2,599 research outputs found

    Optical image compression and encryption methods

    No full text
    International audienceOver the years extensive studies have been carried out to apply coherent optics methods in real-time communications and image transmission. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. However, the transmitted data can be intercepted by nonauthorized people. This explains why considerable effort is being devoted at the current time to data encryption and secure transmission. In addition, only a small part of the overall information is really useful for many applications. Consequently, applications can tolerate information compression that requires important processing when the transmission bit rate is taken into account. To enable efficient and secure information exchange, it is often necessary to reduce the amount of transmitted information. In this context, much work has been undertaken using the principle of coherent optics filtering for selecting relevant information and encrypting it. Compression and encryption operations are often carried out separately, although they are strongly related and can influence each other. Optical processing methodologies, based on filtering, are described that are applicable to transmission and/or data storage. Finally, the advantages and limitations of a set of optical compression and encryption methods are discussed

    Holographic security

    Get PDF
    This chapter is concerned with the security applications of holographic techniques. Holograms are used in product authentication, product branding and brand protection, and personal and other documents. Serialization to ensure the uniqueness of each hologram for added security is briefly discussed. The theory of optical character recognition and joint transform correlation methods is outlined. Holographic recording using encrypted reference waves enables secure storage of information. Several methods are considered for encrypting optical data as well as holographic recording of encrypted images and their reconstruction and decryption. Millimeter and microwave holographic imaging techniques for the detection of hidden contraband, narcotics, firearms, and explosives are also discussed

    Color Image Encryption Using LFSR, DNA, and 3D Chaotic Maps

    Get PDF
    One of the most important challenges facing researchers is to find new methods to protect data sent over the Internet and prevent unauthorized access to it. In this paper, we present a new method for encrypting image data divided into two stages. The first stage requires redistributing the positions of the pixels by using a key of random numbers generated by linear feedback shift registers and then encrypting the data using deoxyribonucleic acid rules. The data generated in the previous stage is encrypted again using chaotic maps to increase the level of security in the second stage. Several statistical tests were implemented to verify the efficiency of the proposed method and compare the results with the work of other researchers. The results of the tests proved a reasonable safety rate compared to other techniques

    An Improved Reversible Data Hiding with Hierarchical Embedding for Encrypted Images and BBET

    Get PDF
    This research introduces an enhanced reversible data hiding (RDH) approach incorporating hierarchical embedding for encrypted images and employs a novel technique termed BBET (Best Bits Embedding Technique). RDH involves concealing information within a host sequence, enabling the restoration of both the host sequence and embedded data without loss from the marked sequence. While RDH has traditionally found applications in media annotation and integrity authentication, its utilisation has expanded into diverse fields. Given the rapid advancements in digital communication, computer technologies, and the Internet, ensuring information security poses a formidable challenge in safeguarding valuable data. Various reversible and stenographic techniques exist for covertly embedding or protecting data, spanning text, images, and protocols, and facilitating secure transmission to intended recipients. An influential approach in data security is reversible data hiding in encrypted images (RDHEI). This paper distinguishes between the conventional RDHEI technique, characterised by lower Peak Signal-to-Noise Ratio (PSNR) and higher Mean Squared Error (MSE), and proposes an improved RDHEI technique. As the prevalence of digital techniques for image transmission and storage rises, preserving image confidentiality, integrity, and authenticity becomes paramount. Text associated with an image, such as authentication or author information, can serve as embedded data. The recipient must adeptly recover both the concealed data and the original image. Reversible data-hiding techniques ensure the exact recovery of the original carrier after extracting the encrypted data. Classification of RDHEI techniques is based on the implemented method employed. This paper delves into a comprehensive exploration of techniques applicable to difference expansion, histogram shifting, and compression embedding for reversible data hiding. Emphasis is placed on the necessity for a reversible data-hiding technique that meticulously restores the host image. Furthermore, the study evaluates performance parameters associated with encryption processes, scrutinising their security aspects. The investigation utilises the MATLAB tool to develop the proposed BBET technique, comparing its efficacy in embedding and achieving enhanced security features. The BBET technique is characterised by reliability, high robustness, and secure data hiding, making it a valuable addition to the evolving landscape of reversible data hiding methodologies

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future
    • …
    corecore