219 research outputs found

    Lattice Boltzmann Magnetohydrodynamics

    Full text link
    Lattice gas and lattice Boltzmann methods are recently developed numerical schemes for simulating a variety of physical systems. In this paper a new lattice Boltzmann model for modeling two-dimensional incompressible magnetohydrodynamics (MHD) is presented. The current model fully utilizes the flexibility of the lattice Boltzmann method in comparison with previous lattice gas and lattice Boltzmann MHD models, reducing the number of moving directions from 3636 in other models to 1212 only. To increase computational efficiency, a simple single time relaxation rule is used for collisions, which directly controls the transport coefficients. The bi-directional streaming process of the particle distribution function in this paper is similar to the original model [ H. Chen and W. H. Matthaeus, Phys. Rev. Lett., {\bf 58}, 1845(1987), S.Chen, H.Chen, D.Mart\'{\i}nez and W.H.Matthaeus, Phys. Rev. Lett. {\bf 67},3776 (1991)], but has been greatly simplified, affording simpler implementation of boundary conditions and increasing the feasibility of extension into a workable three-dimensional model. Analytical expressions for the transport coefficients are presented. Also, as example cases, numerical calculation for the Hartmann flow is performed, showing a good agreement between the theoreticalComment: 45 pages, to appear in Physics of Plasma

    Steady State Convergence Acceleration of the Generalized Lattice Boltzmann Equation with Forcing Term through Preconditioning

    Full text link
    Several applications exist in which lattice Boltzmann methods (LBM) are used to compute stationary states of fluid motions, particularly those driven or modulated by external forces. Standard LBM, being explicit time-marching in nature, requires a long time to attain steady state convergence, particularly at low Mach numbers due to the disparity in characteristic speeds of propagation of different quantities. In this paper, we present a preconditioned generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate steady state convergence to flows driven by external forces. The use of multiple relaxation times in the GLBE allows enhancement of the numerical stability. Particular focus is given in preconditioning external forces, which can be spatially and temporally dependent. In particular, correct forms of moment-projections of source/forcing terms are derived such that they recover preconditioned Navier-Stokes equations with non-uniform external forces. As an illustration, we solve an extended system with a preconditioned lattice kinetic equation for magnetic induction field at low magnetic Prandtl numbers, which imposes Lorentz forces on the flow of conducting fluids. Computational studies, particularly in three-dimensions, for canonical problems show that the number of time steps needed to reach steady state is reduced by orders of magnitude with preconditioning. In addition, the preconditioning approach resulted in significantly improved stability characteristics when compared with the corresponding single relaxation time formulation.Comment: 47 pages, 21 figures, for publication in Journal of Computational Physic

    25 Years of Self-Organized Criticality: Solar and Astrophysics

    Get PDF
    Shortly after the seminal paper {\sl "Self-Organized Criticality: An explanation of 1/f noise"} by Bak, Tang, and Wiesenfeld (1987), the idea has been applied to solar physics, in {\sl "Avalanches and the Distribution of Solar Flares"} by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.Comment: 139 pages, 28 figures, Review based on ISSI workshops "Self-Organized Criticality and Turbulence" (2012, 2013, Bern, Switzerland

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Multiscale modelling of the influence of convection on dendrite formation and freckle initiation during vacuum arc remelting

    No full text
    Vacuum Arc Remelting (VAR) is employed to produce homogeneous ingots with a controlled, fine, microstructure. It is applied to reactive and segregation prone alloys where convection can influence microstructure and defect formation. In this study, a microscopic solidification model was extended to incorporate both forced and natural convection. The Navier-Stokes equations were solved for liquid and mushy zones using a modified projection method. The energy conservation and solute diffusion equations were solved via a combined stochastic nucleation approach along with a finite difference solution to simulate dendritic growth. This microscopic model was coupled to a 3D transient VAR model which was developed by using a multi-physics modelling software package, PHYSICA. The multiscale model enables simulations covering the range from dendrites (in microns) to the complete process (in meters). These numerical models were used to investigate: (i) the formation of dendritic microstructures under natural and forced convections; (ii) initiation of solute channels (freckles) in directional solidification in terms of interdendritic thermosolutal convection; and (iii) the macroscopic physical dynamics in VAR and their influence on freckle formation. 2D and 3D dendritic microstructure were simulated by taking into account both solutal and thermal diffusion for both constrained and unconstrained growth using the solidification model. For unconstrained equiaxed dendritic growth, forced convection was found to enhance dendritic growth in the upstream region while retarding downstream growth. In terms of dimensionality, dendritic growth in 3D is faster than 2D and convection promotes the coarsening of perpendicular arms and side branching in 3D. For constrained columnar dendritic growth, downward interdendritic convection is stopped by primary dendritic arms in 2D; this was not the case in 3D. Consequently, 3D simulations must be used when studying thermosolutal convection during solidification, since 2D simulations lead to inappropriate results. The microscopic model was also used to study the initiation of freckles for Pb-Sn alloys, predicting solute channel formation during directional solidification at a microstructural level for the first time. These simulations show that the local remelting due to high solute concentrations and continuous upward convection of segregated liquid result in the formation of sustained open solute channels. High initial Sn compositions, low casting speeds and low temperature gradients, all promote the initiation of these solute channels and hence freckles. to study the initiation of freckles for Pb-Sn alloys, predicting solute channel formation during directional solidification at a microstructural level for the first time. These simulations show that the local remelting due to high solute concentrations and continuous upward convection of segregated liquid result in the formation of sustained open solute channels. High initial Sn compositions, low casting speeds and low temperature gradients, all promote the initiation of these solute channels and hence freckles

    Magnetohydrodynamic turbulence: The development of lattice Boltzmann methods for dissipative systems

    Get PDF
    Computer simulations of complex phenomena have become an invaluable tool for scientists in all disciplines. These simulations serve as a tool both for theorists attempting to test the validity of new theories and for experimentalists wishing to obtain a framework for the design of new experiments. Lattice Boltzmann Methods (LBM) provide a kinetic simulation technique for solving systems governed by non-linear conservation equations. Direct LBMs use the linearized single time relaxation form of the Boltzmann equation to temporally evolve particle distribution functions on a discrete spatial lattice. We will begin with a development of LBMs from basic kinetic theory and will then show how one can construct LBMs to model incompressible resistive magnetohydrodynamic (MHD) conservation laws. We will then present our work in extending existing models to the octagonal lattice, showing that the increased isotropy of the octagonal lattice produces better numerical stability and higher Reynolds numbers in MHD simulations. Finally, we will develop LBMs that use non-uniform grids and apply them to one dimensional MHD systems

    AFCI Quarterly Input – UNLV July 1 through September 30, 2006

    Full text link
    Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center. The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support

    Methods for stabilizing high Reynolds number Lattice Boltzmann simulations

    Get PDF
    The Lattice Boltzmann Method (LBM) is a simple and highly efficient method for computing nearly incompressible fluid flow. However, it is well known to suffer from numerical instabilities for low values of the transport coefficients. This dissertation examines a number of methods for increasing the stability of the LBM over a wide range of parameters. First, we consider a simple transformation that renders the standard LB equation implicit. It is found that the stability is largely unchanged. Next, we consider a stabilization method based on introducing a Lyapunov function which is essentially a discrete-time H-function. The uniqueness of an H-function that appears in the literature is proven, and the method is extended to stabilize some of the more popular LB models. We also introduce a new method for implementing boundary conditions in the LBM. The hydrodynamic fields are imposed in a transformed moment space, whereas The non-hydrodynamic fields are shifted over from neighboring nodes. By minimizing population gradients, this method exhibits superior numerical stability over other widely employed schemes when tested on the widely-used benchmark of incompressible flow over a backwards-facing step

    AFCI Quarterly Input – UNLV January 1 through March 31, 2007

    Full text link
    Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center. The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support
    • …
    corecore