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Resumo

Devido à melhoria na fabricação de semicondutores, apareceram transistores na escala do nanômetro
que levaram à redução da área de um IC e ao aumento da velocidade de comutação de cada compo-
nente. Mesmo que a integração de uma quantidade tão grande de transistores num único IC tenha
trazido muitas vantagens, os desafios impostos à indústria microeletrônica são incomensuráveis.

Uma das implicações do rápido crescimento na complexidade do design VLSI é que alterações
no design tornaram-se inevitáveis. Quando eles ocorrem após a fabricação das mascaras usadas
no processo de fotolitografia, não é viável refabricar todas as mascara, pois isso levaria a custos
adicionais elevadíssimos.

Desta forma, a maioria das empresas de VLSI dependem de ECO flows para executar alter-
ações após o tape-out. Com esse objetivo em mente, foi desenvolvido um post-mask ECO flow
que implementa modificações funcionais de ECO feitas no RTL original sem que seja necessário
alterar as mascaras das camadas base (camadas não-metálicas).

O passo preliminar de um ECO flow é a inserção de standard cells redundantes no design.
Assim, um IP foi implementado fisicamente num ambiente industrial e, durante sua implemen-
tação, filler cells reconfiguraveis inovadoras foram colocadas na àrea do core para antecipar a
possibilidade de modificações pós-tapeout.

Posteriormente, perto do prazo final do tapeout deste IP, as partes front-end e back-end do ECO
flow foram implementadas. Enquanto o front-end flow gera uma nova netlist baseada na netlist
original e na modificada, o back-end flow implementa fisicamente as modificações desejadas e
gera um novo layout.

Para validar a correção do post-mask ECO flow implementado, verificou-se que as modi-
ficações feitas no RTL foram corretamente implementadas e que apenas as camadas de metal
tiveram que ser alteradas para fazê-lo, comparando o novo layout com o original camada a camada.
Consequentemente, qualquer modificação post-mask furura pode ser realizada simplesmente al-
terando o RTL original, executando o ECO flow e analisando os resultados.
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Abstract

Due to the improvement in the manufacturing of semiconductors, nanometer scale transistors ap-
peared, leading to the reduction of the area of an IC and an increase in the switching speed of
each component. Even though the integration of such an enormous amount of transistors in a
single IC brought many advantages, the challenges imposed to the microelectronic industry are
incommensurable.

One of the implications of the rapid growth in VLSI design complexity is that design changes
became unavoidable. If they occur after the fabrication of the photomasks used in the photolithog-
raphy processing step of the semiconductor device manufacturing, it is not viable to refabricate
the entire mask set as that would lead to huge added costs.

Therefore, most VLSI corporations rely heaviliy on Engineering Change Order (ECO) flows
to perform modifications after the tape-out. With that objective in mind, a post-mask functional
ECO flow that implements ECO modifications done on the original RTL without having to change
the base layers (non-metal layers) was developed. The preliminary step of an ECO flow starts with
the insertion of redundant standard cells in the design. Thus, an IP was physically implemented in
an industrial environment and, during its implementation, state-of-the-art reconfigurable filler cells
were placed in the core area to anticipate the possibility of post-tapeout modifications. Afterwards,
near the deadline of the tapeout of this IP, both the front-end and back-end parts of the ECO flow
were implemented. While the front-end flow generates a new netlist based on the original netlist
and the modified one, the backend flow will physically implement the desired modifications and
generate a new GDS layout.

In order to validate the correctness of the implemented post-mask ECO flow, it was verified
that the modifications done on the RTL were correctly implemented and that only the metal-layers
had to be changed to do so by comparing the new layout with the original one layer be layer.
Consequently, any future post-mask ECO changes can be simply performed by changing the RTL,
running the flow and analyzing the results, decreasing the time-to-market of the chip considerably.
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Chapter 1

Introduction

1.1 Context

Very-large-scale integration (VLSI) corresponds to the process of combining a huge amount of

transistors into a single chip, an Integrated Circuit (IC). Due to the improvement in the manufac-

turing of semiconductors, nanometer scale transistors started to exist, leading to the reduction of

the area of an IC and an increase in the speed of each component.

The VLSI design flow consists of multiple steps, with the physical design flow being at its

lowest level. It follows after the circuit design, taking as an input the source code at the RTL

level written in a Hardware Description Language (HDL). Based on the circuit representations of

the components, the physical design flow aims to create a geometric representation, the integrated

circuit layout. Even though the integration of such an enormous amount of transistors in a sin-

gle IC brought many advantages, the challenges that imposed to the microelectronic industry are

incommensurable.

Firstly, it became unfeasible to use manual operation to generate the layout of an IC. For that

reason, the need of EDA (Electronic Design Automation) tools to automate this design process

appeared. The huge complexity of the problems that these tool face means that no known algo-

rithms can ensure a globally optimal solution in a time efficient manner. Different EDA tools that

use different algorithms will certainly present different solutions for the same problem, and none

of them will be optimal. Consequently, the market of EDA tools is highly competitive.

Simultaneously, the increase of the number of transistors also lead to an increase of power

consumption. As a result, the importance of power in the design of chips started becoming more

and more important, not only due to environmental concerns but also because the popularity of

mobile devices increased tremendously, becoming a significant driver in the electronics industry.

Thus, to address this problem, multiple low power techniques appeared and their use is imperative

to reduce the power dissipation.

Another implication of the rapid growth of VLSI design complexity is that design changes

became unavoidable. If they occur in the first stages of the design flow, they are not cumbersome

and do not represent a big problem. However, when these changes occur towards the end of the
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2 Introduction

design cycle, where the design has converged after significant efforts and the photolithography

masks might have been fabricated, it is not viable to go through the top-down design flow again as

that would be too time and cost consuming.

Therefore, physical design methodologies rely heavily on ECO (Engineering Change Order)

flows to solve timing closure issues, to accommodate incremental changes or even to perform

modifications after the tape-out without having to re-fabricate the complete mask set, which would

lead to great added costs. This method poses a big challenge to the design community. Since the

ECOs are done very close to the tape-out or even after it, these are time critical missions and any

inefficiency in implementation will directly impact the cost and time-to-market of the product.

1.2 Objectives

The dissertation was developed as an internship at STMicroelectronics and presents multiple goals.

First, the physical implementation of an IP in a team environment and using two P&R tools in

parallel: Cadence Innovus and Synopsys ICCompilerII.

Afterwards, the comparison of the performance of these two P&R tools with timing conver-

gence and power dissipation being the main comparison metrics.

Then, the development of the power design of the multi-power domain System-on-Chip (SoC)

in which the implemented block was integrated.

Finally, the implementation of a complete post-mask functional ECO flow which should be

able to perform post-tapeout modifications of the RTL without having to remanufacture the masks

associated with the base-layers (non-metal layers).

1.3 STMicroelectronics

ST microelectronics was created in June 1987 following the grouping of Thomson Semi-conducteurs

(France) and SGS Microelettronica (Italy). Commonly called ST, it is Europe’s largest semicon-

ductor chip maker based on revenue and 43,200 people are employed worldwide.

Since its creation, the company has greatly extended and enriched their product portfolio.

Their current strategic focus is to be the leading provider of products and solutions for Smart

Driving and the Internet of Things.

It is composed of 11 manufacturing sites all around the world. Crolles site, where this intern-

ship took place, is one of the company’s most important production, design and process devel-

opment centers, employing around 4,000 people and hosting both a 200 mm and a 300 mm fab.

In this site in specific, ST manufactures integrated circuits with a capacity of 44,000 wafers per

month.
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1.4 RF Team

The proposed project was carried out in the MDG Central division which has the objective to

deliver IPs that contain RF features such has NFC front-end circuits, RF antenna, BLE (Bluetooth

Low Energy), among others. The division not only proposes new applications but also addresses

requests done by other divisions, for their own products.

Inside this division, the author of this dissertation was integrated into the digital team that

consists of around 10 other engineers. Part of the responsibilities of the team include the addition

of digital support for the analog circuits (such as power, clock and reset management, memory

access and finite state machines), verification and physical implementation, the latter being the

focus of the developed work during the internship.

Concerning the objectives of the thesis, while the physical implementation of an IP and its

integration in a System-on-Chip were done in a team environment along with other physical design

engineers, the comparison of the performance of the two P&R tools, the insertion of ECO cells in

the design and the implementation of a post-mask ECO flow were done individually by the author

of this dissertation.

1.5 Structure

This document is divided into 7 chapters. In chapter 1 this dissertation is contextualized and its

objectives presented. Then, a description of the company and the team in which the author of this

dissertation was integrated during its development is made. Chapter 2 introduces concepts that set

the theoretical baseline of this dissertation such as an overview of the physical design flow, design

techniques associated with low power design and ,finally, all the different aspects associated with

Engineering Change Order (ECO) . Due to the novelty of the latter in specific, a study on the

existent academic literature will be made and conclusions relevant for the implementation of an

ECO flow will be drawn. With the theoretical notions of this chapter in mind, chapter 3 will present

a case study of the physical implementation of an IP in a team environment and the workflow

developed with the objective to help the backend team drive the implementation of a gate-level

netlist to the final GSD layout will be deconstructed. This IP in specific was implemented in two

different tools in parallel and the performance of each will be compared in chapter 4 , with the

timing convergence and dissipated power being the main comparison metrics. Afterwards, this IP

was integrated in a System-on-Chip (SoC) along with other blocks. One particular aspect of the

integration will be focused in chapter 5, the power design of a SoC with multiple power domains.

Near the tapeout of this chip, a post-mask functional ECO flow was implemented for the developed

IP to anticipate future modifications and the details of the procedure taken to do so are analyzed in

chapter 6. Finally, chapter 7 presents the conclusions of the dissertation and certain optimizations

that could be made in the future regarding the implemented ECO flow.
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Chapter 2

Background

This chapter will present many fundamental concepts required for the developed work.

First, an overview of the physical design flow is made. This overview will set the tone for the

rest of the dissertation and a deep understanding of the steps that is encompasses were fundamental

for the physical implementation of an IP.

Afterwards, the design techniques associated with low power design are presented. Low power

design is becoming increasingly important in VLSI and it will be specially relevant in the integra-

tion of the implemented IP in a System-on-Chip (SoC) that contains multiple power domains.

Finally, all the different aspects concerning Engineering Change Order (ECO) will be de-

scribed. This section will have a big emphasis on the study of existent academic literature due to

the novelty of the topic. It will also set the baseline for the culmination of this dissertation, the

implementation of a post-mask ECO flow.

2.1 Physical Design Flow Overview

After the completion of the RTL and its synthesis, the next big step in the IC design flow is the

physical design. It encompasses several different steps which will now be addressed.

First, the floorplan, in which the core area is defined, the Macros and pads are placed and

a power grid is constructed. Then, the placement, in which the standard cells will be placed in

appropriate locations depending on the chosen optimization goals. Afterwards, the clock tree

synthesis. A buffer tree will be created not only due to the extremely high fanout of the clock

source, but also to minimize the skew among the sequential elements. Thereafter, the different

elements of the circuit will be connected using metal-layers in the routing step. Finally, in the

sign-off step, the correctness of the generated layout is ensured by means of physical verification

and a final timing and signal integrity analysis is done.

5
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Figure 2.1: Physical design flow overview

2.1.1 Floorplanning

Floorplanning corresponds to the first step in the physical design flow. During the Floorplanning,

the width and height of the core and die are initially defined. The core area is where the logic

primarily sets while the area around the core is where the I/O pads are placed. There is the need

for some clearance distance between the core and the I/O pads which depends on the width of

VDD and ground layers.

Figure 2.2: Core and die of an IC [4]

Afterwards, the Macros are placed and their arrangement is defined based upon the relationship

they have with each other and their distance to the I/O pads with the objective to reduce wire length.

They are normally placed manually and fixed so ensure that the following steps will not change

their location.

Thereafter, the pad placement and selection takes place. There are three types of pads: power,

ground, and signal. One of the objectives when placing the pads is to make sure that they have

adequate power and ground connections and that the order in which they are placed reduces any
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electromigration and current-switching noise related problems that might appear. While electro-

migration leads to premature ASIC device failure, current-switching noise may cause noise spikes

on non-switching output pads [4].

After the pad placement it is necessary to do the power planning. With technology scaling,

the performance of ICs continuously increases which leads to higher operating frequencies. This

causes a dramatic increase in the power being delivered as internal logic switching very rapidly

leads to high current demand. At the same time, technology scaling also leads to the reduction of

the width of the metal layers, which leads to an increased resistance in the routing of the power

and, therefore, higher IR drops.

A popular strategy to address the problem of IR drop is the creation of a mesh structure, a

power grid. Instead of having only one source of power supply, we have multiple vdd and ground

lines, coupled together in pairs. Any cell will use the nearest power source and ground lines in the

grid. If there is a high power demand from multiple logic cells at the same time, the mesh network

is able to provide the necessary current, which prevents the effects of ground bounce or vdd droop

when multiple cells are transitioning simultaneously. Simultaneously, the power and ground lines

should use the higher layers of metal in the design as they present the least resistance due to their

greater width. Then, by using stacked vias, the lower metals layers will be used (leaving some

of them for signal and clock routing) until the metal 1 VDD and GND rails in each row that will

directly connect to the pins of the standard cells.

If the power supply is still unable to support the power needs of certain Macros, decoupling

capacitors can be placed around them. They are charged by the main power supply that feed them

when the current demand is higher. By doing so, Macros do not depend entirely on the power

supply.

Figure 2.3: Mesh network ilustration [4]
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Finally, logical cell placement blockage is implemented. It consists of a blockage in the area

between the core and die (area reserved for pin placement) which ensures that there will be no

logic cells accidentally placed in that region by an automatic tool. A placement blockage can also

be placed around macros to reduce congestion near its pins.

2.1.2 Placement

After the Floorplanning stage is concluded, the Placement stage takes place.

Each standard cell in a library (the different libraries and other input files will be scrutinized in

the next chapter) has a certain width and height associated with it as well as a delay. There can be

multiple versions of a standard cell with a certain functionality. For example, a cell with a larger

area but that presents less resistance and, therefore, less delay. These cells are then placed in the

chip in an appropriate location by a placement algorithm based on the connection of these cells

with the other cells of the circuit, the Macros and with the pads. As routing information does not

exist in the placement stage, the placer uses as optimization goals estimations of routing quality

metrics such as total wire length, wire congestion or maximum signal delay.

Figure 2.4: Different metrics used by placement algorithms [14]

Nowadays, most of the physical implementation design tools use numerous algorithms to au-

tomatically place the standard cells. There algorithms are continuously improved, but the main

idea remains the same. These algorithms can be split into two main categories, the constructive

placement and the iterative improvement [11]. When it comes to the constructive placement al-

gorithms, a placement is built from square one using a certain method, for example, by placing a

seed module in the core area and then select the other modules one by one so that the wire length

of the connection between them is minimized. These methods are fast but produce layouts with

poor characteristics. For that reason, they are usually used to generate the initial layout used by an

iterative improvement algorithm, in which an initial placement is modified multiple times in order

to reduce the estimated wire length. The drawback of the iterative improvement algorithms is that

they require huge amounts of computational time.

After the execution of the placement algorithm, the placement can be optimized. Signal degra-

dation will occur between long paths connecting the pins to the logic cells. Wire length is estimated

and based on the expected degradation, buffers can be placed. At the same time, if a certain section

requires higher speeds, then the standard cells of that section can be placed closer to each other to

decrease the wire length delays.

At this stage, in order to check if the placement is reasonable, a timing analysis with ideal

clocks can be made. Clock signal is assumed to have zero latency and skew and the timing analysis
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is done using the estimated wires delays. Setup time violations can thus be detected in this stage.

There is also a data slew check, which specifies the time it takes for a transition in a specific node

to occur. This time should be inside a certain range. If it too fast, there will be a very high current

demand which may lead to a power overshoot. However, if the transition is too slow, there will be

a greater amount of time where both the NMOS and PMOS transistors are turned on, which causes

short circuit currents that increase the power consumption of the circuit. This analysis leads to the

swapping of certain standard cells with another version of the library in order to improve the area

or reduce the timing delays.

2.1.3 Clock Tree Synthesis

The next step is the clock tree synthesis. It corresponds to the insertion of buffers or inverters

(inverter being more area efficient as a a buffer is nothing more than a chain of two inverters)

along the clock paths, not only because the clock net has an extremely high fanout (the clock

source needs to drive multiple flip-flops) but also to ensure that the clock delay is balanced in all

the clock inputs, that is, the clock signal reaches all the flip-flops of the circuit at approximately the

same time (low skew) to prevent timing violations.The buffers or inverters are specially important

in long wires in order to ensure the integrity of the signal, such as a small slew. However, even

though minimizing the skew is one of the goals of this step, reaching a skew of exactly zero would

not be desirable as that would lead to every sequential element of the design switching at exactly

the same time. The result would be high current demands in the transition of the clock which

would result in undesirable effects such as voltage droop (the voltage supply drops below VDD)

or ground bounce (the ground voltage rises above 0V).

As clock nets are critical paths in the chip, clock net shielding might be required as it protects

the clock path from cross-talk interference that might lead to glitches.

After the clock tree synthesis and the clock net shielding processes, a timing analysis with real

clocks can take place. In this case, the delay caused by the wires and the buffers of the clock net

are taken into account. At this stage, the tool tries to solve mostly setup violations whose condition

is the following:

θ +∆launch < T +∆capture − tsetup − tuncertainty (2.1)

The arrival time is the sum of the combinatorial delay θ and the delay of the clock path of the

launch flop ∆launch. In order for a setup violation to be prevented, the arrival time of each timing

arc must be lower than the required time. The required time is the sum of the clock period T and

the delay of the clock path of the capture flop ∆capture, subtracting the setup time of the capture

flop tsetup and the clock uncertainty tuncertainty. The difference between the required time and the

arrival time is the slack.

Setup violations can be solved by decreasing the arrival time by swapping the standard cells

of the problematic combinational paths by faster versions or by purposely increasing the skew

between the launch flop and capture flop by placing extra buffers or inverters in the clock path of



10 Background

the capture flop (which would consequently increase the required time, therefore increasing the

time slack).

It should be noted that while hold violations also appear at this stage, they are usually solved

later, in the sign-off stage. There are some reasons for doing so. On one hand, the steps taken

to solve setup violations might simultaneously create hold violations. On the other hand, the

extraction of the RC parasites during the signoff increases the delay of the combinatorial paths

which might solve many of the hold violations without requiring any effort.

A popular Clock Tree Synthesis algorithm whose underlying concepts are still used in current

EDA tools is the H-Tree algorithm [15]. Fig. 2.5 illustrates the implementation of an H-Tree.

First, a connection from the clock driver to the center of the H structure is made, dividing the core

into two sections (left and right) . Then, two shorter lines that make a right angle with the previous

line are made until the center of the new sections. This process is repeated recursively, creating

multiple H-shape structures, until all the clock sinks are reached. Besides process variations that

inevitably occur, the clock path delay will be practically the same for every sink.

Figure 2.5: Implemented H-Tree [15]

After the Clock Tree Synthesis step finishes and all the buffers required to build the buffer-

tree have been placed, there will still be empty spots left out in the core area. However, for the

manufacturing of the chip it is required that the entire empty space is filled. As a result, filler cells

which do not have any functionality are placed at this stage to ensure the continuity of the power

lines and the N-well across the tracks. Alternatively, if certain modules require more power due to

the IR-drop effect, decoupling capacitors placed like filler cells [7] can fill the space around them

instead.

2.1.4 Routing

After the placement of the standard cells and the clock tree synthesis, there is the need to route the

design by making all the necessary connections between the standard cells. One of the goals of

the routing step is to reduce the total wire length of the design and congestion to a minimum. By

doing so, the existing timing scenario can be maintained after the routing, which means that the

timing convergence obtained after the CTS should be kept.
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One of the most well-know and accepted routing algorithms is the Maze Lee algorithm [2]

illustrated in Fig. 2.6. Initially, a routing grid is generated.The objective is to find the best con-

nection between two end points (a source and a target, that correspond to two of the squares of the

grid), with the shortest path and with as little twists and turns as possible. The first step is to label

each square adjacent to the source with a 1. Then, the adjacent squares to the grid squares previ-

ously labeled with a 1 will be labeled with a 2. This process is repeated until all the grid squares

from the source to the target have been labeled. Once this expansion phase is completed, by fol-

lowing a path from the target to the source in which the square numbers decrease sequentially to 1

there is the assurance that this path has the shortest length. However, this algorithm presents some

limitations. It is slow and it requires large amounts of memory, especially for a dense layout as it

has to store the routing grid information (such as the label given to each square) for every single

connection.

Figure 2.6: Lee’s algorithm representation [4]

2.1.5 Sign-Off

After the routing of the design is concluded, multiple checks are made before the fabrication

process begins.

First, an equivalence check test will certify that the gate-level netlist is functionally equivalent

to the post-layout netlist produced by the P&R tool.

Afterwards, after the generation of the layout (the GDS file) by merging the DEF and LEF files

exported from the P&R tool, together with device level information provided by the standard cell

kit (file formats that will be explained in a later chapter of this dissertation), a dedicated physical

verification tool can be used to perform multiple checks in order to gauge if the layout meets

certain criteria before the tape-out.

Firstly, Design Rule Check (DRC) tests are applied. They determine if all the rules set by

the foundry for manufacturing are being respected. These include minimum spacing and width

between metals and vias, minimum and maximum metal densities for each layer as well as the

antenna rules that should be respected.

Secondly, LVS (Layout vs Schematic) tests are done to check if the generated layout corre-

sponds to the original schematic.
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Thereafter, antenna checks verify if the maximum allowed metal area to gate area is respected.

This check is needed due to plasma induced gate oxide damage [15], a failure that might occur

during manufacturing (more specifically, in the plasma etching process) due to charge accumu-

lation in the metals. The discharging of this charge through gate oxide may potentially damage

it.

Finally, ERC (Electrical rule check) checks are performed to access if any gate was left floating

or if the wells are connected to power/ground in order to prevent latch-up problems.

After the physical verification is complete, the resistance and parasitic capacitance of every

net will be extracted and a final static timing analysis is conducted. Considering most of the setup

violations were solved during the timing analysis performed after the CTS step, hold violations

are more common at this stage. Hold violations, which occur for the same clock edge, have the

following condition:

θ +∆launch > ∆capture + thold + tuncertainty (2.2)

The arrival time is the sum of the combinatorial delay θ and the delay of the clock path of the

launch flop ∆launch. In order for a hold violation to be prevented, the arrival time of each timing arc

must be higher than the required time. The required time is the sum of delay of the clock path of

the capture flop ∆capture, the hold time of the capture flop thold and the clock uncertainty tuncertainty.

The difference between the arrival time and the required time is the slack of an hold condition.

Hold violations at this stage are usually solved by purposely increasing the combinatorial delay

of the problematic path by adding buffers or by increasing the clock delay of the launch flop by

adding buffers to its clock path.

Maximum capacitance checks are also performed to check if every standard cell is able to

drive the capacitance of the net in its output.

2.2 Low Power Methodologies

In early CMOS technologies, power was not a major concern in design of digital integrated VLSI

chips. The main priority of the designers was mostly implementing the desired functionality in

the prevailing process technology. However, when CMOS technologies started to decrease in size,

it became possible to fit more transistors in a die, leading to an higher power consumption (and,

simultaneously, an higher heat dissipation which damages electronic components). Besides the

number of transistors, lower sized technologies also imply faster switching speeds as lowering

transistors’ length leads to higher currents, further increasing the power consumption of the chip.

Therefore, the importance of power in the design of chips started increasing in importance, not

only due to environmental concerns but also because the popularity of mobile devices increased

tremendously, becoming a significant driver in the electronics industry. In chips placed in portable

devices power consumption is of up most importance. Batteries are currently the bottleneck of

such devices as their capacity has not been improving as quickly as the performance of all the
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different components of the device. As performance increases, battery lifetime decreases, which

means efficient low power techniques need to be used to prevent the user from having to constantly

charge the device.

The total power consumption in digital integrated circuits can be split in two major types:

dynamic power and static power.

2.2.1 Dynamic Power

Dynamic power consumption is related with transitions at gate terminals and can be divided in

two: switching power and short-circuit power.

Switching power is the result of the constant charge and discharge of the output capacitance

of the logic gates, which includes the wire capacitance and the input capacitance of the logic gates

connected to them (gate capacitance loads). Switching power can be calculated from expression

2.1, where fswitch is the toggling frequency (which depends on the fraction of transistors actively

switching and the clock frequency), V the supply voltage and C the total capacitance that is being

charged/discharged.

Pswitching = fswitch.C.V 2 (2.3)

Considering the quadratic nature of the supply voltage, reducing it is clearly an efficient way

of decreasing the power consumption and that is exactly what is happening with the scaling down

of the process technology. However, reducing it also decreases the current of the transistors and,

simultaneously, the switching speed, which can be prejudicial if high performance is desirable.

One way to overcome this problem is to use different supply voltages for different areas of the

chip, in what is called a Multi-voltage design. By doing so, some modules can have lower supply

voltages without sacrificing the voltage needs of high-speed modules. Multi-doltage designs have

some implications that will be later described, like the use of level-shifters in the interface between

them.

From the swiching power expression, it is also clear that reducing the clock frequency is one

of the methods that can be used to reduce the switching power. The trade-off is obvious though,

as performance is lost in the process.

One of the big contributors of the total switching power is the buffer tree build in the CTS step

of the physical implementation. The high number of buffers/inverters lead to an high capacitance

and there is an high toggling frequency as every component switches in every clock cycle. There-

fore, building a clock tree that accomplishes all the skew and slew requisites with the least amount

of buffer levels is one of the reasons that can highly influence the total power consumption, not

only switching power but also because a lower number of components decreases static power.

A widely used technique to reduce the switching power is clock gating. In few words, this

technique disconnects the clock signal from the clock pin of sequential logic, reducing the number

of active components and avoiding having to charge/discharge their input capacitance.
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Figure 2.7: Clock gating cell

Short-circuit power, which represents less than 20% of the dynamic power consumption [16]

will be described in detail later in another relevant section of this chapter.

2.2.2 Static Power

The total leakage power in CMOS circuits is determined by the contribution of leakage currents

in each transistor, which has two main sources: subthreshold leakage current and gate tunneling

leakage current.

Pleakage =Vdd .Ileakage (2.4)

Ileakage = Isubthreshold + Igate (2.5)

Gate leakage is the current that flows through the gate oxide, due to the quantum-mechanical

tunneling of electrons [17]. The full explanation for such effect is out of the scope of this thesis.

As was previously explained, supply voltage has been scaled down to keep dynamic power

consumption under control, with the trade-off of lowering the drain current and, therefore, the

switching speed. To maintain a high drive current capability, the threshold voltage (Vth) has to be

scaled down too, as there is a dependence of the drain current and (V gs−Vth)2. However, the Vth

scaling results in increasing subthreshold leakage current as can be seen by the leakage current’s

expression in Fig. 2.8.

ubthreshold current occurs between drain and source of PMOS and NMOS transistors when

they are operating in the weak inversion region, the operating region in which the gate voltage is

lower than threshold voltage.

Figure 2.8: Subthreshold current expression
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Whereas in the past leakage power could be neglected in comparison with dynamic power, that

stops being the case when transistor scaling resulted in a substantial increase of leakage currents.

Fig. 2.9 compares dynamic power and leakage power consumption with the scaling down of the

technology process. It should be noted that even though the reduction of the supply voltage leads

to less dynamic power, the faster switching speeds due to increases in performance (possible due

to the reduction in transistors length, which increases their drain current) means dynamic power is

rising along with leakage power.

Figure 2.9: Comparison of leakage vs dynamic power with shrinking of device dimensions [31]

Consequently, taking into account static power dissipation as soon as possible in the design

flow has become critical in low-power circuits. There are multiple techniques to reduce static

power consumption. One of the main ones is power gating and it will be explained in detail in the

next section.

2.2.3 Power Gating

The objective of power gating is to shut off the modules of the circuit which are not in use, con-

siderably reducing static power dissipation. It has a bigger impact on the design architecture than

clock gating, as power gating models have to be safely entered and exited, leading to timing delays

and possible set-up violations. Simultaneously, using power gating increases the design complex-

ity, the area of the chip and constantly turning a module on or off may lead to increased dynamic

power consumption. As a result, there are clear trade-offs that should be taken into account when

using this technique, making it mostly used in chips where low-power is a key feature. The differ-

ent components needed to implement this technique will now be described.

2.2.3.1 Power Switches

Usually the power of shutdown modules is turned off using power switches, a CMOS transistor

placed between one the power supply and the power port of the standard cells. It can be either an

NMOS (footer switch, connected to ground) or a PMOS (header switch, connected to power). For

larger modules, a single transistor might not have enough driving power, which means multiple

transistors need to be used in parallel.
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Figure 2.10: Power switch. On the left, using a PMOS as a header switch. On the right, using an
NMOS as a footer switch.

The signal used to turn a module on or off is generated by the Power Management Unit (PMU),

responsible for controlling all the power related components in the design (which also includes the

enable signal for the isolation cell that will be explained further in this dissertation). Since this

thesis is backend focused, the PMU will not be explained in great detail.

2.2.3.2 Retention Registers

When a module is turned off, their registers lose their value. If it is important to save those values

so that the current state is retained on wake-up, a retention strategy needs to be used. Usually,

special registers with less leakier and lower voltage flip-flops are used. Obviously though, these

flip-flops need to be always powered-on even if they are placed inside a shutdown module (a

concept called power island). Therefore, special care is needed when placing and routing them

as it requires the routing of the supply rails of an always-on power domain into the shutdown

domain. The big area overhead of these flip-flops, the possible complexity of their routability and

the time delays associated with restoring the values back to the main registers at wake up need to

be considered when deciding to use a retention strategy.

2.2.3.3 Isolation

When a power domain (the concept of power domain will be clarified further down in this chapter,

but the name ends up being self-explanatory) is turning on or off, its output values are undefined

between 0 and 1. This is a clear signal integrity issue, which might not only lead to incorrect logic

values in the input of the always-on power domains but also increased power dissipation due to

short-circuit currents from supply to ground. Considering the wake-up or turning-off of a module

might be slow, a long transient in the input signal of the always-on power domain will lead to a

long time period in which both the NMOS and PMOS transistors will be conducting, causing a

direct path between supply and ground.
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Figure 2.11: Short circuit power

Consequently, the power gated module needs to be safely entered and exited by means of iso-

lation cells located at the interface between modules which are in shut-down and always on power

domains. They have an enable signal as an input that, when active, allows the communication

between the two power domains. These cells are placed in the always-on domain so that they are

always powered and usually the enable signal is generated by this domain. If it is not, special care

is required, as is explained in a future chapter of this dissertation. When the enable signal is off,

there is no communication between the two modules and the isolation cells clamp the output node

to a known voltage to ensure that the inputs of the always-on domain are not floating.

Figure 2.12: Isolation Cell. Enable signal generated by a Power Management Unit.

2.2.3.4 Level Shifters

In Multi-voltage designs, two modules cannot be directly connected as that would lead to an

incorrect functionality. For example, if a module operating at 1.8V received a logic value of 1

from another module operating at 0.9V then it would not be able to correctly assess if consists of

a 0 or a 1, leading to a possible error. This means there is the need to place level-shifters between

two modules that operate at different voltage levels. As the name implies, the purpose of this cell

is to shift voltage across different modeules, both from low to high as well as high to low.

It is not necessary that every design which has a module that might shut-off requires level-

shifters as they only need to be used if two different power domains operate at 2 different voltages.

But considering the power gating technique is used in low-power chips, it is also very likely that

it is a Multi-voltage design.
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It should be noted that besides the increased area, there is also a timing impact in the paths

requiring level-shifters due to their delay.

Figure 2.13: Level-Shifter

2.2.3.5 Enable Level Shifter

In power designs in which two power domains have different voltage levels and, simultaneously,

one of the modules is a shut-down domain, special cells called enable level shifters can be used.

These cells incorporate the functionality of a level shifter and an isolator in the same cell, leading

to a smaller area as compared to a combination of two independent cells.

2.2.4 Power Intent and UPF format

Several methods for power consumption reduction, such as the power gating technique, require

power information that is not supported by Hardware Description Languages (HDL). Since RTL

and design constraints are not sufficient for describing power behavior, there is the need for con-

structs for capturing different power domains, supply rails, operating voltages, usage of special

cells (isolation cells, level shifters, power switches, retention registers), among others. That is the

function of the power intent of the design, which is separate from the RTL but must be coupled

with it in the synthesis as it affects design behavior. This means the IC can be designed with power

as a key consideration early in the flow.

Due to the need of power intent languages, the EDA industry responded with multiple vendors

developing proprietary low power specification capabilities for different tools in the design and

implementation flow. This solution solved the problem for each individual tool, but it is still

far from ideal as the same power intent information had to be specified multiple times for all the

different tools. In order to tackle this problem two global standards are currently defined for power

intent specification: Unified Power Format (UPF) and Common Power Format (CPF).

The work done on the implemented block later described uses UPF, a TCL command based

language that reflect the power intent of a design at a relatively high level.

2.2.5 Power Domains

The power domains are the fundamental objects of the power intent, a collection of design ele-

ments that share the same power specifications, they are powered the same way. This means that

if two modules belong to the same power domain, then they turn off at the same time (in case of a

shutdown power domain) and use the same operating voltages. A power domain can also be called
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Figure 2.14: Two different power domains, a shutdown domain and an always-on domain

an always-on domain, if it never turns off. It is also important to notice that a power domain is not

necessarily physical contiguous. Instances belonging to the same power domain might be located

in very different locations, if they share the same power specifications.

A primary supply set (an aggregation of supply nets) and supply ports (connection points

between adjacent levels of hierarchy) are thus defined for each power domain. The inclusion

of modules inside a power domain is what leads to the automation opportunities that the UPF

language provides, as all the elements within a power domain will be implicitly connected to its

primary power set.

Besides the creation of power domain, supply sets and ports, UPF commands are also respon-

sible for creating and connecting new objects that were not preset in the RTL HDL description of

the design. This includes all the special cells associated with power consumption reduction tech-

niques, that are created in the context of a power domain, covering isolation strategies, retention

strategies, level-shifters and power switches.

2.3 ECO Problem and Solutions

Physical design methodologies rely heavily on ECO (Engineering Change Order) flows to solve

timing closure issues, to accommodate incremental changes or even to perform modification after

the tape-out without having to re-fabricate the complete mask set. This method poses a big chal-

lenge to the design community. Since the ECOs are done very close to the tape-out or even after

it, these are time critical missions and any inefficiency in implementation will directly impact the

cost and time-to-market of the product. An ECO flow can be distinguished by either pre-mask or

post-mask.
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A pre-mask ECO modification occurs before the fabrication of the masks which means stan-

dard cells can be freely inserted, moved or deleted. Pre-mask ECOs are usually performed close

to the tapeout, to avoid having to repeat the physical implementation from the beginning due to a

late design change.

After the tapeout and the masks for the different layers have been fabricated, post-mask ECOs

are performed instead. The changes are realized by modifying only the photomasks of the metal

layer as an all-layer ECO (which includes the base layers, sometimes also called non-metal layers)

would lead to a complete re-spin of the design, defeating the purpose of doing a post-mask ECO

in the first place. Nowadays, most VLSI corporations implement metal-only ECOs flows after the

tape-out due to their low-cost as carrying out design changes with minimal layer modifications

saves a lot of money from a fabrication point of view as each layer mask has a significant cost of

its own. The base layer masks in particular represent around 70% of the total mask set cost [18],

so performing metal-only ECO clearly represents a big reduction in the cost of the re-fabrication.

Therefore, while the objective of pre-mask ECOs is to reduce design-time before the tapeout, the

objective of post-mask ECOs is to reduce design-cost after the tapeout. This dissertation will

manly focus on post-mask metal-only ECOs.

Besides the layers that are used, an ECO can also be classified in two types. Functional ECOs

can be used to fix bugs, revise specifications or add a new functionality, while timing ECOs target

to improve input slew, output loading and delays. Generally, a timing improvement or a functional

revision are done in an isolated fashion, but it is possible to implement an ECO flow that does both

simultaneously, as proposed by [9]. When it comes to the type of ECO, the study presented in this

chapter will mainly focus on functional ECOs.

In order to perform ECO modifications, an ECO flow that has the objective to automatize the

ECO modifications can be implemented for an integrated circuit. Manually performing an ECO

modification is not only more time expensive but also much more error prone, which is not ac-

ceptable when the deadline of a project is approaching. An ECO flow for post-mask modifications

can even be implemented before the tape-out of the design, already anticipating the possibility of

having to perform these time critical changes in the future. This dissertation will culminate with

the implementation of a post-mask functional ECO flow.

Figure 2.15: Distinction between different types of ECO both in layers and types and where they
occur in the design flow. Metal-only ECOs are performed after the base-layers are frozen [13]
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2.3.1 Insertion of Spare or Reconfigurable Cells

In order for post-mask ECO modifications to be performed, a critical preliminary step is the inser-

tion of ECO cells during the physical implementation of a design. ECO cells are redundant cells

which are placed in the core area even though they are not currently being used in the design. The

objective of these cells is to anticipate possible modifications that might happen in the future.

ECO cells can be divided into two main groups that will be described in this section: spare

cells and reconfigurable cells. Spare cells end up being equivalent to any other functional standard

cell as they have a fixed functionality. On the other end, reconfigurable cells are cells that can

be reconfigured into a desired functionality using only metal layers. Regardless of their type,

the location of the ECO cells is of utmost importance. If it is expected that a certain module

will require a high number of ECO changes (for example, a module that corresponds to a new

architecture) then the vicinity of that module should be sprinkled with more ECO cells. On the

other hand, modules with more stable architectures usually do not require so many ECO changes,

which implies that less ECO cells should be sprinkled near them. However, in most practical cases

it is difficult to predict the locations where ECO modifications are more likely. Therefore, ECO

cells are usually uniformly spread over the whole design homogeneously, to ensure resources are

available for ECO modifications at most locations.

2.3.1.1 Spare Cells

Spare cells, just like most standard cells, have a fixed functionality. Consequently, an appropriate

selection of spare cells of different types is fundamental to ensure that the desired functionality is

available when an ECO modification must be performed. Besides the spare cells that are deliber-

ately placed, some of the standard cells might be converted into spare cells due to design changes

in which they become unused.

One of the problems of using spare cells is that they contribute to the static power of the

circuit as each cell dissipates leakage power resulting from the use of tie-high and tie-low cells

that connect the inputs of the spare cells to power and ground nets as they cannot be left floating.

Tie-high and tie-low are necessary to avoid a direct connection between the power nets and the

gate-oxide present in the gates of the spare cells as gate-oxide is highly sensible to voltage surges

and ESD (Electrostatic discharge) events.

At the same time, unused spare cells represent an inefficient use of area. This means that

the number of unused spare cells (which unavoidably occur in the ECO design flow) should be

reduced to a minimum while still ensuring that there are enough spare cells for the necessary ECO

modifications.

2.3.1.2 Reconfigurable Cells

In order to tackle the problems that occur with the use of spare cells, [10] proposes the use of

reconfigurable cells. When needed, these cells can be reconfigured into a desired logic function to

perform the modification.
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Moreover, if they end up not being used, there is the possibility to reconfigure them into

decoupling capacitors, which leads to a more efficient use of the available area. Decoupling ca-

pacitors, as previously described, become more and more important with the shrinking of MOS

technology as supply voltage is reduced and the resistance of the metal layers, due to a reduction

in their width, is increased. Thus, IR-drop becomes more significant, the problem that decoupling

capacitors address.

At the same time, if when using spare cells there are not enough logic gates of a desired type

to represent the logic change, the ECO cannot be carried out using only metal layers. It has to

be, then, carried out using all the layers as more cells will need to be added which results in the

re-spin of the design. By using reconfigurable cells, however, there is a free selection on the logic

gate type by reconfiguring the base cell with metal, which increases the likelihood of performing

a successful ECO.

Another advantage of the use of reconfigurable cells is that tie-high and tie-low cells are no

longer needed, leading to a further reduction of inefficient area usage and a reduction of leakage

power.

In Fig. 2.16, the base cell presented [10] that will be later reconfigured is illustrated.

Figure 2.16: Base cell [19]

By making metal-1 connections, it is then possible to configure this base cell either into a

decoupling capacitor or into different kinds of logic gates.

As a first approach, Fig. 2.17 shows how to implement a decoupling capacitor using the gate

capacitance of a single NMOS transistor. The drain and source simply need to be connected to

ground and the gate to vdd.
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Figure 2.17: Decap implemented using a single NMOS [20]

However, when using the presented base cell, it is possible to use two NMOS and two PMOS

transistors, as illustrated by Fig. 2.18. With this implementation, P1 and N1 get turned on and act

as decoupling capacitors. Simultaneously, P2 and N2 appear in series with P1 and N1, resulting

in reduced gate leakage due to the effect of series stacking [21]

It should be noted that unused reconfigurable cells do not necessarily need to be reconfigured

into decoupling capacitors. If the decoupling capacitors already present in the design are sufficient

to avoid significant IR-drop, the unused reconfigurable cells can just be left as base cells, which

makes them equivalent to a filler cell that simply ensures the continuity of the power lines and

the N-well across the track. The advantage of not reconfiguring the base cell into decoupling

capacitors (in a situation without IR-drop issues) is that decoupling capacitors are more leaky,

unnecessarily increasing the static power dissipation of the circuit.

Figure 2.18: Reconfigured decoupling capacitor [19]

When ECO modifications are necessary, the base cell can also be easily reconfigured into an

inverter, a NAND gate or a NOR gate by making the metal-1 connections illustrated in Fig. 2.19.
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Figure 2.19: Reconfigured Logic Cells. (a) Inverter; (b) NAND; (c) NOR. [19]

2.3.1.3 Metal-Configurable Gate-Array Cells

The drawback of using the previously described reconfigurable cells is when cells with an higher

complexity or different driving capabilities are required, as there is the need to connect multiple

reconfigurable base cells. The internal connection among the reconfigurable cells leads to extra

delay that induces timing degradation. One possible solution would be to insert both reconfig-

urable cells (for the more simple logic gates) and spare cells (for the most complex ones). Another

solution for this problem that uses a different type of reconfigurable cells, metal-monfigurable

Gate-Array (GA) cells is proposed by [22], which sometimes can also be called GA reconfig-

urable cells. Fig. 2.20 illustrates the concept of these cells. They consist of an array of tiles in

which each tile represents a basic reconfigurable cell, similar to the one presented previously. If a

more complex logic gate is desired, multiple adjacent tiles can be used. Fig. 2.21 compares the GA

reconfigurable cells approach with the previously described single reconfigurable cell approach in

the implementation of an AND gate. The single reconfigurable cell approach will need additional

wiring for internal connections, which results in timing degradation.

Figure 2.20: Reconfigured gate-array reconfigurable cells [22]
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Figure 2.21: Comparison reconfigurable cells and gate-array spare cells in the implementation of
an AND gate [22]

Because of the flexibility of metal-configurable GA cells, only 0.5% to 1% of the chip area

is occupied by spare arrays ( this ratio is very low compared with 2% to 5% for standard spare

cells)[23].

However, it is also true that for the same driving strength, a functional cell made from recon-

figuring the GA reconfigurable cells is slower and less area-efficient than a standard spare cell

[23].

2.3.2 Performing metal-only ECO functional modifications

The different steps that should be carried out in order to implement a metal-only ECO are illus-

trated in Fig. 2.22 and they will be explained during this section. Firstly, assuming an already

implemented netlist which contains either spare cells or reconfigurable cells, the logic difference

between this netlist and the RTL or gate-level netlist with the desired modifications is extracted.

Secondly, an ECO synthesizer will apply the desired changes in the implemented netlist without

modifying the base layers by using the available ECO cells in the design. Finally, after ensuring

that the new synthesized netlist is functionally equivalent to the ECO RTL, the changes applied by

the synthesizer can be routed using metal layers.

It is also important to note that this explanation (as well as the implemented metal-only ECO

flow discussed further in this dissertation) will focus on combinatorial and not sequential mod-

ifications. Sequential changes are more involved and usually require rerunning the clock tree

synthesis, which means they are usually not performed in metal-only layers. Some other consid-

erations to have in mind when performing sequential ECO modifications will be analyzed further

in this dissertation as it will be more relevant then.

2.3.3 Logic Difference Extraction

After the insertion of ECO cells, it is necessary to extract the logic difference between the original

placed design and the new design that needs to be implemented, the ECO RTL. This difference

corresponds to the ECO list, which consists on a list of functional changes that should be made.

Usually, a short ECO list leads to a high probability of a feasible ECO [13].
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Figure 2.22: Different steps in an ECO flow [12]

Figure 2.23: Different steps in the logic difference extraction

The logic difference between the netlists is determined by an equivalency checking tool, which

uses formal mathematical techniques to prove that two designs are functional identical. It should

be noted that equivalence checking tools have more uses outside of ECO modifications, specially

in formal verification. Formal verification is used to prove that two representations of the same

design exhibit exactly the same behavior. For example, after the synthesis the gate-level netlist can

be compared with the RTL netlist to ensure that they are functional identical. If they are not, then

mistakes occurred in the synthesis of the design. Another example would be after the routing, by

comparing the pre-routed and the post-routed netlists.
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2.3.3.1 Reading Step

During the reading step, both the original placed design (which will be called golden design from

now on in this chapter) and the modified design are automatically segmented into logic cones

and compare points. This segmentation of the design allows the analysis of smaller and more

manageable sections.

Compare points are the design nodes at which the functionality is compared. They can be

primary outputs, inputs of registers or the inputs of black boxes. Black boxes usually represent

Macros whose function is unknown, such as a memory or an analog IP. Logic cones are groups

of combinational logic that drive the compare points. They contain an input-border that consists

of primary inputs or outputs of registers and black boxes and an output-border that consists of the

compare point that the logic cone drives.

Figure 2.24: Logic cone and its input and output borders

2.3.3.2 Matching Step

After breaking the golden design and modified design into logic cones and compare points, the

tool attempts to map the compare points of the golden design to the correspondent compare points

of the modified design.

There are various techniques to map the compare points, and multiple of them can be used in

succession until all the compare points are mapped. The matching techniques can be divided into

two main categories, name-based and function-based.

In most tools, name-based matching methods are used first. Three different types of name-

based matching can be used. Exact-name matching corresponds to mapping the compare points

that have exactly the same name. However, it is common for synthesis tools to change the names

of the instances, specially when an hierarchical design is flattened and instances belonging to

a certain module are placed in the top-level. This leads to the use of a name-filtering method

that excludes certain special characters or lower/upper case differences from the comparison. For

example, if in the modified design there is an instance with the name TOP/sub1/ABC[10] it could
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be matched with an instance from the golden design with the name TOP/Sub1_Abc10. If both of

these methods fails, a final name-based method can be used that compares the names of the nets

attached to a compare point. If two compare points with different names are driven by nets with

the same name, then they are considered the same.

The vast majority of the compare points of the golden design and reference design are matched

by name-based techniques. If not, non name-based (also called function-based) techniques can be

used. The main function-based matching technique corresponds to topological equivalence. If the

logic cones driving two unmatched compare points are topologically equivalent (if they have the

same structure), then those two compare points are considered matched.

The final method is signature analysis, an iterative analysis of the compare points’ functional

signatures by applying vectors derived from random pattern generation to the inputs of the logic

cones. However, signature analysis matching has a considerable run-time, which makes it a not

very common technique.

Every compare point needs to be matched between the two designs before the verification step.

If the methods described above used by did not manage to do it, then it is the job of the engineer

to determine manually the matching between the last remaining unmatched compare points.

2.3.3.3 Verification Step

After the compare points have been matched, the next step is to verify if the functionality of the

logic cone that drives each matching compare point is the same. Many algorithms are available to

compare and prove the equivalence of logic cones. The most popular way to verify the equivalence

of two logic cones is through the use of a SAT engine, whose mechanisms will be understood in a

later section.

Once the verification step is complete, an equivalence checking tool generates a list of any

compare point that is not equivalent, which means that for the same input-boundary of a logic

cone, the output-boundary (compare point) is not the same. Based on the equivalence of the logic

cones, the mapped compared points can be either equivalent or non-equivalent.

2.3.3.4 Analysis Step

Finally, in the last step of the logic difference extraction, the logic cones driving the non-equivalent

points are analyzed. Equivalence checking tools provide various isolation capabilities to help

isolate the difference between two different logic cones, which is needed as logic cones can be too

big to find the difference manually.
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Figure 2.25: Two non-equivalent logic cones as their compare point shows different logic values.
The difference that led to the non-equivalence must be detected

The extracted differences between the logic cones corresponds to the ECO list, the changes

that need to be applied to the implemented netlist in order to accumulate the new functionality.

Besides being used to extract the ECO list, an equivalence checker tool can also be used to

ensure that the new netlist generated by the ECO synthesizer is functionally equivalent to the RTL

with the ECO modifications, in which case non-equivalent compare point are not expected.

2.3.3.5 Academic research on logic difference extraction

Most of the academic research on logic difference extraction tackles the problem of minimizing

the size of the ECO list (sometimes also called ECO patch) as a smaller ECO list increases the

likelihood of a feasible ECO due to a smaller number of modifications. The state-of-the-art work

on this topic uses techniques based on SAT (Boolean satisfiability problem) engines [8][25].

While all the mathematical intricacies of the Boolean satisfiability problem are out of the scope

of this dissertation, it can be summarized as the problem of finding an assignment of variables

x1,x2, ...,xn such that a given boolean function F(x1,x2, ...,xn) evaluates to true [26 ]. If there is

such an assignment, then F is said to be satisfiable, if there is not, F is unsatisfiable. For example,

Fig.2.26 shows the boolean function FAND. The inputs of this boolean function (A,B and Z) that

correspond to the correct functionality of an AND gate satisfy FAND.

Figure 2.26: Boolean function FAND [26]

The problem of finding non-equivalences between two designs can thus be reduced to the

problem of initially translating both of the circuits in boolean functions and then using a SAT
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Figure 2.27: Overview of ECOS (based on [13])

engine to seek situations in which a boolean function of one of the circuits is satisfiable but not on

the other.

Both [8] and [25] use this SAT technique. While [8] initially assumes the ECO list is the entire

original netlist and iteratively removes the equivalent sections by subtracting them, [25] does the

opposite. Initially the ECO list is empty and the non-equivalencies are repeatedly added until the

ECO list is complete. [24] did a review on these two approaches and concluded that for a high

number of modifications, the procedure taken by [25] produces a smaller ECO list than the one

taken by [8].

2.3.4 Metal-Only ECO Synthesis

An ECO synthesizer that completes the changes described in the ECO list accurately and effi-

ciently is required. It uses the physical information of the spare cells (both the location and cell

type) to rewire the circuit with the minimum cost.

In order to deeply understand the problem in question and a possible solution, a proposed

metal-only ECO synthesizer named ECOS will be analyzed [13]. Of course there are multiple

methods to apply the desired ECO modifications, and,as such, each tool might use a different

ECO synthesizer. However, the formulated problem and the necessary features remain essentially

the same, so analyzing this metal-only ECO synthesizer in specific will provide better intuition.

Fig. 2.27 shows an overview of the ECO synthesizer that will be analyzed.

2.3.4.1 Problem Formulation

The metal-only ECO synthesis problem can be formulated as follows:

“ The Minimum-Cost ECO Synthesis Problem: Given the netlist and placement of a design,

the cell library, a set of spare cells and an ECO list (a list of functional changes), complete the
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Figure 2.28: Bounding box of a net that connects four ports [4]

ECO list using the available spare cells, create the revised netlist with the minimum cost (without

sacrificing timing and routability) and generate the revised set of spare cells [13].”

There are multiple ways to define the cost of a metal-only ECO modification, the loss of

routability and timing. In this case, the cost will be modeled by the summation of the half-

perimeter wirelength (HPWL) of all the nets of the revised design. HPWL is an wire estima-

tion method widely used in different steps of the Physical Design Flow (such as placement and

CTS) to estimate the total wire length before the routing step, allowing to evaluate the timing and

routability of the design in earlier stages of the flow.

It uses a wiring bounding box for each net. This bounding box represents the smallest rectangle

that encloses all ports of the net. The half-perimeter wire length estimation of a net is one-half of

its wiring bounding box [4]. In fact, this estimation is a lower-bound on the real wire length as

will be seen in the following examples.

Taking Fig. 2.28 as an example, if we wish to estimate the wire length of a net that connects

the 4 nodes, we start by drawing a box that encloses all of them, the bounding box of the net.

If we consider that the side of each square of the grid has 1 λ of length, then the perimeter of

the bounding box is 14 λ , which means the HPWL estimation of this net is 7 λ . By manually

connecting the 4 nodes, it is easy to see that the real cost of this net is in fact 8 λ . Thus, the HPWL

metric was a fair estimation of the lower bound of the total wire length.

The design example illustrated in Fig. 2.29(a) will be used to present the metal-only synthe-

sizer ECOS. This design contains two inputs, two outputs, four used logic cells, six nets and three

unused spare cells (two AND and one INV). On the right of Fig. 2.29(a), the placement of each of

these cells is illustrated. To simplify, each cell has an area of 0, which means both the input and

output pins of each is located in a single point. The bounding box of net 1 is also showed.

The summation of the half-perimeter wire length of this design is as follows:

∑
i=1..6

HPWL(ni) = 6000+1000+3000+5000+2000 = 22000 (2.6)

Fig. 2.29(b) shows the ECO list that contains the functional change F1 to be made. In this
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Figure 2.29: (a) A design example for an ECO modification. On the left, a gate-level representation
of the initial design. On the right, the placement of each cell, including the spare cells. The
bounding-box of net n1 is highlighted (b) The ECO list with the functional change to be made (c)
Cell U3 will not be used anymore which means it can be disconnected. (d) The revised netlist and
placement after cell U3 is replaced with the spare cell S2. The bounding box of each cell associated
with the functional change is highlighted. Since the cell U3 is not used anymore, it is freed up and
can serve as a spare cell for future modifications (e) Same functional change if spare cell S1 had
been chosen instead (f) The spare cell library for F1 [13]
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case, F1 represents n3 = AND(n1,n2) which means the OR logic cell U3 should be replaced by an

AND gate.

2.3.4.2 Possible Hand-Made ECO and its limitations

This example is relatively simple and an hand-made ECO could easily be made by disconnecting

U3’s inputs and outputs as showed in Fig. 2.29(c). Afterwards, one of the AND spare cells (S1 or

S2) has to be chosen: considering the closer proximity of S2 to U1,U2,U4 and to the output O1 this

spare cell is the obvious choice between the two. The cost of the revised design of Fig. 2.29(d) is

given by

∑
i=1..6

HPWL(ni) = 4000+2000+2000+5000+5000+2000 = 20000 (2.7)

To ensure that the choice was correct, the cost of the revised design by choosing S1 instead

would have been:

∑
i=1..6

HPWL(ni) = 7000+2000+2000+5000+5000+2000 = 23000 (2.8)

However, there are multiple reasons why an hand-made ECO is not feasible in most practical

situations and why an automatic ECO synthesizer is necessary. Firstly, because an ECO list might

be large, making the hand-made ECO too time consuming and error prone. Secondly, because the

number of spare cells in a design is limited. If there are multiple functional changes (FCs), several

FCs may prefer the same spare cell, leading to competition problems that need to be dealt with.

Finally, because the available spare cells might not directly match the desired functionality. For

example, if the ECO list in Fig. 2.29(b) used an NAND instead of an AND, then there would not

be a direct match, both S2 and S3 would have to be used. In some situations it might considerably

increase the complexity of choosing the preferred spare cells based on proximity.

2.3.4.3 Terminology

Before going in depth in the explanation of ECOS, some terminology needs to be clarified (As a

side note, a functional-change will be often referred to as FC from now on).

Definition 2.3.1. HPWL0(Fj) - Pre-ECO HPLW : HPLW associated with the bounding box

covering the FC’s Fj related nets after unused connections are removed and before the FC is

applied.

In the design example, the unused connections correspond to the connections between nets n1,

n2 and n3 that were connected to U3. Therefore, HPWL0(F1) = 6000.

Definition 2.3.2. HPWL1(Fj,Sk) - Lower bound of assigning a spare cell Sk to a functional

change Fj : HPLW associated with bounding box covering Sk (spare cell that was chosen to

perform the modification) and the pins of F j’s related nets.
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In the design example, HPWL1(F1,S2) = 6000.

With this terminology out of the way, the metal-only synthesizer ECOS can be presented, still

using Fig. 2.29 as a design example. As shown in the ECOS overview in Fig. 2.27 (shown in

the beginning of this section), it is composed of two steps: Technology Mapping and Spare Cell

Selection.

2.3.4.4 Technology Mapping Step

As spare cells are limited both in type and quantity, an automatic method to choose spare cells

of the proper type and simultaneously taking into account the distance of all the cells involved in

the modification is needed. Not only should it be able to deal with simple situations ,such as the

previously described hand-made ECO (where S2 was chosen over S1 because of a lower cost of

20000 compared to 23000), but also when the desired ECO functionality is mismatched with the

available spare cells.

ECOS was build on top of a logic synthesis environment called ABC, guiding it with spare

cells types and proximity based on the physical information of the design. To do so, each functional-

change (FC) Fj will have its own customized spare cell list based on these parameters which will

indicate what are the preferred spare cells to minimize the cost of the ECO modifications. The

physical proximity specification will be modeled by the cell area of each Sk which corresponds

to the cost of assigning that Sk to the FC Fj (which is equivalent to HPWL1(Fj,Sk)), ensuring

that guided ABC will give appropriate preferences and lead to a resynthesized ECO list with good

proximity. Taking the design example again, the area assigned for each spare cell for F1 is the

following:

area(F1,S1) = HPWL1(F1,S1) = 7000 (2.9)

area(F1,S2) = HPWL1(F1,S2) = 6000 (2.10)

area(F1,S3) = HPWL1(F1,S3) = 7000 (2.11)

Based on these results, Fig. 2.29(f) presents the spare cell list for this FC. In this case, the delay

of each cell Sk was set to zero, to simplify the problem. If the desired FC is not directly mapped

by one of the spare cells available in the library, guided ABC can use two different methods to

increase the number of cell types.

Firstly, it supports constant insertion. For example, if an FC requires an INV but the only

available spare cell is a NAND, a logic value of ’1’ can be set in one of the inputs of the NAND.

Using the other input of the NAND, there is now a spare cell which is functionally equivalent to

an inverter. This means a cell of type INV would be available in the spare cell list of this FC even

if an INV spare cell did not truly exist.
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Secondly, if the functionality of the ECO list mismatches the available spare cells, a FC might

be converted into multiple spare cells. For example, if a NAND is required but only an AND and

an INV are present, then guided ABC will recognize that both the AND and the INV can be used

together. If two spare cells are required for the desired functionality, then a single FC will be

converted into two functional-changes, each with its own customized spare cell list that indicate

the spare cells areas. When this situation occurs, there are internal connections between the FCs

and the spare cells lists of these FCs will depend on each other. The implications of this detail will

be explained in the second step of ECOS, the spare cell selection step.

2.3.4.5 Spare Cell Selection

After the technology mapping step creates a spare cell list for each functional change, there is an-

other problem to handle: the competition among different FCs for the same spare cell. Therefore,

the decision of the selection of a spare cell for an FC Fj is delayed until this competition problem

is solved.This competition problem can be modeled by the stable marriage problem:

“ The Stable Marriage Problem: Given a set of men and women, each man has ranked the

women in order of preference and each woman has done likewise. The objective is to marry them

off in pairs such that there are not a man and a woman who are not married to each other but

both would prefer each other to their actual mates. If there are no such pairs, all the marriages are

stable.”

If the preference lists for each FC are complete and have no ties, Gale-Shapley algorithm [33],

listed in Fig. 2.30, showed that a stable marriage exists for any ranking.

The key idea of ECOS is to model functional changes as men, and spare cells as women. Every

woman (spare cell) is then ranked in a man’s preference list.The preference that a FC gives to each

spare cell reflects the added cost that would result from choosing it. The higher the preference,

the lower the added cost. The added cost represents the difference between the cell area (provided

by the spare cells list of the technology mapping step, which ends up being the real cost of the

choice) and HPWL0(Fj), whose meaning was explained above.

pre f (Fj,Sk) = ∆cost(Fj,Sk) = area(Fj,Sk)−HPWL0(Fj) (2.12)

As an example, F1 has the following preferences values. Considering S3 does not have the

correct type to perform the desired functionality, its added cost will be infinity to ensure that S3

will never be the choice.

pre f (F1,S1) = ∆cost(F1,S1) = area(F1,S1)−HPWL0(F1) = 1000 (2.13)

pre f (F1,S2) = ∆cost(F1,S2) = area(F1,S2)−HPWL0(F1) = 0 (2.14)
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pre f (F1,S3) = ∆cost(F1,S3) = ∞ (2.15)

With this framework in mind, ECOS performs spare cell selection based on Gale-Shapley’s

stable matching algorithm, listed in Fig. 2.30. Gale-Shapley’s algorithm is male-optimal, so every

functional change tends to find its best selection of spare cells.

Figure 2.30: Modified stable matching algorithm [13]

It should be noted that while the Gale-Shappley’s algorithm presented is relatively straight

forward, the line related with the update of the preferences (line 10) and its intricacies are out of

the scope of this dissertation. It is related with the conversion of an FC into multiple FCs, leading

to internal connections between them and a dependence of their spare cells lists (that indicate the

area associated with each spare cell). Assigning a spare cell to one of those FCs will automatically

change the internal connections to the other FC and, as a result, change its preferences by adding

an induced cost component.

2.3.4.6 Academic research on ECO synthesis

After deeply understanding the problem ECO synthesizers try to solve, the concepts associated

with the cost of an ECO modification and the required features of a solution by analyzing the syn-

thesizer ECOS, other aspects related with the synthesis of functional ECO present in the literature

can be more easily grasped.

When it comes to academic research on synthesis using standard spare cells,[27] does a study

regarding the constant insertion technique of the technology mapping step in which the insertion

of constants on the spare cells’ inputs increases the number of possible solutions. It proves that the

inclusion of this technique on the synthesis reduces the area required to find a feasible mapping

solution by 80% as it becomes less likely that a cell with the desired functionality is far from the

place where the ECO modification is needed.

Also regarding the technology mapping step of the synthesis, [28] proposes a technique that

takes into account the quantities and location of the spare cells based on simulated annealing that
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does incremental spare-cell assignment in order to explore the search space (the set of possible so-

lutions) probabilistically. However, this simulated annealing technique is slow and , consequently,

not suitable in larger designs.

[29] tackles this drawback by proposing a resource and constrain aware technology mapping

engine which uses boolean matching algorithms to speed up the process of finding a near-optimal

solution. First, it represents the circuit described by the ECO list into an AIG (And-inverter graph)

representation. Afterwards, this AIG graph is divided in multiple parts with specific cuts and the

truth table of each part is computed. Finally, each of these parts is mapped with real spare cells

by using boolean mapping algorithms that use NPN-equivalence classes to speed up the mapping

process. Equivalence of two functions defined under the NPN-classification states equivalency of

two Boolean functions under input Negation, input Permutation or output Negation. This means

that it is possible to achieve identical values for both truth table outputs by permutation or negation

of the function inputs and/or negation of the function output, then the functions are equivalent.

When it comes to ECO synthesizers that use reconfigurable cells instead of spare cells, al-

though they are becoming more and more popular in the industry, not much academic research

targets this ECO technique. Nonetheless, regarding the optimization problems of an ECO syn-

thesizer, while the problems associated with the quantity of available cells remains, the problems

associated with the desired functionality are fundamentally different. Regarding Gate-Array re-

configurable cells in specific, even though they can be reconfigured into the desired functionality,

a new issue related with fragmentation occurs. Fragmentation is related with the need to use tiles

from separate GA reconfigurable cells to perform the desired functionality. It is clearly trouble-

some due to the fact that the internal connections between the GA cells lead to timing degradation

and congestion which reduces the routability of the design. Therefore, to model this issue in

the optimization problem given to an ECO synthesizer, [23] proposes a new metric, "aliveness". It

models the capability of a GA cell into being reconfigurale into the desired type which will depend

on its number of free tiles.

To objectively define this new metric, [23] assumes there are m different types of functional

cells in which a GA cell can be reconfigured in and that each of those types occupies si tiles of

a gate-array cell (with i conditioned by 1 ≤ i ≤ m). Then, for a gate-array with k free tiles and

assuming it implements zi cells of size si, the following inequality can be defined:

s1z1 + s2z2 + ...+ smzm ≤ k (2.16)

Considering the equation s1z1 + s2z2 + ...+ smzm = k represents a plane in the m-dimensional

space, one can assume m equals to three for a graphical representation. The result is the plane

illustrated by Fig. 2,31., which makes a tetrahedron with the three axis. The points inside this

tetrahedron are the possible solutions of the inequality. For a more intuitive example, if we con-

sider three different types of functional cells (m = 3) and that the first type occupies two cells

(s1 = 2), then, for a GA with four free tiles (k = 4), if they are reconfigured in two cells of the first

type (z1 = 2), both z2 and z3 must necessarily be zero as there are no free tiles left. This situation
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Figure 2.31: The aliveness of a gate-array cell can be defined as the volume inside the tetrahedron
if there are three possible types of functional cells it can be reconfigured in [23]

in particular corresponds to the interception of the plane with the z1 axis, a point that respects the

inequality. Consequently, since it is desired that a GA reconfigurable cell can be reconfigured into

as many functions as possible, "aliveness" can be defined as the number of integer points inside

the tetrahedron or, seen from a different perspective, its volume.

2.3.5 ECO Routing

Finally, after achieving an equivalence check between the revised netlist and the output of the

ECO synthesizer (the process being exactly the same showed for the logic difference extraction,

but now no differences are expected) the rewiring of the inputs and outputs of the selected spare

cells is conducted using an ECO router. The already existing routing patterns from the original

design make the ECO routing complicated as it will be difficult to pass the design rules with such

an enormous amount of obstacles. Besides, while a default router is allowed to rip up and reroute

the existing nets in order to provide more flexibility, reduce congestion and, therefore, reduce the

likelihood of DRC violations, an ECO router is more greedy and limits the number of reroutes of

existing nets to a minimum in order to reduce the cost of the ECO modifications.

Another characteristic of ECO routing, is that it is possible to perform it using only some of

metal layers. By doing so, only the masks of the metal layers being used need to be remanufac-

tured, greatly reducing the cost of the ECO.

Fig. 2.32 illustrates a situation in which ECO routing using a limited number of layers occurs.

Initially, the cell on the far left was connected to the cell on the far right. However, an ECO

modification required disconnecting the cell on the far left and connecting a spare cell instead,

using only the lower metal layers. The interesting situation comes in how the cell on the left gets

disconnected: while the lower metals of the net can simply be removed as a new mask will be

made for them anyway, the upper metal layers of the net need to remain (even if they are not being

used), to ensure that the masks of these metal prevail intact.
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Figure 2.32: ECO Routing using a limited number of metal layers [32]

2.3.5.1 Academic research on ECO routing

Regarding the literature on ECO routing, [30] introduces two interesting techniques not addressed

in the rest of the literature.

The first technique concerns the minimization of the number of rewiring layers which, as stated

before, has an impact on the mask’s re-spin cost. The objective is to introduce a routing-resource-

aware metric in the spare cell selection so that the number of rewiring layers can be taken into

account earlier in the ECO flow. In a sense, even though this technique has routing implications,

it ends up affecting the ECO synthesis by adding a new optimization variable. Fig. 2.32 illustrates

this concept. In this situation, both the spare cells have the same functionality and one of them

needs to substitute the original cell. By choosing the spare cell on the bottom, both the metal layers

will need to be rewired, meaning both the masks need to be re-spinned. By choosing the one on

the top, however, the routing resources associated with the metal layer 2 can be reused, avoiding

the need to change this mask. Consequently, the ECO synthesizer should take this concept into

consideration when making the choice between the two.

The second technique proposed by [30] concerns the use of redundant wires, not only for

reducing the number of metal-layers required by the ECO, but also to reducing the number of

rewires of existing nets to alter the timing convergence of the taped-out design as little as possible.

There are two types of redundant wires being considered. On one hand, the wires that became

unused. If a specific net is not needed anymore it can be used for another ECO modification instead

of simply deleting it. On the other hand, the dummy wires used to achieve layout uniformity. By

using these wires for routing, obstacles can be crossed over with higher metal layers without

having to actually re-spin their metal masks. Fig.33 illustrates this idea, in which a dummy wire

in metal-2 is used to cross over an obstacle.
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Figure 2.33: (a) A timing-violated path. (b) Spare cell rewiring by changing the horizontal and the
vertical metal layers. (c) Spare cell rewiring by changing only the horizontal metal layer, and thus
the mask for the vertical metal layer can be reused to save the cost [30]

Figure 2.34: (a) Routing configuration before rewiring. (b) Rewiring a net by reusing a dummy
metal [30]



Chapter 3

Physical Implementation of an IP

The implemented circuit called TOP_ANA consists of an IP block , later integrated into a SoC,

for NFC contactless transactions using smart cards.

This block contains an analog front-end (AFE) Macro, a RAM Macro and digital logic respon-

sible for management, control and memory access. The digital logic uses a process technology of

40nm and it contains more than 70,000 instances. For routing, it uses a total of six metal layers.

While the metal layers 1 to 5 are intended for most of the interconnections and are made of cooper,

the uppermost layer (AP) is intended for the the power grid only and fabricated in aluminum due

to the lower resistance.

3.1 Physical Implementation using ODIF KIT

In order to implement this block, Open Digital Implementation Flow (ODIF), a kit developed by

STMicroelectronics designed to assist engineers, was used. It enables the execution of the flow by

providing an abstraction layer on top of Synopsys ICCompiler II or Cadence Innovus tools that

consists of a design working area for running specific tasks.

This kit fits into the design flow between the Hand-off and the Sign-off, driving the implemen-

tation of a gate-level netlist to a the layout, a GDS design file which contains the representation of

the geometric shapes, text labels, and other information about the layout.

The complex functionality of this kit can be briefly described by its two main directories: the

DESIGN directory and the FLOW directory.

3.1.1 DESIGN Directory

In the DESIGN directory, information used as an input to the physical flow in order to configure

the P&R tool is defined: the synthesized gate-level netlist; the design’s power intent; the standard

cells libraries used by the design; the technology files defining the rules of the selected process;

the definition of the different scenarios; the design constrains; among many other files related with

the setup of the P&R tool being used.

41
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Figure 3.1: Files present in the design directory

A big percentage of the effort in the physical implementation of an IP goes into the setup of

all of these input files. It is of up most importance to ensure that the constrains are in agreement

with the gate-level netlist and that all the requirements set by the digital designer are present.

This means, for example, having correct pin lists, correct clock and generated clock definitions,

identification of multicycle and asynchronous paths, among many other consideration that will be

presented. Constant communication with the RTL team is needed, specially when the RTL is in an

early Alpha stage where every modification needs to be updated in the constrains. The setup files

are therefore a "work in progress" throughout the different stages of the development of an IP.

Besides the synthesised gate-level netlist, the power intent UPF file (as seen in chapter 2)

and the definition of the different scenarios (that corresponds to a specific mode of operation and

PVT corner) some of the most important setup files are related with the design constrains and the

libraries (both the standard cell libraries and the technology libraries). These different input files

will now be presented in detail.

3.1.1.1 Design Constrains

The constrains represent design restrictions applied in various steps of the design flow of a chip

(such as logic synthesis, P&R and static timing analysis) that determine what the tools can or

cannot do, how they should behave. This means that if there are multiple ways to solve a specific

problem, the design constrains will limit the number of solutions. If the tools do not find any

solution for a problem it might mean that the constrains are too restrictive.

In order to allow multiple tools to understand the same constrains files (avoiding the need to

re-write them for each tool) a standard format called Synopsys Design Constraints (SDC) is used.

It is a TCL command based language in which most of the commands follow the same structure.

They require a design object as a command argument (the object that will be restricted) as well as

parameters that affect the restriction. For example, in a clock definition:

c r e a t e _ c l o c k [ g e t _ p o r t s $clkA$ ] −per iod 10 −waveform {0 5}

In this straight forward example, a clock object is being created with a clock source clkA

(the design object), a period of 10ns and a duty cycle of 50%. These parameters will serve as
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restrictions when performing timing analysis on all the nets associated with the clock port clkA.

For instance, when checking if any setup violations occurred.

The constrains can be divided in multiple types such as timing constrains, boundary condi-

tions and timing exceptions. In the case of the DESIGN directory, each of these constrain types

corresponds to a different file, which will now be briefly described.

Timing Constrains

These constraints are related to timing specifications of the design. Some of the main com-

mands to define timing specifications are:

• create_clock - Clock definition that creates a clock object and defines its waveform in the

current design, as explained in the example above.

• create_generated_clock - Defines a new clock signal by dividing or multiplying another

clock in the design, and binds this new clock it with a source pin (usually a Q pin of a

flip-flop, as that is normally the output of a clock divider)

• set_input_delay - Defines the arrival time relative to a clock edge on the input ports of the

design. This input path delay models the delay from an external flip-flop to at input port of

the module and will be used for setup and hold analysis on paths that transverse the interface

with the exterior. However, considering this flip-flop comes from an unknown exterior, it

corresponds to an imaginary flip-flop connected to a virtual clock (a clock that is defined

like the others but does not have a real clock source). Because of that, a virtual clock with

an user specified delay must be created that connects to that imaginary flop.

• set_output_delay - Similar to the input delay, but specifies the data required time on output

ports instead.

Boundary Conditions

These constrains define the system interface between the block being implemented and the

exterior, they setup the environment of the design under analysis. Some of the main commands to

define boundary conditions are:

• set_driving_cell - Adds a default driving cell, which means all the design elements con-

nected to the input pins of the design must respect the constrains defined in the Liberty File

(explained later in this section) such as the maximum fanout allowed by the driving cell.

• set_load - Adds a default load cell on every output, which means all the design elements

connected to the output must have enough driving power to respect the load cell’s constrains,

such as its maximum allowed transition time.
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Timing Exceptions

The exceptions, in contrast with the previously defined constraints, do not represent design

restrictions but specific situations in which the constrains do not apply.

• set_false_path - There can be timing arcs in the design where changes in the launch flop

will not lead to changes in the capture flop as there is no input vector that can excite that

timing arc. This means these timing arcs should not be subjugated to timing analysis. Fig.

3.1. shows an example of one of these case, in which no change in the flip-flop D1 will

impact the value captured by D4.

Figure 3.2: Example of a false path from flip-flop D1 to flip-flop D4

Another common example is in the reset signal de-assertion to modules whose clock is

gated. Since there is no active clock in those modules, there is no chance of metastability

happening, which means the timing analysis should be turned off for those timing arcs.

• set_multicycle_path - In some systems there can be some expected combinatorial paths

whose propagation delays are longer than the period of the clock. In that case, it might not

be requirement to capture the source signal transition within one clock cycle. These paths

would lead to setup violations in timing analysis, so they need to be defined as multicycle

paths.

• set_case_analysis - Sets constant values to a list of pins whose values are valid only during

timing analysis. The objective is to disable certain timing arcs during TA such as the ones

related with scan chains by setting the scan enable signal to zero.

• set_clock_groups - Defining clock groups is useful in the exceptions constrains to specify

clocks that are asynchronous between each other. This situation is common when a signal

crosses from one clock domain to another (using a two flop synchronizer to synchronize

this signal with the new clock domain), where launch and capture flop of this timing arc

are asynchronous between each other. In the following command, the group that consists of
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clkA and clkA_div8 (which are synchronous between each other) is defined as asynchronous

to clkB.

s e t _ c l o c k _ g r o u p s −asynchronous −group { clkA clkA_div8 } { clkB }

3.1.1.2 Libraries

Different libraries are necessary for the physical implementation of an IP. Libraries are collections

of different parameters, physical information and abstract views associated with the standard cells

and Macros that are being used in the design. Two of the most important library file types which

had to be consulted during the implementation of the IP will now be described: the Liberty Files

(Lib) and Library Exchange Format (LEF).

Liberty Files (Lib)

The Liberty Files (Lib) specify timing, power and capacitance parameters associated with the

standard cells as well as the functionality associated with their output pins. Usually a Lib file is

specified for each scenario (that corresponds to specific mode of operation and PVT corner) as

they are necessary for Multi-Mode Multi-Coner (MMMC) timing analysis.

In a sense, the Liberty File for each library in the design can also be considered a design

constrain as the parameters of the standard cells end up being restrictions that need to respected

For example, it specifies the maximum transition time allowed in the input of each stan and its

maximum fanout.

The maximum transition time of an input pin of a cell defines the longest time required for its

driving pin to change its logic value. In case a tool detects the maximum transition time constraint

is being violated, it might put a buffer in the output of the driving pin to ensure a faster transition.

Obviously, this value will depend of the operating frequency of the cell, which means a max

transition value will be defined for each scenario (mode of operation and corner). It should be

noted that the value assigned to the maximum transition variable is not only related with logic

correctness (a well defined logic value of ’0’ or ’1’) but also related with low power considerations,

as a long transition leads to high short-circuit power dissipation, as already explained in chapter 2.

Another constrain associated with the Liberty Files is the maximum fanout which measures

the loading-driving capabilities of a cell, affecting the number of inputs of gates that can be safely

connected to its output. Again, a buffer might be added in the output pin of the cell to increase its

driving power in case this constraint is being violated.

Library Exchange Format (LEF)

There are two different types of LEF files that can be distinguished, the technology LEF and

the standard cells LEF.
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On one hand, the technology LEF includes technology information provided by the foundry

related with layers and vias definitions and many different rules. These include minimum spacing

and width between metals and vias, minimum and maximum metal densities for each layer as well

as the antenna rules that should be respected.

On the other hand, the standard cells LEF include information provenient from the standard

cell provider. Information such as the size of each cell, an abstract geometric view (using metal

polygons only) of the layout of the pins , and many other characteristics associated with their

pins. The information regarding the pins include their dimension and location inside the cell, their

direction (input, output or inout) as well as their function (such as signal, power or ground).

The standard cells LEF corresponds to the basic information needed for the purpose of the

P&R tool being utilized instead of using a more heavy file like the GDS (which includes base

layer information such as the poly and implant regions as well as the metal layer information not

related with the pins) that are unnecessary for the P&R. When generating the GDS of the layout,

however, the LEF files provided by the P&R tool need to be merged together with the device level

information so that a complete view of each cell exists.

3.1.2 FLOW Directory

The FLOW directory is divided in multiple files (as illustrated by Fig. 3.3) that will now be

analyzed.

Figure 3.3: Files present in the flow directory

It contains all the different TCL scripts with sequences of commands for the different steps

of the physical flow (design import, floorplanning, placement, cts, routing, signoff, as well as

different optimization steps performed between each step) that take as an input the configurations

made in the DESIGN directory.

Besides the default scripts present in this directory that can be reused and tweaked as desired

for multiple projects, there’s also the possibility to replace them by completely custom made

scripts that might use the low-level commands provided by the tools as well as other higher-level

commands provided by the kit.

The Makefile present in this directory works as a task sequencer, executing each step of the

flow sequentially. In fact, the concept of a flow in general (being it a backend flow, a frontend flow
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or even an ECO flow as will be seen in a further chapter) is heavily related with the dependencies

of a Makefile. For example, if a clock tree synthesis task is launched but the Makefile checks that

the floorplan task was the most recently executed task (by comparing the dates on a generated tag)

then the results of the placement task are outdated and it will need to be automatically executed

before the CTS can be performed.

The resulting database of each of the steps is saved, along with different logs that report the

results of it. One important file in particular that is generated after each step of the flow is per-

formed and which will be referenced regularly in this dissertation is the DEF (Design Exchange

Format). It is a specification that consists of an ASCII representation of the physical layout at any

point during the layout process, a physical view that can be visualized using a P&R tool. By com-

paring the physical view regarding the DEFs saved immediately before and after a certain step,

one can visualize exactly what happened during that step, which is invaluable for debugging when

the information provided by the logs and the tools’ reports is not sufficient to do so.

The DEF ends up being an abstracted view of the GDS, containing only the rows definitions

(which determine the valid locations for the placement of the standard cells), the location and

orientation of each instance and the metal connections between them. The DEF and the LEF

(which contains the information regarding the size of the cell and location and layout of the pins)

provide a complete description of required information by a P&R tool to perform its job. The DEF

can then be merged with the LEF and the device level information regarding the base layers (non-

metal layers) as well as the metal information inside each standard cell (not related with the pins)

to generate the final GDS file, the file containing all the information about the physical layout of a

circuit which is ultimately sent to the foundry.

3.1.3 Floorplan Script

In the case of the implementation of this block, a custom made TCL script for the execution of

the floorplan step in ICCompilerII was developed. It makes sense to have a custom script of the

floorplan stage in particular, as it varies considerably from project to project. The number and size

of the Macros, the number and location of the pins and the desired core shape and size are some

of the reasons why the floorplan step is highly project dependent.

First, the core shape and size were defined, taking into account the size and shape of the AFE

and RAM Macros. Another important parameter to define is the site type, which in this case

was set to "CORE9T". It corresponds to height of each standard cell (which is also the height

of each row) given in number of tracks, in this case 9 tracks (the other usual site in the industry

being 12 tracks). The height of each track is technology information provided by the foundry and

corresponds to the minimum spacing between a metal1 wire and a metal1 via. The number of

tracks is also related to routing resources, as each wire runs in a track.
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Figure 3.4: Core Shape

Then, the Macros were placed in their desired locations manually and oriented in such a way

to allow their pins to be in contact with either the area reserved for the standard cells or with the

boundaries of the core, in case of the AFE Macro pins which will be directly connected to the

rest of the SoC once the block is integrated. After their placement, they were set with the status

"Fixed" to ensure the P&R tool will not change their location in the following steps. As can be

seen by the following picture, the Macros tightly fit in, as a result of the correct sizing of the core

area in the previous step.

Figure 3.5: Macro placement

Afterwards, a placement halo was added around the AFE Macro to block the placement of

standard cells in its interface. The objective is to reduce the congestion in the proximity of the

pins of this Macro and ,for that reason, improve the routability of the design.

In the next step, the digital area pins are placed in the desired edge, honoring the pin spacing

dimensions and with the desired metal layer.

After the pin placement, endcap cells (also known as boundary cells) are placed in the end of

each row. They are used to isolate the different blocks in a SoC by protecting each block from

external signals, and, most importantly, they break the continuity of the N-Well, preventing N-Well

spacing violations issues in the DRC cleanup of the SoC once the block is integrated.
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Figure 3.6: Close up of the mesh network, endcaps and pins

Finally, the power-ground distribution network was designed by adapting scripts from previous

projects. First, a mesh network consisting of a set of stripes laid on in pairs of VDD-GND using

the uppermost layers of the design was constructed. Higher metal layers are preferred for the

construction of the mesh network since their increased width minimizes resistance and IR drop

effects. Then, metal 1 rails where this mesh network meets the standard cells were created and

connected to the mesh using stacked vias.

A floorplan DEF (Design Exchange Format) is thus generated by ICCompilerII. The floorplan

DEF can then be used as an input to the next step, the placement. This means that if it is desired

to run the physical flow on a different tool (in this case, Cadence Innovus) there is not the need

to write a new floorplan TCL script, the already generated floorplan DEF representation can be

simply loaded.

It should be noted that the floorplan displayed on this dissertation was created for an early

stage of the circuit design. This means that the floorplan had to be severely tweaked as changes

both in the shape and size of the AFE Macro and in the number of pins of the block occurred.

Increasing the number of standard cells, which naturally happens as new functionalities are added

in the RTL, means that the area definied for the standerd cells needs to be increased in order to

maintain the same design density. The final floorplan design of this block is sensible information

so it will not be illustrated.

However, by creating a script instead of simply using the graphical user interface to generate

the floorplan, most of the changes that occurred throughout the development of the IP could be

easily made by simply changing some variables of the script instead of having to start the floorplan

step by scratch.
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Figure 3.7: Standard-cell area after the Floorplan Step

3.1.4 Running the rest of the flow

After the floorplan was created, the remaining steps of the physical flow (up until the routing step)

were performed one by one using the scripts provided by the ODIF kit.

After each step, there is the need to analyze the logs generated by the kit and correct any

possible errors. Considering most of the features of the kit had been used in previous projects

and were well tested already, most of the errors are generally related with the inputs of the flow

that were defined in the DESIGN directory. Besides simple mistakes like incorrect path names

or library definitions, the vast majority of the errors that had been corrected were related with the

design constrains.

For example, the timing analysis after a certain step could lead to violations that were not

specified in the timing exceptions. Setup errors in timing arcs in which the clocks are asynchronous

(not defined as such using set_clock_groups) or related with a reset in paths not defined as false

paths were common.

At the same time, changes in the RTL not yet updated in the constrains are very frequent. For

instance, a new generated clock that was not defined in the timing constrains could lead to the

clock pin of some flip-flops being connected to a net that is not of the type "clock" ,which means

they would not be considered by the clock tree synthesis and timing analysis.

Therefore, the physical implementation of an IP is far from being a linear procedure. A design

might be routed already, but if a small change occurs in the RTL, then the physical design flow

needs to be repeated from the very beginning. It might seem inefficient or perhaps even strange not
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to simply wait until the work of the frontend team is done until the physical implementation starts

so that only one run of the physical design flow has to be made. However, it is intended to tapeout

the circuit shortly after the frontend team has finished, specially considering time-to-market is the

driving business requirement for the semiconductor business nowadays, making this parallelism

between the two teams important. Every time the RTL suffers a small tweak the physical design

will generally not require big modifications, ensuring that RTL changes near the tape-out can be

easily implemented.

For an early RTL stage, the block was implemented in parallel in two different P&R tools,

Cadence Innovus and Synopsys ICCII up until the routing step (which means the sign-off of the

block was not finalized yet). In the next chapter, a comparison on the performance of the two tools

with a special emphasis on the timing convergence and the power is made.
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Chapter 4

Comparison of Synopsys ICCompilerII
and Cadence Innovus

Many of the problems that physical design EDA tools need to face cannot be solved by polynomial-

time algorithms. Thus, for problems of this nature, no known algorithms can ensure a globally op-

timal solution in a time efficient manner. As an illustrative example, finding an optimal placement

of only 20 cells in a single-row so that wire-length is minimized and assuming evaluating the wire-

length of a possibility takes 1 microsecond would take more than 77 thousand years [14]. This

means different EDA tools that use different algorithms will certainly present different solutions

for the same problem, and none of them will be optimal.

In this section, a comparison on the timing convergence and power dissipation presented by

Cadence Innovus and Synopsys ICCompilerII on the implementation of the IP described previ-

ously will be made. Unfortunately, the license agreement provided by Cadence and Synopsys to

STMicroelectronics explicitly prohibits the publication of the comparison of benchmark results.

For this reason, instead of using the real names of the tools throughout the report, one of the tools

will be named tool A and another tool will be named B. A comparison of tool A and B will be

made, but the correspondence of tool A and B with either Innovus or ICCompilerII will remain

inside STMicroelectronics.

This comparison was done while the RTL was still in an early design stage, with the intent of

choosing one of the tools over the other for the rest of the development of the IP in case one them

showcased significantly better quality of results. But of course, there are many other factors to

keep in mind when it comes to making that decision, such as the level of expertise of the backend

engineers in both tools or the number of available licenses.

4.1 Timing Convergence - With Post-Placement and Post-CTS Opti-
mizations

When it comes to the metrics that will be compared, a summary on the maximum clock latency

(relevant for setup analysis), minimum clock latency (relevant for hold analysis) and maximum
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skew will be presented for each clock. A single mode of operation was used and in two different

corners, the fastest and the slowest. Table 4.1 shows the results obtained for these metrics using

the timing reports provided by the tools. Tool A presents a lower maximum clock latency for every

clock of the IP and a lower minimum clock latency. When it comes to the skew, it depends from

clock to clock.

Table 4.1: Summary of latencies and skew per clock

Afterwards, a more detailed comparison of the critical paths (the path with the worst slack)

of both tools for the clk_peri clock net was made. This clock was chosen as it is the one with

the most clock sinks, which means achieving timing convergence will be a bigger challenge for

the tools. For the original frequency of clk_peri (which is confidential), both tools had no trouble

with timing convergence, which means all the paths had positive slack. Therefore, in order to

truly test the full capabilities of the tools, clk_peri’s frequency was incrementally increased by

changing the constrain files until one of the tools was not able to converge. Naturally, every time

the frequency of the clock was increased in the constrains, there was the need to re-run the physical

implementation flow from the very beginning in both tools.

When the frequency was increased to 250MHz, which is considerably higher than the original,

tool B was not able to converge. The next two tables show the timing report for the critical path of

both tools. In the first one, the critical path of tool A is analyzed in both tools. The two managed

to have positive slack. However, in the critical path of tool B, while tool A was able to achieve a

positive slack the same did not happen with tool B. Tool A, besides presenting a lower arrival time

(due to the standard cells in the combinatorial path being closer to each other and/or the use of

faster cells), presents higher clock network delay between the launch and capture flip-flops (skew)

which increases the required time. Even though the CTS step tries to minimize the skew, it can
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actually be beneficial in certain timing paths to prevent set up violations. To do this, the tool can

place additional buffers in the clock path of the capture flop and purposely increasing the clock

skew for this particular path.

Table 4.2: Critical path of tool A analyzed on both tools

Table 4.3: Critical path of tool B analyzed on both tools

Something to note on the previous results is that one of the main reasons for the timing con-

vergence of the design, even for such an high clock frequency, is the post-placement and post-CTS

optimizations. During these optimizations steps, the tools might reduce the arrival time consider-

ably by swapping the original standard cells of the combinatorial paths by faster but also bigger

versions of the cells that are available in the library. Obviously, even if timing convergence was

obtained, there was the trade off of an higher design density.

4.2 Timing Convergence - Without Post-Placement and Post-CTS Op-
timizations

Even though the optimizations described in the last chapter are clearly important, it was desired to

have a more fair comparison of the Placement and Clock Tree Synthesis algorithms of both tools.

For that reason, several TCL scripts responsible for the physical design flow were modified so that

the optimizations responsible for the swapping of the original standard cells present on the netlist

were turned off. At the same time, the timing reports were analyzed right after the clock tree



56 Comparison of Synopsys ICCompilerII and Cadence Innovus

synthesis step, which means the routing algorithm did not impact these results, unlike the previous

comparison.

Even with the optimizations turned off, neither tool had trouble converging with the original

clk_peri’s frequency. A similar approach to the previous section was used where the clock fre-

quency was incrementally increased. As expected, the minimum clock frequency in which one

of the tools failed to achieve timing convergence was considerably lower with the optimizations

turned off, 44MHz instead of the previous 250MHz. The next table shows a report on the summary

of multiple timing metrics while the one after it shows a detailed comparison of the critical path

of both tools (which unlike the previous results, the critical path ended up being the same for both

tools).

Table 4.4: Comparison of critical path timings for 44.44MHz frequency clock

Table 4.5: Comparison of critical path timings for 44.44MHz frequency clock
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As can be seen from the results presented in this table, the reason why tool A managed to

achieve a positive slack while tool B did not, ended up being a shorter arrival time.

By taking a closer look between the start-point and the end-point of this critical path, while

both tools presented exactly the same type (leading to same size) of standard cells (which is ex-

pected, considering post-placement and post-CTS optimizations were turned off) tool B placed

extra buffers in the combinatorial path, leading to a bigger combinatorial delay and, as a result, to

setup violations. The buffers were placed after cells with high fanouts, in order to reduce it. As

an example, this critical path contains in tool A one cell with a fanout of 40. In tool B, however,

because of the insertion of a buffer, the fanout of that cell gets reduced to 20 (which means the

buffer also has a fanout of 20 as it gets connected to the rest of the standard cells).

Nonetheless, the design constrains given to both tools are equal and neither of them had vi-

olations concerning maximum fanout or maximum slew. This could imply that tool B, by being

more pessimistic regarding these constraints, ended up placing extra buffers in the combinatorial

path that lead to the setup violation. It could also imply that a better placement algorithm by tool

A lead to the standard cells of this critical path being closer to each other and, as a result, the extra

buffers were not required to respect the design constraints. Some extra observations regarding

these results will be made further in this chapter.

4.3 Power

Afterwards, a comparison on the power consumption of the implemented design using both tools

was made, with all the optimizations turned on.

In order to generate the power reports, it was necessary to ensure that both P&R tools are using

the same toggle rate. Toggle tate is the rate at which an instance switches compared to the clock it

belong to and it is expressed as a percentage. In this case, it was set as 10% for both tools, ensuring

the same switching activity between them which is one of the parameters of the switching, as seen

in Chapter 2.

Obviously, if the objective was to do an accurate power analysis of the design simply assuming

a toggle rate of 10% would not be sufficient and realistic switching activity figures obtained from

gate-level simulations would be needed. However, in this case the goal was not to do an accurate

power analysis but to compare the power performance of the tools, which means ensuring both of

them are under the same conditions is sufficient. At the same time, this comparison was done in

an early RTL stage, rendering an accurate power analysis useless as a lot of logic was still going

to be added.

The following tables show the power reports provided by the tools. Internal power corresponds

to the power dissipated inside a cell for the charging and discharging of its internal capacitances

and also due to short circuit currents while the switching power is related with the charging and

discharging of the load in the output of each cell.
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Table 4.6: Power Report of Tool A

Table 4.7: Power Report of Tool B

It can be seen from these results that on both tools leakage power seems rather low, specially

compared with the expected leakage power seems in chapter 2. However, it should be noted that

the testing conditions are not realistic. A 10% toggling rate for every single cell ends up being

unrealistically high, specially considering most modules have their clock gated and that devices

spend the vast majority of their time in standby.

In the end, the implemented design using tool A dissipates 0.7965mW while the one using tool

B dissipates 1.0956mW .

By observing the total power used by the clock network, it is possible to make a comparison

with the previous timing results. Tool A presented less clock latency, which implies that less CTS

levels and buffers were used in the clock network, resulting in less dissipated power. Simultane-

ously, having a simpler clock tree network with less levels presents other advantages, such as less

routing congestion.

Regarding the differences in combinatorial power consumption, it is likely that for achieving

timing convergence tool B had to use bigger standard cells to reduce the arrival time, leading to

higher currents and more dissipated power.

4.4 Observations

As observed in the previous sections, tool A presents better quality of results, both in timing

convergence and in power dissipation.

Of course there are other metrics, such as runtime, that are also relevant when if comes to

the performance of the tools, but making a fair comparison might not be feasible. In the case of

runtime, the resources provided for the execution of each job (such as number of CPUs or amount

of RAM memory allocated) is highly variable and not completely under the control of the physical

design engineer.

Regarding the timing convergence, there is an important observation to be made. Considering

the timing analysis was perform for an early design stage and, consequently, performed inside
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the environment of the P&R tools, there are some implications. Each P&R tool, besides using

different algorithms for each of the steps of the physical design flow, also uses different timing

analysis simulation engines. As a result, some aspects such as the estimation of the RC extraction

or the pessimism might defer from tool to tool. Obviously though, the quality of the timing

analysis engine itself is an important comparison metric as it has direct implications on the physical

implementation. In the example used above, regarding the insertion of buffers by tool B in the

critical path to reduce the fanout of high-fanout cells, it seems the timing analysis engine of tool A

did not see the need for the insertion of those buffers and, therefore, no setup violations occurred.

Nonetheless, in order to get a truly accurate comparison of the timing convergence of each

tool, the sign-off had to be finalized and a more precise sign-off timing analysis tool (the same

tool for both implementations) had to be used. It could be noticed that tool A, by being less

pessimistic in its methods to reach timing convergence (using the same example again, by not

inserting buffers after high fanout cells in the critical path), could lead to other timing violations

only detected during the sign-off (after a complete RC extraction and, consequently, taking into

account the real delay of each interconnection).
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Chapter 5

Integration of the implemented block in
a SoC

The previously implemented block TOP_ANA was then inserted into a System-on-Chip (SoC). In

fact, the other components of the SoC correspond to a test chip which has the objective of emulat-

ing the radiation emitted by the rest of the circuitry of the contact-less card to test TOP_ANA, as

some of the blocks of the final chip will only be developed after TOP_ANA is fully validated.

Even though it is expensive to develop and fabricate a test chip in silicone, there are some

reasons to do so. On one hand, the integration of the implemented block TOP_ANA will be

validated. This means that when the rest of the components of the final product are developed it

will be quick to integrate TOP_ANA as it had been done before. On the other hand, TOP_ANA

will be tested under similar conditions to the ones of the final product. Validating TOP_ANA

with real conditions instead of having to resort to simulations greatly reduces the validation time

(it could be the difference between one month and one year). A rigorous validation is specially

important in the case of this block as the analog macro that belongs to it contains experimental

capacitors.

Concerning the integration of this block in a SoC, multiple steps are needed. Considering the

implemented block TOP_ANA will be seen as a Macro (a black-box) by the rest of the SoC, there

is the need of making a Lib and a LEF (library formats explained in chapter 3) representations

of the block. By doing so, this block can be instantiated in RTL, just like every module of the

design. Simultaneously, the P&R tool can abstract itself from what is going on inside this block

and simply focus on the characteristics provided by both the Lib and the LEF.

Another critical step is the design of the power intent of the SoC, which is considerably more

complex than the power intent of the block as it contains two power domains, both a shut-down

and an always-on domain with different voltage levels. The design of the power intent of the SoC

will be the focus of this chapter.
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Figure 5.1: Role of the power intent in the design flow [35]

5.1 Role of the Power Intent in the Design Flow

The power intent of the design (the UPF file) is part of the design source. Both of them are coupled

and serve as an input to Design Compiler (the synthesis tool used in this project) to produce the

gate-level netlist.

At the same time, the UPF file is an important input to a P&R tool. It provides information on

the desired location of its components, which is relevant in the placement step. Simply specifying

the power domain of a component is not enough information since, as explained in chapter 2, a

power domain is not necessarily physical contiguous, even if that might not be a desirable property,

as will be seen later in this section. Two instances with the same power specifications might be

placed in completely different locations.

Finally, the UPF file is also used for power aware simulations. Without it, simulations would

simply assume a constant voltage which is not the case in multi-voltage designs or if some kind of

power gating technique is being used.

5.2 Power Intent of the System-on-Chip

5.2.1 Power Domains

When it comes to the power design of the block, there are two different power domains, pd_top

and pd_rom, illustrated in Fig. 5.2. Even though pd_top has multiple supply ports, only the

supply ports V DD and GND are relevant for the explanation. VDD has 4 possible values, 1.5V

for an high performance operation mode, 1.1V for a normal performance mode, 0.9 for a low

performance operation mode and finally OFF, in the case of shut-down. It is important to note

that although this power domain can be turned off, it does not use any power switch to do so. To
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Figure 5.2: Power domains of the power design

explain it briefly as the functionality and design of the block embedded in the test chip is not the

focus of this thesis, the contacless NFC card does not have its own power supply, it is battery-less.

Instead, the field effect of the NFC card reader (sensed by the analog Macro placed in TOP_ANA)

is the one that supplies the power. As a result, if the card is not being read it is simply turned off.

At the same time, the power provided by the field is highly dependent on the distance from the

card, which is why there are different performance operation modes.

Besides the already described pd_top power domain, there is also the pd_rom power domain

which has the supply port V DDAO, a 1.1V supply that is always on. In this case, it corresponds to

a power domain that is not powered by the field effect of the card reader but by an external power

supply. This always-on power domain is concerned with blocks of the test chip and not with the

IP block that is being tested.

5.2.2 Isolation and Level-Shifter Strategies

Considering there are two power domains with different voltage levels and that one of the power

domains is a shut-down domain, both a level shifter and an isolation strategy had to be devised

in the communication from the shut-down domain to the always-on domain and are shown in

Fig. 5.3 (in the case of the communication from the always-on domain and shut-down domain

there is no need for isolation as the always-one domain never turns off). In this design, instead of

using independent level shifters and isolators, enable level shifters placed in the interface of the

two power domains were used in order to save area. Regarding retention strategies, no retention

registers were used in the shut-down domain. That is due to the fact that it is intended to reset

every value on wake-up, which would make the retention registers useless.

The most interesting detail of this power design is that the enable signal for the isolation

of the power domains (ISO_EN) is, as a frontend design decision, generated inside pd_top, the

shut-down domain (more specifically, inside the block TOP_ANA which belongs to this power

domain). This decision has some implications.
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Figure 5.3: Isolation and level-shifter strategies

One clear problem is that it takes some time until it goes to zero (just like every other signal

in this domain) which would defeat the purpose of the isolation, as signals with values below

1.1V would be connected to the the always-on domain before the isolation between the domains is

activated, leading to the problems previously described in chapter 2, such as short-circuit currents.

To solve this problem, a pull-down resistor that brings the enable signal to zero quicker was used

inside the block that generates it.

Another problem is that there is the need to bufferize this signal, specially considering that

(similarly to a clock signal) there is a huge fan-out associated with it as it is connected to the

enable pin of every enable level shifter. However, if this signal is bufferized in pd_top then there

would be signal integrity problems during the shut-down as the power supply voltage of the buffers

would decrease. To work around this problem, the ISO_EN signal is first transferred to the always-

on domain (with the need to shift its voltage, just like every other signal that crosses domains) and

only then is it bufferized, by always-on buffers. To ensure that the P&R tool does not bufferize this

signal on the shut-down domain, a "don’t touch" flag must be raised on this net. Another solution

to this problem would have been to bufferize the ISO_EN signal on the shut-down domain but

using always-on buffers (which would therefore be in their own power island) . Nonetheless, this

would require routing the power rails of the VDDAO power supply into the shut-down domain

which would have been complex and would have decreased the routability of the design.

Finally, it was important to set this signal as an exception for the isolation strategy (otherwise,

there would be the need to have another isolation enable to control the ISO_EN signal itself) and

, as a result, to choose an independent level-shifter cell from the library.

To validate the level-shifter and isolation strategies devised, a visual representation of the

strategies was observed using the GUI of Design Compiler after the synthesis of the block.
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Implementation of a metal-only ECO
Flow

Nowadays, most VLSI corporations implement metal-only functional ECOs after the tapeout as

carrying out design changes using only metal-layer changes saves a lot of money from a fabrication

point of view considering the base-layer masks represent the majority of the cost of the mask set.

For that reason, a metal-only ECO flow was developed for the implemented block, TOP_ANA.

When it comes to the implementation of an ECO flow, an important preliminary step is the

insertion of ECO cells in the design during the block implementation. In this case, both reconfig-

urable cells and spare flip-flops were placed in the core area.

Afterwards, near the deadline of the tape-out of the SoC that integrates TOP_ANA, a metal-

only ECO flow for functional ECOs was implemented for the same block. There was no need

to perform any post-mask ECO modifications as the tapeout occurred briefly before the date this

dissertation was written. Therefore, in order to validate the correctness of the flow, ECO mod-

ifications were performed in the RTL of the block that were not going to be made in silicon.

However, with the implementation of an automatic metal-only ECO flow, any future post-mask

ECO changes can be simply performed by changing the RTL, running the flow and analyzing the

results, decreasing the time-to-market of the chip considerably.

6.1 Insertion of ECO Cells in the Design

During the physical implementation of the block, one important step was the insertion of cells for

the possibility of future ECO modifications. In a sense, the insertion of ECO cells in the core area

ends up being the very first step of an ECO flow.

In this design two different strategies were used: the insertion of Gate-Array reconfigurable

filler cells and the insertion of spare flip-flops.

As was discussed in chapter 2, reconfigurable cells lead to less leakage power dissipation and

are a more efficient use of area than spare cells. However, for cells of higher complexity there is the

need to connect multiple reconfigurable base cells and the internal connections among them lead
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to timing degradation. For that reason, due to the complexity of a flip-flop compared to most of

the combinatorial cells, all of the inserted spare cells consisted of flip-flops, anticipating possible

modifications in the sequential logic. A simple example is the addition of a state in a finite-state

machine.

At the same time, sequential changes are more involved, and a different approach needs to be

taken when performing them. Firstly, because the clock tree synthesis might need to be rerunned,

which makes sequential changes rarer in post-mask ECO. Secondly, because in order for the se-

quential changes to be detected by an equivalence checking tool (that performs the logic difference

extraction of the design, as seen in chapter 2), a spare flip-flop needs to be connected manually in

the implemented netlist so that it can be seen as a compare point by the tool. It is for the second

reason that inserting spare flip-flops also makes sense: a spare flip-flop module can be found on

the netlist and this connection can be made manually, while a reconfigurable cell has no inputs,

outputs or functionality.

6.1.1 Insertion of Spare Flip-Flops

Since spare flip-flops were placed along with all the other standard cells of the design, the place-

ment script of the FLOW directory had to be adapted.

First, the number of spare flip-flops to place had to be defined. Considering the unpredictability

of future modifications in the design, this number will always be an approximation based on what

is expected. As was stated in the literature review, a rule of thumb is to have 2% to 5% of the

design area occupied by spare cells [23]. However, in this design only spare flip-flops are being

used, which makes that percentage unnecessarily high. The percentage was then defined to be

only 3% of the number of sequential elements in the design. Afterwards, a spare module had to be

created and placed, using the desired flip-flop cell type.

6.1.2 Insertion of Reconfigurable Cells

When it comes to the insertion of reconfigurable cells in the design, an interesting aspect is that

they belong to a Gate-Array (GA) reconfigurable filler cells library and are placed as if they were

filler cells, simply filling a percentage of the empty core area after all the other cells of the design

were inserted.

More precisely, they were placed between the post-CTS optimizations step (in which standard

cells can be swapped and buffers inserted to fix timing violations) and the routing step. They

consist of an array of tiles in which each tile represents a basic reconfigurable cell, as was explained

in chapter 2. The number of tiles for each Gate-Array filler cell is not fixed as it will depend on the

size of the empty gap that it will be filled. If the gap the GA Filler cell needs to fill is considerably

small it might even consist of a single tile.

One of the advantages of inserting reconfigurable cells as if they were filler cells is that they

do not represent an inefficient use of area at all even if left unused, a big benefit when compared
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to the spare cells. After all, the space they are filling would be left empty regardless and a normal

filler cell which only extends the power rails and the well would take that spot.

Moreover, another benefit of this approach is that it does not interfere with the rest of steps

of the flow, allowing the clock tree synthesis algorithm to place buffers in optimal locations and

allowing more free empty space for the optimization steps to upsize or downsize standard cells

at will. Simultaneously, the empty spots left out after the different steps of the flow tend to be

somewhat uniform, allowing a homogeneous distribution of the reconfigurable cells throughout

the core area.

Besides, it is natural to place the reconfigurable cells just like filler cells as the base cells

without any functionality (before any reconfiguration occurs) end up behaving just like a filler cell,

by simply allowing the continuity of the power rails and the well. The only difference between

them and fillers ends up being the unconnected polysilicon gate and the active regions in case a

functionality is required.

In order to validate the insertion of the ECO cells in the design, the implemented block was

visualized using the GUI of Cadence Innovus, as illustrated in Fig. 6.1 (it can also be seen that

some changes in the foorplan had already occurred at this stage compared to the one generated

with the original script). In yellow, the spare flip flops are selected while the reconfigurable ECO

cells are in red. The distribution of these cells is homogeneous and if a future ECO modification

is required, it is very likely that there is either a reconfigurabe cell or a flip-flop in its proximity.

Figure 6.1: Result of the insertion of spare cells and reconfigurable cells in the design

Regarding the possibility of reconfiguring the unused reconfigurable GA fillers into decoupling

capacitors (as seen in chapter 2) to decrease the IR-drop effect, the decoupling capacitors already

present in the design were enough to reduce it to appropriate levels. In that case, it is simply better

to leave the GA fillers as filler cells due to the increased leakage of the decoupling capacitors.

As a side note, some terminology needs to be clarified regarding these cells. GA fillers and

reconfigurable cells will be considered equivalent along this dissertation from now on, while their
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reconfigured versions are called reconfigured cells. At the same time, ECO cells are related with

cells used to performs ECO modifications in general: both the GA fillers and spare cells (either a

flip-flop or a freed combinatorial cell).

6.2 ECO Flow Overview

The overview of the implemented metal-only ECO flow for functional modifications is illustrated

in Fig. 6.2. The objective of the flow it to perform ECO modifications done on the original RTL of

the already taped-out chip and generate a new GDS file which should have equivalent base layers

with the original design.

Figure 6.2: Overview of the implemented ECO flow. Legend: RTL Original - RTL of implemented
design; RTL Modif - RLT of modified design; Netlist Impl - gate-level netlist of implemented de-
sign; Netlist Modif - gate-level netlist of modified design; New Netlist - new gate-level netlist
of implemented design which includes the ECO modifications; Opt- Input files for patch opti-
mization, explained further in this thesis; DB - Latest database of the P&R tool; DEF - Design
Exchange Format file provided by the P&R tool, contains the information regarding the placement
and routing of the design; LEF - Library Exchange Format file provided by the P&R tool, contains
the informations regarding the size and metal polygons of each standard cell; Old GDS - GDS of
the already tapedout chip; New GDS - GDS with the metal-only ECO modifications

The implemented ECO flow requires as an input the already implemented netlist , the gate-

level netlist of the modified RTL, the latest P&R database of the implemented design, the GDS
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associated with the taped-out design, as well as other optimization files that will be analyzed

later in this chapter. While it would be possible to directly use as an input the modified RTL,

it would increase the complexity of the front-end flow considerably (due to an higher number of

differences between the designs) and the flow would become more error prone. At the same time,

the digital area of the implemented block TOP_ANA is relatively small, which means synthesizing

the modified RTL is not too time expensive.

The flow encompasses three major steps, which will be explained in detail in the next sections:

The front-end flow, the back-end flow and the validation stage. The front-end flow, by taking the

implemented netlist, the modified netlist and some optimization files, has the objective to generate

the new netlist with the ECO modifications and a mapping script used to guide the back-end

flow. Then, the back-end flow will open the latest P&R database of the taped-out design and

implement the required modifications using only metal-layers by sourcing the script provided by

the front-end. Finally, by taking as an input the DEF (which contains the placement and routing

information of the implemented design, as seen in and LEF files provided by the back-end flow

as well as device level information present in the GDS files of the standard cell kit, the validation

stage will generate the new GDS file and ensure that only the base-layers of the old GDS were

modified by comparing them layer by layer.

6.3 Front-End ECO Flow

In order to generate the new netlist and a mapping script for the back-end flow based on the

implemented netlist and the modified gate-level netlist, the front-end flow requires three major

steps, illustrated in the diagram of Fig. 6.3.

Figure 6.3: Stages of the front-end flow

Firstly, the setup stage, which has the objective to read the designs and the Libs and set up

mapping constrains. Afterwards, the logic difference extraction step, which has the goal of finding

the non-equivalent points between the implemented netlist and the modified netlist and generate a



70 Implementation of a metal-only ECO Flow

patch file. Finally, the physically-aware mapping step, which has the objective of optimizing the

patch that will be applied to the netlist and generate the mapping script provided to the backend-

flow.

The tool used to perform the front-end flow is Conformal ECO Designer, by Cadence. It

provides equivalence-checking, functional ECO analysis and physically-aware optimization capa-

bilities that guide the front-end flow through the required steps to generate the new netlist and the

mapping script. A script was created with the required Conformal ECO commands for each stage

of the flow and is sourced by the tool to perform the desired ECO modifications.

Each of the stages of the front-end flow will now be uncovered and a detailed description

will be made on the different steps that they consist of. In order to better understand each stage,

an example of an ECO modification done on the original RTL will be used. The number of

modifications was rather low so that running the different steps of the flow and debugging could

be quicker.

6.3.1 Setup

The diagram in Fig. 6.4 shows the steps taken in the setup stage. Initially, Conformal is placed

in Setup mode. At this stage, both the liberty files (Libs, which besides all the timing and power

properties of each standard cell also contain the functionality associated with the output pin of each

cell) and the two netlists are read by the tool in preparation for the logic difference extraction, as

information about the functionality of the designs is everything Conformal will need to do so. By

reading the libs, which contain the functionality of every standard cell, and the netlists, the tool

will be able to segment both the designs into compare points and logic cones. As seen in chapter

2, this is a required preparatory step to start an equivalence checking between the two designs.

While compare points correspond to the design nodes at which the functionality is compared,

the logic cones are the combinatorial logic that drive the compare points. Fig. 6.8, which will also

serve as an example to a further stage of the flow, shows an example of a compare point and a

logic cone for both the original design and modified design.

Then, both of the designs are flatten so that a flatten comparison can be done between them

(which is the default and recommended comparison mode by the tool manual). In the explanation

of the comparison between compare points further in this chapter the reason for doing so will be

clarified.

In the final step of the setup stage, some constraints associated with the mapping of the com-

pare points need to be defined. First, since one of the netlists was already implemented, scan

chains are present in the netlist. Scan chains correspond to chains of flip-flops connected as shift

registers used for DFT (Design for Testability) by allowing the observability of the state of in-

ternal registers of a design. Clearly though, these scan chains correspond to compare points and

logic cones present in the implemented netlist that will not be matched by the modified netlist.

To disable them during the equivalence checking as they are not related with the functionality of

the design, the command add pin constrain 0 needs to be used (similarly to what is done in the

exception constrains with set_case_analysis, as seen in chapter 3).
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Figure 6.4: Steps of the setup stage

Figure 6.5: Comparison of a design with and without scan-chains inserted [34]

Yet another constrain to keep in mind is related with clock gating. Even though the modified

netlist is not at the RTL level but at the gate-level (meaning the clock gating cells with latches to

prevent meta-stability shown in chapter 2 were already inserted) it does not necessarily have the

same number of latches as the implemented design, i.e., the same number of compare points. The

reason is a concept called clock gating de-cloning/cloning [34]. During synthesis optimizations, if

multiple clock-gated cells share the same enable signal then these cells can be merged into a single

one to save area and power, a technique called clock gating de-cloning. However, synthesis tools

do not have access to information related with the distance between each clock-gating element

and the leaf cells. Thus, during the implementation, the P&R tool might detect that clock-gating

related timing violations occur due to these physical distances. To solve these violations, it might

do the opposite of what the synthesis tool did: increase the number of clock-gating cells to reduce

the distance between them and the leaf cells (clock-gating cloning), as illustrated by Fig. 6.6.
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For that reason, an option that remodels the clock-gating logic of the clock pin of the flip-flops

before the logic difference extraction step needs to be turned on so that this technique is taken into

account.

Figure 6.6: Clock-gating cloning and de-cloning [34]

6.3.2 Logic Difference Extraction

After this initialization stage, the logic difference extraction between the two designs can finally

start by placing Conformal in the Equivalance Checking mode and by following a procedure sim-

ilar to the steps already described in chapter 2.

Figure 6.7: Steps of the logic difference extraction stage

First, the tool attempts to map the compare points of the implemented design to the correspon-

dent compare points of the modified design. Initially, it uses name-based mapping techniques as

they are more time efficient. Then, it uses mapping algorithms based on functionality of the logic

cones to map the remaining ones. For every compare point in each design, Conformal reports

three possible results: mapped, unreachable or not-mapped. Fig. 6.8 shows an example (which

will be analyzed throughout the logic difference extraction stage) of two compare points that were
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mapped between the original design and the modified design. Even though the names of the com-

pare points are not exactly the same, the tool can still map them by filtering certain characters.

Unreachable points, on the other hand, correspond to points without any logic cone driving them.

Consequently, these compare points (which are usually related with the DFT constrains added in

setup) do not influence the functionality of the circuit and are not relevant for the logic difference

extraction.

Figure 6.8: Two non-equivalent logic cones as their compare point shows different logic values.
The difference that led to the non-equivalence must be detected

Not-mapped points, however, are problematic and all of them need to be solved before the

equivalence checking can proceed. The two mapping constraints taken in the setup stage had the

intent to reduce the possibility of not-mapped compare points. A not-mapped compare point might

appear if during the synthesis sequentially-equivalent flip-flops are merged to save power, in which

case the logs of the synthesis tools need to be checked. This situation will be more likely if two

different synthesis tools were used for the implemented netlist and the modified netlist, which was

not the case in this ECO modification example. Another possible reason for a not-mapped compare

point is a sequential ECO modification in which a spare flip-flop was not manually connected in

the implemented netlist, as that would clearly lead to a new added compare point that is not present

in both designs.

Afterwards, there is a verification stage, in which the mapped compare points are compared

with each other by checking the logic equivalence of the logic cones that drive them. Again,

Conformal might report three different possibilities: equivalent, not-equivalent and aborted. By

taking Fig. 6.8 as an example again, it can be seen that for the same inputs of the logic cone

(the input-boundary) the value presented by the compare point is not the same in the original

design and the modified design. Therefore, these two mapped compare points are marked as non-

equivalent. As the number of ECO modifications in the ECO example being considered was low,

only 13 points points were reported as non-equivalent and none were aborted. Aborted points

are usually related with logic cones that are more complex, i.e, have more logic. There is a
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certain timing threshold given to the tool to determine the equivalence between logic cones. If that

timing threshold is surpassed, then no conclusion is reached and that point is given as "aborted".

Besides some commands that have the intent of solving these aborted points, another possibility

is performing an hierarchical comparison instead of the default and recommended flatten compare

(in which both the designs are flatten before the comparison starts). It is intuitive to understand

why doing an hierarchical comparison would help: the hierarchical boundaries would slice the

logic cones, increasing their number while reducing the complexity of each.

However, while this divide and conquer strategy could help with the aborted points, boundary

optimizations that occur during the synthesis of the design could lead to false non-equivalent

points that would not occur if a flatten comparison was made instead. As an example, a possible

boundary optimization that synthesis tools can do to optimize area is called inversion push. This

technique occurs when an inversion is pushed across a register boundary, as illustrated by Fig. 6.9.

Figure 6.9: Inversion-pushing optimization technique used by synthesis tools

By pushing the inversion to the negative Q of the flip-flop B, there is no need to have the

inverter connected to the input of the flip-flop A and, consequently, some area could be saved.

Obviously, if this optimization had been done during the synthesis of the modified design but not

during the synthesis of the implemented design, the compare points associated with the D pin

of flip-flop A would be marked as non-equivalent. To take the inversion pushing technique into

account during the comparison of the mapped compare points, the flatten compare has an option

called phase mapping. With this option, the tool becomes aware of this technique and marks

inverted-equivalent points as equivalent in case it detects inversion pushing was done. Inverted-

equivalent compare points are points that have an inverted phase between them for the same inner-

boundary conditions (the inputs of the logic cone, as seen in chapter 2).

Finally, in the last step of the logic difference extraction, the logic cones driving the non-

equivalent points are analyzed and, based on the found differences, a patch is generated which

contains the verilog module with the logic change and the port names corresponding to the nets
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of the implemented design. By observing Fig. 6.8 yet again, it can be seen that the difference

detected after analyzing the non-equivalent logic cones is a NOR gate in the modified design that

corresponded to an OR gate in the original one. This verilog patch ends up being equivalent to the

ECO list presented in chapter 2 as it defines the logic differences between the implemented and

modified designs without taking into account the available ECO cells and their location, as will

be seen in the example of the following section. It will serve as an input to the next step of the

Front-End ECO flow: the physically aware ECO cell mapping of this patch.

6.3.3 Physically Aware Mapping

To better understand the physically aware mapping step, one of the performed modifications in

specific will be used as an example, which will also be relevant in the explanation of the Back-

End flow further in this chapter. The next verilog lines show the gate-level representation of

the RTL change in the implemented netlist, the modified netlist and the new netlist, after the ECO

modification is applied in the implemented netlist. It corresponded to a simple change of an assign

statement, in which an OR was changed for a NOR, equivalent to the example in Fig. 6.8 used to

explain the logic difference extraction.

# O r i g i n a l implemented n e t l i s t ( G1 )
HD40WT_OR2X5 U19 ( . A( n1 ) , . B( n2 ) , . Z ( n3 ) ) ;

# Modi f i ed ga t e− l e v e l n e t l i s t ( G2 )
HD40WT_NOR2X7 U22 ( . A( n1 ) , . B( n2 ) , . Z ( n3 ) ) ;

# N e t l i s t a f t e r t h e ECO m o d i f i c a t i o n ( G3 )
HD40WT_ECO_NOR2X4 ECO_1 ( . A( n1 ) , . B( n2 ) , . Z ( n3 ) ) ;

In relation to the standard cell libraries, there are some aspects that need to be clarified. As

was seen in the insertion of ECO cells in the design, Gate-Array reconfigurable filler cells were

added to the implemented design and they belong to the library HD40WT_ECO. However, this

library also contains the reconfigured versions of the GA filler cells, meaning they have the same

base layers but different functionality and dimensions. In fact, reconfiguring a GA filler is nothing

more than swapping it with another cell from this library. This concept will become more clear in

the explanation of the Back-End flow. Another detail is the "X" followed by a number in the name

of the cell type (for example, X5 in the case of the OR2 cell in the original implemented netlist).

This value represents the driving capability of the standard cell, which will obviously also affect

the W/L ratio as versions of functional equivalent cells with higher W/L ratios will also have more

driving strength. Finally, the 40 in "HD40WT" implies that a 40nm technology is being used.

When it comes to the physically aware mapping stage, it encompasses two steps, as shown by

Fig. 6.10. This figure also includes the required input files of this stage, the patch generated by the

logic different extraction and files for the optimization of the patch which will be analyzed later.

For this example, patch.v corresponds to:
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# P a t c h . v
HD40WT_NOR2X7 U22 ( . A( n1 ) , . B( n2 ) , . Z ( n3 ) ) ;

It simply corresponds to the instance present in the modified gate-level netlist, a difference that

was extracted in the previous step. However, only the connections and the functional behavior of

the output pin present in the Lib of the specified cell are relevant. Not only does it not belong to

the correct library of the reconfigured cells (HD40WT_ECO) but also because the driving strength

does not take any placement information of the implemented design into account.

Figure 6.10: Steps of the physically-aware mapping stage

The initial step of this stage corresponds to identifying the ECO cells present in the design,

using the add_spare command. To identify the ECO cells, both the DEF (already described in

chapter 3) containing the instances and their placement information as well as a string pattern

necessary to identity the ECO cells instances are required. For example, in this design in specific

the pattern corresponds to the prefix ECO_*. Besides the ECO cells that were previously placed,

it is also necessary to add to the ECO cells list the instances which were normal standard cells but

became free as a result of the modification. After all, considering this ECO flow is intended for

post-mask modifications and that a placed cell can not be simply deleted as that would certainly

affect the base layers, it might as well be used as a spare cell for future ECOs. In the example

being analyzed, the instance U19 present in the original netlist was therefore promoted to a spare

cell.

After the available ECO cells are identified, the patch optimization step can begin (using Con-

formal’s command with the name optimize patch). The function of this command ends up being

the similar to the one of an ECO synthesizer, by completing the changes described in the patch by
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using the physical information of the ECO cells and while trying to reduce the loss of routability

and timing. The inner workings and algorithms used by this command are not know, but based

on the previous study done on chapter 3 and adapting it to this particular design, a good way to

formulate the optimization problem that the tool is trying to solve and wrap everything together

would be the following:

Patch Optimization: Given an implemented design, an ECO patch, the placement of GA fillers

and freed spare cells as well as the corresponding cell libraries, select cells from the ECO cells list

to perform the functional changes described in the patch without violating the design constrains

and with the minimum cost by estimating the loss of routability and timing degradation.

Based on the formulation of the optimization goal the tool tries to achieve, the other inputs

to this step (illustrated in Fig. 6.11) can be more easily understood. As previously described, the

patch corresponds to the functional modifications that need to be performed; The Libs allow to

reconfigure the free GA fillers into the correct type by comparing the possibilities with the desired

functionality of the patch; The DEF (which contains the information regarding the placement

and routing of the design) is necessary for the information regarding the location, orientation and

quantities of ECO cells so that decisions based on the physical distance can be made to allow

location-aware ECO cell mapping; The LEF files (which contain the size of each cell and the

metal polygons of the pins), complement the location-aware mapping by allowing to understand if

a specific GA filler is big enough to be reconfigured into a cell with the desired functionality and

driving strength, as well as providing the exact location of the pins inside each cell; The design

constrains (as well as the standard cell constraints present in the Libs) allow the tool to choose a

cell of the appropriate driving strength so that constrains are not violated and timing degradation

can be reduced to a minimum; Finally, the revised ECO list provided by the previous step provides

information regarding available ECO cells, including the recently freed spare-cells.

Figure 6.11: Inputs required by the optimize patch step besides the netlist and the patch

With these input files, a technology mapped optimized patch is generated by the tool and

applied to the implemented netlist, the result being a new netlist with the ECO modifications. As

seen from the verilog lines above, the ECO modification in the example appears in the new netlist

as HD40WT_ECO_NOR2X4. As expected, it belongs to the same library as the ECO GA filler
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Figure 6.12: Stages of the backend flow

cells and it corresponds to a reconfiguration of one of them to a NOR with a driving strength of

X4. Besides synthesizing a new netlist, this patch optimization step also generates a mapping

script that will be used to guide a P&R tool to map the newly added ECO logic to specific ECO

cells resources in the layout and to create a revised list of the available ECO cells. This file is a

critical aspect of the Back-End flow and will be explained in detail in the next section.

6.4 Back-End ECO Flow

After the front-end flow has generated the new netlist and the mapping script, the back-end flow

can initiate. The P&R tool used for this stage was Cadence Innovus and a script was created to

implement all the desired changes (inside which the mapped script is sourced). In fact, considering

it is desired to run the commands on the latest database of the implemented design, an ST script

intended for post-signoff optimizations was adapted to accommodate the back-end ECO flow for

this particular block. After this script is sourced by the tool, a new database is saved and the DEF

and LEF provided by it will be used by the validations stage to generate the new GDS file.

The back-end flow encompasses the steps illustrated in the diagram of Fig. 6.12. While the

first three steps are related with the reconfiguration of the mapped GA fillers, the last two are

related with ECO routing and the required DRC checks.
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6.4.1 Reconfiguration of the mapped GA Filler Cells

In order to understand the process taken to reconfigure the chosen GA filler cells into the cor-

rect standard cell type, the mapping script provided by the optimize patch step in the Front-End

flow needs to be deconstructed and understood. Considering the second step of the Back-End

flow corresponds to sourcing this script, the first step of the flow will be skipped for now. The

diagram showcased in Fig. 6.13 illustrates the procedure followed by the script to perform the

physically-aware ECO modifications. Some of TCL commands of the script associated with the

ECO modification example used in the last section will be used to clarify these steps. For a more

graphical representation, Fig. 6.14 illustrates this example.

Figure 6.13: Steps followed by the mapping script

First, the script simply disconnects the pins of every freed cell, the cells that became unused

after the modification. Their inputs pins also need to be connected to either GND or VDD as they

can not be left floating.

# D i s c o n n e c t i n g t h e p i n s o f t h e f r e e d U19 i n s t a n c e
de tachTerm {U19} {Z} {A} {B}
a t t a c h T e r m {U19} {A} {B} 1 ’ b0
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Figure 6.14: Actions performed by the mapping script. The dotted squares represent the spots
where a GA filler is present. On the left, nets n1,n2 and n3 are disconnected from U19 and the
inputs of this cell are connected to GND. On the right, the reconfigured NOR gate was placed in
the spot chosen by the physically-aware mapping step and logically connected to the nets n1,n2
and n3.

Afterwards, the cells that became unused need to be promoted to spare cells so that they can

be used for other ECO modifications. To do so, they need to be renamed in order for the pattern

used by the "Identify ECO Cells" in the Front-End flow can detect them the next time the ECO

flow is run.

# Promot ing U19 t o a s p a r e c e l l
ecoSwapSpareCe l l {ECO_U19} {U19}

The next step is to add the new instances in the design (the reconfigured version of the GA

fillers) and to make the required connections due to the ECO modification. At this stage, these

connections are purely logical, only after the routing step will they actually become physical. It

should also be noted that in this particular modification the nets to whom the added cell connected

to were already present in the design. If not, new nets required by the ECO modification are

created by the script.

#Add r e c o n f i g u r e d c e l l t o t h e d e s i g n
a d d I n s t −c e l l HD40WT_ECO_NOR2X4 − i n s t {ECO_1}

#Make t h e n e c e s s a r y c o n n e c t i o n s
a t t a c h T e r m {ECO_1} {A} { n1 }
a t t a c h T e r m {ECO_1} {B} { n2 }
a t t a c h T e r m {ECO_1} {Z} { n3 }

Finally, the mapping script places the newly added reconfigured cell in the desired location

and with the desired orientation.

# P lacemen t o f t h e r e c o n f i g u r e d c e l l
p l a c e I n s t a n c e {ECO_1} 1137 . 2 4 0 41 . 5 8 0 R0
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Figure 6.15: Strategy used with the GA fillers. In green, the GA filler cells. In orange, the
reconfigured cell.

The location determined by the "Physically Aware Mapping" step, besides being on a spot

that minimizes the cost of the ECO modification, should also be on top of a GA Filler cell big

enough to accommodate the new instance, which was ensured by the optimize patch command

by comparing the dimensions of each with the information present on the LEF file. However, as

was explained in the last section, even though both the GA filler cells and the reconfigure cells

belong to the same library (HD40WT_ECO) and have equivalent base layers (non-metal layers),

they are still independent cells with their own properties. Obviously, the reconfigured cell can not

be simply placed in a location which already has another standard cell, even if that cell is a GA

filler. For that reason, the first and third steps of the Back-End flow are required. Initially, every

single ECO GA filler cell is deleted from the design. Then, the mapping script that was analyzed is

sourced and the new reconfigured cells are placed in the core area, occupying some of the empty

spots left out from the deletion of the GA fillers. Finally, the GA fillers are added back in the

design, filling the rest of the empty space. The four pictures shown in Fig. 6.15, obtained using

the GUI of the P&R tool for each of these stages illustrates the procedure that was taken.

At first sight, it might seem strange to simply delete and place cells in a taped-out design.

After all, the masks are already fabricated and a full re-spin of the chip is undesirable. However,

it is only relevant to look at the initial and final databases of the implemented design. Even if

some placement and deletion orders were given to the tool, the truth is that the only difference is

the reconfiguration of a portion of the GA fillers, which means the base layers should remain the

same.
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Figure 6.16: Gap found after GA filler cells re-insertion

Another aspect to take into account is that GA fillers, just like every other standard cell, have a

limited number of different versions. As a result, they are restricted in widths variety (in the case

of the HD40WT_ECO library used in this design, only 3) and, therefore, confined to fill gaps of

such widths. Consequently, there needs to be a relationship between the widths of the reconfigured

cells available in the HD40WT_ECO library and the width of the available GA fillers:

Condition: The width of the empty space left out by a reconfigured cell after its placement, must

necessarily be a multiple of of one of the available GA fillers widths or be the multiple of at least

one of the combinations of their sum.

By looking at the library (and even by simply observing Fig. 6.15 and Fig. 6.16) one can notice

that there are three different available GA filler widths which are not multiples of each other. It

is perfectly understandable, as having them as multiples of each other would be redundant and

greatly diminish the number of possible combinations. Of course this aspect has an impact on the

potential of the ECO modifications. On one hand, by limiting the functionality of the reconfigured

cells that fit a certain gap. Even if the gap is big enough, it still needs to respect the condition

defined above. On the other hand, by limiting the possible driving strengths that can be chosen for

a certain gap, as not all of them will respect the condition.

Fig. 6.16 illustrates an example where this condition was violated. It occurred during the

implementation of the flow, a situation in which a gap appeared in the core area after the re-

insertion of the GA fillers. While the empty space to the right of the inserted cell respected the

condition, the empty space on the left did not: the resultant gap after the re-insertion is too small

to be filled by any GA filler, it could only be filled by a normal filler cell as they have smaller

versions. By taking a closer look at the problem, it was found that the inserted cell did not belong

to the HD40WT_ECO library and, as a result, did not respect the condition defined above. This

bug occurred due to an incorrect pattern choice in the "Identify ECO Cells" step, leading to the

insertion of cells from other libraries too. For that reason, it is important to check the existence of

any empty gaps left out in the design area after the re-insertion of the fillers (by using the command

checkFiller. In any case, even if by chance the empty space had been filled, this situation would

still be problematic due to the modification of the base layers as a non-reconfigured cell was placed

in the core area.
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6.4.2 ECO Routing and DRC verification

After the reconfiguration of the chosen GA Fillers, the logic connections that were performed (or

,in some cases, deleted) by sourcing the mapping script need to be routed. To do so, an ECO router

needs to be used. As was seen in chapter 2, the already existing routing patterns from the original

design make the ECO routing complex.

While a default router is allowed to rip up and reroute the existing nets in order to provide

more flexibility, reduce congestion and, therefore, reduce the likelihood of DRC violations, an

ECO router is more greedy and limits the number of reroutes of existing nets to a minimum in

order to reduce the cost of the ECO modification (in this case, by minimizing the impact on the

timing convergence of an already taped-out design). For that reason, not only is it less likely that

the routing can be completed successfully, but even if it does, DRC violations might have been

committed in the process. Consequently, it is of upmost importance to perform a DRC verification

right after this step is concluded, inside the P&R environment. Of course this DRC test does not

substitute the DRC performed by a sign-off tool. Less checks are performed since the P&R tool

uses the abstracted view LEF for the cells, which does not contain the base layers. In the ECO

example being considered, all the metal layers were used in the ECO routing (up until metal 5)

and the DRC check was clean.

6.4.2.1 Tests on the feasibility of limiting the allowed metal-layers

After completing the routing of these ECO modifications, checking the DRC and validating the

flow by verifying the base-layers were unchanged (which will be explained in the next section)

some tests were done on the routing of the same ECO modifications. The objective was to gauge

the feasibility of performing the ECO routing using only some of the metal layers, which would

reduce the number of metal masks and, therefore, greatly reduce the cost of a possible ECO.

As a sanity check, the number of layers was initially restricted to metal 1 only. In these

circumstances, the routing simply could not be completed, which is completely understandable as

the power rails that supply the VDD and GND pins of the standard cells are routed in metal1, the

lowest level of the power mesh grid. Therefore, it is not possible to transverse from one row to

another without using an higher metal layer.

Then, the routing was tested using firstly only the metal layers 1 to 2 and then 1 to 3. In both

situations the routing was completed successfully, but DRC violations occurred during the DRC

verification. While in the first case (using the metal1 and metal2 layers) there was a considerable

number of violations, in the second one only a relatively small number of checks were reported

(around 10). If these modifications were going to be implemented in silicon, it would have made

sense to individually analyze these few DRC checks (which were mostly related with minimum

spacing violations) and either tweak the ECO routing settings or try to manually solve them as that

could lead to considerable savings in the re-fabrication of the masks.

Considering these modifications were just simulations, the same test was applied for metal

layers 1 to 4 and both the routing and the DRC verification were successful. Therefore, limiting
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the number of allowed metal layers for the ECO routing would deny the need to re-manufacture

the metal 5 mask.

However, these results should be taken with a grain of salt. In these simulations the number

of ECO modification was rather low (only 13 non-equivalences) and, therefore, easier to route. At

the same time, it is important to remember that this block (TOP_ANA) was integrated in a SoC

along with other blocks. If a new set of metal-masks is going to be fabricated for some metal-only

ECO modifications in TOP_ANA, it is very likely that other blocks of the SoC will take advantage

of the re-fabrication of the masks to perform some ECO modifications of their own. By bundling

together the desired ECO modifications, a single set of metal-mask masks can be re-fabricated

instead of multiple. Consequently, it is very likely that some of these modification will require

routing using metal 5 regardless, which means it would be useless (and even detrimental) to limit

the routing resources in TOP_ANA.

6.5 Validation Stage

In order to validate the flow by generating the new GDS, performing a final DRC check and finally

comparing the old GDS with the new to ensure the base layers remained unchanged, a physical

verifcation tool called Calibre (from Mentor Graphics) was used. Besides the GDS of the already

taped-out design, the inputs to the validation step are the DEF and LEF from the P&R tool that

together with the device level information (present in the GDS files of the standard cell kit) will

be used to generate the new GDS of the design. The steps taken by this stage are illustrated in the

diagram of Fig. 6.17.

6.5.1 Generating the new GDS file and performing a final DRC

As was previously stated, in P&R environments standard cells and Macros are represented as LEF

cells which are an abstracted view of the real cells that contain information regarding the size and

location and layout of the pins (the only information required by the P&R tool). All the LEF cells

present in the design must be merged with the GDS device level information concerning the base

layers and the metal-layers inside the standard cell besides the pins. Afterwards, this complete

GDS view of each standard cell is merged with the placement and routing information present in

the DEF and a full GDS description of the design is generated.

After the generation of the GDS file, a final DRC test was done on the same phyisical verifi-

cation tool, also taking into account violations related with the base layers. In the ECO example,

since the DRC verification was clean (reinforcing the DRC test done on the P&R tool in the Back-

End flow), a comparison between the old GDS and the newly created one must then be made.

6.5.2 Performing the XOR comparison between the two GDS

After the a successful DRC verification, it is fundamental to compare the differences in each layer

between the two GDS files to ensure the base layers remain unchanged.
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Figure 6.17: Steps followed by the validation stage

To do so, the layout XOR feature (fastXOR) provided by Calibre was used. It takes as an

input the old GDS and the new GDS and overlaps them, layer by layer. Afterwards, it performs

a comparison of each layer in order to detect any differences. Fig. 6.17, extracted from Calibre’s

GUI, shows the differences found by the XOR for each base and metal layers in the design (layers

related with vias and pins are not shown for a simpler representation).

Figure 6.18: XOR results between the old GDS and the new GDS. On the left, the differences
found for each layer. On the right, the association between the labels and the respective metal
layers.

Expectedly, while all the base layers remained the same, differences were found in every
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metal-layer as no restrictions were given to the ECO routing. To better appreciate the reconfigura-

tion procedure, Fig. 6.19 shows the differences in the base-layers and metal 1 layers of the old and

new GDS views. While the base layers are identical, it is possible to observe the reconfiguration

of the GA filler into a functional cell using metal1 connections.

Figure 6.19: Comparison of the old GDS with the new GDS



Chapter 7

Conclusions and further work

Considering the initial objectives of this dissertation, it can be said that they were fulfilled. An IP

was implemented in a team environment and two P&R tools were compared, with some relevant

conclusions regarding the quality of the results presented by both concerning timing convergence

and consumed power. Then, the implemented IP was integrated into a SoC and low power tech-

niques were used, which are imperative nowadays to reduce the power consumption of integrated

circuits. Finally, a post-mask function ECO flow was implemented and validated, meaning any

future ECO modifications in this block can be simply performed by changing the RTL, running the

flow and analyzing the results, decreasing the time-to-market of the chip considerably. Nonethe-

less, some further work can be made to improve some of the developed work.

When in it comes to the comparison of the two P&R tools, it would have been interesting to

understand how to have more control on the resources provided for the execution of each job (such

as number of CPUs and amount of RAM allocated) so that a fair comparison on runtime could be

made. Even though one of the tools had better quality of results both in timing convergence and

power, runtime is also a critical aspect, specially considering the importance of time-to-market

nowadays.

Also concerning the the two tools, in order to get a truly accurate comparison of the timing

convergence, the sign-off had to be finalized and a more precise sign-off timing analysis tool (the

same tool for both the implementations) had to be used, as already explained in chapter 4.

Regarding the implementation of the ECO flow in specific, since it was developed near the

tapeout of the SoC (which coincided with the date this dissertation was written) there was not

enough time to further test and optimize it. One interesting aspect to analyze would have been

the limits of the ECO cells insertion strategy that was used by making an high amount of RTL

modifications and understanding at what point the number of available ECO cells simply is not

enough to implement them. By doing this study, the feasibility of a desired post-mask ECO could

be accessed in advance and no time had to be wasted performing it.

On the same note, a study could also have been made concerning the type of ECO cells that

were used. Different approaches such as a mixture of both combinational spare cells and gate-array

reconfigurable filler cells with different percentages could be used to reach an optimal insertion

87



88 Conclusions and further work

strategy. In this case, the results would be purely theoretical and relevant for futher projects consid-

ering this design was already finalized and that changing the ECO insertion strategy is obviously

not possible after the tapeout.

However, both of these studies would require an high amount of ECO simulations and each

one of them would require multiple modifications, leading to an unreasonable amount of time to

reach a definite conclusion, specially considering the number of available licenses for each EDA

tools is an important resource in the industry
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