130 research outputs found

    Análise de malware com suporte de hardware

    Get PDF
    Orientadores: Paulo Lício de Geus, André Ricardo Abed GrégioDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O mundo atual é impulsionado pelo uso de sistemas computacionais, estando estes pre- sentes em todos aspectos da vida cotidiana. Portanto, o correto funcionamento destes é essencial para se assegurar a manutenção das possibilidades trazidas pelos desenvolvi- mentos tecnológicos. Contudo, garantir o correto funcionamento destes não é uma tarefa fácil, dado que indivíduos mal-intencionados tentam constantemente subvertê-los visando benefíciar a si próprios ou a terceiros. Os tipos mais comuns de subversão são os ataques por códigos maliciosos (malware), capazes de dar a um atacante controle total sobre uma máquina. O combate à ameaça trazida por malware baseia-se na análise dos artefatos coletados de forma a permitir resposta aos incidentes ocorridos e o desenvolvimento de contramedidas futuras. No entanto, atacantes têm se especializado em burlar sistemas de análise e assim manter suas operações ativas. Para este propósito, faz-se uso de uma série de técnicas denominadas de "anti-análise", capazes de impedir a inspeção direta dos códigos maliciosos. Dentre essas técnicas, destaca-se a evasão do processo de análise, na qual são empregadas exemplares capazes de detectar a presença de um sistema de análise para então esconder seu comportamento malicioso. Exemplares evasivos têm sido cada vez mais utilizados em ataques e seu impacto sobre a segurança de sistemas é considerá- vel, dado que análises antes feitas de forma automática passaram a exigir a supervisão de analistas humanos em busca de sinais de evasão, aumentando assim o custo de se manter um sistema protegido. As formas mais comuns de detecção de um ambiente de análise se dão através da detecção de: (i) código injetado, usado pelo analista para inspecionar a aplicação; (ii) máquinas virtuais, usadas em ambientes de análise por questões de escala; (iii) efeitos colaterais de execução, geralmente causados por emuladores, também usados por analistas. Para lidar com malware evasivo, analistas tem se valido de técnicas ditas transparentes, isto é, que não requerem injeção de código nem causam efeitos colaterais de execução. Um modo de se obter transparência em um processo de análise é contar com suporte do hardware. Desta forma, este trabalho versa sobre a aplicação do suporte de hardware para fins de análise de ameaças evasivas. No decorrer deste texto, apresenta-se uma avaliação das tecnologias existentes de suporte de hardware, dentre as quais máqui- nas virtuais de hardware, suporte de BIOS e monitores de performance. A avaliação crítica de tais tecnologias oferece uma base de comparação entre diferentes casos de uso. Além disso, são enumeradas lacunas de desenvolvimento existentes atualmente. Mais que isso, uma destas lacunas é preenchida neste trabalho pela proposição da expansão do uso dos monitores de performance para fins de monitoração de malware. Mais especificamente, é proposto o uso do monitor BTS para fins de construção de um tracer e um debugger. O framework proposto e desenvolvido neste trabalho é capaz, ainda, de lidar com ataques do tipo ROP, um dos mais utilizados atualmente para exploração de vulnerabilidades. A avaliação da solução demonstra que não há a introdução de efeitos colaterais, o que per- mite análises de forma transparente. Beneficiando-se desta característica, demonstramos a análise de aplicações protegidas e a identificação de técnicas de evasãoAbstract: Today¿s world is driven by the usage of computer systems, which are present in all aspects of everyday life. Therefore, the correct working of these systems is essential to ensure the maintenance of the possibilities brought about by technological developments. However, ensuring the correct working of such systems is not an easy task, as many people attempt to subvert systems working for their own benefit. The most common kind of subversion against computer systems are malware attacks, which can make an attacker to gain com- plete machine control. The fight against this kind of threat is based on analysis procedures of the collected malicious artifacts, allowing the incident response and the development of future countermeasures. However, attackers have specialized in circumventing analysis systems and thus keeping their operations active. For this purpose, they employ a series of techniques called anti-analysis, able to prevent the inspection of their malicious codes. Among these techniques, I highlight the analysis procedure evasion, that is, the usage of samples able to detect the presence of an analysis solution and then hide their malicious behavior. Evasive examples have become popular, and their impact on systems security is considerable, since automatic analysis now requires human supervision in order to find evasion signs, which significantly raises the cost of maintaining a protected system. The most common ways for detecting an analysis environment are: i) Injected code detec- tion, since injection is used by analysts to inspect applications on their way; ii) Virtual machine detection, since they are used in analysis environments due to scalability issues; iii) Execution side effects detection, usually caused by emulators, also used by analysts. To handle evasive malware, analysts have relied on the so-called transparent techniques, that is, those which do not require code injection nor cause execution side effects. A way to achieve transparency in an analysis process is to rely on hardware support. In this way, this work covers the application of the hardware support for the evasive threats analysis purpose. In the course of this text, I present an assessment of existing hardware support technologies, including hardware virtual machines, BIOS support, performance monitors and PCI cards. My critical evaluation of such technologies provides basis for comparing different usage cases. In addition, I pinpoint development gaps that currently exists. More than that, I fill one of these gaps by proposing to expand the usage of performance monitors for malware monitoring purposes. More specifically, I propose the usage of the BTS monitor for the purpose of developing a tracer and a debugger. The proposed framework is also able of dealing with ROP attacks, one of the most common used technique for remote vulnerability exploitation. The framework evaluation shows no side-effect is introduced, thus allowing transparent analysis. Making use of this capability, I demonstrate how protected applications can be inspected and how evasion techniques can be identifiedMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE

    Performant Software Hardening under Hardware Support

    Get PDF
    With a booming number of applications and end-users in the past decade, software security has been emphasized more than ever. Nonetheless, a consistent increase of security-critical bugs has been observed along the way, mainly due to the variety and complexity of existing software pieces. To mitigate the situation, software hardening in the daily development cycle typically involves three phases, including bug finding, runtime security enforcement, and fault analyses in case the prior steps have failed. Among the various software hardening techniques proposed, a considerable number of works have relied on available hardware support to achieve their goals. The reasons behind the noticeable trend are three-folded. First, the performance benefit from hardware can be substantial compared to a purely software-based solution. Second, compatibility and ease of use are also keys for more solutions to adopt hardware features besides the performance gain. Last, implementation with hardware support can consequentially present a smaller codebase, thus introducing less attack surface for attackers. In this dissertation, I present three hardware-assisted solutions for performant software hardening. The first one is PITTYPAT, a runtime enforcement for path-sensitive control-flow integrity. By utilizing Intel PT, it computes branch targets with points-to analyses in an efficient and precise manner. The second one is SNAP, a customized hardware platform that implements hardware primitives to enhance the performance of coverage-guided fuzzing. Given the program states originated from the existing CPU pipeline, our prototype on the FPGA platform enables a transparent support of fuzzing with near-zero tracing overhead. Finally, I will present a nested virtualization framework for fuzzing non-user applications, such as hypervisors. With a snapshot mechanism supported by the x86 virtualization extension and a customized kernel for fuzzing execution, our system demonstrates a 72x improvement on the fuzzing throughput compared to the prior solutions, and finds 14 zero-day bugs among the real-world hypervisors.Ph.D

    Selective Dynamic Analysis of Virtualized Whole-System Guest Environments

    Get PDF
    Dynamic binary analysis is a prevalent and indispensable technique in program analysis. While several dynamic binary analysis tools and frameworks have been proposed, all suffer from one or more of: prohibitive performance degradation, a semantic gap between the analysis code and the execution under analysis, architecture/OS specificity, being user-mode only, and lacking flexibility and extendability. This dissertation describes the design of the Dynamic Executable Code Analysis Framework (DECAF), a virtual machine-based, multi-target, whole-system dynamic binary analysis framework. In short, DECAF seeks to address the shortcomings of existing whole-system dynamic analysis tools and extend the state of the art by utilizing a combination of novel techniques to provide rich analysis functionality without crippling amounts of execution overhead. DECAF extends the mature QEMU whole-system emulator, a type-2 hypervisor capable of emulating every instruction that executes within a complete guest system environment. DECAF provides a novel, hardware event-based method of just-in-time virtual machine introspection (VMI) to address the semantic gap problem. It also implements a novel instruction-level taint tracking engine at bitwise level of granularity, ensuring that taint propagation is sound and highly precise throughout the guest environment. A formal analysis of the taint propagation rules is provided to verify that most instructions introduce neither false positives nor false negatives. DECAF’s design also provides a plugin architecture with a simple-to-use, event-driven programming interface that makes it both flexible and extendable for a variety of analysis tasks. The implementation of DECAF consists of 9550 lines of C++ code and 10270 lines of C code. Its performance is evaluated using CPU2006 SPEC benchmarks, which show an average overhead of 605% for system wide tainting and 12% for VMI. Three platformneutral DECAF plugins - Instruction Tracer, Keylogger Detector, and API Tracer - are described and evaluated in this dissertation to demonstrate the ease of use and effectiveness of DECAF in writing cross-platform and system-wide analysis tools. This dissertation also presents the Virtual Device Fuzzer (VDF), a scalable fuzz testing framework for discovering bugs within the virtual devices implemented as part of QEMU. Such bugs could be used by malicious software executing within a guest under analysis by DECAF, so the discovery, reproduction, and diagnosis of such bugs helps to protect DECAF against attack while improving QEMU and any analysis platforms built upon QEMU. VDF uses selective instrumentation to perform targeted fuzz testing, which explores only the branches of execution belonging to virtual devices under analysis. By leveraging record and replay of memory-mapped I/O activity, VDF quickly cycles virtual devices through an arbitrarily large number of states without requiring a guest OS to be booted or present. Once a test case is discovered that triggers a bug, VDF reduces the test case to the minimum number of reads/writes required to trigger the bug and generates source code suitable for reproducing the bug during debugging and analysis. VDF is evaluated by fuzz testing eighteen QEMU virtual devices, generating 1014 crash or hang test cases that reveal bugs in six of the tested devices. Over 80% of the crashes and hangs were discovered within the first day of testing. VDF covered an average of 62.32% of virtual device branches during testing, and the average test case was minimized to a reproduction test case only 18.57% of its original size

    TinyVisor: An extensible secure framework on Android platforms

    Get PDF
    National Research Foundation (NRF) Singapor

    A virtualisation framework for embedded systems

    Get PDF

    A Retargetable System-Level DBT Hypervisor

    Get PDF
    System-level Dynamic Binary Translation (DBT) provides the capability to boot an Operating System (OS) and execute programs compiled for an Instruction Set Architecture (ISA) different to that of the host machine. Due to their performance critical nature, system-level DBT frameworks are typically hand-coded and heavily optimized, both for their guest and host architectures. While this results in good performance of the DBT system, engineering costs for supporting a new, or extending an existing architecture are high. In this paper we develop a novel, retargetable DBT hypervisor, which includes guest specific modules generated from high-level guest machine specifications. Our system simplifies retargeting of the DBT, but it also delivers performance levels in excess of existing manually created DBT solutions. We achieve this by combining offline and online optimizations, and exploiting the freedom of a Just-in-time (JIT) compiler operating in a bare-metal environment provided by a Virtual Machine (VM) hypervisor. We evaluate our DBT using both targeted micro-benchmarks as well as standard application benchmarks, and we demonstrate its ability to outperform the de-facto standard QEMU DBT system. Our system delivers an average speedup of 2.21× over QEMU across SPEC CPU2006 integer benchmarks running in a full-system Linux OS environment, compiled for the 64-bit ARMv8-A ISA and hosted on an x86-64 platform. For floating-point applications the speedup is even higher, reaching 6.49× on average. We demonstrate that our system-level DBT system significantly reduces the effort required to support a new ISA, while delivering outstanding performance.Publisher PD

    SimuBoost: Scalable Parallelization of Functional System Simulation

    Get PDF
    Für das Sammeln detaillierter Laufzeitinformationen, wie Speicherzugriffsmustern, wird in der Betriebssystem- und Sicherheitsforschung häufig auf die funktionale Systemsimulation zurückgegriffen. Der Simulator führt dabei die zu untersuchende Arbeitslast in einer virtuellen Maschine (VM) aus, indem er schrittweise Instruktionen interpretiert oder derart übersetzt, sodass diese auf dem Zustand der VM arbeiten. Dieser Prozess ermöglicht es, eine umfangreiche Instrumentierung durchzuführen und so an Informationen zum Laufzeitverhalten zu gelangen, die auf einer physischen Maschine nicht zugänglich sind. Obwohl die funktionale Systemsimulation als mächtiges Werkzeug gilt, stellt die durch die Interpretation oder Übersetzung resultierende immense Ausführungsverlangsamung eine substanzielle Einschränkung des Verfahrens dar. Im Vergleich zu einer nativen Ausführung messen wir für QEMU eine 30-fache Verlangsamung, wobei die Aufzeichnung von Speicherzugriffen diesen Faktor verdoppelt. Mit Simulatoren, die umfangreichere Instrumentierungsmöglichkeiten mitbringen als QEMU, kann die Verlangsamung um eine Größenordnung höher ausfallen. Dies macht die funktionale Simulation für lang laufende, vernetzte oder interaktive Arbeitslasten uninteressant. Darüber hinaus erzeugt die Verlangsamung ein unrealistisches Zeitverhalten, sobald Aktivitäten außerhalb der VM (z. B. Ein-/Ausgabe) involviert sind. In dieser Arbeit stellen wir SimuBoost vor, eine Methode zur drastischen Beschleunigung funktionaler Systemsimulation. SimuBoost führt die zu untersuchende Arbeitslast zunächst in einer schnellen hardwaregestützten virtuellen Maschine aus. Dies ermöglicht volle Interaktivität mit Benutzern und Netzwerkgeräten. Während der Ausführung erstellt SimuBoost periodisch Abbilder der VM (engl. Checkpoints). Diese dienen als Ausgangspunkt für eine parallele Simulation, bei der jedes Intervall unabhängig simuliert und analysiert wird. Eine heterogene deterministische Wiederholung (engl. heterogeneous deterministic Replay) garantiert, dass in dieser Phase die vorherige hardwaregestützte Ausführung jedes Intervalls exakt reproduziert wird, einschließlich Interaktionen und realistischem Zeitverhalten. Unser Prototyp ist in der Lage, die Laufzeit einer funktionalen Systemsimulation deutlich zu reduzieren. Während mit herkömmlichen Verfahren für die Simulation des Bauprozesses eines modernen Linux über 5 Stunden benötigt werden, schließt SimuBoost die Simulation in nur 15 Minuten ab. Dies sind lediglich 16% mehr Zeit, als der Bau in einer schnellen hardwaregestützten VM in Anspruch nimmt. SimuBoost ist imstande, diese Geschwindigkeit auch bei voller Instrumentierung zur Aufzeichnung von Speicherzugriffen beizubehalten. Die vorliegende Arbeit ist das erste Projekt, welches das Konzept der Partitionierung und Parallelisierung der Ausführungszeit auf die interaktive Systemvirtualisierung in einer Weise anwendet, die eine sofortige parallele funktionale Simulation gestattet. Wir ergänzen die praktische Umsetzung mit einem mathematischen Modell zur formalen Beschreibung der Beschleunigungseigenschaften. Dies erlaubt es, für ein gegebenes Szenario die voraussichtliche parallele Simulationszeit zu prognostizieren und gibt eine Orientierung zur Wahl der optimalen Intervalllänge. Im Gegensatz zu bisherigen Arbeiten legt SimuBoost einen starken Fokus auf die Skalierbarkeit über die Grenzen eines einzelnen physischen Systems hinaus. Ein zentraler Schlüssel hierzu ist der Einsatz moderner Checkpointing-Technologien. Im Rahmen dieser Arbeit präsentieren wir zwei neuartige Methoden zur effizienten und effektiven Kompression von periodischen Systemabbildern

    Improved Kernel Security Through Code Validation, Diversification, and Minimization

    Get PDF
    The vast majority of hosts on the Internet, including mobile clients, are running one of three commodity, general-purpose operating system families. In such operating systems the kernel software executes at the highest processor privilege level. If an adversary is able to hijack the kernel software then by extension he has full control of the system. This control includes the ability to disable protection mechanisms and hide evidence of compromise. The lack of diversity in commodity, general-purpose operating systems enables attackers to craft a single kernel exploit that has the potential to infect millions of hosts. If enough variants of the vulnerable software exist, then mass exploitation is much more difficult to achieve. We introduce novel kernel diversification techniques to improve kernel security. Many modern kernels are self-patching; they modify themselves at run-time. Self-patching kernels must therefore allow kernel code to be modified at run-time. To prevent code injection attacks, some operating systems and security mechanisms enforce a W^X memory protection policy for kernel code. This protection policy prevents self-patching kernels from applying patches at run-time. We introduce a novel run-time kernel instruction-level validation technique to validate the integrity of patches at run-time. Kernels shipped with general-purpose operating systems often contain extraneous code. The code may contain exploitable vulnerabilities or may be pieced together using return/jump-oriented programming to attack the system. Code-injection prevention techniques do not prevent such attacks. We introduce a novel run-time kernel minimization technique to improve kernel security. We show that it is possible to strengthen the defenses of commodity general-purpose computer operating systems by increasing the diversity of, validating the integrity of, and ensuring the minimality of the included kernel components without modifying the kernel source code. Such protections can therefore be added to existing widely-used unmodified operating systems to prevent malicious software from executing in supervisor mode
    corecore