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Abstract: This work presents a hybrid approach to solve a distribution problem of a Portuguese
company in the automotive industry. The objective is to determine the minimum cost for daily
distribution operations, such as collecting and delivering goods to multiple suppliers. Additional
constraints are explicitly considered, such as time windows and loading constraints due to the limited
capacity of the fleet in terms of weight and volume. An exhaustive review of the state of the art was
conducted, presenting different typology schemes from the literature for the pickup and delivery
problems in the distribution field. Two mathematical models were integrated within a matheuristic
approach. One model reflects the combination of the Vehicle Routing Problem with Simultaneous
Delivery and Pickup with the Capacitated Vehicle Routing Problem with Time Windows. The
second one aims to pack all the items to be delivered onto the pallets, reflecting a three-dimensional
single bin size Bin Packing Problem. Both formulations proposed—a commodity-flow model and
a formulation of the Three-Dimensional Packing Problem must be solved within the matheuristic.
All the approaches were tested using real instances from data provided by the company. Additional
computational experiments using benchmark instances were also performed.

Keywords: vehicle routing problem with simultaneous delivery and pickup; capacitated vehicle
routing problem with time windows; three-dimensional bin packing problem

MSC: 90C11; 90C27; 90C59

1. Introduction
1.1. Pickup and Delivery Problems

The pickup and delivery problem is commonly faced in real-world logistics operations.
Accordingly, the number of contributions in this area has been increasing in the literature.
Due to the extensive number of approaches and denominations in this field, in [1] suggested
a comprehensive classification for the static pickup and delivery problems. The static
denomination is due to the fact that all information about the problem is deterministic
and known beforehand. In this classification, the scheme [x|y|z] is used, where the x field
defines the relation between the origins and the destinations:

many-to-many (M-M): if any customer or the depot can be the origin or the desti-
nation of goods;

one-to-many-to-one (1-M-1): if the source of delivered goods and the destination of
picked goods is only the depot;

one-to-one (1-1): if each good has to be transported from a single origin to a
single destination.
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The y field defines how the loading operations must be performed. If one customer
is visited exactly once and loading and unloading operations must be performed simul-
taneously, the authors used the denomination “PD”. On the contrary, if this requirement
does not apply, these operations can be combined or not (“P-D”). If it is only possible to
deliver or collect at each customer, then the notation “P/D” is used instead. In the y field,
problems with trans-shipments are defined by associating the letter “T”. The last field of this
classification scheme, z, corresponds to the number of used vehicles. For the cases in which
it is impossible to represent a field, the authors use the notation “-”. As in vehicle routing
problems, in some pickup and delivery contexts, the information is dynamic, meaning that
it is not known in advance or it is updated when performing the routes. These problems
are known as dynamic pickup and delivery problems. A comprehensive survey on these
problems is presented in [2].

Another comprehensive classification is proposed in [3,4]. According to these authors,
the general pickup and delivery problems can be divided into two classes. In the first
class, the goods are delivered or collected to/from one or more depots. These problems
are usually named as Vehicle Routing Problems with Backhauls. On the other hand, in
the second class, there is a flow of items from pickup customers to delivery customers.
Problems belonging to this second class are usually known as Vehicle Routing Problems
with Pickups and Deliveries (VRPPD).

1.2. Pickup and Delivery Problems with Loading

Other routing problems deal with different packing constraints when compared with
those presented for the CVRPTW with loading constraints [5–7]. In some of those problems,
routing aspects are similar but the vehicle is replaced by a ship or the cargo is palletized
and, consequently, the pallets are items to be loaded in the vehicles. In other situations,
items may not be in contact and thus they cannot be transported in the same compartment
or even in the same vehicle. However, other problems must combine loading constraints
with pickup and delivery.

Palletized items arise in many situations, such as the distribution of chip-boards. It is
considered that the demand of each customer is composed of different types of chip-boards.
The chip-boards of the same type for the same customer are jointly palletized, performing
an item. The items are delivered to customers using a fleet usually composed of the same
type of vehicles, each divided into a given number of piles (stacks). However, long chip-
boards may occupy more than one pile, and thus different chip-board types may require
a different number of occupied piles. Additionally, sequential constraints are imposed.
Consequently, it is clear that some holes may arise in the layout, which may cause load
instability. In these cases, such holes may be filled by bulk material, and thus supporting
constraints can be ignored.

The described problem is denominated by the One Vehicle Loading Problem (1-VLP).
The first work addressing the 1-VLP is presented in [8]. The authors proposed a tabu search
and an ant colony optimization algorithm. A variable neighborhood search approach
that provided an upper bound and possible valid cuts for a branch-and-cut algorithm is
proposed in [9]. Both works referred to above were tested in real instances by an Austrian
timber distribution company.

Another problem considering palletized items is presented in [10]. The demand of each
customer is composed of three-dimensional items previously assigned to a given pallet. It
is considered that one pallet is sufficient to carry the total demand of a given customer. The
pallets are then loaded into the vehicle. As stated by the authors, this problem corresponds
to solving, for each customer, an instance of CVRPTW with three-dimensional loading with
supporting constraints and variable orientation of items. Sequential constraints are not
considered since the vehicle driver can reach the pallets.

Some routing problems deal with situations in which it is common to transport goods
that are incompatible in the sense that they may not share the same space in the vehicle. In
such cases, items may be transported in the same vehicle but in different compartments.
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The corresponding problem is known as the Multi-Compartment Vehicle Routing Problem
(MC-VRP). The main difference between MC-VRP and the 1-VLP referred to above is
that items belonging to different compartments are not in contact, while in the 1-VLP one
item may occupy more than a single pile. This feature may be suitable for transporting
conflicting or strongly heterogeneous items within the same vehicle. Some real applications
for this problem can be found in the fuel distribution, when a single vehicle transports
different types of petrol products [11–14]. Additionally, legal requirements must impose
that items must be transported in different compartments. One example of this situation
is the transportation of provisions to farms where, despite the separation in different
compartments, the food for a given specie must be loaded in the same compartment in
future transportation, as referred to in [15].

Other situations arise when items need different transport conditions, as it happens
when serving convenience stores with dry, refrigerated, and frozen items within the same
vehicle [16]. A similar problem is proposed in [17]. However, items may not be transported
within the same vehicle and thus multiple trips must be performed. The authors denomi-
nated this problem as minimum multiple trip vehicle routing problem. Time windows for
different type of items are also considered.

In other situations, it is necessary to ensure the transportation from pickup vertices to
delivery vertices. For instance, the Pickup and Delivery Traveling Salesman Problem with
Loading constraints (PDTSPL) considers the assumption that pickups and deliveries are
performed according to a LIFO or a FIFO policy. Since only one dimension is considered,
the vehicle can be seen as a single stack with items placed on its top. Consequently, LIFO
constraints are only satisfied if, when serving one customer, the item for this customer can
be unloaded in a straight movement, i.e., no items are between the item to be unloaded
and the rear side of the vehicle. On the other hand, FIFO constraints impose that items are
unloaded by the sequence in which they were loaded.

Some works extended the PDTSPL with LIFO constraints to the case where two routes
are considered: one to collect items from pickup customers and another to deliver them to
delivery customers. Additionally, items are placed on multiple stacks. These problems are
known as Double Traveling Salesman with Multiple Stacks (DTSMS). A survey of PDTSL
and DTSMS can be found in [18].

Pickup and delivery problems considering two- or three-dimensional items have
received increasing attention in the literature. Considering the two-dimensional case, a
constraint programming model approach is suggested in [19] considering transportation
between nodes in the same graph. Considering the transportation from and to the depot,
an insertion heuristic for the mixed linehauls and backhauls is addressed in [20] where
LIFO constraints are explicitly addressed. In [21], three different variable neighborhood
search (VNS)-based algorithms are designed, showing that general and skewed variants of
VNS can lead to good solutions in a reasonable amount of time. In [22], three-dimensional
items are considered within a local search method. The three-dimensional case is addressed
in [23], addressing clustered backhauls, which assumes that backhaul customers can only
be visited after serving the linehaul ones within the same route.

This paper addresses a real pickup and delivery problem arising in a Portuguese
automotive company. The problem involves a set of practical considerations that have
received little attention in the vehicle routing literature. These considerations are related to
the optimization of the cargo that must be delivered and collected.

The first problem addressed in this work is an extension of Capacitated Vehicle Rout-
ing Problem with Time Windows (CVRPTW) where each node of the graph is associated
with two quantities representing the commodities to be delivered and collected, called
Vehicle Routing Problem with Simultaneous Delivery and Pickup and Time Windows
(VRPSDPTW). Additionally, we address a second problem to minimize the number of pal-
lets needed for each supplier. According to the Wäscher et al. [24] typology, it corresponds
to a three-dimensional single bin size Bin Packing Problem, hereafter called 3D-BPP. It is
worth noting that the contribution of the 3D-BPP approach in this scenario is twofold since
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it can also be applied while loading pallets into the vehicles aiming to maximize vehicle
usage.

This paper is organized as follows. In Section 2, the real case study is presented, and
all the operational constraints are stated. In Section 3, two mixed integer programming
model formulations for two different combinatorial optimization problems are presented
and explained in detail. The way these two different models are integrated using a hybrid
approach is given in Section 4 while the results from computational experiments are
described in Section 5. Finally, some conclusions are drawn in Section 6.

2. Problem Description

The problem tackled in this work is a real problem of a Portuguese automotive produc-
tion company belonging to an international corporation. The vast majority of the supplied
components (roughly 86%) come from Southeast Asia in the form of Complete Knock Down
(CKD) kits which are stored in a specific part of the warehouse. A set of subcontracted
automotive suppliers provides the remaining amount of supplied components. However, a
subgroup of parts from the CKD kits is not directly incorporated into the vehicle. These
parts are transported and assembled at a subset of the subcontracted suppliers referred to
above and then introduced in the production process at the company. Therefore, for a small
group of suppliers, the flow of components is conducted in both directions.

It is assumed that the company uses its homogeneous fleet to ensure the distribution
and collection process between the company and its suppliers. Each vehicle leaves the
company with components to the suppliers, arriving within a given time window. This
happens since the company has a predefined time to make all deliveries and collections. The
vehicle must remain at the supplier during a given service time needed both to unload the
demands and to collect the subcontracted components to carry them back to the company
(hereafter, also known as a depot).

The demand at each supplier is composed of a set of boxes, and all the cargo must
be palletized. Then it is necessary to pack all the boxes on pallets aiming to maximize the
volume utilization of each one. This process leads to a minimum number of pallets used.
Considering that each supplier has a given demand and could receive more than one pallet,
the main objective is to minimize the number of needed pallets for each supplier.

The amount of delivered and collected cargo varies according to the supplier since
subcontracted components are not uniform. However, the load to be picked up has a
smaller volume than (or at least equal to) the delivered cargo. As stated above, all the
load is palletized, but it is possible to pile more than one pallet if the height of the pallets
allows it. Additionally, some operational constraints related to routing and packing must
be satisfied. Some of those constraints, namely the time windows and the items to be
collected or delivered, directly impact the suppliers visiting sequence. The constraints can
be grouped into two sets:

• G1 : Routing constraints: time windows constraints, delivered, and picked-up de-
mands, capacity constraints in terms of weight/number of pallets);

• G2 : Loading constraints (capacity constraints in terms of volume; box orientation
constraints—for each box, a single dimension is allowed to act as the height of the box;
positioning constraints—all the cargo must be completely inside the pallet, and each
box should not be overlapped.

The global objective is to determine the set of routes that minimizes the costs of
the distribution and collection operations of the components while satisfying all the de-
manded/supplied quantities at each entity and all the operational constraints. Hereafter,
customers and suppliers will be referred to indistinctly to be able to use terminology in the
context of routing problems.

3. Mixed-Integer Programming Models

Two mixed-integer programming models are proposed to be used in a complementary
way by the hybrid algorithm. The first one formulates the VRPSDPTW, which minimizes
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the total distance traveled. The second model is a formulation for the 3D-BPP, which
minimizes the number of pallets needed for each supplier. The VRPSDPTW and the
3D-BPP are NP-hard in the strong sense. This fact and the necessity to solve real-world
instances have pushed researchers to develop heuristic algorithms. In contrast, and mainly
in the packing problems, exact algorithms have received little attention in the literature.
When this problem deals with a small number of suppliers and cargo, these two problems
could be solved using its mathematical formulations. The VRPSDPTW model developed
in Section 3.1 is a two-index commodity-flow formulation. The 3D-BPP model defines
the loading pattern of the boxes onto pallets that will be loaded in the vehicle. Those two
formulations are based on [25,26].

3.1. A Two-Index Commodity-Flow Model for the VRPSDPTW

This formulation describes the motion of the vehicle and filling level in the road
network and determines the amount of the loads that flow along an arc.

The VRPSDPTW can be defined in a directed graph G = (C, A) where the set of
nodes C = {1, . . . , |C|} represents the depot (“1”) and the set of geographically dispersed
suppliers, and A = {(i, j) : i, j ∈ C, i 6= j} corresponds to the set of arcs in G. The length
of each arc dij with (i, j) ∈ A corresponds to the distance between nodes i and j. Each
supplier i ∈ C\{1} has a set of boxes (di) that must be delivered and a set of boxes that
must be picked up (pi) from/to the depot using a homogeneous fleet V = {1, . . . , NV}
with a maximum weight capacity Q. Each supplier has an associated service time sti to
perform the loading and unloading operations and a given time window [ai, bi], in which
the vehicle must arrive. The depot also has a time window [a1, b1] that will define the
starting and the maximum time available for the distribution and collection process.

This model considers two-index binary decision variables xij taking value 1 if the arc
(i, j) ∈ A is traversed by a vehicle, and 0 otherwise. To ensure time constraints, the set
of decision variables si represents the arrival instant of time at each node i ∈ C. These
variables are commonly used in vehicle routing models. However, and since this model
considers simultaneous deliveries and pickups, new continuous variables are employed to
represent the amount of load (to deliver or to collect) that flows along each arc, as follows:

• αij : the amount of delivery load carried along an arc (i, j) ∈ A;
• µij : the amount of picked up load carried along an arc (i, j) ∈ A.

The objective function corresponds to the minimization of the total distance traveled
(Equation (1)):

min
|C|

∑
i=1

|C|

∑
j=1

dij × xij (1)

subject to:
|C|

∑
i=1,i 6=j

xij = 1, ∀j 6= 1 ∈ C (2)

|C|

∑
j=1,i 6=j

xij = 1, ∀i 6= 1 ∈ C (3)

|C|

∑
i=1

x1i = NV (4)

si + sti + dij ≤ sj + M× (1− xij), ∀i, j ∈ C (5)

ai ≤ si ≤ bi, ∀i ∈ C (6)
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|C|

∑
i=1,i 6=j

αij −
|C|

∑
i=1,i 6=j

αji = dj, ∀j 6= 1 ∈ C (7)

|C|

∑
i=1,i 6=j

µji −
|C|

∑
i=1,i 6=j

µij = dj, ∀j 6= 1 ∈ C (8)

αij + µij ≤ M1 × xij, ∀i, j : j 6= i ∈ C (9)

0 ≤ αij ≤ Q, ∀i, j : j 6= i ∈ C (10)

0 ≤ µij ≤ Q, ∀i, j : j 6= i ∈ C (11)

|C|

∑
i=1

αij ≥ dj, ∀j 6= 1 ∈ C (12)

|C|

∑
j=1

µij ≥ pi, ∀i 6= 1 ∈ C (13)

xij ∈ {0, 1}, ∀(i, j) ∈ A; (14)

si ≥ 0, ∀i ∈ C; (15)

µij ≥ 0, ∀(i, j) ∈ A, i 6= 1; (16)

αij ≥ 0, ∀(i, j) ∈ A, j 6= 1; (17)

Constraints (2) and (3) ensure that each supplier is visited exactly once by a vehicle,
and (4) states that no more routes than the number of available vehicles are created. Inequali-
ties (5) and (6) are related to the time windows constraints (M is a very large number).

The first establishes the relation between arrival times at clients i and j when the arc
(i, j) is used, and the second guarantees that the vehicle arrives within the related time
window. Additionally, (5) forces a specific order for suppliers visiting within the routes,
which ensures that no sub-tours are generated without the depot. Constraints (7) and (8)
are the balance equations to satisfy the delivery and the pickup demands of a customer,
respectively. The consideration of those equations also eliminates sub-tours occurrences.
Constraints (9)–(11) ensure that the capacity of the vehicle is not exceeded and the “big-M
value” of the disjunctive constraint (9) is set to M1 = Q. Constraints (12) and (13) are
bounds of the total quantities of boxes entering and leaving a supplier’s location. The
consideration of these two constraints improves the solving process. The last Constraints
(14)–(17) define the domain of the decision variables.

3.2. A 3D-BPP Model

This model is used to pack all the boxes for each customer on pallets before the vehicle
leaves the depot. Therefore, and for each customer, there is a set of boxes for each customer
(B = {1, . . . , |B|}), where each box is characterized by its original length, width, and
height dimensions Lbxb, Wbxb, Hbxb with b ∈ B, and allowed orientations for the height
dimension, i.e., on the axis perpendicular to the base of the pallet (OzLb, OzWb, OzHb).
Several standard pallets are available: let V be the set of all pallets V = {1, . . . , |V|} and
each one is also characterized by their physical dimensions Xvk, Yvk, Zvk. A cost assigned
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to the use of each pallet Ck is also considered. To pack all the available boxes and identify
their final positioning on the pallets, several variables are defined as follows:

• Dk is a binary variable that indicates if pallet k is used or not.
• βkb is a binary variable that indicates if box b is on pallet k or not.
• Three integer variables XXb, YYb, ZZb give the pallet us dimensions.
• Three variables related to the centroid of gravity center coordinates of each box

xb, yb, zb.
• The set of variables, Xbxb, Ybxb, Zbxb is related to the chosen dimension of each box

to be placed on x, y, z-axis of the pallet.
• For each axis x, y and z there is also a set of binary variables that allow for the rotation

of each box:bxLb, bxWb, bxHb; byLb, byWb, byHb; bzLb, bzWb, bzHb, respectively.
• For the non-overlapping constraints and each axis, there are several binary variables:

Pbl , Qbl for x-dimension; Rbl , Sbl for y-dimension; and Tbl , Ubl for z-dimension.
• The last binary variable, Gbl guarantees that the boxes b and l are loaded onto the

same pallet.

The objective is to load all the boxes of each supplier onto a minimum number of pallets,
aiming to minimize the number of vehicles used. Therefore, the objective function of the 3D-
BPP is defined as the minimization of the number of pallets needed to pack all the demands
of each supplier (or the costs associated with the use of pallets) as follows in (18):

min
|V|

∑
k=1

Ck × Dk (18)

Subject to:

xb ≥
Xbxb

2
∧ yb ≥

Ybxb
2
∧ zb ≥

Zbxb
2

; ∀b ∈ B (19)

xb ≤ XXb −
Xbxb

2
∧ yb ≤ YYb −

Ybxb
2
∧ zb ≤ ZZb −

Zbxb
2

; ∀b ∈ B (20)

XXb =
v

∑
k=1

Xvk × βkb ∧YYb =
v

∑
k=1

Yvk × βkb ∧ ZZb =
v

∑
k=1

Zvk × βkb; ∀b ∈ B (21)

v

∑
k=1

βkb = 1; ∀b ∈ B (22)

|B|

∑
b=1

βkb ≤ bx× Dk; ∀k ∈ V (23)

|B|

∑
b=1

(Lbxb ×Wbxb × Hbxb)βkb ≤ (Xvk ×Yvk × Zvk)Dk; ∀k ∈ V (24)

This first set of constraints is related to the positioning and volume constraints. To
simplify the positioning of each box on a pallet, each box is characterized by its centroid
of gravity center given by its x, y, and z coordinates. Constraints (19)–(21) combined with
Constraints (22) guarantee that each box is positioned on a single pallet. Constraints (23)
defines whether the pallet is used or not, and constraints (24) is used to prevent over-
packing attempts.

xb+xl
2 ≤ (xb − xl) + Mx × (Pbl + Qbl)∧

xb+xl
2 ≤ (xb − xl) + Mx × (Pbl + Qbl + 1)

; ∀b, l : l > b ∈ B (25)

yb+yl
2 ≤ (yb − yl) + My × (Rbl + Sbl)∧

yb+yl
2 ≤ (yb − yl) + My × (Rbl + Sbl + 1)

; ∀b, l : l > b ∈ B (26)
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zb+zl
2 ≤ (zb − zl) + Mz × (Tbl + Ubl)∧

zb+zl
2 ≤ (zb − zl) + Mz × (Tbl + Ubl + 1)

; ∀b, l : l > b ∈ B (27)

Pbl + Rbl + Tbl ≤ 3; ∀b, l : l > b ∈ B (28)

βbk − βkl ≤ Gbl + 1; ∀b, l : l > b ∈ B (29)

Non-overlapping constraints are used to prevent that different boxes from occupying
the same physical location on a pallet (from constraints (25) to (29)). Non-overlapping is
guaranteed if at least one of sets of the Big-M constraints (25), (26), or (27) is active. Mx, My,
and Mz are adequate upper bounds computed according to the dimensions of the box set.

Xbxb = bxLb × Lbxb + bxWb ×Wbxb + bxHb × Hbxb∧
bxLb + bxWb + bxHb = 1;

∀b ∈ B (30)

Ybxb = byLb × Lbxb + byWb ×Wbxb + bzHb × Hbxb∧
byLb + byWb + byHb = 1;

∀b ∈ B (31)

Zbxb = bzLb × Lbxb + bzWb ×Wbxb + bzHb × Hbxb∧
OzLb × bzLb + OzWb × bzWb + OzHb × bzHb = 1;

∀b ∈ B (32)

bxLb + byLb + bzLb = 1∧ bxWb + byWb + bzWb = 1∧;
bxHb + byHb + bzHb = 1

∀b ∈ B (33)

Each box is characterized by its length, width, and height dimensions. To guarantee
the boxes’ height orientation constraints and maximize the freeloading space, when a box
is loaded onto a pallet, each of these dimensions must be assigned to a given axis x, y,
and z. Because of the orientation constraint in height, the second equation of the set of
Constraints (32) considers the permitted dimension(s) to be placed along the z-axis. Once
this dimension is chosen, the other two dimensions could be placed along the x and y-axis,
only bearing in mind the best position to maximize the free space.

xl ≤ XXl
2 + Mxx ∑l−1

b=1 Gbl ∧ yl ≤ YYl
2 + Myy ∑l−1

b=1 Gbl∧
zl ≤ ZZl

2 + Mzz ∑l−1
b=1 Gbl

∀l ∈ B (34)

Due to the geometry of the three-dimensional packing problems, several symmetrical
loading patterns may lead to multiple optimal solutions to the same problem, increasing
the CPU time. As in [27], some symmetry-breaking constraints (34) are used to avoid the
problem symmetry. The “Big-M values” (Mxx, Myy, and Mzz) are upper bounds computed
according to the pallet us dimensions in the x, y, and z-axis.

4. The Hybrid Approach for the VRPSDPTW

Both the VRPSDPTW and the 3D-BPP are NP-Hard optimization problems. This com-
plexity can prevent achieving exact solutions in an acceptable time for large-scale instances.
Therefore, we resort to hybrid strategies that use the proposed and innovative models with
the fast solutions obtained by a GRASP algorithm within a matheuristic approach.

The general architecture of this Hybrid approach is summarized in the procedure
presented in Algorithm 1. The first step is the palletization process, packing the demand
of each customer. For each set of boxes of each customer, an instance of 3D-BPP is solved.
After this process, the demand of each customer is not composed of a set of boxes but a set
of pallets instead. Then a constructive phase is performed through a Greedy Randomized
Algorithm (Algorithm 2) followed by the local search phase resorting to a local search proce-
dure (Algorithm 3). This strategy encourages the search to examine unvisited regions of the
solution space or generate solutions that significantly differ from those previously visited.
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Algorithm 1: Hybrid Algorithm.
Input:

I: Instance of the problem;
C: set of costumers;
Bi: set of boxes to be delivered to costumer i;
Pi: set of pallets to be delivered to costumer i;
P set of pallets;

Output:
S: set of solutions;

begin
S← {};
for each i ∈ C do

Pi ← 3D-BPPModel(Bi);
P← Pi;

end for
ConstructionPhase (C, P, S) // Algorithm 2

S← GreedyRandomizedConstruction(C, P);
return S;

LocalSearchPhase (S)// Algorithm 3
S′ ←SwapProcedure (S);
return S;

end

Algorithm 2: GreedyRandomizedConstruction.
Input:

C: the set of costumers;
Co: the set of sorted costumers;
Cl: the set of clusters;
S: the set of solutions;
P: the set of pallets;
P: the set of solutions;

Output:
S: set of solutions;
Cl: set of clusters;

begin
repeat

Co ← SortingCostumers(C);
RCL← cl ∈ {Co|d1i ≤ dmax − α× (dmax − dmin)};
cl← BuildCluster(RCL);
s′ ← CommodityFlowModel(cl);
s′ ← 3D− BPPModel (P, s′);
if (s’ feasible) then

S← S ∪ s′;
Cl← Cl ∪ cl;

end if
else

C ← C ∪ cl;
end if

until C 6= 0;
end
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Algorithm 3: Local search procedure.
Input:
Cl: set of clusters
S: set of solutions
P: set of pallets;
Output:
S: set of solutions
begin

repeat
cl′ pairs← RandomSelection(Cl);
for (i = 1 to Number of Swaps) do

cl ← SwapCostumers(cl′);
s′ ← Commodity− f lowModel(cl);
if ( f (s′) < f (S)) then

if (3D-BPPModel(P, s′) returns a feasible packing) then
S← StoreSolution(s′);

end if
else

IgnoreSwap(cl)
end if

end if
else

IgnoreSwap(cl)
end if

end for
until Stop criteria is met;

end

More precisely, and as shown in Algorithm 2, the set of customers (C) is sorted accord-
ing to the increasing order of distance to the depot through the process SortingCustomers(C)
giving rise to the list Co. Hence, clusters of customers will be built, ensuring that the sum of
the demand of customers (pallets) in each cluster does not exceed the capacity of the vehicle
(in terms of the total volume of the pallets). This issue is important to avoid infeasible
solutions in terms of packing. However, as it will be seen, it is not sufficient to guarantee
a feasible solution. It is important to remark that one customer should be assigned to
exactly one vehicle. This clustering process is a part of the constructive phase of the GRASP
approach and uses a restricted candidate list (RCL). The elements of RCL will be randomly
selected from the list Co using a threshold β as follows:

β = dmax − α× (dmax − dmin), (35)

where

• dmax is the distance from the depot to the furthest customer;
• dmin is the distance from the depot to the closest customer;
• α is a parameter varying in the range [0, 1].

Consequently, the RCL will have a different size according to the value of α. The size of
RCL will resort to the size of C if α = 0, i.e., all customers will be included in RCL. Conversely,
if α = 1, the RCL will have only one element: the customer closest to the depot. Since clusters
are built by randomly selecting customers from the RCL (BuildCluster(RCL)), the use of
Equation (35) will provide randomness to the clustering process. For instance, and taking into
account only the extreme points of the range, the process is completely random if α = 0 and
totally greedy in the conversely (alpha = 1). Subsequently, for each cluster cl, a route is ob-
tained using the commodity-flow model presented in Section 3 (CommodityFlowModel(cl);),
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ensuring constraints of type G1. Immediately after, the feasibility in terms of packing is
verified to ensure the constraints of type G2 (3D − BPPModel(P, s′)). This means that a
feasible three-dimensional packing into one vehicle must be obtained for this cluster, and the
related cargo is loaded into the vehicle, using the 3D-BPP model using the maximization of
the vehicles’ volume usage as the objective function.

Regardless of the clusters being built while ensuring the capacity of the vehicle in
terms of the number of pallets, it is not ensured that the 3D-BPP model always returns a
feasible solution. These situations arise due to the geometry and volume of the pallets,
which can prevent a given constraint of the group G2 can be satisfied. Consequently, in
such cases, the construction of the cluster is aborted, the customers are reassigned to the
list C, new clusters are built, and the whole procedure is repeated. The algorithm stops
when each customer is assigned to a given route and all clusters are feasible, i.e., satisfying
all the constraints G1 and G2.

Therefore, the output of Algorithm 2 provides a feasible solution for the main problem,
composed of a set of clusters of customers. Nevertheless, even if an optimal solution is
achieved for each cluster, it is not possible to ensure that it is an optimal global solution
for the problem, as it relies on partitioning the set of customers into different sets. Several
different partitions can lead to significantly distinct solutions. As referred to above, and
aiming to achieve improved solutions, a local search is applied immediately after using the
obtained output of Algorithm 2 as input of the Algorithm 3.

Firstly, the algorithm randomly selects two clusters from the set Cl. For each pair, a
given number of swaps is performed among two customers, each one from each cluster.
The swap consists of exchanging a pair of customers from different clusters. The number
of allowed swaps is equal to the number of customers in the smallest selected cluster,
which gives several combinations of different clusters. Secondly, the commodity-flow
model is applied to the resulting pairs of clusters, and the overall solution is assessed
Commodity− f lowModel(cl). If this swap leads to any reduction in the objective function
while satisfying the capacity of the vehicle, the feasibility of terms of loading (constraints
of type G2) of both clusters is assessed using the 3D-BPP model proposed in Section 3. This
model must be applied to load all the pallets of the related customers in each vehicle, with
a different objective function: maximize the volume utilization. If a feasible packing is
obtained for both clusters, then the solution is stored, considering the new clusters. On
the contrary, if the swap procedure does not lead to any saving, or if there is an infeasible
packing for at least one cluster, the swap is discarded. This overall procedure is repeated
until a given stop criteria is met. Therefore, the best solution in a set of solutions S is
returned if it corresponds to an improvement of the initial solution.

5. Computational Results

The global objective is to solve and optimize an operational distribution problem,
including routing and packing issues, in a real-world scenario arising in this company.
However, to evaluate the quality of the proposed approach, two different sets of compu-
tational experiments were conducted: one for real instances and another for benchmark
instances. Real problem instances relied on data provided by the company. They were
used to test not only the hybrid approach but also the mathematical models separately, as
presented in Section 5.1. However, the set of suppliers of the company is relatively small,
and the weight and volume of the boxes in each route are always smaller than the capacity
of the vehicle. To test the efficiency of the presented approach and mathematical models
in more challenging and large-size problem instances, computational experiments were
conducted on some VRPSDPTW and 3D-BPP benchmark instances as shown in Section 5.2.
The hybrid approach was implemented in C++, and the mathematical models were solved
using the CPLEX solver. All the experiments were run on a desktop computer with In-
tel Core i7 vPro CPU at 2.2 GHz and 8-GB RAM. After preliminary experiments, α was
experimentally set to 0.8.
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5.1. Results for Real Instances of the VRPSDPTW and 3D-BPP (Routing and Loading)

According to the nature of the real data given by the company, two types of instances
were created for 10 suppliers and one vehicle: one with a symmetric travel time matrix
and another one with an asymmetric matrix. For each supplier, a given time window
is provided (from 0 to 12 h) and the collected and delivered quantities are known (from
0 to 4 pallets). The collected quantities are always smaller than or equal to the delivered
quantities. Those instances vary from 3 to 10 suppliers. The demand of each supplier varies
from 1 to 4 different types of boxes and the average number of boxes for each supplier is
100. The pallets have standard dimensions (120 cm × 80 cm), and the maximum height
of a pallet can vary between 80, 120, or 180 cm depending on the requirements of the
logistics suppliers or on the product types. Six instances for the overall problem were
solved using the commodity-flow model and the 3D-BPP model, for the symmetric and
asymmetric instances, giving rise to twelve instances. Tables 1 and 2 present the obtained
results in terms of CPU time in seconds (CPU), the total travel time in hours (Travel Time),
the number of pallets (No. Pallets), and the optimality gap in percentage (Gap). Note that
the CPU time for the 3D-BPP is defined in seconds for each instance.

Table 1. Experimental results for real and asymmetric instances.

Instances
Commodity-Flow 3D-BPP

Travel Time (h) CPU (s) Gap (%) No. Pallets CPU (s) Gap (%)

1 2.46 1.45 0.00 31 0.05 0.00
2 2.95 1.65 0.00 34 0.03 0.00
3 2.46 1.90 0.00 25 0.01 0.00
4 2.46 1.00 0.00 34 0.04 0.00
5 2.95 1.61 0.00 30 0.03 0.00
6 2.46 2.34 0.00 30 0.03 0.00

Table 2. Experimental results for real and symmetric instances.

Instances
Commodity-Flow 3D-BPP

Travel Time (h) CPU (s) Gap (%) No. Pallets CPU (s) Gap (%)

1 3.37 1.40 0.00 34 0.06 0.00
2 2.94 1.62 0.00 24 0.01 0.00
3 3.37 1.59 0.00 34 0.05 0.00
4 3.37 2.34 0.00 34 0.02 0.00
5 2.94 1.15 0.00 34 0.04 0.00
6 3.37 1.40 0.00 34 0.06 0.00

An optimal solution was always found for the whole set of real instances for each
mathematical model. The computational time for each of the models is tiny. Furthermore,
there are no significant differences between symmetric and asymmetric instances. It is
worth noting that the 3D-BPP model is underused whether it only provides pallets of a
small fraction of heterogeneity for each customer, even in real instances. For this reason,
and to assess its efficiency, more computational experiments are presented in the sequel.

5.2. Experimental Results for Adapted Benchmark Instances

In order to assess the quality of the overall approach, more challenging instances than
the ones presented in Section 5.1 are required. Therefore, we resort to two different sets
of experiments:

E1 set of tests to assess the efficiency of the 3D-BPP using benchmark provided in [28]
(denoted in the literature by Thpack9, which is a set of 47 instances ranging from 2 to
5 item types and from 47 to 180 items);
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E2 set of tests to assess both the VRPSDPTW and 3D-BPP models separately, as well
as the hybrid approach in an integrated way, using benchmark instances provided
in [28,29].

Concerning E1, the same set of instances was also used in [30]. These instances were
used in contributions considering multiple containers whose objective is to minimize the
number of containers needed to load the whole set of heterogeneous items. Therefore,
all 47 instances were tested and presented in Table 3 as well as the minimum number of
required containers (No. Cont.) and the CPU time (CPU (s)). The proposed model proved
to be very efficient since it always achieves the optimal solution in very short computational
times for all the instances. The minimum CPU time is 0.01 s (reaching 4 containers) and the
maximum CPU time is 3.28 s (for 26 containers). However, it is not possible to establish an
association between CPU time and the minimum number of containers: the time difference
is negligible.

Table 3. Experimental results for the adapted benchmark instances for the 3D-BPP (pallets loading).

Instances
3D-BPP

Instances
3D-BPP

No. Cont. CPU(s) No. Cont. CPU (s)

1 19 0.51 25 5 0.10
2 7 0.39 26 3 0.07
3 19 2.53 27 5 0.09
4 26 3.28 28 9 0.29
5 46 2.73 29 15 0.87
6 10 1.98 30 18 0.99
7 16 1.78 31 11 0.23
8 5 0.55 32 4 0.01
9 17 0.33 33 5 0.04

10 37 1.52 34 8 0.23
11 14 0.86 35 3 0.10
12 45 2.30 36 11 0.54
13 20 0.06 37 12 0.64
14 28 1.19 38 25 0.86
15 11 0.03 39 12 0.59
16 21 0.33 40 8 0.21
17 7 0.02 41 14 0.23
18 3 0.11 42 4 0.70
19 3 0.12 43 3 0.07
20 5 0.82 44 3 0.10
21 17 0.97 45 3 0.50
22 8 0.22 46 2 0.09
23 17 1.02 47 3 0.19
24 5 0.13

Concerning the E2 experiments, and since the hybrid approach deal with routing and
loading components, we resort to a set of instances provided in [29] combined with those
from [28], performing a set of 21 instances. Only the first 20 customers were considered to
adapt those instances to a single VRPSDPTW. The instances are symmetric and grouped in
clustered suppliers (IC type), uniformly distributed suppliers (IR type), and a mix of IC
and IR types (IRC types).

The computational results for this set are presented in Table 4, grouped by the assessed
method: the commodity-flow model itself and the Hybrid approach. The minimum number
of required vehicles (No. Veh), the CPU time (CPU (s)) and the optimality gap (GAP) are
also presented.

An optimal solution is always obtained except for the last two instances IRC203 and
IRC204. These instances correspond to the mix of clustered customers with Uniformly
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distributed customers (mix IRC). In this particular case, after 2 h, the best bound is returned
and used as an upper bound for comparison with the results of the hybrid approach. It is
also possible to verify that IC instances have, on average, lower computational times than
IR problems.

Comparing these results with the results obtained by the hybrid approach, optimal
solutions are obtained in some instances (presented in bold). In the instances that only
two vehicles are required in the best solution for the commodity-flow model (e.g., IR204,
IR207, IR208, and IR211) is the 3D-BPP model solution of three vehicles, the result obtained
by the hybrid approach is also three. In these cases, and since the hybrid approach solves
both problems simultaneously, it is assumed that those solutions will be the optimal
solution. For the remaining instances, good solutions were achieved in a very reduced
computational time (roughly one second in the vast majority of cases).

Table 4. Experimental results for the adapted benchmark instances for the VRPSDPTW and 3D-BPP
(routing and loading several vehicles).

Commodity-Flow Hybrid GRASP
Instances

No. Veh/Dist CPU (s) GAP (%) No. Veh/Dist CPU (s) GAP (%)

IC201/Thpack9_44 3/592 30.01 0 3/592 <1 0
IC202/Thpack9_44 3/592 33.07 0 3/592 <1 0
IC203/Thpack9_44 3/586 58.60 0 3/595 1.03 1.54
IC204/Thpack9_44 3/591 39.69 0 3/591 1.02 0
IC205/Thpack9_44 3/589 31.17 0 3/631 <1 7.13
IC206/Thpack9_44 3/588 33.29 0 3/609 <1 3.57
IC207/Thpack9_44 3/588 32.06 0 3/588 <1 0
IC208/Thpack9_44 3/588 32.68 0 3/598 <1 1.70
IR202/Thpack9_44 3/1198 196.36 0 3/1214 1.78 1.34
IR203/Thpack9_44 3/949 1764.03 0 3/949 1.83 0
IR204/Thpack9_44 2/849 296.10 0 3/1132 <1 -
IR205/Thpack9_44 3/1054 132.42 0 3/1069 <1 1.42
IR206/Thpack9_44 3/932 161.03 0 3/949 <1 1.82
IR207/Thpack9_44 2/903 905.81 0 3/1204 1.35 -
IR208/Thpack9_44 2/735 132.01 0 3/980 <1 -
IR209/Thpack9_44 3/931 233.23 0 3/945 <1 1.50
IR210/Thpack9_44 3/964 233.96 0 3/972 <1 0.83
IR211/Thpack9_44 2/912 429.98 0 3/1215 <1 -

IRC202/Thpack9_44 3/1374 1940.44 0 3/1374 2.09 0
IRC203/Thpack9_44 3/1089 >2 h 10.91 3/1205 3.10 10.65
IRC204/Thpack9_44 3/819 >2 h 5.36 3/899 3.68 9.77

The modeling approaches presented for this real case are helpful in the decision
process. The company could solve a real problem in an acceptable time. Similar results were
obtained even when the number of customers rose to 20. Given the very particular nature
of this real problem, there is no approach in the literature to solve this specific problem.
For this reason, the proposed methods address the special issues of this real problem.
Despite that, the proposed models can be easily adapted to incorporate more constraints
or address extended problems and/or their variants. Another advantage of the presented
mathematical programming models is their adaptation to matheuristic-based approaches.
Exact and heuristic approaches can be found in the literature for similar problems [19–23]
but heuristics based on mathematical models, as discussed in this work, are still scarce.
Despite the advantages presented, these approaches also have some limitations: one of
them is the capacity to achieve good-quality solutions for large-size instances using only
mathematical programming models. Another limitation is related to the used capacity
of the vehicle. It would be interesting to address the rearrangement of items inside the
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vehicle after each pickup. However, this inclusion would lead to an exponential increase in
computing time, so it will always be necessary to conduct a trade-off analysis between the
savings generated and obtaining solutions in an acceptable amount of time.

6. Conclusions

In this work, a real problem of an automotive production company belonging to an
international corporation is presented. An exhaustive literature review was performed,
considering the classification schemes in this field. Two mixed-integer programming
models are proposed to address the problem. The first is a commodity flow model to
address the Vehicle Routing Problem with Simultaneous Delivery and Pickup and Time
Windows. The second model is the formulation for the 3D-BPP, which can be used in
two different scenarios: to minimize the number of pallets needed for each supplier
or to maximize the vehicle usage. Due to promising results and the nature of the two
mathematical formulations, one of the main contributions of this work is the possibility
of expand them to follow the growth of production of this company while maintaining
good-quality solutions. For instance, it will be possible to address possible extensions
or variants that the company may face in the future (e.g., heterogeneous fleet or mixed
backhauls). Although the approach was used for real instances, adapted instances from the
literature were also used to test the overall efficiency of the proposed methods. Most of the
real instances were solved up to optimality in a very reduced computational time. For the
remaining ones, good upper bounds were derived. For the adapted instances, the results
seem promising since optimal solutions are obtained in some cases, while in the remaining
cases, good-quality solutions can be derived.
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