
Een virtualisatieraamwerk voor ingebedde systemen

A Virtualisation Framework for Embedded Systems

Niels Penneman

Promotoren: prof. dr. ir. K. De Bosschere, prof. dr. ir. B. De Sutter
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2015 - 2016

ISBN 978-90-8578-861-4
NUR 980
Wettelijk depot: D/2015/10.500/105

Brevis esse laboro, obscurus fio.
– Q. Horatii Flacci Ars Poetica.

Acknowledgements

This book tells the story of a journey that started over 6 years ago, when
I was still completing myMasters degree at the Vrije Universiteit Brussel.
I had gathered a fair bit of knowledge on the basics of electrical engi-
neering in my Bachelor studies, but my all-time passion had driven me
to pursue a Master in Applied Computer Science Engineering instead.
Striving to combine my knowledge of both domains, I quickly gained
interest in embedded systems, partly thanks to a course on operating
systems taught by prof. Martin Timmerman. I was lucky to have a flexi-
ble curriculum that allowed me to pick several elective courses on topics
related to embedded systems in the final year of myMasters programme.
It was in one of those courses that I met prof. Bjorn De Sutter fromGhent
University, whom I had very interesting discussions with. Close to the
end of his course, we talked about research opportunities in the fields of
compilation and virtualisation techniques for embedded systems.

I had been interested in virtualisation in the context of desktop sys-
tems and cloud computing for a while, and the thought of using virtu-
alisation techniques on embedded systems was relatively new to me. I
had previously considered cloud computing as a topic for my Masters
thesis, but I eventually chose an entirely different subject. I realised that
the limited amount of time given to complete such a thesis would be too
short for me to create anything practically useful—and I really wanted
to create something that was preferably both novel and useful.

Despite my interest in virtualisation, I was not immediately con-
vinced that pursuing a Ph.D. was the right choice for me. My doubts,
however, quickly vanished after a motivational talk with prof. Koen
De Bosschere at Ghent University, and so I plunged into this adventure.
Both Bjorn and Koen became my supervisors, and over the years this
tandem has worked rather well. They helped me to obtain a grant for my
research, and they have provided me with guidance and motivation in

vi ACKNOWLEDGEMENTS

times of need. I would therefore like to thank my supervisors, Bjorn and
Koen, for their continued efforts. I would also like to thank prof. Dirk
Vermeir of the Vrije Universiteit Brussel, and prof. Martin Timmerman of
the Royal Military Academy, for providingmewith pointers and insights
that sparked my interest in embedded systems and virtualisation.

In the early days, when I was still determining my research topic,
I met prof. Alasdair Rawsthorne from The University of Manchester
for a discussion on embedded virtualisation. Little did I know at that
time that this would be the start of our cooperation, which has lasted
for several years, and through which I obtained the basic knowledge on
hypervisors. I was later introduced to two of his students in Manchester,
Danielius Kudinskas and AlexMerrick, who started a Bachelor project to
virtualise ARM-based embedded systems using dynamic binary trans-
lation. During the next few years I worked together with Danielius to
create the hypervisor that would form the basic platform for my research.
I would therefore like to thank prof. Alasdair Rawsthorne, Danielius
Kudinskas and Alex Merrick for their valuable input and contributions.

Furthermore, I would also like to thank the other members of my
examination board for their time and their valuable feedback: dr. Jonas
Maebe, prof. Wilfried Philips and prof. Luc Taerwe. Additionally I
would like to thank Luc Perneel for his detailed reviews of my work.

The first four years of my research were funded by the agency for
Innovation by Science and Technology (IWT) by means of a personal
research grant. Afterwards, I contributed to and obtained results in the
context of the EURO-MILS project, which was funded by the European
Union’s Seventh Framework Programme under grant agreement number
ICT-318353. I would therefore like to thank the IWT and all people
involved in getting the EURO-MILS project get off the ground.

Throughout those years, several Master students have contributed to
my research project as a part of their thesis: Sarah Tawfik Adel El Shal
from the Vrije Universiteit Brussel [51]; Peter Van Bouwel [129], Henri
De Veene [43] and Jens Van den Broeck [130] from Ghent University; and
Markos Chandras [31] and Cosmin Gorgovan from The University of
Manchester. Even though not all of their contributions made it into the
final version of the hypervisor developed as part of my research, they
have provided me with useful insights. Guiding the students in Brussels
and Ghent was a valuable experience for me. Additional thanks go out
to Wim Meeus for his assistance in guiding Jens, and to prof. Pieter

vii

Rombouts for providing us with the necessary equipment.
I would also like to thank ARM for providing the high-end develop-

ment tools thatmademy life a lot easier when developing and debugging
the hypervisor. ARM has also provided excellent support for their tools,
from helping to get them to cooperate with officially unsupported hard-
ware, to responding to and ultimately implementing our feature requests,
even though we were only a small customer on a discounted contract.

While I have spent most of my time working alone, I was happy to
find myself surrounded by a number of colleagues that made my work
more bearable. Panagiotis, no one has given me as much motivation to
go on as you did. Over the years we have become good friends, and we
have had fun together both in Ghent and in several places abroad. You
have inspired me on several occasions and in several activities unrelated
to work, from photography to our workouts at the gym. Even though
you will soon be returning to Greece, I hope that we will keep in touch.

Christophe and Jeroen, it was fun to have you around, and to cruise
through Greece together to attend Panagiotis’ wedding. I would also
like to thank you for leaving our office mostly empty until noon, so that
I could work without disturbances (and play music on the big speakers).

Bart, the same goes for you. As you started your Ph.D. a few years
before me, you were a reliable source of non-technical information con-
cerning the whole process. Your experience came in handy to fix my
uncertainties while going through the final phases of my Ph.D.

Jonas, thanks again for sharing your experiences with me on the
ARM architecture from the very beginning, and for staying calm even in
the most frustrating situations we had in the EURO-MILS project.

Tim and Jens, we have spent a lot of time together with Panagiotis
to teach and prepare introductory labs on electronics. At times this was
fun, but we also shared quite some frustrations. Luckily, we all managed
to keep our sanity, because we made a great and competent team that
did not struggle to divide the workload—unlike some of our students.

Stijn, thanks for your input on low-level programming and reverse
engineering. I have learnt a few useful things in your ethical hacking ses-
sions. Bert, Farhadur, Hadi, Ronald, Peng, Sander andWim, even though
we had less interactions, it was nice to have you around nonetheless.

Marnix, you helped us to set up the lab, you kept track of equipment
orders, and so much more. I am still amazed at how much work you

viii ACKNOWLEDGEMENTS

manage to do in one day. Together with Vicky, you took a lot of adminis-
trative work out of my hands. Thanks for all your efforts. Ronny, Michiel,
and Klaas, thanks for being there whenever we had a problem with our
IT infrastructure and those dreadful Drupal-based websites.

At the end of February 2015, I left Ghent University to start working
for Televic. I was still finalising my thesis and my second journal paper.
It was not an obvious task to do this after normal working hours, but
luckily I ended up working in a stimulating environment, with people
that providedmewithmoral support to finishmyPh.D. Iwould therefore
also like to thank my colleagues and former colleagues at Televic.

Pursuing a Ph.D. is not a nine-to-five job. We were all given the
freedom to start and stop working whenever we wanted. We could work
from home if we wanted. In the end, though, we needed to deliver
results so that we could eventually complete our research. We were
given an informal deadline of four years, as most research grants—at
least in our domain—typically cover four years. When you are working
on a personal grant, you are mostly working for yourself. The more you
get done in a day, the closer you get to finishing your Ph.D. It does not
matter when you step outside the office and close the door behind you.
Your research is stuck in the back of your mind, and you take it with
you wherever you go. You go to bed with it, and you wake up with it. It
changes you and the way you interact with the people close to you.

My parents have, without doubt, taken the majority of my frustra-
tions. They have nevertheless motivated me to continue over and over
again. They have done a lot for me only so that I would have more time
to work on my research. Without their support, I would never have man-
aged. I would also like to thank Mark and Magda. Having them around
is almost like having an extra pair of parents—even though they have
quite a different view on life, but that is part of the fun. I thank them
for supporting me, for proofreading, and for everything else! Further
thanks go to Martine and Jan, because they made time to support me
and to have fun together even in difficult circumstances.

I would also like to thank my friends for bearing with me and sup-
portingme up until today. I will not try to provide an exhaustive list of all
their names. You know who you are, and please understand that I have
really appreciated all your support. Special thanks go out to Magalie, for
all the fun she has brought me on our time together in South Africa, the

ix

Netherlands, and here in Belgium, and for the support she has given me
whenever I needed it, even when we could not physically be together.
Karolien, thank you for being there whenever I needed someone to talk
to. Davy, Thierry, Jens, Freija, Bruno, Farid, Ilse, ... you all helped me to
keep my sanity throughout this journey. Thank you!

Niels Penneman
Ghent, 7 December 2015

x ACKNOWLEDGEMENTS

Examencommissie

Prof. Luc Taerwe, voorzitter
Vakgroep Bouwkundige Constructies
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Jonas Maebe, secretaris
Vakgroep Elektronica en Informatiesystemen
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Koen De Bosschere, promotor
Vakgroep Elektronica en Informatiesystemen
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Bjorn De Sutter, promotor
Vakgroep Elektronica en Informatiesystemen
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Wilfried Philips
Vakgroep Telecommunicatie en Informatieverwerking
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Em. Prof. Alasdair Rawsthorne
School of Computer Science
Faculty of Engineering and Physical Sciences
The University of Manchester

Prof. Martin Timmerman
Departement Wiskunde
Faculteit Polytechniek
Koninklijke Militaire School

xii EXAMENCOMMISSIE

Leescommissie

Prof. Wilfried Philips
Vakgroep Telecommunicatie en Informatieverwerking
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Em. Prof. Alasdair Rawsthorne
School of Computer Science
Faculty of Engineering and Physical Sciences
The University of Manchester

Prof. Martin Timmerman
Departement Wiskunde
Faculteit Polytechniek
Koninklijke Militaire School

xiv LEESCOMMISSIE

Samenvatting

Systeemvirtualisatie ontkoppelt een besturingssysteem van de hardware
van een fysiekemachine doormiddel van een hypervisor. Het besturings-
systeem wordt dan ook een gast genoemd. Systeemvirtualisatie heeft al
verschillende toepassingen gevonden in de desktop- en serverwereld,
gaande van het reduceren van de operationele kosten van datacenters
door het consolideren van servers, tot het vergemakkelijken van software-
ontwikkeling en het emuleren van software voor verouderde hardware.
Ingebedde systemen worden alsmaar krachtiger, en hun hardware evo-
lueert sneller dan hun software. Daarom worden deze systemen nu ook
interessant om te virtualiseren. De bestaande technieken voor servers en
desktops kunnen echter niet zomaar worden gebruikt voor ingebedde
systemen, omdat deze vaak andere vereisten, andere toepassingen en
andere architecturen hebben dan servers en desktops.

ARM is met ruime voorsprong de marktleider voor processors van
ingebedde systemen en in het bijzonder van mobiele toestellen. In het
voorbije decennium werden reeds verschillende hypervisors ontwikkeld
voor de ARM-architectuur. Omdat deze architectuur echter geen onder-
steuning kon bieden voor volledige virtualisatie, steunt de meerderheid
van de bestaande hypervisors op paravirtualisatie, een techniek met veel
nadelen. ARM heeft onlangs zijn ARMv7-A-architectuur uitgebreid met
hardware-ondersteuning voor volledige virtualisatie. Hoewel hypervi-
sors die van deze uitbreidingen gebruik maken niet dezelfde nadelen
met zich meebrengen als hypervisors gebaseerd op paravirtualisatie,
kunnen ze niet werken op de meerderheid van de ARM processors die
momenteel in omloop zijn, omdat deze processors nog niet beschikken
over de uitbreidingen voor volledige virtualisatie. Softwaregebaseerde
technieken zoals dynamisch binaire vertaling (DBV) bieden een alterna-
tieve oplossing om architecturen die vanuit de hardware geen volledige
virtualisatie ondersteunen toch volledig te virtualiseren: problematische

xvi SAMENVATTING

instructies in de binaire code van de gastbesturingssystemen worden
tijdens het uitvoeren herschreven. DBV is veelzijdiger dan hardware-
uitbreidingen voor volledige virtualisatie, aangezien het inherent heel
wat meer toepassingen biedt, gaande van het optimaliseren tussen be-
sturingssystemen en applicaties, het emuleren en optimaliseren van
verouderde softwarestapels, het beïnstrumenteren en testen van volle-
dige softwarestapels tot zelfs het optimaal verdelen van de werklasten
in heterogene multikernprocessors door het vertalen van binaire code
over de verschillende architecturen heen.

De belangrijkste onderzoeksvraag die we in deze doctoraatsthesis
wensen te behandelen is: welke technologische uitdagingenmoeten over-
wonnen worden om deze toepassingen van DBV mogelijk te maken op
de ARMv7-A architectuur? Als eerste stap om een antwoord te formule-
ren op deze vraag, onderzoeken we welke beperkingen de architectuur
oplegt die volledige virtualisatie belemmeren. We stellen vervolgens
generieke softwaretechnieken voor om de processor en het geheugenbe-
heer volledig te virtualiseren zonder gebruik te maken van de nieuwe
hardware-uitbreidingen voor de ARMv7-A-architectuur. Voor de virtu-
alisatie van het geheugenbeheer zullen we ons onderzoek toespitsen op
technieken die gebruik maken van schaduwpaginatabellen.

We beginnen bij de theorie van klassieke virtualiseerbaarheid van
Popek en Goldberg. We breiden hun theorie uit voor moderne RISC-
architecturen (reduced instruction set computer) en moderne toepassin-
gen: we voegen formalismen toe voor virtueel geheugen met paginata-
bellen, invoer en uitvoer, en onderbrekingen. We gebruiken vervolgens
deze uitgebreide theorie om te analyseren waarom de oorspronkelijke
ARMv7-A-architectuur niet klassiek virtualiseerbaar is, en hoe de recente
hardware-uitbreidingen van ARM de architectuur wél virtualiseerbaar
maken. Vertrekkend vanuit het standpunt dat hypervisors gebaseerd op
dynamisch binaire vertaling in principe een evolutie zijn van de ideeën
van Popek en Goldberg over hybride virtualisatie, tonen we aan hoe onze
uitgebreide theorie helpt bij het construeren van een dynamisch binaire
vertaler voor volledige systeemvirtualisatie.

We gebruiken onze analyse als basis voor het ontwerp van de STAR
hypervisor, een nieuwe bare-metal hypervisor voor de ARMv7-A-archi-
tectuur. Onze hypervisor is de eerste open source hypervisor voor de
ARMv7-A-architectuur dat een systeem volledige kan virtualiseren door
uitsluitend gebruik te maken van softwaretechnieken. Besturingssyste-
men kunnen zonder wijzigingen als gast uitgevoerd worden bovenop

xvii

deze hypervisor, volledig afgeschermd van de fysieke CPU door DBV,
en van de fysieke MMU door middel van schaduwpaginatabellen.

Bestaand werk omtrent DBV voor de ARM-architectuur richt zich
vooral op procesvirtualisatie. Systeemvirtualisatie heeft zijn eigen unieke
uitdagingen, waardoor technieken voor procesvirtualisatie niet zomaar
kunnen worden overgenomen in een hypervisor voor systeemvirtualisa-
tie. Dynamisch binaire vertalers voor procesvirtualisatie gaan er vaak
van uit dat de applicaties die gevirtualiseerd worden zich steeds correct
gedragen. Bovendien is het vaak niet belangrijk om de vertaler en de
vertaalde applicatie strikt van elkaar te scheiden. Bij volledige systeem-
virtualisatie is een correcte vertaling echter essentieel om de afscherming
tussen de gast, de hypervisor, en de fysieke hardware te garanderen. De
hypervisor kan geen enkele aanname maken over het gedrag van een
gastbesturingssysteem, omdat de code van besturingssysteemkernen
vaak handgeschreven instructiesequenties en gespecialiseerde systeem-
instructies bevatten die bijzondere aandacht vereisen bij de vertaling.

We bestuderen hoe we de uitdagingen aan DBV voor volledige sys-
teemvirtualisatie moeten aanpakken, uitgaande van een fundamenteel
probleem bij de vertaling van binaire code: onze vertalingen hebben
vaak een extra register nodig om tijdelijk informatie op te slaan, maar
het is niet altijd mogelijk om een register te vinden dat vrij kan worden
gebruikt. Onze vertaler moet daarom een register vrijmaken door tijde-
lijk de waarde van dat register elders op te slaan, en na gebruik deze
waarde terug te herstellen. De opslagplaats moet bovendien toegan-
kelijk zijn voor de vertaalde code van het gastbesturingssysteem. Dit
probleem is heel eenvoudig op te lossen bij procesvirtualisatie. Bij sys-
teemvirtualisatie is dit echter veel moeilijker, mede omdat de hypervisor
zoveel mogelijk zijn eigen geheugen moet afschermen van het gastbe-
sturingssysteem. Bovendien kan de hypervisor geen aannames maken
over de inhoud van het geheugen van het gastbesturingssysteem. We
stellen nieuwe oplossingen voor die deze problematiek aanpakken, en
we evalueren hun impact op de uitvoeringstijd van vertaalde code.

Daarna bepalenwe hoewe de vertaalde code verder kunnen optimali-
seren. We trachten de oorzaak van de kosten verbonden aan de vertaling
te identificeren aan de hand van metingen met micro-benchmarks uit
van de lmbench suite. Deze benchmarks staan model voor typische inter-
acties tussen de gebruikersapplicaties en de besturingssysteemkern voor
Linux-gebaseerde besturingssystemen. We bestuderen welke instructies
het vaakst een tussenkomst van de hypervisor vergen in vertaalde code

xviii SAMENVATTING

in elk van deze benchmarks. Vervolgens stellen we vertaaltechnieken
voor die deze tussenkomsten zo veel mogelijk elimineren, en we evalue-
ren de impact van elke nieuwe techniek op elke benchmark afzonderlijk.
Zoals wel vaker het geval is bij DBV, valt op dat instructies die het contro-
leverloop bepalen voor de grootste vertraging in uitvoeringstijd zorgen.
Voor deze instructies kunnen bestaande technieken worden aangewend,
met significante prestatieverbeteringen tot gevolg. We merken echter op
dat onze optimalisaties specifiek voor volledige systeemvirtualisatie de
resterende vertraging nog met gemiddeld 51% kunnen reduceren.

We bekijken vervolgens de impact van onze vertaaltechnieken op
echte applicaties. We voeren benchmarks uit van de mibench suite die
het gedrag van realistische applicaties modelleren. We vergelijken de
uitvoeringstijd van deze benchmarks op een ongevirtualiseerd systeem,
met de uitvoeringstijd op de oorspronkelijke versie van onze vertaler,
en de uitvoeringstijd op de geoptimaliseerde vertaler. Onze metingen
tonen aan dat applicaties tot 5 keer vertraagd worden door de oorspron-
kelijke vertaler. De geoptimaliseerde vertaler beperkt de vertraging van
realistische applicaties tot slechts 39% in het slechtste geval.

De vertaler van de hypervisor staat enkel in voor CPU-virtualisatie.
De hypervisor moet daarnaast ook nog het geheugenbeheer, de fysieke
caches en de translation lookaside buffers (TLBs) virtualiseren. We
beschrijven welke technieken we gebruiken om het geheugenbeheer
te virtualiseren door middel van schaduwpaginatabellen, en hoe we
cacheoperaties virtualiseren. We zien onder andere dat cacheoperaties
van gastbesturingssystemen niet zomaar kunnen uitgevoerd worden op
de fysieke caches, omdat de hypervisor hierdoor gegevens kan verliezen.

Onze hypervisor maakt gebruik van diverse softwarecaches, zowel in
de vertaler als in de virtualisatie van het geheugenbeheer. De gegevens
in deze softwarecaches moeten ten allen tijde overeenkomen met de
interne toestand van het gastbesturingssysteem waarop ze betrekking
hebben. De hypervisor kan dit probleem op twee verschillendemanieren
aanpakken. Een eerste aanpak steunt op geheugenbeheer: de interne
toestand van de gast die interessant is voor het beheer van de caches
wordt beschermd tegen schrijfoperaties van de gast, zodat de hypervisor
weet wanneer de gast zijn interne toestand wijzigt. Een tweede aanpak
koppelt het beheer van de softwarecaches aan hoe de gast de hardwa-
recaches probeert aan te sturen. De softwarecaches worden dan als het
ware een gevirtualiseerde hardwarecache voor de gast.

De caches van de vertaler moeten bijgewerkt worden telkens wanneer

xix

een gast zijn code bewerkt, verplaatst of verwijdert. De caches van het
gevirtualiseerd geheugenbeheer, nl. de schaduwpaginatabellen, moeten
op gelijkaardige manier worden onderhouden: telkens wanneer een
gast zijn eigen paginatabellen aanpast, moet onze hypervisor de scha-
duwpaginatabellen ook aanpassen. Aangezien we een lui mechanisme
gebruiken om de schaduwpaginatabellen in te vullen, hoeven we enkel
die delen te onderhouden die reeds ingevuld werden.

We hebben zowel voor het beheer van de caches van de vertaler als
voor de schaduwpaginatabellen de twee beschreven technieken geïm-
plementeerd en geëvalueerd. Uit onze metingen concluderen we dat we
het beheer van de schaduwpaginatabellen op ARM best koppelen aan
het TLB-beheer van de gast. De caches van de vertaler worden echter
beter beheerd door gebruik te maken van geheugenbescherming. Dit is
een rechtstreeks gevolg van de manier waarop de fysieke TLB en caches
georganiseerd zijn in de ARMv7-A-architectuur.

Tijdens ons onderzoek hebben we een virtualisatieplatform ontwik-
keld voor de ARMv7-A-architectuur, waarop alle bovenvermelde tech-
nieken geïmplementeerd en geëvalueerd werden. We hebben aange-
toond dat het gebruik van DBV voor processorvirtualisatie aanvaardbare
virtualisatiekosten met zich meebrengt, zolang de juiste optimalisaties
aangewend worden. We hebben aangetoond hoe het geheugenbeheer
volledig kan worden gevirtualiseerd, enkel gebruik makend van soft-
wareoplossingen. We hebben verschillende technieken voorgesteld en
getest om de nodige softwarecaches te beheren, en de beste technieken
voor elke cache afzonderlijk vastgelegd. Ons onderzoek heeft dus de
fundamentele uitdagingen opgelost om softwaregebaseerde virtualisatie
met DBV mogelijk te maken op de ARMv7-A-architectuur.

xx SAMENVATTING

Summary

In system virtualisation, an operating system is isolated from the hard-
ware of a physical machine by means of a hypervisor. Such an operating
system is then called a guest of that hypervisor. System virtualisation has
already proven itself to be useful in many cases ranging from reducing
operational costs of data centres through consolidation, to facilitating
software development and emulating legacy software. So far, however,
virtualisation has mainly been used on desktops and servers. As embed-
ded systems are growing more powerful, and embedded hardware is
evolving faster than software, embedded systems can now also bene-
fit from virtualisation. Existing solutions for data centres and desktop
computers can, however, not be readily applied to embedded systems,
because of differences in requirements, use cases, and architecture.

ARM is by far the leading architecture in the embedded and mobile
market. Over the past decade multiple hypervisors have been developed
for it. Because the ARM architectures did not support full system virtual-
isation, most efforts started with paravirtualisation, a technique known
to have several drawbacks. Recently, ARM extended its ARMv7-A archi-
tecture with hardware support for full virtualisation. While hypervisors
using these extensions do not suffer from the drawbacks of paravirtu-
alisation, they cannot run on the vast majority of ARM processors in
use today, due to their need for special hardware support. Alternatively,
architectures that do not support full virtualisation out of the box can be
virtualised using dynamic binary translation (DBT) techniques: prob-
lematic instructions are patched at run time in the binary instruction
stream of the guest. DBT is more versatile than architectural support
for full virtualisation, as it transparently enables a multitude of other
virtualisation usage scenarios such as optimisations across the border
between operating system kernels and applications, emulation and op-
timisation of legacy software stacks, full system instrumentation and

xxii SUMMARY

testing, and even load balancing in heterogeneous multi-core systems
through cross-architecture virtualisation.

The key research question we seek to address is: which technological
challenges must be solved to enable the above mentioned use cases for
DBT on the ARMv7-A architecture? To answer this question, we first
identify the architecture’s limitations to full system virtualisation. We
then propose generic CPU and memory virtualisation solutions that
offer full virtualisation without relying on specific hardware support
for the ARMv7-A architecture. Our research on software-only memory
virtualisation techniques will focus on shadow translation tables.

We start from Popek and Goldberg’s classic virtualisability theory,
and extend it for today’s reduced instruction set computer (RISC) archi-
tectures and usage patterns: we add paged virtual memory, input/out-
put (IO), and interrupts. We then use our updated model to show why
the original ARMv7-A architecture is not classically virtualisable, and
how ARM’s hardware extensions make it virtualisable. We argue that
DBT-based hypervisors are an evolution of Popek and Goldberg’s ideas
on hybrid virtualisation, andwe show how our updatedmodel can assist
with the construction of a DBT engine for full system virtualisation.

We use our analysis to build the STAR hypervisor, a new bare-metal
hypervisor for the ARMv7-A architecture. Our hypervisor is the first
open-source software-only hypervisor for the ARMv7-A architecture
that offers full system virtualisation. It runs unmodified guest operating
systems, decoupled from the hardware through DBT, and uses shadow
translation tables to virtualise the memory management unit (MMU).

Prior work on DBT for the ARM architecture mainly focuses on pro-
cess virtualisation. As system virtualisation comes with its own unique
challenges, the existing process virtualisation techniques cannot be used
“as is” in the context of full system virtualisation. In user-space, DBT
engines often take shortcuts which are only valid for well-behaving appli-
cations, and there is no strict requirement to isolate the DBT engine from
the application. In full system virtualisation, DBT is used together with
MMU virtualisation to isolate guests from the hypervisor and from one
another. Furthermore, kernel code often contains handwritten assembly
and special system instructions, requiring special care in the DBT engine.

We study how to address the challenges specific to using DBT for
full system virtualisation. We start with a fundamental problem in the
translator: translations often require an extra register, but such register
may not always be available. Our translator therefore needs to spill and

xxiii

restore registers to some location in memory or other hardware that is
accessible to the guest. While solving this problem is trivial for process
virtualisation, the solution is more involved for system virtualisation, as
the hypervisor must write-protect as much of its data structures from the
guest as possible, and the guest’s data structures cannot be relied upon.
We propose new solutions to the spilling problem, and we evaluate their
impact on the performance of translated code.

We further analyse the bottlenecks in our DBT engine by running
micro-benchmarks from the lmbench suite. Those benchmarks model
typical interactions between Linux kernels and their user applications.
We study which kinds of system instructions cause a trap from the
guest to the hypervisor’s DBT engine most frequently, and propose
translation techniques to avoid as many of such traps as possible. We
analyse the impact of each translation technique separately on each
benchmark. As is typical with DBT, much of the run-time overhead can
be attributed to control flow, and eliminating traps caused by control flow
yields significant speedups. However, we also show that the remaining
overhead can be further reduced by 51% on average, by using binary
optimisations specific to ARMv7-A system virtualisation.

We then compare the run-time virtualisation costs of our optimised
DBT enginewith our naive, unoptimisedDBT engine on real applications.
We use benchmarks from the mibench suite to model these applications.
We find that a naive configuration of our DBT engine makes the tested
applications run up to 5 times slower than native. With our optimisations,
however, the maximum perceived slowdown is limited to 39%.

The DBT engine only performs CPU virtualisation. As a hypervisor
lives at the lowest level of the software stack, it is also responsible for
managing the MMU, the hardware caches and the translation lookaside
buffers (TLBs). We therefore discuss how to virtualise the MMU with
shadow translation tables, how to virtualise cache operations. We show
that guests’ cache operations cannot always be applied directly to the
hardware caches, because they can cause the hypervisor to lose data.

Our hypervisor makes extensive use of software caches both in the
DBT engine and in MMU virtualisation. Such software caches must be
kept up to date with the guests’ internal state, either through clever mem-
ory management or by reusing a guest’s hardware cache maintenance
operations. The caches of the DBT enginemust be updatedwhenever the
guest unmaps, remaps, or modifies code that has already been translated.
Similarly, the shadow translation tables must be updated whenever the

xxiv SUMMARY

guest modifies its translation tables, and in particular when those modi-
fications affect descriptors that have already been shadow mapped.

We have researched both a memory management-based approach
and a software cache-based approach for both kinds of software caches.
We evaluate our techniques and find that, due to the way cache and TLB
organisationworks on ARM, shadow translation tables are best managed
like a software TLB. The caches of our DBT engine, however, are better
managed through memory protection techniques.

During the course of our research, we have designed and imple-
mented a proof-of-concept virtualisation platform for the ARMv7-A
architecture to study and evaluate all of the above mentioned techniques.
We have demonstrated that using DBT for CPU virtualisation results in
acceptable levels of run-time overhead when properly optimised for the
target architecture. We have shown how software-only MMU virtual-
isation can work on ARM, and what the best practices are to manage
the shadow translation tables and the caches of the DBT engine. We
have hence solved the fundamental challenges to enable software-only
virtualisation on ARMv7-A.

Contents

Acknowledgements v

Examencommissie xi

Leescommissie xiii

Nederlandstalige samenvatting xv

English summary xxi

1 Introduction 1
1.1 A brief history of virtualisation 2
1.2 Taxonomy of hypervisors 4
1.3 Virtualisation for embedded systems 7
1.4 Modern uses of dynamic binary translation 10
1.5 Outline and contributions 12

2 Formal virtualisation requirements for the ARM architecture 15
2.1 Introduction . 16
2.2 Background and motivation 16

2.2.1 Classic virtualisability 16
2.2.2 Prior updates to the model 19
2.2.3 Advances in computing practice 19

2.3 An updated model . 22
2.3.1 Machine state . 22
2.3.2 Address mapping 23
2.3.3 Instruction behaviour 25
2.3.4 Events . 27
2.3.5 Result . 28

2.4 Analysis of the ARM architecture 29
2.4.1 Machine state . 29

xxvi CONTENTS

2.4.2 32-bit ARM instruction behaviour 32
2.4.3 Thumb-2 instruction behaviour 34
2.4.4 Conclusion . 35

2.5 Full virtualisation in practice 35
2.5.1 Hardware support for full virtualisation 35
2.5.2 Dynamic binary translation 37

2.6 Conclusions . 40

3 The STAR hypervisor 41
3.1 Introduction . 42
3.2 Development history . 43
3.3 Top-level design . 45
3.4 MMU virtualisation: the memory manager 46

3.4.1 The VMSAv7 MMU 47
3.4.2 Shadow translation tables 49
3.4.3 Lazy double shadowing 51
3.4.4 Hypervisor mappings vs. guest mappings 52

3.5 CPU virtualisation: the DBT engine 53
3.5.1 Translation strategies 57
3.5.2 Design choices and limitations 58
3.5.3 Translating PC-sensitive instructions 59

3.6 Exception handling . 62
3.6.1 Guest mode-dependent exception handling 64
3.6.2 Guest exception handling 64

4 Evaluation of dynamic binary translation techniques 67
4.1 Spilling and restoring registers 68

4.1.1 Lightweight traps 68
4.1.2 User-mode accessible coprocessor registers 70

4.2 Tackling DBT-related overhead 71
4.2.1 Control flow . 74
4.2.2 Exception returns and other mode changes 77
4.2.3 Saving and restoring user mode registers 77
4.2.4 Unprivileged loads and stores 79
4.2.5 Coprocessor operations and register updates . . . 80
4.2.6 Special register accesses without side effects . . . 81
4.2.7 Summary . 81

4.3 Evaluation . 82
4.3.1 Register spilling techniques 82
4.3.2 Optimisations to avoid traps to the DBT engine . 85

CONTENTS xxvii

4.3.3 Perceived slowdown 87
4.4 Conclusions . 89

5 Trade-offs in cache and memory management 91
5.1 Introduction . 92

5.1.1 Overview of hardware instruction and data caches 92
5.1.2 Fine-grained hardware cache control 94
5.1.3 Hardware TLBs . 94

5.2 Hardware cache management 95
5.2.1 Tuning cache configurations 95
5.2.2 Virtualising hardware cache operations 97

5.3 Shadow translation table management 98
5.3.1 The memory protection approach 99
5.3.2 The software TLB approach 101
5.3.3 Handling guest domains 101
5.3.4 Handling guest cache configurations 104

5.4 DBT cache management 105
5.4.1 The memory protection approach 105
5.4.2 The software instruction cache approach 106

5.5 Evaluation . 107
5.5.1 Hardware cache configuration tuning 107
5.5.2 Shadow translation table management 110
5.5.3 DBT cache management 113

5.6 Conclusions . 115

6 Other lessons learnt 117
6.1 Design and implementation 118

6.1.1 Rapid prototyping vs. marketability 118
6.1.2 Design for testability 118
6.1.3 C++ for embedded bare-metal software 119

6.2 Translator performance . 120
6.2.1 Related work . 121
6.2.2 Boolean function representation 124
6.2.3 Instruction pattern matching 126
6.2.4 Implementation and results 128

7 Conclusions and future work 131
7.1 Conclusions . 132
7.2 Future work . 135

7.2.1 Scalability . 135
7.2.2 DBT engine and memory manager 136

xxviii CONTENTS

7.2.3 Combining DBT with hardware virtualisation . . 137

List of tables 139

List of figures 141

List of abbreviations 143

List of symbols 147

Bibliography 149

Chapter 1

Introduction

The term virtualisation is used in many different contexts, ranging from
storage and network technologies to execution environments, and even
to virtual realities. The research presented in this dissertation focuses on
system virtualisation—technology that allows multiple operating systems
to be executed on the same physical machine simultaneously. It achieves
this by isolating those operating systems, also called guests, from the
physical hardware and from each other, by means of a hypervisor.

System virtualisation has already proven itself to be useful in the
server and desktop computing worlds. It has many use cases ranging
from reducing operational costs of data centres through consolidation,
to facilitating software development and emulating legacy software. As
embedded systems are growing more and more powerful, and embed-
ded hardware is evolving faster than software, embedded systems can
also benefit from virtualisation. Solutions for data centres and desktop
computers can, however, not be readily applied to embedded systems,
because of differences in requirements, use cases, and architecture.

ARM is by far the leading architecture in the embedded and mobile
market [112]. Over the past decade multiple hypervisors have been de-
veloped for it. Because the ARM architecture did not support full system
virtualisation, most efforts started with paravirtualisation, a technique
known to have several drawbacks [39]. Recently, ARM extended its
ARMv7-A architecture with hardware support for full virtualisation [13].
While hypervisors using these extensions do not suffer from the draw-
backs of paravirtualisation, they cannot run on the vast majority of ARM
processors in use today, due to their need for special hardware support.

In this dissertation, we propose generic CPU and memory virtuali-

2 Introduction

sation solutions that offer full virtualisation without relying on specific
hardware support for the ARMv7-A architecture. To fully virtualise the
CPU,we dynamically rewrite the code of guest kernels at run time, a tech-
nique known as dynamic binary translation (DBT). As CPU andmemory
virtualisation are inevitably tied together, we have also researched mem-
ory virtualisation techniques based on shadow translation tables.

Prior work on DBT for the ARM architecture mainly focuses on
process virtualisation. As system virtualisation comes with its own
unique challenges, the existing process virtualisation techniques cannot
be used “as is” in the context of full system virtualisation. Furthermore,
process virtualisation does not require memory virtualisation. We will
therefore propose new solutions to address the challenges of system-
level DBT on ARM. We have implemented and evaluated our techniques
in our own hypervisor, STAR, the first software-only hypervisor that
offers full virtualisation using DBT for the ARMv7-A architecture. This
hypervisor has been co-developed with The University of Manchester.

The remainder of this chapter provides a concise overview of prior
work on system virtualisation in general, and for ARM-based embedded
systems. Section 1.1 sketches the origins of virtualisation, and introduces
classic virtualisability—a theory used to determine whether or not an ar-
chitecture is suitable for full virtualisation. In Section 1.2, we describe the
different techniques for system virtualisation in use today, and discuss
their advantages and disadvantages. We use this to classify existing
solutions for ARM-based embedded systems in Section 1.3. We illus-
trate why, even with hardware extensions for virtualisation, DBT-based
virtualisation remains useful in Section 1.4. We conclude this chapter in
Section 1.5 with an overview of the major contributions and an outline
of the remainder of this dissertation.

1.1 A brief history of virtualisation

The earliest virtualisation solutions date from the late 1950s and con-
sisted of time sharing systems, created to enable multiple users to use a
single machine concurrently [66, 116]. In the early 1960s, IBM engineers
working on the M44/44X project first used the word virtual in conjunc-
tion with computers. They worked onmethods to partition the processor
time and the memory of an IBM 7044 computer between multiple soft-
ware images. Those images were referred to as virtual machines [44].

The M44/44X predates the inception of modern, third-generation, op-

1.1 A brief history of virtualisation 3

erating systems with privilege separation and support for multiprogram-
ming. Its virtualmachines thereforemerely contained the bareminimum
abstractions necessary to run individual applications. Operating systems
as they are known today only appeared in the early 1960s [29, 38]. The
first hypervisor capable of fully virtualising its underlying architecture
was IBM’s CP-40. It was productised as the CP-67/CMS system and
became the first commercial hypervisor at the end of the 1960s [1, 57].

In 1974, Popek and Goldberg [97] defined a set of formal system
virtualisation requirements for third-generation computer architectures,
based on experiences with virtualisation in contemporary mainframe
systems such as the IBM 360/67 (with CP-67/CMS), and the DEC PDP-
10. They formally proved that if an architecturemeets their requirements,
an “efficient” hypervisor can be constructed for that architecture. Their
paper is now regarded as one of the groundworks of virtualisation, and
their theory is referred to as “classic virtualisability”.

Over time, as time-sharing systems replaced batch processing sys-
tems, third-generation operating systems matured and took over the role
of the old hypervisors: there was no longer a need to run multiple pieces
of system software from different users on a single machine; multiple
users could run different user-space applications on a single operating
system kernel instead. By the early 1980s computer hardware costs had
dropped significantly and computers became affordable for the masses.
Obsoleted by operating systems, virtualisation was regarded as nothing
more but a relic of the past by both industry and academia [30, 105].

Operating systems became more feature-rich, but their complexity
also brought stability issues and security concerns. As computer prices
kept dropping, it became common practice in industry to dedicate indi-
vidual machines to specific tasks, effectively reversing the multiprogram-
ming revolution. However, each dedicated system had to be managed
independently and most systems were idle most of the time, leading to
management overhead and waste of resources. Virtualisation became
relevant again, as it was a potential solution to all these problems [105].

Unfortunately, virtualisation techniques originally developed for
mainframes could not readily be implemented on most commodity com-
puters and servers: their architecture, the Intel x86, did not meet Popek
and Goldberg’s strict requirements for efficient hypervisors [2]. In 1999,
VMware was the first company to come up with a full virtualisation
solution for the x86 architecture using dynamic binary translation (DBT)
techniques: instructions that made the architecture violate Popek and

4 Introduction

Goldberg’s classic virtualisability requirements were patched at run time
in the binary instruction streams of the virtual machines (VMs) [104, 134].

DBT hypervisors are very complex to construct. It did not take long
before researchers realised that the problem of virtualising the x86 archi-
tecture could also be solved by adapting the operating systems upfront
rather than patching them at run time. The hypervisor then presents a
customised interface to its VMs, similar but not identical to the underly-
ing hardware. Such techniques are now widely known as paravirtualisa-
tion; although pioneered by IBM in their early virtualisation work, the
termwas first coined in 2002 byWhitaker et al. [136, 137] in their work on
the Denali hypervisor, the first such hypervisor for the x86 architecture.

Virtualisation, a technology from the mainframe era, quickly con-
quered the server and desktop markets. By 2005, the trend was picked
up by x86 hardware makers Intel and AMD, and the architecture gained
hardware support for full virtualisation [3, 127].

1.2 Taxonomy of hypervisors

Over the years, many different kinds of virtualisation systems have
been designed. The first classification of such systems dates back to 1973.
Based on a formalmodel of how hypervisors interact with the underlying
hardware platform, Goldberg [56] defined two types of hypervisors:

• Type I hypervisors run directly on top of the hardware, at the high-
est privilege level. Their guests run at lower privilege levels. These
hypervisors are now known as native or bare-metal hypervisors.

• Type II hypervisors run on top of an existing host operating system.
They are therefore also referred to as hosted hypervisors.

Figure 1.1 depicts the relationships between the hardware, the hy-
pervisor and the operating systems for each type of hypervisor. Type II
hypervisors can benefit from the services and abstractions provided by
a host operating system. Therefore, the development and debugging
processes for such hypervisors are easier than for bare-metal hypervisors:
development and debugging tools can be run from the host, essentials
such as C libraries and drivers can be reused, and the host can be reused
as management interface to the hypervisor. However, not all features
of the host are necessary for the hypervisor to operate, and they form a

1.2 Taxonomy of hypervisors 5

TYPE IITYPE I

Hypervisor

Hardware

Guest OS

Applications

Hypervisor

Hardware

Applications

Guest OS

Applications

Native OS

TYPE I/II HYBRID

Hypervisor

Hardware

Applications

Guest OS

Applications

Native OS

USER-MODE HOSTEDBARE METAL DUAL-MODE HOSTED

Figure 1.1: Classification of hypervisors according to Goldberg and Gallard

source of run-time overhead. Such overhead is more easily tolerated on
desktop computers and in data centre environments than on resource-
constrained embedded systems. Type I hypervisors avoid the overhead
of a host operating system at the expense of more complicated devel-
opment and debugging processes; furthermore, they require custom
run-time libraries and drivers for each hardware platform.

Although modern hypervisors have evolved substantially since the
publication of Goldberg’s classification, most hypervisors today can be
classified as either type I or type I/II hybrids. Gallard et al. [55] have
extended Goldberg’s formal model to accommodate for such hybrids.

Smith and Nair [113] distinguish between two kinds of hosted hy-
pervisors: user-mode hosted hypervisors run fully on top of their host
operating systemat a lower privilege level than its kernel, while dual-mode
hosted hypervisors—type I/II hybrids—also contain software compo-
nents that run at the same privilege level as the host’s kernel (such as
drivers). Such hybrid designs are necessary for a hosted hypervisor to
make use of hardware support for full virtualisation [3, 9, 13, 127].

Hypervisors can also be classified based on the techniques they use
to virtualise their guests, as shown in Figure 1.2. Firstly, as explained in
Section 1.1, we distinguish between full virtualisation, also called faithful
virtualisation, and paravirtualisation. In full virtualisation, a hypervisor
presents an interface to its guests that is identical to the underlying
hardware platform. Any operating system designed for that hardware
platform can then run unmodified as a guest. In theory, guests cannot
even distinguish between their virtual copy of the hardware and the real
hardware. In practice, the term full virtualisation may also be used for

6 Introduction

hypervisors that virtualise a physical platformdifferent from the one they
run on. A hypervisor based on paravirtualisation presents a modified
interface to its guests, which is similar but not identical to the underlying
hardware platform. All operating systems must first be adapted to this
custom interface before they can be run as a guest [113, 134, 136, 137].

There are many hypervisors based on paravirtualisation and most of
them use their own customised interface between the hypervisor and
its guests. None of the efforts to standardise those interfaces has gained
sufficient momentum to spread to more than a few operating systems
or hypervisors [4, 83, 106]. As a consequence, few operating systems
support those interfaces out of the box. Instead, hypervisor vendors and
third parties must provide source code patch sets to support specific
hypervisor interfaces for specific operating system versions. On the
one hand, selling and supporting patches constitutes a proper business
model for paravirtualisation vendors. On the other hand, paravirtualisa-
tion solutions also come with four major drawbacks:

1. Developing, maintaining, and testing patch sets for each and every
combination of a specific operating system version and a specific
hypervisor interface is an expensive process. Although semantic
patches may offer a solution to simplify patch management [15, 76,
95], the effort required for testing remains.

2. Patched operating systems may exhibit unexpected behaviour be-
cause their reliability is not guaranteed and patches may introduce
new security issues.

3. Licensesmay prevent or restrict modifications to operating systems
source code, and often impose rules on the distribution of patch
sets or patched code.

4. Previously certified software stacks will need to be re-certified
after patching. The recertification process is expensive and always
specific to a particular hypervisor interface, thereby stimulating
vendor lock-in.

This analysis is shared by major players in industry including ARM,
Nokia and STMicroelectronics [39]. The drawbacks of paravirtualisation
can be avoided by using full virtualisation, which comes with the added
benefit that it can be used to virtualise a priori unknown software.

Full virtualisation can be achieved either through hardware support
or by using software techniques such as DBT. Computer architectures

1.3 Virtualisation for embedded systems 7

FULL VIRTUALISATION

Unmodi�ed

guest OS

Applications

PARAVIRTUALISATION

Applications

Hypervisor

Applications Applications

Hypervisor

Applications

Unmodi�ed

guest OS

Modi�ed

guest OS

Modi�ed

guest OS

Modi�ed

guest OS

Figure 1.2: Classification of hypervisors by virtualisation technique

that meet the requirements set out by Popek and Goldberg [97] in 1974
support full virtualisation out of the box. Architectures such as x86
and ARM have gained hardware support for full virtualisation in later
iterations through extensions [3, 9, 13, 127]. While hypervisors built for
such hardware extensions easily outperform DBT-based hypervisor and
are easier to construct, they do not run on older hardware. Furthermore,
DBT remains useful in a handful of scenarios, ranging from full-system
instrumentation to legacy system software emulation.

1.3 Virtualisation for embedded systems

Virtualisation in the server and desktopworld has alreadymatured, with
both software and hardware solutions available for several years [2, 21,
24, 104, 113, 127, 135]. However, virtualisation of embedded systems is
still an area of ongoing research [14, 52, 63]. While the motivation to vir-
tualise embedded systems is similar to desktop and server virtualisation,
solutions for the latter cannot be easily reused on embedded systems
due to differences in requirements, use cases, and computer architecture.

ARM is by far the leading architecture in the embedded and mobile
market [112], and several hypervisors have already been developed for it.
A comprehensive overview of the existing solutions is shown in Table 1.1.

Early designs such as ARMvisor [47], B-Labs Codezero Embedded
Hypervisor [18], KVM for ARM [40], TRANGO Virtual Processors Hy-
pervisor [122], NEC VIRTUS [73], VirtualLogix VLX [15, 133], VMware
MVP [22, 25] and Xen ARM PV [70, 82] all use paravirtualisation, as they
predate the introduction of ARM’s hardware support for full virtualisa-
tion. As stated in Section 1.2, such hypervisors have several drawbacks.

8 Introduction

Table
1.1:O

verview
ofA

RM
hypervisors

T ype
N
am

e
Para

Full
G
oldberg

/Sm
ith

R
eferences

A
RM

visor
•

◦
dual-m

ode
hosted

[47]
B-LabsC

odezero
Em

bedded
H
ypervisor

•
◦

bare-m
etal

[18]
ITRIH

ypervisor
•

◦
dual-m

ode
hosted

[110,111]
K
V
M

forA
RM

•
◦

dual-m
ode

hosted
[40]

K
V
M
/A

RM
◦

•
dual-m

ode
hosted

[41,42]
O
pen

K
ernelLabsO

K
L4

M
icrovisor

•
•

bare-m
etal

[62–64,132]
Red

Bend
Softw

are
vLogix

M
obile

◦
•

bare-m
etal

[102]
SYSG

O
PikeO

S
•

•
bare-m

etal
[78,118]

N
EC

V
IRTU

S
•

◦
bare-m

etal
[73]

TRA
N
G
O

V
irtualProcessorsH

ypervisor(V
M
w
are

M
V
P
precursor)

•
◦

bare-m
etal

[122]
Varm

osa
(V

M
w
are-funded

M
IT

research
project)

◦
•

dual-m
ode

hosted
[69]

V
irtualLogix

V
LX

•
◦

bare-m
etal

[15,133]
V
M
w
are

M
obile

V
irtualization

Platform
(M

V
P)

•
◦

bare-m
etal

[22,25]
Xem

A
RM

PV
(Secure

Xen
on

A
RM

)
•

◦
bare-m

etal
[70,82]

Xen
A
RM

w
ith

V
irtualization

Extensions
◦

•
bare-m

etal
[140]

Xvisor
•

•
bare-m

etal
[141]

1.3 Virtualisation for embedded systems 9

Xen ARMPV and KVM for ARMhave been superseded by a new Xen
port [140] and KVM/ARM [41, 42] in which paravirtualisation support
was dropped in favour of ARM’s hardware support. VirtualLogix VLX
was used byRedBend software as the basis for vLogixMobile, which now
also uses ARM’s hardware support instead of paravirtualisation [102].
Some hypervisors support both paravirtualisation and full virtualisation,
such as PikeOS [78, 118], OKL4 [64, 132] and Xvisor [141].

PikeOS and OKL4 are commercial microkernel-based hypervisors
specifically designed for real-time systems virtualisation [62–64, 78].
Such hypervisors can directly run application software, referred to as
native applications, a feature often used to run small real-time software.
Full-fledged real-time operating systems are typically paravirtualised for
scheduling reasons. When multiple software components with mixed
criticalities are consolidated into one hardware system, the less critical
components can benefit from full virtualisation. For this purpose, OKL4
has supported ARM’s hardware extensions for full virtualisation since
the early days through a partnership with ARM [131, 132]. PikeOS has
only recently gained support for full virtualisation [118].

The ITRI Hypervisor presents an interesting case as it uses a combina-
tion of static binary translation (SBT) for CPU virtualisation and paravir-
tualisation for memory management unit (MMU) virtualisation [111].
SBT can be regarded as a form of paravirtualisation, although it does not
require the sources of the guest kernels, and therefore aims to be a more
generic approach. Any benefits of using SBT over traditional paravirtu-
alisation are however lost, because the authors of the ITRI hypervisor
deemed the MMU too complex to properly virtualise. Furthermore, SBT
cannot support any form of self-modifying code at all, and it complicates
dynamically loading code at run time, as is often done in operating
system kernels for device drivers and other kernel modules. The ITRI
Hypervisor therefore only supports non-modular kernels.

SBT on ARM is hard, because it is common for data to be embedded
within code sections, and codemay use amix of 32-bit ARM and variable-
width Thumb-2 instructions in which the encoding of each byte can
only be deduced by control flow analysis. In the absence of symbolic
debug information, extensive analyses and heuristics are required to
distinguish code from data [33, 68], and any uncertainties must be dealt
with at run time using a combination of interpretation and DBT. There
is however no mention of such techniques in any of the ITRI Hypervisor
documents [110, 111]. Relying on the availability of symbolic debug

10 Introduction

information makes an SBT-based CPU virtualisation solution no better
than traditional paravirtualisation: symbolic debug information is often
not available for commercial software, and its representation may vary
across operating systems, so that a translator must support each of them.

Varmosa, a product of a VMware-funded MIT project, is the only
hypervisor capable of fully virtualising the ARM architecture without
hardware extensions for full virtualisation, because it makes use of DBT
techniques [69]. Unfortunately, it targets the dated ARMv4 architec-
ture, and its translation techniques have never been published. All
other hypervisors for the ARM architecture that offer full virtualisation
rely on ARM’s recently introduced hardware support. A VMware talk
and patent on DBT techniques for ARM published by members of the
team that supported Varmosa reveals that they used in-place transla-
tion [27, 46], a technique also known as patching [113]. As we shall see in
Section 3.5.1, in-place translation cannot properly support self-verifying
and self-modifying code on ARM due to architectural limitations.

1.4 Modern uses of dynamic binary translation

Although DBT has been used successfully to virtualise the Intel x86 ar-
chitecture by VMware, Microsoft, QEMU, VirtualBox and others [24, 67,
134, 135], it has been deemed too complex for the virtualisation of other
architectures after the emergence of paravirtualisation and hardware ex-
tensions for full virtualisation. In reality, hardware extensions introduce
similar complexity, but at the hardware level. Although they make it
possible to construct a much smaller hypervisor, thereby decreasing the
potential for bugs and vulnerabilities, the design complexity of hardware
extensions is illustrated by the fact that early implementations on x86
were outperformed by pure software virtualisation solutions [2].

On the ARM architecture, Varmosa is the only hypervisor we know
of that has attempted full virtualisation using DBT [69]. While software-
only paravirtualisation and modern hardware-based full virtualisation
solutions easily outperform DBT [111, 132], it remains a useful technique
by virtue of its versatility. Virtualisation is often considered as a solu-
tion to address software portability issues across different architectures.
Hardware extensions simply introduce new portability issues at a differ-
ent level. DBT is more versatile since it transparently enables a multitude
of other virtualisation usage scenarios:

1.4 Modern uses of dynamic binary translation 11

• Optimisations across the border between operating system ker-
nels and applications: DBT can be used to optimise and reduce
context switching between an operating systemkernel and its appli-
cations under a hypervisor, as many operations become redundant
when executed on virtual hardware [2].

• Legacy emulation and optimisation: DBT can be used as a glue
layer to emulate legacy hardware platforms and to resolve back-
ward incompatibility between generations of architectures [34].
Such emulation is useful as today’s hardware has become more
flexible than software [49, 61]: system-on-chips have an average
lifetime of 4 years, while software stacks often have to last much
longer. Because of implementation differences between system-on-
chips and evolutions in hardware architecture, software must be
continuously rewritten and recertified for newer platforms.

• Full system instrumentation and testing: entire software stacks
may be instrumented and tested from underneath using a hyper-
visor. This idea was pioneered by IBM with their SIMMON test
tool in the 1960s. The most notable recent example is PinOS [28].

• Load balancing in heterogeneous multi-core systems: DBT can
be used to translate code from one core to another if cores have
different instruction set architectures (ISAs) [72, 139]. If cores share
the same ISA, such as in ARM’s big.LITTLE [11], hardware exten-
sions remain a feasible approach to virtualisation. But even in this
case, DBT can potentially improve performance by dynamically
optimising code for the micro-architectural features of the target
architecture, such as a static branch predictor in little cores.

The key research question we seek to address in this dissertation
is: which technological challenges must be solved to enable the above
use cases for DBT on the ARMv7-A architecture? We can further break
down this question as follows:

• What are the architectural limitations to full system virtualisation
on ARMv7-A? Can we learn how to work around such limita-
tions from an analysis of the architecture according to Popek and
Goldberg’s theory of classic virtualisability?

• Can existing work on process virtualisation techniques for ARM be
adapted to perform CPU virtualisation in a hypervisor and how?

12 Introduction

• Which software techniques can be used to virtualise the MMU?

• How do our virtualisation techniques affect guest performance?

1.5 Outline and contributions

The major contributions presented in this doctoral dissertation are:

1. An update to the model of Popek and Goldberg with paged virtual
memory, input/output (IO), and interrupts;

2. The application of our updated model to study the virtualisability
of the ARMv7-A architecture both without and with the virtuali-
sation extensions;

3. A discussion on the trade-offs between the use of architectural
extensions for virtualisation and DBT, in which we argue that both
have their use in future systems;

4. The STAR hypervisor, the first open-source software-only hyper-
visor for the ARMv7-A architecture that offers full virtualisation
using DBT;

5. An analysis of existing techniques for user-space DBT on ARM
and several new solutions to adapt those techniques to full system
virtualisation;

6. A study on the sources of the run-time overhead of the DBT engine
of our hypervisor and new techniques to reduce this overhead
specific to full system virtualisation on ARM;

7. An evaluation of all our techniques for improving the performance
of the DBT engine on a real embedded hardware platform;

8. A discussion onmultiple techniques tomanage shadow translation
tables and the software caches of the DBT engine, followed by an
evaluation on a real embedded hardware platform.

1.5 Outline and contributions 13

Contributions 1 to 3 have been published as:

Formal Virtualization Requirements for the ARM Architecture
Niels Penneman, Danielius Kudinskas, Alasdair Rawsthorne,
Bjorn De Sutter, and Koen De Bosschere
In Journal of Systems Architecture
Volume 59, Number 3, March 2013, pp. 144-154 [96]

Contributions 5 to 7 are currently under revision for publication as:

Evaluation of dynamic binary translation techniques
for full system virtualisation on ARMv7-A
Niels Penneman, Danielius Kudinskas, Alasdair Rawsthorne,
Bjorn De Sutter, and Koen De Bosschere
In Journal of Systems Architecture

The remainder of this dissertation is organised as follows: in Chap-
ter 2, we extend Popek and Goldberg’s theory on classic virtualisability
to modern RISC architectures such as ARM, and to modern approaches
such as DBT. We analyse the ARM architecture and outline the require-
ments for DBT on ARM. We use this analysis to build our own hyper-
visor in Chapter 3. We explain the minimal set of scientific challenges
to overcome when fully virtualising the ARMv7-A architecture using a
software-only approach. In Chapter 4, we propose new techniques for
CPU virtualisation using DBT on ARM, and we study their performance
based on both micro-benchmarks and real applications. We discuss
and evaluate MMU and cache virtualisation techniques together with
software cache management in Chapter 5. In Chapter 6, we provide an
overview of some lessons we learnt during the design and the optimisa-
tion of our hypervisor that did not lead to publishably results. We then
summarise our results and conclude this dissertation in Chapter 7.

14 Introduction

Chapter 2

Formal virtualisation requirements
for the ARM architecture

Popek and Goldberg published the seminal paper on virtualisation over
40 years ago [97]. Although its reasoning remains useful, we argue that
its model is dated. In this chapter, we therefore revisit the formal require-
ments for virtualisability derived by Popek and Goldberg. We extend
their abstract machine model to match today’s reduced instruction set
computer (RISC) architectures and usage patterns: we add paged virtual
memory, IO, and interrupts. We then use our updated model to show
why the original ARMv7-A architecture is not classically virtualisable,
and how ARM’s hardware extensions make it virtualisable.

Modern insights such as DBT enable efficient virtualisation beyond
Popek and Goldberg’s requirements. We argue that DBT-based hypervi-
sors are an evolution of their hybrid virtualisation idea, and show how
our model can assist with the construction of such hypervisors.

The work presented in this chapter was first published in the Journal
of Systems Architecture [96].

16 Formal virtualisation requirements for the ARM architecture

2.1 Introduction

In 1974, Popek and Goldberg [97] wrote a paper on “Formal require-
ments for virtualizable third generation architectures”. It defines system
virtualisation criteria for computer architectures, and proves that if they
aremet, an “efficient” hypervisor can be constructed for that architecture.
Since its publication, the paper has been used as a reference point for
designing hardware platforms capable of supporting an efficient hyper-
visor, and it has become the groundwork of virtualisation technology.

The criteria defined by Popek and Goldberg are now known as the
conditions for classic virtualisability. Architectures that meet these criteria
are particularly suited for full virtualisation. Popek and Goldberg based
their model on computers available at the time, such as DEC PDP-10 and
IBM 360/67. Due to advances in microprocessor architecture, however,
their model is no longer a good match for current architectures. We will
update their model to fit contemporary architectures, such as ARMv7-A,
with support for paged virtual memory, IO, and interrupts.

Popek and Goldberg also proposed a hybrid virtualisation technique
that enabled virtualisation of architectures that did not meet their crite-
ria: instead of interpreting only the sensitive instructions, all instructions
normally executed in privileged mode are interpreted. New approaches
in the construction of efficient hypervisors that do not fit Popek andGold-
berg’s model and criteria [55], such as DBT, have enabled virtualisation
of many more contemporary architectures. We argue that hypervisors
based on DBT, which do not require changes to the architecture, can be
regarded as an evolution of their hybrid virtualisation ideas. Their anal-
ysis therefore remains useful for the construction of such hypervisors,
and for understanding the advantages and disadvantages of both the
hardware-supported and the DBT-supported approaches.

At the end of the chapter, we analyse the ARMv7-A architecture with
our new model. This results of this analysis will help us to construct a
DBT engine for full system virtualisation in Chapter 3.

2.2 Background and motivation

2.2.1 Classic virtualisability

The machine model used by Popek and Goldberg is deliberately sim-
plified. It includes a processor and a linearly addressable memory, but

2.2 Background and motivation 17

does not consider interaction with IO devices and interrupts.
The processor operates either in supervisor mode or in user mode.

Supervisor mode is a privileged mode, meant for the operating system,
while user mode is an unprivileged mode, meant for user applications.
The processor also features a program counter and a relocation-bounds
register, used for relative memory addressing. An ISA for such a proces-
sor can move, look up or process data and alter program control flow.
Based on this description, they defined their concept of machine state:

Definition 1. The machine state S is defined by the contents of the
memory E, the processor mode m, the program counter pc, and the
relocation-bounds register r:

S ≡ 〈E, m, pc, r〉 .

Since all variables that determine the machine state are finite, the set
of all machine states Σ is also finite.

Definition 2. An instruction i is a function on the set of machine states
Σ that maps one state to another:

i : Σ −→ Σ
Sx 7−→ i(Sx) = Sy.

All instructions are classified in three categories:

• Privileged instructions execute correctly in privileged mode, and
always trap in unprivileged mode.

• Sensitive instructions modify or query the configuration of the
system. They are further classified as control-sensitive and behaviour-
sensitive instructions. Control-sensitive instructions attempt to
modify the processor execution mode, or to set the amount of
available virtual memory resources by updating the relocation-
bounds register. Behaviour sensitivity manifests itself in two ways.
The result of behaviour-sensitive instructions either depends on
the value of the relocation-bounds register (location sensitivity) or
on the processor execution mode (mode-sensitivity).

• Innocuous instructions are those instructions that are not sensitive.

Upon a trap, the processor mode m, the program counter pc and
the relocation-bounds register r are saved to the memory E. Control is

18 Formal virtualisation requirements for the ARM architecture

then transferred to a privileged mode and pc will point to a predefined
trap handler. After handling the trap, the original processor mode, the
program counter and the relocation-bounds register can be restored from
memory.

Popek and Goldberg also defined three fundamental properties for
virtualised systems:

1. Efficiency: all innocuous instructions are executed natively with-
out hypervisor intervention;

2. Resource control: guest software is forbidden access to physical
state and resources;

3. Equivalence: guest software behaves identical to when it is run on
a system natively, assuming that it is free of timing dependencies.

Using the above definitions, they proved the following theorem:

Theorem 1. For any conventional third generation computer, a virtual machine
monitor may be constructed if the set of sensitive instructions for that computer
is a subset of the set of privileged instructions.

On an architecture on which all sensitive instructions are also privi-
leged, a trap is generated and caught by the hypervisor whenever a guest
attempts to execute a sensitive instructions. Such instructions must then
be “interpreted” by the hypervisor. All other instructions (innocuous
instructions) must be executed natively. This kind of hypervisor is also
known as an execute-to-trap hypervisor. It is this ability to execute most of
the code directly that enables “efficient” virtualisation. Popek and Gold-
berg also showed that if the efficiency property is loosened, allowing
interpretation of all privileged guest code, a so-called hybrid hypervisor
can be constructed for otherwise non-virtualisable architectures.

To specify the conditions for the construction of a hybrid hypervisor,
Popek and Goldberg defined a new subset of sensitive instructions called
user-sensitive instructions. An instruction is user-sensitive if there exists
a state in the unprivileged mode for which the instruction is sensitive.
Using the categories defined earlier, user-sensitive instructions can be
further classified as control-sensitive and location-sensitive instructions.
The set of user-sensitive instructions does not include anymode-sensitive
instructions, as Popek and Goldberg’s model only features one single
unprivileged (“user”) mode. They then proved the following:

2.2 Background and motivation 19

Theorem 2. A hybrid virtual machine monitor may be constructed for any con-
ventional third generation machine in which the set of user-sensitive instructions
is a subset of the set of privileged instructions.

Alternatively, a DBT engine can be used to rewrite instructions at
run time at an acceptable performance cost [19]. If the conditions for the
construction of a hybrid hypervisor are met, only privileged guest code
must be rewritten. Otherwise, full virtualisation can still be achieved
by rewriting all instructions, i.e. including unprivileged guest code.
Using hybrid hypervisors and DBT, a much wider range of computer
architectures can be virtualised.

2.2.2 Prior updates to the model

Dong and Hao [48] have attempted to extend the model by Popek and
Goldberg [97] with interrupts and memory-mapped IO. Because they
treat the subject from the view of user-space applications rather than
from the view of the operating system or the underlying computer ar-
chitecture, they exclude IO operations initiated by operating systems.

Their model introduces a set of possible IO states Γ, similar to the set
of machine states Σ, and implicitly redefines instructions as functions
with domain and range Σ× Γ. However, they do not revise the original
definitions from Popek and Goldberg at all, even though they alter the
model on which those definitions are based. It is unclear what purpose
their model serves, and whether it can be applied in practice.

Interrupts and exceptions are vital for today’s computer software,
not only for IO, but also because they enable communication between
operating systems and their applications through software interrupts
(system calls), and because they are key tomodernmemorymanagement
techniques such as swapping. However, Dong and Hao only consider
interrupts and exceptions in the context of IO with devices. Their treat-
ment of the subject is therefore incomplete. At the time of writing, we
are not aware of any other extensions to Popek and Goldberg’s model.

2.2.3 Advances in computing practice

Over the past 40 years, computer architectures have been significantly
extended, use cases have changed, and users’ expectations have evolved
accordingly. The model by Popek and Goldberg [97] therefore no longer
fits current computing practice.

20 Formal virtualisation requirements for the ARM architecture

Memory relocation and protection

The original model allows for a minimal form of memory relocation and
protection, using a single combined base location and bounds register.
Such a register is capable of relocating non-privileged applications un-
der the control of an operating system running outside a virtualised
environment, and can relocate operating systems themselves (and their
applications) when running under the control of a hypervisor. Although
computer systems with paged virtual memory were commercially avail-
able in 1974 [56], virtual memory was still seen primarily as a technique
for optimising the utilisation of then-expensive physical memory. Most
applications were designed without directly depending on the virtual
memory facilities of an operating system. A simple relocation scheme,
typically found on systems without virtual memory, was therefore ade-
quate to model the behaviour of a real computer system.

Today’s operating system designers, however, exploit virtual mem-
ory to offer applications many key facilities such as dynamic linking,
shared libraries, and dynamically expandable heap and stack areas. It is
no longer realistic to hide the details of these facilities in a discussion of
virtualisation. Therefore, we will introduce the concept of a memory map
in the definition of machine state. An operating system will use such
maps to define the memory space accessible to applications. A hypervi-
sor will also use such maps to define the memory space accessible to its
guests. Correctness conditions for the latter are derived in Section 2.3.2.

Timing

A second difference that has arisen in recent years is the importance of
timing in our use of computers. At the time Popek andGoldberg [97] pub-
lished their results, much of the computing workload was still processed
in batches, with input prepared off-line and output printed for later
usage. Modern computing is significantly more time-sensitive—much
of our interaction with personal computers and portable electronics is
characterised as “soft real-time”, in which failure to deliver a response
in a timely manner is perceived as a vexatious malfunction.

Themodel by Popek and Goldberg does not aim for analysing timing-
dependent behaviour. It also does not lend itself to study the influence
multiple VMs running under the same hypervisor exert on each other. In
this dissertation, we will also limit the discussion to whether an architec-
ture lends itself to virtualisation in general, for which studying the case

2.2 Background and motivation 21

of a single VM is sufficient, and to how a hypervisor can be constructed
for that architecture. As we have stated earlier, we do not consider deeply
embedded systems. This rules out hard real-time systems.

The underlying idea of efficiency in Popek and Goldberg’s paper was
that in an efficient system, relatively few instructions would trap. This
implies that if onewants to retain soft real-time behaviour in a virtualised
system, all time spent in traps to the hypervisor must be bounded.

IO, interrupts and exceptions

Most IO in contemporary computer architectures is either memory-
mapped input / output (MMIO) or port-mapped input / output (PMIO).
IO operations may result in interrupt generation, but generally this is
not necessary, unlike what is suggested by Dong and Hao [48].

In an architecture that supports MMIO, IO device registers are
mapped into the same address space as physical memory. We put for-
ward that resource control is retained if all accesses to IO device registers
trap or can be configured to trap a priori. The instructions that perform
these accesses will be generic load and store instructions. However, we
cannot require all such instructions to be privileged, because their sensi-
tivity depends on the address they act upon. Load and store instructions
that operate on main memory are clearly innocuous, given that they
operate on virtual addresses. Treating all load and store instructions
as sensitive therefore violates the efficiency property. Instead, virtual
memory mechanisms can be leveraged to protect memory-mapped
devices, such that all accesses to device memory cause a trap. The
efficiency property is retained if memory protection is possible at such
granularity that accesses to main memory are not affected.

PMIO can be used to separate memory accesses from device accesses
in the hardware. Software must then use dedicated IO instructions to
communicate with devices. Such instructions can be seen as controlling
resources; as such, they are similar to control-sensitive instructions: it is
sufficient that all dedicated IO instructions are also privileged to retain
classic virtualisability. PMIO and MMIO each have their advantages:
PMIO requires a separate interconnect between the CPU and devices,
and it adds complexity to the instruction set. MMIO on the other hand
enables generic load and store instructions, making all address modes
of such instructions immediately available for all device accesses, but it
requires extra hardware in the address decoding logic on the shared bus

22 Formal virtualisation requirements for the ARM architecture

to figure out whether accesses affect memory or devices. PMIO may be
used in systems where the memory address space is too small to accom-
modate IO devices. On some architectures such as the Intel x86, it is a
relic of the past, which has been preserved for backwards compatibility.
Most contemporary architectures, including the ARMv7-A architecture,
exclusively make use of MMIO.

2.3 An updated model

2.3.1 Machine state

We redefine the machine state concept from Definition 1 based on the
features of modern computer architectures. We add the complete set
of general-purpose registers and configuration registers (also known as
system registers). We introduce paged virtual memory by substituting
the relocation-bounds register with a fine-grained memory map. We
also extend the machine state with the state of IO devices.

Definition 3. The machine state S is defined by the memory E, the
processormodem, the program counter pc, the general-purpose registers
G, the configuration registers C, the memory map A, the MMIO device
state DM and the PMIO device state DP :

S ≡
〈
E, m, pc, G, C, A, DM , DP

〉
.

The first three parameters, namely the memory E, the current pro-
cessor mode m, and the program counter pc, retain their meaning. To
generalise the concept of processor mode, we defineMP to be the set
of privileged modes,1 and mU to be the unprivileged mode, such that
M = (MP ∪ {mU}) and mU 6∈ MP . We also introduce four new param-
eters: G contains the value of all general-purpose registers excluding the
program counter.2 Similarly, C contains the value of all configuration
registers. We let E refer to the contents of the entire physical address
space. Physical memory is now accessed using the virtual to physical
address translation map A. Last but not least, DM and DP refer to the
state of IO devices. We omit all IO device registers from E.

1 Some architectures provide more than one privileged mode. We assume that all
such modes are equally privileged.

2 The ARM architecture offers a set of 16 “general-purpose” registers, which contains
the program counter (PC) as R15 [54].

2.3 An updated model 23

In our model, instructions that communicate with devices always
alter either DM or DP . We also exclude any external influences from
modifying DM and DP during the execution of any instruction; in other
words, we consider instruction execution to be an atomic operation. The
state of devices can only change in between the execution of instructions.
This limitation of the model is required to model instruction behaviour
accurately and independently of the timing behaviour of devices.

2.3.2 Address mapping

The address map A is a many-to-one map, meaning that many virtual
addresses can correspond to the same physical address. Each entry in
A also contains an access permission specifier, which may be used to
restrict access to read-only, or can forbid access altogether. Without loss
of generality, we can assume that all memory accesses are virtual. When
virtual addressing is turned off, no translations are performed and A
would be a one-to-one identity map.

Definition 4. An address map A is a set of 3-tuples (v, p, x) in which
v ∈ V represents a virtual address, p ∈ P represents the physical address
v is mapped to, and x ∈ X represents the access permission specifier.
For any v ∈ V , there is at most one 3-tuple in A that contains v.

Definition 5. Let VA be the set of virtual addresses mapped by A:

VA = {v | v ∈ V ∧ ∃(p, x) ∈ (P,X) : (v, p, x) ∈ A } .

The translation function TA for the address map A is then defined as:

TA : VA −→ (P,X)
v 7−→ TA(v) = (p, x).

Upon every memory access, the address translation function TA(v)
takes the virtual address v of the access and finds its corresponding
physical address p using the address map A. If A does not contain
an entry for v or if the access permission specifier x indicates that the
requested kind of access is not allowed, a memory trap occurs.

Both an operating system and a hypervisor will create and use their
own address map. When such an operating system is executed on top of
a hypervisor, the operating system’s physical addresses become virtual
in the context of the hypervisor. The hypervisor is then responsible for

24 Formal virtualisation requirements for the ARM architecture

mapping guest physical addresses (GPAs) to host physical addresses
(HPAs). Let Ag and Ah denote the address maps for the guest operating
system and the hypervisor, respectively; we then become:

∀(vg, pg, xg) ∈ Ag :
pg ∈ VAh

⇒ ∃(p, x) ∈ (P,X) : TAh
(pg) = (p, x) ∧ x ≤ xg.

The hypervisor does not necessarily need tomap all GPAs to a HPA at
all times: when the mapping does not exist, a memory trap occurs which
must be handled by the hypervisor. To enforce privilege isolation within
the guest, we require that the hypervisor enforces access permissions at
least as strict as those specified by the guest (x ≤ xg).

A typical MMU can only perform one address translation. With
such an MMU, a double translation, as described above, would require
one translation to be done in software, which in turn would require all
guest memory accesses to trap, thereby sacrificing the efficiency property.
This problem can be solved by composing the guest’s mappings with
hypervisor mappings into a set of direct mappings As, which translates
the guest’s virtual addresses directly into host physical addresses. Such
address map is also known as a shadow address map [2, 21, 113].

Creation and maintenance of shadow address maps is one of the
most complicated tasks of a hypervisor. The shadow address map must
contain all virtual addresses mapped by the guest. Since it is common
for guests to be relocated in the physical address space by the hypervisor,
a new formal requirement has to be imposed on the allocator. Let En be
the contents of the physical address space, and let Ag be the address map
that translates virtual addresses v ∈ Vg to physical addresses in En on a
machinewithout a hypervisor present. LetEv andAs denote the physical
address space and the address map with a hypervisor installed. The
formal requirement is that at any time, any virtual address vg mapped by
both Ag and As accesses the same physical data, or results in a memory
trap for every access from the guest otherwise:

∀(vg, pg, xg) ∈ Ag :
vg ∈ VAs ⇒ ∃(p, x) ∈ (P,X) : TAs(vg) = (p, x) ∧ x ≤ xg

∧
(
Ev[p] = En[pg] ∨ x causes a memory trap

)
. (2.1)

In addition to the mappings from Ag, a hypervisor will add its own
set ofmappings toAs. These hypervisormappings comprise thememory

2.3 An updated model 25

space occupied by the hypervisor and by MMIO devices. Because the
hypervisor and its guests have to coexist in the same address space, those
mappings may overlap. This is certainly the case for MMIO devices. It is
the job of the hypervisor to maintain separation of guest and hypervisor
resources by setting appropriate access permissions on the overlapping
regions in the map As.

2.3.3 Instruction behaviour

This section redefines the notions of privileged, sensitive and innocuous
instructions using the new machine state model. We adopt Definition 2
that states an instruction is a function that maps one machine state to
another. We write I for the set of all instruction functions, and S for the
set of all possible machine state mapping functions. Because typically
not every machine state can be reached through instructions, I ⊂ S .

Definition 6. An instruction i is privileged if for any two states

S1〈E, mU , pc, G, C, A, DM , DP 〉 ∈ Σ and
S2〈E, mp, pc, G, C, A, DM , DP 〉 ∈ Σ,

where mp ∈ MP and both i(S1) and i(S2) do not cause any memory
trap, i(S1) causes a trap and i(S2) does not. This kind of trap is referred
to as a privileged instruction trap.

All instructionswhich change the processormode, modify the system
registers, modify the address map or communicate with PMIO devices
are control-sensitive. We do not consider instructions that communica-
tion with MMIO devices to be sensitive, to prevent treating all generic
memory access instructions as sensitive; instead, MMIO devices must
be protected from guest accesses by the hypervisor’s address map.

Definition 7. An instruction i is control-sensitive if there exists a state

S〈E1, m1, pc1, G1, C1, A1, DM , DP
1 〉 ∈ Σ

such that for

i(S) = 〈E2, m2, pc2, G2, C2, A2, DM , DP
2 〉

we have:

(m1 6= m2 ∨ C1 6= C2 ∨A1 6= A2 ∨DP
1 6= DP

2)
∧ i(S) does not cause a memory trap.

26 Formal virtualisation requirements for the ARM architecture

Mode-sensitive instructions behave differently when executed in
machine states which differ solely in their mode.

Definition 8. An instruction i is mode-sensitive if, given two states

S1〈E, m1, pc, G, C, A, dM , dP 〉 ∈ Σ and
S2〈E, m2, pc, G, C, A, dM , dP 〉 ∈ Σ,

such that for some m1 6= m2, and i(S1) and i(S2) do not cause a memory
trap, for

i(S1) = 〈E1, m∗1, pc1, G1, C1, A1, DM
1 , DP

1 〉 and
i(S2) = 〈E2, m∗2, pc2, G2, C2, A2, DM

2 , DP
2 〉

we have:

E1 6= E2 ∨
(
(m∗1 6= m∗2) ∧ (m∗1 6= m1 ∨m∗2 6= m2)

)
∨ pc1 6= pc2

∨G1 6= G2 ∨ C1 6= C2 ∨A1 6= A2 ∨DM
1 6= DM

2 ∨DP
1 6= DP

2 .

We introduce a new class of sensitive instructions, similar to mode-
sensitive instructions. Their behaviour depends on the set of configura-
tion registers C:

Definition 9. An instruction i is configuration-sensitive if, given two
states

S1〈E, m, pc, G, C1, A, DM , DP 〉 ∈ Σ and
S2〈E, m, pc, G, C2, A, DM , DP 〉 ∈ Σ

such that for some C1 6= C2, and i(S1) and i(S2) do not cause a memory
trap, for

i(S1) = 〈E1, m1, pc1, G1, C∗1 , A1, DM
1 , DP

1 〉 and
i(S2) = 〈E2, m2, pc2, G2, C∗2 , A2, DM

2 , DP
2 〉

we have:

E1 6= E2 ∨m1 6= m2 ∨ pc1 6= pc2 ∨G1 6= G2

∨
(
(C∗1 6= C∗2) ∧ (C∗1 6= C1 ∨ C∗2 6= C2)

)
∨A1 6= A2 ∨DM

1 6= DM
2 ∨DP

1 6= DP
2 .

2.3 An updated model 27

Popek and Goldberg also introduced the notion of location-sensitive
instructions, which were able to bypass memory relocation. An example
of a such sensitive instruction is the Load Real Address (LRA) instruction
from the IBM 360/67 instruction set. In a modern architecture, such
instructions would bypass address translation and expose absolute phys-
ical addresses, i.e., they expose the contents of the address map A. In
virtualised systems it is common for guests to be relocated in physi-
cal memory by the hypervisor. Location-sensitive instructions would
therefore break the equivalence property. We are not aware of any such
instructions in modern processor architectures including MIPS, Pow-
erPC, SuperH and even x86, with the exception of the address translation
operations in the ARMv7-A architecture [12, 71, 74, 91–93, 117].

At first sight, a new difficulty arises on architectures that have an
explicitly visible program counter. Use of the program counter as an
operand in any instruction may break the equivalence property if a guest
is relocated in memory by a hypervisor. However, current memory
management techniques enable a hypervisor to map its guests to the
same virtual addresses as they would see when executed natively. Given
that requirement (2.1) in Section 2.3.2 is met, this will be the case, and any
instructions that operate on the program counter will have no influence
on the virtualisability of a system.

2.3.4 Events

Multiple definitions exist for the terms interrupt and exception. On ARM,
for example, interrupts are seen as a particular subclass of exceptions [12],
while the x86 manual describes them as different and unrelated types of
events [75]. From this point on, we refer to the whole set of interrupts
and exceptions as events.

Events cause the processor to save its current state and enter an
event handler in a privileged mode. Events are either synchronous or
asynchronous. A synchronous event directly results from the execution of
an instruction. Synchronous events are already included in our model
as traps. In modern architectures, several kinds of traps exist. They can
usually be classified in one of the following categories:

• Privileged instruction traps are the result of executing a privileged
instruction.

• Memory traps are caused by instructions or instruction fetches

28 Formal virtualisation requirements for the ARM architecture

attempting to access an address that is either invalid or inaccessible
with respect to the current machine state S and access bits X .

• Arithmetic traps may occur when attempting to perform invalid
arithmetic operations (such as division by zero), or when a hard-
ware FPU lacks an implementation for a requested floating point
operation, in which case software must emulate the operation.

• Undefined instruction trapsmay occurwhen executing an instruction
which is not recognised by the processor.

An asynchronous event may happen at any time, unrelated to the
instruction being executed. By definition, all interrupts generated by IO
devices are asynchronous. When an asynchronous event happens while
the processor is executing an instruction, it will cause the processor to
revert or to complete that instruction. If not, the processor would be
left in an inconsistent state. All instruction functions i are therefore
independent of such events.

Definition 10. An asynchronous event is a function e that brings a pro-
cessor from one machine state into another—the latter of which the
mode is always privileged—without and unrelated to the execution of
an instruction:

e : Σ −→
{

S〈E, m, pc, G, C, A, DM , DP 〉 | (S ∈ Σ) ∧ (m ∈MP)
}

Sx 7−→ e(Sx) = Sy.

As such, asynchronous events can be expressed in the sameway as the
execution of instructions. We write E for the set of asynchronous event
functions. Because the mode of the machine state after an asynchronous
event is restricted to the set of privileged modesMP , we find that E is a
proper subset of S .

2.3.5 Result

Based on our updated model and its definitions, we conclude that Theo-
rem 1 remains unmodified. However, we need to impose a new formal
constraint on the allocator of the hypervisor (see (2.1) in Section 2.3.2) in
order to support paged virtual memory.

The proof of the theorem also requires a subtle update. The con-
sequence of adding asynchronous events to the model is that for any

2.4 Analysis of the ARM architecture 29

instruction sequence (i1, i2, . . . in), in which neither instruction generates
a synchronous event, we can no longer guarantee that Sk+1 = ik(Sk)
(1 ≤ k < n), because asynchronous events may occur at any given time.
The same observation applies to changes in device state due to timing
effects or external influences. Although both the model developed by
Popek and Goldberg and our extended model do not rely on sequences
of instructions, the proof of the theorem that builds upon this model
does. More precisely, the formalisation of the equivalence property as a
homomorphism on the set ofmachine statesΣ does rely on the behaviour
of sequences of instructions. However, as we have shown, asynchronous
events can be modelled as functions that map one machine state onto
another, similar to instructions. The same reasoning can be applied to
asynchronous changes in IO device state. It suffices to generalise the
notion of instruction functions i ∈ I to all functions in (E ∪ I) ⊂ S to
formalise the equivalence property under the new model.

2.4 Analysis of the ARM architecture

In this section, we present an analysis of the bare ARMv7-A architec-
ture [12], i.e., without any extensions, based on our updated model. An
analysis of ARMv7-A including the virtualisation extensions follows
in Section 2.5.1. ARM provides four different instruction sets: 32-bit
(fixed-width) ARM, mixed 16-bit and 32-bit width Thumb-2, Thumb
execution environment (ThumbEE) and Jazelle. We will omit ThumbEE
and Jazelle from our discussion. ThumbEE resembles Thumb-2, but is
designed for dynamically generated code. It is however deprecated with
the upcoming virtualisation extensions. Jazelle enables hardware execu-
tion of Java bytecode, but its specification is not publicly available, and it
cannot be combined with the upcoming virtualisation extensions [9, 13].

2.4.1 Machine state

We recall the definition of machine state in our new model:

S ≡
〈
E, m, pc, G, C, A, DM , DP

〉
.

In the ARM architecture, multiple equally privileged modes exist;
they are systemmode (SYS), supervisor mode (SVC), interrupt mode (IRQ),
fast interrupt mode (FIQ), abort mode (ABT) and undefined mode (UND).

30 Formal virtualisation requirements for the ARM architecture

There is only one unprivileged mode: user mode (USR). m is always one
of these modes. The mode can be altered explicitly through instructions,
or it can be changed automatically when an event arrives [12].

At any given time, 16 “general purpose” registers are available, la-
belled R0 to R15. We exclude R15 from G, because it represents pc. Some
registers are duplicated for different modes; this technique is called
banking. Non-banked registers are shared between all processor modes.
Banked registers are only accessibly when the processor is in the appro-
priate mode, and in some cases through dedicated instructions that save
and restore banked registers. The stack pointer register (R13) and the
link register (R14) are banked for all privileged modes; the instances for
SYS are however shared with USR. Furthermore, FIQ has its own banked
set of R8 to R12. The set G includes all mentioned registers, excluding pc.

The currently active processor state is represented in the current
program status register (CPSR). It stores the processor mode m, data
memory endianness and interrupt mask bits among other fields. There
are also five saved program status registers (SPSRs). These SPSRs are
banked and all share their layout with the CPSR register. They are used
to back up the CPSR upon entering an event handler.

Although it sounds logical to include all program status registers
within the set of configuration registers C, there are two pitfalls. Firstly,
because the mode field of the CPSR always reflects the current mode m,
including m in C would render Definition 8 of mode-sensitive instruc-
tions pointless. Secondly, one part of the CPSR reflects global state, while
the other part represents state specific to the current mode m. The latter
part is also exposed to user mode; e.g., data memory endianness can be
set by software running in user mode, and it will only affect user mode.

We clearly cannot add the entire CPSR to the set of configuration
registers C, as it would make our analysis overly restrictive. Altering
the mode-specific state for executing instructions in a specific mode
mS while the processor is executing instructions in another mode m, is
always done bymanipulating the SPSR for mode mS , eventually followed
by an exception return instruction to switch the processor back to the
mode mS . Hence, we can safely omit any mode-specific state from the
CPSR in C, but we must include the SPSRs completely in C.

The set C also contains all of the system control coprocessor (CP15)
registers, and an event register. The system control coprocessor is used
for various functions such as cache maintenance, MMU control, perfor-
mance monitors and whole system configuration. Its registers can be

2.4 Analysis of the ARM architecture 31

Table 2.1: Sensitive and privileged 32-bit ARM instructions
Sensitivity

Instruction Control Mode Conf. Loc. Priv.
CPS • • ◦ ◦ ◦
LDC ◦ • • ◦ ◦
LDM (exception return) • • • ◦ ◦
LDM (user registers) ◦ • ◦ ◦ ◦
MCR • • ◦ • ◦
MRC ◦ • • ◦ ◦
MRS (SPSR) ◦ • • ◦ ◦
MSR • • ◦ ◦ ◦
RFE • • ◦ ◦ ◦
SEV • ◦ ◦ ◦ ◦
SRS ◦ • • ◦ ◦
STC • • ◦ ◦ ◦
STM (user registers) ◦ • ◦ ◦ ◦
SVC • ◦ ◦ ◦ •
SUBS, ... (exception return) • • • ◦ ◦
WFE • ◦ • ◦ ◦
WFI • ◦ • ◦ ◦

accessed using dedicated coprocessor register read or write instructions.
The event register is part of the mechanism of halting and resuming in-
struction execution based on machine specific system events and should
not be confused with our usage of the term event introduced in Sec-
tion 2.3.4 for the whole of interrupts and exceptions.

The ARMv7-A architecture provides an MMU with support for
paged virtual memory.3 Hence, address translation maps can be imple-
mented using page tables. As all IO on ARM is memory-mapped, PMIO
is not supported and DP is empty. We do not treat interactions with
coprocessors as IO operations.

32 Formal virtualisation requirements for the ARM architecture

2.4.2 32-bit ARM instruction behaviour

There are many sensitive instructions on ARM. Below, we provide a
detailed analysis of all sensitive instructions, grouped by purpose. The
results of our analysis are summarised in Table 2.1.

Coprocessor instructions

The ARM instruction set contains a number of instructions to interact
with coprocessors. In this analysis, we limit the discussion to a basic
implementation of the ARM architecture without extensions. Hence,
only two coprocessors are available in the system: CP14, which is used
for debugging and tracing, and CP15, the system control processor. All
their registers are part of the set C. Out of all instructions there are only
four that can operate on these coprocessors:

• MCR and STC are control-sensitive because they write data to a
coprocessor’s registers or memory;

• MRC and LDC are configuration-sensitive because they load data
from a coprocessor’s registers or memory.

Since some forms of the MCR instruction can be used to translate vir-
tual addresses to physical addresses, they expose the address mapping.
Such forms of the MCR instruction are therefore location-sensitive. A
coprocessor can also deny accesses from USR mode. Therefore, all of the
above instructions are also mode-sensitive.

In systems with extra coprocessors, these coprocessors have to be
carefully analysed to determine whether any of their registers belong
to C. The specification of the coprocessor also determines the set of
instructions that can operate on it. This set may not be limited to the
instructions discussed above; it may also include any of the following:
CDP, CDP2, LDCL, LDC2, LDC2L, MCR2, MCRR, MCRR2, MRC2, MRRC, MRRC2, STCL,
STC2 and STC2L. The effect of each of these instructions, including the
onesmentioned above, must be studied for each coprocessor individually
to determine which instructions are sensitive.

3 The application profile is the only architecture that provides an MMU. Other ARM
architecture profiles provide a simpler memory protection scheme that does not support
address translation.

2.4 Analysis of the ARM architecture 33

Event handling

ARM provides a plethora of instructions for handling events, which are
all mode-sensitive by definition:

• LDM, SUBS, MOVS, MVNS, ADCS, ADDS, ANDS, BICS, EORS, ORRS, RSBS,
RSCS and SBCS can all be used to return from event handlers.
Since this operation updates the processor mode by definition, all
these instructions are control-sensitive. These instructions are also
configuration-sensitive, because they copy the SPSR into the CPSR.

• Another variant of LDM can be used to load values into USR mode
registers from memory. A similar form of STM provides the inverse
operation.

• RFE is control-sensitive because it loads values into the program
counter (R15) and the CPSR from memory.

• SRS is configuration-sensitive because it stores the value of the link
register (R14) and the current SPSR to memory.

All of the above instructions are also mode-sensitive, because their
behaviour in USR mode is unspecified.

Direct modification of system registers

Some instructions directly read or write to system registers such as the
CPSR or one of its banked versions:

• MRS reads from the SPSR, hence it is both configuration-sensitive
and mode-sensitive.

• CPS and MSR write to system registers. The former acts as a NOP
while the latter is unpredictable when executed in USR mode.
Hence, they are both control-sensitive and mode-sensitive.

• SVC is used as system call (or software interrupt) by applications to
call the operating system. It unconditionally changes the current
mode to supervisor mode (SVC). Hence, it is control-sensitive.

34 Formal virtualisation requirements for the ARM architecture

Table 2.2: Sensitive and privileged Thumb-2 instructions
Sensitivity

Instruction Control Mode Conf. Loc. Priv.
CPS • • ◦ ◦ ◦
LDC ◦ • • ◦ ◦
MCR • • ◦ • ◦
MRC ◦ • • ◦ ◦
MRS (SPSR) ◦ • • ◦ ◦
MSR • • ◦ ◦ ◦
RFE • • ◦ ◦ ◦
SEV • ◦ ◦ ◦ ◦
SRS ◦ • • ◦ ◦
STC • • ◦ ◦ ◦
SVC • ◦ ◦ ◦ •
SUBS (exception return) • • • ◦ ◦
WFE • ◦ • ◦ ◦
WFI • ◦ • ◦ ◦

Sleep and wake-up

In a multiprocessor or multi-core system, software executing on different
processors or cores can communicate using events. The architecture
provides two instructions for this purpose: send event (SEV) and wait for
event (WFE). Software can also hint the processor that it is waiting for an
interrupt or external event through the WFI instruction. While waiting,
the processor may go to a low-power state. After an external event or
interrupt occurs (even if interrupts are masked in the CPSR), the one-bit
abstract event register is asserted, the processor wakes up and this bit is
cleared. Since the abstract event register is part of the system state, the
SEV, WFE and WFI instructions are control-sensitive.

2.4.3 Thumb-2 instruction behaviour

The Thumb-2 instruction set provides more or less the same instructions
as the 32-bit ARM instruction set. Moreover, the set of sensitive Thumb-2
instructions is a proper subset of the set of sensitive ARM instructions,
so no elaborate discussion is required. The results of our analysis are
summarised in Table 2.2.

2.5 Full virtualisation in practice 35

2.4.4 Conclusion

Investigating the set of sensitive instructions in the ARM and Thumb-2
instruction sets in Tables 2.1 and 2.2, it is clear that both instruction
sets contain sensitive instructions that are not privileged. Based on our
findings in Section 2.3.4, we conclude that the ARMv7-A architecture is
not classically virtualisable.

2.5 Full virtualisation in practice

The criteria for virtualisability introduced by Popek and Goldberg [97]
and extended in this chapter are sufficient but not necessary to construct
an efficient hypervisor for a particular architecture. Advances in the
construction of hypervisors have enabled full virtualisation on architec-
tures that fail these criteria. However, pure software solutions using
binary rewriting or emulation are typically deemed to introduce too
much overhead or to be too complex.

Hardware vendors have also adapted to the need for virtualisation
support, and architectures that were formerly not classically virtualisable
such as x86 have already beenmade virtualisable [3, 127]. ARM is follow-
ing the same path with its upcoming virtualisation and large physical
address (LPA) extensions for ARMv7-A and ARMv7-R [6–9, 13].

In this section, we discuss both software and hardware approaches.
For the latter, we analyse ARM’s upcoming extensions.

2.5.1 Hardware support for full virtualisation

The upcoming virtualisation and LPA extensions introduce a new pro-
cessor mode, referred to as HYP mode, and a number of new instructions.
They also impact the behaviour of many existing instructions, and mod-
ify the mechanisms for interrupt handling, memory management and
performance monitoring.

The new HYP mode is more privileged than the original set of privi-
leged modes (SVC, SYS, ABT, UND, IRQ, FIQ); the latter is now referred to
as the set of kernel modes. HYP mode enables a hypervisor to run below
the operating system level without forcing the operating system kernel
to run unprivileged. Instead, the operating system kernel can use all
kernel modes transparently, as if no hypervisor was present. Events for
the hypervisor are handled in the HYP mode, instead of the traditional

36 Formal virtualisation requirements for the ARM architecture

exception modes (ABT, UND, IRQ, FIQ), which are a subset of the kernel
modes. This significantly reduces the set of sensitive instructions.

In order to make all sensitive instructions trap to HYP mode, when
executed in any of the kernel modes, the virtualisation extensions add
configurable traps to the architecture. A hypervisor can then make certain
instructions trap as required. When running just one operating system
without a hypervisor, the traps are disabled.

A quick analysis of the original set of sensitive instructions confirms
the implications stated above:

• Coprocessor instructions can be configured to trap. These traps
provide coarse-grained control over accesses to coprocessors CP0
to CP13. There are more fine-grained controls for the remaining
coprocessors—the debug and execution environment support co-
processor (CP14) and the system control coprocessor (CP15).

• Memory access and event handler return instructions are no longer
sensitive, since a guest running on a hypervisor with hardware
extensions can use the exception modes in the same way as for the
non-virtualised case.

• Instructions that directly modify system state now act on a guest’s
state, rather than on the entire system state. Hence, they are no
longer sensitive.

• Instructions that deal with external events are adapted to work
with a per-guest interrupt state. Each guest has its own virtual
interrupts. Both WFE and WFI have independent configurable traps.
These traps can be used as hints by the hypervisor to schedule
other guests. However, the SEV instruction cannot be made to trap.

It may seem surprising that SEV cannot be made to trap. It is the only
sensitive instruction that remains unprivileged with the new hardware
extensions. However, none of the sleep and wake-up instructions can
cause functionally incorrect behaviour of the hypervisor [12]. The con-
figurable traps for WFE and WFI are provided so that a hypervisor is able
to detect when a guest is idle. The SEV instruction cannot provide such
useful information to the hypervisor.

Hence, a hypervisor can be constructed that executes VMs until they
trap to HYP mode. All other additions by the virtualisation and LPA
extensions are not strictly necessary but speed up common hypervisor

2.5 Full virtualisation in practice 37

tasks and reduce the code size of the hypervisor. For example, the LPA
extension adds a nested address translation mechanism in the MMU.
This mechanism makes the hardware capable of combining a translation
table for the guest with a translation table for the hypervisor, eliminating
the need for software-based shadow maps.

2.5.2 Dynamic binary translation

Full virtualisation can also be supported without modifications to the
hardware; this is typically achieved through DBT, sometimes also called
software dynamic translation (SDT). The concept of a DBT hypervisor
evolved from the theory of Popek and Goldberg’s hybrid hypervisor. An
analysis according to our model remains useful, because it can be used
to determine whether an architecture is suitable for the construction
of such DBT hypervisor. Furthermore, the analysis will reveal which
instructions will need to be rewritten.

In a hybrid hypervisor, all instructions normally executed in a priv-
ileged mode are interpreted by the hypervisor. Instructions normally
executed in unprivilegedmode are executed natively [97]. In a traditional
software stack, a hybrid hypervisor would interpret the guest operat-
ing system but execute applications natively. Popek and Goldberg [97]
proved that a hybrid hypervisor can be constructed if all user-sensitive
instructions are also privileged. In our model, user-sensitive instructions
are defined as follows:

Definition 11. An instruction i is user-sensitive if there exists a state
S〈E, mU , pc, G, C, A, DM , DP 〉 ∈ Σ for which i(S) is control-sensitive,
configuration-sensitive or location-sensitive.

A DBT hypervisor can achieve a performance benefit over interpreta-
tion by rewriting instruction sequences at run time [19]. The basic idea
is to execute as many rewritten instructions as possible natively, without
intervention of the hypervisor. Sensitive instructions must be rewritten
such that they trap to the interpreter of the hypervisor. Because the
hypervisor needs to keep track of the execution of its VMs, it will also
need to rewrite control flow instructions.

DBT for the ARM architecture

In order to construct a DBT hypervisor for ARM, it is required to deter-
mine how much of the guest code must be rewritten: if all user-sensitive

38 Formal virtualisation requirements for the ARM architecture

instructions are also privileged, only guest privileged codemust be trans-
lated, otherwise, all code must be translated. We can extend our analysis
from Section 2.4 to analyse user-sensitivity. As it turns out, there are
four user-sensitive instructions, shared by both ARM and Thumb:

• the supervisor call instruction SVC, because it always changes the
processor mode to SVC;

• the sleep and wake-up instructions SEV, WFE and WFI.

All other sensitive instructions either act as NOP or exhibit innocuous
behaviour when executed in USRmode. Of all user-sensitive instructions,
only SVC is privileged. Hence, ARMdoes not meet Popek andGoldberg’s
conditions for a hybrid hypervisor either.

In practice, the sleep and wake-up instructions are merely hints for a
processor. Even a masked interrupt will wake up a sleeping processor.
Furthermore, if any interrupts are pending, the processor will not sleep
either [12]. Not intercepting these operations can therefore not lead
to resource control violations. In other words, we can ignore them
and still obtain functional correctness. When we effectively do ignore
the presence of unprivileged sleep and wake-up instructions, we can
construct a DBT hypervisor that only translates privileged guest code.
The downside of this approach is that the hypervisor cannot intercept
sleep instructions in unprivileged guest code, which could otherwise be
used by the VM to tell the hypervisor that it is idle. The same problem
applies to paravirtualisation solutions for ARM: because only guest
privileged code (such as operating system kernels) is altered, they have to
make the same assumption. They hence suffer from the same deficiency.

Using DBT also requires the hypervisor to keep track of guest control
flow. On ARM, the PC is explicitly visible as R15 and can be altered by
several instructions, including arithmetic logic unit (ALU) instructions.
This complicates the design of an instruction decoder for DBT.

Furthermore, the PC can be used as source operand for even more
instructions [12, 60, 94]. Because the width of instructions is fixed at
16 or 32 bits, absolute address operands cannot be encoded. Therefore,
distributed literal pools—pools of data embedded in code—are used
which are accessed using PC-relative addressing. Other architectures
offer instructions that can encode absolute addresses in full, such as
on x86, or use a single global offset table (GOT) instead of distributed
embedded data pools, such as on Alpha [84].

2.5 Full virtualisation in practice 39

We call instructions that depend on the value of the program counter
PC-sensitive. Formally, they are defined as follows:

Definition 12. An instruction i is PC-sensitive if, given two states

S1〈E, m, pc, G, C, A, DM , DP 〉 ∈ Σ and
S2〈E, m, (pc + z), G, C, A, DM , DP 〉 ∈ Σ

such that for some offset z ∈ Z \ {0}, and i(S1) and i(S2) do not cause a
memory trap, for

i(S1) = 〈e1, m1, p1, g1, c1, a1, dM
1 , dP

1 〉 and
i(S2) = 〈e2, m2, p2, g2, c2, a2, dM

2 , dP
2 〉

we have:

e1 6= e2 ∨m1 6= m2 ∨ p1 6= (p2 − z) ∨ g1 6= g2

∨ c1 6= c2 ∨ a1 6= a2 ∨ dM
1 6= dM

2 ∨ dP
1 6= dP

2 .

This class of instructions becomes important when part or all of
a VM is relocated in the virtual address space; as opposed to Popek
and Goldberg’s location-sensitive instructions which matter when part
or all of a VM is relocated in the physical address space. PC-sensitive
instructions are innocuous to execute-to-trap hypervisors as long as
requirement (2.1) on the address map is met (see Section 2.3.2).

PC-sensitive instructions wreak havoc with DBT hypervisors because
privileged guest codemay not always be executed in place, depending on
the construction of the hypervisor, as opposed to unprivileged guest code.
As we will show in Section 3.5.1, in-place translation and execution may
not be feasible for several reasons: firstly, a hypervisor cannot prevent a
guest from observing the alterations to its code, and secondly, the size of
the translated codemight not match the size of the original code. Instead,
code is typically translated to a cache located elsewhere in the virtual
address space. The program counter observed by the translated codewill
therefore be incorrect unless the hypervisor also intercepts PC-sensitive
instructions. Optimisation techniques can be used to rewrite PC-sensitive
instructions to equivalent non-sensitive instruction sequences, instead
of merely replacing them by a trapping instruction [94].

40 Formal virtualisation requirements for the ARM architecture

2.6 Conclusions

Despite the popularity of paravirtualisation in today’s embedded sys-
tems, full virtualisation remains important. The theory introduced by
Popek and Goldberg is still useful for determining whether an archi-
tecture is suitable for the construction of efficient hypervisors for full
virtualisation, which are based on the execute-to-trap principle. How-
ever, their model does not take into account features often found in
modern architectures. Therefore we have extended their model with
paged virtual memory by introducing the concept of an address map,
and we derived a new formal constraint for the correctness of such maps.
We also studied the effects of IO and events, and updated the model,
definitions and results accordingly.

Our model can be applied to analyse modern computer architec-
tures. We have demonstrated this in a formal analysis of ARMv7-A,
which proved to be not classically virtualisable. Nevertheless, modern
techniques in the construction of hypervisors such as DBT can enable
full virtualisation on ARM. DBT requires neither hardware changes nor
guest modifications and provides a solution to the lack of classic virtual-
isability on architectures such as ARM. In other architectures, DBT has
already been shown to be able to match or even outperform the hard-
ware assisted virtualisation approach. Even though it comes at a price of
software implementation complexity and increased memory footprint,
DBT technology opens the door to several more interesting possibilities
such as cross-architecture virtualisation, legacy software stack support
and optimising heterogeneous multi-core system utilisation.

In the mean time, industry has started to adapt to the interest in
full virtualisation. Hardware virtualisation extensions attempt to make
ARMv7-A compatible with the Popek andGoldberg classic virtualisation
requirements, and implement certain parts of the hypervisor function-
ality in hardware for efficiency reasons sacrificing portability. Utilising
the hardware functionality can reduce hypervisor design complexity at
the cost of moving the complexity to the design of the hardware layer.

Chapter 3

The STAR hypervisor

In Chapter 2 we pointed out that the ARMv7-A architecture can be
virtualised both by using DBT techniques and by relying on the new
virtualisation extensions. DBT remains relevant for a number of sce-
narios such as legacy emulation, full system tracing and even for load
balancing on heterogeneous multi-core architectures. However, none of
the existing hypervisors for the ARMv7-A architecture support DBT.

In this chapter, we present the software translation for ARM (STAR)
hypervisor, the first software-only hypervisor for the ARMv7-A archi-
tecture. Our hypervisor is a bare-metal hypervisor that fully virtualises
the ARMv7-A architecture on top of an ARMv7-A-based platform. It
runs unmodified guest operating systems, decoupled from the hardware
through DBT, and uses shadow translation tables to virtualise the MMU.

42 The STAR hypervisor

Applications

OS Hypervisor

Hardware Hardware

VIRTUALISED

UNPRIVILEGED MODE

PRIVILEGED MODES

NATIVE

Hypervisor

Hardware

OS

Applications

Hardware

“Guest” OS

Applications

Figure 3.1: Native vs. virtualised privilege levels

3.1 Introduction

To have a framework to experiment with DBT on ARM, we needed ei-
ther to extend an existing hypervisor or to create a new hypervisor from
scratch. It was desirable for that hypervisor to be a bare-metal hypervisor,
as we target embedded systems and therefore the overhead of hosted hy-
pervisors is to be avoided. At the time when our research project started,
all available bare-metal hypervisors for ARM used paravirtualisation
for both CPU and MMU virtualisation. As such hypervisors were not
suitable, we decided to create a new bare-metal hypervisor from scratch.

The goal of full virtualisation is to run a complete and unmodified
software stack consisting of an operating system and user applications
on top of a hypervisor. Because the hypervisor needs to remain in control
of the hardware at all times, it needs to restrict access of guest operating
systems to the hardware in the same way a traditional operating sys-
tem separates application privileges from kernel privileges. The basic
ARMv7-A architecture offers only two privilege levels. There are several
equally privileged CPU modes, but only one unprivileged mode, user
mode. In a traditional operating system, the privileged modes are used
for the kernel, and the unprivileged mode is used for user applications.
When virtualised, only the hypervisor is privileged and guest operating
systems together with their user applications must be executed in the
unprivileged mode, as shown in Figure 3.1. The hypervisor thus gains
the additional responsibility of enforcing privilege separation between
the guest operating system kernels and their user applications.

In order to make this work, the hypervisor has to solve two important
problems. Firstly, as discussed in Chapter 2, executing a guest operating
system kernel in the unprivileged mode causes all sensitive instructions

3.2 Development history 43

to behave differently, because the ARMv7-A architecture is not classi-
cally virtualisable. Instructions from guest kernels must therefore be
translated. There are, however, no differences in instruction behaviour
for user applications. The guest’s original user-space code can hence be
executed as is, and the DBT engine only has to translate kernel code.

Secondly, the MMU must be shared between the hypervisor and its
guests: both the hypervisor and its guests will create their own memory
mappings; furthermore, the hypervisor must be able to supervise and
modify its guests’ mappings as needed. This requires an MMU virtu-
alisation mechanism. These two problems define the tasks of the two
largest components of our hypervisor: the DBT engine, responsible for
CPU virtualisation, and the virtual MMU.

Our hypervisor aims to be usable for several different use cases, in-
cluding full-system debugging and instrumentation. The naive version
of our hypervisor must therefore avoid techniques that cause guest-
observable differences in behaviour. In Chapter 4, we present optimisa-
tions over our naive version, which can be enabled or disabled based on
the usage scenario of the hypervisor as some of these optimisations may,
in rare cases, cause observability issues.

3.2 Development history

Some of the design and implementation choices made in our hypervisor
are closely related to its history and its initial development platform. We
therefore need to revisit how our hypervisor came about before getting
into the details of the different components and how they interact.

Our hypervisor started in 2009 as a bachelor’s thesis project of two
students at The University of Manchester, Alex Merrick and Danielius
Kudinskas, under supervision of Alasdair Rawsthorne, former CTO
of Transitive [80, 89]. Transitive was a company that provided cross-
architecture user-space virtualisation solutions, such as the Rosetta tech-
nology that helped Apple users migrate from PowerPC-based computers
to Intel x86-based computers [5, 123].

The original goal of the project was to create a prototype of an open
and free hypervisor for ARM-based embedded systems, motivated by
emerging trends in virtualisation of mobile devices and the fact that no
hypervisor was available at the time that could do full virtualisation.
In the context of mobile device virtualisation it only made sense to

44 The STAR hypervisor

Figure 3.2: The Texas Instruments OMAP3-based BeagleBoard

start working on a platform that was suitable for such devices. Proper
development hardware for the ARM architecture with full debug and
trace capabilities is not affordable in the context of such projects, e.g.,
the ARM Versatile Express hardware platform costs several thousands
of euros.1 The BeagleBoard, a low-cost single board computer shown
in Figure 3.2, was chosen as development platform because it is both
affordable and based on a system-on-chip (SoC) used in several mobile
handsets: the Texas Instruments OMAP3 SoC [37, 119, 120].

The OMAP3 SoC contains one single ARM Cortex-A8 core, together
with a DSP and a set of peripherals. The Cortex-A8 core implements
the ARMv7-A architecture [10]. The BeagleBoard integrates this SoC
on a board with 256 MiB of random access memory (RAM), 256 MiB of
NAND flash as well as a number of debug and expansion interfaces.

Based on the aim for full virtualisation, the VM interface presented
to guests was designed to mimic the features of the BeagleBoard and
its OMAP3 SoC. The hypervisor thus presents an OMAP3 SoC to guest
systems, together with a virtual Cortex-A8 core. While our hypervisor
has now been ported to different platforms, the virtual hardware has
remained the same. Over time, the hypervisor has been redesigned such

1 Based on private communication with ARM Ltd.

3.3 Top-level design 45

DBT ENGINE

VIRTUAL CPU

Translator

Software

caches

Decoder

& encoder

Interpreter

Guest

loader
VM memory

map template

Virtual devices

VIRTUAL

PLATFORM

MEMORY MANAGER

VIRTUAL MMU

Shadow mapper

MMU operation

emulator

Startup

code
Custom C library LLVM libc++ Hardware abstraction layer

Exception handlers

Figure 3.3: Overview of the functional blocks of the hypervisor run-time

that the virtual interfaces offered to VMs can be easily decoupled from
the underlying physical platform.

The hypervisor originally started in Manchester became the subject
of this thesis after the bachelor’s project ended. Because at this stage, the
hypervisor could only run the Linux kernel decompression loop, further
development took place both in Manchester, by Danielius Kudinskas,
and in Ghent, by the author of this dissertation. The remainder of this
text, unless explicitly stated otherwise, discusses the current version of
the hypervisor based on the work of the author of this dissertation.

3.3 Top-level design

Figure 3.3 presents an overview of the run-time functional blocks of our
hypervisor. The DBT engine and virtual MMUmake an abstraction of
the processor architecture and memory. The virtual platform provides
a set of virtualised coprocessors and IO devices. The state of all these
functional blocks is unified in a data structure called the guest context.

The virtual platform should in theory be a copy of a real physical
platform. In practice, however, hypervisors often take some shortcuts
for performance reasons or to avoid complexity, even with full virtual-
isation [113]. One example of such a shortcut is our guest loader. On
normal hardware, an operating system is loaded by a third-party pri-
mary boot loader such as Barebox [20] or U-Boot [45]. The primary boot
loader typically performs some low-level hardware initialisation before
jumping into the operating system kernel. In a virtualised system, low-
level hardware initialisation happens once, i.e., before the hypervisor

46 The STAR hypervisor

is started or during hypervisor start-up, depending on whether or not
a primary boot loader is used on the physical platform. This step is
necessary after each reset of the system, because the physical platform
dictates the default configuration after reset. In the virtual platform, the
hypervisor dictates what is default; therefore it can choose to initialise
this platform to a state suitable for booting a guest kernel immediately,
without intervention of an external primary boot loader. The part of our
hypervisor that prepares the guest context for booting a guest kernel in
this way is called the guest loader.

Our hypervisor is a bare-metal hypervisor, i.e., it runs on top of hard-
ware rather than on top of an operating system. Therefore, at the lower
layers of abstraction, our hypervisor also contains exception handling
code, responsible for context switches between the hypervisor and its
VMs, a hardware abstraction layer, consisting of device drivers and sup-
port code for architectural features, our own customised C library, and a
C++ standard library (LLVM’s libc++ [86]).

The hypervisor is constructed in a modular way, such that all run-
time components are chosen, configured, and composed at build time.
All builds are configured through a slightly modified version of Kconfig,
a configuration language and a set of build-time configuration tools
adopted from the Linux kernel [79, 108]. Kconfig is used to configure
the target platform, to enable or disable specific features such as optimi-
sations in the DBT engine, to switch between different implementations
of a single feature, and to configure debug and test features.

3.4 MMU virtualisation: the memory manager

Operating systems use an MMU for various tasks ranging from address
translation and memory protection to cache configuration. All these
tasks are administered through translation tables. A hypervisor essen-
tially performs the same tasks: it uses address translation and cache
control for itself, and for relocating guests within physical memory. The
hypervisor needs to isolate its own memory from guests, and guests
from one another. A guest’s memory may need to be protected to keep
the hypervisor’s software caches consistent with the guest. Furthermore,
the hypervisor needs complete control over the hardware caches. The
hypervisor must therefore set up its own translation tables, which must
be used in combination with the guests’ translation tables.

The MMU in the bare ARMv7-A architecture can only use one set of

3.4 MMU virtualisation: the memory manager 47

translation tables at a time. Combining the hypervisor’s translation tables
with a guest’s translation tables requires a software mechanism that
merges the tables into a single set of shadow translation tables [2, 21, 113].

Operating systems enforce privilege separation between kernel and
user space by specifying different permissions for memory accesses
from privileged and unprivileged modes in their translation tables. As
shown in Figure 3.1, once virtualised, both the guest kernel and its user
applications run in the unprivileged mode. The MMU can therefore no
longer distinguish between a guest’s kernel and its user applications.
To enforce privilege separation in the guest, the hypervisor creates two
sets of shadow translation tables: a privileged set, which is set up to
enforce access permissions for the guest’s kernel, and an unprivileged
set, configured to enforce access permissions for guest user applications.
The MMU is configured by the hypervisor with the appropriate set of
shadow translation tables depending on the guest’s virtualised privilege
level. This approach is known as double shadowing [47].

Because our hardware did not support ARM’s large physical ad-
dress extension (LPAE), we only discuss the short descriptor model, i.e. the
MMU configurationmodel used prior to the introduction of the LPAE [7].
We use VMSAv7 to denote this memory management architecture, and
LPAE to denote the revised architecture which adds support for the long
descriptor model. The short and long descriptor models are substantially
different in translation table structure, descriptor format, MMU configu-
ration and size of the physical address space. In VMSAv7, all physical
and virtual addresses are 32 bits wide. Both physical and virtual address
spaces are therefore limited in size to 4 GiB.

3.4.1 The VMSAv7 MMU

The VMSAv7 MMU supports paged virtual memory using two levels
of translation tables [12]. A first-level translation table maps the entire
virtual address space. It consists of 4096 descriptors that each map 1MiB
of the address space. A second-level translation table, also called a page
table, can be used to split one first-level descriptor into 256 second-level
descriptors mapping 4 KiB each. This is shown in Figure 3.4.

The two levels of translation tables supportmappings of four different
sizes: supersections of 16MiB, sections of 1MiB, large pages of 64KiB and
small pages of 4 KiB. Supersections and large pages are created by using
16 consecutive identical descriptors. The advantage of supersections

48 The STAR hypervisor

FIRST LEVEL

TRANSLATION TABLE

SECOND LEVEL

TRANSLATION TABLES

PHYSICAL

ADDRESS SPACE

Section

Page table

Small page

Large page

(16 descriptors)

Small page

Small page
Page table

4 kB

64 kB

1 MB

4 kB

Figure 3.4: Paged virtual memory mapping with the VMSAv7 MMU

and large pages over sections and small pages lies in their translation
lookaside buffer (TLB) behaviour: these repeated descriptors only use
a single entry in the TLB, while 16 consecutive sections or small pages
would result in 16 different entries being used in the TLB. Since TLBs
are typically small on ARM-based systems, e.g., 32 entries for the L1
data and L1 instruction TLBs on the Cortex-A8 [10], the decrease in TLB
pressure from using supersections and large pages whenever possible
is significant. Supersection support is however optional in VMSAv7,
and as our hardware did not support it, our hypervisor does not use
supersections. Mappings of different sizes may overlap, i.e. several
virtual addresses can refer to the same physical address.

At any given time, only two first-level translation tables can be active.
They are used together to perform one single address translation. The
addresses of both tables are configured in the system control coproces-
sor, in the registers TTBR0 and TTBR1. The translation table configured
through TTBR1 is optional and can be used to override the translation
table configured through TTBR0 for the upper part of the virtual address
space. Originally, this two-table mechanism was intended to facilitate
switching first-level translation tables for user applications: mappings
specific to user applications would be made in the lower part of the vir-

3.4 MMU virtualisation: the memory manager 49

tual address range, while the kernel is mapped using its own first-level
translation table in the upper part of the virtual address space. During
the implementation of our hypervisor, we have never observed a kernel
that made use of this mechanism. Therefore, this functionality has not
been virtualised and unless explicitly stated otherwise, TTBR1 is omitted
from all further discussions on this subject.

Three mechanisms control access to mappedmemory regions: access
permission bits, an execute-never bit and domains. The access permis-
sion bits determine whether the memory is readable or writable to each
of the two privilege levels, with the limitation that unprivileged ac-
cess always implies privileged access. The execute-never bit determines
whether or not instructions can be (pre)fetched, and has no effect on data
accesses. The rationale behind this bit is to prevent the prefetcher from
accessing device memory, because such accesses may have unintended
side effects. Domains can be used to override the access permissions
and the execute-never bit of entire sets of mappings. Each first-level
descriptor is assigned to a domain. In the VMSAv7 MMU, each domain
can be configured independently in one of the following three modes:

1. Disabled: all accesses fail with a domain trap;

2. Client mode: memory accesses are allowed or denied based on the
access permissions and the execute-never bit;

3. Manager mode: memory accesses are allowed regardless of the
access permissions and the execute-never bit.

Although the access permissions and the execute-never bit can be config-
ured at page granularity, domains can only be set in first-level descriptors.
Therefore, all pages mapped by a second-level translation table always
reside in the domain of their first-level page table descriptor.

3.4.2 Shadow translation tables

Even though the VMSAv7 MMU supports two first-level translation
tables to be active simultaneously, it can only use one such table per
translation. Combining the hypervisor’s translation tables with a guest
operating system’s translation tables requires either a hardware MMU
capable of performing two address translations in a row using two differ-
ent sets of translation tables, as provided by the ARMv7-A virtualisation
extensions, or a software mechanism that merges the tables and then

50 The STAR hypervisor

Host physical address

Guest

virtual address

GUEST TRANSLATION TABLES

HYPERVISOR TRANSLATION TABLES

CONCEPTUAL PRACTICAL

Host physical address

SHADOW TRANSLATION TABLES

Hypervisor

virtual address

Guest

physical address

Hypervisor

virtual address

Guest

virtual address

Figure 3.5: Overview of virtual addressing using shadow translation tables

presents the merged tables to the hardware MMU. Such merged tables
are called shadow translation tables [2, 21, 113].

In a basic implementation of shadow translation tables, a hypervisor
intercepts all guest accesses to the control registers of the MMU, and cre-
ates or updates the shadow translation tables whenever the guest creates
or updates its own translation tables. The guest should not be able to
read hypervisor-created tables, so that it cannot detect that it is being
virtualised. The hypervisor can arbitrarily remap guest memory; there-
fore, addresses viewed as physical by a guest are not necessarily physical
addresses to the hypervisor. We refer to virtual addresses mapped by a
guest as guest virtual addresses (GVAs). Physical addresses at the virtual
machine level, as seen by the guest, are called GPAs. Similarly, physical
addresses at the hardware level, as seen by the hypervisor, are called
HPAs. These concepts are illustrated on the left-hand side of Figure 3.5.

Ideally, the virtual MMU offered to the guest is an exact replica of
the physical MMU as used by the hypervisor. The guest would then
have complete control over its own virtual address space. With shadow
translation tables, the guest’s translation tables are combined with the
hypervisor’s translation tables as shown on the right-hand side of Fig-
ure 3.5. Therefore, part of the virtual address space will be dedicated to
the hypervisor, and part may be shared by both hypervisor and guests.
To make the distinction between virtual addresses originating frommap-
pings in the guest’s original translation tables and virtual addresses
corresponding to mappings of the hypervisor, we shall refer to the latter

3.4 MMU virtualisation: the memory manager 51

as hypervisor virtual addresses (HVAs).

3.4.3 Lazy double shadowing

The descriptors in VMSAv7 translation tables define two sets of access
permissions: one set for code executing in a privilegedmode, and another
for code executing in the unprivileged mode. When an operating system
is executed natively, this split is sufficient to isolate its kernel from user-
space applications. In our virtualised system however, the hypervisor
is the only piece of software that runs in a privileged mode; all guest
kernel code is executed in the unprivileged mode. Therefore, the access
permissions in the shadow translation tables must be used to isolate the
hypervisor from the guest; they cannot isolate the guest kernel from its
user-space applications without additional software mechanisms. Our
hypervisor therefore maintains two shadow translation tables at any
given time: one for guest code originally meant to run in a privileged
mode, such as an operating systemkernel, and another one for guest code
meant to run in the unprivileged mode, such as user-space applications.

A virtual machine starts with its virtual MMU disabled. To handle
this case, the hypervisor uses only a single first-level translation table,
which maps both the hypervisor’s and the guest’s memory and devices.
Since the guest’s virtual MMU is disabled, the hypervisor does not need
to enforce any kind of privilege isolation in the MMU between any of
the guest’s privileged modes and the guest’s unprivileged mode.

When a guest wants to turn on its virtual MMU, the hypervisor
allocates two first-level shadow translation tables: one for the guest’s
privilegedmodes, and one for the guest’s unprivilegedmode. Both tables
are initialised with descriptors required by the hypervisor only. No
descriptors from the guest’s translation tables are copied into either table
during initialisation; the shadow translation tables are populated lazily.
The hypervisor then activates the shadow translation table for the guest’s
privilegedmodes. Eventually, control returns from thememorymanager
to the DBT engine, which then needs to translate the next block of code
from the guest. This will cause a translation fault, since up to this point,
the memory manager has not copied any descriptors from the guest’s
translation tables into the shadow translation tables. The translation
fault is handled by the memory manager, which consults the guest’s
translation tables to find the descriptor for the faulted memory access.
Given that the descriptor is valid, the active set of shadow translation
tables is updated and control is returned to the DBT engine.

52 The STAR hypervisor

Every access from the guest or the hypervisor to a GVA for which
the descriptor has not yet been copied from the guest’s translation tables
into the active shadow translation tables will cause a translation fault.
Similar to the translation of the initial block of code after turning on the
MMU, the memory manager copies guest descriptors as needed into
the shadow translation tables. Guest descriptors are not copied exactly
as they are: the memory manager must take into account the access
permissions in order to enforce isolation between the hypervisor and its
guests and between the guest’s privileged and unprivileged modes. We
will therefore refer to this process as shadow mapping rather than copying.

A guest can switch from a privileged to the unprivileged mode using
an exception return instruction. Vice versa, it can switch from the unpriv-
ileged mode to a privileged mode by taking (or causing) an exception or
an interrupt. Whenever this mode switch occurs, the memory manager
ensures that the set of shadow translation tables is also switched.

The memory manager must keep track of modifications to a guest’s
translation tables. When a guest modifies a descriptor that has been
shadow mapped, the shadow translation tables must be updated accord-
ingly. There are multiple ways in which this problem manifests itself:
a guest can edit a descriptor directly, or it can update a system control
coprocessor register that modifies themeaning of a set of descriptors. We
shall discuss and evaluate multiple approaches to manage the shadow
translation tables in Chapter 5.

3.4.4 Hypervisor mappings vs. guest mappings

The hypervisor takes up part of physical memory and of the virtual
address space for its own code and data. For practical purposes, the
hypervisor lies to Linux guests about the available memory, such that
Linux guests will never attempt to use physical memory dedicated to
the hypervisor. This is however not sufficient to separate hypervisor
memory from guest memory, and it cannot prevent the guest from trying
to map or use a virtual address that is also used by the hypervisor.

Whenever the memory manager needs to construct a shadow map-
ping for a guest descriptor, it will look up the kind of device or memory
the guest is trying to map in the virtual platform. The virtual platform
contains definitions of all devices and memories usable by the guest,
and based on this information the memory manager can prevent the
guest from mapping memory dedicated to the hypervisor. When such

3.5 CPU virtualisation: the DBT engine 53

an anomaly is detected, the memory manager can either kill the guest,
or alter the physical address to allocate a different chunk of free memory
to the guest. Since we have never run into this situation, our implemen-
tation of the memory manager just kills the guest operating system.

A malicious or ill-constructed guest can still perform direct accesses
to HVAs. The only way to block such accesses is to enforce proper mem-
ory protection on all hypervisor code and data. Some data structures
such as the cache of translated code must however be readable to the
guest’s privileged modes but not to the guest’s unprivileged mode. To
avoid situations in which guest accesses to hypervisor data structures go
by unnoticed, the amount of data visible to the guest must be minimised.

During the time that a guest has its virtual MMU disabled, it is the
hypervisor’s responsibility to make sure that the guest’s memories and
devices are accessible. The shadow translation tables will therefore be
initialised with mappings for all guest necessary devices upfront. In
order to reduce TLB pressure, all mappings are constructed using the
largest descriptors possible, e.g., when the virtual MMU is disabled,
guest main memory is mapped in sections of 1 MiB each. Mappings
for the hypervisor’s code, data and devices are often constructed using
small and large pages, in order to enforce strict memory protection
rules, and to minimise the potential overlap in the virtual address space
between HVAs and GVAs. Once the guest turns on its virtual MMU, it
will make its own device mappings as needed. Guests such as Linux
also maximise the size of the descriptors for devices. One descriptor can
then map any number of devices and even some unused regions in the
physical address space. In order to enforce strict memory protection, the
memory manager must split such descriptors into smaller descriptors to
enforce different access permissions for the different devices mapped by
those descriptors. Splitting is an expensive operation, because it requires
allocating and filling second-level shadow translation tables, it increases
maintenance costs on guest updates, and it increases TLB pressure.

3.5 CPU virtualisation: the DBT engine

Our DBT engine consists of an instruction decoder and encoder, a trans-
lator, an interpreter, a software cache for translated code, called the code
cache, and a second software cache to hold metadata about translated
code, called the metadata cache. Figure 3.6 depicts the operational cycle
of our DBT engine. Translated guest kernel code executes from the code

54 The STAR hypervisor

DBT ENGINE (PRIVILEGED)GUEST (UNPRIVILEGED)

Translated block A

Translated block B

INSTRUCTIONS

SVC #A

INSTRUCTIONS

SVC #B

TRAP
Interpret

Translate

NO

RESUME

Exit DBT engine

Stay

privileged?

YES

Next block

cached?

YES

NO

Figure 3.6: The basic operational cycle of our DBT engine

cache in unprivilegedmode. Two such translated code blocks in the code
cache are shown on the left of Figure 3.6. Note that as explained earlier,
guest user applications are not touched by our DBT engine.

In the translated code blocks, control flow and sensitive instructions
have been rewritten to trap to the interpreter, where their behaviour is
emulated (in privileged mode) on the guest context. The guest context
contains a shadow register file, which consists of all general-purpose
registers, the program status registers, etc. On ARM, some registers are
banked, i.e. physically duplicated, for different modes; e.g., almost every
mode has its own stack pointer (SP) and link register (LR). Our shadow
register file stores all copies of the banked registers separately.

When the interpreter is done, the DBT engine checks whether or
not the guest is switching from kernel to user mode. If so, the DBT
engine is exited and control is transferred to the guest’s user-space code.
Otherwise, the address of the next block in the code cache is looked up
in the metadata cache. If this look-up fails, the block is first translated
to the code cache. The hypervisor then resumes execution in the code
cache, either with the retrieved or with the freshly translated block.

We implement traps to the interpreter using the SVC instruction,
which is normally used by an operating system to implement system calls.
Instructions that trap to the interpreter terminate translated code blocks.
When the hypervisor receives a system call trap, it first checks whether
the trap came from the translated code, or from a guest’s user application.

3.5 CPU virtualisation: the DBT engine 55

In the latter case, the trap is forwarded to the guest’s exception handlers.
System call traps in translated code are routed to the interpreter.

However, the DBT engine must first look up the code block’s correspond-
ing metadata to determine which instruction was replaced, and which
interpreter function must be invoked. To ensure a fast look-up process
with O(1) complexity, we have implemented our metadata cache as a
fixed-size array, and we use the indexes of the cache items as operands
to the SVC instructions that terminate our translated code blocks.

After interpretation has completed, the hypervisor checks whether
or not the guest has changed its execution mode. When the guest has
switched to the unprivileged mode, e.g., to execute a user application,
the DBT engine is disabled, and the hypervisor performs a context switch
to the guest’s user application. When the guest remains executing kernel
code in one of the privileged modes, the native PC value in the guest’s
virtual machine state must be mapped to a code cache address. This
requires another look-up in the metadata cache. We implement this
look-up using hashing with open addressing; this means that newly
translated blocks are assigned an entry in the metadata cache based on
their source address. When the look-up fails, the block is first translated.

The translator operates on the instructions of the source block one
by one. Instructions are decoded to determine whether or not they can
be copied to the code cache as is. Table 3.1 provides an overview of all
instructions that require special handling, based on the virtualisability
analysis we presented in Section 2.4. Most instructions do not alter
control flow, and are not sensitive in any way; they can therefore be
copied without modification. For control flow and sensitive instructions,
the decoder decides whether they are replaced by traps to the interpreter,
or by equivalent sequences of instructions that can be executed without
run-time intervention of the DBT engine. For example, instructions that
make use of the PC but are otherwise innocuous are translated to make
sure they observe the value of the PC as if they were executed natively.
After a translation or successful cache look-up, the hypervisor resumes
executing the translated guest kernel code within our code cache.

Table 3.1 contains a number of instructions that were not identified
as sensitive in our previous analysis: LDRT, STRT and similar instructions
perform memory accesses as if they were executed from the unprivi-
leged mode, regardless of their actual privilege level. They are used by
a kernel to access memory with the permissions of an application; this
is necessary to efficiently enforce privilege separation and to support

56 The STAR hypervisor

T able
3.1:C

ontrolflow
and

sensitive
instructionsin

the
32-bitA

RM
instruction

set
Instruction

C
ontrolflow

Sensitive
A
L U

∗
branches(e.g.,MOV

pc,
lr)

•
◦

A
LU

∗
exception

returns(e.g.,MOVS
pc,

lr)
•

•
B,BL,BLX,BX,BXJ

branches
•

◦
CPS,MSR

m
ode

changes
◦

•
CDP,LDC,MCR,MCRR,MRC,MRRC,STC

coprocessoraccesses
◦

•
LDM,LDR,POP

branches
•

◦
LDM,RFE

exception
returns

•
•

LDM,STM
user m

ode
m
ultiple

registerrestore
and

save
operations

◦
•

LDRT,LDRBT,LDRSBT,LDRHT,LDRSHT,STRT,STRBT,STRHT
load

and
store

asunprivileged
◦

•
MRS,MSR,SRS

accesses to
banked

registers,the
C
PSR

and
the

SPSR
◦

•
SVC

system
calls

•
•

WFE,WFI
sleep

instructions
◦

•
∗
In

the
32-bitA

RM
instruction

set,allA
LU

instructions
thatw

rite
theirresultinto

a
registercan

be
used

as
a
branch

or
exception

return.They
are

ADC,ADD,AND,ASR,BIC,EOR,LSL,LSR,MOV,MVN,ORR,ROR,RRX,RSB,RSC,SBC
and

SUB.

3.5 CPU virtualisation: the DBT engine 57

copy-on-write semantics when copying data to or from user applications
within kernel code. Such instructions no longer behave correctly when
double shadowing is used, because the permissions for the guest’s un-
privileged mode are unknown to the physical MMU at the time guest
kernel code is being executed, as discussed in Section 3.4.3.

3.5.1 Translation strategies

Our DBT engine translates code to a separate cache. Code can also be
translated in-place, such that the virtual address and hence the PC at
which code is executed does not change. In-place translation thus has the
advantage that PC-sensitive instructions do not require special treatment.
It is, however, flawed due to limitations of the ARMv7-A MMU.

In-place translation for theARMarchitecturewas developed indepen-
dently at both TheUniversity ofManchester [80] and VMware [27, 46, 69].
This translation strategy is also known as patching [113]. It was used in
the first version of our hypervisor. With in-place translation, hypercalls
are injected directly into the guest kernel’s code stream for both sensitive
and control flow instructions. Smith and Nair [113] use different hyper-
calls depending on whether an instruction is a control flow instruction
or not, such that each translated block is a basic block. Our approach
uses only one single type of hypercalls for both types of instructions:
end-of-block hypercalls. Our notion of a translated block therefore does
not match the generally accepted definition of a basic block.

In-place translation works for both the 32-bit ARM and the Thumb-2
instruction sets. In 32-bit ARM, each instruction has a fixed width, and
the translator can easily replace a sensitive or control flow instruction
with a hypercall. In Thumb-2, instructions are either narrow (16-bit) or
wide (32-bit); fortunately, all Thumb-2 encodings of the SVC instruction
are narrow. We replaced wide instructions with the combination of a
narrow NOP and a hypercall. The original instruction was stored together
with a reference to the translated block into a separate metadata cache.

Unfortunately, in-place translation has a number of flaws that have
ultimately led us to abandon it. The MMU on the ARMv7-A architecture
cannot distinguish between data accesses and instruction fetches while
enforcing access permissions on memory mappings. For code to be
executable, it must therefore also be readable [12]. The guest kernel can
hence observe all modifications to its code made by the hypervisor’s
DBT engine. This is problematic in a number of scenarios, e.g.:

58 The STAR hypervisor

1. A guest kernel may want to calculate and verify a checksum of
itself, but the checksum changes on every alteration of the guest
kernel’s code by the hypervisor’s DBT engine;

2. The guest may relocate code that was previously modified by the
hypervisor’s DBT engine, causing the hypervisor to lose the connec-
tion between the hypercalls in the code and its metadata describing
the translated blocks.

The first scenario cannot be detected and always leads to incorrect
guest behaviour. With full virtualisation, there is no generic way for a
hypervisor to detect incorrect guest behaviour. The hypervisor can only
guess that something went wrong if the guest eventually performs an
invalid operation or attempts to force a system reset.

The second scenario is detected when the hypervisor first encounters
a hypercall in a location for which the hypervisor did not maintain any
metadata. This happens only when the guests starts executing copied
code from its new location. Since there is no efficient way for the hyper-
visor to know that a guest has relocated its own code, the hypervisor
cannot distinguish between a system call in the guest’s code, which also
uses the SVC instruction, and a hypercall installed by the hypervisor’s
DBT engine.2 Even if the hypervisor can identify the instruction as a hy-
percall, there is no guarantee that the original instruction can be restored.
Since our metadata cache is bounded, translated blocks will eventually
be evicted, causing the original instruction to be lost.

Lastly, in-place translation does not offer any headroom for binary
optimisations, as the translated code cannot be larger than the original
code. All problems caused by in-place translation are solved by storing
the translated code separately from the original code in a software cache.

3.5.2 Design choices and limitations

Our design of the metadata cache imposes two important constraints on
translated blocks: blocks have exactly one entry point and exactly one
exit point. The first constraint is a result of our requirement for efficient
metadata cache look-ups: by using hashing based on the source address

2 If the guest follows the ARM Linux embedded application binary interface (EABI),
then all system calls are encoded with an immediate operand of zero [138]. If the
hypervisor then avoids using zero as immediate operand for hypercalls, it can distinguish
between system calls in the guest kernel and hypercalls placed by the DBT engine.

3.5 CPU virtualisation: the DBT engine 59

of the first instruction of a translated block, the hypervisor cannot easily
look up blocks using the source address of other instructions in the
block. This causes some code fragments (i.e. those reachable through
branches as well as a fall-through path) to be translated more than once,
but requires less metadata to be maintained for each translated block.

Our DBT engine replaces conditional control flow and conditional
sensitive instructions with unconditional traps to the interpreter, result-
ing in the second constraint of having exactly one exit point. This also
simplifies the metadata we store for each translated block, because the
metadata stores which instruction is replaced and which interpreter
function should be invoked to emulate its behaviour. By letting each
unconditional trap replace only one instruction, the metadata structure
is kept simple and fixed in size for all translated blocks. Replacing condi-
tional instructions by unconditional traps causes unnecessary traps for
instructions whose condition would normally not bemet; these traps can,
however, be eliminated without altering the structure of the metadata as
we shall show in Section 4.2.

Unlike existing user spaceDBT engines, the STARhypervisor features
a bounded code cache with a fixed size of 1 MiB. When it is full and
more code needs to be translated, all previously translated blocks are
unconditionally flushed from the metadata cache and the code cache. In
theory, it is possible to selectively clean cold blocks from the cache. In
practice, however, such techniques cause substantial run-time overhead
as they complicate software cache management, and they require more
metadata to be stored to enable optimisations that create links between
translated blocks. We shall present such optimisations in Section 4.2.

3.5.3 Translating PC-sensitive instructions

ARM instructions frequently use the PC as a source operand: as they can
only embed small constants of at most 16 bits, larger constants are placed
in between code, in so called literal pools, which are accessed through
instructions that use PC-relative addressing. All such instructions should
be translated without trapping to the interpreter if they do not alter
control flow and if they are not sensitive. They are:

• the move and shift instructions MOV, MVN, ASR, LSL, LSR, ROR and
RRX, which copy the PC into another register, optionally shifting or
complementing its value;

60 The STAR hypervisor

• the generic computation instructions ADC, ADD, AND, BIC, EOR, ORR,
RSB, RSC, SBC and SUB, which can be used to perform calculate
addresses based on the PC;

• the test and compare instructions CMN, CMP, TEQ and TST, which
perform computations on the PC without storing the result, only
updating the condition flags;

• the load and store instructions LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH,
STR, STRB, STRD and STRH, for PC-relative addressing to access to
literal pools; and

• the store instructions STR and STM, as they can store the value of
the PC to memory.

The translations of all these instructions other than STM is straight-
forward; example translations are shown in Table 3.2. The most simple
instruction is a MOV that copies the PC into another general-purpose
register, as shown in example (1). We translate this instruction into an
equivalent pair of MOVW and MOVT instructions. Moore et al. [94] instead
embed the PC value as a constant in the code cache and use a PC-relative
load to retrieve it, because their techniques target the ARMv5 architec-
ture, which predates the introduction of the MOVW and MOVT instructions.

In general, if an instruction writes to some destination register Rd
that is not also used as source register, that Rd can be reused as substitute
for the PC, as shown in example (2). When Rd is used as source register,
or in the absence of some Rd, an unrelated register must be used instead.
We do not perform full liveness analysis on the block to be translated to
find such register, as blocks are small and the opportunities for finding
available registers are limited. Instead, we always spill and restore an
unrelated register before and after the translation of a single instruc-
tion. Since we propose multiple techniques for spilling and restoring
registers in Section 4.1, the examples in Table 3.2 use the SPILL and REST
pseudo-instructions. Translations of conditional instructions, such as in
example (3), can only be made wholly conditional if the condition flags
remain the same throughout the translation. Otherwise, we skip the
translation using a conditional branch with a condition code opposite to
the one of the original instruction, as shown in example (4).

Moore et al. [94] fold computations on the PC if all operands are
known constants at translation time. For example, an addition of a con-
stant offset to the PC, as shown in Table 3.2, example (2), can be translated

3.5 CPU virtualisation: the DBT engine 61

Table 3.2: Example translations of PC-sensitive instructions
(1) Instruction: MOV<c> Rd, PC

Translation: MOVW<c> Rd, #(NativePCValue[15:0])
MOVT<c> Rd, #(NativePCValue[31:16])

(2) Instruction: ADD<c> Rd, PC, #constant

Translation: MOVW<c> Rd, #(NativePCValue[15:0])
MOVT<c> Rd, #(NativePCValue[31:16])
ADD<c> Rd, Rd, #constant

(3) Instruction: ADD<c> Rd, PC, Rd

Translation: SPILL<c> Rs
MOVW<c> Rs, #(NativePCValue[15:0])
MOVT<c> Rs, #(NativePCValue[31:16])
ADD<c> Rd, Rs, Rd
REST<c> Rs

(4) Instruction: ADDS<c> Rd, PC, Rd (with c 6= AL)
Translation: B<¬c> skip

SPILL Rs
MOVW Rs, #(NativePCValue[15:0])
MOVT Rs, #(NativePCValue[31:16])
ADDS Rd, Rs, Rd
REST Rs
skip:

SPILL and REST are pseudo-instructions whose implementations will be
discussed in Section 4.1.

into a pair of MOVW and MOVT instructions that directly writes the result of
the addition to the destination register, without requiring an extra ADD
instruction in the translation. Folding has limited applicability as it can-
not eliminate updates of the condition flags. It is a micro-optimisation
as it at best avoids emitting one ALU instruction. It is in other words not
essential and our DBT engine does not yet support it.

Translating STM instructions requires an approach that is very differ-
ent from the other instructions. Their most common use case is to push
registers to the stack, but handcrafted assembly may use them in entirely
different ways. We therefore need a generic translation algorithm.

In a limited number of cases, the PC can be substituted with another
register. If not, the STM instruction must be split. The simplest way is to
split the STM instruction into individual store instructions. However, this
may require up to 16 stores, inflating the size of the translated code. We

62 The STAR hypervisor

therefore propose an algorithm that splits the original STM into one STM
of all registers other than the PC, and an individual store of the PC.

All STM instructions store registers to consecutive words in memory
in the order of their index: R0 first, PC (R15) last. There are four different
addressing modes: increment after (IA), increment before (IB), decre-
ment after (DA) and decrement before (DB). For incrementing modes, the
address to which the first register is stored is the base address, optionally
incremented by one word with the “before” mode. In decrementing
modes, the last address is the word before or at (“after”) the base ad-
dress; the first address thus depends on the number of registers being
stored. All addressing modes also support “writeback”, i.e. updating
the value of the base address register at the end of the operation.

Algorithm 3.1 shows how we translate STM instructions. In all cases
we spill to obtain a scratch register Rs. If there is some Rs different from
the base address register, and indexed lower than the PC but higher than
all other registers being stored, then we do not split the STM as Rs can
substitute the PC (lines 8 and 19). Otherwise, we split the instruction
into a pair of STM and STR instructions; the base address must then be
corrected to make up for any differences caused by storing one register
less in the translated STM. For descending addressing modes, the base
address must first be adjusted (line 13). The addressing mode of the STR
instruction is chosen such that no further arithmetic is required to reach
the final value of the base address register (lines 21 to 30).

Spilling can be avoided if the STM is split, and one of the registers
other than the PC is used as scratch register. The scratch register can then
be restored from guest memory. However, such optimisations may be
observed by the guest. We therefore omitted them fromour algorithm. In
case any of the translated instructions cause anMMU fault, our approach
introduces extra overhead in handling this fault over splitting the STM
into individual stores: depending on the location of the abort, both the
base address register and Rs must be restored. When there are few such
faults, however, the run-time overhead of our solution is lower compared
to using individual stores. In practice, such MMU faults rarely occur in
kernel code. This validates our design choice.

3.6 Exception handling

In a virtualised system, exceptionsmay occur for both the hypervisor and
the guest. Our hypervisor receives all exceptions and therefore, it must

3.6 Exception handling 63

Algorithm 3.1: 32-bit ARM STM instruction translation

Data: OriginalSTM, OriginalPC
Result: an instruction sequence of which the functional behaviour is

equivalent to OriginalSTM, and which can be executed from a
virtual address different from OriginalPC

C←− get_condition_code(OriginalSTM)
Rn←− get_base_address_register(OriginalSTM)
Registers←− get_registers_to_store(OriginalSTM) \ { 15 }
Rs←− max(Registers ∪ {Rn}) + 1
HaveSubstitute←− Rs < 15
TranslatedSTM←− OriginalSTM
if HaveSubstitute then

8 set_registers_to_store(TranslatedSTM, Registers ∪ {Rs})
else

set_registers_to_store(TranslatedSTM, Registers)
Rs←− min({ 0,1 } \ {Rn})
if not is_incrementing(OriginalSTM) then

13 emit(SUB<C> Rn, Rn, #4)

emit(TranslatedSTM)

emit(SPILL<C> Rs)
emit(MOVW<C> Rs, #OriginalPC[15:0])
emit(MOVT<C> Rs, #OriginalPC[31:16])
if HaveSubstitute then

19 emit(TranslatedSTM)
else

21 if is_incrementing(OriginalSTM) = is_write_back(OriginalSTM)
then

if is_incrementing(OriginalSTM) = is_before(OriginalSTM)
then

emit(STR<C> Rs, [Rn, #4]!)
else

emit(STR<C> Rs, [Rn], #4)

else
Offset←− 4 · | Registers |
if is_incrementing(OriginalSTM) = is_before(OriginalSTM)
then

Offset←− Offset + 4
30 emit(STR<C> Rs, [Rn, #Offset])

emit(REST<C> Rs)

64 The STAR hypervisor

route each type of exception to its appropriate set of exception handlers.
Exceptions for the hypervisor are caused by one of the following:

1. Traps to the interpreter in translated code;

2. MMU faults caused by lazy shadow mapping;

3. Interrupts from devices used by the hypervisor.

An exception that does not match any of the above criteria is routed
to the guest kernel’s exception handlers.

3.6.1 Guest mode-dependent exception handling

The hypervisor frequently catches exceptions. In Chapter 4, we introduce
binary optimisations that eliminate a significant number of the traps to
the interpreter from translated code. Even then, a proper implementation
of the exception handlers remains critical to limit the execution time
overhead incurred by the hypervisor. On each exception that requires
hypervisor intervention, the full state of the guest’s virtual CPU must be
saved to and restored from the guest context.

Storing the guest’s virtual CPU state is complicated by ARM’s use of
banked registers. The hypervisormust keep track of all physical registers,
i.e., registers which have been duplicated for different processor modes
are stored separately in the guest’s virtual processor state. Upon each
context switch, the hypervisor must therefore check the guest’s virtual
processor mode to verify where to set and get the guest’s register values.
The check in the save operation can be removed by using different register
saving routines based on the virtual processor mode of the guest. We
have implemented the save operation for each possible mode. This leads
to some code duplication, but uses one register less, and therefore fewer
stack operations. It also enables us to implement a simple hypercall
handler for binary optimisations (see Section 4.1.1). Restoring the guest’s
virtual CPU state cannot be optimised in the same way, as the guest’s
virtual processor mode may have changed while handling the exception.

3.6.2 Guest exception handling

Handling exceptions in translated code is a problem typical to system-
level virtual machines. Exceptions can occur either synchronously or

3.6 Exception handling 65

asynchronously. Synchronous exceptions are tied to the execution of a
particular instruction; e.g., a faulting memory operation, an undefined
instruction, or a system call. Asynchronous exceptions occur due to
external influences, such as an interrupt from a peripheral device. Guest
exceptions outside translated code, i.e. in guest user space, are handled
by forwarding the exception to the guest’s exception handler. Exceptions
in translated code are more complex to handle, as the code cache cannot
be exposed to the guest, and the guest state must be consistent upon
delivery of an exception.

Synchronous exceptions

System calls and undefined instructions in a guest’s kernel can be recog-
nised at translation time, while faulting memory operations must be
handled at run time. For exceptions handled at run time, the hypervisor
must map the PC value at which the exception occurred to the native
PC value of the guest, before delivering the exception to the guest’s ker-
nel. Such mapping can be achieved by maintaining a mapping of code
cache addresses to native addresses, or through retranslation. Storing
the address mapping for every instruction that can fault consumes a lot
of memory. In practice, few instructions cause MMU faults. We have
therefore chosen to use the retranslation approach. The native addresses
are known on the boundaries of a translated block. In order to map an
address in the code cache to a native address, we retranslate the block
without writing to our software caches, up to the location of the faulting
instruction. When exceptions are caught in code that spills and restores
registers, the hypervisor must first make sure all register values are re-
stored such that the guest is in a consistent state, before delivering the
exception to the guest’s kernel, as the guest’s exception handler cannot
return within the translated block.

Providing the guest with the original PC value of the exception en-
sures that the guest cannot observe the presence of our hypervisor. More
importantly, guest fault handling code may depend on the address at
which the exception occurred; one such dependency can be found in the
do_page_fault function of the Linux kernel.

Asynchronous exceptions

Asynchronous exception delivery is postponed until the end of a trans-
lated block. This increases interrupt latency but avoids the cost of map-

66 The STAR hypervisor

ping the guest’s current PC value in the code cache to its native PC value.
Furthermore, when an asynchronous exception would be delivered to a
guest in the middle of a translated block, the guest would return to an
address that has already been translated, but as our translated blocks
only have a single entry point, the translation would not be usable. We
would therefore have to translate a new block, starting from the return
address. Since asynchronous exceptions can arrive on every instruction,
the number of new translations that would be created during exception
handling is virtually unbounded. Breaking blocks for asynchronous
exceptions would therefore nullify all benefits of caching translated code.
By postponing the delivery until the end of a block is reached, this is
avoided completely.

Chapter 4

Evaluation of dynamic binary
translation techniques

Using DBT for full system virtualisation comes with a few challenges not
present in user-space DBT engines. In user-space, DBT engines often take
shortcuts which are only valid for well-behaving applications, and there
is no strict requirement to isolate the DBT engine from the application. In
full system virtualisation, DBT is used together withMMU virtualisation
to isolate guests from the hypervisor and from one another. Furthermore,
kernel code often contains handwritten assembly and special system
instructions, requiring special care in the DBT engine.

In this chapter, we study how to address the challenges specific to
using DBT for full system virtualisation. We start with the problem of
spilling and restoring registers in translated code. We then study how
we can optimise the performance of translated code, by eliminating traps
to the interpreter, and we evaluate the impact of our techniques using
both micro-benchmarks and real applications.

The work presented in this chapter has been submitted to the Journal
of Systems Architecture.

68 Evaluation of dynamic binary translation techniques

4.1 Spilling and restoring registers

Translating instructions that use the PC as source operand requires find-
ing a substitute register to hold the native value of the PC. As outlined
in Section 3.5.3, this may involve spilling and restoring a register. On
the one hand, spilling and restoring should ideally avoid a full context
switch from the guest to the hypervisor, as that would defeat the purpose
of translation—we try to avoid the cost of interpreting the instruction,
which mainly consists of the cost of the context switch. On the other
hand, all cached translations must be protected from guest modification
for security and reliability reasons; therefore, we cannot spill register
values to the code cache without a trap to enter a privileged mode.

We propose two generic solutions to the spilling problem. In our
first solution, we use a lightweight trap, which avoids a full context
switch, but at the same time enables translated code to write to otherwise
protected locations in memory. Our second solution consists of using
user-mode accessible coprocessor registers as temporary spill locations.
When a guest is known to exhibit a certain behaviour, other techniques
may be employed such as using the guest’s stack. Such non-generic
solutions are, however, out of the scope of our research.

4.1.1 Lightweight traps

Our hypervisor uses the system call mechanism (SVC instruction) for
traps to the DBT engine. We implement lightweight traps using an
undefined instruction trap, to avoid adding complexity to the system
call handler. The sole objective of lightweight traps is to switch to a
privileged mode: when this mode switch is performed in the middle
of a translated code block, which is normally executed in the unprivi-
leged mode, the subsequent instructions in the block will execute in the
privileged UDF mode until a later instruction in the block changes the
mode to unprivileged again. While executing in the privilegedmode, the
translated code can access the otherwise protected locations for spilling.

The undefined instruction trap and hence the mode switch are ini-
tiated by an undefined instruction, inserted by the DBT engine in the
translated code block. Guests cannot exploit this mechanism to enter a
privileged mode, because (1) they cannot alter the contents of the soft-
ware cache, and (2) because in case that same undefined instruction is
encountered in the guest’s instruction stream, the hypervisor will handle
it as a sensitive instruction, which is translated into a trap to the DBT en-

4.1 Spilling and restoring registers 69

Listing 4.1: Lightweight trap handler
1 MRS sp_und , spsr
2 AND sp_und , sp_und , # PSR_MODE
3 TEQ sp_und , # PSR_MODE_USR
4 LDREQ sp_und , [lr_und , #-4]
5 MVNSEQ sp_und , sp_und
6 BXEQ lr_und

gine before it can be executed. Kernels normally do not cause undefined
instruction traps. Our lightweight trap mechanism therefore does not
introduce any additional overhead in the kernel’s normal operation.

The key aspect of this approach is the design of an undefined instruc-
tion trap handler that can (1) classify caught traps, (2) return control to
the translated code in some privileged mode when the trap is classified
as the hypervisor’s lightweight trap, (3) invoke a generic undefined in-
struction trap handler otherwise, and (4) does so in as little as possible
time to minimise the performance overhead.

We have managed to come up with a mechanism and a handler that
requires only eight instructions to enter the privileged UDF mode from
within the code cache. This mechanism relies on a specific instruction en-
coding that is permanently defined to generate an undefined instruction
trap by the ARM architecture [13], encoded as 0xFFFFFFFF. This encod-
ing is used in the code cache to perform the lightweight trap. The trap is
caught by the hypervisor’s exception vector, which contains branches to
handlers for all kinds of exceptions. We use different exception vectors
based on the virtual mode of the guest, so that undefined instruction
traps from guest user space cannot reach our lightweight trap handler.
Our exception vectors for the guest’s privileged modes contain a simple
branch to the lightweight trap handler shown in Listing 4.1.

In lines 1 to 3 of our handler, we check whether the undefined in-
struction trap was taken while executing in the unprivileged mode. If
so, we are sure that the trap was caused by translated guest kernel code
executed from the code cache. If not, lines 4 to 6 are not executed. In
line 4, we load the instruction that caused the trap. In line 5, the en-
coding of the instruction is complemented, and the condition flags are
updated; they are used in line 6 to jump back to the code cache if the
bitwise complement of the instruction equals zero, which only happens
if the trap was caused by our lightweight trap instruction with encod-

70 Evaluation of dynamic binary translation techniques

ing 0xFFFFFFFF. When the branch in line 6 is not executed, control falls
through to a generic undefined instruction trap handler.

Our lightweight trap handler uses only banked registers to avoid
saving guest registers. After jumping back to the code cache, both SP and
LR are usable, such that spilling to memory can sometimes be avoided.
For example, translated ALU instructions that do not update the con-
dition flags, and that make use of neither SP nor LR, can be executed
safely while in the privileged UDF mode; the banked SP or LR can then
be used as a substitute register to hold the native value of the PC. To
resume execution in the unprivileged mode, the DBT engine inlines a
PC-relative exception return instruction in the translated code.

We have implemented two distinct usage scenarios of our lightweight
traps for spilling. In the first scenario, a private spill location is appended
as needed at the end of a translated block inside the code cache. As is
traditional on many ARM systems, our hardware platform has separate
L1 instruction and data caches, and a unified L2 cache. In order to
simplify cache maintenance requirements when translating new blocks,
the code cache is mapped write-through at the L1 cache level, and write-
back write-allocate at the L2 cache level. Therefore, spilling to and
restoring from the code cache may cause many L1 cache misses. In a
second scenario we spill to a shared spill location outside the code cache,
which is mapped write-back and write-allocate at both L1 and L2 cache
levels. This trades L1 cache hits for increased TLB pressure; since we aim
to avoid guest-readable data structures outside the code cache, reading
from the shared spill location may require a second lightweight trap if
the translated instruction cannot be executed from a privileged mode.
Such a second trap is never required in the first scenario.

4.1.2 User-mode accessible coprocessor registers

All modern ARM processors up to ARMv7-A support coprocessors. Co-
processors are deviceswhose registers can only be accessed using specific
instructions. Such accesses typically exhibit lower latencies than accesses
to memory-mapped device registers. Each ARMv7-A processor comes
with at least two standardised coprocessors: the debug coprocessor and
the system control coprocessor. The latter is used for CPU identification,
MMU configuration, cache and TLB maintenance, etc.

The system control coprocessor contains a few registers that are
accessible from user mode. We therefore researched the feasibility of

4.2 Tackling DBT-related overhead 71

using such registers as spill location. Suitable registers do not affect
the behaviour of the hypervisor or the underlying hardware, are both
readable and writable from user mode, and can hold a 32-bit word. At
least three coprocessor registers in the ARMv7-A architecture match
our criteria: we can either use one of the performance counter registers
(PMCCNTR and PMXEVCNTR), or the user-writable software thread ID
register (TPIDRURW) [13]. The generic timer extension, when available,
also provides suitable registers, but using those registers for spilling
renders the generic timers unusable for the hypervisor.

Using hardware coprocessor registers as spill location does not in-
terfere with a guest kernel’s usage of coprocessors, as guest kernels
normally do not interact with hardware coprocessor registers directly;
our DBT engine ensures that the guest can only access a virtual copy of
the coprocessor registers. Since our hypervisor runs user applications
unmodified, all user-mode readable registers must be restored upon a
guest context switch from kernel to user mode. All user-mode writable
registers must additionally be saved upon a guest context switch from
user mode to kernel. When such registers are not used for spilling, we
can let the kernel update them directly to eliminate the cost of saving
and restoring those registers on every guest context switch.

Using performance counter registers for spilling comes with the
disadvantage that the hypervisor can no longer make full use of the
performance counters for itself. Performance counter registers are made
accessible to the unprivileged mode through configuration of the system
control coprocessor. Spilling to the performance counter registers there-
fore also requires maintenance on every context switch, to disable and
re-enable access accordingly. Unlike the thread ID register, the mainte-
nance for using the performance counters does not require extra memory
accesses during guest context switching.

4.2 Tackling DBT-related overhead

The naive version of our hypervisor translates all control flow and sen-
sitive instructions shown in Table 3.1 into traps to the interpreter. This
gives the hypervisor maximum visibility into the guest kernel’s execu-
tion, which is useful for tracing, but far too slow for any other practical
purpose. We have therefore studied which traps occur most frequently,
and we propose optimisations to eliminate them.

All DBT-related overhead observed in user applications originates

72 Evaluation of dynamic binary translation techniques

0 %
5 %

10 %
15 %

20 %
25 %

30 %
35 %

 FREQ
U

EN
CY O

F TRA
PS TO

 TH
E IN

TERPRETER

lat_syscall w
rite

lat_syscall stat /dev/zero

lat_syscall read

lat_syscall open /dev/zero

lat_syscall null

lat_syscall fstat /dev/zero

lat_sig install

lat_sig catch

lat_select -n 100 file

lat_select -n 10 file

lat_proc fork

lat_proc exec

lat_pipe

lat_pagefault

Exception returns
M

ode changes
Saving and restoring user m

ode registers
U

nprivileged loads and stores

Coprocessor operations and register updates
Special register accesses w

ithout side effects
Control flow

 (non-sensitive)

100 %

Figure
4.1:Frequency

oftrapsto
the

interpreterin
the

naive
version

ofourhypervisorby
instruction

class

4.2 Tackling DBT-related overhead 73

from interactions with the kernel and interrupt handling, because our
hypervisor only translates kernel code. For a Linux guest, this means
that we can analyse the origins of DBT-related overhead by running
micro-benchmarks for system calls and signal handling.

To do so, we have executed selected benchmarks from the lmbench
version 3 suite [88] on a BeagleBoard. As guest OS,we have used a vanilla
Linux 2.6.28.1 kernel. This version of the kernel was used throughout
the development of the hypervisor. Using newer versions of the Linux
kernel does not impose new challenges to the DBT engine, but requires
more engineering work in device emulation. Our test kernel contains
two upstream patches normally not present in the 2.6.28.1 release to
enable building with GCC 4.9.1 and recent versions of GNU make. The
benchmarks we use measure the virtualisation cost on frequently-used
kernel functionality:1

• lat_pagefault: measures the cost of faulting on pages from a file.

• lat_pipe: uses two processes communicating through a UNIX
pipe tomeasure inter-process communication latencies. The bench-
mark passes a token back and forth between the two processes
which perform no other work.

• lat_proc: creates processes in different forms, to measure the time
it takes to create a new basic thread of control.

– fork: measures the time it takes to split a process into two
nearly identical copies and have one of them exit.

– exec: measures the time it takes to create a new process and
have that new process run a new program, similar to the inner
loop of a command interpreter.

• lat_select: measures the time it takes to perform a select system
call on a given number of file descriptors.

• lat_sig: measures the time it takes to install and catch signals.

• lat_syscall: measures the time it takes for a simple entry into
the operating system kernel.

– fstat: measures the time it takes to fstat() an open file
whose inode is already cached.

1 Benchmark descriptions copied and adapted from the lmbench manual pages.

74 Evaluation of dynamic binary translation techniques

– null: measures the time it takes to perform a getppid system
call. This call involves only a minimal and bounded amount
of work inside the kernel, and therefore serves as a good test
to measure the round-trip time to and from the kernel back
to user space.

– open: measures the time it takes to open and then close a file.
– read: measures the time it takes to read one byte from

/dev/zero.
– stat: measures the time it takes to stat() a file whose inode

is already cached.
– write: measures the time it takes to write one byte to

/dev/null.

We have executed each benchmark once and measured the source
and frequency of traps to the interpreter. Internally, we have forced each
benchmark to execute its test 100 times in a loop, such that we can easily
distinguish the traps specific to the benchmark from the traps caused by
the creation and destruction of the benchmark process. Figure 4.1 shows
an overview of the source and frequency of traps for each individual
benchmark. As is typical in DBT, most of the overhead is caused by
control flow. Control flow optimisations have already been studied
extensively, so we have implemented some of the existing optimisations.
For the traps not related to control flow, we propose new translations
specific to full virtualisation on ARMv7-A.

4.2.1 Control flow

Our measurements indicate that over all benchmarks, 68% to 96% of our
overhead is caused by non-sensitive control flow instructions. As shown
in Figure 4.2, most control flow instructions are direct branches. Traps
caused by direct branches can be eliminated through lazy optimisation:
after a trap caused by a branch, the block targeted by that branch is
translated, and the trap is replaced by a branch within the code cache to
the newly translated block. We say that the blocks are linked together.

Conditional direct branches are initially translated into two traps: a
conditional trap with a condition code opposite to the original instruc-
tion, which models the original fall through path, and a non-conditional
trap. Both traps can be replaced lazily by a direct branch within the code
cache. In general, an extra conditional trap is added to every translated
conditional instruction, which can be linked like a direct branch.

4.2 Tackling DBT-related overhead 75

lat_pagefault

lat_pipe

lat_proc exec

lat_proc fo
rk

lat_select -n
 10 fil

e

lat_select -n
 100 fil

e

lat_sig
 catch

lat_sig
 in

sta
ll

lat_syscall f
sta

t /d
ev/zero

lat_syscall n
ull

lat_syscall o
pen /d

ev/zero

lat_syscall r
ead

lat_syscall s
tat /d

ev/zero

lat_syscall w
rite

0 %

20 %

40 %

60 %

80 %

100 %

FR
EQ

U
EN

CY
 O

F
CO

N
TR

O
L

FL
O

W
 IN

ST
RU

CT
IO

N
S

Direct function calls
Direct regular branches
Indirect function calls

Indirect regular branches
Indirect function returns

Figure 4.2: Frequency of traps caused by control flow instructions

Indirect branches

Blocks with indirect branches cannot be linked at translation time, as
the destination addresses of the branches are not known until they are
executed, and their destination addresses may vary between executions.
Several solutions to eliminate traps caused by indirect branches already
exist. Moore et al. [94] use an indirect branch target cache, a global hash
table of code cache addresses indexed by native PC values [65], which is
used by the translated code to look up translations of branch targets. A
similar technique, called a sieve, implements the hash table in instructions
rather than in data [115]. A limited set of code cache addresses known
to be frequently targeted by specific indirect branches can also be inlined

76 Evaluation of dynamic binary translation techniques

in the translation of that indirect branch [60, 65]. Most techniques treat
function returns separately, as the target of a function return can be
predicted easily by keeping track of function calls.

Function calls can be recognised in branch instructions that automat-
ically write the return address to LR (BL and BLX). Function returns are
harder to identify, as the ARM architecture does not have a dedicated
function return instruction, such as RET on x86. We therefore identify
function returns based on the patterns recognised by ARM’s hardware
return address stack; they are:

• an indirect branch to the value in the LR (BX lr);

• a copy of the LR into the PC (MOV pc, lr);

• a load of the PC from the stack using any of the LDR, LDMIA and
LDMIB instructions2.

To avoid the traps caused by function returns, our hypervisor imple-
ments a software return address stack, also known as a shadow stack,
similar to Pin [60, 77]. The patterns we use to identify function returns
are not fully accurate, as on average they identify 4% more function
returns as there are function calls. We suspect these false positives are
partly caused by handwritten assembly in the kernel. Our shadow stack
is nevertheless capable of significantly reducing DBT-based overhead,
as we will show in our evaluation in Section 4.3.

Unlike Pin and other user-space DBT engines, our shadow stack
implementation does not make use of the guest’s stack for saving and
restoring registers during manipulations of the shadow stack; instead,
we use the register spilling techniques that we proposed in Section 4.1.

As the amount of indirect branches other than function returns is
fairly low, our hypervisor currently does not implement a generic indirect
branch optimisation algorithm.

Effects on asynchronous exception delivery

Interrupts are always enabled during guest execution, regardless of
whether or not the guest has enabled any interrupts, because the hy-
pervisor needs its own interrupts to function properly, and because it

2 ABI-compliant code uses descending stacks which are always accessed using the
incrementing addressing modes of the LDM instruction.

4.2 Tackling DBT-related overhead 77

must be capable of rescheduling guest interrupts as discussed in Sec-
tion 3.6.2: when the guest is executing in kernel space, we postpone the
delivery of all asynchronous exceptions such as interrupts until the end
of a translated block. This is straightforward as long as the blocks end
in a trap to the interpreter. When blocks are linked together, however,
they can create loops in the code cache that do not contain a single trap.
The execution of translated code can then continue in the code cache
for quite some time without any trap being executed. The hypervisor
cannot wait until all such loops have finished executing.

To overcome this problem, the DBT engine partially undoes block
linking whenever the hypervisor has to deliver an exception to the guest,
by replacing any direct branches at the end of the active translated block
by traps to the interpreter. Alternatively, if the block makes use of our
shadow stack to perform a function return within the code cache, we
corrupt the top entry of the shadow stack to ensure that the next look-up
causes a trap. The hypervisor then briefly resumes the guest so that
it can finish executing the translated block. The end of that block is
now certain to trap to the DBT engine, which gives the hypervisor the
opportunity to deliver the exception while the guest is in a clean state.

4.2.2 Exception returns and other mode changes

Exception returns affect numerous data structures in the hypervisor,
and involve hardware reconfiguration; it is therefore hard to avoid a full
context switch fromguest to hypervisor and back. As shown in Figure 4.1,
exception returns can cause up to 4% of all traps in an optimised DBT
engine. Mode changes using CPS and MSR instructions are very similar
to exception returns, but do not influence control flow. Figure 4.1 shows
that close to 10% of the traps can be caused by such mode changes.

Some of the mode change instructions merely enable and disable
interrupts. Those instructions can be translated to equivalent instruction
sequences that update the program status register of the guest in its
shadow register file without requiring a trap to the interpreter.

4.2.3 Saving and restoring user mode registers

When an operating system performs a context switch from an application
running in user mode to its kernel or vice versa, it must save and restore
all registers of that application. The ARM architecture provides special

78 Evaluation of dynamic binary translation techniques

load and store multiple instructions (LDM and STM) that access the user
mode SP and LR rather than the registers of the active mode, such that a
kernel does not need to switch modes to access the user mode registers.
These instructions are otherwise functionally equivalent to load and store
multiple instructions that only access registers from the active mode.

Figure 4.1 shows that up to 8% of all traps in our DBT engine originate
from instructions to save and restore user mode registers. In order to
avoid these traps, we split the instructions into a first part that only
involves the non-banked registers, and a second part that involves the
banked registers. Only the second part requires accesses to the shadow
register file to be inlined in the translation. When the instruction loads
non-banked registers, the load of the banked registers is reordered to
happen before the load of the non-banked registers, as all affected non-
banked registers can then be used as scratch registers.

Listing 4.2 shows how we translate LDMDB sp, {r0-r12,sp,lr}∧, an
instruction taken from the Linux kernel’s system call return routine. This
instruction restores all registers other than PC from the kernel’s stack.
Instead of updating the current SP and LR, however, it writes to their
user mode counterparts. We use a lightweight trap to access the guest’s
shadow register file from the privileged UND mode (line 2). Because the
base address resides in the banked SP register, we copy it into a scratch
register before switching modes (line 1). We make use of the banked
registers in the UND mode to hold the address of the guest’s user mode
registers in its shadow register file (lines 3–4), and to load values from the
guest’s stack using LDRT instructions (lines 5 and 7). Using LDRT makes
the MMU authorise the loads using the guest’s permissions, which is
necessary to enforce guest isolation. We then store the loaded values into
the guest’s shadow registers (lines 6 and 8). LDRT instructions always
operate on the address held in the base address register, and update
its value with a specified constant after the load operation. We must
therefore adjust the base address register upfront (line 1) and in between
the loads from the shadow register file (line 5). Afterwards, we return
to the unprivileged mode (line 9), and we load the non-banked registers
(line 11). As the original LDMDB instruction uses a decrementing mode,
its base address must be adjusted to compensate for the removal of the
banked registers; to avoid restoring the base address register, we write
the adjusted base address into the scratch register (line 10).

Store multiple instructions that save user mode registers are treated
similarly. Algorithm 3.1 shows how to compensate for the modified base

4.2 Tackling DBT-related overhead 79

Listing 4.2: Translation of LDMDB sp, {r0-r12,sp,lr}∧

1 SUB r0 , sp_usr , #8
2 LWTRAP
3 MOVW sp_und , #(AddressOfUSRRegs [15:0])
4 MOVT sp_und , #(AddressOfUSRRegs [31:16])
5 LDRT lr_und , r0 , #4
6 STR lr_und , [sp_und]
7 LDRT lr_und , r0
8 STR lr_und , [sp_und , #4]
9 SUBS pc , pc , #4

10 SUB r0 , r0 , #4
11 LDMDB r0 , {r0 -r12}

address caused by altering the register list for all addressing modes.

4.2.4 Unprivileged loads and stores

Instructions that perform load and store operations as if they were ex-
ecuted from the unprivileged mode are used by the Linux kernel to
access data from user applications. When such instructions are executed
from the unprivileged mode, they behave as normal loads and stores.
However, as explained in Section 3.5, this would cause the loads and
stores to be executed with the permissions of the guest’s kernel rather
than those of its user applications due to double shadowing.

Emulating the behaviour of unprivileged loads and stores requires
authorising the operation based on the permissions assigned to user
applications, either by using a software-based look-up in the guest’s
translation tables, or by switching the active set of shadow translation
tables to the unprivileged set, and then performing the check in hardware.
Trapping to the interpreter on every unprivileged load and store is costly:
in the signal installation and fstat system call benchmarks shown in
Figure 4.1, they account for about 20% of all traps.

Our initial approach to eliminate the trap consisted of inlining a
switch to the unprivileged set of shadow translation tables before and
after every unprivileged load and store instruction. Switching translation
tables must be done from a privileged mode and therefore requires a
lightweight trap. The code cache should not be accessible to the guest’s
user applications, in order to prevent exposing the translated kernel.
The translated instruction must therefore be executed from a privileged

80 Evaluation of dynamic binary translation techniques

mode. As the instruction performsmemory accesses as if it was executed
in the unprivileged mode, these accesses are always authorised with
the permissions of the guest. There is a problem, however, when the
instruction uses one or more banked registers: the value of the user
mode registers must be fetched into the registers of the privileged UDF
mode, and any updated registers must be restored afterwards. On the
basic ARMv7-A architecture, the user mode registers can be retrieved by
using LDM and STM instructions, or by switching to the SYS mode using
CPS instructions, as the privileged SYS mode uses the user mode register
bank. While using CPS instructions leads to longer translated instruction
sequences, we found it to perform slightly faster than using LDM and STM
instructions. The virtualisation extensions offer a more elegant solution:
they add special MRS and MRS instructions that copy values between
banked and non-banked registers.

As noted by the authors of the ITRI hypervisor, our initial approach
can be improved by eliminating unnecessary translation table switches
in between consecutive unprivileged load and store instructions, as they
often appear grouped together in the Linux kernel [111]. Notable exam-
ples of functions that contain such groups are __copy_from_user and
__copy_to_user. Other functions such as restore_sigframe, which is
used when returning from a signal handler, contain sequences that alter-
nately perform an unprivileged load and a normal store; such instruction
sequences cannot be optimised any further.

4.2.5 Coprocessor operations and register updates

A small fraction of the overhead in our benchmarks results from invoking
operations on coprocessors and updating the registers of the system
control coprocessor. As shown in Figure 4.1, this fraction is mostly
limited to 5%, except in the page fault benchmark where it reaches 15%,
because page fault handling involves several accesses to the configuration
registers of the MMU. While the ARMv7-A architecture offers several
instructions to access coprocessors (see Table 3.1), only MCR and MRC are
functional for the system control coprocessor. All other attempts to access
the system control processor will cause an undefined instruction trap.
MRC instructions read from the coprocessor registers without causing
any side effects; they are dealt with in the next section.

The MCR instruction is used to invoke an operation such as cleaning
a cache line, and to update register values such as setting the address
of the active translation table. Because the coprocessor register num-

4.2 Tackling DBT-related overhead 81

ber is encoded as a constant within the MCR instruction, it is known at
translation time. We can hence selectively inline equivalent instruction
sequences specific to a coprocessor operation or register.

Coprocessor instructions that enable or disable caches and the MMU,
or that reconfigure the MMU, always trap to the hypervisor. Some cache
and TLB maintenance operations can however be inlined, depending on
whether or not they are used by the hypervisor to keep track of a guest’s
modifications to its code and translation tables. Our hypervisor supports
multiple such tracking mechanisms; some of which obsolete guest TLB
maintenance, in which case a guest’s TLB maintenance operations are
removed by the translator. Some operations cannot be executed as is: e.g.,
the guest should not be allowed to invalidate the data caches without
writing back dirty lines to memory, as this may discard hypervisor state.

Some cache maintenance operations, such as instruction cache main-
tenance, can be executedwithout modification; they are therefore inlined
using lightweight traps. Other operations may require modifications
to prevent the guest from discarding the hypervisor’s data from dirty
caches, or due to incompatibilities between the virtual platform and the
physical hardware platform. The difficulties and technicalities of virtual-
ising cache maintenance operations are further discussed in Chapter 5.

Some coprocessor operations can be executed regardless of the privi-
lege level; this is the case for the deprecated coprocessor barrier instruc-
tions. We translate them to the newer equivalent instructions, without
inserting any kind of trap.

4.2.6 Special register accesses without side effects

The remainder of the traps to the interpreter consists of accesses to special
registers, such as coprocessor registers reads using the MRC instruction,
banked register reads using the MRS instruction, and writes to the SPSR
using the MSR instruction. These accesses account for 1% to 9% of the
traps to the interpreter. They do not cause any side effects beyond a
simple register copy. We translate all such instructions into an equivalent
sequence that accesses the guest context using a lightweight trap.

4.2.7 Summary

We explained how our hypervisor handles control flow by linking blocks
together in the code cache, and how block linking affects exception han-

82 Evaluation of dynamic binary translation techniques

dling. We showed that while a majority of the overhead is caused by
control flow, sensitive instruction traps are not negligible. We therefore
proposed optimisations to translate sensitive instructions to equivalent
instruction sequences rather than to a trap for several ARM-specific
instructions such as saving and restoring user mode registers, unprivi-
leged loads and stores, and coprocessor accesses. In the next section, we
evaluate how these optimisations reduce the DBT overhead.

4.3 Evaluation

As already mentioned, guest user-space code runs without intervention
of the hypervisor, so in our evaluationwe again focus on events related to
mode switches and kernel operations, andwe evaluate all our techniques
using the same hardware and benchmarks as in Section 4.2.

We first configure the hypervisor for the different register spill tech-
niques that we proposed in Section 4.1, to determine which technique
performs best. To achieve a fair comparison between the different tech-
niques, we enable only those optimisations that are not tied to a particular
register spilling technique. We then proceed by demonstrating how our
optimisations reduce the DBT-based overhead of the hypervisor, while
using the best performing register spilling technique.

All lmbench benchmarks perform their own timing measurements.
In order to ensure that these measurements are accurate, we grant the
guest full and unsupervised access to a minimal set of hardware timers.

It is important to note that the usedmicro-benchmarks are stress tests
that execute high-overhead events at a much higher rate than standard
applications. The reported overhead numbers are therefore by no means
representative of the performance of real-world applications; they only
serve to identify the best optimisations for our DBT engine.

4.3.1 Register spilling techniques

We compare the results of running the benchmarks using our register
spilling techniques to a set of results obtained with a fully writable code
cache. To reduce the impact of external influences such as interrupts, we
have executed each benchmark 100 times and we report averages.

Figure 4.3 shows the extra overhead incurred by our spilling tech-
niques on each benchmark, when spilling and restoring at most one

4.3 Evaluation 83

la
t_

pa
ge

fa
ul

t
la

t_
pi

pe la
t_

pr
oc

 e
xe

c la
t_

pr
oc

 fo
rk

la
t_

se
le

ct
 -n

 1
0

fil
e

la
t_

se
le

ct
 -n

 1
00

 fi
le la

t_
sig

 c
at

ch la
t_

sig
 in

st
al

l

la
t_

sy
sc

al
l f

st
at

 /d
ev

/z
er

o la
t_

sy
sc

al
l n

ul
l

la
t_

sy
sc

al
l o

pe
n

/d
ev

/z
er

o

la
t_

sy
sc

al
l r

ea
d

la
t_

sy
sc

al
l s

ta
t /

de
v/

ze
ro

la
t_

sy
sc

al
l w

rit
e

0
%

10
 %

20
 %

30
 %

EXTRA OVERHEAD
TP

ID
RU

RW
PM

CC
N

TR
Li

gh
tw

ei
gh

t t
ra

p,
 lo

ca
tio

n
in

si
de

 c
od

e
ca

ch
e

Li
gh

tw
ei

gh
t t

ra
p,

 lo
ca

tio
n

ou
ts

id
e

co
de

 c
ac

he

Fi
gu

re
4.
3:

O
ve

rh
ea
d
of

re
gi
st
er

sp
ill
in
g
te
ch

ni
qu

es
ov

er
a
fu
lly

w
rit

ab
le

tr
an

sl
at
io
n
st
or
e,
us

in
g
at

m
os
to

ne
re
gi
st
er

la
t_

pa
ge

fa
ul

t
la

t_
pi

pe la
t_

pr
oc

 e
xe

c la
t_

pr
oc

 fo
rk

la
t_

se
le

ct
 -n

 1
0

fil
e

la
t_

se
le

ct
 -n

 1
00

 fi
le la

t_
sig

 c
at

ch la
t_

sig
 in

st
al

l

la
t_

sy
sc

al
l f

st
at

 /d
ev

/z
er

o la
t_

sy
sc

al
l n

ul
l

la
t_

sy
sc

al
l o

pe
n

/d
ev

/z
er

o

la
t_

sy
sc

al
l r

ea
d

la
t_

sy
sc

al
l s

ta
t /

de
v/

ze
ro

la
t_

sy
sc

al
l w

rit
e

0
%

20
 %

40
 %

60
 %

80
 %

10
0

%

EXTRA OVERHEAD

TP
ID

RU
RW

/T
PI

D
RU

RO
PM

CC
N

TR
/P

M
XE

VC
N

TR
Li

gh
tw

ei
gh

t t
ra

p,
 lo

ca
tio

n
in

si
de

 c
od

e
ca

ch
e

Fi
gu

re
4.
4:

O
ve

rh
ea
d
of

re
gi
st
er

sp
ill
in
g
te
ch

ni
qu

es
ov

er
a
fu
lly

w
rit

ab
le

tr
an

sl
at
io
n
st
or
e,
us

in
g
at

m
os
tt
w
o
re
gi
st
er
s

84 Evaluation of dynamic binary translation techniques

register. Spilling using lightweight traps to a location outside the code
cache consistently performs worse, except in the fstat and signal instal-
lation benchmarks, where the difference with spilling inside the code
cache is negligible. The extra overhead when spilling to an external loca-
tion is caused by the extra instructions required to construct the address
of the spill location into a register, and by increased TLB pressure.

On almost all benchmarks, spilling to the performance counter regis-
ter PMCCNTR incurs slightly more overhead than using the user-writable
software thread ID register (TPIDRURW). We expected the performance
counter registers to have higher access latencies than the thread ID reg-
ister, as only the latter is intended to be updated frequently. As it turns
out, the subtle differences between both measurements are only caused
by the differences in maintenance requirements upon a guest context
switch; the registers are otherwise equivalent.

On several benchmarks, spilling inside the code cache performs only
slightly worse than spilling to the thread ID register. This implies that the
latency to access the thread ID register is of the same order of magnitude
as the time taken to spill and restore using a lightweight trap. With
lightweight traps, however, the majority of the overhead is caused by the
trap to enter a privileged mode, rather than by the memory accesses that
perform the actual spill and restore operations. Therefore, when spilling
multiple registers at once, or when the spill location is accessed more
frequently, we expect coprocessor latency to dominate.

To investigate the impact of coprocessor latency, we have performed
a second series of tests in which we have enabled the shadow stack opti-
misation. This optimisation requires spilling two registers, and accesses
the spill locations several times. We do not provide measurements for
spilling to a shared location using lightweight traps, since it is clear
from our first set of measurements that this technique causes too much
overhead. In order to support spilling two registers, we have adapted
the remaining techniques as follows:

• When spilling to a private location inside the code cache, we resize
the spill location to fit two words.

• When spilling to TPIDRURW, we use the user-read-only thread
ID register (TPIDRURO) as secondary spill location. We do not
require a second user-mode writable register as our shadow stack
implementation only updates the secondary spill location from a
privileged mode.

4.3 Evaluation 85

• When spilling to the performance counter registers, we use PMCC-
NTR as primary and PMXEVCNTR as secondary spill location.

As illustrated in Figure 4.4, coprocessor spilling incurs more than
twice the overhead of spilling inside the code cache, when applied to
our shadow stack. This overhead is caused by the access latency of
the coprocessor registers. Our results indicate that using a coprocessor
register to spill can, however, be beneficial in translations that only need
to spill one register, and with few accesses to the spill location. In such
scenarios, using coprocessor operations can be slightly faster and results
in smaller translated code size. In other scenarios, spilling inside the
code cache using lightweight traps should be preferred.

4.3.2 Optimisations to avoid traps to the DBT engine

We analyse the performance improvements gained from the optimisation
techniques described in Section 4.2 on the same set of benchmarks from
the lmbench suite. We have run each benchmark on different configura-
tions of the hypervisor; we started with a configuration in which only
direct branch linking was enabled, and we then enabled our optimisa-
tions one by one, in the order they were discussed in Section 4.2. We
have normalised the results based on a set of measurements obtained on
a native system, running the same Linux kernel on the same hardware.
All configurations unconditionally make use of lightweight traps to spill
registers to a spill location inside the code cache.

Figure 4.5 provides an overview of our results. The unoptimised ver-
sion of our hypervisor, visualised by the leftmost bar, causes slowdowns
ranging from a factor 22 to a factor 114 compared to executing the bench-
marks natively. We observe the lowest slowdown on larger benchmarks
such as page fault latency (lat_pagefault), process creation (lat_proc)
and lat_select with 100 file descriptors. In the benchmarks for pipe
latency and simple system calls the overhead of guest context switches
dominates and causes bigger slowdowns. The optimisations proposed
in this paper reduce the slowdown on largest benchmarks from a factor
22 to a factor 7 over native. On the smaller benchmarks, we achieve an
overhead reduction from a factor 114 to a factor 20 over native.

When we investigated the major contributions to overhead reduction,
we observed that enabling our shadow stack causes a significant speedup
in all benchmarks. Mode change optimisations have little impact, as they
only affect instructions that toggle interrupt masking; the majority of

86 Evaluation of dynamic binary translation techniques

lat_pagefault
lat_pipe

lat_proc execlat_proc fork

lat_select -n 10 file

lat_select -n 100 filelat_sig catchlat_sig install

lat_syscall fstat /dev/zero

lat_syscall null

lat_syscall open /dev/zero

lat_syscall read

lat_syscall stat /dev/zero

lat_syscall w
rite

average

0 20 40 60 80

100

120
FACTOR SLOWDOWN OVER NATIVE

D
irect branch linking only

Shadow
 stack

M
ode change optim

isation

Save and restore user m
ode registers optim

isation
U

nprivileged loads and stores optim
isation

Coprocessor update optim
isation

A
ll optim

isations

Figure
4.5:Slow

dow
n
overnative

forthe
differentoptim

isationsofthe
D
BT

engine

4.3 Evaluation 87

mode change instructions affects the processor mode and privilege level
and must trap to the interpreter. Eliminating traps for instructions that
save and store user registers yields significant speedups for lat_syscall
null, read and write, as predicted in Section 4.2.

Optimising unprivileged loads and stores results in significant
speedups for the lat_sig install and lat_syscall fstat bench-
marks. However, as this optimisation inlines translation table switches
in translated code, it comes with significant space overhead. When
applied to cold code, the optimisation has adverse effects on hardware
caches, resulting in a net slowdown in lat_syscall null and write.
A similar issue manifests itself with inlining coprocessor update in-
structions. In the last step of our evaluation, we eliminated traps to the
interpreter for accesses to coprocessor registers and banked registers.
This optimisation causes minor speedups in all benchmarks.

Our results confirm that the architecture-specific optimisations pre-
sented in Section 4.2 are useful to reduce the overhead of our hypervisor
beyond generic control flow optimisations: on average, we achieve a 51%
reduction in slowdown when comparing the results from enabling the
shadow stack to the fully optimised case.

4.3.3 Perceived slowdown

Micro-benchmarks are useful for studying the worst-case overhead in
interactions between a guest’s user applications and kernel. Many real
applications however do not continuously perform system calls; the
perceived slowdown while running real applications should therefore
be lower than the slowdowns obtained from running micro-benchmarks.

In order to evaluate the perceived slowdown caused by our hypervi-
sor, we run a selected number of benchmarks from the mibench version 1
suite [59]. Mibench is a benchmark suite that aims to be representative
of commercial software normally run on embedded systems. We use
wall time as a measure for perceived performance. We use the large
input sets provided with mibench and run all benchmarks three times
on the same Linux system: once natively, and to show the impact of our
optimisations, virtualised without and with our optimisations. Similar
to the measurements we did on micro-benchmarks, we do not disable
block linking as doing so renders the system unusable.

Figure 4.6 shows that the perceived slowdown in user-space appli-
cations can reach almost a factor of five over native in an unoptimised

88 Evaluation of dynamic binary translation techniques

basicmath (694)

bitcount (3
1)

gsm (241)

ispell (3
207)

jpeg (1980)

lame (22)

mad (1327)

rsynth (2)

susan (130)

typeset (3
10)

average
0 %

100 %

139 %

200 %

W
A

LL
 T

IM
E

RE
LA

TI
VE

 T
O

 N
A

TI
VE

474 %

Direct branch optimisation only Fully optimised

Figure 4.6: Virtualised execution time of selectedmibench benchmarks, relative
to native execution time

hypervisor, depending on the rate at which the application performs sys-
tem calls. In our optimised hypervisor, however, themaximumperceived
slowdown is limited to 39%, as observed on the jpeg benchmark.

The labels in Figure 4.6 also shows for each benchmark the rate
at which the application performs system calls. bitcount and rsynth
(speech synthesis) are small benchmarks that perform few system calls.
lame, an MP3 encoder, is a computationally intensive and long-running
benchmark. We can see that for bitcount, rsynth and lame, the very low
rate of system calls results in almost negligible overhead. The basicmath
benchmark is typically used to measure ALU performance. It performs
small arithmetic operations and prints the result of every operation;
every such print is a write system call. Similarly, the gsm benchmark,
an audio codec, mainly consists of read and write system calls. Both
basicmath and gsm benchmarks still have a fairly low rate of system calls
and therefore the overhead on both benchmarks on an optimised version
of our hypervisor is also negligible. For the remaining benchmarks
ispell, jpeg, mad, susan and typeset the rate of system calls is not
correlated with the overhead, as they use a wider variety of system calls,
some of which are more expensive than others. The remaining overhead
in the jpeg benchmark is largely caused by memory management.

4.4 Conclusions 89

4.4 Conclusions

Weanalysed existing techniques for user-spaceDBT onARM, and argued
that they are not directly suitable for full system virtualisation. We
therefore proposed new techniques for spilling registers, and we showed
that the best technique to use depends on the usage scenario.

We measured the sources of DBT-based overhead for typical inter-
actions between virtualised kernels and their user applications. As is
typical with DBT, much of the overhead can be attributed to control
flow, and eliminating traps caused by control flow yields significant
speedups. However, we also showed that the remaining overhead can
be further reduced by 51% on average, by using binary optimisations
specific to ARMv7-A system virtualisation. We found that a naive con-
figuration of our hypervisor makes real applications run up to 5 times
slower than native. With our optimisations, however, the maximum
perceived slowdown is limited to 39%.

90 Evaluation of dynamic binary translation techniques

Chapter 5

Trade-offs in cache and
memory management

As a hypervisor lives at the lowest level of the software stack, it becomes
responsible formanaging the hardware caches andTLBs. Guests running
on top of the hypervisor will also try to manage these resources, as they
are tricked by the hypervisor to assume they are running natively. Our
hypervisor must therefore virtualise all cache and TLB operations.

Cache management is not limited to hardware caches, as our hypervi-
sor makes extensive use of software caches both in the DBT engine and in
MMU virtualisation. We must keep our software caches up to date with
the guests’ internal state, either through clever memory management
or by reusing a guest’s hardware cache maintenance operations. In this
chapter, we describe how we have implemented those techniques for
both kinds of caches. We evaluate our techniques and find that, due to
the way cache and TLB organisation works, shadow translation tables
are better managed like a software TLB, while the caches of the DBT
engine must be kept up to date through memory protection techniques.

92 Trade-offs in cache and memory management

5.1 Introduction

Our hypervisor maintains software caches for its DBT engine and for
MMU virtualisation. The DBT caches comprise metadata and translated
code; the whole can be regarded as a software instruction cache. Shadow
translation tables can be regarded as a software TLB. It is therefore pos-
sible to translate a guest’s hardware cache maintenance operations into
operations that maintain its software caches. Another approach to en-
sure that the contents of the software caches are consistent with a guest’s
state consists of write-protecting the sources of the cached data in the
guest’s virtual address space. Such an approach is required when the
guest chooses not to make use of the hardware caches. Picking the best
method to manage the hypervisor’s software caches is not straightfor-
ward, and the best choice depends on the behaviour of the guest.

Configuration registers of theMMU further complicate shadow trans-
lation table maintenance, as their values can affect attributes such as
permissions and cacheability of several translation table descriptors at
once. Performing the equivalent operations on the shadow translation ta-
bles proves to be complex: any change to permissions and cacheability by
a guest must not affect the hypervisor’s own mappings, even though the
shadow translation tables contain an indistinguishable mix of mappings
for both the hypervisor and the guest.

5.1.1 Overview of hardware instruction and data caches

The ARMv7-A architecture does not define a fixed cache layout; instead,
it provides room for up to seven levels of caches, and it offers an interface
to query their layout from software. Although specific implementations
of the ARMv7-A architecture may also contain scratchpads or tightly
coupledmemories (TCMs), suchmemories are not required to be present
nor does the architecture provide a standardised interface to query their
layout. We therefore exclude TCMs from further discussions.

Each cache level may consist of either separate instruction and data
caches, or a unified cache. The hardware platforms we used during the
development of our hypervisor typically had two levels of caches, with
separate L1 instruction and data caches and a unified L2 cache.

The system control coprocessor provides a register to enable and
disable the hardware caches system-wide. Its functionality is, however,
limited to controlling all caches of a given type independent of their

5.1 Introduction 93

level. Furthermore, there are no dedicated controls for unified caches;
instead, unified caches must be configured using the data cache controls.
Some processor implementations offer additional controls that allow
independent control of cache levels, e.g., on a Cortex-A8 processor the
L2 cache can be disabled separately from the L1 caches.

Software can perform cachemaintenance bywriting to registers of the
system control processor. Instruction caches are maintained separately
from data (or unified) caches, and the available maintenance operations
are different for each type of cache. Instruction cache maintenance is
limited to two operations that affect all cache levels equally:

1. discarding cache lines that contain an instruction from a given
virtual address;

2. discarding all cache contents.

Data (or unified) cachemaintenance operations are conceived entirely
differently. There are three kinds of operations, namely clean, invalidate,
and clean and invalidate. A clean operation causes dirty cache lines to be
written back to the next cache level or to main memory. An invalidate
operation discards cache contents, regardless of whether or not a cache
line is dirty. There are two ways to select the cache levels and cache lines
that will be affected by a data cache maintenance operation:

1. by virtual address, for all cache levels up to the point of coherence;

2. by virtual address, for all cache levels up to the point of unification;

3. by specific cache level, set, and way.

No single instruction can fully clean or invalidate one or all levels
of data caches. Furthermore, it is not possible to clean or invalidate
specific addresses at specific cache levels. Instead, operations affect all
cache levels up to the point of coherence or unification. The point of
coherence is defined as the point in which all ‘agents’ in the system that
can accessmainmemorywill observe the same data. Therefore, the point
of coherence is typically the main memory. In a uni-processor system,
the point of unification, only available in clean operations, is defined as
the point at which instruction caches, data caches and translation table
walks are guaranteed to observe the same data for any given memory
address. This point is typically the first unified cache level [12].

94 Trade-offs in cache and memory management

5.1.2 Fine-grained hardware cache control

The MMU can be used to control whether caches are used and how
they are used at the level of individual translation table descriptors.
Each descriptor contains five bits that define the memory region attributes.
These attributes define whether memory accesses can be reordered and
cached. The ARMv7-A architecture distinguishes between normal and
devicememory. Devicememory cannot be reordered nor cached. Normal
memory can be reordered, and optionally stored in the caches. For
cacheable memory regions, inner and outer caches can be configured
independently. Inner caches are those caches closest to the processor,
including L1 caches; outer caches are the caches which are the closest
to main memory. A cache is either an inner or an outer cache, but it is
not architecturally defined from which level the caches are considered
to be outer caches. On a system with only two levels of caches, the L1
caches are inner caches and the L2 caches are outer caches. The caches
can be configured to operate in write-back or write-through mode, and
optionally with write-allocation, if supported by the hardware [12].

An operating system rarely uses all possible cache configurations
in its translation tables. As it can be useful to have some ‘spare’ bits
in the translation table descriptors to put data which is ignored by the
hardware, the ARMv7-A architecture offers a feature called TEX remap
which reduces the size of the memory region attributes to three bits.
Those three bits are used as an index to a cache configuration stored in
registers of the system control processor. The remaining two bits can
then be used by the operating system. Every update to the cache config-
uration registers in the system control processor can change the cache
configuration for several translation table descriptors at once, similar
to how domains can be used to bypass access permissions for several
descriptors at once.

5.1.3 Hardware TLBs

Hardware TLBs cache address translations and first-level translation
table descriptors. The ARMv7-A architecture does not define a fixed
TLB layout; instead, it defines a set of criteria that TLB implementations
must meet. Similar to the caches, implementations may either consist of
separate TLBs for instructions and data, or use only a single unified TLB.

When updating translation table descriptors that may have been
cached in a TLB, appropriate maintenance is required. Unlike the cache

5.2 Hardware cache management 95

maintenance operations, ARMv7-A defines different maintenance opera-
tions for each type of TLB, and unified TLB operations apply to both data
and instruction TLBs on systems with separate TLBs. The individual
data and instruction TLB operations are therefore declared as obsolete
in the reference manual, but they are nevertheless still used by Linux.

Operating systems such as Linux typically create one set of transla-
tion tables per user application process. All these tables contain common
descriptors for the kernel and process-specific descriptors. To speed up
switching between these sets of translation tables, the ARMv7-A archi-
tecture provides a mechanism to reduce TLB maintenance requirements:
descriptors can be either global or process-specific. An address space iden-
tifier (ASID) can be used to associate process-specific descriptors with
their process in the TLB. When switching between processes, changing
the active ASID together with the active set of translation tables ensures
that the TLBs only use entries that belong to the new process [12].

Our hypervisor also leverages the ASID mechanism to avoid TLB
maintenance when switching between different sets of shadow transla-
tion tables. It therefore does not have to flush the TLB every time the
guest switches from a privileged mode to the unprivileged mode and
vice versa. This, however, requires all shadowed guest mappings to be
non-global, and all guest TLB maintenance operations that would nor-
mally apply to a single ASID will hence also affect descriptors marked
global in the guest’s translation tables. This is an acceptable trade-off, as
otherwise the hypervisor needs to flush all contents of all TLBs on every
guest context switch.

5.2 Hardware cache management

We use the hardware caches for both the hypervisor and guests; dis-
abling those caches for either hypervisor or guest causes unacceptable
performance penalties. Besides simply enabling the caches, we perform
fine-grained cache configuration in the hypervisor’s translation tables.
Proper tuning reduces hardware cache maintenance requirements and
reduces the run-time virtualisation costs.

5.2.1 Tuning cache configurations

We tune the caches for individual memory regions of our hypervisor
based on their usage patterns. Read-only regions such as the hypervisor’s

96 Trade-offs in cache and memory management

code and constants do not require tuning as they are never updated. Only
the frequently updated regions, such as the DBT engine’s code cache and
dynamic memory allocation pools used for shadow translation tables
and other data structures, can benefit from tuning.

The code cache has strict cache maintenance requirements, as its
contents are continuously modified as ‘data’ and subsequently executed
as instructions. When a block of code is first translated, the translated
instructions are written one by one and pass from the L1 data cache
through the unified L2 cache to main memory. After translation, the
block is executed and the processor fetches the translated instructions
through the L1 instruction cache. Cache maintenance is required to
ensure coherence: firstly, the L1 data cachemust be flushed to the unified
L2 cache, and secondly, any cache lines containing instructions from the
affected addresses must be cleared from the L1 instruction cache.

By configuring the L1 data cache in write-through mode, we do not
explicitly have to flush the newly written instructions to the L2 unified
cache. To avoid the performance penalties for accessing external memory,
we could configure the unified L2 cache in write-back mode with write-
allocation, such that newly written instructions stay inside the L2 cache.
When resuming guest execution, instructions will—ideally—be fetched
from the unified L2 cache into the L1 instruction cache.

Shadow translation tables require frequent updates to keep them
consistent with the guest’s translation tables. The hardware TLBs must
be kept coherent with the shadow translation tables at all times. A naive
implementation may choose to flush all modified descriptors to main
memory, either by configuring the caches in write-through mode, or by
explicitly flushing the caches after each batch of updates. However, the
ARMv7-A architecture specifies that a TLB walk will access the first level
of caches or memory after the point of unification. On our platform, the
TLBs therefore read through the unified L2 cache and it is sufficient to
ensure that any modified descriptors are up to date in that cache, similar
to translated instructions. To avoid L1 cache maintenance requirements,
we must either disable the L1 caches, or configure them in write-through
mode. As we will show in Section 5.5, the best configuration for the
unified L2 cache depends on the techniques used tomaintain the shadow
translation tables.

5.2 Hardware cache management 97

5.2.2 Virtualising hardware cache operations

A guest running on top of our hypervisor will issue cache maintenance
operations as if it were running on native hardware. As the guest can
make use of the hardware caches, its cache maintenance operations must
be forwarded to the hardware. However, some cache operations for data
and unified caches have the potential to discard dirty cache lines contain-
ing hypervisor data. Furthermore, data and unified cache operations
that explicitly specify a cache level, set and way are not portable across
different physical hardware platforms.

On ARM, data and unified caches can only be usedwhen theMMU is
enabled. A guest will therefore not maintain the caches when its virtual
MMU is disabled. The hypervisor must nonetheless keep the caches and
the MMU enabled at all times. To handle this situation, we configure the
hardware caches in write-through mode for the guest’s memory.

Once the guest enables its virtual MMU, it typically also enables
the data and unified caches. In this step, and on later occasions, the
guest may attempt to completely invalidate those caches without writing
back dirty pages to external memory. This is perfectly valid when the
guest runs on its own, but once virtualised, it shares the caches with the
hypervisor. The caches may therefore contain hypervisor data which has
not yet been written to external memory. Ideally, the hypervisor should
either invalidate only non-hypervisor addresses, or clean all hypervisor
addresses prior to a full invalidation of the affected caches. Such a clean
solution is however not feasible due to architectural limitations.

As noted in Section 5.1.1, fully cleaning or invalidating an entire
data or unified cache requires individually cleaning all sets and ways of
that cache. The hypervisor can therefore not determine which virtual
addresses will be affected by an operation from the guest on a particular
set and way. Furthermore, it is not feasible to ensure that the hypervi-
sor’s memory is cleaned prior to the operation, as this would require
as many cache maintenance operations as the memory footprint of the
hypervisor divided by the size of a cache line. Cleaning the hypervisor’s
entire virtual address space (16 MiB) from a specific cache with a 64-byte
line size requires 218 consecutive cache maintenance operations. Our
hypervisor therefore forcibly cleans the cache before invalidating its con-
tents whenever invalidation is requested by the guest. This introduces
an extra performance cost which cannot be easily quantified.

Cache maintenance operations that affect specific cache levels, sets,

98 Trade-offs in cache and memory management

andways are not portable across different hardware platforms. There are
two strategies that a hypervisor can use to virtualise these operations: it
can try to detect when a guest wants to performmaintenance on an entire
cache, or it can expose the actual physical cache layout to the guest. The
ARMv7-A architecture manual recommends that software first queries
the cache layout and then performs the appropriate operations by set
and way in a loop that affects all sets and ways of a particular cache level.
The hypervisor must therefore detect such loops, and translate them
into equivalent operations on the hardware caches. Our hypervisor uses
a simple translation scheme that translates an operation on the first or
last set and way to an operation on the entire cache, and it ignores the
guest’s operations that affect the remaining sets and ways.

5.3 Shadow translation table management

An operating system frequently modifies its translation tables. When a
mapping is updated that has already been shadowmapped, the memory
manager needs to find out and update the shadow translation tables
accordingly. There are two approaches one can take to implement this
update mechanism. The first approach ensures that the guest cannot
modify its translation tables without knowledge of the hypervisor, by
protecting all associated memory in the shadow translation tables. This
approach works rather well for a single set of translation tables, but does
not scale if we want to cache multiple sets of shadow translation tables.
A second approach is based on regarding the shadow translation tables
as a software TLB for the guest. The guest operating system can then
manage its shadow translation tables using TLB maintenance operations.
This approach can however not be used to identify faults in a guest’s
memory management code, as it relies on the correctness of the guest.

The access permissions and the cache configurations of translation ta-
ble descriptors are tied to the MMU configuration registers in the system
control coprocessor. As explained in Section 3.4.1, access permissions
can be overridden using domains. Similarly, cache configurations de-
pend on TEX remap, as discussed in Section 5.1.2. When a guest changes
the configuration of domains or TEX remap, that change may affect the
access permissions or the cache configurations of several shadowed de-
scriptors at once. The hypervisor must update the configuration of the
physical MMU and the shadow translation tables accordingly.

5.3 Shadow translation table management 99

5.3.1 The memory protection approach

Using memory protection techniques to keep the hypervisor informed of
a guest’s updates to its translation tables is by far the simplest approach
to manage the shadow translation tables. By protecting every mapping
created by the guest to physical memory that contains one of its transla-
tion tables, all guest updates immediately cause a memory trap, which
can then be used to update the shadow translation tables.

The first access of the guest to any virtual address containing one
of its active translation tables will always be caught by the hypervisor,
because the shadow translation tables are filled lazily. During shadow
mapping, the hypervisor checks whether the mapped physical memory
contains part or all of the guest’s first-level translation table, or of one
of its second-level translation tables which has been shadow mapped
previously. If so, the new mapping is made read-only to the guest.

The hypervisor can easily check whether a given guest physical ad-
dress (GPA) lies within the memory of the guest’s first-level translation
table, as the GPA of the latter is always known from the guest’s vir-
tual MMU configuration registers. To identify GPAs within the guest’s
second-level translation tables, however, the hypervisor must maintain a
record of the GPAs of all such tables in the guest’s active set of translation
tables. Furthermore, whenever a second-level table is shadow mapped,
the hypervisor must iterate over all pre-existing shadow mappings to
protect those that map the memory of the newly mapped second-level ta-
ble. This is expensive, because the entire set of active shadow translation
tables must be verified. Alternatively, the hypervisor could maintain a
reverse translation map from all mapped GPA to their corresponding
guest virtual addresses (GVAs). However, such reverse mapping merely
redistributes the run-time cost of scanning the shadow translation tables
while adding a lot more complexity, as every shadow mapping oper-
ation must then also maintain the reverse mapping. This only makes
sense when the hypervisor needs to shadow map many second-level
translation tables, which is not the case for Linux and the benchmarks
we have run. Our current implementation therefore scans the shadow
translation tables instead of maintaining a full reverse mapping.

Whenever the guest performs a store operation to a protected virtual
address, the operation causes a memory trap. The memory manager
then performs a software walk of the guest’s translation tables to deter-
mine whether or not the trap should be forwarded to the guest’s kernel.
If not, the trap was caused by the hypervisor’s memory protection mech-

100 Trade-offs in cache and memory management

anisms, and the store operation must be emulated. Emulating loads and
stores is a generic task taken care of by the virtual platform. Firstly, it
determines which virtual device is affected by the operation based on the
target GPA. Only when the guest stores to a memory device, the virtual
platform instructs the memory manager to check whether the operation
affects a descriptor of one of the guest’s translation tables, similar to how
the shadow mapper decides which mappings to write-protect, and any
existing shadow mappings are updated as necessary.

The obvious downside of leveraging memory protection to maintain
the shadow translation tables is that every single store of the guest to
its translation tables or to surrounding memory will trap. Updates to
descriptors that have not been shadowmappeddo not need to be handled
by the hypervisor, but there is no way to protect the guest’s memory
at a granularity smaller than a small page, i.e. 4 KiB. This implies that
memory surrounding second-level tables, which are only 1 KiB in size,
will be protected, resulting in unnecessary traps. To make the situation
more complicated, guests may map the memory that contains their
translation tables using section descriptors, mapping 1 MiB at a time, to
lower TLB pressure. Our hypervisor splits such mappings into smaller
descriptors, so that it can avoid unnecessarily protecting the memory
surrounding the guest’s translation tables. This slightly increases TLB
pressure, but avoids the cost of unnecessary memory traps, which would
otherwise cause the system to run an order of magnitude slower.

Another downside of using memory protection is its inherent inabil-
ity to handle batched updates efficiently. A guest may update multi-
ple descriptors consecutively, only performing the minimum necessary
cache and TLB maintenance operations at the end of the batch. Once
virtualised, every modification to the guest’s translation tables is han-
dled individually, and the appropriate cache and TLB maintenance are
performed for each update to the shadow translation tables individually.

Last but not least, keeping track of multiple sets of guest translation
tables is a complex task with memory protection. Guests such as Linux
use a different set of translation tables for each process. During context
switches, Linux switches back and forth between different sets of trans-
lation tables. In order to avoid recreating the shadow translation tables
upon every such guest context switch, the hypervisor should cachemulti-
ple sets of shadow translation tables and keep track of the corresponding
guest translation tables. To ensure that the cached shadow translation
tables stay coherent with the guest’s translation tables, however, each

5.3 Shadow translation table management 101

shadow translation table must write-protect all tracked guest translation
tables. The cost of this process grows exponentially with the number
of sets of shadow translation tables that we want to keep in the cache.
In other words, it grows exponentially with the number of applications
between which the guest can switch without taking a performance hit
for shadow translation table creation. We have therefore omitted caching
from our implementation of the memory protection approach.

5.3.2 The software TLB approach

The only way to avoid unnecessary traps and to solve the batched up-
date problem is to avoid using memory protection to manage shadow
translation tables altogether, and instead make guests responsible for
maintaining their own shadow translation tables, in the sameway as they
would normally have to maintain the hardware TLBs. In this approach,
the hypervisor will not be aware of any of a guest’s edits to its translation
tables until it performs the necessary TLB maintenance operations. It is
reliable, because TLBs cannot be disabled, unlike the hardware caches,
and operating systems therefore always have to perform proper mainte-
nance whenever the MMU is enabled. The downside of this approach is
that a system that does not use the TLB correctly may, when virtualised,
malfunction in entirely different ways than when executed natively.

As explained in Section 5.1.3, entries in the hardware TLBs are tagged
with an ASID. When an operating system switches between translation
tables, it can avoid TLB maintenance by switching the active ASID, if
all non-common descriptors are marked non-global. We can reuse this
mechanism to cache multiple sets of shadow translation tables: one set
for each ASID [124–126]. Because we use a bounded allocation pool for
shadow translation tables, there is a limit on how many sets of shadow
translation tables we can keep cached. We therefore evict entire sets
using a least-recently-used policy whenever the pool fills up.

5.3.3 Handling guest domains

A guest can use domains to override the access permissions of groups of
translation table descriptors. We refer to the combined effects of access
permissions and domain configuration as effective access permissions.
The hypervisor should make all affected shadow mappings behave as
intended by the guest’s domain configuration, but this cannot be done
by applying the guest’s domain configuration to the physical MMU:

102 Trade-offs in cache and memory management

allowing the guest to configure manager mode means allowing it to by-
pass the hypervisor’s memory protection. To virtualise guest domain
configurations, the hypervisor can make use of three mechanisms: re-
configuring the physical MMU, updating the guest’s access permissions
in the shadow translation tables and load/store emulation.

The only prior work we found on guest domain virtualisation are
three VMware patents on ARMv6 [124–126]. These patents all describe a
hypervisor in which every memory mapping by a guest, regardless of its
size, is split into small pages. Therefore all updates of a guest to one of
its first-level descriptors always affects a second-level shadow translation
table. The patents present six methods for virtualising domains:

1. L1 iterate and L2 drop/repopulate: all shadow mappings of the guest
are put in one physical domain. The shadowmapper makes the ac-
cess permissions of shadow descriptors reflect the effective access
permissions of the guest’s descriptors. Whenever the guest changes
the configuration of its domains, the effective access permissions
of all mappings in that domain may change. The hypervisor iter-
ates over all first-level shadow descriptors and unmaps (drops) or
updates (repopulates) all second-level shadow translation tables
whose effective permissions are affected by the change. Repopula-
tion may occur either lazily or immediately [124].

2. L1 iterate and L2 swizzle: similar tomethod 1, but the hypervisor now
maintains two second-level shadow translation tables for each first-
level guest descriptor in each set of shadow translation tables. One
such table contains shadow mappings with access permissions
that reflect client mode and the other table contains the access
permissions that reflect manager mode [125].

3. Domain track and L2 drop/repopulate: improvesmethod 1 by avoiding
iteration over all first-level shadow descriptors. To achieve this,
the hypervisor maintains a map of guest domains to second-level
shadow translation tables and their respective first-level shadow
descriptor [126].

4. Domain track and L2 swizzle: improvement similar to method 3 for
method 2.

5. L1 tagging: maintains separate sets of first-level shadow translation
tables for each guest domain configuration.

5.3 Shadow translation table management 103

6. Observational equivalence: an optimisation to methods 1 to 4 that
keeps track of whether or not a change to a domain configuration
has an impact on the effective access permissions of first-level guest
descriptors; i.e., if the guest descriptor is executable, readable and
writable to all privilege levels, its effective access permissions are
the same in both client and manager mode. This optimisation can
be used to avoid dropping, repopulating and swizzling.

Methods 1 and 3 are slowwhen a guest frequently changes its domain
configuration, because they require updating several shadow descriptors
at once. For each edited descriptor, the hypervisor may need to query
the guest’s original descriptor, and it must ensure that write-protected
mappings are not unprotected. Furthermore, such potentially large
edits almost always require a TLB flush of all guest descriptors—i.e. all
non-global descriptors—for the affected shadow translation tables.

Methods 2 and 4 are an attempt to eliminate the overhead of editing
second-level shadow descriptors, at the expense of using more memory
to store duplicated tables. To avoid TLB maintenance when switching
guest domains, however, separate ASIDs must be allocated per first-level
shadow translation table and per guest domain, raising the number of
ASIDs used to shadow one set of guest translation tables from exactly
2 to 32 in the worst case scenario, when a guest makes use of all 16
domains. This is only acceptable for a guest that is knownnot to usemany
domains or ASIDs. Lastly, all duplicated tables increase the maintenance
burden on the shadow translation tables. This will result in extra run-
time overhead whenever the guest edits a descriptor, and whenever
the hypervisor write-protects guest memory. Method 5 eliminates the
need to edit first-level shadow descriptor, but comes with the same
disadvantages as methods 2 and 4. Method 6 brings nothing new as it is
merely an optimisation to all of the previous methods.

Our hypervisor implements a different approach: it maps 15 of a
guest’s domains to 15 physical domains. The hypervisor uses a separate
domain for its own memory mappings. We let the guest configure its
assigned physical domains to either disabled or client mode. Whenever
the guest sets a domain to manager mode, the hypervisor configures the
associated physical domain in client mode to prevent the guest from by-
passing the hypervisor’s write-protections. Accesses to virtual addresses
whose shadowed access permissions do not match their effective access
permissions are emulated by the virtual platform. This approach works
well for a guest that does not often require manager mode. For guests

104 Trade-offs in cache and memory management

that heavily depend on manager mode to operate correctly, it would,
however, cause a lot of extra traps to the memory manager.

All of the techniques described above work well for some guests, but
none of them is a perfect solution for all cases. Unlike the DBT techniques
presented in Chapter 4, the performance of guest domain virtualisation
techniques heavily depends on the behaviour of a particular guest. It
is therefore not feasible to carry out an unbiased evaluation of those
techniques on a hypervisor that only supports Linux guests.

Domains are a relic present in the ARM architecture since at least
ARMv3, and they have been deprecated with the recent virtualisation
extensions. The version of the Linux kernel we used during the devel-
opment of our hypervisor (2.6.28.1) only uses three domains, and the
updates it performs to the domain configuration, once it has started the
first user-space application, are limited to switching one domain, con-
taining only kernel-specific mappings, from client to manager mode and
vice versa. This is done to temporarily allow drivers unrestricted access
to the kernel address space. Domain configuration switches therefore
mainly occur during device IO operations, but our hypervisor currently
only virtualises a minimal set of devices. The Linux drivers for this set
of devices do not frequently reconfigure domain access. Starting from
Linux 2.6.38, domain support has been disabled for ARMv7-A-based
systems because in manager mode, the execute-never bit is ignored,
which can result in speculative prefetching of IO device memory [87].
Therefore, domain virtualisation has become irrelevant for Linux guests.

5.3.4 Handling guest cache configurations

Both the hypervisor and its guests can perform fine-grained hardware
cache configuration as described in Section 5.1.2. The hypervisor does
not use TEX remap to have maximum flexibility when tuning the caches.
Our shadow mapping mechanism honours the cache configurations
specified by the guest’s translation table descriptors. When the guest has
not enabled TEX remap, cache configurations can be copied as is into the
shadow descriptors. Otherwise, the hypervisor must look up the actual
cache configuration in the guest’s virtual cache configuration registers.
This process is similar to determining effective access permissions based
on the guest’s domain configuration, and therefore creates a similar
maintenance problem: whenever a guest updates its cache configuration
registers, all affected shadow descriptors must be updated.

5.4 DBT cache management 105

Unlike domain configuration, cache configuration is usually set once
by a guest. Our hypervisor therefore implements a simple strategy to
ensure that the cache configuration in the shadow translation tables
is consistent with the guest’s: it drops all shadow translation tables
whenever the guest cache configuration is updated.

5.4 DBT cache management

The caches of the DBT engine store translated guest kernel code, which
can be accessed by its virtual address. If, somehow, the guest updates the
physicalmemory that was used as source for a translation, that transla-
tion should be invalidated. This may happen because the guest unmaps
or remaps a virtual memory region, or, less commonly, because of self-
modifying code. Similar to shadow translation table management, the
hypervisor can keep track of such updates by leveraging memory pro-
tection, or by treating the DBT caches as a software instruction cache.

5.4.1 The memory protection approach

The hypervisor can keep track of changes to a guest’s code by write-
protecting the associated physical memory. We will refer to blocks of
guest code used as input by the translator as input blocks, to distinguish
them from the translator’s output, i.e. the translated blocks. As explained
in Section 3.5, blocks are translated as needed, and they are looked up
based on the value of the PC in the guest context. This value is a GVA
when the guest MMU is enabled, and a GPA when the guest MMU is
disabled. For the latter case, write-protecting the input block is easy: it is
sufficient towrite-protect the correspondingmapping in the hypervisor’s
translation table. When the guest MMU is enabled, however, the solution
is more complex. Firstly, the shadow descriptor that maps the GVA of
the input block must be write-protected. Secondly, the hypervisor must
ensure that any other mappings to the corresponding GPA are also write-
protected, as multiple virtual addresses may be mapped to the same
physical address. This operation should be carried out on all existing
shadow descriptors as well as any new shadow descriptors created after
the translation, for as long as translated code remains in the code cache.

Automatically protecting all new shadowmappings to existing input
blocks is straightforward: the DBT engine can maintain a list of physical
addresses to protect, which is then queried by the shadowmapper when-

106 Trade-offs in cache and memory management

ever a shadow mapping must be created. Our hypervisor implements
this list as a search tree of physical addresses of small pages, instead of
using the addresses of individual input blocks. This doesn’t matter to
the shadow mapper as the smallest granularity of memory it can protect
is a small page, and it helps to keep the tree reasonably small.

Protecting all existing shadow mappings that map same physical
memory is more involved. It is similar to how second-level guest trans-
lation tables should be protected when they are shadow mapped, as
discussed in Section 5.3.1. The hypervisor either needs to iterate over all
existing shadow mappings, or it must maintain a reverse mapping from
GPA to GVA. Unlike shadow mapping second-level guest translation
tables, translating guest code occurs far more frequently. Maintaining a
reverse mapping is therefore a better suited approach.

When using the software TLB approach to manage shadow transla-
tion tables, multiple sets of shadow translation tables may be cached, one
for each guest ASID, and all cached tables must protect the translator’s
input blocks. This protection must be applied immediately after the
translation of a new block for the active set of shadow translation tables
only; inactive sets may be updated lazily. Updating all tables at once
will waste time on obsolete tables, as guests do not inform the hypervi-
sor which ASIDs are no longer in use. A lazy updating scheme is thus
preferred. Our hypervisor manages a queue per cached set of shadow
translation tables that contains the pending protection operations to
apply upon the next time that those tables are reactivated.

To prevent the queues for pending protection operations from grow-
ing large, and to ensure that the time necessary to switch between dif-
ferent guest ASIDs remains small and bounded, we limit the size of the
queues to a fixed number of entries. When a queue overruns, the set of
shadow translation tables for the associated guest ASID is flushed.

5.4.2 The software instruction cache approach

Managing the caches of the DBT engine through memory protection
comes with problems similar to those studied in shadow translation
table management in Section 5.3.1. The trivial approach to overcome the
complexity of using memory protection consists of managing the caches
of the DBT engine based on how guests manage their instruction caches.
Unlike TLBs, however, instruction cache entries on ARMv7-A are not
tagged with ASIDs. This means that instruction cache entries cannot be

5.5 Evaluation 107

tied to the kernel and to individual processes. When switching between
processes, it is hence necessary to invalidate the entire instruction cache.
As we shall see in Section 5.5, such behaviour renders the software
instruction cache approach wholly unsuitable for any practical use.

5.5 Evaluation

We evaluate all our techniques using the same hardware and the same
lmbench micro-benchmarks as used in Chapter 4. We first evaluate how
cache tuning, presented in Section 5.2, affects the performance of our hy-
pervisor’s memory manager. We then evaluate the performance impact
of the different techniques to manage the hypervisor’s software caches.
Firstly, we evaluate and discuss our two approaches to manage shadow
translation tables from Section 5.3. Secondly, we evaluate the techniques
to manage the caches of the DBT engine presented in Section 5.4.

As the lmbench benchmarks perform their own timing measure-
ments, we again grant the guest full and unsupervised access to a number
of hardware timers to ensure that the measurements are accurate.

5.5.1 Hardware cache configuration tuning

We evaluate the impact of fine-grained cache configuration tuning on
the dynamic memory allocation pool used for shadow translation tables.
As the different approaches to manage the shadow translation tables pre-
sented in Section 5.3 use this pool in different ways, we have performed
separate evaluations for each approach. In order to reduce the impact of
external influences such as interrupts, we have executed each benchmark
100 times for each possible cache configuration, and we report averages.
We prevent the DBT engine from requesting changes to the shadow
translation tables by disabling most protections for self-modifying code.

We do not test cache configurations that put the L1 data cache in
write-back mode. As discussed in Section 5.2, such configurations re-
quire extra cache maintenance operations to ensure that a store to a
shadow translation table is observed by the TLB. Furthermore, using
write-allocation for the L1 data cache would wipe that cache whenever a
new shadow translation table is initialised, as the first part of the initiali-
sation process fills the entire table with zeros, and both first-level and
second-level translation tables are far larger than typical L1 caches.

We compare the results of running the benchmarks with different

108 Trade-offs in cache and memory management

cache configurations to a set of results obtained with the L1 and L2
hardware caches disabled. Figure 5.1 presents the results obtained with
the memory protection approach to manage shadow translation tables.
Figure 5.2 presents the results obtained with the software TLB approach.

When usingmemory protection, enabling the caches generally causes
a small performance improvement, except for lat_syscall open. Bench-
marks that perform several context switches, i.e. lat_pipe and lat_proc,
require the memory manager to create and modify translation tables
more often, and hence run 60 to 90% faster with caches enabled. When
comparing the performance among the different cache configurations,
the best configuration seems to be “L1 write-through, L2 write-back
write-allocate”, although the differences are so small that the impact on
perceived performance will probably not be significant.

Repeating the measurements while using the software TLB approach
to manage shadow translation tables yields an entirely different pic-
ture. There is now little to no benefit in enabling the hardware caches for
lat_pipe, and the lat_proc benchmarks run over 10% slower when con-
figuring the unified L2 cache in “write-back write-allocate” mode. Con-
trary to the measurements with the memory protection approach, the
lat_syscall open benchmark now benefits from enabling the caches
and runs around 10% faster on all tested configurations.

When using memory protection, the guest’s shadow translation ta-
bles must be write-protected for the guest. Furthermore, every edit by
the guest of its translation tables traps to the memory manager, which
then compares the guest’s edited descriptor with the existing shadow
mapping. The hypervisor therefore frequently loads from and store to
the shadow translation tables. When using the software TLB approach
to manage shadow translation tables, the hypervisor does not have to
edit shadow descriptors for guest write-protection. Furthermore, edits
are then handled through TLB flushes: a guest TLB flush causes the
hypervisor to discard entries in its shadow translation tables. This does
not involve reading existing shadow descriptors. The hypervisor thus
mostly stores to the shadow translation tables. As can be seen from the
results, in such scenario write-allocation and write-back mode in general
are detrimental to the performance of the hypervisor: they cause the
caches to be filled with data which will never be read again. The best
configuration for the software TLB approach therefore puts both the L1
cache and the unified L2 cache in write-through mode.

The lat_syscall open benchmark shows interesting behaviour for

5.5 Evaluation 109

la
t_

pa
ge

fa
ul

t
la

t_
pi

pe la
t_

pr
oc

 e
xe

c la
t_

pr
oc

 fo
rk

la
t_

se
le

ct
 -n

 1
0

fil
e

la
t_

se
le

ct
 -n

 1
00

 fi
le la

t_
sig

 c
at

ch la
t_

sig
 in

st
al

l

la
t_

sy
sc

al
l f

st
at

 /d
ev

/z
er

o

la
t_

sy
sc

al
l n

ul
l

la
t_

sy
sc

al
l o

pe
n

/d
ev

/z
er

o

la
t_

sy
sc

al
l r

ea
d

la
t_

sy
sc

al
l s

ta
t /

de
v/

ze
ro

la
t_

sy
sc

al
l w

rit
e

av
er

ag
e

-2
0

%
0

%
20

 %
40

 %
60

 %
80

 %
10

0
%

SPEEDUP OVER
L1/L2 DISABLED

L1
 d

is
ab

le
d,

 L
2

w
rit

e-
th

ro
ug

h
L1

 d
is

ab
le

d,
 L

2
w

rit
e-

ba
ck

L1
 d

is
ab

le
d,

 L
2

w
rit

e-
ba

ck
 w

rit
e-

al
lo

ca
te

L1
 w

rit
e-

th
ro

ug
h,

 L
2

w
rit

e-
th

ro
ug

h
L1

 w
rit

e-
th

ro
ug

h,
 L

2
w

rit
e-

ba
ck

L1
 w

rit
e-

th
ro

ug
h,

 L
2

w
rit

e-
ba

ck
 w

rit
e-

al
lo

ca
te

Fi
gu

re
5.
1:

Im
pa

ct
of

di
ffe

re
nt

ca
ch

e
co
nfi

gu
ra
tio

ns
;u

si
ng

m
em

or
y
pr
ot
ec
tio

n
to

m
an

ag
e
sh

ad
ow

tr
an

sl
at
io
n
ta
bl
es

la
t_

pa
ge

fa
ul

t
la

t_
pi

pe la
t_

pr
oc

 e
xe

c la
t_

pr
oc

 fo
rk

la
t_

se
le

ct
 -n

 1
0

fil
e

la
t_

se
le

ct
 -n

 1
00

 fi
le la

t_
sig

 c
at

ch la
t_

sig
 in

st
al

l

la
t_

sy
sc

al
l f

st
at

 /d
ev

/z
er

o

la
t_

sy
sc

al
l n

ul
l

la
t_

sy
sc

al
l o

pe
n

/d
ev

/z
er

o

la
t_

sy
sc

al
l r

ea
d

la
t_

sy
sc

al
l s

ta
t /

de
v/

ze
ro

la
t_

sy
sc

al
l w

rit
e

av
er

ag
e

-1
5

%
-1

0
%

-5
 %0
%

5
%

10
 %

15
 %

SPEEDUP OVER
L1/L2 DISABLED

L1
 d

is
ab

le
d,

 L
2

w
rit

e-
th

ro
ug

h
L1

 d
is

ab
le

d,
 L

2
w

rit
e-

ba
ck

L1
 d

is
ab

le
d,

 L
2

w
rit

e-
ba

ck
 w

rit
e-

al
lo

ca
te

L1
 w

rit
e-

th
ro

ug
h,

 L
2

w
rit

e-
th

ro
ug

h
L1

 w
rit

e-
th

ro
ug

h,
 L

2
w

rit
e-

ba
ck

L1
 w

rit
e-

th
ro

ug
h,

 L
2

w
rit

e-
ba

ck
 w

rit
e-

al
lo

ca
te

Fi
gu

re
5.
2:

Im
pa

ct
of

di
ffe

re
nt

ca
ch

e
co
nfi

gu
ra
tio

ns
;t
re
at
in
g
sh

ad
ow

tr
an

sl
at
io
n
ta
bl
es

as
a
so
ftw

ar
e
TL

B

110 Trade-offs in cache and memory management

which we have not yet identified the underlying causes. When using
memory protection to manage the shadow translation tables, enabling
the hardware caches on the allocation pool for shadow translation tables
causes slight performance degradation. When using the software TLB
approach, however, the same benchmark now shows the highest perfor-
mance gain of all, around 10%, regardless of the cache configuration.
Further research is needed to investigate this behaviour.

5.5.2 Shadow translation table management

We now compare the performance impact of the two approaches to
manage shadow translation tables we described in Section 5.3. We have
executed each benchmark 100 times for each approach, and we report
averages. We have normalised our results based on a set ofmeasurements
collected on a native system, which was also used in Section 4.3.

Our results are presented in Figure 5.3. The software TLB ap-
proach nearly always outperforms the memory protection approach,
especially on benchmarks that pressurise the memory manager. The
lat_pagefault benchmark causes frequent updates to the shadow trans-
lation tables. This benchmark maps a 1 MiB file in memory; in Linux,
such mappings are constructed using a second-level shadow translation
table. It then uses the Linux msync call to flush the file contents from
memory; this causes all associated descriptors to be invalidated. The
benchmark then tries to accesses the file page by page. The Linux kernel
will map the file lazily, and each access to a new page causes a page fault
that must be handled by the kernel. The kernel updates its translation
tables and resumes the application, which then causes a second trap to
the hypervisor due to lazy shadowing. The performance difference for
this benchmark hence results from the frequency at which Linux edits
its translation tables. As already predicted in Section 5.3, the software
TLB approach always performs better in such scenarios.

The exact number of context switches and the difference between
the memory protection approach and the software TLB approach in
slowdownover native execution is shown for each benchmark in Table 5.1.
We observe that lat_pipe and lat_proc also put a lot of stress on the
memorymanager, but for entirely different reasons than lat_pagefault:
they all perform a large number of context switches. Upon every context
switch, the memory manager needs to switch the active set of shadow
translation tables. The software TLB approach has a clear advantage
over the memory protection approach, because we did not implement

5.5 Evaluation 111

lat_pagefault

lat_pipe

lat_proc exec

lat_proc fork

lat_select -n
 10 file

lat_select -n
 100 file

lat_sig catch

lat_sig install

lat_syscall fs
tat /d

ev/zero

lat_syscall n
ull

lat_syscall o
pen /d

ev/zero

lat_syscall re
ad

lat_syscall stat /d
ev/zero

lat_syscall w
rite

average

0

5

10

15

20

25

FA
CT

O
R

SL
O

W
D

O
W

N
O

VE
R

N
A

TI
VE

72.5 Memory protection Software TLB

Figure 5.3: Slowdown over native for the different shadow translation table
management approaches

lat_pagefault

lat_pipe

lat_proc exec

lat_proc fork

lat_select -n
 10 file

lat_select -n
 100 file

lat_sig catch

lat_sig install

lat_syscall fs
tat /d

ev/zero

lat_syscall n
ull

lat_syscall o
pen /d

ev/zero

lat_syscall re
ad

lat_syscall stat /d
ev/zero

lat_syscall w
rite

0 %

5 %

10 %

15 %

20 %

25 %

EM
U

LA
TE

D
 S

TO
RE

S

210247

1457

104961

186263

1710 1852
1863

1520 1470 1551 1614 1484 1445 1479

Translation table hit, shadow mapping required Translation table hit, no impact

Figure 5.4: Distribution of memory traps when using memory protection to
manage shadow translation tables

112 Trade-offs in cache and memory management

Table 5.1: Difference in slowdown over native versus guest context switches
Benchmark ∆ times slowdown Context switches
lat_pagefault 2.38 24
lat_pipe 59.26 143370
lat_proc exec 3.91 617
lat_proc fork 3.98 2821
lat_select -n 10 file 0.04 12
lat_select -n 100 file 0.22 12
lat_sig catch 1.36 22
lat_sig install -0.42 12
lat_syscall fstat /dev/zero 1.68 12
lat_syscall null -0.16 12
lat_syscall open /dev/zero -0.28 12
lat_syscall read 0.87 12
lat_syscall stat /dev/zero 0.84 12
lat_syscall write 0.69 12

shadow translation table caching for the latter. Without caching, a new
set of shadow translation tables must be allocated and initialised upon
every context or ASID switch. This causes lat_pipe to run almost 60
times slower with the memory protection approach.

On the remaining benchmarks both approaches perform similarly,
although the software TLB approach often has a slight advantage over
thememory protection approach. This is caused by two drawbacks of the
memory protection approach: firstly, it introduces extra TLB pressure by
splitting large guest descriptors into small shadow descriptors to achieve
fine-grained memory protection. Secondly, the smallest granularity of
memory protection is a small page, which is four times as large as a
second-level translation table. We thus protect up to 75% more memory
than needed, and all stores to protected regions cause memory traps to
the hypervisor, which then needs to emulate those store operations.

We have measured the number of emulated stores for each bench-
mark to better understand the additional sources of overhead for the
memory protection approach. Figure 5.4 illustrates how many of the
emulated stores actually targeted the guest’s second-level translation ta-
bles, and howmany of those stores updated descriptors that had already
been shadowed. On top of each set of bars, for every benchmark, we

5.5 Evaluation 113

mention the total number of emulated stores for that benchmark. On the
benchmarks that do not pressurise the memory manager, up to 95% of
the stores that trapped targeted memory regions that were not of interest.
If we also count the traps for stores to descriptors that were not shadow
mapped, we find that up to 99% of the traps were not useful.

The “best” results are obtained by lat_pagefault, because it causes
the kernel to frequently edit its translation tables: 25% of all emulated
stores target protected translation tables, and about half of them actually
affect existing shadow mappings. The lat_proc benchmarks also cause
a large number of stores to be emulated, mainly due to copy-on-write
techniques used in the implementation of the fork system call.

5.5.3 DBT cache management

We evaluate the two approaches to manage the caches of the DBT engine
described in Section 5.4 twice, once for each shadow translation table
management approach. This is useful to analyse the impact of caching
multiple sets of translation tables on self-modifying code protection. We
have executed each benchmark 100 times for each set of measurements,
and we report averages. We have normalised our results based on a set
of measurements obtained with minimal protection for self-modifying
code. This minimalist approach only clears translations from the DBT
engine’s caches when the associated memory mappings are edited or
removed, and therefore enables us to better isolate the run-time overhead
specific to proper self-modifying code protection techniques.

Figure 5.5 presents a comparison of our approaches to manage the
DBT engine’s caches when using memory protection to manage shadow
translation tables. Figure 5.6 shows the same comparison for the software
TLB approach to shadow translation table management.

As predicted, the software instruction cache approach causes severe
slowdowns because the DBT engine’s caches are cleared too often. The
memory protection approach is therefore the only practical solution to
support self-modifying code. We find that, regardless of the approach
used to manage shadow translation tables, the worst-case slowdown of
self-modifying code protection is then limited to 20%. The execution
time of some benchmarks improves when enabling self-modifying code
protection. For the software instruction cache approach, these speedups
are caused by a combination of few guest cache maintenance operations
with breaking the link between shadow translation table management

114 Trade-offs in cache and memory management

lat_pagefault

lat_pipe

lat_proc exec

lat_proc fork

lat_select -n
 10 file

lat_select -n
 100 file

lat_sig catch

lat_sig install

lat_syscall fs
tat /d

ev/zero

lat_syscall n
ull

lat_syscall o
pen /d

ev/zero

lat_syscall re
ad

lat_syscall stat /d
ev/zero

lat_syscall w
rite

average

-5 %

0 %

5 %

10 %

15 %

20 %

25 %

SL
O

W
D

O
W

N
 O

VE
R

N
O

 P
RO

TE
CT

IO
N

5347 % 1186 % 1247 % 554 %

Instruction cache Memory protection

Figure 5.5: Slowdown of self-modifying code protection when managing
shadow translation tables using memory protection

lat_pagefault

lat_pipe

lat_proc exec

lat_proc fork

lat_select -n
 10 file

lat_select -n
 100 file

lat_sig catch

lat_sig install

lat_syscall fs
tat /d

ev/zero

lat_syscall n
ull

lat_syscall o
pen /d

ev/zero

lat_syscall re
ad

lat_syscall stat /d
ev/zero

lat_syscall w
rite

average

-5 %

0 %

5 %

10 %

15 %

20 %

25 %

SL
O

W
D

O
W

N
 O

VE
R

N
O

 P
RO

TE
CT

IO
N

7167 % 1808 % 1927 % 778 %

Instruction cache Memory protection

Figure 5.6: Slowdown of self-modifying code protection when managing
shadow translation tables as a software TLB

5.6 Conclusions 115

and the caches of the DBT engine. For the memory protection approach,
we suspect that the speedups result from different TLB behaviour due
to write-protecting and splitting guest memory mappings.

On the benchmarks that do not stress thememorymanager, we notice
that thememory protection approach tomanage the DBT engine’s caches
performs slightly slower when caching shadow translation tables. This
slowdown is caused by queuing memory protections on inactive sets of
translation tables.

5.6 Conclusions

We argued that fine-grained tuning of hardware cache configurations is
critical to the performance of the hypervisor. The best cache configura-
tion for a given memory region depends on its usage patterns. We have
evaluated the impact on the allocation pool for shadow translation tables.
We found that, depending on the technique used to manage shadow
translation tables, improper cache tuning can cause a slowdown of 15%
over not enabling the caches. Proper cache tuning, however, can achieve
up to 90% speedup on benchmarks that stress the memory manager.
Our evaluation further showed that for the memory protection approach
to manage the shadow translation tables, no single cache configuration
excels over the others. For the software TLB approach however, we iden-
tified the best approach to be write-through mode for all cache levels,
contrary to the expectations we put forward in Section 5.2.

We showed how a guest’s cache operations cannot always be applied
directly to the hardware caches, because they could cause the hypervisor
to lose data. We briefly explained how our hypervisor virtualises those
operations. The impact of suchmodification is, however, hard to quantify;
we therefore did not evaluate cache operation virtualisation techniques.

Wediscussed twodifferent approaches tomanage shadow translation
tables: the memory protection approach and the software TLB approach.
Our evaluation confirmed that the memory protection approach cannot
handle guest translation table edits efficiently. Furthermore, it showed
that caching different sets of shadow translation tables is a necessity
when context switches are frequent. For the memory protection ap-
proach, the overhead caused by store emulation is rather limited, but the
number of emulated stores which are of interest to the hypervisor turns
out to be far lower than our expectations: even though we protect only
up to 75% more memory than needed, on benchmarks that do not stress

116 Trade-offs in cache and memory management

the memory manager up to 99% of all emulated stores did not provide
useful information to the hypervisor.

Lastly, we described and evaluated two approaches to manage the
caches of the DBT engine: the memory protection approach, and the
software instruction cache approach. We predicted that the software
instruction cache approach would perform poorly, and this was con-
firmed by our evaluation. The memory protection approach is the only
practically feasible approach, and causes a 20% slowdown in the worst
case on our selected lmbench micro-benchmarks.

Chapter 6

Other lessons learnt

A research project starts with several questions and unknowns. Few
of those questions actually get answered within the time frame of one
Ph.D., and several more questions are raised while looking for those
answers. The few answers that yield improvements and positive results
have been detailed in the previous chapters. In this chapter, we take a
deeper look at a few lessons we have learnt during the course of our
research that did not yield easily publishable results. We nevertheless
believe that they are valuable information, should anyone attempt to
pursue a path similar to ours, or to continue where we left off.

One such lesson stems from lack of experience in embedded systems
development, prior to engaging in this project to build a hypervisor from
scratch. This caused us to make several mistakes in the design of the
software. We started with the wrong language and the wrong hardware
abstractions, and had no idea about how to properly test our code.

The second lesson presented in this chapter discusses our insights
into performance optimisation of the translator itself, rather than the
translated code. This was useful in the early days of the hypervisor,
when few binary optimisations were implemented, or few optimisations
in general could be enabled during bug-hunting and testing. Later on,
however, as the run-time performance of our translations improved, and
DBT cache management improved, the performance of the translator
itself was no longer a bottleneck and the impact of our work became
relatively small in comparison to other performance improvements.

118 Other lessons learnt

6.1 Design and implementation

Some of the early choices and goals for the design and implementation
of the hypervisor were not properly thought out. They resulted in a
hypervisor that could only run on a single platform, that could barely
support any kind of testing infrastructure, and in which it was fairly
hard to incorporate third-party code, both by choice and due to imple-
mentation. Eventually all those deficiencies were fixed, but each of them
slowed us down on the way to building a fully functional prototype.

6.1.1 Rapid prototyping vs. marketability

We originally wanted to be able to release the hypervisor as an open
source project under a very permissive license such as the BSD license.
This stopped us from integrating code from popular projects with incom-
patible licenses. For example, it could have been interesting to integrate
drivers from popular open source projects such as U-Boot and the Linux
kernel, but we did not pursue that path due to their usage of the GPL.

The only consequence of our choice to avoid viral licenses was that it
slowed us down in the development of aworking prototype. Recently, we
chose to open up the hypervisor under the GPL anyhow. Lesson learnt:
unless the software developed during a small-scale research project like
ours is highly likely to be marketable, it is most probably not profitable
to care about permissive licensing when building a prototype.

6.1.2 Design for testability

Another remarkably bad choice was to tie our prototype implementation
to a specific hardware platform, the BeagleBoard. We did not have any
experience with other platforms. It was therefore not feasible to design
generic and portable abstractions for all necessary hardware devices. We
should perhaps have invested some of our time in studying the driver
model of the Linux kernel. The ties between our implementation and
the BeagleBoard became problematic as the hypervisor kept growing.

In the beginning, the only testing we did involved running a Linux
guest until it crashed. Those crashes became increasingly harder to
debug. As the amount of code executed prior to the crash kept increasing,
tracing became difficult, and no two traces would match due to the
unpredictable arrival pattern of timer interrupts. We therefore decided

6.1 Design and implementation 119

it was time to set up an environment for unit test automation.
Test automation on hardware is feasible, but hard and expensive.

It requires a reliable JTAG debugger that can interact with the hard-
ware regardless of how poorly the software running on that hardware is
conceived. It should be able to automatically recover from all kinds of
crashes. Unfortunately, all systems and debuggers eventually get stuck,
up to the point where power cycling the target, the debugger, or both
is required. Good hardware debuggers are also quite expensive, and
therefore testing on real hardware would limit our ability to parallelise
our tests. Furthermore, when things go wrong, capturing the state of the
hardware such as memory and device registers is a really slow process.

We were convinced that a software-based test solution was the better
approach. We thus started searching for a suitable simulator. As our
implementation was tied to the BeagleBoard and its OMAP3 processor,
we had very little choice: the only simulator we found was a QEMU fork.
This fork turned out to be far from feature-complete and had problems
with timer interrupt delivery. Furthermore, it ran our hypervisor several
orders of magnitude slower than real hardware. We wasted some time
on patching the simulator, while we should have realised sooner that if
the simulator was unstable, it would never make a good testing platform.

Eventually, we had to rework a significant part of the hypervisor to
remove as many dependencies on the BeagleBoard hardware as possible.
We then ported our hypervisor to ARM’s Versatile Express platform,
so that we could use ARM’s Fast Models-based simulators to automate
our tests. While the investment in the rework and the development of
the test infrastructure was fairly large, it quickly paid off as it revealed
several bugs in the DBT engine and in memory virtualisation that were
often silently causing issues with Linux virtualisation, without leading
to actual crashes.

6.1.3 C++ for embedded bare-metal software

For a long time we believed that C was the implementation language of
choice for our bare-metal hypervisor. The only alternative we considered
was C++, and we judged it as heavyweight and difficult to get working
on a bare-metal target. We thought wewould have to spend considerable
effort to port an implementation of the Standard Template Library (STL)
to our bare-metal target. Over time, most of these concerns turned out
to be based on common myths about the C++ language and the STL.

120 Other lessons learnt

We eventually discovered the truth and switched the implementation
language of our hypervisor to C++11. Our primary motivation was to
avoid code duplication, thereby improving stability and correctness.

Our first misconception was that code written in C++ would have
a larger footprint than functionally equivalent code written in C. Most
valid (ANSI) C code can be compiled by a C++ compiler andwill produce
a binary which is neither better nor worse in terms of size and run-time
performance than the one generated by a C compiler. The same is true
even when using object orientation and other C++-specific features. In
fact, much of the new syntax introduced in C++ easily maps to concepts
that can also be implemented in C with some effort, although often not
in a reusable way. One of the benefits of C++ is to avoid such efforts.

Half way through the development of our hypervisor, we switched
to a C++ compiler. Contrary to our expectations, the main difficulty was
figuring out the right compiler and linker flags to disable a number of
C++ features that required run-time support, such as exceptions and
run-time type information. We initially did not port any implementation
of the STL, as we quickly learnt that C++ compilers do not depend on it.

Eventually, we found ourselves in need of data structures typically
provided by the STL. After adapting our hypervisor’s custom C library
to be more or less standards-compliant, it turned out that much of the
STL—headers only—could easily be reused. The STL enabled us to
quickly prototype new features and tricks in the hypervisor, as we could
finally focus on the specifics of virtualisation rather than wasting time
on the implementation of existing algorithms and data structures.

6.2 Translator performance

In the early days of the development of our hypervisor, few optimisations
had been implemented, both in the DBT engine and in memory virtu-
alisation. Over time, the performance of our hypervisor had gradually
improved from decompressing a Linux kernel overnight, to booting to
the shell in about one minute. During this time, improvements to further
reduce the boot time were still a logical choice. We therefore investigated
which functionality was on the critical path and could be optimised.

One component we identified to be interesting, was the decoder
of the DBT engine. Our decoder was basically an adaptation of the

6.2 Translator performance 121

ARM disassembler of the GNU binutils suite.1,2 This disassembler was
originally written to identify and decode each kind of ARM instruction
individually. We only had to rework its code to flag sensitive instructions
in order to get a functional decoder for our DBT engine. We regarded
its ability to distinguish all other non-sensitive instructions individu-
ally as a bonus, as we imagined one day to implement a full-fledged
interpreter for all instructions. Such an interpreter would enable us to
switch dynamically between interpretation and translation, an idea used
in Varmosa to reduce the memory usage of the DBT engine’s caches by
avoiding to translate cold code [69]. Later on, it became clear that we
would implement only a minimal interpreter and focus on translating as
much code as possible instead. We were left with a huge decoder that
provided far more information than the hypervisor actually needed.

A simple way to optimise the decoder was to remove all unnecessary
information. Due to the way the decoder was structured, however, this
proved to be a daunting and error-prone task. Furthermore, after such
optimisation, the readability of the decoder would be reduced, which
wouldmake finding bugs substantially harder. We therefore investigated
alternative ways to specify and structure our decoder.

6.2.1 Related work

We were definitely not the first to investigate decoders: they are an
essential part of compiler toolchains, binary translation tools, instruction
set simulators and reverse engineering tools. Decoders are closely related
with encoders, as they perform the reverse operation. Encoders and
decoders are therefore often found together in the same tools.

The basic function of an instruction decoder is to match binary in-
struction words (e.g., 0x0100A0E1 for MOV r0,r1) to instruction patterns
(e.g., MOV register), typically based on Boolean functions. For each in-
struction pattern, we can create such a Boolean function that describes
the exact combination of bits required for matching a given instruction
word. There are different approaches with respect to the implementa-
tion of the Boolean functions, the mapping from a match of a Boolean
function to the necessary metadata, etc.

1 See opcodes/arm-dis.c in the GNU binutils source code distribution.
2 GNU binutils is licensed under the GPL. Reusing its decoder happened during

early development of the hypervisor at The University of Manchester, and contradicts
our licensing strategy which was devised later. This decoder is the only piece of GPL
code that has been reused in our hypervisor.

122 Other lessons learnt

It is desirable for both encoders and decoders to be generated from
a single specification of the ISA they target, because encoding and de-
coding instructions involves many bit manipulations, and writing all
such code by hand is error-prone and nearly always results in code du-
plication. In literature, such specification languages are also referred
to as architecture description languages (ADLs). There are a number
of publications that discuss approaches and tools to generate decoders.
Few papers also discuss encoder generation. The most notable works in
this field are the New Jersey machine code (NJMC) toolkit [99, 100] and
language for instruction set architecture (LISA) [32, 128].

The NJMC toolkit can generate encoders and decoders based on
a specification of the ISA written in their own ADL, the specification
language for encoding and decoding (SLED). SLED is an assembly-style
language that on the one hand aims to be close to the kind of instruction
set specifications typically found in ISA manuals, but on the other hand
aims to avoid duplication even within the descriptions by providing
abstractions for recurring (bit) fields. While generating decoders from
such descriptions is fairly straightforward, generating the necessary bit
manipulation code for encoders is more complex, as it involves solving
linear equations with non-linear operators such as bit slicing and sign
extension [98]. Several ISA specifications have already been written in
SLED, but none of them models any of the ARM architectures.

LISA is a more generic ADL than SLED. It aims to bridge the gap
between the hardware design of a processor and its supporting software
tools, such as compilers and simulators. LISA models specify the full
implementation of an ISA, from instruction coding and behaviour down
to the micro-architectural details such as pipeline implementation.

Several other ADLs exist with goals similar to LISA [121]. Some of
them, such as ArchC, come with open source tools, but they only focus
on the user-mode part of an architecture [17, 103]. While they can be
used to generate instruction set simulators, these simulators are only
capable of running user-mode applications. They forward system calls to
the operating system on which the simulator is executed, similar to how
user-mode emulation is implemented in QEMU [23, 24]. Such models
and tools do not provide any benefits for our DBT engine.

The hardware-centric approach of LISA and similar ADLs is only
feasible if software designers can access the necessary hardware models
and the tools to operate on them. To avoid performing error-prone ad hoc
work, all suchmodels should be obtained from hardware vendors, which

6.2 Translator performance 123

is far from obvious due to intellectual property protection. Furthermore,
the necessary tools are often far too expensive for small-scale research.

The NJMC toolkit follows a software-centric approach. Such an
approach has the disadvantage that all models are decoupled from real
hardware, but its specifications do not require the same level of detail as
with hardware-centric approaches. This makes it feasible for software
developers to write and share SLED specifications without depending on
hardware vendors and without restrictive non-disclosure agreements.

TheNJMC toolkit seems to be the only one of its kind. Other software-
centric ADLs and tools exist but they only focus on decoder generation.
One such ADL is the generic decoder specification language (GDSL)
by Sepp et al. [107]. It claims to improve over SLED and the NJMC toolkit
in several ways. Firstly, its syntax would be closer to manufacturer’s
manuals, thereby improving maintainability. This claim is unfounded
because it is subjective. Its tools perform compile-time error checking,
but this is not new. They also claim that their prototype tools can generate
instruction decoders competitive with decoders in existing software.
In the evaluation section of their paper, however, their decoder turns
out to be the worst in terms of performance of all decoders evaluated,
and this anomaly is dismissed with the argument that decoders are
almost never the bottleneck. In a follow-up paper, their evaluation is
limited to a comparison with only one other tool; therefore, it cannot be
treated as an objective evaluation [109]. GDSL also accommodates for
attaching abstract semantics to instructions; while not supported by the
original NJMC toolkit, multiple extensions that tie SLED specifications
to instruction semantics and even to ABI specifications are described
in literature [35, 36, 81, 101]. Lastly, GDSL is only suitable for binary
program analysis, as unlike SLED, it cannot generate encoders.

Compiler infrastructure projects like GCC [53] and LLVM [85] use
their own tools to generate as much as possible of the compiler backend
based on machine specifications. Such machine specifications can also
be regarded as a kind of ADL. The tools from GCC, “machine desc”, and
LLVM, “tblgen”, are tightly coupled with the rest of the infrastructure in
their respective projects. The machine descriptions used in GCC consist
of a blend of architecture descriptions with GCC internals. The LLVM
tblgen tool is designed to generate several different kinds of LLVM-
specific code, and requires different tblgen backends for the actual code
generation. Those backends are often not generic, e.g., there is a specific
backend dedicated to generating code for an ARM instruction decoder.

124 Other lessons learnt

Table 6.1: Encoding of the 32-bit ARM branch instruction (B)

31 30 29 28 27 26 25 24 23 ... 0

CC 1 0 1 0 24-bit immediate

We therefore did not further investigate the GCC and LLVM tools.
The NJMC toolkit is quite complex and we never got it to work with

our hypervisor. In an attempt not to reinvent the wheel, we decided to
look at existing tools that decode and encode binary representations of
instructions, such as assemblers, disassemblers, and simulators. It turns
out that most of these tools still use ad hoc solutions [58]. We therefore
decided to further investigate one of the ideas behind the NJMC toolkit:
generating and optimising decoders using decision diagrams [99].

6.2.2 Boolean function representation

Regardless of the model used to describe instruction decoding, match-
ing of instruction patterns always boils down to evaluating a Boolean
function. These Boolean functions can be represented in multiple ways.

The source code of the decoders found in GNU binutils, QEMU3

and SimpleScalar4 uses a form of (mask, value) pairs to express these
Boolean functions [16, 24]. An instruction word matches an instruction
pattern if and only if the bitwise conjunction of the instruction word and
the mask yields the value. Even though (mask, value) pairs have limited
expressibility, they are sufficient for most instruction patterns.

Example The encoding of the 32-bit ARM B instruction, a simple
branch, is shown in Table 6.1 [12]. Constructing a (mask, value) pair
for this instruction is trivial: the mask must contain ones for all the
constant bits and zeros for the variable bits; the value contains only
the constant bits. The (mask, value) pair for the B instruction is then
(0x0F000000, 0x0A000000).

In some cases, instructions impose constraints on their variable bits.
For example, two bits may not be allowed to be set at the same time. In
other cases, the DBT engine will need to distinguish between different

3 See target-arm/translate.c in the QEMU source code distribution.
4 See the target-arm directory in the SimpleScalar/ARM source code distribution.

6.2 Translator performance 125

uses of the same instruction, such as whether or not the PC is used and
how the PC is used. Not all of these constraints can be expressed in a sin-
gle (mask, value) pair. An example of such a constraint is the encoding
of the condition code (CC) field. This field does not allow all bits to be set
at the same time, since 32-bit ARM instructions of which the four most
significant bits (MSBs) are all set belong to a category of unconditional
instructions which have entirely different semantics [13]. We therefore
need to ensure that we first match unconditional instructions, using one
or more separate (mask, value) pairs, and only then we can match all
other instructions. Hence, the limited expressibility of (mask, value)
pairs puts ordering constraints on their evaluation.

In hardware, Boolean functions are typically implemented using
multiplexers and look-up tables. The CAD software used to synthesise
such structuresmakes use of decision trees, in the form of binary decision
diagrams (BDDs), to represent Boolean functions [26, 50, 90]. Similar
techniques can be used in software. According to Ramsey and Fernández,
the NJMC toolkit internally uses BDD optimisation techniques [99].

A BDD represents a Boolean function as a rooted directed acyclic
graph (DAG). All internal nodes are called decision nodes, and they are
labelled with exactly one Boolean variable xi. There are at most two dis-
tinct external nodes: logic one and logic zero. The edge from an internal
node with label xi to one of its children represents the assignment of xi

to either logic one or logic zero. The edge that represents the assignment
to logic one is called the then edge; the other edge is called the else edge.

BDDs can be constructed from any Boolean function by recursively
applying Boole’s expansion theorem. Let B = {0, 1} and let f : Bn → B
be a Boolean function of n ∈ N variables. By assigning a value to one
variable xi, we can split f into “then" and “else" Shannon cofactors
fT

i , fE
i : Bn−1 → B. The function f then always equals one of these two

cofactors, depending on the value of xi:

f (x1, . . . , xn) = xif
T
i (x1, . . . , xi−1, xi+1, . . . , xn)

+xif
E
i (x1, . . . , xi−1, xi+1, . . . , xn)

This expansion can also be represented in a graph, as shown in
Figure 6.1. Typically, the “then” edge is represented by a solid line and
the “else” edge is represented by a dashed or dotted line. A BDD can be
obtained by recursively splitting all remaining functions in the external
nodes, until all external nodes are either logic one or logic zero.

126 Other lessons learnt

fE

i
fT

i

xi

Figure 6.1: First step in BDD construction: one expansion of f

Example The 32-bit ARM branch instruction (B), of which the encoding
is shown in Table 6.1, is matched by the following Boolean function:

f(x31, ..., x0) = (x31x30x29x28)x27x26x25x24

We have assigned the MSB to x31. Figure 6.2 shows an equivalent BDD,
constructed by recursively applying Boole’s expansion theorem for the
variables x31 down to x24.

6.2.3 Instruction pattern matching

Identifying a given instruction word with one of many instruction pat-
terns requires evaluating one or more Boolean functions. A simple way
to implement a decoder is thus to try such Boolean functions one after
the other until a match is found. For the case where the Boolean func-
tions are represented by (mask, value) pairs, this can be implemented
by linearly searching a list of such pairs until the given instruction word
matches one of those pairs, or by using an equivalent series of conditional
statements, each testing the given instruction against one (mask, value)
pair. When BDDs are used to represent Boolean functions, we can either
evaluate each BDD separately on the given instruction, similar to testing
(mask, value) pairs, or we can join all Boolean functions together in one
big DAG that directly maps instruction words to instruction patterns.

For architectureswithmany different instructions, using linear search
in the decoder of a hypervisor or emulator is not desirable. Most de-
coders implemented in practice are hybrids. GNU binutils identifies
instructions with (mask, value) pairs. The pairs are not stored in a single
list, however. They are split in multiple lists according to an instruction
category to speed up decoding. The ARM architecture manual defines
six such categories, which can all be easily identified with a few known
fixed bits [13]. Instruction category matching in GNU bintuils is also
implemented using linear search through a list with (mask, value) pairs.

6.2 Translator performance 127

x30

x31

10

x29

x28

x25

x24

x27

x26

Figure 6.2: BDD to match 32-bit ARM branch instructions

Decoders based on linear search can only be optimised by introducing
more hierarchy, because the limited expressibility of (mask, value) pairs
introduces ordering constraints. These ordering constraints prevent us
from reordering the entries in descending probability of occurrence,
which could otherwise be used to improve the average performance of
the decoder. The decoders in QEMU and SimpleScalar contain more
hierarchy than the decoder in GNU binutils. They also implement all
tests using conditional statements rather than lists. Unfortunately, since
both decoders are hand-written, the combination of the added hierarchy
and the intermingling of code with data renders them unreadable.

To completely avoid the cost of linear search, the decoder can bemade
“fully hierarchical” by implementing the matching process as searching
a single DAG. Such a DAG can be constructed by combining the Boolean
functions that match single instruction patterns into one large algebraic
decision diagram (ADD). An ADD is similar to a BDD, but it represents
a function that outputs a real value instead of logic one or logic zero.

128 Other lessons learnt

The outcome of the ADD can be chosen so that it uniquely identifies the
matched instruction pattern. Because of the inherent properties of BDDs
and ADDs, the maximum depth of the search is limited to the bit-width
of the instruction.

Example There are two instructions to load a byte from memory into
a register in the 32-bit ARM ISA: one performs a load with the current
privilege level (LDRB) and the other one performs the load as if executed
from the unprivileged mode (LDRBT). The Boolean functions for their en-
codings only show subtle differences; therefore the ADD constructed by
joining the BDDs of these instructions together, shown in Figure 6.3, sim-
plifies to a small graph which is more efficient for instruction decoding
than testing each instruction-specific BDD for a match individually.

6.2.4 Implementation and results

As shown in the previous sections, there are several ways to implement
an instruction decoder and encoder. Different parts of our DBT engine
require different pieces of information about the encoding and decoding
of instructions. Firstly, the translator requires a coarse-grained decoder to
quickly decide which action to undertake for each instruction word of
the guest kernel. This action can indicate that the instruction should be
translated into an equivalent sequence to avoid exposure of the modified
PC, it can indicate that the instruction should be replaced by an end-of-
block hypercall, or that the instruction is safe to copy as-is. Only after
this action has been decided, the different fields of the instruction may
be queried by specialised translation and interpretation functions. This
requires instruction-specific encoders and fine-grained decoders.

We designed our DBT engine to support multiple, independent
coarse-grained decoders to enable performance comparisons between
the different decoders. Fine-grained decoding and encoding is taken
care of by a separate part of the hypervisor, which only has a single
implementation, implemented from scratch, without the help of external
tools and independently of the coarse-grained decoders.

We chose to adopt the ARM disassembler of GNU binutils as our first
decoder, mainly because it is easily readable, and it has clear connections
with the instruction definitions in the ARM reference manual. This was
important, because the decoder had to be adapted to the specific needs of
our DBT engine. Pruning unused instruction patterns from this decoder

6.2 Translator performance 129

x30

x31

LDRBTLDRB

0

x29

x28

x25

x24

x27

x26

x21

x20

x4

x22

Figure 6.3: ADD to match 32-bit ARM LDRB and LDRBT instructions

130 Other lessons learnt

was not a straightforward task: due to ordering dependencies in its lists
of (mask, value) pairs, some patterns had to be left in place, and others
had to be merged manually. As stated earlier, the resulting decoder was
much harder to read and maintain than the original.

Even though we did not get the NJMC toolkit to work with our
hypervisor, we still wanted to try to optimise the decoder automatically
starting from a readable specification. We therefore created a custom tool
that starts from the decoder specified as lists of (mask, value) pairs and
creates one large ADD for all instructions combined. Our tool then uses
decision diagram reduction techniques based on variable reordering
to create a minimal decoder. Because the problem of finding the best
variable ordering is NP-hard, our tool uses heuristics implemented in
the CUDD library [114]. This yielded a decoder which, at the time,
significantly improved the boot time of a Linux guest on top of our
hypervisor. At the same time, the specification was as readable as before.

As the hypervisor evolved and changes to the decoderwere becoming
rare, we eventually fully optimised our original binutils-based decoder
by hand. The resulting decoder turned out to be more compact than the
automatically optimised decoder, resulting in better cache behaviour.
Even though we have tried to further tune the automatically generated
decoder, the performance of both decoders is mostly equivalent in the
current version of the hypervisor. Furthermore, the translator itself is
no longer the biggest performance bottleneck in the hypervisor. We
therefore stopped investigating this path.

Chapter 7

Conclusions and future work

This chapter summarises our conclusions of the previous chapters, and
relates those conclusions to our original research question: which tech-
nological challenges must be solved to enable the wide range of use
cases we outlined for DBT on the ARMv7-A architecture? While we have
conquered the basics, our work, not unlike the typical doctoral research
project, raises more questions than can be answered in one dissertation.
We therefore also provide our thoughts on future research opportunities.

132 Conclusions and future work

7.1 Conclusions

System virtualisation has already proven itself to be useful in many sce-
narios, both in data centres and for desktop computers. Recent advances
in embedded computer hardware and in use cases for embedded sys-
tems have sparked interests in virtualisation technology for embedded
systems. The existing solutions for data centres and desktop computers
can, however, not be readily applied to embedded systems, because of
differences in requirements, use cases, and computer architecture.

We therefore researched the challenges involved in fully virtualis-
ing an embedded architecture. We chose the ARMv7-A architecture,
because ARM is the leading architecture in the embedded and mobile
market. While multiple hypervisors for the ARM architecture had al-
ready been developed before the start of our research, the majority of
them used paravirtualisation techniques due to architectural limitations.
Such techniques are, however, known to have several drawbacks. During
the course of our research, ARM extended its ARMv7-A architecture
with hardware support for full virtualisation. Hypervisors that use these
extensions do not suffer from the disadvantages of paravirtualisation,
but cannot run on the vast majority of ARM processors in use today.

We proposed to fully virtualise the ARMv7-A architecture using
software-only techniques such as DBT and shadow translation tables.
Even though such techniques come at a price of software implementation
complexity and increased memory footprint, they enable a wide range
of use cases beyond the capabilities of hardware extensions, such as
optimisations across the border between operating system kernels and
applications, emulation and optimisation of legacy software stacks, full
system instrumentation and testing, and even load balancing in hetero-
geneous multi-core systems through cross-architecture virtualisation.

We started our research by identifying the architectural limitations to
full system virtualisation on ARMv7-A. We used Popek and Goldberg’s
classic virtualisability theory as the basis for our analysis. While their
theory remains useful today for determining whether or not an archi-
tecture is suitable for the construction of efficient hypervisors for full
virtualisation, their model and definitions are dated, and do not easily
map tomodern embedded systems architectures and use cases. We there-
fore extended their model with paged virtual memory by introducing
the concept of an address map, and we derived a new formal constraint
for the correctness of such maps. We then studied the effect of IO and

7.1 Conclusions 133

events, and updated their model, definitions and results accordingly.
Our updated theory can be applied to analyse modern RISC archi-

tectures, as we have demonstrated with our analysis of ARMv7-A. We
identified several problematic instructions that make the ARMv7-A ar-
chitecture fail the strict requirements for classically virtualisability. We
then showed that the architecture is suitable for Popek and Goldberg’s
hybrid virtualisation, and we argued that DBT-based virtualisation can
be regarded as an improvement over their original hybrid virtualisation
idea. We then showed how our updated model can be used to identify
all instructions that are problematic for DBT-based virtualisation.

We used our knowledge on the architectural limitations of ARMv7-A
to build the STAR hypervisor, the first software-only hypervisor for the
ARMv7-A architecture. The STAR hypervisor is a bare-metal hypervisor
that fully virtualisesARMv7-A on top of anARMv7-A-based platform. It
runs unmodified guest operating systems, decoupled from the hardware
through DBT, and uses shadow translation tables to virtualise the MMU.

We analysed existing techniques for user-space DBT on ARM, and
argued that they are not directly suitable for full system virtualisation:
in user-space, DBT engines often take shortcuts which are only valid for
well-behaving applications, where there is no strict requirement to isolate
the DBT engine from the application. In full system virtualisation, DBT
and MMU virtualisation must be used together to enforce this isolation.
Furthermore, kernels often contain handwritten assembly with special
system instructions, which require special care in the DBT engine.

We studied how to address the challenges specific to using DBT for
full system virtualisation. We started with a fundamental problem in the
translator: translations often require an extra register, but such register
may not always be readily available. Our translator therefore needs to
spill and restore registers to some location in main memory or in other
hardware that is accessible to the guest. While solving this problem is
trivial for process virtualisation, the solution is more involved for system
virtualisation, as the hypervisor must write-protect as much of its data
structures from the guest as possible, and the guest’s data structures
cannot be relied upon. We proposed new solutions for spilling and
restoring registers, i.e., spilling to coprocessor registers and spilling using
lightweight traps. Our evaluation showed that the best technique to use
depends on the usage pattern. When occasionally spilling and restoring
one register at a time, coprocessor spilling performswell. When spill and
restore operations are frequent, or when multiple register values have to

134 Conclusions and future work

be spilled and restored together, however, coprocessor access latencies
cause severe slowdowns and lightweight traps are to be preferred.

Solving the spilling problem yielded a naive but functional DBT en-
gine suitable for full system virtualisation. The translated code executes
far slower than natively, however, as all control flow instructions and all
system instructions are handled by traps to the interpreter. Wemeasured
which traps are prevalent in typical interactions between virtualised ker-
nels and their user applications. As was to be expected, the majority of
the traps can be attributed to control flow instructions, and eliminating
these traps yields significant speedups. We then proposed new binary
optimisations specific to ARMv7-A system virtualisation that further
reduced the remaining overhead by 51% on average. In a test with real
applications, we found that our naive DBT engine causes the applica-
tions to run up to 5 times slower than native. The optimised version of
our DBT engine limits the perceived slowdown to 39% in the worst case.

We continued our research with cache management and memory
virtualisation. Cache management comprises of both hardware and
software cache management. Our hypervisor makes extensive use of
software caches both in the DBT engine and in MMU virtualisation.
Those software caches must be kept up to date with the guests’ internal
state. The caches of the DBT engine must be updated whenever the guest
unmaps, remaps, or modifies code that has already been translated.
Similarly, the shadow translation tables must be updated whenever
the guest modifies its translation tables, and in particular when those
modifications affect descriptors that have already been shadow mapped.

We studied the influences of fine-grained hardware cache tuning on
the run-time virtualisation cost. We have shown that such tuning can
have a big influence on the run-time performance of our hypervisor. The
best cache configuration for a given memory region depends on its usage
patterns. We evaluated the impact on the allocation pool for shadow
translation tables. We found that, on micro-benchmarks, enabling the
caches can cause performance decreases of up to 15% with improper
tuning, and increases of up to 90% with the best configurations.

We showed that a guest’s cache operations cannot always be applied
directly to the hardware caches, because they can cause the hypervisor to
lose data. However, they do give us valuable information which can be
used to manage our hypervisor’s software caches. Alternatively, those
software caches can also be kept up to date through clever memory
management techniques. We discuss how each of these approaches can

7.2 Future work 135

be used for shadow translation table management and DBT cache man-
agement. We then evaluate both approaches for each kind of software
cache. We found that, due to the way caches and TLBs are organised on
ARMv7-A, shadow translation tables are best managed by relying on a
guest’s TLB maintenance operations. The caches of our DBT engine are,
however, better managed through memory protection techniques.

We have designed and implemented a proof-of-concept virtualisation
platform for the ARMv7-A architecture to study and evaluate all of the
above mentioned techniques. We have demonstrated that using DBT
for CPU virtualisation results in acceptable levels of run-time overhead
when properly optimised for the target architecture. We have shown
how software-only MMU virtualisation can work on ARM, and what the
best practices are to manage the shadow translation tables and the caches
of the DBT engine. We have hence solved the fundamental challenges to
enable software-only virtualisation on ARMv7-A. In addition, we have
shared some valuable lessons that we have learnt during the design and
optimisation of our hypervisor.

7.2 Future work

Stepping back to the larger picture of embedded virtualisation and the
uses cases of DBT, we can only conclude that the scientific challenges
addressed by our research were a small but necessary step towards
software-only virtualisation of ARMv7-A. There is still some interesting
research left before a software-only hypervisor like ours can support the
use cases we detailed in the introduction.

7.2.1 Scalability

Our research mainly focused on virtualising one guest on one processor
core. This is reflected in both our extended model for classic virtualis-
ability and in our hypervisor. While our model can be used to determine
whether modern RISC architectures are suitable for the construction of
efficient execute-to-trap hypervisors, much like the original, it does not
lead to any conclusions on whether or not an architecture can support
more than one guest. For example, routing of asynchronous events to
hypervisors and guests may prove to be difficult if such events have
priorities, as hypervisors have to make sure lower-priority guests cannot
block higher-priority guests. Another issue that remains untouched by

136 Conclusions and future work

our model is multi-threading of privileged code, which may happen on
multi-processor, multi-core and multi-threading architectures. It will be
interesting to research in which parts of our hypervisor concurrency is
to be avoided, where it can be useful, and how it should be dealt with. In
the most simple scenario, all work for a particular guest is performed on
the same hardware processor, core or thread that executes that guest’s
code. More interesting scenarios could offload predictive translation
and optimisation work to a different, idle core for a performance boost.

In our hypervisor, we have not studied any interactions between
guests. We never tried, because we had several interesting research
questions to solve just to virtualise a single guest. The main effort in
adapting our hypervisor to run multiple guests on multiple processor
cores involves implementation work. It will nevertheless be interesting
to evaluate how those guests influence each other, both in terms of
processor scheduling and in terms of cache and TLB behaviour.

7.2.2 DBT engine and memory manager

There is still room for improvement even for virtualisation of a single
guest. Our DBT engine can be further optimised, as the translator mostly
operates on single instructions. For specific instruction patterns such
as sequences of unprivileged loads and stores, considering multiple
instructions at a time can be used to avoid unnecessary, potentially ex-
pensive, operations. Similar optimisation opportunities exist with other
instructions, but we expect the impact on run-time performance to be of
little significance. Furthermore, our translator currently does not handle
all kinds of indirect branches in the most efficient way. We have only
implemented a shadow stack to handle indirect function returns, and
all shadow stack misses and other indirect branches trap to the inter-
preter. For some of the micro-benchmarks studied in Chapter 4, up to
20% of all control flow instructions executed in the kernel were indirect
branches not related to a function return. Implementing a generic binary
translation scheme for indirect branches will hence further improve the
performance of the translated code. The research question here is: which
existing technique, if any, is best fit for the remaining indirect branches?

Another opportunity for further research of the single guest case lies
within the memory manager. Although some of the micro-benchmarks
we ran tested the overhead of context switches, it will be interesting
to investigate how well the system will scale when running several ap-
plications concurrently on a full-fledged Linux distribution. Such an

7.2 Future work 137

evaluation will show how many different sets of shadow translation
tables the hypervisor should be able to cache, how to tune the depth of
the protection queues to protect against self-modifying code when using
the software TLB approach to manage shadow translation tables, and to
better understand how the run-time overhead incurred by the memory
manager scales when changing all of those parameters.

During the development of the hypervisor, we have almost exclu-
sively focused on virtualising the Linux kernel. Linux is widely used in
embedded systems and uses many interesting features of the ARMv7-A
architecture. Virtualising different guest systems mostly boils down to
extending the virtual platform, rather than requiring changes to fun-
damental techniques. We have seen, however, that certain choices in
MMU virtualisation, such as the domain virtualisation mechanism, may
depend on the run-time behaviour of the guest. It could therefore be
useful to study which domain virtualisation techniques are practically
useful, depending on the guest operating system and its applications.

7.2.3 Combining DBT with hardware virtualisation

The most interesting work is perhaps realising one of the many prac-
tical use cases that DBT offers, such as leveraging the hypervisor for
full system debugging, instrumentation and testing. In this context, one
could study whether DBT can be combined with hardware virtualisa-
tion extensions, by dynamically switching a guest between hardware
virtualisation and software virtualisation. Such switching is useful for
debugging, to run a guest at native speed up to an interesting point for
debugging, and then switching to software techniques that maximise
the possibilities to inspect and modify the state of the guest.

The main difficulty in switching from hardware CPU virtualisation
to using the DBT engine lies in properly capturing all of the guest’s vir-
tual CPU state into the hypervisor’s guest context. The DBT engine can
then be enabled as if switching from user space to kernel space in the
current implementation. Likewise, for memory virtualisation, the MMU
configuration must be captured, before we can construct shadow transla-
tion tables. Such tables can be constructed from scratch when switching
from hardware virtualisation to software virtualisation, similar to how
a guest’s translation table switch is currently handled. The shadow
translation tables will be populated lazily, as needed. This approach
to switching CPU and MMU virtualisation requires the hypervisor’s
software caches to be flushed upon every switch.

138 Conclusions and future work

Device and IO virtualisation should be treated differently, as for
most devices it is very hard, if not unfeasible, to fully save and restore
their state. Therefore, device virtualisation should not be switched on
and off dynamically. Guests can be granted unrestricted access to non-
interesting devices; accesses to other devices should pass through our
load/store emulation layer. Several interesting questions remain:

• Is the overhead of switching between software and hardware vir-
tualisation acceptable for debugging and testing?

• Are there better solutions that can avoid clearing the hypervisor’s
software caches on every switch?

• How do we initiate the switch between software and hardware
virtualisation?

• Canwe combine hardware CPU virtualisation with softwareMMU
virtualisation to quickly detect cache and TLB management bugs
in a guest?

List of tables

1.1 Overview of ARM hypervisors 8

2.1 Sensitive and privileged 32-bit ARM instructions 31
2.2 Sensitive and privileged Thumb-2 instructions 34

3.1 Control flow and sensitive instructions in the 32-bit ARM
instruction set . 56

3.2 Example translations of PC-sensitive instructions 61

5.1 Difference in slowdown over native versus guest context
switches . 112

6.1 Encoding of the 32-bit ARM branch instruction (B) 124

140 LIST OF TABLES

List of figures

1.1 Classification of hypervisors according to Goldberg and
Gallard . 5

1.2 Classification of hypervisors by virtualisation technique . 7

3.1 Native vs. virtualised privilege levels 42
3.2 The Texas Instruments OMAP3-based BeagleBoard . . . 44
3.3 Overview of the functional blocks of the hypervisor run-

time . 45
3.4 Paged virtual memory mapping with the VMSAv7 MMU 48
3.5 Overview of virtual addressing using shadow translation

tables . 50
3.6 The basic operational cycle of our DBT engine 54

4.1 Frequency of traps to the interpreter in the naive version
of our hypervisor by instruction class 72

4.2 Frequency of traps caused by control flow instructions . 75
4.3 Overhead of register spilling techniques over a fully

writable translation store, using at most one register . . . 83
4.4 Overhead of register spilling techniques over a fully

writable translation store, using at most two registers . . 83
4.5 Slowdown over native for the different optimisations of

the DBT engine . 86
4.6 Virtualised execution time of selected mibench bench-

marks, relative to native execution time 88

5.1 Impact of different cache configurations; using memory
protection to manage shadow translation tables 109

142 LIST OF FIGURES

5.2 Impact of different cache configurations; treating shadow
translation tables as a software TLB 109

5.3 Slowdown over native for the different shadow translation
table management approaches 111

5.4 Distribution of memory traps when using memory pro-
tection to manage shadow translation tables 111

5.5 Slowdown of self-modifying code protection when man-
aging shadow translation tables using memory protection 114

5.6 Slowdown of self-modifying code protection when man-
aging shadow translation tables as a software TLB 114

6.1 First step in BDD construction: one expansion of f 126
6.2 BDD to match 32-bit ARM branch instructions 127
6.3 ADD to match 32-bit ARM LDRB and LDRBT instructions . 129

List of abbreviations

ABI application binary interface

ADD algebraic decision diagram

ADL architecture description language

ALU arithmetic logic unit

ANSI American National Standards Institute

ASID address space identifier

BDD binary decision diagram

BSD Berkeley Software Distribution

CC condition code

CPU central processing unit

CTO chief technology officer

DAG directed acyclic graph

DBT dynamic binary translation

DSP digital signal processor

EABI embedded application binary interface

FPU floating-point unit

GCC GNU Compiler Collection

144 LIST OF ABBREVIATIONS

GDSL generic decoder specification language

GOT global offset table

GPA guest physical address

GPL (GNU) General Public License

GVA guest virtual address

HPA host physical address

HVA hypervisor virtual address

ID identifier

IO input/output

ISA instruction set architecture

ITRI Industrial Technology Research Institute of
Taiwan

JTAG Joint Test Action Group

KVM Kernel-based Virtual Machine

LISA language for instruction set architecture

LPA large physical address

LPAE large physical address extension

MIT Massachusetts Institute of Technology

MMIO memory-mapped input / output

MMU memory management unit

MSB most significant bit

NJMC New Jersey machine code

PC program counter

LIST OF ABBREVIATIONS 145

PMIO port-mapped input / output

RAM random access memory

RISC reduced instruction set computer

SBT static binary translation

SDT software dynamic translation

SLED specification language for encoding and de-
coding

SoC system-on-chip

STAR software translation for ARM

STL Standard Template Library

TCM tightly coupled memory

ThumbEE Thumb execution environment

TLB translation lookaside buffer

VM virtual machine

VMSA virtual memory system architecture

146 LIST OF ABBREVIATIONS

List of symbols

Γ Set of IO states (Dong and Hao [48])

Σ Set of machine states

E Set of all asynchronous event functions

I Set of all instruction functions

MP Set of equally privileged processor modes

P Set of all physical addresses

S Set of all possible machine state mapping functions

V Set of all virtual addresses

VA Set of virtual addresses mapped by address map A

X Set of all access permission specifiers

A Memory map

C Configuration registers

DM MMIO device state

DP PMIO device state

E Contents of physicalmemory (Popek andGoldberg [97]); contents
of the physical address space excluding device registers (revised)

G General-purpose registers

m Processor mode

pc Program counter

r Relocation-bounds register

148 LIST OF SYMBOLS

S Machine state

TA Translation function of address map A

e Asynchronous event function

i Instruction function

mU The unprivileged processor mode

p Physical address

v Virtual address

x Access permission specifier

Bibliography

[1] Robin J. Adair, Richard U. Bayles, Les W. Comeau, and Robert J. Creasy.
A virtual machine system for the 360/40. Technical Report 320-2007, In-
ternational Business Machines Corporation, Cambridge Scientific Center,
1966.

[2] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th international
conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS-XII, pages 2–13, New York, NY, USA, 2006. ACM. ISBN
1-59593-451-0.

[3] AMD. AMD64 Virtualization Codenamed “Pacifica” Technology – Secure
Virtual Machine Reference Manual, 3.01 edition, May 2005.

[4] Zach Amsden, Daniel Arai, Daniel Hecht, Anne Holler, and Pratap Sub-
rahmanyam. VMI: an interface for paravirtualization. In Proceedings of
the Linux Symposium, volume 2 of 2006 Linux Symposium, pages 371–386,
July 2006.

[5] Apple Inc. Rosetta. The most amazing software you’ll never see,
2011. URL https://web.archive.org/web/20110107211041/http://
www.apple.com/rosetta.

[6] ARM Architecture Group. ARM® Generic Timer Specification. ARM Lim-
ited, PRD03-GENC-009660 9.0x edition, October 2010.

[7] ARM Architecture Group. Large Physical Address Extensions Specification.
ARM Limited, PRD03-GENC-008469 15.0x edition, October 2010.

[8] ARM Architecture Group. ARM® Performance Monitoring Architecture
version 2 Virtualization Extensions. ARM Limited, DSA09-PRDC-010447
6.0x edition, October 2010.

[9] ARM Architecture Group. Virtualization Extensions Architecture Specifica-
tion. ARM Limited, PRD03-GENC-008353 14.0x edition, October 2010.

https://web.archive.org/web/20110107211041/http://www.apple.com/rosetta
https://web.archive.org/web/20110107211041/http://www.apple.com/rosetta

150 BIBLIOGRAPHY

[10] ARM Limited. Cortex™-A8 Technical Reference Manual – Revision: r3p2.
ARM Limited, ARM DDI 0344K (ID060510) edition, May 2010.

[11] ARM Limited. big.LITTLE processing, 2011. URL http://www.arm.com/
products/processors/technologies/bigLITTLEprocessing.php.

[12] ARM Limited. ARM® Architecture Reference Manual: ARM®v7-A and
ARM®v7-R edition – errata markup. ARM Limited, ARM DDI 0406B_-
errata_2011_Q3 (ID120611) edition, December 2011.

[13] ARM Limited. ARM® Architecture Reference Manual: ARMv7-A and
ARMv7-R edition. ARM Limited, ARM DDI 0406C.c (ID051414) edition,
May 2014.

[14] François Armand and Michel Gien. A practical look at micro-kernels
and virtual machine monitors. In 6th IEEE Consumer Communications and
Networking Conference, CCNC 2009, pages 1–7, Piscataway, New Jersey,
USA, January 2009. IEEE.

[15] François Armand, Gilles Muller, Julia Laetitia Lawall, and Jean Berniolles.
Automating the port of Linux to the VirtualLogix hypervisor using seman-
tic patches. In 4th European Congress ERTS Embedded Real Time Software,
ERTS 2008, pages 1–7, January 2008.

[16] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: an infrastructure
for computer system modeling. Computer, 35:59–67, February 2002. ISSN
0018-9162.

[17] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo,
Cristiano Araujo, and Edna Barros. The ArchC architecture description
language and tools. International Journal of Parallel Programming, 33(5):
453–484, 2005. ISSN 0885-7458.

[18] B-Labs Ltd. Codezero project overview, 2012. URL https:
//web.archive.org/web/20120101123359/http://www.l4dev.org/
codezero_overview.

[19] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Transparent
dynamic optimization: the design and implementation of Dynamo. Tech-
nical Report HPL-1999-78, Hewlett Packard Laboratories, June 1999.

[20] Barebox. The Barebox bootloader. URL http://www.barebox.org/.

[21] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and AndrewWarfield. Xen and the art
of virtualization. SIGOPS Operating Systems Review, 37:164–177, October
2003. ISSN 0163-5980.

http://www.arm.com/products/processors/technologies/bigLITTLEprocessing.php
http://www.arm.com/products/processors/technologies/bigLITTLEprocessing.php
https://web.archive.org/web/20120101123359/http://www.l4dev.org/codezero_overview
https://web.archive.org/web/20120101123359/http://www.l4dev.org/codezero_overview
https://web.archive.org/web/20120101123359/http://www.l4dev.org/codezero_overview
http://www.barebox.org/

BIBLIOGRAPHY 151

[22] Ken Barr, Prashanth Bungale, Stephen Deasy, Viktor Gyuris, Perry Hung,
Craig Newell, Harvey Tuch, and Bruno Zoppis. The VMware mobile
virtualization platform: is that a hypervisor in your pocket? SIGOPS
Operating Systems Review, 44:124–135, December 2010. ISSN 0163-5980.

[23] Marcus Bartholomeu, Sandro Rigo, Rodolfo Azevedo, and Guido Araujo.
Emulating operating system calls in retargetable ISA simulators. Techni-
cal Report IC-03-029, Universidade Estadual de Campinas, Instituto de
Computação, São Paulo, Brazil, December 2003.

[24] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Pro-
ceedings of the USENIX 2005 Annual Technical Conference, FREENIX Track,
USENIX ’05, pages 41–46, Berkeley, CA, USA, 2005. USENIX Association.

[25] Jon Brodkin. VMware acquires Trango, debuts mobile hypervisor.
Network World, November 2008. URL http://www.networkworld.com/
article/2269455/smartphones/vmware-acquires-trango--debuts-
mobile-hypervisor.html.

[26] Randal E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Transactions on Computers, 35:677–691, August 1986. ISSN
0018-9340.

[27] Prashanth Bungale. ARM virtualization: CPU &MMU issues, December
2010. URL https://labs.vmware.com/download/68.

[28] Prashanth P. Bungale and Chi-Keung Luk. PinOS: a programmable
framework for whole-system dynamic instrumentation. In Proceedings of
the 3rd international conference on Virtual Execution Environments, VEE ’07,
pages 137–147, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-630-1.

[29] Jeffrey P. Buzen and Ugo O. Gagliardi. The evolution of virtual machine
architecture. In Proceedings of the June 4-8, 1973, National Computer Confer-
ence and Exposition, AFIPS ’73, pages 291–299, New York, NY, USA, 1973.
ACM.

[30] Martin Campbell-Kelly and Daniel D. Garcia-Swartz. Economic perspec-
tives on the history of the computer time-sharing industry, 1965–1985.
IEEE Annals of the History of Computing, 30(1):16–36, 2008. ISSN 1058-6180.

[31] Markos Chandras. ARM virtualization. Master’s thesis, The University
of Manchester, School of Computer Science, August 2011.

[32] Anupam Chattopadhyay, Heinrich Meyr, and Rainer Leupers. LISA: A
Uniform ADL for Embedded Processor Modelling, Implementation and Software
Toolsuite Generation, chapter 5, pages 95–130. Morgan Kaufmann, June
2008. ISBN 978-0-12374-287-2.

http://www.networkworld.com/article/2269455/smartphones/vmware-acquires-trango--debuts-mobile-hypervisor.html
http://www.networkworld.com/article/2269455/smartphones/vmware-acquires-trango--debuts-mobile-hypervisor.html
http://www.networkworld.com/article/2269455/smartphones/vmware-acquires-trango--debuts-mobile-hypervisor.html
https://labs.vmware.com/download/68

152 BIBLIOGRAPHY

[33] Jiunn-Yeu Chen, Bor-Yeh Shen, Quan-Huei Ou, Wuu Yang, and Wei-
ChungHsu. Effective code discovery for arm/thumbmixed isa binaries in
a static binary translator. In Proceedings of the 2013 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, CASES ’13,
pages 19:1–19:10, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-
4799-1400-5.

[34] Cristina Cifuentes and Vishv M. Malhotra. Binary translation: static,
dynamic, retargetable? In Proceedings of the 1996 International Conference
on Software Maintenance, ICSM ’96, pages 340–349. IEEE, November 1996.

[35] Cristina Cifuentes and Shane Sendall. Specifying the semantics of ma-
chine instructions. Technical Report 422, University of Queensland, De-
partment of Computer Science and Electrical Engineering, Brisbane, Aus-
tralia, December 1997.

[36] Cristina Cifuentes, MikeVan Emmerik, NormanRamsey, and Brian Lewis.
Experience in the design, implementation and use of a retargetable static
binary translation framework. Technical report, Sun Microsystems, Inc.,
Mountain View, CA, USA, 2002.

[37] Gerald Coley. BeagleBoard System Reference Manual Revision C4. Beagle-
Board.org, BB_SRM Revision 0.0 edition, December 2009.

[38] Fernando J. Corbató and Victor A. Vyssotsky. Introduction and overview
of the multics system. In Proceedings of the November 30–December 1, 1965,
Fall Joint Computer Conference, Part I, AFIPS ’65 (Fall, part I), pages 185–196,
New York, NY, USA, 1965. ACM.

[39] CORDIS. Report on the EC Workshop on Virtualisation, Consul-
tation Workshop “Virtualisation in Computing”, September 2009.
URL ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/computing/
report-on-the-ec-workshop-on-virtualisation_en.pdf.

[40] Christoffer Dall and Jason Nieh. KVM for ARM. In Proceedings of the 12th
Annual Linux Symposium, pages 45–56, July 2010.

[41] Christoffer Dall and Jason Nieh. KVM/ARM: Experiences building
the Linux ARM hypervisor. Technical Report CUCS-010-13, Columbia
University, Department of Computer Science, April 2013.

[42] Christoffer Dall and Jason Nieh. KVM/ARM: The design and implemen-
tation of the Linux ARM hypervisor. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’14, pages 333–348, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2305-5.

[43] Henri De Veene. Virtualisatie van android. Master’s thesis, Ghent Uni-
versity, Faculty of Engineering and Architecture, June 2012.

ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/computing/report-on-the-ec-workshop-on-virtualisation_en.pdf
ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/computing/report-on-the-ec-workshop-on-virtualisation_en.pdf

BIBLIOGRAPHY 153

[44] Peter J. Denning. Origin of virtual machines and other virtualities. IEEE
Annals of the History of Computing, 23(3):73, 2001. ISSN 1058-6180.

[45] DENX Software Engineering. Das U-Boot – the universal boot loader.
URL http://www.denx.de/wiki/U-Boot.

[46] Scott W. Devine, Lawrence S. Rogel, Prashant P. Bungale, and Gerald A.
Fry. Virtualization with in-place translation, December 2009. URL
http://www.google.com/patents/US20090300645. US Patent App.
12/466,343; original assignee: VMware Inc.

[47] Jiun-Hung Ding, Chang-Jung Lin, Ping-Hao Chang, Chieh-Hao Tsang,
Wei-Chung Hsu, and Yeh-Ching Chung. ARMvisor: System virtualiza-
tion for ARM. In Proceedings of the Linux Symposium, pages 93–107, July
2012.

[48] Hanfei Dong and Qinfen Hao. Extension to the model of a virtualizable
computer and analysis on the efficiency of a virtual machine. In Second
International Conference on Computer Modeling and Simulation, volume 2
of ICCMS 2010, pages 503–507, Los Alamitos, California, USA, January
2010. IEEE Computer Society.

[49] Marc Duranton, Sami Yehia, Bjorn De Sutter, Koen De Bosschere, Al-
bert Cohen, Babak Falsafi, Georgi Gaydadjiev, Manolis Katevenis, Jonas
Maebe, Harm Munk, Nacho Navarro, Alex Ramirez, Olivier Temam, and
Mateo Valero. The HiPEAC vision, 2010. URL http://www.hipeac.net/
roadmap.

[50] Rüdiger Ebendt, Görschwin Fey, and Rolf Drechsler. Advanced BDD
optimization. Springer, Dordrecht, The Netherlands, first edition, August
2005.

[51] Sarah Tawfik Adel El Shal. Virtualization for embedded systems and
smartphones - an ARM hypervisor. Master’s thesis, Vrije Universiteit
Brussel, Faculty of Applied Sciences, December 2011.

[52] Daniel R. Ferstay. Fast secure virtualization for the ARM platform. Mas-
ter’s thesis, The University of British Columbia, Faculty of Graduate
Studies (Computer Science), June 2006.

[53] Free Software Foundation, Inc. GCC, the GNUCompiler Collection. URL
https://gcc.gnu.org/.

[54] Steve Furber. ARM system-on-chip architecture, page 39. Addison-Wesley,
Boston, Massachusetts, USA, second edition, 2000. ISBN 0201675196.

[55] Jérome Gallard, Adrien Lèbre, Geoffroy Vallée, Christine Morin, Pascal
Gallard, and Stephen L. Scott. Refinement proposal of the Goldberg’s

http://www.denx.de/wiki/U-Boot
http://www.google.com/patents/US20090300645
http://www.hipeac.net/roadmap
http://www.hipeac.net/roadmap
https://gcc.gnu.org/

154 BIBLIOGRAPHY

theory. In Proceedings of the 9th International Conference on Algorithms and
Architectures for Parallel Processing, ICA3PP ’09, pages 853–865, Berlin -
Heidelberg, Germany, 2009. Springer-Verlag. ISBN 978-3-642-03094-9.

[56] Robert P. Goldberg. Architecture of virtual machines. In Proceedings of the
workshop on virtual computer systems, pages 74–112, New York, NY, USA,
1973. ACM.

[57] Robert P. Goldberg. Survey of virtual machine research. Computer, 7(9):
34–45, September 1974. ISSN 0018-9162.

[58] Dai Guilan, Zhang Suqing, Tian Jinlan, and Jiang Weidu. A study of
compiler techniques for multiple targets in compiler infrastructures. SIG-
PLAN Notices, 37(6):45–51, June 2002. ISSN 0362-1340.

[59] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop, WWC ’01, pages 3–14, Wash-
ington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7803-7315-4. doi:
10.1109/WWC.2001.15. URL http://dx.doi.org/10.1109/WWC.2001.
15.

[60] Kim Hazelwood and Artur Klauser. A dynamic binary instrumentation
engine for theARMarchitecture. InProceedings of the 2006 international con-
ference on Compilers, architecture and synthesis for embedded systems, CASES
’06, pages 261–270, New York, NY, USA, 2006. ACM. ISBN 1-59593-543-6.

[61] Thomas Heinz and Reinhard Wilhelm. Towards device emulation code
generation. In Proceedings of the 2009 ACM SIGPLAN/SIGBED conference
on Languages, compilers, and tools for embedded systems, LCTES ’09, pages
109–118, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-356-3.

[62] Gernot Heiser. The role of virtualization in embedded systems. In
Proceedings of the 1st workshop on Isolation and Integration in Embedded
Systems, IIES ’08, pages 11–16, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-126-2.

[63] Gernot Heiser. The Motorola Evoke QA4—a case study in mobile virtu-
alization. Technology white paper, Open Kernel Labs, July 2009.

[64] Gernot Heiser and Ben Leslie. The OKL4 microvisor: convergence point
of microkernels and hypervisors. In Proceedings of the first ACM asia-pacific
workshop on Workshop on systems, APSys ’10, pages 19–24, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0195-4.

[65] Jason D. Hiser, Daniel Williams, Wei Hu, Jack W. Davidson, Jason Mars,
and Bruce R. Childers. Evaluating indirect branch handling mechanisms

http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/WWC.2001.15

BIBLIOGRAPHY 155

in software dynamic translation systems. In Proceedings of the International
Symposium on Code Generation and Optimization, CGO ’07, pages 61–73,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2764-
7. doi: 10.1109/CGO.2007.10. URL http://dx.doi.org/10.1109/CGO.
2007.10.

[66] Gerhard E. Hoernes and Leo Hellerman. An experimental 360/40 for
time-sharing. Datamation, 14(4):39–42, April 1958.

[67] Jerry Honeycutt. Microsoft Virtual PC 2004 Technical Overview. Microsoft
Corp., November 2003.

[68] R. N. Horspool and N. Marovac. An approach to the problem of de-
translation of computer programs. The Computer Journal, 23(3):223–229,
1980.

[69] Perry L. Hung. Varmosa: just-in-time binary translation of operating
system kernels. Master’s thesis, Massachusetts Institute of Technology.
Dept. of Electrical Engineering and Computer Science, 2009.

[70] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-
Min Ryu, Seong-Yeol Park, and Chul-Ryun Kim. Xen on ARM: System
virtualization usingXen hypervisor forARM-based securemobile phones.
In 5th IEEE Consumer Communications and Networking Conference, CCNC
2008, pages 257–261, Piscataway, New Jersey, USA, January 2008. IEEE.
ISBN 978-1-4244-1457-4.

[71] IBM. PowerPC® Microprocessor Family: The Programming Environments
Manual for 64-bit Microprocessors. International Business Machines Cor-
poration, 3.0 edition, July 2005.

[72] IBM. PowerVM Lx86 for x86 Linux applications, July 2011. URL http:
//www.ibm.com/developerworks/linux/lx86/index.html.

[73] Hiroaki Inoue, Akihisa Ikeno, Masaki Kondo, Junji Sakai, and Masato
Edahiro. VIRTUS: a new processor virtualization architecture for security-
oriented next-generationmobile terminals. InProceedings of the 43rd annual
Design Automation Conference, DAC ’06, pages 484–489, New York, NY,
USA, 2006. ACM. ISBN 1-59593-381-6.

[74] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2: Instruction Set Reference, A-Z. Intel Corporation, December 2011.

[75] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3: System Programming Guide. Intel Corporation, December 2011.

[76] Neil Jones and René Hansen. The semantics of “semantic patches” in
Coccinelle: program transformation for the working programmer. In

http://dx.doi.org/10.1109/CGO.2007.10
http://dx.doi.org/10.1109/CGO.2007.10
http://www.ibm.com/developerworks/linux/lx86/index.html
http://www.ibm.com/developerworks/linux/lx86/index.html

156 BIBLIOGRAPHY

Zhong Shao, editor, Programming Languages and Systems, volume 4807
of Lecture Notes in Computer Science, pages 303–318. Springer Berlin /
Heidelberg, 2007. ISBN 978-3-540-76636-0.

[77] David R. Kaeli and Philip G. Emma. Branch history table prediction
of moving target branches due to subroutine returns. In Proceedings of
the 18th Annual International Symposium on Computer Architecture, ISCA
’91, pages 34–42, New York, NY, USA, 1991. ACM. ISBN 0-89791-394-
9. doi: 10.1145/115952.115957. URL http://doi.acm.org/10.1145/
115952.115957.

[78] Robert Kaiser and Stephan Wagner. The PikeOS concept – his-
tory and design. Whitepaper, SYSGO AG, January 2008. URL
http://www.sysgo.com/nc/news-events/document-center/
whitepapers/pikeos-history-and-design-jan-2008/.

[79] Greg Kroah-Hartman. The kernel configuration and build process. Linux
Journal, 2003(109):3, May 2003. ISSN 1075-3583.

[80] Danielius Kudinskas. Virtualizing the ARM - the ARM hypervisor. Bach-
elor’s thesis, The University of Manchester, School of Computer Science,
April 2010.

[81] James R. Larus and Eric Schnarr. Eel: Machine-independent executable
editing. In Proceedings of the ACM SIGPLAN 1995 Conference on Program-
ming Language Design and Implementation, PLDI ’95, pages 291–300, New
York, NY, USA, 1995. ACM. ISBN 0-89791-697-2.

[82] Sung-Min Lee, Sang-Bum Suh, and Jong-Deok Choi. Fine-grained I/O
access control based on Xen virtualization for 3G/4G mobile devices.
In Proceedings of the 47th Design Automation Conference, DAC ’10, pages
108–113, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0002-5.

[83] Joshua LeVasseur, Volkmar Uhlig, Yaowei Yang, Matthew Chapman,
Peter Chubb, Ben Leslie, and Gernot Heiser. Pre-virtualization: soft
layering for virtual machines. In 13th Asia-Pacific Computer Systems Ar-
chitecture Conference, ACSAC 2008, pages 1–9, Los Alamitos, California,
USA, August 2008. IEEE Computer Society. ISBN 978-1-4244-2682-9.

[84] John R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 1999. ISBN 1558604960.

[85] LLVM project. The LLVM compiler infrastructure, . URL http://llvm.
org/.

[86] LLVM project. “libc++” C++ standard library, . URL http://libcxx.
llvm.org/.

http://doi.acm.org/10.1145/115952.115957
http://doi.acm.org/10.1145/115952.115957
http://www.sysgo.com/nc/news-events/document-center/whitepapers/pikeos-history-and-design-jan-2008/
http://www.sysgo.com/nc/news-events/document-center/whitepapers/pikeos-history-and-design-jan-2008/
http://llvm.org/
http://llvm.org/
http://libcxx.llvm.org/
http://libcxx.llvm.org/

BIBLIOGRAPHY 157

[87] Catalin Marinas. ARM: 6384/1: Remove the domain switch-
ing on ARMv6k/v7 CPUs, 2010. URL http://git.kernel.
org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
247055aa21ffef1c49dd64710d5e94c2aee19b58.

[88] Larry McVoy and Carl Staelin. Lmbench: Portable tools for performance
analysis. In Proceedings of the 1996 Annual Conference on USENIX An-
nual Technical Conference, ATEC ’96, pages 23–23, Berkeley, CA, USA,
1996. USENIX Association. URL http://dl.acm.org/citation.cfm?
id=1268299.1268322.

[89] Alex Merrick. ARM hypervisor - virtualising the ARM processor. Bache-
lor’s thesis, The University of Manchester, School of Computer Science,
June 2010.

[90] Shin-ichi Minato. Binary decision diagrams and applications for VLSI CAD,
volume 342 of The Springer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Norwell, MA, USA, first edition,
1996. ISBN 0-7923-9652-9.

[91] MIPS. MIPS® Architecture For Programmers Volume II-A: The MIPS32®
Instruction Set. MIPS Technologies, Inc., MD00086, 3.02 edition, March
2011.

[92] MIPS. MIPS® Architecture for Programmers Volume II-B: The microMIPS32™
Instruction Set. MIPS Technologies, Inc., MD00582, 3.05 edition, April
2011.

[93] MIPS. MIPS® Architecture For Programmers Volume II-A: The MIPS64®
Instruction Set. MIPS Technologies, Inc., MD00087, 3.02 edition, March
2011.

[94] Ryan W. Moore, José A. Baiocchi, Bruce R. Childers, Jack W. Davidson,
and Jason D. Hiser. Addressing the challenges of DBT for the ARM
architecture. In Proceedings of the 2009 ACM SIGPLAN/SIGBED conference
on Languages, compilers, and tools for embedded systems, LCTES ’09, pages
147–156, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-356-3.

[95] Yoann Padioleau, René Rydhof Hansen, Julia Laetitia Lawall, and Gilles
Muller. Semantic patches for documenting and automating collateral
evolutions in Linux device drivers. In Proceedings of the 3rd workshop on
Programming languages and operating systems: linguistic support for modern
operating systems, PLOS ’06, pages 10:1–10:6, New York, NY, USA, 2006.
ACM. ISBN 1-59593-577-0.

[96] Niels Penneman, Danielius Kudinskas, Alasdair Rawsthorne, Bjorn
De Sutter, and Koen De Bosschere. Formal virtualization requirements
for the ARM architecture. Journal of Systems Architecture, 59(3):144–154,
March 2013. ISSN 1383-7621.

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=247055aa21ffef1c49dd64710d5e94c2aee19b58
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=247055aa21ffef1c49dd64710d5e94c2aee19b58
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=247055aa21ffef1c49dd64710d5e94c2aee19b58
http://dl.acm.org/citation.cfm?id=1268299.1268322
http://dl.acm.org/citation.cfm?id=1268299.1268322

158 BIBLIOGRAPHY

[97] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtu-
alizable third generation architectures. Communications of the ACM, 17:
412–421, July 1974. ISSN 0001-0782.

[98] Norman Ramsey. A simple solver for linear equations containing nonlin-
ear operators. Software—Practice & Experience, 26(4):467–487, April 1996.
ISSN 0038-0644.

[99] Norman Ramsey and Mary F. Fernández. The New Jersey machine-code
toolkit. In Proceedings of the 1995 USENIX Technical Conference, pages
289–302, New Orleans, LA, January 1995.

[100] Norman Ramsey and Mary F. Fernández. Specifying representations
of machine instructions. ACM Trans. Program. Lang. Syst., 19(3):492–524,
May 1997. ISSN 0164-0925.

[101] Norman Ramsey, Jack W. Davidson, and Mary F. Fernández. De-
sign principles for machine-description languages. Unpublished
draft available from http://www.cs.tufts.edu/~nr/pubs/desprin-
abstract.html, 2001.

[102] Red Bend Software. vLogix Mobile for mobile virtualization, 2014.
URL https://www.redbend.com/en/products-solutions/mobile-
virtualization/vlogix-mobile-for-mobile-vitrualization.

[103] Sandro Rigo, Rodolfo J. Azevedo, and Guido Araujo. The ArchC archi-
tecture description language. Technical Report IC-03-015, Universidade
Estadual de Campinas, Instituto de Computação, São Paulo, Brazil, June
2003.

[104] Mendel Rosenblum. VMware’s virtual platform: a virtual machine moni-
tor for commodity PCs. In Hot Chips 11 (1999), August 1999.

[105] Mendel Rosenblum and Tal Garfinkel. Virtualmachinemonitors: Current
technology and future trends. Computer, 38(5):39–47, May 2005. ISSN
0018-9162.

[106] Rusty Russell. virtio: towards a de-facto standard for virtual I/O devices.
SIGOPS Operating Systems Review, 42:95–103, July 2008. ISSN 0163-5980.

[107] Alexander Sepp, Julian Kranz, and Axel Simon. GDSL: A generic decoder
specification language for interpreting machine language. Electron. Notes
Theor. Comput. Sci., 289:53–64, December 2012. ISSN 1571-0661.

[108] Steven She and Thorsten Berger. Formal semantics of the Kconfig lan-
guage. Technical note, January 2010.

http://www.cs.tufts.edu/~nr/pubs/desprin-abstract.html
http://www.cs.tufts.edu/~nr/pubs/desprin-abstract.html
https://www.redbend.com/en/products-solutions/mobile-virtualization/vlogix-mobile-for-mobile-vitrualization
https://www.redbend.com/en/products-solutions/mobile-virtualization/vlogix-mobile-for-mobile-vitrualization

BIBLIOGRAPHY 159

[109] Axel Simon and Julian Kranz. The GDSL toolkit: Generating frontends
for the analysis of machine code. In Proceedings of ACM SIGPLAN on
Program Protection and Reverse Engineering Workshop 2014, PPREW’14,
pages 7:1–7:6, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2649-0.

[110] Alexey Smirnov. KVM-ARM hypervisor on Marvell Armada-XP
board. Talk at Cloud Computing Research Center for Mobile Ap-
plications (CCMA) Low Power Workshop (Taipei), June 2012. URL
ftp://220.135.227.11/Low-Power%20Workshop%202012%20June%
204th%20PDF/Low-Power%20Workshop%202012%20June%204th%20PDF/
07-CCMA-workshop-taipei.pdf.

[111] Alexey Smirnov, Mikhail Zhidko, Yingshiuan Pan, Po-Jui Tsao, Kuang-
Chih Liu, and Tzi-Cker Chiueh. Evaluation of a server-grade software-
only ARM hypervisor. In Proceedings of the 2013 IEEE Sixth International
Conference on Cloud Computing, CLOUD ’13, pages 855–862, Washington,
DC, USA, 2013. IEEE Computer Society. ISBN 978-0-7695-5028-2.

[112] Brad Smith. ARM and Intel battle over the mobile chip’s future. Computer,
41(5):15–18, May 2008. ISSN 0018-9162.

[113] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems
and Processes. The Morgan Kaufmann Series in Computer Architecture
and Design. Morgan Kaufmann Publishers Inc., San Francisco, California,
USA, 2005. ISBN 1558609105.

[114] Fabio Somenzi. CUDD: CU Decision Diagram package, 2012. URL
http://vlsi.colorado.edu/~fabio/CUDD/.

[115] Swaroop Sridhar, Jonathan S. Shapiro, Eric Northup, and Prashanth P.
Bungale. Hdtrans: An open source, low-level dynamic instrumenta-
tion system. In Proceedings of the 2Nd International Conference on Virtual
Execution Environments, VEE ’06, pages 175–185, New York, NY, USA,
2006. ACM. ISBN 1-59593-332-8. doi: 10.1145/1134760.1220166. URL
http://doi.acm.org/10.1145/1134760.1220166.

[116] Christopher Strachey. Time sharing in large, fast computers. In Interna-
tional Conference on Information Processing, pages 336–341, 1959.

[117] SuperH. SuperH™ (SH) 64-Bit RISC Series: SH-5 CPU Core, Volume 1:
Architecture. SuperH, Inc., 05-cc-10001, v1.0 edition, February 2002.

[118] SYSGO AG. PikeOS comes with full virtualization for Rene-
sas R-CAR H2, June 2014. URL http://www.sysgo.com/news-
events/press/press/details/article/pikeos-comes-with-full-
virtualization-for-renesas-r-car-h2/.

[119] Texas Instruments Inc.OMAP35xApplications Processor: Technical Reference
Manual. Texas Instruments Inc., SPRUF98D edition, October 2009.

ftp://220.135.227.11/Low-Power%20Workshop%202012%20June%204th%20PDF/Low-Power%20Workshop%202012%20June%204th%20PDF/07-CCMA-workshop-taipei.pdf
ftp://220.135.227.11/Low-Power%20Workshop%202012%20June%204th%20PDF/Low-Power%20Workshop%202012%20June%204th%20PDF/07-CCMA-workshop-taipei.pdf
ftp://220.135.227.11/Low-Power%20Workshop%202012%20June%204th%20PDF/Low-Power%20Workshop%202012%20June%204th%20PDF/07-CCMA-workshop-taipei.pdf
http://vlsi.colorado.edu/~fabio/CUDD/
http://doi.acm.org/10.1145/1134760.1220166
http://www.sysgo.com/news-events/press/press/details/article/pikeos-comes-with-full-virtualization-for-renesas-r-car-h2/
http://www.sysgo.com/news-events/press/press/details/article/pikeos-comes-with-full-virtualization-for-renesas-r-car-h2/
http://www.sysgo.com/news-events/press/press/details/article/pikeos-comes-with-full-virtualization-for-renesas-r-car-h2/

160 BIBLIOGRAPHY

[120] Texas Instruments Inc.OMAP35xApplications Processor: Technical Reference
Manual. Texas Instruments Inc., SPRUF98Y edition, December 2012.

[121] Hiroyuki Tomiyama, Ashok Halambi, Peter Grun, Nikil Dutt, and Alex
Nicolau. Architecture description languages for systems-on-chip design.
In Proceedings of the Asia Pacific Chip Design Language (APChDL) Conference,
pages 109–116, October 1999.

[122] TRANGO Virtual Processors. Virtualization for mobile, 2009.
URL https://web.archive.org/web/20090103050359/http:
//www.trango-vp.com/markets/mobile_handset/usecases.php.

[123] Transitive Corp. Cross-platform virtualization, 2008. URL https://web.
archive.org/web/20080914184751/http://www.transitive.com.

[124] Harvey Tuch, Prashanth P. Bungale, Scott W. Devine, and Lawrence S.
Rogel. Virtualizing processor memory protection with “L1 iterate and L2
drop/repopulate”, June 2012. URL http://www.google.com/patents/
US20120151116. US Patent App. 12/966,766; original assignee: VMware
Inc.

[125] Harvey Tuch, Prashanth P. Bungale, Scott W. Devine, and Lawrence S.
Rogel. Virtualizing processor memory protection with “L1 iterate
and L2 swizzle”, June 2012. URL http://www.google.com/patents/
US20120151168. US Patent App. 12/966,782; original assignee: VMware
Inc.

[126] Harvey Tuch, Prashanth P. Bungale, Scott W. Devine, and Lawrence S.
Rogel. Virtualizing processor memory protection with “domain track”,
June 2012. URL http://www.google.com/patents/US20120151117. US
Patent App. 12/966,805; original assignee: VMware Inc.

[127] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C.M.
Martins, Andrew V. Anderson, Steven M. Bennett, Alain Kägi, Felix H.
Leung, and Larry Smith. Intel virtualization technology. Computer, 38(5):
48–56, May 2005.

[128] Vojin Z̆ivojnović, Stefan Pees, and Heinrich Meyr. LISA – machine de-
scription language and generic machine model for HW/SW co-design.
In Wayne Burleson, Konstantinos Konstantinides, and Teresa Meng, edi-
tors, Proceedings of the IEEE Workshop on VLSI Signal Processing, IX (San
Francisco), pages 127–136. IEEE, October 1996. ISBN 0-7803-3134-6.

[129] Peter Van Bouwel. Ondersteuning voor zelf-wijzigende code in een ARM
hypervisor. Master’s thesis, Ghent University, Faculty of Engineering
and Architecture, June 2011.

https://web.archive.org/web/20090103050359/http://www.trango-vp.com/markets/mobile_handset/usecases.php
https://web.archive.org/web/20090103050359/http://www.trango-vp.com/markets/mobile_handset/usecases.php
https://web.archive.org/web/20080914184751/http://www.transitive.com
https://web.archive.org/web/20080914184751/http://www.transitive.com
http://www.google.com/patents/US20120151116
http://www.google.com/patents/US20120151116
http://www.google.com/patents/US20120151168
http://www.google.com/patents/US20120151168
http://www.google.com/patents/US20120151117

BIBLIOGRAPHY 161

[130] Jens Van den Broeck. Prestatiemetingen voor systeemsoftware m.b.v.
FPGA. Master’s thesis, Ghent University, Faculty of Engineering and
Architecture, June 2013.

[131] Prashant Varanasi. Implementing hardware-supported virtualization
in OKL4 on ARM. Master’s thesis, School of Computer Science and
Engineering, The University of New South Wales, November 2010.

[132] PrashantVaranasi andGernotHeiser. Hardware-supported virtualization
on ARM. In Proceedings of the 2nd ACM SIGOPS Asia-Pacific Workshop
on Systems (Shangai, China), APSys 2011, pages 11:1–11:5, New York, NY,
USA, July 2011. ACM.

[133] VirtualLogix. VLX for mobile handsets, 2009. URL https://web.
archive.org/web/20090308134358/http://www.virtuallogix.com/
products/vlx-for-mobile-handsets.html.

[134] VMware Inc. Understanding full virtualization, paravirtualization, and
hardware assist. White paper, November 2007.

[135] JonWatson. VirtualBox: bits and bytes masquerading as machines. Linux
Journal, 2008, February 2008. ISSN 1075-3583.

[136] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali: A
scalable isolation kernel. In Proceedings of the 10th Workshop on ACM
SIGOPS European Workshop, EW 10, pages 10–15, New York, NY, USA,
2002. ACM.

[137] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali:
Lightweight virtual machines for distributed and networked applications.
Technical Report 02-02-01, University ofWashington, Seattle, Washington,
USA, 2002.

[138] Wookey. The new arm ABI (EABI) and Debian armel port. Talk at De-
bconf (Edinburgh, Scotland), 2007. URL http://wookware.org/talks/
armeabidebconf.pdf.

[139] YoufengWu, Shiliang Hu, Edson Borin, and ChengWang. A HW/SW co-
designed heterogeneous multi-core virtual machine for energy-efficient
general purpose computing. In 9th Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO 2011, pages 236–245,
Piscataway, New Jersey, USA, April 2011. IEEE Computer Society. ISBN
978-1-61284-355-1.

[140] Xen Project. Xen ARM with virtualization extensions whitepa-
per, April 2014. URL http://wiki.xen.org/wiki/Xen_ARM_with_
Virtualization_Extensions_whitepaper.

[141] Xvisor. eXtensible Versatile hypervISOR. URL http://xhypervisor.
org.

https://web.archive.org/web/20090308134358/http://www.virtuallogix.com/products/vlx-for-mobile-handsets.html
https://web.archive.org/web/20090308134358/http://www.virtuallogix.com/products/vlx-for-mobile-handsets.html
https://web.archive.org/web/20090308134358/http://www.virtuallogix.com/products/vlx-for-mobile-handsets.html
http://wookware.org/talks/armeabidebconf.pdf
http://wookware.org/talks/armeabidebconf.pdf
http://wiki.xen.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper
http://wiki.xen.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper
http://xhypervisor.org
http://xhypervisor.org

	A virtualisation framework for embedded systems
	Acknowledgements
	Examencommissie
	Leescommissie
	Nederlandstalige samenvatting
	English summary
	Contents
	1 Introduction
	1.1 A brief history of virtualisation
	1.2 Taxonomy of hypervisors
	1.3 Virtualisation for embedded systems
	1.4 Modern uses of dynamic binary translation
	1.5 Outline and contributions

	2 Formal virtualisation requirements for the ARM architecture
	2.1 Introduction
	2.2 Background and motivation
	2.2.1 Classic virtualisability
	2.2.2 Prior updates to the model
	2.2.3 Advances in computing practice
	Memory relocation and protection
	Timing
	IO, interrupts and exceptions

	2.3 An updated model
	2.3.1 Machine state
	2.3.2 Address mapping
	2.3.3 Instruction behaviour
	2.3.4 Events
	2.3.5 Result

	2.4 Analysis of the ARM architecture
	2.4.1 Machine state
	2.4.2 32-bit ARM instruction behaviour
	Coprocessor instructions
	Event handling
	Direct modification of system registers
	Sleep and wake-up

	2.4.3 Thumb-2 instruction behaviour
	2.4.4 Conclusion

	2.5 Full virtualisation in practice
	2.5.1 Hardware support for full virtualisation
	2.5.2 Dynamic binary translation
	DBT for the ARM architecture

	2.6 Conclusions

	3 The STAR hypervisor
	3.1 Introduction
	3.2 Development history
	3.3 Top-level design
	3.4 MMU virtualisation: the memory manager
	3.4.1 The VMSAv7 MMU
	3.4.2 Shadow translation tables
	3.4.3 Lazy double shadowing
	3.4.4 Hypervisor mappings vs. guest mappings

	3.5 CPU virtualisation: the DBT engine
	3.5.1 Translation strategies
	3.5.2 Design choices and limitations
	3.5.3 Translating PC-sensitive instructions

	3.6 Exception handling
	3.6.1 Guest mode-dependent exception handling
	3.6.2 Guest exception handling
	Synchronous exceptions
	Asynchronous exceptions

	4 Evaluation of dynamic binary translation techniques
	4.1 Spilling and restoring registers
	4.1.1 Lightweight traps
	4.1.2 User-mode accessible coprocessor registers

	4.2 Tackling DBT-related overhead
	4.2.1 Control flow
	Indirect branches
	Effects on asynchronous exception delivery

	4.2.2 Exception returns and other mode changes
	4.2.3 Saving and restoring user mode registers
	4.2.4 Unprivileged loads and stores
	4.2.5 Coprocessor operations and register updates
	4.2.6 Special register accesses without side effects
	4.2.7 Summary

	4.3 Evaluation
	4.3.1 Register spilling techniques
	4.3.2 Optimisations to avoid traps to the DBT engine
	4.3.3 Perceived slowdown

	4.4 Conclusions

	5 Trade-offs in cache and memory management
	5.1 Introduction
	5.1.1 Overview of hardware instruction and data caches
	5.1.2 Fine-grained hardware cache control
	5.1.3 Hardware TLBs

	5.2 Hardware cache management
	5.2.1 Tuning cache configurations
	5.2.2 Virtualising hardware cache operations

	5.3 Shadow translation table management
	5.3.1 The memory protection approach
	5.3.2 The software TLB approach
	5.3.3 Handling guest domains
	5.3.4 Handling guest cache configurations

	5.4 DBT cache management
	5.4.1 The memory protection approach
	5.4.2 The software instruction cache approach

	5.5 Evaluation
	5.5.1 Hardware cache configuration tuning
	5.5.2 Shadow translation table management
	5.5.3 DBT cache management

	5.6 Conclusions

	6 Other lessons learnt
	6.1 Design and implementation
	6.1.1 Rapid prototyping vs. marketability
	6.1.2 Design for testability
	6.1.3 C++ for embedded bare-metal software

	6.2 Translator performance
	6.2.1 Related work
	6.2.2 Boolean function representation
	6.2.3 Instruction pattern matching
	6.2.4 Implementation and results

	7 Conclusions and future work
	7.1 Conclusions
	7.2 Future work
	7.2.1 Scalability
	7.2.2 DBT engine and memory manager
	7.2.3 Combining DBT with hardware virtualisation

	List of tables
	List of figures
	List of abbreviations
	List of symbols
	Bibliography

