Lattice gas and lattice Boltzmann methods are recently developed numerical
schemes for simulating a variety of physical systems. In this paper a new
lattice Boltzmann model for modeling two-dimensional incompressible
magnetohydrodynamics (MHD) is presented. The current model fully utilizes the
flexibility of the lattice Boltzmann method in comparison with previous lattice
gas and lattice Boltzmann
MHD models, reducing the number of moving directions from 36 in other
models to 12 only. To increase computational efficiency, a simple single time
relaxation rule is used for collisions, which directly controls the transport
coefficients.
The bi-directional streaming process of the particle distribution function in
this paper is similar to the original model [ H. Chen and W. H. Matthaeus,
Phys. Rev. Lett., {\bf 58}, 1845(1987), S.Chen, H.Chen, D.Mart\'{\i}nez and
W.H.Matthaeus, Phys. Rev. Lett. {\bf 67},3776 (1991)], but has been greatly
simplified, affording simpler implementation of boundary conditions and
increasing the feasibility of extension into a workable three-dimensional
model. Analytical expressions for the transport coefficients are presented.
Also, as example cases, numerical calculation for the Hartmann flow is
performed, showing a good agreement between the theoreticalComment: 45 pages, to appear in Physics of Plasma