10,854 research outputs found

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    MetaSpace II: Object and full-body tracking for interaction and navigation in social VR

    Full text link
    MetaSpace II (MS2) is a social Virtual Reality (VR) system where multiple users can not only see and hear but also interact with each other, grasp and manipulate objects, walk around in space, and get tactile feedback. MS2 allows walking in physical space by tracking each user's skeleton in real-time and allows users to feel by employing passive haptics i.e., when users touch or manipulate an object in the virtual world, they simultaneously also touch or manipulate a corresponding object in the physical world. To enable these elements in VR, MS2 creates a correspondence in spatial layout and object placement by building the virtual world on top of a 3D scan of the real world. Through the association between the real and virtual world, users are able to walk freely while wearing a head-mounted device, avoid obstacles like walls and furniture, and interact with people and objects. Most current virtual reality (VR) environments are designed for a single user experience where interactions with virtual objects are mediated by hand-held input devices or hand gestures. Additionally, users are only shown a representation of their hands in VR floating in front of the camera as seen from a first person perspective. We believe, representing each user as a full-body avatar that is controlled by natural movements of the person in the real world (see Figure 1d), can greatly enhance believability and a user's sense immersion in VR.Comment: 10 pages, 9 figures. Video: http://living.media.mit.edu/projects/metaspace-ii

    Efficient Distance Accuracy Estimation Of Real-World Environments In Virtual Reality Head-Mounted Displays

    Get PDF
    Virtual reality (VR) is a very promising technology with many compelling industrial applications. As many advancements have been made recently to deploy and use VR technology in virtual environments, they are still less mature to be used to render real environments. The current VR systems settings, which are developed for virtual environments rendering, fail to adequately address the challenges of capturing and displaying real-world virtual reality that these systems entail. Before these systems can be used in real life settings, their performance needs to be investigated, more specifically, depth perception and how distances to objects in the rendered scenes are estimated. The perceived depth is influenced by Head Mounted Displays (HMD) that inevitability decrease the virtual content’s depth perception. Distances are consistently underestimated in virtual environments (VEs) compared to the real world. The reason behind this underestimation is still not understood. This thesis investigates another version of this kind of system, that to the best of authors knowledge has not been explored by any previous research. Previous research used a computer-generated scene. This work is examining distance estimation in real environments rendered to Head-Mounted Displays, where distance estimations is among the most challenging issues that are still investigated and not fully understood.This thesis introduces a dual-camera video feed system through a virtual reality head mounted display with two models: a video-based and a static photo-based model, in which, the purpose is to explore whether the misjudgment of distances in HMDs could be due to a lack of realism, or not, with the use of a real-world scene rendering system. Distance judgments performance in the real world and these two evaluated VE models were compared using protocols already proven to accurately measure real-world distance estimations. An improved model based on enhancing the field of view (FOV) of the displayed scenes to improve distance judgements when displaying real-world VR content to HMDs was developed; allowing to mitigate the limited FOV, which is among the first potential causes of distance underestimation, specially, the mismatch of FOV between the camera and the HMD field of views. The proposed model is using a set of two cameras to generate the video instead of hundreds of input cameras or tens of cameras mounted on a circular rig as previous works from the literature. First Results from the first implementation of this system found that when the model was rendered as static photo-based, the underestimation was less as compared with the live video feed rendering. The video-based (real + HMD) model and the static photo-based (real + photo + HMD) model averaged 80.2% of the actual distance, and 81.4% respectively compared to the Real-World estimations that averaged 92.4%. The improved developed approach (Real + HMD + FOV) was compared to these two models and showed an improvement of 11%, increasing the estimation accuracy from 80% to 91% and reducing the estimation error from 1.29% to 0.56%. This thesis results present strong evidence of the need for novel distance estimation improvements methods for real world VR content systems and provides effective initial work towards this goal

    Near-Field Depth Perception in See-Through Augmented Reality

    Get PDF
    This research studied egocentric depth perception in an augmented reality (AR) environment. Specifically, it involved measuring depth perception in the near visual field by using quantitative methods to measure the depth relationships between real and virtual objects. This research involved two goals; first, engineering a depth perception measurement apparatus and related calibration andmeasuring techniques for collecting depth judgments, and second, testing its effectiveness by conducting an experiment. The experiment compared two complimentary depth judgment protocols: perceptual matching (a closed-loop task) and blind reaching (an open-loop task). It also studied the effect of a highly salient occluding surface; this surface appeared behind, coincident with, and in front of virtual objects. Finally, the experiment studied the relationship between dark vergence and depth perception

    Substitutional reality:using the physical environment to design virtual reality experiences

    Get PDF
    Experiencing Virtual Reality in domestic and other uncontrolled settings is challenging due to the presence of physical objects and furniture that are not usually defined in the Virtual Environment. To address this challenge, we explore the concept of Substitutional Reality in the context of Virtual Reality: a class of Virtual Environments where every physical object surrounding a user is paired, with some degree of discrepancy, to a virtual counterpart. We present a model of potential substitutions and validate it in two user studies. In the first study we investigated factors that affect participants' suspension of disbelief and ease of use. We systematically altered the virtual representation of a physical object and recorded responses from 20 participants. The second study investigated users' levels of engagement as the physical proxy for a virtual object varied. From the results, we derive a set of guidelines for the design of future Substitutional Reality experiences
    • …
    corecore