise, if

at least one violated constraint has been detected by a separation procedure the violated

constraint(s) is (are) added to the LP, and the updated LP is solved again. This is repeated

until the separation procedures fail to detect additional violated constraints. A branch and

cut algorithm will be employed to solve the heterogeneous dial-a-ride problem in Chapter 5.

We refer to this chapter for further details.

The column generation method has been introduced by Gilmore and Gomory (1961) to

solve large scale LP. Its basic principle is that it is not necessary to consider all columns at

once. The idea is to search in an efficient way for columns that will price out favorably by

taking dual information into account. The Dantzig-Wolfe decomposition method uses this

idea. It has been first introduced by Dantzig and Wolfe (1960) for LP. Many problems can

be formulated in two ways: in terms of a so-called compact formulation (such as the 2-index

and 3-index formulations of the DARP presented in the following chapters) and in terms of a

so-called extensive formulation (such as, e.g, set partitioning type formulations). Compact

formulations can be transformed into extensive formulations by means of decomposition.

The extensive formulation usually contains less rows (constraints) but a lot more columns

(variables) than the compact formulation. To solve the LP relaxation of the extensive

formulation, column generation is used. In vehicle routing these columns usually refer to
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routes. Thus, the optimal combination out of the set of all feasible routes is searched. This

set is usually too large to be considered at once. Therefore, so-called pricing procedures

are used to identify favorable columns (pricing subproblem), by using dual information from

the solution of the restricted master (i.e. the extensive formulation) considering the set of

columns generated so far. The optimal solution to the original LP has been found if no

additional favorable columns exist. For further information we refer to Desaulniers et al.

(2005). This solution method is applied to the dial-a-ride problem variant considered in

Chapter 6 of this book. Integrated into a branch and bound scheme, where each linear

relaxation is solved by means of column generation, results in a so-called branch and price

algorithm. In case also cuts are added (as in branch and cut) the resulting solution method

is referred to as branch and cut and price.

In case only a subset of the tree is considered or, e.g., in column generation only heuristic

pricing procedures are applied, these exact methods are turned into heuristic procedures.

Further information on exact solution algorithms can be found, e.g., in Barnhart et al.

(1998); Fischetti and Toth (1989); Padberg and Rinaldi (1991).

2.3.2 Heuristics

Following Semet and Laporte (2002), heuristic methods in the field of vehicle routing can

be further divided into classical heuristics and metaheuristics. Classical heuristic methods

comprise construction heuristics, two-phase heuristics, and improvement methods.

Construction heuristics build a feasible solution, trying to keep the objective function

value as low as possible (in the context of minimization). Once a (customer) location has

been inserted, it is usually not removed again. Popular concepts belonging to this class are

sequential and parallel insertion heuristics. Sequential heuristics only consider one route

at a time, while parallel heuristics consider multiple routes at once. A popular insertion

criterion is cheapest insertion; the (customer) location resulting in the least cost increase

regarding the so far constructed partial solution is inserted next.

Two-phase heuristics describe cluster-first-route-second and route-first-cluster-second im-

plementations. In case of cluster-first-route-second, the (customer) locations are first as-

signed to routes, following some criterion and only then for each cluster (route) the order

in which the (customer) locations are visited is determined. The reverse is done in case of

route-first-cluster-second heuristics. Here, first a giant tour is constructed and only then

this tour is segmented into as many clusters (routes) as necessary.

Improvement heuristics either consider each vehicle route at a time (intra-tour) or several

routes (inter-tour). Popular intra-tour improvement heuristics use the λ-opt mechanism of

Lin (1965) (especially 2-opt and 3-opt). λ edges are removed from a route and the remaining

route segments are reconnected in all possible ways. Every time an improved solution is

encountered the according reconnection is kept. This is repeated until no further improve-
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ments are possible. The Or-opt (Or, 1976) method, e.g., relocates sequences consisting of

3, 2, and 1 vertices, resulting in a restricted form of 3-opt.

2.3.3 Metaheuristics

The term metaheuristic has been used for the first time by Glover (1986) to refer to a

tabu search heuristic. A metaheuristic distinguishes itself from a classical heuristic by some

“meta” structure that allows the search to escape from local optima. Thus, intermediate

infeasible or deteriorating solutions are allowed during the search. Metaheuristics in the field

of vehicle routing often apply concepts of classical construction and improvement heuristics.

Usually they find better local optima than classical heuristic methods but they also tend

to need longer computation times (Gendreau et al., 2002). On the one hand, there are

metaheuristic approaches that are population based or related to population based methods,

such as genetic algorithms or ant colony optimization, and, on the other hand, there are

methods that are based on different local search neighborhoods, such as tabu search, variable

neighborhood search, or simulated annealing. The term neighborhood refers to all solutions

that can be constructed by applying a certain local search operator (e.g. a simple vertex

move) to a given solution.

In genetic algorithms, in each iteration a population of solutions is considered. Every new

population of solutions is obtained from the previous one by operators such as recombination

and mutation, keeping the best (new) solutions and eliminating the worst. In ant colony

optimization, in each iteration a construction heuristic is used to generate a number of new

solutions based on information from previous iterations.

One of the most popular metaheuristics is tabu search (Glover and Laguna, 1997). It works

as follows. A simple neighborhood operator such as, e.g. an inter-tour vertex move is used to

transform the current solution into a new solution. All possible moves are considered and the

best non-tabu one is used to constitute a new solution. The reverse move of the one that was

used to build the new solution is then set “tabu” for a certain number of iterations. The new

solution may be worse than the previous solution. This concept allows the search to escape

from local optima. In variable neighborhood search (Mladenovic and Hansen, 1997), several

neighborhoods of different size are considered. Ideally, the smallest should be contained in

the next larger one and so on. If the smallest neighborhood consists of all possible inter-

tour moves of one vertex, the next larger neighborhood could consist of all possible moves

of one and two vertices, and so on. In every iteration a new solution is constructed at

random in the current neighborhood. Then some improvement heuristic is used to optimize

this solution locally. In case it improves the current incumbent solution, it becomes the

new incumbent and the search continues with the smallest neighborhood. Otherwise, the

next larger neighborhood is considered and another random solution is constructed. Also

in simulated annealing (Kirkpatrick et al., 1983; C̆erny, 1985) in every iteration a random
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solution is constructed in a given neighborhood. In case this solution is better than the

current incumbent, it becomes the new incumbent solution. Otherwise, it is accepted with

a certain probability. This probability depends on the solution value of the new solution and

a “temperature”. The “temperature” is decreased during the search according to a certain

scheme. The “cooler” it gets the lower the probability that a deteriorating new solution

is accepted as the new incumbent solution. The variable neighborhood search concept,

integrating ideas from simulated annealing, will be used to solve the different ambulance

routing problems considered in this book. For additional information we thus refer to the

following chapters. Further information on local search methods can be found, e.g., in

Aarts and Lenstra (1997), neighborhood based methods are discussed, e.g., in Bräysy and

Gendreau (2005); Funke et al. (2005) and metaheuristics in Hoos and Stützle (2005).

2.4 Solution methods for VRPB

The development of solution methods for VRPB is most probably motivated by the fact that

combined linehaul and backhaul tours may result in less empty hauls and thus in possible

cost reductions. Depending on the type of good transported, company policies, or customer

preferences, backhauls may have to be done last, customers have to be visited only once,

etc. In the following, first, research work dealing with the clustered version (all linehauls

before backhauls) will be reviewed, this is followed, by the mixed case, the combined and

divisible case (all customers may demand both services and can be visited twice), and the

combined case with simultaneous service (all customers may demand both services but can

only be visited once).

2.4.1 All linehauls before backhauls (TSPCB, VRPCB)

The TSPCB can be viewed as a special case of the Clustered Traveling Salesman Problem

(CTSP), where only two clusters are considered. The CTSP was first formulated in Chisman

(1975). Already in Lokin (1978) an application of the CTSP to a backhaul problem is

suggested. Thus, all solution algorithms for CTSP, e.g., those presented in Gendreau et al.

(1996b); Jongens and Volgenant (1985); Laporte et al. (1996); Potvin and Guertin (1996),

are also valid solution techniques for the TSPCB with the additional constraint that the

set of linehaul customers is visited first. A survey covering the different VRPCB solution

methods can be found in Toth and Vigo (2002).

The first exact approach for the VRPCB is due to Yano et al. (1987). The proposed branch

and bound method generates optimal routing plans with up to 4 linehaul and 4 backhaul

customers per route. Further, more sophisticated branch and bound derived algorithms

followed (Gélinas et al., 1995; Mingozzi et al., 1999; Toth and Vigo, 1997a). The latest are

able to solve benchmark instances (Goetschalckx and Jacobs-Blecha, 1989; Toth and Vigo,
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1996b, 1999) with up to 100 customers to optimality .

Quite a lot of research has been conducted in the field of heuristic methods for VRPCB.

The solution paradigms applied range from simple as well as more sophisticated construction

heuristics (Deif and Bodin, 1984; Derigs and Metz, 1992), to construction-improvement type

implementations (Gendreau et al., 1996a; Goetschalckx and Jacobs-Blecha, 1989; Thangiah

et al., 1996), and cluster-first-route-second methods (Anily, 1996; Min et al., 1992; Toth

and Vigo, 1996b, 1999) applying well-known operators such as 2-exchange, 3-exchange (Lin,

1965), λ-interchange (Osman, 1993), 2-opt*-exchange (Potvin and Rousseau, 1995), or the

GENI idea (Gendreau et al., 1992).

Those research works that are among the most recent in the field of VRPCB, belong to

the metaheuristic domain. The tabu search concept has been employed by Brandão (2006);

Crispim and Brandão (2001); Duhamel et al. (1997); Osman and Wassan (2002). However,

also neural networks (Ghaziri and Osman, 2003, 2006), genetic algorithms (Ganesh and

Narendran, 2007; Potvin et al., 1996), an insertion based ant system (Reimann et al., 2002),

guided local search (Zhong and Cole, 2005), simulated annealing (Hasama et al., 1998),

variable neighborhood search (Crispim and Brandão, 2001; Mladenovic and Hansen, 1997),

and adaptive large neighborhood search (Ropke and Pisinger, 2006b) have been used to

solve different versions of VRPCB.

Over the years with increasing computational power a shift from simple heuristic methods

towards more sophisticated metaheuristic solution procedures can be observed. Thus, recent

state-of-the-art methods in the field of VRPCB predominantly belong to the metaheuristic

domain. Comparison can be done by looking at the different results achieved for the same

set of benchmark instances. In case of the VRPCB without time windows, the benchmark

instances most often used are the ones of Goetschalckx and Jacobs-Blecha (1989) (GJ89) and

Toth and Vigo (1996b) (TV96). The largest instance solved to optimality of the GJ89 data

set comprises 90 customers and in case of the TV96 data set 100 customers (see Mingozzi

et al., 1999). The latest new best results for these data sets are reported in Ropke and

Pisinger (2006b) and Brandão (2006). In case of the VRPCB with time windows the data

set proposed in Gélinas et al. (1995) (GDDS95) is the prevalent one. The largest instance

solved to optimality within this data set consists of 100 customers (cf. Gélinas et al., 1995).

Most recent new best results have also been reported by Ropke and Pisinger (2006b).

2.4.2 Mixed linehauls and backhauls (TSPMB, VRPMB)

We now turn to the VRPMB where linehaul and backhaul customers can occur in any order

along the route. Exact solution methods for the VRPMB have only been developed for the

single vehicle case. Tzoreff et al. (2002) present a linear time algorithm for tree graphs, and

polynomial time algorithms for a cycle and a warehouse graph. Süral and Bookbinder (2003)

work on bounds of the linear relaxation and Baldacci et al. (2003) discuss valid inequalities
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and embed them into a branch and cut algorithm.

The first solution methods proposed for the VRPMB belong to the field of heuristics.

These are two heuristics using the Clarke-Wright algorithm (Clarke and Wright, 1964) to

schedule the linehauls and different insertion procedures to insert the backhauls (Casco et al.,

1988; Golden et al., 1985). A similar idea is also used by Wade and Salhi (2002). Salhi

and Nagy (1999) extend the idea of Golden et al. (1985), introducing the notion of clusters

and borderline customers in a multi-depot setting. Giant tour partitioning heuristics have

been developed by Mosheiov (1998). Further solution methods involve a minimum spanning

tree based procedure (Anily and Mosheiov, 1994), a TSP tour based algorithm, a cheapest

feasible insertion algorithm (Mosheiov, 1994) for the single vehicle case, and an extension of

the cheapest insertion heuristic (Dethloff, 2002) for the multi vehicle case. The construction-

improvement principle is applied by Nagy and Salhi (2005).

Metaheuristics have not been applied as extensively to the VRPMB as to other prob-

lem types. The solution paradigms applied range from greedy randomized adaptive search

(Kontoravdis and Bard, 1995), simulated annealing (Hasama et al., 1998), and ant systems

(Reimann and Ulrich, 2006; Wade and Salhi, 2004) to a combination of tabu search and vari-

able neighborhood descent (Crispim and Brandão, 2005) and adaptive large neighborhood

search (Ropke and Pisinger, 2006b).

The largest TSPMB instance solved to optimality is reported in Baldacci et al. (2003). It

is a single vehicle instance of the data set provided by Gendreau et al. (1999), containing 200

customers. The VRPMB instances most widely used are those proposed by Salhi and Nagy

(1999). Most recent improved results for these instances are given by Ropke and Pisinger

(2006b), outperforming earlier results by Nagy and Salhi (2005).

2.4.3 Divisible delivery and pickup (TSPDDP, VRPDDP)

This problem class is a mixture of the previously described VRPMB and the VRPSDP,

subject to review in the next section. In contrast to the VRPMB, every customer can be

associated with a pickup and a delivery quantity. However, these customers do not have to

be visited exactly once. They can be visited twice, once for pickup and once for delivery

service. Only little research has been explicitly dedicated to this problem class. However, all

the solution methods designed for the VRPMB can be applied to VRPDDP instances if every

customer demanding pickup and delivery service is modeled as two separate customers. Salhi

and Nagy (1999) apply their cluster insertion algorithm to VRPSDP instances, resulting in

solutions that may violate the one-single-visit-per-customer restriction. Thus, they actually

solve a VRPDDP. Halskau et al. (2001), on the other hand, explicitly relax the VRPSDP to

the VRPDDP. The aim is to create so-called lasso solutions, i.e. customers along the spoke

are visited twice (first for delivery and second for pickup service). Customers along the loop

are only visited once. Hoff and Løkketangen (2006) also study lasso solutions but restricted
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to the single vehicle case. An in-depth study of different solution shapes for TSPDDP is

conducted by Gribkovskaia et al. (2007); they consider lasso, Hamiltonian, and double-path

solutions. The concept of “general solutions” is introduced. Their work is motivated by

the fact that additional cost reductions can be realized when relaxing the VRPSDP to the

VRPDDP. The proposed methods are classical construction and improvement heuristics and

a tabu search algorithm. They are tested on instances containing up to 100 customers. The

results show that the best solutions obtained are often non-Hamiltonian and may contain

up to two customers that are visited twice.

2.4.4 Simultaneous delivery and pickup (TSPSDP, VRPSDP)

The difference between VRPDDP and VRPSDP refers to customers demanding pickup and

delivery service. In case of the VRPSDP these customers have to be visited exactly once

for both services. The VRPMB is a special case of the VRPSDP where every customer only

demands a pickup or a delivery but not both. This problem class was first defined by Min

(1989).

The only exact algorithm for the VRPSDP with time windows is presented in Angelelli

and Mansini (2002). Based on a set covering formulation of the master problem a branch

and price approach is designed. Dell’Amico et al. (2006) also propose a branch and price

algorithm to solve the VRPSDP but without time windows. They use a hierarchy based on

five pricing procedures: four heuristics and one exact method.

Several heuristic methods for different versions of the VRPSDP can be found in the litera-

ture. Construction-improvement algorithms for the single vehicle case have been developed

by Gendreau et al. (1999) and Alshamrani et al. (2007). Both are based on TSP cycles, im-

proved using arc-exchanges, or the Or-opt operator. The latter considers a periodic version

and stochastic demand figures. Gendreau et al. (1999) compare the construction algorithms

of Mosheiov (1994) and Anily and Mosheiov (1994) to a cheapest feasible insertion heuris-

tic. A cheapest insertion based algorithm for the multi vehicle case is also used by Dethloff

(2001). The cluster-first-route-second idea is applied by Halse (1992) and Min (1989).

Also metaheuristic solution methods have been applied to the VRPSDP. The first meta-

heuristic for the TSPSDP is a tabu search algorithm using a 2-exchange neighborhood

(Gendreau et al., 1999). Tabu search has also been applied to the multi vehicle version

(see Bianchessi and Righini, 2007; Tang Montané and Galvão, 2006). Chen and Wu (2006)

integrate a tabu list into a record to record algorithm, a hybrid between a tabu search and

a variable neighborhood descent algorithm is described in Crispim and Brandão (2005)

Again the same trend as for VRPMB can be observed. Early research favored simple

heuristic algorithms whereas recent algorithms mostly belong to the field of metaheuristic

solution procedures. The largest VRPSDP instance solved to optimality comprises 40 re-

quests (Dell’Amico et al., 2006); however, no standard benchmark instance is considered.
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Two data sets have been most often referred to. These are those of Salhi and Nagy (1999)

(SN99b) and Dethloff (2001) (Det01). The best pooled results for the SN99b instances hold

Ropke and Pisinger (2006b) and Nagy and Salhi (2005). Tang Montané and Galvão (2006)

also report improved solutions, however, not the whole set is considered. Consequently, a

direct comparison to the other two is impossible. For the Det01 data set Ropke and Pisinger

(2006b), Tang Montané and Galvão (2006), and Bianchessi and Righini (2007) obtain new

best results of similar quality, but present them in different pooled form, only comparing

themselves to the results of Dethloff (2001). Whatever method produces the best results,

all of them are metaheuristics, clearly indicating that these more sophisticated methods

outperform straightforward heuristic procedures.

2.5 Solution methods for VRPPD

In the following section an overview of the different solution methods for the PDVRP, the

PDP, and the DARP, forming the second class of vehicle routing problems involving pickups

and deliveries, are presented. Solution methods again classify into exact, heuristic, and

metaheuristic approaches. In all previously described problem classes, goods were loaded

at the depot and delivered to different locations, and picked up at different locations and

returned to the depot. All problem classes described in the following deal with situations

where goods are transported between pickup and delivery customers. In the first problem

class, an identical good is considered. Thus, every customer’s demand may be fulfilled by

every other customer’s supply. In the last two problem classes pickup and delivery points

are paired and the goods transported may or may not be identical. In the last class instead

of goods, people are subject to transportation. The focus will lie on the last class (DARP).

All ambulance routing problems discusses in the following chapters belong to this problem

class.

2.5.1 Unpaired pickups and deliveries (PDVRP, PDTSP)

The PDVRP, i.e. the problem class where every good can be picked up and transported

anywhere, did not receive as much attention in the literature as the other problem classes.

Moreover, most of the literature is restricted to the PDTSP. Therefore, with the exception of

Dror et al. (1998), all solution methods presented are only applicable to the one vehicle case.

To the authors’ knowledge no metaheuristic approach for the PDTSP has been proposed

until today.

The only exact method proposed for the problem at hand has been introduced by Hernández-

Pérez and Salazar-González (2003, 2004a), using a branch and cut framework. The test

instances solved are adaptations of the ones used in Mosheiov (1994) and Gendreau et al.

(1999), containing up to 75 customers. This branch and cut algorithm is also used as a
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heuristic in an incomplete optimization scheme (Hernández-Pérez and Salazar-González,

2004b). A construction-improvement type algorithm, applying a greedy construction pro-

cedure, improved by 2-opt and 3-opt exchanges is proposed in the same paper.

A special case of the PDTSP is considered in Chalasani and Motwani (1999); the number

of goods to be picked up is equal to the number of goods to be delivered; the demand

(supply) at every delivery (pickup) location is equal to one. This problem is an extension

of the swapping problem where the vehicle’s capacity is also set to one. Chalasani and

Motwani propose an approximation algorithm with a worst case bound of 9.5. Anily and

Bramel (1999) devise a polynomial time iterated tour matching algorithm for the same

problem. An approximation algorithm on a tree graph with a worst case bound of 2 is

developed in Lim et al. (2005). The PDTSP on a tree and on a line is also subject to

investigation in Wang et al. (2006). They propose an O(|V |2/ min {C, |V |}) algorithm for

the line case. The unit capacity as well as the uncapacitated version can be solved in linear

time. On a tree an O(|V |) algorithm is devised for the case of unit capacity and an O(|V |2)

algorithm for the uncapacitated case. |V | gives the number of vertices and C the vehicle

capacity.

Finally, Dror et al. (1998) propose a heuristic algorithm for the application of the PDVRP

to the redistribution of self-service cars. It is related to Dijkstra’s algorithm (Dijkstra, 1959).

Also other solution approaches are briefly discussed.

2.5.2 Pickup and delivery problems (SPDP, PDP)

Solution methods for the classical PDP, where every transportation request is associated

with a pickup and a delivery point, are presented in this section. Lokin (1978) was the

first to discuss the incorporation of precedence constraints into the traditional TSP, needed

to formulate the PDP. The first attempt to generalize the PDP in unified notation was

proposed by Savelsbergh and Sol (1995), covering all possible versions of the PDP, includ-

ing the DARP. They also provide a brief overview of existing solution methods until 1995.

Mitrović-Minić (1998) present a survey on the PDP with Time Windows (PDPTW). An

early survey on vehicle routing problems, already including the PDP is given in Desrochers

et al. (1988). Cordeau et al. (2004) review demand responsive transport, covering PDP and

DARP. Further surveys on solution methods can be found in Assad (1988); Desaulniers et al.

(2002); Desrochers et al. (1988). In contrast to all problem classes discussed so far, in case

of PDP and also DARP, in addition to the various static problem versions, also dynamic

variants exist. The term “dynamic” refers to situations were only some requests are known

ahead of the planning period. A major part, however, comes in during the planning period

and has to be scheduled “on-line”. In the following paragraphs the various solution tech-

niques for the static PDP are summarized according to exact, heuristic, and metaheuristic

approaches. Thereafter, the different dynamic approaches are briefly discussed.
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2.5.2.1 Static variants

A number of exact solution procedures have been presented for the static PDP. Ruland

and Rodin (1997) present a branch and cut algorithm to solve the SPDP. A branch and

bound algorithm and various valid inequalities for the single vehicle PDPTW with Last-In-

First-Out (LIFO) loading, i.e. goods have to be delivered in the reverse order they were

picked up, is reported in Cordeau et al. (2006). The first exact solution method applicable

to both the single as well as the multi vehicle case dates back to Kalantari et al. (1985).

The branch and bound algorithm described is an extension of the one developed by Little

et al. (1963). Another branch and bound algorithm and valid inequalities are discussed

in Lu and Dessouky (2004). Column generation approaches have also been applied to the

PDPTW (Desrosiers and Dumas, 1988; Dumas et al., 1991; Sigurd et al., 2004). A branch

and cut algorithm departing from two different 2-index PDPTW formulations is studied in

Ropke et al. (2007). A branch and cut and price approach, i.e. valid inequalities are added

in a branch and cut fashion, and their impact on the structure of the pricing problem is

discussed in Ropke and Cordeau (2008). For further details we refer to a survey by Cordeau

et al. (2007), covering recent work on PDP while focusing on exact approaches.

Heuristics for the static PDP have first been proposed in the 1980s. Sexton and Choi

(1986) use Bender’s decomposition procedure to solve the static SPDP approximately.

Construction-improvement heuristics for the SPDP are discussed in Renaud et al. (2000);

van der Bruggen et al. (1993), using exchange, deletion, and re-insertion operators (e.g.

4-opt* (Renaud et al., 1996)) in the improvement phase. Perturbation heuristics have been

employed by Renaud et al. (2002); a sophisticated construction procedure for the multi ve-

hicle case by Lu and Dessouky (2006). The idea of mini-clusters has also been used (Shang

and Cuff, 1996; Thangiah and Awan, 2006). A so-called “squeaky wheel” iterative insertion

procedure has been developed by Lim et al. (2002); Xu et al. (2003) propose a column

generation based heuristic algorithm, considering several real world motivated constraints.

A construction-improvement heuristic for the multi vehicle case with transshipment is pre-

sented in Mitrović-Minić and Laporte (2006).

In the metaheuristic domain mostly the PDP with time windows is considered. In the

single vehicle case, a (probabilistic) tabu search (Landrieu et al., 2001) and a variable

neighborhood search heuristic (Carrabs et al., 2007) have been used. The latter considers an

additional constraint regarding rear loading (items can only be delivered in the reverse order

they were picked up). A multi vehicle version including this constraint is solved by means of

a greedy randomized adaptive search procedure (Ambrosini et al., 2004). Otherwise, mostly

heuristics using the tabu search paradigm (Caricato et al., 2003; Lau and Liang, 2001, 2002;

Nanry and Barnes, 2000) and evolutionary techniques, such as genetic algorithms or indirect

search, (Creput et al., 2004; Derigs and Döhmer, 2008; Jung and Haghani, 2000; Pankratz,

2005; Schönberger et al., 2003) have been used to solve different versions of the PDP. Most

18



2.5 Solution methods for VRPPD

of them consider time windows. Also two hybrid algorithms have been reported in the

literature, combining simulated annealing with tabu search (Li and Lim, 2001), and with

large neighborhood search (Bent and van Hentenryck, 2006). Large neighborhood search

has also been successfully applied in combination with an adaptive removal and insertion

procedure selection scheme (Ropke and Pisinger, 2006a).

Summarizing, the largest static PDP problem instance solved to optimality with a state-of-

the-art method comprises 205 requests (Sigurd et al., 2004). However, the size of the largest

instance solved is not always a good indicator; tightly constrained problems are easier to

solve than less tightly constrained ones. The benchmark data set most often used to assess

the performance of (meta)heuristic methods for the static PDPTW is the one described in

Li and Lim (2001) (LL01, LL01+). Recent new best results have been presented in Ropke

and Pisinger (2006a) and Bent and van Hentenryck (2006), two metaheuristic solution

procedures. The metaheuristic of Li and Lim (2001) still holds the best results for a part of

the smaller instances. However, also exact methods advanced; the more tightly constrained

part of the LL01 data set has recently been solved by a state-of-the-art branch and cut and

price algorithm (Ropke and Cordeau, 2008).

2.5.2.2 Dynamic and stochastic variants

Although many real world PDP are inherently dynamic, the dynamic version of the PDP has

not received as much attention as its static counterpart. The term dynamic usually indicates

that the routing and scheduling of requests has to be done in real time; new requests come in

dynamically during the planning horizon and have to be inserted into existing partial routes.

In general, the same objectives as for the static PDP are applied, e.g. the minimization of

total operating costs. Surveys on dynamic routing can be found in Ghiani et al. (2003);

Psaraftis (1988). In stochastic variants of the PDP, information regarding a certain part of

the data (e.g. vehicle travel times) are only available in terms of probability distributions.

So far, exact procedures have not been used to solve dynamic or stochastic PDP.

Swihart and Papstavrou (1999) solve a stochastic SPDP. They test three routing policies,

a sectoring, a nearest neighbor and a stacker crane policy. Lower bounds on the expected

time a request remains in the system under light and heavy traffic conditions are computed.

Three online algorithms (REPLAN, IGNORE, and SMARTSTART) for a single server

PDP are investigated in Ascheuer et al. (2000b). The objective considered is the completion

time. In the literature the problem at hand is called online dial-a-ride problem. However,

the denotation dial-a-ride problem is not used in the same way as defined in this book. The

term online is used whenever no request is known in advance. By means of competitive

analysis, i.e. the online (no knowledge about the future) algorithm is compared to its offline

(complete knowledge about the future) counterpart (Jaillet and Stafford, 2001; Van Hen-

tenryck and Bent, 2006), it can be shown that REPLAN and IGNORE are 5/2 competitive,

while SMARTSTART has a competitive ratio of 2. Hauptmeier et al. (2000) discuss the
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performance of REPLAN and IGNORE under reasonable load. Feuerstein and Stougie

(2001) devise another 2-competitive algorithm. A probabilistic version (Coja-Oghlan et al.,

2005) and the online problem minimizing maximum flow time (Krumke et al., 2005) are

also investigated. Lipmann et al. (2004) study the influence of restricted information on

the multi server online PDP, i.e. the destination of a request is only revealed after the

object has been picked up. Competitive ratios of two deterministic strategies (REPLAN

and SMARTCHOICE) for the time window case are computed in Yi and Tian (2005).

A heuristic using incomplete optimization for the dynamic multi vehicle PDP is proposed

in Savelsbergh and Sol (1998). The solution methodology called DRIVE (Dynamic Routing

of Independent VEhicles) incorporates a branch and price algorithm based on a set par-

titioning problem formulation. An insertion based heuristic using different types of order

circuity control is discussed in Popken (2006). Fabri and Recht (2006) present an adaptation

of a heuristic, initially designed for the dynamic DARP by Caramia et al. (2002).

Early research on dynamic multi vehicle PDP is conducted in Shen et al. (1995) and

Potvin et al. (1995). Both articles focus on neural networks with learning capabilities to

support vehicle dispatchers in real-time. A hybrid population based method, combining a

genetic with a dynamic programming algorithm, for the dynamic SPDP with time windows

is proposed in Jih and Hsu (1999). The first neighborhood based metaheuristic solution

method for the dynamic multi vehicle PDPTW is presented in Malca and Semet (2004). A

two-phase solution procedure is described in Mitrović-Minić and Laporte (2004). In the first

phase an initial solution is constructed via cheapest insertion and improved by means of a

tabu search algorithm. In the second phase different waiting strategies are used to schedule

the requests. The tested waiting strategies (drive first, wait first, dynamic waiting, advanced

dynamic waiting) differ regarding the vehicle’s location when waiting occurs. Advanced

dynamic waiting is also used by Mitrović-Minić et al. (2004) in a double horizon based

heuristic. The routing part is again solved by means of a construction heuristic improved

by tabu search. Another tabu search algorithm for the dynamic multi vehicle PDPTW has

been proposed by Gendreau et al. (2006), using an ejection chain neighborhood (Glover,

1996). Gutenschwager et al. (2004) compare a steepest descent, a reactive tabu search, and

a simulated annealing algorithm.

To summarize, over the past decades, in the field of dynamic PDP, a number of solution

procedures have been developed. However, the proposed algorithms cannot be directly

compared since, so far, no standardized simulation environment has been used by more

than one group of authors. Benchmark instances are available; e.g. those used by Mitrović-

Minić et al. (2004); Mitrović-Minić and Laporte (2004).
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2.5.3 Dial-a-ride problems (SDARP, DARP)

The last problem class dealt with in this chapter is the dial-a-ride problem class. It has

received considerable attention in the literature. The first publications in the field of pas-

senger transportation date back to the late 1960s and early 1970s (cf. Rebibo, 1974; Wilson

and Colvin, 1977; Wilson et al., 1971; Wilson and Weissberg, 1967). Additional information

in the form of literature surveys on the different solution methods can be found in Cordeau

and Laporte (2003a, 2007); Cordeau et al. (2004); Gendreau and Potvin (1998). As in the

PDP class we distinguish between static and dynamic variants. The focus is put on the

static part. All subsequent chapters deal with different problem variants belonging to the

field of static DARP.

2.5.3.1 Static variants

As in the previous sections we distinguish between exact, heuristic, and metaheuristic ap-

proaches. Given the vast amount of research published in the field of DARP, an overview

of the different heuristic and metaheuristic approaches is given in tabular form.

Exact methods Early research in the field of exact methods for the static SDARP predomi-

nantly belongs to the dynamic programming domain. An early exact dynamic programming

algorithm for the SDARP is introduced in Psaraftis (1980). Service quality is taken care of

by means of maximal position shift constraints compared to a first-come-first-serve visiting

policy. A modified version of the above algorithm, considering time windows, is discussed

in Psaraftis (1983b). Instead of backward recursion forward recursion is applied. A forward

dynamic programming algorithm for SDARP is also discussed in Desrosiers et al. (1986).

Possible states are reduced by eliminating those that are incompatible with respect to ve-

hicle capacity, precedence, and time window restrictions. User inconvenience in terms of

ride times is incorporated into time window construction, resulting in tight time windows

at both, origin and destination of the transportation request.

Kikuchi (1984) develop a balanced linear programming transportation problem for the

multi vehicle DARP, minimizing empty vehicle travel as well as idle times and thus fleet

size. In a pre-processing step the service area is divided into zones, the time horizon into

time periods. Every request is classified according to an origin and a destination zone as

well as a departure and an arrival time period.

A branch and cut algorithm based on a 3-index formulation has been proposed by Cordeau

(2006). New valid inequalities as well as previously developed ones for the PDP and the VRP

are employed. The largest instance solved to optimality comprises 36 requests. Two branch

and cut algorithms are described in Ropke et al. (2007). Instead of a 3-index formulation, two

more efficient 2-index problem formulations and additional valid inequalities are employed.

These two articles, presenting the most recent exact algorithms in the static DARP field,
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form the basis of the branch and cut algorithm for the DARP with heterogeneous fleet

and passengers discussed in Chapter 5 of this book. Further details regarding the different

families of valid inequalities employed can be found in the same chapter.

Heuristics Over the past decades, a large number of heuristic algorithms have been pro-

posed for the static DARP. Table 2.1 gives an overview of the various solution methods

reported in chronological order, divided into single and multi vehicle approaches. For each

entry the according literature reference, objective(s), and additional constraints considered

are provided. Furthermore, either the benchmark instances used, or the size of the largest

instance solved to optimality, in terms of number of requests, are given.

A heuristic routing and scheduling algorithm for the SDARP using Bender’s decompo-

sition is described in Sexton and Bodin (1985a,b). The scheduling problem can be solved

optimally; the routing problem is solved with a heuristic algorithm. Other heuristic methods

dealing with the single vehicle case involve a minimum spanning tree heuristic (Psaraftis,

1983a), adaptations of 2-opt and 3-opt heuristics (Psaraftis, 1983c), and a 2-opt improve-

ment scheme switching between optimizing and sacrificing phases (Healy and Moll, 1995).

One of the first heuristic solution procedures for a static multi vehicle DARP is discussed

in Cullen et al. (1981). They develop an interactive algorithm that follows the cluster-

first-route-second approach. It is based on a set partitioning formulation solved by means of

column generation. The location-allocation subproblem is only solved approximately. Other

cluster-first-route-second approaches for different versions of the DARP are due to Bodin

and Sexton (1986); Psaraftis (1986); Stein (1978a,b); Wolfler Calvo and Colorni (2007). A

classical cluster-first-route-second algorithm has also been proposed by Borndörfer et al.

(1997). Here, the clustering as well as the routing problem are modeled as set partitioning

problems. The clustering problem can be solved optimally while the routing subproblems

are solved approximately by a branch and bound algorithm (only a subset of all possible

tours is used). Customer satisfaction is taken into account in terms of punctual service;

customer ride times are implicitly considered by means of time windows.

An optimization based mini-clustering algorithm is presented in Ioachim et al. (1995). It

uses column generation to obtain mini-clusters and an enhanced initialization procedure to

decrease processing times. As in Desrosiers et al. (1988) also the case of multiple depots

is considered. The idea of mini-clusters has also been employed by Desrosiers et al. (1988,

1991); Dumas et al. (1989).

Jaw et al. (1986) propose a sequential insertion procedure. First, customers are ordered

by increasing earliest time for pickup. Then, they are inserted according to the cheapest

feasible insertion criterion. The notion of active vehicle periods is used. Other construction

heuristics have been proposed by Alfa (1986); Kikuchi and Rhee (1989); Roy et al. (1985a,b).

A multi-objective approach is followed in Madsen et al. (1995). They discuss an insertion

based algorithm called REBUS. The objectives considered are the total driving time, the
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Table 2.1: Heuristics for the static DARP

Reference Type Obj. Constr. Algorithm
Bench./
Size

The single vehicle case

Psaraftis (1983a) - min.
RC

- MST heur., local interchanges up to 50
req.

Psaraftis (1983c) - min.
RC

- adapted 2-opt and 3-opt up to 30
req.

Sexton and Bodin
(1985a,b)

- min. CI DDT routing and scheduling algorithm
based on Bender’s decomposition

up to 20
req.

Healy and Moll
(1995)

- min.
RC

- 2-opt improvement,
optimizing/sacrificing phases

up to 100
req.

The multi vehicle case

Stein (1978a,b) transfers min.
RC

TW cluster first route second -

Cullen et al. (1981) - min.
RC

- cluster first route second, column
generation

up to 50
req.

Roy et al. (1985a,b) HF min.
RC,
min. CI

TW parallel insertion up to 578
req.

Bodin and Sexton
(1986)

- min. CI DDT cluster first route second up to 85
req.

Jaw et al. (1986) - min.
RC,
min. CI

TW, RT sequential feasible insertion
algorithm

up to
2617 req.

Alfa (1986) HF min.
RC

TW, RT adapted heur. of (Jaw et al.,
1986)

up to 49
req.

Psaraftis (1986) - min.
RC,
min. CI

TW, RT comparison of Jaw’s heur. and
grouping-clustering- routing heur.

-

Desrosiers et al.
(1988); Dumas et al.
(1989)

MD min.
RC

TW mini-clustering algorithm, column
generation

up to 200
req.

Kikuchi and Rhee
(1989)

- max.
NCS

TW sequential insertion up to 200
req.

Desrosiers et al.
(1991)

HF min.
RC

TW, RD improved mini- clustering
algorithm of (Desrosiers et al.,
1988)

up to
2411 req.

Potvin and Rousseau
(1992)

- min.
RC

TW, RT constraint directed search (beam
search)

up to 90
req.

Ioachim et al. (1995) HF, MD,
S

min.
NV,
min.
RC

TW mini-clustering, column
generation

up to
2545 req.

Madsen et al. (1995) HF, S min.
RC, NV,
TWT,
DPS

TW, RD,
RT

REBUS. insertion based algorithm up to 300
req.

Toth and Vigo
(1996a)

HF min.
RC

TW, RT parallel insertion, improved by
trip insertion, exchange, double
insertion, moves

TV96a

Borndörfer et al.
(1997)

HF, MD,
S

min.
RC

TW, RD,
(RT)

cluster first route second, set
partitioning, branch and bound

up to
1771 req.

continued on next page
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Reference Type Obj. Constr. Algorithm
Bench./
Size

Diana and Dessouky
(2004)

- min.
RC, min
CI, idle
times

TW, RT parallel regret insertion heur. up to
1000 req.

Xiang et al. (2006) HF, S min.
RC

TW, RT,
RD, BR

construction-improvement;
clustering by TW, ideas of sweep
heur.; local search improvement

up to
2000 req.

Wong and Bell
(2006)

HF, S min.
RC,
min. CI

TW, RT,
RD

parallel insertion, improved by
trip insertion

up to 150
req.

Wolfler Calvo and
Colorni (2007)

- max.
NCS,
max. SL

TW cluster first route second,
assignment heur., vertex
reinsertions

up to 180
req.

Bench. = Benchmark, BR = BReak time between two trips, CI = Customer Inconvenience, Constr. =
Constraints, DDT = Desired Delivery Time, DPS = Deviation from Promised Service, HF = Heterogeneous
Fleet, heur. = heuristic(s), MD = Multi Depot, NCS = Number of Customers Served, NV = Number of
Vehicles, Obj. = Objective(s), RC = Routing Cost, RD = Route Duration, req. = requests, TW = Time
Windows, TWT = Total Waiting Time, RT = Ride Time, S = Service time, SL = Service Level; The
respective benchmark instances are described in Section 2.6.

number of vehicles, the total waiting time, the deviation from promised service times as well

as cost. The regret insertion based process is also subject to analysis in a study by Diana

(2004); in order to determine why the performance of this heuristic is superior to that of

other insertion rules.

The construction-improvement concept has also been used to solve the DARP (see Toth

and Vigo, 1996a; Wong and Bell, 2006; Xiang et al., 2006). In the improvement phase

operators such as trip insertion, exchange, and move are employed. Also beam search has

been used to solve the multi-vehicle DARP (Potvin and Rousseau, 1992).

Metaheuristics A much smaller number of metaheuristic solution methods have been de-

veloped for the static DARP. Table 2.2 provides an overview of the different algorithms

proposed. For each reference the same information as in the previous table is given.

Among the most popular metaheuristic concepts applied to the DARP are simulated an-

nealing (Baugh et al., 1998; Colorni et al., 1996), tabu search (Aldaihani and Dessouky,

2003; Cordeau and Laporte, 2003a; Melachrinoudis et al., 2007), and genetic algorithms

(Jørgensen et al., 2007; Rekiek et al., 2006; Uchimura et al., 1999). Toth and Vigo (1997b)

describe a further local search based metaheuristic, a tabu thresholding algorithm, employ-

ing the neighborhoods defined in Toth and Vigo (1996a). In this book a variable neighbor-

hood search algorithm will be developed and applied to different versions of the DARP. In

Chapter 3 it is compared to the tabu search algorithm proposed by Cordeau and Laporte

(2003b). They consider time windows at either origin or destination depending on the type

of request (inbound or outbound). The neighborhood used is defined by moving one request

to another route. The best possible move serves to generate a new incumbent solution. Re-

verse moves are declared tabu. However, an aspiration criterion is defined, such that tabu

moves that provide a better solution, with respect to all other solutions already constructed
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Table 2.2: Metaheuristics for the static DARP

Reference Type Obj. Constr. Algorithm
Bench./
Size

The multi vehicle case

Colorni et al. (1996) - max. NCS,
min CI

RD simulated annealing up to 100
req.

Toth and Vigo
(1997b)

HF, MD min. RC TW, RT parallel insertion algorithm, tabu
thresholding

TV96a

Baugh et al. (1998) - min. NV,
min. RC,
min. CI

TW simulated annealing up to 300
req.

Uchimura et al.
(1999)

- min. RC RT, RD genetic algorithm 10 req.

Cordeau and Laporte
(2003b)

S min. RC TW,
RT, RD

tabu search CL03, up
to 295
req.

Aldaihani and
Dessouky (2003)

mix with
FRT

min. RC,
min. CI

TW tabu search up to 155
req.

Melachrinoudis et al.
(2007)

HF, MD min. RC,
min CI

TW tabu search up to 8
req.

Rekiek et al. (2006) S, MD,
HF

min. NV,
min. CI

TW,
RT, VA

grouping genetic algorithm up to 164
req.

Jørgensen et al.
(2007)

S min. RC,
min. RT,
min. TWV,
...

TW,
RT, RD

genetic algorithm, space-time
nearest neighbor heur.

CL03

Bench. = Benchmark, CI = Customer Inconvenience, Con. = Constraints, FRT = Fixed Route Transit,
HF = Heterogeneous Fleet, MD = Multi Depot, mRT = mean RT, NV = Number of Vehicles, Obj. =
Objective(s), RD = Route Duration, RT = Ride Time, RC = Routing Cost, S = Service time, TW =
Time Windows, TWV = TW Violation, VA = Vehicle Availability; The respective benchmark instances are
described in Section 2.6.

by the same move, can constitute a new incumbent solution.

Summary State-of-the-art exact methods for the static DARP solve some instances with

up to 96 requests to optimality (Ropke et al., 2007). However, the same limitation applies

as mentioned above. The size of the test instance is not a very meaningful indicator;

tightly constrained instances are easier to solve than those with less tight constraints and no

standardized data set has been solved by the proposed approaches. In case of heuristic and

metaheuristic methods, comparison becomes even harder since a large part of the solution

procedures developed are motivated by real world problem situations. They differ regarding

problem type (single and multi depot, homogeneous and heterogeneous fleet), constraints,

and objective(s). Moreover, even when the same data sets are used different objectives are

considered (see e.g. Cordeau and Laporte, 2003a; Jørgensen et al., 2007). Consequently, we

can only state that in general heuristic methods run faster whereas metaheuristics usually

outperform basic heuristic procedures with respect to solution quality.

Related work Dealing with the transportation of people, especially handicapped or elderly,

research has also been dedicated to the comparison of dial-a-ride systems with other modes of
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2 Summarizing the state-of-the-art

transportation. Early studies of dial-a-ride transportation systems are reported in Carlson

(1976); Teixeira and Karash (1975). Elmberg (1978) test a robot dispatcher dial-a-ride

system in Sweden. Daganzo (1984) compare fixed route transit systems with checkpoint

dial-a-ride and door-to-door dial-a-ride systems. He concludes that most of the time either

a fixed route system or door-to-door transportation is the appropriate choice. Belisle et al.

(1986) investigate the impact of different operating scenarios on the quality of transportation

systems for the handicapped. More recent studies comparing dial-a-ride and traditional bus

systems by means of simulation are reported in Noda (2005); Noda et al. (2003). Shinoda

et al. (2003) study the usability of dial-a-ride systems in urban areas. Mageean and Nelson

(2003) evaluate telematics based demand responsive transport services in Europe. Palmer

et al. (2004) analyze the impact of management practices and advanced technologies in the

context of demand responsive transport systems. The impact of information flows, e.g. the

percentage of real time requests or the length of the interval between the arrival of a new

request and its requested pickup time window, is investigated in Diana (2006). Diana et al.

(2006) study optimal fleet sizes with respect to predetermined service quality.

Research has also been dedicated to possible ways of computation time reduction. Hun-

saker and Savelsbergh (2002), e.g., propose a fast feasibility check for the DARP. The pro-

posed procedure can deal with time window, waiting time as well as ride time restrictions.

Castelli et al. (2002) discuss three algorithms granting 2-opt-improvement feasibility.

2.5.3.2 Dynamic and stochastic variants

Less research has been dedicated to the domain of dynamic and/or stochastic DARP. Again,

the term dynamic indicates that routing is done in real time; new requests pop up dynami-

cally during the day and have to be scheduled into existing routes. Predominantly heuristic

methods have been used to solve dynamic versions of the DARP.

Exact methods have not been explicitly developed for the dynamic DARP. A possible

reason is that, in the context of dynamic routing, the concept of “optimal solutions” becomes

debatable. However, in Psaraftis (1980) the static version of their algorithm is adapted to

the dynamic case. In a cluster-first-route-second framework Colorni and Righini (2001),

considering only the most urgent requests, solve the routing subproblems to optimality with

a branch and bound algorithm. Also Caramia et al. (2002) iteratively solve the single vehicle

subproblems to optimality, using a dynamic programming algorithm. Another cluster-first-

route-second approach, applying dynamic programming in the routing phase, is reported in

Dial (1995). New transportation requests are assigned to clusters according to least cost

insertion. Teodorovic and Radivojevic (2000) propose a two-stage fuzzy logic based heuristic

algorithm also following the cluster-first-route-second idea. The first approximate reasoning

heuristic decides which vehicle a new request is assigned to. The second heuristic handles

the adjustment of the vehicle’s route.

Daganzo (1978) analyze three different insertion heuristics. In the first the closest stop
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is visited next. The second consists in visiting the closest origin or the closest destination

in alternating order. The third only allows the insertion of delivery locations after a fixed

number of passengers have been picked up.

Horn (2002a) provide a software environment for fleet scheduling and dispatching of de-

mand responsive services. The system can handle advance as well as immediate requests.

New incoming requests are inserted into existing routes according to least cost insertion. A

steepest descent improvement phase is run periodically. Also automated vehicle dispatch-

ing procedures, to achieve a good combination of efficient vehicle deployment and customer

service, are included. The system was tested in the modeling framework LITRES-2 (Horn,

2002b). Another simulation environment to test solution methods for the dynamic DARP

can be found in Fu (2002b).

Coslovich et al. (2005) propose a two-phase insertion heuristic. A simple insertion proce-

dure allows for quick answers with respect to inclusion or rejection of a new customer. The

initial solution is improved by means of local search using 2-opt arc swaps.

A dynamic DARP in a stochastic environment is considered in Xiang et al. (2007), taking

into account travel time fluctuations, absent customers, vehicle breakdowns, cancellation of

requests, traffic jams etc. To solve this complex problem situation the heuristic proposed in

Xiang et al. (2006) is adapted to the dynamic case. Fu (2002a) develop a parallel insertion

algorithm for a stochastic version of the DARP, considering time-dependent travel times.

Metaheuristic solution methods have not been explicitly developed for the dynamic DARP,

since short response times are necessary in dynamic settings. Only one algorithm developed

for the static version has been used to solve the dynamic case. The tabu search of Cordeau

and Laporte (2003b) is adapted to the dynamic DARP by means of parallelization (Attanasio

et al., 2004); and in Beaudry et al. (2008) it is used to solve a dynamic DARP with additional

real world constraints. A tabu search and a hybrid method consisting of a greedy randomized

adapted search procedure and a tabu search for probabilistic DARP is discussed in Ho and

Haugland (2004).

Summarizing, only a limited number of solution algorithms have been proposed for the

dynamic and the stochastic DARP. In case of the dynamic DARP, most of them are based on

repeated calls to static solution routines. Comparison across the different methods proposed

becomes a difficult task since a majority of the work presented is motivated by real life

applications. Consequently, each solution methodology was tested on different data sets with

varying problem specific characteristics. Whenever a solution method originally developed

for the static case was used we refer to Section 2.5.3 of this chapter for further details on

its performance in a static setting.
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Table 2.3: Benchmark instances for VRPB

Literature Ref. Type Cust. # Characteristics Abbr.

Golden et al. (1985) VRPMB 55 1 based on instance 8 of Christofides and
Eilon (1969), 10% bh.

Gal.85

Min (1989) VRPSDP 22 1 real life instance Min89

Goetschalckx and
Jacobs-Blecha
(1989)

VRPCB 25-150 62 25, 50 and 100% of the linehaul
customers are bh.

GJ89

Gélinas et al. (1995) VRPCB 25-100 45 TW, based on the first five problems
proposed by Solomon (1987) for the
VRPTW, 10, 30 50% bh.

GDDS95

Kontoravdis and
Bard (1995)

VRPMB 100 27 based on the sets R2, C2 and RC2
(Solomon, 1987), Ck = 250, 50% bh.

KB95

Gendreau et al.
(1996a)

TSPCB 100-
1000

750 randomly generated points in the square
[0, 100], uniformly distributed, 10-50%
bh.

GHL96

Toth and Vigo
(1996b)

VRPCB 21-100 33 based on VRP instances available at the
TSPLIB library, 50, 66 and 80% bh.

TV96

Thangiah et al.
(1996)

VRPCB 250-500 24 TW, based on the sets R1 and RC1
(Solomon, 1987), 10, 30 and 50%
converted into bh.

TPS96

Toth and Vigo
(1999)

VRPCB 33-70 24 asymmetric, adapted from the real world
instances used by Fischetti et al. (1994)

TV99

Salhi and Nagy
(1999)

VRPMB 20-249 SD:42
MD:33

based on SD instances (Christofides
et al., 1979) and MD instances (Gillett
and Johnson, 1976), adapted by defining
10, 25 and 50% of the customers as bh.

SN99a

VRPSDP 20-249 SD:28
MD:22

same instances, adapted by splitting ev-
ery customer’s demand into a demand
and a supply part

SN99b

Gendreau et al.
(1999)

VRPSDP 6-261 1308 partly based on VRP instances from the
literature, partly randomly generated

GLV99

Dethloff (2001) VRPSDP 50 40 randomly generated, 2 geographical sce-
narios: (1) uniformly distributed cus-
tomer locations over the interval [0, 100],
(2) more urban configuration; the pickup
amount has at least half the size of the
delivery amount

Det01

# = number of instances, Abbr. = Abbreviation, bh. = backhaul customers, Cust. = number of Customers
per instance, MD = Multi Depot, SD = Single Depot

2.6 Benchmark instances

In order to provide the interested researcher with some information on available benchmark

instances, we decided to dedicate this section to a brief description of the data sets used in

the literature. Table 2.3 and 2.4 provide the following information in chronological order.

In the first column the according literature reference is given. Column two states the VRPB

or VRPPD type the respective instances were designed for. Columns three and four give

the size of the smallest and the size of the largest instance, in terms of number of customers,

and the number of instances provided, respectively. In column five a brief description of the

instances can be found. Column six contains the abbreviations used in this chapter or in
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Table 2.4: Benchmark Instances for VRPPD

Literature Ref. Type Req. # Characteristics Abbr.

Shang and Cuff
(1996)

PDPTW,
transfers

159 1 real world data SC96

Nanry and Barnes
(2000)

PDPTW 13-50 43 based on VRPTW instances (Solomon,
1987), optimal solution schedules by
procedure of Carlton (1995), customers
randomly paired

NB00

Renaud et al.
(2000)

SPDP 25-249 108 based on 36 TSPLIB instances (Reinelt,
1991), for each pickup a delivery chosen
among the 5 (10) closest or all
unselected neighbors.

RBO00

Li and Lim (2001) PDPTW 50 56 based on those of (Solomon, 1987),
customers appearing on the same route
in a solution of the VRPTW, using the
solution procedure of Li et al. (2001),
were randomly paired;

LL01

100-500 298 extended data set LL01+

Toth and Vigo
(1996a)

DARP 276-312 5 real life data, Municipality of Bologna TV96a

Cordeau and
Laporte (2003b)

DARP 24-144 20 randomly generated around seed points,
half of the requests have a tight TW at
the origin, half a tight TW at the
destination, 10 instances with narrow,
10 with wider TW.

CL03

Mitrović-Minić and
Laporte (2004)

dyn.
PDPTW

100-
1000

40 ten hours service period, 60 x 60 km2

area, vehicle move at 60 km/h, requests
occur according to a continuous uniform
distribution, no requests are known in
advance

ML04

Cordeau (2006) DARP 16-48 24 randomly generated; 12 instances with
C = 3, unit user demand and L̄ = 30; 12
instances with C = 6, varying user
demand and L̄ = 60.

Cor06

Ropke et al. (2007) 16-96 42 extended data set Cor06+

Ropke et al. (2007) PDPTW 30-75 40 randomly generated as described in
(Savelsbergh and Sol, 1998).

RCL07

# = number of instances, Abbr. = Abbreviation, bh. = backhaul customers, C = vehicle capacity, L̄ =
maximum ride time, MD = Multi Depot, Req. = approximate number of Requests of each instance, SD =
Single Depot, TW = Time Window

the two-part survey (Parragh et al., 2008a,b).

In case of the VRPCB subclass the benchmark data sets most often used in the literature

are GJ89 and TV96. The most recent new best results have been presented by Brandão

(2006) and Ropke and Pisinger (2006b), two metaheuristic approaches, outperforming earlier

results by Osman and Wassan (2002).

Regarding the VRPMB and the VRPSDP, the single depot instances, SN99a and SN99b,

have been most often solved in the literature. The most recent new best results for these

two data sets are presented in Ropke and Pisinger (2006b), and Nagy and Salhi (2005) for

the second half of the SN99b data set. Also Tang Montané and Galvão (2006) report good

results for parts of the SN99b instances.
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The data set predominantly used to asses the performance of PDPTW is the one proposed

by Li and Lim (2001). The latest new best results for both the primary (LL01) and the

extended data set (LL01+) can be found in Ropke and Pisinger (2006a) and Bent and van

Hentenryck (2006).

In contrast to the field of PDP, solution methods developed for the DARP have not

been tested on standardized benchmark instances. This might be due to the fact that

most methods vary considerably with respect to the constraints considered as well as the

objectives minimized. However, since data sets for rather standard problems settings do

exist now, this might change in the near future. Data sets CL03 and Cor06+ will be used to

test the performance of the heuristic methods developed in Chapters 3 and 4, respectively.

The test instances applied in Chapters 5 and 6 are based on data set Cor06.
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3 Solving a simplified problem version

3.1 Introduction

The overall aim of this book is to solve a real world static ambulance routing problem, as,

e.g., encountered by the ARC. In Chapter 2, solution methods for different DARP versions

and related problems have been discussed. As already pointed out previously, ambulance

routing problems are usually modeled as DARP. The first step towards the aim of solving the

real world problem is to deal with a simplified version. This simplified version will include

a number of identical transportation requests, served by a given fleet of identical vehicles.

Each transportation request is associated with a pickup and a delivery location. Since

people are transported, service oriented criteria are considered in terms of time windows and

maximum user ride times. Another approach to deal with user inconvenience is investigated

in the subsequent chapter: a second objective function is introduced. In this chapter, user

inconvenience will only be considered in terms of constraints. The objective will be the

minimization of the total routing costs.

3.2 Related Work

When looking at the literature, due to the application oriented character of this problem,

no “standardized” problem definition can be found. The objectives applied range from the

maximization of the number of patients served to the minimization of user waiting time

or routing costs. The constraints considered are usually tailored to the specific problem

situation. Let us give some examples. Baugh et al. (1998) design a simulated annealing

algorithm minimizing the weighted sum over total routing costs, time window violations

(user inconvenience), and the number of vehicles used. Toth and Vigo (1997b), on the

other hand, consider a heterogeneous fleet, service times, multiple depots, time windows

and maximum user ride times, while minimizing the total distance traveled by the vehicles

using a tabu thresholding algorithm. Aldaihani and Dessouky (2003) solve a mix between

a DARP, i.e. transportation on demand, and a fixed route transit system by means of a

tabu search heuristic. Customer inconvenience in terms of the total ride time of all the

passengers and the total distance traveled by the on demand vehicles are minimized. Time

windows are considered as a hard constraint. Soft time windows are considered by Jørgensen

et al. (2007). They propose a Genetic Algorithm (GA) to solve the DARP, minimizing the
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weighted sum of customer transportation time, excess user ride time with respect to direct

ride time, customer waiting time, time window violations, excess user ride time with respect

to maximum ride time, and excess work time. This clearly shows that the DARP lacks

a generic problem formulation. For further references we refer to Chapter 2 of this book.

Furthermore, we refer to Paquette et al. (2007) for an overview of the different quality of

service criteria that have been applied in dial-a-ride systems.

A rather, in our opinion, general problem definition, suitable to conduct the first step

into the DARP research domain, together with a benchmark data set has been introduced

by Cordeau and Laporte (2003b). They consider time windows, a maximum user ride time

limit, and a maximum route duration limit, while minimizing total routing costs. Results

obtained with a Tabu Search (TS) heuristic are reported. In this chapter we will develop

a competitive VNS heuristic (Mladenovic and Hansen, 1997) for the problem at hand, as

defined in further detail in Section 3.3. Also a scientific article resulted from the research

work dedicated to the development of a VNS for the DARP (Parragh et al., 2009c). Many

passages of this chapter are taken from this article.

A popular question in the vehicle routing community, working on metaheuristic methods,

is to demand a reason for choosing a certain solution method among the different solution

paradigms available. In case of this book several reasons can be given. First, VNS belongs

to the more recent metaheuristic concepts. It has only been proposed about a decade ago.

Therefore, when, e.g., compared to the plethora of articles dealing with TS algorithms, only

a much smaller number of articles dealing with VNS can be found in the literature. Second,

many recent successful implementations exist. VNS has shown to be competitive when used

to solve vehicle routing problems such as, among others, the vehicle routing problem with

time windows (Bräysy, 2003), the multi-depot vehicle routing problem with time windows

(Polacek et al., 2004), the periodic vehicle routing problem (Hemmelmayr et al., 2009), or

the pickup and delivery traveling salesman problem with last-in-first-out loading restrictions

(Carrabs et al., 2007). Third, many recent applications of VNS in the vehicle routing domain

stem from our research group. The expertise thus acquired and easily accessible during the

development of this book has certainly been another reason for choosing VNS. And last but

not least, to the best of our knowledge this will be the first time VNS will be applied to the

static DARP.

The reminder of this chapter is organized as follows. First, a more detailed problem defi-

nition is given. This is followed by the description of the proposed metaheuristic algorithm.

Finally, computational results are reported and compared to those of the TS of Cordeau and

Laporte (2003b), and, using an adapted objective function, to the GA of Jørgensen et al.

(2007).
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Figure 3.1: An inbound request

3.3 Problem definition

The DARP is modeled on a complete directed graph G = (V, A) where V is the set of all

vertices and A the set of all arcs. For each arc (i, j) a non-negative travel cost cij and a

non-negative travel time tij is considered. A total amount of n customer requests, each

consisting of a pickup and delivery vertex pair {i, n + i}, are to be served by a set K of

m identical vehicles with a capacity of C. All vehicles are stationed at a central depot

denoted by 0 (origin depot) and 2n + 1 (end depot). Furthermore, every route has to be

completed within a maximum route duration limit T . At every pickup vertex a certain

number of passengers (qi > 0) waits to be transported. The demand at every delivery

vertex is equal to qn+i = −qi. Either the pickup vertex (origin) or the delivery vertex

(destination) is associated with a time window [ei, li], depending on the type of request.

Outbound requests, e.g. from home to the hospital, have a tight time window on the

destination. Inbound requests, e.g. from the hospital back home, have a tight time window

on the origin. An inbound request is illustrated in Figure 3.1. The vertex that is associated

with the tight time window is also referred to as the critical vertex of a request (Cordeau

and Laporte, 2003b). The service time for loading or unloading operations at each vertex is

denoted by di. In order to limit user inconvenience caused by long detours, a maximum user

ride time L̄ has to be respected. The arrival time at a vertex is denoted as Ai. Beginning of

service at each vertex i (on vehicle k), denoted as B
(k)
i , and the load when leaving vertex i

(with vehicle k), denoted as Q
(k)
i , are to be determined. The waiting time Wi at a vertex i

is Wi = Bi−Ai. The ride time of a client is calculated by L
(k)
i = B

(k)
n+i− (B

(k)
i +di), i.e. the

time he/she spends on board the vehicle. The departure time is given by Di = Bi +di. The

duration of a route k is calculated as Bk
2n+1 −Bk

0 , where Bk
2n+1 (Bk

0 ) denotes the beginning

of service at the depot 2n + 1 (0) by vehicle k. The objective is to minimize total routing

33



3 Solving a simplified problem version

costs. It can be formulated as follows (Cordeau, 2006),

∑

i∈V

∑

j∈V

∑

k∈K

cijx
k
ij , (3.1)

(3.2)

subject to,

∑

i∈V

∑

k∈K

xk
ij =1 ∀j ∈ P, (3.3)

∑

j∈V

xk
ij −

∑

j∈V

xk
n+i,j =0 ∀i ∈ P, k ∈ K, (3.4)

∑

j∈V

xk
0j =1 ∀k ∈ K, (3.5)

∑

j∈V

xk
ji −

∑

j∈V

xk
ij =0 ∀i ∈ P ∪ D, k ∈ K, (3.6)

∑

i∈V

xk
i,2n+1 =1 ∀k ∈ K, (3.7)

xk
ij = 1 ⇒ Bk

j ≥Bk
i + di + tij ∀i ∈ V, j ∈ V, k ∈ K (3.8)

xk
ij = 1 ⇒ Qk

j ≥Qk
i + qj ∀i ∈ V, j ∈ V, k ∈ K (3.9)

Lk
i =Bk

n+i − (Bk
i + di) ∀i ∈ P, k ∈ K, (3.10)

Bk
2n+1 − Bk

0 ≤ T ∀k ∈ K, (3.11)

ei ≤ Bk
i ≤li ∀i ∈ V, k ∈ K (3.12)

ti,n+i ≤ Lk
i ≤L̄ ∀i ∈ P, k ∈ K (3.13)

max {0, qi} ≤ Qk
i ≤min {C, C + qi} ∀i ∈ V, (3.14)

xk
ij ∈ {0, 1} ∀i ∈ V, j ∈ V, k ∈ K. (3.15)

The objective function (3.1) minimizes total routing costs. Constraints (3.3)–(3.7) ensure

that each request is served exactly once; that each origin is visited by the same vehicle

as its destination; and that each vehicle’s route starts at the origin depot and ends at

the destination depot. Load propagation and consistency with respect to time variables

is guaranteed by inequalities (3.8) and (3.9). User ride times are set by equalities (3.10).

Maximum route duration restrictions, time window compliance, and maximum ride time

limits are enforced by constraints (3.11)–(3.13). Finally, capacity limits are imposed by

(3.14).
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Algorithm 3.1 heurVNS

1: // pre-processing
2: do graph pruning and time window tightening;
3: // initial solution
4: generate ∫init;
5: set ∫ := ∫init; set k̂ := 1;
6: repeat

7: // shaking
8: randomly compute ∫ ′ in N̂k̂(∫);
9: // local search

10: if ĉ(∫ ′) < 1.02 ĉ(∫) or prand < 0.01 then

11: apply local search to ∫ ′ yielding ∫ ′′;
12: else

13: set ∫ ′′ := ∫ ′;
14: end if

15: // move or not

16: if f̂(∫ ′′) < f̂(∫) or meets other acceptance criteria then

17: if ĉ(∫ ′′) ≥ 1.05 ĉ(∫) then

18: apply local search to ∫ ′′;
19: end if

20: set ∫ := ∫ ′′; set k̂ := 0;
21: end if

22: if ∫ ′′ is feasible and better than ∫best then

23: set ∫best := ∫ ′′;
24: end if

25: set k̂ := (k̂ mod k̂max) + 1;
26: until some stopping criterion is met
27: return ∫best;

3.4 Solution framework

As indicated, we will solve the DARP by means of a VNS based heuristic. In general, VNS

departs from an initial solution ∫init, which is equal to the first incumbent solution ∫ . Then,

in every iteration a random solution ∫ ′ is generated in the current neighborhood N̂k̂(∫) of

∫ (shaking). A subsequent local search step applied to ∫ ′ yields ∫ ′′. If ∫ ′′ is better than ∫ ,

it replaces ∫ and the search continues with the first neighborhood k̂ = 1. If ∫ ′′ is worse,

∫ is not replaced and the next (larger) neighborhood is used in the subsequent iteration

k̂ = k̂ + 1 (move or not). A maximum number of neighborhoods k̂max has to be defined.

Whenever k̂max is attained, the search continues with the first neighborhood (k̂ = 1). This

is repeated until some stopping criterion is met.

In our case, also ascending moves, fulfilling pre-specified acceptance criteria, are permit-

ted. This means that also deteriorating solutions may become incumbent solutions with a

certain probability. Furthermore, like Cordeau and Laporte (2003b), we allow intermediate

infeasible solutions (infeasibilities are penalized). Therefore, in addition to ∫ , we also keep
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track of the best feasible solution ∫best encountered so far. The local search step has also

been subject to modifications; and, in order to reduce the search space, the graph pruning

and time window tightening techniques, described by Cordeau (2006), are applied prior to

starting the optimization procedure. In Algorithm 3.1 the general framework of our imple-

mentation is given. It will be referred to as heurVNS. The different design elements are

described in further detail in the following paragraphs.

3.4.1 Pre-processing

Before the optimization procedure is started, we apply graph pruning and time window

tightening techniques, as described by Cordeau (2006), see Algorithm 3.1 line 2. First, time

windows are strengthened. At all vertices that are not associated with a tight time window

an artificial time window is generated. In case of an outbound request the time window

at the origin i is set to ei = max
{

0, en+i − L̄ − di

}

and li = min
{

ln+i − ti,n+i − di, Ĥ
}

,

where Ĥ is the end of the planning horizon. In case of an inbound request the destination

time window is set to en+i = ei+di+ti,n+i and ln+i = min
{

li + di + L̄, Ĥ
}

. Then, all those

arcs are removed that cannot be part of a feasible solution. These are all arcs connecting

the origin depot and a destination, the destination with its origin, and an origin with the

destination depot. Furthermore, request pairs are checked for compatibility regarding time

windows and ride time limits. All arcs connecting incompatible parts of two requests are

eliminated. For the complete procedure we refer to Cordeau (2006).

3.4.2 Initial solution

To generate the first incumbent solution ∫ the following procedure is used (Algorithm 3.1

line 4). First, requests are sorted according to some artificial beginning of service. These are

set randomly within the time window of the critical vertex (Cordeau and Laporte, 2003b).

Then, all routes are initialized with one request, using the first m requests on the list. After

that, requests are inserted at the end of one of these partial routes in the order they appear

on the list. Which route is selected is chosen according to one of four minimum distance

criteria, comparing the distance between either origin or destination of the last request on

each route and the next request on the list. Criterion one considers the two origins, criterion

two the origin of the last request and the destination of the next; criterion three inspects

the destination of the last and the origin of the next request and criterion four uses the

two destinations to determine the minimum distance. Which criterion is chosen is selected

randomly for each request individually. This is repeated until all requests have been inserted

into some route.
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starting point

bc bcbc bc bc bc2+ 5+ 5− 2− 6+ 6− ...

sequence
length = 3

(a) Swap sequence

bc bcbc bc bc bc2+ 5+ 5− 2− 6+ 3+ ...

load=0 load=0

sequence

(b) Zero split sequence

Figure 3.2: Different sequences

3.4.3 Shaking

We use four different types of neighborhoods (Algorithm 3.1 line 8). The first swaps two

sequences of requests, the second is based on the move operator, the third applies the idea

of ejection chains (Glover, 1996), and the fourth redistributes requests forming a “natural”

sequence to different routes.

Swap neighborhood (S) In the first neighborhood two sequences of vertices are exchanged.

First, two routes are chosen randomly. Then, on each route a sequence to be swapped is

selected. This is done by, first, randomly selecting the starting vertices of the two sequences

and then, by randomly selecting the length of each sequence — the maximum sequence

length is the size of this neighborhood. Finally, all requests forming the respective sequences

are deleted from their original routes and inserted, one by one in the best possible way, again

using the notion of critical vertices, into the other route. A swap of size three, e.g., consists

in exchanging two sequences of at most length three.

Note that for each origin (destination) within the selected sequence the corresponding

destination (origin) has to be moved as well, even if it is not part the sequence. This is

depicted in Figure 3.2(a). Let i+ denote the origin and i− the destination of request i.

Here, both vertices forming request 6 are part of the selected sequence. In case of request

2 only the destination is part of the sequence. However, also its origin denoted by 2+ will

be moved.

Move neighborhood (M) The second neighborhood consists in moving requests from their

original routes to other routes. The requests to be moved are selected randomly across all

requests. The insertion route is either selected randomly or the “closest” route, exclud-

ing the request’s original route is chosen. Closeness is measured by the total spatial dis-

tance between the request to be inserted and the vertices constituting the insertion route r

d̄ =
∑

i∈r(tij + ti,n+j + tji + tn+j,i), j refers to the request to be inserted. If some tij corre-

sponds to a forbidden arc due to the applied pre-processing steps it is not counted. However,

a correction term χ is used. It is set to four times the average number of vertices per route
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χ = 4 2n
m . Let ñ give the number of not counted forbidden arcs, d̄ is set to d̄ := d̄/(χ−ñ) such

that the more forbidden arcs the larger the total distance calculated. Random selection and

“closeness” selection are chosen with a probability of 0.5 each. Requests are inserted in the

best possible way into their new routes, using the notion of critical vertices as depicted by

Cordeau and Laporte (2003b). Thus, first, the critical vertex is inserted at the best possible

position, and then the other vertex is inserted at the best possible position with respect

to the critical one. The size of this neighborhood is defined as the maximum number of

requests that are moved. A move of size two, e.g., consists in moving at most two requests.

Chain neighborhood (C) The third neighborhood applies the ejection chain idea. In

contrast to its original version, the number of routes is a parameter. In a first step, two

routes are chosen. From the first route a sequence of requests (selected as in the swap

neighborhood) is moved to the second route. In a second step, from the sequence, that

decreases the evaluation function value of the second route the most, is moved to a third

route (it may also be the first route). The second step is repeated until the maximum

number of sequences moved has been reached. All insertions of sequences into their new

routes are done one by one in the best possible way using the notion of critical vertices.

All routes are selected randomly. The neighborhood size represents at the same time the

number of sequences moved and the maximum sequence length. E.g., a chain neighborhood

of size three consists of moving a random sequence of at most three requests from its original

route to a second route. From the second route the sequence of at most three requests that

decreases the route’s evaluation function value the most is moved to a third route. Finally,

from this third route again the maximum savings sequence with a length of at most three

is moved to a fourth route. Thus, three sequences are moved and three plus one routes are

affected.

Zero split neighborhood (Z) The fourth neighborhood is a parameterless neighborhood.

As in the two previous neighborhoods, a sequence of requests is moved. However, this

sequence is chosen in a different way. Within every route “natural” sequences of requests can

be defined. These sequences lie between two arcs where the vehicle load is equal to zero, i.e.

the vehicle is empty (see Figure 3.2(b)). Every route contains at least two such arcs. These

are the arcs from the depot to the first origin along the route and from the last destination

back to the depot. In addition, we discovered that routes quite often contain more than

only one sequence of this type. This led to the idea of the zero split neighborhood. In

this neighborhood a random sequence of these natural sequences is removed from a random

route. All requests part of this sequence are then reinserted one by one into different routes

chosen at random. Insertion is again done one by one in the best possible way using the

notion of critical vertices.
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Neighborhood sequel These four neighborhoods are applied in the following order (the

number given in addition to the neighborhood abbreviation indicates the neighborhood size):

S1 – M1 – C1 – S2 – M2 – C2 – S3 – M3 – C3 – S4 – M4 – C4 – S5 – M5 – C5 – S6 –

M6 – C6 – Z. This means that N̂1 = M1, N̂2 = C1, etc. (see Algorithm 3.1 line 8). Thus,

a total of k̂max = 19 different neighborhoods are used. The idea of the VNS is to increase

the neighborhood searched from one neighborhood to the other. To mimic this behavior

the above sequence was chosen: S is ordered before M because in S at most two routes may

be affected, while in M as many routes as requests may be affected. M is ordered before C

because in C the same number of routes but even more requests may be moved.

3.4.4 Local search

While in the shaking step mainly inter-tour neighborhood operators are applied, the local

search step of heurVNS (Algorithm 3.1 line 11) is of the intra-tour first improvement type.

It moves along each route as follows. In a first step, the first origin and its corresponding

destination are removed from the route. Then, the critical vertex of the two is re-inserted at

the first possible position with respect to time window feasibility. Thereafter, the non-critical

vertex is inserted at the first possible position with respect to the critical vertex. If this

positioning improves the route’s evaluation function value, the two vertices are kept at their

new positions and the search continues with the new first origin on the route. Otherwise,

the non-critical vertex is tried at the next possible position. In case of an improvement the

search proceeds as before. Otherwise, the non-critical vertex is moved to the next possible

position. This is repeated until no other insertion position for the non-critical vertex exists.

In this case, the critical vertex is moved to the next possible position, and the non-critical

vertex is again inserted in accordance with the critical one. This is repeated until either an

improved positioning is encountered or the last possible positioning has been reached. In

this case, the vertex pair is kept at its original position, and the next origin on the route

is searched. The procedure ends as soon as the last origin on the route and its destination

have been tried at all possible positions, and no improvement has been found.

3.4.5 Local search frequency

In standard VNS implementations, the local search step is conducted after every shaking

step. However, in our case we always insert the requests to be moved or swapped one by

one in the best possible way (best insertion), using the notion of critical vertices, as defined

by Cordeau and Laporte (2003b). Thus, request insertion already includes some kind of

local search for the inserted request. Consequently, the local search step is not absolutely

necessary.

In order to avoid unnecessary calls to the time consuming local search heuristic, we

have chosen to use local search only if ∫ ′ is a promising solution. A promising solution
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is a solution that has some potential to become a new incumbent solution. After several

experiments, we defined as promising a solution ∫ ′ that is at most 2% worse than the

incumbent ∫ . Since the objective of the DARP is to minimize total routing costs ĉ(∫),

a promising solution is characterized by ĉ(∫ ′) < 1.02 ĉ(∫). In order to introduce another

element of diversification, every solution has a 1% chance to be subject to local search based

improvement, see Algorithm 3.1 line 9.

Furthermore, every solution ∫ ′′ that is accepted to become the new incumbent solution is

also subject to local search based improvement; given that its routing costs are at least 5%

worse than those of the current incumbent, see Algorithm 3.1 line 17.

Surprisingly, preliminary tests showed that a 5% limit is better than a limit of 2%. A limit

of 2% would mean that every solution constituting a new incumbent solution undergoes local

search; either due to its promising solution property or because it will be the new incumbent

solution. A possible reason why the 5% limit worked better than the 2% one is increased

diversification: a solution that has not been locally optimized may, in some cases, provide

better options regarding the removal and reinsertion of a request in the subsequent iteration

than a locally optimized one.

3.4.6 Move or not

In order to decide whether the search should move to the new solution ∫ ′′ or not (see

Algorithm 3.1 line 15), i.e. if ∫ ′′ replaces ∫ , as in Hemmelmayr et al. (2009) and Ropke and

Pisinger (2006a) a simulated annealing (Kirkpatrick et al., 1983) type criterion is used. Let

f̂(∫) denote the evaluation function value of solution ∫ . In the beginning ∫ ′′ can only replace

∫ if f̂(∫ ′′) < f̂(∫). As soon as the first feasible solution has been found, also deteriorating

solutions may become incumbent solutions with probability exp(−[f̂(∫ ′′)− f̂(∫best)]/t̄). The

temperature t̄ is then set such that if [f̂(∫ ′′)/f̂(∫best)] − 1 = 0.005, ∫ ′′ is accepted with a

probability of 0.2. Thereafter, t̄ is linearly decreased until 0, i.e. when the maximum number

of iterations has been attained t̄ = 0.

3.4.7 Solution evaluation

Following Cordeau and Laporte (2003b) we penalize load violation q̂(∫), duration violation

d̂(∫), time window violation ŵ(∫), and ride time violation t̂(∫) in the evaluation function.

Load violation is computed as q̂(∫) =
∑2n

i=1(Qi − C)+, where x+ = max {0, x}, duration

violation as d̂(∫) =
∑m

k=1(B
k
2n+1 − Bk

0 − T )+, time window violation as ŵ(∫) =
∑2n

i=1(Bi −

li)
+, and ride time violation as t̂(∫) =

∑n
i=1(Li − L̄)+. For the according notation see

Section 3.3. Let now ĉ(∫) denote the total routing costs of all vehicles, which is the sum of

the costs cij associated with the arcs (i, j) traversed by the vehicles, the following evaluation
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function is applied,

f̂(∫) = ĉ(∫) + α̂q̂(∫) + β̂d̂(∫) + γ̂ŵ(∫) + τ̂ t̂(∫). (3.16)

The penalty terms for load, duration, time window, and ride time violation are given by

α̂, β̂, γ̂, and τ̂ , respectively. These are set to α̂ = β̂ = γ̂ = τ̂ = 1 at the beginning of the

search. Similar to Cordeau and Laporte (2003b), their values are then adjusted in a dynamic

way. Every time a new incumbent solution ∫ is identified, the penalty parameters are either

increased or decreased. In case ∫ violates a penalized constraint, the corresponding penalty

term is multiplied by δ̂. If, e.g., ∫ violates a capacity constraint q̂(∫) > 0, then α̂ := α̂(1+ δ̂).

Whereas if q̂(∫) = 0, then α̂ := α̂/(1+δ̂). The value of δ̂ is randomly chosen between δ = 0.05

and δ = 0.1, every time a new incumbent is identified. Using different values for δ̂ decreases

the chances of cycling, and works as a diversification mechanism. Note that a solution ∫ ′′

can only become ∫best if and only if q̂(∫ ′′) = d̂(∫ ′′) = ŵ(∫ ′′) = t̂(∫ ′′) = 0, see Algorithm 3.1

line 22ff.

In order to set the beginning of service in the best possible way, such that route duration

is minimum and ride time limits are respected where possible, the route evaluation scheme

introduced by Cordeau and Laporte (2003b) is applied. It is based on the forward time

slack Fi, defined by Savelsbergh (1992), adjusted to the DARP,

Fi = min
i≤j≤q







∑

i<p≤j

Wp + (min
{

lj − Bj , L̄ − Pj

}

)+







, (3.17)

where Wp denotes the waiting time at vertex p, q the last vertex on the route, and Pj the

ride time of the user whose destination is j ∈ {n + 1, . . . , 2n} given that j − n is visited

before i on the route; Pj = 0 for all other j. The slack at vertex j is the cumulative waiting

time until j, plus the minimum of the difference between the end of the time window and

the beginning of service at j, and the difference between the maximum user ride time and

Pj . The forward time slack at vertex i is the minimum of all slacks between i and q. F0

thus gives the maximum amount of time by which the departure from the origin depot can

be delayed (with equal time window violations and smaller or equal ride time violations)

to yield a modified route of minimal duration. Furthermore, Cordeau and Laporte (2003b)

observed that delaying the departure by
∑

0<p<q Wp does not affect the arrival time at

q, whereas delaying the departure by more will only increase the arrival time at q by as

much. Consequently, the departure from the depot should only be delayed by at most

min
{

F0,
∑

0<p<q Wp

}

.

The forward time slack can also be applied to delay Bi at each origin vertex such that the

ride time of the corresponding request is reduced. This reasoning led Cordeau and Laporte

(2003b) to an eight step evaluation scheme. We use the same eight step scheme. However,
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Algorithm 3.2 Eight step evaluation scheme

1. Set D0 := e0.
2. Compute Ai, Wi, Bi, Di and Qi for each vertex i on the route.

If some Bi > li or Qi > C GO TO STEP 8.
3. Compute F0.

4. Set D0 := e0 + min
{

F0,
∑

0<p<q Wp

}

.

5. Update Ai, Wi, Bi and Di for each vertex i on the route.
6. Compute Li for each request on the route.

If all Li ≤ L̄ GO TO STEP 8.
7. For every vertex j that is an origin

a) Compute Fj .

b) Set Wj := Wj + min
{

Fj ,
∑

j<p<q Wp

}

; Bj := Aj + Wj ; Dj := Bj + dj

c) Update Ai, Wi, Bi and Di for each vertex i that comes after j in the route.
d) Update Li for each request i whose destination is after j.

If all Li ≤ L̄ of requests whose destinations lie after j GO TO STEP 8.

8. Compute changes in violations of vehicle load, duration, time window and ride time
constraints.

in case of no more reparable violations or irreparable violations, we stop and use the current

approximated violations in the evaluation function. Let Di denote the departure time from

vertex i and Ai the arrival time at vertex i, this yields the evaluation scheme given in

Algorithm 3.2.

The eight step procedure first minimizes time window constraint violations in steps (1)

and (2). In addition to the original version, also the vehicle load at each vertex on the route

is calculated. In case either of the two (time window or loading restriction) is violated, an

irreparable violation is encountered and we proceed with step (8). Time window violations

cannot be repaired hereafter since all Bi are set to the earliest feasible point in time, which

is, coming from vertex j, Dj := (Bj + dj), Ai := (Dj + tij), Wi := (ei − Ai)
+, and

Bi := (Ai + Wi). In steps (3) – (6) route duration is minimized, without increasing time

window violations. Here, a ride time feasibility step is inserted. In case all ride times are

already feasible, we can skip step (7) and go directly to step (8). In step (7) ride times are

sequentially minimized. Here again the feasibility of the ride times of those requests whose

destinations lie behind j is checked. In case all of them are feasible, go to step (8).

3.4.8 Stopping criterion

Initially the stopping criterion in heurVNS was set to a limit on the maximum number of

iterations. One iteration corresponds to constructing one new solution (shaking) and to

optimize it locally in the local search step. However, especially in case of small problem

instances, the best (possibly optimal) solution is usually found very quickly. Therefore,

a second stopping criterion has been defined. This criterion is the maximum number of
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iterations between the identification of two new global best solutions ∫best. If during 2x106

iterations no new global best solution can be generated, the search terminates and returns

∫best. Summarizing, the search either stops as soon as the maximum total number of itera-

tions (107) has been attained, or if during 2x106 iterations no new global best solution can

be identified.

3.5 Computational experiments

The VNS was implemented in C++. All experiments were conducted on a Pentium D

computer with 3.2 GHz. Our algorithm was tested on the benchmark data set of Cordeau

and Laporte (2003b). Based on this data set, two different versions of the DARP have been

considered in the literature.

In the “standard version” of the DARP, as introduced at the beginning of this chapter,

all constraints are hard constraints and the objective is the minimization of total routing

costs, which corresponds to minimizing the total travel distance; since cij = tij for all i

and j. This version was also considered by Cordeau and Laporte (2003b). We compare the

results of heurVNS to the best results obtained by the TS developed by the same authors.

In the “modified version” introduced by Jørgensen et al. (2007) a different objective

function was selected, namely a weighted combination of routing costs, total route duration,

user ride time, user waiting time, and penalties for time limit violations is minimized. All

time related constraints are thus considered to be soft.

In the following, first the test data set is described. Then, results obtained by heurVNS

are compared to those of the TS by Cordeau and Laporte (2003b). Finally, results for the

modified version and comparisons to the GA by Jørgensen et al. (2007) are presented.

3.5.1 Test instances

Cordeau and Laporte (2003b) proposed a data set of 20 randomly generated instances,

containing between 24 and 144 requests (see also Chapter 2, Section 2.6 CL03). In each

instance the first n
2 requests were defined as inbound while the remaining n

2 were defined

as outbound requests. Origin and destination locations were generated using the procedure

introduced in Cordeau et al. (1997). For each vertex a service time di = 10 was set. The

load was set to qi = 1 if i ∈ {1, . . . , n} and to qi = −1 if i ∈ {n + 1, . . . , 2n}. Routing costs

cij and travel times tij from a vertex i to a vertex j are equal to the Euclidean distance

between these two vertices. Each vertex is associated with a time window [ei, li]. Origins of

outbound requests and destinations of inbound requests have “no” time window. Thus, their

time windows were set to the length of the planning horizon [0, 1440]. The data set was split

into two groups. In group (a) narrow time windows were set while in group (b) wider time

windows were created. For all instances route duration was set to T = 480, vehicle capacity
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Table 3.1: heurVNS vs. TS

heurVNS (5 runs) all tests

m n TSa avg. (%) best (%) CPUb best (%)

R1a 3 24 190.02 190.02 0.00 190.02 0.00 8.28 190.02 0.00
R2a 5 48 302.08 302.10 0.01 301.34 -0.25 19.59 301.34 -0.24
R3a 7 72 532.08 537.18 0.96 533.86 0.33 32.11 532.00 -0.02
R4a 9 96 572.78 576.40 0.63 573.98 0.21 74.98 570.25 -0.44
R5a 11 120 636.97 639.50 0.40 637.80 0.13 158.22 628.11 -1.39
R6a 13 144 801.40 814.47 1.63 798.17 -0.40 184.61 794.06 -0.92
R7a 4 36 291.71 294.34 0.90 292.80 0.37 10.54 291.71 0.00
R8a 6 72 494.89 494.64 -0.05 487.84 -1.42 46.08 487.84 -1.42
R9a 8 108 672.44 666.99 -0.81 661.33 -1.65 203.57 658.31 -2.10
R10a 10 144 878.76 872.74 -0.69 857.11 -2.46 383.37 857.11 -2.46

Avg. 537.31 538.84 0.30 533.42 -0.51 112.14 531.07 -0.90

R1b 3 24 164.46 164.46 0.00 164.46 0.00 10.21 164.46 0.00
R2b 5 48 296.06 297.55 0.50 295.76 -0.10 35.07 295.66 -0.14
R3b 7 72 493.30 489.75 -0.72 486.57 -1.36 63.70 486.57 -1.36
R4b 9 96 535.90 538.23 0.44 534.78 -0.21 94.25 530.70 -0.97
R5b 11 120 589.74 591.44 0.29 583.83 -1.00 275.24 579.76 -1.69
R6b 13 144 743.60 754.87 1.52 747.05 0.46 394.20 743.69 0.01
R7b 4 36 248.21 248.75 0.22 248.21 0.00 14.23 248.21 0.00
R8b 6 72 462.69 467.87 1.12 463.39 0.15 69.36 461.39 -0.28
R9b 8 108 601.96 607.57 0.93 601.72 -0.04 208.18 597.75 -0.70
R10b 10 144 798.63 820.26 2.71 804.70 0.76 531.80 795.16 -0.43

Avg. 493.46 498.07 0.70 493.05 -0.13 169.62 490.33 -0.56

Total avg. 515.38 518.46 0.50 513.24 -0.32 140.88 510.70 -0.73
a best known solutions computed by Cordeau and Laporte (2003b)
b average run times in minutes on a Pentium D computer with 3.2 GHz

to C = 6, and maximum user ride time to L̄ = 90. Furthermore, for instances R1a–R6a and

R1b–R6b the number of vehicles was set such that routes are only moderately full while

instances R7a–R10a and R7b–R10b might be infeasible with fewer vehicles.

3.5.2 Comparison to tabu search on standard DARP

To our best knowledge no other solution method, besides the TS, has been used to solve this

set of instances, using the minimum distance objective function. Table 3.1 gives the results

obtained with heurVNS compared to the best known solutions by the TS. Column one

contains the name of the instance; columns two and three the size in terms of the number

of available vehicles (m) and the number of requests (n). Column “TS” gives the best

solutions of the TS described in Cordeau and Laporte (2003b). These solutions are the best

solutions across all experiments conducted by the previous mentioned authors; either the

best out of 10 runs of the TS with 104 or one run with 105 iterations. Several runs of their

TS yield different solutions since the initial solution is constructed randomly; and also the

tabu tenure as well as the amount of adjustment, regarding the penalty terms, includes some
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randomness. The subsequent columns give the results obtained by means of heurVNS. First,

average values over 5 independent runs and the deviations from the best known solutions

are given. Negative percentage deviations indicate an improved solution with respect to the

best known value. Those solution values are given in bold. The subsequent columns give

the best solution values out of these 5 random runs and the respective deviations from the

best known values. Column “CPU” gives the average run time in minutes per instance.

The last two columns provide the best solution values obtained during all experiments in

the parameter tuning phase of heurVNS. Cordeau and Laporte (2003b) obtain their best

results with an average run time of approximately 338.82 minutes on a Pentium 4, 2 GHz

computer, for either 10 random runs with 104 iterations or one run with 105 iterations.

heurVNS needs on average 140.88 minutes. Taking average values over 5 runs, it is on

average 0.5% worse than the TS. Taking the best values out of these 5 runs, it improves the

solutions of the TS by, on average, 0.32%. Taking the best values across all versions tested in

the parameter tuning phase, heurVNS finds 15 new best solutions and 4 ties. Those solution

values that could not be improved are marked in italic letters in column “TS”. Summarizing

the obtained results, heurVNS is able to generate high quality solutions within reasonable

computation times.

Further experiments, following the intuition that a varying correction term χ in the move

neighborhood may perform better than a fixed one, are summarized in Appendix B. Com-

paring average results for fixed and varying correction terms for the first 10 instances (narrow

time windows) and for the second 10 instances (wider time windows), in all cases better

results for the first 10 instances can be achieved. This indicates that heurVNS performs

slightly better on instances with moderately narrow time windows. Choosing χ randomly

in [4 1.5n
m , 4 2.5n

m ) leads to slightly better results on average for the first half of the data set

(0.25% worse than TS compared to 0.3% in case of a fixed χ) but to slightly worse results

for the second half of the data set (0.78% compared to 0.7%), see Table B.1. The opposite

is true if χ is randomly set to the number of vertices on a currently existing route excluding

the depots and multiplied by 4. In this case worse results for the first part of the data

set are obtained (0.47% worse than TS compared to 0.3% in case of a fixed χ) but better

results for the second part of the data set (0.65% compared to 0.7%), see Table B.1. A

mix of these two setting would thus yield a slightly lower deviation from the tabu search

(0.45% on average) than with a fixed χ. However, so far an appropriate setting suitable to

achieve better results for both parts of the data set could not be identified. Therefore, in

all subsequent experiments a fixed correction term will be used.

3.5.3 Comparison to genetic algorithm with modified objective function

In order to test the flexibility of heurVNS, we adapted the objective function to the one

used by Jørgensen et al. (2007). As stated above, they minimize a weighted combination
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of total routing costs, total excess ride time with respect to direct ride time, total waiting

time with passengers aboard the vehicle, and route duration. Furthermore, the solution

framework of Jørgensen et al. (2007) allows time window, route duration, and ride time

violations, but penalizes them. These constraints are therefore treated as soft constraints.

Only vehicle capacity is treated as a hard constraint. The objective function thus applied

is the following,

f̂ ′(∫) = w1ĉ(∫) + w2r̂(∫) + w3 l̂(∫) + w4ĝ(∫) + w5d̂(∫) + w6[ŵ(∫) + ê(∫)] + w7 t̂(∫). (3.18)

The term r̂(∫) denotes excess ride times with respect to direct ride times and is computed as

r̂(∫) =
∑n

i=1 (Bn+i − Di − ti,n+i); l̂(∫) denotes the sum over all waiting times weighted by

the number of passengers aboard the vehicle when waiting, l̂(∫) =
∑2n

i=1 [Wi(Qi − qi)]; ĝ(∫)

gives the sum over all individual route durations, ĝ(∫) =
∑m

k=1 (Bk
2n+1 − Bk

0 ); ê(∫), finally,

denotes the sum over early arrivals, ê(∫) =
∑2n

i=1 (ei − Ai)
+. Early arrivals are penalized

in the same way as late arrivals ŵ(∫). Jørgensen et al. (2007) set the weights to w1 = 8,

w2 = 3, w3 = 1 and w4 = 1, and w5 = w6 = w7 = n.

In order to accommodate the above objectives, we adapted our evaluation function in the

following way:

f̂ ′′(∫) = w1ĉ(∫) + w2r̂(∫) + w3 l̂(∫) + w4ĝ(∫) + α̂q̂(∫) + β̂d̂(∫) + γ̂ŵ(∫) + τ̂ t̂(∫). (3.19)

We thus minimize routing costs ĉ(∫), excess ride time r̂(∫), waiting with passengers aboard

l̂(∫), and route duration ĝ(∫), using the same weights as Jørgensen et al. (2007); and we

penalize load violation q̂(∫), duration violation d̂(∫), time window violation ŵ(∫), and ride

time violation t̂(∫). Note that, as before, in our framework a solution ∫ can only become a

new global best solution ∫best, if and only if q̂(∫) = d̂(∫) = ŵ(∫) = t̂(∫) = 0. Our framework

thus still treats vehicle capacity, maximum route duration, maximum ride time, and time

windows as hard constraints. Early arrivals are neither penalized nor prohibited in our case.

We still assume that a vehicle can arrive early at a pickup or delivery location but it will

have to wait until service is possible. The waiting time for passengers, which incurs due to

this assumption, will be minimized by the term l̂(∫) in the objective function.

Jørgensen et al. (2007) run their algorithm 5 times and provide average values over these

5 runs for total route duration ĝ(∫), total and average vehicle waiting time, and total and

average ride time. The according objective function values f̂ ′(∫) as well as the values for

the total distance traveled ĉ(∫) and passenger waiting time l̂(∫), see Table 3.2, are taken

from Bergvinsdottir (2004). Total vehicle waiting time is computed as
∑2n

i=1 Wi and average

ride time as
∑n

i=1 Li/n. Furthermore, Jørgensen et al. (2007) only provide solution values

for 13 instances: R1a–R3a, R5a, R9a and R10b and R1b, R2b, R5b–R7b, R9b and R10b.

Therefore, we also restrict our computations to these instances and we also provide average

values over 5 runs. In order to yield comparable computation times, the maximum iteration
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Table 3.2: GA by Jørgensen et al. (2007) (average values over 5 runs)

total
cost
f ′(∫)

travel
distance

c(∫)

total
duration

g(∫)

passenger
waiting

l(∫)

average
ride time

vehicle
waiting
time CPUa

R1a 4696 309 1041 29 19.86 252 5.57
R2a 19426 539 1969 81 28.47 470 11.43
R3a 65306 1047 2779 144 42.79 292 21.58
R5a 213420 1350 4250 286 42.49 500 58.23
R9a 333283 1343 3597 132 57.88 94 40.78
R10a 740890 1811 5006 401 58.42 315 65.98
R1b 4762 284 907 5 26.24 143 5.46
R2b 13580 561 1719 53 25.3 198 11.72
R5b 98111 1344 4296 221 38.46 552 58.93
R6b 185169 1799 5309 361 42.59 630 81.23
R7b 9169 478 1299 27 27.5 102 8.29
R9b 167709 1372 3679 166 49.65 147 44.66
R10b 474758 1740 4733 202 55.34 113 66.41

Avg. 179252.23 1075.15 3121.85 162.15 39.61 292.92 36.94
a run times in minutes on an Intel Celeron 2 GHz processor

limit of heurVNS has been reduced to 5x105 iterations.

Table 3.3 gives the results generated by heurVNS. We provide values for the objective

function f̂ ′(∫), total travel distance ĉ(∫), total route duration ĝ(∫), total passenger waiting

time l̂(∫), total excess ride time with respect to direct ride time r̂(∫), the sum over early

arrivals ê(∫) (all other violations are 0 in our case), average ride time, and total vehicle

waiting time. The percentage deviations for the objective function values f̂ ′(∫), provided

by Bergvinsdottir (2004); Jørgensen et al. (2007), are given in the columns headed with

“(%)”. A negative percentage deviation indicates that the corresponding average value

obtained by means of the VNS is better than the according value computed by the GA.

heurVNS yields better results for all instances. Computation times are comparable: 37.59

minutes on average in case of heurVNS and 36.94 minutes in case of the GA.

In Table 3.3, we provide average values for total routing costs or the total distance traveled

ĉ(∫). When compared to the values given in Table 3.1, where only ĉ(∫) is minimized,

it becomes obvious that a combined objective function, including service quality oriented

criteria, such as passenger waiting time or user ride time, entails higher routing costs. This

trade-off between the two objectives is subject to investigation in the following chapter.

3.6 Summary

In this chapter a VNS for the static multi-vehicle DARP has been proposed. The basic

algorithm is generic enough to be applicable for two different variants of the problem. The

only change necessary is the evaluation function used in the local search and in the move
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3 Solving a simplified problem version

Table 3.3: heurVNS (average values over 5 runs) compared to GA

total
cost
f̂ ′(∫)

travel
dist.
ĉ(∫)

total
dur.
ĝ(∫)

pass.
wait.
l̂(∫)

excess
ride
r̂(∫)

early
arrival
ê(∫)

avg.
ride
time

veh.
wait.
time(%) CPUa

R1a 3193.41 -32.00 273.70 863.65 0.00 35.50 1.40 7.22 109.95 5.69
R2a 15004.14 -22.76 424.63 1858.89 0.16 99.64 196.86 7.80 474.26 10.00
R3a 15755.32 -75.87 780.32 2433.10 1.92 332.86 84.43 12.59 212.78 11.81
R5a 21253.28 -90.04 1017.88 3729.13 0.87 272.51 71.36 8.19 311.25 25.75
R9a 14202.42 -95.74 1041.34 3236.31 1.45 496.70 10.59 12.09 34.97 64.67
R10a 24624.66 -96.68 1382.01 4495.21 1.95 531.20 51.93 11.14 233.20 78.75
R1b 2841.52 -40.33 239.12 731.80 0.00 65.60 0.00 9.51 12.68 6.76
R2b 5009.27 -63.11 431.89 1402.00 0.00 26.04 1.54 6.04 10.12 16.26
R5b 12569.40 -87.19 953.73 3430.09 0.00 201.48 7.54 7.64 76.36 47.29
R6b 15250.82 -91.76 1222.64 4163.00 0.00 303.64 2.75 8.75 60.36 50.70
R7b 4466.11 -51.29 358.88 1133.22 0.00 55.74 8.18 9.45 54.34 9.98
R9b 13455.38 -91.98 964.44 3229.63 0.47 359.16 13.26 10.41 105.19 54.44
R10b 16250.22 -96.58 1306.72 4203.66 1.23 480.75 1.04 10.43 16.94 106.51

Avg. 12605.84 -71.95 799.79 2685.36 0.62 250.83 34.68 9.33 131.72 37.59
a run times in minutes on a Pentium D computer with 3.2 GHz

or not step.

In the first version (standard DARP) user inconvenience is only represented by a maximum

ride time limit. In the objective function total routing costs, which correspond to the total

distance traveled, are minimized. In this problem class the results by Cordeau and Laporte

(2003b) are already very good. We were not able to improve them when considering average

values over five random runs. However, taking the best out of these five runs, an average

improvement of 0.32% was possible. Considering the best solutions across all parameter

tuning experiments, an average improvement of 0.73% was achieved.

In the second version most constraints are relaxed to soft constraints and all aspects of

user inconvenience are penalized. This version of the DARP has recently been proposed by

Jørgensen et al. (2007), who also provide results using a genetic algorithm. In this problem

class we achieved remarkable improvements of, on average, 71.95%.

The next steps will be the integration of a user related objective function (Chapter 4)

and then additional real world constraints (Chapters 5 and 6).
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4 Visualizing the trade-off between costs

and user inconvenience

4.1 Introduction

The research work summarized in this chapter is based on the fact that in ambulance routing

problems at least two conflicting objectives exist. On the one hand, the company’s objective

is to minimize costs. On the other hand, users seek the highest possible quality of service

level. Low user inconvenience entails high quality of service and vice versa. Usually there

exists a certain trade-off between cost minimization and the amount of inconvenience caused

for the persons transported. On the company side it is thus important to know the costs of an

increased level of service. In order to visualize this trade-off relationship, we define the multi-

objective DARP (MO-DARP). Cost on the company side (e.g. the ARC) will be measured

in terms of the total distance traveled by the vehicles and user inconvenience in terms of

mean user ride time. The lower the mean user ride time the higher the overall quality

of service for the persons transported. In order to avoid scenarios that result in mostly

very short user ride times but one or two excessively long ones, maximum user ride time

limits are also imposed. Our task is now to develop a decision support system providing the

ambulance dispatcher with the different efficient transportation plans; including information

regarding their respective quality of service level as well as their costs. As mentioned above,

the task of choosing a transportation plan from the set of efficient transportation plans is to

be left with the person in charge. The findings of this chapter have also been summarized

in a scientific article (Parragh et al., 2009b). Many passages are taken from this article.

4.1.1 Solution attributes in multi-objective optimization

The term efficient refers to the set of Pareto optimal solutions in a multi-objective context.

A transportation plan is Pareto optimal if there does not exist any other transportation plan

that weakly dominates it. A transportation plan weakly dominates another transportation

plan if it is better in at least one objective and not worse in any other objective. The

image of a Pareto optimal transportation plan in objective space is called non-dominated

point. Thus, the set of efficient solutions is the set of all Pareto optimal solutions. Its

image in objective space is also referred to as non-dominated frontier or efficient frontier.
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4 Visualizing the trade-off between costs and user inconvenience

All solutions lying on the same Pareto frontier are incomparable across each other. This

means that either solution is better in at least one objective and worse in at least one other

objective than all other solutions of this frontier.

Within an efficient set one can further distinguish between supported and non-supported

solutions. Supported efficient solutions are all those solutions that are optimal solutions of

an aggregation of the multi-objective problem into a weighted sum single objective problem.

For a two-objective problem the weighted sum objective function is given by,

min ωz1(x) + (1 − ω)z2(x), (4.1)

with 0 ≤ ω ≤ 1. Supported efficient solutions are located on the convex hull of the feasible

set in objective space. By varying ω the whole set of supported solutions can be found. Non-

supported efficient solutions, usually forming a major part of the Pareto frontier, are efficient

solutions that are not optimal solutions of (4.1) for any weight combination 0 ≤ ω ≤ 1. They

lie in the interior of the convex hull of the feasible set in objective space. Until today no

theoretical characterization is known about non-supported efficient solutions. Consequently,

no algorithm exists for generating in a straightforward way this set of solutions. In general

non-supported efficient solutions are computed within an enumeration scheme based on a

ranking algorithm or branch and bound algorithms.

4.1.2 Related work

The incorporation of multiple objectives is becoming more and more important in the field of

vehicle routing, measured by the growing body of research emerging from that domain, (see,

e.g., Jozefowiez et al., 2007a,b; Lacomme et al., 2006; Pacheco and Mart́ı, 2006; Pasia et al.,

2007a,b). Very recently a survey on multi-objective routing problems has been published

by Jozefowiez et al. (2008). According to them the purpose of extending single objective

problems to the multi objective case is the increased practical applicability; most logistical

problems are not only cost driven. In our opinion, this is especially true when dealing with

passenger or patient transportation.

Although there exists an abundant body of literature on the DARP, a major part focuses

exclusively on the minimization of routing costs based on the distance traveled by the

different vehicles used (Cordeau and Laporte, 2003b; Cullen et al., 1981; Dumas et al., 1989;

Psaraftis, 1983a). In case the objective of minimum user inconvenience is also treated,

this is either done by applying it instead of the minimum cost objective, or by means

of a weighted sum objective function. Sexton and Bodin (1985a,b), e.g., entirely focus

on user inconvenience. They minimize the difference between actual and desired delivery

times and between actual and shortest possible ride times. Madsen et al. (1995) were the

first to explicitly solve the DARP with multiple objectives. They resort to the weighted

sum approach to incorporate cost as well as user related objectives into their optimization
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procedure. The weighted sum of the following objectives is minimized: total driving time,

number of vehicles, costs, total waiting time and user inconvenience in terms of the deviation

from promised service times. Toth and Vigo (1997b) minimize costs and penalties for user

inconvenience. Diana and Dessouky (2004) consider a weighted combination of the total

distance traveled, excess user ride time (with respect to direct ride time) and vehicle idle

times. As shown in the previous chapter, also Jørgensen et al. (2007) apply an aggregated

objective function.

The combination of several objectives into one by means of a weighted sum objective func-

tion is at the expense of revealing the trade-off between the concurrent goals considered.

Moreover, the decision maker’s preference (represented as a weight vector) has to be de-

termined before executing the optimization procedure. Vincke (1992) and Stummer (1998)

refer to this concept of a priori choice as American School as opposed to the French School

of a posteriori choice across trade-off solutions. Early solution concepts belonging to the

French School in multi-objective optimization predominantly belong to the field of genetic

algorithms. Following the pioneering work of Schaffer (1988), more recent successful and

widely applied solution paradigms involve the NSGA-II by Deb et al. (2002) and the SPEA

by Zitzler et al. (2001); Zitzler and Thiele (1999), two genetic algorithms using the Pareto

dominance criterion. Furthermore, there is the P-ACO by Doerner et al. (2004) an ant

colony optimization based procedure, the Multi-Objective Simulated Annealing (MOSA)

by Ulungu (1993); Ulungu and Teghem (1992), the Pareto Simulated Annealing (P-SA) by

Czyzak and Jaszkiewicz (1996, 1998), and the Multi Objective Tabu Search (MOTS) by

Gandibleux et al. (1997), to name a few. For an overview of the different solution methods

applied in Pareto multi-objective optimization we refer to Ehrgott and Gandibleux (2004).

About a decade ago Mladenovic and Hansen (1997) introduced the VNS concept and

Glover and Laguna (1997) sketched the PR idea. VNS yielded promising results for the single

objective problem in the previous chapter and PR has shown to be effective as intensification

mechanism in the context of single-objective combinatorial optimization (Aiex et al., 2003,

2005; Ghamlouche et al., 2004; Resende and Ribeiro, 2003). Recent applications of PR

in the context of vehicle routing and location routing respectively involve the work of Ho

and Gendreau (2006) and Prins et al. (2006). In the first implementation it is combined

with a tabu search heuristic, in the latter with a GRASP. Very recently PR has also been

successfully incorporated into solution concepts in the field of multi-objective optimization

(see Gandibleux et al., 2004; Pasia et al., 2007c, 2006; Przybylski et al., 2008).

The multi-objective two-phase framework we use to combine VNS and PR, distinguishing

between supported and non-supported solutions, is inspired by the work of Przybylski et al.

(2008). They solve the bi-objective assignment problem using a two-phase concept, which

improves the original version by Ulungu and Teghem (1995).
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4.1.3 Contribution

We propose a two-phase metaheuristic based method that provides the ambulance dispatcher

with all possible trade-off solutions that can be found. Phase one aims at generating the

supported part of the Pareto frontier, phase two at the computation of the non-supported

part. Phase one consists of a weighted sum based solution method. In this context the VNS

idea is used. A heuristic weighted sum algorithm might generate sub-optimal solutions not

part of the set of efficient supported solutions. Some of them may, nevertheless, be efficient.

These solutions belong to the set of non-supported efficient solutions. Phase two of our

solution approach is a heuristic module using ideas from PR. It aims at generating all those

solutions not found by the weighted sum based VNS.

The contribution of this chapter is fourfold. First, we define the MO-DARP as a true

multi-objective problem. Second, we develop an efficient heuristic solution procedure, com-

bining two state-of-the-art concepts. Third, we embed an existing branch and cut algorithm

into the ǫ-constraint framework to generate the exact efficient sets for small to medium-sized

instances for comparison purposes. And last but not least, we provide an in-depth analysis

of different major design elements in multi-objective PR.

The remainder of this chapter is organized as follows. First, a formal definition of the

MO-DARP is given, followed by a detailed description of the solution methods used. Finally

computational results for two sets of benchmark instances are discussed.

4.2 Problem definition

In contrast to the standard DARP which has been formulated as a 3-index program in the

previous chapter, the MO-DARP will be formulated as a 2-index program. The necessary

notation is given in the following. The MO-DARP is also modeled on a complete directed

graph G = (V, A) and for each arc (i, j) a non-negative travel cost cij is considered. A total

of n customer requests are to be served by m vehicles with a capacity of C. The set of all

pickup vertices is denoted by P , the set of all delivery vertices by D. Every vehicle starts at

the origin depot 0 and ends its route at the destination depot 2n+1 (V = P∪D∪{0, 2n + 1}).

Note that origin and destination depot can nevertheless be at the same location. At every

pickup vertex a certain number of passengers (qi > 0) waits to be transported. The demand

at every delivery vertex is equal to qn+i = −qi. Again, either the pickup vertex (origin) or

the delivery vertex (destination) is associated with a time window [ei, li], depending on the

type of request. At each vertex loading or unloading operations last for a given service time

di. In order to limit user inconvenience caused by long detours, a maximum user ride time

L̄ has to be respected. By means of L̄ time windows are set for all origins/destinations, that

were not associated with a time window initially. They are constructed relative to the given

time window of the respective request. Beginning of service Bi at each vertex i are to be
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4.2 Problem definition

determined. The ride time of a client is calculated by Li = Bn+i − (Bi + di). The variable

Qi gives the load when leaving vertex i, and the binary routing variables xij evaluate to

one if arc (i, j) is traversed by a vehicle. The mathematical problem formulation proposed

in Ropke et al. (2007) adapted to the two-objective case is:

min z1(x) =
∑

i∈V

∑

j∈V

cijxij (4.2)

min z2(x) =
1

n

∑

i∈P

Li (4.3)

subject to:

∑

i∈V

xij =1 ∀j ∈ P ∪ D (4.4)

∑

j∈V

xij =1 ∀i ∈ P ∪ D (4.5)

∑

j∈V

x0j ≤m (4.6)

∑

i,j∈S

xij ≤|S| − 2 ∀S ∈ S (4.7)

xij = 1 ⇒ Bj ≥Bi + di + tij ∀i ∈ V, j ∈ V (4.8)

xij = 1 ⇒ Qj ≥Qi + qj ∀i ∈ V, j ∈ V (4.9)

Li =Bn+i − (Bi + di) ∀i ∈ P (4.10)

ei ≤ Bi ≤li ∀i ∈ V (4.11)

ti,n+i ≤ Li ≤L̄ ∀i ∈ P (4.12)

max {0, qi} ≤ Qi ≤min {C, C + qi} ∀i ∈ V (4.13)

xij ∈ {0, 1} ∀i ∈ V, j ∈ V (4.14)

The objective functions given in (4.2) and (4.3) minimize routing costs and mean user ride

time, respectively. Constraints (4.4) and (4.5) ensure that every vertex is visited exactly

once. Inequalities (4.6) limit the number of vehicles leaving the depot. Constraints (4.7) take

care of precedence relations between origins and destinations (Ropke et al., 2007; Ruland

and Rodin, 1997). The set S is defined as the set of all vertex subsets S ⊆ V , such that

0 ∈ S, 2n+1 /∈ S, n+ i ∈ S and i /∈ S for some i ∈ P . Consistency with respect to time and

load variables is guaranteed by inequalities (4.8) and (4.9). Constraints (4.10) and (4.12)

ensure that maximum user ride times are respected. Time window compliance is taken care

of by (4.11). Inequalities (4.13) guarantee that the maximum vehicle load is not exceeded.

Note that subtour elimination is implicitly taken care of by constraints (4.8) assuming that

(tij + di) > 0 for all i and j.
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Algorithm 4.1 Solution framework

phase 1 (repeat for several weight combinations)
weighted sum based VNS // aims at finding supported solutions
phase 2 (repeat until some stopping criterion is met)
path relinking (PR) // aims at finding non-supported as well as supported solutions not
found by the weighted sum method
local search (LS) // improves solutions found by PR

4.3 Solution framework

In order to generate the whole Pareto frontier of the MO-DARP we chose to develop a two-

phase solution method. Phase one aims at generating a subset of the supported part of the

Pareto frontier by means of a weighted sum based VNS. The VNS is run several times for

different weight combinations. Some of the solutions found may indeed be efficient supported

solutions, some may be non-supported efficient solutions, and some may be non-efficient.

Phase two consists of a PR module departing from the approximation of the efficient set

obtained by phase one. To improve on the solutions found along the different paths a local

search algorithm, i.e. an iterative improvement procedure, is used. The whole framework is

depicted in Algorithm 4.1.

4.3.1 Solution evaluation

In a heuristic context, the second objective gives rise to the issue of correctly evaluating

arrival, waiting, and beginning of service times at each vertex. An evaluation procedure,

setting the beginning of service at each vertex in the best possible way by using the notion

of forward time slacks, was proposed by Savelsbergh (1992). Cordeau and Laporte (2003b)

propose an eight step evaluation scheme for the DARP based on the forward time slack.

This evaluation scheme has also been used in Chapter 3.

The ride times obtained by this procedure are quite often equal to the exact ride times.

However, this is not always the case. Therefore, we use a slightly different evaluation

scheme to obtain a better approximation of the minimum ride times for a given route

configuration. Let Ai denote the arrival time (initially Bi := max {Ai, ei}), Di := Bi + di

the departure time, and Wi := Bi − Ai the waiting time at vertex i. The changes made

to the original procedure only affect the computation of the forward time slack Fi at origin

vertices. In Cordeau and Laporte (2003b) it is computed as follows,

Fi = min
i≤j≤q







∑

i<p≤j

Wp + (min
{

lj − Bj , L̄ − Pj

}

)+







, (4.15)

Our modified version of the forward time slack does not consider the above buffer Bj =

(min
{

lj − Bj , L̄ − Pj

}

)+ at destinations whose origins lie before i. This is done to avoid a
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4.3 Solution framework

ride time increase caused by postponing the arrival at destination vertices. Moreover, at all

other vertices the buffer can be set to B̂j = (lj − Bj)
+. The second term (L̄ − Pj) does not

need to be considered, since shifting the beginning of service at i to a later moment in time

has no impact on the ride time of users that have not been picked up yet. This results in

F̂i = min
i≤j≤q







(

∑

i<p≤j Wp

)

if j ∈ {n + 1, . . . , 2n} and Dj−n < Di ,
(

∑

i<p≤j Wp + B̂j

)

else.
(4.16)

Note that this evaluation scheme is more restrictive in terms of feasibility than the evaluation

procedure of Cordeau and Laporte (2003b). Consequently, the original version (for further

details we refer to the previous chapter, Section 3.4.7) is used in the heuristic weighted sum

based method of phase one. This is necessary since it starts with an initial solution that

might be infeasible. Thus, attaining feasibility is of predominant importance in this phase.

Ride times are only reevaluated at the end of the search. In the PR module we accept this

trade-off for the advantage of obtaining better approximations of the true minimum ride

times possible for the respective route. Feasibility is not a major issue in this phase since

all seeding solutions passed to the PR module have to be feasible.

Deliberately increasing the beginning of service Bi at vertex i until at most the end of

the time window li might yield waiting times Wi within the user defined time window. This

should be questioned. However, an according restriction is not considered in the branch

and cut algorithm (Ropke et al., 2007) that is used for comparison purposes. Thus, in order

to allow fair comparison across all solution methods applied, it will not be integrated into

the heuristic evaluation scheme either. A related issue (penalizing user waiting time while

aboard a vehicle) is investigated in the following chapter.

In order to reduce the search space, see also Section 3.4.1, all solution procedures make

use of pre-processing steps as described by Cordeau (2006). As in Chapter 3, at intermediate

steps of the search constraint violations are allowed but penalized. The following evaluation

function is applied,

f̂(∫) = ωẑ1(∫) + (1 − ω)ẑ2(∫) + α̂q̂(∫) + γ̂ŵ(∫) + τ̂ t̂(∫). (4.17)

The terms ẑ1(∫) and ẑ2(∫) represent the normalized routing costs and the normalized

mean user ride time of solution ∫ , respectively (ẑ1(∫) = 1
K̄

z1, ẑ2(∫) = 1
L̄
z2) and K̄ =

∑

i[maxj(cij)]. Only accessible arcs are considered, i.e. arcs that are not forbidden after

having applied the pre-processing steps. The parameter 0 ≤ ω ≤ 1 is the weight associated

with objective one. The terms α̂, γ̂, and τ̂ are penalization parameters for load violation

q̂(∫) =
∑

i∈P∪D(Qi − C)+, time window violation ŵ(∫) =
∑

i∈V (Bi − li)
+, and ride time

violation t̂(∫) =
∑

i∈P (Li − L̄)+, respectively. In contrast to Chapter 3, duration violation

is not considered. Considering a maximum route duration limit is not necessary here; the
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Algorithm 4.2 Phase one: heurVNSws

for ω = {1.0, 0.9, . . . , 0.0} do

initial solution // determine an initial solution ∫ and set k̂ := 1
repeat

shaking // determine a solution ∫ ′ in N̂k̂(∫)
local search // apply local search to ∫ ′ to yield ∫ ′′

move or not // if ∫ ′′ meets the acceptance requirements the incumbent solution

∫ is replaced by ∫ ′′ and k̂ := 1, otherwise k̂ := (k̂ mod k̂max)+1; if ∫ ′′ is feasible
and better than ∫best, set ∫best := ∫ ′′

until some stopping criterion has been met
if ∫best is a new non-dominated solution then

add it to the partial Pareto frontier
end if

end for

time window at the depot(s) is constructed in such a way that the maximum route duration

cannot be exceeded. In phase one, the VNS, the penalty parameters are adjusted dynam-

ically throughout the search. They are updated as in heurVNS (see Chapter 3, Section

3.4.7) with the only difference that the term to update them d̂ is fixed to d̂ = 0.05. In phase

two, the PR module, the penalty terms are fixed at α̂ = γ̂ = τ̂ = 10; the focus is put on

feasibility in this phase.

4.3.2 Request insertion

As in Chapter 3, best insertion of a request always refers to inserting origin and destination

of the respective request one by one in the best possible way into their new route. The notion

of critical vertices, as described in Cordeau and Laporte (2003b), is used. The critical vertex

is the pickup (delivery) vertex if the request is inbound (outbound), i.e. the vertex with the

tight time window. This vertex is inserted first at the best possible position into its new

route. Then, the non-critical vertex is inserted in accordance with the critical vertex at the

best possible position.

4.3.3 Phase one: variable neighborhood search

Phase one is based on the VNS of Chapter 3 (heurVNS ). It will be denoted as heurVNSws.

Several modifications were made to the original version. First, heurVNSws is run for 11

different weight combinations (ω = {1.0, 0.9, . . . , 0.0}), see Algorithm 4.2. This entails a

change in the construction of the initial solution, depending on the current weight combi-

nation. Furthermore, also the shaking phase, the local search frequency, and the stopping

criterion have been subject to modifications. All changes made to the original procedure

are described in the following.
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4.3.3.1 Initial solution

In contrast to heurVNS, an initial solution is constructed in two different ways, depending

on the current weight combination. For the first weight combination (ω = 1) a randomized

route construction procedure is used. For all subsequent weight combinations (ω < 1) either

the best solution found during the previous run serves as initial solution, or the randomized

route construction procedure is evoked. This choice depends on the results of the four

preceding weight combinations. If in one of them a new best solution has been identified,

the best solution of the previous run serves as initial solution. Otherwise, the randomized

route construction procedure is used, in order to avoid local optimality.

As mentioned above, we use pre-processing procedures strengthening time windows and

reducing the number of accessible arcs in the graph. Based on these the route construction

procedure has been developed. In a first step, requests are put into a list in random order.

The first request on the list is inserted into the first route (origin right after destination).

All subsequent requests are inserted as follows. Across all routes already opened (consisting

of at least one request) insertion is tried at the beginning and at the end of each route,

without using in-accessible arcs. Then, the minimum cost insertion position across all these

positions is determined. If no such position exists request-wise insertion (origin right after

destination) without using in-accessible arcs is tried at intermediate route positions including

empty routes. Routes are checked in random order. The respective request is inserted at

the first position encountered during the search where no in-accessible arc has to be used.

If no such position exists, it is inserted at the first position using one in-accessible arc.

The constructed routing plan is improved by means of the proposed intra-tour local search

procedure. Note that only in-accessible arcs that were eliminated based on time window or

ride time violations may be part of an initial solution.

4.3.3.2 Shaking

During the shaking phase, as in heurVNS, four neighborhood classes are considered: three

classical neighborhoods and one new neighborhood. The first two are based on the move and

the swap operator, respectively. The third is based on the ejection chain idea and the fourth

is the new zero split neighborhood. In contrast to heurVNS, closeness is not considered when

selecting an insertion route in the move neighborhood. A move neighborhood of size one

(M1) thus corresponds to moving one request from its original route to a randomly chosen

route. A move of size two (M2), three (M3), and four (M4) consists in moving at most

two, three, and four requests, respectively. The swap neighborhood corresponds to the

one employed in heurVNS : two random sequences of vertices are exchanged. In the swap

neighborhood of size one (S1) a sequence of length one is swapped with a sequence of at

most length one. The swap neighborhoods of size two (S2), three (S3), and four (S4) consist

of swapping two sequences of at most length two, three, and four, respectively. Also the
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chain neighborhood (C) and the zero split neighborhood (Z) correspond to the ones applied

in heurVNS.

The four shaking operators are applied in the following order: M1 – S1 – C1 – M2– S2 –

C2 – M3 – S3 – C3 – M4 – S4 – C4 – Z. In contrast to heurVNS, the move neighborhood

of size one is considered to be the smallest neighborhood. The next larger neighborhoods

are the swap neighborhood of size one and the chain neighborhood of size one in this order.

After the chain neighborhood of size one the search continues with the move neighborhood

of size two and so on, until the chain neighborhood of size four has been reached. The last

neighborhood is the zero split neighborhood. Thus, in heurVNSws only a total of k̂max = 13

different neighborhoods are iteratively traversed during the search. In heurVNS the total

number of neighborhoods employed was k̂max = 19.

4.3.3.3 Local search frequency

As in heurVNS, all shaking steps mainly focus on moving requests between routes (inter-

tour). The local search procedure aims at improving each route individually (intra-tour);

it reconsiders the position of every request within its route in the same way as described

in the previous chapter. In contrast to heurVNS, whether a solution ∫ ′ undergoes local

search based improvement does not depend on its quality. In heurVNSws the local search

improvement heuristic is applied every lLS iterations to the newly constructed solution ∫ ′

yielding ∫ ′′ (lLS is chosen randomly in {5, . . . , 20} every time the local search procedure

is evoked). Furthermore, it is applied to ∫ ′ whenever this solution constitutes a new best

solution ∫best.

4.3.3.4 Stopping criterion

In order to generate a bundle of trade-off solutions, heurVNSws is run for 11 weight combi-

nations (ω = {1.0, 0.9, . . . , 0.0}). The first weight combination is run for 6x105 iterations. As

described in Section 4.3.3.1, in most subsequent executions the best solution obtained with

the previous weight combination serves as initial solution. Therefore, the maximum number

of iterations for all other weight combinations (ω < 1) has been set to 5x104 iterations.

4.3.4 Phase two: path relinking

As depicted in Algorithm 4.3, the PR module is initiated with the partial Pareto frontier P

obtained in phase one. At every iteration, first, two solutions, serving as initial solution ∫I

and guiding solution ∫G, are randomly chosen from P . Second, each route in ∫I is mapped

to a route in ∫G (see Section 4.3.4.1). Third, a series of solutions is constructed that

transforms ∫I step by step into ∫G, making only small changes at every step, thus forming

a so-called path. Thereafter, the solutions found along the path undergo local search based

improvement, see Section 4.3.4.3. Finally, P is updated. The procedure terminates as soon
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Algorithm 4.3 Phase two: path relinking

P := get partial frontier(); // from heurVNSws
repeat

randomly choose ∫I and ∫G from P ;
map each route in ∫I to a route in ∫G;
Spath := path relinking(∫I ,∫G);
local search(Spath);
update P ;

until some stopping criterion has been met

as a predefined time limit has been reached. PR incorporates two major design elements.

These are the way routes in ∫I and ∫G are mapped and how the path is to be constructed.

Both are described in further detail in the following.

4.3.4.1 Mapping

The first ingredient refers to the mapping across routes in initial and guiding solution.

Three different strategies are implemented. The first mapping approach is a very simple

one: routes in ∫I and ∫G are randomly mapped. However, also two more sophisticated

procedures are pursued. They rely on a well-defined similarity measure between two routes:

The second mapping approach applies as similarity measure the number of identical requests

on two routes. In this case a high value indicates similarity. The similarity measure used in

the third mapping strategy is based on the so-called edit distance. Its usage in the context

of combinatorial permutation type problems, such as the traveling salesman problem or

the vehicle routing problem, is discussed in Sörensen (2007). It is the minimum number

of elementary operations, i.e. replacements, insertions, and deletions, that are needed to

transform one route (part of ∫I) into another route (part of ∫G). Thus, low transformation

costs indicate similarity, while high transformation costs indicate dissimilarity. The edit

distance is calculated as depicted in Table 4.1. Six edit operations are needed to transform

route A into route B.

Both similarity measures yield an array of similarity values eij from each route i ∈ ∫I to

Table 4.1: Edit distance calculation

route A: abcdefg → route B: bcfamo

search vertex operation # current route

b delete a 1 bcdefg
c no operation 0 bcdefg
f delete d and e 2 bcfg
a replace g with a 1 bcfa
m insert m 1 bcfam
o insert o 1 bcfamo

edit distance: 6

# = number of elementary operations necessary
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∫I

∫G

∫I = {A, B}

A : a+b+a−b−

B : d+d−e+f+f−e−

∫G = {C, D}
C : a+e+e−a−f+f−

D : b+d+b−d−

mapping: A → C, B → D

M̂ = {b, e, f}

(a) step 1

∫I

∫G

3

1
2

A1 : a+a−

B1 : b+d+b−d−e+f+f−e−

A2 : a+e+b+e−a−b−

B2 : d+d−f+f−

A3 : a+b+a−f+b−f−

B3 : d+d−e+e−

M̂ = {b, e}

(b) step 2

∫I

∫G

3

1
2

5
4

A4 : a+a−f+f−

B4 : d+b+d−b−e+e−

A5 : a+e+e−b+a−f+b−f−

B5 : d+d−

M̂ = {b}

(c) step 3

∫I

∫G

3

1
2

5
4

6

8

7

A6 : a+e+e−a−f+f−

B6 : d+b+d−b−

M̂ = {} F̂ =
{

d+, d−

}

A7 : a+e+e−a−f+f−

B7 : b+d+d−b−

A8 : a+e+e−a−f+f−

B8 : d+b+b−d−

(d) the whole path

Figure 4.1: Path construction

every route j ∈ ∫G. Mapping across routes is then conducted in a greedy way. In a first

step, the two routes that are most similar are mapped. High similarity is indicated by a

large value eij in case of the number of equal requests. In case of the edit distance a small

value signifies similarity. This procedure is repeated until there are no more routes to map.

In case of a tie, both entries can be chosen with equal probability. Note that both, ∫I and

∫G, always consist of exactly m routes (some of them may be empty).

4.3.4.2 Path construction

The second ingredient is the construction of the path itself. After having mapped each route

part of ∫I to a route part of ∫G, the set M̂ is computed. M̂ contains all those requests that

are not on the correct route according to ∫G. This is depicted in Figure 4.1(a). Here ∫I

consists of routes A and B and ∫G of routes C and D. Each request i consists of a pickup

and delivery vertex pair {i+, i−}. Based on random mapping, route A is mapped to C and

route B to D. This means that route A is to be transformed step by step into route C

and route B into route D. All requests that need to be moved to yield this result are in

M̂ . The first solution along the path is obtained by considering all possible moves of one

request from its route in ∫I to “its” route in ∫G. Again, insertion is done in the same way

as described in Cordeau and Laporte (2003b), i.e. node-wise best insertion using the notion

of critical vertices. The best of these moves constitutes the first solution on the path. To

determine the best solution across all possible solutions, similar to Pasia et al. (2007c), the

weighted sum evaluation function (4.17) is applied. We resort to a different random weight

ω at every step along the path. In Figure 4.1(b) solution three is chosen based on this

evaluation criterion, in Figure 4.1(c) solution five.

This procedure is repeated until M̂ is empty. However, since best insertion is used, the

end of the path might not have been reached yet. Consequently, all nodes being on the
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Figure 4.2: Nadir points

wrong position with respect to ∫G have to be detected. All these constitute the set F̂ , see

Figure 4.1(d). Now all possible intra-tour moves are considered, i.e. moving each vertex

∈ F̂ from its current position to its final position in ∫G. The term possible refers to the

condition that the precedence constraint has to be respected at all times. The best move

according to a random weight based evaluation function generates the next solution along

the path. The procedure ends as soon as ∫G has been reached.

4.3.4.3 Local search in the path relinking module

Basically the same intra-tour local search as in heurVNSws is used in the PR module.

However, in the context of multi-objective optimization the concept of improvement becomes

debatable. There are two options. Either, as in the path construction phase, random

weight vectors can be defined in order to aggregate the different objective values; or, all

objective values can be checked separately and only if the current incumbent solution is

weakly dominated by the new solution, a new incumbent has been found. We adopt the

latter approach. Furthermore, whenever an incomparable solution is encountered, it is

checked if it belongs to the current Pareto frontier P . If it is a new non-dominated solution

P is updated.

Another design issue refers to the notion of promising solutions. The path constructed

between initial and guiding solution might incorporate solutions that are very far away from

the Pareto frontier in terms of objective values. Consequently, the question arises whether

all solutions in Spath should undergo local search or not. Promising solution are all those

solutions that lie within a certain distance from the current Pareto frontier. This promising

area can be defined by means of Nadir points. Generally, the Nadir point or anti-ideal point is

defined by the maximal objective values (in the context of minimization) attained by Pareto

optimal solutions of a multi-objective optimization problem (see, e.g., Ehrgott and Tenfelde-

Podehl, 2003). This notion can be extended to a set of Nadir points Nk defined by means

of certain efficient solutions. In our case every k-th solution of the current Pareto frontier P

ordered with respect to z1 is used to constitute Nk. Let P k contain every k-th solution of P ,
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Nk =
{

∫nad
j = (znad

1 , znad
2 )|znad
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i
2) ∈ P k

}

.

This set Nk is used to define the promising area. In Figure 4.2 an example for k = 1,

2, and 4 is given. Black solid circles represent the current Pareto frontier P in objective

space. Every k-th solution is part of the set P k. Nadir points formed by means of P k are

depicted by empty circles. Promising solutions would be those that are located in the gray

area. Thus, in general promising solutions can be defined as all those solutions that are

non-dominated by a given set of Nadir points Nk.

4.4 An exact method for the MO-DARP

For the purpose of assessing the performance of the heuristic methods, we generate the

exact Pareto frontiers of the MO-DARP by means of the ǫ-constraint framework (see, e.g.,

Laumanns et al., 2006). In the bi-objective ǫ-constraint framework the single objective prob-

Algorithm 4.4 ǫ-constraint framework

set upper bound for mean ride time objective z̄2 := L̄
set ǫ := z̄2 + ∆
while feasible region is not empty do

solve min cost problem with the additional constraint z2(x) ≤ ǫ−∆ to obtain z1(x
∗)

compute according minimum mean ride time z2(x
∗); set ǫ := z2(x

∗)
add x∗ to the set of efficient solutions R

end while

lem, e.g. only considering z1, is solved to optimality, adding a new constraint incorporating

a bound on the other objective, e.g. z2 ≤ ǫ − ∆. With varying ǫ different solutions can

be obtained. We implemented the branch and cut algorithm as described in Ropke et al.

(2007) to solve the single objective problem with respect to z1. Consequently, all solutions

generated are part of the optimal Pareto frontier. The values for ǫ are chosen as depicted

in Algorithm 4.4, in order to obtain the complete efficient set. The parameter ∆ was set to

∆ = 0.001.

4.5 Computational experiments

All algorithms were implemented in C++. For the implementation of the branch and cut

algorithm ILOG Concert Technology 2.5 and CPLEX 11.0 were used. All programs were

run on a 3.2 GHz Pentium D computer with a memory of 4 GB. In the following we first

describe the test instances used. Thereafter, the definition of the different quality indicators

used to assess the solution quality of our algorithms is provided. Then, results of preliminary

experiments for the selection of the best mapping strategy and Nadir point setting in the

PR module are summarized. Finally, individual results for all instances are discussed.
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4.5.1 Test instances

Two data sets (Cordeau, 2006; Ropke et al., 2007, see also Section 2.6 Cor06, Co06+),

containing 24 randomly generated test instances each, were used for testing purposes. In

both sets the number of requests n ranges from 16 to 96, the number of vehicles m from 2 to

8. The first n
2 requests are assumed to be outbound while the remaining n

2 are considered

as inbound requests. The coordinates of the respective origin and destination vertices were

randomly generated in the square [−10, 10]2 according to a uniform distribution. The depot

is located at the center of the square. Routing costs cij as well as travel times tij correspond

to the Euclidean distance between the vertices i and j. In case of an outbound request a

tight time window was generated for the destination vertex (ln+i was chosen in the interval

[60, Ĥ], en+i = ln+i − 15, Ĥ being the end of the planning horizon). Inbound requests

have a tight time window on the origin vertex (ei was chosen in the interval [0, Ĥ − 60],

li = ei + 15). No time windows exist for origin (destination) vertices in case of outbound

(inbound) requests. For data set A vehicle capacity was set to C = 3 and at every origin one

passenger (qi = 1, i ∈ {1, . . . , n}, and qi = −1, i ∈ {n + 1, . . . , 2n}) waits to be transported.

For data set B vehicle capacity was set to C = 6 and every request consists of up to six

passengers (qi is chosen randomly in {1, . . . , 6} and qn+i = −qi, i ∈ {1, . . . , n}). Since the

efficient frontier of instance b2-20 consists of only one compromise solution, results for this

instance will not be reported.

4.5.2 Quality indicators

To evaluate approximations of the Pareto frontier generated by heuristic solution procedures

different performance indicators have been proposed in the literature (see Knowles et al.,

2006). Quality indicators of multi-objective metaheuristics following the Pareto approach

can be categorized according to the principal aims they pursue, such as a good approximation

of the set of Pareto-efficient solutions or the coverage of a broad range of the region of the

Pareto frontier. We use three different quality indicators, each providing information with

respect to a different aspect of the approximation sets obtained by our algorithms.

The hypervolume indicator IH (Zitzler and Thiele, 1999) measures the hypervolume of

the objective space that is weakly dominated by an approximation set. In Figure 4.3(a) the

hypervolume weakly dominated by approximation set A corresponds to the gray region, the

hypervolume weakly dominated by R to the lightgray field. As reference point serves the

objective vector (K̄, L̄). All quality indicators are calculated based on normalized objective

values. Thus, the reference point becomes (1, 1). Higher IH values are preferable.

The multiplicative version of the unary epsilon indicator Iǫ (Zitzler et al., 2003) can

be defined as follows. It is the minimum factor ǫ such that if every point in reference

set R was multiplied by ǫ the resulting approximation set would be weakly dominated by
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Figure 4.3: Quality indicators

approximation set A,

Iǫ(A) = Iǫ(A,R) = inf {ǫ ∈ R|∀∫2 ∈ R ∃ ∫1 ∈ A so that ∫1 �ǫ ∫2} . (4.18)

The symbol �ǫ is defined as, ∫1 �ǫ ∫2 ⇔ ∀i|ẑi(∫1) ≤ ǫ · ẑi(∫2). Reference set R is either

equal to the true Pareto frontier or to a good approximation of it. In our case, for the

smaller instances R was generated by means of the ǫ-constraint framework as described

above. For the larger instances R is approximated by considering the union of all points

obtained from the different procedures in any of the experiments and removing dominated

points. In Figure 4.3(b) every point in reference set R has to be multiplied by at least

Iǫ = 1.7143 to yield an approximation set that is weakly dominated by A. Low Iǫ values

are preferable.

The R3 indicator IR3 Hansen and Jaszkiewicz (1998) incorporates the decision maker’s

preference into the evaluation procedure. Let Λ denote a set of weight vectors (|Λ| = 10,000,

randomly generated) and let uλ(∫) denote the individual utility of solution ∫ for some λ

using the augmented Tchebycheff function:

uλ(∫) = 1 − ( max
1≤j≤2

{

λj |z
∗
j − ẑj(∫)|

}

+ ρ
∑

1≤j≤2

|z∗j − ẑj(∫)|), (4.19)

where z∗ is the ideal point (z∗j = min∫∈R {ẑj(∫)}, see Figure 4.3(a)), ρ = 0.01 in our

case, and j refers to the objectives. Furthermore, let u∗(λ,A) = max∫∈A {uλ(∫)}, i.e. the

maximum value obtained by utility function uλ with weight vector λ across all solutions in

approximation set A. We can now compute the R3 Indicator using the following equation,

IR3(A) = IR3(A,R) =

∑

λ∈Λ [u∗(λ,R) − u∗(λ,A)] /u∗(λ,R)

|Λ|
. (4.20)

Small IR3 values are preferable. In Figure 4.3(c), the R3 indicator is IR3(A,R) = 0.0536.
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Table 4.2: Path relinking without local search

Mapping Data set IH Iǫ IR3

Edit distance A 0.34454 1.01832 0.00124
B 0.44139 1.01218 0.00076

avg. 0.39297 1.01525 0.00100

Random A 0.34452 1.01640 0.00124
B 0.44130 1.01404 0.00094

avg. 0.39291 1.01522 0.00109

Equal requests A 0.34454 1.01806 0.00120

B 0.44139 1.01206 0.00075

avg. 0.39297 1.01506 0.00097

4.5.3 Tuning the path relinking module

All PR experiments are based on the partial Pareto frontiers generated in phase one. Each

PR parameter setting was given a maximum run time limit of 15 seconds. In PR two design

decisions have to be taken. The first refers to the way ∫I and ∫G are chosen from P . Here,

initial tests with distance related selection mechanisms showed that, for the problem at

hand, random selection clearly dominates all other selection mechanisms tried. Once ∫I

and ∫G have been selected, the second design decision determines the mapping between the

routes in ∫I and ∫G. This design issue is investigated in the following.

In a first step, PR is run without the intra-tour local search step. In Table 4.2 results for

the different mapping strategies are given on an aggregated level for each data set (A and

B), as well as averages (avg.) over these. The best average values are marked in bold. The

best values per data set are given in italic letters. In all tables results given for individual

instances obtained from the heuristic algorithms are average values over ten random runs;

results reported on group level correspond to average values over all the instances forming the

respective group. All three quality measures indicate that mapping based on the number of

equal requests is on average the best strategy (IH = 0.39297, Iǫ = 1.01506, IR3 = 0.00097),

closely followed by edit distance based mapping and random mapping. If the two data

sets A and B are considered individually the ranking changes. For data set A random

mapping is better than mapping based on the number of equal requests in one indicator

(Iǫ). Regarding the hypervolume indicator mapping based on the number of equal requests

and edit distance based mapping are equally good. In terms of the R3 indicator mapping

based on the number of equal requests outperforms the other two strategies. For data set B

edit distance based mapping and mapping based on equal requests obtain the best values for

the hypervolume indicator IH = 0.44139. In terms of the unary epsilon indicator and the R3

indicator, mapping based on the number of equal requests should be chosen. Summarizing

these results, it is not clear which mapping strategy performs best. Mapping based on the

number of equal requests is a bit better than the other two strategies; indicating that a well

defined similarity measure might be beneficial within a restrictive time limit.
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Table 4.3: Path relinking with local search

Nadir points Mapping IH Iǫ IR3

none Edit distance 0.39292 1.01608 0.00111
Random 0.39279 1.01774 0.00127
Equal requests 0.39294 1.01552 0.00107

Total avg. 0.39288 1.01645 0.00115

k = 1 Edit distance 0.39304 1.01396 0.00095
Random 0.39299 1.01416 0.00102
Equal requests 0.39305 1.01375 0.00092

Total avg. 0.39303 1.01396 0.00096

k = 2 Edit distance 0.39302 1.01422 0.00097
Random 0.39299 1.01442 0.00103
Equal requests 0.39304 1.01378 0.00094

Total avg. 0.39302 1.01414 0.00098

k = 4 Edit distance 0.39300 1.01435 0.00098
Random 0.39294 1.01498 0.00108
Equal requests 0.39302 1.01410 0.00096

Total avg. 0.39299 1.01448 0.00101

In a second step, the complete PR module including the local search step is tested.

Table 4.3 gives the according results on a very aggregated level, i.e. average values across

all instances, within a time limit of 15 seconds. As mentioned above, different sets of

Nadir points were used in order to define which solutions are subject to local search based

improvement. Within the time limit of 15 seconds the most restrictive setting (k = 1) yields

the best results across all quality measures (marked in italic letters in Table 4.3). This

confirms our assumption that solutions that are already close to the efficient frontier are

more likely to be improved to efficient solutions by local search. If the time limit is increased

k = 1 and k = 2 yield results of similar quality. Here, the intuition is that if the time limit

is not very restrictive, some solutions, initially a bit further away from the current frontier

P , can still be improved such that they become part of P .

Also the different mapping strategies are further investigated. Within the run time limit of

15 seconds together with local search, mapping based on the number of equal requests yields

the best results (with the Nadir points setting k = 1) across all parameter combinations. It

yields a hypervolume value of IH = 0.39305, a unary epsilon value of Iǫ = 1.01375, and an

R3 value of IR3 = 0.00092, marked in bold in Table 4.3. Edit distance based mapping and

random mapping are on place two and three respectively.

However, the picture changes a bit when the time limit is increased. In case of a time limit

of 30 seconds, the three mapping strategies perform almost equally well, each obtaining good

results for a different quality indicator. The intuition is that paths obtained by edit distance

based mapping and random mapping tend to be longer; also routes that are not very similar

in terms of the number of equal requests per route may be mapped. Consequently, the

search space is increased. Moreover, using random mapping, if the same pair of solutions is

linked more than once, different routes can be mapped. This increased diversification may
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Figure 4.4: Instance a5-40: Pareto frontiers based on different number of seeding solutions

cause random mapping to be beneficial if even more time is given to the procedure.

Summarizing, within the time limit of 15 seconds a mapping strategy that is based on a

well defined similarity measure is beneficial with respect to solution quality. In our case the

overall best results are obtained using mapping based on the number of equal requests and

the Nadir point setting k = 1.

4.5.4 Final results

Phase one yields Pareto frontiers consisting of two to ten solutions. This number is usually

slightly correlated to the total size of the complete efficient set. Thus, the next step consists

in investigating the impact of the number of seeding solutions nseed passed on from phase

one to phase two. Three different scenarios are tested. Pareto frontiers based on two, four,

and six seeding solutions derived from phase one are computed with the PR module. This

is illustrated in Figure 4.4 for instance a5-40. Comparison shows that nseed = 6 yields the

best approximation. However, also four and only two initial solutions seem to be sufficient

to generate a well spread frontier, only slightly inferior to the one obtained with six seeding

solutions. Thus, phase two seems to be rather robust with respect to the number of seeding

solutions.

This is confirmed by the average results obtained based on different nseed settings for

data sets A and B. In all experiments results for individual instances obtained from the

heuristic algorithms are given as average values over ten random runs. Those results that

are given on group level correspond to average values over all the instances forming the

respective group. Table 4.4 gives the average values over the quality indicators per data set

and number of seeding solutions; using the Nadir point setting k = 1 and mapping based on

the number of equal requests. nseed = 2 indicates that exactly two seed points are passed

on from phase one. In the setting nseed ≤ 4, at most four seed points are used. If the

total number of seeding solutions of phase one is smaller than four, this number is used.

The same applies to setting nseed ≤ 6. From the values obtained it can be derived that

the more seed points are available the better the obtained approximation of the efficient set

tends to be. Setting nseed ≤ 6 on average yields the best results in terms of two quality
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Figure 4.5: Instance a4-24: Pareto frontiers obtained by the different solution methods

indicators (Iǫ = 1.01708, IR3 = 0.00113). The best values in terms of the hypervolume

indicator are obtained with setting nseed ≤ 4. However, even with only two seed points

results of high quality can be generated. Summarizing these results, if time does not permit

the computation of a larger number of seed points, two seeding solutions are sufficient to

initialize the PR module and obtain a good approximation of the efficient set.

Finally, the gains of phase two with respect to phase one are analyzed. The different

phases are illustrated in Figure 4.5 using the example of instance a4-24. The best settings

as identified above are used in phase two (mapping based on the number of equal requests

and the Nadir point setting k = 1). Figure 4.5(a) depicts the exact efficient frontier obtained

by means of the ǫ-constraint method for instance a4-24. Figures 4.5(b) and 4.5(c) show the

Pareto frontiers generated by means of phase one, the weighted sum based VNS, and phase

two, the PR module, respectively. Evidently, a good approximation of the true efficient set

can be generated by the proposed two-phase method.

Tables 4.5 and 4.6 give the results for data sets A and B respectively. The first columns

are devoted to the description of the reference sets used. Hypervolume values marked with

an asterisk indicate that the reference set for this instance corresponds to the exact efficient

set. These are obtained by means of the ǫ-constraint method. Data set B is a bit more

tightly constrained. Therefore, larger instances can be solved to optimality. The largest

Table 4.4: Path relinking and local search: varying seed points

Seeds Data set IH Iǫ IR3

nseed = 2 A 0.34329 1.03360 0.00323
B 0.44087 1.02513 0.00223

avg. 0.39208 1.02937 0.00273

nseed ≤ 4 A 0.34421 1.02392 0.00204
B 0.44130 1.01617 0.00125

avg. 0.39275 1.02004 0.00165

nseed ≤ 6 A 0.34341 1.02086 0.00143

B 0.44106 1.01329 0.00083

avg. 0.39223 1.01708 0.00113
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Table 4.5: Results data set A

reference set R phase one phase two (15 sec.)

Instance IH CPUa IH Iǫ IR3 CPUa IH Iǫ IR3

a2-16 0.24563* 3.18 0.24236 1.05228 0.00442 2.28 0.24560 1.00894 0.00000
a2-20 0.29859* 5.77 0.29612 1.06215 0.00394 5.39 0.29853 1.00903 0.00011
a2-24 0.25644* 24.38 0.25463 1.04840 0.00298 6.19 0.25636 1.00574 0.00017
a3-18 0.29820* 6.30 0.29591 1.04756 0.00417 1.58 0.29820 1.00207 0.00000
a3-24 0.33340* 20.82 0.33076 1.04708 0.00285 2.98 0.33266 1.02131 0.00102
a3-30 0.26859* 161.63 0.26599 1.03896 0.00256 4.53 0.26765 1.01324 0.00076
a3-36 0.30610* 236.23 0.30000 1.05358 0.00440 6.23 0.30397 1.01490 0.00143
a4-16 0.26532* 4.22 0.26477 1.03517 0.00132 0.93 0.26530 1.00530 0.00000
a4-24 0.31843* 70.13 0.31572 1.04604 0.00232 2.01 0.31802 1.00896 0.00035
a4-32 0.32544* 867.08 0.32241 1.04390 0.00326 3.28 0.32473 1.00915 0.00029

avg. 0.29161 139.98 0.28887 1.04751 0.00322 3.54 0.29110 1.00986 0.00041

a4-40 0.37348 - 0.36851 1.08286 0.00626 4.65 0.37115 1.02050 0.00172
a4-48 0.35044 - 0.34640 1.04360 0.00333 8.16 0.34828 1.01372 0.00105
a5-40 0.39900 - 0.39649 1.03686 0.00264 3.88 0.39819 1.01092 0.00061
a5-50 0.35990 - 0.35628 1.04826 0.00377 6.16 0.35790 1.01622 0.00153
a5-60 0.36872 - 0.36432 1.05101 0.00384 8.50 0.36615 1.01659 0.00151
a6-48 0.39911 - 0.39485 1.04426 0.00301 3.94 0.39639 1.01719 0.00087
a6-60 0.36020 - 0.35636 1.05867 0.00432 5.92 0.35828 1.01687 0.00133
a6-72 0.39405 - 0.38887 1.04999 0.00440 9.91 0.39044 1.02821 0.00258
a7-56 0.38829 - 0.38376 1.05438 0.00376 3.74 0.38575 1.01897 0.00123
a7-70 0.38371 - 0.37814 1.05415 0.00438 6.89 0.38010 1.02334 0.00184
a7-84 0.39269 - 0.38753 1.06172 0.00461 10.03 0.38931 1.02681 0.00216
a8-64 0.42151 - 0.41636 1.06810 0.00481 4.27 0.41864 1.02071 0.00171
a8-80 0.42015 - 0.41630 1.05638 0.00389 6.97 0.41765 1.02416 0.00187
a8-96 0.38599 - 0.38086 1.05826 0.00445 10.70 0.38240 1.02864 0.00230

Total avg. 0.34639 - 0.34265 1.05182 0.00374 5.38 0.34465 1.01590 0.00110

a run time in minutes
* exact Pareto frontier from ǫ constraint method

instance in terms of requests that can be solved within data set A is instance a3-36, in case

of data set B it is instance b4-40. Column CPU gives the run times needed to obtain the

respective efficient frontiers. For the smallest instances run times are rather low. However,

with an increasing number of requests, run times increase rapidly. Moreover, individual

run times per Pareto optimal solution within the ǫ-constraint framework vary considerably.

Pareto solutions close to the two ends of the efficient frontier can be generated rather quickly

while intermediate solutions tend to consume more computation time.

The results from the ǫ-constraint method are compared to those obtained by phase one,

i.e. only applying heurVNSws, as well as to the whole two-phase procedure. The quality

indicators show that good approximations of the Pareto frontiers can be obtained in rea-

sonable time (run times for the whole procedure can be computed by adding 0.25 minutes

to those of phase one). The run times needed by phase one are strongly correlated to the

requests per vehicle ratio. This is due to the local search step in heurVNSws. Its run time

depends on the lengths of the respective routes. Consequently, less run time is needed if the

requests per vehicle ratio is low. For instance b3-18, b3-24, and b4-16, only solutions part of

the exact efficient sets were found in all ten random runs, indicated by Iǫ = 1 and IR3 = 0.

The values obtained on average for the unary epsilon indicator for both data sets show

that the Pareto frontiers generated by the two-phase procedure are very close to the exact
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Table 4.6: Results data set B

reference set R phase one phase two (15 sec.)

Instance IH CPUa IH Iǫ IR3 CPUa IH Iǫ IR3

b2-16 0.29978* 2.33 0.29966 1.00714 0.00021 4.00 0.29971 1.00654 0.00014
b2-24 0.34765* 4.45 0.34718 1.02058 0.00087 9.44 0.34756 1.00779 0.00021
b3-18 0.38801* 2.03 0.38774 1.01712 0.00068 2.80 0.38801 1.00000 0.00000
b3-24 0.42200* 2.17 0.42193 1.00603 0.00000 4.40 0.42200 1.00000 0.00000
b3-30 0.38286* 16.25 0.38134 1.04024 0.00282 6.10 0.38250 1.00623 0.00041
b3-36 0.40767* 21.38 0.40471 1.03351 0.00236 9.57 0.40688 1.00267 0.00007
b4-16 0.35958* 0.10 0.35958 1.00000 0.00000 1.60 0.35958 1.00000 0.00000
b4-24 0.43711* 16.45 0.43548 1.02719 0.00098 3.29 0.43650 1.01069 0.00041
b4-32 0.46682* 38.88 0.46459 1.04024 0.00192 4.77 0.46559 1.00997 0.00049
b4-40 0.42236* 220.05 0.42125 1.02084 0.00145 8.07 0.42171 1.00834 0.00071

avg. 0.39338 32.41 0.39235 1.02129 0.00113 5.40 0.39301 1.00522 0.00024

b4-48 0.48289 - 0.48028 1.03403 0.00201 14.30 0.48098 1.01507 0.00054
b5-40 0.45364 - 0.45111 1.02971 0.00184 4.81 0.45209 1.00951 0.00057
b5-50 0.45604 - 0.45307 1.03709 0.00233 8.67 0.45376 1.01342 0.00083
b5-60 0.47437 - 0.47126 1.03996 0.00246 12.09 0.47205 1.01483 0.00100
b6-48 0.45949 - 0.45757 1.03006 0.00210 5.00 0.45859 1.01260 0.00086
b6-60 0.47256 - 0.46933 1.03254 0.00221 8.54 0.46987 1.01669 0.00120
b6-72 0.48997 - 0.48695 1.03587 0.00249 12.72 0.48752 1.01555 0.00120
b7-56 0.45466 - 0.45165 1.03958 0.00264 5.76 0.45250 1.01295 0.00084
b7-70 0.52285 - 0.51931 1.03786 0.00253 9.91 0.51996 1.01607 0.00116
b7-84 0.46734 - 0.46398 1.04101 0.00301 13.12 0.46459 1.02006 0.00167
b8-64 0.50267 - 0.49962 1.05694 0.00378 6.09 0.50050 1.01926 0.00134
b8-80 0.50287 - 0.50009 1.04535 0.00343 9.47 0.50078 1.02257 0.00180
b8-96 0.51349 - 0.50945 1.05125 0.00325 14.54 0.51029 1.02629 0.00173

Total avg. 0.44290 - 0.44074 1.03148 0.00197 7.78 0.44146 1.01161 0.00075

a run time in minutes
* exact Pareto frontier from ǫ constraint method

frontiers, where known (data set A: Iǫ(avg.) = 1.00986, data set B: Iǫ(avg.) = 1.00522).

Whenever the efficient set is unknown the quality measures also indicate that the Pareto

frontiers obtained are close to the best approximation constructed across all computational

experiments. It can be assumed that these are very close to the true efficient sets.

In case of data set A, compare Table 4.5, phase two improves the total average results

of phase one by 0.6% with respect to the hypervolume indicator. The distance to the best

value of the unary epsilon indicator is decreased by more than 60%. The R3 indicator

value can be reduced by the factor 3.4. The percentage gain of the hypervolume indicator

refers to the additional space on average that is weakly dominated by the reference sets.

The improvement in terms of the unary epsilon indicator can be interpreted as increased

closeness to the reference set. A decrease in R3 indicates that the difference between the

utility obtained from the reference set and the utility obtained from the approximations can

on average be reduced. For data set B, very similar results are obtained, see Table 4.6.

4.6 Summary

In this chapter we have developed a solution procedure to solve the dial-a-ride problem

with two objectives. An existing branch and cut algorithm is used in the ǫ-constraint
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framework to generate exact Pareto frontiers for small to medium-sized instances of two

sets of benchmark instances. To deal with larger instances a heuristic two-phase procedure

has been designed. Phase one consists of a weighted sum based VNS heuristic. In phase

two a PR module is seeded with the partial Pareto frontier computed in phase one. Various

design aspects of this rather new method in the field of multi-objective optimization have

been discussed. The results obtained indicate that a wise mapping mechanism is beneficial

with respect to solution quality. Furthermore, within a low time limit the notion of Nadir

points is used to define promising solutions that should be subject to local search based

improvement. Also the impact of the number of seeding solutions, derived from phase one

passed on to phase two, has been investigated. Even with only two seeding solutions a

well spread Pareto frontier can be generated. Finally, comparison of the results computed

with the two-phase heuristic to those obtained from the ǫ-constraint method shows that the

heuristic procedure is able to produce high-quality approximation sets within reasonable

time.

The next step will consist in integrating additional real world constraints.
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and vehicles

5.1 Introduction

In Chapter 3 of this book, a rather standard DARP has been solved. In Chapter 4, based

on this standard version, the two-objective DARP has been introduced and a tailor-made

heuristic as well as an exact solution method has been implemented. In the current chapter

again the standard version of the DARP is extended. Instead of another objective, several

real world motivated constraints are added to the basic model. They are derived from the

real world ambulance routing problem situation faced by the ARC in the field of patient

transportation. We denote this problem as heterogeneous DARP (HDARP). The term

heterogeneous refers to heterogeneous vehicles (vehicles with different capacities) as well as

heterogeneous passengers (patients demand different modes of transportation).

The ARC distinguishes three patient types. A patient may demand to be transported

seated, on a stretcher, or in a wheelchair. In addition, an accompanying person may be

present. The ARC disposes of two different types of vehicles. Each type provides different

capacities for four modes of transportation (staff seat, patient seat, stretcher, wheelchair

place). In the following these are referred to as resources. Resource 0 refers to staff seats,

resource 1 to patient seats, resource 2 to stretchers, and resource 3 to wheelchair places. Each

passenger can only be transported by a vehicle that disposes of the appropriate resource.

Usually an accompanying person has to use a staff seat; a seated patient a patient seat; a

patient needing a stretcher a stretcher; and a patient in a wheelchair a wheelchair place.

However, certain so-called up-grading conditions apply; an accompanying person may use

the patient seat, in case there is no vacant staff seat available, or, in case neither of the

two is currently available, he/she can sit on the stretcher. According to Austrian law, a

seated patient cannot use a staff seat, he/she may, however, sit on the stretcher, in case

there is no additional patient seat available. Patients that demand a stretcher can only

be transported on a stretcher. Patients in wheelchairs can only be transported by vehicles

providing space for a wheelchair. As in the other two versions of the DARP dealt with so far,

users specify time windows for either the pickup or the drop off location. Also ride time as

well as maximum route duration limits have to be respected. The objective is to generate a

transportation plan serving all patient transportation requests without violating any of the
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above requirements at minimum routing costs. Furthermore, an option to penalize vehicle

waiting time with passengers aboard shall be considered. The HDARP discussed in this

chapter represents a further step towards the real world situation. Only the assignment of

drivers and additional staff members to vehicles, where needed, is not considered. These

aspects will be integrated in the subsequent chapter.

5.2 Related work

Previous publications, considering heterogeneous versions of the DARP, involve, e.g., the

work of Toth and Vigo (1997b). The heterogeneity considered refers to two modes of trans-

portation (seated passengers and passengers in wheelchairs) and several different types of

vehicles. The authors devise a parallel insertion heuristic and a tabu thresholding algorithm

for this version of the DARP. Another heterogeneous version of the DARP is described in

Melachrinoudis et al. (2007). Several different types of vehicles in terms of capacity limits

but only one mode of transportation are considered. The solution method developed is a

tabu search algorithm. Heterogeneous vehicles in terms of different capacity limits for one

mode of transportation in the context of the DARP are also considered in the work of Rekiek

et al. (2006). The proposed problem is solved by a grouping genetic algorithm.

In a dynamic environment, Beaudry et al. (2008) adapt the tabu search heuristic devel-

oped by Cordeau and Laporte (2003b) to solve a heterogeneous DARP that arises in large

hospitals. It involves transportation requests demanding three different modes of trans-

portation (seated, on a bed, or in a wheelchair) and several different types of vehicles.

Another implementation of a computer based planning system, considering hospital spe-

cific constraints such as multi-dimensional capacities, for the dynamic problem, in a large

German hospital, is reported in Hanne et al. (2007).

The remainder of this chapter is organized as follows. First, the HDARP will be defined in

further detail by means of a 3-index and a 2-index mathematical problem formulation. Each

of these two formulations will serve as the basis for a branch and cut algorithm. Then, the

VNS developed in Chapter 3, will be adapted to the HDARP to compute heuristic upper

bounds. The two branch and cut algorithms and the VNS have been tested on random

instances. Their results will be analysed.

5.3 Problem definition

In the following, first, the HDARP is described in further detail and the employed notation

is explained. Then, the two mathematical problem formulations, a 3-index, and a 2-index

formulation for the HDARP are proposed.
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Figure 5.1: Vehicle types at the ARC

5.3.1 Notation

A set K of m heterogeneous vehicles has to serve all n transportation requests. Each

vehicle k ∈ K is associated with a vector Cs,k that gives the amount of resource s available

on vehicle k. The ARC disposes of two basic vehicle types. Type 1 (T1) provides 1 staff

seat, 6 patient seats, and 1 wheelchair place. Type 2 (T2) provides 2 staff seats, 1 patient

seat, 1 stretcher, and 1 wheelchair place (see Figure 5.1). Each route has to start at the

start depot 0 and end at the end depot 2n + 1, respecting a route duration limit T k.

As all previously discussed versions of the DARP, the HDARP is modeled on a complete

directed graph G = (V, A) where V is the set of all vertices and A the set of all arcs. For

each arc (i, j) and each vehicle k a non-negative travel cost ck
ij and a non-negative travel

time tkij is considered. A total amount of n customer requests, each consisting of a pickup

and delivery vertex pair {i, n + i} have to be served. The set of pickup vertices is given by

P = {1, . . . , n}, the set of delivery vertices by D = {n + 1, . . . , 2n}. At every pickup vertex

one patient waits to be transported. This patient may demand one of three different modes

of transportation. Passengers may have to be transported seated (q1
i = 1), on a stretcher

(q2
i = 1), or in a wheelchair (q3

i = 1). Each patient may be accompanied by a friend,

relative or nurse (q0
i = 1). The demand at every delivery vertex is equal to qs

n+i = −qs
i

for all s ∈ R = {0, 1, 2, 3}. Every user either specifies a time window [ei, li] for the pickup

(origin) or the drop off (destination) location and beginning of service has to start within

this time window. In case a vehicle arrives too early, it has to wait until service is possible.

A maximum passenger ride time L̄ is also considered, in order to keep quality of service

at a reasonably high level. At each vertex loading or unloading operations last for a given

service time di. Thus, the set of all vertices is given by V = P ∪ D ∪ {0, 2n + 1}, and the

set of all arcs by A = {(i, j)|i ∈ V \ {2n + 1} , j ∈ V \ {0} , i 6= j}.

As mentioned above, so-called up-grading conditions apply. Patients demanding to be

transported seated may use a patient seat or the stretcher. Patients demanding a stretcher

can only be transported on a stretcher. The same applies to wheelchair passengers. Accom-
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Table 5.1: Transportation mode up-grading options

Passenger
type

staff seat
patient

seat
stretcher

wheelchair
place

accompanying
person x x x

seated patient x x

patient on
stretcher x

patient in
wheelchair x

panying persons, however, may use a staff seat, a patient seat, or the stretcher, if no other

transportation mode is available. Table 5.1 gives on overview of the different upgrading

options.

During the optimization process the decision variables (listed below) are determined.

xk
ij=







1, if arc (i, j) is traversed by vehicle k

0, else,

yk
i =







1, if vehicle k arrives with passengers at vertex i

0, else,

Bk
i . . . beginning of service of vehicle k at vertex i,

Ak
i . . . arrival time of vehicle k at vertex i,

Ŵ k
i . . . waiting time of vehicle k with passengers aboard at vertex i,

Qs,k
i . . . load of vehicle k of resource s when leaving vertex i,

Lk
i . . . ride time of user i on vehicle k.

5.3.2 A 3-index formulation

The mathematical program, covering all of the above described real world conditions is

based on the DARP formulation by Cordeau (2006),

min
∑

k∈K

∑

i∈V

∑

j∈V

ck
ijx

k
ij + ρ

∑

k∈K

∑

i∈P∪D

Ŵ k
i (5.1)

subject to:

∑

k∈K

∑

j∈P∪D

xk
ij = 1 ∀i ∈ P, (5.2)

∑

j∈V

xk
ij −

∑

j∈V

xk
n+i,j = 0 ∀i ∈ P, k ∈ K, (5.3)
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5.3 Problem definition

∑

j∈V

xk
0j = 1 ∀k ∈ K, (5.4)

∑

i∈V

xk
i,2n+1 = 1 ∀k ∈ K, (5.5)

∑

i∈V

xk
ij −

∑

i∈V

xk
ji = 0 ∀j ∈ P ∪ D, k ∈ K, (5.6)

xk
ij = 1 ⇒ Qs,k

j ≥ Qs,k
i + qs

j ∀i, j ∈ V, k ∈ K, s ∈ R, (5.7)

2
∑

s′=s

Qs′,k
i ≤

2
∑

s′=s

Cs′,k ∀i ∈ V, k ∈ K, s ∈ R \ {3} , (5.8)

Q3,k
i ≤ C3,k ∀i ∈ V, k ∈ K, (5.9)

Qs,k
i ≥ 0 ∀i ∈ V, k ∈ K, s ∈ R, (5.10)

Myk
i ≥

∑

s∈R

(Qs,k
i − qs

i ) ∀i ∈ P ∪ D, k ∈ K, (5.11)

xk
ij = 1 ⇒ Ak

j = Bk
i + di + tkij ∀i, j ∈ V, k ∈ K, (5.12)

Bk
i ≥ Ak

i ∀i ∈ V, k ∈ K, (5.13)

yk
i = 1 ⇒ Ŵ k

i ≥ Bk
i − Ak

i ∀i ∈ P ∪ D, k ∈ K, (5.14)

Lk
i = Bk

n+i − (Bk
i + di) ∀i ∈ P, k ∈ K, (5.15)

Bk
2n+1 − Bk

0 ≤ T k ∀k ∈ K, (5.16)

ei ≤ Bk
i ≤ li ∀i ∈ V, k ∈ K, (5.17)

ti,n+i ≤ Lk
i ≤ L̄ ∀i ∈ P, k ∈ K, (5.18)

xk
ij ∈ {0, 1} ∀i, j ∈ V, k ∈ K, (5.19)

yk
i ∈ {0, 1} ∀i ∈ P, k ∈ K, (5.20)

Ŵ k
i ≥ 0 ∀i ∈ P ∪ D, k ∈ K. (5.21)

The objective function (5.1) minimizes total routing costs and penalizes waiting time when

passengers are aboard the vehicle. The penalty term ρ will have to be defined by the ARC.

Constraints (5.2) and (5.3) guarantee that each request is served exactly once and that each

origin-destination pair is visited by the same vehicle. Equalities (5.4) – (5.6) ensure that

each vehicle starts at and returns to the depot at the end of its route.

Consistency with respect to resource and load variables is guaranteed by constraints (5.7)

– (5.9). Up-grading constraints for resources 0, 1, and 2 are given in (5.8). They guarantee

that capacity restrictions regarding these resources are not violated and that each patient

demanding resource 0, 1 or 2 can only be loaded if there is either enough capacity of the

resource demanded or another one with a higher number (0 = staff seat, 1 = patient seat,

2 = stretcher). Constraints (5.9) guarantee that patients demanding resource 3 (wheelchair

place) can only be transported if there is enough capacity of resource 3.

Equalities (5.12) define the arrival times for each vertex. Constraints (5.13) guarantee

77



5 Introducing heterogeneous patients and vehicles

that beginning of service only starts after having arrived at vertex i. Waiting times are set

in (5.14). Waiting is only penalized if there is someone aboard the vehicle when arriving at

vertex i. This is ensured by the way yk
i are set in (5.11). Note that constraints (5.12) and

(5.13) also take care of subtour elimination given that (tij + di) > 0 for all i, j ∈ V, i 6= j.

Equalities (5.15) define the ride time of each user. Total route duration is limited by

(5.16), time window and maximum ride time compliance is ensured by (5.17) and (5.18).

5.3.2.1 Non-linear constraints

All non-linear formulations, given in (5.7) and (5.12), can be linearized (adapted from

Cordeau, 2006). Load propagation inequalities (5.7) can be rewritten as

Qs,k
j ≥ (Qs,k

i + qs
j ) −Ws,k

ij (1 − xk
ij), (5.22)

with

Ws,k
ij ≥ max

{

Ĉs,k, Ĉs,k + qs
i

}

and Ĉs,k = Cs,k +

2
∑

s′=s

Cs′,k.

As shown by Desrochers and Laporte (1991) they can then be lifted into

Qs,k
j ≥ (Qs,k

i + qs
j ) −Ws,k

ij (1 − xk
ij) + (Ws,k

ij − qs
i − qs

j )x
k
ji (5.23)

for the DARP by taking the reverse arc into account. Time consistency constraints (5.12)

are replaced by,

Ak
j ≤ Bk

i + di + tkij + l2n+1(1 − xk
ij), (5.24)

Ak
j ≥ Bk

i + di + tkij − (li + di + tkij)(1 − xk
ij), (5.25)

and those inequalities responsible for setting the waiting time correctly (5.14) by

Ŵ k
i ≥ (Bk

i − Ak
i ) − li(1 − yk

i ). (5.26)

5.3.2.2 Variable aggregation

Since travel times are equal across all vehicles, tkij can be replaced by tij and aggregate time

variables Ai, Bi, Li, and Wi can be used at all vertices except the two depots 0 and 2n + 1.

Furthermore, yk
i can be substituted by yi. Thus, constraints (5.12), defining the arrival time

at each vertex, are replaced by

xk
0j = 1 ⇒ Aj = Bk

0 + di + tij ∀j ∈ V, k ∈ K, (5.27)
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∑

k∈K

xk
ij = 1 ⇒ Aj = Bi + di + tij ∀i ∈ P ∪ D, j ∈ P ∪ D, (5.28)

xk
i,2n+1 = 1 ⇒ Ak

2n+1 = Bi + di + tij ∀i ∈ V, k ∈ K, (5.29)

inequalities (5.13), ensuring that the beginning of service variables are correctly set, by

Bk
0 ≥ Ak

0 ∀k ∈ K, (5.30)

Bi ≥ Ai ∀i ∈ P ∪ D, (5.31)

Bk
2n+1 ≥ Ak

2n+1 ∀k ∈ K, (5.32)

(5.33)

constraints (5.14) and (5.11), responsible for defining a correct lower bound on the waiting

time with passengers aboard, by

yi = 1 ⇒ Ŵi ≥ Bi − Ai ∀i ∈ P ∪ D, (5.34)

Myi ≥
∑

k∈K

∑

s∈R

(Qs,k
i − qs

i

∑

j∈V

xk
ij) ∀i ∈ P ∪ D, (5.35)

(5.36)

and time window (5.17) and ride time constraints (5.15) and (5.18) by

e0 ≤ Bk
0 ≤ l0 ∀k ∈ K, (5.37)

ei ≤ Bi ≤ li ∀i ∈ V, (5.38)

e2n+1 ≤ Bk
2n+1 ≤ l2n+1 ∀k ∈ K, (5.39)

Li = Bn+i − (Bi + di) ∀i ∈ P, (5.40)

ti,n+i ≤ Li ≤ L̄ ∀i ∈ P. (5.41)

The objective function becomes

min
∑

k∈K

∑

i∈V

∑

j∈V

ck
ijx

k
ij + ρ

∑

i∈P∪D

Ŵi. (5.42)

5.3.3 A 2-index formulation

When comparing the 3-index based branch and cut algorithm for the DARP of Cordeau

(2006) to the 2-index based branch and cut algorithms proposed in Ropke et al. (2007), the 2-

index versions obviously outperform the earlier 3-index based method. Given the additional

complexity of our problem, it can be assumed that a branch and cut algorithm based on a

2-index formulation will also perform better than a branch and cut algorithm based on a

3-index program. However, the reformulation of the HDARP as a 2-index program is not as
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5 Introducing heterogeneous patients and vehicles

straight forward as one may assume, given the heterogeneous vehicle fleet and the resulting

differing capacity limits, that depend on which vehicle travels along which arc. How this

issue can be resolved is described in the following.

In order to account for the heterogeneous nature of the vehicle fleet, artificial origin and

destination depots for each vehicle have been introduced. A similar approach is followed,

e.g., in Baldacci et al. (2007) in the context of the heterogeneous fleet size and mix vehicle

routing problem. Let Do = {2n + 1, ..., 2n + m} denote the set of vehicle origin depots and

Dd = {2n + m + 1, ..., 2n + 2m} the set of destination depots, the vertex set V is redefined

as V = P ∪ D ∪ Do ∪ Dd and the arc set as A = {(i, j) : i ∈ V \ Dd, j ∈ V \ Do, i 6= j}.

The demand/supply at the artificial depots is set to zero, qs
2n+k = qs

2n+m+k = 0 for all

k ∈ K, s ∈ R. The total maximum vehicle capacity shall be defined as Ĉ =
∑

s maxk Cs,k.

To impose precedence and pairing constraints, let S denote the set of all vertex subsets

S ⊆ V , such that for all k ∈ K the respective origin depot 2n + k ∈ S and the destination

depot 2n + m + k /∈ S, and there is at least one request i for which i /∈ S and n + i ∈ S. For

the correct pairing of the artificial depots, define U as the set of all vertex subsets U ⊆ V ,

such that for exactly one k ∈ K the origin depot 2n + k ∈ U and the destination depot

2n + m + k /∈ U , while for all other l ∈ K \ {k} origin depots 2n + l /∈ U and destination

depots 2n + m + l ∈ U .

Furthermore, to incorporate the according vehicle capacity constraints, let H denote the

set of infeasible paths with respect to load violations F = {j1, ..., jh}, such that j1 ∈ Do

and let A(F ) denote the arc set of F . Omitting superscript k from all decision variables,

the HDARP can be formulated as the following 2-index program (inspired by Ropke et al.,

2007),

min
∑

i∈V

∑

j∈V

cijxij + ρ
∑

i∈P∪D

Ŵi , (5.43)

subject to:

∑

i∈V \Dd

xij = 1 ∀j ∈ P ∪ D ∪ Dd, (5.44)

∑

j∈V \Do

xij = 1 ∀i ∈ P ∪ D ∪ Do, (5.45)

∑

i,j∈S

xij ≤ |S| − (m + 1) ∀S ∈ S, (5.46)

∑

i∈U

∑

j /∈U

xij ≥ 1 ∀U ∈ U , (5.47)

xij = 1 ⇒ Qj ≥ Qi +
∑

s∈R

qs
i ∀i, j ∈ V, (5.48)
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max

{

0,
∑

s∈R

qs
i

}

≤ Qi ≤ min

{

Ĉ, Ĉ +
∑

s∈R

qs
i

}

∀i ∈ V, (5.49)

Myi ≥ Qi −
∑

s∈R

qs
i ∀i ∈ P ∪ D, (5.50)

h−1
∑

i=1

h
∑

l=i+1

xji,jl
≤ |A(F )| − 1 ∀F ∈ H, (5.51)

xij = 1 ⇒ Aj = Bi + di + tij ∀i, j ∈ V, (5.52)

Bi ≥ Ai ∀i ∈ V, (5.53)

yi = 1 ⇒ Ŵi ≥ Bi − Ai ∀i ∈ P ∪ D, (5.54)

Li = Bn+i − (Bi + di) ∀i ∈ P, (5.55)

B2n+k − B2n+m+k ≤ T k ∀k ∈ K, (5.56)

ei ≤ Bi ≤ li ∀i ∈ V, (5.57)

ti,n+i ≤ Li ≤ L̄ ∀i ∈ P, (5.58)

xij ∈ {0, 1} ∀i, j ∈ V, (5.59)

yi ∈ {0, 1} ∀i ∈ P, (5.60)

Ŵi ≥ 0 ∀i ∈ V. (5.61)

The objective function (5.43) minimizes total routing costs and penalizes waiting time with

passengers aboard a vehicle. Constraints (5.44) and (5.45) guarantee that every vertex

i ∈ P∪D is entered and left and that exactly one arc leaves (enters) every origin (destination)

depot, i.e. i ∈ Do (i ∈ Dd). Precedence and pairing restrictions are guaranteed by (5.46)

and (5.47). As shown by Ropke et al. (2007) inequalities (5.46), initially designed for

the single vehicle case, also apply in a multi vehicle context. Since one depot per vehicle is

considered in our mathematical model, the original right hand side |S|−2 has to be replaced

by |S|− (m+1). Suppose the set S ∈ S is S = {2n + 1, . . . , 2n + m, n + i}. From each start

depot one arc has to leave S (i.e. m arcs). One of these arcs will be part of a path leading

to i /∈ S. If pairing and precedence constraints are respected, this path has to contain one

arc leading back to n + i ∈ S. Finally, it has to arrive at one of the end depots, demanding

another arc to be traversed leaving S and connecting to some end depot 2n + m + k /∈ S.

Thus, m + 1 arcs have to leave S, reducing the number of arcs that can be used within S

to |S| − (m + 1). Constraints (5.47) are depicted in Figure 5.3.3. Here, d1+, d2+, and d3+

denote the origin depots of vehicles 1, 2, and 3, respectively, while d1−, d2−, and d3− denote

the corresponding destination depots. At least one arc has to leave set U (here U consists

of d1+, d2−, and d3− and probably some other vertices) and enter set V \U (represented as

an arrow), in order to ensure the correct pairing of the depots (here d1+ and d1−).

Aggregate loading variables are introduced and set by constraints (5.48). These are needed

for the definition of yi, defined in (5.50). The actual loading restrictions are taken care of
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d1+

d2+

d3+

d1−

d2−

d3−

. . .

. . .

. . .

. . .

. . .

. . .

X. . . XU

V \ U

Figure 5.2: Pairing of artificial origin and destination depots

by inequalities (5.51); on every path F ∈ H, each starting at one of the depots, a loading

restriction is violated. Constraints of this type are known as tournament inequalities.

Arrival times are set in (5.52), beginning of service and waiting times in (5.53) and (5.54).

Equalities (5.55) determine each user’s ride time. Compliance with maximum route duration

restrictions, time windows, and user ride time limits is guaranteed by (5.56) – (5.57).

5.3.3.1 Non-linear constraints

All non-linear inequalities are reformulated as shown for the 3-index model. Thus, load

propagation constraints (5.48) are substituted by

Qj ≥ (Qi +
∑

s∈R

qs
j ) −Wij(1 − xij) (5.62)

with

Wij ≥ max

{

Ĉ, Ĉ +
∑

s∈R

qs
i

}

,

and lifted into

Qj ≥ (Qi +
∑

s∈R

qs
j ) −Wij(1 − xij) + (Wij −

∑

s∈R

qs
i −

∑

s∈R

qs
j )xji, (5.63)

by taking the reverse arc into account. Finally, arrival time inequalities (5.52) are replaced

by,

Aj ≤ (Bi + di + tij) + max
k

{l2n+m+k} (1 − xij), (5.64)

Aj ≥ (Bi + di + tij) − (li + di + tij)(1 − xij), (5.65)
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and vehicle waiting time inequalities (5.54) by

Wi ≥ (Bi − Ai) − li(1 − yi). (5.66)

5.4 Valid inequalities

In the following section, the different valid inequalities that can be used to strengthen the

above formulations are discussed. If not stated otherwise, xij =
∑

k xk
ij in the 3-index

formulation.

5.4.1 Strengthened bounds on time and load variables

Bounds on time variables can be strengthened as follows (Cordeau, 2006):

Bi ≥ ei +
∑

j∈V \{i}

max {0, ej − ei + dj + tji}xji (5.67)

Bi ≤ li +
∑

j∈V \{i}

max {0, li − lj + di + tij}xij (5.68)

In case of the 3-index formulation also bounds on load variables are strengthened (adapted

from Cordeau, 2006). Let orig(i) be the set that contains the origin of i, if i is a destination,

otherwise the empty set, lower bounds can be strengthened as follows,

Qs,k
i ≥ max {0, qs

i } +
∑

j∈V \{i,orig(i)}

max
{

0, qs
j

}

xk
ji, (5.69)

(5.70)

In case of upper bounds, one has to distinguish between origins and destinations. If vertex

i is an origin (1 ≤ i ≤ n),

Qs,k
i +

2
∑

s′=s+1

Qs′,k
i ≤ Ĉs,k −

(

Ĉs,k − max
j∈V \{i}

{

q̂s
j

}

− q̂s
i

)

xk
0i −

∑

j∈V \{i}

max
{

0, q̂s
j

}

xk
ij ,

(5.71)

with

Ĉs,k = Cs,k +
2

∑

s′=s+1

Cs′,k and q̂s
i = qs

i +
2

∑

s′=s+1

qs′

i ,

applies. If i is a destination (n + 1 ≤ i ≤ 2n),

Qs,k
i +

2
∑

s′=s+1

Qs′,k
i ≤ min

{

Ĉs,k, Ĉs,k + q̂s
i

}

−
(

Ĉs,k − max
j∈V \{i}

{

q̂s
j

}

− q̂s
i

)

xk
0i, (5.72)
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is used. The last term used in (5.71) cannot be used to strengthen (5.72). Consider Ĉs,k = 1,

if q̂s
i = −1 and q̂s

j = 1 then Qs,k
i +

∑s
s′=s+1 Qs′,k

i would have to be ≤ −1 which is clearly

not valid, although visiting j after i is feasible with respect to capacity limits.

5.4.2 Subtour elimination constraints

Standard subtour elimination constraints are given by x(S) ≤ |S| − 1 for S ⊂ P ∪ D. As

shown by Cordeau (2006) these constraints can be lifted in several ways, exploiting the

fact that each origin i must be visited before its destination n + i. Let x(S) =
∑

i,j∈S xij ,

S = {i1, i2, . . . , ih} ⊆ P ∪ D, S̄ = {i ∈ P ∪ D|i /∈ S}. The predecessors of S are denoted as

π(S) = {i ∈ P |n + i ∈ S}, its successors as σ(S) = {n + i ∈ D|i ∈ S}. The following four

sets of inequalities are valid for the DARP (Cordeau, 2006) and are also applicable in the

context of the HDARP:

x(S) +
∑

i∈S̄∩σ(S)

∑

j∈S

xij +
∑

i∈S̄\σ(S)

∑

j∈S∩σ(S)

xij ≤ |S| − 1, (5.73)

x(S) +
∑

i∈S

∑

j∈S̄∩π(s)

xij +
∑

i∈S∩π(S)

∑

j∈S̄\π(S)

xij ≤ |S| − 1, (5.74)

h−1
∑

j=1

xij ,ij+1
+ xih,i1 + 2

h−1
∑

j=2

xij ,i1 +

h−1
∑

j=3

j−1
∑

l=2

xij ,il
+

∑

n+ip∈S̄∩σ(S)

xn+ip,i1 ≤ h − 1, (5.75)

h−1
∑

j=1

xij ,ij+1
+ xih,i1 + 2

h
∑

j=3

xi1,ij
+

h
∑

j=4

j−1
∑

j=3

xij ,il
+

∑

ip∈S̄∩π(S)

xi1,ip
≤ h − 1. (5.76)

The first two inequalities were originally introduced for the precedence constrained asym-

metric TSP by Balas et al. (1995). They are also referred to as predecessor and successor

inequalities, respectively. The ordering of the vertices in S does not play a role here. In the

second two inequalities the ordering of the vertices is important. They are based on those

of Grötschel and Padberg (1985) for the asymmetric TSP.

All four inequalities are illustrated in Figure 5.3. Dotted and dashed arcs represent

liftings. In Figure 5.3(a) an example for successor inequality (5.73) is given. The set

S = {i, j} consists of two origin vertices. The successors of these two are their destinations

σ(S) = {n + i, n + j}. Clearly, at most one (|S| − 1 = 1) of the four arcs shown in the

figure can be used in a feasible solution. The same is true for the example of (5.74) in

Figure 5.3(b). For inequalities (5.75) and (5.76) the reasoning is a bit different. Instead of

sets, sequences of vertices are considered. Such that a sequence does not result in a cycle,

at most h− 1 arcs can be used, given that the sequence consists of h arcs. If a reverse arc is

used between two vertices, the vertices connected by this arc should no longer be connected

to the rest of the sequence. This reduces the number of arcs that can be used in the sequence

by two. That is way a reverse arc (dashed in the Figure) is counted twice. Furthermore, in
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S σ(S)

n in

n jn

n + i

n + j

(a) Successor inequality (5.73)
S = {i, j} ⊆ P

S π(S)

n + i

n + j

n in

n jn

(b) Predecessor inequality (5.74)
S = {n + i, n + j} ⊆ D

σ(S) S

n + i

n + j

n in

n jn

n kn

2

(c) Lifted subtour inequality (5.75)
S = (i, j, k) ⊆ P

π(S) S

n jn

n kn

n + i

n + j

n + k2

(d) Lifted subtour inequality (5.76)
S = (n + i, n + j, n + k) ⊆ D

Figure 5.3: Lifted subtour elimination constraints (adapted from Cordeau, 2006)

case of inequality (5.75), illustrated in Figure 5.3(c), if a destination (successor) /∈ S of some

origin ∈ S is connected to the first vertex ∈ S, the first vertex cannot be connected to the

origin of this destination anymore, reducing the number of vertices that can be used in the

sequence by one. The same reasoning, considering predecessors instead of successors of the

vertices ∈ S, leads to inequalities (5.76). An according example is given in Figure 5.3(d).

5.4.3 Generalized order constraints

Let U1, . . . , Uh be mutually disjoint subsets and let i1, . . . , ih ∈ P be users such that either

0, 2n + 1 /∈ Ul (3-index formulation) or 2n + k, 2n + m + k /∈ Ul for all k ∈ K (2-index

formulation) and il, n + il+1 ∈ Ul for l = 1, . . . , h (ih + 1 = i1). The following inequalities,

proposed by Ruland and Rodin (1997), are valid for the (H)DARP,

h
∑

l=1

x(Ul) ≤
h

∑

l=1

|Ul| − h − 1. (5.77)
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For the (H)DARP these can be lifted in two ways as shown by Cordeau (2006),

∑

l=1

x(Ul) +

h−1
∑

l=2

xi1,il
+

h
∑

l=3

xil,n+il
≤

h
∑

l=1

|Ul| − h − 1, (5.78)

h
∑

l=1

x(Ul) +

h−2
∑

l=2

xn+i1,il
+

h
∑

l=2

xn+i1,n+il
≤

h
∑

l=1

|Ul| − h − 1. (5.79)

5.4.4 Strengthened infeasible path constraints

Let F denote the set of infeasible paths. A(F ) is the arc set of F and V (F ) the vertex set,

the following inequalities are valid for the (H)DARP (Ropke et al., 2007),

∑

(i,j)∈A(F )

xk
ij ≤ |A(F )| − 1 ∀F ∈ F , k ∈ K. (5.80)

If F = (j1, . . . , jh) denotes an infeasible path, they can be strengthened into so-called

tournament constraints (see Ascheuer et al., 2000a; Ropke et al., 2007),

h−1
∑

i=1

h
∑

l=i+1

xk
ji,jl

≤ |A(F )| − 1. (5.81)

If F links a vertex pair {i, n + i}, and F = (i, j1, . . . , jh, i + n) is infeasible due to time

window or ride time constraints, (5.80) can be lifted in the following way,

xk
i,j1 +

h−1
∑

l=1

xk
jl,jl+1

+ xk
jh,n+i ≤ |A(F )| − 2. (5.82)

If both path F = (j1, . . . , jh) and the reverse path F ′ = (jh, . . . , j1) are infeasible, the

following inequality can be applied (Ropke et al., 2007),

h−1
∑

i=1

(xk
ji,ji+1

+ xk
ji+1,ji

) ≤ h − 1. (5.83)

These inequalities are generated for each vehicle in turn in case of the 3-index formulation.

In case of the 2-index formulation xk
ij has to be replaced by xij and only time related

infeasibilities are considered since these restrictions are homogeneous across all vehicles.

5.4.5 Fork constraints

This family of inequalities, proposed by Ropke et al. (2007) in the context of the PDPTW

and the DARP, also applies the notion of infeasible paths (regarding time infeasibilities).

Here, they are eliminated by taking a whole bundle of such infeasible paths sharing some
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5.4 Valid inequalities

common arcs into account. Let F = (j1, . . . , jh) be a feasible path. By adding a vertex

at the beginning and at the end of this path an infeasible path is generated. A bundle of

infeasible paths is defined by (i, F, l) being infeasible for every i ∈ Ŝ and l ∈ T̂ , Ŝ, T̂ ⊂ V ,

resulting in the so-called fork inequality,

∑

i∈Ŝ

xi,j1 +

h−1
∑

i=1

xji,ji+1
+

∑

l∈T̂

xjh,l ≤ h. (5.84)

These inequalities can be lifted in two ways. In the first, an additional set of vertices T̂i

is appended to each vertex ji ∈ {j1, . . . , jh−1} resulting in sequences (k, j1 . . . ji, l) that are

infeasible for every k ∈ Ŝ, l ∈ T̂i, 1 ≤ i ≤ h. This so-called outfork inequality is given by

∑

i∈Ŝ

xi,j1 +

h−1
∑

i=1

xji,ji+1
+

h
∑

i=1

∑

l∈T̂i

xji,l ≤ h. (5.85)

In the second, a set of vertices Ŝi is added before each vertex ji ∈ {j2, . . . , jh}, leading to

sequences (k, ji . . . jh, l) that are infeasible for every k ∈ Ŝi, l ∈ T̂ , 1 ≤ i ≤ h . This so-called

infork inequality is given by

∑

k∈Ŝi

h
∑

i=1

xk,ji
+

h−1
∑

i=1

xji,ji+1
+

∑

l∈T̂

xjh,l ≤ h. (5.86)

5.4.6 Adapted rounded capacity inequalities (only 3-index formulation)

Let R̂(S) denote the minimum number of vehicles necessary to visit all nodes in S ⊆ P ∪D,

the constraint x(∆(S)) ≥ 2R̂(S) is a valid inequality for the DARP (Cordeau, 2006),

∆(S) =
∑

k

∑

i/∈S

∑

j∈S xk
ij +

∑

k

∑

i∈S

∑

j /∈S xk
ij . A lower approximation of R̂(S) is given

by ⌈q(S)/C⌉, where q(S) =
∑

i∈S qi.

This so-called rounded capacity inequality can be adapted to the HDARP as follows. Let

Ĉs,k denote the cumulative capacity limit for resource s on vehicle k and be qs(S) =
∑

i∈S(qs
i +

∑2
s′=s+1 qs′

i ), the constraint x(∆(S)) ≥ 2⌈qs(S)/ maxk Ĉs,k⌉ is a valid rounded

capacity inequality for the HDARP.

5.4.7 Strengthened capacity inequalities (only 3-index formulation)

Introduced in Ropke et al. (2007), the strengthened capacity cuts for the DARP can be

applied to the HDARP. Let Ŝ,T̂ ⊆ P ∪ D denote two disjoint subsets such that q(S) > 0.

Furthermore, let Û = π(T̂ ) \ (Ŝ ∪ T̂ ), the strengthened capacity inequality for the DARP is

x(Ŝ) + x(T̂ ) + x(Ŝ : T̂ ) ≤ |Ŝ| + |T̂ | −
⌈q(Ŝ) − q(Û)

C

⌉

, (5.87)
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with x(Ŝ : T̂ ) =
∑

i∈Ŝ

∑

j∈T̂ xij . In case of the HDARP q(.) has to be replaced by qs(.) as

defined above, and instead of C, maxk Ĉs,k has to be used.

5.4.8 Reachability constraints (only 2-index formulation)

This group of inequalities, introduced in Laysgaard (2006) and used in the context of the

DARP by Ropke et al. (2007), is based on the notion of conflicting vertices. Vertices are said

to be conflicting if they cannot be served by the same vehicle. For every vertex i ∈ P ∪D let

A−
i ⊂ A define the minimum arc set such that any feasible sequence from an origin depot

2n + k (k ∈ K) to vertex i can be constructed only using arcs ∈ A−
i . Furthermore, let

A+
i ⊂ A denote the minimum arc set such that any feasible sequence from i to a destination

depot 2n + m + k (k ∈ K) only traverses arcs ∈ A+
i . Finally, let T̂ be a set of conflicting

vertices. A−

T̂
= ∪i∈T̂ A−

i defines the reaching arc set of T̂ and A+

T̂
= ∪i∈T̂ A+

i the reachable

arc set of T̂ . The following two inequalities can be defined,

x(∆−(Ŝ) ∩ A−

T̂
) ≥ |T̂ |, (5.88)

x(∆+(Ŝ) ∩ A+

T̂
) ≥ |T̂ |, (5.89)

with ∆−(Ŝ) =
∑

i/∈Ŝ

∑

j∈Ŝ xij and ∆+(Ŝ) =
∑

i∈Ŝ

∑

j /∈Ŝ xij .

5.5 Branch and cut algorithms

In the following section, first, the branch and cut methodology is described. Then, the

pre-processing steps employed and the different separation procedures are briefly discussed.

5.5.1 The branch and cut framework

As briefly explained in Chapter 2, branch and cut algorithms combine the branch and

bound and the cutting plane idea. Every IP can be reformulated as a LP by dropping

the integrality constraints for all variables. In our case, these are (5.19) and (5.20) in the

3-index, and (5.59) and (5.60) in the 2-index formulation. The optimal solution to the LP

relaxation will yield a lower bound for the IP.

The branch and cut algorithm departs from the solution of the LP relaxation, considering

only a reasonable subset of the original constraints. Typically, all constraint families of

exponential size are not included. In our case these are the pairing constraints (5.46)

and (5.47), and the infeasible path constraints (5.46) and (5.47) in the 2-index program

introduced above. Also all families of valid inequalities that are only used to strengthen

the model are added in a cutting plane fashion. Separation algorithms will then check the

current solution for violations of the omitted constraints and valid inequalities. In case of

omitted constraints, the separation procedures have to correspond to exact procedures such
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5.5 Branch and cut algorithms

that, if one of the omitted constraints is violated, one can be sure that it will be identified. In

case of additional valid inequalities, which are not needed to ensure feasibility, also heuristic

separation procedures can be employed.

In case at least one violated constraint is detected by the separation procedures, these are

added to the current LP in the form of cuts and the updated LP is solved again. This process

is repeated until the separation procedures fail to detect additional violated constraints. In

this case, the optimal solution to the LP relaxation of the original mixed IP has been found.

If this solution is integer, the optimal solution to the mixed IP has been found.

Otherwise, the problem is decomposed into two new problems. As in branch and bound,

by branching on a variable that is associated with a fractional value in the current solution,

e.g. on x1,3, if x1,3 = 0.4. Branching refers to the generation of two child nodes. At one

of the child nodes an LP is built with an additional constraint setting a lower bound on

the chosen variable. This lower bound is equal to the fractional value of the variable ceiled

to the next integer, e.g. x1,3 ≥ 1. At the other child node another LP is built with an

additional constraint setting an upper bound on the chosen variable. This upper bound is

equal to the fractional value of the chosen variable floored to the next integer, e.g. x1,3 ≤ 0.

Then each of the two LPs is solved in the same way as the first LP relaxation; cuts are

added until no more violated inequalities can be detected. In case the optimal solution is

not integer, the child node serves as a new parent node for two new child nodes in the tree.

The optimal solution to the original mixed IP is the best of the first two thus recursively

solved problems. This summary of the branch and cut method is widely based on Naddef

and Rinaldi (2002). Further details and additional references can be found in the same

paper.

To accelerate the solution process several pre-processing steps can be performed prior to

starting the optimization procedure. These steps refer to graph pruning and time window

tightening techniques. Furthermore, some “easy” cuts can be generated in advance to

strengthen the formulation (initial cut pool); and, in order to break symmetry, in case of

the 3-index formulation, variable fixing techniques can be employed; e.g. in the homogeneous

fleet case, those requests that cannot be served by the same vehicle are fixed to different

vehicles. Our branch and cut implementations are based on Cordeau (2006) and Ropke

et al. (2007). The employed pre-processing steps and the different separation procedures

are briefly described in the following.

5.5.2 Pre-processing

In a first step, the graph pruning and time window tightening techniques as described by

Cordeau (2006), see also Section 3.4.1 in Chapter 3, adapted to the HDARP are applied.

Then an initial cut pool is generated. This pool contains all cuts part of the initial pool of

inequalities described in Cordeau (2006): strengthened bounds on time and load variables,
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5 Introducing heterogeneous patients and vehicles

subtour elimination constraints for |S| = 2, four particular cases of precedence constraints,

generalized order constraints for h = 2 and |U1| = |U2| = 2, infeasible path constraints

of the form xij + xj,n+jxn+j,n+i ≤ 1 if this path violates the ride time limit of request i.

Furthermore, four inequalities for each pair of incompatible users i, j ∈ P and every node

l ∈ P ∪ D are added to the pool:

xil + xli + xlj + xjl ≤ 1

xil + xli + xl,n+j + xn+j,l ≤ 1

xn+i,l + xl,n+i + xlj + xjl ≤ 1

xn+i,l + xl,n+i + xl,n+j + xn+j,l ≤ 1

Finally, in case of the 3-index based branch and cut algorithm, variable fixing methods are

used. If the vehicle fleet of an instance is homogeneous the same variable fixing procedures

as in Cordeau (2006) are applied. If the fleet is heterogeneous variables can be fixed as

follows. If only one vehicle with resource 2 or 3 (stretcher or wheelchair) is available, all

users demanding these modes of transportation can be fixed to the corresponding vehicle.

In any case, if some vehicle does not provide these resources all users demanding them can

be forbidden on this vehicle. Furthermore, if two users are identified as incompatible for one

vehicle, a constraint guaranteeing that only one of the two can use this vehicle is appended

to the model.

5.5.3 Separation heuristics

In both algorithms, violated subtour elimination and generalized order constraints are sep-

arated by means of several (meta)heuristics as described in Cordeau (2006). For the sepa-

ration of strengthened infeasible path inequalities, an enumerative procedure as described

in Ropke et al. (2007) is used. Due to heterogeneous fleet requirements, these constraints

are checked and generated for each vehicle in turn in case of the 3-index formulation. The

same applies to violated fork constraints which are also determined by means of enumera-

tion procedures (Ropke et al., 2007). Regarding the 2-index formulation, only time related

infeasibilities are considered. These are homogeneous across all vehicles.

In case of the 3-index based branch and cut algorithm, as in Cordeau (2006), for the

separation of rounded capacity inequalities, a tabu search algorithm is employed. To detect

violated strengthened capacity cuts, the heuristics as described by Ropke et al. (2007) are

used, i.e. a randomized construction heuristic and another tabu search algorithm.

For the 2-index branch and cut algorithm additional separation procedures need to be

devised. Precedence and pairing constraints, given in (5.46) are separated similar to Ropke

et al. (2007). The implementation of Goldberg’s algorithm for solving the individual max-

flow-problems is used.
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The pairing constraints in the 2-index model regarding the introduced artificial depots

are separated by a similar procedure. Every origin depot together with all other destination

depots are in turn used as the super source node and its corresponding destination depot

together with all other origin depots as the super sink node. If the max flow on the network

(arc capacities are defined by the current values of the xij variables) is smaller than one,

the according depot pairing constraint, given in (5.47), is generated.

For the detection of infeasible paths regarding heterogeneous vehicles and resources vio-

lating a capacity restriction in the 2-index formulation, another enumerative procedure is

applied. Every path starting at one of the start depots is extended on all arcs with some flow

(xij > 0) and checked for capacity violations. If the capacity is exceeded at some vertex i,

the corresponding inequality (5.51) is generated. Path extension ends as soon as one of the

destination depots has been reached.

As in Ropke et al. (2007), to separate reachability cuts in the 2-index based algorithm,

in a first step, for each vertex i ∈ P ∪ D the arc sets A+
i and A−

i are computed. Based on

these arc sets conflicting vertex sets are identified (if there is no path that contains a certain

vertex j leading from one of the start depots to i, or from i to one of the destination depots, i

and j are conflicting vertices). After having determined all conflicting pairs, conflicting sets

of larger cardinality are generated on the basis of conflicting pairs. Obviously, at most sets

with a cardinality of m are considered. If sets of higher cardinality existed, the respective

problem instance would be infeasible. At each fractional solution encountered at some node

of the branch and bound tree, each conflicting set T̂ is considered in turn. In order to

identify violated inequalities (5.88), a maximum flow problem between Do and T̂ is solved

using only arcs ∈ A−

T̂
. In order to do so, an artificial source, that is connected to each

vertex ∈ Do with arcs of infinite capacity, and an artificial sink, connecting all vertices ∈ T̂

with arcs of infinite capacity to this sink, have to be introduced. If the minimum cut’s

capacity obtained is smaller than |T̂ |, the according reachability cut is generated. Similarly,

to identify violated inequalities (5.89), a max flow problem between T̂ and Dd is solved

using only arcs ∈ A+

T̂
.

5.5.4 Heuristic upper bounds

In order to accelerate the optimization process initial upper bounds are calculated by means

of an adapted version of heurVNS, designed for the standard DARP in Chapter 3. The

current version (heurVNShet) differs from heurVNS in several ways.

First, a new evaluation function that accommodates the characteristics of the HDARP

is devised. Besides routing costs and constraint violations, also the total waiting time with

passenger aboard has to be considered,

f̂(∫) = ĉ(∫) + ρv̂(∫) +
∑

s∈R

α̂sq̂s(∫) + β̂d̂(∫) + γ̂ŵ(∫) + τ̂ t̂(∫). (5.90)
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The routing costs of a solution ∫ are given by ĉ(∫), the total vehicle waiting time with

passengers aboard by v̂(∫), weighted by ρ. The terms q̂s(∫) refer to the different resource

violations s ∈ R. Each of these is penalized by a separate penalization parameter α̂s. All

other terms correspond to the penalization terms used in heurVNS. Note that as in heurVNS,

a solution ∫ can only become a new best solution ∫best if q̂s(∫) = d̂(∫) = ŵ(∫) = t̂(∫) = 0 for

all s ∈ R.

Second, a regret insertion procedure for the construction of the initial solution has been

designed. The first m requests are each assigned to a different vehicle. All subsequent

requests are inserted as follows. A regret value for each request is calculated: the best

insertion position for each request on each route is determined and the corresponding eval-

uation function values are calculated; the regret value for a given request corresponds to

the difference in terms of evaluation function value between its two best insertion positions.

In every iteration the request associated with the largest regret value is inserted at its best

position.

Third, only 13 different neighborhoods are considered (S1 – M1 – C1 – S2 – M2 – C2 –

S3 – M3 – C3 – S4 – M4 – C4 – Z, S = Swap neighborhood, M = Move Neighborhood, C

= Chain neighborhood, Z = Zero split neighborhood, see Chapter 3). Initial tests with 19

neighborhoods showed that, as in Chapter 4, 13 neighborhoods are sufficient.

Further, the above mentioned graph pruning techniques are only applied after the first

feasible solution has been found. And last but not least, as stopping criterion a limit of

5x105 iterations is employed.

5.6 Computational experiments

All programs were implemented in C++. In the branch and cut algorithms CPLEX 11.0

together with Concert Technology 2.5 were used. All experiments were carried out on a 3.2

GHz Pentium D computer with a memory of 4 GB. All solution procedures have been tested

on three artificial data sets. These are based on an existing data set from the literature,

enriched with the different real world characteristics described above. In the following, first,

the characteristics of the generated test instances are described. Then, the results obtained

are discussed. This part is split into two sections. The first summarizes the results obtained

by means of the two branch and cut algorithms, the second presents the solutions obtained

by means of heurVNShet. Both procedures are first tested with ω = 0 (waiting is not

penalized) and then with ω = 100.

5.6.1 Test instances

The test instances used are based on the 12 “A” instances proposed by Cordeau (2006) for

the standard DARP, containing 12 instances with 2 to 4 vehicles and 16 to 48 requests. In
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Table 5.2: Characteristics of test instances

probability for patient to be probability
data set seated on stretcher in wheelchair for AP fleet

U 1.00 0.00 0.00 0.00 hom. (T0)
E 0.50 0.25 0.25 0.10 hom. (T2)
I 0.83 0.11 0.06 0.50 het. (T1, T2)

AP = Accompanying Person, hom. = homogeneous, het. = heterogeneous
T0: 3 patient seats
T1: 1 staff seats, 6 patient seats, 1 wheelchair place
T2: 2 staff seats, 1 patient seat, 1 stretcher, 1 wheelchair place

all instances time window length li − ei = 15 minutes, maximum user ride time L̄ = 30

minutes, and service time di = 3 minutes for all users (see also entry “Cor06” in Table 2.4

in Chapter 2 for a summary). For each instance three instances with different degrees of

heterogeneity were generated.

Heterogeneous users were introduced based on the probabilities given in Table 5.2. Every

transportation request consists of at most one patient. In data set “U” only seated pas-

sengers and no accompanying persons are considered. In data set “E” half of the patients

are considered as seated patients, 25% as patients on a stretcher, and 25% as patients in a

wheelchair; 10% are assumed to be accompanied by someone. Eventually, in data set “I”

users are transformed into seated patients, patients on a stretcher, and wheelchair passen-

gers, according to the true distribution across all static transports carried out by the ARC

in the city of Graz. Furthermore, half of them are assumed to be accompanied by someone.

Regarding the vehicle types employed in the different instances, in data set “U” a homo-

geneous fleet setting with only vehicles of type T0 is considered. Vehicle type T0 provides

space for three seated passengers. In data set “E” a homogeneous vehicle fleet consisting

of T2 vehicles, disposing of 2 staff seats, 1 patient seat, 1 stretcher, and 1 wheelchair place,

is used; while for data set “I” a heterogeneous vehicle fleet has been generated. Here the

original number of vehicles has been randomly divided into T1 and T2 vehicles such that at

least one vehicle of each type is available. Vehicle types T1 and T2 are derived from data

provided by the ARC regarding their vehicle fleet.

5.6.2 Branch and cut results

Table 5.3 provides the results obtained by the 3-index and the 2-index branch and cut

algorithms, ignoring the penalization option regarding waiting with passengers aboard (ρ =

0). The two algorithms will be denoted as 3indexBC and 2indexBC in the following. The

table contains the following information. Columns “z” give the proven optimal objective

value (marked by an asterisk) or the best feasible solution found. Furthermore, the best lower

bound identified within the time limit (bestLB), run times in seconds (CPU), the number of

nodes visited as well as the number of cuts added are provided. The number of cuts refers
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to the number of user cuts generated during the optimization process. Cuts generated by

CPLEX are not counted. In the last column (heurUB) the employed initial upper bounds,

computed by means of one run of heurV NShet, can be found. For all experiments reported

in this section a run time limit of four hours was used. When comparing the results obtained

by the two branch and cut algorithms, 2indexBC clearly outperforms 3indexBC. 2indexBC

finds the optimal solution to 29 out of 36 test instances within the 4-hour time limit, while

3indexBC only finds 13. Only in one case (instance a4-24 of data set “E”), 3indexBC finds

the optimal solution and proves it to be optimal, while 2indexBC does not. In 2indexBC on

average five times more cuts are generated but only half of the number of nodes are explored.

In many cases the optimal solution is already found at the root node in 2indexBC, while

this is never the case for 3indexBC. The conclusion that can be drawn from these results is

that, as expected, the 2-index based formulation leads to a more efficient branch and cut

algorithm. Therefore, in the following experiment only 2indexBC is considered.

Table 5.4 provides the results obtained with 2indexBC and ρ = 100. This means that

waiting with passengers aboard is penalized rather severely. All results thus obtained do

not contain any waiting time with passengers aboard. Penalizing waiting with passengers

aboard makes the problem slightly more difficult to solve. Instead of 29 out of 36 instances,

28 out of 36 instances can be solved to optimality within the 4-hour time limit.

5.6.3 Heuristic results

Finally, Table 5.5 gives the results obtained by means of heurVNShet over five random runs

with ρ = 0 and ρ = 100. For each data set the best value, the mean value, the deviation

from the optimal solution, where known, the run time in seconds, and the total waiting time

with passengers aboard (averaged over 5 runs) are given. heurVNShet is able to cope with

both settings. The largest deviation from the optimal solution in case of ρ = 0 is 1.41%,

taking average values over 5 runs. When considering the best values out of these 5 runs, the

maximum gap is equal to 0.74%. In most cases the optimum solution is found. The largest

deviation in case of ρ = 100, taking average values over 5 runs, is 1.06%. The largest gap,

taking the best solution values out of these 5 runs, is equal to 0.27%. This indicates that for

heurVNShet, penalizing waiting with passengers aboard makes the problem slightly easier

to solve. In both versions run times are very low, less than 2 minutes on average. When

comparing the amount of waiting time contained in the average solutions, setting ρ = 0

results in, on average, 18.98 minutes of waiting, while setting ρ = 100 results in no waiting

for the passengers. Only for one instance (a4-32 data set “I”) one of the 5 random runs

yielded a solution with passenger waiting time (0.08 seconds). When comparing average

routing costs for ρ = 0 and ρ = 100 a cost increase of about 2.5% can be observed. When

comparing best values out of 5 runs, the largest cost increase amounts to almost 6% (instance

a4-48 of data set “E”). The implications from a company perspective are that only moderate
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Table 5.3: 3indexBC vs. 2indexBC (ρ = 0)

3indexBC 2indexBC

z bestLB CPUa nodes cuts z bestLB CPUa nodes cuts heurUB

U

a2-16 294.25* 294.25 44.05 58 152 294.25* 294.25 1.13 0 44 294.25
a2-20 344.83* 344.80 1674.30 6751 2531 344.83* 344.83 2.59 0 112 344.83
a2-24 415.17 14492.70 13632 2391 431.12* 431.12 8.54 0 161 431.12
a3-18 300.48* 300.45 4376.70 16350 933 300.48* 300.48 4.55 0 249 300.48
a3-24 334 14516.40 7380 595 344.83* 344.83 7.62 0 422 347.42
a3-30 467.25 14490 3953 433 494.85* 494.85 9.83 0 575 494.85
a3-36 553.05 14570.80 3917 351 583.19* 583.19 105.05 0 1099 584.44
a4-16 282.68* 282.67 319.42 284 241 282.68* 282.68 5.61 0 430 282.68
a4-24 375.02* 375.02 709.89 187 240 375.02* 375.02 5.60 0 347 378.13
a4-32 432.78 14520.60 2084 291 485.50* 485.50 30.67 0 1056 487.81
a4-40 502.74 14468.60 88 339 557.69* 557.63 8328.46 9723 6293 582.26
a4-48 571.27 14523.20 48 340 668.82* 664.64 14542.60 5076 5164 709.47

U 406.12 9058.89 4561 736 429.92 1921.02 1233 1329 436.48

E

a2-16 331.16* 331.16 37.54 14 101 331.16* 331.13 284.17 4908 1461 331.16
a2-20 347.03* 347.03 441.26 1523 817 347.03* 347.03 8.06 0 150 347.03
a2-24 421.63 14537.70 7198 1255 450.25* 450.21 891.24 5743 1298 450.25
a3-18 300.63* 300.63 4412.52 13053 612 300.63* 300.63 4.28 0 304 300.63
a3-24 340.65 14528.70 6721 505 344.91* 344.91 10.15 0 505 346.22
a3-30 484.26 14514.80 3199 445 500.58* 500.53 1608.63 4898 2600 500.58
a3-36 565.55 14554.10 2165 312 583.19* 583.19 101.40 0 1133 585.94
a4-16 285.99* 285.99 194.69 31 155 285.99* 285.99 759.27 7664 1832 285.99
a4-24 383.84* 383.84 1321.24 112 383 383.84* 380.48 14471.60 19808 22083 390.87
a4-32 459.87 14499.90 870 562 488.14 14494.10 4733 12610 508.51
a4-40 534.35 14716.30 43 516 558.09 14518.50 2390 17918 609.08
a4-48 593.36 14625.30 0 635 665.02 14539.50 1476 11919 704.07

E 420.69 9032.00 2911 525 436.28 5140.08 4302 6151 446.69

I

a2-16 294.25* 294.25 92.17 59 148 294.25* 294.25 0.88 0 25 294.25
a2-20 355.74* 355.74 10142.80 42432 3728 355.74* 355.71 115.44 1103 428 355.74
a2-24 421.75 14553.30 13825 1324 431.12* 431.12 7.06 0 236 431.12
a3-18 297.02 14538.70 17172 651 302.17* 302.15 30.78 187 515 302.17
a3-24 332.49 14528.50 5570 354 344.83* 344.83 6.78 0 436 344.83
a3-30 472.35 14490.80 2896 481 494.85* 494.85 9.50 0 574 494.85
a3-36 566.23 14503.70 1173 263 618.63* 592.69 14500.10 8742 17455 625.90
a4-16 299.05* 299.05 360.75 804 296 299.05* 299.05 36.51 35 606 299.05
a4-24 375.07* 372.07 14499.20 4221 244 375.02* 375.02 5.23 0 391 375.07
a4-32 419.60 14497.50 1073 225 486.93* 486.93 40.63 0 1093 498.48
a4-40 499.03 14525.60 23 188 557.69* 557.63 2600.02 2093 4692 583.53
a4-48 567.51 14630.20 32 276 678.59* 663.30 14498.00 1820 9526 708.68

I 408.09 11780.27 7440 682 433.13 2654.25 1165 2998 442.81

UEI 411.64 9957.05 4971 648 433.11 3238.45 2233 3493 441.99
a run times in seconds

cost increases will lead to improved solutions from a customer perspective. What remains

to be seen is how this relationship translates into larger problem instances. Possibly the

difference between the two extremes, only minimizing costs and avoiding user waiting time

when aboard a vehicle, will increase.
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5 Introducing heterogeneous patients and vehicles

Table 5.4: 2indexBC (ρ = 100)

2indexBC

z bestLB CPUa nodes cuts heurUB

U

a2-16 300.17* 300.17 0.92 0 63 300.17
a2-20 345.74* 345.74 2.43 0 117 345.74
a2-24 448.07* 448.07 15.67 0 147 448.07
a3-18 316.78* 316.78 3.59 0 204 316.78
a3-24 346.97* 346.97 11.55 0 516 347.37
a3-30 501.68* 501.68 23.46 0 549 502.39
a3-36 598.53* 598.53 21.55 0 646 599.55
a4-16 282.68* 282.68 5.54 0 357 282.68
a4-24 386.38* 386.38 5.73 0 398 386.38
a4-32 493.15* 493.15 83.48 0 1200 493.15
a4-40 557.94* 557.90 98.35 0 1204 560.31
a4-48 707.89* 697.88 14467.20 4514 4132 711.12

U 439.66 1228.29 376 794 441.14

E

a2-16 331.16* 331.13 92.46 1406 657 331.16
a2-20 347.89* 347.89 4.76 0 77 347.89
a2-24 461.93* 461.89 231.05 1310 582 462.82
a3-18 316.78* 316.78 5.99 0 224 316.78
a3-24 347.05* 347.05 17.32 0 637 347.45
a3-30 501.68* 501.68 27.00 0 617 504.15
a3-36 604.35* 604.30 390.94 447 1820 606.08
a4-16 291.55* 288.70 14479.30 76702 10520 291.55
a4-24 386.38* 386.38 5.66 0 336 386.38
a4-32 491.66 14490.20 4836 9864 507.73
a4-40 560.00 14507.70 2387 21330 590.19
a4-48 697.28 14498.10 2355 7316 717.50

E 444.56 4895.87 7454 4498 450.81

I

a2-16 300.17* 300.17 0.99 0 39 300.17
a2-20 356.64* 356.61 28.06 42 205 356.64
a2-24 450.37* 450.37 30.04 21 251 450.37
a3-18 318.47* 318.47 17.17 0 311 318.47
a3-24 346.97* 346.97 16.57 0 644 347.37
a3-30 501.68* 501.68 10.45 0 478 501.68
a3-36 631.12* 612.35 14511.20 9386 18371 633.29
a4-16 301.81* 301.78 198.41 1564 1244 302.23
a4-24 386.38* 386.38 7.35 0 396 386.38
a4-32 494.59* 493.58 14488.90 18973 9994 499.06
a4-40 559.45* 559.42 223.67 51 1589 561.35
a4-48 698.39 14516.60 2125 8138 721.40

I 443.85 3670.78 2680 3472 448.20

UEI 434.35 3264.96 3503 2920 438.38
a run times in seconds

5.7 Summary

In this chapter the first step towards modeling the true ambulance routing problem of the

ARC has been done by introducing heterogeneous vehicles and users into the standard

DARP. Two problem formulations have been devised. When used in a branch and cut

framework, the 2-index formulation clearly outperforms the 3-index based one in all three

data sets considered. The variable neighborhood search heuristic of Chapter 3 has also
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Table 5.5: heurVNShet (5 runs)

ρ = 0 ρ = 100

avg. % best % CPUa waiting avg. % best % CPUa waiting

U

a2-16 294.25 0.00 294.25 0.00 68.20 0.57 300.17 0.00 300.17 0.00 70.20 0.00
a2-20 344.83 0.00 344.83 0.00 133.80 13.25 345.74 0.00 345.74 0.00 128.80 0.00
a2-24 431.12 0.00 431.12 0.00 187.80 22.21 448.07 0.00 448.07 0.00 202.40 0.00
a3-18 300.48 0.00 300.48 0.00 45.40 12.19 316.78 0.00 316.78 0.00 47.40 0.00
a3-24 345.26 0.12 344.83 0.00 86.80 14.47 347.37 0.11 347.37 0.11 86.60 0.00
a3-30 495.11 0.05 494.85 0.00 105.60 15.67 502.46 0.16 501.68 0.00 111.20 0.00
a3-36 583.89 0.12 583.30 0.02 162.60 55.06 602.23 0.62 599.02 0.08 175.20 0.00
a4-16 282.68 0.00 282.68 0.00 26.00 0.00 282.68 0.00 282.68 0.00 26.80 0.00
a4-24 375.04 0.00 375.02 0.00 50.80 30.90 386.92 0.14 386.38 0.00 51.20 0.00
a4-32 488.27 0.57 486.88 0.28 86.00 11.79 496.05 0.59 493.15 0.00 84.60 0.00
a4-40 565.58 1.41 561.80 0.74 130.60 0.75 563.87 1.06 559.45 0.27 130.00 0.00
a4-48 680.98 673.64 253.80 50.57 717.58 711.12 0.00 0.00

U 432.29 431.14 111.45 18.95 442.49 440.97 92.87 0.00

E

a2-16 331.16 0.00 331.16 0.00 65.60 0.00 331.16 0.00 331.16 0.00 67.20 0.00
a2-20 347.03 0.00 347.03 0.00 120.00 13.25 347.89 0.00 347.89 0.00 111.80 0.00
a2-24 450.25 0.00 450.25 0.00 160.40 16.03 462.57 0.14 461.93 0.00 172.60 0.00
a3-18 300.63 0.00 300.63 0.00 47.60 9.27 316.78 0.00 316.78 0.00 49.00 0.00
a3-24 345.59 0.20 344.91 0.00 76.20 14.47 347.37 0.09 347.05 0.00 80.60 0.00
a3-30 501.41 0.17 500.58 0.00 107.60 7.24 503.70 0.40 501.68 0.00 106.40 0.00
a3-36 583.79 0.10 583.19 0.00 161.60 58.43 607.10 0.46 605.46 0.18 161.80 0.00
a4-16 285.99 0.00 285.99 0.00 25.00 20.00 291.55 0.00 291.55 0.00 24.40 0.00
a4-24 384.03 0.05 383.84 0.00 52.60 10.88 386.64 0.07 386.38 0.00 51.00 0.00
a4-32 504.79 502.52 83.00 15.88 509.76 507.72 81.00 0.00
a4-40 588.40 585.64 121.00 12.94 595.81 590.19 121.00 0.00
a4-48 681.80 675.37 252.20 49.48 717.95 715.62 285.00 0.00

E 442.07 440.93 106.07 18.99 451.52 450.28 109.32 0.00

I

a2-16 294.25 0.00 294.25 0.00 68.40 0.57 300.36 0.06 300.17 0.00 71.40 0.00
a2-20 355.74 0.00 355.74 0.00 141.80 13.25 356.64 0.00 356.64 0.00 137.40 0.00
a2-24 431.12 0.00 431.12 0.00 211.00 22.21 450.37 0.00 450.37 0.00 207.20 0.00
a3-18 302.17 0.00 302.17 0.00 47.20 12.19 318.62 0.05 318.47 0.00 50.20 0.00
a3-24 344.99 0.05 344.83 0.00 83.60 14.47 347.55 0.17 347.37 0.11 87.20 0.00
a3-30 495.13 0.06 494.85 0.00 106.80 15.67 501.68 0.00 501.68 0.00 111.60 0.00
a3-36 619.64 618.58 170.60 43.11 630.61 627.39 207.80 0.00
a4-16 299.05 0.00 299.05 0.00 27.00 20.00 302.06 0.08 301.81 0.00 26.40 0.00
a4-24 376.19 0.31 375.07 0.01 51.60 26.81 386.89 0.13 386.38 0.00 51.40 0.00
a4-32 488.64 0.35 486.93 0.00 88.00 10.08 498.99 497.07 84.80 0.02
a4-40 563.34 1.01 561.35 0.66 132.20 2.36 563.07 0.65 561.35 0.34 132.20 0.00
a4-48 687.44 680.43 262.40 47.17 717.98 713.21 303.60 0.00

U 438.14 437.03 115.88 18.99 447.90 446.83 122.60 0.00

UEI 437.50 436.37 111.13 18.98 447.31 446.03 108.26 0.00
a run times in seconds

been adapted to this problem version. High quality solutions are computed within short

computation times. These results suggest that the application of the proposed method is

also suitable for larger (real world) instances. Furthermore, also the impact of penalizing

vehicle waiting time with passengers aboard has been investigated. Heuristic results for

the two extreme settings have been compared. On the one hand, only considering the cost

part in the objective function, on the other hand, setting the penalization term to a rather

high value. The latter setting results in solutions without user waiting time when aboard
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5 Introducing heterogeneous patients and vehicles

a vehicle. When comparing the results, it can be observed that the latter setting yields

average routing costs that are only 2.5% higher than in the minimum cost setting. The

maximum increase amounts to about 6%. This indicates that from a company perspective,

avoiding waiting time with users aboard a vehicle does not lead to a significant cost increase.

The next and final step is to integrate, in addition to heterogeneous users and vehicles,

the assignment of drivers and additional personnel to the different vehicles.
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6 Solving the real world problem

6.1 Introduction

The dial-a-ride problem variant considered in this chapter represents the final step towards

reality. It tries to model the static real world problem situation, as, e.g., faced by the

ARC, in the field of patient transportation. The ARC has to devise routing plans for their

ambulances for all those requests that are known ahead of time. We define the according

problem as the HDARP with driver related constraints (dHDARP). The heterogeneous

nature of the problem has already been investigated in Chapter 5. In the current chapter

we try to cover all real world characteristics. These are, as before, heterogeneous passengers

and vehicles and, an aspect not treated so far, the assignment of drivers and additional

personnel to the different vehicles.

We thus consider two different types of vehicles, three patient types (seated, on a stretcher,

in a wheelchair), and accompanying persons. As in Chapter 5, up-grading conditions apply

for accompanying persons and seated patients. Users specify time windows for either the

pickup or the drop off location; and in some cases a second staff member has to be aboard

the vehicle.

Eventually, the ARC has to assign drivers to vehicles (usually there are fewer drivers than

vehicles available) and driver working regulations have to be integrated into the planning

process. These regulations refer to maximum shift lengths and mandatory breaks. The

aim is to construct a routing plan that is of minimum routing cost while respecting service

related criteria, expressed in terms of time windows, as well as labor regulations.

We address this complex problem situation with a column generation algorithm that com-

putes lower bounds. These bounds are used to asses the quality of the developed heuristic

solution method, which is again based on VNS, integrating the findings of the previous

chapters.

The contribution of this chapter is fourfold. First, we devise a problem formulation for

the dHDARP. It simultaneously takes routing and driver deployment decisions into account.

This increased integration of two planning decisions is possible since the time frame within

which regular patient transports are carried out corresponds to the drivers’ working shifts.

Second, a column generation framework is designed. The central new aspect lies in the way

the maximum route duration limit together with a non-empty time window at the start depot

is treated in the dynamic programming part. Third, an efficient tailor-made metaheuristic
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6 Solving the real world problem

algorithm for the specified problem is presented. And last but not least, the integration

of the two methods into a collaborative scheme is investigated. The current chapter has

also been summarized in form of a technical report (Parragh et al., 2009a). Many of the

following passages are therefore either similar or identical to those of the technical report.

6.2 Related Work

In a related research domain, a recent work by Xu et al. (2003) deals with a practical pickup

and delivery problem. They take multiple vehicle types, multiple time windows and several

compatibility constraints into account. These compatibility constraints refer to orders that

can only be handled by certain vehicle types and those that cannot be shipped together.

In addition, first-in-first-out loading rules and driver working regulations are considered.

This complex problem situation is successfully solved by a heuristic column generation

algorithm; instead of an exact pricing procedure several heuristics are employed. In their

case, the solution obtained at the root node is quite often already integer. If this is not the

case, a MIP is solved on the set of obtained columns. The developed method yielded high

quality solutions for the described problem. Column generation integrated into a branch

and cut framework has also been successfully applied to the standard PDPTW in Ropke

and Cordeau (2008), outperforming an earlier branch and cut algorithm by Ropke et al.

(2007), in terms of the maximum problem size that can be handled. These results indicate

that the use of a column generation based algorithm is a promising venue to follow. The

combination of column generation and a local search derived method has only recently been

successfully implemented by Danna and Lepape (2005), yielding a so-called collaborative

scheme. This chapter is based on these findings.

6.3 Problem formulation

In the following the basic notation needed to formulate the dHDARP is given. Thereafter,

two different problem formulations are presented; a 3-index based model and a more compact

set partitioning type formulation. The latter will serve as the basis for the proposed column

generation framework.

6.3.1 Notation

As all other problem versions considered so far, the dHDARP is modeled on a complete

directed graph G = (V, A). For each arc (i, j) a non-negative travel cost cij and a non-

negative travel time tij is considered. A total amount of n customer requests, each consisting

of a pickup and delivery vertex pair {i, n + i} have to be served. The set of pickup vertices

is given by P = {1, . . . , n}, the set of delivery vertices by D = {n + 1, . . . , 2n}. At every
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pickup vertex one patient waits to be transported. This patient may demand one of three

different modes of transportation. Passengers may have to be transported seated (q1
i = 1),

on a stretcher (q2
i = 1), or in a wheelchair (q3

i = 1). Each patient may be accompanied

by a friend, relative or nurse (q0
i = 1). The demand at every delivery vertex is equal to

qs
n+i = −qs

i for all s ∈ R = {0, 1, 2, 3}. In addition, a patient may need additional personnel,

besides the driver, on the vehicle (in our case a civilian servant). If this is the case ai = 1

and 0 otherwise. Every user either specifies a time window [ei, li] for the pickup (origin)

or the drop off (destination) location and beginning of service has to start within this time

window. Maximum passenger ride times L̄i are also considered, in order to keep quality of

service at a reasonably high level. This is done by artificially constructing a time window at

the origin (destination) relative to the time window given at the corresponding destination

(origin). At each vertex loading or unloading operations last for a given service time di.

A set K of m heterogeneous vehicles has to serve all n transportation requests. Each

vehicle k ∈ K is associated with a vector Cs,k that gives the amount of resource s available

on vehicle k. As mentioned in the previous chapter, the ARC disposes of two basic vehicle

types. Type 1 (T1) provides 1 staff seat, 6 patient seats, and 1 wheelchair place. Type 2 (T2)

provides 2 staff seats, 1 patient seat, 1 stretcher, and 1 wheelchair place. Patients demanding

to be transported seated may use a patient seat or the stretcher. Patients demanding a

stretcher can only be transported on a stretcher. The same applies to wheelchair passengers.

Accompanying persons, however, may use a staff seat, a patient seat or the stretcher, if no

other transportation mode is available. Each route has to start at the start depot 0 within

a prespecified time window and end at the end depot 2n + 1, respecting a route duration

limit T . This limit is based on Austrian labor regulations. Driver working shifts are limited

to 8.5 hours per day including a (lunch) break of H = 30 minutes that has to start within a

given time window [eH , lH ]. The lunch break can be held at every vertex. In addition, only

a certain number of drivers md (usually md < m) and only a limited number of additional

personnel (civilian servants, i.e. employees serving their alternative service) mc are available

(We assume here that a civilian servant can be either male or female; although in Austria

only the male part of the population has to either do military or alternative service.) A

civilian servant can only work during morning or afternoon periods on a vehicle. If a civilian

servant is needed on the vehicle in the morning, he/she has to be returned to the depot at

noon 2n+2 within a certain time window [e2n+2, l2n+2]. If a civilian servant is on the vehicle

in the afternoon he/she has to be picked up at the noon depot within the time window. In

case there are more drivers available than actually needed to serve all requests, the excess

drivers may be employed for civilian servant duties, serving only half of the day on a vehicle.

Thus, the set of all vertices is given by V = P ∪D∪ {0, 2n + 1, 2n + 2}, and the set of all

arcs by A = {(i, j) : i ∈ V \ {2n + 1} , j ∈ V \ {0} , i 6= j}.

During the optimization process the following decision variables are determined:
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xk
ij=







1, if arc (i, j) is traversed by vehicle k,

0, else,

zk
0 =







1, if a driver is assigned to vehicle k,

0, else,

zk
1 =







1, if a civilian servant is assigned to vehicle k in the morning,

0, else,

zk
2 =







1, if a civilian servant is assigned to vehicle k in the afternoon,

0, else,

vk
i =







1, if the lunch break is held at vertex i,

0, else,

w ∈ {0, . . . , md} number of drivers that serve as additional civilian servants,

Bk
i . . . beginning of service of vehicle k at vertex i,

W k
H. . . waiting time until lunch break on vehicle k,

Qs,k
i . . . load of vehicle k of resource s when leaving vertex i.

6.3.2 A 3-index formulation

The aim of the ARC is the minimization of total routing costs,

min
∑

k∈K

∑

i∈V

∑

j∈V

cijx
k
ij , (6.1)

subject to several constraints that reflect the above stated real world conditions. Those

given below guarantee that each request is served exactly once (6.2) and that each origin-

destination pair is visited by the same vehicle (6.3). Flow conservation is taken care of by

equalities (6.4). The subsequent equalities (6.5) and (6.6) ensure that, if a driver is assigned

to a vehicle, the vehicle starts at and returns to the depot at the end of its route,

∑

k∈K

∑

j∈P∪D

xk
ij = 1 ∀i ∈ P, (6.2)

∑

j∈V

xk
ij −

∑

j∈V

xk
n+i,j = 0 ∀i ∈ P, k ∈ K, (6.3)

∑

i∈V

xk
ij −

∑

i∈V

xk
ji = 0 ∀j ∈ P ∪ D ∪ {2n + 2} , k ∈ K, (6.4)

∑

j∈V

xk
0j = zk

0 ∀k ∈ K, (6.5)

∑

i∈V

xk
i,2n+1 = zk

0 ∀k ∈ K, (6.6)
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xk
ij ∈ {0, 1} ∀i, j ∈ V, k ∈ K, (6.7)

zk
0 ∈ {0, 1} ∀k ∈ K. (6.8)

Civilian servant related conditions form another block of constraints. Equalities (6.9) make

sure that the noon depot is used if a civilian servant is assigned to the respective vehicle for

morning or afternoon periods. This is necessary to either pick up or drop off the civilian

servant at the beginning or at the end of his/her shift. If a civilian servant is assigned

to a vehicle he/she demands a staff seat. This is modeled in inequalities (6.10) – (6.12).

Furthermore, a user demanding a civilian servant aboard the vehicle can only be visited if

a civilian servant is on the vehicle, see constraints (6.13).

∑

i∈V

xk
i,2n+2 = max

{

zk
1 , zk

2

}

∀k ∈ K, (6.9)

Q0,k
0 ≥ zk

1 ∀k ∈ K, (6.10)

xk
i,2n+2 = 1 ⇒ Q0,k

2n+2 ≥ Q0,k
i − zk

1 + zk
2 ∀k ∈ K, (6.11)

xk
i,2n+2 = 1 ⇒ Qs,k

2n+2 ≥ Qr,k
i ∀k ∈ K, s ∈ R \ {0} , (6.12)

zk
1 + zk

2 ≥ ai

∑

j∈V

xk
ij ∀i ∈ V, k ∈ K, (6.13)

zk
1 , zk

2 ∈ {0, 1} ∀k ∈ K. (6.14)

Consistency with respect to resource and load variables is guaranteed by constraints (6.15)–

(6.18). Inequalities (6.15) ensure load propagation from one vertex to the other. Up-grading

constraints for resources 0, 1, and 2 are given in (6.16). They guarantee that capacity restric-

tions regarding these resources are not violated and that each patient demanding resource

0, 1 or 2 can only be loaded if there is either enough capacity of the resource demanded or

another one with a higher number (0 = staff seat, 1 = patient seat, 2 = stretcher).

Suppose an empty T2 vehicle (2 staff seats, 1 patient seat, 1 stretcher, 1 wheelchair place)

visits two origin locations in a row. At each location a seated patient with an accompanying

person has to be picked up. The first seated passenger will fill the patient seat, the accom-

panying person the first staff seat. If it was not possible to have seated patients sit on the

stretcher, the second origin location could not be visited. However, the given up-grading

conditions allow seated passengers to sit on the stretcher. Therefore, origin location two can

be visited. The seated passenger will use the stretcher and the accompanying person the

second staff seat. Suppose the same two origin locations were visited by an empty T1 vehicle

(1 staff seat, 6 patient seats, 1 wheelchair place). In this case the first seated patient would

again use a patient seat and the accompanying person the staff seat. At the second location

there is no more empty staff seat available. However, again due to the given up-grading

possibilities, the accompanying person can use a patient seat. Thus, after visiting location

two, three patient seats and the staff seat will be occupied.
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Finally, constraints (6.17) guarantee that patients demanding resource 3 (wheelchair place)

can only be transported if there is enough capacity of resource 3:

xk
ij = 1 ⇒ Qs,k

j ≥ Qs,k
i + qs

j ∀i, j ∈ V \ {2n + 2} , k ∈ K, s ∈ R, (6.15)

2
∑

s′=s

Qs′,k
i ≤

2
∑

s′=s

Cs′,k ∀i ∈ V \ {2n + 2} , k ∈ K, s ∈ R \ {3} , (6.16)

Q3,k
i ≤ C3,k ∀i ∈ V, k ∈ K, (6.17)

Qs,k
i ≥ 0 ∀i ∈ V, k ∈ K, s ∈ R. (6.18)

Inequalities (6.19) and (6.20) define the beginning of service for each vertex. If vertex i is

chosen for the lunch break (vi = 1), in addition to the service time associated with this

vertex, the vehicle will stay at this vertex until the lunch break time window starts (W k
H)

and then until the lunch break has been concluded. These constraints also take care of

subtour elimination given that (tij + di) > 0 for all i, j ∈ V, i 6= j. Total route duration is

limited by (6.21). If a driver is assigned to a vehicle he/she has to stop for a lunch break.

This is imposed by constraints (6.22).

xk
ij − vk

i = 1 ⇒ Bk
j ≥ Bk

i + di + tij ∀i, j ∈ V, k ∈ K, (6.19)

xk
ij + vk

i = 2 ⇒ Bk
j ≥ Bk

i + di + H + W k
H + tij ∀i, j ∈ V, k ∈ K, (6.20)

Bk
2n+2 − Bk

0 ≤ T ∀k ∈ K, (6.21)
∑

i∈V

vk
i ≥ zk

0 ∀k ∈ K, (6.22)

vk
i ∈ {0, 1} ∀i ∈ V, k ∈ K. (6.23)

The different limits on the beginning of service are given in the following. Standard time

window constraints are modeled in (6.24). Additional time related constraints provide new

bounds on the beginning of service at those vertices where a civilian servant is required.

Bounds for morning periods are given in (6.25) and for afternoon periods in (6.26). In

case a civilian servant is present during both periods, no additional bounds are needed.

Furthermore, constraints (6.27) guarantee that the lunch break starts within the lunch

break time window [eH , lH ].

ei ≤ Bk
i ≤ li ∀i ∈ V, k ∈ K, (6.24)

(zk
1 − zk

2 )ai ≥ 1 ⇒ Bk
0 ≤ Bk

i ≤ Bk
2n+1 ∀i ∈ V, k ∈ K, (6.25)

(zk
2 − zk

1 )ai ≥ 1 ⇒ Bk
2n+1 ≤ Bk

i ≤ Bk
2n+2 ∀i ∈ V, k ∈ K, (6.26)

vk
i = 1 ⇒ eH ≤ Bk

i + di + W k
H ≤ lH ∀i ∈ V, k ∈ K, (6.27)

W k
H ≥ 0 ∀k ∈ K. (6.28)
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6.3 Problem formulation

Finally, inequalities (6.29) and (6.30) limit the number of drivers and civilian servants that

can be assigned to vehicles. Each driver who is used for civilian servant duties, instead of

driving, can be employed for either morning or afternoon periods; increasing the number of

civilian servants available and decreasing the number of drivers by the same amount (w):

∑

k∈K

zk
0 ≤ md − w, (6.29)

∑

k∈K

zk
1 +

∑

k∈K

zk
2 ≤ mc + w, (6.30)

w ∈ {0, . . . , md} . (6.31)

6.3.3 A set partitioning formulation

The above stated problem can be reformulated in a more compact way. Let Ω be the set

of all feasible routes. Then, let T denote the set of different vehicle types and Ωt the set

of feasible routes of vehicle type t, Ω =
⋃

t Ωt. Furthermore, let mt denote the number of

vehicles of type t available; and let cr be the cost of route r ∈ Ω. The constants bir and gr

give the number of times vertex i ∈ P is traversed by r and the number of civilian servants

needed by route r, respectively. Finally, variables ur evaluate to one if route r is used in the

solution. The dHDARP can thus be formulated as the following Set Partitioning problem

(SP):

min
∑

r∈Ω

crur (6.32)

subject to

∑

r∈Ω

birur = 1 ∀i ∈ P, (6.33)

∑

r∈Ωt

ur ≤ mt ∀t ∈ T , (6.34)

∑

r∈Ω

ur ≤ md − w, (6.35)

∑

r∈Ω

grur ≤ mc + w, (6.36)

w ≥ 0, (6.37)

ur ∈ {0, 1} ∀r ∈ Ω. (6.38)

The objective function (6.32) minimizes the costs of the selected routes. Constraints (6.33)

guarantee that every request is served exactly once. Inequalities (6.34) limit the number

of vehicles of type t that can be used in the solution; (6.35) ensures that at most as many
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6 Solving the real world problem

vehicles as there are drivers available are used. Drivers that are not needed in a solution may

be employed as additional civilian servants, thus increasing the number of civilian servants

that can be used by w, see constraint (6.36). In order to compute a lower bound, the Linear

relaxation of SP (LSP) is solved. LSP is obtained by replacing (6.38) by

ur ≥ 0 ∀r ∈ Ω. (6.39)

Due to the large size of Ω the above formulation will not be solved directly. Instead, a

restricted version of this problem, considering only a small subset of columns Ω′ ⊂ Ω, will

be solved. Ω′ is generated by solving LSP using column generation. In column generation

LSP decomposes into a (restricted) master problem and |T | subproblems, one for each

vehicle type. Let πi, σt, λ, and φ be the dual variable values of constraint (6.33) for index

i, of constraint (6.34) for index t, of constraint (6.35), and of constraint (6.36), respectively.

The reduced cost of column ur corresponding to trip r ∈ Ω is given by,

c̄r = cr −
∑

i∈r

πi − σt − λ − grφ. (6.40)

Subproblem t corresponds to finding a single vehicle trip r ∈ Ωt for a vehicle of type t

such that its reduced cost c̄r is minimum. It is subject to constraints (6.3)–(6.27), omitting

superscript k, setting z0 = 1, and replacing k by t in case of the capacity limits Cs,t. The

index t refers to the vehicle type.

6.4 Solving the column generation subproblem

In order to find negative reduced cost columns we implemented a label setting shortest path

algorithm and several heuristics. The use of heuristics, aiding the exact procedure in finding

negative reduced cost paths, yields significant run time reductions (see Savelsbergh and Sol,

1998). Following the findings of Ropke and Cordeau (2008) our label setting algorithm only

considers elementary paths, i.e. every vertex can only be covered exactly once in a path.

This demands additional information to be stored at every label but yielded slightly better

results than its non-elementary version as shown by Ropke and Cordeau (2008) for the

PDPTW. The PDPTW is a special case of the dHDARP considered in this paper. In the

following the elementary shortest path algorithm will be described in detail. Thereafter, the

heuristics based on the label setting algorithm and the different other heuristic algorithms

employed are briefly discussed.

6.4.1 The label setting algorithm

The labeling algorithm implemented is based on the one described by Ropke and Cordeau

(2008) to solve the elementary shortest path problem with time windows, capacity, and
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6.4 Solving the column generation subproblem

Algorithm 6.1 The labeling algorithm (source = 0, sink = 2n + 1)

1: // initialization
2: get graph G = (V, A);
3: generate initial label at source node κ(0);
4: set list of unprocessed labels Γ := {κ(0)};
5: repeat

6: κ := pop first label(Γ);
7: set i := η(κ);
8: // dominance
9: if no label ∈ Li dominates κ then

10: Li := Li ∪ {κ};
11: // extension
12: for each arc (i, j) ∈ G leaving i do

13: extend κ yielding κ′ at vertex j;
14: // elimination
15: if κ′ should not be eliminated then

16: Γ := Γ ∪ κ′;
17: end if

18: end for

19: end if

20: until Γ = ∅
21: return path associated with best label ∈ L2n+1

pickup and delivery. The subproblem we have to solve is also a constrained shortest path

problem. It can be described as an elementary shortest path problem with time windows,

heterogeneous capacity, pickup and delivery, and route duration, given its additional com-

plexity due to the different modes of transportation available and the maximum route du-

ration limit.

In Algorithm 6.1 the structure of our labeling algorithm to solve this shortest path problem

is given. The shortest path between source (origin depot) and sink (destination depot) has

to be found. In an initialization step, a first label at the start depot κ(0) is generated (see

Section 6.4.1.2). κ(0) is put into the queue of unprocessed labels Γ (all labels in the queue

are sorted according to ascending reduced costs). Thereafter we enter the repeat-until loop.

In every iteration, the first label in Γ is taken from the queue. If it is not dominated by any

other label at the same vertex (see Section 6.4.1.3), it is added to the set of labels at vertex i

which is denoted as Li, and its extension is tried along each arc (i, j) ∈ G leaving vertex i

(see Section 6.4.1.2). In case the resulting label κ′ is not eliminated in the subsequent label

elimination check (see Section 6.4.1.5) it is added to Γ. This is repeated until Γ is empty.

In this case the path corresponding to the best label ∈ L2n+1 is returned.

Wihtin a column generation framework it is usually not necessary to identify the best path

or column. Thus, the run time of the labeling algorithm can be reduced, if it is stopped

as soon as a certain number of negative reduced cost labels have been found at 2n + 1.
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6 Solving the real world problem

Furthermore, it can be beneficial if, in addition to the path corresponding to the best label

at vertex 2n + 1, all negative reduced costs paths ending at 2n + 1 are returned. We briefly

come back to this issue in Section 6.4.2.1.

6.4.1.1 Lunch break and civilian servant requirements

In order to properly treat the lunch break requirement and the possibility of additional per-

sonnel on the vehicle (civilian servants) in the labeling algorithm, three additional artificial

nodes are introduced into graph G: one, denoted by 2n+3, for the morning civilian servant,

one, denoted by 2n+4, for the afternoon civilian servant, and one for the lunch stop, denoted

by 2n + 5. If a path generated by means of dynamic programming contains the morning

civilian servant node, a civilian servant is aboard the vehicle during the morning shift. If

the afternoon civilian servant node is part of the path, a civilian servant is assigned to the

vehicle in the afternoon. Every path has to contain the lunch node, with one exception: if

the vehicle returns to the end depot before the end of the lunch time window and the lunch

has not taken place yet, it is assumed, that it is held at the end depot. The vertex that is

followed by the lunch node on the constructed graph is the one where the lunch break will

be held.

In the graph 2n + 3 can only be visited from the origin depot 0 and 2n + 4 only from

the noon depot 2n + 2. Travel times for these nodes are set to t0,2n+3 = t2n+2,2n+4 = 0,

t2n+3,j = t0,j and t2n+4,j = t2n+2,j for all j. In case of the lunch node, travel times from

all vertices to this vertex are set to ti,2n+5 = 0 for all i. Let now i2n+5 denote the node

visited directly before the lunch node, the travel times from the lunch node are dynamically

set to t2n+5,j = ti2n+5,j . The time windows of the civilian servant pickup nodes are set to

the beginning and the end of the planning horizon, respectively. In case of the lunch node a

time window is given, i.e. e2n+5 = eH and l2n+5 = lH (see above). The service times at the

civilian servant nodes are set to d2n+3 = d2n+4 = 0 and to d2n+5 = H in case of the lunch

node. The load is set to q0
2n+3 = q0

2n+4 = 1 at the civilian servant nodes and to zero for all

other resources of artificial nodes.

6.4.1.2 Label management

For each label the following data is stored: η - the vertex of the label, δ - the departure

time at η, Qs
cum - the cumulative load of resource s when leaving η, ccum - the accumulated

cost until η, b ∈ {0, 1} - whether a lunch stop has already been made, α ∈ {0, 1} - whether

a civilian servant is aboard the vehicle or not, o ∈ {0, 1} - whether the noon depot has

already been visited or not, V ⊆ {0, . . . , 2n + 5} - the set of vertices visited along the path,

O ⊆ {1, . . . , n} - the set of open requests, f - the forward time slack, wcum - the accumulated

waiting time, and a pointer to its parent label. The resources f and wcum are needed to

check whether the route duration limit can still be respected; f gives the maximum time
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6.4 Solving the column generation subproblem

the departure at the noon depot can be shifted forward in time. Section 6.4.1.4 explains

these resources in further detail.

Extension of a label κ along an arc (η(κ), j) is only possible if the following holds,

δ(κ) + tη(κ),j ≤ lj , (6.41)

Qs
cum(κ) + qs

j +

2
∑

s′=s+1

qs′

j ≤ Ĉs,t ∀s ∈ R,

(6.42)

α(κ) ≥ aj , (6.43)

(1 − b(κ))(max
{

δ(κ) + tη(κ),j, ej

}

+ dj) ≤ lH , (6.44)

max
{

max(δ(κ) + tη(κ),j , ej) + dj , (1 − b(κ))eH

}

+ (1 − b(κ))H − e0 − F 0
j ≤ T, (6.45)

j /∈ V(κ). (6.46)

The matrix Ĉs,t = Cs,t+
∑2

s′=s+1 Cs′,t. The final time slack F 0
j at vertex j is given by F 0

j =

min
{

min[f(κ), lj − (δ(κ) + tη(κ),j) + wcum(κ)], wcum(κ) + max(0, ej − (δ(κ) + tη(κ),j)
}

, i.e.

the minimum over all forward time slacks and the total waiting time until vertex j (see

Section 6.4.1.4 for further details). Condition (6.41) ensures time window feasibility - the

departure from the previous vertex η(κ) plus the travel time from η(κ) to j has to be

earlier or at most equal to the later time window at vertex j. According to condition

(6.42) a path can only be feasibly extended along arc (η(κ), j) if all loading restrictions

are satisfied. Condition (6.43) states that if vertex j demands a civilian servant aboard

the vehicle (aj = 1), it can only be visited if a civilian servant is currently on the vehicle

(α(κ) = 1). In case the lunch node is not part of the path yet, extension along arc (η(κ), j) is

only possible if it can still be feasibly inserted after vertex j. This is taken care of by (6.44).

Feasibility with respect to route duration is guaranteed by condition (6.45). For further

details on this issue we refer to Section 6.4.1.4. Finally, the elementary path condition

is ensured by (6.46). Moreover, κ and j may have to comply with one of the following

conditions,

j ∈ D ∧ j − n ∈ O(κ), (6.47)

j = 2n + 1 ∧ O(κ) = ∅ ∧ α − o ≤ 0. (6.48)

Condition (6.47) ensures that if j is a delivery, it can only be visited if the request is open,

i.e. the corresponding pickup has already been visited. Condition (6.48) ensures that a label

can only be extended to the end depot if there are no more open requests and if the noon

depot was visited, in case a civilian servant is currently on the vehicle.

If a label can feasibly be extended along arc (η(κ), j), a new label κ′ is generated at
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vertex j:

η(κ′) = j, (6.49)

δ(κ′) = max
{

δ(κ) + tη(κ),j, ej

}

+ dj , (6.50)

Q0
cum(κ′) =







Q0
cum(κ) − 1 if j = 2n + 2 ∧ α(κ) = 1,

Q0
cum(κ) + q0

j +
∑2

s′=1 qs′

j else,
(6.51)

Qs
cum(κ′) = Qs

cum(κ) + qs
j +

2
∑

s′=s+1

qs′

j ∀s ∈ R \ {0} , (6.52)

ccum(κ′) = ccum(κ) + c̄η(κ),j, (6.53)

b(κ′) =







1 if j = 2n + 5,

b(κ) else,
(6.54)

α(κ′) =



















1 if j ∈ {2n + 3, 2n + 4} ,

0 if j = 2n + 2,

α(κ) else,

(6.55)

o(κ′) =







1 if j = 2n + 2,

o(κ) else,
(6.56)

V(κ′) = V(κ) ∪ {j} , (6.57)

O(κ′) =



















O(κ) ∪ {j} if j ∈ P,

O(κ) \ {j − n} if j ∈ D,

O(κ) else,

(6.58)

wcum(κ′) = wcum(κ) + max
{

0, ej − (δ(κ) + tη(κ),j)
}

(6.59)

f(κ′) = min
{

f(κ), wcum(κ) + lj − (δ(κ) + tη(κ),j)
}

. (6.60)

At the origin depot (the first vertex along each path) these labels are initialized by setting

δ(0) = e0, Qs
cum(0) = 0 for all s ∈ R, ccum = 0, b(0) = 0, α(0) = 0, o = 0, f(0) = l0 − e0,

and wcum(0) = 0.

6.4.1.3 Dominance

For dominance a criterion similar to the one denoted as DOM1’ in Ropke and Cordeau

(2008) is used. Let U(κ) denote the set of unreachable requests of label κ, Û = V ∪
{

i ∈ P : δ(κ) + tη(κ),i > li
}

, according to this criterion a label κ dominates another label κ′

if

η(κ) = η(κ′), δ(κ) ≤ δ(κ′), ccum(κ) ≤ ccum(κ′), Û(κ) ⊆ Û(κ′),O(κ) ⊆ O(κ′). (6.61)
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In addition, in our case, also the following has to hold,

min {f(κ), wcum(κ)} ≥ min {f(κ′), wcum(κ′)} , (6.62)

b(κ) = b(κ′), α(κ) = α(κ′), o(κ) = o(κ′). (6.63)

This means that the amount of time by which the departure from the origin depot can be

shifted forward in time at label κ has to be at least as large as at label κ′. If the lunch node

or the noon depot were already visited by the partial path represented by label κ the same

has to be true for κ′. The same applies to whether a civilian servant is aboard the vehicle

or not. Furthermore we only apply the dominance check to labels with η ∈ V .

6.4.1.4 Time windows at start depot and minimum route duration

Incorporating a route duration limit together with a non-empty time window at the origin

depot into a label setting algorithm is a non-trivial task. One option, reviewed by Irnich

(2007) and introduced by Desaulniers and Villeneuve (2000), consists in appending two

resources to each label coupled by a max-term, denoted as q̇ and ż. These are extended as

follows:

q̇(κ′) = tη(κ),j + max
{

q̇(κ) − (tη(κ),j + dη(κ)), ż(κ) − lj
}

(6.64)

ż(κ′) = tη(κ),j + max
{

ż(κ), q̇(κ) − (tη(κ),j + dη(κ)) + ej

}

(6.65)

Here, we would like to show that this is equivalent to using the notion of the forward time

slack as developed by Savelsbergh (1992).

The argumentation of Desaulniers and Villeneuve (2000) is the following. Let F =

(0, 1, 2, . . . , h) denote a feasible path, the earliest possible departure time ẽj at node j

when traveling along U can be calculated as,

ẽ0 = e0, (6.66)

ẽj = max {ẽj−1 + (dj−1 + tj−1,j), ej} ∀j ∈ {1, . . . , h} . (6.67)

On the other hand, the latest arrival time l̃j at node j for which waiting can be avoided,

can be computed by setting,

l̃0 = l0, (6.68)

l̃j = min
{

l̃j−1 + (dj−1 + tj−1,j), lj

}

∀j ∈ {1, . . . , h} . (6.69)

Let now F be a feasible (partial) path starting at the origin depot 0 and ending at node i.

Then, let si =
∑

(k,l)∈F (tkl +dk) denote the sum over “pure” travel times along F (including
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service time but excluding waiting time), the following two parameters can be defined:

q̃i = si − l̃i, (6.70)

z̃i = max {si, q̃i + ẽi} . (6.71)

Then the minimum duration of path F (ending at i) is equal to max {z̃i, q̃i + Di}, Di

denoting the departure time from vertex i.

Now it can be shown that q̃i is equivalent to the forward time slack introduced by Savels-

bergh (1992). Let f̃0
i denote the forward time slack from the origin depot until the end of

the path F (here node i). It is the maximum amount of time by which the departure at

the depot can be shifted forward without violating any other time window constraint. It is

computed as follows (Bj denotes the beginning of service at node j),

f̃0
i = min

0≤j≤i

{

lj − [B0 +

j
∑

p=1

(dp−1 + tp−1,p)]

}

. (6.72)

Let us assume that e0 = 0 and therefore B0 = 0, we obtain,

f̃0
i = min

0≤j≤i

{

lj −

j
∑

p=1

(dp−1 + tp−1,p)

}

. (6.73)

Let us now rewrite l̃i as,

l̃i = min
0≤j≤i







lj +
i

∑

p=j+1

(dp−1 + tp−1,p)







, (6.74)

and replace l̃i by this formulation in q̃i, we obtain,

q̃i =

i
∑

p=1

(dp−1 + tp−1,p) − min
0≤j≤i







lj +

i
∑

p=j+1

(dp−1 + tp−1,p)







(6.75)

= − min
0≤j≤i

{

lj −

j
∑

p=1

(dp−1 + tp−1,p)

}

. (6.76)

This shows that q̃i = −f̃0
i . Furthermore, let us examine the minimum route duration

time as defined by Desaulniers and Villeneuve (2000) given by max {z̃i, q̃i + Di}. We

still assume that B0 = e0 = 0. In fact by substituting z̃i this term can be rewritten as

max {si, q̃i + ẽi, q̃i + Di} = max {si, q̃i + max(ẽi, Di)}. If Di is computed correctly it will

always be greater than or equal to ẽi in our case. Therefore, max {si, q̃i + Di} should be

valid. Now if we denote by w̃i the accumulated waiting time until node i, it is easy to
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6.4 Solving the column generation subproblem

see that Di − w̃i = si. Thus, max {si, q̃i + Di} = Di − min(−q̃i, w̃i) = Di − min(f̃0
i , w̃i).

This corresponds to what Cordeau and Laporte (2003b) use to compute the minimum route

duration of a given route (see also Chapter 3).

Thus, to handle a time window at the start depot together with a route duration limit,

the notion of forward time slacks as defined by Savelsbergh (1992) can be used. In order

to do so, we use the additional resources wcum and f (see above). To generalize what has

been shown to the case of e0 > 0, these resources are initialized, as already pointed out,

with f(0) = l0 − B0 (B0 = e0) and wcum(0) = 0.

6.4.1.5 Label elimination

Following the observations of Ropke and Cordeau (2008) and Ropke (2005), labels can be

eliminated if the deliveries of open requests cannot be reached in a feasible way. As in

Ropke and Cordeau (2008) and Ropke (2005) we consider sets of one and two deliveries and

one set of three deliveries. The last set consists of the delivery that is furthest away from

the current vertex, the delivery that is furthest away from these two, and the delivery that

is furthest away from the current vertex and the two previously selected deliveries. If for

one of these sets of deliveries no path can be found that serves all deliveries in the set in a

feasible way, the label can be eliminated.

In addition to these sets of deliveries, we check whether there is a civilian servant on the

vehicle and whether the noon depot has not been visited yet. If this is the case and the noon

depot cannot be reached in a feasible way from the current vertex, the label can equally be

eliminated.

6.4.2 Heuristic algorithms

To accelerate the column generation process, besides the exact dynamic programming algo-

rithm, several heuristic procedures to generate reduced cost columns are used. These can

be divided into two classes; those that are based on the dynamic programming approach;

and those that rely on simple construction/improvement principles.

6.4.2.1 Heuristics based on the labeling algorithm

Two of the heuristic algorithms used to generate columns are based on the exact labeling

algorithm. They were both also used by Ropke and Cordeau (2008) in the context of the

PDPTW. The first heuristic (LimLabels) simply limits the number of labels that can be in

the queue of unprocessed labels at a time. At first the limit is set to 500. If no negative

reduced cost column can be found with this limit, the limit is increased to 1000. If again no

negative reduced cost columns are generated the limit is set to 2000. The second heuristic

(LimGraph) applies the exact labeling algorithm on a reduced graph. Two reduced graphs

are used. In Graph G5 every pickup and delivery vertex is only connected to the 5 closest
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pickup vertices and the 5 closest delivery vertices. In addition, if not already present,

connections between each pickup and its corresponding delivery are added and the start

depot is connected to all pickup vertices and the morning civilian servant node; and the

noon depot is connected to the afternoon civilian servant node. All delivery vertices are

connected to the end depot. All vertices except the end depot are connected to the lunch

node and the noon depot. The morning civilian servant node, the afternoon civilian servant

node and the lunch node are connected to all vertices except the start depot. The second

reduced Graph G10 is constructed in the same way. Instead of the 5 closest pickups and

deliveries it considers the 10 closest.

6.4.2.2 Construction/improvement based heuristics

Four of the heuristics applied use construction and or improvement algorithms. Like the la-

beling algorithm derived heuristics described above, they are based on those used by Ropke

and Cordeau (2008) to solve the PDPTW by means of branch-and-cut-and-price. Heuristic

ConstrHeur is a simple construction heuristic that starts from every pickup and delivery

vertex pair and iteratively adds requests by means of best insertion regarding reduced costs.

Heuristic RandConstrHeur is also a construction heuristic but here randomized best inser-

tion is used to insert additional requests. The randomization process favors requests that

increase the reduced costs of the partial route the least. In both construction heuristics,

every time a new request is inserted, the resulting route is checked whether it has negative

reduced cost. If this is the case, the according column is generated. After the check, the

route undergoes local search based improvement (see Chapter 3, Section 3.4.4), minimizing

actual routing costs, and considering only moves that yield a feasible route. In case this

results in another negative reduced cost route, the according column is again added to the

pool. Heuristic LNSCurrBasis applies Large Neighborhood Search (LNS) (Shaw, 1998) on

the routes in the current basis. LNS works as follows. In a removal step, up to 50% of

the requests forming the respective route are randomly removed from it and in an insertion

step requests are reinserted, considering all requests, using randomized best insertion as

described above. These two steps are repeated until no further improvement can be found.

Between 15 and 20 non-improving steps are performed. Heuristic LNSRandConstr simply

improves all solutions obtained by the randomized construction algorithm with LNS.

6.5 The column generation framework

The whole column generation framework is depicted in Algorithm 6.2. During the ini-

tialization phase initial columns are generated (see Section 6.5.1) and added to Ω′, and a

number of pre-processing steps (see Section 6.5.2) are applied. Then, LSP is solved on Ω′

and the dual variable values associated with the different constraints are retrieved. Based
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Algorithm 6.2 The column generation framework

initialization. generate initial columns by VNS, introduce artificial columns and add
them to Ω′, do pre-processing (graph pruning, time window tightening).
repeat

solve LSP on Ω′

every 10 iterations apply VNS to the current LSP solution (collaborative scheme)
generate new negative reduced cost columns heuristically (ConstrHeur, LNSCurrBa-
sis, RandConstrHeur, LNSRandConstr, LimLabels, LimGraph)
if no negative reduced cost columns are found then

run exact label setting algorithm to find negative reduced cost columns
end if

add new negative reduced cost columns to Ω′

until no more negative reduced cost columns can be found
return optimal solution of LSP

on these values negative reduced cost columns are generated using the different heuristics in

a certain sequence (see Section 6.5.3) and if all fail, the exact dynamic programming proce-

dure. All new negative reduced cost columns are added to Ω′ and the LSP is solved again.

This is repeated until no new negative reduced cost column can be identified. In this case,

the optimal solution to LSP has been found. Additionally, every 10 iterations the proposed

VNS heuristic (see Section 6.6) is applied to the current solution of LSP, see Figure 6.1 for

the whole framework. This so-called collaborative scheme is depicted in further detail in

Section 6.5.4.

6.5.1 Initial columns

An initial set of columns is generated by means of a heuristic algorithm, namely a VNS. The

VNS is described in detail in Section 6.6. A limit of 2x104 iterations is applied no matter

whether a feasible solution can be found within this time limit or not. Here, ascending

moves are not allowed. In addition, one artificial column for each i ∈ P is generated, having

exactly one 1 at the entry corresponding to i and zeros at all other entries. These column

are given a sufficiently large cost of M .

6.5.2 Pre-processing

Before starting the column generation algorithm we perform several pre-processing steps.

These refer to time window tightening and graph pruning techniques. They are based on

those described in detail by Cordeau (2006). In addition, we use the cyclic time window

tightening steps as described in Desrochers et al. (1992); Kallehauge et al. (2005),

ek := max

{

ek, min[lk, min
(i,k)

(ei + (tik + di))]

}

, (6.77)
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Figure 6.1: The collaborative scheme

ek := max

{

ek, min[lk, min
(k,j)

(ej − (tkj + dk))]

}

, (6.78)

lk := min

{

lk, max[ek, max
(i,k)

(li + (tik + di))]

}

, (6.79)

lk := min

{

lk, max[ek, max
(k,j)

(lj − (tkj + dk))]

}

. (6.80)

These steps are repeated until no further time window tightenings are possible. Note that

only those arcs are considered that have not been eliminated in previous pre-processing

steps. Eventually, also all those arcs are removed from the graph that would lead to an

infeasible solution regarding vehicle capacity restrictions.

6.5.3 Pricing heuristics’ sequence

The first pricing heuristic invoked to find new negative reduced cost columns ist selected

using roulette wheel selection. Initially only ConstrHeur can be chosen. Its score is set to

one, the score of all others to zero. Thereafter, in every column generation iteration the score

of the heuristic that obtained one or more new negative reduced cost columns is increased

by one. Thus, its probability to be chosen as the first heuristic to be tried is increased.

The heuristics are ordered as in Ropke and Cordeau (2008): ConstrHeur - LNSCurrBasis

- RandConstrHeur - LNSRandConstr - LimLabels - LimGraph. If ConstrHeur is chosen as

the first heuristic but it fails to yield a new negative reduced cost column for either vehicle

types, we switch to LNSCurrBasis. If LNSCurrBasis fails we switch to RandConstrHeur

and so on. If LNSCurrBasis is chosen as the first heuristic and fails to obtain negative

reduced cost columns, only the heuristics following LNSCurrBasis in the list are tried in

the order above. This applies to all heuristics. If also LimGraph (the last one on the list)

fails to generate negative reduced cost columns, the exact procedure is started. If this

procedure also fails to generate negative reduced cost columns, the optimal solution of the

relaxed problem (LSP) has been found. In case it is integer also the optimal solution of
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SP has been found. In all labeling algorithms we stop as soon as 50 negative reduced cost

columns have been generated. All labeling algorithms use a sorted queue of unprocessed

labels. Labels are ordered according to increasing reduced cost.

LSP is resolved on Ω′ every time at least one new negative reduced cost column for either

vehicle type could be generated. Every heuristic tries to find negative reduced cost columns

for T1 and T2 vehicles in alternating order. If new negative reduced cost columns for T1

vehicles are generated, before resolving LSP on the updated Ω′, their validity for T2 vehicles

is checked. In case they are valid, they are added to the column pool for T2 vehicles. Only

then LSP is solved. This is not done if one of the heuristics yields new negative reduced

cost columns for T2 vehicles; it is not very likely that columns for T2 vehicles are also valid

for T1 vehicles.

6.5.4 Collaborative scheme

In addition, every 10 iterations (one iteration corresponds to finding one or more reduced

cost columns, adding these columns to Ω′, and solving LSP) the optimal solution of the

current LSP is passed to the VNS. If there is still an artificial column in the basis the

VNS resumes the search using the last incumbent of the previous run. If there are no

more artificial columns in the basis, two different scenarios exist. Either, in case of an

integer solution, it is passed on to the VNS as it is. Or, in case of a fractional solution, all

duplicate requests are removed before passing it on to the VNS. Duplicate requests are kept

on the route that is associated with the ur closest to one. Empty routes are eliminated. In

this case there can be more vehicles in use of a certain type, due to the fractionality of the

solution, than actually available. However, it is still passed to the VNS keeping all increased

limits on the number of routes per vehicle type and setting the number of drivers available

to m̄d = max(md, mcg − 1) (mcg gives the number of routes used after having removed

duplicate requests). Thus, at most as many drivers as there are currently needed minus

one or, in case this number is smaller than the original limit, at most the original number

of drivers can be used. A new best solution generated by the VNS might be infeasible

regarding the number of vehicles of a certain vehicle type employed and in terms of the

number of drivers, but no other constraint. This entails that the resulting columns might

not be combinable as such but they are all feasible. If the solution obtained by the VNS is of

lower cost (actual costs not reduced costs) than the current solution of the master problem

after being converted into an integer solution, the corresponding routes are transformed into

columns and added to the master. Here the VNS is run for 104 iterations and ascending

moves are not considered, i.e. a deteriorating solution cannot become a new incumbent

solution (see Section 6.6.3). This collaborative scheme is inspired by Danna and Lepape

(2005). In contrast to Danna and Lepape (2005) we do not only use the collaborative local

search method to improve the best integer solution found so far. We use it to improve the
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Algorithm 6.3 heurVNShetd

initial solution // determine an initial solution ∫ and set k̂ := 1
repeat

shaking // determine a solution ∫ ′ in the neighborhood k̂ of ∫
local search // apply local search to ∫ ′ yielding ∫ ′′

move or not // if ∫ ′′ meets the acceptance requirements the incumbent solution ∫ is

replaced by ∫ ′′ and k̂ := 1, otherwise k̂ := (k̂ mod k̂max) + 1; if ∫ ′′ is feasible and
better than ∫best, set ∫best := ∫ ′′

until some stopping criterion has been met
return ∫best

current optimal solution, no matter whether it is integer of fractional.

6.6 The heuristic solution framework

Besides the column generation framework also a heuristic algorithm is employed. It is based

on the VNS designed for the standard DARP in Chapter 3 (heurVNS ). We will denote it as

heurVNShetd. As in heurVNS, infeasibilities are allowed during the search but penalized.

The following evaluation function is used:

f̂(∫) = ĉ(∫) +
∑

s∈R

α̂sq̂s(∫) + β̂d̂(∫) + γ̂ŵ(∫) + ζ̂â(∫). (6.81)

The term ĉ(∫) gives the routing costs associated with solution ∫ . The terms q̂s(∫), d̂(∫),

ŵ(∫), and â(∫) represent load violations (∀s ∈ R), duration violation, time window violation

and civilian servant violation (if there are more civilian servants needed in ∫ than there are

available), respectively. As in heurVNS, the according penalty parameters α̂s, β̂, γ̂, and ζ̂

are dynamically adjusted throughout the search. Again, a solution ∫ can only become a new

best solution ∫best if q̂s(∫) = d̂(∫) = ŵ(∫) = â(∫) = 0 for all s ∈ R. In contrast to heurVNS,

pre-processing steps are not applied prior to starting the procedure. All design elements

(see Algorithm 6.3) that have been subject to modification with respect to heurVNS are

described in the following. The local search step corresponds to the one of heurVNS. It is

also employed in the same frequency (see Chapter 3, Sections 3.4.4, 3.4.5).

6.6.1 Initial solution

In heurVNShetd a novel initialization procedure for the dHDARP is employed. It generates

a possibly infeasible initial solution. In a first step the average number of requests, rounded

to the next integer, per vehicle available is computed. Then all requests are inserted in the

order they appear in the instance file into the routes, starting with the first route of the

first type, opening the next route as soon as the average number of requests per vehicle has

118



6.6 The heuristic solution framework

been attained. If a request does not fit into a route due to a lack of the demanded resource

on the current vehicle, it is inserted into the next vehicle route with this resource available.

The procedure ends as soon as all requests have been inserted into some route. Finally all

routes are checked whether a request demands a civilian servant aboard the vehicle. If this

is the case, the noon depot is inserted at the best possible position and a civilian servant is

assigned to the corresponding vehicle for the according shift (morning or afternoon).

6.6.2 Shaking

During the shaking phase four different neighborhood operators are employed: the first

swaps two sequences of vertices, two neighborhoods are based on the move operator, and

the last uses the ejection chain idea. In contrast to heurVNS, the zero split neighborhood

is not considered.

In the swap neighborhood (S) two sequences of vertices are exchanged in the same way as

described in Chapter 3. In contrast to all previous VNS implementations, two types of move

neighborhoods are employed. The first move neighborhood (M) corresponds in large parts

to the move neighborhood used in heurVNS. Insertion routes are either selected randomly

or, the “closest” route in terms of spatial distance is taken. Since graph pruning techniques

are not applied before starting heurVNShetd as a stand-alone method, a correction term

does not need to be considered. When used in the above described collaborative scheme,

graph pruning techniques have been applied. In this case, the same correction term as in

Chapter 3 is used. The second move neighborhood (Mx) distinguishes itself from the first

one in the way the insertion routes are selected. Here only random selection is employed. It

thus corresponds to the move neighborhood employed in heurVNSws (see Chapter 4). The

chain neighborhood (C) corresponds to the one introduced in Chapter 3.

In contrast to all previous problem versions, in case of the dHDARP, there may be more

vehicles in use than drivers available. Therefore, a further design decision has to be taken.

It refers to whether a neighborhood operator can move requests to vehicles currently not

in use or not. Moving requests to vehicles currently not in use may result in a violation of

the maximal number of drivers available. The following strategy is employed. In case of the

swap neighborhood, the two routes are only chosen from all routes currently in use. Empty

vehicles are not considered. In the first move neighborhood (M), at most one additional

route that is currently not assigned to a driver may be chosen as insertion route. In the

second move (Mx) and the chain neighborhood, all routes, also those currently not in use,

are eligible for selection. Note that, in case mt > md for some t ∈ T , mt can be set to

mt := md.

Both move and also the chain neighborhood operators may such construct a solution

with more vehicles in use than drivers available. Such a solution has to be “repaired”.

The repair procedure employed here simply chooses one route at random out of all non-
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empty routes and redistributes the requests forming this route to other non-empty routes.

Request insertion is done one by one in the best possible way, using the notion of critical

vertices (Cordeau and Laporte, 2003b). The repair procedure is repeated until the number

of vehicles in use meets the number of available drivers.

The shaking operators are applied in a similar order as in Chapter 3: S1 – M1 – C1

– S2 – M2 – C2 – S3 – M3 – C3 – S4 – M4 – C4 – Mx4 (the number given in addition

to the neighborhood abbreviation indicates the neighborhood size). As in heurVNSws and

heurVNShet, k̂max = 13 different neighborhoods are used. The first neighborhood (k̂ = 1)

corresponds to applying shaking operator S1, whereas, e.g. in case of k̂ = 6 operator C2 will

by used. In Chapter 3, the last neighborhood is the parameterless zero split neighborhood,

which distributes requests forming a natural sequence to other routes. Here, Mx4 is the last

neighborhood. In combination with the repair function it is the strongest diversification

mechanism in place, regarding the number of request relocated together with the amount

of change possible in terms of the number of vehicles of each vehicle type employed.

6.6.3 Move or not

As in heurVNS, the decision whether the search moves to the new solution ∫ ′′ or not is based

on a simulated annealing type acceptance criterion. In addition to the acceptance criteria

of Chapter 3, deteriorating solutions may be accepted before the first feasible solution has

been identified; every solution that has an evaluation function value f̂(∫ ′′) ≤ 1.05f̂(∫) is

accepted with a probability of 1% until the first feasible solution has been found. Thereafter

the same acceptance criteria as in heurVNS are employed.

6.6.4 Route evaluation

Every time a route is modified its routing cost and constraint violations have to be (re-)evalu-

ated. Here the notion of the forward time slack, as shown for the label setting algorithm

in Section 6.4.1.4, is applied. In the evaluation function, first, the best lunch location is

determined. Thereafter, the forward time slack is calculated and the according constraint

violations are calculated. In a separate procedure the noon depot is either inserted in the

best possible way or removed, in case there are no more requests on the route that demand

a civilian servant. In the local search step, the noon depot insertion/removal procedure is

only invoked at the very end. The same applies to the request insertion routine. Whenever

a request is removed from a route it is also invoked.

6.7 Computational experiments

All programs were implemented in C++. In the column generation framework the LP

solver of CPLEX 11.1 together with Concert Technology 2.6 were used. All experiments
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Table 6.1: Artificial instances - data

probability for patient to be probability probability
data set seated on stretcher in wheelchair for AP CS demanded mc fleet

X 0.50 0.25 0.25 0.00 0.25 ⌈m(0.5 + ρ̂)⌉ 2 T1, 4 T2
Y 0.25 0.25 0.50 0.10 0.50 ⌈m(1 + ρ̂)⌉ 2 T1, 4 T2
Z 0.83 0.11 0.06 0.50 0.50 ⌈m(1 + ρ̂)⌉ 2 T1, 4 T2

AP = Accompanying Person, CS = Civilian Servant
ρ̂ randomly chosen in [0, 1]
T1: 1 staff seat, 6 patient seats, 1 wheelchair place
T2: 2 staff seats, 1 patient seat, 1 stretcher, 1 wheelchair place

were carried out on a 3.2 GHz Pentium D computer with a memory of 4 GB. Both solution

procedures have been tested on three artificial data sets and on real world data. In the

following, first, the characteristics of the different instances are described. Then, the results

obtained are discussed.

6.7.1 Artificial instances

For each instance of data set “A” by Cordeau (2006), containing between 16 and 48 requests

and between 2 and 4 vehicles, three instances with different degrees of heterogeneity have

been generated. The characteristics of these instances are depicted in Table 6.1. Setting

“X” is the most homogeneous one; 50% of the original users have been converted into seated

passengers; 25% into patients on stretchers; and 25% into persons needing a wheelchair.

The probability that an Accompanying Person (AP) is present has been set to zero. The

number of civilian servants available has been randomly set to between 0.5 of and 1.5 times

the number of drivers available (ceiled to the next integer). The probability for a civilian

servant to be demanded by a patient has been set to 25%. For setting “Y”, 25% of the

original users have been transformed into seated patients, 25% into patients on stretchers

and 50% into wheelchair patients. 10% of all patients are assumed to be accompanied by

someone. The number of civilian servants has been randomly set to at least the number of

drivers available and at most to twice the number of drivers. The probability for a civilian

servant to be demanded by a patient has been set to 50%. In the third setting, denoted by

“Z”, 83% of the patients are assumed to be seated, 11% are assumed to be on a stretcher,

and 6% are assumed to be in a wheelchair. This setting is based on the data provided by

the ARC. Finally, the probability for a patient to be accompanied by someone has been set

to 50%. All other settings are equal to those of data set “Y”. In all instances the vehicle

fleet consists of 2 T1 and 4 T2 vehicles and the number of available drivers has been set to

the original number of vehicles. At the start depot a 60-minute time window has been set;

and maximum route duration has been reduced by 60 minutes with respect to the original

data. As before it is equal for all vehicles. The time window at the noon depot has been

set to e2n+2 = e0 + T/2 and l2n+2 = e2n+2 + 15.
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6.7.2 Real world instances

Furthermore, we apply the different solution algorithms to 15 real world instances from

the ARC. They dispose of the following characteristics. As in data set “Z” 83% of the

passengers are seated patients, 11% have to be transported on a stretcher, and 6% in a

wheelchair. 50% of all these passengers take an accompanying person with them and about

40% demand additional personnel (a civilian servant) on the vehicle. Three T1 vehicles

and 31 T2 vehicles are available. Maximum route duration (driver working hours) are

limited to 510 minutes. The lunch break has to be held between 11am and 2pm. It lasts

30 minutes. Every driver starts to work between 6:30 am and 8:30 am. These two points

in time give the time window at the start depot. The time window at the noon depot

lasts from 12:30 until 1:00. Users specify a time window for either the pickup or the drop

off location. Time window length is equal to 30 minutes. Maximum user ride times have

been set to L̄i = ti,n+i + 30 for all i ∈ P . As mentioned above, ride time limits are not

explicitly considered; depending which time window has been specified by the user, the time

window for the corresponding location without time window is set relative to the existing

time window; in case of a time window at the destination, it is set to ei = en+i − (L̄i + di)

and li = ln+i − (ti,n+i + di) at the origin; in case of a time window at the origin, it is set to

en+i = ei + di + ti,n+i and ln+i = li + di + L̄i at the corresponding destination.

6.7.3 Column generation results

In a first step two versions of the column generation framework are tested on the artificial

data sets. The first version only uses pure column generation, while in the second version

the collaborative scheme is employed. Table 6.2 gives the results for pure column generation;

Table 6.3 the results for the collaborative scheme. The following information is provided.

First, the time needed to compute the initial VNS solution and the total run time, excluding

the initial VNS, of the respective program is given. A maximum run time limit of 432000

seconds was imposed for both procedures. Then, the lower bounds and the best integer

solutions found throughout the search are given. In case the time limit was reached, no

lower bound can be given. The best integer solution found throughout the search is either

the optimal integer solution, in case the obtained lower bound is integer, or the solution

obtained from solving SP on the set of generated columns within a run time limit of 10

minutes. Furthermore, the status of the obtained lower bound is given (integer (int.),

fractional (frac.), or infeasible (inf.)). This is followed by the total number of columns

generated, and the number of times the different pricing procedures found at least one new

negative reduced cost column. Rows X̄ , Ȳ , and Z̄ give the average values for the respective

data set. Row XY Z gives the total average values across all data sets.

In both cases, pure column generation and the collaborative approach, the two heuristic

pricing procedures which prove to be the most useful are ConstrHeur and LimLabels. Also
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all other heuristic pricing procedures contribute a number of reduced cost columns and thus

should not omitted.

When comparing the two tables, the following differences can be observed. In case of

the smaller instances, pure column generation is faster than the collaborative approach.

This is due to the fact that in case of the smaller instances, the initial VNS quite often

already finds the optimal solution and thus, intermediate calls to the VNS do not improve

this solution. They only increase computation times. This relation changes in case of

the larger instances. Here, in some cases the collaboration approach is faster while in

others, lower computation times are due to pure column generation. The intuition is

that calls to the intermediate VNS are not always useful. In many cases they, however,

are. When comparing the best integer solution found during the search, the collaborative

approach outperforms pure column generation on average. When comparing the results of

each instance individually, the collaborative scheme is better or equal in all but two cases.

The most remarkable difference is certainly the fact, that with the collaborative scheme in

place instance a4-48 of data set “X” can be solved within the time limit, while in case of pure

column generation, this instance cannot be solved. From this fact, it can be derived that

the integration of a collaborative local search derived method into the column generation

framework has a positive impact on the performance of the whole method.

As the original real world derived instances are too large to be solved with either of the

two exact procedures, results for these will only be provided by the heuristic method.

6.7.4 Heuristic results

In Table 6.4 the results obtained by means of heurVNShetd for the artificial data sets are

presented. As stopping criterion a limit on the number of iterations (105) is used. For each

data set the following information can be taken from the table; the name of the instance;

average solution values over five random runs; best solution values out of these five runs;

and the respective percentage deviations from the lower bounds (see above). The average

percentage gap between the lower bound and the obtained average solution value is less

than 2% for all three data sets. Computation times are not really low, but acceptable

(less than 9 minutes on average). The rather long computation times with respect to the

low total iteration limit are due to the complex evaluation procedure, including a possible

repositioning of the noon depot and the appropriate choice of the lunch break location.

As mentioned above, all real world instances were too large to be solved by means of

column generation. Therefore, in order to get an idea of how difficult real world derived

instances are, we generated two additional real world based data sets. In these two data

sets every instance has been reduced by the factor 5 and 3, regarding the original data,

respectively; and the time window length has been decreased to 15 minutes. For those

instances that could be solved by the column generation framework, the obtained lower

123



6 Solving the real world problem

Table 6.2: Artificial instances - pure column generation

CPU number of times new cols found by

init.
VNS

all LB
best
int.

stat. cols
Constr-

Heur

LNS-

Curr-

Basis

Rand-

Constr-

Heur

LNS-

Rand-

Constr

Lim-

Labels

Lim-

Graph

X

a2-16 17.50 5.77 299.37 299.37 int. 662 6 1 6 3 5 0
a2-20 79.78 94.93 376.70 376.70 int. 2282 44 9 32 5 27 0
a2-24 133.54 3518.32 461.66 461.66 int. 4217 30 53 13 3 47 0
a3-18 17.80 14.83 291.68 291.68 int. 1232 10 5 9 5 3 0
a3-24 47.53 166.43 351.19 361.39 frac. 2786 51 9 24 5 32 1
a3-30 112.62 4668.83 510.79 510.79 int. 6336 87 39 50 24 93 12
a3-36 - - - 602.52 - 14800 123 216 5 6 50 47
a4-16 20.42 4.12 - - inf. 711 12 8 4 1 2 0
a4-24 34.63 41.92 388.95 393.57 frac. 2275 23 4 3 1 10 0
a4-32 101.56 557.36 504.79 509.23 frac. 5136 41 40 5 6 28 0
a4-40 - - - 610.15 - 12448 147 113 1 6 41 32
a4-48 - - - 670.06 - 18725 109 72 103 19 89 47

X 62.82 1008.06 398.14 462.46 5968 57 47 21 7 36

Y

a2-16 54.42 5.79 - - inf. 1111 15 4 10 2 2 0
a2-20 77.59 27.98 371.62 371.62 int. 1968 52 10 33 9 21 0
a2-24 234.72 1742.20 - - inf. 3389 18 54 27 13 35 0
a3-18 25.30 4.63 295.39 295.39 int. 596 9 2 6 1 3 0
a3-24 92.05 69.11 353.13 359.75 frac. 2806 37 14 37 9 26 0
a3-30 110.69 3278.17 487.13 487.13 int. 7752 86 11 30 26 38 24
a3-36 - - - 620.27 - 13328 186 49 40 19 61 47
a4-16 20.46 2.18 - - inf. 544 8 2 4 0 4 0
a4-24 59.90 82.75 - - inf. 2019 28 24 16 4 14 0
a4-32 96.58 645.16 504.91 510.73 frac. 4751 46 35 3 1 21 4
a4-40 148.65 6287.23 587.56 590.21 frac. 8161 70 25 21 14 61 30
a4-48 198.22 276470.00 717.95 717.95 int. 22932 140 52 107 37 227 122

Y 101.69 26237.75 473.96 494.13 5780 58 24 28 11 43 19

Z

a2-16 41.77 7.98 308.30 308.30 int. 1091 24 2 9 3 6 0
a2-20 97.43 449.47 398.65 398.65 int. 2877 39 15 52 12 40 0
a2-24 125.06 1293.53 423.05 423.05 int. 3965 95 31 34 11 47 0
a3-18 26.15 4.40 297.24 297.24 int. 783 13 6 2 1 2 0
a3-24 54.97 104.19 354.19 355.15 frac. 2159 34 10 28 7 26 0
a3-30 122.81 863.53 495.70 498.43 frac. 5322 91 42 27 5 33 1
a3-36 174.07 100628.00 569.36 570.60 frac. 12123 103 18 46 30 93 95
a4-16 25.77 3.30 - - inf. 697 11 6 10 0 2 0
a4-24 39.24 47.68 388.69 388.69 int. 1903 24 8 13 6 11 0
a4-32 121.32 769.89 498.34 513.98 frac. 4040 67 47 13 8 22 0
a4-40 119.20 58136.70 581.86 604.28 frac. 9632 72 52 45 12 20 33
a4-48 248.59 57015.70 679.21 679.21 int. 12740 100 39 93 30 163 55

Z 99.70 18277.03 454.05 457.96 4778 56 23 31 10 39 15

XY Z 90.01 16156.63 456.34 469.26 5508 57 31 27 10 39 15

cols = columns, frac. = fractional, inf. = infeasible, init. = initial, int. = integer, LB = Lower
Bound, stat. = status.

bound will serve to assess the solution quality of heurVNShetd.

Table 6.5 contains the results obtained for 8 instances, that have been reduced by the

factor 5 with respect to the original data. 7 out of these 8 instances could be solved by means

of column generation. The following information is provided; the name of the instance; the

size of the instance in terms of the total number of requests n; the number of drivers md; and
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Table 6.3: Artificial instances - collaborative scheme

CPUa number of times new cols found by

init.
VNS

all LB
best
int.

stat. cols
Constr-

Heur

LNS-

Curr-

Basis

Rand-

Constr-

Heur

LNS-

Rand-

Constr

Lim-

Labels

Lim-

Graph

X

a2-16 17.50 17.65 299.37 299.37 int. 660 7 3 6 0 7 0
a2-20 79.51 149.48 376.70 376.70 int. 1919 24 7 23 3 18 0
a2-24 132.04 4892.11 461.66 461.66 int. 4453 29 93 28 7 50 0
a3-18 17.70 15.43 291.68 291.68 int. 1143 9 3 6 0 3 0
a3-24 47.82 322.04 351.19 358.29 frac. 2886 52 11 23 16 30 2
a3-30 112.75 1617.41 510.79 510.79 int. 5897 103 21 58 17 77 11
a3-36 - - - 600.83 - 16178 129 171 15 10 75 80
a4-16 20.47 5.94 - - inf. 665 9 4 7 1 2 0
a4-24 34.33 33.94 388.95 392.37 frac. 2157 17 0 6 0 8 0
a4-32 100.33 675.10 504.79 509.23 frac. 4829 38 15 10 5 30 1
a4-40 - - - 608.55 - 14533 181 44 57 32 83 46
a4-48 159.00 192018.00 665.11 665.74 frac. 19313 114 43 63 42 110 86

X 72.15 19974.71 459.97 461.38 6211 59 35 25 11 41 19

Y

a2-16 54.31 24.04 - - inf. 1132 13 3 4 5 5 0
a2-20 77.34 107.12 371.62 371.62 int. 1649 28 7 40 4 11 0
a2-24 234.83 709.20 - - inf. 3415 19 48 29 4 32 0
a3-18 24.96 6.29 295.39 295.39 int. 716 9 1 3 0 4 0
a3-24 91.86 223.08 353.13 355.47 frac. 2863 39 21 46 15 25 0
a3-30 107.60 2540.69 487.13 487.13 int. 7400 61 8 30 5 46 30
a3-36 - - - 598.62 - 13803 175 40 37 9 79 58
a4-16 20.40 3.06 - - inf. 557 10 1 2 1 3 0
a4-24 59.76 110.69 - - inf. 2113 26 25 17 4 10 0
a4-32 95.43 689.41 504.91 507.34 frac. 4990 47 44 3 2 21 5
a4-40 145.27 8329.59 587.56 590.21 frac. 8080 76 24 8 4 62 28
a4-48 197.55 218190.00 717.95 717.95 int. 21355 206 47 113 50 254 99

Y 100.85 20993.92 489.45 490.46 5673 59 22 28 9 46 18

Z

a2-16 41.80 32.49 308.30 308.30 int. 972 24 4 14 2 3 0
a2-20 97.05 247.69 398.65 398.65 int. 2415 57 22 48 12 19 0
a2-24 124.48 696.34 423.05 423.05 int. 4178 81 32 35 12 38 0
a3-18 26.11 22.23 297.24 297.24 int. 842 13 8 4 6 2 0
a3-24 54.03 217.16 354.19 355.15 frac. 2275 40 21 46 11 22 0
a3-30 121.22 1370.22 495.70 501.60 frac. 5716 73 40 53 21 54 1
a3-36 169.32 191169.00 569.36 579.61 frac. 12599 99 8 65 54 99 96
a4-16 25.67 8.07 - - inf. 630 11 11 2 1 3 0
a4-24 38.77 61.82 388.69 388.69 int. 1837 19 6 7 5 10 0
a4-32 121.41 680.31 498.34 504.26 frac. 4027 50 35 10 3 20 1
a4-40 118.14 29156.20 581.86 603.86 frac. 9511 76 38 23 23 29 26
a4-48 246.36 55650.80 679.21 679.21 int. 12386 81 37 68 37 145 60

Z 98.70 23276.03 454.05 458.15 4782 52 22 31 16 37 15

XY Z 91.37 21514.93 465.66 467.95 5555 57 26 28 12 41 18

cols = columns, frac. = fractional, inf. = infeasible, init. = initial, int. = integer, LB = lower bound,
stat. = status.
a run times in seconds

the number of civilian servants mc available; the lower bound, where known; and for each

iteration limit, the average and the best solution value out of 5 random runs, the according

deviation from the lower bound, and the total average run time in seconds. All lower bound

solutions are fractional, with one exception, in case of instance aug1108a the obtained lower

bound is integer. On average heurVNShetd yields solutions within 3.17 percent from the
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6 Solving the real world problem

Table 6.4: Artificial instances - heurVNShetd (105 iterations, 5 runs)

data set X data set Y data set Z

avg. % best % CPUa avg. % best % CPUa avg. % best % CPUa

a2-16 299.37 0.00 299.37 0.00 201.34 - - - - - 308.30 0.00 308.30 0.00 270.89
a2-20 377.14 0.12 376.70 0.00 345.76 371.62 0.00 371.62 0.00 680.22 398.65 0.00 398.65 0.00 436.34
a2-24 461.66 0.00 461.66 0.00 685.8 - - - - - 426.08 0.72 425.30 0.53 633.21
a3-18 291.68 0.00 291.68 0.00 89.72 295.39 0.00 295.39 0.00 132.68 297.24 0.00 297.24 0.00 128.09
a3-24 359.72 2.43 356.30 1.45 247.14 361.66 2.42 360.78 2.17 314.13 361.00 1.92 355.15 0.27 280.76
a3-30 512.34 0.30 510.79 0.00 516.5 496.02 1.82 487.13 0.00 527.24 506.05 2.09 498.29 0.52 555.64
a3-36 614.31 - 604.35 - 987.97 617.55 - 596.61 - 1108.15 580.01 1.87 572.55 0.56 942.36
a4-16 - - - - - - - - - - - - - - -
a4-24 402.44 3.47 394.34 1.38 169.8 - - - - - 396.92 2.12 393.13 1.14 180.79
a4-32 516.21 2.26 513.10 1.64 367.19 508.30 0.67 507.29 0.47 340.34 506.36 1.61 504.44 1.22 353.16
a4-40 623.57 - 613.33 - 753.95 595.90 1.42 592.55 0.85 644.27 600.02 3.12 595.72 2.38 617.07
a4-48 689.15 3.61 680.27 2.28 862.78 734.42 2.29 728.74 1.50 1122.68 697.64 2.71 684.56 0.79 1164.09

Avg. 467.96 1.35 463.81 0.75 475.27 497.61 1.23 492.51 0.71 608.71 461.66 1.47 457.58 0.67 505.67

avg. = average
a run times in seconds

Table 6.5: Real world based instances (5 times smaller) - heurVNShetd (5 runs)

heurVNShetd 105 iterations heurVNShetd 2x105 iterations

n md mc LB avg. % best % CPUa avg. % best % CPUa

aug0508a 29 4 6 377.32 384.96 2.02 383.10 1.53 274.54 383.64 1.68 378.89 0.42 519.25
aug1108a 30 4 6 449.74 458.75 2.00 451.03 0.29 229.47 459.30 2.13 453.15 0.76 445.85
aug1208a 34 4 6 426.01 431.95 1.39 428.99 0.70 313.55 436.23 2.40 428.99 0.70 671.22
aug1308a 33 4 6 474.38 480.80 1.35 479.66 1.11 316.00 483.59 1.94 479.66 1.11 651.54
mai0605a 41 5 7 471.47 488.11 3.53 485.94 3.07 287.16 483.61 2.58 473.38 0.41 590.89
mai0705a 42 5 7 - 664.30 - 654.11 - 471.91 640.08 - 627.32 - 769.51
mai1805a 54 6 9 582.38 623.57 7.07 603.78 3.67 495.44 622.99 6.97 615.81 5.74 937.00
mai2105a 28 4 5 390.65 409.49 4.82 391.62 0.25 190.51 399.35 2.23 391.10 0.12 375.15

Avg. 453.14 492.74 3.17 484.78 1.52 322.32 488.60 2.49 481.04 1.16 620.05

avg. = average
a run times in seconds

lower bound, using 105 iterations. With an increased limit of 2x105 iterations, the average

percentage gap is reduced to 2.49. In case of instance mai1805a, the obtained lower bound

is highly fractional. This explains why the obtained gap between the heuristic upper bound

and the column generation lower bound is so large. It can be assumed that it is at least

partly due to a larger integrality gap with respect to the other instances. Total run times

are below 16 minutes for all instance.

Table 6.6 provides similar information as Table 6.5. However, for this medium-sized data

set, which is again based on the available real world data, considering only every third

request, and reducing the number of available drivers and civilian servants accordingly,

lower bounds cannot be computed. Thus, we only provide average and best solution values

for heurVNShetd within a limit of 105 and 2x105 iterations. The percentage deviations

presented in Table 6.6 give the deviations from the best solutions encountered with the two

iteration limits. As expected, more iterations lead, on average, to better solution values.

Table 6.7, finally, provides the results for those data sets that are based on ARC data for

15 days in the city of Graz. As mentioned above, all of them are too large to be solved by
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6.7 Computational experiments

Table 6.6: Real world based instances (3 times smaller) - heurVNShetd (5 runs)

heurVNShetd 105 iterations heurVNShetd 2x105 iterations

n md mc all best avg. % best % CPUa avg. % best % CPUa

aug0508b 49 6 9 667.90 676.06 1.22 667.90 0.00 461.64 676.76 1.33 670.34 0.36 833.46
aug1108b 51 6 9 693.31 712.22 2.73 693.31 0.00 428.37 706.65 1.92 696.80 0.50 802.34
aug1208b 58 7 10 718.02 733.79 2.20 718.02 0.00 404.47 735.34 2.41 730.46 1.73 788.95
aug1308b 55 7 10 643.30 653.10 1.52 643.30 0.00 355.91 650.33 1.09 644.15 0.13 731.29
feb0402b 60 7 11 684.51 703.89 2.83 695.09 1.55 444.74 697.84 1.95 684.51 0.00 847.73
mai0605b 69 8 11 764.79 785.08 2.65 764.79 0.00 498.42 777.71 1.69 769.87 0.66 969.59
mai1805b 91 10 15 1107.04 1167.19 5.43 1140.29 3.00 743.60 1129.74 2.05 1107.04 0.00 1362.91
nov0411b 79 9 13 867.97 902.28 3.95 878.21 1.18 598.93 882.35 1.66 867.97 0.00 1173.83

Avg. 768.36 791.70 2.82 775.11 0.72 492.01 782.09 1.76 771.39 0.42 938.76

avg. = average
a run times in seconds

Table 6.7: Real world instances - heurVNShetd (5 runs)

heurVNShetd 5x105 iterations heurVNShetd 106 iterations

n md mc all best avg. % best % CPUa avg. % best % CPUa

aug0508 147 17 26 1374.33 1406.03 2.31 1379.42 0.37 6797.44 1392.12 1.29 1374.33 0.00 12241.06
aug1108 154 18 27 1415.55 1447.50 2.26 1422.90 0.52 5121.00 1429.40 0.98 1415.55 0.00 10179.36
aug1208 174 19 29 1632.16 1688.72 3.47 1673.86 2.55 7854.12 1666.13 2.08 1632.16 0.00 15394.96
aug1308 166 19 29 1552.40 1600.94 3.13 1576.00 1.52 6729.45 1565.90 0.87 1552.40 0.00 12795.56
feb0202 233 20 30 2087.65 2144.81 2.74 2103.59 0.76 20555.08 2113.63 1.24 2087.65 0.00 37997.24
feb0402 182 21 32 1677.70 1722.32 2.66 1701.25 1.40 7484.74 1696.75 1.14 1677.70 0.00 14200.60
feb1002 186 18 27 1804.26 1854.35 2.78 1829.44 1.40 12483.68 1839.04 1.93 1804.26 0.00 24718.90
mai0605 208 22 33 1760.82 1851.03 5.12 1833.69 4.14 10917.44 1779.48 1.06 1760.82 0.00 20268.88
mai0705 210 23 35 1964.68 2077.48 5.74 2046.29 4.15 10119.45 1997.39 1.66 1964.68 0.00 18350.90
mai1805 273 30 45 2570.25 2677.39 4.17 2629.02 2.29 11725.66 2601.40 1.21 2570.25 0.00 22719.08
mai2105 140 16 24 1457.36 1494.56 2.55 1476.78 1.33 5745.56 1470.55 0.91 1457.36 0.00 10813.82
nov0411 239 25 38 2155.53 2225.80 3.26 2186.96 1.46 11984.40 2171.58 0.74 2155.53 0.00 23501.62
nov0911 247 24 36 2207.46 2303.18 4.34 2269.98 2.83 15720.66 2248.11 1.84 2207.46 0.00 29666.94
nov1211 192 21 32 1711.99 1805.97 5.49 1784.38 4.23 9152.52 1749.12 2.17 1711.99 0.00 16999.46
nov1611 219 21 32 2097.98 2236.66 6.61 2212.37 5.45 15687.24 2158.05 2.86 2097.98 0.00 30054.52

Avg. 1831.34 1902.45 3.77 1875.06 2.29 10538.56 1858.58 1.47 1831.34 0.00 19993.53
a run times in seconds
avg. = average

means of column generation. Therefore, only heurVNShetd is applied. Because of the large

size of these instances, two different iteration limits have been used. First, heurVNShetd is

run for 5x105 iterations. This configuration results in solution values that are on average

3.77% worse than the best solution found during both experimental settings. On average,

a bit less than 3 hours of run time is needed. Then, the limit is increased to 106 iterations.

In less than twice the time (on average 5.5 hours), the average gap from the best known

solution is reduced to 1.47%.

While for the smallest instances, containing up to 50 requests, 105 iterations will lead to

solutions of high quality, when compared to the lower bound; for medium-sized real world

derived instances, more iterations are necessary to yield solutions of acceptable quality. In

case of the largest real world instances, a limit of 5x105 or even 106 iterations, if time allows,

should be chosen.
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6 Solving the real world problem

6.8 Summary

In this chapter the DARP with driver related constraints has been introduced and a 3-index

as well as a set partitioning type formulation have been proposed. Lower bounds by means

of column generation have been computed for three sets of artificial instances with differing

heterogeneous characteristics. Also a VNS heuristic has been developed and applied to

artificial as well as real world (derived) instances. When compared to the lower bounds, in

case of the artificial instances, high quality solutions are obtained within rather short run

times. When applied to the much larger real world (derived) data sets, more time needs

to be given to the procedure in order to obtain good results. Finally, also a collaborative

scheme, integrating the proposed variable neighborhood search heuristic into the column

generation framework, has been developed. Comparison with “pure” column generation

shows that the collaborative scheme improves the efficiency of the original method.
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7 Conclusion

In this book, ambulance routing problems with different degrees of heterogeneity have been

modeled as static DARP. In Chapter 3, a heuristic solution method for a rather standard

DARP version has been developed. Total routing costs are minimized while respecting

time windows, maximum user ride time, and a route duration limit. The proposed method

combines VNS with ideas from simulated annealing. When compared to the best known

solutions from the literature, the developed heuristic yields competitive results. Further-

more, it is flexible enough to accommodate a completely different objective function. Using

this modified objective function, the obtained results are compared to those of a genetic

algorithm from the literature. In this case, the proposed method clearly outperforms the

existing one.

In Chapter 4, the multi-objective DARP has been defined. It is obtained by adding

a second objective to the problem dealt with in Chapter 3. Besides routing costs, user

inconvenience, in terms of average user ride time, is minimized. Based on the findings of

Chapter 3, a tailor-made heuristic algorithm has been developed. It combines a weighted

sum based VNS with path relinking in a two-phase scheme. In order to test its performance,

an existing branch and cut algorithm has been integrated into the ǫ-constraint framework,

yielding optimal Pareto frontiers for small to medium-sized instances. Comparison indicates

that the proposed method is able to compute high quality approximations of the true Pareto

frontier. The central new aspect of our approach is that a set of trade-off solutions is

computed. This allows the decision maker to visualize how much he/she would have to pay

for lower user inconvenience or a higher quality of service level. Previous solution algorithms

only considered multiple objectives in form of a weighted sum objective function. The main

disadvantage of the weighted sum approach refers to the fact that the decision maker has

to define weights for the different objectives before starting the optimization procedure. In

our case, the decision maker chooses the appropriate solution from a bundle of trade-off

solutions, generated in one single run of the optimization procedure.

In Chapter 5, available information from the ARC led to the integration of heterogeneous

passenger types and vehicles into the standard formulation. Furthermore, a penalization

option for waiting time with passengers aboard a vehicle has been added. A 2-index and a

3-index program for the defined problem have been devised. Each formulation serves as the

basis for a branch and cut algorithm. Comparison shows that the 2-index based method

outperforms the 3-index based one. The VNS heuristic of Chapter 3 has also been adapted to
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7 Conclusion

this problem version. Several smaller modifications were necessary in order to accommodate

the additional requirements. When compared to the exact solutions of small to medium-

sized instances, the adapted method yields high quality solutions within short computation

times. The aspect of vehicle waiting time with passengers aboard has also been subject to

investigation. The results obtained for three data sets indicate that user waiting time can be

avoided without considerable cost increase (at most 6%). The ambulance routing problem

considered in this chapter represented a first step towards reality.

In Chapter 6, the real world problem, as, e.g., encountered by the ARC, has been solved.

In addition to heterogeneous vehicles and patients, staff deployment decisions have been

integrated into the problem formulation. At the ARC there are usually more vehicles than

drivers available. Thus, at the beginning of each day the appropriate fleet combination has

to be determined. Furthermore, some patients need an additional staff member (besides the

driver) on the vehicle. The additional staff members are civilian servants (employees who

serve their alternative civilian service at the Red Cross). They only work half of the day on

a vehicle. Therefore, additional stops at the depot have to be scheduled. Based on recent

developments in the literature, a column generation algorithm has been chosen to compute

lower bounds. These bounds were used to assess the solution quality of the heuristic method.

The central new aspect in the devised column generation algorithm refers to the way the

maximum route duration limit is considered in the pricing subproblem, solved by means

of dynamic programming. To solve this complex problem situation heuristically, another

VNS based solution method, integrating the findings of the previous chapters, has been

implemented. Further modifications were necessary in order to accommodate all additional

real world constraints. The obtained procedure was first tested on small to medium-sized

artificial instances and then on real world data. For the former set of instances lower bounds

were computed by means of column generation. Comparison indicates that the modified

heuristic method is able to compute high quality solutions within reasonable time. When

applied to the much larger real world instances, longer run times are needed in order to

obtain good results.

Summarizing, in this book four ambulance routing problems have been considered and

solved by a heuristic framework that applies the VNS idea. New and existing neighborhood

operators have been employed and several real world conditions have been successfully

accommodated. For three out of these four problem versions exact solution procedures

based on state-of-the-art solution methods have been devised. The results obtained show

that for real world sized problems, exact solution procedure are still not suitable. They are,

however, very useful to validate the results of heuristic algorithms. We also investigated

the impact of user related objectives. In a Pareto multi-objective framework, the trade-off

between costs and mean user ride time has been illustrated. User inconvenience has also

been considered in terms of user waiting time on board a vehicle. Instead of the different

trade-off solutions, only two extreme solutions have been computed: on the one hand, the
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minimum cost solution, on the other hand, a solution without user waiting time on board

a vehicle. In this case, the conclusion is that avoiding user waiting time does not yield a

significant cost increase.

Future research should involve the investigation of the two-objective problem with addi-

tional real world constraints by combining the findings of Chapters 4 to 6. This will lead to

additional insights regarding the trade-off between cost and user-oriented objectives.

Our hope is that one day in the near future, the findings of this thesis will serve as the

basis for the development of a computer aided routing tool that will support ambulance

dispatchers (at the ARC) in their day-to-day work.
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A Notation

A.1 Problem formulations

A.1.1 Indices

i, j user or vertex

k vehicle

s transportation mode or resource

r route

t vehicle type

0 start depot

2n + 1 end depot

2n + 2 noon depot

A.1.2 Parameters

n number of requests

m number of vehicles

md number of drivers

mc number of civilian servants

mt number of vehicles of type t

ck
ij travel cost for vehicle k on arc (i, j)

cij travel cost for arc (i, j)

tkij travel time for vehicle k on arc (i, j)

tij travel time for arc (i, j)

ei earlier time window at vertex i

li later time window at vertex i

di service time at vertex i

qi demand/supply of vertex i

qs
i demand/supply of resource s at vertex i

q̂s
i cumulative demand/supply of resource s at vertex i

ai civilian servant demanded at vertex i
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A Notation

L̄i maximum ride time of user i

L̄ maximum user ride time

T k maximum route duration of route/vehicle k

T maximum route duration

Ĥ planning horizon

C vehicle capacity

Cs,k capacity of resource s on vehicle k

Ĉs,k cumulative capacity (including up-grading) for resource s

on vehicle k

Cs,t capacity of resource s on vehicle type t

Ws,k
ij linearization term for load propagation constraints

H lunch duration

eH earlier lunch time window

lH later lunch time window

ρ penalization term for vehicle waiting time with passengers

aboard the vehicle

cr routing costs of route/column r

bir ∈ {0, 1} whether a request i is covered by route r

gr number of civilian servants needed on route r

c̄r reduced cost of route/column r

πi, σi, λ, φ dual variable values

A.1.3 Sets and sequences

V set of all vertices

V (.) set of vertices in .

A set of all arcs

A(.) set of arcs in .

G = (V, A) a graph

P = {1, . . . , n} set of pickup vertices

D = {n + 1, . . . , 2n} set of delivery vertices

Do set of origin depots

Dd set of destination depots

R = {0, 1, 2, 3} set of resources (transportation modes)
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A.1 Problem formulations

{i, n + i} pickup and delivery vertex pair (a transportation request)

S, U sets of vertex subsets with certain characteristics

S, Ŝ, T̂ , U ⊆ V vertex subsets

F set of infeasible paths

H set of infeasible paths regarding load starting at a depot

π(S) set of predecessors of S

σ(S) set of successors of S

x(S) sum over all xij in S

x(Ŝ : T̂ ) sum over all xij , i ∈ Ŝ, j ∈ T̂

R̂(S) minimum number of vehicles needed to serve all vertices in S

q(S) sum over all qi, i ∈ S

∆(S) sum over all arcs entering and leaving S

∆+(S) sum over all arcs leaving S

∆−(S) sum over all arcs entering S

A+

T̂
reachable arc set of T̂

A−

T̂
reaching arc set of T̂

F = (j1, . . . , jh) a sequence (path)

Ω all feasible routes (columns)

Ωt feasible routes (columns) of type t

Ω′ partial set of feasible routes (columns)

T set of vehicle types

A.1.4 Variables

xk
ij ∈ {0, 1} whether arc (i, j) is traversed by vehicle k

xij ∈ {0, 1} whether arc (i, j) is traversed by some vehicle

yk
i ∈ {0, 1} whether vehicle k arrives empty at vertex i

yi ∈ {0, 1} whether the vehicle arrives empty at vertex i

vk
i ∈ {0, 1} whether the lunch break of vehicle k is held at vertex i

zk
0 ∈ {0, 1} whether a civilian servant is on the vehicle in the morning

zk
1 ∈ {0, 1} whether a civilian servant is on the vehicle in the afternoon

ur ∈ {0, 1} whether column (route) r is used in the solution

w number of drivers used as civilian servants

Ak
i arrival time at vertex i with vehicle k

Ai arrival time at vertex i

Bk
i beginning of service at vertex i of vehicle k
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A Notation

Bi beginning of service at vertex i

Lk
i ride time of user i on vehicle k

Li ride time of user i

Qs,k
i load of resource s when leaving vertex i on vehicle k

Qk
i load when leaving vertex i on vehicle k

Qi load when leaving vertex i

Ŵ k
i waiting time of vehicle k with passengers at vertex i

Ŵi waiting time with passengers aboard a vehicle at vertex i

W k
H waiting time of vehicle k until start of lunch break time window

A.2 Variable neighborhood search

k̂ index of a neighborhood

k̂max total number of neighborhoods

N̂k̂ neighborhood k̂

∫ a solution

∫init an initial solution

∫best the best feasible solution

f̂(∫), f̂ ′(∫), f̂ ′′(∫) evaluation function values of a solution ∫

ĉ(∫) routing costs associated with solution ∫

v̂(∫) total vehicle waiting time with passengers aboard in a solution ∫

r̂(∫) total excess ride times with respect to direct ride times

in solution ∫

l̂(∫) total waiting time weighted by the passengers aboard the vehicle

while waiting in solution ∫

ĝ(∫) sum over all individual route durations in a solution ∫

ê(∫) sum over all waiting times between arrival and the beginning

of the time window in a solution ∫ (early arrivals)

ẑ1(∫) normalized routing costs of a solution ∫

ẑ2(∫) normalized mean user ride time of a solution ∫

K̄ normalization term for minimum cost objective

L̄ maximum user ride time and normalization term

for minimum mean user ride time objective
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A.2 Variable neighborhood search

w1 . . . w7 weights

ω weight of minimum cost objective

ρ penalization term for v̂(∫)

q̂(∫) load violation of a solution ∫

q̂s(∫) load violation regarding resource s of a solution ∫

d̂(∫) duration violation of a solution ∫

ŵ(∫) time window violation of a solution ∫

t̂(∫) ride time violation of a solution ∫

â(∫) civilian servant violation of a solution ∫

α̂ penalty term for load violation

α̂s penalty term for resource violation

β̂ penalty term for duration violation

γ̂ penalty term for time window violation

τ̂ penalty term for ride time violation

ζ̂ penalty term for civilian servant violation

δ̂ penalty adjustment term

δ upper bound for δ̂

δ lower bound for δ̂

χ correction term in move neighborhood

d̄ total distance of a request from a given route

ñ number of forbidden arcs in d̄

t̄ temperature in simulated annealing

prand a random number 0 ≤ prand < 1

lLS local search frequency

Fi forward time slack at vertex i

F̂i modified forward time slack at vertex i

Bj time buffer at vertex j

B̂j modified time buffer at vertex j

Wi vehicle waiting time at vertex i

Ai arrival time at vertex i

Bi beginning of service at vertex i

Di departure time from vertex i
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A Notation

Li ride time of user i

Pj ride time of user i = j − n at its destination vertex (n + 1 ≤ j ≤ 2n)

Qi load at vertex i

C vehicle capacity

L̄ maximum user ride time

T maximum route duration

Ĥ end of planning horizon

A.3 Path relinking

P the current Pareto frontier

∫I the initial solution

∫G the guiding solution

M̂ requests that are on different routes in ∫I and ∫G

F̂ vertices that are on the wrong position with respect to ∫G

Spath solutions part of a path from ∫I to ∫G

P k every k-th solution of P (ordered according to one objective)

Nk set of Nadir points based on P k

nseed number of seeding solutions

A.4 Quality indicators

A approximation set

R reference set

Iǫ unary epsilon indicator

IH hypervolume indicator

IR3 R3 indicator

∫i a solution

ẑj(∫i) normalized value for objective j of solution ∫i

z∗ ideal point

ǫ minimum factor such that, when applied to R,

A weakly dominates R

λ a random weight vector

Λ set of random weight vectors

uλ(∫) utility of a solution ∫ for some weight vector λ

u∗(λ,A) best utility across all ∫ ∈ A for weight vector λ
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A.5 Labeling algorithms

A.5 Labeling algorithms

κ a label

η name of the vertex of the label

δ departure time at η

Qs
cum the cumulative load of resource s when leaving η

ccum the accumulated cost until η

b ∈ {0, 1} whether a lunch break has already been made

α ∈ {0, 1} whether a civilian servant is aboard the vehicle or not

o ∈ {0, 1} whether the noon depot has already been visited or not

V ⊂ {0, . . . , 2n + 5} the set of vertices visited along the path

O ⊂ {1, . . . , n} the set of open requests

f the forward time slack

wcum the accumulated waiting time

Li set of labels at vertex i

Γ list of unprocessed labels

F 0
j final time slack

q̇(κ), ż(κ) resources coupled by a max term to compute

minimum route duration

ẽj earliest possible arrival time at j

l̃j latest possible arrival time at j

si sum over travel and service times along a path ending at i

q̃i difference between si and l̃i

z̃i maximum of si and the earliest possible arrival time reduced by q̃i

f̃0
i forward time slack from origin depot 0 until end of path i

w̃i accumulated waiting time until node i
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B Additional results

Table B.1: Results for heurVNS with modified move neighborhood compared to TS (ver-
sion 1). Instead of a fixed correction term a varying correction term χ is used.
It is randomly chosen in [4 1.5n

m , 4 2.5n
m ).

heurVNS (5 runs)

TSa avg. (%) best (%) CPUb

R1a 190.02 190.02 0.00 190.02 0.00 8.34
R2a 302.08 301.72 -0.12 301.34 -0.25 25.43
R3a 532.08 534.89 0.53 533.05 0.18 31.10
R4a 572.78 578.43 0.99 574.02 0.22 45.95
R5a 636.97 638.06 0.17 632.33 -0.73 164.81
R6a 801.40 804.32 0.36 794.88 -0.81 203.88
R7a 291.71 294.12 0.83 291.71 0.00 9.60
R8a 494.89 495.84 0.19 493.36 -0.31 54.72
R9a 672.44 664.75 -1.14 659.60 -1.91 186.88
R10a 878.76 884.72 0.68 874.42 -0.49 304.70

Avg. 537.31 538.69 0.25 534.47 -0.41 103.54

R1b 164.46 164.46 0.00 164.46 0.00 11.00
R2b 296.06 299.59 1.19 297.31 0.42 27.52
R3b 493.30 490.52 -0.56 487.20 -1.24 57.30
R4b 535.90 538.73 0.53 535.04 -0.16 99.89
R5b 589.74 590.27 0.09 583.99 -0.98 254.68
R6b 743.60 755.48 1.60 749.09 0.74 383.59
R7b 248.21 248.21 0.00 248.21 0.00 13.87
R8b 462.69 470.37 1.66 467.11 0.95 58.97
R9b 601.96 606.33 0.73 602.32 0.06 203.89
R10b 798.63 818.78 2.52 805.84 0.90 538.16

Avg. 493.46 498.27 0.78 494.06 0.07 164.89

Total avg. 515.38 518.48 0.51 514.27 -0.17 134.21
a best known solutions computed by Cordeau and Laporte (2003b)
b average run times in minutes on a Pentium D computer with 3.2 GHz
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B Additional results

Table B.2: Results for heurVNS with modified move neighborhood compared to TS (ver-
sion 2). Instead of a fixed correction term a varying correction term χ is used. It
is randomly set to the number of vertices on a currently existing route excluding
the two depots and multiplied by 4.

heurVNS (5 runs)

TSa avg. (%) best (%) CPUb

R1a 190.02 190.02 0.00 190.02 0.00 8.26
R2a 302.08 303.09 0.34 301.34 -0.25 16.96
R3a 532.08 536.15 0.76 532.42 0.06 29.86
R4a 572.78 575.14 0.41 572.48 -0.05 62.10
R5a 636.97 642.67 0.90 638.45 0.23 155.11
R6a 801.40 809.93 1.06 805.34 0.49 198.68
R7a 291.71 294.26 0.87 291.71 0.00 9.71
R8a 494.89 497.28 0.48 491.84 -0.62 42.17
R9a 672.44 670.79 -0.25 661.47 -1.63 146.24
R10a 878.76 879.41 0.07 872.97 -0.66 311.87

Avg. 537.31 539.87 0.47 535.80 -0.24 98.10

R1b 164.46 164.63 0.10 164.46 0.00 10.18
R2b 296.06 298.48 0.82 296.36 0.10 31.64
R3b 493.30 490.99 -0.47 487.97 -1.08 58.49
R4b 535.90 542.47 1.23 536.54 0.12 131.58
R5b 589.74 592.89 0.53 583.23 -1.10 311.71
R6b 743.60 749.57 0.80 745.70 0.28 374.70
R7b 248.21 248.88 0.27 248.21 0.00 13.23
R8b 462.69 468.04 1.16 464.09 0.30 74.59
R9b 601.96 608.03 1.01 602.67 0.12 187.50
R10b 798.63 807.22 1.08 797.00 -0.20 632.50

Avg. 493.46 497.12 0.65 492.62 -0.15 182.61

Total avg. 515.38 518.50 0.56 514.21 -0.19 140.35
a best known solutions computed by Cordeau and Laporte (2003b)
b average run times in minutes on a Pentium D computer with 3.2 GHz

142



List of Abbreviations

AP . . . . . . . . . . . . . . . . . . Accompanying Person

ARC . . . . . . . . . . . . . . . . Austrian Red Cross

C . . . . . . . . . . . . . . . . . . . . Chain neighborhood

CS . . . . . . . . . . . . . . . . . . Civilian Servant

DARP . . . . . . . . . . . . . . . Dial-A-Ride Problem

dHDARP . . . . . . . . . . . . Heterogeneous Dial A Ride Problem with driver related constraints

GA . . . . . . . . . . . . . . . . . . Genetic Algorithm

HDARP . . . . . . . . . . . . . Heterogeneous Dial A Ride Problem

IP . . . . . . . . . . . . . . . . . . . Integer Program

LNS . . . . . . . . . . . . . . . . . Large Neighborhood Search

LP . . . . . . . . . . . . . . . . . . Linear Program

LS . . . . . . . . . . . . . . . . . . . Local Search

LSP . . . . . . . . . . . . . . . . . Linear relaxation of the Set Partitioning problem

M . . . . . . . . . . . . . . . . . . . Move neighborhood

MIP . . . . . . . . . . . . . . . . . Mixed Integer Program

MOSA . . . . . . . . . . . . . . Multi-Objective Simulated Annealing

MOTS . . . . . . . . . . . . . . . Multi Objective Tabu Search

P-ACO . . . . . . . . . . . . . . Pareto Ant Colony Optimization

P-SA . . . . . . . . . . . . . . . . Pareto Simulated Annealing

PDP . . . . . . . . . . . . . . . . Pickup and Delivery Problem

PDPTW . . . . . . . . . . . . . Pickup and Delivery Problem with Time Windows

PDVRP . . . . . . . . . . . . . Pickup and Delivery Vehicle Routing Problems

S . . . . . . . . . . . . . . . . . . . . Swap neighborhood

SDARP . . . . . . . . . . . . . Single vehicle Dial-A-Ride Problem

SP . . . . . . . . . . . . . . . . . . . Set Partitioning problem

SPDP . . . . . . . . . . . . . . . Single vehicle Pickup and Delivery Problem

TS . . . . . . . . . . . . . . . . . . Tabu Search

TSP . . . . . . . . . . . . . . . . . Traveling Salesman Problem

VNS . . . . . . . . . . . . . . . . . Variable Neighborhood Search

VRP . . . . . . . . . . . . . . . . Vehicle Routing Problem

VRPB . . . . . . . . . . . . . . . Vehicle Routing Problems with Backhauls

VRPCB . . . . . . . . . . . . . Vehicle Routing Problem with Clustered Backhauls
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LIST OF ABBREVIATIONS

VRPDDP . . . . . . . . . . . Vehicle Routing Problem with Divisible Deliveries and Pickups

VRPMB . . . . . . . . . . . . . Vehicle Routing Problem with Mixed Backhauls

VRPPD . . . . . . . . . . . . . Vehicle Routing Problems with Pickups and Deliveries

VRPSDP . . . . . . . . . . . . Vehicle Routing Problem with Simultaneous Deliveries and Pickups

Z . . . . . . . . . . . . . . . . . . . . Zero split neighborhood
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Gélinas, S., Desrochers, M., Desrosiers, J., and Solomon, M. M. (1995). A new branching

strategy for time constrained routing problems with application to backhauling. Ann

Oper Res, 61:91–109.

Gendreau, M., Guertin, F., Potvin, J., and Seguin, R. . (2006). Neighborhood search heuris-

tics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transport

Res C-Emer, 14:157–174.

Gendreau, M., Hertz, A., and Laporte, G. (1992). New insertion and postoptimization

procedures for the traveling salesman problem. Oper Res, 40(6):1086–1094.

Gendreau, M., Hertz, A., and Laporte, G. (1996a). The traveling salesman problem with

backhauls. Comput Oper Res, 23:501–508.

Gendreau, M., Laporte, G., and Potvin, J.-Y. (1996b). Heuristics for the clustered traveling

salesman problem. Combin Optim, 1:41–56.

Gendreau, M., Laporte, G., and Potvin, J.-Y. (2002). Metaheuristics for the capacitated vrp.

In Toth, P. and Vigo, D., editors, The Vehicle Routing Problem., volume 9 of SIAM Mono-

graphs on Discrete Mathematics and Applications, pages 129–154, Philadelphia. SIAM.

Gendreau, M., Laporte, G., and Vigo, D. (1999). Heuristics for the traveling salesman

problem with pickup and delivery. Comput Oper Res, 26:699–714.

Gendreau, M. and Potvin, J.-Y. (1998). Dynamic vehicle routing and dispatching. In

Crainic, T. and Laporte, G., editors, Fleet Management and Logistics, pages 115–126,

New York. Kluwer.

153



BIBLIOGRAPHY

Ghamlouche, I., Crainic, T. G., and Gendreau, M. (2004). Path relinking, cycle-based

neighborhoods and capacitated multicommodity network design. Ann Oper Res, 131:109–

133.

Ghaziri, H. and Osman, I. H. (2003). A neural network algorithm for the traveling salesman

problem with backhauls. Comput Ind Eng, 44:267–281.

Ghaziri, H. and Osman, I. H. (2006). Self-organizing feature maps for the vehicle routing

problem with backhauls. J Sched, 9:97–114.

Ghiani, G., Guerriero, F., Laporte, G., and Musmanno, R. (2003). Real-time vehicle routing:

Solution concepts, algorithms and parallel computing strategies. Eur J Oper Res, 151:1–

11.

Gillett, B. E. and Johnson, J. G. (1976). Multi-terminal vehicle dispatch algorithm. Omega,

4:639–641.

Gilmore, P. and Gomory, R. (1961). A linear programming approach to the cutting stock

problem. Oper Res, 9:849–859.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.

Comput Oper Res, 13:533–549.

Glover, F. (1996). Ejection chains, reference structures and alternating path methods for

traveling salesman problems. Discrete Appl Math, 65:223–253.

Glover, F. and Laguna, M. (1997). Tabu search. Kluwer, Norwell.

Goetschalckx, M. and Jacobs-Blecha, C. (1989). The vehicle routing problem with back-

hauls. Eur J Oper Res, 42:39–51.

Golden, B., Baker, E., Alfaro, J., and Schaffer, J. (1985). The vehicle routing problem

with backhauling: Two approaches. In Hammesfahr, R. D., editor, Proceedings of the

Twenty-First Annual Meeting of S. E. TIMS, pages 90–92, Myrtle Beach, SC.

Gribkovskaia, I., Halskau, Ø., Laporte, G., and Vlček, M. (2007). General solutions to the
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Hoos, H. and Stützle, T. (2005). Stochatic Local Search Foundations and Applications.

Morgan Kaufmann Publishers, Elsevier, San Francisco, CA.

Horn, M. E. T. (2002a). Fleet scheduling and dispatching for demand-responsive passenger

services. Transport Res C-Emer, 10:35–63.

Horn, M. E. T. (2002b). Multi-modal and demand-responsive passenger transport systems:

a modelling framework with embedded control systems. Transport Res A-Pol, 36:167–188.

Hunsaker, B. and Savelsbergh, M. W. P. (2002). Efficient feasibility testing for dial-a-ride

problems. Oper Res Lett, 30:169–173.

Ioachim, I., Desrosiers, J., Dumas, Y., Solomon, M. M., and Villeneuve, D. (1995). A

request clustering algorithm for door-to-door handicapped transportation. Transport Sci,

29:63–78.

Irnich, S. (2007). Resource extension functions: properties, inversion, and generalization to

segments. OR Spectrum. to appear, available online.

Jaillet, P. and Stafford, M. (2001). Online searching. Oper Res, 49:501–515.

Jaw, J., Odoni, A. R., Psaraftis, H. N., and Wilson, N. H. M. (1986). A heuristic algorithm

for the multi-vehicle advance-request dial-a-ride problem with time windows. Transport

Res B-Meth, 20:243–257.

Jih, W.-R. and Hsu, Y.-J. (1999). Dynamic vehicle routing using hybrid genetic algorithms.

In Proceedings of the 1999 IEEE International Conference on Robotics and Automation,

pages 453–458, Los Alamitos, CA. IEEE Computer Society.

Jongens, K. and Volgenant, T. (1985). The symmetric clustered traveling salesman problem.

Eur J Oper Res, 19:68–75.

Jørgensen, R. M., Larsen, J., and Bergvinsdottir, K. B. (2007). Solving the dial-a-ride

problem using genetic algorithms. J Oper Res Soc, 58:1321–1331.

Jozefowiez, N., Semet, F., and Talbi, E.-G. (2007a). The bi-objective covering tour problem.

Comput Oper Res, 34:1929–1942.

Jozefowiez, N., Semet, F., and Talbi, E.-G. (2007b). Target aiming Pareto search and its

applications to the vehicle routing problem with route balancing. J Heuristics, 13:455–

469.

156



BIBLIOGRAPHY

Jozefowiez, N., Semet, F., and Talbi, E.-G. (2008). Multi-objective vehicle routing problems.

Eur J Oper Res, 189:293–309.

Jung, S. and Haghani, A. (2000). A genetic algorithm for a pick-up and delivery problem

with time windows. Transport Res Rec, 1733:1–7.

Kalantari, B., Hill, A. V., and Arora, S. R. (1985). An algorithm for the traveling salesman

problem with pickup and delivery customers. Eur J Oper Res, 22:377–386.

Kallehauge, B., Larsen, J., Madsen, O. B. G., and Solomon, M. M. (2005). Vehicle routing

problems with time windows. In Desaulniers, G., Desrosiers, J., and Solomon, M. M.,

editors, Column Generation, Nen York. Springer.

Kikuchi, S. (1984). Scheduling of demand-responsive transit vehicles. J Transp Eng,

110:511–520.

Kikuchi, S. and Rhee, J. (1989). Scheduling algorithms for demand-responsive transporta-

tion system. J Transp Eng, 115:630–645.

Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220:671–680.

Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial on the performance assessment of

stochastic multiobjective optimizers. Technical Report TIK-Report No. 214, Computer

Engineering and Networks Laboratory, ETH Zurich.

Kontoravdis, G. and Bard, J. F. (1995). A GRASP for the vehicle routing problem with

time windows. ORSA J Comput, 7(1):10–23.

Krumke, S. O., de Paepe, W. E., Poensgen, D., Lipmann, M., Marchetti-Spaccamela, A.,

and Stougie, L. (2005). On minimizing the maximum flow time in the online dial-a-

ride problem. In Approximation and Online Algorithms: Third International Workshop,

WAOA 2005, Palma de Mallorca, Spain, October 6-7, 2005, Revised Selected Papers,

LNCS, pages 258–269. Springer.

Lacomme, P., Prins, C., and Sevaux, M. (2006). A genetic algorithm for a bi-objective

capacitated arc routing problem. Comput Oper Res, 33:3473–3493.

Landrieu, A., Mati, Y., and Binder, Z. (2001). A tabu search heuristic for the single vehicle

pickup and delivery problem with time windows. J Intell Manuf, 12:497–508.

Laporte, G., Potvin, J.-Y., and Quilleret, F. (1996). A tabu search heuristic using genetic

diversification for the clustered traveling salesman problem. J Heuristics, 2:187–200.

157



BIBLIOGRAPHY

Lau, H. C. and Liang, Z. (2001). Pickup and delivery with time windows : Algorithms and

test case generation. In IEEE Computer Society, eds, 13th IEEE International Conference

on Tools with Artificial Intelligence (ICTAI’01), pages 333–340.

Lau, H. C. and Liang, Z. (2002). Pickup and delivery with time windows : Algorithms and

test case generation. Int J Artif Intell Tools, 11:455–472.

Laumanns, M., Thiele, L., and Zitzler, E. (2006). An efficient, adaptive parameter variation

scheme for metaheuristics based on the epsilon constraint method. Eur J Oper Res,

169:932–942.

Laysgaard, J. (2006). Reachability cuts for the vehicle routing problem with time windows.

Eur J Oper Res, 175:210–223.

Li, H. and Lim, A. (2001). A metaheuristic for the pickup and delivery problem with time

windows. In 13th IEEE International Conference on Tools with Artificial Intelligence

(ICTAI’01), pages 333–340, Los Alamitos, CA. IEEE Computer Society.

Li, H., Lim, A., and Huang, J. (2001). Local search with annealing-like restarts to solve

the VRPTW. Technical report, Department of Computer Science, National University of

Singapore.

Lim, A., Wang, F., and Xu, Z. (2005). The capacitated traveling salesman problem with

pickups and deliveries on a tree. In Deng, X. and Du, D., editors, Algorithms and Com-

putation: 16th International Symposium, ISAAC 2005, Sanya, Hainan, China, December

19-21, 2005. Proceedings, pages 1061–1070.

Lim, H., Lim, A., and Rodrigues, B. (2002). Solving the pickup and delivery problem

with time windows using squeaky wheel optimization with local search. In American

Conference on Information Systems, AMICS 2002, Dallas, USA.

Lin, S. (1965). Computer solutions of the traveling salesman problem. AT&T Tech J,

44:2245–2269.

Lipmann, M., Lu, X., de Paepe, W. E., Sitters, R. A., and Stougie, L. (2004). On-line

dial-a-ride problems under a restricted information model. Algorithmica, 40:319–329.

Little, J., Murty, K., Sweeney, D., and Karel, C. (1963). An algorithm for the traveling

salesman problem. Oper Res, 11:972–989.

Lokin, F. C. J. (1978). Procedures for traveling salesman problems with additional con-

straints. Eur J Oper Res, 3:135–141.

Lu, Q. and Dessouky, M. M. (2004). An exact algorithm for the multiple vehicle pickup and

delivery problem. Transport Sci, 38:503–514.

158



BIBLIOGRAPHY

Lu, Q. and Dessouky, M. M. (2006). A new insertion-based construction heuristic for solving

the pickup and delivery problem with time windows. Eur J Oper Res, 175:672–687.

Madsen, O. B. G., Ravn, H. F., and Rygaard, J. M. (1995). A heuristic algorithm for a

dial-a-ride problem with time windows, multiple capacities, and multiple objectives. Ann

Oper Res, 60:193–208.

Mageean, J. and Nelson, J. D. (2003). The evaluation of demand responsive transport

services in Europe. J Transport Geogr, 11:255–270.

Malca, F. and Semet, F. (2004). A tabu search algorithm for a dynamic pickup and delivery

vehicle routing problem. In Triennal Symposium on Transportation Analysis, Le Gosier,

Guadeloupe, France, juin.

Melachrinoudis, E., Ilhan, A. B., and Min, H. (2007). A dial-a-ride problem for client

transportation in a health-care organization. Comput Oper Res, 34:742–759.

Min, H. (1989). The multiple vehicle routing problem with simultaneous delivery and pickup

points. Transport Res A-Pol, 23:377–386.

Min, H., Current, J., and Schilling, D. (1992). The multiple depot vehicle routing problem

with backhauling. J Bus Log, 13:259–288.

Mingozzi, A., Giorgi, S., and Baldacci, R. (1999). An exact method for the vehicle routing

problem with backhauls. Transport Sci, 33:315–329.
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Mitrović-Minić, S. and Laporte, G. (2004). Waiting strategies for the dynamic pickup and

delivery problem with time windows. Transport Res B-Meth, 38:635–655.
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M., and Hoos, H. H., editors, Proc. of SLS 2007. Engineering Stochastic Local Search

Algorithms. 6-8 September 2007, Brussels, Belgium, LNCS, pages 187–191, Heidelberg-

Berlin. Springer.

Pasia, J. M., Gandibleux, X., Doerner, K. F., and Hartl, R. F. (2007c). Local search guided

by path relinking and heuristic bounds. In Obayashi, S., Deb, K., Poloni, C., Hiroyasu,

T., and Murata, T., editors, Evolutionary Multi-Criterion Optimization, Proc. of the 4th

International Conference, EMO 2007, Matsushima, Japan, March 5-8, 2007, LNCS, pages

501–515, Heidelberg-Berlin. Springer.

Pasia, J. M., Hartl, R. F., and Doerner, K. F. (2006). Solving a bi-objective flowshop schedul-

ing problem by using pareto ant colony optimization. In Dorigo, M., Gambardella, L. M.,

Birattari, M., Martinoli, A., Poli, R., and Stützle, T., editors, Ant Colony Optimization
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Abstract

Humanitarian not-for-profit ambulance dispatching organizations are committed to look at

cost reduction potentials in order to decrease their expenses. While in the context of emer-

gency transportation cost reduction cannot be achieved by means of combined passenger

routes, this can be done when dealing with regular patients. This research work is motivated

by the problem situation faced by ambulance dispatchers, such as the Austrian Red Cross,

in the field of patient transportation.

Ambulance routing problems belong to the large class of vehicle routing problems involv-

ing pickups as well as deliveries. While standard pickup and delivery problems deal with

the transportation of goods, in ambulance routing, people are subject to transportation.

Problems of this kind are modeled as dial-a-ride problems. In the field of passenger or pa-

tient transportation, the provision of a certain quality of service is necessary; the term “user

inconvenience” is used in this context. Low user inconvenience relates to punctual service

and short individual ride times. A certain trade-off between user inconvenience and total

operating costs can be observed. Lower user inconvenience usually entails higher operating

costs and vice versa. User inconvenience can either be considered in terms of additional

constraints or in terms of additional objectives. Both approaches are investigated in this

book. The aim is to model and solve the real world problem based on available information

from the Austrian Red Cross.

In a first step, a competitive solution method based on variable neighborhood search

for a simplified problem version is developed. A vehicle fleet of fixed size, time windows,

maximum user ride times, and a route duration limit are among the constraints considered.

In a second step, besides routing costs, a user-oriented objective, minimizing user incon-

venience, in terms of mean user ride time, is introduced. An exact and a heuristic solution

method are devised. The heuristic solution method integrates variable neighborhood search

and path relinking in a two-phase scheme. The exact method iteratively solves single ob-

jective problems to optimality within a so-called ǫ-constraint framework. Both procedures

provide the ambulance dispatcher with a number of efficient transportation plans in a Pareto

multi-objective context. The term efficient implies here that neither is better than any other

transportation plan in both objectives. The different plans are thus incomparable across

each other and the dispatcher’s choice will depend on whether more emphasis has to be put

on costs or on user inconvenience.

In a third step, heterogeneous patient types and a heterogeneous vehicle fleet are intro-
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duced into the standard dial-a-ride model. A 3-index and a 2-index mathematical problem

formulation are proposed. Each of them serves as the basis for a branch and cut algorithm.

Comparison shows that the 2-index formulation based algorithm clearly outperforms the 3-

index based version. The previously developed variable neighborhood search method is also

adapted. It proves to be flexible enough to accommodate the given real world constraints;

transportation plans of high quality can be computed very quickly.

In a final step, besides heterogeneous patient types and vehicles, staff related conditions

are integrated into a 3-index problem formulation. These refer to the assignment of drivers

and other staff members to vehicles, and to the scheduling of lunch breaks and additional

stops at the depot. A column generation algorithm is devised to compute lower bounds.

These bounds serve to assess the solution quality of the proposed variable neighborhood

search heuristic. In this case, further adaptations are necessary in order to accommodate

the different additional real-world characteristics. The resulting method computes high

quality solutions for adapted benchmark data sets; also much larger real world instances are

solved.

All exact methods employed are not capable of solving instances of realistic size. This fact

makes the development of according heuristic and metaheuristic solution methods necessary.

In this book a rather generic variable neighborhood search framework is proposed. It is able

to accommodate all single-objective problem versions and also proves to work well when

applied to the bi-objective problem in combination with path relinking.

170



Zusammenfassung

Humanitäre non-profit Organisationen im Bereich des Patiententransports sehen sich dazu

verpflichtet alle möglichen Einsparungs- und Optimierungspotentiale auszuloten um ihre

Ausgaben zu reduzieren. Im Gegensatz zu Notfalleinsatzfahrten, bei denen ein Zusam-

menlegen mehrerer Transportauftäge normalerweise nicht möglich ist, besteht bei regulären

Patiententransporten durchaus Einsparungspotential. Diese Tatsache gibt Anlass zur wis-

senschaftlichen Analyse jener Problemstellung, welche die täglich notwendige Planung

regulärer Patiententransportaufträge umfasst.

Patiententransportprobleme gehören zur Klasse der pickup and delivery Probleme. Im

Unterschied zu Standardproblemen dieser Klasse, werden in diesem Fall nicht Güter son-

dern Personen befördert. Solche Aufgabenstellungen werden als dial-a-ride Probleme model-

liert. Im Bereich des Personen- und Patiententransports ist es notwendig den BenutzerInnen

eine angemessene Service-Qualität zu bieten. Pünktliches Service und kurze Fahrtzeiten

wirken sich günstig auf die Service-Qualität aus, während größere Unannehmlichkeiten

in Bezug auf lange Warte- oder auch Wegzeiten negativ in die wahrgenommene Service-

Qualität einfließen. Zwischen den verursachten systemweiten Kosten und den in Kauf zu

nehmenden Unannehmlichkeiten herrscht eine direkte Wechselbeziehung. Eine Reduktion

der Unannehmlichkeiten für die BenutzerInnen führt zu höheren Kosten des Dienstleisters

und umgekehrt. Diese Unannehmlichkeiten können entweder durch Nebenbedingungen auf

ein akzeptables Maß beschränkt oder in einer zusätzlichen Zielfunktion minimiert werden.

Beide Herangehensweisen werden in diesem Buch untersucht. Das Ziel dieser Arbeit ist die

Modellierung und Lösung des realen Problems, basierend auf entsprechenden Informationen

des Österreichischen Roten Kreuzes.

In einem ersten Schritt wird eine kompetitive Lösungmethode, basierend auf dem variable

neighborhood search Konzept für eine vereinfachte Problemstellung aus der Literatur ent-

wickelt. Unter anderem werden eine Fahrzeugflotte gegebener Größe, Zeitfenster, maximale

Fahrtzeiten für die BenutzerInnen sowie maximale Gesamtzeiten pro Tour berücksichtigt.

Diese Standardproblemstellung wird in zwei Richtungen erweitert.

Zuerst wird, zusätzlich zur Minimierung der Gesamtkosten, eine zweite Zielfunktion

eingeführt, welche Unannehmlichkeiten hinsichtlich der durchschnittlich im Fahrzeug ver-

brachten Zeit minimiert. Die resultierende Problemstellung wird sowohl exakt als auch

heuristisch gelöst. Die heuristische Lösungsmethode integriert variable neighborhood search

und path relinking in ein zweiphasiges Programm. Die exakte Methode löst das Einziel-
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problem iterativ nach dem sogenannten ǫ-constraint Schema. Die entwickelten Methoden

generieren eine Reihe von effizienten Transportplänen. Effizient bedeutet hier, dass keiner

von ihnen in beiden Zielen besser ist als die anderen Transportpläne. Die einzelnen Trans-

portpläne sind somit untereinander unvergleichbar und es obliegt dem Disponenten den

jeweils passenden auszuwählen, in Abhängigkeit davon, ob die verursachten Kosten oder die

Service-Qualität stärker im Vordergrund stehen soll.

Sodann werden eine heterogene Fahrzeugflotte und unterschiedliche Patiententypen in

die Standardproblemstellung integriert. Sowohl eine 3-Index- als auch eine 2-Index-

Formulierung werden eingeführt. Sie dienen als Grundlage für jeweils einen branch and

cut Algorithmus. Vergleicht man die Ergebnisse, führt die 2-Index-Formulierung eindeutig

zu den besseren Resultaten. Auch die entwickelte variable neighborhood search Heuristik

wird an die neue Problemstellung angepasst. Sie erweist sich als ausreichend flexibel auch

die nun gegebenen realitätsnahen Anforderungen zu berücksichtigen; die adaptierte Methode

generiert Transportpläne von hoher Qualität innerhalb sehr kurzer Laufzeit.

In einem letzten Schritt werden schließlich auch Personaleinsatzaspekte in eine 3-Index-

Problemformulierung integriert. Zusätzlich zu heterogenen Fahrzeugen und PatientInnen

wird nun die Zuordnung von Fahrern und sonstigem Personal zu den unterschiedlichen

Fahrzeugen sowie Mittagspausen und Aufenthalte am Depot berücksichtigt. Ein column

generation Algorithmus wird zur Berechnung von unteren Schranken implementiert, welche

der Qualitätsmessung für die entwickelte variable neighborhood search Methode dienen.

In diesem Fall sind weitreichendere Adaptierungsmaßnahmen von Nöten um die gegebe-

nen zusätzlichen realitätsnahen Aspekte zu berücksichtigen. Die resultierende Methode

erstellt Transportpläne von hoher Qualität für adaptierte Standardinstanzen. Auch um

vieles größere Echtweltinstanzen werden gelöst.

Die eingesetzten exakten Methoden können Instanzen von realistischer Größe nicht lösen.

Dieser Umstand macht die Entwicklung von passenden heuristischen Verfahren nach wie vor

unumgänglich. In der vorliegenden Arbeit wird ein relativ generisches System basierend auf

der variable neighborhood search Idee entwickelt, das auf alle behandelten Einzielproblemver-

sionen angewandt werden kann; auch für die bi-kriterielle Problemstellung, in Kombination

mit path relinking, werden gute Ergebnisse erzielt.
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