481 research outputs found

    Charge recycling in MTCMOS circuits: concept and analysis

    Get PDF

    Optimal MTCMOS reactivation under power supply noise and performance constraints

    Full text link

    Radar Sub-surface Sensing for Mapping the Extent of Hydraulic Fractures and for Monitoring Lake Ice and Design of Some Novel Antennas.

    Full text link
    Hydraulic fracturing, which is a fast-developing well-stimulation technique, has greatly expanded oil and natural gas production in the United States. As the use of hydraulic fracturing has grown, concerns about its environmental impacts have also increased. A sub-surface imaging radar that can detect the extent of hydraulic fractures is highly demanded, but existing radar designs cannot meet the requirement of penetration range on the order of kilometers due to the exorbitant propagation loss in the ground. In the thesis, a medium frequency (MF) band sub-surface radar sensing system is proposed to extend the detectable range to kilometers in rock layers. Algorithms for cross-hole and single-hole configurations are developed based on simulations using point targets and realistic fractured rock models. A super-miniaturized borehole antenna and its feeding network are also designed for this radar system. Also application of imaging radars for sub-surface sensing frozen lakes at Arctic regions is investigated. The scattering mechanism is the key point to understand the radar data and to extract useful information. To explore this topic, a full-wave simulation model to analyze lake ice scattering phenomenology that includes columnar air bubbles is presented. Based on this model, the scattering mechanism from the rough ice/water interface and columnar air bubbles in the ice at C band is addressed and concludes that the roughness at the interface between ice and water is the dominate contributor to backscatter and once the lake is completely frozen the backscatter diminishes significantly. Radar remote sensing systems often require high-performance antennas with special specifications. Besides the borehole antenna for MF band subsurface imaging system, several other antennas are also designed for potential radar systems. Surface-to-borehole setup is an alternative configuration for subsurface imaging system, which requires a miniaturized planar antenna placed on the surface. Such antenna is developed with using artificial electromagnetic materials for size reduction. Furthermore, circularly polarized (CP) waveform can be used for imaging system and omnidirectional CP antenna is needed. Thus, a low-profile planar azimuthal omnidirectional CP antenna with gain of 1dB and bandwidth of 40MHz is designed at 2.4GHz by combining a novel slot antenna and a PIFA antenna.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120674/1/wujf_1.pd

    PERISCOPE: PERIapsis Subsurface Cave Optical Explorer

    Get PDF
    The PERISCOPE study focuses primarily on lunar caves, due to the potential for being imaged in orbital scenarios. In the intervening years, from 2012-2015, scientists developed further rationales and interest in the scientific value of lunar caves. It does not appear that they are likely to be sinks for water-ice due to the relatively warm temperatures(~-20 degrees Celsius) in the caves leading to geologically-rapid migration of unbound water due to sublimation, and inevitable loss through any skylights. However, the skylights themselves reveal apparent complex layering, which may speak to a more complex multi-stage evolution of mare flood basalts than previously considered, and so their examination may provide even more insight into the lunar mare, which in turn provide a primary record of early solar system crustal formal and evolution processes. Further extrapolation of these insights can be found within the exoplanet community of researchers,who find the information useful for calibrating star formation and planetary evolution models. In addition, catalogues of lunar and martian skylights, "caves" or "atypical pit craters" have been developed, with numbers for both bodies now in the low hundreds thanks to additional high resolution surveys and revisiting the existing image databases

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Comment: 55 pages, 82 figure

    Circuit and System Level Design Optimization for Power Delivery And Management

    Get PDF
    As the VLSI technology scales to the nanometer scale, power consumption has become a critical design concern of VLSI circuits. Power gating and dynamic voltage and frequency scaling (DVFS) are two effective power management techniques that are widely utilized in modern chip designs. Various design challenges merge with these power management techniques in nanometer VLSI circuits. For example, power gating introduces unique power integrity issues and trade-offs between switching noise and rush current noise. Assuring power integrity and achieving power efficiency are two highly intertwined design challenges. In addition, these trade-offs significantly vary with the supply voltage. It is difficult to use conventional power-gated power delivery networks (PDNs) to fully meet the involved conflicting design constraints while maximizing power saving and minimizing supply noise. The DVFS controller and the DC-DC power converter are two highly intertwining enablers for DVFS-based systems. However, traditional DVFS techniques treat the design optimizations of the two as separate tasks, giving rise to sub-optimal designs. To address the above research challenges, we propose several circuit and system level design optimization techniques in this dissertation. For power-gated PDN designs, we propose systemic decoupling capacitor (decap) optimization strategies that optimally trade-off between power integrity and leakage saving. First, new global decap and re-routable decap design concepts are proposed to relax the tight interaction between power integrity and leakage power saving of power-gated PDN at a single supply voltage level. Furthermore, we propose to leverage re-routable decaps to provide flexible decap allocation structures to better suit multiple supply voltage levels. The proposed strategies are implemented in an automatic design flow for choosing optimal amount of local decaps, global decaps and re-routable decaps. The proposed techniques significantly increase leakage saving without jeopardizing power integrity. The flexible decap allocations enabled by re-routable decaps lead to optimal design trade-offs for PDNs operating with two supply voltage levels. To improve the effectiveness of DVFS, we analyze the drawbacks of circuit-level only and policy-level only optimizations and the promising opportunities resulted from the cross-layer co-optimization of the DC-DC converter and online learning based DVFS polices. We present a cross-layer approach that optimizes transition time, area, energy overhead of the DC-DC converter along with key parameters of an online learning DVFS controller. We systematically evaluate the benefits of the proposed co-optimization strategy based on several processor architectures, namely single and dual-core processors and processors with DVFS and power gating. Our results indicate that the co-optimization can introduce noticeable additional energy saving without significant performance degradation

    Development of the DAQ Front-end for the DSSC Detector at the European XFEL

    Get PDF
    The European XFEL is an international photon science facility currently under construction at DESY, Hamburg. Its unique characteristics will open up new research opportunities for investigating tiny structures, ultra-fast processes, and also matter under extreme conditions. The research will allow invaluable insights for many scientific disciplines like biology, medicine, and chemistry, but also for nano-technology, astro-physics, and others. The DSSC detector is one of three 2d megapixel detectors presently being developed for application at the XFEL facility. A challange is the acquisition of the huge data amount produced by the detector system. The total payload data rate is estimated to be in the order of 67.2 Gb/s. This thesis presents the DAQ front-end for the DSSC detector. A special focus is on the development of the I/O Board, which represents the basic component of the lower DAQ layer. The DSSC front-end DAQ system exploits the features of latest technology in microelectronics and high-speed data transmission. Organized as a two-staged hierarchical system, it comprises 20 readout nodes in total, based on FPGA technology. The 16 slave nodes of the first DAQ layer receive data from the detector front-end at an aggregate link bandwidth of 89.6 Gb/s via 256 electrical links. The accumulated data are then concentrated into four 3.125 Gb/s high-speed links per node for transmission towards the four master nodes of the second DAQ layer, the Patch Panel Transceivers. Custom-built firmware on the slave node FPGAs implements the readout logic and concentrator mechanism for the acquired detector data. It additionally comprises several controller modules, which are responsible for operating critical detector electronics. The test results and measurements show that the I/O Board is able both to manage data acquisition at the required bandwith and also to perform low-level controlling tasks as required for proper detector operation
    corecore