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ABSTRACT

CHRISTOPHER C. OVERALL. Microarray tools and analysis methods to better
characterize biological networks.

(Under the direction of DR. JENNIFER WELLER)

To accurately model a biological system (e.g. cell), we �rst need to characterize

each of its distinct networks. While omics data has given us unprecedented insight

into the structure and dynamics of these networks, the associated analysis routines

are more involved and the accuracy and precision of the experimental technologies

not su�ciently examined. The main focus of our research has been to develop meth-

ods and tools to better manage and interpret microarray data. How can we improve

methods to store and retrieve microarray data from a relational database? What ex-

perimental and biological factors most in�uence our interpretation of a microarray's

measurements? By accounting for these factors, can we improve the accuracy and

precision of microarray measurements? It's essential to address these last two ques-

tions before using 'omics data for downstream analyses, such as inferring transciption

regulatory networks from microarray data. While answers to such questions are vital

to microarray research in particular, they are equally relevant to systems biology in

general.

We developed three studies to investigate aspects of these questions when using

A�ymetrix expression arrays. In the �rst study, we develop the Data-FATE frame-

work to improve the handling of large scienti�c data sets. In the next two studies,

we developed methods and tools that allow us to examine the impact of physical

and technical factors known or suspected to dramatically alter the interpretation of

a microarray experiment. In the second study, we develop ArrayInitiative � a tool

that simpli�es the process of creating custom CDFs � so that we can easily re-design

the array speci�cations for A�ymetrix 3' IVT expression arrays. This tool is essential
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for testing the impact of the various factors, and for making the framework easy to

communicate and re-use. We then use ArrayInitiative in a case study to illustrate the

impact of several factors known to distort microarray signals. In the third study, we

systematically and exhaustively examine the e�ect of physical and technical factors

� both generally accepted and novel � on our interpretation of dozens of experiments

using hundreds of E. coli A�ymetrix microarrays.
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CHAPTER 1: INTRODUCTION

Advances in experimental and computational technology ushered in the current

'omics era, which is characterized by large-scale, high-throughput experiments, and

with this wealth of data, it is now possible to start modeling and even building

complete biological systems, known respectively as systems biology and synthetic

biology. While giving us unprecedented insight into the dynamics of a cell, using the

results from omics experiments poses numerous challenges for modern researchers,

from storage and organization to scaling modeling environments so they can handle

the inputs; the data sets are complex and massive, the associated analysis routines

are more involved and the accuracy and precision of the experimental technologies

are not su�ciently examined.

The main focus of our research has been to develop methods and tools to better

manage and interpret microarray data. While past research focused most on correctly

predicting strong clinical markers of a number of diseases, the ability to understand

regulatory networks and underlying mechanisms of the diseases has been a longer

range goal. Problems of importance to this research include: How can we improve

methods to store and retrieve very large sets of microarray data from a relational

database? What physical and technical factors most confound our interpretation of a

microarray's measurements? Does deprecating confounded probes allow us to improve

the accuracy and precision of microarray measurements? It is essential to address

these last two questions before using 'omics data for downstream analyses, such as

inferring transciption regulatory networks from microarray data. While microarray

data �rst raised these questions, they are relevant to 'omics research in general.
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1.1 Systems biology, synthetic biology and networks

Systems biology studies multi-component biological systems found in living cells,

organisms and communities, seeking to understand how their complex interactions

give rise to emergent functions and behaviors at multiple scales, the most fundamen-

tal questions and mysteries in biology [1, 2]. Pragmatically, we'd like to use this

understanding to identify more robust biomarkers and better predict drug targets,

using a systems-level understanding to promote e�cacy and limit side e�ects. More

idealistically, our goal is to understand mechanisms that underlie function, including

redundancies and fault tolerances. Synthetic biology is the test bed for biological sub-

systems, using biotechnology to engineer biosimilar components, including systems

not found in nature, creating novel functions and behaviors [3]. For example, the

engineering of completely synthetic hydrohexitol nucleic acid polymers (HNAs) and

highly modi�ed polymerases carries the promise of creating non-toxic, non-degradable

aptamers for binding proteins [4]. Synthetic biology o�ers the opportunity to build

and test systems in isolation from the full complexity of their biological origin. Just as

the �ndings in systems biology inform the design of synthetic biological systems, the

failures and successes in synthetic biology inform our understanding of interactions

in natural biological systems [3].

Complex systems can be represented as networks that are modeled as graphs [5].

The �rst step is to break down the system into autonomous, or nearly autonomous,

subsystems, characterizing the participants, interactions, state parameters, and out-

side inputs. Systems biology uses this paradigm of interacting networks to represent

many types of cellular systems, including the protein-protein interaction network [6],

transcription regulatory network (TRN) [7, 8], signaling network [9, 10] and metabolic

network [11, 12]. The network elements are not disconnected, but the speci�c focus

helps identify points where networks modulate one another [13].

There are two major challenges to understanding and modeling a network: char-
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acterizing its complete structure (static interactome) and modeling which parts are

used under speci�c conditions (dynamic interactome)[14]. The static interactome in-

cludes the molecular components (nodes) and all of their possible interactions (edges)

- basically, this is an hierarchical parts list [15]. The dynamic interactome describes

how the network responds to internal and external signals (e.g. which subnetworks

are active, how information propagates through the network, timing etc.). Generally,

many data sets are integrated to infer the global structure of the network , while

experiments based on time series or individual factors are used to understand the dy-

namics [14, 16]. It is also important to understand how the subnetworks interact with

each other [17]. Since networks may interact at several points that shift depending

on the state, massive amounts of experimental data must be generated across many

environmental states and genetic conditions. This data must then be integrated ap-

propriately in both spatial and temporal scales [18]. As a data-driven science, it

is essential to capture the imperfections of measurement platforms so that integra-

tion is performed correctly. The preceding decade of microarray-intensive research

has illustrated these problems well, from how sensor design in�uences outcomes to

the integration challenges presented when read-out devices di�er in sensitivity and

speci�city [19, 20, 21, 22]. The consequences of not removing suspect data are well-

documented for clinical tests, but are less publicized with respect to networks [23, 24].

Most genomics experiments that aim to elucidate the dynamics of a system actu-

ally capture a series of static snapshots, with the aim of �nding the common signature

for a particular class of molecule over many cells, although there are also e�orts to

observe single cells using methods tuned to the time step of the molecular species [25].

As �rst expressed by the Functional Genomics Data (FGED) Society (formerly, the

Microarray Gene Expression Databases [MGED] Society) in their MIAME standard

[26], and later mimicked by many others [27, 28, 29] the data management system

that can organize all of the information required to replicate the experiment is di�-



4

cult to design, especially if a consistent model that yields analytical speed is the goal

[30, 31]. A signi�cant result of these early e�orts was recognition that controlled,

structured vocabularies, or ontologies, must be developed in parallel with the data

management hardware and software before e�ective data integration or data mining

could be achieved [32]. Not only are these resources needed for each type of network,

but as we move towards integrating networks, additional systems must be developed

[33, 34].

For the remainder of this chapter, we'll focus on transcription regulatory networks

and the relevant experimental technologies used to characterize them.

1.2 E. coli and its TRN

Transcription regulatory networks are the foundation for all other biological net-

works, since proteins originate as transcripts and metabolites are created or moved

around by proteins, while together proteins and metabolites modulate transcription;

the modulation of transcript production is the initial regulatory network of cells. The

most completely studied TRN is that of E. coli, and E. coli is the most completely

understood biological system. This is true for many historical and practical reasons:

studying prokaryotes is easier than studying eukaryotes since they lack alternative

splicing, they have fewer genes and are amenable to genetic manipulation, and many

are relatively easy to culture in the lab (especially E. coli). Since E. coli has been

a model genetic and experimental organism for many years, and is used extensively

in biotechnology, there is an enormous amount of 'omics data. In particular, many

of the transcription factors and the units they regulate have been comprehensively

characterized across many environmental states and genetic states. A large number

of these datasets are in the public domain, and thus serve as a foundation for studies

such as ours [35].
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1.3 Characterizing TRNs with microarray data

To fully characterize the structure and dynamics of a TRN, you must monitor all

of its nodes simultaneously, over many conditions and time points. The �rst `omics

platform to deliver this capability was the DNA microarray.

DNA microarrays

The DNA microarray simultaneously assays all of the complementary nucleic acids

in a target solution. Thus it is a popular experimental tool for carrying out many

types of genomic and transcriptomic experiments, including gene expression pro�ling,

detection of protein-DNA interactions, sequencing, comparative genomics, detection

of single-nucleotide polymorphisms (SNPs) and copy number variation (CNV) and

detection of alternative splicing. The arrays are constructed as two-dimensional grids

of oligonucleotides ('probes'), each unique sequence is covalently a�xed to a solid

support at a speci�c location ('feature') via spotting or direct synthesis to reactive

groups. Genomic features that we wish to assay may vary from a single nucleotide

polymorphism (SNP) to units that are tens of thousands of nucleotides in length.

Except for SNPs, for most features the probes are shorter than the corresponding

targets. This presents an opportunity to sample the target multiple times, and some

platforms are designed to accomplish that goal [36]. It is also possible to construct a

sampling hierarchy based on co-location of elements on a molecule. As an example,

in prokaryotes the genes on an operon may be co-transcribed. So there may be two

probes that sample one gene, three probes that sample another, and the 5 probes

together sample the operon. To de�ne this sort of relationship, we use the term

'a�liated probes' in this dissertation, meaning any set of probes that measures the

same contiguous nucleic acid target. An example of this is shown in Fig. 1.1.

Important distinctions between microarray platforms include the probe length and

probe density on the array. Length allows greater sensitivity, but at the expense of

speci�city unless hybridization conditions can be tuned. The length of probes on
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Probe set 1 Probe set 2 Probe set 3

Gene 1 Gene 2 Gene 3

Operon

Figure 1.1: Example of a�liated probes.
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the most widely used platform is 25nt (A�ymetrix, [37]) and on currently marketed

commerical platforms the maximum length is 70nt (Agilent, [38]). The 'probe density'

can mean either the number of spots per array, which corresponds to the level of

genome feature coverage, or to the concentration of the probe within a spot, which

correlates to the percent of target that can be bound [39].

Although microarry platform designs di�er, the basic procedure for running a

microarray experiment is the same for all of them. When a solution of some labeled,

puri�ed cellular fraction is assayed against a microarray, a target will hybridize to

any su�ciently complementary probes (intended or not); those not bound after the

required reaction time are washed away. Target is labeled if this was not already done,

and then the array is scanned, inducing the target-bound �uorophore to emit photons

(signal), which are then captured and saved as an image �le. For the computational

scientist, the intensity of the pixels in this �le is the starting point for estimating the

concentration of each target molecule [39].

A�ymetrix DNA microarrays

A�ymetrix [37] produces the most widely used of the high-density DNA microar-

rays (called the GeneChip®platform). Their complexity results from the promiscu-

ous placement of probes with respect to target elements and the multiplicity of probes

per biological target. In this case, high probe density means both that there are hun-

dreds of thousands to millions of simultaneous measurements to be considered and

that the local concentration of probe is very high. The probes are synthesized in-situ,

with relatively short lengths (25-33nt). Although the physical design of the arrays � a

two-dimensional grid of probes � is identical to other types of DNA microarrays, the

logical design di�ers signi�cantly since multiple distinct probes (from 4 to 16 or more,

depending on the speci�c array type) must be merged to report on any given feature.

The advantage to such a design is the redundancy of the measurements: probe or tar-

get characteristics that fail to report accurately can be removed or reassigned while
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leaving su�cient probes to faithfully report on the intended target.

These probes are grouped into sets, as shown in Fig. 1.2, which shows the logical

design for 3' IVT expression arrays.

Figure 1.2: The logical design of an A�ymetrix GeneChip®.

An A�ymetrix-de�ned probe set is one level in the a�liated probe hierarchy which

might discriminate variants of a transcript, exon, or SNP. The class of expression

arrays is most relevant to our interest in studying TRNs. For several generations of

the 3' IVT expression arrays, the basic measurement 'unit' was a probe pair, which

included one perfect match (PM) probe and one mismatch (MM) probe, having a
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single homomeric transversion at the central position relative to the PM [37]. For

example, the E. coli antisense genome array, which will be the focus of Chapter 4

(ProbeSieve), consists of 141,629 probe pairs organized into 7,312 probe sets - 4,426

of them are designed for open reading frames (ORFs), while the remaining 2,886

target intergenic regions of the E. coli K12 genome. Most the of the probe sets have

either 15 or 16 probe pairs.

Goals of a microarray experiment

Gene expression microarray experiments are performed to compare the transcrip-

tomes produced by di�erent biological conditions (e.g. healthy vs. diseased state) and

to characterize the structure and dynamics of TRNs across time intervals, conditions

and genetic backgrounds. A transcriptome is generally considered to be a description

of the genes transcribed above a background level, but in the case of a prokaryote

like E. coli, the transcriptome could be considered a description of the transcription

units (TUs) produced above a background level, a distinction with a di�erence for

multi-gene operons. Since regulation a�ects operons, an accurate inference of the TU

level is our goal when describing TRNs.

To infer co-regulation of operons requires that the results of many experiments

be compared, since two TUs may well both change without a common regulatory

cause .Only if TUs consistently change levels, in the same direction and over many

conditions, is it likely that co-regulation is occurring. Microarrays are valuable tools

for characterizing the structure and dynamics of TRNs, as researchers can collect

a large amount of experimental data across many environmental states and genetic

conditions[40, 41].

1.4 Relevance of microarray data to E. coli TRN research

Although high-throughput sequencing (HTS) technologies [42] are starting to sup-

plant microarrays as the predominant data-gathering platform for transcript levels,

data from DNA microarrays will continue to be produced and used for the foresee-
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able future [43]. In part this is because, as an established platform there are core labs

producing high quality data and experimentalists well trained in producing the sam-

ples. With respect to analysis, the pipelines for data cleansing and data mining are

far more mature for microarray data than for RNA-Seq data, and more experts have

been trained to use them. Many E coli expression microarray data set are available in

public repositories, which is not yet true for HTS data. In fact, NCBI, the manager

of the Gene Expression Omnibus microarray data repository [44], has announced that

it won't store HTS data because it's too resource-intensive. Because of its size and

current lack of model standards, data sharing is more di�cult with HTS data than

for microarray data. Thus, expression microarray data remain a valuable resource for

the discovery of TRNs.

1.5 Microarray data: storage, quality assessment, and integration

Despite 15 years of concentrated e�ort by a large group of experts, there re-

main many challenges associated with storing, managing and using large amounts

of microarray data, particularly with respect to determining data quality. This is

highlighted by a recent report in which data mining results based on microarray data

were shown to be independent of the experimental variables [45].

In section 1.6, we discuss the essential components for storing, managing and

using any type of experimental data, which includes building ontologies, developing

databases and creating analytical work�ows. This is the background for research

described in Chapter 2 (Data-FATE). Once raw data has been properly organized

it can be �ltered to identify responses that arise due to the experimental variables

and nothing else. There are well-known reproducibility problems associated with

microarray data (section 1.7) and known contributing factors (section 1.8). Most

analytical work�ows require an array speci�cation in order to process the �ltered

(cleansed) data. The review of current methods (sections 1.9 and 1.10) provides the

context for Chapters 3 (ArrayInitiative) and 4 (ProbeSieve), which describe a tool for
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re-de�ning probe sets and methods for determining groups of probes with correlated

responses to be assigned to such groups.

1.6 Organizing 'omics data

The principle challenges when sharing any type of experimental data include �nd-

ing mechanisms to communicate the meaning of the data and tools for disseminating

the data so that it can be retrieved in useful parts as well as entire sets. Data models,

database management systems, common vocabularies and shared work�ows are all

essential before a community can make use of a common resource. Although many

innovative models and management software environments continue to be developed

[46], the maturity of the relational data model and associated management software

has led to their preeminence across the spectrum of biological databases [47]. Mean-

ingful descriptions require a shared vocabulary. Logically structuring those vocabu-

laries allows one to reason about relationships, as biologists demonstrated with the

taxonomic tree of life. Thus ontologies have become an important organizing method

for biological data. The development and testing of such ontologies has become a re-

search focus in its own right, and includes the de�nition of entities, relationships, data

models (e.g. database, exchange formats, etc) and data formats. Finally, to analyze

your data consistently (read: arrive at reproducible results), you need to develop and

use analytical work�ows, with varying degrees of rigor.

With the dramatic increase in the volume and complexity of 'omics data (microar-

ray, proteomics, next-gen sequencing), the scope of these challenges has increased

abruptly. Here we'll discuss each of these challenges � ontologies, databases and ana-

lytical work�ows � in general, and as they pertain to A�ymetrix microarrays speci�-

cally. This section contains the relevant background for Chapter 2 - Data-FATE.

1.6.1 Ontologies

Humans constantly construct models of the universe around them, whether it be

a process model or a data model. Process models describe a set of linked transforma-
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tions that allow us to understand how something works and predict the outcome of

new inputs or parameters e.g. creating a dynamical model of a transcription regula-

tory network [48, 49]. Data models (including ontologies) de�ne the elements under

scrutiny and all of the possible relationships that a process might use to link them.

Not only is the data structured, but if the structure is a logical one then consistent

representation of the data is assured. This is essential for the discovery of new rela-

tionships, which have often emerged when microarray data are used to characterize

networks like TRNs [48]. Ontologies are also essential for data integration, which is

one of the major challenges in Bioinformatics and systems biology [50, 18].

De�nition of an ontology

An ontology � as de�ned in the information sciences � is a formal de�nition of

concepts from a particular domain, and the relationship between those concepts. It

is essentially a structure, or model, imposed on data in order to make sense of it, and

to reason about it. Like the natural scientists' mathematical models, the ontology

describes the participants in a physical process, and how those participants interact

with each other.

More rigorously, a formal ontology consists of concepts, attributes and relations

[51]. A concept is an object, such as a gene, that has at least one attribute (feature),

such as genomic location. Concepts and their attributes are analagous to objects

and their properties as de�ned in object-oriented programming. Concepts can range

from general to speci�c and one concept can be a sub-concept of another (with the

requirement that they share at least one attribute). Most biological ontologies have

used the container (`is-a' and `part-of') relationships only, although more active verbs

are slowly being adopted by the Gene Ontology and the Systems Biology Ontolo-

gies [52]. For example, you could have a gene concept, with two subconcepts being

prokyarotic gene and eukaryotic gene. Finally, an ontology de�nes relations between

concepts; these are like the verbs and connectives in a sentence. For example, a gene
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is `expressed' as a gene product, either RNA or protein. In this case this relation is

uni-directional, from gene to gene product, indicating a logical limit on the process

that transforms one to the other. The easiest way to visualize an ontology is as a

graph, where the nodes are concepts and the edges represents a relation between two

concepts.

There are two types of ontologies: prescriptive and descriptive. While they both

de�ne concepts, attributes and relations, they di�er in how they are constructed and

used.

Prescriptive and descriptive ontologies

A prescriptive ontology (shared ontology, top-down ontology, inductive ontology)

is one developed, and agreed upon, by the community of use (e.g. microarray re-

searchers). This is a top-down approach where the concepts, attributes and rela-

tionships are prescribed by a group of experts - it's expected that all new data will

conform to the structure of the ontology and that all researchers will use it without

modi�cation. While strict and rigid, they're essential for clear communication in the

sciences. Having a specialized language for communicating in a particular domain

ensures that domain experts are talking about the same things in the same way, with

concepts and relationships that are precise and unambiguous . For example, most

biologists will agree on the general de�nition of a gene, even if some attributes vary

by sub-specialty. Placed within a formalized, logical structure, prescriptive ontolo-

gies also allow reasoning. If you're working within a well-established physical system

or experimental procedure � where there's deep understanding about the processes

and data � then a prescriptive ontology likely already exists or is straightforward to

develop. Examples of prescriptive ontologies in Bioinformatics include the MGED

ontology [26], Gene Ontology (GO) [53], the Systems Biology Ontology (SBO) [54],

with its related Kinetic Simulation Algorithm Ontology (KiSAO), and Terminology

for the Description of Dynamics (TEDDY)) [54].
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Although prescriptive ontologies provide signi�cant bene�ts, they also have sig-

ni�cant overhead: since they are driven by community consensus, they are slow to

update to new concepts and relationships, and as they become both large and complex

it can be more di�cult to test additions thoroughly. Especially in areas undergoing

rapid expansion it is unlikely that everyone agrees on the meaning of the new data. As

the ontology grows (or becomes bloated, depending on your perspective), researchers

are often forced to use irrelevant terms, and overhead many refuse to accept. Some

ontologies have been built with this in mind, with structure that allows pruning, so

one retains only the most useful set of terms [55].

A descriptive ontology (bottom-up, inductive) is one built directly from what is

known about the data: it describes the experimental factors that a�ect the data. If

you're working in a frontier science, where the understanding of system components

and relationships is dynamic, a prescriptive ontology is at best going to be under

development. Descriptive ontologies are more limited in scope, being tuned to the

task at hand, but allow rapid prototyping of ontologies to support novel applications.

Researchers will initially produce multiple competing ontologies but in doing so will

test their e�ectiveness.

Implementing an ontology

Scientists constantly create ontologies, but in the past they have rarely formalized

them. It is really the advent of information sharing, and need for data integration from

locations across the world, that has driven the growth in scienti�c ontologies. Data

structures required by analytical tools are ontologies, including entity relationship

diagrams or an object model used for databases. A structure may be implemented in

many ways, depending on the applications that need to access it, such as a relational

database schema or XML de�nition �le (DTD, XSD etc.). Data exchanged formats

are increasingly using XML. Each implementation will have its own instances e.g. an

XML document using a particular schema. Even if you forego the explicit creation
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of an ontology, often it's implicit in the implementations or instance data. Some

implementations of Bioinformatics ontologies include MAGE-ML [26], GelML [27]

and the XML represetation of the Systems Biology Ontology[54].

1.6.2 Databases

While omics experiments generate the high volume of data needed to characterize

the structure and dynamics of biological networks, at the end of the experiment you

are confronted with a large amount of raw data and a large amount of meta-data to

manage. A single microarray (sample) will produce an intensity �le with a size ranging

from tens to hundreds of megabytes and thousands to millions of measurements; this

problem is exacerbated with the newer technologies, where a single HTS run (lane)

may produce �les in the gigabyte range. This must be multiplied by the number

of replicates, samples and conditions, resulting in total data size that is 10 - 100

times larger. The corresponding metadata (experimental and biological information

describing the data), and the relationships can be extremely complex. The object

model for the Minimal Information about A Microarray Experiment (MIAME, the

MAGE-OM) contains 169 objects with very complicated relationships [56].

Relational databases have been the de facto standard for storing large amounts

of data for two decades, and in the following sections, we'll discuss them and their

limitations. Next, we'll brie�y discuss NoSql (not-only SQL, non-relational and dis-

tributed databases), which have been gaining more prominence as the limits of rela-

tional databases have been pushed (and often exceeded) by the recent data explosion

in both the sciences and the commercial sector. While NoSql databases are not the

focus of this dissertation, the limitations they're meant to work around, and their

general approach, apply to the Data-FATE system that we've developed, which is the

subject of the research described in Chapter 2.
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Relational databases

Relational databases have mature data management software support, and are

used by nearly anyone needing to store and retrieve large amounts of data (e.g. cor-

porations, researchers etc.). All relational databases adhere to the relational model

(to varying degrees), which was developed by E.F. Codd (IBM) in 1970 [57]. The

relational model itself is relatively simple to understand, but this simplicity comes

with a cost: the software implementation that enforces the relational model is ex-

tremely complex and resource intensive. The data structures are manipulated and

queried using the Structured Query Language (SQL), a standard honored at some

level by all relational database management systems (RDBMSs). Although the lan-

guage is relatively simple to learn and use, the actual algorithms for manipulating

the relational data structures and retrieving the data sets are quite complex, and

performance tuning is an art, not a science.

The relational data model

The relational data model imposes a particular type of logical view on the data

structures, carrying with it an ontology. A particular instance of a relational model �

such as one to model the operon structure of prokaryotic genes � is an implementation

(realization) of an ontology, whose structure conforms to the rules of the relational

model.

The relational model supports three types of general relationships between tables

(objects): one-to-one, one-to-many and many-to-many. With enough creativity,

one can use a combination of these relationships and metadata tables to create a

wide variety of ontological relationships � hierarchical, part-of, is-a etc. � but the

implementation can be tricky since context, semantics and meaning of the non-set

relationaships are not inherent to the relational model. In fact, the available op-

erators are quite limited and business rules must be used to enforce other types of

relationships.
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Relational databases for 'omics data

In addition to ontology development, bioinformaticians have spent the past decade

developing core data models that provide a common structure to biological informa-

tion, the Generic Model Organism Database (GMOD) being one such example [58].

The GMOD is based on the relational model, is extensible in de�ned ways that allow

customization for unique aspects of an organisms biology, and has associated with

it tools for populating , querying, visualizing and publishing the database instance

[59, 60, 61].

Limitations of relational databases

Relational models do not encompass semantics, terms that shade interpretation by

context and process. In addition they do not scale well in their standard con�guration,

a limitation that genomics labs are now hitting. There are parallel con�gurations

[62, 63] used in the business world, but no freely available systems.

Semantics

The relational model cannot represent parallel valid relations between entities that

are distinguished by a temporal function. They also handle many-to-many relation-

ships by �attening them, using additional entities to bridge these relations. This

means there can be many valid ways to faithfully represent ontological objects, at-

tributes and relationships, leading to more proliferation of methods, and barriers to

integration. There are also limits to computational clarity: columns have only a spe-

ci�c data type, but lack the ability to carry a semantic tag such as units, a feature of

any quantitative measurement from a device.

Processing

Relational databases are limited by the hardware on which they reside. By design,

these databases are meant to run on a single computer (server) and will have problems

when one or all of the machine's resource thresholds are reached: disk space, disk I/O
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speed, memory and processing power (CPUs). Even with a multi-terabyte RAID, a

machine's disk space is quickly exeeded when storing large numbers of microarrays.

Since relational databases retrieve information that is stored on disk, the disk I/O

speed is also a major factor for improving the performance of queries. When running

many types of queries, relational databases perform their operations in memory, which

can quickly be exceeded by large 'omics data sets. Also, most servers have a hard

limit on the number of processors that they can have, so even if you can convert your

analysis routines to use many processors in parallel, you have a �nite amount at your

disposal. Finally, the standard way to store data of the same type is to load it all

in a single table. This becomes problematic for large 'omics data sets, whether it

be microarray data or HTS data, because of the indexing performed by the system

to produce data addresses. To run SQL queries e�ciently, you must therefore de�ne

secondary indices to speed them up. Creating indices takes a signi�cant amount of

time for large tables and the indices themselves require a signi�cant amount of disk

space. If creating an index were a one-time operation, this might be acceptable.

However, when you generate more data and want to add it to your database, you

will need to drop all of the indices, load the data and then re-create the indices. You

can address some of these problems by scaling the server vertically � improving the

hardware for the machine � but there is always a threshold for any single machine.

You can also replicate your database in a so-called master/slave setup, but this only

helps with handling large access loads, not the size of the database itself.

Given these limitations, developers have come up with some ingenious solutions.

In some of them, developers still use relational databases, while in others, they move

away from the relational model. In all of them, however, they use the same general

guiding principle: partitioning the data (divide-and-conquer).
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Sharding and NoSQL strategies

Sharding is the logical partitioning of rows of data, based on some shared char-

acteristic (e.g. probe intensities from the same array), and storing them in separate

tables, either on the same server or on di�erent servers.

If you are constrained to one database server, you face hard limitations on disk

space, memory and processing power. If you have multiple machines, you can al-

leviate many of these constraints because each server has its own database schema

and operates independently from the others (a shared-nothing architecture). Most

relational databases don't have any native support for automatic data partitioning

or load balancing, so you need to write your own custom solutions.

Although custom software has been developed and marketed to ease the sharding

problem, the products tend to be expensive and require signi�cant maintenance. The

di�culties and cost inherent in sharding have led many software �rms to abandon

relational databases and either develop, or use, non-relational solutions.

Non-relational databases don't adhere to the relational model and are usually

called NoSQL (not only SQL) databases. We will use the more inclusive term non-

relational database management systems (NRDBMS) to refer to them. . Distributed

non-relational databases were speci�cally designed to solve the big-data problem:

partitioning data across multiple machines and e�ciently retrieving it. Data is re-

trieved through an application-speci�c API (using parallel processing), rather than a

single, standard language such as SQL. Most of these systems do not index data as

with relational databases, although some support it. Regardless, these systems store

and retrieve data extremely fast. One major drawback of these systems is that they

have varying degrees of consistency, as described by the CAP theorem [64]. Notable

examples of non-relational databases are Bigtable [65], HBase [66, 67] and Cassandra

[68, 69].
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1.6.3 Work�ows

De�ning good data models (ontologies) and e�ectively storing, managing and re-

trieving omics data are critical concerns in data-heavy sciences, but these are only

preliminary steps to the end goal of research: processing, integrating and analyz-

ing the experimental data to characterize the system under study. Bioinformatics is

overrun with analysis scripts, pipelines and data formats. Most computational ex-

periments consist of many sequential analysis steps, each expecting di�erent types

of input data and producing di�erent types of output data. To join each step, a

glue (transformation) module (script) is required to transform the output format of

one step into the format expected as input by the next step. This series of steps,

tied together, is an analytical work�ow; analagous to an experimental protocol in

the wet lab. In Bioinformatics, these work�ows quickly become large and complex,

and, unlike their lab counterparts, are often poorly documented [70]. Managing these

work�ows becomes cumbersome quickly, reqiring the development of work�ow man-

agement tools.

There are two major aims when developing tools to manage analytical work�ows:

tracking data provenance/data lineage and task automation. Data provenance refers

to the documentation of your analysis - what exactly was done at each step. This is

critical for science because all experiments � including computational experiments �

must be reproducible. We also want to automate and abstract the work�ow as much

as possible. Analysis and data transformation steps can be viewed as independent

modules that we can put together in multiple ways, depending on the experimental

goals. We want to de�ne each step in the work�ow, connect them and hit run, without

the need to oversee and initiate each step.

Work�ow management systems aim to minimize human interaction during analysis

and to make that analysis reproducible, which requires standardized analysis modules,

data transformation modules and interfaces between them. These systems represent
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a work�ow as a graph, where a node is a speci�c analytical task and a directed edge

between two nodes typically represents the �ow of data from one node to another

(i.e. the output of one node is the input of the other, via a speci�ed communication

channel and envelope). The systems then manage information about the server where

a tool is located, and access and retrieval protocols. The most well-known and widely

used Bioinformatics work�ow management systems are Galaxy [71] and Taverna [72].

These systems su�er from one major limitation: the data interfaces � input and

output � for an analytical task are not explicitly de�ned as an ontological type. Al-

though many of the analysis modules support certain data exchange formats as input

and output, they don't explicitly state what ontological type is expected or produced.

Put another way, they're not semantically `aware' of the data. Their purpose is really

to automate processes over distributed services. Since an ontological type can be

implemented in many equivalent ways, such as a database table, a delimited text �le

or a XML �le, it would be easier to glue together modules if you knew the data types

expected for input and produced as output. For example, a module might expect a

'gene expression' data type as input, which can be instantiated in various ways, and

produces a list of di�erentially expression as output, which also can be instantiated

in many ways.

1.6.4 Summary

The principle challenges when sharing any type of experimental data include �nd-

ing mechanisms to communicate the meaning of the data and tools for disseminating

the data so that it can be retrieved in useful parts as well as entire sets. Data models,

database management systems, common vocabularies and shared work�ows are all

essential before a community can make use of a common resource.

An ontology allows us to more easily understand and organize data, allows for a

consistent representation of data and gives domain experts a controlled vocabulary

with which to communicate and standardize analyses. Ontologies are also essential for
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communication, automated reasoning, and for integration of disparate data sources.

Although having a prescriptive ontology is ideal, it needs wide community buy-in,

a deeper understanding of a wide range of relations and stability. In an emerging

domain, the interaction problems exists: representing knowledge for the purpose of

solving some problem is strongly a�ected by the nature of the problem and the infer-

ence strategy to be applied to the problem [73]. In many cases, a descriptive ontology

simply happens, with or without the understanding that the relations are as impor-

tant as the vocabulary de�nitions, because they still have many of the same bene�ts

of a prescriptive ontology, excepting community buy-in and completeness. Although

there will be multiple competing descriptive ontologies initially, the domain still ben-

e�ts from having them, and they'll most likely be merged into a prescriptive ontology

as the domain matures. Besides Data-FATE, which we've developed and will discuss

later, we haven't identi�ed any tools for building descriptive ontologies.

Databases allow you to more easily store, manage and retrieve data, as compared

to simple �le manipulation. Relational databases have been the de facto standard for

years for any data intensive �eld, including Bioinformatics. However, the dramatic

increase in 'omics data (and data in other domains) is straining single-server relational

databases, causing many people to develop alternative approaches that use some type

of data partitioning (sharding). Some have moved away from the relational model

(so-called NoSQL databases), while others integrate partitioning methods on top of

existing relational databases. In either case, none of the existing databases integrate

ontologies into their systems.

To reproduce the results of a computational experiment, you need to document

each process (data transformation, analysis script etc.) in the work�ow - much like

developing a protocol and keeping a lab notebook in the lab. Because there are

numerous step to a computational experiments, and even more implementations of

a particular type of analysis, work�ow management systems have been developed to
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keep track of and automate analysis pipelines. Several work�ow management systems

have been developed for Bioinformatics, and are a step in the right direction. However,

none of them explicitly incorporate ontologies into the input and output interfaces

between modules Doing so would make it easier to link separate modules into a single

work�ow.

In Chapter 2 (Data-FATE) we'll discuss how we've integrated ontologies, data

partitioning and work�ows into a single system.

1.7 Accuracy and reproducibility problems with microarray data

*** UNDER CONSTRUCTION ***

The expectations for microrrays were extremely high when the technology �rst

appeared, especially for applying them to �nd multi-genic signatures for diseases

(biomarkers). The hope was that physicians could use these signatures to screen for

or diagnose a disease in very early stages, since it's always better to identify a disease

before its symptoms appear. Requirements for screening are less stringent than for

diagnosis, because any �ndings will be veri�ed by an independent diagnostic tool, such

as qPCR. However, researchers and doctors ultimately hoped to use microarrays for

diagnosis, especially for complex diseases with many genes involved. If the molecular

signature includes hundreds of genes, PCR validation is not feasible. To be used as

a diagnostic tool, the FDA requires that a platform's coverage, accuracy, sensitivity,

speci�city, reproducibility be rigorously assessed and meet very high standards [74].

Although not an explicit requirement, this is imperative for systems biology research

too. To understand complete regulatory networks we need to use a high-throughput,

multi-locus experimental technology for studying systems (single-locus technologies

are not feasible), but and missing and misleading data has a signi�cant impact on

characterizations of these networks [75] .

The requirements for interpreting microarray data essentially condense to four

questions: How much of the target space does the experimental platform actually
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measure? Does each probe measure the correct target? Does each probe measure

a single target? How well correlated is the probe response with the target amount

(i.e. how good is the binding a�nity between the probe and target)? As discussed

in an excellent review by Draghici [74], microarrays had problems with sensitivity,

speci�city, accuracy, and cross-platform reproducibility, and thus, did not live up to

their early promise. This is largely because the technology was very complicated

and changed so rapidly that researchers did not su�ciently examine these questions.

Given these known reproducibility problems, what are the factors that cause them?

1.8 Factors a�ecting the response of microarray probes

Several factors in�uence the response of microarray probes, with some of them

corresponding to meaningful biological variation while others are sources of unwanted

variation. Although there is some overlap, the can break down these factors into

four categories: experimental, biological, physical and technical. Of the four, only

experimental factors are interesting parts of the experiment (signal) - the rest is noise.

1.8.1 Experimental and biological factors

Experimental factors are the variables that you control during a microarray exper-

iment, that, when varied, produce the meaningful phenotypic changes in the biological

system under study i.e. experimental factors are the sources of meaningful (desired)

measurement variation. For example, the experimental factors could be disease state

and the goal of the study might be to determine the di�erence in the transcriptomes

of healthy and diseased tissues. Biological factors correspond to natural variation be-

tween individuals, such as di�erences in a genotypic population or di�erences between

the �same� cells caused by stochastic processes. These factors are usually sources of

unwanted variation, but can sometimes be controlled e.g. by using inbred lines in

your experiment.
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1.8.2 Physical and technical factors

Physical and technical factors (and composites of them) introduce unwanted vari-

ation into microarray measurements that have nothing to do with the experiment or

biology of the system, but that still a�ect a probe's sensitivity, speci�city, accuracy

and precision. Physical factors directly a�ect the binding a�nity between the probe

and target, causing a bias in the amount of probe-target duplexes that can form, and

in turn, biasing the scanned probe intensities; these factors correspond to the ther-

modynamic and biochemical characteristics of a probe and target. Technical factors

correspond to variation introduced by microarray design, manufacturing, platform

di�erences and experimental handling of sample material. Composite factors are a

combination of one or more physical or technical factors. Here we'll discuss the fac-

tors relevant to this study: probe and target secondary structure, probe-to-target

mapping, probe sequence motifs and sensitivity range of the scanner.

Probe and target secondary structure

Secondary structure �- present in the probe, target or both �- is a physical factor,

directly a�ecting the binding a�nity between the probe and its target. Although

probe and target monomer structures sometimes increase the binding a�nity (duplex

stabilization), most often they have no e�ect or diminish the duplex stability. If the

binding a�nity between a probe and target is zero, the probe will indicate that the

target is not present (false positive); if the binding a�nity is non-zero but not perfect,

the probe will underreport the amount of target present (negative bias).

This becomes complicated because a probe's sequence need not exactly match

(be perfectly complementary to) the target's sequence to bind strongly [76, 77]. For

example, the Kane criteria only requires a minimum nucleation of 15 nucleotides and

75% sequence identity between probe and target for hybridization [78]. Conversely,

even if a probe sequence is an exact match to a target sequence, it's possible, due to

thermodynamic and kinetic e�ects, that the binding a�nity between them is zero.
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For example, a probe or target might have internal secondary structure (monomer)

that is more favorable than the duplex, a target homodimer and heterodimer might

be more favorable than the duplex or the duplex might be kinetically unfavorable

(although thermodynamically favorable).

If the concentration of probe and target were nearly equal, this would be a moot

issue because a probe-target pair with an exact alignment will nearly always outcom-

pete an inexact alignment. However, the probe concentration on all array types is

signi�cantly higher than the target's, in order to drive the monomer reactants to the

duplex product. This allows less optimal, inexact alignments to bind to the same

probe as well, without much competition.

Probe-to-target mapping

Probe-to-target mapping problems are composite factors that confound our inter-

pretation of a probe measurement by making us think that a measurement re�ects

one target (the intended target), when it actually measures a di�erent target or the

intended target and a di�erent target - this causes false positives and negatives.

The most common mapping problems are cross-hybridization (to additional and un-

intended targets) and missing targets, as shown in Fig. 1.3. If a probe measures

multiple targets, it's said to cross-hybridize, which typically causes false positives,

false negatives and in�ated estimates of target concentration; if a probe measures a

single target for which it was not designed, it's said to have an unintended target,

which results in both false positives and negatives; if a probe can't measure the tar-

get for which it was designed, it's said to have a missing target, which causes false

negatives.

Probe-to-target mapping problems can happen for several reasons. Updates to

the genome annotation are the most common, and widely understood, technical fac-

tor that can cause problems. Since probes � especially those on an expression or

SNP/CNV array � are typically designed against exact alignments to a certain ver-
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Figure 1.3: Common mapping problems.
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sion of a genome annotation, any updates to the annotation will likely change the

expected targets for a probe. Probes thought to have a single target with the previous

genome annotation might now, with the updated genome annotation, be known to

cross-hybridize, have a di�erent target than intended or have no target.

High binding a�nity between probes and targets with inexact alignments is a

common, but not widely understood, physical factor that can cause probe-to-target

mapping problems. Since none of the major microarray platforms designed their

probes using inexact alignments to the genome, they most likely missed a signi�cant

number of potential targets for a probe. This means that a even if a probe has a

single, correct target, based upon an exact alignment, it might still cross-hybridize to

several other unintended targets to which it is not perfectly complementary. However,

inexact alignments can also be an advantage. If we discover that a probe without an

exact alignment has an inexact alignment to another target, we can re-purpose it to

measure the other target, assuming the binding a�nity between them is su�ciently

high.

Probe sequence motifs

Probe sequence motifs, like secondary structure, are most likely a physical factor

that a�ects the binding a�nity between a probe and its target, although the mech-

anism is not always known. The two most common types are G-runs and primer

spacers [79, 80]. Probes with a G-run motif have at least one instance of ≥ 4 Gs in a

row, while probes with a primer spacer motif have at least one instance of CCTCC.

The latter is incorporation of a T7-binding site when a cDNA is ampli�ed to cRNA

during target preparation and is only a problem when the target is prepared in this

manner; the problem arises because the probes were not designed against this fea-

ture and it causes cross-hybridization in some cases. Both sequence motifs result in

probes that report a signi�cantly greater intensity than the target amount should

cause, and their expression pro�les are more highly correlated with each other across
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conditions, than they are with other probes designed to measure the same target (e.g.

other members of an A�ymetrix probe set). Whatever the mechanism, these probes

usually overreport the amount of target present (positive bias).

Sensitivity range of the scanner (linear range)

For A�ymetrix scanners, only reported intensities between 200 and 20,000 �uo-

rescence units are consistent - this is the sensitvity range of the scanner [81, 82]. For

genes that aren't expressed, the reported intensity is often below the sensitivity range

(< 200), and behaves inconsistently. You can only say that the intensity, at most,

was 200. For probes with a reported intensity above the sensitivity range (> 20,000),

you can only say that the intensity is at least 20,000. Whether above or below, you

must set and enforce limits on your interpretation of your measurement.

1.8.3 Summary

Several physical and technical factors introduce unwanted variation into a probe's

measurements, confounding our ability to accurately interpret a microarray exper-

iment. As with any measurement platform, the best policy is to identify a�ected

sensors (probes, in this case) and then either �x or remove them.

1.9 Correcting for physical and technical factors

Both statistical and factor-based approaches have been developed to identify and

adjust for probes whose intensities don't accurately re�ect relative amount of the

intended targets. Statistical approaches were developed �rst, followed by factor-based

methods. Here we'll the merits and limitations of each approach.

1.9.1 Statistical methods

Statistical approaches, such as RMA, GC-RMA , dChip and MAS5.0 [83, 84, 85,

86], follow a common work�ow: background correction, standardization, normaliza-

tion, identi�cation and removal of outlier probe measurements and, where necessary,

summarization (particularly for A�ymetrix arrays). There are many bene�ts to the

statistical approaches: they're easy to use, good at removing generalized measure-
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ment variation following an expected distribution and are already implemented and

tested in major analysis packages, such as those found in BioConductor [87]. However,

they handle the many factors causing variation by merging them into a single `noise'

factor. By not treating the factors separately (that is, knowing what is being and

removed and why) meaningful experimental and biological measurements are likely

to be removed along with the undesired technical and physical factors.

1.9.2 Factor-based methods

In contrast, factor-based approaches identify probes in�uenced by speci�c physical

and technical factors and adjust the interpretation of the measurements accordingly.

When a probe is a�ected by a factor, it's typically handled in three ways: it's depre-

cated, its relationship to a target is updated, or its reported intensity is adjusted (the

second and third can both happen for the same probe). Several bene�ts recommend

the factor-based approaches: you're less likely to remove the meaningful biological and

experimental variation and the treatment of probes is consistent across all conditions.

However, factor-based approaches require a signi�cant amount of data management

and can be computationally challenging, especially when creating usable �les to re�ect

changes to the array speci�cation. Despite these challenges, many studies show that,

for any experiment, removing known factors that confound measurements improves

the reliability and reproducibility of the data analysis.

1.9.3 Single-factor studies

Here we discuss several single-factor studies (relevant to our research) that have

been performed on A�ymetrix microarrays. We discuss the general approach and

how, by accounting for these factors, the interpration of the experiment improved.

Probe-to-target mapping

Shortly after A�ymetrix released the sequence information for their arrays into the

public domain, several researchers analyzed the probe set de�nitions [88, 89, 90, 91, 92,

93, 80], identifying a number of potential problems with the original de�nitions that
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could produce measurement error within a probe set. They then proposed several

bioinformatics methods for re-de�ning the probe sets to solve these problems (e.g.

creating a custom array speci�cation), intending to reduce the measurement error

and to make the aggregated measurements more biologically relevant. In many cases,

these groups validated their re-de�nition strategies by showing that their custom

probe set de�nitions, when compared to the A�ymetrix default, signi�cantly changed

the di�erential expression results. In some cases, subsequent studies showed that

the re-de�nition strategy signi�cantly improved the correlation between microarray

measurements and experimental results. The custom probe set de�nitions of Dai

et al. [89], and two later studies using them [94, 95], illustrate how custom array

speci�cations can signi�cantly improve microarray measurements and the conclusions

drawn from them.

For several A�ymetrix expression arrays, Dai et al. [89] re-de�ned the original

probe sets into gene-, transcript- and exon-speci�c probe sets. They used the most

up-to-date versions of several public genome databases, such as UniGene [96] and

Refseq [96], in this process, and then created custom CDFs for each source. In

one case, they used an updated version of UniGene to de�ne a gene-speci�c CDF

for the A�ymetrix HG-U133A chip and then reanalyzed data from a cardiac tissue

study (GSE974) [97]; comparing the updated CDF and the original CDF, they found

between 30-40% di�erences in those genes predicted to be signi�cantly di�erentially

expressed between the two. When performing a similar analysis with other custom

CDFs, they found between 30-50% di�erences in predicted di�erential expression.

Subsequently, Sandberg et al. [95] showed that Dai's custom probe set de�nitions,

when compared to the original de�nitions, improved the accuracy and precision of

transcript estimates for a set of cross-lab replicate arrays [98]. In particular, their

accuracy metrics showed that the microarray measurements became more similar

to those measured by RT-PCR. Later, Mieczkowski et al. [94] showed that Dai's
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custom CDFs signi�cantly improved the correlation between microarray expression

pro�les and RT-PCR expression pro�les. Thus, re-de�ning array speci�cations can

potentially improve the down-stream analysis of A�ymetrix microarrays.

Sequence motifs

Upton et al. [79, 80] reported that probes with certain sequence motifs have

intensities that are uncorrelated with the other probes in the same probe set; however,

they tend to correlate well with any probes having the same sequence motif, regardless

of probe set membership. In this case study, we will focus on the two major types

of problematic sequence motifs identi�ed by Upton et al. [80]: G-runs and primer

spacers. Probes with the G-run motif, ≥ 4 Gs in a row, tend to produce consistently

high intensities, with some position dependence. The primer spacer motif, CCTCC,

is related to the incorporation of a T7-binding site when a mRNA is ampli�ed during

target preparation. When the target is ampli�ed in this manner, the probe intensities

tend to be higher than most, introducing a spurious correlation similar to that seen

with G-runs. Since both of these sequence motifs introduce a systematic bias when

summarizing probe set intensities, any probes including them should be removed from

a CDF prior to calculating expression values. This is always true for the G-run motif

and is true for the primer spacer motif when the target is ampli�ed by incorporating

a T7-binding site.

1.9.4 Multi-factor studies

While several studies have investigated and corrected for individual physical and

technical factors, few studies have integrated them into a consolidated pipeline. Here

we discuss two such studies, BaFL and Lo-BaFL. The BaFL pipeline is the basis for

the research in Chapter 4.

Biologically-applied �lter levels (BaFL)

Thompson et al. [99] developed a �white box� pipeline � Biologically-applied Filter

Levels (BaFL) � to identify and �lter microarray probes that are likely to report in-
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correct or misleading intensities based upon certain biological properties, such as the

presence of SNPs in the probe sequence (e.g. as identi�ed by A�yMapsDetector [100]),

probe cross-hybridization, internal structure in either the probe or target sequence

that reduces binding a�nity, and probe intensities that fall outside the sensitivity

range of the scanning device [81, 82]. They tested their �lter set on two indepen-

dent microarray studies of human lung adenocarcinoma and showed that it improved

concordance between lists of signi�cantly di�erentially expressed genes and sample

classi�cation.

Lo-BaFL

Baciu et al. [ms in review] developed the Lo-BaFL pipeline, which adapts the

orignal BaFL pipeline to the Agilent platform and also extends it by accounting for

the Upton sequence motifs.

1.9.5 Summary

Factor-based methods identify and correct for probes in�uenced by known phys-

ical and technical factors. Although purely statistical methods are easier and less

computationally intensive, factor-based methods are preferred because they're less

likely to remove meaningful sources of measurement variation. Many single-factor

methods have been developed for dealing with probes a�ected by incorrect probe-

to-target mapping, interfering secondary structure, problematic sequence motifs and

scanner limitations. However, by only accounting for a single factor, your interpreta-

tion of the experiment, while better, are still suspect. To comprehensively improve

an array, you need to account for all factors known to a�ect probe measurements.

Two such multi-factor pipelines have been developed, BaFL and Lo-BaFL (an exten-

sion of BaFL to the Agilent platform), and have been shown to dramatically improve

experimental interpretations. To date, a version of the BaFL pipeline doesn't exist

for the A�ymetrix E. coli arrays.

To evaluate the impact of a �lter or �lter set, you need to compare your measure-
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ments to a standard or make relative comparisons. All of the factor-based approaches

evaluate the impact of their changes using these approaches, but they only use a small

number of the available options (one or two), limiting the evaulation of the true im-

pact. Do your changes improve some evaluation methods, but not others? Why? By

using many evaluation methods to assess the impact of your changes, you lend further

con�dence to and support for your changes. Also, it has another bene�t - any major

discrepancies between the evaluation methods suggests that another, unknown factor

could be present. Have we accounted for all of the factors? Diagnosing the array in

this way is an important step, and none of the existing factor-based methods address

this problem. We'll discuss this more in Chapter 4 (ProbeSieve).

1.10 Custom speci�cations for factor-based methods

We've discussed several factor-based methods to correct for unwanted variation

introduced by physical and technical factors. To implement these corrections, you

need to either modify the downstream analysis routines to account for them, or you

need to modify the logical design contained in an array's speci�cation �le. In almost

all cases, updating the speci�cation is simpler and less error-prone than modifying

analysis routines. However, understanding the logical rules and �le formats for an

array's speci�cation can still be quite challenging.

Here we �rst discuss the A�ymetrix Chip De�nition File (CDF) format used to de-

scribe the logical design of all of their arrays, the speci�c logical rules for constructing

probe sets for A�ymetrix 3' expression arrays, and how these rules are instantiated

as a CDF. We then discuss methods and tools you can currently use to create and

communicate custom array speci�cations, emphasizing the bene�ts and limitations of

each. We conclude by discussing what is needed to simplify the process of creating a

custom CDF, which is the background necessary for the Chapter 3 (ArrayInitiative).
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1.10.1 Physical vs. logical design of A�ymetrix arrays

The physical design of an A�ymetrix microarray corresponds to the actual probes

on the array. The logical design of an array corresponds to the set of probes that you

intend to use, and any higher level groupings of them that you intend to use. For

example, A�ymetrix arrays have multiple, a�liated probes grouped into a probe set,

designed to measure di�erent locations on the same target. A probe set is part of the

logical design of the microarray. The probe pairs de�ned for expression arrays are

also part of the logical design.

The physical design of any array is �xed: once the probes are synthesized onto

the array, you can't change them. However, you can change the logical design of the

array by deprecating probes or re-assigning probes to di�erent probe sets (note, this

is speci�c to A�ymetrix arrays although a probe can be assigned to a di�erent gene on

other platforms, however this will leave the original target without a measurement).

For arrays with only one probe per target, deprecating many problematic probes might

dramatically reduce the number of genes that you can monitor, possibly compromising

the types of analyses you can perform or make it impossible to monitor a speci�c

subset of targets (e.g. genes in a pathway). Having multiple a�liated probes in a

probe set makes A�ymetrix arrays more robust to changes in the logical design.

Chip De�nition File (CDF)

A�ymetrix uses the Chip De�nition File (CDF) format to provide metadata about

the array and to specify its layout e.g. location of probes, logical grouping of probes

into probe sets, etc.. This format is used for all of its arrays, although there are two

di�erent major versions (ASCII, a text-based format, and XDA, a binary format),

multiple minor versions of each. The probe set is the central logical grouping of probes

and are de�ned as a hierarchical combination of units, unit blocks and cells. A CDF

can have multiple units, a unit can have multiple unit blocks and each unit block

can have multiple cells. Using this hierchical structure, A�ymetrix de�nes multiple
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types of probe set: expression, genotyping, copy number, custom sequence or tag.

The type of probe probe set used depends upon the array type. For example, a 3'

IVT expression array only contains expression probe sets. Each unit corresponds

to a probe set, a unit can only have a single block and the block contains multiple

cells, which correspond to the probes. The format of a CDF and the speci�c logical

arrangement of units, blocks and cells for di�erent types of probe sets make creating

a CDF a rather complex and daunting task.

1.10.2 Communicating and using a custom logical design

Although several researchers developed custom logical design for A�ymetrix arrays

(discussed below), they communicated their re-de�nition strategies in a variety of

ways. Some of them published their general strategies for re-de�ning the probe sets,

without providing custom speci�cations for individual microarrays; others published

custom array speci�cations for a limited subset of microarrays, although in a �le

format di�erent from the standard CDF format; still others provided custom CDFs,

but again, for a limited subset of microarrays. For those research groups who can

simply use a provided custom CDF, this bewildering variety of formats does not pose

a problem. However, it is a problem for those groups who are not in this fortunate

situation: those who want to use a published re-de�nition strategy, but don't have

access to a custom array speci�cation �le (non-standard or standard); those who

want to modify an existing method; those who want to combine multiple re-de�nition

strategies; and those who want to develop and implement their own re-de�nition

methods. For example, one of our research interests is to test di�erent gene models

by assigning probes to transcript-speci�c sets and then creating model-speci�c CDFs.

What are the options for these researchers?

One option is to create custom versions of the algorithms for summarizing probe

set intensities, such as RMA. However, writing these custom algorithms is likely to be

daunting, error-prone, and hard to test. A better option is to create a custom CDF.
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Researchers can then generate summarized probe set intensities using any of the well-

accepted and tested analysis packages provided by A�ymetrix or Bioconductor[87].

1.10.3 Current options for creating a custom CDF

Creating a custom CDF, though easier than modifying analysis algorithms, still

presents several challenges. In the worst case, creating a custom CDF from scratch, re-

searchers need to thoroughly understand the �le formats (ASCII, XDA) and platform-

speci�c logical rules for de�ning probe sets (3' expression arrays vs. exon arrays vs.

SNP arrays) necessary to parse and write CDFs � a daunting and error-prone task.

Using an existing application programming interface (API) or software development

kit (SDK), such as A�ymetrix's Fusion SDK [101] or a�xparser [102] (an R wrapper

of the Fusion SDK), is an easier and more e�cient solution than writing in-house

methods for reading and writing CDFs. However, this still requires a degree of pro-

�ciency in a speci�c programming language (C or Java for the Fusion SDK, R for

a�xparser), knowledge of the CDF �le formats and probe set construction rules, and

knowledge of the language-speci�c data structures for representing a CDF.

1.10.4 Summary

Many factor-based methods have been developed to improve our interpretation

of microarray experiments, and the results of these studies have been reported in

numerous ways. If you want to use a modi�ed speci�cation, the best approach is to

create a custom CDF, which is the standard format. However, some researchers only

published their general strategy for changing the speci�cation, some published the

changes in a non-standard format, while others did provide a custom CDF. Regardless,

you won't always have access to a custom CDF for your array, and if not, you'll need

to create this. Since both the CDF format and logical design of probe sets is complex,

this is a daunting and error-prone task. Some APIs and SDKs exist to make it easier,

by they still require knowledge of the CDF �le formats and probe set construction

rules. To aid those researchers who are not as computionally savvy, or simply don't
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want to learn the formats and rules, a tool that only requires the most basic knowledge

is needed, and is the subject of Chapter 3 (ArrayInitiative).

1.11 Dissertation outline

We performed three studies to address several of the open problems in han-

dling large data sets and interpreting the results from expression experiments us-

ing A�ymetrix microarrays. In Chapter 2, we introduce the Data-FATE framework

(develoed by Carr and Weller), which integrates ontologies, data partitioning and

analytical work�ows, to improve e�ciency and consistency when handling scienti�c

data sets, with an emphasis on microarray data. Data-FATE is the only system

that lets you build descriptive ontolgoies, which is accomplished by extending the

relational model and its corresponding relational database management system. Af-

ter introducing the key ontological concepts, we discuss our signi�cant re-design of

the Data-FATE Scienti�c Information Management System, including conversion to a

standard three-tier architecture, development of an object-oriented Ontological Model

API, a comprehensive re-design of the GUI to improve navigation and to make it more

similar to GUIs for relational databases, a new set of tools to improve de�nition of

ontological data types and for importing data, and several other features. In the

next two studies, we develop methods and tools that help us to examine the im-

pact of physical and technical factors known or suspected to dramatically alter the

interpretation of a microarray experiment.

In Chapter 3, we introduce ArrayInitiative, a tool that simpli�es the process

of creating custom CDFs. We developed it so that we could easily re-design the

array speci�cations for A�ymetrix 3' IVT expression arrays, which is essential for

testing the impact of the various factors (as we do in Chapter 4), and for making the

framework easy to communicate and re-use. To test its usability, we also developed a

case study to examine the impact of standard array �lters on the interpretation of an

array's measurements. ArrayInitiative was published in BMC Bioinformatics, 2011
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(http://www.biomedcentral.com/1471-2105/12/136/).

In Chapter 4, we systematically examine the e�ect of physical and technical factors

� both generally accepted and novel � on our interpretation of dozens of experiments

using hundreds of E. coli Asv2 microarray. We applied and extended the BaFL

pipeline for the Asv2 array and identi�ed probes a�ected by one or more, such as

probe-to-target mismapping, interfering secondary structure and sequence motifs, to

name a few. We then de�nied several new speci�cations, both �ltered an un�ltered,

with probe sets designed to report on genes, transcription units and operons, and

then created a corresponding CDF for each one using ArrayInitiative. We evaluated

then impact of the speci�cation changes by developing and applying an integrated

set of novel and published evaluation methods. Of note, we introduce the concept

of a response group, which is useful for evaluating the impact of a �lter and for

determining if there are hidden factors not accounted for by the �lter set. To the best

of our knowledge, no other such method exists.



CHAPTER 2: DATA-FATE

2.1 Introduction

The volume and complexity of 'omics data is dramatically increasing, exacerbat-

ing the challenges already associated with experimental data: modeling the data

(including the development of ontologies); storing, managing and retrieving the data

(databases); analyzing the data (analytical work�ows). These challenges demand that

we develop better and more e�cient methods for using 'omics data.

In the sciences, and especially Biology, we develop ontologies to model the complex

entities and relationships present in our data and to provide a controlled vocabulary.

Whether this is explicit or implicit, we always impose a structure on our data when

analyzing it. As discussed in Chapter 1, ontologies are either prescriptive or de-

scriptive. A mature scienti�c domain or experimental platform is likely to have a

prescriptive ontology, which is a top-down, established set of entities and their rela-

tionships. While these provide a stable and consistent representation of data, they

tend to be quite large, cumbersome, fragile or resistant to change. The taxnomic

tree of life is an example prescriptive ontology, which imposes a hierarchical model of

descent on the data; it breaks when you try to add non-hierarchical mechanisms of

descent, such as horizontal gene transfer. In a less mature scienti�c domain, we tend

to develop descriptive ontologies which are inferred from the data. While these allow

for a consistent representation of data within a small group of researchers, they tend

to change frequently and be di�erent between groups e.g. gene names vary between

groups studying the same organism and across organisms. In summary, a prescrip-

tive ontology is ideal for a mature scienti�c domain; a descriptive ontology, for a
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frontier or niche domain. Much of genomics research is concerned with the discovery

of unknown cellular components. , In the absence of standardized tools to create

descriptive ontologies when working with data, there is a need to develop methods

and tools to automatically document the structure, so that we can record and share

these ontologies.

The nature of the process dictates some of the requirements of an e�ective system.

Data management systems must be able to store large amounts of data, e�ciently

retrieve speci�ed subsets of it and allow researchers to create meaningful data struc-

tures (providing consistent representations and seamlessly coping with changes to

the data model). Relational databases are the most widely used data management

system, within and outside the life sciences. Although there is a growing movement

away from the relational model when dealing with the very large high-throughput

sequencing (HTS) data sets (e.g. Bigtable [65], Hbase [66], Cassandra [68]), when

analyzing miroarrays, the focus of this dissertation, relational databases are largely

su�cient. They do su�er from two serious limitations: �rst, it's di�cult to represent

many types of relationships used ontological models with a relational database; sec-

ond, relational databases are server-bound for scalability so e�cient use of memory is

important. Given these limitations, there's a need to develop and implement meth-

ods for integrating ontologies within the relational model and to develop methods to

optimize the storage and retrieval of desired data sets in a relational database. Many

relational databases claim to integrate ontologies, but they do this by linking out to

an external system, not by actually making use of the structure to reason within the

immediate framework.

Data processing pipelines are also quite complicated for most types of genomics

data. Although such work�ows would seem to be a natural �t for the development of

an ontology, the current state of practice is to separately employ and store con�gurable

pipelines. As the data formats become more complicated and the number of distinct
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analysis steps increases, stitching them together into a coherent and reproducible

sequence of steps is becoming ever more challenging. In response, Bioinformatics

researchers have developed several work�ow management applications, such as Galaxy

[71] and Taverna [72], to make the process easier. All of these applications have two

main goals: maintain a record of data provenance/lineage and facilitate automation

of work�ow steps. Most provide a graphical interface that allows you to de�ne a

series of analysis and data transformation steps from those present in the library.

Once de�ned, you upload your dataset as a �le, hit 'Run' and the application runs

them in the sequence indicated and delivers the output �le. However, these systems

su�er from one major limitation: the data interfaces � input and output � for an

analytical task are usually not explicitly de�ned, and even if they are, they're often

not used consistently. Also in most cases you cannot select a set of parameters for

each module of the pipeline, or if you do this cannot be saved as semantic meta-data.

This is because few standards exist to guide data providers.

To address these issues, Carr and Weller developed the DataFATE framework

[103], which provides two novel extensions to the relational model: the ontological

model and the scienti�c information management system (SIMS). The ontological

model extends the relational model by integrating it with ontologies. The SIMS

extends the relational database management system (RDBMS), providing a suite of

tools that implement and manage the ontological model. It was designed for small

teams, not for use by large communities over the Web. The DataFATE framework

provides more consistent representations of experimental data, formalizes descriptive

ontologies and improves storage and retrieval of large data sets by sharding data.

Carr and Weller developed a prototype SIMS to test the framework, which con�rmed

certain expectations and generated a much larger set of new requirements for the

SIMS.

In this chapter, we describe the steps taken to comprehensively re-design the
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DataFATE SIMS, based upon the identi�ed limitations of the previous version. The

goal was to create a tool that would support network research by allowing you to eas-

ily manage thousands of microarray experiments and adding new layers of hierarchy

to probesets as ontological de�nitions. First, we converted it to a standard three-

tier architecture: graphical user interface (presentation tier), Ontological Model API

(OM-API, logic tier) and database (data tier). In addition to consolidating the logical

or business code into a single API, which can now be used by any third-party appli-

cation, we also re-designed to be object-oriented. We then re-designed the graphical

user interface (GUI) so that it was more similar to the GUI for a relational database,

which signi�cantly improved navigation, viewing of ontological data types and view-

ing of imported data and associated metadata. We also added several new tools to

improve o�ine de�nition and bulk import of ontological data types and data. Finally,

we added support for creating and managing multiple databases.

2.2 Data-FATE framework

The Data-FATE framework is both a data model and a management system,

similar to the relational model and its corresponding relational database management

system. The ontological data model extends the relational model, while the scienti�c

information management system (SIMS) sits on top of the RDBMS (higher level

abstraction) and implements the ontological model.

2.2.1 Ontological data model

The ontological data model extends the relational model by de�ning two novel

data elements, quantitation types and quantitation type sets. These new data elements

integrete ontological concepts to the relational model, providing an additional layer of

abstraction. Both of the core ontological data types provide context and meaning for

the values stored in the relational database. It allows you to unambiguously answer

questions like �What kind of data does this table store?� and �What type of data is

stored in this column?� � which is di�erent than specifying simply that this column is
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a integer i.e. semantics over syntax � and to de�ne bottom-up, descriptive ontologies

for your data.

2.2.1.1 Quantitation type

A quantitation type (QT) de�nes a single quantitative or categorical data type,

such as �uorescent intensity or genomic strand, serving as a bridge between an ontol-

ogy and the relational model. It corresponds directly to an attribute in an ontology

and a column in a relational database (e.g. a �oat, integer or character column).

2.2.1.2 Quantitation type set

A quantitation type set (QT set)is a logical grouping of QTs into a set. It cor-

responds directly to a concept in an ontology and a table in a relational database,

giving context to groups of quantitative and categorical data. In addition, the QT

set, when considered as a single object, is a composite quantitation type.

2.2.1.3 Relationships between quantitation type sets

The relationship between QT sets does not have an ontological/contextual mean-

ing. A relationship between sets has the same meaning as it does in the relational

model: a relationship exists, as de�ned by the foreign key, but there is not any

context/meaning to it. Since a QT set is also a quantitation type, you can create

ontological hierarchies.

2.2.1.4 Example and implications

Once you de�ne the quantitation type sets for the data in an experiment, you've

de�ned the descriptive ontology for that experiment. For example, if you de�ne a

quantitation type set for the data in an A�ymetrix CDF, you now have a standard-

ized representation of this data type. The combination of quantitation type sets in an

experiment represent a working descriptive ontology for a particular Bioinformatics

domain, such as analyzing A�ymetrix microarray data. Since a QT set is unambigu-

ously de�ned, it can also be used to de�ne explicit (standard) interfaces for analytical

modules.
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2.2.2 Scienti�c information management system

A scienti�c information management system (SIMS) is an extension of the rela-

tional database management system. Just as a RDBMS implements and manages the

relational data model, a SIMS implements and manages the ontological data model.

When developing a SIMS, two options are possible: develop it from scratch or build

it on top of an existing RDBMS. The former option allows you to directly integrate

the ontological data model into the system, but it requires a substantial amount of

development and expertise with RDBMSs; the latter option allows you to leverage

all of the features already implemented in an existing system (e.g. a standardized

query language (SQL), query optimization, referential integrity, management of the

physical data structures), sign�cantly reducing the development e�ort. However, this

might make it di�cult to implement certain features of the ontological model. We

favor building a SIMS on top of an existing RDBMS, especially as a proof-of-concept.

Regardless of the approach, a mature SIMS should have the following features:

(1) all of the features of a RDBMS; (2) an ontology query language; (3) tools for

managing the core ontological data types (hidden from user); (4) tools for visualizing

ontologies; (5) tools for de�ning ontological relationships; (6) query speeds on par

with a RDBMS; (7) tools for work�ow de�nition/tracking/visualization. Currently,

the Data-FATE SIMS supports features 1, 3, 6 and 7.

2.2.3 Advantages and disadvantages

The Data-FATE framework (ontological data model and SIMS) o�ers several ad-

vantages to researchers with data-intensive experiments and analyses. The framework

allows you to select the minimal set of data for your experiment. There are usually

many attributes in data �les from experimental platforms that are either poorly un-

derstood or completely unnecessary, which wastes disk space and complicates a table.

The parts of the data that you use are determined by the QTs and QTSets that you

must de�ne before importing data, which forces you to understand the data �rst and
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analyze it second. This reinforces the proper interpretation of your data � types of

data (QTs) are expressed in terms of units and sets, not simply as relational data

types. This also allows you to develop a speci�c ontology more comprehensively and

explicitly than can be achieved by de�ning the tables in the relational model. By

de�ning QTs and QTSets, you guarantee that the system can handle large amounts

of data consistently. For example, once you de�ne a QT Set for data �les produced

during an A�ymetrix microarray experiment, whether probe design or target read-out

(respectively CDF or CEL �les), the Data-FATE framework guarantees that future

data imported using the same QT Set will have exactly the same de�nition (or data

type). When data types are unambiguously known, it's easier to automatically check,

merge and create work�ows. For example, you can automatically merge di�erent data

sets using their common �elds (de�ned by the QTSet) and you can de�ne the input

and output interfaces for di�erent steps in a work�ow using QTSets. The SIMS cre-

ates partitions of the data, which means that it creates a new table for each data

set imported (described below). This has two bene�ts: it improves the performance

of database operations, such as indexing and retrieving data, and it allows you to

extend the de�nition of a QTSet without needing to modify any existing tables.

While the Data-FATE framework o�ers signi�cant advantages for the manage-

ment, storage and modeling of omics data, developing a mature system is properly

the job of a team over the course of several years. Developing a complete SIMS � with

full ontology management, an extension of the SQL language, ontology visualization

etc. � is nearly as complex and di�cult as developing the underlying RDBMS; that is

to say, a substantial development task. Also, a consequence of facilitating creation of

descriptive ontologies is that in the short term there will be a proliferation of ontolog-

ical terms and relationships. Ideally these will be compared, merged and re�ned, but

this requires its own set of tools, development that is outside the declared framework

of the Data-FATE project.
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Described below are the prototypes that we implemented for a subset of the fea-

tures necessary for the �nal SIMS. In the next sections, we discuss the two most

recent prototypes of the Data-FATE SIMS.

2.3 Previous version of the Data-FATE SIMS (1.4)

The �rst prototype version of the SIMS (1.4) was developed by Carr and Weller

to test the use and expectations of ontological model. Here we detail the features

of this version of the SIMS and discuss its limitations, which directly informed the

requirements for the next prototype version, 1.4.5, discussed in the next section.

2.3.1 Implementation

We developed the previous version of the Data-FATE SIMS as a two-tier appli-

cation, consisting of a client application and a relational database backend. The

client application was implemented as a desktop GUI using PyQT [104], a Python

[105] binding of QT [106] from Riverbank Computing. We used Postgresql [104] as

the backend database. Each of these third-party components are cross-platform and

freely available.

2.3.2 Account administration

When �rst using Data-FATE, you are prompted (and required) to create a user

account. Although Data-FATE is intended to be a single user system, after creating

the �rst user, you can add new or existing users to your database.

2.3.3 Experiments

After creating a user account, the �rst step is to create an experiment. You always

work within the framework of an experiment, which is a logical collection of data

sets supporting a single research task, or project. Although only one experiment is

required, multiple experiments per Data-FATE instance are allowed. When creating

an experiment, one option is to associate QT sets with it (described below). The

SIMS provides tools to create new experiments, update an existing experiment and

associate QT sets with an experiment.
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2.3.4 Curating ontological data types

Before uploading a data set, both quantitation types and a quantitation type set

must be de�ned (if not accepting the default set). The SIMS provides tools to de�ne

new quantitation types, de�ne a new quantitation type set, add QTs to an existing

QT set and remove QTs from an existing QT set.

De�ning a QT

When de�ning a QT, you must specify a name for the QT, an experiment type, a

quantitation set type and a relational data type. Optionally, you can specify a unit

(e.g. Joules) and a description. In addition, the tool lists all of the existing QTs,

which can be �ltered, so that you can check if the desired QT already exists.

De�ning a QT set

A QT set can be de�ned once one or more QTs has been de�ned. This requires a

name, an experiment type, a QT set type and one or more QTs. Optionally, one or

more QTs may be declared the primary key. To create a new QT set that is similar

to one that exists, you can copy it, modify its de�nition and save it with a di�erent

name. Re-de�ning a Q

Re-de�ning a QT set

You can re-de�ne an existing QT set, with some restrictions. If the QT set is not

associated with any data set, QTs may be added or removed from its de�nition. If

the QT set is associated with a data, you may force- add a QT to the QT set, but

you can't remove a QT from the QT set.

Pre-loaded ontological data types

The SIMS is pre-loaded with QTs and QT sets associated with microarray exper-

iments. Speci�cally, it provides QT sets for A�ymetrix CDFs, A�ymetrix CEL �les,

Agilent arrays and QuantArrays.
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2.3.5 Importing and exporting data

The SIMS has tools for loading `generic' data and A�ymetrix-formatted data.

The generic data loader is designed to load any delimited text �le; the specialized

A�ymetrix data loader is designed to load CDF and CEL �les by �rst converting these

custom formats into a delimited format. Loading a delimited �le is the common point

for the two tools. After specifying the input �le, the data loaders create a unique

name for the output table, although you can create a speci�c name prior to loading.

Subsequently you associate a QT set (de�ned in advance) with the data set. Finally,

the QTs in the QT set are mapped to the columns in the data �le. Every �eld in

the data �le does not require a QT, but each QT must be mapped to a �eld in the

data �le. For example, the data �le may have 20 columns while the QT set only has

5 QTs. You must map each of the 5 QTs to a �eld in the data �le, which the SIMS

will load while ignoring the rest. The order of �elds in the data �le doesn't matter.

The SIMS will rearrange the data as necessary when loading and will also remember

this mapping for future uploads.

After associating a QT set and mapping columns to a data �le, the SIMS dynam-

ically allocates (creates) the table and loads the data. These tables are not part of

the core system. The SIMS creates a new table for each loaded data set, even for

those that are associated with the same QT set. We decided to horizontally par-

tition (shard) the data sets to improve performance. Since this is intended to be

a single user, single machine system that extends the relational model, distributed

non-relational databases were not an option; horizontal partioning is the most valid

method for partitioning data in this scenario, creating multiple small tables, thus im-

proving performance when adding, updating and query data. GMOD [58] also takes

a small table approach, but the tables are highly normalized and it is constrained to

use community-generated, top-down (prescriptive) ontologies.
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2.3.6 Querying data

To query data, you submit queries directly to Postgresql, either using the command-

line interface or a GUI, such as pgAdmin.

2.3.7 Limitations

This version of the Data-FATE SIMS was designed to be a prototype, quickly

developed for testing with analysis use cases so that the cost of redesign would not

be prohibitive. Here we will discuss the major limitations, which served as initial

requirements for version 1.4.5, discussed in the next section.

Navigation

The original version of the SIMS lacked a centralized, global view of the core data

types and other SIMS objects. For example, it requires inspection of multiple forms

in order to determine the what experiments have been de�ned, the QT sets associated

with them, the de�nition of a QT and QT set and other important information.

Curating ontological data types

This version provides tools to de�ne ontological data types, QTs and QT sets.

While you can re-de�ne a QT set, there's not an analagous tool to re-de�ne a QT. In

addition, you must de�ne QTs and QT sets individually, through the interface, which

can be tedious. Also, some of the functionality which could reside in a single tool is

split across multiple forms.

Importing data

The available tools to load data, both generic and A�ymetrix-speci�c, required

that data tables be loaded one at a time, even though the researcher has already

de�ned the experiment set.

Architecture and application code

In this version, the business logic is embedded in the GUI code, so that code is

duplicated across several tools. Consolidating this code into a centralized API (middle

tier) conforms to standard practice, reducing duplication and possible errors.
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Number of databases

This version of the SIMS only allows you to create one database per instance of the

Data-FATE SIMS, although you can create multiple experiments. This is unncessarily

limiting from both a conceptual and implementation perspective. Conceptually, a

single study might have multiple experiments. When importing and organizing your

experiments in Data-FATE, it might make sense to partition each study as a separate

database, with each database having multiple experiments. From an implementation

perspective, since all RDBMSs support the creating of multiple databases, it makes

sense to provide the same support in the SIMS.

2.4 Current version of the Data-FATE SIMS (1.4.5)

Testing of the prototype version of the SIMS (1.4) con�rmed certain expectations

and generated a large set of requirements for the next version. Here we discuss those

new requirements, and the new and updated features of Data-FATE SIMS introduced

in version 1.4.5 to address them. The general requirements for this version were

as follows: (1) add support for multiple databases and the ability to automatically

create them; (2) change to a three-tier architecture with an object-oriented design; (3)

improve navigation of the user interface; (4) streamline the de�nition of ontological

data types; (6) streamline the loading of data sets; (5) work�ow tracking.

2.4.1 Databases

The previous version of the SIMS only supported a single database, although it

could have multiple experiments. In this version, users can create and manage

multiple databases and easily switch between them. As before, each database can

have multiple experiments. The SIMS now automatically creates databases, rather

than manually running a script, as you needed to do in the previous version.

2.4.2 Three-tier architecture

The previous version of the SIMS used a two-tier architecture, consisting of a user

interface (client) and a Postgresql backend. With this design, the business logic is
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usually integrated with the interface and/or database code. This was e�ective for a

prototype that changed quickly, but is not ideal for a mature system for two reasons.

First, without centralized code, the business logic is often duplicated in several places,

meaning that you have to update the same code in multiple places. This required

more e�ort for development and maintenance of the code and greatly increases the

chance to introduce functional inconsistencies. Second, a change in the interface or

backend requires that you also rewrite the business logic.

In light of this, we changed the SIMS to a standard three-tier architecture: user

interface (client), middle tier (business logic) and a Postgresql backend. Consolidating

the business logic into a single API minimized redundancy and the errors associated

with them. In addition, we can now distribute the API independent of the user

interface if someone wishes to use the ontological model, while using their own Python

scripts or user interface. Researchers are not constrained to use our adminstration

tool. In addition to consolidating the business logic into a single API, we re-developed

the code using an object-oriented model, discussed below.

2.4.3 Object-oriented design

We designed the middle tier using an object model, centered around the core

data types (QTs and QT sets) and the Data Table instance type. We adopted an

object-oriented design as being more maintanable, reusable and scalable.

2.4.4 Navigation

We improved navigation by developing a hierarchical browser which displays databases

and their associated experiments, QT sets associated with each experiment, QTs that

are part of each QT set and data tables associated with each QT set. This provoides

a simple view of all of the main objects and their relationships, plus context-sensitive

access to the main menu items associated with that particular object. We also added

a dashboard which displays a summary of a selected item. For example, when you

select a QT, the dashboard displays the de�nition of the QT plus the number of asso-
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(a)

(b)

Figure 2.1: Comparison of Data-FATE logon screens. (a) The logon screen of ver-
sion 1.4. (b) The logon screen of version 1.4.5, which includes support for multiple
databases, as seen in the left navigation bar.

ciated QT sets and Data Tables. These changes to the interface, shown in Figures 2.1,

2.2, 2.3, make the navigation and display of information more similar to the interfaces

for a RDBMS.

2.4.5 Curating ontological data types

All of the tools for curating ontological data types in the previous version are

included in this one, but we re-organized the main menu structure to include separate

sections for QT curation and QT set curation, making it easier to �nd the desired

functionality. We also added three new tools: (1) edit a quantitation type, (2) batch

de�ne a QT and (3) batch de�ne a QT set. The batch tool, shown in Figure 2.4,

allows you to de�ne several ontological data types in a delimited text �le and then
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(a)

(b)

Figure 2.2: Comparison of Data-FATE post-logon screensand navigation. (a) The
post-logon screen of version 1.4. (b) The post-logon screen of version 1.4.5. Note the
improved method for viewing information about experiments.
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Figure 2.3: Changes to Data-FATE navigation. The enhanced navigation includes
hierarchical browsing of databases, experiments and ontologica data types (right) and
summary information for the selected type in the dashboard (right), making the SIMS
GUI more similar to GUIs developed for relational databases.
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Figure 2.4: Tool for bulk import of ontological data types.

load them all at once.

2.4.6 Loading data

Each of the data loading tools from the previous version are included in this one.

We added a batch version of the generic loading tool so that you can load multiple

data tables at once, shown in Figure 2.5. You specify the data table parameters, e.g.

data �le, QT set, etc., as needed to create each data table and then run it all at once.

2.4.7 Tracking work�ows

We designed and implemented a set of tables to allow procedure tracking, to create

work�ows. The tables allow you to de�ne and save information about user-created

protocols (work�ows), which consist of a series of data transformations, using SQL,

and called analysis scripts (procedures). In this prototype the supported languages

for analysis scripts are Python and R. The goal was to show the feasibility of including

work�ow tools within the SIMS environment.
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Figure 2.5: Tool for bulk import of data.

2.4.8 Testing

While re-designing the system, we tested it using a number of di�erent types of

data, such as CEL and CDF �les for di�erent versions of A�ymetrix GeneChips. We

also used it to develop the prototype of the ProbeSieve study (Chapter 4), including

probe-genome alignment data for two A�ymetrix E. coli arrays and multiple E. coli

genomes (including K12) and many raw data �les (CEL �les). These data sets were

the foundation for the research described in the ProbeSieve study, as they informed

its eventual design. In the end, we chose not to use Data-FATE for ArrayInitiative

(Chapter 3) and ProbeSieve (Chapter 4) because the funding ended, we lost our lead

developer, and in the end, we realized that this is probably a 5-person, 5-year project,

resources that were not available. Below are the features that would be improve the

system should funding resume.
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2.5 Future work

While the current version of the SIMS is a signi�cant improvement over the pre-

vious, it's still a prototype and requires considerable additional work (and funding)

to become a mature system. Here we discuss the long-term and short-term goals for

its future development.

Short-term

The short-term goals for the SIMS are geared towards simplifying the user expe-

rience, by making the tools more intuitive, or just simplifying them, and hiding the

implementation details from the user as much as possible. The point is to allow the

researcher to focus on development of useful data models, not with the implementa-

tion of the SIMS. In practice, we plan to simplify and make the tools more intutive

by using as little relational database jargon as possible.

Towards that end, is became clear that we need to develop simpler methods for

de�ning QTs, for example, by providing simpler relational data type options for re-

searchers who are unfamiliar with those selections. We also want to simplify the

process of de�ning QTSets and for modifying the de�nition of a QTSet. The latter

requires the SIMS to automatically and invisibily change table de�nitions to re�ect

changes to a QTSet. We plan to add tools for creating primary keys and indexes

and for de�ning hierarchial and non-hierarchical relationships between QTSets, espe-

cially to handle with correct logic those that don't strictly conform to relationships

de�ned by the relational model. Finally, we wish to address the large number of data

tables produced when data is imported. Currently, you must know how the SIMS

partitioned your data into tables and then run queries directly against them. This

becomes di�cult to manage when you have hundreds or thousands of tables, which

happens quickly with large microarray experiments. To address this problem, we

plan to extend SQL to support writing and running �cross-table� queries, which will

automatically �nd and join the appropriate tables based upon your criteria. Concep-
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tually, we want users to think that the data for a speci�c QTSet is stored in the same

table, even though it's actually partitioned, and be able to write queries under this

assumption. This will greatly simplify using the SIMS.

Long-term

The long-term goals for the SIMS are centered around introducing new tools and

functionality. For the descriptive ontologies that researchers de�ne, we plan to develop

a tool that automatically extracts ontologies from your experiments, visualizes them,

�nds similarities and di�erences between pairs of ontologies and suggests how to merge

them without losing important structure and, �nally, a tool to share ontolologies.

We also plan to introduce data versioning and further develop work�ows, with their

supporting tools.



CHAPTER 3: ARRAYINITIATIVE

3.1 Introduction

Probes on a microarray represent a frozen view of a genome, quickly outdated

when new sequencing studies extend our knowledge and resulting in signi�cant mea-

surement error when analyzing any microarray experiment. There are several bioin-

formatics approaches to improve probe assignments, but without in-house program-

ming expertise, standardizing these custom array speci�cations as a usable �le (e.g.

as A�ymetrix CDFs) is di�cult, owing mostly to the complexity of the speci�cation

�le format. However, without correctly standardized les there is a signicant barrier

for testing competing analysis approaches since this le is one of the required inputs

for many commonly used algorithms. Since our goal in Chapter 4 (ProbeSieve) is

to investigate the e�ects of physical and technical factors on the interpretation of a

microarray experiment and to test both gene- and transcription unit-level groupings

of probes, we needed to �rst develop a tool for creating and managing custom array

speci�cations. This led us to develop ArrayInitiative, a tool that simplies the task of

creating custom CDFs.

ArrayInitiative is a standalone, cross-platform desktop application for creating

correctly formatted, custom versions of manufacturer-provided (default) array spec-

i�cations, requiring only minimal knowledge of the array speci�cation rules and �le

formats. Creating a custom array speci�cation requires only minimal knowledge of a

manufacturer's speci�cation standards (�le formats and logical rules) and the ability

to create a simple delimited or XML �le. Using ArrayInitiative, users can import

default array speci�cations, import probe sequences for a default array speci�cation,
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design and import a custom array speci�cation, export any array speci�cation to

multiple output formats, export the probe sequences for any array speci�cation and

browse high-level information about the microarray, such as version and number of

probes. The initial release of ArrayInitiative supports the A�ymetrix 3' IVT expres-

sion arrays we currently analyze, but as an open source application, we hope that

others will contribute modules for other platforms..

To illustrate the value of re-de�ned probesets, we then developed a case study

where we examine the e�ects of removing faulty probes from A�ymetrix's HG-U95Av2

3' IVT expression array (human). We �rst identi�ed faulty probes on this array as

determined by two published �ltering criteria: BaFL pipeline and sequence motifs

identi�ed by Upton et al. We next de�ned three di�erent logical designs for the

array; the �rst one removing probes �agged as faulty by BaFL, the second removing

probes with Upton sequence motifs, the third removing probes �agged by either BaFL

or Upton criteria - the union of the two sets. Using ArrayInitiative, we then created

a custom CDF for the three new logical designs. Using these custom CDFs and the

default CDF, we summarized the probe set intensities for twenty arrays from a data set

generated from human lung adenocarcinoma samples. To summarize the arrays, we

used three popular techniques - MAS 5.0, dChip and RMA. For each summarization

technique, we compared the probe set intensities summarized using the default CDF

against those summarized using the three custom CDFs. We found that the modi�ed

speci�cations signi�cantly changed the summarized expression values as compared to

the default, regardless of the summarization technique.

3.2 Application overview

ArrayInitiative is a rich client application for creating custom array speci�cations

built upon a default array speci�cation. The default array speci�cation is typically

the one provided by the manufacturer and the custom array speci�cation is a user-

modi�ed version of that default. Users can: (1) import default array speci�cations, (2)
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import probe sequences for the default array speci�cation, (3) import a custom array

speci�cation, (4) export any array speci�cation to multiple output formats (5) export

the probe sequences for any array speci�cation and (6) browse high-level information

about the array, such as version and number of probes. This release of ArrayInitiative

supports A�ymetrix 3' IVT expression arrays, and all of the subsequent subsections

will assume this type of array.

ArrayInitiative's default main window, shown in . 3.1, consists of an array speci-

�cation browser, a dashboard and a main menu.

Figure 3.1: ArrayInitiative main screen. The ArrayInitiative main screen, consisting
of an array speci�cation browser, a dashboard and a main menu.

The array speci�cation browser displays a list of a user's array speci�cations,

organized as a hierarchical tree, while the dashboard displays summary information

about the currently selected browser item. For example, when the �A�ymetrix →

Expression� browser item is selected, ArrayInitiative shows how many default and
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custom A�ymetrix 3' expression array speci�cations there are; when a user clicks

on an array speci�cation in the browser, summary information for that speci�cation

is displayed in the dashboard. All of ArrayInitiative's tools, such as the one for

importing a default array speci�cation, can be opened from either the main menu or

from context-sensitive (right-click) menus available in the speci�cation browser. Each

of the tools in ArrayInitiative open as modal dialog windows.

3.2.1 Implementation

We developed ArrayInitiative as a standalone, rich client desktop application with

an integrated backend database. The user interface was implemented with PyQt

[107], a Python [105] binding of QT from Riverbank Computing. We used SQLite

[108] as the backend database, as implemented in Python's sqlite3 module [109], be-

cause it requires minimal installation/setup, administration and maintenance tasks

for the user and is a standard library module in Python 2.5+. Each of the main com-

ponents are cross-platform and freely available. ArrayInitiative can be downloaded

from the "Downloads" section at http://wellerlab.uncc.edu/ArrayInitiative/

index.html.

3.2.2 Functionality

3.2.2.1 Context-sensitive (right-click) menus

The array speci�cation browser gives right-click access to the main menu items;

the resulting form values are pre-populated based on the current browser selection.

Renaming and deleting array speci�cations can only be done using the context menu.

3.2.2.2 Creating and managing multiple databases

When �rst using ArrayInitiative, users will need to create at least one database

before they can access any of array-speci�c functionality of ArrayInitiative. Multiple

ArrayInitiative databases can be created to logically separate distinct sets of arrays,

if desired. In addition, users can update the information for an existing database and

switch between databases by setting the active database.
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3.2.2.3 Importing a default array speci�cation

Users can import the array speci�cation (probe set de�nitions) for an array from

a CDF �le (ASCII, versions 3-5 and XDA, versions 1-3). Usually, users will import

a default array speci�cation from a CDF provided by A�ymetrix, but they can also

import a default array speci�cation from a custom CDF instead. Users must import

at least one default array speci�cation before importing custom array speci�cations

and writing custom CDFs.

3.2.2.4 Importing probe sequences

After importing a default array speci�cation, users can import the probe sequences

for a default array speci�cation, using the FASTA or tab-delimited probe sequence �le

provided by A�ymetrix for that array. ArrayInitiative will automatically generate the

missing mismatch probe sequences. See the �File Formats� section of the manual �

available online in the supplementary site � for details about the supported formats

for a probe sequences �le.

3.2.2.5 Creating a custom array speci�cation �le

After importing a default array speci�cation, users can create a custom array

speci�cation for any imported default array speci�cation. When creating a custom

array speci�cation �le to import, users can instruct ArrayInitiative to copy an existing

probe set, re-de�ne an existing probe set or de�ne an entirely new probe set. When

de�ning, or re-de�ning, a probe set, users can use any of the probe pairs from the

default array speci�cation. ArrayInitiative treats probe pairs as atomic units, and as

such, users can't add just the PM or MM probes to a probe set de�nition. Currently,

ArrayInitiative accepts a full speci�cation �le type (delimited or XML), requiring that

users explicitly de�ne every probe set. See the �File Formats� section of the manual �

available online in the supplementary site � for details about the supported formats

of a custom array speci�cation.
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3.2.2.6 Importing a custom array speci�cation

After creating a full speci�cation �le, users can import them into ArrayInitiative.

Users can de�ne multiple custom versions for any default array speci�cation.

3.2.2.7 Exporting an array speci�cation

Users can export default and custom array speci�cations as a CDF (ASCII or

XDA), an XML �le or a delimited �le. See the �File Formats� section of the manual

� available online in the supplementary site � for details about the output types.

3.2.2.8 Exporting probe sequences for an array speci�cation

Users can export the probe sequences for a default or custom array speci�cation

as a FASTA, XML or delimited �le. See the File Formats page for details about the

output types. When exporting a custom array speci�cation as a CDF, the type �

ASCII or XDA � will be the same as the parent default array speci�cation.

3.3 Case study

In this section, we illustrate why ArrayInitiative is useful to microarray researchers

by presenting a case study in which we create custom CDFs based upon two di�erent,

published probe-�ltering techniques and then use Bioconductor algorithms to inves-

tigate the e�ect of the probe set re-de�nitions on the summarized expression values.

The complete case study code, data and results are available under the "Downloads"

section at http://wellerlab.uncc.edu/ArrayInitiative/index.html.

Introduction

Imagine that you, as a researcher who is reasonably pro�cient with programming,

discover two di�erent probe-�ltering techniques for A�ymetrix arrays while reading

the literature. Both of them seem reasonable and you think that, by incorporating

such QC steps, you could improve the results you get when analyzing your expression

arrays with Bioconductor tools. Since your favorite Bioconductor packages require a

well-formed CDF, you search the web to see if someone has created a custom CDF

based upon both �lters. Unfortunately, you can't �nd one and must generate the
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custom CDF yourself or rewrite and test several complicated algorithms. Convinced

that the �lters will improve your results, you decide to create a custom CDF from

scratch. The developers of technique A conveniently provide a comma-delimited text

�le with the new probe set de�nitions for the array type that you're interested in,

while the developers of technique B provide a custom CDF with their �lter, also for

your array type. You then need to compare the two di�erent probe set de�nitions to

make sure they don't con�ict and then merge their individual probe set de�nitions

into a single custom CDF. Examining the delimited �les is relatively straightforward,

so �lter A's probe set de�nitions are already usable; however, to get the probe set

de�nitions for �lter B, you need to parse the rather complex CDF �le. After some

time and e�ort, you manage to learn the CDF format and successfully retrieve the

probe set de�nitions for �lter B. With some coding magic, you create a joint probe

set de�nition that is the intersection of the two �lters. Con�dent in your knowledge

of the CDF format, you write some code to create the custom CDF, which eventually

is accepted by the analysis packages after much trial-and-error. Upon analyzing your

arrays, it appears that, indeed, the two �ltering techniques, in tandem, signi�cantly

improve your results. Excited by your success, you want to apply the same probe-level

�lters to an expanded set of arrays, some of which were done on a later version of

the array. As you acquire the necessary �les you realize that the later version of the

array is described by a di�erent kind of CDF, in the XDA format, which is entirely

di�erent from the CDF format that you learned. Dispiritedly, you set out to learn

another format and start the process over again.

Not only is the above scenario likely, it is also fairly optimistic. Many research

labs do not have the in-house computational expertise to create custom CDFs easily,

nor should every lab be required to learn about the CDF formats to reap the bene�ts

of research into probe-level �lters on A�ymetrix microarrays. This is exactly why a

generic custom CDF creator like ArrayInitiative is useful.
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The case study presented here illustrates the merging of two real sets of probe

�lters, that we term `BaFL' and `Upton' (described more fully below). We created

custom HG-U95Av2 CDFs for each of them and then used three di�erent Bioconductor

packages � RMA, dChip and MAS 5.0 � to determine the independent and joint

e�ect of each �lter. Lest the reader be unconvinced that such �lters would alter

the outcome, for a given custom CDF and summarization method, we compared the

probe set intensities calculated using the custom CDF to those calculated using the

default CDF.

3.3.1 The HG-U95Av2 microarray and the Bhattacharjee data set

The 'Bhattacharjee' data set, which contains data for arrays reporting on 139

distinct macro-dissected human lung adenocarcinoma samples, was assayed using 190

HG-U95Av2 arrays[110]. Of these, 47 samples had 2-4 replicate arrays (most have

only two). The HG-U95Av2 array has 12,625 probe sets and 201,800 probe pairs

(403,600 probes), with most probe sets having 16 probe pairs (32 probes). The full

distribution of probe pairs per probe set is presented in Supplementary Table 1.

For this case study, we analyzed twenty randomly selected arrays (RAND) from

190 Bhattacharjee adenocarcinoma arrays, shown in Supplementary Table 2. When

selecting the arrays, we excluded any arrays that exhibited array-wide technical prob-

lems, as identi�ed by Thompson et al.[99], from the sample pool.

3.3.2 Probe-�ltering techniques

3.3.2.1 BaFL

Thompson et al. [99] developed a �white box� pipeline � Biologically applied

Filter Levels (BaFL) � to identify and �lter microarray probes that are likely to report

incorrect or misleading intensities based upon certain biological properties, such as the

presence of SNPs in the probe sequence (e.g. as identi�ed by A�yMapsDetector [100]),

probe cross-hybridization, internal structure in either the probe or target sequence

that reduces binding a�nity, and probe intensities that fall outside the linear range
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of the scanning device [81, 82]. Thompson et al. provided comma-delimited �les of

�ltered (deprecated probes removed) probe set de�nitions for the HG-U95Av2 and

HG-U133 array types.

3.3.2.2 Upton

Upton et al. [79, 80] reported that probes with certain sequence motifs have

intensities that are uncorrelated with the other probes in the same probe set; however,

they tend to correlate well with any probes having the same sequence motif, regardless

of probe set membership. In this case study, we will focus on the two major types

of problematic sequence motifs identi�ed by Upton et al. [80]: G-runs and primer

spacers. Probes with the G-run motif, ≥ 4 Gs in a row, tend to produce consistently

high intensities, with some position dependence. The primer spacer motif, CCTCC,

is related to the incorporation of a T7-binding site when a mRNA is ampli�ed during

target preparation. When the target is ampli�ed in this manner, the probe intensities

tend to be higher than most, introducing a spurious correlation similar to that seen

with G-runs. Since both of these sequence motifs introduce a systematic bias when

summarizing probe set intensities, any probes including them should be removed from

a CDF prior to calculating expression values. This is always true for the G-run motif

and is true for the primer spacer motif when the target is ampli�ed by incorporating a

T7-binding site. The reports by Upton et al. provided good insights about identifying

problematic probes, but they did not provide a modi�ed CDF, a �at-�le of probe set

de�nitions nor a list of deprecated probes for a given array version.

3.3.3 Are the probe-�ltering techniques independent?

When di�erent groups develop QC �lters independently there may be overlap

or con�icts of which they are unaware. Therefore, before proceeding with creating

custom CDFs and downstream analysis, we �rst assessed the overlap between the

BaFL and Upton �lter sets to determine if they are truly independent �lters.

Fig. 3.2a shows how many probe pairs were removed independently and jointly
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Figure 3.2: Independent and joint e�ects of the BaFL and Upton �lter sets. (a):
The total number of probe pairs removed by either the BaFL or Upton �lter sets
was 56,994/201,800 (28.2%). The Venn diagram shows the number of probe pairs
removed only by the BaFL �lter set (blue), the number of probe pairs removed by
the Upton �lter set (yellow), and the number of probe pairs removed by both �lter
sets. (b): The total number of probe sets removed or modi�ed by either the BaFL
or Upton �lter sets was 9,799/12,625 (77.6%). The Venn diagram shows the number
of probe sets a�ected only by the BaFL �lter set (blue), the number of probe sets
a�ected only by the Upton �lter set (yellow), and the number of probe sets a�ected
by both �lter sets.

by each of the �lter sets and Fig. 3.2b shows how many probe sets were modi�ed

or removed independently and jointly by each of the �lter sets. Most analyses are

performed on probe set data, but the a�ected probe pairs are not necessarily homo-

geneously distributed, so we examined both aspects. Based upon these results, we

see that the two �lters generally operate on di�erent sets of probe pairs, with minor

overlap (4.1%). The BaFL �lter set removes a signi�cantly larger number of probe

pairs than the Upton �lter set. We also see that the two �lter sets jointly a�ect a

large fraction of the probe sets (31.1%), although a signi�cant portion of them are

independently a�ected by each �lter. The greater overlap between the two �lters in

the latter case is expected since each probe set consists of multiple probe pairs.
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3.3.4 Creating the custom CDFs

We created three custom CDFs using ArrayInitiative: a BaFL-only custom CDF,

an Upton-only custom CDF and a BaFL plus Upton joint CDF. Each �lter set re-

quired a unique approach for generating the probe set de�nitions due to the di�erent

ways that they were communicated; however, after we de�ned the probe sets for each

�lter set, the steps for creating the custom CDFs were identical. Fig. 3.3 shows a

graphical summary of the CDF creation work�ow.

The �rst actions were common steps. We created a new ArrayInitiative database

and imported the default HG-U95Av2 CDF from the �le provided by A�ymetrix.

Next, we imported the PM probe sequences using the tab-delimited �le provided by

A�ymetrix and instructed ArrayInitiative to automatically generate the correspond-

ing MM probe sequences. Finally, we exported the default CDF probe set de�nitions

(with probe sequences) as a comma-delimited text �le. When generating the custom

probe set de�nitions in the subsequent steps, we queried the ArrayInitiative database

directly for information about the default probe set de�nitions as querying databases

tends to be more e�cient and straightforward than searching for information in �at

�les. The end-point of the custom probe set de�nition stage was to have in hand

comma-delimited �le (CSV) with the following columns per line: (1) probe set ID,

(2) PM probe ID, (3) x-coordinate of the PM probe, (4) y-coordinate of the PM

probe, (5) MM probe ID, (6) x-coordinate of the MM probe and (7) y-coordinate of

the MM probe. In order to keep the method comparison fair we required that each

probe set have at least 4 probe pairs remaining; if it did not, we removed it before

creating the custom CDFs.

When creating the BaFL probe set de�nitions, we started with the comma-

delimited �ltered probe set de�nitions for the HG-U95Av2 array provided by Thomp-

son et al. Since that probe set de�nition �le included only the PM probes, we �rst

queried the ArrayInitiative database to get the full probe set de�nitions of the de-
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Figure 3.3: Work�ow for creating the custom CDFs. Work�ow for creating the
custom BaFL, Upton and BaFL + Upton custom CDFs. The boxes in blue are
common steps while the boxes in orange are steps unique to a particular �lter set.
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fault CDF. When creating the standardized probe set de�nition �le, we included only

those probe pairs whose PM probe was in the author's probe set de�nitions. We then

uploaded the standardized probe set de�nitions into the ArrayInitiative database.

Creating the Upton probe set de�nitions was somewhat trickier because we needed

�rst to identify the G-run probes on the HG-U95Av2 array. Again, we �rst queried

the ArrayInitiative database to get the full probe set de�nitions of the default CDF,

including the PM and MM probe sequences. When creating the standardized probe

set de�nition �le for this �lter, we identi�ed probe pairs � using regular expressions �

that had at least one G-run or primer spacer in either the PM or MM probe sequence

and then excluded that probe pair from the �nal probe set de�nition. We then

uploaded the standardized probe set de�nitions into the ArrayInitiative database.

Since the BaFL + Upton CDF is the intersection of the probe pairs that survived

the BaFL and Upton �lters, we retrieved the joint probe set de�nitions from the

ArrayInitiative database by intersecting (standard 'INTERSECT' SQL statement)

the BaFL probe set de�nition table and the G-run probe set de�nition table (created

in the previous steps). Now having a list of the surviving probe pairs, we created a

standardized probe set de�nition �le and uploaded this data into the ArrayInitiative

database.

Having standardized probe set de�nition �les for each of the probe �lters, the �nal

steps for creating a custom CDF for each are identical. We �rst created ArrayInitiative

speci�cation �les for each of the �lters using the standardized probe set de�nition �les

and then imported the custom CDF speci�cations into ArrayInitiative. Finally, we

created a standard ASCII CDF �le for each of the custom probe set de�nitions in

ArrayInitiative.

Table 3.1 shows how the custom CDFs were changed relative to the original and

Fig. 3.4 compares the frequency with which the indicated number of probe pairs

are removed from probe sets for each of the three custom CDFs (e.g. the number of
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Table 3.1: Filter set modi�cations to the HG-95Av2 speci�cation. Modi�cations to
the default HG-U95Av2 speci�cation made by each set of �lters.

CDF name Removed probe sets Modi�ed probe sets Unmodi�ed probe sets
Upton �lter set 1 4,083 8,303
BaFL �lter set 1,406 7,125 3,856

BaFL + Upton �lter set 1,460 8,570 2,357

probe sets with zero probe pairs removed, one probe pair removed, two probe pairs

removed, etc.)

3.3.5 Creating and validating Bioconductor CDF packages

Many of the Bioconductor packages aimed at analyzing A�ymetrix arrays use a

specialized R package representation of a CDF instead of the actual CDF; there are

pre-generated packages for many of the default CDFs. Since we are using custom

CDFs for downstream analysis, we �rst created and installed our own R packages for

the three custom CDFs generated by ArrayInitiative, as follows:

1. Made the packages using the make.cdf.package function in the makecdfenv pack-

age [111].

2. Installed the custom CDF packages using R CMD INSTALL.

With the custom CDF packages successfully installed, we compared, for each �lter,

the probe set de�nitions in the existing R packages with the probe set de�nitions in

ArrayInitiative, as follows:

1. Exported Bioconductor's internal probe set de�nitions for the custom CDFs �

using the ls and get R functions � to a set of delimited �les and then uploaded

the data to the ArrayInitiative database (three tables total).

2. Veri�ed that the number of Bioconductor probe pairs equaled the number of

ArrayInitiative probe pairs (SQL 'COUNT').

3. Veri�ed that the member probe pairs in Bioconductor were the same as the

member probe pairs in ArrayInitiative (SQL 'INTERSECT').
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Figure 3.4: Number of probe pairs removed by individual �lter sets. Summary of
number of probe pairs removed from standard probe sets � those having 16 probe
pairs � by each of the three �lter sets. Presented for each custom CDF are the total
number of probe sets that survived the cleansing process. Default CDF = 12,387
standard probe sets, Upton CDF = 12,386 standard probe sets, BaFL CDF = 10,981
standard probe sets, BaFL + Upton = 10,927 standard probe sets.
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Using the above procedure, we veri�ed that the probe set de�nitions for each �lter

were consistent between Bioconductor and ArrayInitiative, showing that ArrayInitiative-

generated CDFs are compatible with one of the most widely used microarray analysis

packages. Since the probe set de�nitions were consistent, we can reasonably assume

that any di�erences in downstream analysis will be the result of the custom probe set

de�nitions, not from misinterpreting set membership.

3.3.6 Di�erences in summarized probe set intensities

How do the BaFL and Upton �lter sets independently, and jointly, a�ect sum-

marized probe set expression values? For the three summarization methods chosen

(MAS 5.0, dChip, and RMA), we determined how, on average, the custom expression

values changed with respect to the default expression values as we removed probe

pairs.

We only analyzed the 12,387 probe sets with 16 probe pairs in the default CDF

(henceforth called standard probe sets) and only removed from 0 to 12 probe pairs,

so that at least 4 remained to a set. We did this for several reasons: (1) standard

probe sets represent the vast majority of those on the array and most are designed

to interrogate transcripts, (2) the majority of non-standard probe sets represent the

minority of those on the array and most are designed for diagnostic or quality control

purposes and (3) we wanted to use a consistent probe set size to eliminate that as a

factor when analyzing the downstream e�ect on expression values.

For each unique combination of summarization method and RAND array, we cal-

culated the expression values of the standard probe sets using the default and custom

probe set de�nitions. Then for each probe set, we calculated the percent change be-

tween the expression values, as follows:

∆ =
Ec − Ed

Ed

∗ 100

where Ec is the custom expression value and Ed is the default expression value. For
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each distinct combination of summarization method and custom CDF, we calculated

the average delta, across all of the RAND arrays, as we removed probe pairs. The

work�ow is depicted in Supplementary Fig. 1.

Before running the analysis, we postulated that the Upton �lter set would decrease

probe set intensities as we removed probe sets, since probes with G-runs and primer

spacers tend to have a much higher intensity than other probes in the probe set; we

expected that the BaFL �lter set would increase the probe set expression values as

we removed probe sets because its �lters tend to remove low intensity PM probes;

we expected that the joint �lter probe set expression values would fall between those

produced by the two independent �lter sets, but heavily weighted towards the BaFL

probe set expression values, since it removed many more probe pairs.

3.3.6.1 MAS 5.0

Fig. 3.5a shows the average expression changes seen when we used MAS 5.0 to

summarize the probe sets. The Upton �lter set in�uenced the probe set expression

values in two distinct ways: when we removed 1-5 probe pairs, the expression val-

ues stayed relatively constant compared to the default CDF; when we removed 6-9

probe pairs, the expression values increased (except at 7); when we removed 10-12

probe pairs, the expression values decreased. This result was surprising since we ex-

pected the probe set expression values to consistently decrease. The BaFL �lter set

consistently resulted in increased probe set expression values as we removed probe

pairs, while the joint �lter set was a blend of the two independent �lter sets, although

heavily weighted towards the BaFL �lter set.

3.3.6.2 dChip

Fig. 3.5b shows the average expression changes seen when we used dChip to

summarize the probe sets. The Upton �lter set decreased the probe set expression

values, but exhibited somewhat erratic behavior. The BaFL �lter set, in general,

decreased the probe set expression values, reaching a maximum positive change at
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Figure 3.5: Di�erence between summarized probe set intensities. Probe set intensities
were summarized by MAS 5.0, dChip and RMA for each of the three custom CDFs and
for the default CDF. The graphed lines show the average percent change in custom
CDF probe set expression values with respect to the default CDF expression values
as we removed probe pairs. (a) Probe set intensities were summarized by MAS 5.0.
(b) Probe set intensities were summarized by dChip. (c) Probe set intensities were
summarized by RMA.
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6-7 probe pairs removed. The expression values decreased when we removed 12 probe

pairs. The joint �lter set was a blend of the two independent �lter sets, only somewhat

weighted towards the BaFL �lter set.

3.3.6.3 RMA

Fig. 3.5c shows the average expression changes seen when we used RMA to sum-

marize the probe sets. The Upton �lter set consistently decreased the probe set

expression values while the BaFL �lter set consistently increased the expression val-

ues. The joint �lter set was a blend of the two independent �lter sets: the values

were slightly weighted towards the BaFL �lter set when we removed 1-6 probe pairs

and heavily weighted towards the BaFL �lter set when we removed 7-12 probe pairs.

3.3.7 Case study discussion

The Upton �lter set decreased the probe set expression values when they were

summarized by dChip and RMA, a trend not observed when we summarized the

probe sets with MAS 5.0. The MAS 5.0 expression values were unresponsive to the

Upton �lters when we removed 1-5 probe pairs, while its e�ect was fairly erratic in the

6-12 range. The BaFL �lter set consistently increased the probe set expression values

for all of the summarization methods, with MAS 5.0 and RMA being particularly

responsive. The joint �lter set produced intermediate expression values that were

a blend of the two independent �lter sets when summarized with either dChip and

RMA; the e�ect was generally additive. The BaFL �lters had a stronger in�uence

on the expression values, but this is not surprising, given that the BaFL �lter set

removed signi�cantly more probe pairs than the Upton �lter set. When summarizing

with MAS 5.0, changes in the expression values were largely driven by the BaFL

�lters, with the Upton �lters having little e�ect.

In considering the joint �lter set, RMA exhibited trends in expression value

changes that best �t our prior expectations. Considering the magnitude of expres-

sion value changes, the joint �lter changed the MAS 5.0 expression values the most,
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followed by RMA and then dChip. While the expression values for MAS 5.0 and

RMA changed by factors of 20-100% for many of the data points, the changes seen

with dChip were much lower, in the 2-15% range, suggesting that dChip is the least

responsive to changes in the probe set de�nitions.

From these results, we may conclude that the �lter sets signi�cantly alter the value

of the estimated target concentration when using any of the summarization methods,

although we can't speculate if it drives the values towards or away from the true

value. Also, we note that ArrayInitiative has �nally allowed our lab to apply MAS

5.0, dChip and RMA to a BaFL-�ltered data set, which has been one our research

goals for a while.

3.4 Future work

Long-term, we intend to develop an open API that will support module develop-

ment by external programmers for a large number of array types and manufacturers.

For example, the research community might create modules that implement a speci�c

strategy for re-de�ning probe sets (e.g. gene-speci�c, transcript-speci�c, exon-speci�c,

tissue-speci�c, 3'-end speci�c) or modules that pre-process and remove probes that

contain undesirable sequence motifs, such as runs of Gs. Short-term, our research

goals dictate adding support for A�ymetrix SNP and exon arrays, adding support for

Agilent human 4 x 44k arrays, development of a tool to report just the di�erences

between two CDFs, development of a tool to convert between the A�ymetrix ASCII

and XDA formats and development of a tool to merge two or more di�erent probe set

de�nitions (union, intersection, di�erence) for the same array type. We also need a

variant of the merging tool that can de�ne consensus probe sets among di�erent, but

related, platforms. In particular, we have pooled data from adenocarcinoma studies

assayed on four versions of the A�ymetrix human genome arrays: HG-U95, HG-U133,

HG-U133A and HG-U133 Plus 2.0. These arrays share many same-sequence probe

pairs, but the names of their parent probe sets and their location on the arrays are
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di�erent. A consensus merging tool will identify the common probe pairs by their

sequence and then group them into biologically relevant probe sets. The probe set

identi�ers and probe sequences will then be consistent across arrays, di�ering only

in probe coordinates. This would require a custom CDF for each array version, but

all of them would consistently measure the same subsequences in each transcript.

Finally, we intend to add support for a di�erence speci�cation type, which will allow

users to specify a custom CDF as an exact copy of the baseline CDF, except for any

explicitly stated di�erences, most likely useful for those studying only a few genes in

great detail.



CHAPTER 4: PROBESIEVE

4.1 Introduction

Microarrays have long su�ered from accuracy and reproducibility problems, which

has made it di�cult to con�dently and consistently interpret the results of microarray

experiments [74]. Without reasonably accurate and consistent estimates of transcript

abundance, it's di�cult to model all of the nodes and edges in a transcriptional reg-

ulatory network. Especially important for prokaryotes, the estimates of transcript

abundance by genes in the same transcription unit should have similar exression pro-

�les across conditions (although the actual values may vary due to binding a�nitiy

di�erences) - if not, there is either a problem with the probe sets measuring those

genes, or it might indicate the presence of a new transcription unit or that the anno-

tation for the existing one needs to be modi�ed. In any case, to accurately model a

TRN, you must be able to trust the measurments that you're using to characterize

it.

Although many causes have been identi�ed, an important source is failures in

the probe design process, which lead to confounded measurements. A number of

known physical and technical factors a�ect probe behavior, such as probe-to-target

mapping problems and secondary structure problems. Researchers have developed

both statistics- and factor-based methods to identify and discard probes (or their

measurements) that are likely not reporting faithfully. While statistical methods,

such as RMA, GC-RMA, dChip and MAS 5.0[83, 84, 85, 86], are easy to use and good

at removing generalized measurement error, it's likely that they remove meaningful

experimental variation along with the unwanted variation [112]. If you know the



82

sources of the unwanted variation, it's advisable to remove probes a�ected by them

before trying to interpret the results of microarray experiments. This is the philosophy

behind factor-based probe �ltering methods. Over the years several have been shown

to improve our interpretation of microarray experiments [89].

While an improvement, factor-based approaches have several shortcomings. With

the exception of BaFL [99], a consolidated factor-based pipeline doesn't exist. No

common data set or test methods exist to evaluate the impact of a factor-based �lter,

making it di�cult to consistently assess the impact of a �lter. For example, one study

may declare success if an increase in the concordance of di�erential gene expression

lists occurs [ref], while another may use improved sample classi�cation as its measure

of success [ref]. To avoid experimental and factor bias, several evaluation methods

should be used on several data sets. Other considerations include whether the factors

are independent, whether some are irrelevant (having a negligible e�ect) and whether

this is true across platforms and experiments. For example, a SNP �lter is not

relevant for a prokaryotic organism. Also, while some studies account for binding

a�nity di�erences between probes, the handling of those di�erences is inconsistent

� some approaches remove poor-a�nity probes altogether while others use a linear

model to average signal across a set of probes [85, 83, 113]. A number of studies have

examined the relationship between intensity and binding a�nity and found it to be

complex � however these studies have not considered all of the other factors a�ecting

the intensity. A question that still concerns us is whether some factors remain to be

identi�ed. Thompson noted latent structure in the data set used to validate the BaFL

pipeline, which was ascribed to unknown factors [99], but could also have re�ected

sample characteristics. No study presents a method to answer this question. To

address several of these limitations, we developed the ProbeSieve pipeline.

The ProbeSieve pipeline builds upon the BaFL pipeline, with several key exten-

sions, modi�cations and diagnostic methods to tune it for use with experiments done
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on A�ymetrix E coli antisense expression arrays. The core work�ow is similar: enforc-

ing upper and lower limits for raw probe intensities that better re�ect the sensitivity

range of the scanner and removing probes that cross-hybridize or have no target in

the updated genome annotation (both by exact sequence alignments and structural

simulations). However, there are several key di�erences. We removed the �lter for

SNPs (since they're not relevant to prokaryotes), modi�ed the approach for enforc-

ing scanner sensitivity to allow experiment-speci�c baseline detection, and included

the ability to re-assign probes with misassigned targets (rather than simply depre-

cate them). When identifying probes that cross-hybridize, or have an unidenti�ed or

misassigned target, we consider not only exact alignments, but inexact ones that fol-

low the Kane criteria[78], expanding the range of binding partners considered in the

original pipeline. We calculate the binding a�nity between all of these probe-target

combinations (exact and inexact), giving us a more complete picture of the competi-

tive pool of targets for a probe. We then remove or re-assign probes using this binding

a�nity, similar to the approach for exact alignments in the BaFL pipeline. Besides

using the binding a�nity to make a binary decision to keep or remove a probe, we

also use it to modulate the reported probe intensities. For example, knowing that a

probe binds to a singe target with only a 60% e�ciency, we can calibrate the probe's

intensity to account for this bias.

To evaluate the impact of the di�erent factors, we created a suite methods (both

novel and published) including: a�liated probe correlation, presence of response

groups, transcription unit correlation and di�erences in aggregated probe set inten-

sities. Importantly, a�liated probe correlations and response groups are valuable

diagnostic tools for detecting hidden factors.

Use cases were then employed to compare the outcomes when the modi�ed gene

values obtained with the ProbeSieve pipeline were used as input to the three most

popular statistical methods (RMA, dChip and MAS 5.0). Since ArrayInitiative al-
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lows us to create custom CDFs, we were able to explore the e�ects when the factor

�lters were combined with the statistical methods. Of principle interest was whether

methods that improved gene-level correlation carried through to operon-level probe

sets, since TRNs in E. coli should re�ect TUs modulated by regulation of the operon.

4.2 Methods

4.2.1 Hardware and software

All of the data parsing, transformation and analysis scripts were written in Python

2.7 [105] and R 2.14.0 [114], and the ProbeSieve [104] database was developed using

PostgreSQL 8.4, all under Ubuntu 10.04 LTS (Lucid Lynx). Individual Python and

R packages used will be referenced where appropriate.

4.2.2 The E. coli antisense genome array

All of our datasets were produced on the GeneChip® E. coli Antisense Genome

Array version 2 (Asv2). Manufactured by A�ymetrix, this is a 3' in vitro transcrip-

tion (IVT) expression array designed to report the abundance of 4,426 open reading

frames (ORFs)/genes and 2,886 intergenic regions of the E. coli K12 genome (total

number of probe sets = 7,312). Most probe sets have 14 or 15 probe pairs. A�ymetrix

originally designed the 141,629 probe pairs on the chip using version M54 of the E

coli project that was made publically available through the project database housed

at the University of Wisconsin/Madison (Blattner lab). Since the protocol for this

array speci�es that the mRNA (corresponding to the sense strand) be reverse tran-

scribed into cDNA, the sequence of actual targets assayed to the array are identical

to the antisense strand (hence the antisense in the name). Consequently, all of the

complementary probes have the same sequence as the sense strand.

4.2.3 Data sets and databases

In this section, we discuss the data sets and databases used for this study.
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ProbeSieve database

We created a relational database, ProbeSieve database, to store all of data related

to this study, including data from third parties. It was developed using PostgresSQL

[104]. Although we didn't use Data-FATE for this study, as discussed in Chapter 2

(Data-FATE), the Data-FATE development e�ort did inform the approach for devel-

oping methods to automate methods associated with the ProbeSieve database, such

as de�ning database objects, loading data and partitioning data for the ProbeSieve

database. We developed a consolidated DatabaseScripter class that automatically

and consistently created the SQL for creating objects of the same type (e.g. multiple

tables to store probe intensity data) and loading its corresponding data, similar to

Data-FATE, although not as abstracted or automated. As is done in the Data-FATE

framework, we partitioned, the especially large data sets, such as probe intensities,

to reduce the time for loading and indexing. However, our partitions were not as

�ne-grained as suggested by the Data-FATE framework. For example, we stored the

probe intensities for hundreds of experiments in a single table, rather than one ex-

periment per table. We did this to avoid the cross-query problems discussed in the

Data-FATE chapter.

RegulonDB

RegulonDB [115] is a comprehensive, curated and public database detailing the

transcription regulatory network (TRN) of E. coli. It contains information about

operons, transcription units, promoters, binding sites and terminators; much of this

data is supported by experimental evidence, although some is based on computational

predictions alone. We downloaded and installed a local copy of version 7.3 as a schema

in the ProbeSieve database. We also added several views to make it easier to identify

operon templates and single-template operons.
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Faith data set

The 'Faith' data set consists of 507 E. coli Asv2 arrays that monitor E. coli tran-

scriptome under �various conditions including pH changes, growth phases, antibiotics,

heat shock, di�erent media, varying oxygen concentrations, and numerous genetic

perturbations.� [40] This compendium consists of 241 publicly available, third-party

arrays and 266 arrays that Faith et al. produced themselves (all of the CEL �les

are available in the Gene Expression Omnibus [44]). The purpose to making the

compendium was to test the performance of the CLR algorithm, developed by Faith,

against several competing network inference algorithms [116]. The probe set intensi-

ties for all of the arrays were uniformly normalized and summarized using RMA [83]

and the derived data so produced was made publicly available from the M3D database

[40]. We chose this data set because it has a large number of arrays and covers a wide

range of perturbations arising from experimental conditions. In addition, having 266

arrays produced in the same lab, using the same experimental protocol and equip-

ment minimizes a number of known sources of technical variation, useful as a control

for the other datasets.

4.2.4 Re-mapping probes and calculating binding a�nity

Before we could identify probes a�ected by individual physical and technical fac-

tors, we �rst needed to re-map the probes synthesized on the E. coli Asv2 array to

a more current genome version and annotation, and then using the new mappings,

calculate the binding a�nity between all of the relevant probe-target pairs.

Re-mapping the probes to the genome

The goal of this step was to remap the probes on the E. coli Asv2 array to the most

current version of the E. coli K12 genome sequence (from GenBank, NC_000913.2)

and its annotation in RegulonDB (version 7.3) [115], �nding both exact and inexact

alignments. Finding exact alignments is the predominant � and relatively easy �

method to re-map probes to their targets. However, we also needed to �nd inexact
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alignments so that we could later add �lters for non-ideal probe-target pairs to the

ProbeSieve pipeline. Since mapping short microarray probe sequences (25nt) to a

genome is the same problem as mapping HTS reads to a genome, we decided to use

an HTS aligner. Although many aligners are available, such as Bowtie [117], MAQ

[118] and SOAP [119], most of them only allow a few mismatches and don't allow

gaps. However, we needed an aligner that could �nd alignments with at least six

mismatches. This follows from the Kane criteria [78] for non-ideal binding a�nity,

which for 25mers only requires a core of 15 identical, consecutive bases (for minimum

nucleation) and 75% sequence total sequence identity between a probe and its target

to bind.

Based on these criteria, we chose to use the read aligner module of Mosaik [un-

published, [120]], which is a reference-guided assembler for next-gen sequencing data.

Mosaik uses the Smith-Waterman algorithm [121] to align the probe to target, which

allows for an arbitrary number of mismatches and gaps. However, Mosaik also allows

you to specify a minimum 'core' of matches (corresponding to a minimum nucleation

criterion) and the maximum number of mismatches allowed; these features made

Mosaik an excellent �t for our alignment criteria.

We �rst built the target sequence (the entire E. coli K12 genome sequence) and

the probe sequences (all of the perfect match and mismatch probes on the A�ymetrix

E. coli Asv2 array) using the MosaikBuild module. Using these sequence builds, we

aligned the probe sequences to the K12 genome using the MosaikAligner module.

Although we used most of the default options for MosaikAligner, we set the hash

size to 15 (meaning that any matches must have at least 15 consecutive identities)

and the maximum number of mismatches to 10. Gaps were not relevant for this

study (all experiments were performed on the organism matching the probes, so

the only gaps should be in the deletion mutants), so we set the gap open penalty

and gap extension penalties to a high value (200), e�ectively preventing gaps in the
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alignments. With these settings, MosaikAligner returned probe-genome alignments

(in SAM format[122]) with at least 15 consecutive identities (minimum nucleation)

and up to 10 mismatches percent identity ≥ 0.6), slightly lower than the Kane value

of 0.75, to include probes that are close to the cuto�.

We wrote Python scripts to parse and transform the SAM �les into a more easily

usable format. Using the alignment results, in conjuction with the gene annotations

in RegulonDB [115], we then classi�ed the probe-target alignments as belonging to a

gene, an intergenic region or a junction between the �rst two categories. Speci�cally,

to be classi�ed as a gene alignment, the probe-target alignment must fall completely

within the genomic boundaries of the gene; we similarly classi�ed as an intergenic

alignments. Probes aligning to multiple genomic entities were classi�ed as junction

alignments. For example, let's consider the two E. coli genes thrL (190-255) and thrA

(337-2799), with an intergenic region de�ned between them (256-336). If a probe

aligns to the genome at coordinates 195-219, it's a gene alignment; at coordinates

260-285, an intergenic alignment; at coordinates 325-349, a junction alignment. We

stored all of this data in the ProbeSieve database.

Calculating the binding a�nity between probe-target alignments

Using the exact and inexact aligments returned by Mosaik, we calculated the

binding a�nity between the probe-target pairs (where the probe targets a gene) us-

ing Oligonucleotide Modeling Platform�(OMP). Developed by DNA Software [123],

OMP�is a commercial software application for �secondary structure analysis plus

design and simulation of probes/primers, RT-PCR, Taqman, Multiplex PCR, LATE-

PCR, Scorpions, Beacons, Allele Speci�c and FRET assays, Microarrays, RNAi, and

new formats.� [123] The microarray simulations were relevant to this study, as they

simulate surface constraints that are imposed on the interactions of bound oligonu-

cleotide probes with soluble targets. The limitation of the approach lies in its thermo-

dynamic perspective, which assumes in�nite time and no kinetic barriers to reaching
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equilibrium. All thermodynamically favorable heteroduplexes are predicted to occur.

We know this isn't always true: some probe-target pairs will never bind in a �nite

amount of time, while others don't have su�cient time to reach equilibrium. Cur-

rently, no application exists that takes into account the kinetics. We make a point

of emphasizing in the Discussion that these results are likely to contain some false

positive.

To calculate the probe-target binding a�nities, we used the OMP Developer Edi-

tion, which includes a command-line interface to the OMP engine. To run an OMP

simulation, you �rst need to create an experiment �le (OEF), which de�nes the probes,

targets and experimental conditions to use in the simulation. You can de�ne a single

probe and target, or you can include multiple probes and targets, for a multiplex

simulation. In either case, you need to specify the probe and target sequences and

the molecule type (RNA or DNA). For the experimental conditions, you are expected

to specify: probe concentration, target concentration, assay temperature, various so-

lution components (magensium, sodium, glycerol, DMSO, formamide, TMAC, and

betaine), solution pH and whether or not polymer salt is present. Table 4.1 contains

the hybridization conditions we used.

We didn't need to model competitive hybridization, since the probe concentration

is signi�cantly higher than target concentration (~ 10,000 fold di�erence), so we ran

an individual simulation for each probe-target pair (~200,000). To automate the

modeling process we developed a Python script to create an input �le (OEF) for each

simulation, run it, parse the output �le (OOF) and merge the simulation results with

an aggregate results, which we then uploaded to ProbeSieve DB. The Python script

expects two input �les: a �le containing the hybridization conditions and a delimited

text �le containing each probe-target pair to simulate. The latter �le requires a probe

and target ID and their corresponding sequences (and the type of nucleic acid, DNA

or RNA).
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Table 4.1: Hybridization conditions for the OMP simulations.
Parameter Value

ASSAY_TEMPERATURE 45.0 C
NUMANALY_MIN_TEMPERATURE 0.0 C
NUMANALY_MAX_TEMPERATURE 100.0 C
MAGNESIUM_CONCENTRATION 0.0 M

SODIUM_CONCENTRATION 0.5 M
GLYCEROL_CONCENTRATION 0.0 M

DMSO_CONCENTRATION 0.0 M
FORMAMIDE_CONCENTRATION 0.0 M

TMAC_CONCENTRATION 0.0 M
BETAINE_CONCENTRATION 0.0 M

PH 6.6
POLYMER_SALT TRUE

PROBE_CONCENTRATION 1.86E-3 M
TARGET_CONCENTRATION 3.0E-8

We created three di�erent probe-target pair �les for this study. From studies

performed in out lab we knew that sometimes the folding of target DNA adjacent to

the duplex-forming site alters the stability of the complex. The average length of the

targets, as prepared using the A�ymetrix protocol, is 50-75nt. In the �rst length �le,

we included the target sequence of exactly the length of the probe (length = 25); in

the second, we extended the target sequence by one nucleotide on each end (length =

27); in the third, we extended the target by 38 on each end (length = 101). In total,

we ran three sets of simulations, corresponding to each target length.

4.2.5 Individual factor �lters

Having re-mapped probes and calculated probe-target binding a�nities, we could

identify probes a�ected by individual physical and technical factors. Here we discuss

our approach for identifying a�ected probes for each of the factors, and then, how we

correct for each of them.

Binding a�nity between probe and target

The results of an OMP simulation return both a ∆G and percent bound (PB) for

each probe-target pair. If the value of ∆G ≤ −10 kcal/mol, we concluded that the
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binding a�nity between the pair was su�cient to maintain a signi�cant signal after

the washing step during an experiment. We collected the percent bound value, which

tells you how much of the target is actually bound to probe at equilibrium, in order

to modulate the reported intensity for that probe.

Probe-to-target remap

After calculating the binding a�nity between both exact and inexact alignments,

we knew which probe-target pairs were likely to bind. Given this, we identi�ed

probes that cross-hybridized (number of targets ≥ 1), probes with an unidenti�ed

target (number of targets = 0) and misannotated probes (the probe was designed to

measure on target, but after the remap, is now known to measure a di�erent one).

We deprecated any probe that cross-hybridized or had an unidenti�ed target; we re-

assigned any misannotated probe, but only if it had a single (although misannotated)

target.

Probe sequence motifs

Using a speci�cation �le generated by ArrayInitiative, which contained the se-

quences for all of the probes on the E. coli Asv2 array we identi�ed every probe with

a G-run sequence motif (≥ 4 Gs in a row) and a list of probes containing the primer-

spacer motif (CCTCC). If a probe had one of these motifs, we deprecated it.

Sensitivity range of the scanner

We employed two stages to account for limitations imposed by the sensitivity range

of an A�ymetrix scanner (noted in the technical speci�cations for the instrument),

namely, that only reported intensities between 200 and 20,000 are reliable if comparing

relative responses of targets in a sample. This has to be carried using the experimental

data, and can vary between labs. Our goal was to select a subset of genes and operons

containing probes with usable values across all of the experiments. In the �rst stage

of the selection process, we examined groups of a�liated probes (e.g. genes, operons)

and identi�ed probes that were outliers. We counted the number of times an a�liated
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probe's value fell within the linear range for each of the Faith arrays (values from 0-

263), so that at the end, we had a count for each probe. We then determined which,

if any, probes had a sign�cantly di�erent counts from the remainder of the a�liated

probes, using the interquartile range.. Intuitively, if the probe was an outlier, its

response pro�le (in the linear response range of the scanner) would be inconsistent

with other a�liated probes. Outlier probes were removed from the a�liated probe

set.

In the second stage, we modi�ed reported intensities directly by setting any raw

intensities less than 200 to a value of 200, and likewise, any raw intensities above

20,000 to a value of 20,000. An unintended result of this thresholding was that

the background correction module of the RMA algorithm was unable to perform

correctly. Normalization in the set of tests using RMA was based only on the quantile

normalization values.

4.2.6 Combining individual �lters into �lter sets

After identifying and correcting for probes a�ected by individual factors, we com-

bined them into a custom �lter set, SrSmLr, which consists of the structure remap

(based upon OMP binding a�nities), sequence motif and linear range �lters. We

removed or re-assigned probes, and modi�ed probe intensities, as appropriate to tge

factor being tested, described above. The Default �lter set was used as a control,

based on the standard approach for background and a�liated probe set value esti-

mation as applied by any of the analysis method. After de�ning these �lter sets, we

used ArrayInitiative to create custom array speci�cations.

4.2.7 Creating the custom speci�cations

For each of the �lter sets � Default and SrSmLr � we created several custom

speci�cations. As stated above, for the Default �lter set, we didn't remove or re-

assign any of the probes but used the default speci�cation, which included probe sets

targeting intergenic regions and genes; we'll denote this speci�cation as Default-GiG
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Table 4.2: Array speci�cations.
Speci�cation name Probe set grouping Filters

Default-GiG Gene and intergenic None
Default-Gene Gene None
Default-Tu Transcription unit None

Default-Operon Operon None
SrSmLr-Gene Gene Structure remap + Sequence motif + Linear range
SrSmLr-Tu Transcription unit Structureremap + Sequence motif + Linear range

SrSmLr-Operon Operon Structureremap + Sequence motif + Linear range

(GiG = gene + intergenic). We also created three new custom speci�cations which

re-assigned probes to di�erent groups. one such included only probe sets targeting

a gene (Default-Gene), another that targeted transcription units (Default-Tu) and a

third that target an entire operon (Default-Operon). We note that discriminating the

second two correctly relies on annotation information and it may not always be cor-

rect. For the custom �lter set, SrSmLr, we similarly created custom speci�cations for

gene+intergenic, gene, transcription unit and operon, but included �lters we wished

to test. All of the speci�cations that we used for this study are summarized in Table

4.2. We used ArrayInitiative to create a CDF for each custom speci�cation and made

the corresponding Bioconductor CDF package using the make.cdf.package function

in the makecdfenv package [111, 87].

4.2.8 Extracting probe intensities and summarizing probe sets

For each of the high-level speci�cations discussed in the previous section, Default

and SrSmLr, we extracted probe intensities for each of arrays in the Faith (263) and

Covert (43) data sets using Bioconductor's a�y package [124, 87]. We only needed to

extract the probe intensities once for each high-level speci�cation; it was not necessary

to repeat if for the sub-speci�cations (e.g. Default-Gene, Default-Tu etc.) because

probe set groupings don't a�ect probe intensities, only probe set summarizations. For

the Default set of speci�cations, we background-corrected and normalized the inten-

sities in the same way as RMA. For the SrSmLr speci�cation set, we only normalized
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the probe intensities (again, conforming to the RMA method). As mentioned above,

we did not background-correct because RMA's background correction was not able

to carry out the function: when it was attempted it produced many null values. Once

extracted and transformed, we then loaded those values into the ProbeSieve database.

For each of the sub-speci�cations discussed in the previous section, we summarized

the probe set intensities using RMA [83], dChip [85] and MAS 5.0 [86], using the im-

plementations in the a�y Bioconductor package [124, 87]. We also developed Python

code to summarize the probe set intensities using a standard mean and median. All

summary values were loaded into the ProbeSieve database.

4.2.9 Calculating a�liated probe correlations

If the probes in a probe set are truly `a�liated', that is if they're measuring the

same target, then we expect that their measurements across many conditions will have

a high, positive correlation. If not, then the probes are measuring di�erent targets or

groups of targets a�ected in di�erent ways by the perturbation factors: in that case,

depending on the in�uence of that probe, the probe set overall may perform poorly.

To test for probes exhibiting this behavior, we calculated the correlation between the

a�liated probes in each probe set, with categories as de�ned in Table 4.2: intergenic,

gene, transcription unit and operon. Let's consider an example using a gene-level

probe set. For each probe targeting the same gene (a�liated probes), we constructed

an intensity pro�le using the Faith arrays (N = 263). Then, for every a�liated probe

pair, we calculated the Spearman correlation between their pro�les. As discussed in

the Introduction, the more positively correlated the intensity pro�les of two a�liated

probes, the more likely it is that they are measuring target a�ected similarly by all

perturbation factors. We calculated the a�liated probe correlation for every probe

set de�ned in every array speci�cation in Table 4.2 and stored the results in the

ProbeSieve database.
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4.2.10 Identifying response groups

For those probe sets with low a�liated probe correlation, can we �nd subsets

of probes that have a higher intra-group correlation than inter-group correlation?

Such subsets are called response groups. If a microarray were reporting intensities

perfectly, every probe set is expected to have a single response group, with a highly

positive average correlation. If a probe set has multiple response groups, and those

groups have much higher intra-group than inter-group correlation, that probe set is

actually measuring multiple factors or targets. This is the same concept as cross-

hybridization. If a �probe� (in this case, a probe set) is measuring targets a�ected

by multiple factors then in the measurement is likely to give a reading that is false

for the indicated target,although it may occasionally be correct when factors balance

out. The presence of multiple response groups is also a useful diagnostic tool - if you

have multiple response groups in a probe set, there's likely a hidden factor that you

haven't accounted for.

To identify response groups, we �rst constructed a weighted correlation network

for each probe set (in each speci�cation), where each node is a perfect match probe and

an edge between them represents their correlation. Since this is a weighted network,

every pair of nodes connects with an edge, with the Spearman correlation value as

the edge weight. We then ran the weighted version of the fast greedy optimization

[125] of the Newman algorithm [126], as implemented in the Python implemetation of

igraph library [127], to �nd communities in the graph. A community (or module) is a

subnetwork of nodes that have denser internal connections than with other nodes in

the network [128]. Since these are not cliques, the communities are allowed to overlap,

but the connections between them will be sparser. Since the edge weight in our graphs

is the correlation between probe intensity pro�les, a community (which we're calling

a response group) corresponds to nodes that have a higher correlation with each

other than with other probes in the probe set. So, if the intra-group correlation
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has a high enough positive correlation, then the probes in that response group are

likely measuring the same factor or target. If the inter-group correlation between two

response groups is low enough, and assuming high intra-group correlations, then we

can say that the two response groups are sensitive to di�erent factors or targets.

There are two major aspects of community detection algorithms which will a�ect

our interpretation of response groups. These algorithms work by �nding partitions

of the graph (subnetworks) such that the connections between group members are

denser than those between groups. However, they need only be slightly denser for

the algorithm to partition the graph; in the parlance of response groups, the intra-

group average correlation need only be slightly greater than the inter-group average

correlation. For example, let's assume that a probe set has two response groups,

A and B, and further, group A's intra-group average correlation is 0.8, group B's

intra-group correlation is 0.82 and the inter-group corrrelation is 0.75. A community

detection algorithm will always identify two di�erent response groups because that

is the optimal partition. However, we can easily make the case that the inter-group

correlation is su�ciently high to merge them back into a single response group. A

natural question is, `How low must the inter-group correlation be, as compared to

the intra-group correlations, to keep them as separate groups? '. There's also no

guarantee that the intra-group correlations will be high - this is the second problematic

aspect of the algorithms. For example, let's again assume we have response groups

A and B, but this time, group A's intra-group average correlation is 0.2, group B's

intra-group correlation is 0.15 and the inter-group corrrelation is 0.1. Again, the

community detection algorithm will identify the two groups, and even if we can make

the case for not merging them, the a�liated probes in each group have such a low

correlation that they're likely responding to di�erent factors or targets. Considering

these two scenarios, we need to develop a method to re�ne the groups by merging

them when appropriate.
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4.2.11 Evaluation and diagnostic methods

As discussed in the Introduction, when researchers develop either statistical or

factor-based methods to improve their interpretation of microarray measurements,

they tend to evaluate the impact of their changes using an idiosyncratic set of eval-

uation methods. To comprehensively evaluate a method, it's best to use multiple

tests, including comparisons to a well-regarded standard approach and relative com-

parisons of that standard to proposed novel approaches. For this chapter, we've

developed novel techniques and used published approaches to evalate the impact of

our �lters. Here we discuss the evaluation methods that we've implemented so far.

A�liated probe correlation

If a probe set faithfully measures its target, we expect that its a�liated probes

will have a high positive correlation. Hence, if we improve a probe set's de�nition,

we expect to see an increase in positive correlation, which, when applied to all of

the probe sets whose de�nition have changed post-�ltering, can be used to evaluate

the impact of the �lter set. If the �lter set, on average, improved our measurements,

we expect to see an average increase; if the �lter made the measurements worse, we

expect to see a decrease in average a�liated probe correlations. We look at changes

in a�liated probe correlation for gene-, transcription unit- and operon-level probe

sets by visual inspection of a density plot.

Transcription unit correlation

The operons in E. coli (2,292 of them, according to RegulonDB) produce single

polycistronic mRNAs, which are translated to produce the multiple gene products.

Belonging to a single transcription unit, the probe sets measuring each of its com-

ponent genes are actually measuring the same transcript. By de�nition, these probe

sets are a type of a�liated probe, and thus, we expect that they will have highly

correlated expression pro�les. Put another way, we expect the genes in an operon to

be positively correlated. This has been used as an evaluation tool by Harr [129] and
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Alvarez [130]; the former for testing the impact of normalization methods, the latter

for testing the impact of re-mapping probes to the genome.

However, this expectation is only correct when there is a single possible transcrip-

tion unit (TU). A single operon can produce multiple transcripts (using alternative

transcription start sites [131]. For example, let's assume we have an operon composed

of genes A, B and C, in that order. By de�nition, this operon must always produce

the transcript ABC; however, it can also produce the transcripts AB, BC, A, B or C.

Each of these are templates for an alternative transcription unit. We say they're tem-

plates, because the same template (e.g. AB) can be produced by multiple promoters.

Technically, the combination of template plus promoter is an alternative transcription

unit, but expression microarrays cannot discriminate promoter di�erences . When an

operon produces only the single, canonical transcript (e.g. ABC in the example), then

we say that the operon is a single-template operon. Since some operons can produce

di�erent transcripts, we only expect the genes in the same transcription unit, not

necessarily the same operon (unless it's in a single-template operon), to always have

a high positive correlation.

As with a�liated probe correlations, of which this is a special case, we expect

that if we improve our speci�cation post-�ltering, we'll see an increase in positive

correlation between genes in the same transcription unit, assuming the probe set

de�nitions were signi�cantly altered. This would allow us to detect the presence of

multiple TUs from an operon.

A�liated probe correlation vs. transcription unit correlation

We expect that as we increase the a�liated probe correlations at the gene-level we

should also see a corresponding increase in transcription unit correlations. That is, we

expect these two levels of correlation to be correlated. As we improve a�liated probe

correlations, we should also improve transcription unit correlations. Any signi�cant

deviation from this behavior suggests the in�uence of a hidden factor. This is serves



99

as both an evaluation method and a diagnostic method.

Di�erences in summarized probe set intensities

Ultimately, summarized probe set intensities are used as the proxy measure for

relative target concentration, and any signi�cant changes to them can change the

results of downstream analyses, such as detecting di�erential expression or inferring

networks. So here, as we did in the ArrayInitiative case study, we determined how,

on average, the expression values generated using the custom speci�cations changed

with respect to the default expression values.

For a single probe set on a single array, we calculated the expression di�erence as

follows:

∆ =
Ec − Ed

Ed

∗ 100

where Ec is the custom expression value and Ed is the default expression value.

We calculated the expression di�erences for every combination of probeset (number

depends upon speci�cation), Faith array (263) and summarization method (RMA,

dChip, MAS 5.0, mean, median).

There is one important di�erence between this evaluation method and the one

used for the ArrayInitiative case study. In ArrayInitiative, we only removed probes

when creating the custom speci�cations, and consequently, we calculated the average

di�erence (delta), across all of the RAND arrays, as we removed probe pairs. In this

study, since we both removed and re-assigned probes, we calculated the average delta,

across all of the Faith arrays, as we introduced changes to the probe set de�nitions

(where a change is de�ned as either adding or removing a probe).

4.3 Results and discusssion

4.3.1 Changes to probe set de�nitions

Each component of the SrSmLr �lter set identi�ed probes a�ected by a speci�c

physical or technical factor, which were then removed or re-assigned, as appropri-
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Table 4.3: The number (and percentange) of probes a�ected by speci�c factors.
Factor Probe Pairs A�ected

Unidenti�able target (exact) 1,974 (1.4%)
Cross-hybridization (exact) 2,089 (1.5%)

Unidenti�able target (structure) 1,428 (1.0%)
Cross-hybridization (structure) 27,070 (19%)

G-runs 4,663 (3.3%)
Primer spacers 1,020 (0.7%)
Linear range 5,305 (3.7%)

Table 4.4: Number of probe sets and probe pairs (in parentheses) in di�erent speci-
�cations.
Speci�cation Genes + intergenic Genes Transcription unit Operon

Default 7,312 (141,629) 3,867 (59,577) 2,773 (70,777) 2,292 (59,051)
SrSmLr N/A 4,292 (52,327) 3,023 (62,011) 2,499 (51,832)

ate, in the custom speci�cations. Table 4.3 shows the number of probes that were

removed because they were a�ected by a particular factor, such as an unidenti�able

target, cross-hybridization, sequence motifs and linear range. For the unidenti�able

target and cross-hybridization factors, we show how many probes were categorized

that way when using an exact alignment and a structural alignment (based upon the

OMP results). By including the structural alignments (which turned out to be largely

equivalent; discussed below), we removed fewer probes due to an unidenti�able tar-

get, but we removed signi�cantly more probes because of cross-hybridization. Since

coverage of the target space is important for characterizing networks, we were con-

cerned that removing ~30% of the probe pairs would impact the number of genes and

transcription units that we could monitor. However, the structural remap turned out

to increase the coverage of the target space, as can be seen in Table 4.4. We increased

the gene coverage by 11%, increased the transcription unit coverage by 9% and the

operon coverage by 9%. Another important question to answer was how many, and

to what extent, were the probe set de�nitions changed after �ltering. Figure 4.1

shows the percentage changes to the de�nition of the common probe sets between



101

Gene

Transcription unit

Operon

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

0 20 40 60 80 100

Changes to probe set definitions after filtering

Changes to probe set definition (percentage)

N
um

be
r 

of
 p

ro
be

 s
et

s

Figure 4.1: The number of changes to probe set de�nitions after �lter (speci�cation
= SrSmLr).

the Default and SrSmLr after �ltering. A change (or di�erence) is de�ned as the

addition or subtraction of a probe pair to the probe set in the SrSmLr speci�cation,

as compared to the Default speci�cation. We �nd that a signi�cant number of probe

set de�nitions have between 10-40% of their probe makeup changed after �ltering for

each of the sub-speci�cations, SrSmLr-Gene, SrSmLr-Tu and SrSmLr-Operon.

4.3.2 Binding a�nity between probes and targets

We planned to use the binding a�nity between probes and targets, as reported by

the OMP simulations, to modulate probe intensities to better estimate the transcript

abundance. For example, knowing a probe-target pair only had a binding a�nity of

60% (that is, only 60% of the available target would likely bind), we could calibrate
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the original intensity using this information. However, we found that, for all OMP

simulations, for almost every probe-target pair that met the Kane criteria the binding

e�ciency was 100%. Consequently, this value provided no basis for modulating the

intensities. However, we suspect that these simulations were not accurate, as discussed

later.

4.3.3 A�liated probe correlations

After determining that the SrSmLr �lter set makes substantial changes to a large

number of probe sets, we wanted to see if the �lters improved the a�liated probe cor-

relation. We compared the distribution of all of the a�liated probe correlations from

the Default speci�cations to the SrSmLr speci�cations, shown in Figure 4.2. At all

levels, gene, transcription unit and operon, the a�liated probe correlation decreases.

Is this also true for probe sets whose de�nitions have signi�cantly changed? In Fig-

ure 4.3, we see that, for probe sets have 50% or less probe pairs in common between

the Default and SrSmLr speci�cations, the �ltering improved for the a�liated probe

correlation for all levels, especially for genes.
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Figure 4.2: Comparison of a�liated probe correlations. All probe sets.
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Figure 4.3: Comparison of a�liated probe correlations. Only probe sets with a 50%
change.

Does this mean that �ltering made the microarray measurements worse? Or did

�ltering remove a systematic bias that was arti�cially boosting the positive corre-

lation seen in the Default speci�cations? The latter scenario is likely, given that

cross-hybridization, sequence motifs and values below the linear range are known to

induce spurious, positive correlations, and that a signi�cant number of probes were

a�ected by these factors. By removing the a�ected probes, we likely removed posi-
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tive correlation bias that didn't re�ect the actual correlations, thus giving us a more

accurate, but less correlated set of measurements.

Regardless of the answer, Figure 4.2 clearly shows a signi�cant portion of the

a�liated probe correlations, in both the Default and SrSmLr speci�cations, are less

than 0.5. Moreover, a substantial portion of the correlations are actually negative.

With or without �ltering, poor a�liated probe correlation seems to be standard,

suggesting that there are other factors a�ecting the probes have not been accounted

for.

4.3.4 Response groups

Since factor-based methods did not give rise to the expected improvements, an-

other approach is to determine whether subsets of the probes in an a�liated group are

better correlated. The �rst step is to establish a baseline: how prevalent are response

groups inthe Default speci�cation? Do we improve the situation (reducing their num-

ber) by �ltering? Figure 4.4 shows the number of response groups in probe sets in the

Default and SrSmLr speci�cations. We immediately see that very few probe sets in

the Default speci�cations have a single response group, which is the desired number.

Most probe sets have either two or three response groups, meaning that some or all

of the probes in probe sets is likely responding to multiple factors or targets; the

problem is to determine which best re�ects the true TU concentration. These results

must be taken with a bit of caution, however. Figure 4.4 only shows the number of

response groups, not the associated a�liated probe correlation. A probe set might

have multiple response groups, but this is not meaningful if the inter-group correla-

tion is almost as high as the inter-group correlation, suggesting that they are indeed

a single response group and should be merged. To allay these concerns, Figure 4.5

shows the distribution of correlations within and between groups. From these distri-

butions, we can see that the correlation within response groups is signi�cantly higher

than between groups, as hoped. However, there is still signi�cant overlap between the
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Figure 4.6: Response groups vs. a�liated probe correlation.

two, indicating that we need to develop criteria for merging response groups when

the inter-group correlations are not much lower than the intra-group correlations.

The presence of multiple response groups in the majority of probe sets suggests

that there is one or more hidden factors still a�ecting the probes on this array. More-

over, since they sort into groups, it's likely not a random (noise) factor.

4.3.5 Response groups vs. a�liated probe correlation

Here we investigated the relationship between response groups and a�liated probe

correlations. Do probe sets with less response groups tend to have a better average

a�liated probe correlation? Figure 4.6 shows this relationship. We see that indeed,

probe sets with fewer response groups tend to have a higher average a�liated probe

correlation. This suggests that reducing the number of response groups should show
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Figure 4.7: Di�erences in summarized probe set intensities, for transcription units,
after �ltering.

an increase in the a�liated probe correlation. As we saw when looking at just the a�l-

iated probe correlations, the a�liated probe correlations for the Default speci�cation

are generally higher than those in the SrSmLr speci�cation.

4.3.6 Di�erences in summarized probe set intensities

Are there signi�cant changes to expression estimates in the custom speci�cations

compared to the default speci�cation? If so, does this occur as a function of the

number of changes made to a probe set? For each of the �ve summarization methods,

we calculated the percent di�erent between probe set intensites in the SrSmLr speci-

�cations as compared to the Default speci�cations. Fig. 4.7 shows the results of this

analysis for transcription units. As we can see, the probe set intensities post-�ltering
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were signi�cantly di�erent. For the mean and median summarization methods, the

probe set intensities are signi�cantly di�erent post-�ltering even when the number of

changes to the probe set de�nition are minimal. This is due to the second stage of

linear range adjustment � where we set values less than 200 to 200 and any values

greater than 20,000 to 20,000 � which we only could use for the mean and median

summarization methods. Although the observed di�erences do not necessarily mean

that �ltered probe set intensities are more accurate, they are likely to alter our inter-

pretation of microarray experiments, such as when identifying di�erentially expressed

genes or inferring TRNs from microarray data for this platform (at least for certain

genes).

4.3.7 Transcription unit correlation

Here we assess the impact of the SrSmLr �lter on the correlation of genes in a

transcription unit. Namely, do the genes that make up a transcription unit become

more or less correlated after �ltering? The values used to build the expression pro�les

for each gene were summarized using RMA, dChip, MAS 5.0, with both mean and

median as summarization method. Using these pro�les, we calculated the correlation

between the genes in each transcription unit. Figure 4.8 compares the distribution

of gene correlations in the Default and SrSmLr speci�cations, grouped by summa-

rization method. . For all summarization methods, the transcription unit correlation

decreases after applying the �lters. Is this also true for transcription units where the

probe set de�nitions for its component genes have changed? Figure 4.9 is the same as

Figure 4.8, except here we required that the de�nition of at least one probe set had

changed for a transcription unit to be included. We see the same trend as before -

the transcription unit correlation decreases after applying the �lters. This is perhaps

not surprising, given that the a�liated probe correlations decreased after �ltering,

and that a�liated probe correlations are positively associated with transcription unit

correlation shown in the next section.
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Figure 4.10: A�liated probe correlation vs. transcription unit correlation.

4.3.8 A�liated probe correlation vs. transcription unit correlation

Here we investigated the relationship between a�liated probe correlations and

transcription unit correlations. Speci�cally, we wanted to �nd out if improving the

former tended to improve the latter. Figure 4.10 shows this relationship. We see that

there is a positive relationship between a�liated probe correlation and its correspond-

ing transcription unit correlation. While the positive trend exists, the correlation is

fairly low (need to calculate this value). This trend holds for both the Default and

SrSmLr speci�cations.

These results suggest several things. First, by improving a�liated probe corre-

lations, you'll tend to, on average, also improve the transcription unit correlation.
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However, since the correlation between these two variables is low, there are other

factors a�ecting transcription unit correlation, besides a�liated probe correlation.

Finally, we expect that if our �ltering signi�cantly improved the measurements, we

might still see a positive trend, but it would be compressed into a much narrower

band of highly positive correlations. Since we see the positive trend across a much

broader range (0 - 0.8), this again suggests that additional hidden factors are a�ecting

the probe responses.

4.4 Discussion and future work

Our plans for future work fall into four broad categories: response groups, binding

a�nity between probe and targets, investigation of hidden factors and improvements

and extensions to the ProbeSieve pipeline.

Response groups

Although we showed that probes in the same response group have, on average,

signi�cantly higher correlations than probes not in the same group, there is still

overlap, and in some cases, two response groups should probably be re-merged into

a single group. To do this, we'll need to extend our methodology for identifying

response groups to re�ne the initial partitions by the community detection algorithm.

The unresolved question is, `How much separation between two groups do we need to

consider them two distinct groups that are measuring di�erent factors or targets?'.

In this case experiments that measure gene levels with a measure such as PCR might

provide guidance, but there are very few such datasets with more than one or two

PCR assays accompanying a microarray assay, on the same genotype and conditions

as those used in our experiments.

Having applied the re�nement method and identi�ed the �nal set of response

groups for each probe set, we want to compare the response groups in the Default

speci�cations with the �ltered speci�cations (SrSmLr). Were certain response groups

in the Default speci�cation enriched for certain factors? If so, we should see that
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the �lters removed whole response groups. How many response groups are common

between the Default and �ltered speci�cations? How many new ones are there? Are

any of the response groups similar to each other, and if so, does this correspond to a

certain, hidden factor?

Finally, we've seen that by reducing the number of response groups, we tend to get

improved transcription unit correlation. Again, we still need to method for identifying

the group that re�ects the true concentration. At the moment we are searching for

network or biological features of the response groups that can guide our choice.

Binding a�nity between probes and targets

When determining if two probes will bind to the same target, we'd like to make

the criteria even less stringent than suggested by the Kane criteria. Studies in our

lab and others [76] have suggested that the minimum required nucleation and percent

identity are actually much lower. Even using the Kane criteria, in concert with bind-

ing a�nity data from OMP, we identi�ed and removed many more cross-hybridizing

probes than when using an exact alignment. By further relaxing the alignment crite-

ria, we may identify additional cross-hybridizing probes whose removal will improve

the array measurements, leading to fewer response groups and, improved a�liated

probe correlation. Finally, it may be that the kinetic information for the extent of

reaction for each duplex is the unresolved set of factors. We have not identi�ed a

kinetic simulator that can handle the complexity of the target mixture in microarray

experiments. Such a simulator must be able to handle competition between a�liated

probes for the same target. Since the average length of the fragmented target is 100

using the protocol recommended for the E. coli antisense genome array, any probes

that bind to the same target within 50-100 nucleotides of each other might very

well compete for the same fragment. Thus simulations could limited to competition

between probes that bind to regions of the target that are that close.
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Existing and hidden factors

We �rst plan to determine the impact of individal factors that we know about (or

combinations of them). We also plan to propose new factors that might be a�ecting

the probes on the array, as suggested by the presence of so many response groups, and

then test them using the pipeline. Here we might also use factor analysis to identify

new factors and determine the relative importance of individual factors.

Improvements and extensions to the pipeline

To improve and extend the ProbeSieve pipeline, we'd �rst like to add more evalua-

tion methods, such as concordance of lists of di�erentially expressed genes, correlation

between independent, replicate sample, correlation with RT-PCR results and regulon

correlation, to name a few. Once the steps in the pipeline are largely �nalized, we'd

like to apply it to other prokaryotes, such as Salmonella for which many datasets

exist and, based upon our experiences, develop an API and GUI so that others can

easily extend the process to their favorite prokaryotes. Also, we'd like to develop a

method to rate the quality of an array platform, and individual probe sets, based the

results of the evaluation methods, especially a�liated probe correlations and response

groups.



CHAPTER 5: CONCLUSIONS

The main theme of this dissertation was to improve methods for storing, manag-

ing, modeling and retrieving data (Chapter 2 - Data-FATE) and to develop tools and

methods for improving our interpretation of A�ymetrix microarray data (Chapter 3

- ArrayIniative). These are essential supporting tasks for systems biology research,

because we need complete and reliable microarray measurements to e�ectively char-

acterize a transcription regulatory network, which is the most fundamental network

in a biological system.

5.1 Data-FATE

We developed Data-FATE for those researchers who want to develop persistent

descriptive ontologies for their experiments, without needing to implement their own

ontological layer. The ontological model extends the relational model by integrating

parts of an ontology � concepts and attributes � with the de�nition of relational ob-

jects. The SIMS extends the RDBMS to implement the ontological model, providing

tools to de�ne and curate ontological data types, associate data with QT sets and to

automatically create and load relational tables based on the associate QT set. The

SIMS also improves performance by partitioning data associated with the same QT

set into di�erent tables. Whenever researchers store data in a relational database,

they are constructing a descriptive ontology. The Data-FATE framework� ontological

data model and SIMS � formalizes this, allowing for more consistent and unambigu-

ous representations of scienti�c data and maintaining the simplicity and power of

prevalent relational databases.

While our re-design to the Data-FATE SIMS signi�cantly improved it, we didn't
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end up using it for the ArrayInitiative or ProbeSieve studies because it lacked support

for cross-table queries. Developing this feature, and others discussed in the Data-

FATE chapter, would have required a signi�cant amount of additional resources (time

and money). Since the ArrayInitiative and ProbeSieve studies used hundreds of

microarrays for the analysis, we concluded that, without cross-table queries, keeping

track of and writing queries against hundreds of tables (corresponding to the array

data) would be counterproductive. Still, we used the general philosophy behind Data-

FATE � automatic creation of scripts to create database objects, consistency of data

types and partioning of data (to a moderate extent) � when we developed the scripts

to create database objects for and load into the ProbeSieve database.

5.2 ArrayInitiative

ArrayInitiative is a software tool designed for those biological researchers who

want to create custom microarray speci�cations, such as a CDF, without the ad-

ditional burden of learning the manufacturer's speci�cation �le format or learning

an API. It provides graphical tools for importing a manufactuer's microarray spec-

i�cation, de�ning custom versions of a manufacturer's speci�cation, writing array

speci�cations in their standard format or in an easily understandable, non-standard

representation. Creating a custom array speci�cation requires only minimal knowl-

edge of a manufacturer's speci�cation standards (�le formats and logical rules) and

the ability to create a simple delimited or XML �le.

he case study illustrated two concepts: the simplicity of using ArrayInitiative to

create custom array speci�cations and how those modi�ed speci�cations can signi�-

cantly change summarized expression values. By not being constrained to a speci�c

strategy for re-de�ning an array speci�cation, ArrayInitiative enables researchers to

create new speci�cations based upon their own requirements. These array speci�ca-

tions might be the result of a new probe-�ltering technique or may help to answer a

speci�c biological question using a unique set of probes to de�ne a gene. Since it is
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unclear which re-de�nition strategies are the best, ArrayInitiative will make it easier

to rapidly de�ne and test competing approaches and compare them to the manufac-

turer's array speci�cation. By retaining the expected format of the cdf �le, researcher

can use established, tested software such as RMA.

5.3 ProbeSieve

In this chapter, we applied a modi�ed version of the BaFL pipeline to data sets

acquired using the E. coli antisense genome array (version 2). We extended the set of

�lters by adding a sequence motif �lter and updated the re-mapping �lters to allow

for inexact alignments (meeting criteria even less stringent than the Kane criteria)

that are likely to bind base upon binding a�nities returned by OMP. We showed

that the probe set de�nitions were signi�cantly and uniformly changed post-�ltering,

especially by accounting for cross-hybridization from inexact alignments with a high

binding a�nity. Despite removing a large number of probes, we actually increased

the number of genes and transcription units covered by the array, allowing better

coverage of the genome when modeling E. coli transcription regulatory networks.

We then evaluated the impact of the �lter set using a number of novel and pub-

lished methods. The assumption tested was that removal of probes known to be

subject to multiple factors would improve the correlation of the remaining probes

in a designated set. As sets we used the original gene group minus the problem

probes, and subsets of that group identi�ed as response groups; we also tested probe

sets de�ned by membership in transcription units in multi-gene operons. We found

that the a�liated probe correlation and transcription unit correlation decreases upon

the removal of multi-factor response probes. By removing probes a�ected by cross-

hybridization, sequence motifs and linear range sensitivity, we removed spurious pos-

itive correlations that were introducing a positive bias into un�ltered a�liated probe

correlations. Transcription unit patterns corresponded to the patterns of the compo-

nent genes, that is, decreasing a�liated probe correlations correspond to decreasing
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transcription unit correlations (and vice versa). However, as we saw with the Ar-

rayInitiative study, the �lters induced a signi�cant change in the summarized probe

set intensities, which will likely have an e�ect on downstream analyses, such as iden-

tifying di�erentially expressed genes or inferring TRNs.

We also introduced the concept of a response group, showing that most probe

sets in the Default speci�cations separate into multiple response groups, and showed

that when multiple response groups occur they correspond to lower average a�liated

probe correlations. We also showed that the majority of probe sets also contained

multiple response groups post-�ltering, suggesting that there are remaining factors

a�ecting the probes on the E. coli antisense array.

5.4 Summary

In Chapter 2, we signi�cantly improved the prototype version of the Data-FATE

SIMS, which was and is used by several members of theWeller lab (http://webpages.

uncc.edu/~dcarr10/DataFATE_html/DataFATE_Home.html). In Chapter 3, we de-

veloped ArrayInitiative, which provides the research community with a valuable

tool for simplifying the process of creating custom CDFs (and was used extensively

in the Chapter 4). ArrayInitiative was published in BMC Bioinformatics, 2011

(http://www.biomedcentral.com/1471-2105/12/136/). In Chapter 4, we adapted

and extended the BaFL pipeline to the E. coli antisense genome array version 2. We

introduced the concepts of a�liated probes and response groups, and using both as a

diagnostic measure, showed that, even after using standard and upgraded �lters, the

array has one or more hidden factors a�ecting its probes, and thus, confounding our

interpretation of microarray experiments using this platform.
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