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A BSTR A C T

Computer simulations of complex phenomena have become an invaluable tool 

for scientists in all disciplines. These simulations serve as a tool both for theorists 

attempting to test the validity of new theories and for experimentalists wishing to 

obtain a framework for the design of new experiments. Lattice Boltzmann Methods 

(LBM) provide a kinetic simulation technique for solving systems governed by non­

linear conservation equations. Direct LBMs use the linearized single time relaxation 

form of the Boltzmann equation to temporally evolve particle distribution functions 

on a discrete spatial lattice. We will begin with a development of LBMs from basic 

kinetic theory and will then show how one can construct LBMs to model incom­

pressible resistive magnetohydrodynamic (MHD) conservation laws. We will then 

present our work in extending existing models to the octagonal lattice, showing that 

the increased isotropy of the octagonal lattice produces better numerical stability 

and higher Reynolds numbers in MHD simulations. Finally, we will develop LBMs 

that use non-uniform grids and apply them to one dimensional MHD systems.

xii
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C H A PTER  1

Introduction

1.1 The Dynamic Evolution of M atter

Whether contemplating the vortices that swirl in a cup of coffee when cream 

is added, the turbulence of a class four whitewater river, or the constantly chang­

ing shape that a flock of sparrows forms as they fly through the sky, the dynamic 

evolution of matter has an aesthetic appeal which suggests an underlying beauty in 

the laws which govern our universe. These laws take many different forms and can 

be examined at many different scales of length and time. The most fundamental of 

these are the theories of elementary particles, which attempt to form a consistent 

theory for the interaction of “point-like” objects that carry associated interaction 

parameters such as charge, mass and spin. The difficulty with these particle the­

ories however, lie in the lack of tractable analytic solutions to interesting physical 

phenomena. Physicists to date, are only capable of exactly solving rudimentary 

problems involving one or two interacting bodies. The remaining majority of prob­

lems must therefore be treated with approximate solution techniques.

2
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3

Many rich areas of physics consist of generating approximate macroscopic equa­

tions to model the behavior of physical phenomena which obscure the complex inter­

actions of particle physics. This obscuration attempts to extract all of the essential 

phenomena of a physical problem while hiding aspects of the problem which do not 

fit the particular length and time scale of interest. Still these macroscopic systems, 

although significantly simpler than their particle based counterparts, can rarely be 

solved exactly. Thus the majority of physics done in the last century has consisted 

of finding approximate solutions to such problems. These approximation techniques 

can be characterized as either analytic or computational.

Analytic approximation techniques such as perturbation theory, variational 

methods, WKB analysis, and multiple scale analysis have been very effective in 

solving a number of interesting problems in physics. Their application to non-linear 

dissipative fluid systems such as the types of problems treated in this dissertation, 

however, have not been met with great success. As a result, physicists have looked 

to computational techniques for the approximate solution of these types of complex 

fluid systems.

1.2 Nonlinear Conservation Equations for 

Macroscopic Systems

Before discussing the computational techniques available for treating non-linear 

fluid systems, we would like to discuss these fluid systems in more detail. Namely, we 

would like to introduce some examples of fluid conservation equations, which can be 

treated by lattice Boltzmann methods (LBM). Consider the generalized dissipative
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4

conservation law

dtqi  +  d j P i j  — v d j Q i ,  ( 1 .1)

where the temporal evolution of a scalar or vector field % depends on the spatial 

derivative of a nonlinear tensor pij and a diffusive (usually dissipative or dispersive) 

term characterized by the higher (usually second or third) spatial derivative of the 

field qi. A large number of interesting phenomena in physics are governed by this 

class of nonlinear conservation laws. Some examples include Burger’s equation

di'u +  dx(^u2) = vdlu , (1.2)

which is often used to model the flow of traffic along a highway or the velocity dis­

tribution during the formation of galaxies in the early universe. The KDV equation

dtu + dx(^u2) — vd^u (1.3)

is often used to model shallow water wave theory and, in particular, the existence 

of solitons. The Navier Stokes equations

| ^  +  V - (pv) =  0, (1-4)

-^(/w) +  V P  + (•v ■ V)(pv)  + v[V • (pv)] = v V 2(pv), (1.5)

describe the compressible flow of fluids and are used in numerous physics, engineer­

ing and aerospace applications. And finally, the resistive magnetohydrodynamics
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(MHD) equations

! ?  + V • (pt.) = 0,

~■(pv)+V[P + - ]  + (v- V)(pv)+

v[V • {pv)] -  (B  • V)-B =  ^V2( H ,

D o
-— - + («• V)J3 + J?(V • v) -  (B  ■ V ) v  =  /xV2B  (1.8)
(sZ

describe the coupled interaction of the density, velocity, and magnetic fields of a 

conducting fluid.

1.3 A Juxtaposition of Computer Simulation 

M ethods

A number of computational methods exist for solving the coupled partial dif­

ferential equations (or nonlinear conservation equations) that govern these types 

of fluid systems. The available methods can be broadly classified into two main 

branches: spectral methods and finite difference methods.

Spectral and pseudo-spectral methods consist of solving a set of equations in 

Fourier transformed wave number and wave frequency space. If they are performed 

correctly, these methods have the advantage that they can be exponentially accu­

rate. An obvious disadvantage lies in the large computational overhead required to 

perform these calculations accurately and the limitations of these methods to sim­

ple spatial geometries. Moreover, pseudo-spectral methods, which run with better

(1.6)

(1.7)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6

computational efficiency than conventional spectral methods have to contend with 

the alternate issue of sampling errors due to aliasing phenomena. These errors arise 

because pseudo-spectral methods solve a portion of the nonlinear conservation equa­

tion in physical space, which necessitates the transformation of the fields between 

wave number and physical space. While dealiasing procedures exist, the process of 

transferring data between spectral and Cartesian space is undesirable from a compu­

tational standpoint. More specifically, this transformation process (or fast Fourier 

transformation process as this is the method that is virtually always employed) in­

volves non-local processes which possess an inherent resistance to parallelizability. 

These processes do not lend themselves in a natural way, to the decomposition and 

assignment of tasks to large numbers of parallel processors. These types of methods 

have therefore fallen out of favor in recent years as computational resources have 

begun to focus almost entirely on massively parallel computing environments and 

physicists have begun to focus on simulation methods that are capable of treat­

ing realistic physical geometries, which include obstacles, boundaries, and toroidal 

geometries.

The general class of finite difference methods, which include finite difference; 

finite element and finite volume methods, sit much more favorably in the minds of 

most computational physicists. These methods discretize and evolve fluid equations 

using methods derived from the fundamental differencing rules of calculus, which 

reduce to exact solutions for infinitesimal values of spatial and temporal stepping. 

Finite element and finite volume methods use a more sophisticated treatment of the 

discretization to resolve field gradients within a particular element or volumetric 

region. The essential feature consists of working with a discretization of all of the 

macroscopic variables contained in a given set of coupled partial differential equa­

tions. These include position, momentum, time, and any remaining fields responsible

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



7

for self consistent and externally imposed forces. In contrast to the general class 

of spectral methods, finite difference methods possess a larger degree of inherent 

parallelizability. This is due to the relative spatial and temporal localization of the 

parameters which directly affect the evolution of a given quantity. This relatively 

localized dependence means that a spatial domain or mesh can be decomposed and 

assigned to an array of processors in such a way that most of the computation for 

a given processor involves only information which is stored in that processor’s lo­

cal memory buffer. The boundary regions, however must utilize information which 

has been transferred from the neighboring processors. This transfer of information 

between processors is the aspect of finite difference methods that inhibits perfect 

scaling of the computational time as the number of processors is increased.

Another advantage of finite difference methods comes from the ability to im­

plement non-uniform grids in the computational procedure. Such nested or non- 

uniform grids have the ability to apply refined computational effort around spatial 

regions containing structures of interest such as shocks and current sheets. These 

shocks or current sheets create large gradients in the associated fields which can 

often only be resolved by adding to the grid density. By altering the grid density 

non-uniformly one can perform detailed calculations in particular regions of interest 

without wasting computing power on those regions without significant field gradi­

ents. Furthermore, non-uniform grid methods which adapt themselves as the fluid 

evolves in time, undergo what is essentially a temporal refinement process. This full 

Cartesian plus time refinement results in a very efficient computational procedure.

An undesirable aspect of standard finite difference methods lies in the numerical 

instability associated with large time evolution steps. This limitation is often over­

come with the use of implicit or semi-implicit temporal evolution. While implicit 

temporal evolution greatly increases the size of the time step that can be used,
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it comes with the cost of higher computational overhead. As a result, the most 

prudent computational methods attempt to attain high numerical stability using 

explicit temporal evolution before including more sophisticated implicit temporal 

evolution methods.

As a final precursor to the introduction of lattice Boltzmann methods, we will 

point out some of the computational difficult}' associated with standard finite differ­

ence methods. Virtually all finite difference methods solve a set of fluid equations 

in the space of the fields contained in those equations. This required that equations 

containing three dimensional density, velocity and magnetic fields that evolve in 

time are solved in a high dimensional discretized phase space. The cost of this high 

dimensionality is particularly exacerbated in the solution of the nonlinear convective 

derivative terms. In Eqs. (1.4)-(1.8) these are the terms with single spatial deriva­

tives operating on them. For MHD the issue of resolving these nonlinear convective 

derivatives is compounded by the presence of two terms in each of Eq. (1.7), and 

Eq. (1.8) as well as one of these terms in Eq. (1.6).

Lattice Boltzmann methods (LBMs) are also predicated upon a finite difference 

scheme. The key difference, however, is that a given set of particle distribution func­

tions are solved in a linearized kinetic space. These distribution functions are then 

chosen in such a way that their evolution consistently models the evolution of the 

original set of fluid equations. The first advantage of this methodology is the avoid­

ance of the direct solution of the nonlinear convective derivative terms. Although 

more parallelizable than spectral simulations, these terms are responsible for most of 

the non-local parts of most finite difference simulations. LBMs however reduce this 

non-local dependence by advectively streaming distribution functions rather than 

solving these convective derivatives directly. The effect is a lower dependence on 

non-local information and thus a better parallel performance.
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Since they are based on a kinetic finite difference scheme, LBMs can also be 

recast in a non-uniform grid or even adaptive grid framework. The only limitation 

here is the inherent coupling between time and space through the lattice streaming 

vectors. Because of this coupling, a number of different methods have been explored 

which either refine time and space identically (i.e. refine the time step, spatial 

step and hence the streaming vector length) or utilize some sort of interpolation 

procedure to connect the terminal of the streaming vector with the lattice node.

Lattice Boltzmann methods provide an accurate and computationally efficient 

methodology for simulating fluid flow. So much so that the present simulations have 

utilized explicit time stepping resulting in simple efficient computational algorithms, 

which lend themselves to ideal parallelization of massively parallel and parallel vector 

computing platforms. In what follows, we present the lattice Boltzmann method 

applied to the problem of 2-D resistive magnetohydrodynamics systems with some 

extensions of the work to non-uniform grid LBMs for 1-D resistive MHD.
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C H A PTER  2 

From K inetic Theory to the  

Lattice Boltzm ann Equation

2.1 The Boltzmann Equation

We start our discussion of the kinetic theory development of the lattice Boltz­

mann equation by introducing the concept of a particle distribution function / ( r, p, t) 

where /  is a function of position r , momentum p, and time t. This distribution 

function is defined such that its integral over a particular region of six dimensional 

phase space produces the number of particles that one would expect to find in that 

region at a given time.

(2.1)

10
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We also have a particle number density associated with this distribution function. 

This quantity, which often provides more pedagogical insight, is defined as

OO

/ /(r , p> t)d3p  =  p(r, t) (2.2)

the integral over all possible momentum states. As we do not allow for the spon­

taneous creation and annihilation of particles, the conservation of particle number 

can be written as a generalized conservation property associated with the particle 

distribution function in Lagrangian form

/ ( r + vSt, p + FSt, t + St) = / ( r, p, t). (2.3)

Changes in the particle distribution function (hereafter referred to as the distribu­

tion function) are due only to external forces acting on the particle and to internal 

momentum. The distribution function therefore currently exists in a collision-less 

state where the internal evolution of the distribution function due to particle colli­

sions has not yet been described. We can expand Eq. (2.3) to first order in 5t and 

express the same conservation principle as

S .  =  d t f  +  - d j  +  t b p i/  =  0. (2.4)
at m m

Partial derivatives are expressed using the notation dt = and di = V with “i” 

describing a tensor index. The momentum gradient is written as dp = Vp. Hence 

forth, the Einstein summation notation will be implied when repeated tensor sub­

scripts are used.

Allowing for the possibility of collisions between particles alters the number of
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particles contained in a given phase space volume. Adding a generalized collision 

term to Eq.(2.3) gives

/ ( r  +  vSt, — +  —fit, t + St) = / ( r, p, i ) +  ]conSt. (2.5)
m m at

Finally, expanding to first order in St gives the collisional kinetic equation

[ — V -I Vp]/(r, p, t) = [-—]cou- (2.6)
at m m  at

Eq. (2.6) introduces the fully self consistent evolution of our distribution func­

tion with a generalized partial temporal derivative representing mesoscopic particle 

collisions.

2.2 The BGK Collision Approximation

At this point, the task of formulating solutions to the Boltzmann equation re­

quire the specification of a collisional derivative. Since it is not needed to reproduce 

the desired macroscopic conservation equations, explicit treatment of particle in­

teractions using cross-sectional derivatives is not our current aim. These methods 

are excellent for treating the fine scale phenomena present in small groups of parti­

cles, but are too cumbersome for large scale calculations involving particle densities 

typical in a fluid picture where details of the collisional processes are not needed. 

Although computational resources continue to improve at astonishing rates, explicit 

particle algorithms used to model small scale kinetic processes very quickly exhaust 

computational resources. We are left then, to search for an appropriate approxi­

mation to the explicit collisional derivative that reproduces the correct large scale

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



13

phenomena while obscuring the fine scale processes which do not directly alter the 

physical system of interest.

builds from the most fundamental assumptions. In our development of the lattice 

Boltzmann method we intend to seek out the lowest order approximation to the 

collisional derivative which allows us to recover a set of dissipative macroscopic fluid 

equations. In examining the collisional process and its affect on the evolution of 

particle distribution functions, Boltzmann’s H theorem [23] will provide us with the 

key piece of information needed for developing an appropriate approximation. This 

theorem states that a sufficiently collisional system which is not at equilibrium will 

always be driven toward equilibrium and never away from it. More precisely, for the 

quantity H  defined as

where /  is any distribution function that satisfies the Boltzmann equation, it can 

be shown that

A proof of Boltzmann’s famous H theorem can be found in any book on kinetic 

theory [22]. Fig. (2.1) shows a stylized depiction of the temporal evolution of such a 

distribution function averaged over some mesoscopic area of phase space. This plot 

is intended to demonstrate that the obvious first choice for a collisional derivative

In searching for a suitable approximation for [|£]cM, the BBGKY hierarchy[14]

(2.7)
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f(t)

t
Figure 2.1: A depiction of a distribution function averaged over some mesoscopic region of 
phase space. The distribution function relaxes to local equilibrium illustrating the possible 
use of a first order difference for the approximation of this process.

should take the form of a first order forward difference derivative

step. The time step r  can be thought of as the characteristic time that it takes 

for the mesoscopic collisional process to drive a distribution function /  toward local 

equilibrium (f eq) in a mesoscopic region of phase space. This collisional approxima­

tion is known as the BGK single time relaxation rule[2, 9]. With this BGK collision 

operator in place, the Boltzmann equation takes the form

We are therefore left only to discretize this equation in Cartesian and velocity space 

so that it can be solved computationally.

d£, f  -  f {eq)
d t icoli r

(2.9)

which is widely known to reduce to an exact derivative in the limit of a small time

(2.10)
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2.3 The Lattice Boltzm ann Equation

At this point it is useful to restrict ourselves only to those problems which do 

not include any external forces. We will also rewrite the velocity in the non-canonical 

form —?► v. Thus the Boltzmann BGK equation appears as

!  + v.v / = - K A l  (2.n)
d t  T

Where it should be understood that the forces which lead to the self consistent 

evolution of the distribution function are implicitly included in the collision term.

This simplified BGK Boltzmann equation can now be discretized in velocity 

space. By discretizing velocity, the particle distribution functions are automatically 

discretized also. A discreet number of distribution functions therefore exist for each 

of the discreet velocities

~  +  v0-V/a -  - k -  (2.12)
dt r

where the subscript “a” represents any of the discrete velocities. We can discretize 

space such that these discrete distribution functions reside at points on a spatial lat­

tice and time such that the transfer of information between these lattice sites occurs 

during discrete temporal steps. The continuous temporal and spatial derivatives are 

then rewritten as first order forward differences

f a ( Xi ,  t +  At) -  f a ( X j , t ) )  |

At 12
f a ( X i  + Va>i A t ,  t  + A t ) -  f a ( X i ,  t  +  At)) _  f a -  

Va.i aAx T

The act of discretizing space and time in such a manner requires that we relate
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both scales through a discrete velocity vector. We therefore define the velocity vector 

as the discrete time step divided by a discrete spatial step ca,i = Replacing the 

velocities with these velocity vectors leads to

fa(Xi,t + At) ~  )) |
At

f a(Xj +  Ca/lAt, t +  At) -  t + At)) _  f a -  /£ 
A x  T

( « )  < 2 1 4 >

and one can readily replace ^  with ~  in the second term of the left hand side of 

Eq. (2.14). The first and last terms on the left hand side cancel and we are left with

At
fa{Xi + C0jjAt, t + A t ) ~  f a(Xi, t) =  — (fa -  f i eq)). (2.15)

Finally, absorbing the At  into r  we can redefine r  as a dimensionless parameter that 

controls the rate of relaxation of the distribution functions. Thus the BGK lattice 

Boltzmann equation reads

fa (Xi + CajAt, t + At) -  f a (x,t, t) = -  -  ( fa -  f j fq)). (2.16)T

It is somewhat remarkable that this discrete linearized equation can be used 

to recover such a large class of nonlinear macroscopic conservation equations. Fur­

thermore, it is able to produce all of the fine scale details of fluid and magneto-fluid 

turbulence.
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C H A PTER  3

The Basic Lattice Boltzm ann  

M ethod

3.1 Computational P rocedure

The computational procedure for lattice Boltzmann methods is quite straight­

forward. The lattice Boltzmann equation tells us that the distribution function at 

time t + A t  can be calculated from the distribution function and the equilibrium 

distribution at time t. This computational procedure is simply split into a streaming 

step and a collisional step. During the streaming step the distribution functions are 

advected in the direction of the streaming vectors to the neighboring cells. During 

the collisional step moments of the advected distribution functions are taken to re­

cover the macroscopic variables. The lattice Boltzmann equation is then evaluated 

to recover the new distribution functions. During the first initialization step, the 

initial macroscopic fields are used to create a set of distribution functions for each 

of the streaming vectors at each of the spatial nodes. Figure (3.1) shows a flow

17
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Set initial fields: p, v, B

Calculate fields by taking moments of f c

Stream: f a(x  +  caSt, t  +  St) — f a(x, t)

Calculate: fa from fields, f a — fa for t  — 0

Collide: f a{x5f  t  +  6t) =  f a(x, t) -  ~[fa{x, t) -  faq(x, t )

Figure 3.1: The simple computational algorithm of lattice Boltzmann methods uses an 
advective streaming step and a local collision step

chart of this simple computational procedure. These advection and collision steps 

can be carried out on a number of different spatial lattices. Prior two dimensional 

LBMs have used two dimensional square, and hexagonal lattices. Figure (3.2) shows 

a square spatial lattice that is connected by an octagonal streaming lattice. More 

will be written on the specific choice of lattices and the role that they play in the 

numerical stability of the models in chapter 5.

3.2 Chapman-Enskog Expansion Procedure

The critical step in deriving a LBM is the selection of a set of equilibrium 

distribution functions. These distribution functions are responsible for the form 

of the partial differential equation that is being modeled. This selection process
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Figure 3.2: The octagonal lattice consists of a square mesh coupled to an octagonal stream­
ing lattice.

is best illustrated with a Chapman-Enskog expansion procedure[7]. We begin the 

process by expanding the BGK lattice boltzmann equation (Eq. (2.16)) in a Taylor 

expansion using the small parameters A t  and ca.iAt ~  Ax. To all orders, the first 

term of Eq. (2.16) takes the form

OG -|
f a { X i  + C a i A t ,  t  + At)  =  Y ]  — [dt  + C a r d i f f a {X i ,  t ) ,  (3.1)z—f nl
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which can be substituted in to Eq. (2.16) giving

oo 1
E  -7  [a. + caA r U x h t) = —  (/„ -  /(«>). (3,2)

'  n! tn—1

The lower limit on the summation has changed due to the cancellation of the first 

term in Eq. (3.1) with the second term in Eq. (2.16). Following the multiple scale 

expansion procedure of Chapman and Enskog, the partial time derivatives can be 

rewritten as

dt -> edto + e2dLl +  eidt2 +  e4dt:i +  . . .  (3.3)

and the spatial derivatives become

di —» edi. (3.4)

The distribution function itself is now written as

h  -* / i 0) + e / i 11 + C / f  +  C/<3> + , -. (3.5)

where the equilibrium distribution function is understood to be f *  =  f a  and

conservation of number density requires that

E  / F  = 0 (3-6)
a
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for all values of “n” greater than 0. Conservation of momentum density also requires 

that

£/?> < *-< >  (3-7)
a

for all values of “n” greater than 0.

Inserting these time scales into Eq. (3.2) and retaining only terms to the order 

of e gives

+  =  (3.8)

The equation for terms to the order of e2 is

a../'0 + c . A f P  + 8<,/i0) + 5 ft, + = - \ s f ,  (3.9)

and for terms to the order of e3 we have

dtofP+Ca/AfcP +  d t i f f l  + o[^t0 +  +  dt2fa^ +
2 ! t (3-10)

d t A J +  C a A A J ^  +  g $ t o  +  C a A ? f a ] =  ~ ~ f a  ^

Equation (3.8) can be rewritten as

- r ( f t„ / i0)+ C a ^ / i0)) = / i 1). (3-11)

and substituted into Eq. (3.9) to eliminate all of the terms containing / i 1̂ . Eq.
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(3.9) thus becomes

1
-  r )[&0 +  Ca,idi]2 f i 0) = (3.12)

Equation (3.12) can also be rewritten as

+ ( i  -  r)[Bk + = / f . (3.13)

and substituted into Eq. (3.10) to eliminate all of the terms. This yields

d t j f  ->+(1  -  2r ) d u [dt0 +  ca.idi\ fi0)+

{r2 - r  + ^)[dt(i +  catidi\3f i 0) = - - f f lb r

(3.14)

Equations (3.8), (3.12) and (3.14) constitute the evolution equations for our 

distribution functions at the first three time scales. At the zeroth time scale we 

are able to recover a set of ideal evolution equations. That is, a set of dynamic 

nonlinear equations which do not include any dissipative terms. At the first time 

scale we recover the term responsible for dissipation and at the second time scale 

a term responsible for dispersion in introduced. Equations for fiigher order time 

scales can be derived which produce terms responsible for higher order diffusion. 

These terms become small very quickly, however, as the parameter r  is typically set 

to values between 1 and |  and the number of grid points is chosen to sufficiently 

minimize higher order gradients in the fields.

3.3 Specifying the Form of the Distribution
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Functions

We will now outline the procedure for recovering a set of equilibrium distribu­

tion functions. As we have stated above, the form of the equilibrium distribution 

functions play a critical role in specifying which partial differential equations are 

being modeled. More precisely, the distribution functions are designed such that 

their moments correctly reproduce the terms of a desired set of coupled partial dif­

ferential equations. In the macroscopic limit, the distribution functions appear as 

polynomial expansions of the field variables, hence our LBM distribution functions 

are written as a polynomial expansion of the relevant fields (p and v for instance) 

and the streaming vectors (c0 =  0 and ca for a =  1,2, . . . ,  8 for the octagonal case) 

with arbitrary constants in front of each term. For example one might begin with

/ i f  — p [ k  1 +  k 2c l  +  k ‘i V 2], (3.15)

f T  =  P\k 4 + h<?8 +  k 6Vt Ca .i] + k r p V i V j C a j C a j  + k Sp V 2 (3.16)

and by defining the zeroth moment as the density

(3 .17)
a

the first moment as the momentum density

(3.18)
a
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and the second moment as the momentum density flux tensor

Hi,j = (X^Sij +  pViVj = faq<\iCa,j, (3-19)
a

the distribution functions then take the form

f ?  =  p[l -  2cl -  v2] (3.20)

and

fa = j \ cl + ViCaA +  ^ViVjCajCaj -  |tJ2. (3.21)

Where cs is the sound speed and defines the pressure P = pc?s. These distribu­

tion functions incidentally produce a model for Eqs. (1.4) and (1.5); the Navier 

Stokes equations. Thus by summing Eqs. (3.8), (3.12) and (3.14) over the discrete 

velocity directions a (this is also known as taking the zeroth moment), we recover 

the macroscopic continuity equations at the three time scales. And by multiplying 

by our lattice vector c0jj and summing over a (this is also known as taking the first 

moment) we recover the macroscopic momentum equations for the three time scales.

With the distribution functions specified, one can readily employ the compu­

tational procedure given in Fig. (3.1) to recover the dynamic evolution of a fluid 

system for a set of initial conditions of interest.
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C H A PTER  4

R esistive M agnetohydrodynam ics

4.1 M axwell’s Equations and the MHD  

Approximations

Magnetohydrodynamics begins with the approximation that the evolution of a 

plasma can be recovered from a single fluid type without considering the individual 

motion of electrons and ions. This confirms the existence of well defined quantities 

for the density p, pressure P, and momentum density pv. It also places some 

restrictions on the relative scales of a number of parameters[21]. If we define lo as 

the frequency of some process we wish to consider, u as the collisional frequency of 

our particles, L as the length of a structure we wish to consider, I as the length of 

the mean free path of our particles, Ut as the thermal velocity of our particles, and 

t as the characteristic time required for a particle with velocity Ut to travel the 

length L then the following scaling rules apply:

w « g  (4.1)

25
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I <C L, (4.2)

Ut
T  ~  r ’

This gives the perfectly conducting limit

vB

(4 .3)

(4 .4)

The fluid acts to cancel gradients in the scalar potential <f> such that

q[B +  i v  x B] =  0, (4.5)

which can be rewritten as

E = —  x B. (4.6)
c

— ~  E. (4-7)
c

v 2

c?

Finally, we choose to only consider non-relativistic motion, which gives the limit

<  1- (4.8)

We can now consider Maxwell’s equations in Gaussian units

V • E = 4tTp, (4.9)
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c dt

and

V • B =  0, (4.10)

V x E  = - ^ ,  (4.11)

V x B =  — J  +  --T-— (4.12)
c c at

along with our scaling rules.

4.2 M agnetic Induction Equation

Equation (4.5) can immediately be substituted into Eq. (4.11) to yield

^  =  V x v x B ,  (4.13)
at

or in our tensor notation

+ (4-14)

which is known as the magnetic induction equation or freezing in law. The freezing 

in law necessitates that the magnetic topology is frozen into the medium such that

the magnetic field lines are never able to cross or break.

It is also worthwhile to note that the divergence of Eq. (4.14) yields

dt( V - B ) = 0 ,  (4.15)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



due only to the fact that the divergence of the curl is equal to zero. Eq. (4.15) 

explicitly states that the evolution of the divergence of the magnetic field is zero. 

This means that without explicitly coupling Eq. (4.10) to Eq. (4.14), an initially 

divergence free magnetic field (i.e. a physically realistic magnetic field) will remain 

so for all time. We will discuss the frustrating effects that collisions have on this 

condition below.

4.3 Current

Inserting Eq. (4.5) into Eq. (4.12) gives

_  4tt 1 9(v x B) , .
V x B  =  - J + - ^ — (4.16)

The relative strength of each term can be examined by writing the cross product as 

a scalar product, the curl as 4, and the time derivative as 4

L  —

L c + c2t ' 

Multiplying through by L and rewriting -  as v

(4.17)

+ (4.18)
c c2

shows that the last term does not affect Eq (4.16) when the limit of Eq. (4.8) is 

applied. We therefore rewrite the current as

4-7T
— J  = V x B, (4.19)
c

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



and redefine the current such that it contains the factor of and adjust its units 

appropriately to give

We have retained the factors of 47r and c up to this point to satisfy the scaling argu­

ments, but the absorption of these factors into the definition of current represents 

a shift to natural units.

4.4 Equation of Mass Continuity

The equation for number density conservation (known as the continuity equa­

tion) can be derived from Maxwell’s equations as well as by a number of other 

methods. If a number density is associated with each charge element then the time 

derivative of Eq. (4.9) and the divergence of Eq. (4.12) can be combined and manip­

ulated to yield a density continuity equation. Here we derive the continuity equation 

by a more general approach. Consider some element of volume, which has particles 

flowing into and out of it. The particles which flow into and out of this volume are 

described by

where S is the surface area surrounding the volume, p is the number density and 

v is the macroscopic velocity in a particular region of space. The sign is negative 

because the S vector points out of the volume element. This particle flow can be 

equated to the total time rate of change in particle density in the volume element

J  =  V x B. (4.20)

(4 .21)
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at a given time

f t  b v  <4-22)

to give

i J f M / -

Applying the divergence theorem to the right hand side and applying the chain rule 

to the left gives

/ [ ^ P  +  V-(pv)]<fV =  0 . (4 .24)

This rule applies to the limit of infinitesimal volume elements, thus lifting the re­

strictions imposed by the volumetric integral. We therefore have the continuity 

equation for conservation of number density

J)p +  V - ( p v ) = 0 ,  (4.25)

or in our tensor notation

dtp +di(pVi) =0.  (4.26)

4.5 Momentum Evolution Equation

In our derivation of the momentum density equation we will proceed with a 

methodology similar to the derivation of the continuity equation. Consider some

/ pv dS. (4.23)
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element of volume, which has momentum density flowing into and out of it. The 

rate of change of momentum density in this region is given by

j t f  pvdV. (4.27)

We can equate this to the momentum flux flowing into the volume through the 

surface S

■JlUjdSi  (4.28)

where the momentum flux is defined as

p2
u id = (P + — )6ij +  fwiVj -  BiBj . (4.29)

Again, the negative sign is due to the surface vector pointing out of the volume. 

Eqs. (4.27) and (4.28) can now be equated to form a conservation equation of the 

form

d_
dt

J  pvdV +  I  n-ijdSj = 0. (4.30)

Applying the divergence theorem on the second term gives

f  [dt(pv] +  djl l i^dV  = 0 (4.31)
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which applies to arbitrarily small volume elements. This gives the differential form 

of the momentum equation

dt(pVi) + dj[(P + — + pViVj -  BiBj] — 0. (4.32)

4.6 Adding Collisional Effects to MHD

While Eqs. (4.14) and (4.32) detail the evolution of the magnetic induction, the 

momentum density and the exchange of kinetic and magnetic energy, they do not 

currently contain dissipative terms originating from particle collisions. An analysis 

of the classic BBGKY hierarchy[14] shows that collisions add dissipative terms of 

the form df(pvi) and df(pBi) to Eqs. (4.14) and (4.32)

where the resistivity p and viscosity v control the strength of these collisional terms. 

The effect of these diffusive collision terms is to dissipate the momentum and mag­

netic fields; inhibiting the formation of high density regions in the fields.

Eq. (4.33) no longer carries the freezing in constraint, thus allowing for the 

crossing and breaking of magnetic field lines in a process known as magnetic re­

connection. In this process, the magnetic field lines are stretched to the point where 

the magnetic tension is minimized by a dynamic reorganization of the magnetic 

topology. During this dynamic reorganization, particles that are trapped on the

dtBi +  djiBiVj -  ViBj) = pd^Bi, (4.33)

(4.34)
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fields lines can be accelerated in a “sling shot” type fashion. This process is possibly 

responsible for a number of MHD phenomena, including the spontaneous ejection 

of masses of the sun’s corona.

Taking the divergence of Eq. (4.33) also no longer gives a static condition for 

the evolution of the divergence of the magnetic field

^ 3 3  = ,iV • [V(V . B)]. (4.35)

This condition means that an initially divergence free magnetic field will evolve to

include divergence if it is modeled by Eq. (4.33) alone. Eq. (4.10) must be explicitly

enforced to satisfy the divergence free condition of the magnetic field.

4.7 Heuristics of MHD

In the interest of symmetry between the momentum and magnetic fields, it is 

worthwhile to introduce the definition of vorticity

u  =  V x v (4.36)

and to suggest the possibility of an incompressible limit in which

V • v =  0. (4.37)

The symmetry of the MHD equations can be further elucidated by re-casting the 

momentum and magnetic induction equations in Elsasser variables [11]; yielding an 

elegant and fully symmetric set of equations.
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4.8 On the V • B = 0 Condition

3 4

Although the condition of divergence free magnetic field was briefly discussed 

in sections (4.3) and (4.6), we would like to take this opportunity to examine it in 

the context of discrete numerical simulations of resistive MHD. The addition of a 

resistivity term to the magnetic induction equation destroys the implicit enforcement 

of V • B =  0 through its lack of evolution away from zero. We are therefore left to 

explicitly enforce the condition in our subsequent treatment of resistive MHD.

The continuous partial differential equations

dtBi + djiBiVj -  ViBj) =  i ^ (p B i ) ,  (4.38)

and

dtBi =  0 (4.39)

are coupled in all spatial regions during all time. The act of discretizing space 

and time necessitates that these equations decouple from one another within each 

temporal and spatial step. The computational physicist is thus left to recouple 

these equations at appropriate times, such that the evolution of the field consistently 

obeys both equations. This re-coupling, however, comes at the price of de-localizing 

the numerical algorithm. A cost-benefit analysis is thus required to determine the

appropriate time scale with which these equations should be re-coupled. We must

also keep in mind the fact that any quantity obtained through a computer simulation 

is only an approximation to the exact value. This includes the approximation of 

zero in the V • B =  0 requirement.

Given a particular choice for the time scale at which the diverging part of the
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magnetic field should be filtered out, the process can be accomplished through a 

divergence cleansing procedure[24]. Writing the total diverging and non-diverging 

parts of the magnetic field as the sum of the constituent parts

B* =  V x A +  V4> (4.40)

allows us to see that taking the divergence of B* leaves only the non-physical part

V • B* — V • (V</>) (4.41)

A process known as the projection method[l, 6] allows us to subtract this diverging

part of the magnetic field without altering the non-diverging part. To do so, we 

Fourier transform B* and V ■ B* into wavenumber space

B*(x) F.T. —+ B*(k)

V ■ B*(x) F.T. — > ik ■ B*(k).

The divergence can then be multiplied by — ik and normalized by k2 to give the 

component of the magnetic field that contributes to its divergence

| ( V B * ( k ) ) ,

which can be subtracted from B* to give the divergence free part of the magnetic 

field in wavenumber space

B * (k ) -^ (k -B * (k ) )  = B(k). (4.42)
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We can then inverse FPurier transform the divergence free magnetic held back into 

Cartesian space.

As we pointed out in the introduction, any Fourier transforming process is 

a global procedure that lacks an inherent parallelizability. Although considerable 

effort has been placed on the optimization of Fourier transforming procedures, one 

should exercise great care in deciding how often this cleansing procedure should be 

invoked.
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C H A PTER  5 

Lattice Boltzm ann M odels for 2-D  

R esistive M HD

The difficulty in modeling MHD using lattice Boltzmann methods arises from 

the existence of two distinct fields that occupy the same rank in the BBGKY hi­

erarchy. More explicitly, the BBGKY hierarchy often specifies the zeroth moment 

as the density field, the first moment as the momentum density field, the second 

moment as the momentum density flux tensor and so on. The magnetic field how­

ever, should also arise from a moment similar to that of the momentum density 

field and the magnetic flux tensor should arise from a moment similar to that of the 

momentum density flux tensor. This means that we cannot specify the magnetic 

moments simply as higher moments of our distribution functions. Additionally, we 

must pay careful attention to the symmetry properties of the momentum density 

and magnetic flux tensors under interchange of the indices i and j .  The momentum

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

density flux tensor is invariant under i, j interchange

(5.1)
i'H-j

while the magnetic flux tensor is antisymmetric under i, j interchange

f  \  BiVj v-tBj  — Ai j . (5.2)

These interchange properties translate to similar requirements that need to be placed 

on the moments that produce these tensors. The moment that produces the momen­

tum flux tensor must be symmetric under interchange of i and j  and the moment 

that produces the magnetic flux tensor must not be symmetric under interchange 

of i and j. The lack of symmetry imposed on the magnetic flux tensor’s moment is 

thus less restrictive than the antisymmetry of the tensor itself.

These interchange properties have been correctly reproduced in LBMs using 

two different schemes; bi-directional streaming models and two distribution function 

models.

5.1 A Comparison of the Square and Octagonal 

Streaming Lattice

tion function LBMs, we would like to justify our use of an octagonal lattice for these 

LBM MHD models. The octagonal lattice consists of eight equal length streaming

Before delving into the specifics of Bi-directional Streaming and Two Distribu-
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vectors

. .. 27r(a  — 1) . 27r(a  — 1) , .
ca,i =  |c|[cos  ------, sm ------------ ], a = 1...8 (5.3)

and a zero velocity vector

cQ,i — [0)0] (5-4)

where the magnitude |c| can be adjusted arbitrarily. The products of these streaming 

vectors form the tensors

T ^  = Y , c a,i = 0, (5.5)
a—0

TS > = = 4c2^ t
u~0

(5.6)

Ti 'J,k — 5 3  Ca,ica,jca,k — 0, (5.7)
a=0

8

Tif,k,l = 53 cascajCa,kCa,l = 4oT>,.p}A., + (5-8)
a—0

where the odd moments are always zero due to the invariance of the lattice under 

any rotation and the 5a^  represents the rank two Kronecker delta. By contrast,
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the square streaming lattice given by

ca,i = |c|[cos , sin •——], a =  1...4 (5.9)

c0;, =  [0,0] (5.10)

produces the tensors

4

i f 5 =  °a,i = 0, (5-11)
o= 0

(5.12)
o=0

b j ' i  “  ^  Ca.icti,jca,k — Os (5.13)
a=0

4

r̂'i,j,k,l = 'y 1 Ca,,CajCQ,fcCa,; = 2C (o.l4)
o=0

where the odd moments are always zero due to the invariance of the lattice under 

any n |  rotation and the represents the fourth rank Kronecker delta. The

reduced set of invariant rotation operators (or lower isotropy) of the square lattice 

result in the presence of the less isotropic fourth rank Kronecker delta. The higher 

isotropy of the octagonal lattice is precisely the reason that we choose it for our 

present simulations despite the two fold increase in information that needs to be
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streamed to the neighboring cells. The octagonal lattice was initially introduced in 

formulations of a thermal lattice Boltzmann model (TLBM) for the Navier Stokes 

equations. Vahala et al.[25, 26] found that the increased isotropy of the octagonal 

lattice increases the numerical stability of LBMs[20]. This deduction is heuristically 

justified by the idea that an octagonal lattice represents a more descriptive dis­

cretization of the two dimensional velocity space and thus comes closer to sampling 

a true Maxwellian distribution.

A consequence of using the octagonal lattice comes from the fact that the 

diagonal streaming vectors do not terminate at the point of a lattice node. This can 

be thought of as representing a decoupling of the velocity space streaming lattice 

and the Cartesian space distribution function lattice. To recouple these lattices, or 

to connect the vector terminals with the corresponding spatial nodes, we utilize a 

second order Lagrange interpolation defined by

diagonal line y — x, as the “z” axis and a given spatial node as lying at the zero point

n

(5.15)

where the Pa are defined by

3

(5.16)

The distance between the spatial nodes in the “x” and “y” directions is |c| and the 

distance between spatial nodes and their diagonal neighbor is V2cT If we define the

on the “z” axis, then the nearest diagonal vector terminals lie at c — \/8<A,c— \/2c?,
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and c. We can therefore specify the PQ as

(c-y/2c?)c  1 - V 2Px( 0) = --------7= ---------- 7= --------- -== - r } =  — ----- rj, (5.17)
(c — \/lk? — c + \/2c^) (c — V&e2 — c) 4

n (0 )  =  - <C / A /  r2 = ( 7 2 - t ) r „  (5.18)
(c — v2c2 — c +  v8c2)(c — y2c2 — c) 2

ft(0) =  ( e - V g g ) ( c - v ^ ) = 5 - 3 7 2
n W  ( c - c + 7 8 ? ) ( c - c  +  V 2 ? ) 3 4 3

We can replace the P(z) with the diagonal distribution functions and r 1; r2 and r3 

with their nearest corresponding diagonal neighbors. The streaming step from Fig.

(3.1) is therefore replaced by this interpolation step. For a node location given by 

“i” and “j ” , the four diagonal distribution functions are interpolated with

/2 (7, j)  =  P\f%{i -  l , j  — 1) +  Pzf^ihj )  +  Psh( i  +  1,7 +  1), (5.20)

M i J )  =  Pih(*  +  1,7 -  1) +  P i M h j )  + P M i  - I J  + 1), (5-21)

/e (b .?) =  P i h ( i  +  1,7 +  1) +  Pi fe ih j )  +  A /e {i I • 7 1), (5.22)

f 8(i,j) = P M i  -  1,7 + 1) + I ' M h j )  +  P M i  + 1J  -  !)• (5-23)

And because these interpolating polynomials are static, the procedure can be easily
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incorporated into the computational procedure.

5.2 Bi-Directional Streaming Models

5.2.1 Previous Bi-Directional Streaming M odels

The bi-directional streaming methodology for the hexagonal lattice was devel­

oped by Martinez et al.[18] from an earlier model by Chen et al.[8]. The model uses 

distribution functions with two streaming vectors embedded in them. The distri­

bution functions are therefore streamed in the direction of the primary streaming 

vector given by ca.i and in the direction of a secondary streaming vector given by 

cbd, which can point only in one of two directions. We therefore have

a =  1,2,3, . . .

6 = a +  1, a — 1 (mod a).

Composite vectors are written as

da,b,i =  (1 -  w)ca,t +  wcbj  (5.24)

ea,b,i -  Qca,i + rcb,i (5‘25)

where the weights w, q and r will be adjusted to correctly model the macroscopic 

MHD equations. These composite vectors are then used in the distribution functions
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such that the following moments are enforced:

* > = /. '•+ E g . <5-26)
ft ,6

a,b

(5.27)

fl'ij — ^   ̂/ gtb̂ a,b,i^a,b,j? 
a,b

(5.28)

p ^  = E / 5 be u,b,', (5.29)
a.b

p A y  =  < < W  (5 .30)
a,b

Bi-directional streaming models have the advantage that a single distribution 

function is used and only a limited amount of information is transferred between 

lattice nodes. Their difficulties lie in the more complex tensors formed from the 

products of the streaming vectors when moments are taken

, j i  ^  ^ e a ,b , i ^ a ,b , j ; ^  d a f i ti d a f i , j d a tb ,k d g .b , l ;

a , b a,b a,b

E  ̂ a , b , i ^ a , b , j ^ ' a , b , k ^ a , b , l i  ̂  ̂d a t b , i d a , b , j ^ a , b , k ^ a , b , l  ■

a,b a,b

These points are best illustrated with the outline of our derivation of the octagonal
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model, which will follow in the next section.

5.2.2 Octagonal Bi-Directional Streaming M odel

In this section we will present an outline of the octagonal bi-directional stream­

ing model that we have developed[16]. Because this dissertation focuses primarily 

on the two distribution function methodology, we will not include a detailed deriva­

tion of the Chapman-Enskog expansion procedure and the subsequent macroscopic 

conservation equations that are recovered from this process, but will provide enough 

information to give a feel for the essence of the procedure.

The octagonal lattice given by Eqs. (5.3) and (5.4) is used with the bi­

directional streaming methodology. For the secondary streaming vectors we use 

the two vectors that are orthogonal to the primary vectors. We therefore have

a =  1, 2, 3 , . . . ,  8

b = a + 2,a — 2 (mod 8 ).

We need to rewrite Eq. (2.16) as a backward difference rather than a forward 

difference. This has no effect on the physics of the model as both forms reduce to the 

exact derivative in the limit of infinitesimal time steps. By exchanging %i + c,,hiA t  

for x'i, t + A t  for t, %i for Xi — cn and t for t — At; Eq. (2.16) is rewritten as

f n ( X i , t ) - f n (Xi  ~  C n i A t ,  - t A t )  =
(5.31)

 [fn(Xi  -  CnjAt,  - t A t )  -  f j * X x i  -  CnjAt ,  - t A t ) ]
T

We can now split the streaming step into its two streaming directions. The general
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c„;i vectors are thus decomposed into ca,i and cb̂  and we normalize each streaming 

direction such that a weighting factor of |  appears in front of each distribution 

function. Equation (5.31) thus becomes

fa,b{%i)t) 2 fAf) — J'a,b{p̂ i tAt)

-  -  c^A i, - tA t)  + J / a,b(x.{ -  cMAt, -tA t) (5.32)
T 2

-  ~  c « m M  -  C b A ^  - t & t ) ] -

Taylor expanding Eq. (5.32) to the first order in time and space gives 

l ( d t+Ca,idi)Ub + I  (dt + cbyidi)fayh =
2 2 (5.33)

-  j !S !') +  - ( d ,  +  Q,,ia . ) ( /« , t, -  f f i ) ]
T  2  ‘ 2

where we have retained the factor of |  to emphasize the weighting imposed on 

the streaming directions and to remind us that higher order terms in the Taylor 

expansion exist. The terms in Eq. (5.33) can be regrouped and written as

[dt + 7.(c<i,i +  Cb,i)di]fa,b =  ~[^t + ~(c<m + cb,i)di](fu.,b ~~ (5.34)
2 T 2

which elucidates an obvious choice for the weighting factor in Eq. (5.24). Upon 

choosing w = ~ Eq. (5.34) takes the form

(d, +  =  \ { 3 ,  +  daA A )  -  /<«>). (5.35)

Because our first composite vector takes the symmetric form

d a ,b ,i  —  T  Cb,-i) ( o . 3 6 )
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we choose an antisymmetric form for the second vector. Setting q — — \  and r =  \  

gives

2 ( ACfy;). (o.37)

The distribution functions themselves can now be written as the equilibrium distri­

bution function plus a perturbation

u  =  C + ‘C  <5-38)

where . Incorporating this expansion into Eq. (5.31) gives

(dt +  d , ,„ ,A ) (C  + ‘/ $ )  = £ (*  + (5^9)

and retaining only the terms to the zeroth power of e provides us with

d i C + d . Aid , f !$= 0-  (5-40)

And finally, moving the streaming vector inside the partial derivative produces

= 0, (5-41)

which we can use to recover the ideal level macroscopic MHD equations. Equation

(5.40) can also be multiplied by da,b,i to give

(5-42)
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(5.43)

The tensor relationships which are formed by summing products of the tensors 

over “a” and “b” are needed for a derivation of the specific form of the distribution 

functions. These tensor relationships are

 ̂  ̂Ca,iC-a.j  ̂^
a,b a,b

^   ̂C-a,iGajCa,k(‘a,l 2 ( S i j S f c j  T  T
ajb

'y  ̂Cb,iCb,jCb,kCb,l — 2 T T
a,b

^   ̂Cg.jCaj C b tkC b,i bdjjdfcj T 2SifeSji T 2,5ij6jk
a,b

where all of the odd combinations of ca.i and c&j equal zero. These tensor relation­

ships, used with Eqs. (5.26) - (-5.30), specify the equilibrium distribution functions

f ^  = p - A P - 2 p v 2 (5.44)

j-y

fall ~  ~T 4" — j ' :J>n II : I /., !“ ( ■' I1.; : I
' 4 4 „2 (5-45)

VjJ3jCâ Ci)_j BiVjCajiCbj 4 —]
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where “P” is the fluid pressure and will require a closure approximation to represent 

it as some combination of the other fields. The closure approximation that is typi­

cally made is to define the pressure as P — pc2s where cs is the constant sound speed. 

More will be written on this approximation in section 5.3.2. With the distribution 

functions specified, Eq. (5.41) can be summed over “a” and “b” to give

a. E  / i S + a  E  =  d<i>+ d- (/*>.) =  (5-46>
a, b a,6

which is the continuity equation. Summing Eq. (5.42) gives

dt Y ,  fa b + d * Y  ftl<b,da,b,j =
a,b a,b (5 .4 7 )

oB2
d t (pVi)  + dj[(pc2s + — )Sij +  pViVj -  pBiBj = 0

and defines our ideal momentum flux equation. Finally, Eq. (-5.43) can be summed 

to recover

9< E  C  +  d> E  / S T a A j , . ,  =  d t lpB i )  +  d.lpB.vj -  pvtBj) =  0. (5 .48)
a,b a,b

which constitutes our ideal magnetic flux equation.

A full Chapman Enskog expansion of the higher order derivatives in the Taylor 

expansion can be used to recover the collision level MHD equations. This procedure 

is treated in detail in section 5.3.2, but will not be given here. The process produces 

the following dissipative MHD equations:

dtp + di(pVi) = 0, (5.49)
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dt(pBt) +  djipBiVj -  fm B j )  = i-id^(pBi) +  pbdjdiipBi) +  0 (V 2A*), (5.51)

where the viscosity, bulk viscosity, resistivity, and bulk resistivity are respectively 

defined as

The higher order terms containing three fold combinations of the fields and two 

spatial derivatives are represented by 0 (V 2A,ft).

Before discussing the advantages and disadvantages of this bi-directional stream­

ing methodology we will present the two distribution function method and derive 

the model in full detail. A comparison of the two methods will then be presented 

in section 5.4.

r  +  1
(5.52)

8

(5.53)

3 r  -  1 (5.54)p, =
8

1 — T
(5.55)
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5.3 Two Distribution Function Models

5.3.1 Previous Two Distribution Function M odels

The two distribution function methodology for the square lattice was initially 

developed by Dellar[10]. The model uses a single streaming vector and the standard 

scalar distribution function for the density

However, for the magnetic field and magnetic flux tensor a separate distribution 

function is used. Since a magnetic continuity equation does not exist, the magnetic 

field must come from the zeroth moment of the second distribution function. This 

necessitates that the second distribution function be a vector rather than a scalar. 

The zeroth moment of this vector distribution function gives the magnetic field

(5.56)
a

momentum

(5.57)
a

and momentum flux tensor

(5.58)
a

(5.59)
a
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and the first moment gives the magnetic flux tensor

k hJ = BiVj -  ViBj =  ] T g%caJ. (5.60)
a

The generalized expansions for both of these distribution functions contain the ve­

locity and magnetic field, which is how they influence one another. Specifically, 

the density and momentum density come from moments of and are used to 

calculate g ^ f . Conversely, the magnetic field comes from moments of g[ef  and are 

used to calculate f j f 9K

5.3.2 Octagonal Two Distribution Function M odel

We begin our derivation of the octagonal two distribution function model[17] by 

writing the distribution functions as generalized expansions of the octagonal lattice 

vectors and our macroscopic fields ppg,and Bi

f ^  = k1p + k2pv2 + k3B 2i (5.61)

f aq = k4p +  k5pviCa.i + hpviVjCajCaj + k7BiBjCa,iCaj  + kspv2 + kgB2, (5.62)

3oS = hoBi, (5.63)

5a/i = kuBi  + kyjBiVjCaj +  k\zViBjCa,j- (5.64)
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The enforcement of Eq. (5.56) specifies the requirements

h  + 8k4 = 1, (5.65)

k‘2 T 4c2 k% +  8ks = 0, (5.66)

h  + 4c2k7 +  8k9 = 0. (5.67)

The enforcement of Eq. (5.57) specifies the requirement

4 c2k5 =  1, (5.68)

and the enforcement of Eq. (5.58) specifies the requirements

4 c2k4 =  (5.69)
P

c4ke + 4 c2k$ =  0, (5.70)

c4k7 + 4 c2k9 =  0, (5.71)

2 c4ke = 1, (5-72)
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Solving Eqs. (5.65)-(5.73) for ki-kg specifies the algebraic form for all of the expan­

sion coefficients in Eqs. (5.61) and (5.62)

1 - 1
h 1 2P 

pcl &2 — c2
kg = y  cr

P 1 1
k4

4 pc2
k$ —

4c2 h  = 2S
1 1 1

k7 = ~2c4
kg =

=  4 ?

Eqs. (5.61) and (5.62) thus take the form

te q  —  n P i , 2 7 R 2 7 A \Jo p ^2 ~#v '

foq ~  4c2 +  4c2ViCaJ + 2C4 ViV3Ca,iCaj  gc2V 2c4 ̂ i^ ' Ca’iCa’j +  ' (5‘75)

We have made the closure approximation for the pressure

-  =  c?. (5.76)
P

where cs is the constant sound speed, which we are free to adjust arbitrarily. 

Enforcement of Eq. (5.59) specifies the requirement

fcio +  8Aq] — 1 (5.77)
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and enforcement of Eq. (5.60) specifies the requirements

4 c2kr2 =  1, (5.78)

4c2fci3 =  I- (5-79)

If we define ku = then the expansion coefficients in Eqs. (5.63) and (5.64) 

become

a
k\o = 1 — a, ku = — 

k u  =  ~ &13 =  ~~A4C2 4c2

Eqs. (5.63) and (5.64) thus take the form

<$ = (1 - a ) B u (5.80)

Oi 1
C  = g B ‘ +  -  « * * * )  (5-81)

where a  is an arbitrary constant that will affect the viscosity.

We can now use Eqs. (5.74), (5.75), (5.80) and (5.7-5) to derive the macroscopic 

MHD equations, which this LBM simulates. Moving the lattice vectors inside the 

partial derivatives of Eq. (3.8)

(5-82>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

and summing over all of the lattice vector directions

9 , E / i 0) + a . E / i V <  = - ; E  t i 1' (5-83)
(j=0 a = 0 a=0

produces

dlop + di{pVi) = 0 (5.84)

where Eq. (3.6) provides that the right hand side of Eq. (5.83) is equal to zero.

In order to reproduce the magnetic induction equation, we apply a similar 

process using our distribution function. This yields

dt.Bi + d j iB i V j - V i B j ) ^  0. (5.85)

Eq. (3.12) can also be multiplied by câ

dto f i 0)Ca,i + djfjpCajCaj =  (5.86)

and summed over velocity space

s.. E  + d> E  E  T T .  <5-87>
a = 0 a—0 a—0

to yield

dt0(piii) + dj[(pc2s + + pViVj -  =  0. (5.88)

where Eq. (3.7) again provides that the left hand side of Eq. (5.87) is equal to zero.

Eqs. (5.84), (5.85) and (5.88) constitute the conservation equations at the zeroth
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time scale. These equations are also known as the Euler level or ideal equations.

Employing the same method as was used above, the zeroth moment of Eq.

(3.12) can be taken for the distribution function to yield

a,, \ ) \ a l p  + 2 d , M m )  +  = o (5.89)

where the new subscript v of r  indicates that this is the relaxation parameter that 

is associated with the distribution function. By expanding and regrouping the 

third term in Eq. (5.89)

dtlP -  (b, -  )̂<9(0[dtop + di(pvi)} -  (r,, -  \)di{dh (pVi) +  ch!!;,,] = 0 (5.90)

and recognizing that the second and third terms of Eq. (5.90) are the left hand sides 

of Eqs. (5.84) and (5.88) respectively, we end up with

dtip = 0. (5.91)

Thus the continuity equation at the first time scale does not contribute any addi­

tional changes to the density profile.

The zeroth moment of Eq. (3.12) can also be taken for the g^J distribution 

function to yield

1 8 
dtyBi -  (r„ -  -)[dt205.,; +  2dtodjAitj +  djdk =  0 (5.92)

a—0

where the subscript p of r  indicates that this is the relaxation parameter that is 

associated with the g ^  distribution function. Expanding and regrouping the third
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term in Eq. (5.92) leads to

dtl B i - f a  -  7,)di0{dt0Bi +  djAij]-
(5.93)

a=0

Equation (5.85) cancels the second term in Eq. (5.93) to give

dt1B l -  (tm -  h d j ld ^A i j  +  d k ^ f / a j c a ^ k ]  =  0. (5.94)
tt=0

and we are left to define the last term in Eq. (5.94). Performing the sum over “a” 

gives

(0) OiC
’v ;C... 1. =  -

2 
a—0

which can be substituted into Eq. (5.94) with the tensor written out explicitly

1 otĉ
dh Bi -  (r^ -  - ^ [ d t^ B iV j  -  ViBj) + d .— B ^ ]  = 0. (5.96)

Applying the product rule to the temporal derivative in the second term of Eq. 

(5.96) gives

dtlBi -  (rM -  hdjlBidtoVj + v ^ B —
2 2 (5.97)

QIC
vidt0Bj -  Bjdt0Vi + dk~ B i S jik] = 0.

Equations (5.88) and (5.85) can be used to exchange all of the dto time derivatives
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for the corresponding spatial derivative. This gives

(5.98)

Finally, we will rewrite Eq. (5.98) as

dt lB t =  ixd)Bt +  0 (V 2A,3) (5.99)

where

ac2(2T„ -  1)  --------- (5.100)

The higher order terms with two spatial derivatives and three fold combinations of 

the momentum density and magnetic fields are represented by 0 (V 2A^). Equation

(5.99) thus constitutes our evolution equation for the magnetic field at the first time 

scale. The inclusion of the BGK collision term at this time scale introduces magnetic 

resistivity into the evolution.

In deriving the momentum flux equation at the first time scale we multiply Eq.

(3.12) by ca5j and sum over velocity space

Expanding and regrouping the third term in Eq. (5.101) leads to

)dtl}[dt0(pvi ) +  djUij ]

(5.102)
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Equation (5.88) cancels the second term in Eq. (5.102) to give

1 8 
a h ( m )  -  +  a i ^ / i 0>c„,:c„J c„Jt] =  o. (5.103)

«.=0

and we are left to define the last term in Eq. (5.103). Performing the sum over 

“a” involves the rank four tensor, giving a slightly more complex expression than 

we have dealt with above

/ i 0)Ca,iCajCai* = —-{viSijS^i +  viSifiSjj + viSijSj'k), (5.104)

which can be substituted into Eq. (5.103) with the IE j tensor written out explicitly

1 B 2
d t l ( p v t )  -  ( t „  -  M l d ^ K p c 2 +  — ) S i j  +  p v i v j  -  B i B j ] +

2 „ 2 (5.105)
DC

dk-£-(vi$ij8k,i + vA,k$j,i +  viSijSj^)} =  0 .

Applying the product rule to the temporal derivative in the second term of Eq. 

(5.105), distributing dj and enforcing the Kronecker deltas gives

<9ti(pVi)~(Tv -  \ ) i c% di0P +  djBidt0Bi+

djVidto(pvj) + djVjdto( p v j  -  d j B ^ B j -  (5-106)

djBjdtoBi  +  j i d idk ipvk)  +  didj ipvj )  + d2(pvi))} = 0.

Equations (5.84), (5.88) and (5.85) can be used to exchange all of the dto time
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derivatives for the corresponding spatial derivative. This gives

dti{pVi)+(r„ -  i ){c]didi{pvi) +  dj BidtAiji+

djVidi%  +  djVjdilUj -  djBidiAjj-  (5-107)

djBjdiAiji -  ^[didk(pvi) + didj (pvi) +  A2(pvt)}} =  0 .

Again, the higher order terms with three fold combinations of the momentum density 

and magnetic fields will be represented by 0 (V 3A3). The Ifij tensor, however, does 

contribute a pressure term which will be retained for further analysis. Equation 

(5.107) is thus rewritten as

dtl (pvt) + (t „ -  \ ) {c2sdidi(frvl) +  c2sdjVtdjP + c^djVjdip-
2

,2 (5.108)
[didk(pVi) + didj(pVi) +  d‘2(pvi)}} =  0 (V 3A3).

The second term of Eq. (5.108) can be combined with the fifth and sixth terms and 

the coefficients can be rewritten to give

dtl{pv-i) =vd2ApVi) +  vbdjdi(pvi)+j

-  r ^ id f V id j p  +  cldjVjdip) + 0 (V 2A 3)
(5.109)

where

v -  c2(2a  ~ 1) (5.110)

and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

Equation (5.109) constitutes our evolution equation for the momentum density field 

at the first time scale. The BGK collision approximation introduces a viscosity and 

bulk viscosity term which tend to dissipate the momentum density field. Addition­

ally, we wish only to consider those problems which use an initially uniform density 

field. This provides a near incompressible limit in which Vp ~  0. Thus the Vp 

terms can be eliminated from Eq. (5.109) and we rewrite it as

dtl (pv-i) =ud2 (pvi) +  Vbdjdiipi’i) + 0 (  V2A3) (5.H2)

Finally, the total time evolution is truncated such that we do not include small 

perturbations of the fields due to the higher order time scales. We can therefore add 

Eqs. (5.84) and (5.91) to produce the total time evolution of the density field

dtp + di(pvi)= 0. (5.113)

Also adding Eqs. (5.88) and (5.109) produces

B 2
dt (pvi) + djKpc2 +  — )6itj +  pviVj -  BiBj] =

2 (5.114)
vd] (pv-i) + Vbdjdi(pVi) +  0 (V3A 3) 

and adding Eqs. (5.85) and (5.99) gives

dtBi + djiBiVj -  v ,Bj) = pd2Bt +  0 (V 3A3). (5.115)

While this model contains some additional terms due to spurious third order 

nonlinear derivatives, higher order inaccuracies are expected in any finite difference 

numerical modeling procedure. Because these higher order derivatives grow small
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very quickly for small gradients in the fields, they did not introduce significant errors 

in the simulations of two dimensional resistive MHD that are presented in chapter 

6 .

5.4 Advantages of Two Distribution Function 

Models

It is worthwhile to briefly juxtapose the bi-directional streaming and two dis­

tribution function methodologies. This will elucidate our choice in using the latter 

method in most of our recent simulations. From the standpoint of computational ef­

ficiency, the two distribution function method exchanges more information between 

lattice nodes than the Martinez et al. [18] reduced bi-directional streaming model 

and less information than the Chen et al.[8] full bi-directional streaming model. 

Specifically, our octagonal formulation of the reduced bi-directional streaming model 

advects 16 distribution functions to its neighboring cells, our octagonal two function 

model advects 24 distribution functions and a fully bi-directional streaming octago­

nal model would advect 64 distribution functions. The motivation behind using the 

two distribution function methodology lies first in the ability to independently con­

trol the viscosity and resistivity terms, whereas in the bi-directional methodology 

the viscosity and resistivity are controlled by a single relaxation constant.

Next, the form of the transport coefficients themselves are inherently lower 

in the two distribution function models than those produced by the bi-directional 

models. Achieving values for the viscosity and resistivity which approach the regions 

which are of interest to physicists studying astrophysical and tokamak plasmas has 

typically been met with some difficulty. These lower transport coefficients have
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M odel Viscosity R esistiv ity
Square: Bi-Stream r+l

6
3r—1 

6
Hexagonal: Bi-Stream 3r

16
9r—4 
16

Octagonal: Bi-Stream T+l
8

2r+l
16

Octagonal: 2 Functions 27V— 1 
8

a(2r,1-l)
4

Table 5.1: A comparison of the transport, coefficients for square, hexagonal and octagonal 
bi-directional streaming models and for the octagonal two distribution function model. For 
a given value of r  in the region  ̂ <  r  <  1 the octagonal two distribution function model 
gives the lowest value for both the viscosity and resistivity.

allowed us to run simulations at higher Reynolds and magnetic Reynolds numbers 

than has previously been reported for LB Ms. Table 5.1 shows a comparison of the 

transport coefficients for our octagonal bi-directional streaming and two distribution 

function models along with those of the square and hexagonal Martinez et al.[18] 

models where the vector length “c” has been set to 1 for all of the models. Numerical 

stability constraints require that r  be larger than |  for all of the models and values 

of t  greater than 1 are generally too dissipative to be of interest to the plasma 

physics community.

Another advantage in the two distribution function method comes from the fact 

that fewer constraints are imposed on the distribution functions. This results in a 

free parameter “a ” in the resistivity, which can be adjusted arbitrarily.

Finally, the bi-directional streaming modeling procedure introduces a bulk re­

sistivity term, which is undesirable. This term represents the transport order diver­

gence in magnetic field and thus introduces more error in the magnetic induction 

equation than the corresponding two distribution function model. For these reasons, 

we chose to focus most of our computational effort on the two distribution function 

method after we had developed both models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H A PTER  6 

Simulations o f 2-D R esistive  

M agnetohydrodynam ics

6.1 Dimensionless Parameters

In our simulations of resistive MHD it is useful to define a set of dimensionless 

parameters, which can be used to compare the results we obtain with previously 

published results. It will also be useful because we may wish to compare LBM 

simulations which use different numbers of grid points and different initial velocity 

and magnetic fields with one another. A dimensional analysis of Eqs. (4.34) and 

(4.33) reveal that the viscosity and resistivity parameters carry units of iê y -  • The 

Reynolds and magnetic Reynolds numbers are typically defined as the inverse of 

the viscosity and resistivity, respectively. In order to make the Reynolds numbers 

dimensionless we must multiply by the length scale of the LBM model (i.e. the 

number of grid points along one dimension of a 2-D square box) and the magnitude

65
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of the initial field

Re ee (6.1)

Rm  ee B * ' XS- Ze. (6.2)
li

where “xsize” represents the number of grid points in one dimension. In two di­

mensional rectangular simulations with different numbers of grid points in each 

dimension the square root of the total area ^xsize  ■ ysize , should be used.

A dimensionless time scale can also be defined for the evolution of the velocity 

and magnetic topologies. For this dimensionless time scale we simply use the length 

scale of the LBM and the magnitude of the initial velocity field such that

t v  =   r t 'LBM ■ (6-3)xstze

Previous authors[18. 27] have used this single dimensionless time scale to gauge the 

evolution of both the magnetic and velocity fields. While this method is consistent 

in the context of a pure fluid dynamics paradigm, it is only consistent in the MHD 

paradigm because they consistently set the initial magnetic field equal to the initial 

velocity field v0 = B0. This single time scale, however, is not useful in examining 

initial conditions which contain an initially large magnetic field and an initially small 

velocity field. In these cases, much of the evolution is governed by the strength of 

the magnetic field. We therefore define a dimensionless magnetic time scale that is
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analogous to its velocity field counterpart

B q
t -LBM■ (6.4)m xs i ze

a self consistent total dimensionless time scale is thus defined by

<1 =  sjt l  + 4 - (6.5)

This total time scale serves as a much more useful gauge for the total evolution of 

the velocity and magnetic fields and is essential in tracking the exchange of kinetic 

and magnetic energies as a function of time. It should be noted that this time scale 

reduces to the velocity field time scale if B 0 is set to zero and to the magnetic field 

time scale if vq is set to zero.

The Orszag-Tang vortex model[19] provides a useful set of periodic initial con­

ditions for testing the reliability of our model. It consists of large scale variations 

of the velocity and magnetic fields, which readily decay into thin small scale sheets 

containing large field gradients. These initial conditions are also useful because they 

do not require any randomly excited modes to force the system to evolve to a tur­

bulent state, thus providing a reproducible system. Most notable, the decay process 

contains many of the phenomena of interest to plasma physicists including mag­

netic reconnection and the formation of current sheets. Biskamp and Welter[5, 3, 4] 

generalized the Orszag-Tang vortex by adding arbitrary phase shifts. The initial

6.2 The Orszag-Tang Vortex M odel
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Figure 6.1: The initial current(left) and vorticity(right) fo r the Orszag-Tang vortex.

velocity field profile is

v(a;, y) =  v 0[sin(y + a^ i  + siii(:r +  a2)j] (6 .6 )

and the initial magnetic field profile is

B(x, y) =  Bo [sin(y +  a3)i + sin(2a: +  aA)j] (6.7)

where the phase shifts an are set arbitrarily. The divergence of both of the initial 

fields is zero. The curl of the two dimensional momentum density and magnetic 

fields, which lie in the x-v plane, produce the vorticity and current respectively. 

These fields are useful as output parameters because they have components, which 

lie only in the z direction. This aids the visualization of our data considerably as 

most of the interesting evolution can be viewed with plots of the (essentially scalar)
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Figure 6.2: Two dimensional projection and three dimensional surface plots of the vorticity 
(top) and current (bottom) profiles after fOO LBM  tim e steps. The feedback between the 
velocity and magnetic fields have begun to alter the initial shapes.

vorticity and current in the x-y plane. The initial vorticity is thus

cu = V x v =  v 0( c o s + a2) — cos(y 4- «i))k (6 .8 )

and the initial current is

J  =  V x B  =  Bo (2 cos(2r +  a4) -  cos (y T a3))k (6.9)

The current and vorticity fields are shown in Fig. (6.1) for ox = .5, a2 = 1.4,
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Mllpli;

Figure 6-3: The vorticity (top) and current (bottom) profiles after 800 LBM  tim e steps. 
Both profiles have begun to decay into thin current and vorticity sheets where the m ajority  
of the energy in concentrated.

a3 = 4.1 and a4 =  2-3. The two large varying layers present in the current profile 

move into and out of the page while the two large vorticity regions rotate in opposite 

directions.

For our first simulation of the Orszag-Tang vortex the initial velocity and mag­

netic fields were set to v0 = B0 = .05. The relaxation parameters were set to 

Tv =  Tp =  1 and the free magnetic parameter was set to a — .5. A spatial grid 

containing 512 nodes in the “x” and “y” directions was used. This gives an initial 

Reynolds and magnetic Reynolds number of Re = R m  = 204.8.
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Figure 6.4: The vorticity (top) and current (bottom) profiles after 1600 LBM  time steps. 
The current and vorticity sheets are have thinned and increased in magnitude.

Figure (6.2) shows the field profile after 400 LBM time steps. A plot of the two 

dimensional projection of the three dimensional surface of the vorticity appears in 

the top left region and a three dimensional surface plot of the vorticity appears in 

the top right. Two dimensional projection and three dimensional surface plots of 

the current appear in the bottom left and bottom right, respectively. The vorticity 

regions have begun to impose a rotational effect on the current sheets, which is 

especially apparent in the regions where the oppositely rotating vorticity regions 

meet. Here, the current sheets are beginning to tear apart. The current sheets have 

also distorted the vorticity structures as is evident in the sheet like sub-structures
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Figure 6.5: The vorticity (top) and current (bottom) profiles after 3000 LBM  tim e steps. 
The current and vorticity sheets continue to increase in amplitude.

contained in each vorticity region.

The field profiles after 800 LBM time steps are shown in Fig. (6.3). The 

initially large current and vorticity profiles have begun to decay into thin current 

and vorticity sheets. These thin sheets contain the majority of the magnetic and 

kinetic energy of the profile.

Figure (6.4) shows the field profiles after 1600 LBM time steps. The current 

and vorticity sheets have become thinner but have increased in magnitude. The 

positive and negative current sheets on the right side have collided and torn apart 

such that they no longer span the entire periodic domain in the “y” direction. The
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Figure 6.6: The vorticity (top) and current (bottom) profiles after 600 LBM  tim e steps. 
The current and vorticity have begun to interact with one another.

viscosity and resistivity terms in the momentum density and magnetic induction 

equations have begun to globally dissipate energy. This is evident in the global 

change in background intensity of both the vorticity and current.

Finally, Fig. (6.5) shows the field profiles after 3000 LBM time steps. The 

current and vorticity sheets have grown in magnitude. A comparison of the current 

and vorticity profiles reveals that the sharpest current sheets appear in regions where 

positive and negative vorticity sheets have merged. This is particularly apparent in 

the upper left and lower right corners of the profile.

It is now worthwhile to examine a simulation, which uses larger values for the
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Figure 6.7: The vorticity (top) and current (bottom) profiles after 1000 LBM  tim e steps.
The large scale initial fields have decayed to form  thin sheets.

Reynolds and magnetic Reynolds numbers but, uses a similar set of initial conditions. 

For this simulation we also use a grid with 512 nodes in the “x” and “y” directions 

and we set the initial fields to ?;0 =  Bq = .05. However, the relaxation constants 

were set to r„ =  =  .788675 to give an initial Reynolds and magnetic Reynolds

number of Re — Rm  =  354.72. The increase in these values should encourage a 

more turbulent evolution of the system.

Figure (6 .6) shows the profile of the current and vorticity fields after 600 LBM 

time steps. The current has begun to impose a sheet like structure within the regions 

of large vorticity. The vorticity has also begun to rotate and tear the current sheets.
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Figure 6.8: The vorticity (top) and current (bottom) profiles after 2000 LBM  time steps.
A number of wispy filaments of current and vorticity have developed.

The profile of the current and vorticity after 1000 LBM time steps is plotted in 

Fig. (6.7). The large scale initial conditions have decayed to form thin sheets 

of current and vorticity. Because of the large Reynolds and magnetic Reynolds 

numbers, these sheets are localized to thinner regions of space that the previous 

simulation. Figure (6 .8) shows the current and vorticity profiles after 2000 LBM 

time steps. This turbulent profile contains a number of wispy current filament’s. As 

was explained previously, the regions where positive and negative vorticity sheets 

converge correspond to high intensity current sheets. The field profiles after 3000 

LBM time steps are shown in Fig. (6.9). This plot particularly illustrates the
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Figure 6.9: The vorticity (top) and current (bottom) profiles after 3000 LBM  tim e steps.
The lower viscosity and resistivity results in a more turbulent profile.

effect of large Reynolds and magnetic Reynolds numbers in the sporadic intensity 

of the current sheets along their length wise direction. As we would expect, the 

low viscosity and resistivity terms result in smaller scale turbulent structures in the 

overall evolution of our field profiles.

6.3 Modified Orszag-Tang Vortex

We will now look at a slightly modified version of the Orszag-Tang vortex. For 

this simulation we increase the wavenumber of the “y” component of the magnetic
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field by a factor of two in order to create more current sheets. This change is made in 

order to increase the number of dynamically coalescing and reconnecting magnetic 

field lines. The initial velocity field remains the same as in our previous simulations

v(.r, y) =  v 0 [sin(y + .5)i + sin(z +  1 -4)j] (6.10)

and the initial magnetic field profile becomes

B(x, y) = B 0[sin(y +  4.1)? +  sin (4.T + 2.3) j]. (6.11)

For this simulation we use an array containing 512 grid points in both the “x”

and “y” directions and the initial fields are set to v0 =  B0 =  .05. The relaxation

parameters were set to rv = =  .9 and the free resistivity parameter was set

to a =  .5 to give Reynolds and magnetic Reynolds numbers of R e =  R m  = 256. 

The initial profile of the vorticity and current is shown in Fig. (6.10). The current 

profile now contains eight varying current sheets and the vorticity profile remains 

unchanged.

The current and vorticity fields after 600 LBM time steps are plotted in Fig. 

(6.11). The two large vorticity regions have begun to rotate and tear the current 

sheets which have thinned and gained in intensity. The sheet like structures that 

the current layers have imposed on the large initial vorticity regions indicate the 

interaction between the velocity and magnetic fields. Figure (6 .12) shows the cur­

rent and vorticity profiles after 1200 LBM time steps. Several high intensity current 

sheets have formed in the regions where positive and negative vorticity sheets have 

coalesced. On the left side of the vorticity profile two sets of vorticity sheets have
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Figure6.10: The initial vorticity (top) and current (bottom) profiles of the modified Orszag- 
Tang vortex. The number of current sheets, which dominate the evolution have increased 
by a factor of two.

merged to form forked vorticity layers. The current and vorticity profiles after 2000 

LBM time steps is shown in Fig. (6.13). The current contains similar forked layers 

where current sheets have merged. Two vorticity sheets rotating in opposite direc­

tions are still evident in the upper left region of the graph. This region corresponds 

to an intense current sheet.
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Figure 6.11: The vorticity (top) and current (bottom) profiles after 600 LBM  time steps.
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Figure 6.12: The vorticity (top) and current (bottom) profiles after 1200 LBM  tim e steps.
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Figure 6.13: The vorticity (top) and current (bottom) profiles after 2000 LBM  time steps.
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C H A PTER  7

Non-Uniform  Grid Lattice 

Boltzm ann M odels

7.1 The Need for Non-Uniform Grid Lattice 

Boltzm ann Models

The desire to implement spatial grids which contain a non-uniform density of 

lattice nodes originates from the desire to model large scale phenomena without 

loosing resolution in a particular region of interest. This region of interest could 

contain, for instance, a velocity shock or a very thin current sheet where most of 

the energy of the large scale structure is located. The incorporation of non-uniform 

spatial grids thus allows the computational physicist to focus her attention around 

this region while also resolving the surrounding larger scale structures. In the large 

scale, these structures can be viewed as discontinuities, which are not able to be 

effectively treated at that scale. The process of refining the grid in the region 

around this local discontinuity then allows for effective treatment of the structure

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

 1-------■ i H  I I I h i I 11 I 1 I I ■-------1->

Figure 7.1: This pictorial representation of a one dimensional non-uniform grid contains a 
refined region where the coarse grid is split into four spatial sub-steps.. This refined region 
would normally be placed around a region of space where large gradients in the field exist.

such that it is no longer discontinuous in the fine scale. Figure (7.1) shows a one 

dimensional non-uniform grid with four refined spatial steps nested in between the 

coarse grid.

I will illustrate the need for this refinement process with a lattice Boltzmann 

model of the one dimensional Burger’s equation. Burger’s equation is of interest be­

cause it is the one dimensional incompressible analogue to the viscous Navier Stokes 

momentum equation and displays most of the notable features of hydrodynamic 

turbulence. Incompressibility requires that the gradient of the density and pressure 

in Eq. (1.5) be set to zero. We must require, however, that the velocity field still 

contain a diverging component. These restrictions essentially void Eq. (1.4). We 

also make the additional constraint that the density in Eq. (1.5) is constant in time. 

These constraints gives an equation of the form

p0dtVi +  poVjdjVi =  vpodjvi, (7.1)

which can immediately be divided by p to give

diVi +  dj(^ViVj) = vdjVi. (7.2)

If we restrict the velocity field to only those components that lie along the “x” axis 

and allow it only to depend on the position along the “x” axis, then the vector
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notation degenerates to

dtv(x) +  v(x)dxv(x) — ud2v(x) (7.3)

and forms the one dimensional Burger’s equation.

7.1.1 Derivation of the LBM for Burger’s Equation

The LBM for Burger’s equation was first created by Yan et al.[28] The simplest 

version of this model uses two streaming vectors; c+ and c_ of equal length. We can 

therefore begin with a general set of distribution functions associated with forward 

streaming, backward streaming and no streaming (due to the vector of length zero). 

These general distribution functions, written as expansions of the macroscopic ve­

locity field with arbitrary constants in front of them, take the form

/ =  kVv + k2v2 +  k3v3 (7.4)

/ ^  =  k4v +  k5v 2 +  kev 3 (7.5)

/ N)  = k7v +  k8v2 +  k9v3 (7.6)

By rewriting Eq. (7.3) as

dtv(x) + dx[^v(x)2] =  ud%v(x) (7.7)
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and keeping Eq. (3.8) from the Chapman Enskog expansion procedure in mind, we 

enforce the following moments:

u = E i ? ‘') (7-8)
a

)”2 = E  <7'9>
a

+  \ u  = E  / i “T  <71°)
a

where A is an arbitrary constant that will appear in the viscosity term. The enforce­

ment of Eq. (7.8) specifies

k\ +  &4 +  ksj =  1, ( (-11)

ki +  ^5 +  fcg — 0 , (7.12)

ks +  ^6 + ^9 — 0. (/ .13)

The enforcement of Eq. (7.9) specifies

Aq — =  0, (7.14)
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~  h  ~  2R ’ (715 )

k6 - k 9 = 0. (7.16)

The enforcement of Eq. (7.10) specifies

k4 + k7 = ^ ,  (7.17)
c2

k§ k% — 0 ,

kfi + ko
1

3 c2

7.18)

(7.19)

Solving Eqs. (7.11)-(7.19) for the constants kx-k9 gives

A - 1
= 1 == h  = 3c2

A A)5 =
1 1

k4 =
= 2? = 4c h  = 6c2

A
k% =

1 fcg —
1

k7 =~ 2c2 4c 6c2

and the general distribution functions defined in Eqs. (7.4)-(7.6) become

= (7-20)

/ (e<?) Xv V2 V3

2c2 ^  4c 6c2
(7.21)
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The lattice vectors in Eq. (3.8) can now be moved inside the partial derivatives 

and summing over “a” produces

dtov + dx(~v2) = Q, (7.23)

which constitutes Burger’s equation at the zeroth time scale. We can also perform 

a similar process on Eq. (3.12) to recover

a „ v  -  (r -  \ ) [ ^ v  + 28,oa,(if2) + 3=(Ai> + ^)] = 0. (7.24)

Equation (7.23) can be used to cancel the second and part of the third term in Eq. 

(7.24) to give

■V  -  (r -  \ ) [ d , M r / )  + al(\V + j ) l  =  0 (7.25)

and employing the chain rule on the last term produces

dtlv -  (r -  ^ [ d xvdtov + Xd'2v + dxv2dxv] = 0. (7.26)

Equation (7.23) can again be used to exchange the temporal derivative in the first 

term for the spatial derivative term and Eq. (7.26) becomes

dhv -  (r -  ^)[ -dxvdx(^v2) +  Xd2:v + dxv2dxv] = 0 (7.27)
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and the first and third terms immediately cancel to give

dtlv =  vd^.v. (7.28)

where the viscosity is defined as

(7.29)

As is expected, this transport order evolution equation introduces the dissipative 

term, which originates from particle collisions. Finally, Eqs. (7.23) and (7.28) can 

be added to produce Eq. (7.3); the complete Burger’s equation with spurious terms 

due only to the higher order time scale evolution.

7.1.2 Uniform Grid Simulation of Burger’s Equation

The simplest non-trivial initial condition one can impose on the velocity profile 

consists of a sinusoidal wave that spans the entire periodic domain

where “xsize” is the total number of grid points and Xi is a discrete point positioned 

along the “a?” axis. As the positive part of the sine wave propagates to the right and 

the negative part propagates to the left the region of negative slope steepens to form 

a shock in the middle of the profile. Figure (7.2) shows the initial velocity profile 

and the subsequent profiles after 1000 and 3000 LBM time steps. The parameters 

for this simulation are v0 = 1 , r  =  .5375. and A = y .  This gives a viscosity 

of v — .1172 and a dimensionless Reynolds number of Re = 5120. Because only

X'
v(x. t0) = sin(27r— — ) i — 0,1, 2, . . . ,  xsize — 1

xsize
(7.30)
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LBM Simulation of Burger’s Equation
v(x) vs. x on a uniform grid with 600 nodes

0.5

tS~>

-0.5

3.1416
x

6.28321.5708 4.7124

Figure 7.2: As the shock front steepens, numerical oscillations adjacent to the shock are 
apparent.

600 grid points are used, the profile develops numerical oscillations in the region 

adjacent to the shock. This is a common error seen in all finite difference modeling 

schemes and can only be resolved by introducing numerical diffusion, lowering the 

Reynolds number or by running the simulation on a finer spatial grid. As we wish 

to investigate phenomena that occurs for large values of the Reynolds number, the 

first two choices are undesirable. We therefore need to refine the grid in order to 

eliminate the numerical oscillations. Figure (7.3) shows the simulation performed 

with the same Reynolds number, but with 4800 grid points. The parameters for 

this simulation are i?o = 1, r  = .8 , and A =  y .  This gives a viscosity of v  = .937-5
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LBM Simulation of Burger’s Equation
v(x) vs. x on a uniform grid with 4800 nodes

■— - t=0
  t=8Q00
—  t=24000

0.5

x
~>

-0.5

-1.5
6.28324.71243.1416

x
1.5708

Figure 7.3: The numerical oscillations are eliminated on a uniform, grid by increasing the 
number of grid points. The viscosity was altered in order to preserve the same Reynolds 
number so this simulation represents an 64 fold increase in computational expenditure over 
the 600 grid point simulation.

and a dimensionless Reynolds number of Re =  5120. Eight time steps from this 

simulation correspond to one time step in the 600 node simulation in Fig. (7.2). 

The numerical oscillations are clearly no longer visible when we use this level of 

spatial refinement. A crucial issue in assessing the computational efficiency of this 

global refinement procedure comes from the inherent link between the LBM time 

steps and the LBM spatial steps. An increase in the grid size by a factor of eight 

requires that we decrease the initial velocity by a factor of eight in order to retain 

the same Reynolds number for a given value of viscosity. The LBM time steps
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are thus decreased by a factor of 64 and the grid load has increased by a factor of 

eight. This translates to a 512 fold total increase in the computational effort. In 

general, this process of increasing the grid size by some factor uw” without altering 

the viscosity increases the computational effort by w3. In cases requiring a lot of 

refinement we may therefore choose to alter the value for the viscosity along with the 

grid size. If the grid size and the viscosity are the only parameters that are altered, 

the computational effort will only scale like w2 as the time steps still decrease by 

a factor of eight. One drawback in this obvious choice comes from the numerical 

stability constraints imposed on r, which must typically be set to a value between 

one half and one.

Rather than refining the spatial grid globally over the entire spatial profile, 

refinement in a specific region involves only a small fraction of the computational 

increase of either of the methods presented above. In the 600 node simulation in 

Fig. (7.2), for instance, the 100 grid points in the region containing the shock can 

be refined by a factor of eight to give a total increase in computational effort of 

w = 64 • hj! =  10.67. In comparison to the 512 and 64 fold increase presented in 

the previous paragraph, this represents a significant improvement in the computa­

tional expenditure. We will therefore present the derivations of two methods for 

accomplishing this non-uniform refinement in sections 7.2 and 7.3.

7.2 Unmatched Node Non-Uniform Grid
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--------------- j   — j  — r —|  r — - r - i  r  -----8 ;----------1 .
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— ----  vector
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node

Figure 7.4: To prevent a decoupling of the coarse and fine grids, we use vectors that do 
not term inate at any of the nodes. 3rd order interpolation is used to connect the nodes 
with the vector terminals.

LBM

7.2.1 Developm ent of the Unm atched N ode M odel

In developing a non-uniform grid LBM we first chose to draw from our expe­

rience with the octagonal lattice and apply it to the one dimensional model. In 

the octagonal LBM, the issue of the streaming vectors not terminating at the sites 

of nodes of the distribution functions was viewed as a decoupling of the velocity 

space streaming lattice and the Cartesian distribution function lattice. A similar 

decoupling can occur in one dimensional streaming if we refine the spatial lattice in 

a given region. A coupled model would refine the length of the streaming vectors 

so that the spatial step divided by the time step gives the vector length ca = 

where A a: is the distance between lattice nodes. If however, the streaming lattice is 

decoupled from the spatial lattice we can define the streaming vectors as functions 

of an independent spatial step that will be denoted by dx. Hence the streaming
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vector is written as

c„ =  ^  ^  (7-31)
A t  A t  v '

We are now free to create a spatial lattice with any type of variation in the density 

of grid points across the spatial regime. Continuing with the simulation of Burger’s 

equation from section 7.1.2, we define a region around the shock, which has a spatial 

refinement factor of = 2 , where AXf is the spatial step between nodes on the 

refined grid. This means that the region adjacent to the shock contains twice the 

density of grid points. Additionally, we define the streaming length to be |<hc =  Ax.  

Figure (7.4) shows a depiction of this spatial grid and the streaming vectors in the 

region of refinement. Notice that all of the vector terminals sit at points wdiere no 

spatial nodes exist. This was done so that the nested grid points in the refined region 

exchange information wdth the regular grid points. Consider for instance, the effect 

that a vector with length 25x — Ax  would have on the exchanged information. The 

nested grid points would only transfer streamed information to other nested grid 

points and the coarse grid points would only transfer information to other coarse 

grid points.

This unmatched node method requires the use of an interpolation procedure at 

every spatial location to connect the streaming vector terminals to the spatial nodes. 

We use a third order Lagrange interpolation similar to the second order Lagrange 

interpolation outlined in section 5.1. The difference is that we nowr use four grid 

points in the interpolation procedure to achieve third order accuracy. Because Eqs. 

(5.15) and (5.16) provide the interpolation polynomials to any order of accuracy, we 

will not derive the polynomials again here.

Using this methodology, the viscosity is independent of any refinement proce­
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dure. We must only alter our definition of the Reynolds number to preserve a self 

consistent ratio of the dissipative term to the nonlinear terms in Burger’s equation. 

Defining a refinement factor m  =  the Reynolds number is

/ * . xsize f \
R e  =  ' {xs^ e l = s R l  (7,32)

V

where “xsize” is the number of coarse grid points, “m” is the refinement factor, 

and xsizef  is the number of fine grid points. With these definitions in place, the 

computational process progresses in the manner outlined in Fig (3.1). The only 

difference lies in the interpolation procedure used in the streaming step.

7.2.2 Testing the Unmatched Node M odel w ith the 1-D 

Burger’s Equation

A good test of the benefits gained by the unmatched node LBM consists of 

comparing it against a standard LBM for the same number of total grid points. 

Figure (7.5) shows such a comparison for simulations containing 600 grid points. 

The standard LBM uniformly distributes the points over the periodic regime while 

the unmatched procedure places 300 grid points in the inner of the plot and spreads 

the remaining 300 grid points over the outer regions. The simulation was run for 

2000 LBM time steps with an initial velocity of v0 = 1. The relaxation constant was 

set to r  = .52 and the free parameter was set to A =  y .  This gives a viscosity of 

v — .1667, and a Reynolds number of Re =  3600. The velocity field profile is plotted 

for t —0, t —1000, and t=2000. The numerical oscillations have clearly decreased in 

the unmatched node LBM. They also do not span as far of a distance from each 

side of the shock front. The impressive aspect of this plot comes from the fact that
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A Comparison of Uniform and Non-Uniform Grid LBMs
v(x) vs. x, both simulations use 600 grid points

uniform grid 
non-uniform grid

1

0

1

6.28323.1416 4.71240 1.5708
x

Figure 7.5: A comparison of simulations of Burger’s equation for a simple sine function 
using a uniform (blue) and non-uniform (red) LBM. Both models use 600 grid points, but 
the non-uniform unmatched node model has the grid points distributed more densely in the 
region of the shock. The decrease in numerical oscillations is clearly visible.

arrays of the same length were used in each case. Figure (7.6) shows the region 

adjacent to the upper left half of the shock front in greater detail. Only the t=1000 

and t =2000  velocity profiles are shown in this high resolution view.

One difficulty in this unmatched node LBM comes from the interpolation pro­

cedure and its static nature. In order to achieve higher levels of refinement in the 

non-uniform grid, one needs to calculate new interpolating polynomials to connect 

the streaming vectors to the nodes. For this reason, we decided it would be pru-
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A Comparison of Uniform and Non-Uniform Grid LBMs
v(x) vs. x, both simulations use 600 grid points

uniform grid 
non-uniform grid

iS->

0.6

0.4

3.23.132.8 2.9
x

Figure 7.6: A zoomed in view of the plot in Fig. (7.5) in the region of the upper left shock 
front. The oscillations are not as large or as pervasive in the non-uniform, unmatched node 
LBM.

dent to investigate an alternative approach to non-uniform LBMs. This alternative 

approach is presented in section 7.3.

7.3 Non-Uniform Grid LBM Using Coupled
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Stream ing and Spatial Lattices

7.3.1 Developing the Coupled Lattice M odel

Another method for non-uniformlv refining the grid involves preserving the 

coupling between the streaming vectors and the spatial grid. The method was 

initially presented by Filippova et al.[12, 13] and was derived in detail by Yu et al. 

[30]. It will allow us to designate a refinement factor, which can easily be altered 

to preserve small gradients of the fields (relative to the grid density) across regions 

containing strong shocks. The refinement factor is given by

m  ee (7.33)
A x f

where Ax c is the spatial step in the coarse grid and A Xf is the spatial step in the 

fine grid. Preserving the coupling between the streaming vectors and the spatial 

lattice requires that the lattice vectors be defined as

■v 3  U = § 7 '  (M4)

This necessitates that the time evolution on the fine grid also evolve in fractional 

increments of the coarse grid time steps. Thus we have a dual definition for the 

refinement factor

m  = (7.35)
Aif

This refined temporal and spatial stepping requires that the transfer of infor­

mation between the coarse and fine grids be handled very carefully. In particular,
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we begin with the global dimensionless Reynolds number

Re = (7.36)

where the global grid size is defined as xsize =  xsizec + The local Reynolds

number in the coarse regions can then be defined as

Vq ■ xsize • Axc , ,
Rec =  r   (<'•37)vcA x c

and the local Reynolds number in the refined regions is defined as

vo ■ xsize ■ Ax c (n ^
=  vjAx~f ’ ( ' ' 3 8 )

Because these Reynolds numbers must be identical for the same initial fields we 

define the viscosity in the coarse region as a function of the viscosity in the coarse 

region. Setting Ref  equal to Rec and solving for vj gives

Vf = ~ ^ - v c — rnvc. (7.39)
Xf

Since a factor of r — |  always appears in the viscosity terms, we can satisfy Eq. (7.39) 

by defining the relaxation constant in the fine grid as a function of the relaxation 

constant in the coarse grid

Tf = |  + m{rc -  | )  (7.40)

It is useful to include two overlapping points at each interface between the fine 

and coarse grids so that the fine distribution functions can be correlated to coarse
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distribution functions and vice versa. These overlapping points are depicted in Fig 

(7.1). To proceed with a derivation of the relationship between the coarse and fine 

grids we need to reconsider the lattice Boltzmann equation

fa(xi  +  c(ljiAt, t  +  A t ) -  f a(xu t) =  " ( / «  -  f i eq}). (7.41)

The second term on the left hand side of Eq. (7.41) can be moved to the right hand 

side and Eq. (7.41) can be rewritten as

faiXi +  Ca.fAt, t  +  A t )  = fa(Xi, t) ~ ^ ( f a ~  / i^ ) -  (7.42)

Equation (7.42) can now be split into the collision step

/„(*., t) =  f a (x„  t) -  - U .  -  /<“'>), (7.43)
r

and the streaming step

fa(%i + CajAt, t + At)  =  fu(x 'h t), (7.44)

where f a represents the post collision state of the distribution function. We can 

now write the distribution function as the equilibrium distribution function plus the 

non-equilibrium parts of the distribution function

h  = / P 1 + (7-45)

Conservation of the zeroth moment of the equilibrium distribution function (whether
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this defines the velocity or magnetic field) requires that

5 ] / ' ” *>= 0. (7.46)
a

We can also define the deviatoric stress which, is formed from the first moment of 

the distribution function. For a vector distribution function this takes the form

(1 -  =  l y ,  (7.47)
a

and for scalar distribution functions this reduces to

(i <7-48)
a

Equation (7.45) can now be substituted into Eq. (7.43) to give

f a(x„t) =  (1 -  i ) ( t) +  f j r H x t ,  ()) +  (7.49)

Canceling one of the f i eq) terms and multiplying the remaining / i Mê  terms by y

gives

fa{Xi, t) = f) +  - — t)). (7.50)
T

We can now make a distinction between the fine and coarse distribution functions 

and rewrite Eq. (7.50) for each of the grids

i f ’ f e  .*) =  / W f e . i )  +  (7-51)
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# > (* •,* ) =  / i e tJ)f e , i )  +  (7.52)
Tf

The zeroth moments of the fine and coarse distribution functions are required to be 

continuous across the interface between the coarse and fine grids, which specifies

f M  = /<«»,/>. (7 .53)

The deviatoric stresses are also required to be continuous across the interface be­

tween the coarse and fine grids, = T-^. This specifies

( i - ^ r ) E  / J T W  -  = (! -  27) £  / S T ' W  -  ^  A>) <7-54)
c a f  a

which reduces to

& - £ ) # * * - a - ( w

because the streaming vectors on the fine and coarse grids are the same. Solving 

Eq. (7.54) for

= ^L Z i - f l ne9'/), (7-56)
rc “ 2 T1

and substituting Eq. (7.40) into the first fraction gives

(7.57)
Tf

Equations (7.53) and (7.57) can now be used to eliminate the and
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terms from the right hand side of Eq. (7.51)

J a Ja ' fn _  Ja (7.58)

and Eq. (7.52) can finally be used to eliminate f i neQ’̂

f V  =  / W + " d M t / i ' 1 -  f ! r J ) ) -
T f  -  1

(7.59)

Similarly, Eqs. (7.53) and (7.57) can be used to eliminate the and f i neq’̂  terms

from the right hand side of Eq. (7.52). This gives us

We have now defined all of the equations that govern our computational pro­

cedure. Eqs. (7.51) and (7.52) govern the collision step on the fine and coarse grids 

where as Eqs. (7.59) and (7.61) govern the collision step at the two points at the 

interface of the fine and coarse boundary. The streaming steps are then given by 

Eq. (7.44) for both the fine and coarse grids. It is pedagogically useful to show the 

computational procedure for this new non-uniform grid LBM. Figure (7.7) shows 

a flow chart of the computational procedure, which is useful to compare against 

Fig. (3.1). The key difference in the computational procedures lie in the collision 

steps that occur at the boundary interfaces and in the fractional time stepping that

Tf  ~ 1 (7.60)

and using (7.51) to eliminate f ^ LLq,c'> produces

(7.61)
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t  = t +  St. \

Transfer / “(x, t + St) to / / (x, t + St) at the fine block boundary.

Stream in fine block: / / (x +  ca^ ,  t +  ~) =  / “(sc, t).

Calculate fields by taking moments of f f  in the fine block.

Set initial fields: p, v, B.

Calculate: f[eq) from fields , f a =  / i e,) for t =  0.

Calculate fields by taking moments of / “ in the course block.

Stream in course block: / “(* +  caSt, t +  8t) =  f„(x, t).

Store / /  (x, t + St) for temporal interpolation at t  +

Transfer / / (x, t +  St) to / “(x, t +  St) at the fine block boundary.

Collide in fine block: / / (sc, t + f ) =  / / ( x , t) -  \{ f[(x,  t) -  f l ' {eq\ x ,  t)}.

Collide in course block: / “(®,t +  St) =  fa(x,t) — l[fu(x,t)  —

Interpolate / / (x, t on the fine block boundary using values at t — 1, t, t +  1.

Figure 7.7: A flow chart of the computational procedure of the non-uniform grid LBM  with 
coupled streaming and spatial lattices. Fractional time evolution occurs on the fine grid 
and additional collision steps are used to exchange information between the coarse and fine 
grids.

occurs on the fine grid. As was explained previously, ”m” time steps on the fine 

grid correspond to one time step on the coarse grid. The only additional issue 

which needs to be explained is the temporal interpolation that now needs to occur 

at the interface when a coarse grid distribution function is being transferred to a 

fine distribution function. A temporal interpolation is needed because the coarse 

grid does not contain streaming information for the fractional time steps, which are 

needed for evolution on the fine grid. For this interface point, we simply interpolate 

fa(t +  A) from fil at t = t — 1, t = t and t = t + 1. This constitutes a second
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order Lagrange interpolation, which was derived in detail previously. During the 

first time step however, the distribution function at t =  t — 1 is not available, so a 

simple average (or first order Lagrange interpolation) between the t = 0 and t = 1 

is used.

7.3.2 Testing the Coupled Lattice M odel

We will again test the benefits gained by this coupled lattice unmatched node 

LBM by comparing it against a standard LBM for the same number of total grid 

points. Figure (7.8) shows such a comparison for simulations containing 600 grid 

points. The standard LBM uniformly distributes the points over the periodic regime 

while the coupled lattice unmatched procedure places 300 grid points in the inner |  

of the plot and spreads the remaining 300 grid points over the outer regions. The 

refinement factor was thus set to m — 4 to accommodate this distribution. 600 LBM 

time steps on the uniform grid correspond to 375 LBM time steps on the non-uniform 

grid and both correspond to one dimensionless time step. Both simulations were run 

for 4 dimensionless time steps with an initial velocity of v0 = 1. For the uniform grid 

simulation, the relaxation constant was set to r  =  .52 and the free parameter was set 

to A =  y . This gives a viscosity of v — .1667, and a Reynolds number of Re = 3600. 

For the non-uniform grid simulation, the relaxation constant was set to r  = .5125 

and the free parameter was set to A =  y  This gives a viscosity of v — .1042, and 

a Reynolds number of Re — 3600. The velocity field profile in dimensionless time 

steps is plotted for t=0, t=2, and t=4. The numerical oscillations no longer occur in 

the coupled unmatched node LBM. While the coupled non-uniform grid simulation 

does represent a 56% increase in computational expenditure, this does not compare 

to the 1600% increase in computational expenditure that a uniform grid LBM would
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need to achieve the same resolution. Figure (7.9) shows the region adjacent to the 

upper left half of the shock front in greater detail. Only the t = 2  and t=4 velocity 

profiles are shown in this high resolution view.

The coupled streaming and spatial lattice non-uniform grid LBM produces a 

robust methodology for simulating one dimensional fluid flow. It allows us to refine 

the grid in the regions where large gradients in the fields develop thus decreasing 

the field gradients with respect to the grid density. This process achieves higher 

numerical accuracy resulting in the elimination of numerical oscillations around 

shock fronts. In particular, the coupled lattice methodology has the advantage of 

allowing for arbitrarily large levels of refinement in regions containing shocks that 

can not be adequately resolved by a two fold refinement factor.
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A Comparison of Uniform and Non-Uniform Grid LBMs
v(x) vs. x, both simulations use 600 grid points

uniform grid 
non-uniform grid1

0

1

6.28324.71243.14161.57080
x

Figure 7.8: A comparison of simulations of Burger’s equation for a simple sine function  
using a uniform (blue) and coupled non-uniform (red) LBM. Both models use 600 grid 
points, but the non-uniform unmatched node model has the grid points distributed more 
densely in the region of the shock. No numerical oscillations are visible in the coupled 
non-uniform grid simulation.
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A Comparison of Uniform and Non-Uniform Grid LBMs
v(x) vs. x, both simulations use 600 grid points

—  uniform grid 
•—  non-uniform grid

~>

0.6

0.4

2.9 3 3.1
x

Figure 7.9: A zoomed in view of the plot in Fig. (7.3.2) in the region of the upper left 
shock front. The oscillations do not appear in the coupled non-uniform unmatched node 
LBM.
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Lattice Boltzm ann M odel For 1-D 

R esistive M HD

8.1 Derivation of the One Dimensional Resistive 

MHD Equations

Some fascinating results can be obtained from the resistive MHD equations 

when they are recast in a one dimensional framework. Their one dimensional form 

bear strong resemblance to Burger’s equation. So much so, that the one dimen­

sional resistive MHD problem is sometimes referred to as the magnetized Burger’s 

equations. We can proceed with a derivation of these equations in a manner similar 

to that which was used to derive Burger’s equation.

In deriving this set of one dimensional dissipative equations, which retain most 

of the essential features of MHD turbulence[29], we begin with a set of dissipative

108
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MHD equations

dtp +  V-(pv) =  0 (8.1)

dt(pv) +  V P +  (v • V)(pv) +  v[V-(pv)] +  Bx( V x B) = z/V2(pv) (8.2)

<9tB - V x ( v x B ) -  pV2B (8.3)

We can apply the product rule to the time derivative in Eq. (8.2) to recover 

pdtv  +  vdtp + V P + (v • V)(pv)+v[V-(pv)]+
(8.4)

Bx( V x B )  = z/V2(pv).

The second and fifth terms in Eq. (8.4) constitute Eq. (8.1) multiplied by v and 

therefore equal zero. Equation (8.4) is then rewritten as

pdtv +  V P +  (v • V)(pv) +  Bx ( V x B) = PV2(pv). (8.5)

The following restrictions can be placed on the density, velocity, and magnetic fields

of Eqs. (8.1), (8.5) and (8.3):

(1) Gradients of the density field are significantly smaller than gradients in the 

velocity and magnetic fields.

(2) The velocity field contains only those components, which lie along the “x” 

axis and is a function only of position along the “x” axis and time.

(3) The magnetic field contains only those components, which are orthogonal 

to the “x” axis and is a function only of the position along the “x” axis and time.
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(4) The closure approximation P  = pc2$ is made.

Condition (1) specifies that small gradients formed from the evolution of the 

continuity equation will not significantly effect the momentum and magnetic induc­

tion equations. We will therefore ignore the continuity equation as it is not needed 

to achieve a closed set of momentum and magnetic induction equations. Condition 

(1) and (4) require that the pressure be devoid of gradients. Hence the second term 

in Eq. (8.5) becomes zero. Also, the density can be moved outside of the partial 

derivatives in Eq. (8.5). By enforcing conditions (2) and (3), Eq. (8.2) becomes

Conditions (2) and (3) can be enforced on Eq. (8.3) and we can divide by y'po to 

give

Po@tV% T BydxBy T B zdxB z -f- povxdxVx ispodj.Vx, (8.6)

which can be divided by p0 to give

(8.7)

Finally, we can apply the inverse chain rule to recover

(8.9)

(8 .10)
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The factor of can be absorbed into the definition of Bx and By and Eqs. (8 .8),

(8.9) and (8.10) become

(8 .11)

9 , B y  +  a ,X V r .B , j )  =  j j S l B y , (8 .12)

atBs + 8x(v,B„) = i ^ B t . (8.13)

Equations (8.11), (8.12) and (8.13) form a closed set of one dimensional equations for 

the velocity and magnetic field. It should be noted that in the limit of no magnetic 

field, out system reduces to Burger’s equation. Further, a self consistent magnetic 

feedback pressure now contributes to the evolution of the velocity field, an effect 

that is obviously missing from Burger’s equation.

We begin the derivation of the LBM for one dimensional resistive MHD with 

a general set of distribution functions formed from an expansion of powers of the 

fields vx, By and B z. The magnetic field will be written in its vector form B t, where 

it is understood that it is comprised only of j  and k components. The velocity field 

will simply be written as “v”, where it is understood that it consists only of an i

8.2 Derivation of the Lattice Boltzmann

Model for 1-D Resistive MHD
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component. The general distribution functions are

f M  = klV + k2 v2 +  k3B 2, (8.14)

f {+q) = h v  + k5v2 +  k$B2, (8.15)

f [(efy) =  hjv +  ksv2 +  k9B 2, (8.16)

g(0f  =  kl0Bi + kn vBu (8.17)

(eij)
9+,i k\2Bi +  knvBi, (8.18)

g ^ f  = ku Bi + k15vBi: (8.19)

where q f f  is a vector distribution function as it was in the two dimensional model.
ti,t

We can use Eq. (3.8) to identify the appropriate definitions of the moments of these 

distribution functions

v* =  £  S l \  (8.20)
a

T + - = £ / . > » ,  (8-21)
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a v

vBi =

(8 .22)

(8.23)

(8.24)

0Bi = 8̂-25)
a

where a  and 8 are arbitrary constants that will control the viscosity and resistivity,

respectively. The enforcement of Eq. (8.20) on Eqs. (8.14), (8.15) and (8.16)

provides us with

k\ T /c4 4~ kf — 1, (8.26)

(8.27)

k3 + k6 + k9 = 0 . (8.28)

Equation (8.21) also contains Eqs. (8.14), (8.15) and (8.16) to produce

k4 -  k7 = 0, (8.29)
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h - k  8 = (8.30)
2 |c|

*6 -  =  d-7- (8.31)2 c

Finally, Eq. (8.22) acts on Eqs. (8.14), (8.15) and (8.16) to produce

rv
k4 + k7 = - , ,  (8.32)

c2

kg + kg — 0,

kg 4“ kg — 0.

Solving Eqs. (8.26)-(8.34) for the constants kx-k9 gives

av
kl =  1 ~ 2 ^ k2 =  0 h  = o

i a
4 2c2

, 1 
h ~ T c h  =  Tc

u a

 ̂
1 1li00 k° = ~ T c

(8.33)

(8.34)

and the general distribution functions defined in Eqs. (8.14)-(8.16) become

/ r  =  ® -  f , (8.35)

( , =  « £  £  B? (S .se)
J+ 2 c2 4c 4 c ’ V
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{eq) o r  _ r2 /£
J~ 2c2 4c 4c' 1 " }

The enforcement of Eq. (8.23) on Eqs. (8.17), (8.18) and (8.19) provides us with

k\o +  ki2 + k\4 =  1, (8.38)

k\\ +  kj 3 +  /cj5 = 0. (8.39)

Applying Eq. (8.24) to Eqs. (8.17), (8.18) and (8.19) gives

k\2 ~ ku  = 0, (8.40)

&13 — k\5 — — . (8.41)
c

And, Eq. (8.25) constrains Eqs. (8.17), (8.18) and (8.19) to produce

ki2 + ku  — -j ,  (8.42)c

k 13 +  k i5 — 0. (8.43)
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Solving Eqs. (8.38)-(8.43) for the constants kw-k^  gives

0k\o =  1 -  ̂ k\\ = 0c,
v -  $ fc -  1
h 2 ~  2 ?  13 “  S

y -  0 k - - 1
*"4 -  2 ?  ^  “  2c

and the general distribution functions defined in Eqs. (8.14)-(8.16) become

s l f  =  B, -  (8.44)

s f t ’ = i f  + ^  <8-45>

b t (8-46)

Eq. (3.8) can now be applied to both distribution functions in the standard 

way. Moving the lattice vectors inside the partial derivatives and summing over “a” 

produces

dtov + l d x(v2 + B f ) = 0 ,  (8.47)

dt0B t + dx{vBi) = 0, (8.48)

which constitute the one dimensional MHD equations at the zeroth inviscid time 

scale. We can also move the lattice vectors inside the partial derivatives of Eq.
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(3.12) and apply it to both distribution functions. Summing over “a” gives

v -  (r -  ^ )[d20v + dtodx(v2 + B 2) +  ad2xv} -  0, (8.49)

dtlBi -  (r -  l- M QBt +  2dtodx(vBi) + P%Bi] = 0. (8.50)

Equations (8.47) and (8.48) can be used to cancel the second term and half of the 

third term in Eqs. (8.49) and (8.50) to give

ahv -  ( r  -  +  b \)  +  a%*\ = o, ( s . s i )

Sh ^)[dtM v B i )  + BdlB,} =  0 (8.52)

and employing the chain and product rules on the second term in both Eq. (8.51) 

and (8.50) produces

dtlv -  (t  -  ^)[dxvdtov + dxBidtoBi +  ad2xv\ = 0, (8.53)

dh Bt -  (r -  ^)[dxvdt0Bt +  dzBid^v + =  0. (8.54)

Equations (8.47) and (8.48) can again be used to exchange the temporal derivatives 

in the first and second terms for the spatial derivative terms and Eqs. (8.53) and
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(8.53) become

dt,v -  (r -  i)[-i& »a*(t>2 + B 2) -  axB A ( v B , )  + a%v\ =  0, (8.B5)

S., B, -  (r -  1)[- a xvd,XvB,) -  ^d,B,9x(v2 + B 2) + ff iB ,)  =  0. (8.56)

Finally, we recast Eqs. (8.55) and (8.56) in the form

d-tlv = udlv + 0 (d2x A3), (8.57)

dtlBi = ti%Bi + 0{e% A3) (8.58)

where the viscosity and resistivity are defined by

v = a{T~  | ) ,  (8.59)

J) (8-60)

and the higher order terms containing two spatial derivatives and three fold com­

binations of the fields are represented by 0(d^A3). The addition of Eqs. (8.47) 

and (8.57) produce Eq. (8.11) and the addition of Eqs. (8.48) and (8.58) produce 

Eq. (8.13). The existence of two fields adds some spurious non-linear cubic terms 

as we also saw in the two dimensional MHD models, but these terms remain small 

for small local gradients in the fields. This is a particularly good approximation for
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non-uniform grid models as the gradients are significantly reduced (relative to the 

number of lattice nodes) by the refinement procedures.
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C H A PTER  9 

Simulations of 1-D R esistive M HD  

Using Uniform and Non-Uniform  

Grid LBMs

9.1 Comparison of MHD and Burgers Turbulence

We will begin our simulations of one dimensional resistive MHD by extending 

the simple sinusoidal profile that we have used for Burger’s equation to one which 

includes a magnetic held. In general, the presence of a magnetic held allows for the 

transfer of energy between the velocity and magnetic helds. This transfer of energy 

is most apparent in the regions where strong shocks develop.

Figure (9.1) shows the initial prohle for a simulation which adds small sinusoidal 

oscillations in the magnetic helds to the standard sinusoidal velocity prohle. This

120
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Initial Profile of Fields for 1-D MHD
v_z(z), B_x(z), and B_y(z) vs. z

  v_z(z)
—  B_x(z)
—  B_y(z)

0.5

-0.5

6.283.14
z

4.711.57

Figure 9.1: Initial profile of the 1-D MHD simulation. M ost of the in itial energy lies in 
the velocity field.

simulation used an initial field profile given by

vz(z) = Vo sin i
27rJ

(9.1)

Bx(z) =  B x o sin (-------.3)
Z7T

(9.2)

By(z) — B y$ sin (-— h .3) 
Ztx

(9.3)
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where the initial velocity was set to u0 =  1 and the initial magnetic fields where set 

to B Xfi = .038 and BVto =  .0-57. The simulation was run on a non-uniform grid with 

1281 nodes spanning the region from 0 to —, 6144 nodes spanning the region from 

to and 1281 nodes spanning the region from to 2n. The middle region 

thus contains a refinement factor of rn =  4. The relaxation constants were set to 

W = Tn — .6 and the free parameters were set to a — ft =  y . This gives a viscosity 

and resistivity of v =  /j =  .8333, which gives a Reynolds number of R — 4915.2 and 

a magnetic Reynolds number of R,n = 336.71. The simulation wras run for 18,000 

LBM time steps.

Figure (9.2) shows the evolution of the velocity profile after 1000, 2000, and 

3000 LBM time steps. The velocity profile matches that of Burger’s equation almost 

exactly (so much so that it was not worthwhile to plot both evolutions here). The 

differences are not apparent because most of the total energy of the system is still 

contained in the velocity profile and hence the magnetic field is only weakly affecting 

the velocity field evolution.

Figures (9.3) and (9.4) show the evolution of the magnetic fields during the 

same time period. The initial sinusoidal profiles are distorted as the shock front 

in the velocity field steepens. They contain the majority of their energy in the 

regions immediately adjacent to the front of the left and right shock. The initial 

differences between Bx and By become less apparent as the simulation progresses. 

Specifically, the symmetry of the velocity field about z — 7r imposes itself on the 

magnetic fields such that they become mirror images of each other. We therefore 

have the approximate relation Bx{z — 7r) —By(ir — z), due to the asymmetry of the

initial velocity field about tx and its overwhelmingly large magnitude as compared 

to the initial magnetic fields.

Figure (9.5) shows a comparison of the 1-D MHD and Burger’s equation velocity
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Profile of v_z(z)
at t=0, 1000, 2000 and 3000

t=0
t=1000
t=2000
t=3000

0.5

N

-0.5

6.283.14
z

4.711.57

Figure 9.2: The early evolution of the velocity field closely resembles that of Burger’s 
equation. The magnetic field does not yet contain enough energy to influence the velocity 
profile.

profiles. The parameters for the Burger’s simulation are exactly the same as the 

parameters for the velocity component of the MHD simulation. The velocity field 

profiles after 4000, 8000, and 12000 LBM time steps show that enough energy has 

been transferred to the magnetic fields for it to alter the velocity field. In particular, 

the shock fronts are slightly less steep and a small sub-structure appears in the region 

between the large front of each shock. Figure (9.6) shows the region around the left 

shock front in greater detail. The sub-structure decays away over time and then 

re-appears in the final stages of the simulation due to the interactions between the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

Profile of B_x(z)
at t=0, 1000, 2000 and 3000

  t=0
—  t=1000
—  t=2000
—  t=3000

0.2

0.1
N

m

- 0.1
6.284.711.57 3.14

z

Figure 9.3: Early evolution of the “x ” component of the magnetic field. A s the velocity 
shock forms, the magnetic profile is distorted by the transfer of kinetic to magnetic energy.

velocity and magnetic fields. The most remarkable difference between the Burger’s 

and MHD velocity profiles lies in the interaction between the left and right shock. 

In the Burger’s simulation, the shock fronts collide and the total energy is dissipated 

by the viscous term, whereas the velocity shock fronts do not collide in the MHD 

simulation. Rather, they transfer energy to the magnetic profiles and dissipation 

occurs via the collision of the velocity shocks with the magnetic structures. It is 

thus the magnetic fields, which mediate the dissipation of the kinetic energy of 

the velocity shocks. For simulations with lower Reynolds and magnetic Reynolds
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Profile of B_y(z)
at t=0, 1000, 2000 and 3000

0.1

—  t=0
—  t=1000
—  t=2000
—  t=3000

>> - 0.1

- 0.2

64 5320
z

Figure 9.4: Early evolution of the “y ” component of the magnetic field. Although the 
magnetic energy is increasing in time., it does not yet significantly alter the velocity profile.

numbers this mediative effect is less pronounced as will be shown in section 9.2.

Figures (9.7) and (9.8) show the magnetic fields after 3000, 3500, 4000 and 4500 

LBM time steps. The formation of the shock in the velocity field has caused large 

growth in the magnetic field profiles in the regions adjacent to each shock front. 

This turbulent process results in an exponential increase in the magnetic energy up 

to a saturation point which occurs after roughly 4500 LBM time steps. Figure (9.9) 

shows the final profile of the velocity and magnetic fields after 18000 LBM time 

steps with the region of the shock shown in greater detail in Fig. (9.10). One can
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Profile of v_z(z)
at t=4000, 8000 and 12000

MHD: v_zatt=4000 
MHD: v_z at t=8000 
MHD: v_z at t=12000 
Burgers: v_z at t=4000 
Burgers: v_z at t=8000 
Burgers: v_z at t=12000

0.5

N

>

-0.5

4.711.57 3.14
z

Figure 9.5: A comparison of the velocity profiles for 1-D MHD and the equivalent Burger’s 
equation simulation. Differences between the profiles are apparent at these later stages of 
the evolution.

see that the magnitude of the total magnetic field, given by |B| = yjff f  + B% is now 

greater than the magnitude of the velocity field in the region of the shock fronts. The 

anti-symmetric relationship between Bx and B y is still apparent, providing evidence 

of the large initial velocity’s domination of the turbulent evolution process.

Finally, Fig. (9.11) shows the temporal decay of the kinetic, magnetic and total 

energies. These energies were obtained from the integral over wave number space of
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Blow up of the Profile of v_z(z)
at t=4000, 8000 and 12000

0.6

0.4

—  MHD: v_z at t=4000
—  MHD: v_z at t=8000 
~  MHD: v_z at t=12000
• ■ ■ Burgers: v_z at t=4000 
■ - • Burgers: v_z at t=8000 
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0.2

3.33.23 3.12.8 2.92.7
z

Figure 9.6: A magnified view of the comparison between 1-D MHD and Burger’s simula­
tions. The dotted lines show the steep shock front of Burger’s equation compared to the 
substructure, which is apparent in the region between the MHD shock fronts.

the Fourier transformed fields

1
EK(t) = ^  I v(k,t)2dk, (9.4)

EM(t) =  \  j  (Bx( k , t f  + By(k, t)2)dk, (9.5)
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Profile of B_x(z)
in the region of the shock

1
t=30Q0
t=3500
t=4000
t=4500

0.5

0

-0.5

1

3.32.9 3 3.23.1
z

Figure 9.7: A plot of the later stage evolution of the “x ” component of the magnetic 
field. The magnetic energy increases exponentially and begins to influence the velocity 
field significantly.

ET(t) = E K(t) + Em (9.6)

and are not conserved due to the presence of the dissipative terms in the veloc­

ity and magnetic induction equations. During the initial formation of the velocity 

shock (from roughly t =  3000 to t = 4500) the turbulent reorganization results 

in exponential increase in the magnetic energy. This exponential increase has tra­

ditionally been examined from the standpoint of current density in two and three
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Profile of B_y(z)
in the region of the shock

1
-—  t=3000
—  t=3500 
  t=4000
—  t=4500
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1

3 3.1 3.2 3.32.9
z

Figure 9.8: A plot of the later stage evolution of the “y ” component of the magnetic field. 
A quasi a n tisym m etry  about z =  n is apparent between the ax ” and “y ” components of 
the magnetic field.

dimensional simulations. After the formation of the velocity shock the magnetic 

energy levels off. This is due to the conversion of kinetic to magnetic energy, which 

is roughly matched by the dissipation of magnetic energy. The kinetic and total 

energies quickly dissipate after the formation of the velocity shock.

Our examination of this simple sinusoidal velocity and magnetic field profile 

illustrates the striking differences that occur when magnetic phenomena is added to 

a simple fluid equation. In particular, the dissipation and interaction of the fields
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Profile of Fields After 18000 LBM Time Steps
v_z(z), B_x(z) and B_y(z) vs. z

0.4
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- 0.2

-0.4

6.284.713.140 1.57
z

Figure 9.9: The profile of the velocity and magnetic fields after 18000 LBM  tim e steps.
The exponential increase in magnetic energy during the formation of the velocity shock 
results in large magnetic structures around the shock fronts.

become significantly more complex. The general character of the velocity field is 

to evolve toward sawtooth shapes while the magnetic fields evolve toward step like 

shapes.
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Profile of Fields After 18000 LBM Time Steps
v_z(z), B _x(z) and B _y(z) vs. z

0.4
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- 0.2

-0.4

3.2 3.42.8 3
z

Figure 9.10: A magnified view of the final profile of the fields. The magnetic fields continue 
to display an anti-sym m etry about z  =  jr. The interaction of the velocity shocks are 
mediated by this magnetically dominated central region.

9.2 A 1-D MHD Simulation Using Gaussian Wave 

Packets

As a second step in examining the turbulence of one dimensional resistive MHD 

we can consider a more complex initial profile, which is characterized by Gaussian 

wave packets. It is also interesting to use an initial field distribution which contains 

a comparable amount of magnetic and kinetic energy. For this simulation we have
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Temporal Decay of the Energies
kinetic, magnetic and total energy vs. time
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-  magnetic energy
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Figure 9.11: The temporal evolution of the kinetic., magnetic, and total energies. The 
magnetic energy increases exponentially during the formation of the velocity shock and then 
levels off due to dissipative effects. The kinetic and total energy dissipation is apparent.

chosen the initial profile

v(z) — v0 * exp [—4 .0 (2: — 7r)2] cos(2O2), (9.7)

B x(z) = BXi0 * exp [—5 .0 (2: — 7r)2] sin(152: -  .30), (9.8)
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Initial Velocity Profile
Gaussian 1 -D MHD simulation

0.5

o
>

-0.5

6.283.14
z

4.711.57

Figure 9.12: The initial velocity profile for the Gaussian wave packet simulation.

By(z) =  Byfi * exp [—4.1 [z — 7r)2] sin(10z +  .68) (9.9)

where the phase shifts in the trigonometric functions were chosen arbitrarily. The 

initial velocity profile is shown in Fig. (9.12) and the initial magnetic field profile is 

shown in Fig. (9.13). This simulation was run using v0 = 1, Bxfi ~  .5 and By$ — .6 . 

Roughly |  of the total energy is contained in the velocity profile and |  is contained 

in the magnetic field profile. The relaxation constants were set to = .55 and

the dissipative parameters were set to a  =  {3 = y  to give a viscosity and resistivity 

of v — n =  .4167. A non-uniform grid was used with 1025 nodes spanning the
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Initial Magnetic Field Profile
Gaussian 1-D MHD simulation
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Figure 9.13: The initial magnetic field profile for the Gaussian wave packet simulation. 
The magnetic field contains roughly |  of the energy that the velocity profile contains.

region from 0 to f , 8192 nodes spanning the region from |  to and 1025 nodes 

spanning the region from ^  to 27r. The central region hence uses a refinement factor 

of m =  4. The resulting Reynolds number is R  =  9830.4 and the magnetic Reynolds 

number is R,n =  7677.8. The simulation was run for 1440 LBM time steps.

Figure (9.14) shows the velocity profile after 640 LBM time steps. The large 

Reynolds and magnetic Reynolds numbers result in the formation of sawtooth like 

shapes, which are steeper than those in the simulation presented in section 9.1. 

These saw teeth, however, are still not as pronounced as Burger’s simulations as the 

magnetic field still imposes a mediative effect on coalescing velocity shock fronts.
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Velocity vs. z at t=640
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Figure 9.14: The velocity profile after 640 LBM  tim e steps. The velocity profile has formed 
characteristic sawtooth shapes.

Figure (9.15) and (9.16) show the “x” and “y” components of the magnetic field, 

respectively after 640 LBM time steps. The magnetic profiles have evolved to form 

step like shapes with spikes in the regions where the velocity shock fronts have coa­

lesced. These spikes indicate the continued existence of a mediative effect between 

the magnetic field and coalescing shock fronts, although it occurs at a very small 

spatial scale due to the high Reynolds and magnetic Reynolds numbers.

A plot of the kinetic, magnetic and total energy is shown in Fig. (9.17). Much of 

the kinetic energy is initially transferred to magnetic energy as sawtooth shocks form. 

During this period, the magnetic energy increases exponentially, a characteristic of
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B x vs. z at t=640
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Figure 9.15: The profile of the “x ” component of the magnetic field after 6 f0  LBM  time 
steps. The profile has formed characteristic step like shapes with spikes in the regions 
where velocity shock fronts have coalesced.

the formation of thin current sheets. The total energy does not begin to decay until 

a limit in the exponential increase in magnetic energy is reached after roughly 160 

LBM time steps. From this point on, the majority of the total energy of the system 

is contained in the magnetic field. During the period from 640 to 1280 LBM time 

steps, a small portion of the magnetic energy is transferred back to kinetic energy, 

interrupting the dissipative decay of the magnetic energy slightly.

A useful check of the performance of numerical simulations of one dimensional 

fluid flow comes from analyzing the energy spectra in wave number space. Tur-
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B_y vs. z at t=640

0.5

m

-0.5

6.283.140 1.57 4.71
z

Figure 9.16: The profile of the “y ” component of the magnetic field after 640 LBM  time  
steps. This profile has also formed characteristic step like shapes with spikes in the regions 
where velocity shock fronts have coalesced.

bulence theory indicates that the energy in wavenumber (k) space should scale as 

k~2 [15, 4, 29]. While the dissipative terms in the velocity and magnetic induction 

equations tend to inhibit the strict k~2 scaling, this effect is negligible for large 

Reynolds and magnetic Reynolds numbers. The presence of a magnetic field also 

tends to inhibit the strict k~2 scaling of the kinetic energy slightly. This is equiva­

lent to the mediative effect that the magnetic field has on coalescing shock fronts. 

However, the total energy for large values of the Reynolds and magnetic Reynolds 

numbers should display a strong k~2 dependence as the magnetic energy spectrum
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Kinetic, Magnetic and Total Energy vs. Time

Total Energy 
Kinetic Energy 
Magnetic Energy

6e+05

«. 4e+05
<D
'5b
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2e+05

1280960320 640
LBM time steps

Figure 9.17: A plot of the kinetic, magnetic and total energy as a function of time. Much of 
the kinetic energy is transferred to magnetic energy during the form ation of steep sawtooth 
shocks. The total energy then begins to dissipate due to the viscous and resistive effects.

acts to compensate for deficiencies in the kinetic energy spectrum. The fast Fourier 

transform of the velocity and magnetic fields were taken using the DFFFTRF sub­

routine from the International Mathematical and Statistical Libraries. The kinetic, 

magnetic, and total energy at a given time were defined as

Ekm(k) = \v ( k , tn)2, (9.10)
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Total Energy vs. Wavenumber
after 480 LBM time steps

f(k)=10A7*kA-2 
Total Energy

10000

10000
Wavenumber

Figure 9.18: A log-log plot of the total energy in wavenumber space compared against a 
reference function. The total energy displays a strong k~2 dependence.

Emagik) = \[B x(k ,tn)2 + By(k ,tn)% (9.11)

E-tot(k) = Ekm(k) +  Ernag(k). (9.12)

Figure (9.18) shows the total energy in wavenumber space after 480 LBM time steps. 

Both of the axes use a logarithmic scaling. The function

f (k)  = 10 7k~'2 (9.13)
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Figure 9.19: A log-log plot of the kinetic energy in wavenumber space compared against a 
reference function. The kinetic energy displays a k~'2 dependence with some initial fall off 
for low values of the wavenumber due to the anisotropic initial spectrum.

is plotted in black for comparison against the energy spectra. The total energy 

demonstrates strong agreement with the k~2 scaling rule. Further, the use of a com­

putationally efficient non-uniform grid has allowed us to recover the correct scaling 

even for large value of the wavenumber. Traditionally, less refined computational 

procedures see a pile up of the energy in the region of large wavenumbers due to their 

inability to transfer the energy to higher wavenumbers. Figure (9.18) thus demon­

strates this resolution problem can be fixed with the non-uniform refinement of the 

region around the turbulent activity, which eliminates the need for a global refine­

ment. Figure (9.19) shows a log-log plot of the kinetic energy spectra in wavenumber

Kinetic Energy vs. Wavenumber
after 460 LBM time steps

f(k)=10A7*kA-2 
Kinetic Energy
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Magnetic Energy vs. Wavenumber
after 460 LBM time steps

10000 f(k)=10A7*kA-2 
Magnetic Energy
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Figure 9.20: A log-log plot of the magnetic energy in wavenumber space compared against 
a reference function. The magnetic energy displays a k~~2 dependence with some initial 
fall off for low values of the wavenumber due to the anisotropic initial spectrum.

space. The kinetic energy also shows strong agreement with the k~2 scaling rule. 

Finally, a log-log plot of the magnetic energy spectra is shown in Fig. (9.20), which 

also demonstrates the k~2 scaling rule.

Our simulation of this set of Gaussian wave packet initial conditions, wrhich 

contain comparable amounts of kinetic and magnetic energy have yielded some in­

teresting results. Namely, we have seen the formation of the characteristic sawtooth 

shapes in the velocity field and step like shapes in the magnetic field components. 

The spikes in the magnetic field at the region where the velocity shocks coalesce 

indicate that the magnetic field continues to have a mediative effect of the veloc­
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ity shock fronts although this effect is much less pronounced for large Reynolds and 

magnetic Reynolds numbers. The transfer of energy behaves such that the magnetic 

energy increases exponentially as the velocity shocks are formed. After which, the 

total energy begins to dissipate due to the presence of the viscosity and resistivity 

terms.

9.3 1-D MHD Simulation Using an Initially Large

M agnetic Field

We have now seen the evolution of profiles, which contain an initially large 

kinetic energy and small magnetic energy and of profiles, which contain comparable 

amounts of kinetic and magnetic energy. As an obvious next step, we will investi­

gate the evolution of a profile that contains an initially large magnetic energy and 

an initially small kinetic energy. Because the previous simulations have consisted 

primarily of the transfer of kinetic to magnetic energy, we hope to create a situation 

where a strong transfer from magnetic to kinetic energy develops. This situation 

forms the one dimensional analogue to two and three dimensional magnetic recon­

nection; a process that creates large particle velocities from the reconnection and 

relaxation of the magnetic topology. In one dimensional MHD we are not able to 

simulate the reconnection of the magnetic held lines, but we can create a region of 

high current density, which should excite large peaks in the velocity held.

For this simulation we use Gaussian wave packets similar to those used in section 

9.2. The initial prohles of the helds take the form

v(z) =  v0 sin(z), (9.14)
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Initial Field Profiles
v, B _x and B_y vs. z
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Figure 9.21: The profile of the initial fields. The magnetic field contains m ost of the initial 
energy.

B x(z) =  BXfi exp [—4.0(^ — 7r)2] sin(62 ), (9.15)

By(z)  =  Byfi exp [ - 4 .0(2  -  7r)2] sin(6 2 ) (9.16)

where the initial velocity field was set to Vq =  .02236 and the initial magnetic field

was set to B x =  B y =  .7071. The kinetic energy, hence accounts for only ten percent

of the total energy and the magnetic energy accounts for the remaining majority. 

The initial profile of the fields is shown in Fig. (9.21).
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Velocity Profile
after 160 and 1280 LBM time steps
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Figure 9.22: The velocity profile after 160 and 1280 LBM  time steps. The regions of large 
current have excited oscillations in the velocity field, which grow in energy and then form. 
sawtooth shocks.

The relaxation constants were set to = .55 and the dissipative parame­

ters were set to a = ft =  y  to give a viscosity and resistivity of v =  fi — .4167. A 

non-uniform grid was used with 1025 nodes spanning the region from 0 to f , 8192 

nodes spanning the region from |  to and 1025 nodes spanning the region from 

y  to 27r. The central region hence uses a refinement factor of m — 4. The resulting 

Reynolds number is R — 219.8 and the magnetic Reynolds number is Rm = 9830.4. 

The simulation was run for 14450 LBM time steps.

The profile of the velocity field after 160 and 1280 LBM time steps is shown in
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Magneic Field Profile
B _x after 160 and 1280 time steps
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Figure 9.23: The “x ” component of the magnetic field after 160 and 1280 LBM  time steps.
The magnetic oscillations loose energy and then distort to form  step like shapes as the 
velocity profile form s sawtooth shocks.

Fig. (9.22). After 160 LBM time steps the magnetic field has transferred some of its 

energy to the velocity field to form small oscillations. The peaks of the oscillations 

occur in the region of large currents where the current is defined as the curl of the 

magnetic field

Jx(z) =  - d zBy(z), (9.17)
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Magnetic Field Profile
B_y after 160 and 1280 time steps

—  B_y at t=160 
— - B_y at t= l2800.4
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Figure 9.24: The “y ” component of the magnetic field after 160 and 1280 LBM  time steps. 
This profile mirrors the “x ” component of the magnetic field.

Jy(z) = - d xBx{z). (9.18)

After 1280 LBM time steps, the velocity profile has gained more energy and the 

velocity oscillations have begun to evolve into saw tooth shocks. Figures (9.23) and 

(9.24) show the profiles of the “x” and “y” components of the magnetic field after 

160 and 1280 LBM time steps. The oscillations in the magnetic field initially decay 

without loosing their initial shape as energy is transferred to the velocity field. After 

the velocity field gains a significant amount of energy and begins to form sawtooth 

shocks, it acts back on the magnetic field causing the distorted step like functions
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Kinetic, Magnetic and Total Energy vs. Time
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—  Total Energy
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Figure 9.25: The kinetic, magnetic, and total energy evolution in time. The kinetic energy 
increases exponentially during the initial period. A fter which, all of the energy decays away 
due to the presence of the dissipative terms.

that are visible after 1280 LBM time steps.

The kinetic, magnetic, and total energy plotted in time is shown in Fig. (9.25). 

The transfer of energy closely resembles that of the simulation which began with 

a majority of the energy contained in the velocity field. The magnetic energy is 

initially transferred to the velocity field and after sawtooth shocks are formed, the 

total energy begins to dissipate. The kinetic energy increases exponentially during 

the formation of the velocity oscillations just as it did in the simulation with large 

initial kinetic energy.
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Figure (9.26) shows a log-log scale plot of the total, kinetic and magnetic energy 

spectra plotted in wavenumber space. All of the energy spectra demonstrate a strong 

k~~2 dependence although there appears to be some fall off for large wavenumbers. 

This shows that the magnetic field transfers energy to the velocity field in a cascading 

manner; similar to the way that kinetic energy is transferred to magnetic energy.

An interesting aspect of this evolution comes from the invariance of the energy 

transfer procedure whether it proceeds from a large initial kinetic energy or a large 

initial magnetic energy. In both cases the total energy does not begin to decay until 

a large portion of the dominant field has been transferred to the passive field. Also 

the passive field acquires energy at exponential rates during the initial period. This 

interestingly contrasts with the evolution of the shapes of the field profiles. If the 

velocity field dominates the initial profile it immediately begins to form sawtooth 

shocks that distort the magnetic field. Where as a dominant magnetic field decays 

away without distortion of the initial shape. Only after the velocity oscillations 

grow sufficiently large and begin to evolve into sawtooth shocks does the magnetic 

field begin to be distorted.

We thus conclude our simulations of one dimensional resistive magnetohydro- 

dynamics with a strong understanding of the phenomena that characterizes one 

dimensional MHD turbulence. The invariance of the transfer of kinetic and mag­

netic energy has been demonstrated in simulations which use one initially large field. 

The energy spectra have been found to demonstrate a hr2 scaling rule. Finally, the 

total energy has been shown to be initially constant in time during the transfer of 

energy and then to dissipate after the formation of sawtooth shocks in the velocity 

field.
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Figure 9.26: A log-log plot of the kinetic, magnetic, and total energy spectra in wavenumber 
space after 18000 LBM  time steps. A reference k~2 function is also plotted in black 
for comparison. The kinetic, magnetic, and total energy spectra all show a strong k~2 
dependence with some fall off for large values of k.
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Conclusion

The study of turbulent one and two dimensional dissipative single fluid sys­

tems reveals a large amount of fascinating dynamic phenomena. The development 

of lattice Boltzmann methods for one and two dimensional magnetohydrodynamic 

systems has allowed us to examine the turbulent and dissipative evolution of these 

systems to gain some insight into the physical processes, which govern dissipative 

magnetohydrodynamic turbulence.

Our development of the octagonal scalar-vector LBM for dissipative MHD rep­

resent a significant improvement over previous bi-directional streaming models. The 

model has the advantage of an inherently simpler algebraic form due to the removal 

of the coupled bi-directional streaming vectors. Additionally the octagonal stream­

ing lattice produces a higher degree of rotational symmetry, relative to the square 

and hexagonal streaming lattices. As a result, the tensors formed from products 

of the streaming vectors summed over all of the streaming directions have a higher 

level of isotropy than their square and hexagonal counterparts. With the cost of an 

additional interpolation step, the higher isotropy results in increased numerical sta-
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bility and the ability to investigate simulations with higher Reynolds and magnetic 

Reynolds numbers.

Our simulations of the Orszag-Tang vortex model agree with previous spectral 

simulations and demonstrate most of the notable features of MHD turbulence. In our 

simulations of the Orszag-Tang and modified Orszag-Tang vortex models we have 

seen clear evidence of the mutual interaction between the velocity and magnetic 

field profiles. These profiles begin with large scale current and vorticity structures 

that evolve to form thin sheets of current and vorticity. In the later stages of the 

evolution, the effects of the viscosity and resistivity terms begin to dissipate the 

total energy of the system.

The analysis of one dimensional dissipative magnetohydrodynamic systems pro­

vides some useful insight into the evolution of turbulent systems. Our development 

of lattice Boltzmann methods that utilize a non-uniform distribution of grid points 

provides an efficient numerical scheme for simulating these one dimensional sys­

tems. In particular, the use of non-uniform grids provide a cost effective method 

for decreasing the numerical oscillations that arise from low resolution simulations. 

The computational expenditure of non-uniform grid LBMs is significantly decreased 

because non-uniform grid LBMs allow us to focus the majority of our computa­

tional effort around the regions where the velocity and magnetic fields develop large 

gradients.

In our simulations of one dimensional MHD systems we have seen the turbulent 

interaction and dissipative decay of the velocity and magnetic field profiles. The 

invariance of the transfer of energy from kinetic to magnetic and from magnetic 

to kinetic is particularly striking. This is contrasted with the lack of invariance in 

the evolution of the velocity and magnetic fields themselves. In particular, we have 

shown that the dominant initial field transfers energy to the passive field during the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



152

turbulent initial stage of the evolution. During this time period, the passive field 

demonstrates an exponential increase in energy and the total energy is conserved. In 

the later stages of the evolution, the total energy decays due to the presence of the 

viscosity and resistivity terms. Examination of the velocity profile reveals that the 

initial formation of sawtooth shocks is responsible for the initial transfer of kinetic 

energy to magnetic energy. The convergence and interaction of the shock fronts, 

through the magnetic field, then stimulates the dissipative decay. The magnetic 

field profiles, however retain their initial shapes while they transfer energy to the 

velocity profile. Only after the velocity profiles gain sufficient energy, do they evolve 

to form sawtooth shocks. The formation of these sawtooth shocks then distorts the 

shape of the magnetic field profiles and the dissipative decay of the total energy 

begins.

Any rigorous scientific quest answers a few of the questions that the scientist 

set out to answer, but more importantly, reveals an astonishing array of compelling 

new questions that merit careful investigation. The acute scientist will then prove 

his worth, by selecting a scientific program which answers the most compelling 

questions. Without making any claims about our acuteness in developing a scientific 

program, we will now suggest a number of future topics that are meritorious of 

further investigation. These topics can be broadly classified as developments in 

LBMs that will aid in the application of the methods to the simulation of realistic 

plasma physics problems, and those that continue to test the limits of the LBM 

kinetic modeling procedure.

After developing and investigating one and two dimensional LBMs for resistive 

MHD the obvious next step would be to develop a three dimensional LBM model. 

Such a model could be used to investigate a number of interesting phenomena in 

space plasma physics. The applicability of three dimensional LBMs would be fur­
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ther aided by the inclusion of toroidal boundary conditions. This would allow for 

the investigation of the plasma phenomena that occur within Tokamak fusion reac­

tors, which have direct political and socio-economic implications. These large scale 

three dimensional simulations would clearly benefit from the use of a computational 

algorithm, w-hich adaptively distributes the grid points in a non-uniform manner in 

order to resolve regions containing large field gradients in more detail. Finally, the 

desire to increase the Reynolds and magnetic Reynolds numbers to the regime of 

weakly viscous and resistive Tokamak plasmas provides the impetus for the devel­

opment of LBMs that use implicit time stepping. Implicit time stepping, although 

computationally expensive, is widely known to increase the numerical stability of 

finite difference models.

In testing the limits of the kinetic modeling procedure used in LBMs, it wrould 

be interesting to develop more sophisticated MHD models that include some of the 

higher order kinetic effects. The inclusion of Landau damping into LBMs could serve 

as a first step in investigating whether LBMs are capable of reproducing these kinetic 

effects. One could also investigate the development of a two fluid LBM approach. 

By developing an LBM for the ion and electron fluid equations one could potentially 

recover aspects of the finite (rather than infinitesimal) interaction between ions and 

electrons such as the effects of a finite Larmor radius.

Whatever they may be, the future development of lattice Boltzmann models 

and their application to magnetohydrodynamic turbulence should prove to be an 

interesting scientific endeavor. Furthermore, the continued development of compu­

tational algorithms of all kinds have become an essential component of the design 

of new experiments and of the testing of nevr theoretical models. The exponential 

increase in computational resources will only increase the scientific community's 

dependence on these computational tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

[1] D. Balsara. Total time diminishing scheme for adiabatic and isothermal magne- 
tohydrodynamics. Astrophysical Journal Suppliment Series, 116:133-153, May 
1998.

[2] P. Bhatnagar, E. Gross, and M. Krook. A model for collisionless process in 
gases, i. small amplitude processes in charged and neutral one-component sys­
tem. Physical Review, 94:511, 1954.

[3] D. Biskamp. Current sheet profiles in two-dimensional magnetohydrodynamics. 
Physics of Fluids B-Plasma Physics, 5(ll):3893-3896, November 1993.

[4] D. Biskamp. Magnetic Reconnection in Plasmas. Cambridge University Press, 
New York, NY, 2000.

[5] D. Biskamp and H. Welter. Dynamics of decaying two-dimensional magnetohy­
drodynamic turbulence. Physics of Fluids B-Plasma Physics, 1(10):1964-1979, 
October 1989.

[6] J. Brackbill and D. Barnes. The effect of nonzero div b on the numerical 
solution of the magnetohydrodynamic equations. Journal of Computational 
Physics, 35(3):426-430, May 1980.

[7] S. Chapman and T. Cowling. The Mathematical Theory of Non- Uniform Gases. 
Cambridge University Press, Cambridge, 1990.

[8] H. Chen, W. Matthaeus, and L. Klein. An analytic theory and formulation of a 
local magnetohydrodynamic lattice gas model. Physics of Fluids, 31(6):1439- 
1455, June 1988.

[9] Y. Chen. Lattice Bhatnagar-Gross-Krook Method for Fluid Dynamics: Com­
pressible, Thermal and Multi-Phase Models. PhD thesis, University of Tokyo, 
June 1994.

[10] P. Dellar. Lattice kinetic schemes for magnetohydrodynamics. Journal of Com­
putational Physics, 179(1):95—126, June 2002.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



155

[11] K. Elsasser. The hydromagnetic equations. The Physical Reviev), 79(1):183, 
July 1950.

[12] O. Filippova and D. Hanel. Grid refinement for lattice-bgk models. Journal of 
Computational Physics, 147(1) :219—228, November 1998.

[13] O. Filippova and D. Hanel. Acceleration of lattice-bgk schemes with grid re­
finement. Journal of Computational Physics, 165(2) :407—427, December 2000.

[14] Huang. Statistical Mechanics. Cambridge University Press, New York, NY, 
2000 .

[15] M. Lesieur. Turbulence in Fluids. Kluwer Academic Publishers, Boston, MA, 
third revised and enlarged edition edition, 1997.

[16] A. Macnab, G. Vahala, L. Vahala, and P. Pavlo. Lattice boltzmann model 
for dissipative incompressible mhd. Proceeding of the 28th Conference on Con­
trolled Fusion and Plasma Physics. EGA, 25(A):853-856, June 2001.

[17] A. Macnab, G. Vahala, L. Vahala, P. Pavlo, and M. Soe. Some progress in the 
development of lattice boltzmann methods for dissipative mhd. Czechoslovak 
Journal of Physics, 52(suppliment D):D59-D64, June 2002.

[18] D. Martinez, S. Chen, and W. Mattheaus. Lattice boltzmann magnetohydro­
dynamics. Physics of Plasmas, 1(6):1850-1867, June 1994.

[19] S. Orszag and C. Tang. Small-scale structure of two-dimensional magnetohy­
drodynamic turbulence. Journal of Fluid Mechanics, 90(1):129-143, January 
1979.

[20] P. Pavlo, G. Vahala, and L. Vahala. Preliminary results in the use of energy- 
dependent octagonal lattices for thermal lattice boltzmann simulations. Journal 
of Statistical Physics, 107(1-2) :499-519, April 2002.

[21] R. Polovin and V. Demutski. Fundamentals of magnetohydrodynamics. Plenum 
Publishing Corporation, New York, NY, 1990.

[22] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. 
Oxford University Press, New York, NY, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



156

[23] S. Succi, I. Karlin, and H. Chen. Colloquium: role of the h theorem in lattice 
boltzmann hydrodynamic simulations. Reviews of Modern Physics, 74(4): 1203- 
1220, October 2002.

[24] G. Toth. The div b=0 constraint in shock-capturing magnetohydrodynamics 
codes. Journal of Computational Physics, 161(2):605-652, July 2000.

[25] G. Vahala, P. Pavlo, L. Vahala, and N. Marty s. Thermal lattice-boltzmann 
models (tlbm) for compressible flows. International Journal of Modern Physics 
C-Physics and Computers, 9(8): 1247-1261, December 1998.

[26] L. Vahala, D. Wah, G. Vahala, -J. Carter, and P. Pavlo. Thermal lattice 
boltzmann simulation for multispecies fluid equilibration. Physical Review 
E-Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics, 
62(1):507-516, July 2000.

[27] D. Wolf-Gladrow. Lattice Gas Cellular Automata and Lattice Boltzmann Mod­
els: an Introduction. Springer, New York, NY, 2000.

[28] G. Yan, Y. Chen, and S. Hu. A lattice boltzmann method for kdv equation. 
Acta Mechanica Sinica, 14(1):17—26, 1998.

[29] S. Yanase. New one dimensional model equations of magnetohydrodynamic 
turbulence. Physics of Plasmas, 4(4):1010-1017, April 1997.

[30] D. Yu, R. Mei, and W. Shyy. A multi-block lattice boltzmann method for 
viscous fluid flows. International Journal for Numerical Methods in Fluids, 
39:99-120, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA

Angus Ian Duncan Macnab

Angus Ian Duncan Macnab was born on May 17, 1975 in Auckland, New 

Zealand. Graduated from Bellevue High School in Bellevue, Washington, June 

of 1994. Received a Bachelor of Science degree, from The Evergreen State College 

in Olympia, Washington, March of 1998. Received a Master of Science degree in 

physics from the College of William and Mary in Virginia, December of 2000. Re­

ceived a Doctor of Philosophy degree in physics from the College of William and 

Mary in Virginia, July of 2003. Accepted a position as a research associate at the 

Center for Scientific Computation and Mathematical Modeling at the University of 

Maryland in College Park, Maryland, August of 2003.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Magnetohydrodynamic turbulence: The development of lattice Boltzmann methods for dissipative systems
	Recommended Citation

	tmp.1539734415.pdf.YsPcK

