13 research outputs found

    Tripal, a community update after 10 years of supporting open source, standards-based genetic, genomic and breeding databases

    Get PDF
    Online, open access databases for biological knowledge serve as central repositories for research communities to store, find and analyze integrated, multi-disciplinary datasets. With increasing volumes, complexity and the need to integrate genomic, transcriptomic, metabolomic, proteomic, phenomic and environmental data, community databases face tremendous challenges in ongoing maintenance, expansion and upgrades. A common infrastructure framework using community standards shared by many databases can reduce development burden, provide interoperability, ensure use of common standards and support long-term sustainability. Tripal is a mature, open source platform built to meet this need. With ongoing improvement since its first release in 2009, Tripal provides full functionality for searching, browsing, loading and curating numerous types of data and is a primary technology powering at least 31 publicly available databases spanning plants, animals and human data, primarily storing genomics, genetics and breeding data. Tripal software development is managed by a shared, inclusive governance structure including both project management and advisory teams. Here, we report on the most important and innovative aspects of Tripal after 11 years development, including integration of diverse types of biological data, successful collaborative projects across member databases, and support for implementing FAIR principles

    The GMOD Drupal Bioinformatic Server Framework

    Get PDF
    Motivation: Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS)

    AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture

    Get PDF
    The future of agricultural research depends on data. The sheer volume of agricultural biological data being produced today makes excellent data management essential. Governmental agencies, publishers and science funders require data management plans for publicly funded research. Furthermore, the value of data increases exponentially when they are properly stored, described, integrated and shared, so that they can be easily utilized in future analyses. AgBioData (https://www.agbiodata.org) is a consortium of people working at agricultural biological databases, data archives and knowledgbases who strive to identify common issues in database development, curation and management, with the goal of creating database products that are more Findable, Accessible, Interoperable and Reusable. We strive to promote authentic, detailed, accurate and explicit communication between all parties involved in scientific data. As a step toward this goal, we present the current state of biocuration, ontologies, metadata and persistence, database platforms, programmatic (machine) access to data, communication and sustainability with regard to data curation. Each section describes challenges and opportunities for these topics, along with recommendations and best practices

    A Hitchhiker's guide through the bio-image analysis software universe

    Get PDF
    Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.Peer reviewe

    PREDICTING COMPLEX PHENOTYPE-GENOTYPE RELATIONSHIPS IN GRASSES: A SYSTEMS GENETICS APPROACH

    Get PDF
    It is becoming increasingly urgent to identify and understand the mechanisms underlying complex traits. Expected increases in the human population coupled with climate change make this especially urgent for grasses in the Poaceae family because these serve as major staples of the human and livestock diets worldwide. In particular, Oryza sativa (rice), Triticum spp. (wheat), Zea mays (maize), and Saccharum spp. (sugarcane) are among the top agricultural commodities. Molecular marker tools such as linkage-based Quantitative Trait Loci (QTL) mapping, Genome-Wide Association Studies (GWAS), Multiple Marker Assisted Selection (MMAS), and Genome Selection (GS) techniques offer promise for understanding the mechanisms behind complex traits and to improve breeding programs. These methods have shown some success. Often, however, they cannot identify the causal genes underlying traits nor the biological context in which those genes function. To improve our understanding of complex traits as well improve breeding techniques, additional tools are needed to augment existing methods. This work proposes a knowledge-independent systems-genetic paradigm that integrates results from genetic studies such as QTL mapping, GWAS and mutational insertion lines such as Tos17 with gene co-expression networks for grasses--in particular for rice. The techniques described herein attempt to overcome the bias of limited human knowledge by relying solely on the underlying signals within the data to capture a holistic representation of gene interactions for a species. Through integration of gene co-expression networks with genetic signal, modules of genes can be identified with potential effect for a given trait, and the biological function of those interacting genes can be determined

    2019 EURÄ“CA Abstract Book

    Get PDF
    Listing of student participant abstracts

    Microarray tools and analysis methods to better characterize biological networks

    Get PDF
    To accurately model a biological system (e.g. cell), we first need to characterize each of its distinct networks. While omics data has given us unprecedented insight into the structure and dynamics of these networks, the associated analysis routines are more involved and the accuracy and precision of the experimental technologies not sufficiently examined. The main focus of our research has been to develop methods and tools to better manage and interpret microarray data. How can we improve methods to store and retrieve microarray data from a relational database? What experimental and biological factors most influence our interpretation of a microarray's measurements? By accounting for these factors, can we improve the accuracy and precision of microarray measurements? It's essential to address these last two questions before using 'omics data for downstream analyses, such as inferring transciption regulatory networks from microarray data. While answers to such questions are vital to microarray research in particular, they are equally relevant to systems biology in general. We developed three studies to investigate aspects of these questions when using Affymetrix expression arrays. In the first study, we develop the Data-FATE framework to improve the handling of large scientific data sets. In the next two studies, we developed methods and tools that allow us to examine the impact of physical and technical factors known or suspected to dramatically alter the interpretation of a microarray experiment. In the second study, we develop ArrayInitiative -- a tool that simplifies the process of creating custom CDFs -- so that we can easily re-design the array specifications for Affymetrix 3' IVT expression arrays. This tool is essential for testing the impact of the various factors, and for making the framework easy to communicate and re-use. We then use ArrayInitiative in a case study to illustrate the impact of several factors known to distort microarray signals. In the third study, we systematically and exhaustively examine the effect of physical and technical factors -- both generally accepted and novel -- on our interpretation of dozens of experiments using hundreds of E. coli Affymetrix microarrays
    corecore