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ABSTRACT PAGE 

The Lattice Boltzmann Method (LBM) is a simple and highly efficient method for computing nearly 
incompressible fluid flow. However, it is well known to suffer from numerical instabilities for low 
values of the transport coefficients. This dissertation examines a number of methods for 
increasing the stability of the LBM over a wide range of parameters. First, we consider a simple 
transformation that renders the standard LB equation implicit. It is found that the stability is 
largely unchanged. Next, we consider a stabilization method based on introducing a Lyapunov 
function which is essentially a discrete-time H-function. The uniqueness of an H-function that 
appears in the literature is proven, and the method is extended to stabilize some of the more 
popular LB models. We also introduce a new method for implementing boundary conditions in 
the LBM. The hydrodynamic fields are imposed in a transformed moment space, whereas the 
non-hydrodynamic fields are shifted over from neighboring nodes. By minimizing population 
gradients, this method exhibits superior numerical stability over other widely employed schemes 
when tested on the widely-used benchmark of incompressible flow over a backwards-facing step. 
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Notation 

Greek indices are used for Cartesian vector components, so for example, a a a _!!__ 
ax a 

Latin subscripts (mostly i andj) index the lattice velocities. Summation is implied 

over repeated Greeks, but not over Latins. c is used for microscopic (or molecular) 

velocities and ii denotes the macroscopic (fluid) velocity. Unless otherwise noted, all 

sums go from 1 .. . q, that is, over all lattice velocities. Integrals over x are over the 

entire domain and integrals over c are likewise over all velocities. 
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Chapter 1 

Introduction 

Most flows are turbulent. In fluid flow problems, smooth, laminar flow is the 

exception to the turbulent rule. Turbulence is everywhere in nature, from the solar 

flares in the sun's atmosphere, to planet-wide motions of weather systems to cream 

being stirred into coffee. The irregular, stochastic quality of such flows has defied 

attempts to develop a unified theory ofturbulence. 

It is astonishing to realize that the vast array of complex fluid phenomena that 

we experience every day are all governed by quite simple sets of deterministic 

equations. Further, these equations can be derived only on the basis of conservation of 

mass and momentum (and possibly energy). The complicated phenomenology of 

turbulence is a result of nonlinear terms that appear in the equations of motion. It is 

this nonlinearity that makes fluid flow a mathematically challenging problem. 

Only the simplest fluid flows can be solved analytically. When the geometry 

of the problem is sufficiently complicated, as is the case in most systems of practical 

interest, one must resort to numerical methods. The field of computational fluid 

dynamics (CFD) is vast; many methods for solving partial differential equations 

(PDE's) numerically have existed for decades and are briefly reviewed in Section 3.3. 

In the last fifteen years or so, a new way to solve fluid equations numerically 

has been developed. In this approach, called the Lattice Boltzmann method (LBM), a 



simplified kinetic equation is drastically discretized in velocity space in such a way 

that the correct fluid equations are obtained in the macroscopic limit. There are 

several advantages of working at the kinetic (or mesoscopic) level, including ease of 

implementation on parallel computers. Most importantly, in the LBM, the nonlinear 

derivative term in the fluid equations is replaced by simple advection at a constant 

velocity. By working in a higher-dimensional space, it is hoped that complicated 

particle trajectories will appear simpler. 

A crucial stumbling block in the adoption of LB methods for realistic flows is 

numerical instability. Turbulent flows are characterized by a small viscosity. Like 

many other CFD methods, LB displays troubling numerical defects when the viscosity 

is made too small. This is due to the fact that a small viscosity implies that there are 

identifiable structures on a very large range of scales- too many to be directly 

captured by a simulation. This dissertation will present several different methods to 

extend the usefulness of the LBM to a wider range of parameters. 
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Chapter 2 

The Navier-Stokes Equations and 

Turbulence 

2.1 Conservation Equations 

The mathematical laws of nature are usually cast in the form of partial 

differential equations. Such equations are formal embodiments of certain established 

general principles of physics. In particular, implicit in many physical laws is the 

temporal conservation of certain quantities- mass, momentum, energy, charge, etc. 

As such, they can be written in so-called conservation form 

aA a a ai3 a o 
at ' (2.1) 

where A is conserved quantity (or a vector of conserved quantities) and B + B( A) is 

its flux. 

The reason for this terminology can be demonstrated by considering an 

arbitrary control volume n whose boundary we denote by(f2. We integrate Eq. (2.1) 

over n 

faA a fa ai3 a o, 
I at I 

3 
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apply the divergence theorem and move the time derivative outside of the integral to 

obtain 

(2.3) 

where n is the unit outward normal. Here we see that the time rate of change of the 

quantity A inside Q is equal to the flux of A through its boundary. A can be 

transported in and out of a given volume, but cannot be created or destroyed. 

The flux of a quantity can sometimes be given by the value of the quantity 

multiplied by a fluid velocity 

sf Au 

a aA a a aAu a o . 
at 

(2.4) 

(2.5) 

Such an equation expresses the perfect conservation of a continuum quantity in time as 

it is advected by a velocity field ii. 

Often we find that the quantity A is not perfectly conserved, but is subject to a 

small amount of dissipation or dispersion. This can be expressed by adding a higher 

derivative to the RHS ofEq. (2.1) 

(2.6) 

where n ~ 2 represents dissipation (usually via heat) and n ~ 3 produces dispersion. 

The coefficient K is an example of a transport coejjicient. 

Examples of natural laws that can be expressed in the form given by Eq. (2.6) 

include the Navicr-Stokcs equations, shallow water equations, Korteweg-deVries 

·The integral form of fluid equations is often considered more fundamental than the differential form 
since it allows for discontinuous solutions, i.e., shocks. 
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equation, Burger's equation, the magnetohydrodynamic (MHD) equations and many 

more. They describe the motion/evolution of continuum, fluid-like quantities and will 

be the focus of this dissertation. 

2.2 Fluid Equations 

As indicated in the previous section, fluid equations are based on the principles 

of conservation of mass and momentum (and energy, in the case of thermal flows). 

When the system's parameters are such that the molecular mean free path,/, is small 

compared to the system length scale, L, 

l -a Kn a a 1 
L 

(2.7) 

where Kn is called the Knudsen number, we can treat the system as a continuum. We 

can treat macroscopic variables as field quantities, which are differentiable and are 

defined throughout the domain. 

Fluid equations are intentionally formulated to be insensitive to the underlying 

microscopic dynamics. Thus, for example, the Navier-Stokes equations which 

described general fluid flow have existed in their present form for over 150 years, and 

were unaffected by, for instance, the discovery of the atom, quantum mechanics, etc. 

lndccd, the basic form of fluid equations cannot change, since we know that under 

ordinary circumstances mass, momentum and energy are conserved. 

Mesoscopic methods, including Lattice Boltzmann and its predecessor Lattice 

Gas Automata (LGA) [1], exploit the universality of fluid equations by devising 

5 



highly artificial microscopic dynamics in order to simplify computations. Provided 

that one respect certain microscopic conservation laws, one can recover the correct 

continuum equations in the long-wavelength, long-time limit, despite the fact that the 

simulated microscopic dynamics may not accurately reflect the true molecular 

dynamics. 

2.3 The N avier-Stokes Equations 

The Navier-Stokes equations describe a very broad class of neutral fluid flow 

problems which lack phase transitions. They can be derived from standard kinetic 

theory, but we will base our approach on (macroscopic) conservation laws. Many 

other systems of fluid equations are derived by starting with the Navier-Stokcs 

equations and making various simplifying assumptions. 

We will consider the conservation of mass and momentum of an 

infinitesimally small fluid element. Taking the generic conservation equation Eq. 

(2.1) as a starting point, we express the conservation of the mass density p of a fluid 

element by 

~~a a c(Kii( a o, 

and the conservation of momentum, pu , is expressed as 

aKii a a ill a o 
at 

where fi is the momentum flux tensor. 

6 
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Momentum will be passively convected by the fluid, so we can write part of 

the momentum flux as piiii . Generally, there will also be forces acting on a fluid 

element, which we can express by adding a force term to the RHS of the momentum 

equation 

=pu -- --===puu=F. 
=t 

(2.10) 

Eq. (2.10) is simply Newton's second law applied to a fluid element. 

The general force F can be broken up into the terms 1 and a a ' 

ftajaaro, (2.11) 

where a represents internal stresses and ] is an external body force, such as gravity 

or the Lorentz force (in MHD). The stress tensor represents the force the adjacent 

fluid exerts on a fluid element Figure 1. The scalar pressure is usually identified with 

the diagonal elements and the off-diagonal components represent shear stress (or 

"drag"). 

z 

y 

Figure 1: The components of the stress tensor, acting on an infinitesimal fluid element. The 
diagonal components (normal to the surface elements) are usually identified with the scalar 
pressure. 
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Newton observed that, for a wide class of fluids, the shear stress exerted by 

fluid elements on each other is proportional to the velocity gradient between them. 

Accordingly, if can be represented by 

(2.12) 

where p is the viscosity, p is the scalar pressure and s afJ a _!_ gau a a au fJ g is called 
2 gaxfJ axa g 

the strain-rate tensor. Fluids that obey the above equation are called Newtonian fluids. 

Most fluids can be considered Newtonian, although there are important exceptions, 

e.g., quicksand, blood, etc. 

Assuming the stress tensor is Newtonian, the momentum equation reads 

(2.13) 

where we have used the continuity equation, A ( ~ is the kinematic viscosity, and o 
A 

is called a bulk viscosity. We note in passing that the last term in Eq. (2.13) will 

generally be negligible. (See Section 2.4) 

Eqs. (2.8) and (2.13) are referred to as the Navier-Stokes equations. The 

second term on the LHS ofEq. (2.13) is the nonlinear advection term. lt is this 

nonlinearity which gives rise to all of the myriad complex fluid phenomena and makes 

computational fluid dynamics challenging. 
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So far we have four equations for five variables ( p, u and P). To close the 

system we need an expression for the pressure in terms of the other variables. The 

speed of sound, cs, is defined as 

(2.14) 

Given the equation of state for an ideal gas, 

Po KkT 
m' 

(2.15) 

we see that for fluid at a constant temperature cs is a constant. An appropriate 

expression for the isothermal scalar pressure is therefore 

(2.16) 

Eqs. (2.8), (2.13) and (2.16) and now form a closed nonlinear system ofPDE's in the 

variables p , ii and P. 

2.4 Scalings for the Navier-Stokes Equations 

In order to identifY small terms in the Navier-Stokes equations, it is useful to 

introduce characteristic length and velocity scales, and to transform to dimensionless 

units. Let us define 

(2.17) 

(2.18) 
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where L and U are characteristic scales and velocities, respectively. Substituting these 

expressions into the momentum equation gives 

where 

( ii( ( ii((( (ii( ( ( _!_( (p ( _1 ( (2ii(, 
(t( A Re 

Reo UL 
K 

is called the Reynolds number. The Reynolds number is dimensionless and 

(2.19) 

(2.20) 

characterizes the relative importance of nonlinear convection compared to dissipation. 

In the limit Re a-: 1 , the momentum equation reduces to the dispersion 

equation, which tends to smear small-scale structures. In the opposite limit ( Rc a-: 1 ), 

the nonlinearity dominates. Thus, high Re flows are typically chaotic, with 

fluctuations on a wide range of scales- that is, they are turbulent. Fluid flow typically 

begins the transition from laminar to turbulent at about Re~ 1 000 and is fully turbulent 

at Re of several thousand. 

For the flows considered in this thesis, the characteristic flow speed is low 

compared to the speed of sound. This condition can be expressed as 

u Mao -oo 1, 
c, 

(2.21) 

where Ma is called the Mach number. Many flows of practical interest satisfy the 

low-Ma condition. For instance, the speed of sound in the lower atmosphere is about 

330 m/s, so the movement of air around people, trains and cars are all characterized by 

a low Ma. 

10 



When the Mach number is below about 0.3, it is observed that the density is 

essentially constant following a fluid element, that is 

(2.22) 

Q Q!iif.O. (2.23) 

Note that Eq. (2.21) is a condition on the flow, not on the fluid; such flows are called 

incompressible. Incompressibility is a very useful simplifYing assumption - for an 

incompressible flow the last term in Eq. (2.13) can be neglected. For the remainder of 

this thesis we will work to O~Ma2 ~-

Note that Eq. (2.23) does not necessarily mean that the density is constant as 

many authors imply, but rather that its value does not change following a fluid 

element. We will, however, consider nearly uniform densities. For an initially 

uniform density field, we adopt the ordering that the density (and thus pressure) 

variations are of O(Ma 2
) [2] 

(2.24) 

so p can be freely moved inside the derivatives in Eqs. (2.13) and (2.22). Thus, a 

convenient form of the Navier-Stokes equations for our purposes is 

oK a a aKii a o 
at 

aKii ::1 ::1 a:-.. 21- a --'a .;:) 2 --- v v vKC KUU v Kv KU 
8t s ' 

(2.25) 

(2.26) 

where l is the identity matrix. Note that, except for the viscous term, these equations 

are in conservation form, which is often advantageous when formulating numerical 

11 



methods. The use of these equations to mimic Eqs. (2.13) and (2.22) is called a quasi­

incompressible formulation. 

2.5 Phenomenology of Turbulence 

Turbulence is ubiquitous in nature. The water coming out of the sink, the 

airflow around a car, and the breath flowing in and out of your lungs right now are all 

turbulent. The kinematic viscosities of water and air in m2 Is are O::t 0>6 ~ and 

O::t 0>5 ~,respectively, so the Reynolds number of all but the slowest/smallest flows 

will be large. 

A precise definition of turbulence is lacking, but there are certain 

characteristics that are generally implied when a flow is called "turbulent": 

1. Irregular fluctuations of the velocity field on a wide range of spatial- and time­

scales (a statistical approach is necessary); 

2. Three-dimensionality (two-dimensional "turbulence" has qualitatively different 

behavior); 

3. Dissipative (requires a continuous input of energy); and 

4. High Reynolds number (dissipation is small compared to advection). 

In many of the simulations described in this dissertation, the initial conditions 

are set up to contain large-scale gradients which evolve into smaller structures. There 

is no energy input, so dissipation tends to damp out field gradients over time. This is 

12 



referred to as freely decaying turbulence and allows for reproducible systems that one 

can use as numerical benchmarks. 

For geometries of relevance to engineers, following the details of all of the 

structures present in a turbulent flow is both impossible and unnecessary. Different 

realizations of the same turbulent flow usually have similar statistical properties. It is 

therefore the hope that a general theory of turbulence can be discovered that will 

describe the statistical properties of turbulent hydrodynamic fields. Despite over 150 

years of intense work by thousands of physicists, engineers and mathematicians, no 

such theory has been found. This has led some to call turbulence one of "the great 

unsolved problems of classical physics." 

2.6 Kolmogorov Theory 

In the 1940's Andrei N. Kolmogorov introduced a number of scaling laws that 

represent one of the first successful attempts to quantity the structure of fully 

developed isotropic turbulence. We shall see that energy flow occurs locally ink­

space - that is, eddies tend to transfer their energy to other eddies of a slightly smaller 

size. Kolmogorov envisioned a process whereby energy is injected into the system at 

low-k and cascades to higher and higher k-numbers until it is exponentially damped at 

the small dissipative scale. 

We can obtain an evolution equation for the kinetic energy by dotting ii into 

Eq. (2.13) and integrating over all space, 

13 



If we assume that ii vanishes at infinity we can integrate all the terms containing a 

spatial derivative by parts to obtain, 

(2.28) 

where we have used fHii f. 0. We see that the nonlinear term does not change the 

energy, but rather merely shuffles it to different scales. It is solely the viscous term 

which is responsible for dissipating the kinetic energy. 

It is assumed that far from boundaries, the nature of structures which are 

smaller than the scale at which energy is injected into the system, but larger than the 

dissipation scale, is universal and self-similar (and therefore does not depend on the 

viscosity). If energy could build up at any particular wave-number, then structures of 

that size would dominate the energy spectrum. We conclude that in this so-called 

inertial sub-range kinetic energy is merely "passing through" on its way to being 

damped at small scales. 

By hypothesis then, the energy per unit mass at a given wavenumber (that is, 

the energy spectrum) depends only on the viscous energy flux, c, and the 

wavenumber k, 

E(k) r f(p,k). 

The units of these quantities are 

k ~ length> 1 

Energy (per mass) ~ length 2 I time2 

Energy ~JJectrum ~ length3 I time2 

Energy flux ~Energy/time ~ length 2 I time3 

14 
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By a unit analysis, we see that the energy spectrum scales as 

(2.30) 

where the proportionality constant C is known from experiment to be of order 1 [3]. 

This important result is known as the Kolmogorov-5/3 law and is depicted in Figure 2. 

It is often used in experiments and simulations to test whether turbulence is fully 

developed. 

E(k) 

r---~r------------~~ 
energy injection inertial sub range dissipation 

Figure 2: A stylized depiction of the cascade of kinetic energy in wavenumber space for 
isotropic turbulence. Dissipation becomes significant at the scale kKot ~ 11 LKot· 

To estimate the size of the smallest eddies, we note that Eq. (2.28) can be used 

to relate the viscous flux to the viscosity and the velocity derivatives at the small scale, 

(2.31) 

where UKat and LKat are velocity and size ofthe smallest eddies. LKat is sometimes 

called the Kolmogorov length. 

The energy dissipation v must be balanced by the rate at which energy is 

injected into the large scales, 

15 



(2.32) 

where U and L are the characteristic velocity and length of the system. Lastly, we 

note that at the dissipative scale, 

(2.33) 

Combining Eqs. (2.31 ), (2.32) and (2.33) we obtain the scaling for the size of the 

smallest flow structures, 

L ~ LRe>314 
Kol • (2.34) 

This equation is very useful in CFD, since it allows one to estimate the amount of 

resolution needed for a large production run. 

The arguments in this section involve more than a little hand waving. We have 

not actually defined what is meant by "eddy," relying instead on the intuition that 

comes from dealing with fluids on a daily basis. Nevertheless, the expressions 

presented here conform quite well to experiment, and represent the most useful 

attempt to date in trying to quantify turbulence. 
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Chapter 3 

Numerical Solutions of Partial 

Differential Equations 

Nonlinear partial differential equations are generally hard to solve. In fact, 

systems of coupled nonlinear partial differential equations can only be solved 

analytically in very special cases (e.g., soliton physics), or when the system under 

consideration has a very high degree of symmetry. Most systems of practical interest 

will involve complicated boundary conditions, so numerical techniques arc required. 

In many fluid flow problems of engineering interest, the transport coefficients 

will be quite small, but nonzero. As elaborated upon in Section 2.4, when transport 

coefficients are small we expect convection processes to dominate over diffusion and 

allow very small scale structures to develop. Due to the huge number of degrees of 

freedom of such systems, CFD and computational plasma physics are some of the 

most numerically demanding computer applications. 

3.1 Parallel Computing 

Electronic computers have existed for approximately seven decades. It was 

noted by Gordon Moore in 1965 that, due to advances in microchip fabrication, the 

17 



number of transistors on integrated circuits roughly doubles every two years, an 

empirical result known as Moore's Law. This "law" implies that computing power 

grows at an exponential rate. As Moore himself noted, for a variety of reasons, such a 

growth rate cannot be sustained indefinitely, and will eventually reach certain 

fundamental physical limits. Transistors are already of the order of tens of nm in 

length. At this scale, heat-induced failure becomes a serious issue. Unless (or until) 

quantum computers become a practical alternative, the future of high performance 

computing lies not with continued miniaturization, but with parallel computing. 

A parallel computer is a machine with multiple processors working on the 

same problem simultaneously and communicating via a network. Many parallel 

architectures exist, distinguished by how the processors are connected and how they 

share memory. In a fluid problem, a common way to parallelizc is to divide the 

domain up into a number of sub-domains, with each process computing the flow for its 

sub-domain. Of course, when fluid flows from one sub-domain to another, the various 

processes must communicate with each other. 

A good parallel algorithm is scalable or efficient, meaning that the speed-up of 

the execution time is proportional to the number of processors employed. If the 

computing power is proportional to the number of processors used, the efficiency is 

100%. For instance, computing the value of a well-behaved definite integral is a 

highly parallelizable operation (called embarrassingly parallel), since the integral 

across any given sub-domain can be computed independently of the others, with the 

results summed at the end. 
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Many common CFD algorithms involve inherently non-local computations. In 

the finite element method (Section 3.3) for instance, one must solve an N x N linear 

system at every time step, where N is the number of nodes in the simulation. Because 

of the non-local nature of such an operation, the scalability of such algorithms is 

limited. This is often manifested by diminishing parallel efficiency as the number of 

processors is increased, as shown in Figure 3. A great deal of work has gone into 

various tricks to increase the efficiency and scalability of parallel algorithms, but it is 

important to bear in mind that this phenomenon is inherent to certain algorithms. 

Scalability: Parallel Kernels 

100% -~-----~-----·----··---·-----·- .. ---

·-~ 90% "-.. • 
:.c 80% ..........._ ; 

~ 7D%r------~~~~~-------------~; 
~· 6D%r----------------~~~----------~ 
"#. ~ ! 

50% r--------------------------= .... =------1' 
--. I 

40% r-----.-------.----.------,,----,-----.-------.-----i 
2 3 4 6 7 8 

Number of CPUs 

Figure 3: The efficiency of an LU linear solver as the number of processors is increased 
From www.sun.com. 

As we shall see in Section 4.2, the most commonly used form of the LBM is 

remarkably parallelizable. This is in fact one of its strongest attributes. When 

extending and/or stabilizing the algorithm, it therefore behooves one to do so in such a 

way that the parallelism of the method is not affected. 
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3.2 Numerical Stability 

In addition to being parallelizable, a good numerical algorithm must be stable. 

Real computers can only store a finite number of decimal places; representing floating 

point quantities on a real machine means that round-off errors are unavoidable. Often 

an algorithm iterates a certain computation many times. If an algorithm amplifies the 

round-off errors to the extent that they quickly swamp the true answer, then it is 

termed unstable. 

On a hypothetical infinite-precision (but discrete) computer, numerical 

instabilities would not exist, but in the real world unstable algorithms are practically 

useless. Generally, an unstable algorithm that "works" on paper will function 

correctly for certain values of the parameters, but if certain parameters (e.g., transport 

coefficients) are made too small, then unphysical oscillations will develop and render 

the solution meaningless. 

Numerical instabilities are common in CFD, and are perhaps the biggest 

stumbling block to the effective utilization of Lattice Boltzmann method for large­

scale fluid simulations. The bulk of this dissertation is comprised of various ways to 

suppress numerical instabilities in the Lattice Boltzmann method over a wide range of 

parameters. 
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Figure 4: A close-up of spurious oscillations in the vicinity of a sharp one-dimensional 
gradient (shock) from [ 4]. Note that with the non-uniform grid, finer spatial resolution 
reduces the oscillations. If the parameters are particularly unfavorable, such oscillations can 
grow indefinitely, rendering the simulation unstable. 

3.3 A Juxtaposition of Methods of Descretization 

The fundamental consideration in CFD is how to represent a continuous 

quantity on a discrete computer. There are a wide variety of methods for discretizing 

the governing equations and/or their solution. 

Finite Differences (FD) 

Finite differencing is the most obvious way to discretize a partial differential 

equation. It is essentially differential calculus in reverse -the equation is 

approximated by replacing continuous derivatives with finite differences, e.g., 
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aj a f(xa ax) a f(x). 
ax ax 

(3.1) 

There are a large number of ways, called stencils, to discretize any given derivative, 

all of which reduce to the correct expression in the limit ili Q 0 . The particular form 

used depends on the equations being approximated, and on the required stability and 

accuracy. 

In their most basic form, finite difference methods require a uniform grid, 

though coordinate transformations can be employed to handle somewhat more 

complicated geometries. The biggest advantage of FD is the simplicity of 

implementation. Note that with this method, the solution is only obtained at grid 

points. Of course, virtually all fluid simulations need to perform some sort of finite 

differencing on the time coordinate. 

Spectral Methods 

Spectral methods involve solving a set of equations in a Fourier transformed 

wavenumber space. In pseudo-spectral methods only some of the terms are Fourier 

transformed. The major advantage of such methods is exponential accuracy as the 

number of simulated Fourier modes increases. However, imposing complex boundary 

conditions, which could be introduced e.g., by the presence of obstacles or a toroidal 

geometry, is very difficult. 

Thus, spectral-type methods are largely restricted to working in periodic or 

simply-shaped domains. Periodic boundaries can be useful for understanding the 

behavior of a fluid in the bulk (far from physical boundaries), or for testing a 

numerical method. Spectral methods are therefore often used to produce numerical 
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benchmarks and to examine turbulence on small scales, where the dynamics are 

presumed to be universal. 

Finite Volume Method 

The finite volume method exploits the divergence theorem to write 

conservation equations in terms of the flux across surfaces. First, the domain is 

divided into a number of possibly non-uniform cells. As in the finite difference 

method, the fluid quantities are defined at discrete points, but these discrete values are 

now identified with the average of the quantity over its cell. 

The basic idea can be illustrated by considering the generic conservation law 

=A -( ( -===BA=O. 
=t 

(3.2) 

Indexing the cells by i, denoting the volume ofthe ith cell by l'; and its boundary S; , 

we can take the volume average ofEq. (3.2) over a cell, 

where 

(3.4) 

is the volume average value of A. Note that the time coordinate must still be 

discretized, often via a simple finite difference. The various finite-volume schemes 

[5] are distinguished by how they calculate the value of the fluxes at the boundary. 

Finite-volume methods are used extensively in the CFD community because, 

in contrast to finite differences, they allow for the use of a non-uniform mesh so the 
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resolution can be increased in regions of interest. The method also allows for the 

resolution of discontinuities in the solution (shocks). A number of schemes can be 

used to restrict the flux values to physically realistic values, and to prevent the 

appearance of spurious oscillations in regions of large gradients. 

Finite Element Method (FEM) 

This method [6] is used extensively in structural analysis, but can also be used 

for fluid flow. It seems to be the method of choice for large-scale MHD simulations. 

First, the problem is reformulated in a variational form. The domain is divided 

into a number of elements, each of which contains a number of nodes. Across each 

element the solution is assumed to have a specific functional form, e.g., linear or 

quadratic in the spatial variables. The solution across the whole domain is uniquely 

determined by the functional values at the nodes. This results in a large linear system 

for the nodal values which must be solved at every time step. 

Mathematically, this is equivalent to expanding the solution in basis functions 

with compact support, see Figure 5. One can increase the degree of the polynomial 

approximation across each element and decrease the number of elements. Such an 

approach combines characteristics of the finite element method and spectral method 

and is sometimes called a spectral element method. 
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X =0 
0 

X =1 
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Figure 5: Left: A linear finite element approximation (red) to the exact solution (blue). 
Right: A linear combination of the basis Junctions (blue) is used to construct the finite element 
solution. 

By using basis functions with small support, one ensures that the matrices that 

need to be inverted are block diagonal. This enables certain tricks to be used to 

"precondition" the matrix, and hence speed up the inversion. Nonetheless, matrix 

inversion is an inherently non-local operation, and as such is not very amenable to 

parallelization. A major advantage of the FEM is the ease with which it can handle 

complex boundaries. 
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Chapter 4 

The Lattice Boltzmann Method 

4.1 Continuous Kinetic Theory 

A typical macroscopic volume of fluid contains on the order of 1023 particles. 

Even if we assume simple classical interactions, this is far too many to ever be 

simulated on a machine. Furthermore, if we are interested in macroscopic phenomena, 

we generally don't care about the details of individual particle motion. Thus, a 

statistical approach -kinetic theory- is needed. 

One of the basic quantities of interest in kinetic theory is the single particle 

distribution function, f(x,c,t), which describes the probability that a particle will be 

in an infinitesimal region of phase space around x, with speed c at time t, 

irrespective of the position and velocity of other particles. If we assume that particles 

are neither created nor destroyed and that motion is local in x- and c-space, then the 

evolution off is given by the chain rule, 

df J-x' c' d f fJ f c ff J f ft ff J f o , 
dt f t m c 

(4.1) 

where I, It~ is the gradient operator in velocity space. However, in actual fact, 
aLi lea 

particles can be considered to undergo collisions, which introduce the possibility of 

non-local jumps in velocity space. The effects of such collisions are represented by 
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adding a (usually nonlinear) collision term to the right hand side ofEq. (4.1). For 

now, we will leave the collision operator unspecified and denote it by O[J[. 

Observable macroscopic quantities can be obtained by multiplying/by various 

powers of c and integrating over all velocities. This is referred to as taking velocity 

space moments off, e.g., 

p(x) ~-f(x,c)dc ~zero moment (4.2) 

u+-t p 
1~ f! ~,c-alC f first moment, (4.3) 

and possibly higher moments, where p and ii are typically identified with the fluid 

density and velocity. The information contained in f is essentially equivalent to the 

infinite hierarchy of the moments of f . 

Ludwig Boltzmann introduced a collision operator under the assumptions of 

binary collisions and molecular chaos (the pre-collision momenta of colliding particles 

are uncorrelated). Under these assumptions one can show that the functional 

H (f) ~-f ln(f)dc (4.4) 

always decreases with time, that is, 

(4.5) 

This is the celebrated H-theorem. 

An equilibrium distribution function can be obtained by minimizing H while 

requiring that the mass and momentum be conserved. This is done by standard 

Lagrange multiplier methods, yielding the Maxwell-Boltzmann equilibrium 

distribution function 
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JMB(- -) - m -
XC -----

' -2t:kT-

2 --me 
exp= 2kT =' 

where m is the mass of the particles, k is Boltzmann's constant, and Tis the 

temperature. 

(4.6) 

The full Boltzmann collision operator is nonlinear and involves integrals over 

the momentum space of two particles, and is impractical for large-scale fluid 

computations. We would like to find a linear collision operator that can reproduce the 

correct fluid scale behavior without worrying about the unimportant details of the 

microscopic dynamics. 

A stylized depiction of the evolution of a distribution function under the 

influence of collisions is shown in Figure 6. 

f(t) f(t) 

}•q-f fe.q 

t 

Figure 6: The evolution of the distribution function, suitably averaged over a small region of 
phase space. The distribution jUnction relaxes at a characteristic time scale \1 towards 
equ iii brium. 

This plot suggests that, close to equilibrium, we can consider the first order time 

difference 

(4.7) 
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where r is a characteristic time at whichfrelaxes towards equilibrium. Eq. (4.7) is 

known as the Bhatnagar-Gross-Krook (BGK) collision operator [7]. 

4.2 Lattice Boltzmann 

Although historically the Lattice Boltzmann Method was an outgrowth of 

Lattice Gas Automata [ 1], it will be advantageous for our purposes to take Eq. ( 4.1) as 

our starting point. We will consider the case with no body forces, so we have 

! -::;_c«J-::;_-::;_-J--. 
(4.8) 

This equation must be discretized in the variables c, .X and t. The time variable is 

almost always handled with a simple first order finite difference as in Eq. (3.1 ). The 

discretization of the position and velocity variables can in principle be handled with 

any of the techniques listed in Section 3.3. For many purposes those discretization 

techniques retain an unnecessary amount of information and are impractical in a six­

dimensional phase space. 

The basic idea of the LBM is to discretizc in velocity space as drastically as 

possible. That is, we restrict the continuous variable c to the discrete values {ci {, 

i } l ... q. These discrete lattice velocities, {cj { are chosen to possess only a few 

elements, while retaining enough isotropy so that the fluid equations are recovered in 

the macroscopic limit. The various admissible sets of lattice velocities are referred to 

as LB models, and arc denoted DdQq where dis the number of dimensions and q is 
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the number ofvelocities. The velocities ofthe common LB models D1Q3, D2Q9, 

D3Ql5, D3Q19 and D3Q27 are listed in Table I. 

We will denote the corresponding discrete-velocity distribution functions (or 

populations) f(x,ci't) J /;(x,t). With these definitions, the single equation in x,c,t 

[Eq. (4.8)] becomes q equations in x,t 

~;; < c- «j: < < 1r t 
- 1- ~--)Jj-g J 

Note that, in general, the collision operator will depend on all ofthe discrete 

populations. Eq. ( 4.9) is often called the discrete velocity Boltzmann equation 

(DVBE). 

y 

X 

Figure 7: The lattice vectors of the popular D3QJ9 model. 

(4.9) 

The integral moments of Eqs. ( 4.2) and ( 4.3) arc replaced by sums over the 

discrete velocities, 

q 

r(x) LL.f(x) (4.1 0) 
i2J 
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( 4.11) 

A particularly convenient formulation can be constructed by discretizing Eq. 

(4.9) in space and time using simple forward differencing, 

(4.12) 

Model Lattice Velocities Speeds 
(plus permutations) (# of corresponding 

velocities) 
DlQ3 -1' 0, 1 0(1), 1(2) 

D2Q9 Lo,oL, !± l,OL, 1+ l,±l:i 0(1), 1(4), J2(4) 

FD3Ql5 :iO,O,O:i, 1+ l,O,O:i, 0(1), 1(6), J3(8) 
1+ l,±l,±l:i 

D3Ql9 :Jo,o,o:i, 0(1), 1(6), J2(12) 
1+ l,O,O:i, 1+ l,±l,O:i 

D3Q27 :Jo,o,o:i, 0(1), 1(6), J2(12)' 
1+ l,O,O:i, 1+ l,±l,O:i, J3(8) 

1+ l,±l,±l:i 

TABLE I. The lattice velocities and speeds of common LB models. 

where we have evaluated the collision operator at the old time step (explicitly), but 

the convective term at the new time step (implicitly). lfwe couple the velocity-space 

lattice to the spatial grid such that c ± ±x;.r then Eq. ( 4.12) reduces to the simple 
/

0
T ±t 

form 

;;e-x f c) r,r f f r) f ;;cx,t) f f :iJ;(x,r):f. (4.13) 
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This equation is often called the lattice Boltzmann equation (LBE). With the usual 

choice ofEq. (4.7) we have 

.t;G ncio,t no!h.t;G,t!hd-!.t;G,t!h.t;eqG,tm (4.14) 
r 

This is referred to as the lattice BGK (LBGK) equation. 

Taking Eq. ( 4.14) as the basis of a numerical procedure produces an 

exceptionally simple and parallelizable algorithm. Essentially there are two steps: the 

streaming (depicted in Figure 8), which involves no computations, and the collision, 

which involves only local information (i.e., the populations at a single spatial node). 

The standard LB algorithm which implements Eq. (4.14) is depicted schematically in 

Figure 9. 

... 
Figure 8. During the streaming process, the populations are shifted unchanged to adjacent 
nodes. 

The locality of the collision process enables the standard LBM to be 

parallelized extremely efficiently. Given all the populations in a sub-domain of 

coordinate space, a processor can compute the hydrodynamic moments, the 

equilibrium distribution function and the post-collision populations, f, all without the 

need to communicate with the other processes. It is only in the streaming step that the 

processors need to communicate. Thus, in the LBM, the scaling of the number of 

floating point operations per second (FLOPS) with the number of processors is almost 
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ideal, as shown in Figure 10. This scalability is considered one of the primary 

advantages to discretizing the Boltzmann equation as in Eq. ( 4.14). 

Set initial fields r, ii, etc. 

At f ± 0, J; ± J;eq 

I ... 
I Stream: J;(x ± c;,t ± 1) ± f(x,t) I 

~ 
Calculate fields by taking moments I Loop over t I off r±+J;, rii ± + fc , etc. 

-II 

; ; 

~ 
Calculate J;eq from fields I 

J 
Collide: f(x,t) ± J;(x,t) ± l_]J;(x,t) ± J;eq (x,t)J -

r 

Figure 9. A pictorial representation of the basic LB algorithm. f is the post-collision 

distribution function. if non-periodic boundary conditions are to be used, they are 
implemented after streaming. 

Because the velocity space is so drastically truncated, much of the original 

kinetic (velocity distribution) information is lost. Thus, the LBM should be 

considered an alternative method for computing fluid flow, rather than a true kinetic 

method. The major advantage of working at the mesoscopic level, rather than the 

fluid level is that the nonlinear convective derivatives of fluid-level equations have 

been replaced by the simple linear constant advection of the DVBE. The tradeoff is 

the larger number of evolved quantities at the mesoscopic level (q populations) as 

compared to the fluid level (usually r , ii, sometimes 1). 
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Figure 10. The scaling of the computing power of aLB code with the number of processors 
used on several supercomputer architectures. A straight line corresponds to 100% efficiency. 
Note that not only is the scaling almost perfect, but the FLOP-rate itself is quite high. 

It is worth emphasizing that the way of discretizing Eq. (4.9) as presented 

above is not the only way. Eq. (4.14) is generally called "the" LB equation because it 

historically evolved from LGA, and because of its superior parallel performance. 
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The LBM is perhaps best viewed as an original paradigm for solving fluid-type 

equations, rather than as a specific algorithm. Taking Eq. (4.9) as the basis of the 

LBM, rather than Eq. (4.14), enables one to use the full repertoire ofCFD in its 

solution. Other authors have used the finite volume method [8], finite element method 

[9], characteristics-based methods [ 1 0], and a variety of finite difference 

discretizations to solve Eq. ( 4.9) [ 11]. In this dissertation I will focus on Eq. ( 4.14) 

due to its simplicity and near perfect parallelization. 

4.3 The Chapman-Enskog Procedure 

All of the physics contained in the LBGK equation is in the equilibrium 

distribution. In order to select the equilibrium that will correctly model the 

macroscopic equations, we need a connection between the kinetic and fluid levels. 

This connection is provided by an asymptotic multi-scale expansion called the 

Chapman-Enskog procedure. The Chapman-Enskog procedure for continuous kinetic 

theory with the full Boltzmann collision operator is quite mathematically involved 

[12]. Using the BGK operator simplifies the analysis considerably [13]. Here I shall 

perform the procedure on the LBGK equation, Eq. (4.14). This treatment follows [4]. 

We begin by expanding fJX ± c;±t,t ± ±t::! in the small parameters ±x and ±t, 

oc oct 11 

t: --k- - + + ..L -F t: --k- + . ..!.X ooc.oct,t oooct_oo -JXJ ooc. oo _ -...!.X,L_, 
• I 1 - f f l.T T • l 

ncrJJ n. 
(4.15) 

and substituting this into Eq. (4.14) to get 
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-+- cq" ~I OOC. 00 f t(x,f) oooo--!-rrr: 00 reqoc; 
- ' l,T T }j Ji }j 
nool n. T 

(4.16) 

Note that the lower index has been changed due to the cancellation of the n rx 0 term. 

The Chapman-Enskog procedure is based on the observation that there are two 

disparate timescales in most fluid-type problems. When we consider putting cream 

into coffee, for instance, we notice that mixing occurs much more quickly if it is 

stirred as opposed to waiting for diffusion to take place. We will treat the faster 

convective timescale, t0 , and the slower resistive or transport timescale, t1 , as 

formally independent variables. Accordingly, we introduce a small parameter & and 

the orderings 

2 
CX) 00 OX1

11 
00& OC), 00 ..• (4.17) 

00 00 8XJ (4.18) 

(4.19) 

& can be identified with the Knudsen number or the Mach number. 

To lowest order, it is immediately seen that J;(O) oo J;eq. Inserting Eqs. ( 4.17), 

(4.18) and (4.19) into Eq. (4.14) and collecting terms of order & gives 

(4.20) 

where the (constant) c; have been moved inside the derivatives. To order &
2

, the 

LBGK equation is 

(0) !L_ (I) J 7 (0) 1 (2) 
00 t: OO'J.J.J 0000 c or oo-CW 0000 c (J t oooo- t . 

t 1 • r t 0 c: r,E Ji 
2 

t0 c: 1,c: li & .li (4.21) 

It will sometimes be convenient to use Eq. (4.20) to eliminate J;<
1
l from Eq. (4.21), 

36 



(4.22) 

Taking the moments of Eq. ( 4.20) will give the ideal-level fluid equations. 

The moments of Eq. ( 4.22) introduce the possibility of dissipation (e.g., viscosity). 

Going to higher order in & would involve higher spatial derivatives; however, these 

terms become very small quickly. Eqs. (4.20) and (4.22) will suffice for our purposes. 

4.4 Lattice Boltzmann for the Navier-Stokes Equations 

To complete the process of recovering a system of fluid equations, we need to 

take the moments ofEqs. (4.20) and (4.22). We will first consider the ideal level, Eq. 

( 4.20). Conservation of number density and momentum require the solvability 

conditions 

q 

00 f(n) ooO, and 
iccl 

q 

ooc r(n) ooO 
1.1 i 

iocl 

for integer n 2:1. Summing Eq. (4.20) over i gives 

Cl& .::--.._-> 
- 0000 oa:J:."U _00 0 , 
ext 

where 

& 2: > f 2: > f"" and 
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(4.26) 



q q 
- - I' - l'eq 

EU OOc:JJCiJi OOc:JJCiJi • ( 4.27) 
iool jccl 

Multiplying by ci and then summing over i gives 

CXEU - (O) 
--OOOOOCXJ 

ct1 ' 
(4.28) 

where 

q 

~(n) OOliJCC /'(n). 
1 ,J; (4.29) 

ic.cl 

for integer n. 

One can continue to take higher moments of the kinetic equations if 

temperature/pressure equations are desired. Each equation will couple the ith moment 

to the i+ 1 moment, so a closure is needed. A closure usually must take into account 

thermodynamic considerations, and reflects the nature of the propagating medium. 

Thermal LB exhibits a number of troubling defects, notably numerical instability 

outside of a narrow parameter range [14], so the LBM is ordinarily used for isothermal 

flows with the equation of state given by Eq. (2.16). Therefore the second moment of 

the equilibrium should be 

(4.30) 

where J is the identity matrix. 

Since the velocities under consideration are small in lattice units, it suffices to 

consider equilibriums that arc polynomials in ii . A particularly convenient 

formulation which gives the correct moments [Eqs. (4.26), (4.27) and (4.30)] for the 

athermal Navier-Stokes equations is 
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(4.31) 

where the weights wi depend only on the speed of the associated lattice vector. The 

weights for some common LB models are given in Table II. 

Speed D2Q9 D3Q15 D3Q19 D3Q27 

0 I_± 13. I_!_ I~ Wo Wo Wo Wo 
9 9 9 27 

I I_!_ I_!_ I_!_ 1_2_ WI 
9 

WI 
9 

WI 
18 

WI 
27 

J2 1-1 - 1-1 1-1 Wz Wz Wz 
36 36 54 

J3 - 1-1 - 1-1 w3 w3 
72 256 

TABLE II. The weights that appear in the polynomial equilibriums for common two- and three­
dimensional LB models. 

Eq. ( 4.31) is not the only expression that gives the correct moments, but it has 

favorable stability characteristics and is the Iow-Ma expansion of the Maxwell-

Boltzmann equilibrium [Eq. (4.6)]. 

To introduce non-ideal effects, we must take the moments ofEq. (4.22). 

Summing Eq. ( 4.22) over i gives 

I ,, c I 1£ I ~ r I ~I c I 2 I In I J cU J I I.. I fi I 6 J I 0 ( 4.32) 

11,& lie ~~~1J1 1n& IIJcu,~l~c ~~~1J1Jcu, lltll<tl~lo. (4.33) 

39 



Using the ideal equations, Eqs. (4.25) and (4.28), we see that both terms in brackets 

vanish, leaving us with 

(4.34) 

so the first time scale docs not contribute to the continuity equation. 

The resistive level contributions to the momentum equation can be elucidated 

by multiplying Eq. ( 4.22) by c . and summing over i, 
'·' 

(4.35) 

iJruJ1fr1 ~fr-Jr-JruJIIpl ~~~1fr1 ~f1 11 f1J ~~11/J; ;;<o)ci,rci,pc;.rfio 

(4.36) 

The second term vanishes by virtue of Eq. ( 4.28). Since these entire equations are r 

smaller than the ideal level equation, we can drop terms that are ol Ma 1
l or smaller. 

With the chosen scalings [Eq. (2.24)], it can be shown that the term I pi J ~~ is 

ol Ma 2
l , and will thus be neglected (see Appendix). 

W c are left with 

(4.37) 

The RHS can be evaluated with the help ofEq. (4.31), to give 

(4.38) 

where ol Ma 1
l represents terms proportional to I r ii . 

Adding together Eqs. (4.28) and (4.38) gives the complete evolution equation 

for the fluid momentum, 
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(4.39) 

which is identical to Eq. (2.26), provided we make the identifications 

(4.40) 

( 4.41) 

Note that J1, ii and I were defined as the velocity moments of the 

equilibrium distribution, and, as such, can be given varying interpretation depending 

on the nature of the equilibrium selected. Of course, for the standard Navier-Stokes 

model presented here, J1 is the mass density, J1U as momentum density and I as the 

pressure tensor. However, these are hardly the sole consistent interpretation of these 

equations. When used to simulate MHD, the zero moment of the distribution 

functions can be interpreted as the components of the magnetic field [2]; for the 

shallow water equations, the zero moment is the water depth [15]. In fact, the LBM is 

capable of simulating a variety of systems of PDE' s, so long as they can be expressed 

in the conservation form ofEq. (2.6). 

The BGK operator is the simplest collision operator to implement, and is used 

almost exclusively in the literature. It is worth noting that the use of a single time 

parameter at which all moments relax toward equilibrium implies that all transport 

coefficients in the simulated (macroscopic) equations are the same. For instance, 

taking the second moment of the kinetic equations ( 4.20) and ( 4.22) gives an equation 

for the temperature evolution, 
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(4.42) 

where 

(4.43) 

Since there is only one relaxation time, we find that the BGK operator requires that 

heat and momentum diffuse at the same rate, K I K . This important limitation on the 

utility of the BGK operator can be dealt with in several ways [ 16], [ 17]. In this 

dissertation, we will be dealing exclusively with a thermal (or isothermal) flows, so the 

BGK operator will suffice. 
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Chapter 5 

An Implicit Lattice Boltzmann Scheme 

As indicated in earlier, the Achilles' heel of the standard LBM is numerical 

instabilities at low values of the transport coefficients. Much work has gone into 

stabilizing the algorithm. One group of such attempts falls under the general rubric of 

"implicit methods." 

The concept of implicit descretization can be illustrated by considering a 

general one-dimensional time-dependent PDE 

(5.1) 

where F is an operator which can include spatial derivatives of u, nonlinear terms, etc. 

When we discretize in time, we must choose whether to evaluate the RHS at the new 

time or the old. If all terms are evaluated at the old time step, the method is .fully 

explicit. If they are evaluated at the new time step, the method is .fully implicit. A 

more general scheme that encompasses explicit and implicit discretizations is 

where e I 0 is fully explicit and e I 1 is fully implicit. To maximize the formal 

1 
accuracy of the method, one usually chooses B I - . 

2 

Implicit schemes are attractive because they are usually more stable than 

explicit ones, and allow for much larger time steps. However, they require the 
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solution of a large linear system at every time. This is why straightforward implicit 

finite-difference methods are not used very frequently. If a linear system is to be 

solved at every time step, the finite element method is generally preferred. 

In the LBM, however, since we are actually trying to solve for the lowest few 

moments of the distribution functions, rather than the distribution functions 

themselves, alternate implicit schemes become available. Integrating Eq. ( 4.9) over 

the short time I t I 1 using the trapezoidal rule, we get the implicit scheme 

J;(xl c;,tii)I J;(x,t)ll 1 ~8 l~;cx,t)l f"q(x,t)il %l~;cxl ci,tll)l J/q(xl c;,tll)l 

(5.3) 

where we have employed the BGK collision operator. This equation is not useable as-

is, since the term J;eq (xI c;,t II) is a complicated function(al) of the unknowns 

J;(x I ci't II). Other authors have tried extrapolating .t;eq forward in time [I8], but 

this is subject to severe numerical instabilities. 

Another method for dealing with the implicitness of Eq. (5.3) has appeared in 

recent years [ I9]. We introduce the following distribution function 

(5.4) 

Using this expression to transform the implicit part ofEq. (5.3) gives 

All terms on the RIIS arc now known, so g; can be determined at the new time step. 

Note that g; has the same zero (())and first moments ( eu) as J; by virtue of Eqs. 

(4.23) and (4.24). Therefore, after g; is determined at the new time, the 
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hydrodynamic fields and feq can be computed, and f is calculated using Eq. (5.4). 

The collision implicit algorithm is summarized in Figure 11. The computational 

overhead associated with this implicit scheme is very small. 

Set initial fields B, ii, etc. 

At t I 0 ' gJ g;" 
I 

I Stream: g;(.xl c;,tll)l g(x,t) I 
.! 

Calculate fields by taking moments 

of g: e I ,- gi ' eu II gici' etc. 

Calculate feq from fields I 
I 

i Loop over t I 

i 
Collide: 

g;(x,r)l f(x,r)l 11 8 ltcx,r)l J/"(x,t)l e 
t 

Figure 11. The collision implicit algorithm. The procedure is almost the same as the explicit 
scheme in Figure 9, with the added step of calculating f 

Though this and related methods have been recently used several times in the 

literature ([20], [21 ]), to my knowledge, no numerical analysis has been undertaken to 

determine whether Eq. (5.5) is actually has improved stability compared to the 

ordinary LBGK equation, Eq. (4.14). 

In order to compare the stability of the collision implicit scheme as compared 

to the standard LBGK scheme, we ran a number of D2Q9 simulations of the so-called 

Taylor vortex flow using both schemes. The initial conditions arc essentially just sine 

functions and are plotted in Figure 12. The boundaries are periodic. 
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Figure 12. The initial conditions for the two-dimensional Taylor vortex. 

The solution for these initial conditions is obtainable analytically- the velocity 

vectors do not change direction, but their magnitudes are exponentially damped by 

viscosity. All parameters for the two schemes except for () were kept constant 

u0 I 0.05, n, I 64, k, I 1, kY I 2. () was lowered until the schemes became 

unstable. Since the analytic solution indicates that the speeds should be monotonically 

decreasing, a run is classified as "unstable" if the maximum speed at any time step is 

greater than 1.1u0 • 

The explicit scheme was unstable at around 6 I 0.5012, whereas the collision-

implicit scheme became unstable for() I 0.5014. Thus, the explicit scheme is actually 

more stable than the implicit scheme. The difference is very small, however, as the 

explicit method can handle viscosities only ~ 15% lower as compared to the implicit 

method. 
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Although the transformation Eq. (5.4) is a clever way to introduce a measure of 

implicitness to the standard LBM, normally the advantage of using an implicit finite 

difference formulation is that it allows for enhanced stability when using a large time 

step. However, in the LBM the time step is coupled to the grid resolution via 

c; e II ~;,e , so once a grid has been selected the time step is already chosen. Thus, it 
' I t 

appears that the extra complications introduced into the code by Eq. (5.4) are not 

justified by increased stability. 

47 



Chapter 6 

Entropic Lattice Boltzmann 

6.1 Sub-grid Modeling 

There exists a fundamental stumbling block in the effective simulation of 

turbulent flows. At low values of transport coefficients, very small scale fluid 

structures can evolve. Such structures will have observable effects on larger scale 

structures. The size of the smallest eddies in a flow scale as Re131 4
, so that in order to 

"see" these eddies, the number of nodes in a three-dimensional numerical simulation 

must scale as Re91 4
• If a simulation of a turbulent flow is able to resolve all the way 

down to the Kolmogorov scale, it is said to be a direct numerical simulation (DNS). 

The problem, of course, is that for high-Re flows, the number of required nodes is 

quite impractical for implementation on computers. 

In such a situation, one must model the effects of unresolved eddies on the 

large-scale structures (which are generally what we are interested in). There are a 

number of ways to capture the effects of sub-grid scales, though the most common 

method is via enhanced transport coefficients. Two common turbulence modeling 

paradigms are described below. 
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6.2 Reynolds Averaged N avier-Stokes 

The most widely used method for modeling turbulent flows divides the 

velocity into a mean (time-averaged) component and a fluctuating turbulent 

component (whose time-average vanishes): 

u I iH ul, (6.1) 

where the overbar denotes the averaging operation. Applying this decomposition to 

Eqs. (2.8) and (2.13) results in the so-called Reynolds averaged Navier-Stokes 

(RANS) equations which can be written, 

(6.2) 

(6.3) 

plus terms of O(Ma3
). The effects of turbulent fluctuations on the mean flow are 

contained in the Reynolds stress, Bii 1U1
• The exact nature of the Reynolds stress has 

been the focus of much research over the past century, and many models and 

interpretations exist. 

The most common form used for the Reynolds stress is 

(6.4) 

- 1 I - -::;T, 
where S 1 1 ii 1 1 u is the mean strain rate tensor. 

2 

Notice that this is equivalent to an extra turbulent viscosity (or sub-grid 

viscosity when used in simulations) in addition to the usual bare molecular viscosity; 

such models arc called eddy viscosity models. Since the turbulent viscosity must be 
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related to the mean field variables, we again encounter a closure problem. 

Appropriate forms for Br must be deduced by a combination of experiment, 

simulation, and physical intuition. The various turbulence models are distinguished in 

how they relate the turbulent viscosity to the mean fields. 

The turbulent viscosity becomes substantial primarily in regions of large 

velocity gradients. Such a locally increased viscosity not only can model sub-grid 

effects, but will also help stabilize numerical algorithms by smoothing out sharp 

gradients. 

A primary drawback of RANS is the inability to "see" short lived, but 

potentially large fluctuations. In MHD, for instance, temporally localized but intense 

events can trigger global instabilities. A RANS-inspired model would predict a stable 

flow, since the triggering event is averaged-out. 

More fundamentally, it is not obvious that in fully-developed turbulence a well 

defined mean flow always exists. Turbulence is characterized by fluctuations over a 

large range of spatial and temporal scales, so even if a mean flow can be 

mathematically defined, it does not always correspond to an identifiable physical 

structure. 

50 



6.3 Large Eddy Simulations 

Another sub-grid model that overcomes some of these deficiencies is called 

Large-Eddy Simulations (LES). This is based on the application of a spatial filter to 

all flow quantities, 

-(-)' 'G(-' _,) (-').I:' Ug X X X Ug X uX , (6.5) 

where G is the filtering kernel. Note that, in contrast to the time-averaging of the 

previous section, here the overbar represents a spatial average. A simple, widely used 

filter that reflects the nature of a computational grid is the so-called box filter, 

1 I I I 

G(x)' -H' -' ixi', 
I 1 2 I 

(6.6) 

where His the Heaviside function and ' is the scale length above which the filter can 

"see." Essentially, under the box filter, all quantities are averaged over a box oflinear 

dimension ' . Figure 13 shows the effects of such a filter on an arbitrary function. 

The small-k structures survive, but the high-k structures are smoothed out and must be 

modeled. In a fluid context, this filter effectively truncates the Kolmogorov cascade 

of Figure 2 in the inertial sub-range and so one must introduce a model to account for 

2() 
the structures with k ' 
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u.D 

I 
ii, 

Figure 13. An arbitrary field before (top, light line) and after (top, dark line) the filter application. 
The unresolved structures are at the bottom of the plot (light line). Notice that the filtered sub-gridfield 
(bottom, dark line) is non-zero. 

After applying an LES filter to the Navier-Stokes equations, we arrive at the 

following equations 

where 

>8 -
->> >>eii»o 
>t 

(6.6) 

(6.7) 

(6.8) 

Once again, we arrive at a turbulence closure problem- the tensor B must be 

expressed in terms of known quantities. Again, a standard choice is the introduction 

of a turbulent viscosity, 
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(6.9) 

where S is the filtered strain rate tensor. A simple, common expression for Br was 

introduced by Smagorinsky [22] for weather prediction, 

(6.10) 

where Cs is an undetermined, problem-dependent constant that is usually of the order 

The Smagorinsky model is particularly well-suited to LB implementation [23]. 

This is because it can be shown via the Chapman-Enskog procedure that the strain-rate 

tensor S is available locally as the non-equilibrium part of > , 

- (t) q __ -r(ll > 2 BB
5
-

> >>cc.;; >-- . 
i>l l l l 3 

(6.11) 

The local computation of velocity derivatives is an important feature of sub-grid LB as 

it allows one to locally increase the transport coefficients (via ())according to Eq. 

( 6.1 0) without affecting the parallelizability. 

6.4 Entropic Lattice Boltzmann 

A problem that the LBM shares with many other CFD algorithms is the issue 

of numerical instabilities. With the LBGK equation, values of () close to _!_ 
2 

correspond to low (). Sharp gradients tend to develop at both the macro- and 

mcsoscopic levels, heralding the onset of numerical instabilities. These are often 
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manifested in the LBM as unphysical negative populations. The crudest way to 

handle negative populations is to simply set them equal to zero [24]. While simple to 

implement and marginally effective, this method is obviously rather ad hoc and lacks a 

physical motivation. For sufficiently turbulent flows, one may be effectively running 

at a lower Reynolds number than expected. 

A more sophisticated method involves introducing the notion of an entropy to 

the LBM. It is reasonable to believe that if a discrete version of the H function can be 

found, we could dynamically adjust the nature of the LB evolution so as to be entropy­

increasing. Such a discrete functional, when minimized subject to certain constraints, 

would yield an LB equilibrium distribution function as in the continuous theory. 

Discrete H-theorem compliant versions of Lattice Boltzmann are termed Entropic 

Lattice Boltzmann (ELB). 

After the streaming step in a LB computation, we denote the populations at a 

given node by f . During the collision step, the BGK operator shifts f along the q-

dimensional vector > > f > feq. For a fixed fJ, however, it is possible to overshoot 

and end up at a position of higher entropy, thus violating the H-theorem. 

Overshooting in this way is more likely to occur for small values of f) . 

In order to prevent such unphysical collisions, we will keep the BGK operator 

and still allow the collision to shift f along > , but we will explicitly forbid collisions 

that shift .f to regions of higher entropy (or lower H). We must therefore solve for 

the point along >,denoted .{ > f >()>,at which the H-function is equal to its pre­

collision value 
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H(f) > H(f > 8>). (6.12) 

Each collision should shift the populations along > no farther than the point 

;;· > f > 8> . The fraction along > that a collision carries /; towards ;;· is denoted 

by f3. The process is illustrated in Figure 14. fJ is related to the usual relaxation time 

() by 

1 
/3>-. 

28 

The ELB scheme consists of replacing the usual LBGK equation with 

where 8 must be determined at each time step and each node by Eq. (6.12). lt 

(6.13) 

(6.14) 

remains to find an appropriate form for the H-function, a topic that will be discussed at 

length in Section 6.5. 
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Figure 14. The population space at a single .spatial node, illustrating the collision process in 
ELB for an arbitrary collision operator. The dashed lines are swtaces oj'constant entropy; 
the equilibrium is a local entropy maximum. The collision sh[fts the population f along > . 
One must solve for the point/ at which the entropy is equal to the pre-collision value. The 
parameter fJ controls how close the post-collision populations are to/. For the BGK 

operator, > points in the direction of.r. 
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The Chapman-Enskog procedure described in Section 4.3 is applicable to Eq. 

(6.14), with the replacement 

1 

0/3 

Thus the effective viscosity at a given spatial point is 

This effective viscosity tends to increase when the populations are far from 

(6.15) 

(6.16) 

equilibrium, so the ELB can be considered an eddy-viscosity model. Numerical 

experiments in the literature support the notion that under-resolved ELB captures the 

behavior ofturbulent flow, even in the absence of an explicit macroscopic sub-grid 

model [25]. In contrast to the fluid-level sub-grid models, however, it is not readily 

apparent whether it is possible to connect the effective viscosity in Eq. (6.16) to 

macroscopic moments as in, e.g., the Smagorinsky model. 

The Newton-Raphson Method 

Eq. (6.12) must be solved at every spatial node and at every time step. It will 

generally be a nonlinear one-dimensional algebraic equation. Fortunately, for the vast 

majority of the flow field, the solution e will be very close to its equilibrium value of 

2. 

A powerful numerical procedure for calculating the roots of nonlinear 

equations is called Newton's method or the Newton-Raphson method. Let us suppose 

that we wish to solve the equation 

.f(x) > 0. 
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Assume further that we have a good initial guess for the root x0 • Denote the true root 

x, and the discrepancy from it r ~ x, ~ x0 • Expanding f ( x0 ~ r) in a power series, 

(6.18) 

Ifthe initial guess is close to the true root, i.e., if r ~x, ~x0 Ml, then we can 

truncate at first order and we have 

(6.19) 

We then use this estimate for r to refine our guess, x1 < x0 < r and iterate the process 

until the desired accuracy is reached. One iteration in this procedure is depicted in 

Figure 15. 

y 

Figure 15. A single iteration of the Newton-Raphson method. The initial guess of x1 to is 
refined to x2 by using the tangent (blue) . After two more iterations, the numerical solution 
would be indistinguishable from the true root on this graph. 

The Newton-Raphson method is quite powerful, since, for well-behaved functions (no 

local extrema near xr) , the convergence is quadratic in the number of iterations - that 

is, the number of significant digits approximately doubles with each 
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step. This is the method of choice for solving Eq. (6.12) and in fact only constitutes a 

~20% overhead in computing time as compared to the standard LB scheme. 

6.5 The Form of the H-function 

The final, crucial step in formulating an Entropic Lattice Boltzmann scheme is 

the determination of the functional form of the H-function. In the literature two 

apparently disparate approaches to this problem exist, that of the Zurich school [26] 

and that of the Boston school [27]. There is some disagreement between the two 

approaches, which 1 will attempt to clarify. 

Zurich School 

The Zurich school's approach is based on restrictions on the form of the 

moments of J;eq. The model under consideration is chosen a priori. For illustrative 

purposes, we will consider the one-dimensional case with three velocities, 

c; > <> 1,0,1<. By symmetry, we can consider an H-function of the form 

(6.20) 

where h0 and h1 are unknown functions which we require to be convex. As in the 

continuous kinetic theory, we define an equilibrium distribution function as the 

function that minimizes H, subject to the constraints that () and tJu are conserved. 

Using standard Lagrange multiplier methods, the result of this minimization is 
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hffffoeq ] < a 

~{J;q] <a< c)L, 

(6.21) 

(6.22) 

where a and JL are the Lagrange multipliers associated with () and (}u , respectively. 

We can formally invert Eqs. (6.21) and (6.22) to obtain 

where 

The constraint equations read 

foeq < Ao(a) 

J:q < A1 (a < A) , 

/L0 < <hrf-<<1 and 

A! < <h,~<l. 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

Finally, in order to recover the athermal Navier-Stokes equations, we must require that 

the second moment has the correct form 

(6.29) 

(6.30) 

where () and (}u are given by Eqs. (6.27) and (6.28), and c; is a parameter that must 

be determined. 
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To proceed we note that the Lagrange multipliers are of the same order as the 

quantities that they are constraining. In particular, A ~ O<Ma<, so we can expand fJ 's 

in powers of A , 

(6.31) 

where the terms on the RHS are evaluated at (arbitrary) a. Inserting these expressions 

into Eq. (6.30) gives a power series in A. Since the LBM is good to O(Ma 2
), we 

require the coefficients of A to vanish up to second order. At odd order, the 

coefficients vanish identically. The zero- and second-order terms lead to the following 

equations: 

A < 2<c<2 <l<A 
0 s 1 ' 

(6.32) 

1 
<1-~ < -<c<2 < 1 <A A:< I 

2 
s I I (6.33) 

In order to obtain a physical H-function, we must choose c; so that the h's are convex. 

Inspired by the "ordinary" (non-Entropic) LBM, we try the value* 

This leads immediately to 

The solution to the second equation is 

2 1 
c, <-. . 3 (6.34) 

(6.35) 

(6.36) 

(6.37) 

* In one dimension, some freedom remains in the choice of c: ; c; < 1 1 s provides a consistent scheme. 

In higher dimensions, however, Eq. (6.34) gives the unique consistent speed of sound. 

60 



where A is an arbitrary constant. Finally, inverting and integrating gives expressions 

for the h's 

~<{a)< ..tt1 < ln(a I A) (6.38) 

(6.39) 

where k0 is an integration constant. Likewise, h0 (a) < <ln(a I 4A) < 1 << k0 , so the H-

function reads 

H < fo<ln<fo I 4A<< 1<< f< <ln<f< I A<< 1<< f< <ln<f< I A<< 1<< k0 < k1 • (6.40) 

Conserved quantities can be added to the H-function without affecting the 

dynamics. If we add the quantity A-<ln<6A<< 1< to the H-function and take k0 < k1 < 0, 

we arrive at the convenient form 

H < fo ln<3f0 12<< f< ln<6f< << f< ln<6f< << < J; ln<J; IW;<, (6.41) 

where the weights are W0 < ~ and W< < _!_ . 
3 6 

The Lagrange multipliers can be solved for exactly, which provides an explicit 

expression for ;;eq 

(6.42) 

This is identical to the polynomial equilibrium of Eq. ( 4.31) to second order in u. 

The same procedure can be performed in the D2Q9 and D3Q27 models, 

provided one associates a Lagrange multiplier with each component of the 

momentum. This method cannot be used to formulate an H-function for the other, 

more popular 3-D models (D3Q 15 and D3Q 19)- higher dimensional entropic models 
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are formed by simply taking tensor products of the 1-D model presented above. The 

resulting H-functions will have the form given by Eq. (6.41), with the weights given in 

Table III. 

Speed D1Q3 D2Q9 D3Q27 
0 n3. 2 3 

8 
Wo =2= 4 =2= 

Wo = -- Wo ==-= = -3 =3= 9 =3= 27 

1 1 =2=1= 1 2 
2 

WI = - WI = ---= - =2= =1 = 
6 ;;;;3-6;;;; 9 WJ = =--== ==-===-

=3= =6= 27 

J2 - 2 

=1= 1 
2 

=2=1= 1 
Wz =- Wz - ==- ===-- == --

=6= 36 =3=6= 54 

J3 - - 3 
=1= I 

w3 = = --

=6= 216 

TABLE III. The weights that appear in the H-functionfor selected LB models. Note that the 
higher-dimensional models are simply tensor products of the one-dimensional scheme derived 
in the text. 

Using the above H-function with the computational ELB scheme described in 

Section 6.4 "works" in the sense that it stabilizes unresolved, high-Re simulations. It 

is not obvious, however, that Eq. (6.41) is the only (or even best) stabilizing function 

for LB. Crucially, an H-function for the most popular 3-D LB models (D3Q15 and 

D3Q 19) cannot be formulated within this framework. 

Given the form ofthe H-function in Eq. (6.41), we can expand the logarithms 

in to first order in £ ~ .f - .feq to obtain an asymptotic expression for a [28], 

(6.43) 

where 

62 



(6.44) 

If we likewise expand the expression for the effective viscosity [Eq. (6.16)] about 

(6.45) 

where v neq LZ:402 then we see that an explicit expression for the turbulent viscosity 
al 

IS 

(6.46) 

Not surprisingly, this expression involves non-equilibrium moments and is 

presumably related to velocity and/or pressure gradients. Regardless of the exact form 

of the H-function similar considerations apply, and similar results can be derived. 

Unfortunately, the sums ofEq. (6.44) cannot be performed as written. The exact 

nature of the ELB turbulence model at the macroscopic level remains obscure. 

The Boston School 

The approach of the Boston school [27] is somewhat more general, in that it 

allows for a larger range of lattice velocity sets. In contrast to the Zurich school's 

derivation, the LB model is not chosen a priori, but rather the appropriate isotropy is 

demanded of the lattice vectors. Thus, this approach automatically allows for 

consideration of any workable LB model. 
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The derivation is the same as the Zfuich group to Eqs. (6.25) and (6.26). At 

this point, rather than restricting the form of the second moment, the Boston school 

requires that the lattice velocities have the appropriate isotropy to recover the athermal 

Navier-Stokes equations, 

(6.47) 
i<l>l 

b 

<l>vi<ll~,,A,JI Iv,,JII 2 <D<D (6.48) 
i<l>l 

This equation both defines the = 's and restricts the velocity lattices under 

consideration. 

Using these definitions, the constraint equations can be written 

(6.50) 

6u = = T(a)S = O(B), (6.51) 

where we recall that p is the Lagrange multiplier associated with the conserved 

momentum. 

Solving order by order for the Lagrange multipliers, 

-__!__]I I 
- - = y== 0 (p) 2 

p = p = 2[= ~= ~l(p)'[pu (6.52) 

(6.53) 

and substituting into Eq. ( 4.31) 
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where the p 's and · 's are all evaluated at · ~ 1 (p) . 

A Chapman-Enskog analysis similar to that of Section 4.3 can be applied, 

provided that we note that here f/q itself must be expanded in p . The tedious but 

straightforward details are provided in Appendix A of [29]. The resulting 

hydrodynamic equations are the usual continuity equation and 

(6.55) 

where 

(6.56) 

(6.57) 

(6.58) 

Note that the form of the equations is correct provided that we choose g a 1 or 

(6.59) 

In order to proceed, Boghosian [27] takes the trace of Eqs. ( 6.4 7)-( 6.49) 

(6.60) 
ii'l 

(6.61) 

1 b 

a 4(a) a d(d a 2) sl rj~a:i.rcirci,yci,r' (6.62) 
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where dis the number of dimensions. Substituting these into Eq. (6.59), we get 

(6.63) 

Trying the power law solution 

(6.64) 

where B and r are constants, we find an equation for r 

(6.65) 

ioJ 

We can invert and integrate r; to obtain an expression for h; 

(6.66) 

where q a 1 a 1 I r and the "q logarithm" is defined as 

ln (z)a zJcq al. 
q 1 a q 

(6.67) 

In the limit that q a 1 (or y oo oo ), the q-log reduces to the usual natural logarithm, 

and the H-function in Eq. (6.66) reduces to the form derived by the Zurich group. 

The form for H in Eq. (6.66) is called the Tsallis entropy [30], a non-extensive 

generalization ofthe Boltzmann-Gibbs entropy. The Tsallis entropy generally 

describes non-ergodic systems (e.g., fractal phase space), or systems with anomalous 

diffusion. Its appearance in this context is unexpected, to say the least, since no such 

unusual dynamics appear in the macroscopic equations that arc modeled by LB. 
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6.6 Unified Entropic Lattice Boltzmann [31] 

The ansatz ofEq. (6.64) is in fact incorrect, as is the Tsallis entropy. The error 

lies in the failure to require a physical form for the pressure. The scalar pressure 

should not depend on u; that is, the second term in Eq. (6.58) must be set to zero, so 

Assuming a functional form for ri * 

and inserting these into Eqs. (6.47)-(6.49), 

b 

00 ri141CXW~0 oo6w1 ool2w2 oo8w3 CIF(a) oooo 0 14100 
iool 

h 

00 ril4l®i_rci.r ooc:Qw1 oo8w2 oo8w3GfgrrF(a) oorrroo 214100 
ioc] 

ooroacc. c. c c ooG:l4w? oo8w3 0oo ooo2w1 oo4w2 ool6w3 0r OFoao, 
I I,T I,T 1,y I,T - TTYT TTYT 

where rrrrr ool when all the indices arc the same and zero otherwise. I have 

(6.68) 

(6.69) 

(6.70) 

(6.71) 

(6.72) 

intentionally written this equation to be valid for all three commonly used 3-D LB 

models. In the case ofthe D3QI5, there are no J2 velocities, so w2 ooO, and likewise 

for D3Ql9, w, ooO. 

Isotropy requires that the last term in Eq. (6.72) vanish, so 

* It is not hard to show that this is the only consistent form. What follows is general. 
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Eqs. (6.59) and (6.68) then imply a condition on the weights, 

(6.74) 

and a differential equation for F 

(6.75) 

which we note is the same equation that appears in derivation of the Zurich school 

[Eq. (6.36)]. Recall that the solution is an exponential, so that the unique form for the 

H-function is that given in Eq. (6.41). Typically, one also requires the weights to be 

normalized 

(6.76) 

It remains to determine the weights. Eqs. (6.73), (6.74) and (6.76) are three 

equations for at most four weights. For the D3Ql5 and D3Ql9 models, there are only 

three weights (the fourth being zero), and so the solution is unique. The weights are 

precisely those used in the polynomial expressions for the equilibrium distribution 

functions, Table ll. In the D3Q27 case, the weights arc not unique, but the weights of 

Table II certainly do satisfy the relevant equations.* 

Lastly, inserting our ansatz for r; gives an expression for the oo; 

(6.77) 

Inserting these expressions into Eq. (6.54) gives the usual polynomial form for the 

equilibrium distribution function, Eq. ( 4.31 ), and the usual pressure and viscosity are 

recovered from Eqs. (6.57) and (6.58) 

P <X r I 3 , and (6.78) 

' It is worth noting that the D3Q21 model, with no speed I lattice velocities leads to a contradiction, and 
is therefore not a valid ELB model. 
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loo loo 
r oo-rx:r oo-oo 

3oo 2oo 
(6.79) 

In summary, by attempting to reconcile two different approaches to entropic 

LB we have produced several new results. First, the appearance of the Tsallis entropy 

in [27] is incorrect. By requiring the scalar pressure to be velocity-independent, we 

have shown that the H-function of the ZUrich school is in fact the unique discrete H-

function consistent with Navier-Stokes LB. We have also extended the analysis of the 

Zurich school to allow for entropic stabilization of the lower-bit 3D models, provided 

one uses the polynomial equilibrium in Eq. ( 4.31) with the weights given in Table II. 

6.7 Simulations of 3-D Navier-Stokes Turbulence 

In order to test the three entropically stabilized LB models, we examine freely 

decaying three-dimensional Navier-Stokes turbulence with periodic boundary 

conditions. The initial profile is given in [32] 

u,ox,y,zocx:u0 sinxOcos3y coszcx:cosy cos3zo 

oou/ffl, x,yC!k.Ju: CfjJ, z, xOO 
(6.80) 

Our simulations are carried out on a 1283 grid on 512 processors at two different 

(bare) viscosities, Thigh X l. 7 X 1 0"", and Tlow X 1. 7 X 10x4
• At the )ower viscosity, the 

simulation is under resolved, and the non-entropic runs were unstable. Plotted in 

Figure 16 are isosurfaces of the vorticity magnitude for t x 0, 500, I 000, 1500, 

produced using the 27-bit model. One can see the vortices being stretched, broken up 
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and finally damped by viscosity. This is the k-space cascade that Kolmogorov 

envisioned. 

LlJU:.!t - bliltil = U.:li:l~: l~o<o:Lracw 'ilt :J'J"lc ma< ( = ~LU) 

1GO 

0 
150 

0 II 

fJ 0 

1~[1 

11-IJ 

EiO 

0 
150 

1:::i0 

1JO 

>U 

0 
1::)0 

~"'-""'-., ., 
'~~ 

0 II 

II 0 

Figure 16. Surfaces of constant vorticity magnitude at times t = 0, 500, 1000 and 1500 for 
r < 1.7 <10<4

• At t < 0 the symmetry of the initial conditions is evident. As is typical of 
decaying turbulence, the vortices are stretched and eventually broken up. 

Though Figure 16 helps to establish an intuitive idea of how the flow evolves, 

we need more quantitative measures to compare the different models. We will 

examine the time evolution of several global quantities: the kinetic energy, E, 

•<[l 

"'II 

(6.81) 

the enstrophy, f , 
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f f ± f ff f ii J2 

dx 
space 

and the supremum of the x-component of the vorticity. 
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Figure 17. The evolution of the kinetic energy and enstrophy for the 15- and 27-bit models 
using both entropic and non-entropic methods at the higher viscosity. Non-entropic runs are 
denoted by "LB. " 

Max (·J (lC,t) at v= 1.7 X 1 0"3 

0"25 ,------,,----='-,'r-_--:E::cN=TR::-:0:-:r::IC-,.L""B--,----, 

0.2 03027 

- -- -- _03019 

.. ------------03015 

0.1~ 

0.1 

0.05 

0~--~--~--L---L--~ 

0 1000 2000 3000 4000 t 5000 

Max, .. ,{x,t) at v = 1.7 X 1 0"3 
025 ,---,---L2,,------,,------,----, 

- standard LB 

02 

0 15 

0.1 

0 05 

Figure 18. The maximum value of the x-component of vorticity as a function of time for the 
15- and 27-bit models using both entropic and non-entropic methods at the higher viscosity. 
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Figure 19. The evolution of the kinetic energy and enstrophyfor the 15- and 27-bit models 
using ELB at the lower viscosity. Non-en tropic runs are unstable at this viscosity. 

At the higher viscosity, the standard LB runs are stable. Figure 17 compares 

the evolution of the kinetic energy and enstrophy as computed using standard LB and 

ELB methods. For both the D3Q27 and D3Ql5 models, the kinetic energy decays are 

very similar, but the ELB predicts a faster decline in the enstrophy. This is 

presumably because in regions of high jmj , ELB increases the local viscosity, causing 

gradients to be damped out more quickly. Similarly, the peak in /mmax/ at t f 1000 is 

somewhat higher with the standard LB scheme. 

At the lower viscosity, the standard LB method is unstable, so we compare the 

different ELB models against each other. Again, the three models agree quite well on 

the kinetic energy evolution. However, in the D3Ql5 simulation, the enstrophy 

decays noticeably faster. Further investigation is warranted to determine the effects of 

the differing level of isotropy in the three models. 
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Chapter 7 

Moment Space Boundary Conditions 

The simulation results presented so far have been produced using periodic 

boundary conditions. Periodic boundary conditions are useful for testing numerical 

techniques, and provide insight into the universal physics that takes place in the bulk, 

far from boundaries. However, in order to have a CFD scheme that can be used in real 

world engineering applications, physically faithful boundary conditions are a 

necessity. 

There are two separate but related issues that arise when implementing 

hydrodynamic boundary conditions in mesoscopic models. Consider a LB node that 

lies exactly on a flat, nonporous, stationary wall as in Figure 20. After the streaming 

step, the populations that point into the fluid are unknown. In the D2Q9 model 

pictured there are three such undetermined populations; for 3-D models there are 

more. When one allows for curved (i.e., not grid-conforming) boundaries, the 

problem can be exacerbated. Any LB scheme must specify all populations that are to 

be streamed into the fluid domain. 

The fundamental problem when considering mesoscopic boundary conditions 

is the fact that in fluid flow problems one introduces boundary conditions at the 

macroscopic level. In the LBM, however, the primitive variables arc distribution 

functions, rather than macroscopic quantities. On solid walls, for instance, one 
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Figure 20. A generic 9-bit bottom boundary node. The red populations are undetermined 
and must be specified by the boundary condition treatment. In three dimensions, there are a 
larger number of unknown boundary populations. 

typically imposes so-called no-slip boundary conditions 

(7.1) 

Such a condition does not explicitly dictate the values of the boundary populations, 

but rather restricts the value of their moments. Any LB boundary scheme must 

provide a prescription for translating a macroscopic boundary condition into a set of 

populations. 

In the following section I will review a few of the boundary condition schemes 

that appear in the literature, and then introduce a new technique based on transforming 

to moment space in Section 7 .2. 
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7.1 Previous Boundary Condition Treatments 

Bounce-back 

The bounce-back method was originally developed from Lattice Gas Automata 

and is the most intuitive and widely used method for implementing velocity boundary 

conditions in the LBM. For no-slip boundary conditions, one simply reflects the 

outgoing populations back to the direction from which they came. 

Before 

~X 
2 

physical boundary 

After 

Figure 21. The populations at a single boundary node before and after implementing no-slip 
bounce-back boundary conditions. Note that the wall is located past the boundary nodes. 

This basic idea can be easily extended [33] to cases where the velocity at the boundary 

is not zero. For a bottom node, 

(7.2) 

(7.3) 

(7.4) 

where the populations are labeled as in Figure 20. 
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The bounce-back scheme is only first-order accurate, whereas the overall LBM 

is second-order accurate. Thus, as written, bounce-back will introduce errors that tend 

to degrade the quality of the solution. Fortunately, second-order accuracy can be 

restored with no effort by simply locating the physical boundary a distance ili away 
2 

from the last fluid node, as indicated in Figure 21. 

Zuo & He 

Zuo & He [34] introduced a boundary condition treatment in which the 

unknown populations are determined using the bounce-back of the non-equilibrium 

part of the outgoing populations. The outgoing populations themselves are not 

affected. 

To illustrate, consider the expressions for density and the velocity in the D2Q9 

model, 

(7.5) 

(7.6) 

(7.7) 

For a bottom node as depicted in Figure 20, J;, f 6 , f 7 and a are unknowns. We can 

eliminate the unknown populations by subtracting Eq. (7.5) from Eq. (7.7) to get 

There are still three unknowns, but only two remaining equations. 
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To close the system, Zuo & He assumed that the bounce-back rule is still valid 

for the non-equilibrium part of the normal distribution function 

(7.9) 

With .h determined, the other unknown populations can easily be determined 

(7.1 0) 

1 1 1 
lr, n Is n-ifz nIt ln.- w x n- w y 

2 2 6 
(7.11) 

(7.12) 

The same idea can be used to enforce pressure (density) boundary conditions. 

The general method begins with a number of unknown populations and one or more 

unknown hydrodynamic moments. We use Eqs. (7.5)- (7.7) (or equivalent) to 

eliminate the unknown moments. Bounce-back ofthe non-equilibrium part of the 

appropriate populations closes the system and allows one to determine the remaining 

unknowns. 

Chen, Martinez and Mei 

The boundary condition scheme of Chen, Martinez and Mei [35] is based on 

the extrapolation of populations into the wall, and as such is more in keeping with 

traditional finite difference/finite volume schemes. One simply introduces a set of 

populations in the wall interior, and, after the streaming step, uses a first-order 

extrapolation to determine them, 

(7.13) 
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where /;111 
, f 0 and l are the populations inside the wall, at the wall and the first 

layer in the fluid, respectively. 

The equilibrium populations at the boundary are calculated using the wall 

boundary conditions. The collision and streaming steps are carried out as usual. It can 

be shown numerically that this is a second order accurate scheme. It is also well 

suited to adaptation to curved boundaries. Generally speaking, however, 

extrapolations can render a simulation unstable as gradients increase, and so should be 

avoided when possible. 

Diffusive Boundary Conditions 

The last, perhaps most sophisticated LB boundary condition implementation is 

detailed in [36] and is called diffusive boundary conditions. It is more "physical," in 

the sense that it is a direct generalization of the way in which boundary conditions are 

imposed in continuous kinetic theory. 

Three assumptions suffice to determine the unknown populations uniquely: 

1. No mass flux through the walls; 

2. Detailed balance- in this case, if the outgoing populations are at 

equilibrium, then the incoming populations are as well; and, 

3. Memory loss upon reflection- the scattering probability is independent of 

the outgoing populations (hence "diffusive"). 

Note that condition number one implies that diffusive boundaries in this form cannot 

be used for inlets, where the velocity normal to the wall is nonzero. 
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When formulated in the continuous theory and discretized in the usual way, the 

resulting equations for the incoming populations are 

(7.14) 

(7.15) 

(7.16) 

where the equilibrium populations are evaluated with iiwall. 

Since diffusive boundary conditions cannot be used at an inlet, they are often 

used with a lower order scheme at the inlet. In the literature [28], diffusive boundary 

conditions are used at the walls and at the inlet the populations are simply set to their 

equilibrium values. Since this inlet treatment is lower-order accurate, the inlet is 

located as far from the area of interest as is practical. 

7.2 Moment Space Boundary Conditions 

The presence of boundaries in a viscous medium often creates sharp gradients 

in flow field in the immediate vicinity of the wall. As a rule, simulations are more 

stable with periodic boundary conditions than with wall boundary conditions; the 

source of numerical instabilities in fluid simulations is very often the boundaries. In 

this author's opinion, the extra freedom in implementing macroscopic boundary 

conditions at the mesoscopic level should be employed to reduce the ncar-wall meso-
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scale gradients as much as possible, while still imposing the correct macroscopic 

moments. 

The cleanest and most rigorous way to do so is in moment space. As alluded to 

in Section 4.1, a set of q populations in velocity space can be related via an invertible 

linear transformation to q populations in moment space. The first few moments are 

the hydrodynamic moments u , and oii . The stresses ti also appear in the 

momentum equation. The last three moments must be linearly independent, but are 

otherwise arbitrary. A simple choice is 

(7.17) 

(7 .18) 

where the 9-vector 

g i'.l1 1'.2 1'.2 1'.2 1'.2 4 4 4 4F. (7.19) 

"' xy N J 
X 

J)r forms a complete set of 

moments for the the D2Q9 model. 

The transformation matrix to go from the populations f to the moments M; 

(i.e., M; Of1Miffi) is thus 
j 
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~ 1 1 1 1 1 1 1 1 ~ 
b,O 1 0 !11 0 1 !11 !11 1 b. 

~ 0 1 0 !11 1 1 !11 !11!1 
b. 

m 1 0 1 0 1 1 1 b. 

Mb.~ 0 1 0 1 1 1 1 1 b. 
b. 

L¥) 0 0 0 0 1 !11 1 !11!1 

~ !12 !12 !12 !12 4 4 4 4~ 
f.() !12 0 2 0 4 !14 !14 4 b. 

~ 0 !12 0 2 4 4 !14 !14~ (7.20) 

Such a set of 9 linearly independent moments contains the same information as the 

original populations. This is simply a change to a more convenient basis. 

The non-hydrodynamic variables Nand J are sometimes called "ghost fields" 

because, although LB is constructed to evolve a , oiJ , the ghost fields "come along 

for the ride" and are evolved as well. Evolution equations for the non-hydrodynamic 

fields can be derived via the Chapman-Enskog procedure in the same way as for 

hydrodynamic fields. A key requirement for stability is to choose feq in such a way 

as to decouple the ghost fields from the hydrodynamic fields [37). With the usual 

equilibrium distribution and the definition of the vector gi in Eq. (7 .19), the fluid 

velocity will influence the evolution of Nand ] , but will not be influenced by them. 

In order to minimize lattice-level gradients, we impose boundary conditions in 

moment space. At a boundary node, M 2 b. uux and M 3 b. uuY are proscribed by the 

boundary conditions, and the other moments are simply moved over from the nearest 

fluid neighbor. For consistency, we require the equilibrium parts of M 4 , M 5 , and 

M 6 to be the components of fi<OJ 
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(7.21) 

The non-equilibrium parts of IT are also moved over from the nearest fluid node. In 

the case where there are multiple equidistant nearest fluid neighbors (e.g., a convex 

comer), we take an average of their non-hydrodynamic moments. 

We now have a complete set ofboundary populations in moment space, so we 

can apply Mfii to transform back to velocity space for the streaming step. The collide 

and stream processes take place as usual. 

By choosing the non-hydrodynamic fields to be the same as those of a 

neighbor, we have effectively chosen the set of populations that minimizes the 

population gradients with neighboring nodes while still giving the correct velocity at 

the wall. This process of implementing boundary conditions in moment space has not 

appeared in the literature to my knowledge. Several authors [38], [39] have performed 

the collision step in moment space, since this allows for a larger number of relaxation 

parameters which can be adjusted to maximize stability. However, the same 

procedure has not been adapted for the implementation of boundary conditions. 

7.3 Treatment of the Inlet/Outlet 

Inlets and outlets must be introduced in order to focus the simulation on a 

manageably sized region of flow. For laminar flow, at an inlet we often prescribe the 

velocity profile, and at outlets we require the derivatives of the velocity to vanish. 
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Thus, the inlets are handled in a manner similar to walls whereas the outlet is usually 

dealt with by simply performing a zero- or first-order extrapolation, 

(7.22) 

(7.23) 

where xout, xout[] and xourm are the outlet and the two nearest nodes. Note that a zero-

order extrapolation is simply moving the nearest fluid populations unchanged over to 

the outlet. 

Simply imposing the appropriate inlet velocity profile at the moment level as 

described in the previous section causes pressure waves to be reflected at the inlet. 

Since the inlet does not necessarily correspond to a real structure, but is created for 

computational convenience, any such reflection is clearly unphysical. This reflection 

arises from the use of the density of the neighboring nodes. When the boundary 

moments are transformed back into velocity space, the information on the neighboring 

density is mixed into all of the distribution functions, including those that stream back 

into the fluid domain. 

This pressure reflection can be quantified by considering an infinite stack of 

square columns. The geometry is shown in Figure 22. With the velocity field 

initialized to a uniform value in the x-direction, a density gradient exists near the 

column. This gradient will generate a pressure wave that propagates at the speed of 

sound c ~ ~ until it hits the inlcl. 
s ....;3 

Figure 23 shows the time evolution of the density at an observation point M 

near the inlet. The initial jump around t r 225 is the pressure wave originating at the 
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column making its way to the inlet. There is a second peak, however, which 

indicates that much of the pressure wave has been reflected by the inlet. This 

indicates that the handling of the inlet boundary conditions produces spurious 

reflections. 
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Figure 22. The geometry for testing the inlet treatment. 

1.018 

1.016 

1.014 

1.012 

~ 1.01 

~ 1.008 
"' "tJ 1.006 

1.004 

1.002 

1 

0.998 

0 

Density/Pressure Evolution for Different Inlet BCs 

~ ... 
'' .. '" ' I ".._ -. 

v ~ 
X: 

... 

50 100 150 200 250 300 350 400 450 

I• Extrapolated density • Density as in Zou & He] 

Figure 23. The evolution of the density/pressure at the point M with different inlet treatments. 
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A simple way to rectify the scheme is to calculate the density based on the 

known post-streaming boundary populations, as in Eq. (7.8). For the inlet in Figure 22, 

the density is 

I wn--IJ; n.t; TI.fs n2~ Tif7 TI.fsliD 
Inu 

X 

(7.24) 

With the density and velocity known, it is only the non-hydrodynamic variables that 

are shifted over from neighboring nodes. This scheme produces the density evolution 

shown by the pink line in Figure 23. The inlet reflection is largely eliminated. 

Similar considerations can be applied to the outlet. In order to compare the 

outlet boundary treatments, we consider a setup with a geometry that is a mirror image 

of that given in Figure 22. The monitoring point M is near the outlet and the initial 

velocity field is uniform and negative. With such a flow field, "outlet" is a bit of a 

misnomer, since the fluid is flowing away from it. 

As before a pressure wave is created which originates at the column and which 

serves to test the physicality of the outlet treatment. The density at the point M is 

monitored in Figure 24. The zero-order extrapolation, Eq. (7.22), does a better job of 

minimizing the reflection at the outlet than the first-order extrapolation Eq. (7.23). 
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Figure 24. The evolution of the density/pressure at the point M with different outlet 
treatments. 

7.4 Numerical Validation 

For linear equations with simple boundary conditions, a von Neumann stability 

analysis can quantify how quickly errors accumulate for a given set of parameters 

[40]. For nonlinear systems with more complicated boundary conditions, however, 

this analysis no longer applies and one must resort to numerical trial-and-error. Thus, 

to demonstrate the superior stability characteristics of the moment-space boundary 

conditions described in the previous section, we consider incompressible flow over a 

backwards facing step. This is a frequently used benchmark, as it is one of the 

simplest systems that exhibits flow separation. 

The geometry of the problem is depicted in Figure 25. The inlet velocity 

profile is parabolic, since this is the profile of fully developed channel flow. The 
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characteristic velocity is defined to be the average velocity across the inlet. No-slip 

boundary conditions are imposed at all walls, and the outlet is handled via the zero-

order extrapolation ofEq. (7.22). The size and shape of the domain are chosen to 

reproduce the experiment of Armaly [41]. 

The quantitative accuracy is determined by measuring the distance x, along 

the bottom wall at which reattachment occurs (see Figure 25). Since no-slip boundary 

conditions require the wall velocity to vanish, we determine the reattachment point by 

finding the fluid nodes in the first and second rows from the bottom at which ux 

switches sign. These values are then linearly extrapolated to the wall. 

Figure 25. The geometry of the backwards-facing step with typical streamlines. The 
reattachments length is Xr· In order to reproduce the experimental setup of Armaly, we choose 
the total length of the domain to be JOH2, the length of the inlet channel to be 2H and H1 = H 
=H/2. 

The variation of reattachment length with Reynolds number is shown in Figure 

27. The bounce-back results (orange squares, ncar origin) arc quite inaccurate, even 

though the runs were, strictly speaking, stable. The extrapolation-based scheme of 

Chen, Martinez and Mei is not included in Figure 27 since it was only stable for very 

small Re ( < 15 ). The moment space boundary conditions gave accurate results up to 

87 



Re < 700. Accuracy of2D-LB at this Re is an unexpected result, since three­

dimensional effects become apparent above Re < 400 as the inaccuracy of the 2D 

finite-difference results (yellow triangles) make apparent. 

The various boundary condition implementations differed markedly in 

their stability characteristics. The stability of backstep simulations depended only on 

a. The stability properties of various schemes are summarized in Table IV. The 

diffusive boundary conditions are not included in the stability comparison, because, 

although the simulations were very stable, the predicted reattachment lengths did not 

vary with Re - with a relatively short inlet channel, the low-order treatment at the inlet 

severely degraded the overall quality of the solution. 
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Figure 26. Snapshots of the velocity field for Re=300 at t = 0 (top), 3000 (middle) and 
40000 (bottom). Only part of the domain is shown here. The initial flow field is chosen to 
produce a non-impulsive start-up. At t = 3000, one can see transient vortices before settling 
down to the steady state by t = 40000. 
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Figure 27. The variation of reattachment length as a function ofRe using various numerical 
methods. The "CFD" results were produced using a finite-difference predictor-corrector 
method. The other numerical results (Ubertini[42] and, Chikatamarla [28]) are LB based. 
Note that the 2D CFD simulations under-predict the reattachment length, whereas 2D LB with 
moment space boundary conditions is more accurate. The LB simulations were only stable 
above Re=400 with moment space boundary conditions. 

Scheme Stability Threshold for a Corresponding Re 

Chen, Martinez & Mei 0.77 18 

Zuo &He 0.58 60 

Bounce-back 0.53 160 

Moment-space 0.506 800 

TABLE IV. The stability thresholds for backstep simulations using several boundary 
condition schemes. TheRe for a step height of 16 and a characteristic velocity of 0.1 are 
listed for comparison. 

90 



The new moment-space boundary conditions were stable to a viscosity of 

w < 2 < 1 0<3
, about five times smaller than any other scheme considered here. Much 

of the enhanced stability is probably a result ofbeing willing to alter all of the 

boundary populations when imposing boundary conditions, whereas the other schemes 

considered here only alter the boundary populations which point into the fluid (that is, 

the unknown populations). It is expected that in three dimensions, the moment-space 

boundary conditions will effect an even greater improvement in stability since there 

are a larger number of ghost fields that can be adjusted to minimize lattice gradients. 

91 



Chapter 8 

Conclusion 

The ideal parallelization and simplicity of the Lattice Boltzmann Method make 

it a promising alternative to traditional CFD approaches for the solution of fluid 

equations. There is already at least one for-profit company [43] that uses the LBM as 

the basis of their fluid solvers. That said, the LBM is still a very active area of 

research. In order to be widely adopted for engineering purposes, there are several 

drawbacks of the method that must be overcome. Foremost among these is numerical 

stability at low values of transport coefficients. We have examined several methods 

for enhancing the numerical stability ofLB schemes for the Navier-Stokes. 

First, we have examined numerically a simple scheme which renders the 

standard LBGK equation implicit. When tested on the two-dimensional Taylor vortex 

with periodic boundary conditions, it was found that it affected no significant change 

in the stability properties of the algorithm. Although this scheme has appeared several 

times in the literature in recent years, these results indicate that the extra complications 

introduced by this method are not justified by any increase in stability. 

Second, in attempting to reconcile two disparate approaches to entropically 

stabilized LB, we have shown that Eq. (6.41) is the unique stabilizing function for 

ELB and that it is applicable to all commonly used models. Three-dimensional 
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simulations of decaying Navier-Stokes turbulence demonstrated enhanced stability 

and indicate that ELB is a de facto sub-grid model. 

Lastly, we introduced a new method for implementation ofboundary 

conditions in LB. Numerical instabilities in high Reynolds number simulations very 

often originate at the boundaries, so an effective, stable method for imposing 

macroscopic boundary conditions in mesoscopic population space is essential. In this 

very general approach, the hydrodynamic boundary conditions are imposed in moment 

space, while the non-hydrodynamic boundary moments are chosen to reduce meso­

scale gradients in order to maximize stability. The accuracy of the method is verified 

using a common benchmark: flow over a backwards facing step. The stability is 

shown to be superior to other common boundary condition schemes. 

Several avenues of further investigation suggest themselves. Most 

obviously, moment space boundary conditions could be easily adapted to three­

dimensional models and/or to curved boundaries. Since there are a larger number of 

adjustable non-hydrodynamic moments in three dimensional models, it is expected 

that the improvement in stability would be even greater than for the two-dimensional 

results reported here. There arc several interpolation-based curved boundary schemes 

([44], [45]) that could be used to adapt moment space boundary conditions to more 

general (curved) geometries. 

Many other sub-grid viscosity models exist besides the Smagorinsky model 

mentioned in Section 6.3. For instance, there are variations where the Smagorinsky 

constant is adjusted in space and/or time [ 46], or subjected to different treatment near 

the walls [ 4 7]. There are also turbulence models based on renormalization group 
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theory, etc. It would be interesting to attempt to determine which, if any, of these 

models produce similar numerical results to the ELB. This would help elucidate the 

connection between the ELB sub-grid viscosity of Eq. ( 6.46) and the macroscopic 

fields (or their derivatives). 

Lattice Boltzmann methods are continuously being adapted to new systems of 

equations and to new applications. There are a host of issues that arise in mesoscopic 

models that do not appear in traditional CFD methods. Nonetheless, the simplicity 

and parallelizability ensure the LBM a future role in fluid simulations. The continued 

development of computational tools is increasingly crucial to the validation of 

theoretical models and the design of new experiments. As computational resources 

continue to grow at an exponential rate, the demand for such highly parallel CFD 

algorithms will continue to increase. 
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Appendix 

We wish to show that ""'cu""'to""' ;!; ~ Q';.Ma2 
';._ With the definition of "'=' ;~~ given 

in Eq. ( 4.30), we see that 

~ ~ (O) ~~ ~()) ~ r • ., u ::~-()) ~ w~u u ~ w~ r ... ~ r • ., ~ r • ., ~ u 
~~ ~ (tXtJ ~ ~t ~ r.vu ~ (L(,fCiJ CiJ ~~ CiJCiJ~t ~ (I) CiJ~I ~ LUfCiJ~t (L(,f (iJ ~ (L(,f (tJ~t (rJ 

0 0 3 ~· 3 0 () () (l 

""' ""' (A.l) 

Recall that we have adopted the ordering that >::;;
1 
w~ Qt;.Ma2 t;.. Since the entire 

0 

resistive equation is O(a), we can drop the first two terms and move a inside the 

derivative. The last two terms on the RHS can be simplified with the help of Eq. 

(4.28), 

(A.2) 

where ~ B rffi. indicates the same term(s) with w and OJ switched. Again, we 

replace ~~~ with the value given by Eq. (4.30) 

(A.3) 

Again, the first two terms are 0Wa2 
( and last term is proportional to ~ ~ ii , which is 

also O~Ma2 
( We are left with 

(A.4) 

where I have assumed that the derivatives of u are 0~ ~ or smaller. 
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