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A B S T R A C T

As the utilization of mobile platform keeps growing, the security issue of mobile platform

becomes a serious threat to user privacy. The current security measures mainly focus on

the application level and the framework level, with little protection on the kernel.Virtualization

technologies have been used in x86 platforms to protect the security of the kernel. With a

higher privilege than the guest operating system, the hypervisor can effectively detect and

defend against the malicious activity inside the guest kernel. In this paper, we build a

hypervisor framework called TinyVisor leveraging the ARM virtualization extensions to protect

the guest system security. The framework is transparent to the guest operating system and

applications without any code modification. On top of the framework, we propose a secure

module called H-Binder to protect the integrity and secrecy of the Binder transaction data

in Android system. We implement the prototype of TinyVisor with the H-Binder module and

evaluate the performance. The experiment results show non-significant performance loss.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, more than 95 percent smartphones, numer-
ous tablets and embedded devices are using ARM processors.
ARM processors have occupied most of the market share on
the strength of low energy consumption (Aroca and Gonçalves,
2012; Ou et al., 2012; Smith, 2008). At the same time, many
malwares have focused on the operating systems of mobile plat-
forms with the growing of the user group, such as Android (Arzt
et al., 2014; Mulliner et al., 2014; Wen-Xin et al.; You and Noh,
2011) and iOS (Spaulding et al., 2012). However, the security pro-
tection measures on ARM platforms are less mature than that
on x86 platforms. The security study on mobile platforms are

mainly focused on the application and framework level at
present. The attacks focusing on the system kernel which can
gain root privilege have great harmfulness, nevertheless, there
is no effective protection methods now. Therefore, how to
enhance the security of the system kernel on mobile plat-
forms has become an important problem.

Virtualization technology is a widely-used technology, which
has become a main technology in the cloud environment on
x86 platforms (Uhlig et al., 2005). Using the virtualization tech-
nology, multiple guest operating systems can run on the same
physical hardware and keep isolation with each other through
the interfaces offered by the hypervisor. Besides, virtualization
can be used in the protection of system security. As the
hypervisor has higher privilege level than the guest operating
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system (OS), the hypervisor can discover the malicious
behaviours in the guest OS and protect the OS from being com-
promised. Systems like Overshadow (Chen et al., 2010), InkTag
(Hofmann et al., 2013), TrustPath (Zhou et al., 2012), AppShield
(Cheng et al., 2015) are all the important researches in which
the virtualization technology is used to protect the system se-
curity on x86 platforms.

Inspired by the researches on x86 platforms, many research-
ers start to leverage virtualization technology to protect the
system security on ARM platforms. In 2011, ARM released ARM-
v7 CPU processor which added virtualization extensions and
security extensions (Architecture Reference Manual (ARMv7-A
and ARMv7-R edition), 2008). Thereafter, the hypervisors like
Xen (XenProject, 2013), KVM/ARM (Dall and Nieh, 2014) and
OKL4 hypervisor (Varanasi, 2010) were proposed using the
virtualization extensions on ARM. However, these hypervisors
focused on multiple systems, which added the trusted com-
puting base (TCB). Furthermore, Xen and KVM/ARM need a host
system to handle some important interrupts, which leads that
the TCB contains the code base of the host system. The bigger
the TCB is, the more vulnerable the system is. The TCB of OKL4
hypervisor is relatively small, but the structure is too simple
to add any additional functions.

In this paper, we propose TinyVisor, an ARM-based hypervisor
framework with a tiny TCB.TinyVisor offers a general hypervisor
framework leveraging ARM virtualization extensions. Users can
add virtualization functions as needed. TinyVisor focuses on
the single system and does not have a host system, which can
reduce the TCB efficiently. We have added a Binder transac-
tion protection module called H-Binder and tested the
performance of TinyVisor, which shows an insignificant
overhead.

This paper is extended from our original work which has
been presented at the 12th EAI International Conference on Se-
curity and Privacy in Communication Networks, SECURECOMM2016
(Shen et al., 2016). This paper structurally puts forward the
hypervisor framework, while the conference paper only intro-
duces the H-Binder module. Compared to the conference
version, this paper systematically introduces the structure of
TinyVisor, including booting, context switch and events han-
dling. Meanwhile, we add the formalized representation and
theoretical analysis in the H-Binder module of this paper. We
use the set operation to present the workflow and analyze the
security theoretically.

Broadly speaking, the main contributions of this paper are
as follows.

• We design and implement a bare-metal ARM hypervisor
called TinyVisor with a tiny code base (around 2000 SLOC)
at runtime. TinyVisor is only targeted for one guest system
and thus its TCB is considerably small. Meanwhile,TinyVisor
is an extensible framework, to which other functional
modules can be added.

• We propose two novel techniques which can be used in
hypervisors, i.e., issuance interception of alternative super-
visor call and thread level interception for supervisor call
return. These methods can be applied to TinyVisor or any
other hypervisors.

• We add a Binder transaction protection module called
H-Binder into TinyVisor to protect the Binder transactions

by ensuring the integrity and secrecy of data transmis-
sion. We also theoretically prove that the scheme can protect
the integrity of Binder transaction data flow.

• We build a prototype of TinyVisor with H-Binder and evalu-
ate the performance and compatibility with off-the-shelf
applications. The result shows that the overhead is
insignificant.

In the next section, we explain the background of recent
virtualization techniques introduced to ARM processors. In
Section 3, we describe the design of TinyVisor. We present the
novel techniques used in TinyVisor in Section 4 and a Binder
protection module in Section 5. A report on TinyVisor’s imple-
mentation and performance evaluation is in Section 6. We then
discuss various issues in Section 7 and related work in Section
8 with a conclusion in Section 9.

2. Background

The relevant background of virtualization techniques on ARM
platforms will be provided in the following content in order
to make the proposed design of TinyVisor much easier to
understand.

2.1. Hardware virtualization on ARM processor

The recent ARMv7-A architecture introduces virtualization ex-
tensions on ARM processors.The virtualization extension should
be used in combination with security extensions and the large
physical address extensions.

The ARM virtualization extensions are only applied in non-
secure state. ARM introduces a new processor mode called the
hyp mode which has a higher privilege level than the existing
non-secure svc mode. Accordingly, the original guest OS without
any modification and applications can still run in the exist-
ing svc mode and usr mode respectively. The structure of ARM
processor with the virtualization extensions and the security
extensions is depicted in Fig. 1.

There are two ways to enter the hyp mode. It is possible
to use an hvc asm instruction to actively enter the hyp mode
from the svc mode. Moreover, according to the configuration
of relevant registers, some specific events which come from
the usr mode or the svc mode can be trapped into the hyp
mode. ARM virtualization extensions also have some banked

Fig. 1 – Structure of ARM processor.
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registers.Take the Stack Pointer (SP) as an example, it is SP_usr
in the usr mode while it is SP_hyp in the hyp mode. Using
banked registers has an edge on improving the system per-
formance because it can avoid saving and loading the values
of the registers at the time of mode switch.

2.1.1. Configurable instruction trap
The configuration provided by ARM virtualization extensions
could help to decide whether an instruction is trapped into the
hypervisor or not. The different bits in the Hyp Configuration
Register (HCR) indicate different ways of the traps. For example,
when the Trap General Exception (TGE) bit is set to 0x1, all the
supervisor calls will be trapped into the hypervisor. There-
fore, the hypervisor can intercept the chosen event by
configuring the HCR, while other events will be handled as usual.
After the hypervisor intercepts the event, the Hyp Syndrome
Register (HSR) records the exception information. As shown in
Fig. 2, HSR[31:26] are the Exception Class (EC) bits, which can
directly illuminate the cause of the trap, e.g., 0x12 for a
hypervisor call.

2.1.2. Two-stage page table translation
ARM virtualization extensions use two-stage page table trans-
lation to achieve better control over the guests’ virtual
memories.The first stage page table is maintained by the guest
OS which translates the guest virtual address (VA) to the in-
termediate physical address (IPA). The second stage page table
which translates the IPA to the physical address (PA) is main-
tained by the hypervisor and keeps transparent to the guest
OS. Using this method, the memory access of the guest OS will
be in the control of the hypervisor through the appropriate con-
figuration of the property bits in the Stage-2 page table entries
(PTEs).

2.1.3. Virtual interrupt
The virtual interrupt is introduced by ARM virtualization ex-
tensions for the avoidance of simulating interrupt controller
because the complexity will increase significantly and it may
be trapped into the hyp mode frequently. Virtual interrupt is
supported by a new hardware component called virtual CPU
(VCPU) interface, which can be mapped into the guest OS
and used as the Generic Interrupt Controller (GIC) CPU inter-
face. Therefore, this interface can be used by the guest OS in
order to conform and clear the interrupt without being trapped
into the hypervisor. The hypervisor still needs to simulate
the interrupt distributor and trap all the guest accesses to
the interrupt distributor. This action will not lead to perfor-
mance degradation because the distributor is always accessed

to register the driver for special interrupts and route them
into special (virtual) CPU at booting time (or module-loading
time).

2.2. Comparison with x86 virtualization

Before the release of ARM virtualization extensions, the x86
platform (Intel VT-x as an example) has already supported
virtualization. The virtualization extensions on these two plat-
forms are distinct due to the differences of the CPU
architectures.The comparisons between these two virtualization
technologies will be expanded from different perspectives below.

2.2.1. Privileged mode
The hypervisor always has a higher privilege than the oper-
ating system in both ARM and x86 virtualization techniques.
In x86 virtualization, the hypervisor runs in the so-called root
mode. On the other hand, the hypervisor runs in the hyp mode
on ARM. However, the differences between them are funda-
mental. An x86 CPU in the root mode runs in a totally different
fashion as in the non-root mode. It has a full set of new reg-
isters independent of the non-root mode and owns another
set of privilege rings, from Ring 0 to Ring 3. In comparison, the
hyp mode is just a privilege extension of the svc mode, in the
same fashion as the svc mode extending the usr mode.
The ARM hypervisor can directly access the registers used in
the svc mode, while the x86 hypervisor can only access the
registers used in the non-root mode via accessing a data struc-
ture. Comparing Fig. 3 with Fig. 1, the root mode in x86 is more
similar with the security extensions in ARM.

2.2.2. Virtual memory
The virtualization extensions both in ARM and x86 introduce
an additional page table translation for the purpose of memory
virtualization. It is called the extended page tables (EPTs) in
x86; and two-stage page table translation in ARM. They both
translate the guest physical address (IPA in ARM) into the
machine physical address (PA in ARM). The structural differ-
ences mainly show in the format of the page table. The EPT
in x86 architecture uses existing page table format, while the
two-stage page table in ARM uses a new page table format.

xx not 00,  
or EC = 0 

EC not 0 

31 26 25 24 23 20 19 0 

x x 

0 0 COND CV 

EC ISS IL 

Fig. 2 – The format of HSR.

Fig. 3 – Structure of x86 virtualization.
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2.2.3. Virtual machine entry
There is a memory mapped area named Virtual Machine Control
State (VMCS) for one VM in Intel processors. To enter a VM, the
hypervisor will set the registers and launch a VM-entry in-
struction, such that the CPU discontinues the current execution
and switches into a different one. In ARM processors, enter-
ing into a VM is, to certain degree, a continuation of the
hypervisor execution as the hypervisor only needs to set the
Program Counter (PC) and perform a return.

2.2.4. Performance of hypervisor trap
The hypervisor is often used to intercept events in the guest
domain. Therefore, the cost of trapping to the hypervisor is
crucial to the performance of the whole system. According to
Dall and Nieh (2014), the context switch in ARM costs around
27 cycles, while the context switch in x86 costs between 600
to 800 cycles. However, the x86 CPU saves all registers used in
the guest domain, while an ARM CPU only banks some of them.
Therefore, the ARM hypervisor has to save those general reg-
isters if it needs to restore them.

2.2.5. Summary
In summary, ARM virtualization extensions are similar to x86
in the aspect of design concepts. However, the differences in
the implementation are mainly caused by the differences in
the aspects of instruction sets and platforms. Table 1 sum-
marizes the differences between ARM and x86 in virtualization
extensions.

2.3. TrustZone vs virtualization

The security extensions (aka TrustZone) of ARM were re-
leased earlier than the virtualization extensions, which have
been used in many security systems in practice and re-
search. We make a comprehensive comparison between these
two techniques.

2.3.1. Security
To fairly compare the security strength between security ex-
tensions and virtualization extensions, we consider the scenario
where the same code residing in the TrustZone and in the hyp
mode, and examine how they can be attacked from a mali-
cious kernel in the svc mode of the non-secure state.

For the code in the hyp mode, the access from the kernel
is blocked by the Stage-2 page tables whose PTEs are under
the control of the hypervisor and do not map any address used
by the kernel to the physical memory occupied in the hypervisor

space. Nonetheless, since the current ARM virtualization ex-
tensions do not support I/O virtualization, the malicious kernel
may launch Directional Memory Access (DMA) attacks to invade
the hypervisor space. For the code in the secure state, the access
from the non-secure state is blocked by the memory control-
ler regardless of the page tables in use.

2.3.2. Interception capability
By their design rationales, virtualization offers a greater ca-
pability than TrustZone in terms of intercepting events occurring
in the domain where the users run applications on top of the
OS. HCR and Secure Configuration Register (SCR) shown in Fig. 4
are used by the hypervisor and the TrustZone to specify which
events are to be intercepted, respectively.

Most guest events that can be intercepted by the TrustZone
can also be intercepted by the hypervisor, though the TrustZone
has the priority of intercepting the same event. Furthermore,
the hypervisor can intercept some guest events which cannot
be intercepted by the TrustZone, such as Stage-2 page fault.
The limitation of TrustZone’s interception capability makes it
ill-suited for introspecting the domain and in-domain protec-
tion, albeit powerful in isolation. That is the reason why
Hypervision (Azab et al., 2014) made remarkable changes on
the OS.

2.3.3. Cost of switch
The costs of switching to the secure state and the hypervisor
affect the performance of respective systems. Paolino et al.
(2015) made a comparison between them. The overhead of
switching to the hyp mode is about 1400 CPU cycles, while the
overhead of switching to the secure state is about 3700 CPU
cycles. The overhead using hypervisor is about 62% less than
using TrustZone.

2.3.4. Summary
To sum up, TrustZone can provide a more secure information
storage environment while virtualization is more flexible and
effective to handle and intercept the events. Therefore, com-
bining advantages of the two techniques can offer more secure
and effective protection for the system.

3. System design

3.1. Overview

Mainstream ARM hypervisors such as Xen and KVM/ARM are
burdened with a myriad of complicated tasks in order to
manage multiple virtual machines (VMs) on the platform. As
a result, they have a huge code base and many hypervisor call
interfaces, which seriously undermine their security and re-
liability. OKL4 hypervisor has a small TCB, but the functions
are too simple to perform complex control or add extensible
modules. In TinyVisor, we build a hypervisor framework with
a tiny code size, simple logic, and few interfaces to the kernel,
so that it exposes a minimal attack surface to upper layer soft-
ware.The hypervisor does not support multiple guest domains.
Instead, it is devised to act as a trust anchor when the OS

Table 1 – Comparison between ARM virtualization and
x86 virtualization.

Property ARM x86

Privileged Mode hyp mode root mode
Virtual Memory 2-stage PT EPT
Guest Identification TLB label TLB label
VM Entry directly VMCS
Simulation Support fast trap -
I/O - secure DMA
Hyp Trap 27 cycles 600–800 cycles
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becomes untrustworthy. Fig. 5 depicts the software architec-
tures of our platform and the one used by KVM/ARM.

In our implementation, we assume that a hardware based
trust chain is built by using loading time integrity check. Namely,
the TrustZone verifies the bootloader’s integrity while the
bootloader verifies the kernel image’s integrity.The data objects
and resources needed by the hypervisor initialization are pre-
pared by the static code as part of kernel initialization. The
hypervisor completes its initialization before the kernel launches
any process. In the end of hypervisor initialization, it isolates
itself from the kernel by configuring the Stage-2 page table so
that the kernel has no more control/access over the hypervisor
thereafter. We elaborate the details below with Fig. 6 depict-
ing the process.

3.2. Bootstrap and hypervisor loading

TinyVisor is assembled into the kernel image and is loaded by
the bootloader. After leaving the secure state, the bootloader
enters the hyp mode in the non-secure state (Step 1 in Fig. 6).
The bootloader loads the compressed hypervisor image and
kernel image into the main memory, and sets the HYP Vector
Based Address Register (HVBAR) to point to an exception vector.
It then switches to the svc mode and decompresses the kernel
image (Step 2). The decompression allows the bootloader to
locate the HYP stub. In Step 3, it then switches back to the hyp
mode by issuing a hypervisor call, runs the decompressed HYP
stub to configure HYP registers, and sets HVBAR for a new HVC
handler for the upcoming hypervisor trap from the kernel.

Fig. 4 – Comparison between HCR and SCR.

Fig. 5 – Comparison between TinyVisor and KVM/ARM
architectures. Shadowed boxes are trusted components.

Fig. 6 – Hypervisor and kernel bootstrap steps. Trusted
steps are in the shadowed regions.
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In Step 4, it then returns to the svc mode to start kernel
initialization. After the kernel completes its own address space
setup, it prepares all resources needed for spinning off the
hypervisor. In specific, the kernel allocates a continuous physi-
cal memory region as the hypervisor’s memory space which,
for example, stores the Stage-2 page table, the hypervisor’s code
and data sections. The kernel copies the uncompressed
hypervisor image into the allocated region and configures the
Stage-2 page table which defines an identity mapping from the
IPAs to the PAs using the long-descriptor translation table format
with three levels translation. The Stage-2 page table does not
map the memory region priorly allocated by the kernel for the
hypervisor because it is considered as the hypervisor space.
To avoid the exceptions due to the kernel’s benign accesses
to this region, e.g., due to memory management, the region
is declared as a DMA buffer such that the uncorrupted kernel
does not attempt to deallocate or access it. In the end, it issues
a hypervisor call to trap to the hyp mode (Step 5). The HVC
handler registered in Step 3 then takes control. The handler
configures several registers to isolate itself from the kernel and
to prepare for runtime event interceptions.To enable the Stage-2
translation, it sets HCR.VM to 0x1, and sets Virtualization Trans-
lation Table Base Register (VTTBR) to the physical address of
the root of the Stage-2 page table priorly set by the kernel. It
also updates HVBAR with the real HVC handler used by the
hypervisor for future hypervisor calls. Lastly, the handler returns
to the svc mode (Step 6) and resumes the kernel initializa-
tion. Note that, from this moment onwards, all kernel and user
space code execution use two-stage address translation. Hence,
the kernel is excluded from the runtime TCB, which signifi-
cantly reduces the TCB size. The hypervisor is capable of
protecting itself at runtime attacks from the kernel by virtue
of the Stage-2 page table.

Bootup security is ensured by the trust chain rooted at the
TrustZone. Namely, the TrustZone code verifies the bootloader
which in turn verifies the kernel image including the hypervisor
image. In addition, the hypervisor is launched before any
process starts.

3.3. Runtime interception handling

After the hypervisor finishes the configuration at boot time,
the preparation for hypervisor traps is the upcoming task
needed to complete during the runtime. The hardware does
not bank all registers during mode switches. Therefore, the
hypervisor has to save those unbanked registers by pushing
them into the stack before handling the events.

In TinyVisor, we use stack to save the values of different reg-
isters. For general registers, the hypervisor uses PUSH instruction
directly. Meanwhile, for banked registers, the hypervisor uses
MRS instruction to load their values and then PUSH them. Using
stack has several advantages as follows:

• Hypervisor does not need to allocate extra space for saving
the registers.

• Although hypervisor can read or write the banked regis-
ters with the MRS and MSR instruction respectively, using
stack can reduce the number of instructions as well as
improve the efficiency.

• For every register in the stack, it has an offset to the first
register. As a result, the hypervisor can access these regis-
ters as a structure conveniently. The relations between the
stack and the struct register structure are shown in Fig. 7.

Before the hypervisor returns to the upper mode with ERET

instruction, the hypervisor uses POP instruction to restore the
general registers and uses MSR instruction to restore the banked
registers.

After the status is saved, the hypervisor will start to handle
the events. TinyVisor mainly handles two kinds of intercep-
tions: hypervisor calls and prefetch/data aborts. As the basis,
the hypervisor reads the value of HSR[31:26] which is the EC
value in order to differentiate the trap causes.

Hypervisor Calls Handling. If the EC value equals to 0x12, it
means there is a hypervisor call exception. The R12 is used to
save the hypervisor call number and R0-R4 are for saving the
parameters needed. A hypervisor call issued from the svc mode
is shown in Fig. 8.

In the HVC handler, the hypervisor jumps to the corre-
sponding functions according to the call number in R12. Then
it will execute the hypervisor call function using the param-
eters saved in the stack.

Prefetch/Data Aborts Handling. The EC value is 0x20 (0x24),
representing the occurrence of a prefetch (data) abort. A prefetch
abort exception will be raised when the CPU attempts to fetch
an instruction from a page whose Stage-2 PTE is actually set
as non-executable. On the other hand, a data abort exception
will be raised when there is memory access permission vio-
lation. These two exceptions are the main methods for the
hypervisor to intercept needed events.

Fig. 7 – The stack and the struct of saved registers.

Fig. 8 – A hypervisor call issued from the svc mode.
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In the prefetch and data abort exception handlers, the
hypervisor reads the Hyp Instruction Fault Address Register
(HIFAR) and the Hyp Data Fault Address Register (HDFAR) to get
the address of exception respectively. Then the exceptions will
be handled by the hypervisor according to the registers saved
in the stack (such as SP_usr or SP_svc1).

3.4. Setting of 2-stage table

TinyVisor uses Stage-2 page table to implement memory
virtualization.The guest OS can maintain the Stage-1 page table
and translate the VAs to the IPAs, while the hypervisor is re-
sponsible for translating the IPAs to the PAs, which is totally
transparent to the guest OS. As shown in Fig. 9(a), there are
two fields of page attributes in the PTE, including upper page
attributes and lower page attributes. The XN bit in Fig. 9(b) is
the Execute-never bit which illustrates that this page cannot
be executed with the value set to 0x1. The HAP[2:1] bits in
Fig. 9(c) are Stage-2 Access Permission bits, whose configura-
tion is shown in Table 2. With the configuration of the PTEs,
the hypervsior can decide whether the memory is readable,
writable or excutable. Hence, the guest OS can only access the
memory which is set accessible by the hypervsior in advance.

4. Innovative technology

4.1. Issuance interception of alternative supervisor call

Leveraging the technique of ARM virtualization extensions, every
supervisor call will be routed into the hyp mode if the TGE bit

of the HCR is set to 0x1. Using this method, however, the
hypervisor traps all the supervisor calls instead of the speci-
fied supervisor calls we need and then simulates them.
Therefore, the above factors seriously affect the performance
of the system. In TinyVisor, a piece of hook code is applied to
intercept the appropriate supervisor calls. Hence some unre-
lated supervisor calls will not be trapped into the hyp mode.

4.1.1. The original supervisor call interrupt workflow
The original system uses the SVC instruction to issue a super-
visor call from the usr mode to the svc mode.The start address
of the interrupt vector table is stored at 0x00000000 or
0xFFFF0000 with the different setting of the V bit of the System
Control Register (SCTLR). Fig. 10 displays the content of the
vector table.

Regardles of Thumb instructions, a standard ARM instruc-
tion takes four bytes. Considering the offset of the SVC

instruction is 0x08, a supervisor call interrupt will execute the
code in Line 4. Running the code, the PC will be assigned with
the content stored at __vectors_start+0x1000, which is the su-
pervisor call handler’s entry. Then it will go on to run the
supervisor call handler.

4.1.2. Hook the supervisor call interrupt
TinyVisor inserts the hook code before the control flow gets
into the supervisor call handler’s entry. If the supervisor call

1 SP_usr means the Stack Pointer used in the usr mode, while
SP_svc means the Stack Pointer used in the svc mode.

Fig. 9 – The format of the Stage-2 PTE and its attribute fields.

Table 2 – Stage-2 control of access permissions.

HAP[2:1] Access permission

00 No access permitted
01 Read-only
10 Write-only
11 Read/write
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is needed, the hook code will issue a hypervisor call to trap
into the hyp mode. At the boot time, TinyVisor will allocate a
page in the kernel and place the hook code in it.Then TinyVisor
will set up the access entry of the Stage-2 page table so as to
make the page read-only from the svc mode.The content stored
at __vectors_start+0x1000 will be modified to the start address
of the hook. In this way, when the program issues a supervi-
sor call, the PC is assigned with the start address of the hook
code. Therefore the program will finally run the hook code. In
the hook code, it will first check the Register 7 (R7),which stores
the supervisor call number. If the supervisor call is the very
thing we need, it will issue an HVC instruction to get into the
hyp mode. After the hypervisor call returns, the PC is as-
signed with the original content stored at __vectors_start+0x1000
for running the original supervisor call handler. The intercep-
tion flow is shown in Fig. 11.

4.1.3. Fasten the hook
In order to assure that the hook code works correctly and will
not be bypassed,TinyVisor uses two methods to fasten the hook
code. On one hand, TinyVisor will ensure that the physical
address of the vector page cannot be remapped by the kernel.
On the other hand, the contents stored in the pages will not
be modified by the kernel.TinyVisor therefore uses the methods
as follows.

1. The value of the Trap Virtual Memory (TVM) bit of HCR should
be set to 0x1 due to the goal of intercepting the access to
SCTLR from the kernel as well as to the Translation Table

Base Register 1 (TTBR1)2. In this way, the hypervisor could
impede the change process to SCTLR.V bit and TTBR1.

2. TinyVisor uses TTBR1 to walk the vector page at the virtual
address 0x00000000 or 0xFFFF0000 which is decided by
SCTLR.V. The hypervisor will make any page used in the
walking process read-only in the Stage-2 page table. There-
fore,TinyVisor can guarantee the mapping of the vector page
from VA to IPA cannot be changed.

3. Similar to Step 2, TinyVisor will make the hook code page
walk read-only. Any modification on this mapping will lead
to a Stage-2 page fault which will be trapped into the hyp
mode.

4. Both the vector page and the hook code are set to be read-
only at the Stage-2 page table by TinyVisor in order to ensure
the contents of kernels without being altered.

Hence the hardware will position the vector page and hook
page to the predefined address once a supervisor call is gen-
erated. In addition, the hook code could get better security status
and ensure the essential readability because of the read-only
characteristic of the vector page and the hook page.

4.2. Thread level interception for supervisor call return

The supervisor call return is very different from the supervi-
sor call issuance because there will not be an exception when
the supervisor call returns. Therefore, it is necessary to inject
an exception for the purpose of intercepting the event. The
difficulty in realization is the generation of a thread-specific
event. The entire threads of the application will be impacted
by the process-level interception which is hard to be adopted.
For example, if a code page is set non-executable, a page
fault will occur for all the threads that try to execute the
code, because of the sharing code and data between threads
within a process.

This article demonstrates the methodology aimed at con-
trolling the correlative thread’s user space stack on account
of the theory that stacks of threads are non-shared. The intent
is to enable the hypervisor to trap the stack operation when
the supervisor call returns.

To begin with, an empty physical memory page will be
mapped by an untrusted module, which is called vault page in
order to engender the necessary exception. Besides, the page
is disused for the application and is unregarded in the system.

2 In ARM architecture, TTBR1 points to the root of the transla-
tion table used by kernel and the Translation Table Base Register
0 (TTBR0) points to the root of the translation table used by the
current running user process.

Fig. 10 – Exception vectors stored in the vector page at either 0x00000000 or 0xFFFF0000 based on SCTLR.V bit.

Fig. 11 – Illustration of hooking the supervisor call control
flow where the shadowed boxes refer to pages that are
read-only to the kernel and whose addresses cannot be
changed. Step 2 and 3 are executed when the intercepted
supervisor call needs to be trapped.
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For the purpose of blockage of the access and bringing the page
fault in the system call return, the Stage-2 page table of the
vault page is set inaccessible. It is significant to stress that the
vault page is compulsive to be mapped in the application’s
virtual address space. If not, the hypervisor is unavailable to
trap the exception caused by the vault page, which will be
trapped into the kernel.

Then, the hypervisor uses the aforementioned technique
to intercept the supervisor call.The original value of the thread’s
SP_usr will be stored in the hypervisor space, and then the
value of SP_usr will be updated to the address of the appli-
cation’s vault page. Due to the pass of the parameters and the
return address of the supervisor call are all using registers, the
kernel’s executive condition is not affected by the stack
manipulation.

Finally, when the supervisor call returns, the program will
read the stack of the thread which SP_usr points to. Because
the vault page which SP_usr points to is inaccessible, there
will be a page fault which will be then intercepted by the
hypervisor.

5. Binder transaction protection module

TinyVisor is an extensible hypervsior framework, which addi-
tional function modules could be applied to. Some virtualization
techniques like Overshadow (Chen et al., 2010), InkTag
(Hofmann et al., 2013), TrustPath (Zhou et al., 2012), AppShield
(Cheng et al., 2015) can be grafted into the ARM platform and
with the addition in TinyVisor.

In this section, a Binder transaction protection module called
H-Binder is put forward, which can protect sensitive Binder
transaction data against rootkit on ARM platforms. H-Binder
interposes on the Binder transactions ensuring the secrecy and
integrity of the transaction data against the rootkit’s mali-
cious accesses.

5.1. The binder framework

The features of Android platform which could offer the dif-
ferent resources management and the extended capabilities
for various user applications have been the bright spots in a
broad scope. In order to interact and collaborate with system
services, the Binder IPC is designed to complete the previous
task for user applications. Moreover, the Binder IPC also pro-
vides the integrations or cooperations inside themselves in order
to perform their given tasks. There is one good example that
one user application can get the data of the current location
by interacting with Android’s LocationManager.

The traditional client-server model is applied in the Binder
transactions, mainly including three parts.The role of the server
is a thread of a resource manager app. The part of the client
refers to a thread of a user application. Meanwhile, the char-
acter of the Binder driver is in the kernel. Android’s
ServiceManager can help the application searching the related
service to achieve the Binder transaction, which is likely the
function of a registry service. The interactions between client
and server threads occur in the Binder transaction with the

tips below. Another thing to emphasize is that several worker
threads are at the waiting states for dealing with the re-
quests in sleeping mode.

1) The thread of the client initiates a request to the server of
the service. It uses the supervisor call ioctl with correspond-
ing parameters and the Binder driver will handle it.

2) After receiving the request, the Binder driver stores the in-
formation of the thread of the client and then sends it to
the service thread.

3) The service thread is waken up and handles the request.
Then it passes the reply using the supervisor call ioctl to the
Binder driver.

4) The Binder driver loads the information of the client and
sends the reply back to the client thread.

The Binder framework owns a critical data structure named
the binder_transaction_data. Meanwhile, The user-space threads
will transmit it as a parameter of ioctl to the Binder driver. The
shadow areas depicted in Fig. 12 refers to the bytes without
changes from the honest kernel. Substantially, the method of
execution for receiving app is pointed out by code. Moreover,
data.ptr.buffer points to the buffer, which saves the pa-
rameters used by the method and corresponding objects. While
the data_size is the length of the data.ptr.buffer. In order
to achieve convenience of expression, the bytes of shadowed
boxes represent the transaction raw data in the entire article.

It is important to explain the concrete way of finding the
service application that will go into operation for a client ap-
plication, due to the relevance to certification process of Binder
transaction. The process of search also belongs to Binder
transaction.

The target field shown in Fig. 12 is a local handler deliv-
ered to the Binder driver to determine the target location. The
client will set target as 0 and add the corresponding text string
in Binder request in order to find a service application. The
request will then be transponded by the Binder driver to An-
droid’s ServiceManager with a handler returned to the client.
At last, the client will take the handler as the value of target
placed in Binder request, which is used for the transaction with
the service application.

Fig. 12 – Binder_transaction_data. The shadowed regions
refer to the Binder transaction raw data which are the
actual payload of a Binder communication.
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5.2. The approach

Even though encrypting the Binder raw data of the sending ap-
plication straightly is a direct and oversimplified way, it is
difficult to be correctly decrypted. If the recipient authentica-
tion would go through without examining, an inappropriate
decryption may reveal the plaintext to an forged target appli-
cation. Consequently, data security and the authentication of
applications are associated. The semantic gap issue may arise
potential difficulties in identifying the recipient thread for the
hypervisor. At run time, the practical destination of Binder trans-
action is under the control of Binder driver instead of user
threads. The data handled by the Binder driver may be tam-
pered by a rootkit, leading to a bad consequence of wrong data
transmission from Binder to an imposter.

Overall speaking, H-Binder does the essential interven-
tions in the four steps of the Binder data transaction, using
the techniques introduced in Section 4. When one step is in-
tercepted, the hypervisor will decide to save or restore the data
according to the status of sending or receiving the data.
However, the hypervisor does not know the relationship
between the Binder data and the Binder transaction based on
the intercepted data.Therefore, it is necessary for the hypervisor
to trace the data flow of Binder transaction, so as to execute
the saving or restoring properly, including the Binder trans-
action of searching a service. To be specific, when the client
issues a request, the hypervisor will save the data and replace
it with a random number as an ID, which is different from all
the current existing IDs. Once the request reaches the server,
the first step is to check the received request ID.The hypervisor
will carry on restoring corresponding client’s request if the ID
is correct. Hence, the hypervisor has the ability to know the
sending destination when the server’s worker thread issues
the reply. When the reply arrives at the client, the hypervisor
will check whether the current application is the target thread
in order to make the decision of recovering the relevant data.

5.3. Details

We elaborate the details of H-Binder by interpreting a protec-
tion cycle of a Binder transaction between a client app and a
server app.

5.3.1. Initialization
When a client app is launched, a kernel module will allocate
a vault page and pass the virtual address of this page to the
hypervisor.The hypervisor will then configure the Stage-2 page
table of the vault page to make it inaccessible. Moreover, the
hypervisor will record a pair ttbr addr, representing the value
of TTBR0 and the physical address of the vault page, respec-
tively. This page is used to intercept supervisor call return as
described in Section 4.2 and save the Binder data.

The hypervisor also maintains a Service Table whose entry
pairs a service description with the TTBR0 value of the corre-
sponding system service application, e.g., LocationManager. For
every user application, the hypervisor also maintains a Handler
Table whose entry pairs a handler value with the TTBR0 value
of the corresponding service. The Handler Table of a client app
is initialized with an entry 0, ttbr* where ttbr* is the TTBR0

of the ServiceManager.
The hypervisor establishes the Transaction Table shown in

Table 3 to save the data related to every Binder transaction such
that each intercepted event can be linked to a Binder trans-
action. In this table, ClientID represents the TTBR0 value of the
client app. SApp identifies the server app by using its TTBR0

value while SThread means the server’s worker thread by using
the virtual address of its stack base. ReqID and AckID save the
ID information of the request and reply as their respective iden-
tifiers. State records the present transaction state.

5.3.2. Runtime
H-Binder uses the techniques described in previous sections
to intercept the entire four steps of the Binder transaction. The
workflow of H-Binder proceeds in four phases as depicted in
Fig. 13 wherein a client app requests data from a server app
through a Binder IPC channel.

We can use a series of set operations to express the entire
process. We define the Transaction Table as a set S . At the ini-
tialization time, S = ∅. For each phase in Fig. 13, we define
corresponding operation � as follows:

Phase 1:

S

S

�1

0
ClientID SApp ReqID

ClientID SApp ReqID

, ,
, , , , ,= ∪ ∅ ∅{ }

Table 3 – The format of the Transaction Table.

ClientID SApp SThread ReqID AckID State

0x96206f40 0x960b4280 0x76ef2000 0x47aa6d75 0xb0aacdf4 2
… … … … … …

Fig. 13 – Overview of H-Binder work flow.
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Phase 2:

S

S

�2

1
ReqID SApp SThread

u SApp SThread ReqID

w y u SA

, ,
, , , , ,

, ,
= ∪ ∅{(

∃ ppp w ReqID y

u v w x y x ReqID

, , , ,
, , , , ,

0
0

∈( )})
∈ ={ }

S

S\

Phase 3:

S

S

�3

2
SThread SApp AckID

u SApp SThread x AckID

y u SApp

, ,
, , , , ,

,

= ∪ {(
∃ ,, , , ,

, , , , ,
SThread x y

u v w x y v SApp w SThread

1
1

∈( )})
∈ = ∧ ={ }

S

S\

Phase 4:

S

S S

�4

2
AckID ClientID

u v w x y y AckID

, ,
, , , , ,

∅
= ∈ ={ }( \

Next, we will explain these operations in details combin-
ing with the workflow.

Phase 1: User app sending request.

S

S

�1

0
ClientID SApp ReqID

ClientID SApp ReqID

, ,
, , , , ,= ∪ ∅ ∅{ }

Leveraging the techniques introduced in Section 4.1, the
hypervisor will intercept the client app’s ioctl call right after
the program is trapped to the kernel. If the second param-
eter of ioctl is BINDER_WRITE_READ, the hypervisor locates the
binder_transaction_data structure via the third parameter. Then
it executes the following steps:

1) It saves the request data in the vault page of the client app
and replaces it with a random number which is different
from the ReqID entries in the Transaction Table.

2) It inserts to the Transaction Table a new record T , where
T .ClientID is the current value of TTBR0; T .ReqID is the
generated random number in the first step; T .State is set
to 0 to indicate that a request is sent out. Based on the
target of the intercepted Binder structure, the hypervisor
looks up the client app’s Handler Table to retrieve the cor-
responding TTBR0 and assigns it to T .SApp. (An error is
returned if no matching record is found in the Handler Table.)
All other fields of the new entry are set as NULL. As a result,
T = ∅ ∅ClientID SApp ReqID, , , , , 0 .

Phase 2: Manager receiving request.

S

S

�2

1
ReqID SApp SThread

u SApp SThread ReqID

w y u SA

, ,
, , , , ,

, ,
= ∪ ∅{(

∃ ppp w ReqID y

u v w x y x ReqID

, , , ,
, , , , ,

0
0

∈( )})
∈ ={ }

S

S\

When the request is passed to the server app by the Binder
driver, the worker thread of the server app is wakened up to

handle it. Using techniques described in Section 4.2, the control
is trapped to the hypervisor before the request is processed
further by the thread. The hypervisor first checks data integ-
rity and verifies whether the intercepted app is an imposter.
It executes the following steps:

1) It looks up the Transaction Table for a record with a match-
ing record T such that T .ReqID equals to the request data.
The set S2 of the target T is u v w x y z x ReqID, , , , , ∈ =[ ]S .

2) If S2 = ∅, it means that no matching record is found so that
the hypervisor will return an error to the guest OS. Because
the ReqID is unique, there will be only one T S∈ 2

if S2 ≠ ∅. As assigned in Phase 1, T should be
ClientID SApp ReqID, , , , ,∅ ∅ 0 . In this phase, the hypervior

knows the current TTBR0 as SApp. Therefore, if the
current TTBR0 does not equal to T .SApp or T .State
is not 0, it drops this request and returns an error to the
manager because the incoming request’s integrity is
compromised.

3) If T satisfies with Step 2, the hypervisor loads the data from
the client’s vault page to recover its original Binder request,
saves T .SThread with SP_usr&0xFFFFE000 to record the
worker thread’s identity, and lastly sets T .State to 1 to in-
dicate that the request is received by the server. As a result,
T = ∅ClientID SApp SThread ReqID, , , , , 1 .

Phase 3: Manager sending reply.

S

S

�3

2
SThread SApp AckID

u SApp SThread x AckID

y u SApp

, ,
, , , , ,

,
= ∪ {(

∃ ,, , , ,
, , , , ,

SThread x y

u v w x y v SApp w SThread

1
1

∈( )})
∈ = ∧ ={ }

S

S\

After handling the request of the client app, the worker
thread of the server app returns a reply to the client
app. Using the hook in Section 4.1, the thread’s ioctl is
trapped to the hypervisor which then performs the following
steps:

1) It looks up the Transaction Table for a matching
record T such that T .SThread equals to the present
worker thread’s stack base address and T .SApp equals to
the present TTBR0. The set S3 of the target T is

u v w x y z v SApp w SThread, , , , , ∈ = ∧ ={ }S .
2) If S3 = ∅, the hypervisor will return an error because

no matching data is found. Using SApp and SThread,
an exclusive working thread can be determined.
Hence # S3 1( ) = if S3 ≠ ∅ . The only T S∈ 3 should be
ClientID SApp SThread ReqID, , , , ,∅ 1 . The hypervisor checks

whether T .State is 1. If not, it drops the reply and returns
an error indicating inconsistent states. Otherwise, it goes
to the next step.

3) It saves the data pointed to by data.ptr.buffer in
Binder_transaction_data structure into the vault page, and
replaces it with a random number which is different
from the AckID entries in the Transaction Table. It then
updates T by assigning T .AckID with the generated
random number and setting T .State to 2. As a result,
T = ClientID SApp SThread ReqID AckID, , , , , 2 .
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Phase 4: User app receiving reply.

S

S S

�4

2
AckID ClientID

u v w x y y AckID

, ,
, , , , ,

∅
= ∈ ={ }( \

When the Binder driver passes the server’s reply to the client
app, it wakes up the user’s blocked thread described in Phase
1. Using the techniques in Section 4.2, the control is trapped
to the hypervisor before the thread processes the reply. Similar
to Phase 2, the hypervisor checks both data integrity and the
recipient app’s authenticity before restoring the data. It runs
the following steps:

1) It looks up the Transaction Table to find a matching record
T such that T .AckID equals to the reply data. The set S4

of the target T is u v w x y z y AckID, , , , , ∈ ={ }S .
2) If S4 = ∅, the hypervisor discards the reply as no

matching record is found. As the AckID is unique,
there is only one T S∈ 4 if S4 ≠ ∅. T should be
ClientID SApp SThread ReqID AckID, , , , , 2 . It checks whether

the present TTBR0 is the same as T .ClientID and whether
T .State is 2. If either one fails, it returns an error because
the present application is not the intended destination of
the reply.

3) It loads the data from the server’s vault page, deletes T from
the Transaction Table, and passes the control back to the
user app. If T .SApp refers to the ServiceManager, the
hypervisor obtains the handler from the data and updates
the Handler Table of the client app. Note that if a suitable
permission model is in place, the hypervisor can also enforce
the access control policies before restoring data.

5.4. Analysis of security

We provide a series of analysis to explain the theory of data
protection during the Binder transaction. The analysis con-
tains three aspects: confidentiality, integrity and availability.

5.4.1. Confidentiality
The confidentiality of the Binder data is ensured by the data
replacement used by the hypervisor. The sensitive data in the
binder_transaction_data structure is replaced before it is passed
to kernel space in a supervisor call issuance. As shown in Phase
2 and 4, restoring is only performed after a successful authen-
tication of the recipient app. Therefore, only the intended
applications can access those data.

During the process of data transaction, the data is saved
in the fault page which is inaccessible to the guest OS because
of the Stage-2 page table. Any interception of the attackers can
only get the ID of the transaction which is not sensitive.

5.4.2. Integrity
In Binder transaction, the integrity mainly contains two aspects.
On one hand, the transaction data must be sent to the in-
tended receiver. On the other hand, the data cannot be modified
or reused by the attackers. Next, we will focus the analysis on
these two aspects mentioned above.

Recipient Authenticity. Recipient authenticity is about whether
a Binder request/reply is passed to the expected destination.

For the flow from the client to the server, the hypervisor ex-
tracts the expected recipient’s identity when the request is sent
out and verifies the recipient’s identity by checking its TTBR0
value when the request is delivered.

In the operation �, the parameter is a tuple p p p1 2 3, , . For
all the four phases, p1 and p2 can be read from the guest OS
by the hypervisor and p3 is generated by the hypervisor. To the
hypervisor, the tuple can be shown as input input output1 2, , . In
Phase 1, input1 and input2 are all used to add into the table. In
the other phases, input1 is used to search in the table, and input2

is used to check the correctness.Therefore, the hypervisor uses
input2 as a key. The parameter can be input key output, , .

Fig. 14 shows the workflow. In Phase 1, the two keys ClientID
and SApp are used as the input and the output is ReqID. In the
following phases, the input is the output of the previous
phase. The key has different values according to the receiver,
SApp for the server and ClientID for the Client. Using
operation � , the hypervisor develops a trust chain
ReqID SThread AckID Finish→ → → . If the target is wrong, the
TTBR0 will not match the corresponding key, which will lead
to an error returned. In this way, the hypervisor has suffi-
cient knowledge to decide the intended recipient for a Binder
reply from the server app.

Application Data Integrity. Binder data integrity is ensured
by T .ReqID and T .AckID as shown in Fig. 14. If the
attackers intercept the transaction data and modify it to destory
the integrity, such as modifying the value of code in
binder_transaction_data, the corresponding ReqID or AckID will
be changed which will lead to a mismatch.Therefore, a fraudu-
lent Binder request can be detected in Phase 2 and 4 before
the recipient app processes it.

The attackers can also reuse the intercepted transaction
Binder request to make the server run some functions again.
In H-Binder, the transaction’s state stored in T .State is used
to detect replay attacks. After H-Binder intercepts a request,
the value of T .State adds 1. Therefore, the value of T .State
is determined in different phases. If the replay attack happens
in the middle phases, the value of T .State will not match
which will lead to an error. If the replay attack happens in
the last phase, there will not be any corresponding entry
because H-Binder will delete the entry when the transaction
completes.

Fig. 14 – The workflow of the operation ⊳.
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5.4.3. Availability
The availability of H-Binder can be protected by the hard-
ware. The hyp mode is transparent to the guest OS so that the
rootkits do not know the existence of the hypervisor. There-
fore, the attackers cannot break nor stop H-Binder. H-Binder
can run correctly as long as there is no vulnerability in itself.
Furthermore, the small TCB can reduce the probability of
vulnerability.

6. Implementation and performance
evaluation

We have implemented a prototype of TinyVisor with H-Binder
running in the hyp mode. The runtime TCB of TinyVisor only
consists of 1813 SLOC (1144 lines of C code and 669 lines of
asm code).

The experimental environment is Linux Ubuntu 14.04 on
a PC with an Intel(R) Core(TM) i7-4790 CPU @3.6GHz proces-
sor and 16 GB main memory. In this platform, we run ARM
FastModels (ARM, 2011) with FVP which emulates a tablet with
a Cortex-A15x1 processor.TinyVisor runs in the emulated tablet
as a bare-metal hypervisor. On top of the hypervisor, it runs
Android 4.13 with a Linux kernel 3.9.0-rc3+. Due to the emu-
lation, we do not measure the absolute time in our experiments.
Instead, we use the CPU cycles to evaluate TinyVisor
performance.

6.1. Evaluation of TinyVisor

Testing the overhead of running the guest system is the most
significant evaluation. Several kinds of Java benchmarks which
will be introduced in detail in the following contents are used
because the running guest system is Android. If the over-
head in Android is insignificant, the result will prove the
acceptable overhead incurred by TinyVisor.

In our implementation, each system call triggers the hook
module to check R7 and TTBR0. Hence, we expect TinyVisor to
make a negative performance impact on the Android system
as a whole. To obtain its actual performance drop, we use
SciMark 2.0 (Pozo and Miller, 2004) and CaffeineMark 3.0
(Pendragon Software Corporation, 1997) as the Java
Microbenchmark to test the running speed of Java programs
in the system.

Table 4 and Fig. 15 shows the two benchmark results re-
spectively. In Table 4, the numbers in the table are the scores
of different tests in different environments. The higher score
means the better performance.The composite score of Android
is 1.0913 while the score of TinyVisor is 1.0687. Meanwhile in
Fig. 15, the taller bar stands for the better performance. The
“Overall” bars show the comprehensive benchmark scores. The
average score of Android is 104 while the score of TinyVisor
is 102. Combining the two results, the overhead of TinyVisor
is only about 2%.

CAVEAT. The performance overhead is to intercept all super-
visor calls. Nevertheless, the issuance interception of alternative
supervisor call described in Section 4.1 allows to intercept
needed supervisor calls in order to improve the overhead ul-
teriorly. It can be further extended to select the critical
applications and services to protect.

6.2. Evaluation of H-binder

Because TinyVisor framework only intercepts the supervisor
calls without actually handling them, the overhead is very tiny.
With H-Binder,TinyVisor can act the real protection. In this part,
we then evaluate the overhead of H-Binder.

6.2.1. Component cost
The overall time overhead caused by H-Binder is the sum of
the CPU time for context switches due to the hypervisor in-
terceptions or hypervisor calls and the CPU time spent by the
hypervisor’s execution. To measure the former cost, we evalu-
ate the turnaround time of an empty hypervisor call which
causes the CPU to enter the hyp mode and return immedi-
ately. Our experiments show that the average cost for a round-
trip mode switch cycle in a hypervisor call is about 96 cycles.

We also measure the CPU time spent in each of the four
phases described in Section 5. The average CPU cycles spent
in each of the phases are listed in Table 5 where the transac-
tion involves 100 bytes returned by the server application. In
general, the hypervisor spends 854 CPU cycles for involving in
sending the Binder data, and spends 630 cycles for involving
in receiving the Binder data.

As shown in Section 5, a Binder IPC upon H-Binder in-
volves 4 traps into the hypervisor.Therefore, the overall H-Binder

3 Because of the limitation of the environment, we use an old
version instead of Android 7.0. But the evaluation results won’t be
affected too much because the interceptions mainly aim at the
kernel.

Table 4 – SciMark 2.0 benchmark.

Scimark2 Android TinyVisor

Fast Fourier Transform 0.1427 0.0804
Jacobi Successive over-

relaxation
2.6077 2.5633

Monte Carlo
Integration

0.2492 0.2456

Sparse Matrix Multiply 0.9773 0.9754
Dence Lu Matrix

factorization
1.4795 1.4789

Composite 1.0913 1.0687

Fig. 15 – CaffeineMark 3.0 benchmark.
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cost for protecting a Binder transaction is the sum of mode
switch costs and the hypervisor’s processing time, which
amounts to 3353 CPU cycles. For a mobile phone with 1GHz
CPU frequency, the time latency for one Binder transaction is
about 3.4µs, which is very tiny.

6.2.2. Application level performance evaluation
To measure the performance impact of H-Binder on Android
applications using the Binder, we measure the time spent for
completing a task, e.g., to acquire the current location. We use
the open-source application RMaps4 as the client requesting
for the tablet’s location data. The program is instrumented to
count the CPU cycles for invoking the LocationManager’s
getLastKnownLocation() function which runs Binder trans-
actions with Android’s LocationManager. We conduct the
experiment in two different environments: the native Android
and the Android running on TinyVisor with H-Binder. Note that
both the environments are hosted by ARM FastModels emu-
lation. The results are presented in Table 6 below.

It shows that H-Binder incurs about 9000 CPU cycles to get
the location more than in Android. This relative overhead does
not affect the whole application’s performance because the ab-
solute time delay is insignificant. For a mobile phone with 1GHz
CPU frequency, the time latency incurred by H-Binder is less
than 9µs. Note that the geographical location is normally ob-
tained in every one second or every three meters the device
has moved.Therefore, supposing that the phone is on a running
car moving with the speed of 15m/s, the shortest time inter-
val of location update is 67 ms.The latency of 9µs is only around
0.01% compared to the time interval of location update. Hence
the delay caused by H-Binder does not affect the location soft-
ware’s performance.The delay is also imperceptible for human
users as the shortest time interval a human perceives is roughly
100 ms (Shneiderman, 1998).

6.2.3. Time cost for different sizes of transferred data
We then analyze how the size of the transferred data affects
the overhead. We implement two Android applications using
Binder IPC to transfer data between them. One app registers
itself to Android’s ServiceManager as the service providers while
the other acts as a client. We vary the size of the data the server
application returns and evaluate the turnaround time of getting

the data, including the time spent for the Binder channel setup.
Table 7 and Fig. 16 report the experiment results in two dif-
ferent platforms.

Fig. 16 turns out that the time cost rises linearly as the size
of data increases. Using linear fitting, the equation between
the overhead (Y) and the size of the transaction data (X) is
Y X= +92 5 56 4. . . The 92.5 CPU cycles overhead per byte con-
tains the overhead for output as well. As the size of data is not
very large when the data is transferred in the Binder directly,
the overhead of H-Binder in a whole Binder transaction will
be less than 7%. If the situation of large data size occurs, the
Ashmem will be used, which will be discussed in Section 7.1.

7. Discussion

7.1. Binder transactions with Ashmem

For bulky data communication between applications, Binder
with Anonymous Shared Memory (Ashmem) is used instead
of wrapping the data within the binder_transaction_data struc-
ture. In a nutshell, the typical workflow of Binder with Ashmem
is as follows. The sender app first maps a buffer in its virtual
address space as a shared memory in the form of a device file.
It then issues a Binder command to the Binder driver with a
file descriptor referring to the shared area. At the receiver’s end,
the receiver app also maps the shared area into its own file
descriptor assigned by the Binder driver. After both applications

4 https://github.com/ramnathv/rMaps.

Table 5 – The number of CPU cycles spent in four phases
of a Binder transaction, where the Binder request has 48
bytes and the Binder reply has 100 bytes.

Phase 1 Phase 2 Phase 3 Phase 4

712 607 996 654

Table 6 – Turnaround time (in CPU cycles) needed to
obtain the location in different settings.

Android TinyVisor

Read Location 68,577 77,344
Overhead - 8767

Table 7 – A whole binder transaction time in CPU cycles
with different sizes of transferred data.

Bytes Android TinyVisor Overhead

4 94,848 95,170 0.3%
8 95,070 95,781 0.7%
12 95,670 96,812 1.2%
20 96,070 96,960 0.9%
40 97,196 102,871 5.8%
80 100,349 107,118 6.7%

Fig. 16 – The overhead with different data sizes and linear
fitting.
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obtain their respective file descriptors, they exchange data by
accessing the shared memory using file operations.

The H-Binder module in Section 5 cannot be directly applied
to Binder transactions with Ashmem, since the application data
is not transported by the kernel driver using the Binder data
structure. We propose to make a few changes on H-Binder in
order to protect shared memory based Binder IPC. The
hypervisor still intercepts ioctl as in the previous scheme. To
determine whether a Binder call uses Ashmem or not, the
hypervisor locates the flat_binder_object structure via the pa-
rameter and checks whether the structure’s type field is set
as BINDER_TYPE_FD. If Ashmem is in use, the hypervisor records
the file descriptors used by both the client and the server. It
then intercepts all file read and write operations of the client
and the server. For write operation, it encrypts the data to write
before trapping to the kernel while for the read operation, it
decrypts the ciphertext in the shared memory. Since our hook
has the ability to filter system calls of target processes, the pro-
posed approach does not intercept all file operations in the
platform. The implementation for protecting Ashmem is left
for our future work.

7.2. Binder commands

Android’s Binder framework defines five ioctl commands
related to the Binder. The most important command among
them is BINDER_WRITE_READ, which carries a series of Binder
commands and data. The other four commands are used to
instruct the kernel to manage the threads and do not entail
any data exchanges between processes. For instance,
BINDER_SET_IDLE_TIMEOUT sets a timer for the waiting
thread. Hence, H-Binder only escorts ioctl calls with
BINDER_WRITE_READ.

Most types of Binder commands issued via BINDER

_WRITE_READ are for book-keeping purposes. For instance,
bcINCREFS instructs the Binder driver to increase the object
reference.These commands do not carry application-level data.
Although attacks on those operations do harm the success or
performance of a Binder transaction (which is out of our scope
of protection), they do not compromise secrecy or integrity of
exchanged application data. In the Binder framework,
BC_TRANSACTION, BC_REPLY, BR_TRANSACTION and BR_REPLY

are the only four Binder commands used for IPC and are duly
monitored and safeguarded by H-Binder as shown in Section
3.

7.3. Future work

TinyVisor provides an extensible hypervisor framework, which
can add different modules to achieve different protection. In
our future work, we will enrich its functions with different
modules.

1) Private Information Protection. As people become increas-
ingly dependent on mobile devices, a large amount of private
information is saved in the mobile devices. To protect this
information, the system must protect all the paths includ-
ing input, transaction, storing and output. H-Binder provides
the protection of data transaction, but the other paths are

also needed to be protected, which is the part of our future
work.

2) Trusted User Interface. Current TinyVisor can only achieve
aptotic functions. Any turn on/off of some function needs
to be recompiled. In our future work, we will design a trusted
user interface, which is used for users to control the
hypervisor.

3) The Combination with TrustZone. In TinyVisor, we use
TrustZone to check the integrity of the hypervisor image.
We have compared the two techniques in Section 2.3. In our
future work, we will combine TinyVisor with TrustZone to
build a more secure and efficient system protection frame-
work. TrustZone is used to save the keys and the encryption
programs, while the hypervisor is responsible for manag-
ing the guest OS and intercepting the exceptions.

8. Related work

Early research on virtualization technology is mainly focused
on full-virtualization and para-virtualization technologies due
to the lack of the support on hardware virtualization. QEMU
(Bartholomew, 2006; Bellard, 2005) is a well-known study using
full-virtualization technology (Suzuki and Oikawa, 2011). QEMU
can run an unmodified OS using instruction simulation. It sup-
ports x86, ARM, MIPS and many other platforms. Meanwhile,
it can achieve the simulation across the platforms, such as
running Windows on ARM platform. Oh et al. proposed ViMo
(Oh, 2010), which is a hypervisor running in the mobile system
based on full-virtualization technology. Compared to the
hypervisors using full-virtualization technology, TinyVisor has
a distinct advantage on the overhead because TinyVisor does
not need to simulate the instructions.

Because of using binary translation (Sites, 1993) and in-
struction simulation technologies, the overhead of full-
virtualization technology is significant. On the contrary, the
performance of para-virtualization and hardware-assisted
virtualization technologies improves apparently. Before the ap-
pearance of the hardware virtualization extensions, researchers
focused on para-virtualization technology and proposed many
technical frameworks, such as Xen on ARM (Hwang et al., 2008),
KVM for ARM (Dall and Nieh), OKL4 microvisor (Heiser and
Leslie, 2010) and so on. Many studies on para-virtualization
(Ding et al., 2012; Lee et al., 2008; Li, 2011; Park et al.; Rossier;
Zhao, 2011; Zhong, 2013) are based on these frameworks. Com-
pared to the studies using para-virtualization, TinyVisor has
a similar running overhead to them. However, the guest system
running in TinyVisor does not need to be modified, while using
para-virtualization needs to alter the guest systems.

After ARM virtualization extensions were proposed, many
groups proposed the virtualization frameworks based on ARM
virtualization extensions. Xen (XenProject, 2013) added the
support to ARM virtualization extensions in Xen4.3.0. Lengyel
et al. proposed a multi-tiered security architecture (Lengyel et al.,
2014) for ARM via the virtualization and security extensions.
KVM/ARM (Dall and Nieh, 2014) leverages the functions in Linux
kernel to manage the guest OSes. Paolino et al. proposed T-KVM
(Paolino et al., 2015) based on KVM/ARM, which includes four
independent components: ARM virtualization extensions,
TrustZone, TEE interface and SELinux module. Compared to
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TinyVisor, each of Xen and KVM has a host VM which leads
to a huge TCB. Varanasi exported OKL4 into the hyp mode to
achieve a hypervisor (Varanasi, 2010). However, the hypervisor
is too simple to be extended, while TinyVisor leaves the inter-
faces to be extensible.

There are also many researchers using hardware-assisted
virtualization technology to solve security problems. Yang et al.
proposed DroidVisor which was a lightweight monitor for
Android kernel protection. DroidVisor could check the module
loading and protect the integrity of the key objects. It could
also check the hidden modules and processes. Horsch et al.
used hardware-assisted virtualization technology to build a
hypervisor (Horsch and Wessel, 2015) for tracing the control
flows of programs and used the hypervisor to protect the control
flows based on page-table hashing. Rordholz et al. proposed
XNPro (Nordholz et al., 2015), which protected the OS from the
code injection attack using the strict limit on the execution
of the kernel codes. Compared to TinyVisor, all the schemes
above were individual but not modularized. As a result, these
schemes couldn’t work together very well.

H-Binder addresses the security of the Binder framework.
A brief study on the technical details of Binder mechanism and
its security weaknesses was described in (Rosa, 2011). More
recent attacks (Artenstein and Revivo, 2014) presented in the
Black Hat conference further demonstrated the cruciality of
Binder security. It was shown in Artenstein and Revivo (2014)
that a malware which controlled the Binder framework by at-
tacking the ioctl system call could access and manipulate a
variety of sensitive data, including keystrokes, in-app data and
SMS messages. ComDroid (Chin et al., 2011) proposed a tool
to detect the vulnerabilities in Binder transaction, but it could
not provide a runtime protection. AppFence (Hornyack et al.,
2011) was built based on TaintDroid (Enck et al., 2010), using
dynamic taint analysis to track the spread of the taint data.
H-Binder can combine with this method to get stronger ability.
However, TaintDroid can only protect the sensitive data, while
H-Binder can also protect the RPC with the Binder transactions.

9. Conclusion

We have proposed TinyVisor which leverages the recent ARM
hardware virtualization techniques to protect the guest OS.
TinyVisor can intercept the supervisor calls and leave differ-
ent interfaces for extension. We also propose a module called
H-Binder for TinyVisor to secure the Binder transaction in
Android. H-Binder ensures secrecy and integrity of the sensi-
tive data transported between two application threads
interacting via Binder IPC. We have implemented a prototype
of TinyVisor with H-Binder on ARM FastModels. Our experi-
ments show that the overhead incurred by TinyVisor is not
significant. Our future work is to enrich the framework to
achieve more protections.
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