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Abstract 

 

It is becoming increasingly urgent to identify and understand the mechanisms 

underlying complex traits.  Expected increases in the human population coupled with 

climate change make this especially urgent for grasses in the Poaceae family because 

these serve as major staples of the human and livestock diets worldwide. In particular, 

Oryza sativa (rice), Triticum spp. (wheat), Zea mays (maize), and Saccharum spp. 

(sugarcane) are among the top agricultural commodities.  Molecular marker tools such as 

linkage-based Quantitative Trait Loci (QTL) mapping, Genome-Wide Association 

Studies (GWAS), Multiple Marker Assisted Selection (MMAS), and Genome Selection 

(GS) techniques offer promise for understanding the mechanisms behind complex traits 

and to improve breeding programs. These methods have shown some success. Often, 

however, they cannot identify the causal genes underlying traits nor the biological 

context in which those genes function.  To improve our understanding of complex traits 

as well improve breeding techniques, additional tools are needed to augment existing 

methods. This work proposes a knowledge-independent systems-genetic paradigm that 

integrates results from genetic studies such as QTL mapping, GWAS and mutational 

insertion lines such as Tos17 with gene co-expression networks for grasses—in particular 

for rice.  The techniques described herein attempt to overcome the bias of limited human 

knowledge by relying solely on the underlying signals within the data to capture a holistic 

representation of gene interactions for a species.  Through integration of gene co-

expression networks with genetic signal, modules of genes can be identified with 
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potential effect for a given trait, and the biological function of those interacting genes can 

be determined.    
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1. Introduction 
 

The Importance of Grasses 

 

The Poaceae family of grasses is comprised of flowering monocotyledons and is 

one of the largest plant families found throughout the world.  The family contains cereals 

such as wheat, maize, rice, sorghum and sugarcane which are some of the most 

agriculturally and economically important plant species in the world.   According to the 

United Nations Food and Agricultural Organization commodities production statistics of 

2011 [1], Poaceae species such as sugarcane, maize, rice and wheat comprise the world’s 

most highly produced crops and are also within the top 10 economically valuable crops 

on the planet (Figure 1.1).    

Improvements in nutritional value, grain and total biomass yield, cultivation 

range, disease resistance, stress tolerance and other complex traits for the cereal crops is 

important to meet the demands of a growing world population, their livestock, and 

adaptation in a future of global climate change.  Approximately, 1 billion people 

worldwide are currently undernourished—mostly in underdeveloped countries [2].  

Despite major advances in food production owing largely to improvements in irrigation, 

fertilization, pest management and development of higher yielding crop varieties (the 

Green Revolution [3]), the estimated pace of worldwide population increase is expected 

to outpace agricultural production before the year 2050 [2].  Therefore, a higher rate of 

productivity may be necessary to avoid famines, malnourishment and geo-political 
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turmoil caused by food shortages.  Crop varieties that require less water, fewer pesticides 

and fewer fertilizers are most desired to meet the future global need especially in light of 

changing climate conditions.   Development of new tools to speed and improve efficiency 

of breeding is becoming urgent. 

 

 

Figure 1.1 The Top 10 Food Commodities. 

The total production in tonnage and economic value in millions of international dollars 
(I$) of the top 10 food commodities as reported by the United Nations Food and 
Agricultural Organization in 2011  [1] (chart reproduced using publicly available data). 
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Rice as a Model for the Grasses 

 

Oryza sativa, rice, is a major food commodity in both developed and developing 

nations.  Moreover, rice serves as a major staple food in nations with some of the highest 

number of poor, particularly in Asian countries (Figure 1.2). Therefore, high productivity 

and nutrition of rice is essential to maintain adequate food supplies and prices.  

 

 

Figure 1.2 Cartograms Representing Poverty and Rice Consumption. 

The cartograms shown here visualize a country’s size using a specific value rather than 
land area and allow for gross comparisons between nations.  A) Country size indicates 
the number of people living on less than 1 US dollar (purchasing power adjusted) per day 
in 2008.  B) The amount of rice consumption per country [4, 5]. (Both figures A and B 
are reproduced here under permission of the Creative Commons License. Figures were 
initially found on the IRRI (http://www.irri.org) website in 2010. Figure 1B was 
published in Rice Today [4]) 

 

Beyond the agricultural and economic importance, rice also serves as a model 

species for investigating complex traits in grasses because of the small diploid genome 

and wealth of biological resources. These include a well characterized whole genome 
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sequence [6], over 100 genetic and physical maps, 2.5 million molecular markers, over 

8,000 QTLs, mutant lines and more [7].  Additionally a wealth of gene expression 

measurements from both microarray and RNA-seq technologies are available in public 

repositories such as the NCBI Gene Expression Omnibus (GEO; [8]), Short Read 

Archive (SRA; http://www.ncbi.nlm.nih.gov/Traces/sra/), ArrayExpress from the 

European Bioinformatics Institute [9], and other sources.   

It has been shown that gene content and order among the Poaceae are highly 

conserved [10]. Therefore, discovery of gene sets underlying agronomic traits in one 

grass species should add to the biological knowledge of other grasses.  Translation of 

knowledge between grass species becomes increasingly important for species such as 

sugarcane which has a large complex polyploid genome and where almost all traits are 

complex [11].   Due to the resources available for rice, it serves as a logical initiation 

point for translational studies within the grasses.   

 

Methods for Identifying Genes of Complex Traits 

 

Understanding the genetic mechanisms underlying desirable agricultural traits 

may prove essential for improvements in productivity and nutrition.  Desirable traits 

often arise from the interactions of alleles from multiple genes—they are polygenic.  

Complex traits are thus quantitative because the interaction of gene products yields a 

range of variability in expression.  This is opposed to Mendelian traits where phenotypes 

are qualitative and the result of interacting alleles from a single gene.   Examples of 
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important complex traits include disease resistance, nutrition, stress tolerance, plant 

height and yield.    Most recent efforts to identify genes underlying complex traits in rice 

are concentrated in the techniques of linkage-based Quantitative Trait Loci (QTL) 

mapping and Genome Wide Association Studies (GWAS).  Both methods focus on the 

use of molecular markers and the accuracy of these methods is highly dependent on the 

degree of linkage between genes underlying complex traits with the markers. Once 

markers have been associated with a trait, genes nearby the marker may be identified 

through methods such as positional cloning, or closer examination of genes in a whole 

genome assembly if one is available.  

QTL mapping is a technique that attempts to locate chromosomal regions that 

contribute some effect towards a specific trait (QTL set).  Traditional linkage-based QTL 

mapping identifies QTLs using molecular markers, such as SNPs, RFLPs or SSRs, that 

have a non-random association with the measured trait within a segregating mapping 

population [12, 13].  The positions of markers on a linkage map are used to estimate the 

positions of QTLs.  There are a variety of methods for obtaining a segregating population 

needed for QTL mapping.  Typically, a population is constructed from a cross between 

two homozygous, inbred, individuals that demonstrate genetic variability in the set of 

markers to be used.  The first filial, F1, generation of these parental lines are all 

heterozygous at variant nucleotides which then undergo a crossing schema such as a 

backcross (cross with one of the parents) to produce a BC1 generation, a sibling cross 

(cross with another F1 individual) or selfing (F1 crossed with itself) both of which 

produce a second filial, F2, generation. The progeny from this second round of crosses 
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can then be genotyped and phenotyped for QTL analysis or inbred further to create 

recombinant inbred lines (RILs) [14] which can then be used for higher resolution QTL 

analysis.  Additionally, in order to increase genetic variability in the mapping population, 

multiple parental lines can be crossed and their progeny intercrossed and inbred until a 

population of highly homozygous inbred lines are constructed.  Such methods have been 

used to construct the population of mice known as the Collaborative Cross [15]  and the 

Nested Association Mapping population (NAM) for maize [16]. 

Currently, for rice alone, over 8,000 QTLs from over 300 different mapping 

experiments for over 300 different traits are currently available in Gramene [17]. These 

QTLs have been mapped to physical genomic coordinates by the Gramene curators, 

allowing for the integration of functional genomic data. As will be discussed, this rich 

genetic resource makes rice a powerful model for gene discovery in grasses. 

QTLs from linkage-based mapping currently present several challenges [18].  

First, mapping populations only contain modest recombination histories, therefore the 

resolution is often quite rough (e.g. 10-30 cM for maize) [19]. Thus, QTLs often specify 

genomic regions that contain hundreds to thousands of genes, many of which may not 

contribute to the trait, and makes identification of causal genes difficult.  Also, QTLs are 

identified using the combinations of only two allele sets (one from each parent) at any 

given locus, thus the full genetic variability of the natural or breeding population may not 

be accounted for.  QTL mapping has been successful at identifying genes that contribute 

to a trait of interest but these are usually genes with large effects that are highly heritable 

(low environmental effects) [20, 21].  As a result, QTLs from QTL mapping have yet to 



 7 

be largely useful for breeders [22, 23] especially for traits with potentially hundreds of 

genes with small effects and lower heritability.  

GWAS studies are similar to QTL mapping in that they identify QTLs that non-

randomly segregate with a trait.  However, GWAS involve significantly more molecular 

markers—usually thousands to millions of polymorphic SNPs.  The mapping population 

also includes higher genetic and phenotypic variability through inclusion of thousands of 

individuals across a natural or breeding population with distinct families and identifiable 

subpopulation structure. Thus a rich recombination history is often present within the 

population.  This is in contrast to linkage-based QTL mapping where the population 

typically consists of recombinant progeny of two inbred parents.   For GWAS, the level 

of recombination present in the population is estimated through linkage disequilibrium 

(LD) analysis.  A set of markers with a set of alleles that consistently appear together 

within the population are in LD.  Groups of adjacent markers in high LD form LD blocks, 

and the average size of LD blocks (e.g. 100-300kb in rice [24]) in a population help 

identify the number of markers needed for the study as well as the possible resolution of 

the study [18].  This is in contrast to linkage-based QTL mapping where the level of 

recombination is typically a product of the crossing strategy.    

Recently, three GWAS studies in rice have been performed [24-26].  The first by 

Huang et.al. (2010) studied 517 Chinese land races for 14 different agronomic traits [25].  

They performed 1x Illumina re-sequencing of each accession to identify millions of 

SNPs.  Results showed that on average SNPs that significantly co-segregate with traits 

account for 36% of total phenotypic variability. This same group later sequenced an 
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additional 433 lines (2012) including other global varieties measuring two traits: grain 

yield and flower time [26].  A second group, Zhao et. al. (2011), performed GWAS 

analysis of 413 accessions from 82 countries for 34 different traits using a 44,100 SNP 

array [24].  Both studies report SNPs with significant association to the traits under study. 

GWAS also has its own set of challenges.  For candidate genes identified through 

GWAS there often remains the challenge to confirm that implicated genes do in fact 

contribute to the trait.  Also the underlying genetic context within which candidate genes 

function is not known [27-29].  For example, the regions derived from GWAS studies are 

many times found in introns and intergenic regions, indicating involvement of regulatory 

mechanisms.  It has been reported that only 12% of SNPs associated with traits in 

humans are in linkage disequilibrium with protein-coding genes [30].  Perhaps the major 

challenge however, is that regions identified by GWAS typically only account for a small 

percentage of the total heritability of a trait such as in the case of human height where a 

study involving 30000 people identified 40 new loci that only accounted for 5% of the 

difference in human height [31].  Thus, while GWAS provides improved resolution and 

can implicate large-effect and some smaller effect genes, it fails to implicate causal genes 

across the full trait range of expression, and in many cases even across a moderate range 

of expression. While new, GWAS has had little success in helping with discovery of gene 

targets for diseases [32] and in plant breeding [33]. 
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Breeding Tools for Complex Traits 

 

In order to meet the demands of a growing population with perhaps less optimal 

conditions for growing crops, new varieties of cereals are needed.  Therefore, breeders 

are actively searching for new varieties with improvements in water usage, nutrition, 

yield, disease tolerance and other agronomically important traits. However, the 

population size needed for current breeding methods can be enormous due to the number 

of segregating genes, requiring hundreds to thousands of populations and can take from 5 

to 10 years to identify an elite variety for rice alone [34].  Therefore, breeders hope to 

capitalize on recent advancements in molecular technologies to decrease developmental 

time and the number of required populations.   There are two major molecular-based 

technologies that have been used for assistance in breeding programs of both plants and 

animals.  These include Marker Assisted Selection (MAS) and Genome Selection (GS).  

Both methods rely on markers with linkage disequilibrium to genes underlying complex 

traits to assist in breeding. 

Marker Assisted Selection (MAS) employ the use of molecular markers such as 

SNPs, SSRs, AFLPs, RFLPs, etc., to identify individuals with potentially desirable traits 

[35].  Markers for complex traits are initially identified using methods such as QTL 

mapping as described previously.   The efficacy of MAS is limited to the power of QTL 

mapping.  For example, MAS is useful when the trait heritability is high (low 

environmental  effect), when there are very few QTLs and the population is large (i.e. the 

trait is controlled by few large-effect genes), and when gene or genes underlying traits are 
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in high linkage disequilibrium to the marker [34].  For traits with potentially hundreds of 

genes with small effects, MAS becomes woefully inadequate.  Unfortunately, there have 

been very few published results for MAS in plant breeding. Hospital provides a few in a 

recent review [36], including Patwan, a hard white spring wheat, a rice line with greater 

resistance to bacterial blight and a few others.  In a review by Collard and Mackill, they 

suggest the lack of published results are because the technology is too new, breeders and 

large breeding companies release varieties rather than publish the results of MAS 

techniques, that QTLs in general may be too large to be effective, differences in genetic 

backgrounds between breeding population and QTL populations make markers from 

QTL mapping less useful, and other reasons [35]. 

Genome Selection (GS) is a newer technology that utilizes a large marker data set 

such as high density SNPs across an entire genome and offers the promise of identifying 

gene sets with small effects underlying complex traits [37].  The method employs 

genotyping of large reference breeding population representative of the genetic diversity 

of the larger population. Genotyping is performed using high density SNP assays and 

relevant phenotypes are scored across various environmental conditions.  Using various 

statistical methods [33] all SNPs are evaluated at once to identify a set of markers that 

together represent an approximation of the loci controlling the total heritability of the 

trait.  This is in contrast to MAS where each marker is evaluated individually for the trait.  

The technique also generates a predictive equation that when evaluated in a separate 

validation population using genotypes of individuals as input, Breeding Value (BV) are 

generated for the trait for each individual.  Breeding values are an estimate for the 
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amount of heritability in an individual for a specific trait, and individuals with higher 

BVs are often used when breeding for specific traits. BVs have been used in traditional 

breeding but are normally generated using carefully recorded pedigree and phenotyping 

information.  After evaluation of the GS derived BVs in the validation population, the 

predictive equations and SNP sets can be used in future selection population with the 

objective of reducing phenotyping.  It has been shown that use of GS can improve the 

accuracy of BVs by as much as 167% over MAS, 2-30% in mice using empirical studies 

and up to 85% in cattle over traditional methods [38].  GS is a new method and still under 

validation but does seem to offer much promise especially for complex traits with many 

small effects.  However, while successful for breeding programs, the genes underlying 

complex traits are not identified, nor the context under which these genes operate.  

Methods that can identify the genes (not just closely linked markers) underlying complex 

traits would be of great value to understanding the molecular mechanisms of complex 

traits which in turn could further assist breeders.  

 

Systems Genetics as a Technique for Exploring Complex Traits 

 

The methods and tools discussed previously have helped advance our 

understanding of complex traits and have been largely successful for traits with a few 

large-effect genes and high heritability.  GS in particular offers great potential for 

identifying markers associated with small-effect genes and affords improvements to 

breeders.  However, in all of these methods, the genes underlying complex traits are yet 
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to be systematically identified. The interactions between and functions of the relevant 

gene products are also not known.   Additional technologies are needed to help identify 

these genes and the context by which they interact.  Integration of genomics, genetics and 

systems biology methods into a category known as systems genetics, offers the potential 

to provide this information. 

The goal of systems biology is to use the principles of systems theory to examine 

interactions of a biological system.  Systems theory has been used in disciplines such as 

engineering [39], ecology [40],  and the social sciences [41], to name a few, but is 

becoming more widespread in biology with the advent of high-throughput assays and 

sequencing.  Also, complex traits are polygenic and genes may at times be multi-

functional [42-44].  Because genes do not function alone, an understanding of the genes 

in isolation, or in isolated pathways does not provide the context for how the gene 

behaves in the entire system.  With the potential for hundreds to potentially thousands of 

genes working together to yield a physiological or morphological trait the network of 

interactions should be viewed at a higher “systems” level. 

Systems genetics is a subclass of systems biology that integrates the methods of 

genetics, genomics and systems biology to unravel genotype-phenotype interactions [45].  

Systems genetic approaches are relatively new and under active development.  They have 

recently been used to examine the genetic mechanisms behind complex traits in 

Drosophila melanogaster [46, 47]; diseases such as osteoporosis and type 2 diabetes in 

humans [28, 48]; fear, cancer, HDL-cholesterol, defining genetic interactions in the 

thalamus, and applications in somatic cell cloning in mice [49-53]; various traits for 
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Oryza sativa [54]; and Arabidopsis [55, 56] to name a few.   Additionally, systems 

genetics approaches have been suggested for applications in plant and animal breeding 

[57], disease and drug target discovery [27, 32], and, in-general, understanding of 

molecular mechanisms underlying complex traits [58].  

The “systems” component of a systems genetics study involves the use of 

networks to model gene and genetic relationships.  Networks are comprised of nodes and 

edges—similar to a road map where nodes are towns or cities and edges are roads 

connecting them.  Examples of networks with nodes and edges can be seen in Figure 1.3 

Aa, Bb and Cc.  For systems biology, networks can be physical interaction networks 

where edges represent proteins binding to other proteins (e.g. protein-protein interaction 

(PPI)) [59], where edges describe co-expression of gene transcripts (co-expression 

networks) [60], metabolic networks linking metabolites (substrate and products) and 

reactions [61], or regulatory linking transcription factors and genes they regulate [62].  

Biological networks may be the key to discovering specific gene sets and the molecular 

mechanisms underlying complex traits. 

While the type of network may be different, all naturally occurring networks 

typically exhibit a similar set of properties. These properties include scale-free behavior, 

small-world, hierarchical and modular structure.  These properties are present in many 

networks such as social networks, cell phone networks, the world-wide web, and 

biological networks [63-65].   These properties are shown in Figure 1.3 and briefly 

described here.  In network theory, the degree of a node, k, is the number of incident 

edges to the node.  A scale-free network is therefore one where the probability 
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distribution, P(k), of a node being connected via k edges decreases exponentially with 

increasing k.   Figure 1.3 shows that random networks do not exhibit scale-free behavior 

but rather have a Gaussian distribution.  Scale-free networks therefore consist of some 

nodes that are highly connected, called hubs, with most nodes having few connections.   

As a result of scale-free behavior, networks are typically small-world such that a path 

between any two nodes in the network traverses only a few other nodes (i.e. six degrees 

of separation principle). Networks are also modular and those modules are often 

hierarchical.  The clustering co-efficient, C, is a property of networks that describes the 

modularity within it.  In modular networks, nodes that are connected tend to be connected 

to their neighbors as well.  A module within a network is a collection of nodes that are 

more highly connected amongst themselves then with other nodes.  These nodes are 

arranged hierarchically such that interconnections between the modules occur primarily 

through the hubs [65].  Another property of modular networks is that the distribution of 

the average clustering co-efficient C(k), of any node having degree k is non-linear and 

decreases logarithmically as k increases.   As seen in Figure 1.3, scale free networks are 

not required to be modular. However, biological networks do tend to be modular and 

hierarchical [63]. 
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Figure 1.3 Properties of Naturally Occurring Networks. 

This figure demonstrates three primary properties of naturally occurring networks, 
namely scale-free behavior, modularity and a hierarchical order.  Column A demonstrates 
a random network (Aa) where the average degree of any node follows a Gaussian 
distribution (Ab) with no change in the average clustering coefficient (Ac).  Column B 
demonstrates a scale-free network (Ba) such that the probability degree distribution P(k) 
is logarithmic and decreases with increasing k (Bb).  Scale-free networks may not exhibit 
modularity as shown by no change in the average clustering coefficient (Bc).  Column C 
shows a scale-free, modular and hierarchical network (Cc).  Both the P(k) and C(k) are 
non-linear and decrease logarithmically as k increases.  This figure has been re-used with 
permission, see Appendix B [63]. 
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Gene Co-expression Networks 

 

Gene co-expression networks (GCN), also known as transcription networks or 

relevance networks, are commonly used in systems genetics studies [29, 55, 56, 66, 67]. 

These networks are constructed using high-throughput expression measurements from 

microarrays or RNA-seq.  A n x n similarity matrix is constructed using a pair-wise 

correlation statistic for each pair of genes typically using Pearson correlation, Spearman’s 

[68] or Mutual Information [69].  After calculation of the n x n similarity matrix, values 

below a certain threshold are set to zero resulting in the formation of an adjacency matrix.  

Many methods have been employed for significance thresholding.  These include ad hoc 

methods [70-73], permutation testing [74], linear regression [75], rank-based methods 

[76, 77], Fisher's test of homogeneity [78], spectral graph theory [79], Random Matrix 

Theory (RMT) [80, 81], Partial Correlation and Information Theory (PCIT) [82], 

methods that use topological properties [83], and supervised machine learning [84, 85].   

The non-zero values of the adjacency matrix that remain after significance thresholding 

represent the co-expression network.   

Next, module detection is performed after network construction.  Modules are the 

basis for analysis of gene co-expression networks.  It is through modules that functional 

units are defined.  Genes in modules tend to cooperate in the same biological function 

and hence guilt-by-association inferences can be made such that genes of unknown 

function can be hypothesized to be involved with the ascribed function assigned to the 

module [77].  Because genes that appear together in modules tend to cooperate in the 
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same biological functions, identification of modules with associations to complex traits 

automatically provides a set of genes, through guilt-by-association, that are potentially 

causal for the trait.   

There are a variety of module detection algorithms including the weighted gene 

co-expression network analysis package WGCNA [86], link communities [87], Markov 

clustering [88], Affinity search methods [89], NeMo [90], and MCODE [91] to name a 

few.  Each method uses a different approach and can define modules differently.  

Changing of input parameters with each algorithm can also affect module size and 

inclusivity.   Therefore, the modules obtained from any of these methods are simply 

approximations to circumscribe genes that participate in similar function.  In reality, real 

modules that underlie complex traits are probably dynamic and change with different 

conditions (genotype, environment, etc.).  The specificity and sensitivity of module 

discovery for any given function or trait needs further exploration.  However, it is only 

through modules detected using methods as those listed above that the power of networks 

is afforded. 

As mentioned previously, functional analysis of network modules can be 

performed to qualify functional processes to which they contribute.  Tools such as 

DAVID [92, 93], EasyGO [94], GOstat [95], FatiGO+ [96], Blast2GO [97], to name a 

few, are available to identify functional terms that are significantly present in modules 

more so than in the genomic background.  Terms from databases such as Gene Ontology 

(GO) [98], KEGG pathways [99], Interpro protein domains [100], Plant Ontology (PO) 
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terms [101], AraCyc pathways [102], and others, can all be used as needed for functional 

enrichment analysis.   

 

Examples with Integration of Genetic Resources and Networks 

 

Armed with networks and functionally annotated modules, data from genetic 

studies can be integrated to form systems genetics frameworks in an effort to diagnose 

genotype-phenotype associations.  These genetic signals, when mapped to the physical 

genome, can be derived from QTL Mapping, GWAS, segregating populations with fixed 

genotypes [103], or mutational insertion lines such as T-DNA or Tos17 [104-107].   For 

example, Ayroles et. al. [103] used 40 inbred lines from Drosophila melanogaster which 

accounted for a large portion of trait variation for six traits being studied.  They measured 

gene expression levels using the Affymetrix Drosophila 2.0 platform for flies under 

various conditions and scored phenotypes of resistance to starvation stress, time to 

recover from a chill-induced coma, life span, a startle-induced locomotor response and 

mating speed. Single feature polymorphisms (SFPs) [108] were identified using the 

microarray results and used to identify genes with polymorphisms between the 40 lines (a 

total of 3,316 genes).  Network modules were constructed from co-expressed transcripts 

and statistical regression models were used to associate transcripts with phenotypes.  

They found that several hundred genes within modules were significantly associated with 

phenotypic variation and that 70% of insertional mutants within the candidate genes did 
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have an effect on the phenotype.  Recommendation for future directions included further 

testing with a higher number of polymorphisms from whole genome sequencing. 

As another systems genetic example, polymorphisms from known segregating 

lines were used to find expression QTLs (eQTLs) which were then integrated with a co-

expression network.  An eQTL is a genomic region containing polymorphisms that are 

statistically associated with expression levels of specific genes.  Here the trait being 

examined is the level of gene expression.  The implication then is that eQTLs are likely 

to regulate expression of the gene [109].  Kang et. al. [110] integrated eQTLs with gene 

co-expression networks in an attempt to identify genes associated with Type 2 diabetes in 

mice.  They selected a set of SNPs that were significant in several recent GWAS studies 

for Type 2 diabetes.  Using an existing database of eQTLs for those SNPs and co-

expression networks constructed from over 1000 obese patients, they identified genes that 

co-localized within co-expression modules that contained genes associated with Type 2 

diabetes eQTLs.  The study was able to provide several novel candidate genes for Type 2 

diabetes. 

As another example, the AraNet database integrated a diverse set of 24 data types 

for Arabidopsis thaliana including PPI networks, gene co-expression, metrics for 

similarity of protein domains and phylogenetic profiles, and gene-gene associations 

identified from literature mining [56]. These data types were integrated into a single 

network, called AraNet.  Using guilt-by-association inferences they were able to identify 

modules for seed pigmentation that contained about 200 candidate genes.  T-DNA 

insertional mutants were obtained for these 200 candidate genes, lines were grown and 
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seed pigmentation was scored.  Results showed a 10-fold improvement in expression of 

mutant seed pigmentation over random screens. 

Another example, which is presented as Chapter 2 of this dissertation, involves 

the integration of a gene co-expression network for rice with results from a recent Tos17 

insertional mutant study [54, 104, 105].  Briefly, a network was constructed using several 

hundred publically available microarrays and thresholded using the RMT method [80]. 

Modules were identified using the WGCNA method [86] and functionally annotated 

using an in-house script for identifying functionally enriched terms.  Genes were 

annotated with phenotypes from the Tos17 study and modules were then tested for 

enrichment of these phenotypes.  Modules with significant enrichment contained genes 

with potential effect towards expression of the trait.  Chapter 3 describes an effort to 

extend this systems genetics approach by examining the translational impact of such 

studies between closely related species such as maize and rice [66]. 

 

A Holistic Approach to Systems Genetics 

 

The systems genetic examples described previously demonstrate the diversity of 

genomic and genetic resources, as well as systems biology methods that can be 

successfully applied to identify potential candidate genes underlying complex traits.  One 

challenge however with many systems genetics studies is the effect of experimental bias, 

such as where variables are tightly controlled: expression profiling and phenotype scoring 

are taken from the same sample and other experimental conditions are controlled.       
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As mentioned previously, QTL mapping, GWAS and GS can identify loci but 

they provide no context for the pathways underlying the regions they identify.  In many 

cases identification of the exact genes is difficult, but also, how do the genes underlying 

the loci interact to express the trait?  What effects do they have in other processes?  What 

other phenotypes might they affect?   The network can help provide clues to the genetic 

interactions at the functional genomic level.  But, if the networks are constrained by 

experimental conditions it is not possible to grasp the full breadth of the interactions, 

rather, we obtain a glimpse for how the network behaves given a specific set of 

conditions.  Furthermore, interactions cannot be captured if they were never measured 

such as brief expression of causal genes in a spatially discrete developmental context.  

It would be desirable to have a framework where all interactions between any two 

genes are captured, not just those measured under the experimental conditions. A holistic 

network that provides relationships across as many conditions as possible (e.g. genotypes, 

developmental stages, tissues, and environmental conditions) would allow for such a 

perspective. While we cannot perform expression profiling across all points-in-time for 

every tissue type, genotype, cell and environmental condition, we can attempt to remove 

bias and approximate the holistic, multi-dimensional network by incorporating all 

available data and using knowledge-independent approaches.   

 

 

 



 22 

Summary 

 

This dissertation, therefore, is an exploration into the possibility of constructing a 

holistic interaction network in the form of a gene co-expression network and its 

applicability for understanding genotype-phenotype relationships. The hypothesis is that 

genotype-phenotype relationships can be identified in holistic networks, and that the 

context of the interactions can be understood such that side-effects from selecting for a 

specific genotype can be detected.  Oryza sativa was selected for this study due to its 

importance in human nutrition, its agricultural and economic value, and the availability of 

a wide array of genomic and genetic resources that serve as a reference for translational 

agriculture to other grasses.   

In Chapter 2, this dissertation describes the construction of the first global gene 

co-expression network for rice using a knowledge-independent approach [54].  This 

network was composed of all publicly available samples of the Affymetix Rice Genome 

array obtained from NCBI’s Gene Expression Omnibus (GEO; [8]).  Samples were not 

segregated by conditions (no knowledge bias in samples used for correlations) and 

thresholding of the network used a statistical test to prune low-quality relationships, 

rather than bait-genes or functional lists. The input samples spanned a variety of 

genotypes, tissues, environmental conditions, disease states and developmental stages.  

All samples were used to build the global network in an effort to capture as many 

interactions across conditions as possible.  Additionally, associations between genes and 

phenotypes provided by the Tos17 mutational insertion database [104] were used to 
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identify modules that were enriched for specific phenotypes.  Results showed that the 

enriched function of modules in the global network matched well with expected 

condition.  For example, modules containing processes involved in seed storage were 

most highly expressed in seed tissue.  Additionally, there was significant enrichment of 

mutant phenotypes in some of the rice modules, implicating those genes in the enriched 

trait. 

Chapter 3 examines the feasibility for using network modules from one species to 

predict modules with similar function in another species.  A global co-expression 

network for Zea mays was constructed using the same methodology as for the global rice 

network [66].   The two networks were compared to identify modules with similar 

homology amongst member genes and topology (similar patterns of interconnections 

among member genes).  Results showed a high degree of conservation of network 

modules between the maize and rice networks indicating the potential for translation of 

genotype-phenotype knowledge from one species to another.   

Chapter 4 describes an analytical exercise to examine networks for robustness 

[60].  Is the structure of the global networks robust?  How variable are the interactions 

(edges) found in the network?  Is the network reproducible if different sample are used?  

It is important to assess the robustness of the network to ensure that relationships are 

meaningful.  To this end, hundreds of networks were constructed with a randomized 

input sample set, using an improved implementation of the RMT method [80] in C code 

developed in collaboration with Dr. Melissa Smith’s lab in the Department of Electrical 
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and Computer Engineering at Clemson University. Results show that despite variation in 

input sample composition, the global networks are highly robust. 

One lesson learned from construction of global networks was that an increase in 

the number of conditions in the dataset leads to increases in unexplained variation of 

expression, limiting the sensitivity of the thresholding method.  Several dynamic 

thresholding methods have been developed to address this particular issue [82, 85].  

Therefore, Chapter 5 describes a new set of rice networks that were constructed using a 

knowledge-independent pre-clustering approach.  The objective was to remove 

experimental bias using a knowledge-independent approach by grouping input samples 

by similarity of expression rather than by the bias of annotated conditions.  Twenty-five 

groups of samples were clustered and a distinct co-expression network was constructed 

for each group.  This collection of networks represents the best approximation of a 

holistic gene co-expression network for rice.  Additionally, over 8000 QTLs from QTL 

mapping studies were integrated with the network as well as significant SNPs from a 

recent GWAS study. An online web portal was constructed to allow for mining of 

network modules across the rice networks for significant overlap to traits from genetic 

studies.   

 In summary, the approach presented by this dissertation was a deviation from the 

typical systems genetic approach.  The objective was to explore the requirements for 

creating a framework that could approximate the whole of biological co-expression 

interactions—not just those captured by a specific set of experimental conditions.  

Additionally, this work provides the start of a framework needed to test the hypothesis 
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that a holistic network can better predict genotype-phenotype relationships as well as the 

full context of those relationships, including unexpected side-effects if selecting for 

specific conditions.  The ability to predict such relationships will be of great importance 

for development of new varieties of rice and other cereals that can help feed and better 

nourish a growing worldwide population in the midst of unknown climate changes. 
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Abstract 

 

Discovering gene sets underlying expression of a given phenotype is of great importance 

as many phenotypes are the result of complex gene-gene interactions.  Gene co-

expression networks, built using a set of microarray samples as input, can help elucidate 

tightly co-expressed gene sets (modules) which are mixed with genes of known and 

unknown function.  Functional enrichment analysis of modules further subdivides the co-

expressed gene set into co-functional gene clusters that may co-exist in the module with 

other functionally related gene clusters.   In this study, 45 co-expressed gene modules and 

76 co-functional gene clusters were discovered for Oryza sativa (rice), using a global, 

knowledge-independent paradigm and the combination of two network construction 

methodologies.  Some clusters were enriched for previously characterized mutant 

phenotypes, providing evidence for specific gene sets (and their annotated molecular 

functions) that underlie specific phenotypes.   
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Introduction 

 

A current challenge in understanding biological systems, especially those related 

to multicellular eukaryotic organisms, is the understanding of complex gene product 

interactions and resulting phenotypes.  Integrated studies at a systems biology level are 

critical for unraveling complex genotype-phenotype relationships. These studies are 

increasingly feasible with high-throughput microarray assays, next-generation sequencing 

technologies, proteomics, and the wealth of accumulated functional and structural 

genomics data across species.   Oryza sativa (rice) is one of the world’s most important 

food crops, and serves as a model organism for the grass family. An improved 

understanding of complex interactions among rice genes is of great importance to 

improve nutritional value, grain yield, cultivation range, disease and stress tolerance of 

rice and other cereals.    

In silico derived networks such as protein-protein interaction, metabolism, 

transcription, and gene co-expression model real biological interactions and exhibit 

naturally occurring properties such as small-world, scale-free, modularity and 

hierarchical characteristics [63, 65].  Barabasi and Oltvai (2004) provide a review of 

biological networks, and a brief description of relevant network properties can be found 

in Supplemental Table S1.   One type of biological network, the gene co-expression 

network, is constructed from microarray gene expression profiles [75, 76, 80].    Nodes in 

the network represent microarray probe sets (or genes), and edges between nodes exist 

when gene expression profiles are significantly correlated (co-expressed) across all 
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samples.  In many cases the microarray samples encompass multiple tissue types, growth 

stages and experimental variables.  Networks constructed from mixed sample sets 

represent a “global”, or meta-analysis view of gene co-expression.   

Gene co-expression networks can be applied to a broad range of biological 

problems.  Examples include those constructed to identify functional gene modules in 

humans [111], identification of genes involved with cellulose synthase in Arabidopsis 

[75], identification of biomarkers for glycerol kinase deficient mice [112], identification 

of cis-regulatory elements in gene clusters for budding yeast [113], construction of a 

regulatory network of iron response in Shewanella oneidensis [114], and identification of 

conserved gene clusters across several species [76].  For plants, global co-expression 

networks have been constructed for Arabidopsis [75, 115-119], barley [120], rice [121, 

122], and tobacco [123].   

Several online resources exist for plant co-expression networks.  For Arabidopsis, 

online resources for co-expression networks include the Arabidopsis Co-expression Tool  

(ACT) which allows users to mine genes with similar co-expression patterns as well as 

functional terms [124], and the Arabidopsis thaliana trans-factor and cis-elements 

prediction database (ATTED II) which provides a visualization and online data mining 

tool for co-expression networks in Arabidopsis [125].  The RiceArrayNet (RAN) [121] 

and STARNET 2 [122] provide similar functionality for rice.  An online resource exists 

for poplar [126] and a similar site named the Coexpressed Biological Processes (CoP) 

database provides a searchable database of functional associations for co-expression 

network modules across multiple plant species including rice [127].   
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Gene co-expression networks do suffer from limitations.   First, they cannot 

provide a full understanding of complex gene-gene interactions because they infer only a 

single level of interaction: gene co-expression.  Also, co-expression can only be 

measured when genes are consistently co-expressed or when genes are sometimes co-

expressed but otherwise consistently silent [73].  Additionally, expression of all genes in 

every environmental or temporal condition cannot be measured and hence co-expression 

networks do not capture all possible relationships.  Moreover, genes that are not co-

expressed, but which may be essential are not captured.   Despite these limitations, co-

expression networks provide valuable glimpses into complex gene-product interactions. 

Once constructed, a gene co-expression network can be examined for sub-

networks of co-expressed and possibly co-functional genes.  A reduced-bias sub-network 

discovery method can be performed using knowledge-independent approaches that 

employ statistical methods to circumscribe non-random gene set interactions.  In contrast, 

gene-guided methods use a priori selected “bait” genes to define gene sets consisting of 

closely connected neighbors [73, 75].  A knowledge-independent approach provides 

inferences into the interaction set that might be obscured from gene-guided methods 

which filter genes based on prior assumptions of the biological system under scrutiny.  

Using a knowledge-independent method, co-expression networks can be subdivided into 

tightly connected gene modules.  Modules are defined as sets of highly correlated 

(connected) genes that form sub-networks and are often connected to the global network 

through a few connections.  
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 It has been shown that modules often consist of genes that participate in similar 

functions [76, 111].  As a result, genes of unknown function or genes not previously 

known to participate in molecular pathways can be identified through a “guilt-by-

association” inference with genes of known function [77].  Alternatively, function-

enriched gene clusters within modules can be identified by counting annotated terms, 

such as Gene Ontology (GO) [128], in a set of genes.   Functional enrichment of a given 

term occurs if the term is significantly more abundant in the module relative to its 

occurrence in the genome background and implies that the module is associated with the 

mixture of enriched function.  Furthermore, gene subsets within modules can be 

identified that non-randomly share functional terms (co-functional clusters).  Modules 

may consist of hundreds of nodes with numerous functional terms and multiple co-

functional clusters.  Publically available tools such as DAVID [92, 93], EASE [129], 

Fatigo [130] and Blast2GO [131] represent some of the tools that exist for functional 

enrichment analysis.   

Recent studies show that co-expression networks can be used to identify a set of 

candidate genes underlying specific phenotypes.  Mutwil et al. demonstrate a novel 

clustering method for co-expression networks, coupled with associated phenotypic terms, 

to predict gene sets in Arabidopsis for lethality [55].  Lee et al. show the predicative 

power of a network for Arabidopsis composed of a diverse set of data (including co-

expression data) to predict gene sets associated with lethality and pigmentation [56].  By 

prioritization of genes through guilt-by-association Lee et al. show a ten-fold 

improvement over screens of random insertion mutants.   Both studies demonstrate the 
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applicability this systems genetics approach for predicting biologically meaningfully 

relationships. 

Herein we describe the construction and functional partitioning of a rice gene co-

expression network to associate multiple co-expressed gene sets with common molecular 

function and experimentally verified phenotypes.  The underlying implication is that gene 

sets enriched for known gene lesions may be causal to a specific phenotype, and the 

molecular functions that are co-enriched for phenotype-associated genes may provide 

clues to the molecular mechanisms that lead to the phenotype.  Each cluster or module is 

a candidate gene set for studying complex traits where multiple genes may have an effect 

on phenotypic expression.   

 

 

Results 

The Rice Network 

Construction of the rice co-expression network began with a total of 508 

Affymetrix rice arrays downloaded from NCBI’s Gene Expression Omnibus (GEO) 

(Supplemental Table S2) which were filtered for outliers and RMA normalized (see 

Materials and Methods).  Pearson correlation between gene expression profiles was used 

as the underlying metric for co-expression.  This study used the strengths of the RMT 

[80], and WGCNA [86] methods to construct the gene co-expression network.  WGCNA 

was used for module detection and RMT for automatic threshold (signal-to-noise) 

identification.   Figure 2.1 provides a schematic of steps involved in network construction 
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including RMA normalization, outlier detection and removal, calculation of Pearson 

correlation values, module detection using WGCNA and determination of a threshold 

value using RMT.   

Co-expression network construction yielded 4,528 nodes (mapped to 4,502 rice 

loci) connected by 43,144 edges within 45 modules, some of which were later removed 

after thresholding.  Supplemental Table S3 provides a listing of all edges in the co-

expression network.  The network follows the properties of natural biological networks, 

namely it is small-world, scale-free, modular and hierarchical.  The network demonstrates 

small-world characteristics with an average distance between any two nodes (path length) 

of 11.  Scale-free behavior is indicated by a negative linear correlation between the 

number of edges, log(k), and the probability of finding a node with k edges, P(k)  

(Supplemental Figure S1A).  A negative correlation between the number of edges, k, and 

the clustering coefficient for nodes with k edges, C(k), indicates hierarchical and modular 

behavior (Supplemental Figure S1B)  The average clustering coefficient, <C>, was 

0.318. A graphical representation of the network, generated using Cytoscape [132],  can 

be seen in Figure 2.2. Nodes in the network are color-coded according to the modules.   
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Figure 2.1 Network Construction Flow Chart.  

The data pipeline for construction of the rice co-expression network involves RMA 
normalization (Bolstad, 2010), outlier detection and removal (Kauffmann et al., 2009), 
construction of adjacency matrix and modules using WGCNA (Langfelder and Horvath, 
2008), hard-threshold determination using RMT (Luo et al., 2007), and final culling of 
nodes below the threshold. 

 
 

In order to explore the relationship between modules, the WGCNA package was 

used to calculate eigenvectors, or first principle components, for each module.  The 

eigenvector, or eigengene, acts as a representative expression profile for the module and 

allows for a meta-analytic view of the entire module set.  All eigengenes were  clustered 

using WGCNA.  Figure 2.3 provides a view of the modules in the form of a dendrogram 

that indicates “closeness” of expression similarity of the 45 modules.   Each module is 

numbered from zero to 44 and prefixed with ‘ME’, meaning ‘module eigengene’.  

Adjacent modules are more highly similar in terms of expression.  It should be noted that 
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these eigenvectors were computed from WGCNA modules prior to edge removal that 

were below the RMT-derived hard-threshold. 
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Figure 2.2 Rice Co-expression Network.  

The rice network consists of 4,528 nodes, 43,144 edges, and 45 modules. The nodes are 
color coded by modules. 
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Figure 2.3 Module Eigenvector Clustering.  

The rice network consists of 45 modules. The eigenvectors for each module were 
calculated and clustered using the WGCNA software. The eigenvectors for each module 
are prefixed with ME in the dendrogram and are calculated prior to thresholding of the 
network. Adjacent modules are more highly similar in terms of expression. 

 

Mapping of Microarray Probe sets to Rice Loci  

Prior to functional enrichment, the mapping of network nodes (microarray probe 

sets) to annotated rice gene models was necessary to ensure that annotation terms were 

not over-counted.  The Michigan State University (MSU) Rice Genome Annotation 

version 6.0 contains 56,797 protein coding sequence loci.  Of the 57,381 probe sets on 

the rice microarray, 50,468 mapped to 46,498 loci.  Of those mappings, 34,028 probe sets 

mapped directly with all 11 probes from a single probe set to a gene locus. Of those 
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mappings, 26,382 are unique one-to-one mappings between a probe set and locus.  

Redundant mappings are those where multiple probe sets map to a single loci.  

Ambiguous mappings are those where a probe set maps to multiple loci.  The distribution 

of probes, probe sets and loci within the mappings can be observed in the charts of 

Supplemental Figure S2. There are 17,762 redundant mappings and 4,769 ambiguous 

mappings. Ambiguity was removed from the mappings, and the remaining redundancy 

was addressed with a weighted counting method (see Materials and Methods). 

   

Functional Enrichment and Clustering 

A functional enrichment analysis was performed to examine enrichment of 

annotated terms.  After counting GO [128], KEGG [99],  InterPro [133], and Tos17 

mutant phenotype  [105, 134] terms for each module and for the genome background, 

Fisher’s test comparisons were performed for each module to identify functionally 

enriched terms.  Co-functional gene clusters with overlapping function were then 

identified.  Clusters are sub-networks within modules. Nodes in modules are co-

expressed and nodes within clusters are both co-expressed and co-functional.  Some 

modules had multiple clusters while others had none. Functional enrichment yielded 

2,412 unique enriched terms in all network modules with 939 of these aggregating into 

clusters.  Of the total enriched terms, 21 were unique mutant phenotype terms that 

associated with 25 clusters.  Four mutant phenotype terms were enriched only at the 

module level (see Supplemental Tables S4, S5, S6, S7).     
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The average connectivity, <k>, was used for ranking clusters and is the average 

number of connections per node in the cluster sub-network.  Additionally, an enrichment 

score, en-score, was determined which is the inverse log of the geometric mean of the 

Fisher’s p-values in each cluster.  For easy reference, clusters hereafter are named as 

follows: MxCy, where x is the module number (e.g. 1 for Module1) and y is the cluster 

number (e.g. 2 for Cluster 2).  Modules are named as Mx.  Module numbers originate 

from WGCNA and cluster numbers are ordered sequentially in descending order of <k>.  

 

Online Co-expression Network Browser 

An online resource has been created to facilitate co-expression network browsing.  

The website is available at http://www.clemson.edu/genenetwork.  This website allows 

users to browse the list of probe sets, loci and enriched terms of modules and clusters.  

Additionally, visualizations are provided for each cluster including free-standing 

interactive network graphs and cluster networks super-imposed onto the rice genome.   

Users can search for functional terms, loci, probe sets or other keyword to find modules 

and clusters that may relate to genes, pathways, functions or phenotypes of interest.  The 

site shows genome alignments for each locus including Interpro domains and alignments 

with Affymetrix probes.   Annotation terms (e.g. GO, Interpro, KEGG terms) link out to 

external sites.  Figure 2.4 shows various screenshots of cluster M6C2 from the website. 



 40 

 

Figure 2.4 Screen Shots of the Online rice co-expression Network Browser  

A, The list of loci and probe sets and their mappings. B, The sub network graph with 
navigation toolbox. C, The sub network graph superimposed on the genome. D, Loci 
(feature) details including genome alignments from the MSU Rice Genome Browser. The 
site is located at http://www.clemson.edu/genenetwork. 
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Functional Significance of Select Modules and Clusters 

The largest of the 45 modules is M6 (large module in the top left of Figure 2.2), 

which consists of 26 clusters.  A majority of M6 clusters contain enriched function 

associated with translation and photosynthesis including carbon fixation and related 

processes.    Many of these clusters are also enriched for terms referencing the plastid, 

suggesting that M6 consists of genes involved in processes that occur in the chloroplast.   

For example, cluster M6C1 is ranked highest in average connectivity for the whole 

network.  M6C1 consists of 75 enriched terms, 43 loci, 52 nodes, <k> = 17.54, en-score 

= 2.61, and 456 edges.  The highest ranked (lowest p value) term in this cluster is the GO 

term for translation (GO:0006412; p = 7.80e-27).  Other terms in this cluster include: 

ribosome, plastid, translation elongation and rRNA binding.   Several M6 clusters are 

enriched with the mutant phenotypic terms  ‘low tillering’, ‘extremely dwarf’, ‘lethal’, 

‘sterile’ and ‘yellow’.    A complete accounting of M6 edges, loci, probe sets, clusters and 

enriched terms can be found on the co-expression network browser and in Supplemental 

Tables S3, S4, S5, S6, and S7 respectively.  Additionally, this same information is 

available online with the co-expression network browser.  A total of 127 loci are co-

expressed in M6 but have no known ascribed function (Supplemental Table S8). 

Another interesting cluster is M13C1.  M13C1 has the second highest ranked en-

score and the second highest <k> indicating that it is highly co-expressed and co-

functional.  M13C1 consists of 12 enriched terms, 16 loci, 21 nodes, <k> = 12.86, en-

score = 10.64 and 135 edges.  The highest ranked enriched term is the “Cereal seed 

allergen/grain softness/trypsin and alpha-amylase inhibitor” protein domain (IPR006106, 
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p = 6.28e-23; Table 2.1).  Other terms related to lipid transfer and seed storage are also 

enriched in M13C1.   Appropriately, Genevestigator analysis [135], shows high levels of 

expression in the milk and dough stages as well as in inflorescence, seed and embryo 

developmental stages (Figure 2.5).  Additional heat maps for the top ten connected 

clusters (excluding M13C1) are available in Supplemental Figure S3. It should be noted 

that at the time of this study, Genevestigator incorporated approximately 151 samples of 

the Affymetrix Rice platform from GEO while 508 samples from GEO were used for our 

network construction. Genevestigator has not incorporated newly available rice arrays. It 

should be noted that there is a difference in the number of samples for each tissue type 

between the Genevestigator arrays and the network arrays.  However, there are several 

biological replicates across the various samples for each tissue type and developmental 

stage in the Genevestigator data set. The only exception is stamen, anther and embryo 

which have one sample each. Therefore, we expect that Genevestigator results can 

provide support as to the correctness of the functional clusters in the majority of tissues 

and stages. 
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Figure 2.5 Cluster M13C1 with Genevestigator Analysis.  

A, The subnetwork for cluster M13C1 (<k> = 12.86, en-score = 10.64, 135 edges, 21 
nodes, and 16 loci). B, Heat map showing expression levels by anatomical locations. C, 
The Genevestigator analysis heat map showing expression levels in microarray sets 
categorized by development stage. 
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One cluster enriched for phenotypic terms is M2C2 (11 loci, <k> = 4.33, en-score 

= 4.93, 12 nodes and 26 edges).  This cluster is enriched with three mutant phenotype 

terms:  ’Sterile’, ‘Dwarf’, and ‘High tillering’.  The cluster is also enriched with the 

‘Cyclin A/B/D/E’ (IPR014400; p = 1.25e-10) and ‘G2/mitotic-specific cyclin A’ 

(IPR015453; p = 9.96e-4) protein domains and other terms related to cyclin in the mitotic 

cell cycle.    Three loci in this cluster have mutant phenotype associations, including one, 

LOC_Os02g10490, annotated as ‘cyclin, putative, expressed’ and two expressed proteins 

with no known function, LOC_Os02g35230. All three share the mutant terms ‘dwarf’, 

‘low fertile’ and ‘sterile’, and are interconnected.  

 

Table 2.1 Enriched terms from cluster M13C1 

 (<k> = 12.86, en-score = 10.64, 135 edges, 21 nodes and 16 loci) 
Term Accessiona Description 

IPR006106 
Cereal seed allergen/grain softness/trypsin and alpha-amylase 
inhibitor 

IPR006105 
Cereal seed allergen/trypsin and alpha-amylase inhibitor, 
conserved site 

GO:0004867 Serine-type endopeptidase inhibitor activity 
GO:0016068 Type I hypersensitivity 
IPR002411 Cereal allergen/alpha-amylase inhibitor, rice-type 
IPR016309 Alpha-amylase inhibitor/seed allergen 
GO:0005615 Extracellular space 
IPR001954 Gliadin/LMW glutenin 
IPR013771 Bifunctional trypsin/alpha-amylase inhibitor 

IPR003612 
Plant lipid transfer protein/seed storage/trypsin-alpha amylase 
inhibitor 

IPR016140 Bifunctional inhibitor/plant lipid transfer protein/seed storage 
GO:0045735 Nutrient reservoir activity 
aGO and IPR accession numbers are from Gene Ontology and Interpro respectively.   
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Another cluster, M8C1, is enriched for processes related to defense response.  

This cluster is enriched with multiple mutant terms:  ‘extremely dwarf’, ‘late heading’, 

‘lazy’, ‘short panicle’, and ‘wide leaf’.  The gene products in this cluster include powdery 

mildew resistance proteins, NBS-LRR proteins, stripe rust resistance proteins, and one 

protein with unknown function. The protein of unknown function, LOC_Os02g06790, is 

also enriched for ‘lazy’ and ‘late heading’.  Many of the other M8C1 loci are associated 

with multiple mutant terms that are not enriched. 

A list of all clusters enriched for mutant phenotype terms can be found in Table 

2.2.  Phenotype terms enriched at the module level can be found in Table 2.3.  A detailed 

list of clusters, associated probe sets, gene accessions, clusters and all enriched terms for 

each module can be found in the Supplemental Data or through the co-expression 

network browser.  
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Table 2.2 Complete list of TOS phenotype terms enriched in clusters. 

Clustera <k> en-score Summarized Functionb Phenotype Terms 

M2C1 8.22 4.14 Cell cycle/kinesin/cyclin Dwarf, High tillering, Sterile 
M2C2 4.33 4.93 Cell cycle/cyclin Dwarf, High tillering, Sterile 
M2C3 3.69 3.56 DNA replication Dwarf 
M2C4 3.36 3.37 Cell cycle/kinesin  Dwarf, Sterile 
M2C7 1.00 4.36 DNA replication Dwarf 
M2C8 0.91 2.71 Cell cycle Dwarf, Sterile 
M2C11 0.75 1.49 Cell cycle Dwarf 
M2C16 0.40 7.36 DNA replication/polymerase Dwarf 
M6C2 12.30 3.12 Photosynthesis/light harvesting Dwarf, Extremely dwarf, Lethal, Low tillering, Sterile, Yellow 
M6C3 9.23 2.54 Electron carrier activity Dwarf, Extremely dwarf, Lethal, Low tillering, Sterile, Yellow 
M6C5 3.60 2.05 Photosynthesis Dwarf, Extremely dwarf, Lethal, Low tillering, Sterile, Yellow 
M6C10 1.60 5.04 Oxidoreductase activity Dwarf 
M6C11 1.56 4.66 Translation Low tillering 
     

M6C14 1.25 2.22 Glycoside hydrolase Extremely dwarf 
M6C15 1.20 2.47 Carbon fixation Dwarf 
M6C16 1.14 3.94 Translation or Photosynthesis Dwarf 
M6C18 0.80 1.82 Translation or Photosynthesis Yellow 
M6C19 0.73 2.64 Regulation of transcription Lethal 
M6C20 0.50 3.36 Translation or Photosynthesis Dwarf, Extremely dwarf, Lethal, Low tillering, Sterile, Yellow 
M6C22 0.50 3.28 Oxidoreductase activity Dwarf, Extremely dwarf 
M7C1 1.23 2.45 Transporter activity Pale green leaf 
M8C1 0.77 2.50 Defense response Extremely dwarf, Late heading, Lazy, Short panicle, Wide leaf 
M8C2 0.25 1.79 Kinase activity Stripe 
M18C1 1.60 1.63 Lipid binding Vivipary 

a Modules are numbered sequentially starting from zero and are prefixed with the letter M.  Clusters within a module are numbered 
sequentially and are prefixed with the letter C.  Thus cluster 1 from module 8 is named M8C1. 
b When function cannot be summarized for the cluster, the modular summarized function is listed. 
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Table 2.3 List of enriched mutant phenotypes 

Modulea TOS Term p-value 

M1 Large grain 6.41E-02 
M1 Weak 8.68E-02 
M2 Dwarf 9.76E-03 
M2 High tillering 5.19E-02 
M2 Sterile 4.81E-04 
M6 Dwarf 5.67E-02 
M6 Extremely dwarf 1.07E-03 
M6 Lethal 5.84E-03 
M6 Low tillering 2.58E-04 
M6 Sterile 9.44E-03 
M6 Yellow 2.09E-02 
M7 Pale green leaf 1.79E-02 
M8 Extremely dwarf 3.26E-06 
M8 Late heading 1.14E-02 
M8 Lazy 3.26E-04 
M8 Short panicle 1.01E-03 
M8 Stripe 6.98E-02 
M8 Wide leaf 9.78E-02 
M12 Withering 4.86E-02 
M13 Rolled leaf 8.54E-02 
M14 Zebra 3.30E-02 
M18 Vivipary 1.78E-03 
M25 Abnormal shoot 3.78E-02 
M32 Germination rate 4.38E-02 
M35 Late heading 6.08E-02 
M43 Vivipary 3.40E-02 
aModules are numbered sequentially from 0 to 57 
and are prefixed with the letter M.  Thus module 8 
is named M8. 
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Discussion 

 

The major objective for this study was to use a global, meta-analysis, knowledge-

independent approach to construct a rice gene co-expression network that predicts 

clusters of candidate genes involved in complex genotype-phenotype interactions.  We 

hypothesized that tightly co-expressed gene modules, enriched in shared functional 

annotation, would provide the most fruitful predictions of candidate gene sets that might 

underlie a given biological process.    Using mutant phenotype terms in functional 

enrichment provides a hypothetical association between phenotype and the gene sets of 

modules and clusters.  Co-enrichment of phenotypes with molecular function terms in a 

tightly co-expressed gene module suggests a direct association between the functional 

units carried on genes (e.g. protein domains, GO terms, etc.) and phenotype.  When 

mutant phenotype terms are enriched in a highly connected gene cluster, the phenotypic 

association can also be extended to the neighboring co-expressed genes within the 

confines of a given module.  Thus, the circumscribed gene sets become candidate factors 

underlying the expression of complex traits, and their annotated functions provide insight 

into molecular pathways associated with expression of empirically defined phenotypes.   

For instance, module M6 contains 127 loci that have no known function.  It can be 

implied that these loci may be involved in some aspect of photosynthesis or translation 

given the M6 enrichment for photosynthesis/translation related annotations.  In the case 

of the 26 M6 clusters enriched with phenotype terms, it can be predicted through guilt-
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by-association that other genes in the cluster may also contribute to the enriched 

phenotypes.   

Many clusters in our network can be examined for possible genotype-phenotype 

interactions.  For example, the previously mentioned cluster M2C2 is enriched for cyclin 

and mitosis as well as mutant phenotypes ‘dwarf’, ‘high tillering’ and ‘sterile’.  Two of 

the genes in this module were shown to have no known function (see Results section).  It 

can therefore be inferred that these two genes are involved in processes related to cyclin 

and mitotic cell division.  Additionally, these two genes also share the ‘dwarf’ and 

‘sterile’ mutant terms implicating their role as factors of those phenotypes.  These genes 

are well connected with other nodes in the cluster; therefore, through guilt-by-association 

we can infer that other genes in the M2C2 cluster are also factors for the enriched 

phenotypes.  Also mentioned previously was cluster M8C1 enriched for defense response 

terms.  This cluster is not as highly connected as M2C2, however inferences can be made 

that the gene of unknown function in this module participates in defense response, 

perhaps in an indirect manner, and that all of the genes in the cluster are factors for 

expression of several phenotypes.  Despite lower average connectivity, the nodes all 

exhibit similar patterns of co-expression.  It can be inferred that this unknown gene plays 

some role related to defense response. 

Two different construction methods were integrated to build the co-expression 

network, namely the WGCNA and RMT methods. These two methods were selected 

primarily as a means of preserving a knowledge-independent paradigm.  A strength of the 

WGCNA method lies in its ability to detect modules.  Module detection in WGCNA 
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follows a knowledge-independent process.  However, selection of a threshold for culling 

the network to limit noise would otherwise rely on functional annotation and empirical 

judgment [86].  A strength of the RMT method lies in its ability to automatically localize 

the noise-to-signal threshold without using annotations or empirical judgment.  

Therefore, we were able to generate a single network by passing the same adjacency 

matrix (power transformed pair-wise Pearson correlation values) generated by the 

WGCNA method into the RMT method for threshold detection (see Figure 2.1).  This 

ensured knowledge-independence for meaningful thresholding of the network modules. 

Our rice network does not encompass all the gene–gene interactions one would 

expect from all genes in the genome. The number of nodes in the network is 4,528 

whereas the entire genome consists of 56,797 coding sequence loci.  The network is 

therefore not representative of all co-expression relationships for all genes in the network.  

Co-expression can only be measured when genes are consistently co-expressed or when 

genes are sometimes co-expressed but otherwise consistently silent [73].  A bias exists in 

global co-expression networks for relationships that persist across all conditions and 

tissue types used by the underling microarray samples (e.g. housekeeping processes) or 

for relationships only expressed in a few tissue types, environmental conditions and 

developmental stages.  The rice network presented here is most noticeably enriched for 

genes controlling housekeeping processes.  Additionally, co-expression relationships that 

exist primarily in a few tissue types, developmental stages and conditions are not easily 

identified.  The nodes in our network however do have co-expression relationships that 

are statistically significant across all samples, so each edge in our network is potentially 
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biologically valid.  While rice gene space sampling is not complete, the underlying goal 

was to find highly-connected gene clusters enriched with phenotypic terms.  We believe 

that our approach was successful and inferences of polygenic phenotypic causality for 

gene sets can be made.   

One observation was that some clusters showed significant enrichment in function 

yet demonstrated very low connectivity within the cluster (e.g. cluster M2C19, <k> = 0).  

The nodes of these clusters were mostly co-expressed through non-clustered 

intermediaries.  Because highly connected genes are more likely to participate in similar 

function, we ranked clusters by average connectivity, <k>. We believe this ranking 

improves the prediction inferred through guilt-by-association with enriched annotation 

terms.  Therefore, clusters that ranked highest are more likely to yield guilt-by-

association inferences for genes of unknown function and as factors for expression of 

mutant phenotypes.   It should not be implied that an absolute <k> cut-off exists as a 

significance threshold for clusters.  Poorly connected clusters may in fact be quite 

significant and should not be dismissed.   

 

Conclusion 

 

This study describes a set of modules and clusters that can assist with 

understanding of gene-gene, gene-function, and genotype-phenotype interactions for rice.  

While the number of enriched phenotype terms is low, the application demonstrates a 

positive approach for identifying gene sets associated with specific phenotypes.  The 

network provides a set of interesting modules and clusters worthy of further 
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investigation.  In the process of investigating the use of co-expression networks we 

suggest that the RMT and WGCNA network constructions methods can be combined to 

extend the knowledge-independent approach to the final stages of module discovery.   

We also propose a cluster ranking method using average connectivity that rewards highly 

connected clusters with the expectations that highly ranked clusters are most meaningful 

in the data set.  These data can help in the discovery of candidate genes for studies of 

complex traits in rice as well as a reference for other grass species. 

 

Materials & Methods 

Raw Expression Data 

The dataset used for construction of the co-expression network was obtained from 

NCBI’s Gene Expression Omnibus (GEO), platform accession number GPL2025.   The 

platform consists of experimental samples from assays using the Affymetrix GeneChip 

Rice Genome Array 

(http://www.affymetrix.com/support/technical/byproduct.affx?product=rice).  The array 

consists of 57,381 probe sets derived mostly from TIGR’s version 2.0 release of the rice 

genome and consists of transcripts for both the japonica and indica cultivars.  550 CEL 

files were obtained from GEO, and 13 CEL files were removed due to an incorrect 

Arabidopsis array type. RMA normalization [136] of all microarray samples was 

performed using the RMAExpress software  [137].   .  Outliers were detected using the 

arrayQualityMetrics [138] Bioconductor [139] package, which uses three different 

statistical tests to identify outliers.  Twenty-nine samples failed at least one test and were 
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considered outliers and removed from the dataset.    A total of 508 samples remained for 

network construction. Control probes from the platform were removed from the samples 

prior to network construction.   

Expression Profile Correlation 

The expression profile of a gene consists of the set of expression levels across all 

microarray samples in the study.  Initially, construction of the co-expression network 

requires pair-wise correlation of all gene expression profiles to obtain an n x n similarity 

matrix, S:  

][ ijsS =  

),( jiij xxcors = , where xi and xj are the pair of expression profiles for genes i and 

j, and cor(x,y) represents the Pearson correlation function. 

 

Scale-free Behavior and Module Detection  

The WGCNA package [86, 140] provides a robust set of R functions for 

constructing weighted co-expression networks.  The similarity matrix is transformed into 

an adjacency matrix using a method that employs a power function.  This is termed “soft-

thresholding.”  The result is an adjacency matrix where correlation strength is enhanced 

for highly correlated genes and correlation information is preserved for module 

discovery. The values of the adjacency matrix are represented by the following formula: 

β
ijij sa =  

 



 54 

The power (β) used to transform the similarity matrix is selected when the 

resulting network best approximates a scale-free topology.  The WGCNA method 

provides functionality to assist with selection of the power function.  For this study a soft-

threshold power of 4 was used.   

Probe sets with ambiguous mappings to multiple rice loci were removed from the 

dataset if there were less than 6 probes in the mapping, and remaining probe sets were 

kept if what remained was a unique or redundant mapping.  Of the 4,769 probe sets with 

ambiguous mappings, 3,223 probe sets were removed.  Affymetrix control probes were 

next removed from the dataset.  

The n x n similarity matrix for the remaining 52,501 probe sets was too large for 

R which has a 32-bit integer limit on the index size of a matrix.  Therefore the algorithm 

was instructed to break the dataset into 3 blocks with a minimum of 30 probe sets and a 

maximum of 30,000.  The WGCNA package calculates modules of similarly co-

expressed genes using a Topological Similarity Matrix (TOM) and a hierarchical 

clustering method.  A value of 0.2 was specified for cutting the resulting dendrogram into 

distinct modules. 

 

Threshold Selection and Network Analysis 

A weighted soft-threshold network maintains edges from all nodes to all nodes 

with the edge weight indicating the strength of the co-expression.  This becomes valuable 

for module detection.  However, selection of a hard-threshold after module detection is 

required to remove noise.  A Random Matrix Theory (RMT) method [80], was used to 
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recognize the boundary between noise and non-noise, and for selection of a hard-

threshold of the network.  The hard-threshold is determined by the transition of nearest 

neighbor spacing distribution (NNSD) of the similarity matrix from the Gaussian 

orthogonal ensemble statistics to the Poisson distribution.  The chi-square test 

(confidence level of 0.001) was used to define the similarity threshold at which NNSD 

completely follows the Poisson distribution.    For the rice co-expression network, a hard-

threshold r of the power transformed Pearson correlation matrix at r = |0.7101| was 

observed.  The soft-thresholded, power transformed adjacency matrix is then “hard-

thresholded” by setting all values less than the threshold to zero.   Nodes with an 

adjacency value of zero are removed from the modules.  Modules with no remaining 

nodes are discarded.  Characterization of the network in terms of scale-free, small-world, 

modularity and hierarchical behavior was performed using the NetworkAnalyzer package 

for Cytoscape [141] 

Functional Enrichment  

The annotation of rice probe sets provided by Affymetrix was derived from TIGR 

v2.0 gene models.  However, more up-to-date annotations were desired.  Therefore, 

annotations were updated using mapping information provided by release version 6.0 of 

the MSU Rice Genome Annotation Project which maps probe sets to 6.0 gene models [6].  

The locus IDs from release 6.0 were then used to provide four classes of function terms, 

including:  Gene Ontology (GO) [128], KEGG [99],  InterPro [133], and Tos17 mutant 

phenotypes  [105, 134].  In some cases, such as with the GO and InterPro these 

annotations were provided by the MSU project.   For annotation of KEGG pathways, 
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orthologs and protein families to the locus IDs, the release 6.0 coding sequences were 

uploaded to the online KEGG Automatic Annotation Server (KAAS) tool [142].  KAAS 

results were parsed and terms annotated to locus IDs.   TOS mutant phenotypic data was 

associated to locus IDs through BLASTN alignments of Tos17 flanking sequence 

obtained from NCBI. 

Each probe on the microarray was mapped to MSU rice locus IDs by the MSU 

project and the mappings are made available for download in GFF format 

(http://www.sanger.ac.uk/Software/formats/GFF/).  For functional enrichment, terms 

from all four classes were counted for the background (entire genome) and for each 

module in the weighted network.  Counting of terms is complicated because multiple 

probe sets can map to multiple loci and vice versa.  Additionally, all 11 probes in a probe 

set may not map to a single locus.   The nature and quantity of these many-to-many 

mappings are shown in the Supplementary Figure S2.  

To account for ambiguity and redundancy when counting, a weighted method was 

performed. Probe sets that mapped to a locus with fewer than 3 probes were not 

considered for counting.  Probe sets that mapped with more than 11 probes were also not 

considered for counting. The remaining probe sets contributed a count for each term 

equal to the following equation: 

( ) ( ) ( ) ( )piip qmnpitc /1/111/,, ××= ,    

0 if t does not map to i,    

0 if p does not map to i 
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In the equation above, c(t,i,p) is the count contributed by a probe set p for a given 

term t mapped to locus ID i;  nip is the number of probes that map to i from probe set p, 

mi is the total number of probe sets that map to i, and qp is the total number of loci that 

map to p.  Perfect one-to-one mappings contribute a count of 1 while all others contribute 

a value between 0 and 1.  The effect of redundancy is accounted for in that the count 

from multiple probe sets mapping to the same locus never exceeds 1.  Ambiguity is 

reduced by this equation but provides no effect for our purposes as we had removed 

ambiguity prior to counting.  

Once counting was complete, pair-wise Fisher’s exact tests were performed using 

R between the count of terms from each module in the network and the background.  

Terms with probability values less than 0.1, with a 95% confidence level were considered 

enriched. 

Functional Clustering 

Functional clustering was performed using a set of in-house scripts that follow the 

protocol used by DAVID [92, 93].    Kappa statistics are used to provide a measure of 

agreement between two (or more) classes of qualitative data.  The Kappa K value 

provides a measure of agreement in the range 0 to 1 where 0 indicates no agreement and 

1 indicates almost perfect agreement.   For this study, a pair-wise kappa score was 

calculated for each gene using the following contingency matrix: 
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Where C11 is the number of terms shared by both loci A and B, C01 is the number 

of terms present in locus A but not locus B, C10 is the number of terms present in locus B 

but not A and C00 is the number of terms that neither loci share.  Tab, which is the sum of 

either the Total row or column, equals the total number of terms in the module.  The 

Kappa score is calculated using the following equations: 
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In the equation above, oa is the observed agreement, ca is the chance agreement 

and K is the kappa score.    
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Clustering of terms consisted of two steps.  First seed groups for each module 

were formed.   A seed group was formed for each gene by grouping it with all other 

genes with which it shares a Kappa score greater than 0.5.  Seed groups with less than 

three genes were not considered.  Since probe sets may map to more than one gene the 

mapping counts described previously were summed and must equal three.  Also, seed 

groups were only considered if 50% or more of the Kappa scores between all group 

members were greater than 0.5.   Second, seed groups of a module were merged through 

an iterative process that exhaustively compared each group with every other group and 

merged any two that have 50% similarity.  This continued until merging was no longer 

possible.   

Clusters were ranked using two values, the enrichment score (en-score) and 

average connectivity.  The en-score is the negative inverse log of the geometric mean for 

the Fisher’s p-values from all terms in the cluster: 
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where s is the en-score, ai is the Fisher’s p-value, and n is the number of terms in 

the cluster. 

The average connectivity, <k>, of the cluster is 2L/N, where L is the number of 

edges and N is the number of nodes in the cluster.   The average connectivity, <k> was 

used as the primary characteristic for ranking clusters. 
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Abstract 

 

One major objective for plant biology is the discovery of molecular sub-systems 

underlying complex traits.  The use of genetic and genomic resources combined in a 

systems-genetic approach offers a means for approaching this goal.  This study describes 

a maize gene co-expression network built from publicly available expression arrays.  The 

maize network consisted of 2,071 loci which were divided into 34 distinct modules that 

contained 1,928 enriched functional annotation terms and 35 co-functional gene clusters.  

Of note, 391 maize genes of unknown function were found to be co-expressed within 

modules along with genes of known function.  A global network alignment was made 

between this maize network and a previously described rice co-expression network.  The 

IsoRankN tool was used which incorporates both gene homology and network topology 

for the alignment.   1,173 aligned loci were detected between the two grass networks 

which condensed into 154 conserved subgraphs that preserved 4,758 co-expression edges 

in rice and 6,105 co-expression edges in maize.  This study provides an early view into 

maize co-expression space and provides an initial network-based framework for the 

translation of functional genomic and genetic information between these two vital 

agricultural species.   
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Introduction 

 

The combination of genomics, genetics, and systems-level computational methods 

provides a powerful approach towards insight into complex biological systems.  Of 

particular significance is the discovery of genetic interactions that lead to desirable 

agricultural and economic traits in the Poaceae family (grasses).   The Poaceae includes 

valuable crops such as rice (Oryza sativa), maize (Zea mays), wheat (Triticum spp.) and 

sugarcane (Saccharum officinarum) which are globally some of the most agriculturally 

and economically important crops [143].   Understanding complex interactions 

underlying agronomic traits within these species is therefore of great significance, in 

particular to help with crop improvements to meet the challenges of plant and human 

health, but also for basic understanding of complex biological systems.     

In addition to their pivotal role in agriculture, grasses offer a powerful model 

system in that their genomes are closely conserved and functional genomic knowledge 

gained in one species can be hypothesized to occur in another syntenic region 

(translational functional genomics [144]).  In cases of grass species with poorly resolved, 

polyploid genomes such as sugarcane where genomic resources are not as far progressed 

as other grasses (e.g. rice, sorghum, maize, etc.), translational functional genomics 

methods may be the most cost-effective strategy for crop improvement as well as 

unraveling the functional consequences of polyploidy.   Additionally, crops rich in 

genetically mapped loci deposited in sites like Gramene [7] provide a rich source of 

systems genetic hypotheses that could in principle accelerate the translation of interacting 
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gene sets associated with complex traits into grasses with poor genetic resources [103, 

145]. 

 One method of identifying interacting gene sets is through the construction of a 

gene co-expression network, which is constructed through the discovery of non-random 

gene-gene expression dependencies measured across multiple transcriptome 

perturbations, often derived from a collection of microarray data sets.  During co-

expression network construction, the tendency of m transcripts to exhibit similar (or not) 

expression patterns across a set of n microarrays is determined.  In the case where 

dependency is determined via a correlation metric (e.g. Pearson’s r), a comprehensive m 

x m matrix of correlation values is generated, which represents expression similarity.  

The “similarity matrix” is then thresholded to form an “adjacency matrix” which 

represents an undirected graph where edges (co-expression) exist between two nodes 

(transcripts) when a correlation value in the matrix is above the significance threshold.   

Computational methods are then applied to circumscribe groups of network nodes that 

are highly connected (co-expressed gene modules) [86, 89, 90, 146, 147].   It has been 

shown that genes in these modules participate in similar biological processes, and 

therefore guilt-by-association inferences can be applied to module genes with no known 

function that are connected to module genes of known function [73, 77].   

 Global co-expression networks are those that incorporate expression data from a 

variety of tissues, developmental stages and environmental conditions into a single 

network—the goal being to capture stable co-expression relationships across a diverse 

collection of experimental perturbations.  Global gene co-expression networks maintain 
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similar properties as other naturally occurring networks, such as human social networks 

and protein-protein interaction networks.  These networks tend to be scale-free, small-

world, modular and hierarchical [63, 65].  Detailed descriptions of these properties can be 

found in the report by Barabasi and Oltvai (Barabasi and Oltvai, 2004). 

 Plant co-expression networks have previously been constructed for Arabidopsis 

[55, 56, 75, 115, 117-119, 148], barley [120], rice [121, 149], poplar [126], and tobacco 

[123].  Several online plant resources also exist for searching co-expression relationships 

within and sometimes between these species, as well as incorporating functional and 

other data types.  These include the Arabidopsis Co-expression Toolkit (ACT) [124], 

STARNET 2 [122], RiceArrayNet (PlantArraynet) [121], ATTED-II [125], Co-expressed 

biological Processes (CoP) database [127], AtCOECis [150], The Gene Co-expression 

Network Browser[149], AraNet [56] and a second AraNet [55].  Clearly, there is a 

burgeoning interest in using a network approach to discover gene-gene dependencies 

across the field of plant biology. 

 Given the recent and rapid increase of available biological networks, an important 

method is the identification of common patterns of connectivity between two networks.    

Inter-network comparisons are used for several purposes, including improved 

identification of functional orthologs between species [151], and identification of 

evolutionarily conserved subgraphs, or sets of highly-connected genes which demonstrate 

conserved function [76].   Several different network comparison methods exist which 

perform either local or global comparisons.  Local network alignments (LNA) attempt to 

align small subsets of nodes between multiple networks, whereas global network 
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alignments (GNA) attempt to find the best alignment of all nodes in one network with 

another [152].   Various heuristics exist for global alignment of two or more networks 

and typically these methods first use homology to prioritize alignment of nodes and then 

incorporate a measure of topology to refine alignments [153-158].  Some methods strictly 

use topology to guide alignments [159] given that network motifs are often conserved in 

functionally related systems [160, 161].  The majority of network alignment methods 

have been used to align protein-protein interaction networks, whereas one method has 

recently been published for alignment of gene co-expression networks [162]. 

This study adds to the growing compendium of systems-level knowledge for 

plants by first describing a maize gene co-expression network, and then through a global 

network alignment with a rice co-expression network [149], we identified common 

subgraphs of co-expressed gene sets between the two grass species.  For network 

alignment, we applied a tool, IsoRankN [154], which incorporates both gene homology 

and network topology in its alignment algorithm.   The use of homology contributes 

conservation of sequence, and topology contributes conservation of co-expression—both 

of which are associated with functional relatedness.  We describe the discovery of 

multiple sets of modules between rice and maize that are both enriched for similar 

functional terms and that are potentially evolutionarily conserved between the two 

grasses.  This functional similarity between modules in maize and rice seem to agree with 

idea that function may be translated through the aligned nodes of two networks.  This 

may serve as a method for identifying functional modules in other grass species.  

Phenotypic associations available in the rice network may also provide an initial glimpse 
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at the possibilities of translational systems genetics from rice to maize and other cereals.  

In practice, this method may assist with prioritization of genes for future mutational 

studies.     

 
Results 

Maize Co-Expression Network Construction 

The maize co-expression network was constructed using 253 Affymetrix Maize 

GeneChip Genome Array microarray samples obtained from the National Center for 

Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) repository.  A 

listing of these array accessions and the experimental conditions under which the 

transcriptome was measured can be found in Supplemental Table S1.   Construction of 

the maize network was performed using the same method as published previously for rice 

[149].  Maize microarray datasets were RMA normalized [136], and 40 outlier arrays 

were removed using the R/arrayQualityMetrics package [138].  Upon inspection, these 

outliers seemed to be a result of low-quality hybridizations or non-standard experimental 

conditions and did not appear to derive from a common biological system.  Next, all pair-

wise gene expression correlations were determined (Pearson’s r).  The resulting 

correlation (similarity) matrix was used as input into both the WGCNA soft-threshold 

[86] and RMT hard-threshold [80] methods for network construction.    The WGCNA 

method identified a power of 6 to power-raise the similarity matrix and later divided the 

network into 34 distinct gene modules, whereas 45 modules were detected for rice (Table 

3.1).  The relationship between maize modules in terms of similarity of expression is 
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shown in Supplemental Figure S1.   The RMT method provided a hard threshold cut-off 

value of 0.5781 for the WGCNA power-raised matrix.  This is the point where the 

nearest-neighbor spacing distribution within the network transitions from what would 

appear as random noise to non-random signal (χ2 p-value > 0.001).   The final maize 

network consisted of 31,983 edges between 2,708 probe sets (2,071 gene models) which 

corresponds to 15.4% of the original probe sets on the array (Table 3.1).  A global view 

of the maize co-expression network can be seen in Figure 3.1, where individual modules 

are distinctly colored.  A detailed list of edges for the maize network can be found in 

Supplemental Table S2.  The maize network is available online, along with the 

previously described rice network, for browsing and searching at 

http://www.clemson.edu/genenetwork.  Network properties, such as node-degree and 

clustering co-efficient distributions can be found in Supplemental Figure S2. 

  



 68 

Table 3.1 Characteristics of the Rice and Maize Networks 

Characteristic Rice Network Maize Network 
Array  Affymetrix Rice 

GeneChip 
Affymetrix Maize Gene 

Chip 

NCBI GEO accession for array GPL2025 GPL4032 
Probesets on array 54,168 17,555 
Genomic loci mapped to probesets 46,499 14,792 
Microarray Samples a 508 253 
WGCNA selected power threshold 4 6 
WGCNA module dendrogram cutoff 0.20 0.20 
RMT hard threshold 0.7101 0.5781 
Probesets in network 4,528 2,708 
Edges in probeset network 43,144 31,983 
Loci in network 2,257 2,071 
Edges in loci network 32,820 33,397 
Modules 45 34 
Enriched terms 2,373 1,928 
Functional clusters 76 35 
Clustered terms 960 596 
Enriched phenotypic terms 17 N/A 
a Number of samples remaining after outlier detection and removal. 
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Figure 3.1 Maize Co-expression Network.  

Nodes are probe sets from the Affymetrix GeneChip Maize Genome Array. Edges 
indicate significant co-expression between probe sets above a hard threshold. The various 
colors indicate the different modules of the network. 

 



 70 

Functional Enrichment and Clustering of Co-Expressed Maize Gene Modules 

Functional enrichment was performed for each of the 34 modules identified by 

WGCNA using annotation terms from the Gene Ontology (GO) [128], InterPro [133] and 

KEGG [99] using an in-house method similar to the tool DAVID [92, 93].   A total of 

1,928 unique annotation terms were found to be enriched in the maize modules (Fisher’s 

exact test; p < 0.1).  Co-functional clusters, or subsets of nodes within a module that 

share enriched functional annotation, were identified using the DAVID approach. The 

identified clusters were sorted first by average connectivity, <k>, and second by 

enrichment score (e-score), the geometric mean of enrichment p-value.  A total of 35 co-

functional gene clusters identified from 596 enriched terms were found within 10 

modules.  Detailed lists of probesets and genomic loci within modules and co-functional 

clusters, as well as enriched annotation terms can be found in Supplemental Tables S3-

S6.  A total of 383 maize loci are represented in the network with no known functional 

annotation (Supplemental Table S7).  Of these, approximately 50% or 193 of the 391 

genes of unknown function have 3,092 co-expressed edges with genes in co-functional 

clusters (Supplemental Table S8).  Therefore, it may be possible to infer function for 

these loci using the principle of guilt-by-association. 

Interestingly, co-functional clusters ordered first by <k> in both the maize and 

rice networks seem quite similar.  A list of the top-ten ordered clusters in both networks 

can be seen in Table 3.2.  For example, the highest ordered maize cluster by <k> was 

enriched for functional terms related to the ribosome and translation (module ZmM6C25; 

<k> = 20.2; e-score= 2.62).  Similarly, the corresponding rice cluster was also enriched 
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for terms related to the ribosome and translation (module OsM6C25; <k> = 17.0; e-score 

= 1.98).  The second highest maize cluster was enriched for seed storage activity 

(ZmM5C1; <k> = 10.0; e-score = 3.38), as was the third highest rice cluster (OsM13C1; 

<k> = 12.9; e-score = 12.22).   Additional top-10 ordered clusters with similar annotation 

terms in both maize and rice, although not in the same order, include clusters enriched for 

photosynthesis, glycolysis, and microtubule activity.      



 
 

Table 3.2  Side-by-side functional comparison of top-10 maize and rice co-functional  clusters, ordered by average 
connectivity. 

Maize  
Clustera <k>b E-scorec Summarized Function   Rice  

Clustera <k>b E-Scorec Summarized Function 

ZmM2C1 20.2 2.62 Ribosome/Translation   OsM6C25 17.0 1.98 Ribosome/Translation 

ZmM5C1 10.0 3.38 Seed storage   OsM6C4 14.1 4.13 
Photosynthesis/Light 
harvesting  

ZmM9C1 10.0 7.25 Histone/DNA Binding   OsM13C1 12.9 12.22 Seed storage 

ZmM1C1 10.0 1.87 
Photosynthesis/Light 
harvesting   OsM6C23 10.5 2.04 

Carbon fixation/Carotenoid 
biosynthesis 

ZmM4C1 8.8 4.07 Ribosome/Translation   OsM6C16 9.2 3.14 Photosynthesis 

ZmM2C2 5.7 2.43 Translation elongation   OsM2C2 7.4 5.13 
Kinesin/Microtubule motor 
activity 

ZmM9C2 5.4 4.31 Histone/DNA Binding   OsM6C14 5.4 3.19 Glycolysis 

ZmM11C1 5.3 3.05 
Kinesin/Microtubule motor 
activity   OsM13C5 5.0 11.24 Transcription factor activity 

ZmM1C3 4.0 2.89 Glycolysis   OsM13C2 4.6 3.57 Nutrient reservoir activity 
ZmM19C1 3.9 5.38 Transcription factor activity   OsM6C11 3.7 4.08 Ribosome binding/Protein 

folding 
aModules are numbered sequentially starting from zero and are prefixed with a letter M.  Clusters within a module are numbered 
sequentially and are prefixed with the letter C.  Modules and clusters are prefixed with a species abbreviation: ‘Os’ for rice and ‘Zm’ 
for maize.  Thus, cluster 1 from module 8 in rice is named OsM8C1.  b<k> is the average connectivity of the nodes in the cluster.  c 

E-score is the enrichment score, or geometric mean of the Fisher’s test enrichment p-values of the cluster. 
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Rice and Maize Co-expression Network Alignment 

Using the constructed maize network, a comparison with the existing rice network 

was performed with the goal of identifying evolutionarily conserved co-expression 

patterns.  A comparative summary of the statistics for both the rice and maize networks 

can be seen in Table 3.1.   To allow for direct comparison of various network alignment 

methods, the probe set based networks were first condensed into a locus based network 

that contained 2,071 loci for maize and 2,257 loci for rice (Supplemental Tables S9-S10).  

IsoRankN [154] was used to perform global alignments between the maize and rice 

network.  To help clarify the meaning of the various modules, clusters and subgraphs 

constructed with this analysis, we provide definitions as well as naming conventions 

(Table 3.3). 

Table 3.3 Synopsis of subgraph definition and naming convention. 

Term Definition Naming 
Schemaa 

Subgraph Any collection of nodes and edges that form a subset of the 
global network. 

 

Module A subgraph within the global network that consists of highly-
connected groups of nodes.  For this study, modules are 
determined using the WGCNA method which groups nodes by 
measures of similarity.  See Supplemental Figure S1. 

SpMx 

Functional 
Cluster 

A functional cluster is a subgraph within a module where the 
nodes have a high degree of similarity in functional terms (e.g. 
Gene Ontology (GO), Interpro and KEGG terms).   

SpMxCy 

Conserved 
Subgraph 

A subgraph which is present in one network and has a 
corresponding subgraph in another network.  These subgraphs 
share nodes which have been locally aligned using a network 
alignment tool.   

subgraph_z 

a For naming, ‘Sp’ indicates a two-letter species abbreviation;  the ‘M’ in Mx indicates the 
subgraph is a  module where x is the module number;  C indicates a cluster followed by the 
cluster number, y;  z is a four digit number given to uniquely identify conserved subgraphs. 
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IsoRankN provides three input parameters that affect the results of the network 

alignments.  These parameters include an iteration parameter, a threshold parameter and 

an alpha value.   Documentation for IsoRankN indicates that the iteration parameter 

should vary between 10 to 30; the threshold between 1e-3 to 1e-5; and the alpha value 

between 0 and 1.  The alpha value controls the contribution of homology and topology, 

and a value of 0 would strictly use homology for alignments whereas 1 would strictly use 

topology.   A value of 0.5 would weight equally the contribution of both homology and 

topology.  Therefore, to identify an adequate set of parameters for IsoRankN for 

alignment of the rice and maize networks, these parameters were varied from one 

extreme to the other within the suggested documented ranges.  In total, 189 tests were 

performed.  To measure the change of the biological signal caused by varying these 

parameters, we used Kappa statistics to provide a measure of functional similarity 

between conserved subgraphs.  Functional enrichment was performed for each conserved 

subgraph in both maize and rice.  The similarity of terms enriched in corresponding 

conserved subgraphs of maize and rice is measured by a Kappa score, where a value 

greater than 0 indicates that the conserved subgraph in rice is similar, more than could be 

expected by chance, to the corresponding subgraph in maize.  A value of 1 indicates the 

two are identical in terms of enriched terms.  A plot of average Kappa scores and 

subgraph counts across 20 alpha values, for an iteration value of 30 and threshold value 

of 1e-4 is shown in Figure 3.2.  Aside from the extreme alpha values near 0 and 1, the 

functional similarity of conserved subgraphs is relatively consistent across the alpha 

values.  The graph in Figure 3.2 was effectively identical for each combination of 



 75 

iteration and threshold we tested.  This similarity indicates that convergence of the 

alignment occurs at low stringency, and that selection of almost any parameter blend for 

those we selected for testing would be effective.  The Kappa score (or functional 

similarity) of the subgraphs in rice and maize at an alpha value of 0 is very high; 

however, the number of conserved subgraphs at that value is very low.  The opposite is 

true for an alpha value of 1.   It seemed most parameter sets, aside from the extreme alpha 

values, would generate an adequate set of subgraphs with a reasonably high average 

similarity (average kappa), so we selected conserved subgraphs derived from alignments 

from IsoRankN using an alpha value of 0.8, iteration value of 30 and a threshold of 1e-4 

because this particular combination of parameters seemed to provide the highest average 

Kappa.  Because average Kappa score and subgraph count were very similar across all 

parameter variations we only present here a single representative result set.   Using these 

parameters, we detected 1,173 aligned loci, which were later connected into 154 

conserved subgraphs.  These subgraphs preserved 4,758 edges in rice and 6,105 edges in 

maize (Supplemental Tables S11-12).   Functional enrichment and clustering, identical to 

that performed for the network modules, was performed for these subgraphs as well.  The 

co-functional clusters of these conserved subgraphs can be found in Supplemental Tables 

S13-S14. 
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Figure 3.2 Varying the homology-to-topology ratio has little effect on conserved 
maize-rice subgraph discovery.  

This graph shows the distribution of the average κ scores (blue line) and the number of 
conserved subgraphs (red line) across 20 α values for IsoRankN at an iteration setting of 
30 and a threshold value of 1e-4. This graph is a representative plot for 189 trials of 
IsoRankN where the iteration parameters varied at 10, 20, and 30 and the threshold 
parameter varied at 1e-3, 1e-4, and 1e-5. Other combinations yielded almost identical 
graphs. 

 

Common Function in Conserved Maize-Rice Subgraphs 

For the IsoRankN alignments, functional enrichment and Kappa analysis of the 

conserved subgraphs yielded nine subgraphs with a perfect Kappa score of 1 indicating 

an identical set of enriched terms.  These include subgraphs enriched for early nodulin 93 

proteins, hydrolase activities, DNA binding, peptidase, nucleosome assembly, 



 77 

transcription factor activity and others (see Supplemental Table S16).  However, these 

subgraphs are relatively small with two to five edges.   The four largest conserved 

subgraphs are enriched for terms involved in photosynthesis, DNA replication, the 

ribosome, and starch synthase (Table 3.4), all of which have a Kappa score greater than 

0.5.   Incidentally, these four classes of enriched terms are also present in the top 10 list 

of enriched clusters as seen in Table 3.2. 

Table 3.4 Top 10 largest conserved subgraphs by size. 

Subgraph  Kappa 
Score 

Maize 
nodes 

Rice 
nodes 

Top Enriched KEGG / 
GO Term for Maize 
Conserved Subgraph 

Top Enriched KEGG 
GO Term For Rice 
Conserved Subgraph 

subgraph_0107 0.64 323 278 GO:0009765 
photosynthesis, light 
harvesting  

GO:0015979 
photosynthesis  

subgraph_0067 0.59 120 95 GO:0000786 
nucleosome  

GO:0003777 
microtubule motor 
activity  

subgraph_0034 0.73 57 35 GO:0005840 
ribosome  

GO:0005840 
ribosome  

subgraph_0282 0.51 49 45 K13679 granule-
bound starch 
synthase  

K00703, glgA; starch 
synthase  

subgraph_0624 0.15 11 2 GO:0015934 large 
ribosomal subunit  

GO:0005840 
ribosome  

subgraph_0341 0.09 11 3 K02634 petA; 
apocytochrome f  

K02709 psbH; 
photosystem II PsbH 
protein  

subgraph_0046 0.87 9 3 GO:0005840 
ribosome  

GO:0005840 
ribosome  

subgraph_0031 0.72 9 7 K10999 CESA; 
cellulose synthase A  

K10999 CESA; 
cellulose synthase A   

subgraph_0033 0.10 9 4 GO:0005773 vacuole  GO:0003676 nucleic 
acid binding  

subgraph_0035 0.91 8 2 GO:0015934 large 
ribosomal subunit  

GO:0015934 large 
ribosomal subunit  
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For the rice network, phenotypic terms derived from the Tos17 retrotransposon 

insertion mutation studies [105, 134] were mapped to loci and included in the functional 

enrichment and clustering of network modules [149].     Of the 154 conserved subgraphs, 

20 conserved subgraphs from rice are enriched for Tos17 phenotypic terms, which 

include phenotypes such as ‘sterile’, ‘pale yellow leaf’, ‘high tillering’, ‘vivipary’ and 

more.  A listing of these 20 conserved subgraphs can be seen in Table 3.5.   The 

subgraphs are ranked by descending order of Kappa score, which indicates the similarity 

of functional annotations between the rice and maize conserved subgraphs.   Several 

subgraphs have a Kappa score of 1.0, indicating identical functional similarity, but 

overall, a high degree of similarity between most of the subgraphs is evident.   Figure 3.3 

shows the relationship between the global rice and maize networks (Figure 3.3 A and C 

respectively) with the conserved subgraphs of each (Figure 3 B and D respectively) as 

constructed using IsoRankN node alignments.   Light grey lines between the global rice 

and maize networks simply map the location of nodes with their conserved counterparts.  

Light grey lines between the two conserved subgraph networks show node alignments 

provided by IsoRankN.   Light red lines indicate node alignments with phenotypic 

associations in rice.   Figure 3.4 shows a close-up view of conserved subgraph 

‘subgraph_0107’. 



 
 

Table 3.5 Top functional term for conserved subgraphs derived from IsoRankN in maize and rice with phenotypic 
associations in rice 

Subgraph ID Kappa Maize 
Genes 

Rice 
Genes Rice Phenotypes Maize Top Enriched GO/IPR 

Term 
Rice Top Enriched GO/IPR 
Term 

subgraph_0065 1.00 4 5 Pale green leaf, Long 
culm, Albino, 
Drooping leaf, 
Yellow, Low tillering 

IPR005050 Early nodulin 93 
ENOD93 protein  

IPR005050 Early nodulin 93 
ENOD93 protein  

subgraph_0908 1.00 2 2 Pale green leaf GO:0016787 hydrolase activity  GO:0016787 hydrolase 
activity  

subgraph_0060 1.00 5 4 Late heading GO:0043565 sequence-specific 
DNA binding 

GO:0043565 sequence-
specific DNA binding 

subgraph_0005 0.89 2 2 Germination rate GO:0016788 hydrolase activity, 
acting on ester bonds 

GO:0016788 hydrolase 
activity, acting on ester bonds 

subgraph_0046 0.87 9 3 Spl/Lesion mimic GO:0005840 ribosome GO:0005840 ribosome 
subgraph_0907 0.67 2 2 Others IPR005516 Remorin, C-terminal 

region  
IPR005516 Remorin, C-
terminal region  

subgraph_0107 0.64 323 278 Pale green leaf GO:0009765 photosynthesis GO:0015979 photosynthesis 
subgraph_0777 0.62 2 2 Long culm IPR010525 Auxin response 

factor  
IPR010525 Auxin response 
factor  

subgraph_0067 0.59 120 95 Lamina joint, Thick 
culm, Lax panicle, 
High tillering 

GO:0000786 nucleosome GO:0003777 microtubule 
motor activity 

subgraph_0649 0.57 5 2 Vivipary GO:0005783 endoplasmic 
reticulum 

GO:0005783 endoplasmic 
reticulum 

subgraph_0727 0.56 2 2 Yellow, Narrow leaf GO:0003899 DNA-directed RNA 
polymerase activity 

GO:0004197 cysteine-type 
endopeptidase activity 

subgraph_0092 0.47 2 2 Vivipary, Yellow IPR001944 Glycoside hydrolase, 
family 35  

IPR000922 D-galactoside/L-
rhamnose binding SUEL 
lectin  

subgraph_0029 0.44 8 4 Short panicle, Dense 
panicle 

GO:0043687 post-translational 
protein modification 

GO:0005840 ribosome 

subgraph_0218 0.20 2 2 Virescent GO:0006754 ATP biosynthetic GO:0005524 ATP binding 
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process 
subgraph_0621 0.18 4 3 Abnormal shoot GO:0045735 nutrient reservoir 

activity 
GO:0005215 transporter 
activity 

subgraph_0893 0.17 2 3 Sterile, Stripe GO:0006464 protein 
modification process 

GO:0004197 cysteine-type 
endopeptidase activity 

subgraph_0006 0.17 2 2 Vivipary GO:0009289 fimbrium GO:0015079 potassium ion 
transmembrane transporter 
activity 

subgraph_0624 0.15 11 2 Short panicle, 
Abnormal panicle 
shape, Small grain 

GO:0015934 large ribosomal 
subunit 

GO:0005840 ribosome 

subgraph_0105 0.12 4 3 Rolled leaf GO:0016857 racemase and 
epimerase activity 

GO:0016020 membrane 

subgraph_0599 0.11 3 3 Rolled leaf, Pale 
green leaf 

GO:0004871 signal transducer 
activity 

GO:0007155 cell adhesion  
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Figure 3.3 Conserved subgraphs between rice and maize.  

A, The global locus-based network for rice. B, The conserved network for rice with 
colored subgraphs. C, The global locus-based network for maize. D, The conserved 
network for maize with colored subgraphs. Nodes in B and D are color coded according 
to the conserved subgraphs to which they belong. The same colored nodes in B belong to 
the same conserved subgraph in D. These same nodes are colored identically in the global 
networks to show global placement. Nodes colored gray in the global networks are not 
assigned to a conserved subgraph. Dark-colored edges in the global and conserved 
subgraphs represent co-expression edges. Lightly colored lines between the global 
networks in A and C and the conserved subgraphs in B and D simply indicate the 
positions of the same nodes in both types of networks. Lightly colored gray lines between 
the conserved subgraphs of rice and maize in B and D show the locations of aligned 
nodes as indicated by IsoRankN. Lightly colored red lines between B and D originate 
from the rice conserved subgraph in B and indicate known phenotypic associations in rice 
with possible translation to maize. 
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Figure 3.4 Largest conserved subgraph with implied phenotypic associations.  

Shown is the largest conserved subgraph, subgraph_0107, between rice (blue nodes) and 
maize (green nodes). Dark edges in the subgraph are co-expression relationships. Light 
edges indicate alignments between the two subgraphs determined using IsoRankN. Light 
red edges indicate phenotypic associations with nodes in rice that are aligned to nodes in 
maize. 

 
 
 

Discussion 

 

 The purpose of this study was to identify conserved, co-expressed gene sets 

between two vital agricultural species: rice and maize.  To identify these gene sets, we 

first constructed a maize co-expression network, de novo, and aligned it to a previously 

described rice co-expression network [149].   Our hypothesis was that the discovery of 
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conserved network nodes (genes) and edges would provide an initial framework for the 

translation of complex functional genomic and genetic knowledge from one species to 

another.   This strategy is complementary to traditional comparative genomic approaches 

where known function is translated between taxa via homology and/or synteny.  

Additionally, the WGCNA and RMT tools were selected to preserve a knowledge-

independent approach. The networks were thresholded (using RMT) and modules were 

constructed (using WGCNA) without prior knowledge of the underlying gene functions.   

 

The Global Maize Gene Co-expression Network 

Here we provide the first known maize gene co-expression network.   This 

network facilitates research in maize by providing lists of interacting genes annotated for 

specific biological processes which provide clues to candidate gene (known and novel) 

involved in those processes.  Additionally, 391 genes with unknown function 

(Supplemental Tables S7-S8) are co-expressed within modules and 194 of those un-

annotated genes are interconnected within 32 different co-functional modules.   For 

example, Cluster ZmM5C1 is the fourth highest ordered co-functional cluster by average 

connectivity, <k> and contains nine loci.    However, there are 24 directly connected 

neighboring genes that have no ascribed GO, KEGG or Interpro function.  The enriched 

functional terms for this cluster include seed storage activities.   Guilt-by-association 

inferences would suggest that the 24 genes of unknown function in ZmM5C1 may be 

involved in seed storage or related processes.  Therefore, these genes make interesting, 

perhaps novel, candidates for understanding the biological process associated with seed 
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storage.    In total, 194 genes of unknown function, through 3,092 edges, now suggest 

inference for the biological processes summarized by 33 different co-functional clusters 

(Supplemental Table S8).   

 

The Small Size of Global Co-expression Networks 

The maize network is small in comparison to the number of loci mapped to the 

probe sets present on the microarray.   Using 32,540 gene models from the ZmB73 4a.53 

release of the maize genome [163], 14,792 (45%) of the known maize loci were measured 

on the microarray platform.  Of those, only 2,071 loci (14%) were present in the global 

maize network.  We observed a similar phenomenon in rice, where almost 86% of known 

rice transcripts mapped to the probe sets on the microarray platform, but similarly a low 

fraction of the measured loci (10%) were present in the final network.   Therefore, in 

regards to the number of potential co-expression relationships, both networks are 

relatively small to what we would expect across the organism’s life cycle.  The Random 

Matrix Theory (RMT) method [80] was specifically used to define the threshold to 

reduce random noise from the final network to ensure that the detected co-expression 

relationships were strong.  Therefore, the small size of the network is most likely caused 

by relationships lost within the “noise” of the dataset, combined with the fact that not all 

co-expression relationships from all conditions are represented by the dataset.    

Is it possible to boost the biological signal and increase the gene space fraction 

captured in co-expression networks?  Lowering the significance threshold, even using 

reasonable methods designed to limit the number of false positives, would increase the 



 85 

number of loci in the network, but could reduce the overall quality of the biological 

signal and possibly confound the interpretation of modules [79].  Usadel et al., discusses 

several reasons that significant co-expression correlations can be lost [164].  These 

include sample selection, complex interaction types, and selection of normalization and 

correlation methods.   Our data suggests that the rice and maize networks consist 

primarily of co-expression relationships derived from basal biological processes whose 

expression is most common across the samples used to build the network.  It would seem 

that the global co-expression networks currently available for plants, including the rice 

and maize networks we have generated, are immediately useful for these common 

processes but lack representation of less frequent processes and other subtle interactions.   

For maize and rice, it may be that more significant co-expression relationships would be 

detected if A) additional transcriptome measurements are made from tissue systems not 

present in the current network which would increase the sampling frequency and 

probability of detecting rarer co-expression relationships; B) overlap from multiple 

tissue-specific transcriptomes on a single sample are reduced by segregating datasets to 

be tissue/condition specific; C) additional statistical methods are employed to identify co-

expression relationships specific to unique tissues, conditions or developmental stages, 

essentially dissecting the input data into subsystems.  It should be noted that the detection 

of co-expression relationships between highly homologous transcripts including gene 

variants may require extensive transcriptome measurements from a non-hybridization 

based platform (e.g. RNAseq) before the full potential of global co-expression networks, 

measured in the observed number of co-expression relationships, can be realized. 
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Conservation Between Rice and Maize Co-expression Networks 

From a qualitative perspective, the apparent collective role of genes in co-

functional clusters from both rice and maize networks, when ordered by average 

connectivity, were quite similar (Table 3.2).   Co-functional clusters were ordered by 

connectivity under the premise that highly co-expressed genes are more likely involved in 

similar biological processes.   As mentioned previously, functional terms from processes 

such as translation, seed storage, glycolysis, photosynthesis and the cell cycle are all 

enriched in the top 10 functional clusters of both networks, and provide good indication 

that the two co-expression networks, derived from independent microarray samples for 

two different species, demonstrate conservation in terms of connectivity of co-expressed 

genes for common biological processes. 

The apparent conservation of co-expression patterns between rice and maize is 

further bolstered through a formal global alignment of the two networks via IsoRankN 

and identification of conserved subgraphs.  Many of the conserved subgraphs between 

rice and maize show a high degree of similarity of enriched functional terms indicating a 

high level of conservation, which we quantified using Kappa statistics (Table 3.4 and 

Supplemental Table S15).   For example, the function of the top 10 conserved subgraphs 

by size is shown in Table 3.4.  Many of these share similar function, especially when 

Kappa scores are closest to 1.   This is notable because the likelihood that nodes in the 

conserved subgraph would be significantly co-expressed, aligned together based on 

topology and homology and have non-random chance of similarity between their 
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respective enriched function is low.    Moreover, modules and co-functional clusters in 

maize also align to modules and co-functional clusters in rice that have similar functional 

annotations.  For example, Figure 3.5 shows the fourth largest conserved subgraph 

“subgraph_0282” with 49 nodes from maize (lower left) and 45 from rice (upper right).    

Both the maize and rice loci from this subgraph are enriched for terms involved in seed 

storage, nutrient reservoir activity and starch synthase with a Kappa score of 0.51.   Not 

only are the functional enrichments similar between aligned nodes but module co-

expression relationships are also maintained.  The majority of maize genes in 

subgraph_0282 belong to module ZmM5 (with only 3 from ZmM19) and all of the genes 

from rice belong to module OsM13.   Also, co-functional clusters show evidence of 

alignment as well.  Within this same conserved subgraph, the orange nodes from rice in 

Figure 3.5 and the purple nodes from maize are from co-functional clusters OsM13C1 

and ZmM5C1 respectively.  Both of these clusters are enriched for seed storage activities, 

and the nodes from these two clusters have direct alignments with the other. 

It should be noted that low Kappa scores between enriched terms of the rice and 

maize networks do not indicate that the node alignments are weak.   Kappa scores are 

based on functional similarity and are dependent on the underlying functional annotation 

of the loci.  For instance, conserved orthologous loci in two genomes may not have been 

annotated identically, yet are aligned due to sequence homology and network topology.  

Also, similar function may be annotated in somewhat equivalent yet different functional 

terms.   Therefore, a high functional similarity between conserved subgraphs was used to 
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help validate the network alignments, but a lack of functional similarity does not indicate 

a poor alignment. 

Translation of Function and Phenotype 

As mentioned previously, conservation between co-expression networks is a 

powerful tool for validating the correctness of each aligned networks.  In essence, 

conservation reduces the noise within the network because it provides another layer of 

evidence for co-expression [165].   Moreover, the alignment between species strengthens 

the guilt-by-association inferences made for genes of unknown function.  For example, 

cluster ZmM5C1 was described previously as containing co-expression with 24 genes of 

unknown function.  Seven of the loci from ZmM5C1 appear in conserved subgraph_0282 

(purple nodes of Figure 3.5).   Guilt-by-association inferences may be applied to these 

genes of unknown function, however, the inference is made stronger because the co-

expression relationships are conserved.   
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Figure 3.5 Subgraph_0282 from rice and maize.  

This subnetwork shows the co-expression edges and conserved alignments for all nodes 
of subgraph_0282 between maize and rice. Co-expression edges are gray lines, and 
network alignments are light blue lines. Nodes below the heavy diagonal line are from 
the maize network, and nodes above it are from rice. All of the rice nodes belong to 
module OsM13, and the majority of the maize nodes are from module ZmM5, with the 
exception of the three rightmost nodes in the bottom half, which belong to module Zm19. 
Yellow nodes in maize are for loci of unknown function. Purple nodes in maize are from 
cluster ZmM5C1, annotated for nutrient reservoir/seed storage activity. Orange nodes in 
rice are from cluster OsM13C1, also annotated for nutrient reservoir/seed storage 
activity. Nodes of other colors belong to the other functional clusters within the module. 
Gray nodes belong within the subgraph but are not part of a co-functional cluster. 
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A powerful application of alignments between rice and maize networks is the 

potential to translate gene sets with enriched phenotypes from rice to maize through 

conserved subgraphs.  For instance, Table 3.5 provides a list of conserved subgraphs that 

have enriched phenotypes in rice.   These terms are not only present in annotations of 

genes in the subgraph but enriched.  Of particular note is subgraph_0065 with 5 genes in 

rice, 4 genes in maize and 6 phenotypic terms: Pale green leaf, Long culm, Albino, 

Drooping leaf, Yellow, Low tillering.   This subgraph has a Kappa score of 1 indicating 

perfect similarity between annotated terms and is annotated as Early Nodulin 93 protein.  

It may be that this high level of similarity is due in part to the fact that sequence 

homology was employed in network alignment, and sequence homology is often used to 

transfer functional annotation from one species to another.  However, network topology 

based on co-expression edges was weighted more strongly in the IsoRankN alignment, 

indicating that co-expression relationships are also maintained between rice and maize 

alignments.  Therefore, it seems appropriate that these phenotypic associations from rice 

can be inferred to the four maize genes as well as connected neighbors in the subgraph. 

 

Conclusion 

 

Gene co-expression network alignments coupled with genetic and functional 

genomic data provides a method for translation of gene function and genotype-phenotype 

associations between species, and is especially useful for species with limited genetic 

resources.  Experimental evidence will be needed to determine the true predictive power 
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of co-expression relationships (intra-network and inter-network), but the functional 

similarity we observed in conserved subgraphs seems quite promising.  Still, better 

quantitative measures of biological signal are needed to validate the co-expression 

relationships. If an in silico metric for biological signal can be identified, it would 

provide a means to calculate Type I and Type II error under alternate network 

construction protocols.  However, given that gene co-expression networks have already 

been used to successfully identify candidate genes for specific traits [55, 56] it is natural 

to conclude that function and phenotype can also be transferred across species to help 

identify genes involved in complex traits.  The power of this translational systems-

genetics approach will be increasingly more useful as more genetic data is made available 

for grasses, especially in the form of genome-wide association studies.  In particular the 

translation of function and phenotype into large polyploidy species, such as sugarcane, 

would be especially powerful because the capture of genetic associations can be difficult, 

expensive and genome resources tend to lag behind less complex species. 

 

Materials and Methods 

Maize Network Construction 

The method used for construction of the maize gene co-expression network was identical 

to that previously described for the rice gene co-expression network [149].  A total of 293 

samples from the Affymetrix Maize GeneChip Genome Array microarray were obtained 

from NCBI’s GEO repository.  RMA normalization [136] using the software package 

RMAExpress [166] and outlier detection using the arrayQualityMetrics [138] tool for 
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Bioconductor [167] were used to remove outlier samples.  Arrays that failed all three 

outlier tests were excluded from further analysis.  Then, a similarity matrix was 

constructed by performing pair-wise Pearson correlations for every probe set across all 

samples. We selected Pearson correlations because it was commonly supported by both 

the WGCNA and RMT tools. Next, the WGCNA package [86] was used to convert the 

similarity matrix into an adjacency matrix by raising the similarity matrix to a power of 6.  

The power chosen is one that best approximates scale free behavior in the resulting 

network and is selected by the software.  Finally, the RMT algorithm [80]  was used to 

select a hard threshold which limits the noise in the resulting network.   

Functional Enrichment & Clustering 

The gene models used for this study were from the maize B73 genome [163] version 

4.53a obtained from the maizesequence.org website.    Gene Ontology (GO) [128], 

InterPro [133] and KEGG [99] terms were used for functional annotation of these gene 

models.  In the case of GO and InterPro terms, these were obtained directly from the 

maizesequence.org website.   KEGG terms were obtained by uploading maize coding 

sequences (CDS) to the KEGG/KAAS server which maps KEGG terms using a 

homology-based method [142].   An in-house tool similar to the online DAVID tool [92, 

93] was used to perform functional enrichment using a Fisher’s Exact test against each 

network module and the genome background.   Modules were further subdivided into 

functional clusters using pair-wise Kappa statistics between all genes.    Functional 

clusters were ordered by the geometric mean of the Fisher’s p-values, the en-score, or by 
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the average clustering coefficient, <k>, which provides a measure of interconnectedness 

of the nodes in the functional cluster. 

Maize-Rice Network Comparison  

The maize network was compared with the previously described rice network [149].  The 

maize and rice networks, as well as functional enrichment and cluster discovery, were 

constructed with an identical protocol.  However, as a result of improvements to the in-

house scripts that perform functional enrichment, the functional enrichment and 

clustering was performed again for the rice network before comparison.  The maize and 

rice networks, including both the original and updated functional enrichment results for 

rice are all available online at http://www.clemson.edu/genenetwork. 

Before network comparisons were performed, nodes in both the rice and maize 

network were converted from microarray probe sets to genomic loci.  In some cases these 

were one-to-one mappings between probesets and genes.  However, some microarray 

probe sets map to more than one genomic loci, and vice-versa.  These mappings are 

ambiguous, but were retained with the assumption that a significant edge to these nodes 

could be informative because one or more mapped genes would be producing the 

correlated transcript.  During conversion from a probe set to a loci-based network, edges 

were placed between two loci whenever they mapped to connected probe sets.   Edges 

were also preserved in cases where a single locus mapped to more than one probe set in a 

different module. 

Network comparisons between the rice and maize gene co-expression networks 

were performed using IsoRankN [154], which provided a mixed topology and homology-
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based global alignment methodology.   First, the maize and rice protein sequence datasets 

were obtained from the MSU v6.0 assembly for rice [6] and the maize B73 genome [163] 

version 4.53a and were aligned against one another using BLASTP (parameters: -e 1e-6 -

F 'm S', -s T, -m 8, and  -b 1) following the recommendations given in the publication by 

Moreno-Hagelsieb and Latimer for selecting blast parameters for reciprocal best-hits 

[168].   The homolog scores derived from blast, and the network edges list were used as 

input to IsoRankN.  Several iterations were performed by varying the parameters for the 

software.   IsorankN’s own iteration parameter was adjusted at values 10, 20 and 30.  The 

threshold parameter was adjusted at values 1e-3, 1e-4 and 1e-5, and the alpha value 

which controls the contribution of topology versus homology in aligning the networks 

was varied from 0.0 to 1.0 in 0.1 increments.  In total, 189 iterations were performed for 

IsoRankN.   IsoRankN generates sets of one-to-many mappings where in some cases 

multiple aligned loci are in a single set.   Each pair or group was referred to as an 

alignment set.  Conserved subgraphs were generated using these output files with an in-

house Perl script.   Conserved subgraphs were constructed in a two-step method.   The 

first step selected edges that were conserved between the two networks and the second 

step identified subgraphs of interconnected loci.   

The process for selecting preserved edges was performed by comparing two loci 

from two different alignment sets in one network, with two loci from the same alignment 

sets from the other network.  If an edge existed in both networks using the four selected 

loci, then both edges were marked as conserved.  The following pseudo code describes 

the process: 
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S = the array of aligned sets of loci 

for each set in S as si 

    for each set in S as sj where si is not sj 

        for each locus li in si 

           for each locus lj, in sj 

              for each locus ki in si where ki is not li 

                 for each locus kj in si where ki is not kj 

                    if  li and lj are in the same network and connected  and  

                        ki and kj are in the same network and connected  

                    then mark both edges as conserved. 

 
                  
Edges and nodes that were not marked as conserved were discarded and the remaining 

networks, one for rice and the other for maize, became the “conserved” sub networks. 

Finally, conserved subgraphs within the conserved networks were identified by 

first selecting an edge from one conserved network to serve as a seed for the subgraph.  

The aligned loci in the other conserved network were also used as a seed.  Thus, the 

process of defining subgraphs was performed in parallel in both networks.  Next, the 

edges of all of the connected neighbors of the seed were added to the subgraph.  The 

process was continued by iterating recursively through the neighbors and adding their 

edges until all possible edges are exhausted.   Then, a new edge, which has not yet been 

added to a subgraph was selected to act as the next seed until all edges in the conserved 

networks are placed in subgraphs.   These subgraphs were labeled numerically and a label 
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for a subgraph in rice is the same for the corresponding conserved subgraph in maize, and 

vice-versa. 

Functional enrichment was then performed for each subgraph using the same 

method described previously for modules in the global network.     Subgraphs were then 

compared using Kappa statistics.   As described previously, Kappa statistics were used to 

provide a measure of similarity between the functionally enriched terms of genes in a 

network module.  Here, Kappa statistics are used to provide a measure of similarity 

between the two conserved subgraphs of maize and rice that have the same label.  

Subgraphs are then ranked by Kappa score from greatest to smallest.  Conserved 

subgraphs are given a four digit unique number prefixed with the word ‘subgraph’. 
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Abstract  

 

The study of gene relationships and their effect on biological function and 

phenotype is a focal point in systems biology. Gene co-expression networks built using 

microarray expression profiles are one technique for discovering and interpreting gene 

relationships. A knowledge-independent thresholding technique, such as Random Matrix 

Theory (RMT), is useful for identifying meaningful relationships. Highly connected 

genes in the thresholded network are then grouped into modules that provide insight into 

their collective functionality.  While it has been shown that co-expression networks are 

biologically relevant, it has not been determined to what extent any given network is 

functionally robust given perturbations in the input sample set. For such a test, hundreds 

of networks are needed and hence a tool to rapidly construct these networks. To examine 

functional robustness of networks with varying input we enhance an existing RMT 

implementation for improved scalability and test functional robustness of human (Homo 

sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We 

demonstrate dramatic decrease in network construction time and computational 

requirements and show that despite some variation in global properties between 

networks, functional similarity remains high. Moreover, the biological function captured 

by co-expression networks thresholded by RMT is highly robust. 

  



 99 

Background  

 

Analyzing gene expression across one or more biological systems is a complex 

challenge for experimental design, computational resource requirements, and biological 

interpretation. The objective is a detailed understanding of complex gene interactions 

underlying biological function. A number of methods have emerged for accumulating 

gene co-expression relationships into networks using microarray expression profiling 

experiments to concomitantly measure gene activity of thousands of genes [112, 169-

171]. In co-expression networks, nodes represent gene products (e.g. mRNA transcripts) 

and edges indicate a significant correlation of expression between a gene pair (co-

expression). Groups of nodes that are highly connected (and thus correlated) indicate a 

biological relationship and can be separated into co-functional gene interaction modules. 

Several methods have been used to construct RNA co-expression networks and all 

methods require an n-transcript by m-sample expression matrix as input. For example, 

Weighted Gene Co-expression Network Analysis (WGCNA) is a popular method that 

uses the network property of scale-free topology [63, 172] to identify co-expression 

edges without determining a specific significance threshold. The result is an undirected 

graph where the weight of each connection represents the strength of correlation between 

a pair of genes [86]. Another method is Random Matrix Theory (RMT) taken from the 

field of particle physics [173] which is used in a number of applications that require 

separating noise from disorder in a complex systems. RMT is used to determine a 

significance threshold and has been employed for studying wireless communication 



 100 

channels [174], the stock market [175], and gene co-expression networks [80]. The RMT-

based approach is a reliable method for generating networks across a wide range of 

datasets. For example, the RMT method has been used to generate biologically 

meaningful networks for E. coli, yeast, Arabidopsis, maize, rice, Drosophila, mouse, and 

human [66, 80, 149]. 

Many methods for construction of co-expression networks compare gene 

expression measurements from samples across multiple experimental conditions using a 

correlation statistic. The most common and widely studied metric is Pearson’s correlation 

coefficient—an appropriate measure of correlation when data is linear and follows a 

normal distribution. For non-normal input, the Spearman and Kendall rank correlations 

are common alternatives that tend to be weaker indicators in many cases but more 

resistant to outliers [176]. When the behavior of input data does not match these 

correlation methods, mutual information functions (MI) can be calculated to determine 

the relationships among genes. Although MI is powerful, it is significantly more 

computationally intensive than traditional correlation metrics, making it less attractive for 

large network analysis [177]. Once a statistical method has been chosen, a matrix of 

correlation values is computed—pairwise for each gene across all samples. These 

correlation values are analyzed to determine a significance threshold for separating 

biologically meaningful correlations from weak correlations and random noise in the 

system.  

Despite the biological relevance of co-expression networks thresholded using 

RMT, an in-depth exploration into the functional robustness of the network has not been 
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undertaken. Do changes in the number and source of input samples have an effect on the 

biological function represented in the network? What is the effect on capture of 

biological function as transcript number is decreased? One reason for the lack of detailed 

study on functional robustness may be that testing on a mass scale with construction of 

hundreds of networks across thousands of genes using existing techniques would require 

excessive computation time and data storage requirements.  

To explore network functional robustness and algorithm scalability we describe 

the construction of co-expression networks from three very different organisms: Oryza 

sativa (rice), Homo sapiens (human) and Saccharomyces cerevisiae (yeast). Using real 

mRNA expression profiles, a series of expression matrices of varied sample and 

transcript measurements (microarray probe sets) were generated by randomly removing 

samples and probe sets from the original input dataset. The RMT-based algorithm was 

then employed for network construction over this wide range of input dimensions and the 

resulting network properties were compared with the original (non-varied) network as 

indicators of functional robustness. We implemented an improved version of RMT in the 

C programming language and demonstrate that it is highly scalable and can construct 

networks at an unprecedented 103 scale thereby enabling high-throughput network 

construction and analysis such as the robustness analysis we describe. 
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Results and Discussion 

Network Robustness Tests 

Gene co-expression networks have been shown to be useful for finding relevant 

gene interactions [55, 56, 75, 76, 111-113, 115, 117-121, 123, 126, 148, 149]. In some 

cases, gene expression data from public repositories such as NCBI GEO [8] are combined 

for an organism to glean as many interactions across tissue types, experimental 

conditions, genotypes, developmental stage or time series in order to approximate a more 

holistic representation of an organism’s interactome. It is not currently possible to 

measure expression levels of every gene in every point in time and space; therefore, it is 

useful to determine how missing data affects the functional robustness of the network. As 

new samples are added or removed, how will the significant biological relationships 

represented in the network change? Can any given network be considered biologically 

relevant or do changes in sample composition alter that relevance?  
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Table 4.1 Microarray samples used for network construction 

Organism NCBI 
GEO 
Platform 

Samples 
Used  

Probe 
Setsa 

Genome 
Assembly 
Version 

Transcripts 
in Genome 
Assembly 

Genes 
Measured by 
Platformb 

Genes in 
Global 
Networkc 

Human GPL570 2,000 40,685 hg19 1,962,491 18,509 828 (4%) 
Rice GPL2025 1,360 52,489 MSU v6.0 67,393 37,151 2660 (7%) 
Yeast GPL2529 1,701 10,359 S288C 6,717 5,750 805 (14%) 

a Total probe sets after removal of control probe sets, ambiguous and outlier probe sets. 
b Only includes genes that map unambiguously to probe sets with no differentiation between splice variants.  
c Percentage is in terms of measurable genes 

 

 

Table 4.2 Conservation of relationships between global and perturbed networks 

Species Percent 
Samples/ 
Probe sets 

Global 
Edges 

Edgesa Shared Edgesb  Edges 
Lost 

New 
Edges 

Modules Average 
Kappac 

Human 75/100 3,111 2,763 2,622 (84%) 489 141 129 0.72 
Rice 75/100 34,470 36,210 32,530 (94%) 1,940 3,680 748 0.82 
Yeast 75/100 8,643 8,758 8,240 (95%) 403 518 179 0.73 
Human 50/100 3,111 2,542 2,326 (75%) 785 216 117 0.66 
Rice 50/100 34,470 38,620 31,720 (92%) 2,750 6,900 786 0.78 
Yeast 50/100 8,643 8,559 7,869 (91%) 774 690 180 0.67 
Human 25/100 3,111 2,538 2,096 (67%) 1,015 442 124 0.59 
Rice 25/100 34,470 34,530 28,080 (81%) 6,390 6,450 710 0.71 
Yeast 25/100 8,643 8,583 7,437 (86%) 1,206 1,146 171 0.65 

a The average number of edges in network with samples removed  
b Edges in common between the perturbed network and the global network 
c Kappa = 1 indicates perfect similarity, Kappa > 0 is non-significant.   
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Our improved RMT software, called RMTGeneNet, allowed for mass 

construction of test networks using a knowledge-independent thresholding technique to 

check for robustness as data composition was varied. In total, 528 total networks were 

constructed from NCBI GEO datasets for human, rice, and yeast (see Table 4.1 for 

microarray platform accession). Input datasets were derived from 2,000 randomly 

selected human samples, 1,360 rice samples (all available at the time of study), and 1,701 

yeast samples (all available at the time of study). Prior to network construction, outlier 

samples were removed and the normalized expression matrices were reduced by 

randomly removing 25%, 50%, and 75% of the original samples and/or probe sets 

thereby mimicking the effects of A) variable transcriptome sampling and B) variably 

interrogated gene space. We refer to the network with 100% probe sets and 100% 

samples as the “global” network. Networks with randomly removed sample and probe 

sets are referred to as “perturbed” networks. Topological and functional properties of the 

perturbed networks were each compared to the relevant global network to examine the 

effects of input dataset variability. 

 

 

Topology Robustness Results 

Most naturally occurring networks, including biological networks, maintain 

certain topological characteristics [63]. We measured some of these characteristics by 

counting nodes, edges, nodes and edges in common (or shared) with the global network, 

the average degree (<k>), clustering co-efficient, and scale-free behavior (γ) of each 



 105 

network. By measuring changes in topology we examined when variation in sample and 

probe set size creates networks that cease to look normal relative to the global network. 

Shared node and edge counts for the human network can be found in Figure 4.1 A and B, 

respectively. Boxplots for rice and yeast were similar and can be found in Supplemental 

Figures S6B, S6C, S7B and S7C. The non-perturbed human global network consisted of 

3,111 edges and 828 nodes (Table 4.1). Randomly removing samples at 25%, 50% and 

75% showed a decrease in node and edge counts. As probe sets were randomly removed, 

the number of edges and nodes decreased further to about one-half the nodes and one-

third of edges at 25% probe sets. A similar decrease held true for both rice and yeast 

networks, although the effect was less pronounced for yeast (Supplemental Figures S4B, 

S4C, S5B, S5C). Summary statistics for all topological properties tested for human, rice 

and yeast can be found in Supplemental Tables S1-S10. 
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Figure 4.1 Topological and functional properties of the human networks with 
randomly removed samples and probe sets. 

A) The number of nodes shared with the global network for each perturbed network is 
shown at various sample removal rates (x-axis) when probe sets were retained at rates of 
25% (A1), 50% (A2), 75% (A3) and 100% (A4); B) The number of edges shared with the 
global network for each perturbed network is shown at various sample removal rates (x-
axis) when probe sets were retained at rates of 25% (B1), 50% (B2), 75% (B3), and 
100% (B4); C) The average Kappa, κ, (functional similarity) between modules in the 
perturbed network with modules in the global network is shown at various sample 
removal rates (x-axis) when probe sets were retained at rates of 25% (C1), 50% (C2), 
75% (C3), and 100% (C4). The single line in the far right of plots A4, B4 and C4 
represents the global network. 
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While edge and node counts remained relatively high when all probe sets were 

kept, the number of similar (or shared) nodes and edges with that of the global network 

quantified how interactions in the perturbed networks were consistent with the original 

global network. Results show that as samples were removed, the number of similar or 

shared nodes and edges also remained relatively high (Figure 4.1 A and 1B), but there 

was loss (Supplemental Figures S6-S7). In human, at 25% samples input, the average 

number of nodes was 751 (a loss of 77 nodes or ~10% of the global network). The 

average number of shared nodes was 671 indicating a further loss of 80 nodes (a total of 

18% lost nodes) with a gain of 80 new nodes that were not in the global network. For 

edges, at 25% samples, 573 edges or 18% were lost and an additional 442 edges (14%) 

were not shared, indicating a total average loss of 1,015 edges (32%) with a gain of 442 

new edges. Conservation of edges (relationships) for human, rice and yeast can be seen in 

Table 4.2 . It seems, therefore that variations in sample quantity, even at 25% samples, 

did not affect the majority of relationships that appeared in the network.  

The 2,000 samples used as input for the human global network were randomly 

selected from over 48,000 candidate NCBI GEO samples and therefore should represent 

a blend of measurements from disparate tissues, conditions, stages and genotypes. Our 

results indicated that with 25% of the original samples (approximately 500 experiments) 

the relationships captured (shared edges) in the human perturbed network looked very 

similar (67%) to that of the global network. Because there were fewer samples for both 

rice and yeast in NCBI GEO (1,360 and 1,701 respectively) we did not randomly select 

from those, but used all samples for global network construction. The percent difference 
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between the global network for rice and yeast with only 25% samples (340 samples for 

rice and 425 for yeast) was 18% and 13% respectively—fewer differences than for 

human. The fact that we saw fewer differences for rice and yeast may be because we did 

not randomly sample from the dataset pool as we did for human. If any given condition is 

over-represented in its co-expression relationships, it should suffer less effect from a 

decrease in number of samples.  

From our results, we can expect that a sample size of near 300-500 samples would 

result in a network with a high number of robust relationships. An additional 1,500 

samples did add a significant number of new interactions, but there were diminishing 

returns. For sample sets that are more random in time and space, such as the human 

dataset, the difference is greatest but a diminishing return was still evident.  

Also, varying the number of samples had another effect—that of adding new 

relationships. As mentioned above, 442 new edges appeared on average in the 25% 

sample networks for human. Also, in some cases, such as for rice, the number of edges 

was greater than the global (Table 4.2). We suspect these new relationships slightly 

missed the RMT threshold for the global network but passed the threshold in the 

perturbed networks.  

Removal of probe sets simulated an array platform with diminished capture of the 

total transcriptome. As would be expected, measuring fewer genes results in smaller 

networks. Loss of probe sets that measure hub nodes would create a greater loss than 

non-hubs, and the number of lost relationships would be dependent on the scale-free 

distribution: P(k) = ck-γ, where P(k) is the probability of any node having k connections, c 
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being a normalization constant and γ the power. We found that reducing probe sets by 

half reduces edges in the network by 45% for human, 41% for rice and 33% for yeast, 

and shared edges by 73% for human, 70% for rice and 73% for yeast. Therefore, a 

platform with reduced capacity to measure expression of all transcripts, as well as the fact 

that global networks only capture a small number of genes (4-14%), severely restricted 

the network from approximating a holistic representation of gene product interactions. 

These results may help qualify the amount of expected loss of co-expression space 

capture. 

Other topological properties such as scaling exponent (γ) and clustering 

coefficient were measured. Supplemental Figure S8 shows an average γ that stays 

relatively unchanged across all levels of samples and probe sets for all three species. The 

estimate of γ was calculated by fitting each network to a Kronecker scale-free graph 

model [178] and all networks exhibited a γ of 1.3-1.6—well within the expected range for 

a scale-free network. For clustering coefficient, seen in Supplemental Figure S9, the 

value remained relatively constant across all changes in samples and probe sets—all 

within 0.5-0.6. These results indicate that despite changes in sample and probe set 

composition, all networks generated using the Random Matrix Theory (RMT) 

thresholding method exhibit characteristics of typical naturally occurring networks. 

 

Functional Robustness Results 

To test for change in biological function, we examined the number of link-

community [87, 179] modules found in the networks. We assumed that decreases in the 
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number of modules would result from a loss of biological relationships in the network. 

Similarly, a loss of modules would decrease the ability to identify functional units in a 

network—lowering applicability of the network (or functional robustness). Decreases in 

the number of shared nodes and edges indicate loss of captured relationships, which 

affects module detection and functional classification of modules. To measure functional 

similarity, terms from the Gene Ontology (GO) [128], InterPro [100, 133], KEGG [99] 

and Pfam [180] databases were tested for enrichment in modules. Only terms that were 

enriched (occurred more often than by random chance alone, p <= 0.001) were 

considered.  

We also compared functional similarity of each perturbed network with the global 

network using Kappa statistics [181]. The average Kappa (κ) is the average of all κ from 

a pair-wise comparison of the modules of a perturbed network with the global network. A 

κ value of 1 indicates perfect functional similarity between the two networks and a value 

of 0 indicates no significant functional similarity. While a κ score greater than 0 indicates 

a significant similarity, in practice a higher κ value is typically used to threshold 

meaningful comparisons. We chose a stringent κ value of 0.6 as a meaningful threshold 

for examining biological robustness. 

Functional similarity was measured by counting the number of modules (the 

number of co-functional groups of genes) and using Kappa statistics to measure similarity 

between modules. When samples were varied and probe sets remained at 100% the 

number of modules varied only slightly (Table 4.2), which may indicate that genes that 

are lost typically do not play a critical role in maintaining module structure. Kappa 
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testing was then used to identify to what degree modules in perturbed networks were new 

constructs or were conserved with the global network. The average κ across all pairwise 

module comparisons between the perturbed networks and the global was very high for all 

levels of sample variation, ranging from 0.59-0.72 for human (Table 4.2, Figure 4.1C) 

and similar for yeast and rice (Supplemental Figure S12; Supplemental Table S9). These 

results indicate that networks, even with 25% of samples, are in general functionally 

conserved with networks that have 3 times the number of samples. Random removal of 

samples has little effect on the functional representations in the network. This functional 

consistency supports the idea that the relationships lost by a decrease in samples are 

primarily from genes that do not serve as hub nodes or that belong to highly-connected 

modules that can maintain structure despite loss of some constituents. 

RMT Threshold Robustness  

Finally, we were interested to identify how the RMT threshold changed as 

samples and probe sets were randomly removed. A rise in threshold would indicate an 

increase in variability of the gene expression pairwise correlations. One important 

characteristic of global networks thresholded using a knowledge-independent approach is 

that they tend to be quite small. As described previously, the human, rice and yeast global 

networks contained only 4%, 7% and 14% respectively of the measurable genes of their 

microarray platforms. This low gene count in the network is a side-effect of high-

variability in the dataset. This variability is most likely a result of combining 

measurements from disparate tissues, conditions, developmental stages and genotypes. 

For the human, rice and yeast networks, there did seem to be a slight upward trend in the 
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threshold as samples were removed, and a downward trend as probe sets were removed 

(Supplemental Figure S13; Supplemental Table S10). However, the changes were 

minimal and potentially non-significant. The results do seem to show that as probe sets 

are removed the variability of the dataset decreases. This stability is to be expected as 

probe sets are removed and cannot contribute to the correlations.  

 
 

Conclusions 

 

Results show that the RMT construction method that employs a knowledge-

independent thresholding strategy is able to create networks with a high degree of robust 

relationships and modules. Where samples are randomly distributed across tissues, 

developmental stages, genotypes, etc., (such as our human dataset) networks were 67% 

similar despite only 25% of samples with a high degree of functional similarity (0.59κ). 

The robustness of networks where samples were over-representations of certain 

conditions, tissues, stages or genotypes, such as expected in the yeast and rice networks, 

exhibited even higher similarity. We conclude therefore that all of the networks where 

only samples varied (probe sets remained at 100%) are moderately robust. However, due 

to the diminishing return of adding more samples, global networks cannot serve as a 

mechanism for capturing and representing the entire interactome of an organism, or even 

at least the entire interactome measured by the collection of samples used to construct the 

network.  
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Also, the improved code exhibited approximately 29x speedup over existing 

methods and data storage enabling the construction of hundreds of networks for 

applications such as our robustness analysis. Network construction execution time was 

shown to scale linearly with the number of samples per probe set and exponentially with 

the total number of probe sets. Data storage size also scaled exponentially with the total 

number of probe sets indicating that future research on larger datasets will require more 

sophisticated computing systems with increased parallelization or algorithms optimized 

for many-core multi-node architectures to produce the most biologically significant data 

in a reasonable amount of time. 

 
 

Methods 

Construction of RMTGeneNet Software Package 

The Random Matrix Theory (RMT) algorithm [80] used in this study was 

previously written in Java—a high-level programming language that excels in simplicity 

and portability with a wide range of pre-programmed libraries. However, it has been 

demonstrated that languages like C and FORTRAN generally provide better overall 

performance and greater optimizations because of their lower level access to computer 

system resources. Thus, a C implementation of the RMT algorithm was written using the 

GNU Scientific Library [182] and Intel® Math Kernel Library [183] to test for 

performance improvement and address potential optimizations. RMTGeneNet consists of 

three software components: ‘ccm’ for performing Pearson correlations of probe set 

expression profiles, ‘rmm’ for performing RMT to identify a network cutoff threshold 
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and a Perl script ‘parse_pearson_bin.pl’ which generates a network edge list. 

RMTGeneNet is freely available in a GitHub repository at 

https://github.com/spficklin/RMTGeneNet. 

Construction of Global Co-Expression Networks  

 Global gene co-expression networks were constructed for human (Homo 

sapiens), rice (Oryza sativa) and yeast (Saccharomyces cerevisiae). First, Affymetrix® 

microarray samples were obtained from NCBI GEO [8]. For the human network, a 

random selection of 2,000 samples was obtained from the tens-of-thousands available 

from the Human Genome U133 Plus 2.0 Array platform (GPL570). For rice, 1,360 

samples were obtained from the Rice Genome Array platform (GPL2025) and 1,701 

samples from the Yeast Genome 2.0 Array platform (GPL2529). Next, samples were 

RMA normalized [136] for each organism respectively using the command-line interface 

for the RMAExpress software [184]. After normalization, outliers were detected using 

the arrayQualityMetrics [138] package provided by BioConductor [167]. Samples 

indicated as outliers in two of three outlier tests were removed from the dataset. 

Ambiguous probe sets that could potentially hybridize with multiple gene products were 

removed from the expression data. Ambiguous probe sets were determined by mapping 

probe sets to genes and filtering those mapping to multiple genes. The mapping of probe 

sets to human genes was obtained directly using the Table Browser of the UCSC Genome 

Browser [185, 186] for the hg19 build of the human genome. For rice, the mappings were 

obtained directly from the Michigan State University (MSU) Rice Genome Annotation 

Project [6] for the rice genome v6.0. For yeast, the mappings were obtained by using 
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NCBI megablast (parameters: -W 25 -F F -D 3) to align probe sequences to the 

Saccharomyces cerevisiae S288C genome [187]. Next, a similarity matrix was 

constructed using the ccm software of the in-house RMTGeneNet package. The similarity 

matrix contained Pearson correlations of probe set expression profiles across all non-

outlier samples. Random Matrix Theory (RMT) was then used for knowledge-

independence identification of a signal-to-noise threshold for culling the similarity 

matrix. The rmm software of the RMTGeneNet package was used for RMT thresholding. 

Finally, a flat file edge list was constructed by providing the RMT threshold and the 

similarity matrix to the parse_pearson_bin.pl Perl script of the RMTGeneNet package. 

The edge list for each organism served as the final global co-expression network 

respectively. 

Randomization of Samples and Probe sets 

In order to test for network robustness, a percentage of samples and probe sets in 

the human, rice, and yeast datasets were randomly removed at 25%, 50% and 75% from 

the expression matrix: columns are samples, rows are probe sets, matrix cells are 

expression values. This removal process was repeated at least 10 times for each 

combination of samples/probe sets removed. A new network was constructed for each 

perturbed dataset using the RMTGeneNet package and each network was then tested 

using various metrics to measure robustness. Networks were constructed in parallel on 

the heterogeneous Palmetto computational cluster housed at Clemson University. 
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Abstract 

 

Many traits of biological and agronomic significance in plants are controlled in a 

complex manner where multiple genes and environmental signals affect the expression of 

the phenotype.  In Oryza sativa (rice), thousands of quantitative genetic signals have been 

mapped to the rice genome.  In parallel, thousands of gene expression profiles have been 

generated across many experimental conditions. Through the discovery of networks with 

real gene co-expression relationships, it is possible to identify co-localized genetic and 

gene expression signals that implicate complex genotype-phenotype relationships.  In this 

work, we used a knowledge-independent, systems genetics approach, to discover a high-

quality set of co-expression networks, termed Gene Interaction Layers (GILs).  Twenty-

two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles 

that were pre-clustered to allow for improved capture of gene co-expression relationships.  

Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-

tagged SNPs (p-value <= 0.001) from genome-wide association studies, both covering 

over 230 different rice traits were integrated with the GILs.   An online systems genetics 

data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery 

of gene sets (i.e. network modules) that overlap with genetic traits.   Through the 

evidence of gene-marker correspondence, functional enrichment and genes already 

associated with the trait, site visitors can quickly identify genes with potential shared 

causality for a trait.  A set of 2 million SNPs was incorporated into the database and serve 

as testable biomarkers for genes in modules that overlap with genetic traits.  Herein, we 



 119 

describe two modules found using GeneNet Engine, one with significant overlap with the 

trait amylose content and another with significant overlap with blast disease resistance. 

 

Introduction 

 

The past century has seen major advances in our understanding of genotype-

phenotype relationships underlying Mendelian and complex traits controlled primarily by 

large-effect genes.    However, methods for discovery of the genetic factors controlling 

complex traits are not fully mature, limiting our ability to use genetic-based methods for 

understanding some diseases and for breeding of certain traits in plants and animals.   In 

plants such as Oryza sativa (rice), quantitative trait loci (QTL) analysis has been a key 

method for identifying genomic positions associated with traits of interest.  While QTL 

analysis has been successful in associating some traits with large-effect genes [20, 21], it 

has failed to identify the genetic factors for traits comprised primarily of small-effect 

genes.  In a 2009 review on the status of QTL analysis for rice, Yamamoto et. al. suggest 

the need for integration of  genomics-based methods to improve the sensitivity for 

discovery of small-effect genes [188].  For example, gene co-expression networks, 

integrated with genetic and functional genomic information, offer the potential to identify 

large-effect and small-effect gene sets underlying complex traits.  This combination of 

network biology, genetics and genomics data is a recent area of study and is known as 

systems genetics [45, 189].    
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Gene co-expression networks, or relevance networks [73, 76], are increasingly 

common tools that describe complex gene expression relationships.  Co-expression 

networks consist of a set of nodes interconnected by edges where the presence of an edge 

indicates significant dependence (e.g. Pearson’s correlation coefficient (PCC)) between 

two genes across the set of input expression profiles.  Co-expression networks have 

specific topological properties similar to most naturally occurring networks:  they are 

often scale-free, hierarchical and small world [64].  Typically, construction of gene co-

expression networks uses microarray-derived expression profiles as input, although 

RNA-seq datasets have recently been used [190, 191].   A wealth of publicly available 

expression datasets are currently available in repositories such as the NCBI Gene 

Expression Omnibus (GEO; [8]), Short Read Archive (SRA; 

http://www.ncbi.nlm.nih.gov/Traces/sra/), ArrayExpress from the European 

Bioinformatics Institute [9], and other sources.   The samples submitted to these 

repositories include a record of the experimental conditions (i.e. genotype, environment, 

tissue, developmental stage).  After network construction, highly-connected genes are 

circumscribed into gene modules which tend to be involved in similar biological 

processes.  Modules that contain genes with no known function can be ascribed putative 

function through “guilt-by-association” inferences [73, 77].  Many co-expression 

networks for plants are currently available [54-56, 75, 115, 117-121, 123, 126, 148, 192].  

Also, the utility of co-expression networks has spurred development of numerous online 

web resources available for exploration of gene interaction relationships in plants [54-56, 

121, 122, 124, 125, 127, 150].   
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A deepening view of gene output captured in public expression profiles can be mined 

to build as holistic a view as possible of gene interaction for an organism.   Typically 

when co-expression networks are constructed input samples are either segregated using a 

knowledge-dependent method [192, 193] or combined into a single input set [54, 55, 

150].  However, there are limitations to both approaches for maximal discovery of an 

organism’s interactome.  Segregating samples using a knowledge-dependent approach 

relies on human knowledge, and sometimes imprecise and inconsistent vocabularies to 

identify conditions.  Even for highly controlled experiments, unknown variables in each 

sample set increase noise within the dataset, thus limiting capture of co-expression 

relationships. Combining all samples into a single compendium exacerbates the problem, 

especially as the sample set contains measurements from a highly diverse set of 

conditions [82].   While a completely holistic, “pan” co-expression network is not 

possible (as we cannot measure every gene in every experimental condition), improved, 

knowledge-independent methods are needed to detect co-expression relationships for all 

conditions using smarter dataset sorting approaches.   

Therefore, the objective of this work was to build a high resolution series of rice gene 

co-expression networks using an optimized RMTGeneNet network construction pipeline 

[60]to bring a high-level, holistic view of the interaction space of rice—one of the most 

important staple food crops in the world.  Knowledge-independent methods for network 

construction and module discovery were employed to overcome knowledge-bias in the 

detection of rice gene interaction.  Prior to co-expression network construction, we used 

K-means clustering of input microarray samples to maximize capture of gene interactions 
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that otherwise would be hidden in noise of typical network construction methods.  Our 

approach generated multiple co-expression networks from the full set of Affymetrix 

GeneChip® Rice Genome arrays available in NCBI GEO at that time–one for each K-

means cluster.  We refer to each network as a Gene Interaction Layer (GIL).   Using this 

improved capture of gene co-expression in the GIL collection, we aimed to integrate 

genetic data from QTL and Genome Wide Association Studies (GWAS) to highlight 

network modules with potential quantitative phenotype association.  To help explore the 

rice GIL collection and associated genetic signals, we created a new online data mining 

resource called GeneNet Engine for exploration of network modules with potential 

association to genetic traits.   Genes within significant network modules serve as potential 

candidates underlying complex genetic traits and potentially contain small effect genes.   

 

Results 

Network Construction 

Prior to network construction, 1,306 microarray samples were downloaded from 

NCBI GEO [8] and pre-processed including normalization, outlier detection and removal 

of control and ambiguous probesets.  Ambiguous probesets are those that map to more 

than one locus on the rice genome.   In total, 123 control probesets and 4,772 ambiguous 

probesets were removed, as well as 19 outlier samples.  Microarray samples were then 

clustered into 25 groups with similar expression using K-means clustering.  A network 

for each K-means cluster was then constructed using the RMTGeneNet package [60]. 

RMTGeneNet first generates pair-wise Pearson Correlation Coefficients (PCC) for all 
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genes and then uses Random Matrix Theory (RMT) [80] to identify an optimal threshold 

for culling PCC values.    Of the 25 clusters, the RMT method generated 22 co-

expression networks, or Gene Interaction Layers (GILs).  The three dataset groups that 

failed to generate networks had very high expression similarity across all probesets. The 

number of input samples per GIL ranged from 19 to 231 with an average size of 53.8 and 

a median of 39 (Table 5.1).  The probesets of  the input samples of each GIL were 

mapped to 46,498 of the 57,133 genes (81%)  on the Michigan State University’s (MSU) 

v6.0 Rice genome [54].  The collection of GILs contains 282,484 edges among 16,664 

nodes (genes) and together captures 35% of the measurable genes of the array and 29% 

of the total genes of the MSU v6.0 genome.  For all GILs, the PCC threshold was quite 

high, ranging from 0.91 to 0.99 indicating that all relationships (edges) are highly co-

expressed.    
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Table 5.1 Network Details from k-means clustered microarray samples into 25 
groups.  

Network 
Input 

Samples 
Outlier 

Samples 
Total 

Edges 
Total 

Nodes 
RMT 

Threshold <k>a Modules 
G0001 22 0 Failed to construct 
G0002 81 0 19,338 2,890 0.91 13.38 569 
G0003 73 2 36,346 3,155 0.92 23.04 676 
G0004 14 

 
Failed to construct 

G0005 26 0 14,641 1,991 0.97 14.71 290 
G0006 32 0 38,331 1,914 0.97 40.05 355 
G0007 90 0 12,059 2,806 0.91 8.60 370 
G0008 65 3 18,383 3,276 0.91 11.22 476 
G0009 25 0 3,579 1,366 0.99 5.24 173 
G0010 16 1 Failed to construct 
G0011 74 0 10,411 1,624 0.96 12.82 397 
G0012 40 0 29,971 3,622 0.93 16.55 522 
G0013 37 0 2,366 896 0.98 5.28 150 
G0014 118 3 6,738 1,963 0.90 6.87 330 
G0015 21 0 9,374 1,034 0.98 18.13 256 
G0016 21 1 2,358 1,670 0.97 2.82 129 
G0017 24 0 8,688 1,607 0.96 10.81 194 
G0018 36 0 8,434 1,660 0.95 10.16 216 
G0019 19 1 4,689 3,022 0.97 3.10 234 
G0020 73 3 6,268 2,308 0.91 5.43 260 
G0021 231 2 227 204 0.98 2.23 24 
G0022 58 0 7,516 2,007 0.92 7.49 279 
G0023 54 3 34,398 1,596 0.94 43.11 302 
G0024 39 0 5,880 2,512 0.95 4.68 325 
G0025 57 0 2,489 1,167 0.98 4.27 135 
Total 1,346 19 282,484 n/ab 

  
6,662 

a The average degree of a GIL.  
b The total number of nodes is 16,664 across all GILs and nodes may be present in multiple GILs. 
 

 

Gene Module Detection and Co-Similarity 

The link community method [87] was used to find modules of highly interconnected 

nodes within the GILs.  In total, 6692 link community modules (LCM) were discovered.   

Modules were named using a three-part schema separated by an underscore (e.g. 

OsK25v1.0_G0011_LCM020), where the first part ‘OsK25v1.0’ represents the O. sativa 

GIL collection version 1.0 (derived from presorting with K-means 25), a second part 
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prefixed with the letter ‘G’ indicates the GIL to which the module belongs and the third 

part prefixed by ‘LCM’ indicates the unique module within the GIL. The average number 

of modules per GIL was 302.8 and the median 284.5 (Figure 5.1).  The collection of GILs 

represents interactions between 35% of the measurable genes and some of those genes 

are present in more than one GIL.   As shown in Figure 5.1A, the majority of nodes are 

present in only a single GIL (6,608 nodes, 40%), and the number of times a node appears 

in multiple GILs decreases.    Edges tend to be more unique per GIL as 201,121 (71%) 

are only found in a single GIL and the number of times an edge appears in more than one 

GIL is significantly less (Figure 5.1B). 

 

 

Figure 5.1 Redundant Edges and Nodes.  

The number of times that a A) rice gene (node) or B) co-expressed gene pair (edge) 
appears in different GILs. 

 

To obtain a measure of similarity between modules across all GILs, a correlation 

between Kappa scores (measuring functional similarity between two modules) and 
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Jaccard indices (measuring similarity of node composition) was performed.  First, 

functional enrichment analysis of the modules was performed using terms from the Gene 

Ontology (GO; [128]), InterPro [100] and KEGG [99].  Only terms enriched within a 

module with a Fisher’s p-value of 0.01 or less were considered enriched.   Next, full pair-

wise comparisons between modules with 30 or more nodes from all GILs were performed 

using both Kappa statistics and a Jaccard similarity test.  Only enriched functional terms 

were used with the Kappa test.  Kappa scores range from -1 to 1 with values less than 0 

indicating no significant similarity of function and a score of 1 indicating identical 

similarity of function.  A Jaccard index ranges from 0 (indicating no nodes in common) 

to 1 (all nodes in common).     Figure 5.2 shows a scatterplot of Jaccard similarity 

coefficients versus Kappa scores with R2 = 0.5 (p-value < 2.2e-16) indicating a good 

degree of correlation between the node composition of modules and the enriched function 

of modules. 
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Figure 5.2 Jaccard vs Kappa Scatterplot.   

Jaccard (similarity of node composition) and Kappa (similarity of functional annotation) 
statistics were performed, pair-wise, for all modules across all GILs.  A) The scatterplot 
of Jaccard coefficient vs Kappa κ for all modules with 30 or more nodes.  B) Residual 
plot of Jaccard coefficient vs Kappa κ. 

 

A meta-network of LCM modules was then created using the similarity scores as 

described previously.  In theory, a Kappa score greater than 0 can be considered 

meaningful however in practice higher values are often used for greater stringency.  We 

used a Kappa score threshold of 0.5, which corresponds to a Jaccard score of 

approximately 0.3 in the scatterplot of Figure 5.2.  Edges were added to the meta-network 

between pairs of modules with a Kappa score of 0.5 or greater.   Figure 5.3 shows a 

diagram of the LCM module meta-network.  In this network, the nodes are LCM modules 

and edges indicate a high degree of similarity (Kappa > 0.5 and Jaccard > 0.3).  The 

edges are color-coded according to the GIL to which the modules belong.   If two 

modules from different GILs shared an edge, then the edge was black.  The meta-network 
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contains 13,578 edges across 4,965 LCM modules (75% of all LCM modules).  The 

number of edges in the meta-network that connect LCM modules of the same GIL is 

12,253 (90%) with 1,325 (10%) connecting two different GILs.   
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Figure 5.3 Gene Module “meta-network.”   

The nodes in the meta-network are LCM modules from all GILs that have a pair-wise 
Kappa score >= 0.5 and Jaccard coefficient >=0.3.  Edges are colored if both nodes in the 
edge belong to the same GIL.  Each GIL is assigned a unique color.  Edges where each 
node belongs to a different GIL are black.  Nodes are grey. 
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Interactive Systems-Genetics Exploration Tool 

To integrate genetic data with GILs, and to construct an online resource for 

exploration of genotype-phenotype relationships, the physical positions of significant 

genetic data from QTLs and GWAS studies were obtained.  Over 8,000 QTL intervals, 

along with their corresponding genomic coordinates were downloaded from Gramene’s 

QTL database [17].  Also a 300kb LD window surrounding significant SNPs (p-value < 

0.0001) from a recent GWAS study by Zhao et al were integrated [24].  Genes 

overlapping both QTL and GWAS SNP intervals were putatively assigned the trait.   

These associations as well as all GILs were input into an online database called GeneNet 

Engine which is available online at http://sysbio.genome.clemson.edu.   The data is 

housed in a Chado database schema [194] with custom tables and visualized using Tripal 

[195]. Next all available rice SNPs from NCBI’s dbSNP [196] database were uniquely 

mapped to the rice genome and  loaded into the database so that an end-user can identify 

proximal biomarkers for genotype-phenotype hypothesis testing.  Users can query the 

database using a locus name, module name, functional term, or trait of interest to 

examine the possibility that one or more modules may play a role in a particular function.  

Supplemental Figure S1 provides a screen shot of the search engine.   

The GeneNet Engine also provides a module explorer.  The module explorer 

(Supplemental Figure S5) consists of a set of tabs that provides network visualization 

(‘Module View’ tab), a genome network visualization (‘Genome View’ tab), lists of 

module nodes, edges, functionally enriched terms, a form for specifying traits to select 

(‘Filter by Trait’ tab), a list of all overlapping traits and genetic features, and a form for 
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generating a list of potential SNP biomarkers that flank highlighted nodes within a 

specified window size.  In the network module view, an interactive module is provided 

using Cytoscape Web [197].  Users are presented a network module with which they can 

move nodes, and zoom in and out.  Clicking a node will provide functional annotations 

about the node (locus details box in Supplemental Figure S2). In the ‘Filter by Trait’ tab, 

users can dynamically alter the module view or genome view by selecting one or more 

specific traits, a genetic feature type (e.g. QTL or GWAS SNP) and by limiting the 

number of overlapping traits an edge must pass through to be highlighted (Supplemental 

Figure S3).    Additionally, circular plots are available in the ‘Genome View’ tab 

allowing visitors to visualize the network within the context of the chromosomal 

coordinates as well as visualization of QTL or GWAS SNP regions that overlap with 

nodes in the module.   Examples of circular plots for the module 

OsK25v1.0_G0002_LCM0431 can be seen in Figure 5.4.   For reference, the module 

view is present in Figure 5.4A.  Figure 5.4B-F highlight changes in the genome view as 

filtering parameters are changed.   Figure 5.4B shows overlapping edges with QTLs for 

plant height.  Edges with at least one node within a QTL region are colored red.   In cases 

where there are large QTLs or where QTLs cover large swaths of the genome, almost all 

of the edges are red.  Figure 5.4C shows the same plot but only with a single QTL set for 

plant height.  These QTL are all from the same genetic map and fewer overlaps are 

present.  Figure 5.4D shows the same module overlapping genetic features for the trait 

amylose content.  While not as dense as QTLs for plant height they do overlap a large 

portion of the module.  Therefore, a limit that an edge must pass through at least 3 
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different genetic features was imposed for the image in Figure 5.4E.  Figure 5.4F 

contains the plot for amylose content overlapping QTLs from a single genetic map.   

Users can obtain p-values for the filters they employ by looking on the ‘Genetic Features’ 

tab of the Module Explorer. 

 

 

 

 

 

 

 

Figure 5.4 Circular Genome Plots of Network Module 
OsK25v1.0_G0002_LCM0431.   

The chromosomes of rice are shown as the outer circle.  Gray arcs are edges of the 
module.  Endpoints of each edge are fixed on the physical location in the genome where 
the node (gene) is found.  Red arcs are edges that overlap a genetic feature.   The colored 
tiles along the chromosomes represent genetic features (e.g. QTLs or regions around 
significant SNPs in GWAS).  A) Network view of the module.  Red nodes overlap with 
genetic traits for amylose content, green nodes do not.  B)  Circular plot of the module 
with all genetic features for plant height.   C) Plot with QTLs from a single genetic map 
(Cornell 9024/LH422 RI QTL 1996) and edges highlighted red where an edge overlaps at 
least two QTL.   D) Plot of the all genetic features for amylose content where edges 
overlap with at least 1 genetic feature.  E) Plot of all genetic features for amylose content 
with overlap of at least 3 genetic features. F) Plot of module edges with QTLs from a 
single genetic map (CNHAU Zhen97/H94 QTL 2005) with overlap of at least 3 genetic 
features.  The inset graph shows the connectivity of the overlapping nodes. 
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Discussion 

 

The primary objectives of this project were three-fold.  The first objective was to 

use all publicly available microarray-based RNA expression profiling data in NCBI GEO 

to generate co-expression networks for O. sativa that could capture as many gene 

interactions as possible.   Second was to integrate, on a massive scale, network nodes 

with results from genetic analyses such as QTL and GWAS studies with the expectation 

that network modules could serve as a genome reduction strategy for finding genes that 

may be associated with a given trait.   The final objective was to construct a systems 

genetics data mining platform for discovery of relationships between network modules 

and genetic traits and the reagents that could be readily used for hypothesis testing. 

One major challenge mentioned in the Introduction was that of overcoming an 

increase in noise as disparate samples from various conditions are used for network 

construction.  Performing a gene pair-wise correlation across all samples only allows for 

genes that are similarly expressed across all conditions to be found.  Gene correlations 

expressed in only a few samples will not be found due to dilution. A larger and more 

diverse input dataset would result in a smaller network [82].    Additionally, thresholding 

methods such as ad hoc methods [70-73] have been used to allow for flexible 

thresholding but, they provided little statistical guidance and can incorporate non-

significant relationships.  To capture all relationships in the dataset, we avoided methods 

that require bait genes, such as linear regression [75].   Rank-based methods [76, 77] did 

offer an attractive feature in that they allow for dynamic thresholding.  Dynamic 
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thresholding does not apply a constant threshold across the entire set of PCC values, but 

rather examines the neighborhood around each gene to determine the threshold.  Partial 

Correlation and Information Theory (PCIT) [82] and supervised machine learning [84, 

85] also generate high-quality networks with dynamic thresholding, but were not 

currently adaptable to our network pipeline.   By pre-clustering of samples based on gene 

expression pattern alone, we are able to use Random Matrix Theory (RMT) to provide 

thresholding for a highly significant set of relationships for each GIL.  A unique RMT 

threshold is determined for each GIL, thus our approach behaves similarly to a dynamic 

thresholding method but without dependence on global PCC values such as the case with 

rank-based methods.  Because RMT is knowledge-independent and is not biased towards 

prior and possibly incomplete knowledge, we were able to capture a very high quality set 

of relationships derived solely on the underlying expression values.  While we used K-

means clustering for pre-sorting, one benefit to our approach is that any number of data 

clustering methods could be used.     

The availability of rich genetic data for rice was a key motivation for this study.  

We used approximately 8,000 genome mapped QTLs from Gramene.  The Gramene 

curators painstakingly mapped markers for all QTLs to the MSU v6.0 genome assembly, 

thus providing genomic coordinates for the QTLs.   The precise genes causal for many of 

the traits underlying these QTLs are unknown.   Therefore, we simply assigned the QTL 

trait to all genes underlying the QTL intervals.  Given the imprecision of QTL mapping, 

and our assigning a trait to all genes underlying a SNP or QTL region, we introduce 

many false positive gene-phenotype associations.  The visualizations and lists provided 
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on the GeneNet Engine (Figure 5.5 and Figure 5.7) will highlight all genes and edges 

from a network module that overlap with a QTL or GWAS SNP, but most likely will 

include false positives by random chance alone.  The probability that a network module 

could contain a gene underlying a region for a genetic feature can be quite high, 

especially in the case of large QTLs, many QTLs for the same trait or where the module 

is large.   Additionally, other factors such as tandem array genes (TAGs) can bias 

correspondence p-values due to overlap redundancy.  TAGs typically are involved in 

similar function or pathways and hence would be co-expressed and typically present in 

the same module.   TAGs therefore would bias p-values calculations that expect a normal 

distribution.  Despite these challenges we simply provide a Fisher’s test as a probability 

metric for false positives.   However, we caution that this is only meant as a guide for 

filtering modules of interest, and further work is needed to identify an appropriate method 

for p-value calculation.   

Because we mixed samples from a variety of O. sativa genotypes we obtained 

network relationships for the species as a whole and not specifically for a single 

genotype.  Therefore, it may be possible that a network module may represent pathways 

specific to an individual or subspecies, and other modules could be specific to other 

subspecies.  Moreover, a module could be a conglomeration of interactions across a set of 

individuals or subspecies.  As evidence for this, a linear relationship exists between the 

square root of the number of QTLs (across all studies) and the amount of genome space 

they cover (Figure 5.5).  This seems to confirm the notion that hundreds (or potentially 

thousands) of genes may contribute to a trait, and as more genotypes are analyzed, the 
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more genes that are captured by QTLs.  The GWAS study by Zhao et. al. also suggests 

that different groups of genes control the same trait in different subpopulations [24].  

Therefore, it would seem that the collection of all QTLs for a given trait becomes an 

approximation of a pan-QTL set for the species.  Similarly, the GIL collection is an 

approximation of a pan co-expression network.     

 

 

Figure 5.5 Number of QTLs per Trait vs Genome Coverage.   

The scatterplot shows the relationship between the total percent covered of the physical 
genome versus the square root of the number of experiments per trait for QTL data from 
Gramene.  Inset shows plot of residuals. 
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To demonstrate the use of the GeneNet Engine, we use as an example the trait 

amylose content.   It is well understood that the Waxy gene (Wx) plays a major role in 

amylose content [198].  This gene resides on chromosome 6 of Oryza sativa and is at 

locus LOC_Os06g04200 on the MSU v6.0 genome.  A recent study of 171 rice 

accessions shows that two SNPs in the Waxy gene account for 86.7% of the variation in 

amylose content [199], indicating it is a large effect gene.  Recently, Zhao et. al. included 

amylose content as a trait in their GWAS study and significantly identified 68 SNPs 

associated with amylose content with a mixed model p-value < 1e-4 [24].  In an effort to 

find small effect loci that may affect variation in amylose content, a search was 

performed using the GeneNet Engine. Using the search page a filter was entered that 

provided the Waxy gene locus, LOC_Os06g04200, as well as overlap with the amylose 

content trait.  In this case, the genetic feature was limited to a ‘GWAS SNP’.   The result 

yielded 6 modules from the Rice GIL collection and one from a previous global rice 

network [54] which has also been added to the GeneNet Explorer.  Most of the network 

modules were small (between 5–15 nodes).  In the GIL collection, the largest module was 

OsK25v1.0_G0023_LCM0301, with 30 nodes, and it had the largest average connectivity 

(<k> = 17.47) indicating that the nodes were more highly interconnected than the other 5 

modules.   The GeneNet Engine provides a Fisher’s p-value as a simple means for 

filtering modules that may have a high probability of false positives.  As mentioned 

previously, this p-value is simply a guide and does not necessarily imply a high 

probability of causality for the trait.  The top enriched functional terms for all 7 modules 

included seed storage protein (IPR006044), alpha-amylase inhibitor (IPR013771), and 
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transcription factor CBF/NF-Y (IPR003958).  All 6 GIL collection modules were present 

in GIL G0023 except for one (enriched for Transcription factor CBF/NY-Y) which was 

present in GIL G0003.  Starch synthase (K00703) was also enriched in all 7 modules.  All 

6 of the Rice GIL modules overlapped with only 1 or 2 GWAS SNPs, with p-values quite 

high (from 0.2 to 0.03), indicating a high probability of false positives.  However, after 

including overlapping genes underlying QTLs using the ‘Filter by Trait’ tab in the 

Module Explorer, the p-values were all lower and the most highly connected GIL 

module, OsK25v1.0_G0023_LCM0301, overlapped with 13 QTLs and 2 GWAS SNPs 

(15 genetic features) with a p-value of 1.9e-4 (Figure 5.6).  The module from the global 

network was much larger, overlapped 4 GWAS SNPs and 34 QTLs but had a high 

probability of false positives (p-value = 0.03).   While p-values were not significant for 

some of the smaller modules, it would seem that any of these modules could be potential 

candidates to explore small-effect variation in amylose content.  Potentially, combining 

several of these modules may provide, as a group, a set of possible small-effect candidate 

genes.  The OsK25v1.0_G0023_LCM0301 module seemed most suited for exploration as 

it is relatively small (only 30 genes) had a significant p-value (1.9e-4) and all nodes were 

highly connected indicating a high degree of cooperation.   The effects of these genes 

may be examined through additional lab experiments, such as where plants with 

mutations can be grown and phenotyped.  As a direct means for verification through 

experimentation, GeneNet Explorer can provide a list of SNPs that could potentially 

serve as biomarkers for breeding.  For module OsK25v1.0_G0023_LCM0301, over 4200 
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SNPs were obtained, all within 50kb of genes that overlapped genetic features for 

amylose content. 

 

 

Figure 5.6 A Significant Module for Amylose Content.  

Module OsK25v1.0_G0023_LCM0301 significantly overlaps with 15 different genetic 
features (2 SNPs, 13 QTLs, p-value=1.9e-4) and is significantly enriched for Bifunctional 
trypsin/alpha-amylase inhibitor helical domain and starch synthase.  A)  Red circles 
indicate nodes that overlap with genetic features and green nodes do not.  B) The 
distribution of module edges along the genomic chromosomes.  GWAS SNPs are barely 
visible as tick marks whereas QTLs are visible as small colored blocks along the 
chromosomes.  Edges are red if one node lies within the region of a genetic feature. 

 

As a second example we use the trait for blast disease resistance.   The Pi-ta gene 

is known to be associated with blast resistance [200]. The locus for this gene on the MSU 

v6.0 genome is LOC_Os12g18360, but unlike the example for amylose content, it does 

not appear in any network modules.  Additionally, 200 QTLs are present for blast disease 

resistance which covers a large portion of the genome.  Therefore, the chance that any 

module would overlap with the set of QTLs for blast disease resistance is high.  
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However, only 16 GWAS SNPs were associated (mixed model p-value < 0.0001).  

Therefore, a search was entered into GeneNet Engine to find modules overlapping with 

the blast disease resistance trait but only that overlapped with GWAS SNPs.  

Additionally, a limit of 10 nodes was included to limit the appearance of smaller 

modules.  A total of 242 matching modules were returned.   Results were sorted by an 

increasing node size and examined to find modules overlapping more SNPs than other 

modules of similar size.   The module OsK25-v1.0_G0008_LCM0015 had a module size 

of 25 nodes and overlapped with 3 SNPs while others of similar size overlapped with 1 or 

2.  Figure 5.7 shows the network view and genome plot for this module which has a false 

positive Fisher’s p-value of 5.9e-4.  The module is enriched primarily for an Ankyrin 

repeat (IPR002110), but also for Syntaxin (IPR006011, IPR006012, SNARE proteins) 

and for disease resistance protein (IPR000767).  There are several Ankyrin repeat 

containing proteins that are involved in many biological processes but they are also 

known to participate in disease resistance, such as in the case of the OsBIANK1 gene 

which is expressed during infection of Magnaporthe grisea, the blast disease fungus [201, 

202].  Additionally, Syntaxin SNARE has been shown to participate in resistance to 

pathogens through membrane-vesicle fusion in the delivery of anti-pathogen compounds 

[200].   The evidence provided by the overlap of 3 module nodes with 3 of the 16 SNPs 

(p-value = 5.9e-4) associated with blast disease resistance in addition to the functional 

annotations make the OsK25-v1.0_G0008_LCM0015 a good candidate for further study 

of potential genes that participate in resistance to blast fungus infection.  Any of the 

genes in this module could potentially serve as small effectors of the trait. 
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Figure 5.7 A Significant Module for Blast Disease Resistance.  

Module OsK25-v1.0_G0008_LCM0015 significantly overlaps with 3 different GWAS 
SNPs (p-value = 5.9e-4) and is functionally enriched for Ankyrin, Syntaxin and disease 
resistance protein.  A)  Red circles indicate nodes that overlap with genetic features and 
green nodes do not.  B) The distribution of module edges along the genomic 
chromosomes.  GWAS SNPs are barely visible as tick marks and edges are red if one 
node overlaps the region surround a GWAS SNP. 

 

 
The methods for discovery of significant modules for both examples above were 

somewhat different.  In the first example a known gene was used to guide discovery of 

interesting modules, whereas for the second a significant module was found by browsing 

through a few hundred results.   As seen in Figure 5.4, a module can overlap with many 

genetic features from multiple traits (e.g. plant height and amylose content).  This should 

be expected naturally as genes are known to be multi-functional, but most likely many of 

these overlaps are false positives.  Therefore, the GeneNet Engine will calculate p-values 

for false positives dynamically as users change filtering parameters in the Module 
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Explorer, thus allowing users to explore different filters.  Also, as mentioned previously, 

the more experiments across genotypes the more likely the QTLs will cover more of the 

genome, creating more false positives raising p-values for all modules that overlap with 

the trait. In these cases, users may want to focus on modules that overlap with individual 

genetic maps.   Users can filter by genetic map in the ‘Filter by Trait’ tab of the GeneNet 

Explorer (Supplemental Figure S3).  Therefore, it may be necessary to apply various 

searching approaches to find modules of interest for a specific trait, but as demonstrated 

in the two examples, interesting modules for further testing can be found.    

The rice K-means 25 GIL collection and the GeneNet Engine are the first release 

of a large-scale, integrated systems-genetic resource for plants to help with prediction of 

genes underlying complex traits.   However, several improvements can be made.   The 

choice of a K value of 25 was selected by using the common “rule of thumb” function of 

k = √(n/2).   However, we were only able to capture 35% of the measurable genes on the 

Affymetrix GeneChip array.  This fell short of our goal to capture near 100% of the 

measurable genes; however this level of coverage is possible.  In another study where the 

approach of pre-clustering was applied to Arabidopsis thaliana, approximately 98% of 

genes were capture in the GIL set (unpublished data).  For that study, a K value was 

selected by iterating through different K sizes to maximize gene capture.   It would be 

beneficial to find a more appropriate value of K for constructing a rice GIL collection that 

captured relationships from more genes in the array, with the potential of capturing all of 

them.  Alternatively, other more dynamic pre-clustering methods may be used other than 

K-means to improve interaction capture. 
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Additionally, it may be beneficial to augment module detection to take into 

account overlap with genetic features.  For this project we used the link community 

method for module discovery [87]. This method and many others rely on parameter 

settings that can be more or less inclusive.  Therefore, network modules are a function of 

not only the underlying connectivity but the parameters used during execution of the 

algorithm.  Generating modules that optimally capture a specific biological process is 

challenging and one set of parameters may capture well some processes but not others.  

In the first example for amylose content, all 6 modules overlapped with genetic traits for 

amylose content, had the Waxy gene and all had similar functional enrichment.    All 

modules were relatively small with the exception of the largest module, 

OsK25v1.0_G0023_LCM0301, and all modules, except one, came from the GIL G0023.  

This concurs with the fact that GILs tend have modules of similar function.  As seen in 

the scatterplot of Figure 5.2 and the meta-network of Figure 5.3, network modules tend to 

be most similar to other modules within the same GIL.    It would seem, therefore, that 

the module detection algorithm could potentially take advantage of genetic and functional 

relatedness to stitch together potentially more significant modules.  But, in summary, a 

more flexible and dynamic module creation method may improve the creation and 

identification of gene sets underlying complex traits. 
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Conclusion 

 

Here we present the Rice GIL collection of networks that are a first attempt at 

using pre-clustering of O. sativa RNA expression profiles to capture all co-expression 

relationships measured by the full compendium of publicly available microarray samples 

at NCBI GEO.  Our goal has been to guide network construction and module discovery 

solely through the evidence of gene expression.  The knowledge-independent approach 

reduces bias towards our limited knowledge of the underlying biological processes.  We 

integrate experimentally validated genetic data from over 8,000 rice QTLs from Gramene 

and significant SNPs from a recent rice GWAS study to create a platform for discovery 

of network modules that may be associated with trait causality.  The platform is made 

available in the form of an interactive website named GeneNet Engine found at 

http://sysbio.genome.clemson.edu.  The value in this approach is two-fold.  First, it brings 

to light potentially small-effect genes (those that are connected in the module) and serves 

as a filtering technique to locate genes that underlie genetic features for complex traits 

such as QTLs.  We anticipate that significant or interesting modules from GeneNet 

Engine can be used for further lab-based experimentation which can translate to quicker 

discovery of genes underling complex traits and further application in rice breeding. 
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Materials and Methods 

Construction of the Rice GIL Networks 

Before construction of the Rice GIL networks, all available samples from the 

Affymetrix GeneChip® Rice Genome array were obtained from NCBI GEO [8].  At the 

time, 1306 samples were retrieved.   All samples were then pre-processed with RMA 

normalization [136] using RMAExpress [184] and sample outliers were detected using 

the arrayQualityMetrics package [138] for BioConductor [167].  Samples that failed at 

least two of the three outlier test were removed.  The output consisted of an m x n 

expression matrix where m is the number of samples and n is the number of probesets on 

the array.  Next, control probes were removed from the matrix as well as ambiguous 

probes that mapped to more than one gene. 

After pre-processing the samples in the expression matrix were then grouped.   

The kmeans function of R was used to segregate samples into sets of similar overall 

expression.  A value of k = 25 was determined using the common “rule of thumb” 

function of k = √(n/2), and hence 25 clusters of samples were generated.  Twenty-two 

separate networks were then constructed by first passing each group through the same 

pre-processing, quality control pipeline described previously:  samples within a group 

were normalized, outliers were removed and control and ambiguous probesets were 

removed.  Three K-means clusters did not construct networks and were removed.  The 

list of microarray samples and the K-means cluster (and GIL) are provided in 

Supplemental Table S1. 
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Next, the co-expression network for each k-means group was constructed using 

the RMTGeneNet software package [60].  RMTGeneNet is a software package written in 

the C programming language that quickly generate correlation matrices and network 

adjacency matrices.  RMTGeneNet first performs pair-wise correlation analysis for every 

probeset on the array, generating an m x m similarity matrix of correlation values ranging 

from -1 to 1.  Next, it employs Random Matrix Theory (RMT) [80] to find an optimal 

threshold.  According to RMT, the more random a matrix, the more the nearest-neighbor 

spacing distribution (NNSD) of eigenvalues appears Gaussian.  The less random, the 

more Poisson-like it appears.  RMT determines a threshold for the similarity matrix by 

measuring when the NNSD ceases to appear Poisson (p-value = 0.001).  An adjacency 

matrix is constructed by setting all values less than the threshold to zero.  In total, 22 

adjacency matrices were produced: one for each K-means cluster.  Finally, probesets 

were mapped to genes in the MSU Rice v6.0 [6] assembly of the Oryza sativa genome, 

and 22 gene co-expression networks, or Gene Interaction Layers (GILS), were 

constructed.  GILs were generated in parallel using Clemson University’s Palmetto 

computation cluster.   

Module Discovery 

After construction of the 22 GILs, modules were determined using the link-

community method [87].   This approach allows a gene to be present in multiple modules. 

This approach is more reasonable for multi-functional genes and does not restrict genes 

to a single module such as other methods (e.g. MCL [88]).   We used the linkcomm 

function for R [179] to generate LCM modules for all 22 GILs. 
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Functional Enrichment 

All modules from all GILs underwent functional enrichment analysis to look for 

significantly over-represented terms in relation to the genomic background.  Terms from 

the Gene Ontology [128], and InterPro [100] databases mapped to genes were obtained 

directly from the MSU website and KEGG [99] terms were mapped to genes using the 

KEGG Automatic Annotation Server [142].  Functional enrichment was performed using 

a DAVID-like [92, 93] Perl script developed in-house.   Terms enriched with a Fisher’s 

test p-value < 0.01 where kept. 

Genome Mapping of Genetic Data 

Genetic data from the Gramene QTL database [7, 17], and from a recent GWAS 

study [24] were used in this study for associating traits with network modules.  Gramene 

curators used marker information to map over 8,000 QTL regions from various studies to 

positions on the Oryza sativa MSU v6.0 genome sequence.   We then putatively 

associated all genes underlying the QTL regions the QTL trait.   QTLs that only mapped 

to a single marker and were therefore smaller than 5bp were enlarged to 2Mb.  For the 

GWAS study, only significant SNPs (p-value < 0.0001) from the mixed model analysis 

were used.    Genes within a 300kb window around the SNP were putatively associated 

with the SNP trait.   The range of 300kb flanking was used because this was the estimated 

average linkage disequilibrium for Oryza sativa japonica reported in the GWAS study 

(the largest of the three subspecies).   The trait names used for both the QTLs and SNPs 

are from Gramene’s Trait Ontology (TO) [203].  The TO terms used for both QTLs and 

SNPs were provided by Gramene.  Additionally, traits from the Tos17 retrotransposon 
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study [104, 105] were also included in this study but were associated to network modules 

using the same process as for functional enrichment described previously.  The process 

was the same as described for the global network for Oryza sativa [54].   The gene 

assignments to Tos17 phenotypes as well as enrichment are present in the GeneNet 

Engine but are not discussed in this manuscript. 

Data Storage and Visualization 

All genomic, genetic and network data was stored within a Chado database [194].  

Custom tables were created for storing network data (nodes, edges, and modules).  

Materialized views were constructed to enable faster searching.  Visualization of 

genomic, genetic and network data was implemented using Tripal [195], an open-source 

publicly available construction toolkit for online genomic and genetic databases.  A 

custom Tripal extension module was written specifically for this project and used for 

display of network data, as this functionality was not already part of Tripal.   Cytoscape 

Web [197] was used for the network module visualization and the d3 JavaScript library 

(http://d3js.org) was used for drawing the circular genome plots.  Network modules from 

all 22 GILs are searchable on the GeneNet Engine v0.9 site at 

http://sysbio.genome.clemson.edu.  The Tripal Network extension module is freely 

available, but is under active development and is therefore available upon request. 
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Use of SNPs 

SNPs from NCBI’s dbSNP database [196] for Oryza sativa were obtained through 

bulk download from dbSNP’s FTP site.   SNPs were then mapped to the MSU v6.0 build 

of the Oryza sativa genome using blat [204].  Only SNPs that mapped once to the 

genome with a minimum percent identity of 0.98 across the full length of the SNP 

flanking sequence were kept (approximately 2.8 million).  These SNPs were loaded into 

the database and are intended to serve as potential biomarkers.   
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Conclusion 

 
 
 

This dissertation presents a knowledge-independent systems-genetic approach to 

identify gene sets underlying complex traits and their associated biological functions.  

The first effort was to construct a global co-expression network for rice and integrate that 

network with genetic data from Tos17 mutational insertion studies.  The rice network was 

constructed to be a “global” network such that all samples were used in the construction.   

Several modules were identified that had significant enrichment of phenotypes from the 

Tos17 study.  The implication is that those modules could contain the genes, not known 

before, to have an effect on expression of the trait.   

Next, the ability to translate knowledge gained from one systems-genetics 

analysis in one species (rice) to another closely related (maize) was examined.  The 

expectation was that gene sets that underlie complex traits in one species could be used as 

predictors of the same trait in closely related species.   The study showed a high-degree 

of topological and gene sequence similarity between modules identified in the rice co-

expression network and a novel maize co-expression network. This suggests that network 

modules in one species can be used to identify modules in another species that underlying 

a complex trait.   

Third, the robustness of the co-expression network itself was examined to identify 

the level that interactions observed were side-effects of some sample bias.  Were the 

functional modules in the global network stable?  Results showed that despite some 

minimal variability in node and interaction composition, the modules were in fact quite 
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stable, thus reinforcing the results obtained in the previous two studies. Additionally, the 

collaboration with the Smith Lab yielded the RMTGeneNet software package capable of 

quickly producing RMT thresholded networks and afforded the ability to generate 

hundreds of networks in a short period of time that were used to test robustness. 

Fourth results from a GWAS study of 34 agronomic traits in rice and over 8000 

QTLs in rice were integrated with a new set of co-expression networks for rice.  These 

co-expression networks form a collection termed the Gene Interaction Layer (GIL) 

collection.  The rice GIL collection captured over 30% of the measurable genes of the 

rice microarray platform and greatly increased the number of interactions.  The goal was 

to approximate a more holistic view of rice co-expression relationships while avoiding 

experimental bias.   Examples of modules from the GIL collection that had significant 

overlap with loci from GWAS and QTL studies were presented. A new online 

exploration tool called the GeneNet Engine (http://sysbio.genome.clemson.edu) was also 

introduced. 

As described in the Introduction (Chapter 1) of this dissertation, the goal of this 

work was to identify the gene sets underlying complex traits in grasses as well as the their 

functional context.   QTL Mapping, GWAS and Genome Selection methods could 

identify regions in linkage disequilibrium with causal genes but in many cases could not 

identify the genes themselves.  Also, the functional role and interactions of those genes 

was unknown.  Did the work presented in this dissertation answer the initially stated 

goal?  The answer is yes and no.   First, systems-genetic analysis and results have been 

lacking in the grasses.  So, the work performed here has added a wealth of new resources 
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and tools for exploring gene relationships, functional gene modules and potential 

genotype-phenotype relationships for a set of very important plants.  Gene sets, or 

network modules, have been identified with significant association to phenotypes derived 

from existing genetic studies, and a mechanism to look for new associations has been 

provided to the community through the GeneNet Engine exploration tool.   Examination 

of network robustness and the ability to translate systems-genetic knowledge between 

closely related species has added to the greater understanding of networks both in general 

and within the grasses.  Therefore, a portion of the goal was met, in that progress has 

been made.  However, validation of these modules with significant association to 

complex traits needs to be performed.  While modules have been identified, it is not 

known the amount of heritability of the trait that these modules explain.  Are they 

applicable to only a few genotypes?  Does the module discovery method adequately 

circumscribe all the necessary small and large-effect genes for the trait?  How many 

genes are present in the modules that may have little or no effect on the trait, and would 

they need to be removed before the module could be used in a breeding strategy?  What 

side-effects are there if one of these significant modules were used with a breeding 

strategy? Are there underlying environmental effect that limits the success of these 

modules as a selection tool?   Many questions remain unanswered and while results show 

promise, much work remains to be done.   

In conclusion, systems-genetics offers a promising avenue as a technique that can 

augment existing strategies to unravel the mechanism underlying complex traits. The 

tools and results presented here offer a start to such studies for the grasses.  With 
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continued improvements to the analysis methods and expansion of this work into lab and 

field-based validation the systems genetics approach should prove beneficial for 

improving important agronomic traits in grasses with the continued objective to improve 

the quality and availability of such an important group of species. 
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Appendix A Supplemental Figures and Tables From Chapter 5 

 

 

Supplemental Figure S1.  The GeneNet Engine v0.9 Search Form.  The search form 

can be used to locate network modules by species, network name, module name, specific 

gene, functional annotation terms, traits, and simple topology. 
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Supplemental Figure S2.  The GeneNet Engine Module Explorer.  Contains an 

interactive module viewer, a genome viewer with circular plots of the module, edge and 

node lists, functional enrichment report and trait selection tool to filter reports and views 

by specific genetic traits. 
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Supplemental Figure S3.  Filter by Trait Tab of the Module Explorer.  Users can 

alter the module explorer to identify edges overlapping genetic features.  Users can select 

features by trait name, genetic feature type, genetic maps (if applicable) and specify the 

amount of overlap required. 
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Table S1. Microarray 
samples within each GIL 
NCBI 
Sample 
Accession 

K-
means 
Cluster 
(GIL) 

GSM302922 1 

GSM302923 1 

GSM304390 1 

GSM304394 1 

GSM304395 1 

GSM304397 1 

GSM304478 1 

GSM304485 1 

GSM304497 1 

GSM304646 1 

GSM304653 1 

GSM304654 1 

GSM304664 1 

GSM304669 1 

GSM304671 1 

GSM304677 1 

GSM764300 1 

GSM764301 1 

GSM764302 1 

GSM764303 1 

GSM764304 1 

GSM764305 1 

GSM100443 2 

GSM100444 2 

GSM100445 2 

GSM100446 2 

GSM149411 2 

GSM149412 2 

GSM159177 2 

GSM159178 2 

GSM159179 2 

GSM345235 2 

GSM345236 2 

GSM345237 2 

GSM345238 2 

GSM345239 2 

GSM345240 2 

GSM345241 2 

GSM345242 2 

GSM345243 2 

GSM345244 2 

GSM345245 2 

GSM359902 2 

GSM359903 2 

GSM359904 2 

GSM359905 2 

GSM359906 2 

GSM359907 2 

GSM359908 2 

GSM359909 2 

GSM359910 2 

GSM359911 2 

GSM359912 2 

GSM359913 2 

GSM359914 2 

GSM359915 2 

GSM359916 2 

GSM359917 2 

GSM359918 2 

GSM359919 2 

GSM359920 2 

GSM359921 2 

GSM359922 2 

GSM359923 2 

GSM359924 2 

GSM470620 2 

GSM470621 2 

GSM470624 2 

GSM470625 2 

GSM470634 2 

GSM470635 2 

GSM470718 2 

GSM470719 2 

GSM470722 2 

GSM470723 2 

GSM470732 2 

GSM470733 2 

GSM619236 2 

GSM619237 2 
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GSM619238 2 

GSM619239 2 

GSM619240 2 

GSM619241 2 

GSM619242 2 

GSM619244 2 

GSM619245 2 

GSM619246 2 

GSM619247 2 

GSM619248 2 

GSM619249 2 

GSM619250 2 

GSM645328 2 

GSM645329 2 

GSM645330 2 

GSM645331 2 

GSM645332 2 

GSM645333 2 

GSM645340 2 

GSM645341 2 

GSM645342 2 

GSM645343 2 

GSM645344 2 

GSM645345 2 

GSM195218 3 

GSM195219 3 

GSM195220 3 

GSM351447 3 

GSM357614 3 

GSM357615 3 

GSM357616 3 

GSM357617 3 

GSM357618 3 

GSM357620 3 

GSM357621 3 

GSM357622 3 

GSM357623 3 

GSM357624 3 

GSM357625 3 

GSM357626 3 

GSM357627 3 

GSM357628 3 

GSM357629 3 

GSM357630 3 

GSM357631 3 

GSM357632 3 

GSM357633 3 

GSM357636 3 

GSM357637 3 

GSM357638 3 

GSM357639 3 

GSM357640 3 

GSM357641 3 

GSM357642 3 

GSM357643 3 

GSM357644 3 

GSM357645 3 

GSM357646 3 

GSM357647 3 

GSM357648 3 

GSM357649 3 

GSM357650 3 

GSM357651 3 

GSM357653 3 

GSM357654 3 

GSM357655 3 

GSM357656 3 

GSM357657 3 

GSM357658 3 

GSM357659 3 

GSM357660 3 

GSM357661 3 

GSM357662 3 

GSM357682 3 

GSM357683 3 

GSM357684 3 

GSM409771 3 

GSM409772 3 

GSM409773 3 

GSM409774 3 

GSM409781 3 

GSM630939 3 

GSM789503 3 

GSM789504 3 

GSM789505 3 

GSM789506 3 

GSM789507 3 
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GSM789508 3 

GSM789509 3 

GSM789510 3 

GSM789511 3 

GSM789512 3 

GSM789513 3 

GSM789514 3 

GSM789515 3 

GSM789516 3 

GSM789517 3 

GSM387556 4 

GSM387557 4 

GSM387558 4 

GSM387559 4 

GSM387560 4 

GSM387561 4 

GSM387562 4 

GSM387563 4 

GSM387564 4 

GSM468795 4 

GSM468796 4 

GSM468799 4 

GSM468800 4 

GSM195221 5 

GSM195222 5 

GSM195223 5 

GSM351427 5 

GSM351428 5 

GSM351429 5 

GSM351430 5 

GSM351431 5 

GSM351432 5 

GSM351433 5 

GSM351434 5 

GSM351435 5 

GSM351436 5 

GSM357619 5 

GSM357652 5 

GSM409421 5 

GSM409422 5 

GSM409427 5 

GSM409428 5 

GSM409429 5 

GSM515490 5 

GSM515491 5 

GSM515492 5 

GSM515493 5 

GSM515494 5 

GSM515495 5 

GSM159189 6 

GSM159190 6 

GSM159191 6 

GSM159192 6 

GSM159193 6 

GSM159194 6 

GSM159195 6 

GSM159196 6 

GSM159197 6 

GSM159198 6 

GSM159199 6 

GSM159200 6 

GSM351437 6 

GSM351438 6 

GSM351439 6 

GSM351440 6 

GSM351441 6 

GSM351442 6 

GSM351443 6 

GSM351444 6 

GSM351445 6 

GSM351446 6 

GSM429984 6 

GSM686458 6 

GSM686459 6 

GSM686460 6 

GSM686461 6 

GSM686462 6 

GSM686463 6 

GSM686464 6 

GSM686465 6 

GSM686466 6 

GSM100440 7 

GSM100442 7 

GSM149409 7 

GSM149410 7 

GSM154829 7 

GSM154831 7 
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GSM154832 7 

GSM154833 7 

GSM154937 7 

GSM154938 7 

GSM154939 7 

GSM154940 7 

GSM154941 7 

GSM154942 7 

GSM154943 7 

GSM154944 7 

GSM159172 7 

GSM159173 7 

GSM195226 7 

GSM261998 7 

GSM261999 7 

GSM262000 7 

GSM262001 7 

GSM262002 7 

GSM262003 7 

GSM262004 7 

GSM262005 7 

GSM262006 7 

GSM262007 7 

GSM262008 7 

GSM262009 7 

GSM262010 7 

GSM262011 7 

GSM262012 7 

GSM262013 7 

GSM262014 7 

GSM262015 7 

GSM262016 7 

GSM262017 7 

GSM262018 7 

GSM262019 7 

GSM262020 7 

GSM262021 7 

GSM302920 7 

GSM302921 7 

GSM357679 7 

GSM357680 7 

GSM357681 7 

GSM431925 7 

GSM431926 7 

GSM431927 7 

GSM431928 7 

GSM431929 7 

GSM431930 7 

GSM431931 7 

GSM431932 7 

GSM458175 7 

GSM458176 7 

GSM458177 7 

GSM458178 7 

GSM458179 7 

GSM458180 7 

GSM458181 7 

GSM458182 7 

GSM458183 7 

GSM458184 7 

GSM458185 7 

GSM458186 7 

GSM461481 7 

GSM461482 7 

GSM461528 7 

GSM461534 7 

GSM542564 7 

GSM542565 7 

GSM542566 7 

GSM542567 7 

GSM542568 7 

GSM542569 7 

GSM545318 7 

GSM545319 7 

GSM545320 7 

GSM545321 7 

GSM545322 7 

GSM545323 7 

GSM545324 7 

GSM545325 7 

GSM545326 7 

GSM692533 7 

GSM692534 7 

GSM692535 7 

GSM159180 8 

GSM159181 8 

GSM159182 8 
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GSM159183 8 

GSM159184 8 

GSM159185 8 

GSM203238 8 

GSM203239 8 

GSM203240 8 

GSM203241 8 

GSM203242 8 

GSM203243 8 

GSM470636 8 

GSM470637 8 

GSM470638 8 

GSM470639 8 

GSM470640 8 

GSM470641 8 

GSM470643 8 

GSM470648 8 

GSM470649 8 

GSM470666 8 

GSM470667 8 

GSM470734 8 

GSM470738 8 

GSM470739 8 

GSM470746 8 

GSM470747 8 

GSM470765 8 

GSM470766 8 

GSM591764 8 

GSM591765 8 

GSM591766 8 

GSM591767 8 

GSM591768 8 

GSM591769 8 

GSM591770 8 

GSM591771 8 

GSM591772 8 

GSM595945 8 

GSM595946 8 

GSM595947 8 

GSM645322 8 

GSM645323 8 

GSM645324 8 

GSM645325 8 

GSM645326 8 

GSM645327 8 

GSM645334 8 

GSM645336 8 

GSM645337 8 

GSM645338 8 

GSM645339 8 

GSM645346 8 

GSM645347 8 

GSM645348 8 

GSM645349 8 

GSM645350 8 

GSM645351 8 

GSM822094 8 

GSM822095 8 

GSM822096 8 

GSM822097 8 

GSM822098 8 

GSM822099 8 

GSM195227 9 

GSM351448 9 

GSM351449 9 

GSM351450 9 

GSM351451 9 

GSM351452 9 

GSM470656 9 

GSM470657 9 

GSM470754 9 

GSM470755 9 

GSM686467 9 

GSM686468 9 

GSM686469 9 

GSM692539 9 

GSM692540 9 

GSM692541 9 

GSM692542 9 

GSM692543 9 

GSM692544 9 

GSM692545 9 

GSM692546 9 

GSM692547 9 

GSM692548 9 

GSM692549 9 

GSM692550 9 
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GSM100441 10 

GSM275405 10 

GSM275406 10 

GSM275407 10 

GSM275408 10 

GSM275409 10 

GSM275410 10 

GSM275411 10 

GSM275412 10 

GSM275413 10 

GSM275414 10 

GSM275415 10 

GSM275416 10 

GSM692536 10 

GSM692537 10 

GSM692538 10 

GSM174883 11 

GSM174884 11 

GSM174885 11 

GSM174887 11 

GSM174888 11 

GSM421667 11 

GSM421668 11 

GSM421669 11 

GSM421670 11 

GSM421671 11 

GSM421672 11 

GSM421673 11 

GSM421674 11 

GSM421675 11 

GSM421676 11 

GSM421677 11 

GSM421678 11 

GSM421679 11 

GSM421680 11 

GSM421681 11 

GSM421682 11 

GSM421683 11 

GSM421684 11 

GSM421685 11 

GSM421686 11 

GSM421687 11 

GSM421688 11 

GSM421689 11 

GSM421690 11 

GSM421691 11 

GSM421692 11 

GSM421693 11 

GSM421694 11 

GSM421695 11 

GSM421696 11 

GSM421697 11 

GSM421699 11 

GSM421700 11 

GSM421701 11 

GSM421702 11 

GSM421703 11 

GSM421704 11 

GSM421705 11 

GSM421706 11 

GSM421707 11 

GSM421708 11 

GSM421709 11 

GSM421710 11 

GSM421711 11 

GSM421712 11 

GSM421713 11 

GSM421714 11 

GSM421715 11 

GSM421716 11 

GSM421717 11 

GSM421718 11 

GSM421719 11 

GSM421720 11 

GSM421721 11 

GSM421722 11 

GSM421723 11 

GSM421724 11 

GSM421725 11 

GSM421726 11 

GSM468793 11 

GSM468794 11 

GSM468797 11 

GSM468798 11 

GSM822064 11 

GSM822065 11 

GSM822066 11 
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GSM822067 11 

GSM822068 11 

GSM822069 11 

GSM159201 12 

GSM159202 12 

GSM159203 12 

GSM159204 12 

GSM159205 12 

GSM159206 12 

GSM159207 12 

GSM159208 12 

GSM159209 12 

GSM429985 12 

GSM470642 12 

GSM470646 12 

GSM470647 12 

GSM470650 12 

GSM470651 12 

GSM470652 12 

GSM470653 12 

GSM470654 12 

GSM470655 12 

GSM470658 12 

GSM470659 12 

GSM470736 12 

GSM470740 12 

GSM470741 12 

GSM470744 12 

GSM470745 12 

GSM470748 12 

GSM470749 12 

GSM470750 12 

GSM470751 12 

GSM470752 12 

GSM470753 12 

GSM470756 12 

GSM470757 12 

GSM645352 12 

GSM645353 12 

GSM645354 12 

GSM645355 12 

GSM645356 12 

GSM645357 12 

GSM377070 13 

GSM377071 13 

GSM377072 13 

GSM377073 13 

GSM377074 13 

GSM377075 13 

GSM377076 13 

GSM377077 13 

GSM377078 13 

GSM377079 13 

GSM377080 13 

GSM377081 13 

GSM377082 13 

GSM377083 13 

GSM377084 13 

GSM377085 13 

GSM377086 13 

GSM409780 13 

GSM409782 13 

GSM409783 13 

GSM409784 13 

GSM409785 13 

GSM409786 13 

GSM409787 13 

GSM409788 13 

GSM409789 13 

GSM409790 13 

GSM422672 13 

GSM422674 13 

GSM422676 13 

GSM506394 13 

GSM506395 13 

GSM506396 13 

GSM506397 13 

GSM506398 13 

GSM506399 13 

GSM506400 13 

GSM154945 14 

GSM154946 14 

GSM154947 14 

GSM154948 14 

GSM154949 14 

GSM154950 14 

GSM154951 14 
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GSM154952 14 

GSM154953 14 

GSM154954 14 

GSM154955 14 

GSM154956 14 

GSM174886 14 

GSM174889 14 

GSM174890 14 

GSM207558 14 

GSM207559 14 

GSM207560 14 

GSM207562 14 

GSM207563 14 

GSM207564 14 

GSM207565 14 

GSM207566 14 

GSM207567 14 

GSM267998 14 

GSM267999 14 

GSM357122 14 

GSM357133 14 

GSM357134 14 

GSM357135 14 

GSM357136 14 

GSM357137 14 

GSM357685 14 

GSM357686 14 

GSM357687 14 

GSM357688 14 

GSM365260 14 

GSM365262 14 

GSM365263 14 

GSM365266 14 

GSM365267 14 

GSM365268 14 

GSM366813 14 

GSM366818 14 

GSM366819 14 

GSM368873 14 

GSM378729 14 

GSM378730 14 

GSM378731 14 

GSM421698 14 

GSM476769 14 

GSM476770 14 

GSM476771 14 

GSM476772 14 

GSM476773 14 

GSM476774 14 

GSM476775 14 

GSM476776 14 

GSM476777 14 

GSM476778 14 

GSM476779 14 

GSM476780 14 

GSM495736 14 

GSM495737 14 

GSM495738 14 

GSM495739 14 

GSM495740 14 

GSM495741 14 

GSM495742 14 

GSM495743 14 

GSM495744 14 

GSM563421 14 

GSM563422 14 

GSM563423 14 

GSM570988 14 

GSM570989 14 

GSM570990 14 

GSM570991 14 

GSM570992 14 

GSM570993 14 

GSM570994 14 

GSM570995 14 

GSM570996 14 

GSM570997 14 

GSM570998 14 

GSM570999 14 

GSM591761 14 

GSM591762 14 

GSM591763 14 

GSM647655 14 

GSM647656 14 

GSM647657 14 

GSM696667 14 

GSM696668 14 
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GSM696669 14 

GSM696670 14 

GSM696671 14 

GSM696672 14 

GSM696673 14 

GSM696674 14 

GSM696675 14 

GSM696676 14 

GSM696677 14 

GSM696678 14 

GSM696679 14 

GSM696680 14 

GSM696681 14 

GSM696682 14 

GSM696683 14 

GSM696684 14 

GSM696685 14 

GSM696686 14 

GSM698482 14 

GSM698483 14 

GSM698484 14 

GSM698485 14 

GSM698486 14 

GSM698487 14 

GSM409775 15 

GSM409776 15 

GSM409777 15 

GSM409778 15 

GSM409779 15 

GSM470622 15 

GSM470623 15 

GSM470721 15 

GSM595933 15 

GSM595934 15 

GSM595935 15 

GSM595936 15 

GSM595937 15 

GSM595938 15 

GSM595939 15 

GSM595940 15 

GSM595941 15 

GSM595942 15 

GSM595943 15 

GSM595944 15 

GSM630938 15 

GSM195225 16 

GSM696647 16 

GSM696648 16 

GSM696649 16 

GSM696650 16 

GSM696651 16 

GSM696652 16 

GSM696653 16 

GSM696654 16 

GSM696655 16 

GSM696656 16 

GSM696657 16 

GSM696658 16 

GSM696659 16 

GSM696660 16 

GSM696661 16 

GSM696662 16 

GSM696663 16 

GSM696664 16 

GSM696665 16 

GSM696666 16 

GSM173080 17 

GSM173086 17 

GSM173089 17 

GSM173091 17 

GSM173093 17 

GSM173094 17 

GSM278844 17 

GSM278845 17 

GSM278846 17 

GSM278847 17 

GSM278848 17 

GSM278849 17 

GSM278850 17 

GSM278851 17 

GSM278852 17 

GSM278853 17 

GSM278854 17 

GSM278855 17 

GSM403000 17 

GSM470735 17 

GSM470737 17 
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GSM692530 17 

GSM692531 17 

GSM692532 17 

GSM159210 18 

GSM159211 18 

GSM159212 18 

GSM159213 18 

GSM159214 18 

GSM159215 18 

GSM159216 18 

GSM159217 18 

GSM159218 18 

GSM159219 18 

GSM159220 18 

GSM159221 18 

GSM195229 18 

GSM195230 18 

GSM240994 18 

GSM240995 18 

GSM240996 18 

GSM240997 18 

GSM240998 18 

GSM240999 18 

GSM302916 18 

GSM302917 18 

GSM470660 18 

GSM470661 18 

GSM470662 18 

GSM470663 18 

GSM470664 18 

GSM470665 18 

GSM470758 18 

GSM470759 18 

GSM470760 18 

GSM470761 18 

GSM470762 18 

GSM470763 18 

GSM630940 18 

GSM630941 18 

GSM254091 19 

GSM254092 19 

GSM254093 19 

GSM254095 19 

GSM254096 19 

GSM254097 19 

GSM302918 19 

GSM302919 19 

GSM366811 19 

GSM366812 19 

GSM366814 19 

GSM366815 19 

GSM366816 19 

GSM366817 19 

GSM366820 19 

GSM366821 19 

GSM366822 19 

GSM615979 19 

GSM692770 19 

GSM116195 20 

GSM116398 20 

GSM116399 20 

GSM116400 20 

GSM116401 20 

GSM116402 20 

GSM159259 20 

GSM159260 20 

GSM159261 20 

GSM159262 20 

GSM159263 20 

GSM159264 20 

GSM159265 20 

GSM159266 20 

GSM159267 20 

GSM159268 20 

GSM159269 20 

GSM159270 20 

GSM402997 20 

GSM402998 20 

GSM402999 20 

GSM403001 20 

GSM403002 20 

GSM403003 20 

GSM403004 20 

GSM403005 20 

GSM403006 20 

GSM403007 20 

GSM403008 20 
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GSM403009 20 

GSM403010 20 

GSM403011 20 

GSM403012 20 

GSM470626 20 

GSM470627 20 

GSM470628 20 

GSM470629 20 

GSM470630 20 

GSM470631 20 

GSM470632 20 

GSM470633 20 

GSM470668 20 

GSM470669 20 

GSM470670 20 

GSM470671 20 

GSM470672 20 

GSM470673 20 

GSM470674 20 

GSM470675 20 

GSM470676 20 

GSM470677 20 

GSM470678 20 

GSM470679 20 

GSM470724 20 

GSM470725 20 

GSM470726 20 

GSM470727 20 

GSM470728 20 

GSM470729 20 

GSM470730 20 

GSM470731 20 
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