
SimuBoost:
Scalable Parallelization of

Functional System Simulation

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Dipl.-Inform. Marc Rittinghaus
aus Iserlohn

Tag der mündlichen Prüfung: 19.07.2019

Hauptreferent: Prof. Dr. Frank Bellosa
Karlsruher Institut für Technologie

Korreferent: Prof. Dr. Hans P. Reiser
Universität Passau

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Gathering detailed run-time information such as memory access traces in operating
system and security research often involves functional full system simulation
(FFSS). The simulator runs the workload of interest in a virtual machine (VM),
gradually interpreting or translating instructions so that they operate on the state
of the VM and allow for comprehensive instrumentation.

While functional full system simulation is a powerful tool, a severe limitation is its
immense slowdown. For QEMU, we have measured average slowdowns of 30x and
60x for plain simulation and tracing of memory accesses, respectively. Simulators
offering more advanced instrumentation capabilities can even be an order of
magnitude slower. This quickly renders functional simulation impractical for
long-running, networked, or interactive workloads. Furthermore, the slowdown
creates unrealistic timing behavior whenever activities external to the virtual
machine (e.g., I/O) are involved.

In this thesis, we present SimuBoost, a method for drastically accelerating func-
tional full system simulation. SimuBoost runs the workload in a fast and interactive
hardware-assisted virtual machine while periodically taking checkpoints. These
checkpoints then serve as starting points for simulations, enabling to simulate and
analyze each interval simultaneously in one job per interval. Heterogeneous de-
terministic replay guarantees that the simulations repeat the exact same execution
as in the hardware-assisted run, including interactions and recorded timing.

Our prototype is able to significantly reduce the run time of functional full system
simulation while providing full interactivity. Simulating an entire kernel build
completes in just 16% more time than needed to run the same workload in a
regular hardware-assisted virtual machine. SimuBoost is able to maintain this
performance even with full instrumentation for memory tracing.

This thesis represents the first project to apply the concept of partitioning and
parallelization of execution time to interactive full system virtualization in a
manner that allows for immediate parallel functional simulation. We complement

iv

the practical implementation with a performance model to formally describe
the properties of the acceleration method and predict speedups. In contrast to
previous work, SimuBoost places a strong focus on scalability beyond the limits
of a single physical machine. It therefore makes heavy use of virtual machine
checkpointing technology. In this course, we present two novel methods for
efficiently and effectively reducing the size of periodic checkpoints.

Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Scope of This Thesis . 5
1.3 Underlying Publications and Theses 6
1.4 Organization . 7

2 Background 9
2.1 Virtualization . 9

2.1.1 Virtual Machines . 11
2.1.2 Conclusion and Terms . 16

2.2 Virtualization Techniques . 17
2.2.1 Processor Virtualization . 18
2.2.2 Memory Virtualization . 30
2.2.3 I/O Virtualization . 38
2.2.4 Conclusion and Terms . 41
2.2.5 Case Study: QEMU/KVM . 42

2.3 Checkpointing . 46
2.3.1 Pre- and Post-Copy . 47
2.3.2 Data Exclusion . 49
2.3.3 Data Deduplication . 51
2.3.4 Data Compression . 52
2.3.5 Other Techniques . 53
2.3.6 Conclusion . 54

2.4 Deterministic Replay . 55
2.4.1 Homogeneous Replay . 57
2.4.2 Heterogeneous Replay . 59
2.4.3 Multiprocessor Replay . 61
2.4.4 Conclusion . 63

Contents vii

3 Functional Full System Simulation 65
3.1 Assessment of Simulation Speed . 67
3.2 Acceleration Techniques . 69

3.2.1 Optimizing the Execution Engine 69
3.2.2 Reducing the Observation Space 70
3.2.3 Parallelizing Multicore Simulations 72
3.2.4 Parallelizing the Simulation Time 73

3.3 Conclusion: Limitations of the State of the Art 75

4 SimuBoost 77
4.1 Goals . 78
4.2 Approach . 79

4.2.1 State Deviation . 81
4.3 Comparison with Related Work . 82
4.4 Conclusion . 85

5 Performance Model 87
5.1 Optimal Setup . 88

5.1.1 Parallel Simulation Time and Speedup 89
5.1.2 Optimal Interval Length . 91
5.1.3 Optimal Number of Nodes and Efficiency 93

5.2 Constrained Setup . 94
5.2.1 Parallel Simulation Time and Speedup 95
5.2.2 Optimal Interval Length . 98

5.3 Conclusion . 99

6 Continuous Checkpointing 101
6.1 Checkpoint Creation . 103

6.1.1 Incremental Checkpointing . 105
6.1.2 Dirty Logging Techniques . 114
6.1.3 Dirty Logging Granularity . 119
6.1.4 Design and Implementation . 122

6.2 Checkpoint Storage . 125
6.2.1 SimuBoost Extension for Simutrace 126

6.3 Checkpoint Loading . 128
6.3.1 Sparse Checkpoints . 129

6.4 Conclusion . 133

7 Checkpoint Distribution 135
7.1 Pulling versus Pushing . 137
7.2 Checkpoint Data Reduction . 139

7.2.1 Data Deduplication . 144
7.2.2 Delta Compression . 148
7.2.3 Device State Compression . 151

7.3 Multicast Checkpoint Distribution . 155
7.4 Conclusion . 159

viii Contents

8 Heterogeneous Deterministic Replay 161
8.1 General Architecture . 162

8.1.1 Landmark . 164
8.1.2 Replay Boundary . 168
8.1.3 Evaluation . 170

8.2 Simulation Refining . 174
8.2.1 Status Flag Computation . 175
8.2.2 Read-Write Instructions . 176
8.2.3 MMU-induced Non-Determinism 177
8.2.4 Atomic Instructions (ARM only) 180
8.2.5 Miscellaneous . 181

8.3 Conclusion . 183

9 Evaluation 185
9.1 Evaluation Setup . 185

9.1.1 Hardware and Software Configuration 189
9.1.2 Benchmark Scenarios . 191

9.2 Speedup . 192
9.3 Scalability and Efficiency . 195
9.4 Performance Model . 202
9.5 Conclusion . 204

10 Conclusion 207
10.1 Limitations and Future Work . 208

A Deutsche Zusammenfassung 211

B Additional Figures and Data 213

Lists 223
Tables . 223
Figures . 223
Bibliography . 226

Chapter 1

Introduction

A common approach to gathering detailed run-time information about applications
is to run the software of interest in a functional, that is instruction-level, simulator
such as Valgrind [190] or Pin [162]. In contrast to regular execution, where
instructions run natively on the CPU, a functional simulator executes applications
in a virtual machine (VM). It gradually interprets or translates instructions so that
they operate on the state of the VM instead of the physical machine. This way,
the execution becomes completely transparent and can be freely instrumented.

Whenever functional simulation is involved, operating-system-centric research
usually depends on functional full system simulation (FFSS), which includes
system libraries, services, drivers, and privileged kernel-mode components. FFSS
has been demonstrated to be very effective for OS debugging [137], security
analyses [287], and collecting detailed execution traces [286]. Google engineers
identified over 20 kernel security vulnerabilities in Windows 8 by analyzing the
memory access patterns at the system call interface [133]. In a similar analysis,
we revealed a critical code execution vulnerability in the Xen hypervisor [279].
However, full system simulation is not only an important tool in operating system
research. It has been shown that even for application-level studies simulating
the application without the underlying operating system can be highly inaccurate
[53,135,169,292].

While functional full system simulation has proven to be very powerful, a well-
known limitation is its immense slowdown. Depending on the required level
of detail and the degree of instrumentation, running a workload with FFSS is
up to multiple orders of magnitude slower compared to native execution. We
have measured average slowdowns of 30x and 60x with QEMU [38] for plain
simulation and tracing of memory accesses, respectively. While a kernel build
takes less than 13 mins natively, running the exact same execution takes around
5 hours with QEMU; and 10 hours when tracing memory accesses. A single tracing
run of povray even takes almost 2 days, whereas a non-instrumented execution

2 Introduction

completes in less than 19 mins natively. With Simics [163], a full system simulator
offering more advanced instrumentation capabilities, we measured a slowdown
of up to 1000x when hooks for memory tracing are installed [219]. Similar
slowdowns for functional simulation have been reported by other researchers
[58,135,164,200,286].

In practice, this slowdown creates severe obstacles for comprehensive use of
functional full system simulation:

Interactivity Scenarios that should capture interactivity with a human user or an
external network device are not feasible. A single keystroke can quickly take
from multiple seconds up to minutes until being fully processed, making
human-user interactions cumbersome and unnatural. Network protocols
such as TCP, in turn, react to the slowdown with throttling and timeouts.

Accuracy of Results Since the simulation considerably slows down the simulated
applications and operating system, activities dependent on events external
to the virtual machine such as I/O operations appear to complete faster – a
phenomenon called time dilation [169]. This distorts measurements and
produces unrealistic execution behavior.

Coverage Evaluating a test scenario in full length can take considerable time,
forcing researchers to reduce coverage. The authors of the Google study
summarize that the slowdown was the primary restrictive factor, which
limited the coverage of their analysis to the system boot phase and short
desktop usage [133] – potentially missing further vulnerabilities.

A common method to cope with the long run time of full system simulations is
to adapt or shorten the workload so that the overall simulation time remains
in reasonable bounds [140]. However, developing reduced but representative
workloads is a complex and time-consuming task and depending on the use case
(e.g., security analysis) the method is not applicable. It is thus desirable to keep
the original workload intact and to accelerate the simulation instead.

The speed of a functional simulation is mostly determined by the ratio of executed
physical instructions per simulated instruction. To improve this ratio simulators
have been vigorously optimized [67,95,119,120,281]. A common denominator
of all these techniques, however, is that improvements at the level of the generated
code and execution flow do not provide the required leap and generally stay below
the 5x speedup mark.

A prevailing practice to accelerate simulation is thus to limit the simulation to
samples [229,237,284]. The gathered information can then be extrapolated to
draw conclusions for the whole workload. At the same time, this represents a
decisive disadvantage because sampling can only be used to estimate metrics that
can be extrapolated from samples (e.g., instructions per cycle). However, it is
less suited to observe the actual system execution as required in security research,

Introduction 3

t

HW-assist.
Virtualiza�on

i [1]

Node 1

i [2] … i [n]

Node 2

…

Node n i [n]

Node V

Parallel
Simula�on …

i [2]

i [1]

i [1] i [2] … Serial
Simula�on

Node 1

Figure 1.1: The workload is executed with fast hardware-assisted virtualization.
Checkpoints at the interval boundaries serve as starting points for
parallel simulations. The parallel simulation completes much faster
than a serial simulation.

malware analysis, or debugging. It does not permit the tracking of individual
events such as pairs of memory allocations and deallocations [52] or specific
memory access patterns [133]. Instead, these applications require continuous
simulation.

A promising approach is the partitioning and parallelization of simulation time
[111]. The idea is to split the simulation into disjoint time intervals that can be
processed simultaneously. The method proved to possess high scalability with
speedups near the number of employed CPUs [101,192,211,229,267]. However,
current solutions based on this concept are not applicable to continuous functional
simulation, are restricted to single user-mode processes, or lack interactivity.
Moreover, the dependency on process forking for spawning parallel simulations
restricts most implementations to the degree of parallelism that can be supplied
by a single host1, depriving the concept of its primary strength.

In this thesis, we present SimuBoost [219], an acceleration approach based
on partitioning and parallelization of simulation time that drastically reduces
the slowdown of functional full system simulation (see Figure 1.1). The core
idea is to run the workload in a virtual machine using fast hardware-assisted
virtualization (e.g., Intel VT-x [125]). This virtual machine offers full interactivity.
At regular intervals2, the hypervisor takes snapshots of the VM (i.e., memory
contents, device states, etc.). The checkpoints then serve as starting points for

1For instance, pFSA [229] forks a hardware-assisted virtual machine and switches to simulation
in the newly created child. Performing a subsequent process migration would in turn require
checkpointing the process, which is equivalent to checkpointing the VM.

2Between hundreds of milliseconds and multiple seconds.

4 Introduction

simulations, enabling to simulate and analyze each interval simultaneously in one
job per interval. By transferring checkpoints over the network and using multiple
nodes (i.e., CPU cores and hosts) a heavily parallelized simulation of the target
workload can be achieved.

Functional full system simulation can be built to always produce identical runs.
Hardware-assisted virtualization, in contrast, is subject to non-deterministic input
such as erratic I/O completion timing. SimuBoost records this non-determinism
and uses heterogeneous deterministic replay [87,287] to accurately reproduce
the execution in the simulations, including realistic timing behavior, as well as
user and network input in interactive workloads.

Both checkpointing and recording of non-determinism need to be geared toward
low run-time overhead to (1) retain the execution speed difference that drives
the parallelization, (2) keep perturbations on the examined workload as small
as possible, and (3) preserve seamless interactivity. The simulation nodes, in
turn, need to quickly receive and load the checkpoints. Furthermore, the resource
consumption (e.g., memory) of simulations should be kept low so as to permit
a maximum degree of parallelism on each host. In the course of this thesis, we
present and evaluate techniques to cope with these challenges.

Our prototype for QEMU/KVM [38,139] is able to drastically reduce the run time
of functional full system simulation while maintaining full interactivity. Simulating
an entire kernel build using SimuBoost completes in about 15 mins (in contrast
to 5 hours with serial simulation), which is only 16% more time compared to a
native run with hardware-assisted virtualization (without SimuBoost). SimuBoost
is able to deliver this performance even with memory tracing, completing the
instrumented simulation in only 19% more time compared to the same baseline.

1.1 Contributions

This thesis makes the following main contributions:

• SimuBoost is the first project to apply the concept of partitioning and par-
allelization of execution time to interactive full system virtualization in
a manner that allows for immediate parallel functional simulation. Our
evaluation examines the applicability and effectiveness of the approach to
diverse types of workloads and determines its scalability with regard to
increasing simulation slowdown from instrumentation.

• This thesis presents the first formalization of the partitioning and paralleliza-
tion process with a performance model to predict parallel simulation times
and estimate optimal interval lengths for given workloads and simulation
cluster sizes.

Introduction 5

• With continuous checkpointing constituting a central technology of Simu-
Boost, this thesis includes a thorough quantitative comparison of widely
employed checkpointing and page dirty logging techniques. With pre-scan,
we devised a novel method to track page modifications in virtual machines
that combines the low downtime of conventional page-protection-based
dirty logging with the low overhead of page table scanning.

• In contrast to previous work, SimuBoost places a strong focus on scalability
beyond the limits of a single physical machine. This thesis therefore gives
a detailed analysis of checkpoint compression methods to allow for live
distribution of checkpoints over commodity network infrastructure such as
Gigabit Ethernet. In this course, we present a new method for compression
of state maps called SimuBoost device state compression (SDS) that achieves
61% higher compression than LZ4 in 21% less time.

• As part of this thesis, we developed the first publicly available full system
heterogeneous deterministic replay engine for the x86 platform3. Moreover,
this is the first work in the research literature to describe MMU-induced
non-determinism, the challenges of its detection, and possible solutions.

1.2 Scope of This Thesis

This thesis serves to evaluate the general applicability of partitioning and paral-
lelization to interactive continuous functional full system simulation with a focus
on scalability beyond single machines. That means we concentrate on the con-
ceptional properties of this acceleration method (e.g., its speedup characteristics)
and the technical challenges it entails in the fields of checkpoint creation and
distribution as well as deterministic replay.

We limit the discussion to single-core virtual machines, thereby building a foun-
dation for future research on accelerating multicore VMs. As we are well aware
of the fact that deterministic replay comes with increased overhead in such en-
vironments, we provide a detailed overview on the current state-of-the-art in
multiprocessor replay in § 2.4.3.

Although SimuBoost is perfectly suitable for malware analysis and we consider
this an important use case, we also do not dive into the challenges of preventing
malware from breaking replays, for example, by exploiting inaccuracies or bugs in
the simulator. This is merely a question of accurate engineering and a deliberate
definition of the replay boundary rather than general feasibility as demonstrated
by Yan et al. [287].

3https://github.com/simutrace/

6 Introduction

1.3 Underlying Publications and Theses

Besides others, we advised the following students when they wrote their study,
diploma, bachelor’s, or master’s theses at the Operating Systems Group. Their
evaluations provided valuable insight and directed the final design of SimuBoost.
They have contributed to this thesis, in chronological order:

• Nikolai Baudis implemented the first prototype for incremental checkpoint-
ing as part of his bachelor’s thesis [37]. He also investigated data duplication
in incremental checkpoints and explored MongoDB [10] as a checkpoint
storage solution.

• Bastian Eicher examined alternatives to MongoDB in his master’s thesis [89]
in order to reduce the downtime for stop-and-copy checkpoints. This led
to the use of plain files. This design eventually made its way into our
final prototype – although entirely revised in implementation and format.
Bastian Eicher also developed a first version of the performance model for
constrained hardware setups and expedited checkpoint distribution by using
a pulling approach that uses Simutrace’s built-in network support.

• Jan Ruh expanded upon the analysis of recurring memory pages and disk
sectors in incremental checkpoints in his bachelor’s thesis [224] by identify-
ing the semantic background of duplicates.

• Nico Böhr supplied a first prototype of SimuBoost’s copy-on-write check-
pointing in his bachelor’s thesis [42] so as to further reduce the downtime
of checkpoints and preserve interactivity.

• Janis Schötterl-Glausch investigated in this bachelor’s thesis [234] the
suitability of Intel Page Modification Logging (PML) [125] for alleviating
the run-time overhead incurred by the detection of modified pages in incre-
mental checkpointing.

• Simon Veith implemented a heterogeneous deterministic replay engine for
the ARMv7 architecture in his master’s thesis [262], thereby exploring the
applicability of SimuBoost to other architectures than x86.

• Thomas Schmidt supported this thesis with his bachelor’s thesis [233]
by exploring alternatives to functional full system simulation for memory
tracing. He thereby reinforced the motivation for simulation as the method
of choice for detailed run-time information retrieval.

• Andreas Pusch worked in his master’s thesis [209] on the efficient distribu-
tion of checkpoints in a simulation cluster. He tested distributed file systems
and developed the multicast-based checkpoint transfer that we envision for
SimuBoost. His work has yet to be integrated into our prototype.

Introduction 7

• Michael Zangl evaluated in his master’s thesis [293] the applicability of
chunk-based recording [215] to heterogeneous deterministic replay for
multiprocessor virtual machines. His work shows a possible path for future
multiprocessor support in SimuBoost.

• Johannes Werner has made an assessment of virtual machine working
sets in his bachelor’s thesis [277] to supply a quantitative basis for the
development of sparse checkpoints.

• Jan Ruh subsequently developed a working implementation of sparse check-
pointing in his master’s thesis [225]. This technology presents a decisive
factor in the scalability of SimuBoost as is allows for a much higher density
of simulations per physical host.

• Benedikt Morbach studied the origin of MMU-induced non-determinism
in his master’s thesis [183]. He discusses different ways to cope with
this generally overlooked source of non-determinism and demonstrates a
working recording and replay system for it.

• Janis Schötterl-Glausch extended his work on efficient page modification
tracking in his master’s thesis [235]. He evaluated the potential of page
table scanning as an alternative to setting page protections. He, moreover,
implemented the pre-scan method. A majority of his code made its way into
our current prototype.

The following paper (identical in name) has been published before the submission
of this thesis, introducing the core idea behind SimuBoost:

• M. Rittinghaus, K. Miller, M. Hillenbrand, and F. Bellosa. SimuBoost: Scal-
able parallelization of functional system simulation. In Proceedings of the
11th International Workshop on Dynamic Analysis, WODA’13, Houston, Texas,
USA, Mar. 2013.

In addition, we successively presented preliminary results at the GI Fachgruppen-
treffen Betriebssysteme in 2013, 2014 (Simutrace [218]), 2016, and 2018.

1.4 Organization

The remainder of this thesis is organized as follows:

Chapter 2 – Background provides a detailed overview of current virtualization
technologies and compares their advantages and disadvantages with respect to
dynamic analysis in the field of operating system research. The chapter also
introduces important research related to checkpointing and deterministic replay.

8 Introduction

Chapter 3 – Functional Full System Simulation then sheds a light on the pos-
sibilities that functional full system simulation offers in the retrieval of detailed
run-time information on programs and the operating system. It demonstrates how
the slowdown of this technology poses a major obstacle for its comprehensive
use. Afterward, the chapter gives a thorough introduction to existing methods for
acceleration and explains their shortcomings for operating system research.

Chapter 4 – SimuBoost formulates a set of goals for a suitable acceleration
technique, elaborates on the idea behind SimuBoost, and finally highlights dif-
ferences to existing work based on partitioning and parallelization of simulation
time.

Chapter 5 – PerformanceModel describes a formalization of the parallelization
process and a deduces of a set of equations for predicting parallel simulation
times and optimal interval lengths.

Chapter 6 – Continuous Checkpointing contrasts techniques for efficient con-
tinuous checkpoint creation, storage, and loading and presents detailed quantita-
tive results.

Chapter 7 – Checkpoint Distribution deals with the distribution of checkpoints
in a simulation network. With the goal of being able to use SimuBoost with
commodity network infrastructure, this chapter puts a focus on strong checkpoint
compression.

Chapter 8 – Heterogeneous Deterministic Replay concludes the design over-
view with a discussion of the heterogeneous deterministic replay component. The
chapter especially elaborates on the refinements we have made to the binary
translator in QEMU to faithfully reproduce actual hardware behavior.

Chapter 9 – Evaluation puts all building blocks together and gives a thorough
evaluation of the overall SimuBoost concept; examining its speedup and scalability
characteristics. In this chapter, we also review the applicability of the performance
model using measurements of actual parallel simulations.

Chapter 10 – Conclusion summarizes the key concepts and findings of this
thesis and closes with an outlook on future research directions.

Chapter 2

Background

This thesis presents a novel approach to full system analysis that equips researchers
and developers with a tool to inspect arbitrary workloads down to instruction-level
detail while maintaining interactivity and fidelity. A two-stage analysis workflow
leverages a combination of (1) fast hardware-assisted virtualization for realistic
workload execution and (2) heterogeneous deterministic replay in a full system
simulation for detailed analysis. In contrast to previous work, our approach is
streamlined for functional system analysis, rather than microarchitectural anal-
ysis. Therefore, it lends itself to holistic operating system and software-level
security research. Whereas current tools in this area suffer from the immense
slowdown induced by functional system simulation, we present a lightweight
checkpointing-based method to efficiently parallelize the simulation, thereby
drastically increasing simulation speed.

In this chapter, we introduce terms, techniques, and principles that this thesis is
based on. Sections 2.1 and 2.2 supply an introduction to the concept of virtualiza-
tion and virtual machines, which are a key technology to our approach. A focus
is placed on virtual machines capable of running full operating systems with the
help of dynamic binary translation and hardware-assisted virtualization. Sections
2.3 and 2.4 expand on the topic of virtualization by covering relevant technologies
and literature in the area of virtual machine checkpointing and deterministic
execution replay.

2.1 Virtualization

Virtualization describes the process of representing some form of resource through
a virtual one. This introduces a level of indirection which can have diverse benefits
such as increased control, flexibility, or isolation. The underlying resource can be
a physical one or, in the case of nested virtualization, itself be already virtual.

10 Background

A prominent example is virtual memory, which was first available in the early
1960’s [94] and today is the de facto standard in desktop computers, servers, and
even mobile devices [32,239]. Prior to the adoption of virtual memory, physical
memory was directly exposed to programs running on the system. As a process
can potentially access arbitrary memory in this configuration, it may inadvertently
or maliciously address memory owned by another process or even the operating
system (OS). This severely complicates memory management, especially with
multiprogramming, and at the same time puts the system’s stability at risk.

In contrast, virtual memory systems add an additional indirection for memory
addresses. Subsequently, all addresses used in a process are interpreted as virtual
addresses and are translated to physical ones at run time by an address mapping
device – the memory management unit (MMU). It is the responsibility of the oper-
ating system to establish the mappings between virtual and physical addresses.
Typically, each process gets its own set of mappings, thereby creating distinct
virtual address spaces. Contrary to direct physical memory access, this makes pro-
viding and sharing physical memory an explicit decision by the operating system
and greatly improves stability and security. In addition, memory management is
simplified because virtually contiguous regions do not need to be contiguous in
physical space – a feature called artificial contiguity [214]. Partitioning the RAM
for use by multiple processes thus becomes much easier.

Virtualization can also be an opportunity to incorporate new features and extend
the interface provided by the raw underlying resource. For instance, the MMU
invokes the operating system with a fault, if it is unable to translate a virtual
address [254, p. 234f]. The OS can leverage this mechanism for implementing
memory overcommitment. This creates the illusion for a process to own more
physical memory than actually available in the system. To this end, the operating
system dynamically swaps data between secondary storage (e.g., a hard disk) and
RAM, adjusting mappings as needed. If a process accesses virtual memory that is
currently not backed by RAM, the fault gives the operating system the opportunity
to trigger swapping. Since execution can generally continue afterward, these
operations are transparent to a process.

More formally, the principle of virtualization can be expressed by defining a
set of virtual resources V p

t = {v0, v1, . . . , vn} at the time t that are mapped to
the physical resources Rt = {r0, r1, . . . , rm}, where p ∈ {p0, p1, . . . , pq} denotes a
particular instance of V [77,102]. For each moment of time t and each instance
p of V , there exists a function [102]:

f : V p
t → Rt ∪ {φ}

such that if v ∈ V p
t and r ∈ Rt , then

f (v) =

¨

r if r is the physical resource for v

φ if v does not map to a physical resource

Background 11

The value f (v) = φ causes a fault that invokes a handling procedure in some form
of privileged execution context which controls f . In a virtual memory system, V p

holds all addresses of the virtual address space (i.e., process) p, R comprises the
set of available physical addresses, and f (v) = φ denotes an exception, where the
CPU transfers control to the fault handler in the OS. For virtual memory, typically
n · q� m applies, that is, the number of virtual pages n over all processes q is
much larger than the number of available physical pages m.

With nested virtualization, V and R can be interpreted as two adjacent levels of
virtual resources where the physical resources are positioned in layer 0 and f
maps virtual resources from layer k+ 1 to layer k [102].

When considering two consecutive time steps (see Figure 2.1), we can characterize
virtualization as the construction of the isomorphism h ◦ f (Vt) = f ◦ g(Vt), where
for a sequence of operations g that modifies V there is a corresponding sequence of
operations h that performs an equivalent modification to R [206,240]. In practice,
this means we must implement h ◦ f (Vt) to create the illusion of f ◦ g(Vt).

In a virtual memory system, possible operations g on V are reads and writes. So
in order to implement virtual memory, we must be able to perform equivalent
reads and writes on the corresponding physical addresses, thereby constructing h.
Today’s CPUs fully integrate this functionality. For each virtual memory access, the
CPU first inquires the physical address. The MMU handles the address translation,
thus supplying f . The CPU then realizes h by simply performing the requested
operations on the physical memory.

Virtual
Vt Vt+1

Physical
Rt Rt+1

f(Vt) f(Vt+1)

g(Vt)

h(Rt)

Figure 2.1: For each state modification g in V , there must be an equivalent modi-
fication h in R [240, p. 4].

2.1.1 Virtual Machines

We can generalize V and R to contain not only one particular type of resource
such as memory but, for instance, all resources comprising a modern computer
system. This includes processors, secondary storage, and connected devices (e.g.,

12 Background

network adapters). V then defines a virtual machine (VM) and R represents the
physical machine. We refer to V as the guest, whereas R is the host. The situation
f (v) = φ is called a VM fault. The privileged code that implements f and h, and
which is responsible for catching faults is the virtual machine monitor (VMM).

Compared to a virtual memory system, a VM imposes considerably higher com-
plexity. However, the same formal definition holds. For building a faithful repro-
duction of a physical machine the VMM must provide the following three major
components:

Virtual State Description (V) The set V of virtual resources must describe a
complete model of the guest’s state. This may include the register contents
of virtual CPUs, status information of virtual interrupt controllers, a screen
buffer for a virtual display adapter, and much more. The model can be
restricted to the purely functional level, but may also include microarchitec-
tural features, depending on the virtualization purpose.

Resource Mapping (f) Virtual resources must always be backed by physical re-
sources at some point. To that end, the VMM can partition spatial resources
as in the case of main memory and secondary storage, or use multiplex-
ing via time-sharing for resources such as CPU time. Sometimes virtual
resources cannot be simply mapped 1:1 to host resources if the architectures
of V and R differ. In these cases, the VMM has to explicitly model the virtual
resource in R. This additionally has to be done in a way that is compatible
with R. For instance, a 64-bit guest CPU register might need to be split into
two 32-bit words on a 32-bit host.

Host State Transfer Function (h) While V and f are sufficient to describe a
virtual machine at a fixed point in time, execution requires a mechanism
that modifies the host in a way that is equivalent to what is dictated by
the operations in the guest. For a CPU, this task can be accomplished for
example by some form of emulation. The VMM interprets each processor
instruction in the guest and modifies the host’s representation of the guest’s
CPU accordingly. In addition, the VMM has to advance the virtual instruction
pointer as well as virtual timers and reflect actions on virtual I/O devices.

Tightly connected to the types of virtual resources comprising a virtual machine
is the architectural layer at which the virtual machine is constructed. Considering
a typical computer system architecture (see Figure 2.2), we can identify three
primary layers [240, p. 6ff]:

The application programming interface (API) specifies an expected behavior and
methods of communication with a piece of software that implements this behavior.
Usually, a developer is confronted with an API as a set of source-code level
functions accompanied by a set of well-defined parameters and return values. A
prominent example in the field of operating systems is POSIX.1 [124].

Background 13

Applica�ons

Libraries

Execu�on Hardware

Memory
Transla�onSystem Interconnect

Controllers Controllers

Main MemoryI/O Devices

Opera�ng System

Drivers
Memory
Manager Scheduler

S-ISA U-ISA

API + ABI

Hardware

So�ware

Figure 2.2: Applications use a well-defined API and ABI to interface with libraries
and the operating system. They may only use unprivileged instructions
defined by the user ISA, while the OS also has access to privileged
operations specified by the system ISA [240, p. 7].

The application binary interface (ABI), in contrast, specifies the exact machine-level
format of data structures (e.g., field alignment) and a calling convention. The
latter determines into which registers and stack locations the caller and callee
should place parameters and return values, respectively. The ABI thus depends
on the characteristics of the hardware on which the software should run.

The instruction set architecture (ISA) builds the boundary between software and
hardware. It defines the basic interface of the hardware, including available
machine registers, processor instructions, the I/O model as well as memory
alignment and consistency constraints. The ISA can be split into an unprivileged
interface – the user ISA – available to all processes running on a system, and a
privileged one – the system ISA – eligible for operating system access only.

Process Virtual Machines

A VM virtualizing the API, ABI, and user ISA is called a process virtual machine
(see Figure 2.3a) [240, p. 13ff]. Characteristic of this type of VM is its restriction
to a single user-level process. The VMM is thus often referred to simply as runtime.
A runtime does not virtualize the whole physical machine, but merely provides
programs an execution environment which can deviate from the one defined by
the underlying operating system. The simplest manifestation of a process virtual
machine is an unchanged process context, effectively obliterating the runtime.
The deviation from this native context, however, may be of any arbitrary extent.

14 Background

Applica�on

Run�me

Opera�ng
System

Hardware

(a) Process Virtual Machine

Applica�on

Hypervisor

Opera�ng
System

Hardware

(b) System Virtual Machine

Figure 2.3: A VM constructed at the level of the API, ABI, and user ISA forms a
process virtual machine. It virtualizes a single application only and
runs alongside native processes on the hosting OS. A VM implemented
at the ISA-level (user+system) virtualizes an entire computer system
and is called a system VM. It is capable of running operating systems.

With DIGITAL FX!32 [61], Hookway presented a process virtual machine which
enabled Windows NT 4.0 systems designed around the Alpha processor to trans-
parently execute x86 NT applications. The API (i.e., the Windows API) thus
remained the same, while the (user) ISA and ABI changed and needed to be
translated by the runtime.

A more recent example is Linux Subsystem for Windows (WSL) [291], which runs
unmodified x86 ELF64 Linux binaries on Windows. It leaves the instruction set
architecture fixed and translates the API and ABI from Windows to Linux. With
Wine [31], a process VM operating in the reverse direction is available as well.

Process virtual machines also serve as a runtime environment for high-level
languages such as Java. The Java virtual machine (JVM) [155] abstracts the
operating system in a set of standard libraries (Java API) and comes with a virtual
ISA as part of the binary specification. The JVM thereby performs a translation on
all three layers (i.e., API, ABI, and user ISA), making Java applications generally
platform independent.

While each of these examples performs excessive virtualization, leaving all three
layers untouched is equally reasonable. For example, applications typically come
as a collection of dynamically linked libraries, preventing optimization across
static program binaries. Dynamo [34] addresses this problem by employing a
process VM to transparently optimize programs at runtime. Compared to a static
compiler, Dynamo can interpret applications as a trace of instructions rather than
a set of independent binaries. Since these traces are a product of the input given
to the program, Dynamo can tailor the code to the usage profile at hand.

A major drawback of process virtual machines, however, is their inability to run
operating systems. This limits their applicability in the field of operating system

Background 15

research, where a holistic view on the interaction of applications, the OS, and the
hardware is usually required. Even for application-level studies it has been found
that leaving out the effects of operating system invocations (e.g., on CPU caches)
can considerably corrupt measurements [53,135,292].

System Virtual Machines

A virtual machine that is constructed with the system ISA in mind is called a
system virtual machine and the VMM is often referred to as hypervisor (see Figure
2.3b) [240, p. 17ff]. Supporting this level of virtualization comes with the necessity
to emulate system events like exceptions and interrupts and to considerably extend
the set of virtual resources included in the virtual state description V . Whereas
a process VM can generally limit V to CPU registers and the memory of a single
user-mode address space, and h to executing unprivileged instructions, a system
VM has to virtualize all devices present in a computer system, including a full-
fledged MMU. As with process VMs, the ISA may or may not match between the
host and the guest. While all this raises the complexity of the VMM, it also puts
system VMs into the position to run operating systems. This has made system
VMs a very powerful and widely employed concept.

System virtual machines were first used in the 1960s and 1970s to provide
software compatibility, aid in modification and testing of operating systems, and
run diagnostic programs [103]. IBM VM/370 [106] is the best-known hypervisor
of that time supporting full system virtualization. Over the years, many additional
use cases have emerged. Examples are migrating operating systems to new
platforms [48,260], providing strong isolation to safely run untrusted applications
and services [221,278], flexible resource management via migration within and
across data centers [24], fault tolerance [45], software distribution [222], and
intrusion detection [87, 97] – to name only a few. Chen et al. [57] even argue
that operating systems and applications should generally be relocated to system
virtual machines for transparently adding new services below the OS level. In
fact, many IaaS and PaaS offerings in the cloud today are based on system virtual
machines, the ecosystem around Amazon EC2 being only one prominent example.

The architecture of existing hypervisors can be roughly classified into two general
designs, which are illustrated in Figure 2.4:

A type I hypervisor runs directly on bare hardware without the need for an operating
system (see Figure 2.4a). This has the advantage that the extent of the trusted
computing base (TCB), that is, all software that security depends on [147], is
kept small. However, missing the infrastructure provided by an operating system
forces a type I hypervisor to reimplement essential system components such as
physical memory management and (vCPU) scheduling. Furthermore, a type I

16 Background

Type I Hypervisor

Guest OS

Hardware

VM

AppApp

Guest OS

VM

AppApp

Guest OS

VM

AppApp

Drivers

(a) Type I Hypervisor

Type II Hypervisor

Guest OS

VM

AppApp

VMM
Services

Hardware

Host OS

Guest OS

VM

AppApp

Drivers

(b) Type II Hypervisor

Figure 2.4: A type I hypervisor runs on bare hardware. It thus has to come with
own drivers. A type II hypervisor is installed on an existing host
operating system and builds upon the abstractions provided by the OS
to provision resources to virtual machines. Hybrid approaches may
additionally resort to direct hardware access (e.g., through a kernel
module) for controlling hardware-assisted virtualization features.

hypervisor cannot resort to existing drivers, effectively narrowing the choice of
systems that are supported. A popular type I hypervisor is VMware ESXi [266].

A type II hypervisor counters these disadvantages by utilizing a commodity operat-
ing system as its interface to the hardware, for the cost of a much larger TCB (see
Figure 2.4b). In this setup, the hypervisor runs on a par with other processes on
the system [2,38,46]. Research has also been done to optimize the hosting OS for
this scenario [136]. If the VMM makes use of privileged hardware virtualization
features such as Intel VT-x [125] or ARM TrustZone with Hyp mode [32], the VMM
is typically accompanied by a kernel-mode component. Popular representatives
for this are QEMU/KVM [74,139] and VirtualBox [195].

In practice, many hybrids of these designs have emerged. Microsoft Hyper-V [173]
and Xen [35], for instance, run on the bare machine as in type I but always create a
specific privileged virtual machine – called Domain 0 (Dom0) in Xen – which hosts
an operating system for hardware control as in type II. VMware Workstation [49],
on the other hand, dynamically switches between the host OS and the hypervisor.

2.1.2 Conclusion and Terms

Virtual machines lift the concept of virtualization to a higher level by incorporating
multiple resource types into the set of virtual resources. While process virtual
machines are limited to a single user-level application, system virtual machines
create a whole virtual computer system, capable of running operating systems. At
the same time, the level of indirection introduced by virtualization can translate

Background 17

between different APIs, ABIs, and ISAs in the guest and host or provide an anchor
for instrumentation, thereby allowing researchers to collect detailed run-time
information. This makes system virtual machines particularly interesting for
operating system and system security research. In addition, they can improve
the accuracy of application-level studies by including OS invocations, thereby
resembling a more realistic execution environment.

In the remainder of this thesis, we therefore concentrate on running operating
systems and applications in system virtual machines for the purpose of de-
tailed, holistic inspection with a focus on research and development. We use
the terms hypervisor and virtual machine monitor (VMM) interchangeably
and refer to system virtual machines when simply using the term virtual
machine (VM). Based on our implementation, we concentrate on type II
hypervisor technology, although the proposed concepts are equally applicable
to type I hypervisors.

2.2 Virtualization Techniques

The power of virtual machines comes at a high price regarding the complexity
of the virtualization layer. The virtual state description V , the resource mapping
f , and the host state transfer function h reflect this by having to specifically be
designed for each type of resource.

In the following, we divide the virtualization of a computer system into three
major resource types (see Figure 2.5): (a) the processor, (b) the memory hierarchy,
and (c) miscellaneous I/O devices. We take a brief look at the virtualization
techniques commonly used in each area to give an overview of the strengths
and weaknesses of the individual approaches and their resulting applications. In
this thesis, we focus on functional virtualization which is only concerned with
faithful reproduction of the ISA, completely omitting microarchitectural details.

So�ware

Execu�on Hardware

Memory
Transla�onSystem Interconnect

Controllers Controllers

Main MemoryI/O Devices

ISA a

bc

Figure 2.5: We can divide a computer architecture into three major areas: (a) the
processor, (b) the memory hierarchy, and (c) I/O devices.

18 Background

The following explanations on virtualization techniques are laid out accordingly.
The section closes with a case study on QEMU/KVM, the virtualization software
used as a basis for our implementation. The technical background helps to
comprehend the design decisions and implementation details in this thesis. While
the descriptions focus on Intel x86, most concepts are equally applicable to other
modern architectures.

2.2.1 Processor Virtualization

The central processing unit (CPU) is the heart of a computer system and as such,
the processor virtualization is an integral component in each virtual machine
monitor. The task of the VMM is to construct a virtual representation of a physical
processor in software – a virtual CPU (vCPU). The vCPU’s architecture may or may
not match the host processor’s architecture.

Virtual State Description (V) The virtual state description has to comprise all
state that the guest processor holds. This heavily depends on the level of detail
that a CPU model should have. For functional virtualization, this is foremost
represented by the processor’s externally accessible registers. For instance, in
the case of an x86-64 processor V has to maintain, besides others, the general-
purpose registers RAX to R15 as well as the instruction pointer RIP, the flags
register RFLAGS, and the control registers CRx. In addition, V includes CPU
internal information that is necessary to faithfully reproduce the externally visible
behavior – e.g., the current privilege level (CPL).

Resource Mapping (f) The resource provided by a processor is its computation
time. Backing computation time of a guest’s vCPU with physical host resources thus
equates to donating host computation time to this particular vCPU. Irrespective
of the actual method of implementing this, the net effect is always the execution
of guest instructions by one of the host’s processors. This is comparable to an
operating system provisioning computation time to a certain thread by dispatching
it. In fact, some hypervisors map each vCPU to a dedicated thread [139], thereby
delegating vCPU scheduling to the host OS.

Host State Transfer Function (h) Transferring the state of the guest processor
from one time step to the next is equivalent to modifying V in accordance to the
instructions at the vCPUs instruction pointer (IP). The method that a particular
VMM uses to accomplish this task is the major criterion by which the use cases
for this VMM are defined. This is because the processor virtualization greatly
determines the execution speed of the VM and the degree of instrumentation that
can be applied. The choice of the virtualization method also inherently decides if
the VMM is capable of translating between different guest and host ISAs.

Background 19

In the following, we recapitulate the four methods for processor virtualization
proposed in the literature. Although the descriptions remain limited to single-core
virtualization, the techniques can equally be applied to multicore virtualization, for
example, by duplication onto multiple host cores [139] or by multiplexing [260].

Interpretation

To construct a virtual processor the easiest approach is to take a look at how
physical CPUs process instructions and develop a design based on that concept.
To improve the throughput for a given clock rate via instruction-level parallelism,
CPUs divide each instruction into a series of steps, thereby forming a pipeline.
Although in its simplicity not representative of modern CPUs, the classic 5-stage
RISC pipeline illustrated in Figure 2.6 provides a good overview of what phases
each instruction must pass until it retires [112, p. A.5f]:

IF ID EX MEM WB

Figure 2.6: The classic 5-stage RISC processor pipeline: instruction fetch (IF),
instruction decode (ID), execute (EX), memory access (MEM), and
write back (WB) [112, p. A.7].

In the first phase, instruction fetch (IF), the processor reads the current instruction
from the main memory using the address in the IP. To save space and memory
bandwidth, each instruction is encoded in a dense machine specific format as
laid out in the instruction set architecture (ISA). The next stage in the pipeline is
therefore instruction decode (ID), which extracts the operation and its operands
from the encoded representation and reads the CPU’s register file as needed. The
execute (EX) cycle is responsible for performing the actual computation using
an arithmetic logic unit (ALU) for integer and boolean register operations. For
branch instructions, this stage can be used to determine the branch target1. For
memory referencing instructions, the execution stage computes the effective
memory address, for example, by adding a base register and an offset. The actual
memory access is done in the memory access (MEM) stage, whereas the result of
register-register and register-immediate operations is simply forwarded to the
next phase. The processing of the instruction is finalized in write back (WB),
where results are written to the register file.

An interpreter is the simplest software implementation of this procedure (see Fig-
ure 2.7). Its core is the decode-and-dispatch loop which processes one instruction
at a time until a halt condition such as a VM shutdown is met or a virtual interrupt
arrives [240, p. 29ff]. The operations performed in the loop mirror the stages in a

1 With instruction-level parallelism the branch target is often computed early in the decode stage
to reduce wasted cycles where the pipeline is fed with wrong instructions.

20 Background

89c8 MOV EAX,ECX
83e001 AND EAX,0x1
83f001 XOR EAX,0x1
… …

EIP

while (!halt)

ADD()

AND(reg, op)

MOV()

reg &= op;

EIP += 3;

RET()

MEM: -

WB: EAX EIP

Guest Memory
vCPU

Register File

IF: 83e001

ID: AND EAX,0x1

EX: AND(EAX, 0x1)

Dispatch Rou�nesInterpreter Loop

Handle external events

...

EDX
ECX
EBX
EAX
EIP

Figure 2.7: The core of an interpreter is the decode-and-dispatch loop which
processes one instruction at a time. The loop calls dispatch routines
specific to each instruction to perform computations on the guest’s
memory and register file. External events such as interrupts are han-
dled on instruction boundaries.

basic processor pipeline. An important characteristic of interpreters is the use of
dispatch routines to implement the execution cycle. The interpreter assigns each
instruction an individual routine which carries out the necessary computations
on the virtual CPU registers. The appropriate routine is then called from the loop.

To interpret CISC architectures a simple RISC-like design is not sufficient. On x86,
for example, a logical AND instruction is not limited to operate on registers but
can also directly work with a memory operand and an immediate value [125].
The interpreter therefore must be able to read, modify, and write memory in one
instruction. To that end, the fixed structure of the main loop can be relaxed and
the dispatch routines are empowered to load and store guest memory, effectively
merging the MEM and WB cycles into the dispatch routines for greater flexibility.
Another solution is to generate a set of RISC-like micro-operations in a decode front
end just like physical x86 CPUs do [93,125]. Tröger et al. [258] demonstrated
this approach in Bochs [2], a popular interpreter for the x86 platform.

An advantage of interpreters is their simple approach to virtualization, which
facilitates implementation. With the addition of dispatch routines, an interpreter
can be extended to support new instructions in the guest ISA without difficulty.
Since these routines are usually written in a high-level programming language,
the interpreter can be built for any host architecture for which a corresponding
compiler exists. The translation from the guest ISA to a potentially different host
ISA is thus implicitly done by the compiler, making interpretation a portable virtu-

Background 21

alization technique. Interpretation also lends itself to research and development
because the dispatch routines can easily be instrumented to, for example, capture
instruction or memory access traces. In contrast to static binary rewriting [150],
instrumentation can be dynamically turned on or off without prior preparation of
the executed code.

The major disadvantage of interpretation is, however, the slowdown compared to
native execution which quickly exceeds two orders of magnitude [174]. This stems
from the fact that an interpreter has to execute a multitude of host instructions
for each guest instruction. Milhocka et al. [174] demonstrated that some of the
techniques used in silicon such as branch prediction, prefetching, and decoded
instruction caches, are also effective in software, almost doubling the interpreter
performance. They also found that the main loop is responsible for around 50%
of total execution time. In the literature, various methods have been proposed to
reduce the overhead of the main loop, most notably threaded interpretation [240,
p. 37f]. However, even with this technique, overall performance remains low
compared to native execution [174, 238]. For example, interpreting a register
arithmetic instruction such as ADD in Bochs 2.3.7 takes 25 cycles on a Core 2
Duo, while the same operation takes 0.33 cycles2 when executed natively [92].
This is even worse for more complex operations. For instance, a floating point
multiplication takes 175 times the number of cycles.

Dynamic Binary Translation (DBT)

With the aim to reduce the number of host cycles spent on each guest instruction,
dynamic binary translation (DBT) takes a slightly different approach to processor
virtualization than interpretation. Instead of using dispatch routines to work on
the guest state, a binary translator generates for each guest instruction a set of
host instructions that perform an equivalent operation on the guest state, but
which can execute directly on the host processor (see Figure 2.8).

By recompiling multiple guest instructions en bloc, a translator can reduce the
virtualization overhead compared to interpretation. This way, Mimic [168], a full
system simulator for System/370 based on binary translation, requires on average
only 4 host instructions per guest instruction. This is because the host does not
branch to dispatch routines for every guest instruction, but instead executes a
sequential code sequence. This also opens the door for optimizations. If, for
example, consecutive guest instructions work on the same register, the binary
translator can enclose the translation with only two accesses to the vCPU’s register
file. It is also possible to directly map guest registers to host registers [281]. We
therefore can think of the translation result as an optimized version of multiple
concatenated dispatch routines.

2Average number of clock cycles per instruction for a series of independent ADDs in the same
thread. The instruction latency is 1 clock cycle [92].

22 Background

89c8 MOV EAX,ECX
83e001 AND EAX,0x1
83f001 XOR EAX,0x1
… …

EIP

Guest Memory
vCPU

Register File

mov -0x10(%r14),%ebp
test %ebp,%ebp
jne 0x7fffb35c5734

mov 0x8(%r14),%rbp
and $0x1,%ebp
xor $0x1,%rbp
mov %rbp,(%r14)
mov %rbp,0x90(%r14)
mov $0x18,%ebp
mov %ebp,0xa8(%r14)

movq $0x100014,0x80(%r14)
jmpq 0x7fffb35c5728
lea -0x1485301f(%rip),%rax
jmpq 0x7fffb34dc016
lea -0x14853028(%rip),%rax
jmpq 0x7fffb34dc016

Transla�on Block Helper Rou�nes

Read/Write CRx

cpuid()

readVmConfig()

EAX = …
EBX = …

TLB miss

while (!halt)

Dynamic Binary Transla�on

Handle external events
Transla�on
block cache

Prolog

Epilog

Body

...

EDX
ECX
EBX
EAX
EIP

Figure 2.8: A binary translator reduces virtualization overhead by translating
consecutive guest instructions to a set of natively executable host
instructions which directly operate on the guest state. Helper routines
facilitate the virtualization of complex instructions. Translated blocks
are held in a cache to reduce overall translation overhead.

Nevertheless, to keep the complexity of the translator in reasonable bounds and
preserve maintainability, seldom used but hard to translate guest instructions are
usually still realized with support from helper routines [49,168,260]. An example
is the cpuid [125] instruction on x86 which returns processor identification and
feature information and requires reading the configuration of the virtual machine.
Since the generated code resides in the same address space as the VMM, the
translator can invoke a helper routine by simply generating a call to the routine’s
address. The helper routine then naturally jumps back to the translated code on
return.

For a system virtual machine, which runs a full operating system and starts
programs dynamically, possibly even modifying or generating code on-the-fly (e.g.,
self-modifying code or just-in-time compilation), a static binary translation ahead
of time is not feasible. Aggravating this is the code discovery problem [240, p. 52f],
which describes the difficulty inherent to von Neumann architectures to dissect
code from data [65,116]. Therefore, binary translation for system virtual machines
is dynamically done at run time by the hypervisor.

Compared to interpretation, having to perform translation at run time before
being able to execute guest code increases latency and virtualization overhead.
Translations are thus cached for reuse. Since most programs exhibit strong locality
of reference [254, p. 216] and even long-term phase behavior [34,78,145,237],
a translation cache can amortize translation costs. To maintain translation cache

Background 23

coherency under the presence of potential guest code modification, the translator
can either rely on a flush instruction as on SPARC [242], which guest code has
to use to indicate modifications [67], or it has to check memory accesses for
writes to translated code [38,75,281]. This way, the VMM is able to detect stale
translations and evict them from the cache.

The unit of translation is a translation block (TB). A translation block comprises a
set of recompiled guest instructions, the body, and is encapsulated by a prolog
and an epilog that are responsible for the transition between the hypervisor and
the translated guest code, and vice versa (e.g., updating the virtual instruction
pointer on TB exit). The VMM sizes translation blocks based on the concept of
basic blocks as used in compiler construction. A basic block denotes a straight-line
code sequence with no branches in except to the entry and no branches out except
at the exit [112, p. 67]. A translation block deviates from this concept in that it is
determined by the actual execution flow of the vCPU [240, p. 57]: it begins at
the instruction executed immediately after a branch or a jump and ends with the
next branch or jump. This is because the prolog requires that execution always
starts at the beginning of a TB. Furthermore, at the end of a TB conditional
branches represent a natural barrier at which the evaluation of the condition
at run time is required to decide which path the translation should follow. The
same is true for unconditional branches whose branch target is computed at run
time (i.e., a register-relative jump). Although translations can conceptually follow
unconditional jumps with a known fixed target, it is also reasonable to avoid this.
A branch target may be used by multiple code locations and in combination with
a TB’s single entry rule, this can impair translation block reuse.

While the idea of a translation block strictly limits control flow to a single entry
and exit, in practice, a TB can also be exited out of order as part of guest ex-
ception emulation – e.g., when the guest divides by zero or on a fault in guest
virtual memory. In addition, the prolog may introduce further exit paths to abort
execution if necessary. Translation blocks therefore usually possess a single entry,
but multiple exits.

There are also binary translators that build much larger translation blocks by taking
unconditional jumps and defaulting to a predicted branch target for conditional
and register-relative branches, exiting the TB on false prediction [34,61]. While
this is beneficial to reduce costly transitions between the hypervisor and guest
code, it requires online profiling techniques to be effective. This complicates the
translation mechanism and introduces additional overhead.

A simpler approach is translation block chaining [67]. The idea is illustrated in
Figure 2.9. If a translation for a branch target exists, the VMM can connect the two
TBs, thereby directly transferring control from one TB to the next. Conditional
branches generate two exits that connect to different blocks. This saves costly
passes through the VMM just like large translation blocks do. However, chaining

24 Background

VMM
Transla�on

Block
Unconditional

Transla�on
Block

Conditional

Transla�on
Block

Unconditional

Transla�on
Block

Unconditional

True False

find next
TB

(a) Without Chaining

VMM
Transla�on

Block
Unconditional

Transla�on
Block

Conditional

Transla�on
Block

Unconditional

Transla�on
Block

Unconditional

True False

(b) With Chaining

Figure 2.9: Chaining directly connects translation blocks, saving passes through
the virtual machine monitor.

does not remove the overhead of each block’s prolog and epilog and it does not
allow optimizations across basic blocks. Nevertheless, since it brings noticeable
performance improvements, is easy to implement, and can also be applied if large
translation blocks are used, chaining is commonly found in binary translators
[20,34,38,49,67,99,260,281].

A drawback of chaining is that it makes replacement in the TB cache more difficult
because the links create dependencies between blocks. A solution is to leverage
back pointers [240, p. 135f] or to employ a more aggressive cache replacement
strategy that flushes entire cache partitions while at the same time the cache
prohibits interdependence between partitions [240, p. 138f].

A noteworthy property of binary translation is that the handling of external
interrupts gets delayed. Compared to a physical machine, where interrupts can
occur at arbitrary locations in the execution flow, a binary translator checks for
pending events only in the main loop (see Figure 2.8). While this is also true for
interpreters, a binary translator works at the granularity of translation blocks –
i.e., multiple guest instructions. This delay can actually be measured in the guest
and has already been used by malware to protect from inspection by security
analysts [287]. Chaining even amplifies the problem. To avoid this, the TB prolog
can check for pending interrupts and abort execution, or chaining can be actively
broken when asynchronous events are encountered [38]. However, the delay
caused by a single translation block remains, being inherent to binary translation.

To sum up, we can state that binary translation is a powerful alternative to in-
terpretation. It is equally capable of executing system VMs with a different ISA
than the host. Like with interpretation, the guest code can easily be instrumented,
which makes this technique ideal for research and development. Binary transla-
tion generally provides higher performance than interpretation by reducing the
expansion factor of guest to host instructions and allowing optimizations within

Background 25

translation blocks. Nevertheless, binary translation still has considerable overhead
compared to native execution. Rosenblum et al. [223] report a slowdown of 5x
to 10x for their MIPS R4000-based SGI processor translation in SimOS. Similar
results have been published for the MIPS R4000 emulation in Embra [281]. For a
CISC architecture like x86, the translation overhead is even higher. For example,
running a Linux kernel build with binary translation in QEMU 2.6.5 [38] incurs a
slowdown of 20x compared to native execution3.

Direct Execution

To improve processor virtualization performance, we can (1) generate more
efficient translation results and (2) further reduce the overhead that the translation
and the VMM impose. With the restriction that the guest ISA must match the host
ISA, direct execution aims at running a dominant subset of the virtual processor’s
instructions unmodified on the host processor. This minimizes translation costs
and at the same time reduces the expansion factor from guest to host instructions.

In direct execution mode, SimOS incurs a slowdown of 2x [223] compared to
native execution. Adams and Agesen [20] even report an average slowdown of
only 4% for computation-heavy user-mode code in VMware Workstation [49],
while the VM achieves 67% of the native speed when building the Linux kernel.

The key challenge with this technique is to identify which guest instructions
can be executed directly and upon which instructions the VMM must enforce
emulation. In this course, Popek and Goldberg [206] studied the requirements
for a platform to be virtualizable using direct execution. They identified two
important instruction groups:

1. Control sensitive instructions affect the configuration of resources in the
machine such as changing the CPU’s privilege level and altering the memory
configuration, for instance, switching to a different virtual address space
(i.e., writing CR3 on x86).

2. Behavior sensitive instructions do not attempt to change the configuration
of resources but their behavior or result depends on it. An example is the
POPF instruction on x86 which overwrites the flags register with a word
from the stack. In user mode the instruction elides the interrupt enable
flag (IF), whereas in kernel mode the flag is applied. POPF’s behavior thus
depends on the CPU’s current privilege level.

A VMM can virtualize an ISA with direct execution if sensitive instructions are
privileged – i.e., they trap when executed in user mode [206], causing a VM fault.
A hypervisor can leverage this fact by running guest code physically always in

3Phoronix Test Suite 5.2.1 [11], Intel Xeon E5-2630v3 @ 2.40GHz, single-core VM, 4 GiB RAM.
Native compilation restricted with NUM_CPU_JOBS=1 and pinning the benchmark to core 0.

26 Background

user mode – a technique called de-privileging [20]. Under the assumption that
the VMM implements proper memory virtualization (§ 2.2.2) the hypervisor gains
control whenever the guest attempts to access the hardware configuration or
performs operations that would otherwise break virtualization by revealing the
true state of virtualized hardware resources. The VMM tracks the guest’s mode of
operation (i.e., user or kernel) with a shadow bit in the vCPU structure. Similar
to the dispatch routines employed in interpreters, the VM fault leads to the call
of a handler which emulates the specific instruction, respecting the shadowed
mode bit. In addition, the hypervisor registers exception handlers to capture all
exceptions that the direct execution of guest instructions may raise. The concept is
known as classic virtualization or more figuratively trap-and-emulate [20,51,103].

A popular VMM based on trap-and-emulate was CP-67/CMS [172] which imple-
mented a time-sharing system on the IBM System/360 Model 67 for transparent
multi-user access. Similarly, Disco [48] used VMs based on trap-and-emulate
to port commodity operating systems designed for uniprocessors to large-scale
shared-memory multiprocessors by running multiple copies of the OS in parallel.

Both, Model 67 and the MIPS R10000 RISC processor required by Disco, are
predestined to direct execution because all sensitive instructions are privileged
and trap in the hypervisor. Unfortunately, this is not the case for all architectures.
A comprehensive study of the x86 instruction set by Robin and Irvine [126]
revealed 17 critical instructions – i.e., sensitive instructions that do not trap – one
being the POPF instruction already mentioned. This makes x86 not classically
virtualizable. The same is true for ARM [203].

With direct execution, the VM always executes in physical user mode. Therefore,
running user-mode guest code is not a problem since the processor runs at the
expected privilege level and instructions behave identically to native execution
[22]. This is not the case if the vCPU enters kernel mode because the CPU
remains in physical user mode. In consequence, critical instructions may behave
unexpectedly. Kernel-mode code must thus be virtualized as follows:

(a) Identical Binary Translation A possible solution is to dynamically switch
between direct execution and binary translation based on the current state of
the virtual CPU [49]. As a direct execution engine is not capable of cross-ISA
virtualization, DBT can be optimized for this scenario, primarily generating
identical translations [20,49]. However, this requires a rather complicated
use of segment registers to enable execution from within the code cache
while at the same time allowing unmodified memory accesses [49].

Background 27

(b) Paravirtualization A simpler solution is to statically replace occurrences of
critical instructions in the source code of the guest operating system with
explicit invocations of the hypervisor [35,46,82,278]. An obvious drawback
to this technique is that the guest operating system needs to be modified,
which in turn requires access to the source code; an obstacle for commercial
operating systems.

Since trapping is costly, taking 2030 cycles4 for the rdtsc instruction on a Pen-
tium 4 [20], it is also an option to selectively use binary translation to speed up
operations that can architecturally be trapped. Adams and Agesen report 1254
cycles for DBT with helper routines and 216 cycles for in-TB emulation [20]. The
technique has therefore been adopted by various VMMs [49,75,223]. Likewise,
paravirtualization is not just limited to virtualizing critical instructions. The De-
nali Isolation Kernel [278] leverages this approach to extend the ISA with purely
virtual registers and instructions, making certain operations such as idling in the
guest OS more efficient. Disco [48] uses stores and loads on special predefined ad-
dresses to optimize (de-)activation of interrupts and access to privileged registers.
Paravirtualization is also commonly used to reduce I/O virtualization overhead
(§ 2.2.3).

To sum up, we can conclude that direct execution significantly improves virtualiza-
tion speed, making it considerably faster than dynamic binary translation; even for
platforms that are not classically virtualizable. On the flip side, direct execution
limits virtualization to the host architecture. Furthermore, it is inherently less
suited for research than interpretation or DBT because it does not allow easy
instrumentation. It thus provides little information about the workload’s perfor-
mance or behavior [223]. Using direct execution for x86 requires the combination
with binary translation or paravirtualization, which makes it rather complicated
or requires extensive modification of the guest operating system [46].

Hardware-Assisted Virtualization (HAV)

With the addition of special virtualization features to the instruction set architec-
ture, it is possible to efficiently virtualize architectures which are not classically
virtualizable. Hardware-assisted virtualization (HAV) thus improves upon direct
execution in that it does not require binary translation or paravirtualization for
kernel-mode code. But even for architectures that are virtualizable with pure trap-
and-emulate, HAV can simplify the VMM design by providing an explicit interface
for virtualization and taking away some of the burdens from VMM developers
such as manually shadowing processor data structures. Prominent examples of
HAV extensions are Intel VT-x [125] and AMD SVM [21] for the x86 platform,
and TrustZone with Hyp mode for ARM [32].

4rdtsc takes approximately 80 cylces when executed natively on a Pentium 4 [92].

28 Background

Since this thesis is centered on the Intel x86 platform, we will restrict the
following description to the processor virtualization in VT-x and refer to this
particular technology if not stated otherwise. In accordance with the Intel
Software Developer’s Manual [125], we will further use the term virtual
machine extensions (VMX) for the processor and memory virtualization capa-
bilities. Despite the focus on VMX, most of the concepts laid out are equally
applicable to other hardware virtualization extensions.

With direct execution the guest always runs in user mode, thereby enabling
the VMM to trap privileged operations by the guest operating system. HAV
considerably facilitates virtualization by letting the guest OS run at its intended
privilege level. To that end, VMX introduces a new mode of operation which
is more privileged than kernel mode: VMX root mode. This mode enables the
hypervisor to enforce restrictions upon on the guest operating system running in
kernel mode, just like an OS controls processes in user mode.

Figure 2.10 illustrates the basic execution cycle. The hypervisor runs in VMX root
mode. By calling the VMLAUNCH instruction the CPU switches to VMX non-root
mode, thereby starting to execute guest code. If the CPU encounters an exit
condition, it jumps back into the hypervisor. VMX defines 65 exit reasons in
total [125], covering vectored events like interrupts and exceptions as well as
the attempted execution of a privileged instruction in the guest, for instance,
reading or writing a model-specific register (MSR). Unlike with interrupt handlers,

VMX Root Mode

VM entry

H
o
st

VMX Non-Root Mode

G
u
e
st

VM control structure (VMCS)

VM exit

Handle exit reason

Execute guest code

Exit condi�on?

Save host registers
Load guest registers

Trap to hypervisor:
Save guest registers
Load host registers

No

Yes

Figure 2.10: The VMM runs in VMX root mode. A VM entry brings the processor
into VMX non-root mode, thereby switching to the guest. If the CPU
encounters an exit condition (e.g., a privileged instruction), the CPU
leaves the VMX non-root mode, giving the hypervisor the chance to
handle the exit reason. The VM control structure (VMCS) stores the
guest and host CPU states and controls VM execution (figure based
on [262]).

Background 29

a VM exit does not transfer control to a specialized dispatch routine, but instead
always continues after the VMLAUNCH instruction. Entering and leaving a VM is
thus comparable to a classic context switch between different processes in an
operating system. After gaining control, the VMM can retrieve information about
the nature of the exit and perform appropriate steps to handle it. The cycle starts
anew with an invocation of the VMRESUME instruction.

Eminent in this scheme is the virtual machine control structure (VMCS). The
VMCS is organized into four logical groups [125]:

• Guest State Area The processor’s state is saved into the guest state area on
VM exists and loaded from there on VM entries. The VMM can freely modify
this data to, for example, emulate the effects of a privileged instruction.

• Host State Area The processor’s state is saved into the host state area on
VM entry and loaded from there on VM exit.

• VMX Control Fields These fields control the processor’s behavior in VMX
non-root mode. The fields can be divided into execution, entry, and exit
control. This way, the hypervisor can, for instance, configure what conditions
cause a VM exit.

• VM Exit Information To handle a VM exit, the VMM must be able to discern
the precise reason for the transition. The exit information comprises a
specifically encoded integer value and an additional exit qualification whose
format depends on the cause of the exit.

The performance of hardware-assisted virtualization heavily depends on the
cost and the frequency of transitions between the hypervisor and the guest. An
initial comparison between software virtualization and HAV in 2006 showed
mixed results [20]. The main focus of research since then has therefore been to
minimize transition frequency and round-trip cost. While the Prescott CPU still
required 4000 cycles per round-trip, the number has been considerably reduced
to 540 cycles on the more recent Haswell processor [23,233]. The use of tagged
TLBs and extensive address translation caching can further dampen the overhead
of the address space switch on VM exits [171, 288]. At the same time, various
techniques such as second level address translation have been developed which
successfully reduce the exit rate [23,259]. Today, hardware-assisted virtualization
thus achieves near native performance which makes it the prevalent processor
virtualization technology in widespread productive use.

Since the fundamental concept with HAV is still trap-and-emulate, the same restric-
tions in research and development concerning the inability of easy instrumentation
apply.

30 Background

2.2.2 Memory Virtualization

Memory management is one of the fundamental tasks of an operating system.
This includes managing the physical memory, maintaining address translation
structures, configuring mappings, and installing the correct memory configuration
on a context switch. The operating system performs all these actions under
the assumption to have full control over the machines physical memory and
configuration. In a virtual machine, this is a false assumption as the hypervisor
claims ownership of physical resources to be able to distribute or share them
between multiple VMs. In addition, it has to reserve some of the resources for
its own use, effectively hiding them from the virtual machines. Just as with
processors, the VMM thus has to virtualize the memory in the host so as to give
each guest the impression of full control.

In order to comprehend the approaches to memory virtualization relevant for this
thesis, we first briefly recapitulate memory in a non-virtualized environment.

The predominant way of providing access to physical memory in computers today
is by means of virtual memory [94]. When a process uses a memory address the
CPU interprets it as a virtual address and the memory management unit (MMU)
transparently translates the address to the corresponding physical address at run
time – if possible, faulting into the operating system otherwise. Every process has
its own set of virtual addresses. In their entirety, they form the virtual address space
of the process. Depending on the architectural support, various methods exist to
implement address spaces. Examples are base and limit registers, segmentation,
and paging [254, p. 181ff], with paging being the prevalent technique.

In a page-based architecture, the MMU translates addresses in the granularity
of pages, with 4 KiB being a common page size. Each address space possesses
a distinct page table which maps virtual to physical pages [254, p. 195ff]. Each
page table entry (PTE) describes the mapping of a single virtual page. Typical
information in a PTE include [125]:

• Physical Frame Number (PFN) This field provides the index of the target
physical page.

• Present (P) This bit determines if the mapping is valid. If not set, the MMU
raises a page fault when the CPU accesses the corresponding virtual page.

• Protection (RWX) These bits specify access permissions such as read (R),
write (W), and execute (X). A prohibited access causes a page fault.

• Accessed (A) and Dirty (D) The A/D-bits indicate page usage. The MMU
sets the accessed bit when it uses the PTE for translation. If the memory
access is a write, the MMU also sets the dirty bit.

Background 31

BASE

Physical
Memory

++

+

Level 1 Index Level 2 Index OffsetVirtual Address

Level 2
Page Tables

Level 1
Page Table

PFN R W X A D PPTE

PTE

PTE

PTE

PTE

PTE

PFN 0

PFN 1

PFN 2

…

Figure 2.11: The virtual address is split into indices into a two-level page table
and an offset into the physical page. PTEs point to the PFN of the
next page table or to the final physical page, depending on the level.

The virtual address space of a process is usually populated sparsely. In conse-
quence, it is a waste of memory to organize a page table as a linear list of PTEs.
Most entries will not be used as they do not map to physical memory anyway – i.e.,
the present bit is not set. Many architectures such as x86, ARM, and MIPS rather
structure a page table as a multi-level hierarchy of page tables as exemplarily
depicted in Figure 2.11. The MMU splits the virtual address into a set of indices
into page tables (e.g., two on 32-bit x86) and an offset into the target physical
page. PTEs in higher levels point to the physical page that contains the next page
table, whereas PTEs on the last level point to the target physical page. Since
entries in higher levels can be invalid not all page tables need to be allocated,
efficiently reflecting the sparse population of the virtual address space.

As with regular virtual memory, the core idea to virtualize a computer’s memory
architecture is to introduce a level of address indirection, in this case between the
guest and the host. This enables the VMM to freely organize the memory of VMs
in the same way as virtual memory gives operating systems the ability to freely
assign physical memory to processes. The result is that both the process and the
VM get the illusion of having full control of the system’s entire memory. We can
describe V , f , and h as follows:

Virtual State Description (V) V holds the state of each of the pages in the
guest’s physical address space.

Resource Mapping (f) f describes the mapping of guest physical pages to host
memory and (virtual) devices.

Host State Transfer Function (h) h translates reads and writes on guest physical
pages to equivalent operations on the respective host memory.

32 Background

Guest Virtual

Guest
Process

Guest RAM
VMM

Guest Physical Host Virtual

Host RAM

Host Physical

V
ir

tu
al

 M
ac

h
in

e

Figure 2.12: Virtualizing a virtual memory architecture creates four levels of
memory addresses, requiring three stages of translation.

If the guest supports virtual memory, the VMM effectively has to cope with nested
memory virtualization. This gives us a total of four address levels (see Figure
2.12): (1) guest virtual address (GVA), (2) guest physical address (GPA), (3) host
virtual address (HVA), (4) host physical address (HPA).

Goldberg [102] explicitly formalized this additional step in order to stress the
difference between the fault condition f (v) = φ in the translation from GVAs
to GPAs and GPAs to HVAs. A fault on a GVA is a guest page fault and should
eventually lead to a call of the page fault handler in the guest OS. In contrast, a
fault on a GPA is a VMM page fault and should transfer control to the hypervisor.

Depending on the design of the VMM, the HVA and HPA can collapse into a single
address level. A type I hypervisor, for instance, may choose to directly map guest
physical memory to host physical memory, whereas a type II hypervisor may
represent the guest physical memory as an area of regular anonymous virtual
memory in an address space supplied by the host OS. In the latter case, the
translation from a GPA to an HVA can be as simple as adding an offset. At the
same time the VMM delegates the assignment of guest physical memory to host
physical memory to the host OS.

The actual method for implementing memory virtualization is tightly connected
to the technique used for processor virtualization. Considering the frequency of
memory accesses, efficient memory virtualization is at the same time crucial to
the overall performance [20,55,75]. In the following, we describe three standard
approaches to memory virtualization that are relevant to this thesis.

We restrain the description to page-based virtual memory because this model
is ubiquitous in modern architectures. Every approach thus translates (1)
from GVAs to GPAs and (2) from GPAs to host addresses (HAs) – i.e., either
HVAs or HPAs. We further assume a forward multi-level page table hierarchy
as shown in Figure 2.11 for GVA to GPA translation and ignore additional
levels of, for example, segmentation like in x86.

Background 33

Software MMU

If processor virtualization is done via interpretation or binary translation, a natural
and very flexible way to achieve memory virtualization is to not only emulate
the CPU in software but also the memory management unit – i.e., construct a
software MMU [38,260,281]. The interpreter or DBT engine explicitly calls the
software MMU for every memory access in the guest. The software MMU then
translates the guest virtual address to a host address and performs the actual
memory access on host memory.

In order to translate a GVA to a GPA, the software MMU must walk the page
table hierarchy of the guest. Considering that every instruction fetch is a memory
access and on average every third instruction performs a data memory access
[55,121,243,281], performing a page table walk in each of these cases would
be very expensive. Remember that every page table walk itself requires multiple
accesses to guest physical memory, triggering (possibly multi-stage) translations
from GPAs to HPAs. It is thus vital for the performance to avoid page table
walks where possible by caching address translations. In a physical machine, the
translation lookaside buffer (TLB) is responsible for this task, reaching a cache
hit rate of over 99% [201, p. 439], depending on the workload. Software MMUs
consequently copy this design by integrating a software TLB [165,260].

Embra [281] implements a software TLB with a fixed-size 4 MiB table that maps
every possible page in a 32-bit guest virtual address space. On a memory access,
Embra retrieves TLB information from the table using the virtual page number of
the GVA and performs permission checks afterward. If the entry is not valid or
permissions are insufficient, the software MMU calls a helper routine to emulate
the guest page fault exception. Otherwise, Embra combines the HVA from the
TLB entry with the page offset bits of the memory address and initiates the load
or store on the respective location in host memory.

While the approach conceptually offers a 100% hit rate and very fast access
through 1:1-mapping, it is not suited for modeling 64-bit virtual address spaces
due to the resulting table size. However, while in hardware a limited-size but
fully-associative or n-way cache can be installed, comparing the tags of multiple
cache lines in software is expensive [256]. A software TLB is thus often a limited-
size direct-mapped table which uses the page number modulo the TLB size for
line selection [38,260] – a tradeoff between speed, size, and hit rate5.

To optimize for the common case, binary translators inline the whole TLB hit path,
exiting the TB only on a TLB miss (see Figure 2.13). The TLB miss handler is then
a helper routine which performs the walk of the guest page table and updates the
respective TLB entry. If successful, the helper routine returns to the translation

5Average software TLB miss rate in QEMU ranges from 3% to 8% [256].

34 Background

Epilog

Get TLB entry

Host memory access

Get host address

Default TB exit

...

TLB miss exit

...

TLB miss handler

Transla�on Block So�ware MMU

valid?

yes
no

So�ware TLB

Walk guest
page tableupdate

G
u

es
t

m
em

o
ry

in

 h
o

st
 m

em
o

ry

PF

Figure 2.13: The software TLB is a direct-mapped cache for fast address transla-
tion. A valid entry contains the translated host address for a GVA.
While the VMM inlines the common case of a TLB hit, it implements
the TLB miss path with a helper routine. Permission checks in the
TLB hit path are avoided by creating separate TLBs for reads, writes,
and instructions fetches.

block afterward and the CPU can access the desired memory location via the host
address. Otherwise, the handler exits the TB with a page fault (PF) exception.

An additional optimization is to create separate TLBs for reads, writes, and
instruction fetches, each for kernel and user mode [165, 260]. This obviates
the need for an explicit permission check in the TLB hit path. Instead, finding a
valid entry in the corresponding TLB equates to also having the required access
permission.

Nevertheless, the flexibility and ease of instrumentation offered by a software
MMU still come at a high cost. Between 23% and 43% of total execution time in
a binary translator are attributed to operations in the software MMU [55,256].

Shadow Page Tables (SPT)

Whenever the processor virtualization is designed for direct execution, memory
accesses must also be directly executable by the CPU. A software MMU is thus
not an option because it requires explicit invocation. Instead, the CPU has to be
configured to natively translate guest virtual addresses. However, activating the
current guest page table would break memory virtualization because it does not
reproduce the translation from GPAs to HAs and it could give the guest access to
arbitrary host memory.

Background 35

Guest
Virtual

Host
Physical

HP-A
HP-B
HP-C

GV-A

GV-B
GV-C

GV-D

GP-A

GP-B
GP-C

GP-D

Guest
Physical

Guest
Page Tables

Host
Page Tables

(a) Actual Mapping

Guest
Virtual

Host
Physical

Shadow
Page Tables

HP-A
HP-B
HP-C

GV-A

GV-B
GV-C

GV-D

(b) Shadow Page Tables

Figure 2.14: A shadow page table (SPT) merges a guest page table with the per-
VM host page table and can be directly used by the hardware MMU.
Changes must be carefully tracked to keep the SPT up-to-date.

Shadow page tables (SPT) [20] solve this conflict by merging guest page tables
with translations from guest physical memory to host physical memory. The
concept is illustrated in Figure 2.14. Without shadow page tables, the actual
mapping from GVAs to HPAs is accomplished with two page tables6:

1. The guest page table translates from guest virtual to guest physical memory.
It is managed by the guest operating system. There is one such page table
per guest virtual address space (i.e., usually per guest process).

2. The host page table translates from guest physical to host physical memory.
It is managed by the hypervisor. There is one such page table per virtual
machine.

Whenever the guest attempts to install a page table – i.e., set the vCPU’s CR3
register on x86 – the VMM intercepts the configuration and creates a shadow page
table. To that end, the VMM reads the guest page table and creates for each PTE
a shadow page table entry (SPTE) which directly maps to host physical memory.
This essentially eliminates the additional level of indirection. The SPTE is set to
reflect the intersection of the permissions in the source page tables. The VMM
can then install the shadow page table instead of the guest page table and allow
the CPU direct execution. On a page fault, the VMM has to trace back the cause
to either the guest or the host page table and invoke the appropriate page fault
handler.

6For simplicity reasons, we assume a direct mapping from guest to host physical memory. If the
VMM first translates GPAs to HVAs, the shadow page table must also integrate this step.

36 Background

To maintain shadow page table coherency, the VMM is forced to track all changes
to the source page tables and propagate these to the SPT. Since the host page tables
are managed by the hypervisor, modifications to these can be easily forwarded to
the SPT. The guest page tables, however, can be modified by the guest OS at any
time without the VMM taking notice. In practice, three approaches for detecting
changes to guest page tables have emerged [18,35,49,240]:

(a) Trap TLB Invalidations For a PTE change to become apparent to the hard-
ware, an operating system has to make sure that the TLB does not contain
a stale copy of the PTE by invalidating the TLB entry or flushing the whole
TLB. A VMM can trap these operations and synchronize the SPT with the
guest page table.

(b) Write Protection The VMM write-protects all guest physical pages in the
host page table that contain guest page tables. This way, the write protection
is mirrored in the shadow page table and attempts by the guest to modify
the guest page table lead to a VMM page fault. The hypervisor can then
emulate the modification and propagate it to the SPT. In contrast to the first
approach, this method allows to also track changes to guest page tables that
are currently not active and for which the guest OS will not invalidate the
TLB. Consequently, the hypervisor can cache and reuse SPTs.

(c) Paravirtualization The guest OS explicitly informs the hypervisor of modi-
fications with the help of hypercalls. This approach is much simpler and
faster but requires the guest to be adapted for memory virtualization.

An additional challenge with SPTs concerns the coherency of the accessed and dirty
bits in the guest page table. When the MMU uses a PTE for address translation
it sets the A/D-bits as appropriate. With shadow page tables, the MMU updates
the A/D-bits in the SPT instead of the guest page table. The VMM thus has to
propagate the A/D-bits back to the guest page table so that page usage information
is available to the guest OS.

Although shadow page tables have originally been developed for the use in same-
ISA virtualization, there are also research projects that have successfully applied
the technique to cross-ISA virtualization, which typically suffers from the slow
performance of a software MMU [55,270]. However, since the approach is based
on the premise that the host virtual address space can accommodate the guest
and provide extra space for the DBT engine and data, a working prototype has
only been demonstrated for 32-bit guests on 64-bit hosts.

While shadow page tables allow direct execution of guest instructions, they are
still a major performance bottleneck. Agesen et al. state that for many workloads
SPTs are responsible for as much as 90% of the guest exits with HAV [23]. This
is because page faults always trap into the hypervisor even if they can and have
to be handled by the guest OS. In an early study, Adams and Agesen even found

Background 37

that for workloads that perform much I/O, create processes, or switch contexts
rapidly, pure software virtualization with DBT and software MMU outperforms
HAV with SPTs [20]. The authors attribute this to the high exit rate and PTE
synchronization costs of SPTs.

Second Level Address Translation (SLAT)

The primary challenge with memory virtualization is that the hardware does not
natively support the additional level of address indirection between the guest
and the host. Software MMUs solve this by leaving the hardware MMU out of
the virtualization process, performing the translation of guest virtual addresses
entirely in software. Shadow page tables move the address translation from
GPAs to HPAs to the construction time of the page tables, allowing final address
translation in hardware. However, the reduction step induces high overhead due
to page faults and the need for constant synchronization.

The focus of CPU manufactures has therefore been to improve memory virtualiza-
tion performance for hardware-assisted virtualization by supporting two levels of
address translation natively [21,32,125]. Figure 2.15 exemplarily illustrates the
concept. In addition to the guest page table, the VMM configures a host page table
which translates from GPAs to HPAs. Intel refers to this page table as extended
page table (EPT) [125]. To make the EPT visible to the hardware the hypervisor

Guest BASE

Host Physical
Memory

++

+

Level 1 Index Level 2 Index OffsetGVA

Guest Level 2
Page Tables

Guest Level 1
Page Table

EPT BASE Extended Page Table (EPT)

HPAGPA

PTE

PTE

PTE

PTE

PTE

PFN 0

PFN 1

PFN 2

…

Figure 2.15: The hardware MMU natively supports two levels of address transla-
tion. For every guest physical address, the MMU performs a walk of
the extended page table (EPT), retrieving the host physical address.
A single guest page table walk thus requires multiple EPT walks.

38 Background

configures the EPT base pointer in the virtual machine’s VMCS, while the guest OS
is free to install the guest page table using the conventional control register (e.g.,
CR3). Whenever the guest then uses a GVA, the hardware MMU translates the
address to an HPA without intervention from the VMM. Since each of the levels in
the guest page table hierarchy uses guest physical addresses, the hardware MMU
has to walk the EPT multiple times per guest page table walk7. Modern processors
therefore incorporate a plethora of page table structure caches to successfully
mitigate the cost of TLB misses in most cases [171].

A major improvement of EPTs over SPTs is that the hardware MMU is capable of
automatically vectoring page faults to the correct page fault handler, depending on
whether the fault is caused by a violation in the guest page table or the extended
page table – i.e., an EPT violation. This drastically reduces the VM exit rate [23],
effectively eliminating VMM interposition from the management of guest page
tables. At the same time, the EPT allows the hypervisor to configure protections
on guest physical pages to, for example, transparently track dirty pages [72] in a
guest-agnostic way.

Due to the high degree of performance, ease of use, and the flexibility of using
the EPT to transparently implement advanced VMM features, second level ad-
dress translation has become the standard method for memory virtualization in
productive use. Just like hardware-assisted virtualization, the tight hardware
integration, however, makes SLAT less suited for research and development as
memory accesses cannot be easily instrumented [233].

2.2.3 I/O Virtualization

Besides the virtualization of processors and main memory, the virtualization of
I/O devices is the third major pillar of every virtual machine. The decoupling of
the logical from the physical device enables time and space multiplexing as well as
flexible mapping of I/O resources. The hypervisor has to handle the full range of
devices making up or connecting to a computer such as disks, network adapters,
and human interface devices but also interconnects like PCI. This is where a great
amount of the complexity in system VMs originates from compared to process
virtual machines. The complexity is rooted in the diversity of device types and the
ways these devices are interfaced. At the same time, some devices such as graphics
adapters or high-speed network interfaces have high performance requirements,
requiring a low virtualization overhead (e.g., latency) to be effectively used in a
virtual machine. As a result, the type of device eventually determines the method
of how it can be practically virtualized and presented to a virtual machine (i.e.,
V , f , and h).

7Contrary to what is shown in Figure 2.15, EPTs are only supported for 64-bit address spaces
and consequently have four instead of just two levels.

Background 39

To get a better grasp on the spectrum of I/O devices in a VM, we can classify
devices into the following three categories [240, p. 404f]:

• Dedicated Devices This class comprises devices that are solely dedicated to
a certain virtual machine. The VMM does not need to employ a mechanism
for sharing such a device with other virtual machines or the host. A dedicated
device may be entirely virtual (e.g., a network adapter for a virtual network
between VMs) or it may correspond to a particular physical device. In the
latter case, I/O requests can bypass the hypervisor, allowing performance
comparable to native operation.

• Partitioned Devices For a partitioned device, the VMM dedicates a certain
amount of a device’s resources to a particular virtual machine. The hypervi-
sor may, for instance, split the storage space of a disk into several partitions
and assign them to VMs. In contrast to a fully dedicated device, the VMM
has to intercept I/O requests so that they target the right partition.

• Shared Devices Some devices can conveniently process requests from mul-
tiple independent sources. Network adapters are an example for this. While
each virtual machine gets its own virtual network adapter, the physical
network adapter in the host is shared on a per-request basis, with the hy-
pervisor routing packets between VMs and the physical device. A subclass
of shared devices are spooled devices such as printers.

With the hypervisor being in the interposition between the hardware on the one
side and the virtual machine on the other side, the hypervisor has to (1) control
the physical devices (back end), (2) construct a virtual replicate of each device
and present it to the VM (front end), and (3) translate requests between these
two endpoints.

A type II VMM relieves itself from the necessity to actually drive the physical
devices in the back end as it employs a host operating system for this task. This
way, it can build on the abstractions exported by the OS. An intuitive example
is the use of the host OS’s file system. The hypervisor represents the virtual disk
as a regular file instead of using whole disks or disk partitions which it has to
manage on its own [49]. While this makes type II hypervisors more flexible
and increases the range of supported hardware, I/O requests have to traverse
additional layers of abstraction. Consequently, I/O performance can be worse than
in type I hypervisors, which interface physical devices directly [222,247,265]. The
control of physical devices for entirely virtual devices is obviously not required.
However, this does not obviate the need for a back end component; a virtual
network adapter, for instance, still has to transmit packets across virtual machine
boundaries to other adapters.

The virtual representation of a device in the front end can be constructed so that
it complies with the hardware interface specification – i.e., it faithfully mirrors

40 Background

all device registers and device memory. The guest operating system then uses
the same mechanisms to communicate with the device as on a physical machine,
namely memory-mapped I/O (MMIO) and port-mapped I/O (PMIO):

The physical address space in a real computer is not solely determined by main
memory, but merely represents a composition of RAM and various devices’ memory
and registers (e.g., graphics memory, registers of controllers, etc.). Thus, in
addition to what is generally perceived as virtual memory, another level of memory
virtualization can be found at the layer of the physical address. Communicating
with memory-mapped devices then boils down to ordinary reads and writes in
MMIO regions. PMIO, in contrast, often uses specific instructions for performing
I/O (e.g., the IN and OUT instructions on x86 [125]) and targets a different address
space than the general physical one. In any case, the device may report events to
the operating system by setting a specific result register on which the CPU has to
poll, or it fires an interrupt.

A virtual machine replicating the hardware interface thus has to support MMIO
and PMIO as well as interrupts, including the implementation of a virtual interrupt
controller. Whenever the vCPU accesses an MMIO or PMIO address the VM has
to trap into the hypervisor. For a hardware-assisted virtual machine, this can
be accomplished by invalidating the pages of MMIO regions in the EPT so that
accesses cause a VMM fault. In addition, the VMCS is configured to trap PMIO. A
binary translator, on the other hand, can inspect the physical address at run time
and route the access appropriately. PMIO instructions are translated to invocations
of corresponding helper routines. This way, the request eventually reaches the
back end driver, where it interacts with the respective physical device or the host
OS (e.g., to perform a read in a virtual disk file). The VMM signals the completion
of the I/O request to the VM by changing the value of a device register in the
front end and by potentially injecting a virtual interrupt into the VM.

While this approach makes the virtual device compatible with native drivers in
an unmodified guest OS, a hardware-compliant device model is rather complex
to implement. Furthermore, because the hardware interface has generally not
been designed to support efficient virtualization, there is considerable overhead
in I/O operations. The legacy IDE interface, for example, uses 8-bit port I/O to
communicate with the disk controller, requiring repeated traps into the VMM for
transmitting the sector number, buffer address, and length [265].

An alternative is to implement a paravirtualized device model where the front
end uses a hypercall-based shared-memory interface, optimized for efficient I/O
virtualization [35]. Special guest drivers add the support for such an interface
without the need for adaptation of the guest operating system [136]. Nevertheless,
a generic hardware interface is usually still available to support the installation of
guest operating systems and facilitate the guest OS boot phase, where paravirtu-
alized drivers are not loaded yet.

Background 41

A drawback of a paravirtualized interface is that it is specific to a certain hypervisor.
In response to this, a standardized interface between device front ends and back
ends has been published under the name Virtio [226].

Besides the selection of the device model, numerous other techniques have been
developed to improve virtual machine I/O performance. Intel released a CPU
feature called APICv [125,193], which virtualizes the interrupt-related states and
APIC registers in the VMCS. This removes the need to emulate the APIC in software
when employing hardware-assisted processor virtualization. Similar solutions
have also been introduced by other hardware vendors such as AMD [122] and
ARM [73]. With single-root I/O virtualization (SR-IOV) [202] physical devices
natively support virtualization by exporting virtual instances. The hypervisor
can treat these as dedicated devices, thereby removing VM exists for I/O reads
and writes. Direct Interrupt Delivery (DID) [259] combines SR-IOV and APIC
virtualization to directly deliver interrupts to the guest, effectively eliminating
VM exists due to I/O operations.

2.2.4 Conclusion and Terms

The architecture of a system virtual machine is defined by the techniques employed
for the virtualization of the processor, the main memory, and I/O devices. While
different virtualization approaches can be used in each field, they are strongly
interwoven in practice, forming three general types of system virtual machines:

Processor
Virtualization

Memory
Virtualization

I/O
Virtualization

Examples

Software
Interpretation,
DBT

Software MMU
Software
Virtual Devices

Bochs [2],
QEMU [38]

Direct Execution
Direct Execution,
DBT

Shadow
Page Tables

Software
Virtual Devices

VMware Work-
station [49]

Hardware
Hardware-
assisted

Extended
Page Tables

Software
Virtual Devices,
SR-IOV, APICv

Hyper-V [173],
KVM [139]

Table 2.1: Overview of System Virtual Machines

Software techniques for system virtualization provide the best support for cross-ISA
virtualization and transparent instrumentation. They therefore lend themselves
to research and development, where a detailed insight into the execution of
a system is required. However, the flexibility provided by software solutions
comes at a high performance cost, degrading execution speed by up to multiple
orders of magnitude compared to a native installation. Furthermore, although
software techniques are designed to mimic hardware behavior, they always remain
approximations of the true hardware implementations. Besides the change in
timing, a study by Martignoni et al. [167] revealed thousands of deviations in

42 Background

Interpreta�on
Dynamic Binary

Transla�on
Direct

Execu�on
Hardware-assisted

Virtualiza�on

So�ware MMU
Shadow

Page Tables
Extended

Page Tables

~100x ~20x ~1x~2x

So�ware Virtual Devices
SR-IOV
APICv

Instrumenta�on Capabili�es

Speed

R
ealis�

c B
eh

avio
r

A
p

p
ro

xi
m

at
ed

 B
eh

av
io

r

Figure 2.16: Software techniques for system virtualization provide the best sup-
port for instrumentation, but suffer from slow virtualization per-
formance and approximated system behavior. Hardware-assisted
virtualization offers the best performance and realistic behavior, but
little instrumentation capabilities.

the behavior and support of instructions, exceptions, and the computation of
CPU flags in popular software virtual machines. These deviations are visible to
the guest and can thwart the inspection of applications in the VM [212, 287]
and ultimately question the accuracy of results obtained from a software virtual
machine.

Conversely, hardware-assisted virtual machines on the other end of the spectrum
offer near native performance as well as realistic timing and execution behavior.
However, they achieve this by removing software interposition where possible,
which in turn deprives hardware virtual machines of the capability of detailed
and flexible instrumentation, creating a dilemma for researchers and developers.

In the remainder of this work, we will use the term emulation to denote the
execution within a software virtual machine (i.e., interpretation, DBT, software
MMU, etc.) and differentiate it from the execution within a hardware-assisted
virtual machine (i.e., HAV, EPTs, etc.).

2.2.5 Case Study: QEMU/KVM

QEMU [38] is a popular open source type II hypervisor with frequent use in
research and development. QEMU can be configured to emulate a process virtual
machine or a system virtual machine with support for a wide range of guest
and host architectures, including Alpha, ARM, x86, PowerPC, MIPS, and others.
The system virtual machine comes with a broad set of emulated virtual devices,
allowing to set up a rich execution environment. With Kernel-based Virtual
Machine (KVM) [139], a Linux kernel module allowing privileged access to
hardware virtualization extensions, QEMU can be seamlessly extended to run
hardware-assisted system virtual machines. Selecting between the integrated

Background 43

AppApp

Hardware

Host OSDrivers KVM

QEMU
Process

Guest OS

VM
HW-assisted

��Per-vCPU Thread

Extended Page Table

Guest Physical Memory
Mapping

So�ware Virtual APIC

��Main Thread

��I/O Thread

QEMU
Process

Guest OS

VM
Emula�on

AppApp

FS

User
Mode

Kernel
Mode

Virtual Disk
Files

Virtual Devices

Figure 2.17: Each virtual machine receives its own independent QEMU process
running on a host OS. While emulation (left) runs entirely in user
mode, hardware-assisted virtualization (right) uses Kernel-based
Virtual Machine (KVM). In any case, QEMU organizes and maps the
guest physical memory and manages virtual devices.

emulation engine and KVM is as simple as adding the −−enable−kvm command
line argument, which instructs QEMU to hand over a great part of processor
and memory virtualization to KVM. This versatility makes QEMU particularly
interesting in the scope of this thesis, where we aim to combine hardware-assisted
virtualization and emulation to a fast but flexible full system analysis platform.

Being a type II hypervisor, QEMU runs as a regular user-mode process on top
of a host operating system. Every instance of QEMU runs a single independent
virtual machine. The lifetime of a virtual machine thus corresponds to the lifetime
of the respective QEMU process. There is no central control service such as the
configuration store in Xen [35], which simplifies the overall design.

QEMU processes that have hardware-assisted virtualization activated share the
KVM kernel module but receive distinct instances of the kernel-level data structures
representing a virtual machine. QEMU communicates with KVM through I/O
controls8. It accesses the /dev/kvm device file to instantiate a new virtual machine
[139]. KVM then creates additional device files to handle requests directed to a
particular VM or vCPU [138].

To control the execution of the virtual machine, each QEMU process offers a
command line interface called QEMU monitor. It can receive instructions from
the user at run time, for example, to suspend or resume the VM. The monitor is
driven by the main thread.

8An I/O control (ioctl) is a system call performed on special files in the operating system to trigger
device-specific actions beyond the semantic of read and write [254, p. 771]. An ioctl comprises
a control code, identifying the requested operation, and a set of operation-specific arguments.
The kernel vectors the ioctl to the handler function of the module that created the device file.

44 Background

Processor Virtualization

Latest versions of QEMU create one host thread for every virtual processor core,
irrespective of whether emulation or hardware-assisted virtualization is used9.
The virtual CPUs are thus subject to the scheduling in the host operating system,
however, preemption is disabled as long as the vCPU thread is in VMX non-root
mode.

The emulation mode in QEMU uses a dynamic binary translator, called Tiny Code
Generator (TCG). Translation blocks are based on basic blocks only. So TCG
does not perform translations across jumps or branches. However, TB chaining
is employed to improve emulation performance. Since QEMU supports a wide
range of guest and host architectures, implementing an n : m translation engine
would be cumbersome. Instead, QEMU implements a two-stage pipeline which
translates guest code into a RISC-like intermediate language first. In the second
phase, the intermediate language is then translated to the host architecture. This
effectively decouples the guest and host architectures and, in addition, creates an
ISA-agnostic environment to apply optimizations and instrumentation.

QEMU is geared toward high execution performance. To achieve this, the trans-
lator makes use of various optimizations. For example, while a physical CPU
computes flags (e.g., overflow, carry, zero, etc.) instantaneously, QEMU postpones
flag computation to the time they are needed – for instance, in a conditional
jump or when the vCPU’s flags register is pushed onto the stack [38]. Another
optimization is the lazy update of the instruction pointer. Instead of writing the
IP after every instruction, only a single update is made at the end of a TB. As with
most translators, interrupt delivery occurs at the boundary of TBs only [287].

While these and other optimizations equip QEMU with one of the fastest execution
engines, this does come at a cost. QEMU lacks support for an accurate instruction
counter, there is no instruction or memory tracing facility (not even an easy to
use hooking facility as provided by Bochs [2]), the emulation cannot be extended
with a timing model such as in Simics [163] or gem5 [41], and according to
Martignoni et al. [167] QEMU suffers from numerous deviations in the execution
behavior compared to a physical CPU.

When QEMU runs with KVM enabled, the entire emulation engine lies fallow and
processor virtualization is handed over to KVM. For this purpose, a vCPU thread
enters the KVM kernel module with an ioctl on the corresponding vCPU’s device
file. In the kernel, the general execution flow is comparable to what is depicted in
Figure 2.10. However, if an exit from the guest cannot be handled in KVM (e.g.,
an MMIO access), the vCPU thread returns from the ioctl with a respective error
code and leaves solving the situation to the user-mode QEMU process.

9The version used in this thesis employs only one host thread in emulation mode and switches
between virtual CPUs based on a round-robin scheme.

Background 45

Memory Virtualization

QEMU organizes the mapping of MMIO regions and RAM in the guest physical
memory as a directed acyclic graph of memory regions (see Figure 2.18). A
memory region associates a range of guest physical addresses to RAM, ROM, or
MMIO. Areas that hold actual memory rather than device registers are backed by
RAM blocks. A RAM block is an allocation of host virtual memory in the address
space of the QEMU process. The PC.RAM block represents the guest’s physical
memory, allowing guest reads and writes directly from within the QEMU process
with regular memory operations. This also reduces the translation from GPAs
to HVAs to the addition of an offset. Further RAM blocks are allocated for the
BIOS, device ROMs, and video memory. Accesses to MMIO regions are routed to
handlers in the virtual devices.

The layout of the guest physical address space is managed by QEMU even if KVM
is enabled. However, KVM replicates the mapping in the extended page table –
or the shadow page table in legacy systems – to make the memory accessible in
hardware-assisted execution. To that end, KVM mirrors each required memory
region from QEMU in a data structure called memory slot. Since the virtual address
space of QEMU and thus also the memory of the virtual machine is subject to the
memory management of the host operating system, KVM provides callbacks for
notifications of paging operations governed by the host OS. This way the extended
page table remains coherent.

Memory Regions

Guest Physical AS
0x00000000–0xffffffff

RAM
0x00000000–0x7fffffff

VGA Low Memory
0x000a0000–0x000bffff

ROM
0x000c0000–0x000dffff

ISA BIOS
0x000e0000–0x000fffff

VRAM
0xfd000000–0xfdffffff

VGA MMIO
0xfebf0000–0xfdffffff

APIC, HPET, BIOS...
0xfec00000–0xffffffff

PC.RAM (2 GiB)
0x00000000–0x7fffffff

PC.BIOS
0x80000000–0x8003ffff

PC.ROM
0x80040000–0x8005ffff

VGA.VRAM
0x80060000–0x8105ffff

VGA.ROM
0x81060000–0x8106ffff

RAM Blocks

Figure 2.18: The guest physical address space is a composition of RAM, ROM,
and MMIO regions. While RAM and ROM areas are backed by actual
host memory through RAM blocks, MMIO regions cause a VM exit
and the hypervisor routes the access to the respective virtual device.

46 Background

I/O Virtualization

To asynchronously perform I/O operations, for example in the context of direct
memory access (DMA), QEMU maintains a dedicated I/O thread. When a vCPU
thread accesses a device register to issue an I/O operation, the access causes a
VMM fault (EPT violation). The vCPU thread then exits the KVM kernel module
because it is unable to handle the exit reason. In user mode, QEMU directs the
execution to the virtual device which creates an asynchronous I/O request. This is,
for instance, a read of the virtual disk that the device implementation translates to
a corresponding file system read (see Figure 2.17). Meanwhile, the vCPU thread
can continue execution of guest instructions. When the I/O operation completes,
the I/O thread kicks the vCPU thread out of the guest to inject a virtual interrupt.

Since a transition from VMX root mode to user mode in VMX non-root mode is
a long way, KVM provides an own implementation of some devices which are
accessed very frequently – in particular the APIC. This concept has already been
successfully used in other hypervisors [247].

In research and development, it is often necessary to maintain a read-only virtual
disk image so that repeated experiments always start with exactly the same system
configuration. QEMU supports this mode with the −snapshot command line
argument, which redirects disk writes to a temporary memory overlay that QEMU
dismisses when the VM terminates.

2.3 Checkpointing

An advantage of virtual machines is the decoupling of the system state from the
physical hardware. This allows the VMM not only to monitor but also to save the
live state of a virtual machine in a checkpoint [57,222]. Based on this checkpoint,
the VMM can restore the virtual machine at a later time, potentially even on a
different host. Virtual machine checkpoints are therefore the foundation for many
technologies that make virtual machines so useful in the first place. Examples
are VM migration [44,66,189,230,282] to optimize the load in and across data
centers or to balance the availability and cost in the IaaS spot market [236], VM
replication for fault tolerance [72,253,261], debugging and forensics [137,252],
and fast spawning of virtual machines [146, 264]. Checkpointing is also a key
technology in our method for acceleration of functional full system simulation.

To successfully restore a virtual machine a checkpoint must comprise all volatile
state. This can be broken down into (1) the state of all virtual devices (e.g., CPU
registers), (2) the complete contents of the guest physical memory, and (3) the
contents of storage media. If the virtual machine uses a read-only disk image,
the latter may be reduced to the modified sectors. This usually makes the guest
physical memory the largest item [189].

Background 47

The difficulty in taking a checkpoint is that the VMM has to capture all this data in
a way that creates a consistent image of the virtual machine at a defined point in
time. The simplest approach is to stop the VM for the duration of the checkpoint
so that no modifications can occur. Afterward, the VM can resume execution.
This method is known as stop-and-copy (SnC) [66]. An obvious drawback is the
long suspension time immanent to the concept in which the virtual machine
may not provide services. Taking a checkpoint with stop-and-copy can disrupt a
virtual machine up to multiple seconds [66]. Kangarlou et al. [134], for example,
measured 8.5 s for a small guest with only 600 MiB of RAM.

This, however, is only one metric to characterize a checkpointing solution. A more
comprehensive evaluation comprises the following parameters (based on [296]):

• Downtime The duration in which the virtual machine is suspended to
retrieve a consistent image. Services are unavailable during this phase. A
downtime below 100 ms is generally not perceived by humans [178] and
does not break a virtual machine’s network connectivity [72].

• Performance Degradation The slowdown of the virtual machine caused by
any asynchronous operations or maintenance of metadata for the purpose of
checkpointing. This metric may be measured as a change in, for example, the
run time (kernel build) or the number of transactions per second (database).
This may also be more generally referred to as probe effect – the divergence
in execution with and without checkpointing.

• Checkpoint Time The total time to create and save or transmit a checkpoint.

• Checkpoint Size The total amount of data saved or transmitted.

• Host Overhead The additional CPU and memory costs on the host.

Over the years, extensive research has been invested to improve the performance
of checkpointing solutions (e.g., reduce the downtime) and adapt the technology
to various applications. Different optimization techniques can be applied to tailor
the characteristics of the checkpointing mechanism to the scenario at hand.

In the following, we take a brief look at commonly used approaches. Al-
though we focus on the guest physical memory, the same techniques apply to
secondary block storage such as disks. For simplicity, we will refer to guest
physical pages simply as pages.

2.3.1 Pre- and Post-Copy

One of the most frequent scenarios where checkpointing technology comes to
action is the migration of virtual machines between different physical hosts. Since
the migration should usually be transparent to users of the virtual machine, the
most important metric in this scenario is the downtime.

48 Background

The prevalent migration technique in hypervisors today is pre-copy [255]. Origi-
nally designed to migrate single processes, it has found its way into virtual machine
migration [66,189]. The core idea is to split the migration into two major phases:
In the first phase, the VMM asynchronously copies the guest physical memory to
the destination host. During this stage the virtual machine is still running and
able to modify memory. On completion, pre-copy repeats the operation, but only
saves the guest physical pages that have been modified during the last iteration10.
The process loops for several rounds. While in the first round all pages are saved,
the number of pages per iteration decreases and eventually converges to the
write working set (WWS) [66] of the virtual machine. This is usually considerably
smaller than the entire guest physical memory. The algorithm enters the second
phase after a certain number of rounds has been reached or the number of modi-
fied pages falls below a threshold. The virtual machine is then suspended and the
state of devices (e.g., CPUs) as well as the residual pages are synchronized. The
execution can afterward be resumed on the destination machine. By migrating
to a fake target on the same host, the technique can also be used to take local
checkpoints of a virtual machine [54,134,252].

Pre-copy is effective in reducing downtime compared to stop-and-copy. However,
the downtime is highly dependent on the page modification rate of the workload
because the rate determines the number of pages in the last round. Clark et al. [66],
for instance, report 60 ms for a popular game server, 210 ms for SPECweb [15],
but 3.5 s for a custom memory stress tool. Nathan et al. [188] measured 28 ms
for a file server, 35 ms for RUBiS [13], but 380 ms for a Linux kernel compile.
Especially memory intensive applications such as HPC workloads, where memory
pages are faster dirtied as they can be transferred over the network, have been
reported to suffer from downtimes of multiple seconds [123]. This is even the
case for VMs as small as 156 MiB of RAM [158].

Pre-copy trades a higher total migration time as well as a higher total amount
of transmitted data for a lower downtime. Since it asynchronously copies and
transmits memory, it can also noticeably degrade the performance of the virtual
machine through memory and network contention [123]. In consequence, various
pre-copy approaches apply dynamic rate-limiting [44, 66, 188] or adjust the
termination criteria based on the page modification rate to initiate the stop-and-
copy phase when no further reduction in downtime can be expected [123,282].
In this process, performance models of pre-copy migration aid in predicting the
non-trivial dynamics [181,186].

Another optimization targets the order in which dirty pages are transferred. Due
to spatial locality, it is likely that around dirty pages a cluster forms that will
also be modified in the near future. Clark et al. [66] therefore copy pages in

10Dirty pages are detected by write-protecting guest physical memory. An attempt to modify a
page triggers a VMM page fault which marks the page as dirty (e.g., in a dirty bitmap) and
grants write permission again. See Chapter 6 for a discussion of dirty logging methods.

Background 49

pseudo-random order to reduce page re-transmits. Svärd et al. [251] reorder
pages by assigning page priorities, where less frequently modified pages receive
higher priority and are copied first. Moghaddam et al. [181] employ a memory
change probability density function. An effective alternative to reordering is to
skip saving pages altogether for the iterations in which they are hot [187,188].

Post-copy [113] immediately stops the source VM and activates a copy of the virtual
machine on the destination host without having transferred the memory state
first. Instead, the copy operation runs concurrently with the resumed execution
in the target VM. If in this course the destination host accesses a missing page,
the target VM experiences a VMM page fault and the hypervisor retrieves the
respective page from the source VM.

In contrast to pre-copy, post-copy transfers every page only once, reducing total
migration size. Since post-copy immediately moves the execution to the des-
tination host, the technique is well-suited to quickly relocate VMs on sudden
load peaks [114]. This, however, comes at the cost of degraded performance
due to demand paging. To reduce page faults, Hines et al. propose an adaptive
pre-paging of frequently accessed data [113]. A similar technique is used in VM-
FlockMS [27] to facilitate an early application resume. Jettison [40] can tolerate
the cost of demand paging because it is specifically designed to consolidate idle
virtual machines, which intrinsically generate only a few page faults.

Since post-copy is a pure migration technique, it cannot be used to create local
checkpoints.

2.3.2 Data Exclusion

Pre- and post-copy perform a major part of the checkpointing work concurrently
with the execution of the virtual machine. Both approaches thus improve the
downtime because they considerably reduce the amount of data that needs to be
saved while the VM is suspended. This method can be extended by identifying
pages in guest physical memory that do not need to be saved for a successful restore
of the virtual machine in the first place. These pages can then be excluded from
the checkpoint entirely to reduce the checkpoint size and thereby the downtime.
To what extent data exclusion comes with an increased total checkpoint time or
induces run-time overhead depends on the method to detect and track eligible
pages for exclusion.

Natural targets for memory exclusion are free pages – i.e., guest physical mem-
ory that is not assigned to processes or the kernel – and the file system cache,
together taking up on average between 50% and 80% of the physical mem-
ory [70, 198]. Therefore, excluding these pages from checkpoints has been
extensively researched [26,62,70,113,131,143,180,198].

50 Background

Hines et al. [113] employ a ballooning driver in the guest operating system, which,
when invoked by the checkpointing mechanism, allocates as much memory as
possible, forcing the guest OS to use up all free pages and eventually evict pages
from the file cache. Since these pages are allocated to the ballooning driver
and hence are not used by any other component in the guest, the checkpointing
mechanism can safely ignore them. A drawback of this and other paravirtual-
ized methods [26, 117, 198] is that they require a specifically prepared guest.
Geiger [132] infers the semantic of guest physical pages without guest interven-
tion by tracking disk accesses, page faults, and page table updates11. Park et
al. [198] detect cache pages by intercepting I/O in the hypervisor but require
paravirtualization to identify free pages. A similar technique is utilized by Jo
et al. [131] to leverage shared storage in live migration. The use of debugging
information has also proven effective in closing the semantic gap and has been
expedited by multiple research projects [62,70,143]. Koto et al. [143] used this
method to additionally exclude empty slab caches in the Linux kernel.

Whenever the use case demands periodic checkpointing, for example, to allow
rollback recovery on system failure, the checkpointing mechanism can leverage the
fact that unchanged data has already been saved by a previous checkpoint. This
data can consequently be excluded from the current checkpoint. The concept is
known as incremental checkpointing [204] because each checkpoint contains only
the modifications since the last one. This makes the performance of incremental
checkpointing highly dependent on the workload (i.e., the modification rate) and
the interval length. The technique is very similar to the iterative copy rounds in
pre-copy but differs in that each pre-copy round does not represent a consistent
delta of the guest’s physical memory image.

King et al. [137] create an incremental checkpoint every 25 s to enable time-
traveling and reverse debugging. Remus [72] and Paratus [86] utilize incremental
checkpointing to periodically synchronize a backup host for high availability. The
checkpointing interval in Remus is in the range of 25 ms to 100 ms, which is why
it comes with a noticeable performance degradation of up to over 100%. Slightly
better results have been reported for Kemari [253], which creates incremental
checkpoints whenever the VM is about to send an event to an external device
instead of using a fixed frequency. VM-µCheckpoint [269] keeps two incremental
checkpoints in memory to protect VMs against transient failures. The authors also
integrated a prediction of dirty pages to reduce the number of page faults. This
combination has also been applied in VPC [161] for consistently checkpointing a
cluster of virtual machines. Reported downtimes for a single VM with 512 MiB
RAM range from 55 ms for an idle system up to 187 ms for Apache [1]. Unfortu-
nately, the authors provide no information on the checkpointing frequency used

11While tracking page faults and page table updates does not incur any considerable cost with
shadow page tables, extended page tables make this approach unattractive because guest page
faults do not trap in the hypervisor.

Background 51

in their experiments. Incremental checkpointing on a sub-page level has been
demonstrated by Lu et al. [160], showing a reduction in checkpoint size between
2.7x and 4.5x when moving from a block size of 4 KiB to 64 bytes.

2.3.3 Data Deduplication

The concepts presented so far achieve improved checkpointing performance by
asynchronous processing, reordering, and exclusion of guest physical memory.
However, they remain on the structural level of the guest memory and do not
leverage the potential that lies within the contents itself. Numerous studies
have revealed the high amount of duplicated memory within and across virtual
machines and proposed methods to deduplicate redundant pages [36,107,177,
179,266,283]. This potential can also be leveraged in checkpointing to improve
the performance in the same way as the exclusion of memory does – by reducing
the number of pages to be saved.

CloudNet [282] uses memory deduplication to speed up pre-copy live migration. It
identifies redundant memory by hashing fixed-sized blocks12 with SuperFastHash
[16] and maintaining a synchronized FIFO cache at the source and destination
hosts. If CloudNet encounters a hash match, it verifies equality with a regular
memory compare (memcmp()) and sends a 32-bit index into the cache only instead
of the actual data.

The authors of CloudNet report a duplication rate between 13% and 60%13 for a
Linux kernel compile and SPECjbb [14], respectively. Evaluation of memory dedu-
plication in pre-copy live migration by Nathan et al. [187] has shown an average
reduction of transmitted data by 17% for a number of different benchmarks. Both
studies confirm only slight improvements for sub-page (e.g., 1 KiB) deduplication
granularity. Nathan et al. also note the high computational overhead of 11x
incurred by hashing. However, they use SHA-1 which is a 160-bit cryptographic
hash function, in contrast to the simple 32-bit hash used in CloudNet14.

Memory deduplication is most effective when multiple VMs with homogeneous
configurations are considered for deduplication [27, 266]. The technique is
therefore particularly popular with solutions that checkpoint or migrate virtual
machine clusters [27,79,118,216], showing a data reduction of 30% to 80% for
certain workloads (e.g., Sysbench [17]) [79]. As with single VM deduplication,
increasing the granularity delivers only moderate improvements.

12The authors also experimented with Rabin Fingerprints over a sliding window, but found it to
be much slower without substantially improving redundancy detection rate [282]. This has
also independently been confirmed by Hou et al. [118].

13The majority of the 60% redundant data is from all-zero pages.
14 Hash collisions potentially decrease deduplication rate but do not lead to data corruption due

to the subsequent memory comparison.

52 Background

Chiang et al. [62] use virtual machine introspection to deduplicate free guest
physical pages to an all-zero page, irrespective of the actual contents of the free
pages. A comparable approach has been adopted by Sapuntzakis et al. [230] who
actively zero free memory prior to deduplication.

A high degree of content similarity can also be found on the disk [142,177,179].
Deduplication is thus equally well-suited when checkpointing disk data.

2.3.4 Data Compression

The most popular approach to reducing the size of a checkpoint based on its
contents is the application of a data compression algorithm such as gzip [4]. As
data compression is conceptually orthogonal, it can be freely combined with other
techniques and is a good baseline measure. Since memory pages generally possess
a high number of zero bytes [90] as well as a high degree of similarity in non-zero
words [130], the compression ratio is generally good, with gzip reducing the size
by more than 60% in most migration scenarios [27,118,144].

As with incremental checkpointing, data compression can benefit from a check-
point history. Delta compression exploits the fact that most memory pages experi-
ence only small modifications between periodic checkpoints (or copy rounds in
pre-copy). Consequently, it can be more efficient to store the difference – the delta
D – between the current C and last contents – the reference R – of a page. The
delta then contains mostly zero bytes which can be compressed with run-length
encoding (RLE). The difference is usually computed with an XOR (⊕) operation:

R⊕C =

92 AA 2C 62
F0 EA 56 78
35 5C D6 3D
D2 40 33 92

⊕

92 AA 2C 62
F0 B6 03 78
35 5C D6 3D
D2 40 33 92

=

00 00 00 00
00 5C 55 00
00 00 00 00
00 00 00 00

= D

A possible RLE of D in this example could be 05 02 5C 55 09 (almost 70%
reduction), with the bytes in bold alternatingly encoding the number of successive
zero and non-zero bytes. Decompression first unpacks the run-length encoding
and then computes C = R⊕ D. The combination of XOR and RLE is also known as
XORed Binary Run-Length Encoding (XBRLE) [108].

Delta compression found widespread use in migration and checkpointing projects
[27,100,108,180,187,213,250,282,296]. Although not included in Remus [72],
the authors propose to use delta compression for reducing the size of incremental
checkpoints. A first evaluation employed an address-indexed LRU cache of 8192
previously saved pages and revealed an average 70% reduction in size. In a hybrid
compression mode, the prototype switches to gzip if the compression ratio with
delta compression falls below a certain threshold. The authors report a saving
of 90%, compared to 80% for gzip alone. This suggests that delta compression

Background 53

is not effective for all pages (i.e., heavily modified pages) but, nevertheless,
can significantly reduce checkpoint size and notably improve compression when
combined with a general-purpose compression algorithm.

Hou et al. [118] measured similar compression ratios for delta compression and
gzip – delta compression even surpassing gzip with 92% versus 80% for RUBiS [13].
However, they also examined different checkpoint frequencies (from 25 ms to 5 s)
and found that delta compression considerably loses effectiveness with increasing
interval length, for example, falling from 60% to 20% in FFmpeg [3]. This
observation is conclusive as pages accumulate more changes with larger interval
lengths, thereby creating noisy deltas. Likewise, the size of the reference page
cache must be chosen appropriately.

Delta compression can also be combined with data deduplication. MDD [296]
uses the fingerprinting function from Difference Engine [107] to find pages with
high similarity for which MDD then only saves a compressed delta. As before,
identical pages can be specified with an index only. MDD hence extends pure
delta compression because the reference page is addressed by content similarity
instead of the GPA. Deshpande et al. [79] describe the same technique for live
gang migration of virtual machines. Gerofi et al. [100] diverge from the method
by utilizing a density-based hash function for similarity detection.

Other compression algorithms have also found their way into checkpointing.
VMFlockMS [27] uses zlib [96]. Hacking and Hudzia [108] describe PDelta,
a modified version of zdelta [257], itself being a delta compression technique
based on zlib. Jin et al. [130] propose an adaptive algorithm which either com-
presses pages with RLE, WKdm15 [280], or LZO [7], depending on the contents’
characteristics.

2.3.5 Other Techniques

Although pre-copy can be used for taking local virtual machine checkpoints, in
this scenario, shorter downtimes are achievable with copy-on-write (CoW) [254,
p. 229], without the cost of increased total checkpoint time and repeated memory
copies.

Instead of actually copying the guest physical memory in the downtime, the
VMM only write-protects the memory in the SPT/EPT. The VM can then resume
execution. Concurrently, the VMM writes the guest physical memory into the
checkpoint and releases write-protection for saved pages. If the VM attempts
to modify a page that has not yet been copied, the MMU triggers a VM page
fault, thereby giving the hypervisor a chance to save the respective page prior

15WKdm is specifically designed for quickly compressing memory pages with strong word-level
similarity and many zero bytes; originally developed for compressed caching of virtual memory.

54 Background

modification. In contrast to pre-copy, pages are asynchronously saved after the
point in time that is represented by the checkpoint. This requires only a single
copy operation per page to create a consistent image. A notable drawback is the
overhead caused by page faults, especially for short intervals.

CoW has been suggested in Remus [72] and included in several other research
projects for memory [137,157,248,269] and disk [44,230] checkpointing. Gerofi
et al. [100] combine CoW with incremental checkpointing, thus using CoW only
for the pages that have been modified since the last checkpoint. However, since
they use page protections to determine dirty pages, this does not reduce the
number of page faults. Wang et al. [269] use the information about dirty pages
from the last checkpoint to predict the dirty pages for the next interval and copy
these in the downtime. While this effectively reduces page faults, it increases the
downtime (not evaluated) as well as the checkpoint size (due to misprediction).
Unfortunately, only little quantitative information on the performance characteris-
tics of CoW checkpointing are present in the literature or provided measurements
are sparse and seem implausible16.

Checkpointing comprises many operations that, from a conceptual perspective,
can trivially be parallelized such as copying memory or performing hashing and
compression. Song et al. [241] demonstrated that multithreading can consider-
ably improve performance for pre-copy live migration, with a reduction of total
migration time of up to 10x and cut in the downtime of at least 2x. MECOM [130]
successfully applies multithreading in the compression stage.

An alternative to software solutions is to develop custom hardware. Stevens et
al. [246] present the design of a modified memory controller which can checkpoint
the memory state directly to an SSD without relying on system software support.
Dong et al. [84] propose the use of phase-change RAM as a persistent storage
target for checkpoints to alleviate checkpointing overhead in future exascale
systems.

2.3.6 Conclusion

Checkpoints capture a consistent state of a virtual machine, including its memory,
persistent storage, and devices (e.g., CPU, video adapter, etc.). Checkpoints are
the key technology to virtual machine live migration, high availability systems,
and drive advanced debugging solutions. Depending on the application, different
performance metrics for checkpointing such as the downtime, the checkpoint size,
or the performance degradation of the virtual machine play a particularly impor-
tant role. Numerous techniques from data exclusion over data compression to
asynchronous processing exist, allowing to tailor the properties of a checkpointing

16The downtimes measured by Sun and Blough [248], for example, exceed our own results by
one to two orders of magnitude.

Background 55

solution to the scenario at hand. The common denominator in all approaches
is to reduce the amount of data needed to be included in the checkpoint and to
interleave operations with the execution of the virtual machine. In that course,
some methods leverage the data-modification characteristics of the workload (e.g.,
incremental checkpointing), and others benefit from characteristics in the contents
of the data itself (e.g., data compression). The performance of each approach is
thus heavily dependent on the workload and the requirements that arise from the
particular checkpointing application such as the used interval length.

2.4 Deterministic Replay

Tracking down bugs with traditional debugging techniques has become a chal-
lenging task with the advent of increasingly complex and parallel software. It is
not always possible to faithfully reproduce the execution that triggers erroneous
behavior. Furthermore, the simple act of debugging may mask issues which do
not surface while the system is being observed – so-called Heisenbugs [104].
Security researchers are facing a similar situation with the spread of malware
that stays dormant when it detects the presence of analysis tools such as a full
system simulator. Deterministic replay aids in these situations by providing the
ability to reproduce a previous execution of a supervised program or system. The
replay run outputs identical results and is indistinguishable from the original
run, but allows transparently altering the execution environment if needed – for
example, to enable sophisticated debugging and analysis techniques. Over the
years, many applications for deterministic replay have been published, including
debugging [185,220,228], security and malware analyses [63,64,88,287], live
migration [157], fault tolerance [45,231], and remote desktopping [128].

Based on the observation that program execution is per se deterministic and might
only be altered due to external events, a common approach to deterministic replay
is recording and replaying events that change execution in a non-deterministic
way. These events can be roughly classified into three categories [215]:

• Synchronous events are operations that are always invoked at fixed lo-
cations in the instruction flow but might return non-deterministic results.
Examples are reading I/O memory, the timestamp counter (RDTSC), or ran-
dom numbers (RDRAND). During replay, logged values need to be returned.

• Asynchronous events are triggered by external devices and usually surface
as interrupts. While they have a deterministic effect on the system (i.e., the
execution of a specific interrupt handler), they appear at arbitrary positions
in the instruction stream. It is hence essential to record accurate timing
information and to precisely inject the events during replay.

56 Background

• Compound events describe operations that are non-deterministic in both
their timing and their effect on the system. The most prominent example is
DMA. The completion time of a DMA operation, as well as the data written
by the operation, is neither known in advance nor fixed between multiple
repetitive runs. Incoming network traffic also falls into this category.

To accurately reproduce asynchronous and compound events, the replay system
must store some form of landmark, which precisely (i.e., instruction-level granu-
larity) identifies a specific point in the instruction flow at which the event occurred.
This may, for example, be an instruction counter or a snapshot of the vCPU’s state.

Recording non-deterministic events can introduce notable overhead and degrade
the performance of the virtual machine. This is especially the case with hardware-
assisted virtual machines because their high performance is achieved by avoiding
software interposition where possible. However, for capturing non-deterministic
events it is indispensable that the hypervisor is involved in processing these events.
For this purpose, deterministic replay systems may have to deactivate hardware
virtualization features such as direct interrupt delivery and force additional VM
exits, for instance, to trap the execution of certain instructions.

Additional overhead can incur during the replay phase. As asynchronous events
must be injected at an exact position in the instruction flow, the hypervisor must
diligently observe the execution of the virtual machine and then, at the right point
in time, interrupt the execution for replay. On the other side, the run time of a
replay can also be shorter than the original run because the VMM can skip phases
of idling and the result of I/O operations can potentially be immediately read
from the recording log without having to invoke the respective virtual device.

Over the decades, many deterministic replay solutions have been developed. The
following are important metrics that guide research in this area (based on [60]):

• Probe Effect The effect on the observed system such as the introduced
slowdown. A large recording overhead greatly perturbs the timing behavior
of the supervised system and in some cases can contradict the original moti-
vation for deterministic replay (e.g., to record accurate timing information
for later analysis). Many published solutions have therefore been geared
toward minimizing the recording overhead and by this limiting the probe
effect.

• Log Size The total amount of data required for the replay. Thousands of
non-deterministic events shape the execution of a virtual machine every
second. Compound events such as DMA reads may contain considerable
amounts of data such as disk sectors or network packets. A dense encoding,
possibly including compression, can therefore be beneficial, especially if
the log should be transferred over a network or is persistently stored for a
longer period of time.

Background 57

• Replay Slowdown The increase in run time for the replay compared to
the original run or a non-replayed execution of the inspected workload.
However, since the relative timing of events in the virtual machine remains
faithful during replay irrespective of its slowdown, the overhead may not
be critical in itself, depending on the purpose of the deterministic replay
(e.g., in an offline analysis scenario).

• Replay Accuracy The level of detail at which the replay is able to repro-
duce a faithful execution. Although it seems counter-intuitive at first, it is
perfectly viable for a replay to not be a hundred percent accurate. Improper
computation of CPU flags or divergent memory contents, for example, tech-
nically only become problematic when they influence the execution and
thereby eventually break the replay.

Deterministic replay solutions can be classified roughly according to the abstrac-
tion level (e.g., processes vs. VMs) and virtualization technology (i.e., emulation,
paravirtualization, or HAV) they are targeted at, as well as by their support for
multithreading and multiprocessors [60].

In the following, we use this classification to give an overview of deterministic
replay approaches present in the literature. Since we deal with multiprocessor
support in § 2.4.3 separately, the evaluation results quoted in § 2.4.1 and
§ 2.4.2 exclusively relate to uniprocessor solutions.

2.4.1 Homogeneous Replay

A homogeneous replay keeps the same execution environment between the record-
ing and replay phase. A recording for a virtual machine executing with fast
hardware-assisted virtualization is thus intended to also replay in exactly this con-
figuration. This makes homogeneous replay very efficient because the recording
can rely on the fact that the system will behave identically during replay. The CPU
will, for instance, return the same identification string and feature set without
extra efforts from the replay engine. This eases implementation and to some
degree reduces the overall complexity.

Homogeneous replay is an attractive technology for simple debugging scenarios
and has been realized in several user-space process debugging tools [127,228].
These capture and replay at the level of system calls and signals instead of device
I/O and interrupts17. While this method can also be used to replay an emulated

17 A replay will always behave deterministically only at the abstraction levels above the recording.
A process replay is thus not capable of replaying operating system internals but merely captures
the input from the OS to the process. Contrary to intuition, recording at the virtual machine
level – i.e., replaying a full system – incurs less overhead than process-level recording [63].

58 Background

full system virtual machine by simply recording and replaying the emulator
process [98], it is more efficient to embed the technology into the hypervisor
itself.

Bressoud and Schneider [45] first described a deterministic replay that natively
targets system virtual machines to implement fault tolerance. Their approach
uses the number of executed instructions as a landmark. This allows the replay to
leverage the recovery register of HP’s PA-RISC processor for precise event injection
because the CPU interrupts execution after the number of instructions configured
in the register has been retired.

ReVirt [87] is technically very similar. It records and replays x86 system virtual
machines based on UML for the purpose of intrusion analysis. In contrast to the
replay system by Bressoud and Schneider, ReVirt must maintain a full log and
cannot discard events that happened before a synchronization point. The authors
of ReVirt therefore reduced log size by excluding data read from the hard disk as
it can deterministically be re-read during replay. In addition, logs are compressed
with gzip. The log growth rate in all benchmarks is below 1.5 GiB per day, a kernel
build producing only 80 MiB per day. The authors report a run-time overhead of
8% for the recording and 2% for the replay (compared to the recording). ReVirt
uses the CPU’s instruction pointer accompanied with a branch count and the
current value of the ECX register18 as a landmark. ReVirt has been very popular
within the research community and also has become the foundation for other
replay projects [137].

ReVirt is restricted to Linux virtual machines that run with UMLinux [46], a
specifically modified Linux kernel which allows virtualization with direct execution
(§ 2.2.1). ReVirt is therefore not well-suited if a particular operating system kernel
is required or if an arbitrary operating system should be inspected. A step toward
a more generic platform is done by VMRS [71] and XenTT [50], which perform
deterministic replay of unmodified but paravirtualized Linux guests in Xen.

Of particular interest for research are deterministic replay solutions that use
emulation because the replay supports powerful analyses. ExecRecorder [76]
uses the Bochs interpreter for malware attack analysis. Since ExecRecorder does
not depend on paravirtualization, even commercial operating systems such as
Windows can be faithfully replayed. Using an interpreter also simplifies the replay
itself because non-determinism can easily be captured in a fully software-emulated
virtual machine. In addition, the emulation can be extended to provide reliable
counters for the landmark. The log growth rate is considerably higher than in
ReVirt, reaching 10 GiB per day for a Linux web server. Since ExecRecorder does
not compress logs, this suggests that replay logs are generally well compressible.
Measurements in [50] and [286] confirm this observation. However, as with
ReVirt, measurements with ExecRecorder also reveal that the log growth rate

18Allows to differentiate iterations for instructions with the repeat (REP) prefix.

Background 59

greatly depends on the workload. Similarly, with less than 4%, the average
run-time overhead during recording is almost negligible.

Other homogeneous replay projects using emulators are [59,83,85,244], all em-
ploying binary translation with QEMU due to its comparably fast binary translator.
Nevertheless, the slow overall execution speed of software-based virtual machines
remains a major drawback of such systems, limiting their value in practice.

2.4.2 Heterogeneous Replay

Combining the fast virtualization speed of hardware-assisted virtual machines
and the powerful analysis capabilities of emulators has been the goal for vari-
ous research projects [63, 64, 286, 287]. The general idea is to record all non-
deterministic events with hardware-assisted virtualization and replay the events
in the emulator, thereby presenting exactly the same execution to analysis tools.
Although this approach does not reduce the run time of the emulation, it recreates
the realistic timing and potential user and network interaction of the original
hardware-assisted run in the emulation. This makes the emulation representative
of a productive run, irrespective of the slowdown induced by the emulation and
analysis. Since the execution environment between recording and replay changes,
we refer to this method as heterogeneous replay.

Compared to homogeneous replay, heterogeneous replay introduces a number of
new challenges. Since the CPU implemented in the emulator does not match the
host’s CPU, instructions such as CPUID on x86 will usually return different values.
The recording thus has to capture more information to allow a faithful replay. A
larger obstacle is the plethora of inaccuracies hidden in most emulators [167] that
can lead to divergence in the replay (see Chapter 8 for a thorough discussion).
The emulation thus has to be meticulously adjusted to match the behavior of the
physical CPU. While this makes heterogeneous replay less portable and requires
much more development efforts, the result is a minimally invasive analysis tool
that even allows the evaluation of interactive workloads for which traditional
emulation is often too slow. However, only a few research projects have targeted
full system heterogeneous replay and publications are from VMware mostly.

With ReTrace [286], VMware published a trace collection tool for x86 based
on heterogeneous replay that even found its way as an experimental feature
into VMware Workstation 6.0. ReTrace first records the workload of interest
with hardware-assisted virtualization. In the second phase, ReTrace replays the
execution with interpretation, allowing to transparently install tracing hooks. Just
as reported for projects in the field of homogeneous replay, the run-time recording
overhead is on average 5% for CPU intensive workloads but climbs to 2.6x for
OS and I/O intensive workloads. A major drawback of ReTrace is that it does not
cope with the immense emulation slowdown bound to the tracing phase. The

60 Background

authors only state that the tracing for a 30s benchmark was stopped after 2 hours,
without giving more detailed information on the exact full emulation run time19.

VMware continued their efforts in the area of heterogeneous replay with After-
sight [63], a framework for integrating complex analyses into the replay. In
contrast to ReTrace, Aftersight also supports replay in QEMU because its binary
translator is better suited for instrumentation compared to the heavily optimized
and specialized one in VMware Workstation. Due to the incompatible device mod-
els between VMware and QEMU, the replay cannot just feed non-deterministic
events to the emulation, but must also fully replay the output of devices. To
generate a device model agnostic log, Aftersight must first perform an additional
replay in VMware Workstation and capture all device output. In consequence,
the virtual devices in QEMU are not longer needed and the authors could strip
out everything except the components that deal with instruction execution and
memory access.

The second installment of ReTrace has been published by VMware with Crosscut
[64]. In contrast to previous replay systems, Crosscut allows users to slice replay
logs along time and abstraction boundaries so that a replay only includes the
processes or components that are of interest to the research question at hand.
Retargeting a log, for example, to focus on a certain process, requires a dedicated
replay run that will deliver a new refined log. This concept is a direct evolution
of the process used in Aftersight to generate a device model agnostic log.

Restricting the replay to a certain component is also a key feature of V2E [287],
a heterogeneous replay engine for malware analysis. The user can define a
recording realm (e.g., a certain process or kernel module), which is the only
part that is replayed. V2E creates two mutually exclusive guest physical memory
spaces, where each individual guest physical page can only be present in the
EPT of the recording or the main realm. Whenever the CPU is running in the
recording realm and accesses a page present in the main realm, its content is
captured in the replay log and the page’s ownership changes. This allows V2E to
always present the right memory contents to the recording realm in the replay,
despite the absence of the main realm. Just like Aftersight, V2E uses QEMU
for analysis (but KVM for recording). Due to the malicious context in malware
analysis, V2E strongly depends on a precise replay to prevent the malware from
crashing the emulator, as this would torpedo the analysis. In consequence, V2E
also records exceptions. Although deterministic by nature, they are difficult to
emulate accurately. This extended recording, as well as the additional overhead
of capturing realm boundary crossings, comes at the cost of a high recording
overhead between 5x and 17x. This potentially perturbs and distorts the original
workload execution, making the design less suitable than Crosscut for analyzing
time-sensitive behavior.
19If the workload would have finished after 2 hours, the slowdown would have been around 240x.

The authors report a general slowdown of 2 orders of magnitude at minimum.

Background 61

2.4.3 Multiprocessor Replay

Albeit supporting multithreading, multiple processes, or even a whole virtual ma-
chine, the approaches presented so far only cope with uniprocessor deterministic
replay. To faithfully replay a multithreaded application on a uniprocessor, it is,
for example, sufficient to accurately replay the scheduling decisions [127,227].
Compared to a multiprocessor replay, such a system does not have to handle the
non-determinism emerging from the true parallelism of multiple concurrently
executing CPUs. In addition to the techniques employed in the uniprocessor case,
a multiprocessor replay therefore has to also include information to precisely
reconstruct the timing between parallel cores whenever an inter-processor event
takes place. These may be easily observable in the operating system or hypervisor
like in the case of inter-processor interrupts (IPI), but may also happen without
explicit intervention as in the case of shared memory accesses. The outcome of a
race for a shared mutex, for instance, is not known in advance and depends on
the many non-deterministic factors inherent to the hardware such as the memory
access ordering, the relative timing between the involved CPUs, and their current
cache states. The challenge in multiprocessor replay is thus to make originally
transparent inter-processor interaction such as via shared memory visible to the
recording component without compromising efficiency.

Most of the literature in the field of multiprocessor deterministic replay examines
the replay of single applications comprising one or more processes [30,152,153,
191,197,200,220,245].

Instant Replay [152] implements a concurrent-read-exclusive-write (CREW) pro-
tocol with a set of specifically crafted read and write locks which must be used in
the application to access shared objects. The CREW protocol assigns ownership
exclusively to one processor but permits multiple concurrent readers. To replay
the order of operations on a shared object, Instant Replay assigns each shared
object a version number which is incremented on modifications. During replay,
the locks delay access until the object’s version number matches the one during
recording, thereby enforcing the same access order20.

A similar approach is used in RecPlay [220], which records the order in which
threads acquire synchronization objects. While the concept is appealing from
a performance perspective, it is not capable of faithfully replaying across race
conditions – which do not employ correct synchronization by nature. RecPlay thus
utilizes an on-the-fly data race detection during the replay phase which aborts
replay on the first race condition.

Respec [153] has been designed with online replay (e.g., to parallelize security
checks) in mind, that is, the recorded and replayed processes execute concurrently.
Respec splits the execution of a program into epochs and relaxes the accuracy

20Instant Replay does not reproduce the order of reads of the same value (i.e., same version).

62 Background

of the replay within the epoch. Instead of forcing exactly the same execution
on an instruction-by-instruction basis, Respec only guarantees that the program
generates the same output (i.e., invocation of system calls and final program
state on epoch end). As Instant Replay and RecPlay, Respec only logs the order
in which synchronization primitives are acquired. If, however, the replay fails to
reproduce the same output (e.g., due to a race condition), Respec rolls back the
original execution in the recording stage to the beginning of the current epoch. It
then retries execution and replay of the current interval in the hope that the race
condition will not be triggered again21. Respec thus tries to avoid race conditions
in the recording.

Recap [197] and Flashback [245] record the values read when accessing shared
memory and in consequence can faithfully replay race conditions – in contrast to
the aforementioned methods. While Recap generates specific memory access code
in the compiler and thus requires a recompilation for replay, Flashback uses page
protections to trigger a page fault on every shared memory access. Although the
authors of Flashback did not explicitly evaluate this solution, a high performance
degradation for frequent shared memory accesses can be expected.

Multiprocessor replay for system virtual machines has been first demonstrated with
Flight Data Recorder by Xu et al. [285]. FDR is designed as a hardware processor
extension for a sequentially consistent memory system, which records the non-
determinism in a sliding window of 1 billion CPU cycles before a trigger (e.g., a
fatal crash). FDR resolves shared memory accesses by capturing cache coherence
messages. An evaluation using a timing simulation revealed an estimated run-time
overhead of less than 2%.

A software version of the cache coherency protocol recording in FDR has been
adopted in PinPlay [200], a framework for deterministic replay of parallel pro-
grams. Since PinPlay uses dynamic binary translation to allow program instrumen-
tation, the logger possesses a high slowdown of 80x (single-threaded program)
to 146x (multithreaded program) compared to native execution.

With SMP-ReVirt [88], Dunlap et al. published a multiprocessor extension for
ReVirt [87]. Similar to Instant Replay, SMP-ReVirt employs a CREW protocol, but it
applies the protocol to the guest physical memory of a Xen virtual machine, thereby
enabling full system multiprocessor replay. The ownership of guest physical pages
is controlled by adapting page protections in per-processor EPTs and switching on
page faults. While single-core recording run-time overhead is around 15% for a
Linux kernel build, the overhead considerably increases with the number of CPUs,
reaching 2x for two processors, and 9x for four processors.

Although this suggests that the CREW protocol is not scalable, ReEmu [59] imple-
ments an optimized version in a parallel variant of the QEMU full system emulator

21Respec manipulates the original thread scheduling if the same epochs must be rolled back twice.

Background 63

with promising results. The authors report an average slowdown between 60%
and 77% for PARSEC benchmarks with 1 to 16 cores. However, compared to
native execution, the run-time overhead reaches up to 33x due to the overhead
of DBT.

Besides the cache coherence protocol recording and the CREW protocol, a third
approach is to split the instruction flow of each processor into a stream of atomic
chunks. The processor either commits the chunk and makes its effects (e.g.,
changes in memory) publicly visible or, in case there is data dependence across
two concurrently executing chunks, performs a rollback. The approach thus
controls the original execution so that data races can be resolved. To replay a
multiprocessor execution, the system only has to record the order of chunks,
which incurs less overhead (run time and log size) than working at the granu-
larity of individual memory accesses. The concept has been first presented with
DeLorean [182] as a simulated hardware solution for full system multiprocessor
replay. Samsara [215], in turn, implements the concept in software for hardware-
assisted virtual machines using CoW and CPU register snapshots to allow rollback.
Although generally performing better than SMP-ReVirt with a slowdown of 6x for
a kernel build with four processors, the run-time overhead for recording remains
high.

Intel therefore invested into a prototypical x86 architecture extension for mul-
tiprocessor replay, called QuickRec [205]. QuickRec also uses a chunk-based
recording approach, but as a processor feature can rely on address snooping to
detect conflicts at the moment they occur. This allows the CPU to immediately
terminate the chunk, obviating rollbacks. The authors evaluated the performance
overhead with an FPGA implementation and found it to be negligible. However,
since QuickRec only captures shared memory interleaving, it requires software to
capture all remaining non-determinism. This incurs a run-time overhead of 13%.
Although the authors demonstrated a prototype for program replay, there is no
design capable of full system replay.

2.4.4 Conclusion

By capturing non-deterministic events such as interrupts and the output of I/O
devices, deterministic replay is able to precisely reproduce the execution of a pro-
gram or whole system. It is thus a powerful technique that aids in tracking down
bugs and analyze malware, and can even improve virtual machine live migration
and fault tolerance systems. Whereas a homogeneous replay executes in the same
environment (e.g., hardware-assisted VM) as the recording, heterogeneous replay
switches environments. This makes heterogeneous replay particularly interest-
ing for research and development as it allows recording with hardware-assisted
virtualization, providing full interactivity, realistic timing, and transparency to
malware, and replaying with emulation for pervasive instrumentation and anal-

64 Background

ysis. However, heterogeneous replay does not reduce the immense slowdown
incurred by the (instrumented) emulation and is thus limited in its applicability.
While the size of the resulting recording logs, as well as the run-time overhead
during recording, is not a problem for uniprocessor platforms, multiprocessor
deterministic replay is generally considered inefficient in software. Unfortunately,
complete hardware/software co-designs for commodity architectures such as x86
capable of full system multiprocessor replay have not been presented yet.

Chapter 3

Functional Full System Simulation

With full system simulation, we describe the process of running a system virtual
machine for the purpose of development and research, for example, to collect
detailed execution traces. In contrast to a generic binary translator, a full system
simulator typically implements additional instrumentation features, performs
instruction or cycle counting, and possesses a sophisticated tracing facility. To
this end, the full system simulator has to create a software model of the targeted
architecture. As with every model, we are – to some degree – free to choose the
level of detail we want to integrate into the model. For a virtual processor, it
generally will not be reasonable to approximate the result of instructions or reduce
the precision of registers, as this will most probably break compatibility with the
targeted ISA and prevent software in the guest to run properly. Since the ISA is the
developer-visible interface to the hardware, conforming to the ISA is a line which
a model should not fall below. A simulation at this level is called a functional full
system simulation (FFSS) because it is only concerned about the correctness of the
output of instructions rather than the emulation of the inner-workings of system
components.

Depending on the use case of the virtualization, it might, however, be desirable
to also model microarchitectural details such as the design of the instruction
processing pipeline and precise timing. This is especially the case if effects of
changes in the microarchitectural implementation of a processor should be eval-
uated – traditionally the field of computer hardware architects. However, the
publication of the Meltdown [156] and Spectre [141] attacks unveiled a whole
class of security vulnerabilities in modern processors that also forced extensive
changes in operating systems. Since these attacks are based on the out-of-order
and speculative execution within the processor, a model restraining to the ISA
level is not sufficient to discover such problems. Microarchitectural models there-
fore can conceptually be useful not only in hardware design but also in OS and
security research. However, detailed information on the inner-workings of modern
general-purpose CPUs is proprietary knowledge and as such not available to the

66 Functional Full System Simulation

research community. Researchers are therefore forced to reverse engineer such
CPUs and carefully tune microarchitectural models experimentally [80,292], or
simply make educated guesses [91]. Still, this does not catch all subtleties of the
actual hardware and models of existing commercial CPUs remain an approxima-
tion1. The teams behind Meltdown and Spectre consequently had to resort to trial
and error experiments with real hardware instead of being able to deduce the
attacks straight from the microarchitectural design. A primary focus for operating
and security research therefore remains the virtualization at the functional level,
which has been demonstrated to be very effective for debugging [137], security
analyzes [133,287], collecting detailed execution traces [286], and many more.

In contrast to productive use of virtual machines, where virtualization speed and
management features such as live migration and fault tolerance are paramount,
using VMs for research shifts the focus to sophisticated instrumentation and tracing
capabilities. This way, researchers are able to gather valuable information on the
run-time behavior of applications and the operating system. While production
VMs thus bet on the performance of hardware-assisted virtualization, full system
simulations require the flexibility of emulation techniques, that is, interpretation
or dynamic binary translation.

For instance, SimOS [223] implements three execution modes. Due to the limited
availability of hardware-assisted virtualization back in the 90s, the fastest mode
uses direct execution and can be utilized to set up the virtual machine and
fast-forward over the OS boot phase during benchmarks. However, the authors
highlight that direct execution inherently neither supports instrumentation nor
does it allow to model timing aspects. It further requires compatibility between
the guest and host architectures. The authors therefore state that direct execution
is generally inappropriate for research studies. As hardware-assisted virtualization
gives away even more software control, the same applies to modern virtualization.
The second operation mode in SimOS uses dynamic binary translation. It can be
used to perform arbitrary instrumentation, collect execution traces, and gather run-
time statistics such as (simulated) cache hits and misses. In the third mode, SimOS
falls back to interpretation, which allows it to apply comprehensive processor and
memory timing models2.

We can conclude that functional simulation is the predominant technique for
simulation-based OS and security research that requires detailed run-time infor-
mation. Variants of dynamic binary translation or interpretation, in turn, are

1Average error rates in metrics such as execution time or instructions per cycle (IPC) for mi-
croarchitectural models compared to real hardware are around 5% to 15% [25,91,159,292],
going up to 40% [25] for some benchmarks. Simple microarchitectural models, albeit used by
hundreds of publications, show errors up to 77% [80].

2Although technically possible, using binary translation in this mode provides little benefit due to
the many model-related helper calls. At the same time, it adds significant complexity because
the advanced simulation features must be reflected in dynamically generated code.

Functional Full System Simulation 67

the virtualization technique of choice for all major full system simulators such
as Simics [163], QEMU [38], Bochs [2], and gem5 [41], and they are the driv-
ing power in binary instrumentation tools such as DynInst [47], Pin [162], and
Valgrind [190].

Since the main contribution of this thesis is a novel approach to the acceleration
of functional full system simulation, the next section provides an assessment of
the execution speed of current full system simulators. Building on these results,
Section 3.2 takes a look at existing acceleration methods for full system simulation
and discusses their applicability in operating system and security research. The
chapter concludes by summarizing the limitations of the state-of-the-art techniques
in Section 3.3.

3.1 Assessment of Simulation Speed

Despite being a versatile technique for detailed system inspection, a major draw-
back of functional full system simulation is the immense slowdown incurred by
the emulation. Figure 3.1 depicts the slowdown for various workloads running
with QEMU’s binary translator compared to the execution in a hardware-assisted
virtual machine3. Whereas a kernel build completes in less than 13 mins with
HAV, a functional simulation takes about 5 hours. The figure also illustrates that
the slowdown strongly depends on the instruction mix of the workload. The

19.4

45.0

76.7

22.7

36.7

55.2

4.1 5.4 7.7

29.1

43.3

59.5

8.0

22.2

40.9

15.0

28.7

63.4

22.9

51.4

94.9

81.5

101.8

144.6

20.7

44.4

81.0

1.0 1.0 1.0

Baseline: Hardware-assisted Virtualization

0

25

50

75

100

125

150

postmark
kernel build

sqlite
apache

gnupg
encode-mp3

pybench
povray

phpbench
idle

S
lo
w
d
ow

n
[×

]

Serial Sim. Serial Sim.+Tracing (w) Serial Sim.+Tracing (r+w)

Figure 3.1: Running a serial simulation with QEMU is significantly slower than
running the same workload in a fast hardware-assisted virtual ma-
chine. Installing hooks for tracing memory accesses slows down the
simulation even more.

3See § 9.1 on page 185 for information on the benchmark environment and the test scenarios.

68 Functional Full System Simulation

FPU-heavy povray benchmark runs for over one day instead of 19 mins. Installing
hooks for tracing memory accesses prolongs a single execution to almost two days,
making measurements exceedingly time-consuming. With Simics [163], we mea-
sured a slowdown of up to 1000x for SPECint2006 when hooks for tracing (reads
and writes) are installed [219]. Similar slowdowns for functional simulation have
also been reported by other researchers [58,135,164,200,286].

In practice, this slowdown creates severe obstacles for comprehensive use of
functional full system simulation:

Interactivity Scenarios that should capture interactivity with a human user or
an external network device are impractical. Prominent examples are eval-
uations that include desktop usage or benchmarks such as SPECweb [15]
which require a second virtual system to generate requests. With a slow-
down of one to two orders of magnitude, applications are barely usable. A
single keystroke can quickly take from multiple seconds up to minutes until
being fully processed. Network protocols such as TCP, in turn, react with
throttling and timeouts4.

Accuracy of Results Since the simulation considerably slows down the guest,
activities dependent on external events appear to complete faster. For
instance, in the same amount of wall-clock time for an I/O operation,
the simulated CPU retires drastically fewer instructions than a real CPU,
which will in relation appear as if the I/O device operates much faster – a
phenomenon called time dilation by Chen and Bershad [56]. Similarly, timer
interrupts occur more frequently, which effectively shortens time slices and
increases the number of context switches5.

Coverage With contemporary functional full system simulation, evaluating mod-
ern benchmarks in their full length takes considerable time. As apparent
from Figure 3.1, the run time is in addition very sensitive to further overhead
incurred by instrumentation, quickly rendering simulation impractical for
long-running workloads or heavyweight analyses.

The key to productive and comprehensive use of functional full system simula-
tion in operating systems and security research is therefore the reduction of the
slowdown and the ability to run full-length, interactive workloads with realistic
timing behavior.

4Simics can also simulate network peers in order to produce a realistic communication pattern.
This, however, creates more complex simulations with even higher slowdowns and the concept
is inherently not applicable to human interaction.

5This can be to some degree alleviated with a virtual clock based on retired instructions. However,
without a sophisticated timing model, this still misses the variations in processing speed for
different instruction mixes.

Functional Full System Simulation 69

3.2 Acceleration Techniques

A common method to cope with the limited computational resources in full system
simulations is to adapt or shorten the workload so that the overall simulation
time remains in reasonable bounds. However, the reduced workload may not
retain the original characteristics and thus produces results of questionable value.
Developing reduced but representative workloads is thus a complex and time-
consuming task. With MinneSPEC [140], efforts have been made to generate
reduced input sets for the popular SPECCPU2000 benchmark suite. A scaled-
down commercial workload suite has also been published [28]. Nonetheless, the
principle is not generally applicable and may inherently cut the value of a study
by reducing coverage (e.g., evaluating only a small set of test cases [133]).

Instead of adapting the workload it is conceptually also plausible to run the work-
load in a process virtual machine such as Pin [162], thereby avoiding the overhead
of simulating the guest operating system. However, process virtual machines are
unable to track dynamic behavior across a full system including privileged system
components and multiprogramming activity. They are thus not well-suited for
operating system research and are of no use if kernel internals should be ana-
lyzed (e.g., as in [133]). The restriction to the scope of a single application also
raises questions concerning the accuracy of results obtained through such narrow
inspection. While it comes naturally that I/O-heavy workloads such as databases
and web servers are clearly influenced by OS activity [135,169], Cain et al. found
that ignoring the effects of the operating system can lead to severe measuring
errors even for CPU-bound benchmarks such as SPECINT2000 [53].

It is thus desirable to keep the original workload intact – including the guest
operating system – and to accelerate functional full system simulation instead.

3.2.1 Optimizing the Execution Engine

The speed of a functional simulator is mostly determined by the ratio of executed
host instructions per simulated guest instruction. Improving the simulation speed
thus equates to improving this very ratio. This can be achieved by reducing
the time that the CPU spends on executing simulator code (e.g., to control the
execution or jump between dispatch routines), and by generating more efficient
code in the case of a DBT engine.

Shade [67] and Embra [281], for example, avoid loads and stores to vCPU registers
when successive instructions use the same virtual registers. QEMU updates various
vCPU state such as CPU flags and the instruction pointer only when it is actually
needed [38]. Fu et al. [95] extend the intermediate language in QEMU to support
vector instructions, thereby improving the speed of selected SIMD benchmarks.
Other research [115,119,210] uses compiler back ends such as LLVM [149] to

70 Functional Full System Simulation

leverage sophisticated code optimization features when generating TBs from the
intermediate language. In contrast, Zhang et al. [295] apply optimizations on the
final compilation result.

Reducing the time spent in the simulator has been done, for instance, in SPIRE
[129]. The project resolves guest instruction pointers to host instruction pointers
at indirect branches in the guest code by installing a lightweight trampoline at the
target guest IP, instead of using address hashing and a lookup table. Generating
larger translation blocks with more efficient traces (i.e., sequences of hot basic
blocks) is another approach [120].

A common denominator of all these techniques is that improvements at the level
of the generated code and execution flow do not provide the required leap and
generally stay below the 5x speedup mark (in the face of slowdowns of one to
two orders of magnitude). In fact, the authors of SoftSDV [260] considered to
move various complex operations from helper calls directly into the generated
translation blocks but found the resultant loss in flexibility and maintainability to
not justify the optimization.

3.2.2 Reducing the Observation Space

A prevailing practice to make analysis via simulation applicable to long-running
workloads is to trade accuracy for speed by limiting the simulation to short time
frames – so-called samples. To this end, many simulators support dynamically
switching between different detailed simulation modes at run time, enabling the
user to fast-forward between samples with some kind of accelerated execution.
In Simics [163], the user is able to choose whether timing models are applied or
not. SimOS [223] and MARSSx86 [199] allow switching between functional and
microarchitectural simulation. PTLSim/X [292] and FSA [229], in turn, provide
hardware-assisted virtualization as an alternative mode of execution.

A fundamental challenge with sampling is to find the right samples so the selected
subset reflects the overall workload characteristics. The gathered information can
then be extrapolated to draw conclusions for the whole workload. In research,
three primary variants emerged [289]:

In truncated execution, the workload is simulated for only a short duration with
the presumption that the abbreviated execution phase is representative for the
whole program. Most applications exhibit an initialization phase, where internal
data structures are set up and input data is loaded into memory before the
application actually starts performing its task. The latter phase then usually
dominates the program behavior. A common variant in truncated execution is
thus to fast-forward over the initialization phase and start detailed simulation or
analysis for a limited duration afterward. Depending on the level of simulation
and type of analysis, a warm-up phase is prepended before taking measurements

Functional Full System Simulation 71

to line-up any additional state (e.g., a cache model). Because the policy is easy to
implement, it has been widely adopted in the literature. According to a study by
Yi et al., over 50% of publications6 on HPCA, ISCA, and MICRO base their results
on this technique [289]. However, the same study also revealed that truncated
execution is highly inaccurate. This finding has also been confirmed by other
groups [101,273]. The inaccuracy is caused by the fact that the approach does
not account for changing program behavior and at the same time depends on
manually and arbitrarily chosen parameters such as the time span to simulate.

SimPoint [109,237] leverages sampling to reduce simulation time and increases
accuracy by selecting multiple time frames to sample from. It is thus able to in-
corporate changing program behavior. Furthermore, the time frames are selected
algorithmically through detecting phase behavior in the simulated workload. Sim-
Point thereby focuses the simulation and analysis on windows with representative
characteristics. To gather initial information on the program behavior and to
fast-forward between samples, SimPoint requires functional simulation. It is thus
only suitable to accelerate more detailed execution modes such as microarchitec-
tural simulation, which face even higher slowdowns than emulation. However, it
does not present a solution to accelerate functional simulation, which is the goal
of our work7. At the same time, SimPoint’s strength to build on phase behavior
becomes its weakness when no sufficient phase behavior exists. SimPoint has
been developed with a single process in mind. However, even for such a scenario,
it has been shown that representative intervals may not be clearly identifiable
due to too complex program behavior (e.g., gcc [273]). For operating system
research, where a mix of processes run alongside OS kernel and driver threads,
observing phase behavior becomes even more difficult.

SMARTS [284] evades this problem by collecting samples periodically with high
frequency, ignoring program behavior. The number of samples taken in SMARTS
is thus higher, while each sample is considerably smaller (1000 instructions
versus 100 M in SimPoint). SMARTS employs sampling theory to choose a min-
imal sampling frequency and to achieve a quantifiable accuracy and precision
in its measurements. As with SimPoint, SMARTS targets the acceleration of mi-
croarchitectural simulations and requires functional simulation to fast-forward
between sampling points and to warm up microarchitectural state. The func-
tional simulation consequently occupies more than 99% of simulation run time.
DirectSMARTS [58] demonstrates how simulations using SMARTS can benefit
from acceleration methods for functional simulation, in this case, using emulation
with dynamic binary translation instead of interpretation in the process-level
RSIM [196] simulator. To improve the run time for subsequent experiments with
the same benchmark, Wenisch et al. checkpoint the warmed-up state in so-called
LivePoints [276]. While subsequent runs can then start off the checkpoints, the

6Over a ten years period, ending in 2005.
7In fact, an accelerated functional simulation could be used to generate SimPoints much faster.

72 Functional Full System Simulation

concept still requires a complete functional simulation beforehand. FSA [229], a
recent publication targeting SMARTS, skips most of the functional simulation by
using hardware-assisted virtualization instead. FSA then dynamically switches
to functional simulation before each sample to warm up microarchitectural state
and finally switches to detailed simulation for the sample itself.

A major drawback of all sampling-based methods is that they are directed toward
the estimation of metrics that can be extrapolated from samples (e.g., instructions
per cycle, etc.). Sampling is less suited to observe the actual system execution as
required in security research, malware analysis, or debugging. Moreover, limiting
the observation window to discrete samples may not be an option because it does
not permit the tracking of individual events. For example, identification of memory
<allocation, deallocation>-pairs cannot be done this way, as used in Undangle [52]
to detect invalid pointers in use-after-free and double-free vulnerabilities. The
same applies to the memory access pattern analysis in Bochspwn [133] and the
evaluation of sharing opportunities for memory deduplication [105, 176, 217].
Instead, such applications demand an acceleration method that offers continuous
simulation.

3.2.3 Parallelizing Multicore Simulations

An alternative to code optimization and sampling is to parallelize the simulation
of cores in multicore simulations. In a simple design, emulating multicore systems
can be done by switching between the vCPUs in a round-robin fashion. This
reduces the complexity of the simulator because it serializes the simulation and
thus requires less synchronization and does not introduce non-determinism from
inter-processor interference. The time-sharing, however, further reduces the
overall execution speed proportionally to the number of vCPUs. Parallel multicore
simulation mitigates this additional slowdown by emulating each vCPU in parallel
on a dedicated hardware thread. Many existing simulators support this mode of
operation today officially or through unofficial patches [81,148,268,271,294].
Graphite [175] is even capable of distributing the simulation of vCPUs across
multiple machines to enable many-core (i.e., thousands of cores) simulations.
Portero et al. [207] expanded on these capabilities with a simulator that also
delivers timing and functional models for on-chip inter-connection systems.

While achieving good speedups compared to serial multicore simulations (e.g.,
3.8x for a quad-core ARM simulation [81]), the approach of parallel multicore sim-
ulation does not accelerate the execution of the vCPUs themselves. Its scalability
is therefore inherently limited to the degree of simulated parallelism. Single-core
simulations do not benefit. However, to make FFSS a prevalent solution for system
inspection, we need to drastically reduce the slowdown for the emulation of a
single core because this slowdown presents the entry obstacle for functional full
system simulation.

Functional Full System Simulation 73

3.2.4 Parallelizing the Simulation Time

The parallelization of simulation time is another method based on parallelization,
which has been first proposed for microarchitectural simulations. Lauterbach
[151] suggested to periodically create instruction traces of short samples and to
simulate the samples in parallel on multiple processors. A benefit of this method
compared to parallel multicore simulation is that it almost linearly scales with
the number of processors available for simulation instead of the simulated degree
of parallelism. However, the solution by Lauterbach requires a time-consuming
(days to weeks [151]) setup phase in which representative samples are detected
and instruction traces are generated.

A similar, but much faster variant of sampling with SMARTS has been presented
under the name pFSA [229]. In contrast to FSA, which serially switches back
and forth between hardware-assisted virtualization and simulation, pFSA forks
the VM whenever it reaches a sampling point. The forked VM then performs the
functional warming and detailed simulation in parallel to the execution of the
hardware-assisted parent and other concurrently running simulations. As with the
trace-based approach by Lauterbach, the speedup is almost linear to the number of
cores used for simulation. However, since pFSA uses forking instead of checkpoints,
scaling the parallelization over multiple hosts is not easily possible. Furthermore,
every iteration in the analysis requires a full re-run of the workload. Since pFSA
uses hardware-assisted virtualization, the execution is non-deterministic. Scarce
events such as race conditions cannot be faithfully reproduced this way. In
addition, pFSA is not able to simulate interactive workloads because external
input is not fed into the simulations.

LiveSim [110] also periodically forks the simulator process during a setup phase
in a functional simulation so as to preserve in-memory snapshots of the VM. This
is comparable to the approach in pFSA, however, LiveSim forks the children again
before actually starting simulations in order to keep the original saved state for
repeated experiments and to allow reproducing identical simulations – given that
the simulations are fully deterministic.

Forking has also been utilized in Shadow Profiling [184] to perform parallel
profiling of a user-mode process with Pin [162]. In contrast to pFSA and LiveSim,
which use periodic sampling, the degree of parallelism in Shadow Profiling is
determined by a user-defined load factor that limits the number of concurrent
simulations. Whenever the number of simulations falls below the load factor,
Shadow Profiling forks off a new simulation at the current instruction pointer.
Each simulation then runs for a configured number of instructions.

Despite that the authors of LivePoints [276] do not present any implementation,
they mention the idea of starting parallel simulations of samples based on check-
points. These can be more easily transferred over a network than live processes.

74 Functional Full System Simulation

While this would help with the limited scalability of pFSA and LiveSim, LivePoints
still depend on functional simulation and share the other shortcomings with pFSA
and LiveSim such as the inability to faithfully simulate interactive workloads. Con-
sidering that these projects are designed for simulating very short samples (1000
instructions) in microarchitectural simulations, this is not surprising. Instead, it
underlines that, while these approaches present innovative concepts, they are not
suited for general OS and security research, which requires repeatable continuous
simulation of potentially interactive workloads.

Nevertheless, the partitioning and parallelization of simulation time is a promising
approach and conceptually not limited to samples, but can also be applied to
whole time intervals. This has been successfully shown by Heidelberger and
Stone [111], as well as Nguyen et al. [192], who, similarly to Lauterbach, suggest
to use trace-driven simulation. However, they do not use samples but split the
trace into disjoint time intervals that – in a second stage – can be processed in
more detail simultaneously. Nguyen et al. measured a speedup of 14x when
using sixteen processors. Although this allows continuous full-length simulation
of the original workload, it still requires a time-consuming setup with functional
simulation to collect the (potentially very large) trace beforehand. In addition,
any changes to the information contained in the trace necessitate a full re-run.

To warm up architectural state (e.g., caches) at the interval beginnings, Nguyen
et al. propose to overlap intervals. DiST [101] further enhances this idea by intro-
ducing automatic warm-up phase scaling. The authors report speedups between
20x and 39x for forty processors. DiST directly parallelizes microarchitectural
simulations by spawning parallel processes that use functional simulation to fast-
forward to the respective interval. Since both the functional simulations and the
microarchitectural simulations are deterministic in nature, it is guaranteed that
the executions do not diverge. Nevertheless, DiST is not capable of handling
interactive workloads and cannot be applied to accelerate functional full system
simulation.

A solution specifically for single-threaded user-mode processes has been demon-
strated with SuperPin [267] – a parallelized version of Pin. In contrast to Shadow
Profiling, SuperPin splits the workload execution into slices, either on a system call
or after a fixed timeout. At interval boundaries, SuperPin forks the process and the
child switches to simulation. The child stops when it detects a CPU state signature
that SuperPin has recorded at the end of the respective interval. Simulations
are therefore delayed until the next interval. Whereas SuperPin reproduces the
return values of system calls, the authors did not provide any information about
whether SuperPin is able to faithfully replay asynchronous signals. The speedup
over serial simulation ranges from 3x to 7x for eight processors.

Parallelization through checkpointing and deterministic replay for multi-threaded
processes, including asynchronous signals, has also been found to be very effective

Functional Full System Simulation 75

in JetStream [211] – an approach to parallelize dynamic information flow tracking
(DIFT) in Pin. The speedup for DIFT queries ranges from 12x to 48x for 128 cores.
The authors stress the performance benefits that checkpointing brings compared
to fast-forwarding by plain replay as, for instance, used in DiST.

3.3 Conclusion: Limitations of the State of the Art

Virtual machines have proven as a powerful environment to conduct operating
systems and security research. However, the range of tools applicable heavily
depends on the technology utilized for virtualization. While interpretation and
dynamic binary translation provide researchers with a maximum of flexibility
and allow for detailed instrumentation and tracing, in practice, the slowdown for
functional full system simulation is a major obstacle. Our measurements confirm
the observations published in the literature that the slowdown for functional
full system simulation typically ranges from one to two orders of magnitude,
with a high sensitivity to additional overhead from analysis code. This makes
analyzing long-running workloads infeasible, prohibits interactivity, and at the
same time perturbs results by distorting the timing within the simulation. Although
incorporating detailed architecture models can produce a more faithful timing,
this does not cope with the lack of interactivity and introduces considerable further
slowdown. In addition, such models require extensive development efforts to
exhibit realistic timing. It has been found that simple timing models, albeit used
by hundreds of publications, possess considerable errors.

On the other side of the spectrum, hardware-assisted virtualization brings near-
native execution speed, including full interactivity. However, the removal of
software interposition deprives researchers of the possibility to leverage instru-
mentation and tracing tools. This pushes hardware-assisted virtualization toward
productive use and makes it less attractive in research and development.

While heterogeneous deterministic replay is able to inject recorded interactions
into a functional simulation and reproduce the realistic timing of interrupts
from the original hardware-assisted run, it does not accelerate the simulation
itself. Current solutions to speed up simulations, in turn, are inadequate for
operating systems and security research as they are either not applicable to
continuous functional simulation, restricted to single user-mode processes, limited
in scalability, or prohibit interactivity.

Partitioning and parallelizing the simulation has been shown to be a powerful
concept with promising speedup characteristics. However, none of the approaches
present today is able to apply the technique to continuous functional full system
simulation to allow a comprehensive analysis of long-running and interactive
workloads.

Chapter 4

SimuBoost

While functional full system simulation (FFSS) is a powerful technique, its im-
mense slowdown in the range of one to two orders of magnitude (1) deprives
simulations of interactivity with human users and non-simulated network peers,
(2) limits the coverage of experiments that can be achieved in reasonable time,
and (3) cuts the accuracy of measurements through time dilation. As we con-
cluded in Chapter 3, existing methods of acceleration fall short of providing a
scalable solution for realistic and repeatable continuous functional simulation of
interactive virtual machines. This presents a major obstacle for comprehensive
use of FFSS in operating system and security research. It is therefore desirable to
develop an acceleration method that provides a drastic speedup over conventional
FFSS, thereby mitigating the limitations that developers and researchers are facing
today when utilizing such simulation techniques.

In this chapter, we introduce SimuBoost, our acceleration method for functional
full system simulation. Based on the shortcomings of existing techniques, we
begin in Section 4.1 by inferring a set of goals to which a solution should adhere.
In Section 4.2, we elaborate on the core idea behind SimuBoost and explain how
SimuBoost is able to satisfy these goals. To highlight in which points our work
differs from previous publications in this area, we briefly recapitulate the relevant
related work and perform a direct comparison with SimuBoost in Section 4.3.
A summary in Section 4.4 concludes the chapter. The following chapters then
describe and evaluate the key building blocks of our prototypical SimuBoost
implementation.

As outlined in § 1.2, we focus on single-core simulations only to demonstrate
the general feasibility of our approach. We discuss to what extent SimuBoost
is applicable to multicore simulations and what challenges remain to be solved
on this route in the course of Chapter 10.

78 SimuBoost

4.1 Goals

An acceleration method for functional simulation and tailored to operating system
research should fulfill the following goals:

Temporal Completeness Sampling [229,237,284] generates speedup from sim-
ulating short windows only. This method does not permit the tracking of
individual events (e.g., memory (de-)allocations [52]) and is not well suited
to discover operational sequences (e.g., memory access patterns [133]).
Truncation, on the other side, has been shown to suffer from high inaccuracy
by ignoring program phase behavior [289]. An acceleration method should
therefore provide full-length continuous simulation.

Spatial Completeness Completeness does not only relate to the temporal di-
mension, but also includes the spatial domain – i.e., the code that can
be observed. A functional simulation for operating system research must
include privileged system components and drivers. Accordingly, a suitable
acceleration method must be applicable to full system simulation.

Scalability Multicore and multiprocessor systems are prevalent today and even
clusters are readily available as cloud service. A technique to speed up FFSS
should make use of this computational capacity and scale with the available
physical parallelism. This should be independent of the simulated degree
of parallelism so that also single-core simulations benefit.

Interactivity The inability to cover workloads that interact with a human user or a
non-simulated network peer is a major downside of conventional functional
simulation. The acceleration method should increase the simulation speed
to such an extent that full interactivity is possible and is maintained even
under the stress of added instrumentation.

Accuracy Inaccurate simulations inevitably lead to inaccurate measurements.
Depending on the information to be obtained from the experiments, a lack of
accuracy can render simulation as a methodology useless. This is especially
a concern if the additional cost (i.e., development time and run time) for a
realistic hardware model are not affordable or the know-how is proprietary.
In the absence of such a model, the acceleration method should at least
mitigate inaccuracies due to time dilation [56] while minimizing the probe
effect [60] – i.e., the divergence from a non-simulated execution with the
same speed.

Portability The field of operating system research naturally deals with a diverse
set of hardware architectures. For this reason, it is desirable for the accelera-
tion method to be universally applicable and not depend on implementation
details of a particular hardware or simulation platform. Instead, it should
be usable on widely available commodity hardware.

SimuBoost 79

4.2 Approach

To achieve a maximum speedup for a given hardware setup, the scalability of
an acceleration method is of utmost importance. In § 3.2, we highlighted that
the parallelization of simulation time has proven to provide very good scalability
with almost linear speedups. In contrast to methods that parallelize the execution
of simulated CPUs, the parallelization of simulation time is also applicable to
single-core simulations. At the same time, it is not limited to sampling, but equally
allows continuous full-length observation (i.e., temporal completeness). Another
advantage is that the concept is very portable because it does not merely gain
speedup from optimizing implementation details – which exhibits only limited
scalability anyway.

Due to its effectiveness, we have chosen to employ the parallelization of simulation
time as the core idea in SimuBoost [219]. The run time of the serial simulation is
split into disjoint time intervals (see Figure 4.1). The intervals are then distributed
over a set of nodes for parallel simulation, where the nodes are dedicated physical
CPU cores on one or more hosts. In this model, the overall run time equals the
simulation time of the longest interval.

The simulation for interval i[k] with k ∈ [2, n] and n ∈ N requires the simulated
machine’s state at the beginning of this very interval. The machine state, in
turn, results from the execution of the intervals i[1] to i[k− 1]. This creates a
dependency chain which forbids the early start of parallel simulations. Another
drawback of this method is that it neither improves accuracy nor allows interac-
tivity because each interval is still executed with conventional slow functional
simulation.

t

Serial
Simula�on

i [1]

Node 1

i [2] … i [n]

Node 2

…

Node n

i [1]

i [2]

…

i [n]

Node S

Parallel
Simula�on

Figure 4.1: The serial simulation is split into disjoint time intervals and distributed
over simulation nodes (e.g., CPU cores or hosts) for parallel simulation.

80 SimuBoost

A setup phase with an initial full-length serial simulation as in trace-driven ap-
proaches would allow gathering the machine state at the interval boundaries.
Subsequent runs could then be executed with parallelization. However, the lack
of accuracy and interactivity remains. Also, requiring a time-consuming setup
phase is unfavorable and considerably increases turnaround time.

To quickly retrieve the machine state at sampling points, pFSA [229] leverages
hardware-assisted virtualization (HAV). Instead of running the workload in a
serial functional simulation to fast-forward between samples, pFSA uses a regular
fast virtual machine and forks off simulations as appropriate. SimuBoost adopts
this general principle (see Figure 4.2) and applies it to continuous simulation: The
workload executes in a hardware-assisted virtual machine (HVM) with near-native
speed. Periodically, SimuBoost takes a checkpoint to capture the state of the VM,
thereby marking interval boundaries. The checkpoint contains a consistent image
of the virtual machine’s memory, device states, and persistent storage at the time
of taking. SimuBoost uses the checkpoint to bootstrap the simulation of the
respective interval on a different node. In contrast to forking, checkpoints can
more easily be transferred over a network, improving scalability. They can also be
saved to disk for repeated runs. Although the simulations do not collectively start
right at the beginning, the slowdown between hardware-assisted virtualization
and functional simulation (exemplarily depicted as 4x) drives the parallelization.

Using a hardware-assisted virtual machine as input to the simulation has the
additional benefit of recovering interactivity. Assuming checkpoints can be taken
with low overhead (see Chapter 6), the HVM is fast enough to be actively controlled
by a user just like a regular virtual machine in productive use. Similarly, the virtual
machine is capable of communicating with non-simulated remote peers. Since
the simulations execute in parallel to the HVM, the performance of the virtual

t

HW-assist.
Virtualiza�on

i [1]

Node 1

i [2] … i [n]

Node 2

…

Node n i [n]

Node V

Parallel
Simula�on …

i [2]

i [1]

Figure 4.2: The workload runs in a hardware-assisted virtual machine with near
native speed. At interval boundaries, SimuBoost takes checkpoints,
which it uses to bootstrap parallel simulations. The slowdown between
HAV and functional simulation (here 4x) drives the parallelization.

SimuBoost 81

machine is decoupled from the execution speed of the simulations. This effectively
maintains interactivity even in the face of additional instrumentation overhead.

The portability of the approach is only limited in that the target architecture must
support some form of fast hardware-assisted virtualization. However, this feature
is generally present today (e.g., x86, ARM, MIPS, and PowerPC) or planned for
future releases (e.g., RISC-V).

4.2.1 State Deviation

Whereas simulations can be built to always emit identical deterministic runs, for
example, according to a specified timing model, hardware-assisted virtualization
is subject to non-deterministic input such as erratic I/O completion timing. In
consequence, the parallel simulations in SimuBoost experience different timing
behavior than the hardware-assisted execution of the same interval. Furthermore,
the checkpoints only capture the result of past interaction, but they do not contain
information on interactions in the current interval. Hence, any external input such
as user commands or network packets received by the HVM is not reproduced in
the simulations. The same applies to non-deterministic instruction results (e.g.,
readings of a timestamp counter). Consequently, the executions in the HVM and
the FFSS of each interval diverge. Besides effectively losing interactivity, this is
problematic in two ways:

1. Since simulations start off checkpoints that originate from the hardware-
assisted virtual machine, the divergence breaks the functional continuity
between interval boundaries in the simulation stage. That is, the machine
state at the end of the simulation of interval i[k] does not match the state
at the beginning (i.e., the checkpoint) of interval i[k + 1]. For example,
recording a coherent instruction trace under such circumstances is infeasible.

2. For researchers to take measurements and retrieve data from a simulation
which behaves differently from what they can see (i.e., the HVM) is at least
confusing. In the worst case, the simulation is of little value if it does not
reproduce the desired behavior as triggered in the HVM.

A possible solution is to take checkpoints not periodically but at each non-
deterministic event. This immanently captures the point in time as well as the
state modification caused by the event. This is similar to what has been done in
Kemari [253], where a backup VM is synchronized via a checkpoint whenever
the master VM sends network packets or writes to persistent storage. However,
Kemari possesses a 2x performance overhead. Furthermore, our experiments
show that on average 7400 (max: 230K) non-deterministic events per second
occur during a Linux kernel build. This suggests that we would have to take a
checkpoint every 135µs on average and every 4µs at peak times, which is clearly
not feasible without severe performance degradation.

82 SimuBoost

To counter state deviation, SimuBoost therefore leverages heterogeneous deter-
ministic replay. Non-deterministic input such as the timing of interrupts, the
payload of I/O operations, and the results of non-deterministic instructions are
recorded during the hardware-assisted virtualization as discrete events and are
precisely replayed in the simulations. This restores functional continuity and
reproduces user as well as network input, which is indispensable to simulate
interactive workloads. Since non-deterministic input needs to be fully captured
prior simulation, SimuBoost delays the parallelization by one interval (compare
Figure 4.2).

An advantage of deterministic replay is that it injects realistic timing into the
simulation. This frees researchers from having to install a sophisticated timing
model. In fact, the authors of PTLsim/X [292] advocate the use of deterministic
replay even for microarchitectural simulations in order to create realistic timing.
Furthermore, it has been shown that small changes in timing can have a great
effect on simulation results [29]. By replaying different runs of the same scenario
this can easily be taken into account with SimuBoost. This stands in stark contrast
to deterministic simulations like, for instance, in Simics [163], which always
produce exactly the same execution and thus miss to capture variations. On the
other side, if a repeated, exactly identical execution is needed with SimuBoost,
the same recording can be replayed any number of times.

On the flip side, the combination of checkpointing and deterministic replay closely
ties the simulation to the hardware-assisted execution. Although Viennot et al.
demonstrated that a replay can tolerate modified executable code to some extent
[263], experiments generally have to remain passive observations. SimuBoost is
thus not suited to, for instance, evaluate the effects of novel memory architectures
because this would require a feedback loop into the execution to apply new
timing information. However, forcing the simulation to deviate from the recorded
execution path breaks functional continuity and prevents a correct replay of
interactions and other non-deterministic events. Nevertheless, SimuBoost is
perfectly suited if a detailed insight into an existing realistic execution is desired –
for example when debugging or collecting traces. These traces, in turn, can be
fed into new architectural models.

4.3 Comparison with Related Work

In 2002, the authors of ReVirt [87], one of the early works on homogeneous
full system deterministic replay, already mention the idea to create intermediate
checkpoints during native execution and then start replay off checkpoints, in
this case to fast-forward to points of interest. In contrast to SimuBoost, the
authors did not discuss parallelization. In fact, being homogeneous in nature,
the replay in ReVirt remains to be a native execution and thus does not involve

SimuBoost 83

functional simulation. Moreover, the authors conceived checkpointing to be a
rare event (once every few days), which, according to the authors, does not justify
special optimization. The actual ReVirt prototype misses support for any form of
checkpointing and is only able to start replay from a powered-off virtual machine.

Three years later, King et al. developed a debugging tool for operating systems
based on ReVirt, called TTVM [137]. A distinctive feature is its ability to perform
reverse debugging for which TTVM has to periodically create checkpoints. Hence,
King et al. eventually extended ReVirt with support for checkpointing, although
not to realize parallelization. Nevertheless, with intervals of 10 s to 25 s the
checkpointing frequency is rather low (too low for online parallelization as in
SimuBoost). Since ReVirt supplies the replay functionality, TTVM also inherits its
restriction to native execution.

In 2007, Xu et al. [286] proposed an acceleration method close to SimuBoost
in a side note of their work on ReTrace. They suggested parallelizing extensive
full system execution tracing by combining hardware-assisted virtualization with
checkpointing, heterogeneous deterministic replay, and functional full system
simulation. However, their implementation in ReTrace does not include any
parallelization (or checkpointing) but solely demonstrates tracing in a serial
heterogeneous replay. The authors also did not discuss requirements or chal-
lenges bound to the parallelization (e.g., in the area of checkpoint creation and
distribution), nor did they provide a perspective on the possible gain from this
acceleration method. This is in contrast to our work, which provides this and
presents a working prototype.

A combination of native execution with checkpointing and deterministic replay
has actually been implemented only in JetStream [211], a recent tool to paral-
lelize dynamic information flow tracking. A major limitation of JetStream is its
restriction to single user-mode processes. SimuBoost, on the other hand, targets
the full system and thus supports holistic system analysis, including groups of
processes as well as privileged kernel-mode components – which is indispensable
for operating system research. Moreover, contrary to SimuBoost, JetStream splits
the execution into intervals offline. That is, it first records an execution, then
replays it to create checkpoints, producing one interval for each CPU, and finally
reruns the whole execution in parallel using the simulator. While the authors
found the approach to be very effective, the offline method considerably delays the
start of simulations. SimuBoost creates checkpoints on-the-fly during the original
run to allow immediate simulation and reduce turnaround time. To be effective,
SimuBoost must thus create checkpoints continuously while at the same time it
has to keep the overhead at a minimum so as to preserve interactivity. Covering
the entire system and starting parallel simulations right away as in SimuBoost
thus raises the bar for efficient (subsecond) interval checkpoint creation and
distribution, where at the same time less semantic information is available and
the data volume is higher compared to application-level checkpointing only.

84 SimuBoost

The restriction to user-mode processes also applies to Shadow Profiling [184] and
SuperPin [267]. These projects do use application-level deterministic replay, but
besides missing full system support, they are limited in scalability by resorting to
forking the simulator process instead of using checkpoints. The latter is also the
case with pFSA [229], which is geared toward parallelizing the microarchitectural
simulation of discrete samples1. Shadow Profiling only simulates individual
samples and the evaluation did not exceed two parallel instances. SuperPin
and pFSA are evaluated to the maximum degree of parallelism provided by the
available test platforms. Including hyperthreads, the benchmarks, however, did
not exceed 16 and 32 parallel instances, respectively. In most cases, hyperthreads
also brought no performance improvement. Conversely, the checkpointing in
SimuBoost allows distributing the simulation over multiple physical hosts, thereby
boosting the available hardware parallelism and enhancing scalability.

Another project related to SimuBoost has been presented by Girbal et al., called
DiST [101]. It implements parallelization of microarchitectural simulations across
multiple physical hosts but without using checkpoints. Instead, each node fast-
forwards to the respective interval by executing the workload with functional
simulation. Hence, DiST leverages the speed difference between microarchitec-
tural and functional simulation, similar to the way SimuBoost leverages the speed
difference between functional simulation and hardware-assisted virtualization.
Yet, an important difference between both approaches is that the checkpoints
relieve SimuBoost from having to fast-forward. The authors of DiST report this
to be a major scalability issue and consequently advocate the use of checkpoints
instead. Due to its dependency on pure functional simulation, DiST also cannot
faithfully handle interactive workloads.

To conclude, we can state that splitting the simulation time into parallelizable
epochs has proven in the past to provide considerable acceleration potential. How-
ever, none of the existing solutions based on this principle applies to continuous
functional full system simulation. To the best of our knowledge, SimuBoost is the
first approach to enable parallelization of interactive and long-running functional
full system simulations.

In addition, this work contributes valuable insights in the area of efficient contigu-
ous checkpointing, relevant also to related research areas (e.g., fault tolerance
systems like Remus [72]). Furthermore, only marginal research has been done on
how to perform heterogeneous deterministic replay at the machine level; with no
solution, including ReVirt, being available to the research community2. SimuBoost,
on the other hand, is freely accessible at https://github.com/simutrace/.

1pFSA does not provide any means to perform replay.
2The only projects covering full system heterogeneous deterministic replay have been undertaken

in closed source by VMware for their proprietary VMware Workstation product [63,64,286]
and by Yan et al. for V2E [287]. Unfortunately, the authors did not publish their source code
and multiple attempts to receive a copy remained unsuccessful.

https://github.com/simutrace/

SimuBoost 85

4.4 Conclusion

Despite the fact that the parallelization of simulation time has been successfully
leveraged to substantially accelerate simulation in general, no previous work to
date has applied this method to functional full system simulation. SimuBoost
strives to represent the first workable prototype. The core idea is to run the work-
load of interest in an interactive hardware-assisted virtual machine. SimuBoost
periodically takes checkpoints with high frequency, creating disjoint intervals.
Then, the checkpoints are distributed in a simulation cluster to start parallel simu-
lations of the respective intervals. Heterogeneous deterministic replay guarantees
that simulations precisely reproduce the execution observed in the virtual machine
and that functional continuity is maintained.

While the principle behind SimuBoost is easy to describe, the actual implemen-
tation comes with many intricate technical challenges. We need a performance
model to select the optimal interval length for a certain configuration. Checkpoints
have to be created with high frequency, while at the same time SimuBoost must
keep the downtime and run-time overhead low in order to maintain interactivity
and representativeness. To start simulations with low latency, SimuBoost has to
quickly transfer these frequent checkpoints over the network and spawn hundreds
to thousands of individual simulations over the course of a single workload. To
fulfill the portability goal it is desirable that this process can still be handled by
commodity network infrastructure such as Gigabit Ethernet. And finally, with
only little experience in heterogeneous full system replay among the research
community and no prior project to build on, implementing such a mechanism
from scratch comes with its own set of challenges. With Chapters 6 to 8, we
subsequently dedicate one chapter to each of these four areas, before presenting
a thorough evaluation of SimuBoost’s acceleration performance in Chapter 9.

We have implemented our prototype in QEMU/KVM 2.6.5 (§ 2.2.5) on Linux
4.3. If not stated otherwise, all benchmarks presented in the following four
chapters have been run using our main evaluation setup (System V/1) as
summarized in § 9.1.1 on page 189 and the following. Results are the median
of five runs and error bars indicate the empirical 0.025 and 0.975 quantiles –
i.e., they cover 95% of samples. For box plots, we indicate the empirical 0.25
and 0.75 quantiles (50% of samples) with the box and the 0.025 and 0.975
quantiles with the whiskers. A detailed description of the benchmarks can be
found in § 9.1.2.

Chapter 5

Performance Model

An open question in our description of SimuBoost so far is the determination
of the right interval length. Similarly, we want to estimate the speedup that is
attainable with a certain configuration. The performance model for SimuBoost
aims to fill this gap.

In offline approaches such as trace-driven simulation, where all required infor-
mation is available prior to simulation, the run time Tvm of the workload in the
hardware-assisted virtual machine can simply be split into N equally-sized chunks,
with N being the number of nodes. The interval length L is then L = Tvm

N . Assuming
that on average the simulation time for every interval varies only marginally, the
simulation load is uniformly distributed and the parallel simulation time roughly
corresponds to the simulation time of a single interval (compare Figure 4.1).

However, this model is not applicable to SimuBoost because SimuBoost creates
checkpoints on-the-fly – i.e., online. This much more resembles a producer-
consumer problem, where the interval length determines the production rate, and
the number of nodes and the simulation time per interval limit the consumption
rate. In practice, additional factors such as the downtime during checkpointing
and the checkpoint loading time come into play.

To make predictions on the run-time characteristics that can be expected from
SimuBoost, we have developed a corresponding mathematical model [89,219,
225]. It provides information about the interval length that should be chosen
for a given workload and hardware configuration to achieve the best possible
speedup. It also allows us to estimate the parallel simulation time and identify
important metrics that affect the performance.

In Section 5.1, we first describe the optimal case, in which a sufficient number
of nodes is available to reach the maximum speedup for a given scenario. In
Section 5.2, we then extend this model to be applicable in cases where only a
limited amount of nodes is at the researcher’s disposal.

88 Performance Model

5.1 Optimal Setup

SimuBoost takes checkpoints periodically throughout the run time of the experi-
ment. Parallel simulations may start when a checkpoint becomes available and
the non-deterministic events of the respective interval have been collected – i.e.,
at the end of the interval in the virtualization stage. To reach a maximum degree
of parallelization and thus acceleration, intervals need to be simulated as soon as
they become available. The optimal model therefore assumes that there is always
a free node which can immediately start a simulation.

t

HW-assist.
Virtualiza�on

i [1]

Node 1

i [2] … i [n]

Node 2

…

Node n

Node V

Parallel
Simula�on

tc L

ts

Tidle

1
nTsim =

idle

idle

s sim
s vm

L

Tbusy

Tps

i [n]

…

i [2]

i [1]

Tvm := Total time for hardware-assisted execution (without SimuBoost)
Tsim := Total time for serial simulation (without SimuBoost)
Tps := Total time for parallel simulation
Tidle := Idle time of node n
Tbus y := Busy time of node n
L := Interval length
svm := Slowdown of virtualization due to SimuBoost
ssim := Slowdown of simulation compared to virtualization (Tvm)
tc := Checkpointing downtime
ts := Simulation start-up time

∗ All times and lengths are in seconds [s], and svm, ssim ≥ 1.

Figure 5.1: The parallelization hides the execution time for all but the last simu-
lation. The overall parallelized run time is thus the sum of the idle
and busy times of the nth node.

Performance Model 89

Let N ∈ N be the number of nodes, and let n ∈ N be the number of intervals of
length L. Then a simple way to comply with this assumption is:

N = n (5.1)

That means for every interval, we have exactly one dedicated simulation node as
illustrated in Figure 5.1. Using more than n nodes (i.e., N > n) does not provide
any benefit because these nodes would not receive any work.

5.1.1 Parallel Simulation Time and Speedup

The first metric we can determine using Assumption 5.1 is Tps, which is the total
run time of a parallel simulation with SimuBoost, starting with the virtualization
stage. Tps thus represents the time a user has to wait from the beginning of an
experiment until the simulation of the last interval finishes.

Since today it is common to execute workloads in virtual machines even in produc-
tive use, we take the run time Tvm with regular hardware-assisted virtualization
as the baseline. However, when executing the workload with SimuBoost, the
checkpointing and recording of deterministic events incurs overhead which slows
down the hardware-assisted execution, mainly for two reasons. First, additional
VM exits occur while the VM is running, for example, for event recording. We
denote this overhead by the slowdown factor svm. Second, the checkpointing
suspends the virtual machine once per interval to take a consistent snapshot of the
machine’s state. This further prolongs the effective run time of the workload in
the virtualization stage. We refer to the downtime induced by a single checkpoint
with tc. Therefore, when SimuBoost takes a checkpoint every (tc + L) seconds in
wall-clock time, the VM has performed the same amount of work as in L

svm
seconds

without SimuBoost.

The first component that determines Tps is the idle time Tidle(n), which is the time
the last node has to wait until the last interval in the workload has been executed.
Only then, the simulation of the last interval can start (see Figure 5.1):

Tidle(n) := n(tc + L) (5.2)

The second component that determines Tps is the performance of the simulation
itself. If we assume that the effort to simulate the workload (i.e., instructions,
I/O, etc.) is evenly distributed over the entire run time1, the simulation of every
interval takes roughly the same time. Let ssim be the slowdown factor from
hardware-assisted virtualization (Tvm) to conventional full system simulation,

1In practice, this may not hold if the workload exhibits clear phase behavior. Nevertheless, for
reasons of simplicity, we ignore this in the model and assume uniform load.

90 Performance Model

including the overhead for analysis. Then L
svm

ssim =
ssim
svm

L is the net simulation time
of a single interval and Tsim(n) is the overall time for serial simulation:

Tsim(n) := n ·
ssim

svm
L (5.3)

Since each simulation starts off a checkpoint, we have to account for the time that
is required to transfer the checkpoint to the target node, initialize the simulator,
and load the checkpoint. We denote this start-up time by ts. This gives us the
total simulation time per interval:

Tbus y(n) := ts +
1
n

Tsim(n) (5.4)

Considering a 1:1 mapping between nodes and intervals – which is the premise
in the optimal setup – there is always a free node available to simulate a newly
arriving interval. Together with the uniform interval simulation time, this effec-
tively hides the parallel simulation of all intervals, except the last one (i.e., n),
behind Tidle(n). We can therefore define the parallel simulation time Tps(n) as:

Tps(n) := Tidle(n) + Tbus y(n) (5.5)

In practice, the number of intervals is not directly controlled by the user. Instead,
the user configures an (optimal) interval length L, and the number of intervals
results from the given run time Tvm of the workload. It is thus more useful to
define Tps in terms of L. Since with SimuBoost the effective run time extends to
svmTvm, we can calculate the number of intervals with:

n(L) :=
�

svmTvm

L

�

(5.6)

The use of the floor function is required because the model assumes that every
interval has the length L. If svmTvm is not a multiple of L, that is, svmTvm = nL + r
with r > 0, we thus cut off the remaining run time r and do not include it in the
parallel simulation as the user can always run the VM for one interval longer, if
necessary2. For Tps, we receive:

Tps(n(L)) := Tidle(n(L)) + Tbus y(n(L)) (5.7)

=
�

svmTvm

L

�

(tc + L) + ts +
ssim

svm
L (5.8)

The speedup with SimuBoost over conventional serial simulation is then:

S(n(L)) :=
Tsim(n(L))
Tps(n(L))

(5.9)

2In practice, Tps is determined by the completion time of the last interval simulation, irrespective
of the index of the interval. The model assumes this to always be interval i[n]. If we would
simulate r, we would allocate a new node like for every other interval and i[n+ 1]

∧
= r would

be the last interval. However, depending on the length of i[n+ 1], the simulation time might
be hidden by i[n] – i.e., i[n+1] completes before i[n]. The model would need to take this into
account by finding the maximum completion time between i[n+ 1] and i[n]. For simplicity,
we instead cut off r and require the user to prolong the overall recording phase, if necessary.

Performance Model 91

5.1.2 Optimal Interval Length

If we would have an unlimited number of nodes to our disposal, we intuitively
could just decrease L (i.e., increase n) to improve speedup. This would raise the
degree of parallelism and improve efficiency by shortening the compulsory idle
phases at the beginning and the end (i.e., the "stairway" in Figure 5.1 becomes
taller and steeper). At the same time, low interval lengths would reduce the run
time of the last interval, which greatly effects Tps. However, with shorter intervals
the overall overhead for checkpoint creation, distribution, and loading increases,
which impairs the resulting speedup and eventually becomes a limiting factor.
Conversely, choosing L too long leads to poor parallelism, which also hurts the
speedup. Figure 5.2a exemplarily illustrates the model-predicted relationship
between speedup and interval length for a Linux kernel build3.

To determine the optimal interval length Lopt for a given scenario, we would need
to solve ∂

∂ L S(n(L)) = 0 for L. However, due to the floor function in n(L), S(n(L))
is not differentiable (see Figure 5.2b). At each discontinuity d, the number of
intervals decreases by one if we increase L (i.e., limL→d− r = 0), or decreases by

3Parameters for Linux kernel build: Tvm = 435 s, ts = 0.44 s, tc = 0.012 s, ssim = 53, svm = 1.107.
Values have been determined experimentally with a prototype of SimuBoost for L = 1 s.

Lopt ≈ 0.35

S(n(L))

S(ñ(L))

(b)

(a)

0

8

16

24

32

40

48

0 1 2 3 4 5 6

Interval Length L [s]

S
p
ee
d
u
p
S
(n
(L

))

Figure 5.2: Choosing the right interval length is crucial. Speedup becomes limited
by overhead for too short values of L; too long values lead to poor
parallelism. The optimal interval length is marked with Lopt .

92 Performance Model

one if we increase L (i.e., limL→d+ r = L), respectively. This affects the degree of
parallelism (N = n) and creates the (small) steps in the speedup function.

Besides computing the optimal interval length numerically, we can use the differ-
entiable approximation S(ñ(L)), with:

ñ(L) :=
svmTvm

L
(5.10)

S(ñ(L)) equals S(n(L)) for every L where r = 0 and interpolates in between. As
shown in Figure 5.2b, S(ñ(L)) overestimates the speedup between steps compared
to the predicted non-differential solution because the increase in saved simulation
time due to parallelization is larger than the increase in simulated workload time.
We can determine the relative error between S(ñ(L)) and S(n(L)) with:

∆S(L) :=
S(ñ(L))
S(n(L))

(5.11)

Figure 5.3 shows the relative error around the corresponding numerically deter-
mined optimal interval lengths. For all benchmarks, the divergence stays below
0.2%, but rises for ascending interval lengths. However, this is not a problem
because the optimal setup prefers a high degree of parallelism, which in turn
requires a large number of intervals. Lopt can thus be expected to lie in the range

Lopt

Lopt

0.35 s
0.15 s
0.25 s
0.25 s
2.05 s

0.0001

0.001

0.01

0.1

1

0.1 1 10

x · Lopt

∆
S

(L
)

[%
]

kernel build
postmark
sqlite
apache
specjbb

Figure 5.3: The error of S(ñ(L)) compared to S(n(L)) around the numerically
determined Lopt is below 0.2% for every benchmark.

Performance Model 93

of short interval lengths, where the step width and therefore the error is small.
Subsequently, we conclude that S(ñ(L)) is sufficiently accurate for calculating Lopt

and solve ∂
∂ L S(ñ(L)) = 0 for L. Since we can safely assume that all parameters

are positive, we omit the negative result and get:

Lopt :=

√

√

√
s2

vmTvm tc

ssim
(5.12)

Sopt := S(Lopt) (5.13)

5.1.3 Optimal Number of Nodes and E�ciency

The speedup Sopt requires that SimuBoost can allocate a sufficient number of
simulation nodes. Otherwise, the interval production rate exceeds the consump-
tion rate, which invalidates the basic premise of the optimal case. In a naive
implementation, every interval is simulated on a different node, that is, N = n.
Utilizing more than n nodes does not deliver any additional speedup as these
nodes will not receive any work. However, even choosing N = n wastes compu-
tational resources because when nodes complete their interval, they idle for the
rest of Tps. Instead, it is more efficient to reuse nodes whenever they run idle.

Assuming that intervals are created periodically and that the simulation of every
interval takes roughly the same time, intervals complete at the same rate they are
created – producing uniform steps on both sides of the "stairway". In this case,
new nodes are required only until the first simulation finishes, which is Tps(1).
Subsequent intervals can be scheduled on previously allocated nodes that ran out

t

HW-assist.
Virtualiza�on

i [1]

Node 1

i [2] … i [n]

Node 2

Node
Nopt

Node
Nopt +1 i [n]

Node V

Parallel
Simula�on

…

i [2]

i [n]i [1]
reuse node

tc+L

tc+L + ts+
s sim
s vm

L

Figure 5.4: New nodes are required until the first simulation finishes. Subsequent
intervals can be scheduled on previously allocated nodes.

94 Performance Model

of work (see Figure 5.4). The necessary number of nodes N is hence the number
of new intervals created until Tps(1). Since we produce one interval every (tc + L)
seconds, we can compute N(L) as follows:

N(L) :=

�

Tps(1)

tc + L

�

=

�

tc + L + ts +
ssim
svm

L

tc + L

�

=

�

ts +
ssim
svm

L

tc + L
+ 1

�

(5.14)

Nopt := N(Lopt) (5.15)

We can then calculate the efficiency E of our approach by looking at the speedup
that can be achieved for the number of nodes used:

E(n(L)) :=
S(n(L))

N(L)
(5.16)

Eopt := E(Lopt) (5.17)

As an example, we apply the model to a Linux kernel build and choose the same
parameters as in Figure 5.2. With a slowdown factor ssim ≈ 53, the workload
would run 6 h and 25 min with conventional serial simulation. For Lopt ≈ 0.35 s,
our model predicts a total parallel simulation time Tps(Lopt) of 8 min and 35 s.
This would be a speedup of about Sopt ≈ 44. To achieve this, we would require
Nopt = 48 nodes, which would give us a parallelization efficiency of Eopt ≈ 93%.

5.2 Constrained Setup

The current model assumes that for every submitted checkpoint there is a free
node that can immediately start a simulation. However, in practice, this is often
not the case because the hardware setup is too small to provide a sufficient number
of nodes. That is:

N < Nopt (5.18)

The current model is thus a convenient way to estimate the maximum benefit
one can expect from SimuBoost, but to be practical, the model requires an exten-
sion that allows predicting the benefit (and optimal interval length) for smaller
hardware configurations.

If the number of nodes is not sufficient to keep up with the production rate
of checkpoints, at some point all nodes are busy and new intervals need to be
queued for later simulation (see Figure 5.5). As soon as a simulation finishes,
the respective node can then fetch a checkpoint from the queue and continue
simulation.

Performance Model 95

t

HW-assist.
Virtualiza�on

i [1]

Node 1

i [2] … i [n -1]

Node 2

Node V

Parallel
Simula�on

tc L

ts

Tbusy

1
n Tsim

+ +

Tidle

queue

idle

i [n]

+

No free node for simula�on

i [n]

i [n -1]i [2]

… i [1]

Figure 5.5: If too few simulation nodes exist, the production rate exceeds the
consumption rate and checkpoints need to be queued.

5.2.1 Parallel Simulation Time and Speedup

If we assume that (1) all simulations take roughly the same amount of time
and (2) simulations are distributed uniformly among the available nodes, we
can infer that the node which simulates the last interval determines the overall
parallel simulation time (compare Figure 5.5). In the optimal setup, where N = n,
this is always the last node4. In a constrained setup, where simulations need to
be queued, this is not the case. However, the general idea to calculate Tps by
adding the idle and busy times of the node that simulates the last interval is still
applicable. So for a constrained setup we have to determine Tidle and Tbus y as
before, but for the node that simulates the last interval.

With uniform simulations, we can achieve optimal assignment of nodes to intervals
by utilizing simple round-robin scheduling. We can thus find the index i of the
node that simulates the last interval with ((n− 1) mod N) + 1, where i ∈ [1, n].
This lets us define:

Tidle(N , n) := (((n− 1) mod N) + 1)(tc + L) (5.19)

Node i has to simulate d n
N e intervals. The busy time of the node can therefore be

computed with:

Tbus y(N , n) :=
l n

N

m

(ts +
1
n

Tsim) (5.20)

This results in a parallel simulation time of:

Tps(N , n) := Tidle(N , n) + Tbus y(N , n) (5.21)

= (((n− 1) mod N) + 1)(tc + L) +
l n

N

m

(ts +
1
n

Tsim(n)) (5.22)

4If only Nopt nodes are deployed, the index of the last node changes, but as no queuing is
involved, this does not affect Tps and is mathematically equivalent.

96 Performance Model

Verification

To verify that Tps(n) is just a special case of the more general Tps(N , n) , we
derive Equation 5.5 from Equation 5.21 by choosing N = n:

Tps(n, n) = (((n− 1) mod n) + 1)(tc + L) +
ln

n

m

(ts +
1
n

Tsim(n))

= ((n− 1) + 1)(tc + L) + d1e (ts +
1
n

Tsim(n))

= n(tc + L) + (ts +
1
n

Tsim(n))

= Tidle(n) + Tbus y(n)
= Tps(n)

�

However, Tps(Nopt , n) 6= Tps(n) because of the floor function in Equation 5.15
and due to the fact that Tps(N , n) does not incorporate the idle gaps that may
happen between simulations (see Figure 5.4, between i[1] and i[n]). The
model should thus slightly underestimate the simulation time for Nopt .

With n(L) :=
� svmTvm

L

�

(Equation 5.6), we can express Tidle, Tbus y , and Tps in terms
of the interval length L as before:

Tidle(N , n(L)) := (((
�

svmTvm

L

�

− 1) mod N) + 1)(tc + L) (5.23)

Tbus y(N , n(L)) :=
¡

1
N

�

svmTvm

L

�¤

(ts +
ssim

svm
L) (5.24)

Tps(N , n(L)) := Tidle(N , n(L)) + Tbus y(N , n(L)) (5.25)

Equivalent to the optimal setup, the speedup S is:

S(N , n(L)) :=
Tsim(n(L))

Tps(N , n(L))
(5.26)

Figure 5.6a depicts the estimated speedup for a Linux kernel build given various
numbers of simulation nodes and interval lengths. The top-most line S(48, n(L))
closely follows the predicted optimal scenario (compare Figure 5.2), with Nopt

being 48 for the kernel build. However, since S(Nopt , n) 6= S(n), Lopt is slightly
different from the calculation with S(n).

A noticeable difference to the optimal case is the (inverted) sawtooth-like shape,
whose strength varies with the number of nodes and the interval length. In addi-
tion to this distinctive feature, the function still exhibits the small non-differential
steps that we can also observe in the optimal case.

Figure 5.7 illustrates how these steps emerge. When the interval length increases
the number of intervals gradually diminishes according to n(L) :=

� svmTvm
L

�

(Equa-
tion 5.6). A large step occurs each time the number of intervals falls down to a

Performance Model 97

Lopt ≈ 3.65, N = 4

Lopt ≈ 1.82, N = 8

Lopt ≈ 0.94, N = 16

Lopt ≈ 0.44, N = 32

Lopt ≈ 0.29, N = 48 S(N,n(L))

S̃(N, ñ(L))

(b)

(a)

0

8

16

24

32

40

48

0 1 2 3 4 5 6

Interval Length L [s]

S
p
ee
d
u
p
S
(N

,n
(L

))

Figure 5.6: In addition to the non-differential steps known from the optimal
case, we can observe an overlay with a sawtooth-like function, whose
strength depends on the number of nodes and the interval length. The
approximation (in blue) does not reproduce these features.

Node 1

Node 2

Node 3

Tps

i [4]i [1] i [7]

i [5]i [2]

i [6]i [3]

Figure 5.7: Large jumps occur when the number of intervals passes a multiple
of the number of nodes. Effects on the start time and length of
simulations have been omitted for simplicity.

multiple of the number of nodes. In the figure, this is the case when n drops from
7 to 6. The larger the interval length, the larger the jump because at the edge of
each large step the first node simulates one interval more than any other node –
i.e., an increase in L affects the total simulation time of the first node more than
the others. The speedup, in turn, jumps up because Tps experiences a noticeable
reduction. Small steps in the speedup result from intermediate drops of n, in the
figure, for example, from 6 to 5.

98 Performance Model

For a small number of nodes, both the small and large steps are less accentuated
because each node has to simulate a large number of intervals. The effect of a
drop by one interval, even at the edge of a large step, is thus relatively small.
On the other hand, if N is (near) Nopt , the idle phase of the last node roughly
corresponds to the simulation time of one interval. In consequence, the additional
offset between the completion times of the first and last node (creating the large
step) disappears.

It is also notable that, according to the model, the speedup becomes considerably
less sensitive to the chosen interval length for a decreasing number of simulation
nodes.

5.2.2 Optimal Interval Length

Just like in the optimal case, S(N , n(L)) is not differentiable. This prevents us
from calculating Lopt for a given N directly. Therefore, we again approximate the
speedup equation: we assume that simulations are uniformly distributed among
the available nodes and that each node is busy for roughly the same amount of
time. We consequently ignore some of the effects we have discussed earlier in
order to reduce the complexity of the model. Based on this simplified premise, it
is enough to look at the completion time of the last node (just like in the optimal
case). We then receive the following set of simpler equations:

T̃idle(N , n) := N(tc + L) (5.27)

T̃bus y(N , n) :=
n
N
(ts +

1
n

Tsim(n)) (5.28)

T̃ps(N , n) := T̃idle(N , n) + T̃bus y(N , n) (5.29)

S̃(N , n) :=
Tsim(n)

T̃ps(N , n)
(5.30)

Figure 5.6 depicts the approximation for the exemplary scenario of N = 32 in
blue. S̃(N , ñ(L)) matches S(N , n(L)) in points where n= kN with k ∈ N (i.e., at
large steps), and overestimates the speedup in between. However, just like in the
optimal setup, Lopt can be expected to lie in the area of interval lengths where
the error is negligible5 (compare Figure 5.6a). It is thus sufficient to work with
the estimated solution, especially considering the fading sensitivity to suboptimal
interval lengths with a decreasing number of nodes. Furthermore, compared to
the true physical run-time behavior, the model already makes various assumptions
(e.g., equal interval simulation times) that are likely to affect the accuracy much
more noticeably.

5If a more precise solution is desired, the approximated Lopt can be used as a starting point to
numerically find the (predicted) true Lopt . In this course, it is sufficient to look at the interval
lengths around the approximated Lopt where n= kN as these mark local maxima.

Performance Model 99

We can therefore approximate Lopt by solving ∂
∂ L S̃(N , ñ(L))) = 0 for L:

Lopt :=

p

tssvmTvm

N
(5.31)

This enables us to calculate the optimal interval length for a given scenario with
a limited number of simulation nodes. While the performance model predicts a
parallel simulation time of 8 min and 35 s for a Linux kernel build in the optimal
case (i.e., 48 nodes), the model estimates Tps with 16 min and 30 s to almost
double when using half the number of nodes and Lopt ≈ 0.6 s; this corresponds to
near linear scaling. Accordingly, the speedup falls down to 23x. The efficiency
can be calculated analogously to the optimal case, reaching around 97%. We
compare model predictions with actual measurements in Chapter 9.

5.3 Conclusion

According to exemplary calculations, SimuBoost should be able to provide consid-
erable acceleration with a high degree of scalability; at the same time preserving
interactivity and delivering full temporal and spatial completeness.

Given a certain interval length, the performance model aims at estimating the
parallel simulation time for both, (a) the optimal setup, where a sufficient number
of simulation nodes is present to achieve the highest possible speedup, and (b)
constrained configurations, which supply only a suboptimal number of nodes. In
both cases, we use the differentiation of the speedup function to find the optimal
interval length.

The model requires a set of input parameters of which some describe the particular
workload at hand (e.g., its run time), whereas others characterize the performance
of the mechanisms employed by SimuBoost with respect to the used hardware.
The parameters can be acquired with a limited test run of the envisioned scenario.

Compared to the actual behavior on physical hardware, the model is subject to a
set of simplifications. The most prominent one is the assumption that all intervals
possess the same constant simulation time, irrespective of workload phase and
selection of simulation node. The model also does not incorporate factors such as
a potential rise in simulation slowdown due to shared CPU caches and limited
memory bandwidth when locating multiple simulations on the same physical host
(e.g., on SMP systems). Similarly, short interval lengths may reduce the efficiency
of DBT code caches in simulators. Nevertheless, to keep the model’s complexity
as well as the number of input parameters in reasonable bounds, we have decided
to abstract from these factors and rather design the model to be appropriate for
grasping the general performance characteristics of SimuBoost and guide in the
selection of the right interval length. The final evaluation in Chapter 9 clarifies to
what extent the model can stand up to the task.

Chapter 6

Continuous Checkpointing

Checkpointing describes the process of capturing a consistent image of an entities’
state at the time of taking. Checkpoints may optionally be persisted on a storage
device or transferred over a network to a different system and subsequently be
used to either revert an existing entity to the saved state or initialize a new entity.
In this work, checkpointing refers to the state of a hardware-assisted virtual
machine, i.e., a full system with its guest physical memory, secondary storage,
and (virtual) devices such as the VM’s vCPU.

We use the term continuous checkpointing to denote periodic checkpointing over
the course of an experiment. Figure 6.1 illustrates the process in SimuBoost.
While the workload of interest is running in a hardware-assisted virtual machine,
SimuBoost snapshots the VM’s state at regular intervals and queues the checkpoints
for parallel simulation. This chapter deals with the design and implementation of
this continuous checkpointing mechanism, including fast loading.

According to the performance model we developed in the previous chapter, Simu-
Boost requires a comparably high frequency of one checkpoint every few seconds

Node 1

Node 2

Node 4

Node V

HW-assist.
Virtual Machine

State

Checkpoints

i [1]

i [2]

i [3]

i [4]

Queue

Node 3

Simula�on

Simula�on

Simula�on

Simula�on

n … 4 3 2 1

Figure 6.1: The workload runs in a hardware-assisted virtual machine. SimuBoost
periodically checkpoints the VM and eventually uses these checkpoints
to bootstrap parallel simulations.

102 Continuous Checkpointing

up to subsecond intervals to be effective. The demands on the continuous check-
pointing mechanism are therefore high since any costs are paid repeatedly in
short succession. In § 2.3, we already elaborated on the metrics that can be
consulted to measure checkpointing costs. Of particular interest to the checkpoint
creation in SimuBoost are the downtime and the probe effect – i.e., the divergence
of the checkpointed execution compared to the same run without SimuBoost, for
example, as a result of additional page faults.

The frequent downtimes are problematic in two ways. First, injecting these
downtimes changes the conditions under which a workload runs and in turn adds
to the probe effect. Second, the periodic suspension becomes a critical factor if
the downtime crosses the boundary from which on interactivity gets impaired.
This is especially a concern in SimuBoost as restoring interactivity is a primary
goal of our work. To avoid the latter, we set a minimum target of 100 ms for the
downtime, as this value is generally not perceived by humans [178] and does not
break a virtual machine’s network connectivity [72]. However, to minimize the
probe effect, we strive to further reduce the downtime – if this is possible and
proportionate to design complexity.

The probe effect is of great importance to our work because we exactly reproduce
the hardware-assisted execution – which is to some degree affected by check-
pointing and event recording – via deterministic replay in the simulations. Any
conclusions drawn from the simulations may thus be directly influenced by the
induced overhead. Consequently, a high probe effect has the potential to compro-
mise the representativeness of experiments and we must take care to keep it low.
Defining a tolerable limit, however, is not generally possible as it depends for one
on the metrics used to quantify the probe effect, and second on the question that
should be answered by an experiment and what metrics are relevant in that course.
Running a workload with SimuBoost might, for example, influence the effective
quantum length and scheduling order of a compute-bound process (e.g., due to
downtimes). This might, however, be irrelevant if an isolated instruction flow of
this process and its kernel interaction should be extracted from the simulation.

Another non-trivial question is how to properly quantify the probe effect in the
first place. Measuring it in its most general form, that is, as a divergence in the
instruction stream and timing, requires some form of monitoring to be able to
detect differences. This, in turn, cannot be done on contemporary computing
platforms without inducing a probe effect itself. Alternatively, leveraging deter-
ministic simulation as in Simics seems feasible. We could simulate executing the
workload in a virtual machine with and without SimuBoost. However, even with
a complex timing model, the significance of results from such examinations (for
real hardware) is questionable; especially considering that even small differences
in timing can greatly affect the outcome [29]. Nor does this answer the question
of the results’ relevance for a specific workload.

Continuous Checkpointing 103

Nevertheless, to somehow quantify the probe effect, we choose to determine the
application-specific performance degradation for the examined workload. Since
most of our benchmarks process a fixed input set, we can measure this as an
increase in run time. For SPECjbb, we take the average of the reported points
over all warehouses as the basis. To illustrate the effect of checkpointing on the
network, we additionally run the iperf3 benchmark. While these metrics do not
provide any information on the true divergence in the execution flow, they do a
good job in giving a general sense of the probe effect and they can be determined
with negligible overhead. Furthermore, optimizing the checkpoint mechanism
to exhibit a low performance degradation is also likely to reduce the divergence
altogether.

In the following sections, we describe the design and implementation of the
checkpointing mechanism in SimuBoost, using the downtime and the probe effect
as our primary criteria for assessment. Since the deterministic replay relieves us
from having to explicitly checkpoint the state of secondary storage (see Chapter 8),
we focus on methods to save the guest physical memory – usually being the largest
item anyway [189]. Nevertheless, the presented concepts are also applicable to
block storage1.

Section 6.1 elaborates on the benefits of incremental checkpoints and discusses
techniques to detect modified guest data – so-called dirty logging. We also demon-
strate how the downtime can be very effectively reduced by applying copy-on-
write. Section 6.2 illustrates how SimuBoost organizes and asynchronously stores
checkpoints on disk for later transfer to simulation nodes. This storage backend is
also used for all experiments in Section 6.1. A method to perform fast checkpoint
loading in the presence of deterministic execution is presented in Section 6.3. We
conclude in Section 6.4.

6.1 Checkpoint Creation

The simplest method to capture a consistent image of the guest system is to
suspend the virtual machine, synchronously copy all volatile state, and finally
resume the execution – a method called stop-and-copy (SnC) [66]. Figure 6.2
depicts the resulting median downtime for various guest memory sizes, interval
lengths, and benchmarks using this method. In each case, saving the state of the
virtual devices (e.g., the vCPU) takes around 3 ms (

∧
= 120 KiB). The remaining

downtime originates from saving the guest physical memory. Even for small
VMs with 256 MiB of RAM, stop-and-copy touches the limit of 100 ms. Larger
VMs exceed the limit, with 8 GiB of RAM inducing a downtime of around 2 s,
irrespective of the interval length and workload.

1To be able to test checkpointing independently from deterministic replay, we implemented
lightweight virtual disk checkpointing in our prototype but disabled it in the following.

104 Continuous Checkpointing

L = 1 s L = 2 s

L = 4 s L = 8 s

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

256 512 1024 4096 8192 256 512 1024 4096 8192

Guest Memory Size [MiB]

D
ow

n
ti
m
e
[s
]

idle kernel build stress-ram

Figure 6.2: The downtime for stop-and-copy checkpointing touches the limit of
100 ms even for small VMs and quickly reaches multiple seconds for
common configurations. Despite being highly sensitive to the VM size,
the downtime is largely unaffected by the interval length L and type
of workload; differences are within the variance.

As expected, the VM experiences a noticeable performance loss with stop-and-copy
checkpointing (see Figure 6.3a), where the checkpointing frequency is a decisive
factor for the overall run time. This is because the interval length determines
the number of checkpoints and thereby the number of downtimes included. A
sole increase in guest physical memory size from 256 MiB to 8 GiB with L = 8 s
only leads to a moderate 28% slowdown for a kernel build. However, increasing
the checkpoint frequency to one checkpoint per second – which is still three
times lower compared to the 300 ms intervals suggested by our model – almost
quadruples the run time. As any rise in the downtime proportionally weights more
when the number of checkpoints is higher, the run time becomes more sensitive
to the guest physical memory size with increasing checkpointing frequency.

Running the iperf3 benchmark alongside a kernel build also reveals that the
excessive downtimes clearly manifest in the network connection of the guest,
pushing the mean bandwidth down to a third (see Figure 6.3b).

We can thus conclude that stop-and-copy checkpointing is not well suited for
continuous checkpointing in general and for SimuBoost in particular. It impairs

Continuous Checkpointing 105

(a) kernel build

1×
1.5×
2×

2.5×
3×

3.5×

1 2 4 8

Interval Length L [s]

N
o
rm

a
li
ze
d
R
u
n
T
im

e

RAM
256
512
1024
4096
8192

(b) kernel build (L = 1 s)
mean 104.5

0

50

100

150

200

250

300

350

13:30 13:35 13:41 13:48

Run Time [min:sec]

B
an

d
w
id
th

[M
B
it
s/
s]

Figure 6.3: (a) With stop-and-copy the kernel build time almost quadruples in
the most demanding configuration. (b) The downtimes are clearly
visible in the network bandwidth.

interactivity (user and network) and inhibits a considerable run-time overhead.
This is especially the case when the checkpointing frequency and guest physical
memory size are high.

6.1.1 Incremental Checkpointing

Our first goal in improving the checkpointing performance is to bring the downtime
below the limit of 100 ms so that we preserve interactivity. As a side-effect, this
will in turn also lead to a reduction in run-time overhead. Since saving the state
of virtual devices such as the vCPU has proven to be comparably inexpensive,
we focus on the guest physical memory only. Nevertheless, all downtimes still
include device copy time further on.

Application-level checkpointing, as for instance in JetStream [211], benefits from
information about the address space layout and can thus distinguish between
indispensable and recoverable data and between used and free memory. This
allows saving downtime simply by reducing the amount of data that must be
checkpointed. Possible ways to apply this technique to VMs and close the semantic
gap between host and guest is to leverage paravirtualization or virtual machine
introspection (VMI).

With paravirtualization, the guest actively propagates information to the hypervi-
sor, for example, on recoverable file cache pages as well as free memory pages.
Paravirtualization thus presumes error-free and reliable cooperation from the
guest, otherwise checkpoints may get corrupted. For SimuBoost, corrupted check-
points mean that the simulation would prematurely fail, preventing any analysis.
This is especially unfavorable if malicious clients should be inspected.

106 Continuous Checkpointing

With VMI, the hypervisor uses debug symbols to identify and parse the respective
guest kernel data structures without active assistance from the guest. Although this
makes VMI more robust against erroneous (and malicious) guests, VMI requires
explicit support for a specific guest (e.g., a certain Linux version). However,
always having to adapt the checkpointing mechanism – a central component
of our research tool – to the guest OS is cumbersome. In addition, excluding
pages from checkpoints based on VMI information alone can be problematic.
For instance, the guest may erroneously access free pages due to an overflow or
use-after-free bug. Without preserving these pages in the original execution, any
effects of such bugs cannot be faithfully reproduced in the simulation.

A popular way to accomplish an effective but guest-agnostic reduction in downtime
is to use pre-copy (see § 2.3.1); the prevailing technique for live VM migration.
However, a drawback of pre-copy is that the reduction in downtime comes at the
cost of repeated page transfers. From the perspective of checkpointing (rather
than migration), this means we buy a reduced downtime by increasing the overall
amount of memory checkpointed. This is also unfavorable if being avoidable.

In contrast to migration, which is a singular event, we can benefit from the peri-
odicity in continuous checkpointing. Similar to pre-copy, we use the observation
that a workload modifies only a limited set of pages within a certain time frame.
A checkpoint can thus be reduced to these pages because all other pages can be
received from previous checkpoints – a method called incremental checkpointing.

0k

20k

40k

60k

80k

50
m
s 1 s 2 s 4 s 6 s 8 s

Interval Length L

D
ir
ty

P
a
ge
s

stress-ram
postmark
specjbb
kernel build
sqlite
apache
encode-mp3
pybench
povray
idle

50k
400k
750k

Figure 6.4: The number of dirty pages increases with the interval length, but
remains within 85k pages (≈ 330 MiB) for most workloads and L ≤ 8 s.
Only stress-ram, the worst-case benchmark, greatly exceeds this rate.
The kernel build proves to be a good indicator for the average case.

Continuous Checkpointing 107

Figure 6.4 illustrates the median number of dirty pages per interval over vari-
ous interval lengths and workloads2. The measurements illustrate three central
advantages of incremental checkpointing compared to stop-and-copy:

1. The number of dirty pages per interval is generally considerably smaller
than the total number of guest physical pages. Except for stress-ram, which
dirties memory with maximum speed, all tested benchmarks remain below
70k pages per second (≈ 270 MiB). This is also a greater saving than can be
expected from paravirtualization or VMI.

2. Stop-and-copy has shown a strong dependency between run-time overhead
and checkpointing frequency. With incremental checkpointing the number
of dirty pages inherently decreases for shorter intervals, proportionally
lowering the overhead for high checkpoint frequencies.

3. Each workload exhibits an individual page modification rate, depending on
the operations carried out. Checkpointing compute-bound workloads (e.g.,
povray) or idle phases is thus generally very lightweight.

However, when looking at the four most demanding workloads in Figure 6.5
(i.e., a page modification rate over 20k pages/s), we can see that incremental
checkpointing is not able to reliably push the downtime below the 100 ms mark.
Whereas only two checkpoints during the initial expansion phase of the kernel
build exceed the limit, almost 9% of checkpoints for postmark, and 17% of
checkpoints for SPECjbb take too long. For the stress-ram benchmark, none of
the checkpoints can be created within the permissible time frame. With 800 ms
to 1200 ms the downtime is far too high for a fluent interactive experience.

Figure 6.5 also reveals another drawback of incremental checkpointing. Although
it is generally advantageous that the downtime is proportional to the page mod-
ification rate because it makes the checkpointing of less demanding workloads
more lightweight, this very dependence is also a disadvantage. Over the course
of a workload’s execution, the downtime may strongly fluctuate, which makes it
difficult to predict and use as a constant factor in our performance model. It is
thus desirable to (1) further decrease the downtime so that it is within bounds
even for demanding workloads and (2) to make the downtime less volatile.

To accomplish the first goal we need to either further reduce the overall work for
checkpointing or shift the existing work from the downtime to the run time of the
workload – i.e., make the work asynchronous. For the second goal, it is necessary
to break the dependency between downtime and workload, ideally, without losing
the benefits we get from incremental checkpointing.

2In the following, we use write protection to determine dirty pages. For a comparison of dirty
logging techniques, see § 6.1.2. We further look at the 4 GiB guest memory configuration only
because differences with incremental checkpointing are (inherently) negligible.

108 Continuous Checkpointing

stress-ram (L = 1 s) postmark (L = 1 s)

specjbb (L = 1 s) kernel build (L = 1 s)

0

300

600

900

0

25

50

75

100

0

50

100

0

25

50

75

100

125

0:00 2:00 4:00 6:00 0:00 0:12 0:24 0:36 0:48

0:00 10:00 20:00 30:00 0:00 2:00 4:00 6:00 8:00

Run Time [min:sec]

D
ow

n
ti
m
e
[m

s]

Figure 6.5: Incremental checkpointing cannot reliably keep the downtime below
100 ms for demanding workloads with more than 20k dirty pages/s.
Since the downtime is proportional to the page modification rate, it
strongly fluctuates. The regression line depicts the mean downtime.

The first can be achieved by employing copy-on-write. In this course, the hypervisor
uses the downtime solely to apply write protections in the EPT, instead of actually
copying data. Write protection is set for all pages that need to be included in the
incremental checkpoint – i.e. all pages modified during the previous interval. This
allows the hypervisor to take a consistent snapshot of the respective pages because
it prevents the guest from making any further changes without first triggering
the hypervisor via a page fault. Write access to all other guest pages as well as
general read access remains permitted. After setting the write protection, the VM
resumes execution. The checkpointing mechanism then asynchronously saves the
guest pages and releases the write protection for every page copied. If the VM
attempts to write to a protected page, the page fault handler in the hypervisor
can copy the respective page out of line and restore write permissions so that the
guest can continue its operation.

Since the copy operation accounts for most of the work associated with checkpoint-
ing, adding copy-on-write considerably reduces the downtime (see Figure 6.6).
Although the downtime remains relatively high in the case of stress-ram, for all
other benchmarks the downtime is in the range of 2.7 ms to 9.8 ms for all check-
points and interval lengths. Using copy-on-write thereby also helps with fulfilling

Continuous Checkpointing 109

median 59.5
Pr95% [48.8,65.9]

median 8.6
Pr95% [4.7,9.6]

median 6.4
Pr95% [3.4,9.8]

median 5.3
Pr95% [3.6,6.5]

stress-ram (L = 1 s) postmark (L = 1 s)

specjbb (L = 1 s) kernel build (L = 1 s)

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0:00 2:00 4:00 6:00 0:00 0:12 0:24 0:36 0:48

0:00 10:00 20:00 30:00 0:00 2:00 4:00 6:00 8:00

Run Time [min:sec]

D
ow

n
ti
m
e
[m

s]

Figure 6.6: Incremental checkpointing with copy-on-write reliably pushes the
downtime below 100 ms, even for stress-ram, with 66 ms being the
highest value. For all setups, CoW reduces absolute variance within
and across workloads. The regression line depicts the mean downtime.
Pr95% [a, b] denotes the empirical 0.025 and 0.975 quantiles.

the second goal, that is, making the downtime less volatile. Although the down-
time still fluctuates over the course of a workload’s execution3, the reduced overall
downtime leads to a smaller absolute variance. Hence, the individual workload
phases – which can be clearly seen in Figure 6.5 – are much less pronounced.

Checkpointing Frequency

Since the duration of each interval is defined by the configured interval length
L, any asynchronous operations such as copying pages must complete within
this bound. Otherwise, the checkpointing solution is not able to sustain the
checkpointing frequency and successive checkpoints must be delayed4. This
defines a practical lower limit for the interval length.

3With copy-on-write, the downtime depends on the number of write protections to set, which in
turn depends on the interval length and the current page modification rate of the workload.

4Alternatively, the VM could be suspended. However, this would prolong the downtime, which
negatively affects interactivity and the run-time overhead. Delaying the next checkpoint
instead acts as a autoregulation.

110 Continuous Checkpointing

1544 1563
L = 50ms L = 100ms

0

25

50

75

100

125

150

0

25

50

75

100

125

150

1569 1574

L = 4 s L = 8 s

0

100

200

300

400

0

100

200

300

400

st
re
ss
-r
am

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay id

le

st
re
ss
-r
am

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay id

le

Downtime Async. Copy Storage

1546 1572

L = 200ms L = 1 s

0

50

100

150

200

250

0

50

100

150

200

250

T
im

e
[m

s]

Figure 6.7: The downtime with incremental copy-on-write checkpointing is well
below the 100 ms limit for all interval lengths and benchmarks. The
solid red line marks the interval length as a hard limit for any asyn-
chronous operations – i.e., the sum of asynchronous copy and data
storage (see § 6.2 and § 7.2). Depending on the workload, the asyn-
chronous operations can take too long for L < 130 ms (stress-ram:
L < 1.8 s), but otherwise complete timely. All three metrics are propor-
tional to the page modification rate of the workload and the interval
length. An exception to this is stress-ram. Since it touches mem-
ory so fast, changing the interval length has only little effect on the
measurements, but merely decreases variance.

Continuous Checkpointing 111

Figure 6.7 summarizes the required total time for asynchronously copying dirty
pages and storing them as a checkpoint on disk using our storage backend5. The
asynchronous processing time is typically much lower than the interval length.
However, with L = 50 ms checkpoints may not complete in a timely fashion for
workloads with a page modification rate over 20k pages/s. Only for L ≥ 130 ms
the processing time consistently remains below the interval length. An exception
to this is stress-ram, for which the checkpointing frequency can be sustained only
for L ≥ 1.8 s. However, this is to be expected because stress-ram modifies memory
so quickly that the asynchronous copy time alone must inevitably converge toward
the time it takes to capture a full (i.e., not incremental) image of the guest memory.
In fact, due to the overhead induced by (1) performing the copy asynchronously
(e.g., shared memory bandwidth) and (2) superfluously using the data structures
for dirty page identification, the pure copy time is even higher. It exceeds the
stop-and-copy downtime for the 4 GiB guest memory configuration (≈ 1260 ms,
see Figure 6.2) by around 19%, although stress-ram touches only a 3 GiB buffer.

stress-ram postmark specjbb kernel build sqlite apache
1800 ms 75 ms 130 ms 60 ms 40 ms 50 ms

gnupg encode-mp3 pybench povray phpbench idle
50 ms 25 ms 25 ms 30 ms 25 ms 20 ms

Table 6.1: Estimated shortest interval length per workload6.

We can conclude that from the perspective of downtime and asynchronous process-
ing time, incremental copy-on-write checkpointing is generally well-suited for fast
continuous checkpointing and only fails to sustain the configured checkpointing
frequency when demanding workloads meet very short intervals. An exception to
this is stress-ram. However, we consider this scenario to be primarily of synthetic
nature, as our results from the real-world benchmarks confirm.

Run-Time Overhead

To get a complete impression of the performance, we additionally have to account
for the run-time overhead imposed on the workload (see Figure 6.8). With stop-
and-copy checkpointing, the downtime is the only component affecting the run-
time overhead. Furthermore, always copying the entire guest memory makes
the run-time overhead insensitive to the properties of the workload executing in
the VM – i.e., all workloads experience the same run-time overhead. This is not

5The storage backend performs full data reduction as necessary for network transfer over Gigabit
Ethernet. See § 6.2 for a general introduction and § 7.2 for details on compression.

6The data does not account for the decreased number of pages to copy for values below 50 ms.
Actual interval lengths may thus be a little shorter.

112 Continuous Checkpointing

557 612

L = 100ms L = 200ms

0

20

40

60

80

100

120

0

20

40

60

80

100

120

557 532

L = 400ms L = 1 s

0

10

20

30

40

50

60

0

10

20

30

40

50

60

st
re
ss
-r
am

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

st
re
ss
-r
am

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

R
u
n
-T

im
e
O
v
er
h
ea
d
[%

]

Figure 6.8: For most workloads, the run-time overhead with incremental copy-on-
write checkpointing is much lower than with stop-and-copy. However,
stress-ram exhibits almost three times the overhead.

the case with incremental copy-on-write checkpointing. Just like the downtime,
the run-time overhead depends on the page modification rate of the workload as
well as on the interval length. Using incremental copy-on-write thus considerably
decreases the run-time overhead for most workloads. Whereas we observe a 2.5x
overhead for the kernel build with stop-and-copy and L = 1 s (see Figure 6.3),
the overhead falls down to 10% for the same configuration with incremental
copy-on-write. Nevertheless, for demanding workloads such as postmark and
SPECjbb, the run-time overhead remains on a high level. For stress-ram, it even
increases significantly from 2.5x to 6x - 7x.

As we take the run-time overhead as a metric to estimate the probe effect, it is
desirable to look into ways to further reduce it. With incremental copy-on-write,
the run-time overhead can primarily originate from two sources (besides the
downtime):

• The guest experiences additional page faults whenever the workload ac-
cesses a page that is queued for checkpointing but has not been copied yet
(and consequently is still write protected).

• To perform incremental checkpointing in the first place, we have to track
page modifications – so-called dirty logging (see § 6.1.2).

Continuous Checkpointing 113

L = 100ms L = 1 s

0

25

50

75

100

0

25

50

75

100

st
re
ss
-r
am

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay id

le

st
re
ss
-r
am

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay id

le

P
a
g
es

C
o
p
ie
d
v
ia

C
o
W

F
a
u
lt
[%

]

Figure 6.9: The majority of pages is saved concurrently to the guest without
causing a copy-on-write page fault. For most workloads, the relative
share of CoW cases slightly declines with increasing interval lengths7.

Figure 6.9 illustrates the median share of pages that are copied in the course
of copy-on-write page faults compared to the total number of pages saved. In
addition to the page modification rate, the most decisive factor for a high share of
CoW cases is the rate at which the workload writes to previously modified pages –
i.e., the locality of write accesses. If the page modification rate or the locality is
particularly high, the workload quickly accesses the same pages right after the VM
has been resumed from the downtime. This is where the majority of CoW faults
happen [235]. The asynchronous copy is not fast enough to prevent these CoW
faults. This can be seen especially well in the case of povray. Although povray
has the smallest page modification rate (besides idle) with only 550 pages/s, its
high write locality results in a share of CoW faults comparable to SPECjbb, which
modifies 100x more pages in the same time. The stress-ram benchmark, on the
other hand, possesses a page modification rate high enough to revisit the same
pages in short succession, despite having modified its whole 3 GiB buffer in the
meantime.

A potential way to save run-time overhead could be to perform the asynchronous
copy with multiple threads in parallel so as to reduce the chance that a write
leads to a copy-on-write page fault. However, a preliminary estimation [235]
of the maximum benefit that can be expected with this method revealed only a
small margin of 6% improvement in run time for SPECjbb and L = 100 ms8. For
larger intervals, the potential gain is negligible. Consequently, although further
research into this direction is necessary to properly quantify the share of copy-

7For workloads with high write locality, the majority of CoW faults happen very quickly after
resuming the VM. Whereas the number of CoW faults remains similar between interval lengths,
the total number of pages increases (see Figure 6.4 on page 106). The relative share of pages
saved with CoW thus decreases.

8The measurement used dirty logging via EPT scanning (see § 6.1.2) and omitted the write
protection for pages to copy, thereby preventing CoW faults.

114 Continuous Checkpointing

on-write faults in the total overhead, the results suggest only moderate room for
improvement. This, in turn, indicates that using copy-on-write is a cost-effective
way to implement asynchronous checkpointing.

In the following, we therefore concentrate on the dirty logging technique to
describe methods for run-time overhead reduction.

6.1.2 Dirty Logging Techniques

For solutions based on incremental checkpointing, a fundamental task is to track
which pages are modified in a certain time frame. For SimuBoost, tracking happens
always in the unit of individual checkpointing intervals. Since checkpointing is a
periodic process in SimuBoost, dirty logging is constantly activated. At interval
boundaries – i.e., when actually taking a checkpoint – the gathered information
is used to select pages for saving. Afterward, the hypervisor marks all pages clean
again, resumes the VM, and tracks page modifications in the new interval.

In the following, we take a look at three different approaches that we have
evaluated for SimuBoost:

Write Protection A popular method to detect write accesses to guest pages is
to remove the write permissions in the EPT. Subsequent attempts to modify a
guest page then trigger the hypervisor, where the page fault handler can mark
the page as (to be) modified. Afterward, the write permission to the page can be
restored and the VM continues execution. This is the same approach as in copy-
on-write, except that the respective page is not copied in the page fault handler.
This technique can therefore easily be combined with CoW by just applying write
protection to all pages, instead of only the ones to be copied. The page fault
handler then decides if the page should be saved. In any case, the page must be
marked as dirty.

A worthwhile optimization is to set write protection only for those pages that have
actually been written in the last interval. For all other pages, the write protection
is still intact. Of course, this optimization is not applicable to the first checkpoint.

We used write protection for all results presented so far that involve page modi-
fication data or incremental checkpointing. Accordingly, we can conclude that
write protection offers a very low downtime, but may noticeably increase run-time
overhead for demanding workloads. This is because for each interval, every first
write to a guest page results in a page fault. This produces a page fault rate
equivalent to the page modification rate (compare Figures 6.4 and 6.10a).

Continuous Checkpointing 115

Scan An alternative to write protection is to leverage the A/D-bits in the EPT of
modern CPUs. Whenever the CPU modifies a guest page, it sets the access and
dirty bits in the corresponding hierarchy of PTEs9. Instead of trapping (first) write
accesses during the execution of the guest, we can scan the EPT for dirty bits.
However, we have to do this synchronously in the downtime to get a consistent
dirty log. Scanning therefore trades an increased downtime for a reduction in
page fault-induced run-time overhead. To get accurate information for the next
interval, all dirty bits must be reset before resuming the VM.

A very important optimization is to use the access bits on higher levels in the
EPT to prune the scanning on memory areas that have not been touched. Conse-
quently, only a fraction of the EPT is actually evaluated for each checkpoint (see
Figure 6.10b). Just like the dirty bits, the access bits on higher levels (not on the
last level) need to be reset to allow accurate pruning the next time.

Pre-Scan As an extension to scanning, we have devised an asynchronous pre-
scan which performs a first traverse of the EPT shortly before the downtime while
the guest is still running [235]. Similar to a synchronous scan, the pre-scan
collects and resets dirty bits as well as access bits on higher levels. During and
after the pre-scan, the VM continues to access and modify pages. Therefore, the
final synchronous scan in the downtime is still required to complete the dirty log.
However, this final scan is typically considerably faster than without pre-scan
because most of the dirty bits have already been collected (see Figure 6.10b).
Performing multiple rounds has proven ineffective and does not provide any
additional savings [235]. Instead, pre-scan would likely benefit from dirty bits in
higher levels of the EPT in order to avoid needless scans of accessed-only PTEs.

Pre-scan aims at reducing the downtime compared to pure scanning at the cost of
additional asynchronous work. In contrast to write protection, the asynchronous
operations do not directly affect the execution of the guest (e.g., by page faults).
Nevertheless, it potentially creates a run-time overhead by taking away from
the available memory bandwidth, polluting shared caches, and requiring TLB
evictions.

Figure 6.11 summarizes the measured run-time overhead for all dirty logging
configurations. Scan is able to noticeably reduce the overhead compared to write
protection by avoiding the majority of page faults (CoW faults remain). The
improvement is thus proportional to the page fault rate and particularly large for
stress-ram; but also the real-world benchmarks benefit up to 30% for L = 100 ms,
and still up to 24% for L = 1 s. As expected, scan considerably prolongs the
downtime (Figure 6.12), almost doubling it for postmark. Whereas the downtime
remains uncritical for all real-world benchmarks and interval lengths, it exceeds
the limit of 100 ms for stress-ram in every case.

9On x86, only the last level possesses a dirty bit. A/D-bits are only set on TLB misses.

116 Continuous Checkpointing

(a) L = 1 s

0k

15k

30k

45k

60k

75k

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

py
be
nc
h

po
vr
ay

ph
pb
en
ch

en
co
de
-m
p3 id

le

P
ag
e
F
a
u
lt
s/
s

Write Protection

Scan Pre-Scan

93k Total PTEs
in Guest: 1M

(b) L = 1 s

0k

15k

30k

45k

60k

75k

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

py
be
nc
h

po
vr
ay

ph
pb
en
ch

en
co
de
-m
p3 id

leP
T
E
s
S
ca
n
n
ed

in
D
ow

n
ti
m
e

Dirty PTEs

Scan Pre-Scan

Figure 6.10: (a) Dirty logging via write protection is responsible for the majority
of page faults. Scan avoids these page faults. (b) After pre-scan only
a fraction of dirty PTEs has to be collected in the downtime. In total,
at most 7% of the guest’s PTEs in a 4 GiB VM need to be evaluated
in the downtime (scan: 9%).

Fortunately, pre-scan is able to push the downtime below the critical mark, with
only occasional peaks up to 112 ms. For the other benchmarks, pre-scan reaches
the level of write protection with a maximum deviation of 1 ms in the most
demanding scenario. At the same time, our evaluation shows on average no
significant increase in run-time overhead for pre-scan compared to scan. Although
in some cases (e.g., the kernel build) a slight increase in run time can be observed.
Nevertheless, in most cases, pre-scan is able to combine the reduced run-time
overhead of scan with the low downtime of write protection.

Despite the direct dependence between page table size and guest physical memory
size, both scan and pre-scan are insensitive to different RAM configurations (see
Figure 6.13a). This is due to the early pruning of untouched memory areas.

Compared to stop-and-copy, incremental checkpointing with copy-on-write and
pre-scan considerably improves network throughput (see Figure 6.13b). Neverthe-
less, the downtimes are still clearly distinguishable – which cannot be completely
avoided. However, the median (and mean) bandwidth is the same as for a run
without checkpointing (native). This is because right after each downtime the
QEMU I/O thread runs in a short burst in order to process all pending packets.
This explains the increased peak performance with checkpointing enabled.

We also briefly evaluated Intel Page-Modification Logging (PML) [125] as part of
a bachelor’s thesis [234]. With PML the hypervisor configures a buffer of 4 KiB
size, which the CPU autonomously fills with guest-physical addresses to which the
VM writes. When the buffer is exhausted the CPU triggers a VM exit, which the

Continuous Checkpointing 117

Cannot sustain frequency (Lmin = 1.80 s)

stress-ram

0

200

400

600

50ms 100ms 200ms 400ms 800ms 1 s 2 s 4 s 8 s

R
u
n
-T

im
e
O
v
er
h
ea
d
[%

]

L = 100ms L = 200ms

0

20

40

60

80

100

120

0

20

40

60

80

100

120

L = 4 s L = 8 s

0

5

10

15

20

25

0

5

10

15

20

25

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

py
be
nc
h

po
vr
ay

ph
pb
en
ch

en
co
de
-m
p3 id

le

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

py
be
nc
h

po
vr
ay

ph
pb
en
ch

en
co
de
-m
p3 id

le

4KiB Pages Only Write Protection

Scan Pre-Scan

L = 400ms L = 1 s

0

10

20

30

40

50

60

0

10

20

30

40

50

60

R
u
n
-T

im
e
O
v
er
h
ea
d
[%

]

Figure 6.11: Scan reduces the runtime-overhead in every case. Pre-scan induces
no significant change in overhead compared to scanning. The green
line marks the overhead with no dirty logging but only 4 KiB pages
to back VM memory.

118 Continuous Checkpointing

stress-ram

0

50

100

150

50ms 100ms 200ms 400ms 800ms 1 s 2 s 4 s 8 s

D
ow

n
ti
m
e
[m

s]

L = 50ms L = 100ms

0

2

4

6

8

10

12

0

2

4

6

8

10

12

L = 4 s L = 8 s

0
5

10
15
20
25
30
35

0
5
10
15
20
25
30
35

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

py
be
nc
h

po
vr
ay

ph
pb
en
ch

en
co
de
-m
p3 id

le

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

py
be
nc
h

po
vr
ay

ph
pb
en
ch

en
co
de
-m
p3 id

le

Write Protection

Scan Pre-Scan

L = 200ms L = 1 s

0

5

10

15

20

25

0

5

10

15

20

25

D
ow

n
ti
m
e
[m

s]

Figure 6.12: Scan noticeably increases the downtime for demanding workloads
and crosses the limit of 100 ms for stress-ram. For most workloads,
pre-scan pushes the downtime close to the level of write protection.

Continuous Checkpointing 119

(a) kernel build (L = 1 s)

0

5

10

15

20

256 512 1024 2048 4096 8192

RAM Size [MiB]

R
u
n
-T

im
e
O
v
er
h
ea
d
[%

] Scan Pre-Scan

(b) kernel build (L = 1 s)

Checkpoints

median (both) 337.70

100

200

300

400

500

2:24 2:30 2:36 2:42

Run Time [mm:ss]

B
an

d
w
id
th

[M
B
it
s/
s]

Pre-Scan Native

Figure 6.13: (a) Scan and pre-scan are insensitive to the guest physical memory
size. (b) Downtimes with pre-scan are much less accentuated in the
network bandwidth than with stop-and-copy, but still clearly visible.

hypervisor can use to extract a (partial) dirty log and clear the buffer. To avoid
creating one entry for each write access, the CPU only considers writes to pages
whose dirty bit is not yet set. Subsequent accesses to the same page are thus
ignored until the corresponding dirty bit is reset in the downtime. PML shows
an improvement in the run-time overhead of 9% points over write protection for
100 ms intervals during a kernel build. The improvement falls below 0.5% points
for 1 s intervals. The downtime is at the level of write protection.

6.1.3 Dirty Logging Granularity

A cost factor in dirty logging not discussed so far is the size of the memory
pages used to back the guest physical memory. With no dirty logging active, the
transparent huge page support in Linux automatically merges consecutive small
pages (4 KiB) to large pages (2 MiB). However, when dirty logging is active, KVM
breaks all large pages into small pages to get a finer granular dirty log. Switching
to small pages means more and longer traversal of the EPT and less efficient use
of the TLB. In Figure 6.11, we can see that for most workloads the change in
page size alone is responsible for a large part of the run-time overhead (green
line). This becomes especially apparent for L = 8 s, where the overhead of actual
checkpointing diminishes.

Not all benchmarks suffer from small pages though. In fact, for sqlite the reduction
in run-time overhead even exceeds the additional overhead from checkpointing,
providing a net improvement in run time between 5% (L = 200 ms) and 25%
(L = 8 s). However, comparing the bare native run time with fixed 4 KiB and
2 MiB page sizes, respectively, reveals that the reduction results from deactivating
transparent huge page support rather than choosing a specific page size (see

120 Continuous Checkpointing

apache phpbench sqlite stress-ram
4 KiB 66% 80% 73% 89%
2 MiB 62% 80% 71% 100%

Table 6.2: Run time with fixed page size compared to transparent huge pages.

Table 6.2). This is also the case for apache and phpbench. The only exception is
stress-ram, for which 4 KiB pages surprisingly seem to be better suited.

All other benchmarks show similar performance with fixed large pages and trans-
parent huge page support but suffer from 4 KiB pages. We can thus conclude
that using fixed 2 MiB pages generally gives the best performance (except for
stress-ram). It would consequently be beneficial to preserve large pages even with
dirty logging enabled.

A direct consequence, however, is that information on which pages have been
modified is only present at the coarse granularity of large pages. As expected,
stress-ram is only marginally affected by this because the workload touches a
large contiguous buffer. For a kernel build, on the other hand, we have to save up
to 6x the amount of memory per checkpoint (see Figure 6.14). This is even worse
for most of the workloads we have evaluated (see Table 6.3), with phpbench
exhibiting the highest excess of two orders of magnitude. Nevertheless, the
workloads showing particularly high excess rates generally possess write working
sets of only a few MiBs. In these cases, the absolute amount of memory which
must be copied with large pages is therefore still tolerable.

4 KiB: 264.09 MiB
2 MiB: 520.00 MiB
Excess: 255.91 MiB (1.97x)

4 KiB: 239.96 MiB
2 MiB: 634.00 MiB
Excess: 394.04 MiB (2.64x)

4 KiB: 70.74 MiB
2 MiB: 410.00 MiB
Excess: 339.26 MiB (5.80x)

postmark (L = 1 s) specjbb (L = 1 s) kernel build (L = 1 s)

2.0

2.5

3.0

3.5

4.0

0 512 1024 0 512 1024 0 512 1024

Offset from Address [4 KiB Pages]

G
u

es
t

P
h
y
si

ca
l

A
d

d
re

ss
[G

iB
]

Dirty 2 MiB Page Dirty 4 KiB Page

Figure 6.14: Upper 2 GiB of VM memory. Using large pages for tracking page
modifications requires up to 6x more memory to be copied. The
images show the checkpoints representing the median excess.

Continuous Checkpointing 121

stress-ram sqlite gnupg apache encode-mp3
4 KiB 3072 38 17 18 6
2 MiB 3346 194 184 260 118
Excess 280 (1.09x) 152 (5x) 85 (11x) 244 (14x) 113 (19x)

pybench phpbench povray idle
4 KiB 2.47 0.59 2.16 0.45
2 MiB 174 58 150 38
Excess 174 (75x) 57 (106x) 151 (67x) 38 (85x)

Table 6.3: Large pages can increase the amount of memory to be copied by two
orders of magnitude. Values have been obtained for L = 1 s and are
the respective median given in MiB10.

For the more demanding workloads such as a kernel build or postmark, this
can become a problem though. We can observe that the excess ratio increases
for shorter intervals, where the working set is smaller [235]. For postmark, for
example, the excess increases from 2x at L = 1 s to 6.6x at L = 100 ms. In
consequence, the minimal interval length rises. We can estimate this for postmark
to be around 225 ms compared to 75 ms with 4 KiB pages. This exceeds the
optimal interval length of 150 ms calculated by our model. Using large pages can
thus potentially impair the speedup.

Another effect of the higher data volume is an increase in run-time overhead. This
works against the reduction in run-time overhead we gain from switching to large
pages. For SPECjbb, we found that only at intervals of 2 s and longer, we start to
benefit with a 4% higher benchmark score [235].

An alternative to using large pages for the entire guest physical memory could be
to map them only in areas outside the write working set11 or otherwise demand a
high degree of dirtiness in the respective 2 MiB region so as to reduce the copy
excess. Attaining detailed access information in areas backed by large pages
would, however, not be possible from the dirty logging itself. A solution could
be to feed information from the storage backend back into the hypervisor. As we
perform data deduplication (see § 7.2) at the granularity of small pages there, we
could detect which parts of a large page have been actually modified.

However, such more complex solutions are out of the scope of this work. We
therefore keep using small pages (or transparent huge pages) for the remainder
of this thesis and leave efficient integration of large pages as a future research
topic.

10Note that we explicitly calculated the median for the excess – i.e., the measurements presented
are not simply derived from the 4 KiB and 2 MiB values by subtraction.

11Excluding the write working set would require a weak overlap between the read and write
working sets, which is strongly dependent on the workload [277]. Otherwise, we would not
touch the large pages, which is a prerequisite for benefiting from them.

122 Continuous Checkpointing

6.1.4 Design and Implementation

We implemented our checkpointing solution in QEMU/KVM (§ 2.2.5). In this pro-
cess, we added a new thread which periodically creates checkpoints by repeatedly
performing the following sequence of operations:

0. Initialize checkpointing

1. Suspend VM
2. Save device states (e.g., CPU registers)
3. Collect dirty bits
4. Write protect dirty pages
5. Resume VM

Synchronous
(Downtime)

6. Save and unprotect dirty pages
7. Sleep until next checkpoint
8. Perform Pre-Scan (optional)

 Asynchronous

9. Finalize checkpointing

To control the checkpointing thread we extended the QEMU monitor with com-
mands to start (start−cp) and stop (stop−cp) checkpointing, where the start
command accepts various arguments to parametrize the process (e.g., frequency,
dirty logging technique, etc.).

In the initialization step (0) the checkpointing thread establishes a connection
to the storage backend (§ 6.2) and requests buffer space in memory for the first
checkpoint. Afterward, the selected dirty logging technique starts. This includes
the allocation of dirty bitmaps (one per memory region) in user and kernel space
to track page modifications12. The thread then enters the checkpointing loop.

The next operation is to suspend (1) the virtual machine and wait for the vCPU
threads to be kicked out of guest mode (if necessary via inter-processor interrupt)
and block in user mode. Suspending the VM also completes all outstanding I/O
operations so that the virtual machine is in a consistent state. This is when the
downtime begins.

To save the device states (2) we use the existing migration code in QEMU. It
serializes the states in a form that can easily be saved, transferred, and restored.
However, we also found it to be rather slow, taking on average 3 ms to collect the
120 KiB of device data per checkpoint. Considering a median downtime of less
than 10 ms, this reveals optimization potential for future versions.

Before actually being able to save modified memory pages, the checkpointing
thread has to collect dirty logging information (3) – i.e., the data on which

12Dirty bitmaps in user space primarily track modifications from virtual devices (e.g., DMA).

Continuous Checkpointing 123

pages have been modified in the last interval. For write protection, this includes
the respective dirty bitmaps in user and kernel space. For scan and pre-scan, the
thread additionally scans the EPT for dirty bits13. In every case, gathering dirty
information also includes resetting the corresponding bits so as to allow tracking
page modifications in the next interval.

We use a dedicated bitmap-like data structure – the copy map – to merge dirty bits
from the various sources and control the following asynchronous copy operation.
The copy map reserves one byte for every guest memory page (i.e., 1 MiB for 4 GiB
of VM RAM). This allows us to store three states per page: (a) clean (do not copy),
(b) dirty, (c) currently copying. The latter state synchronizes the asynchronous
copy with a concurrent CoW fault to the same page. Every element in the copy
map thus also functions as a spinlock. Since CoW faults may be caused by the
vCPU threads in kernel space or QEMU’s I/O threads in user space, the copy map
is accessible from both modes as shared memory.

Using the guest physical address space as the basis for the copy map is unpractical
because just like in a real system this address space is a sparse composition of
various MMIO, ROM-, and RAM-backed regions. The copy map therefore covers
RAM blocks (see Figure 2.18 in § 2.2.5), which form a contiguous address space
of all potentially accessible memory. This includes device memory such as VGA
RAM but excludes the memory regions just mapping device registers. The content
of these areas is preserved by saving the device states in the previous step.

To perform incremental checkpointing, the first checkpoint has to capture the
entire system state so that subsequent checkpoints only have to store deltas.
For the first checkpoint, the copy map is thus initialized to all ones, indicating
modification of all pages.

After identifying which pages need to be copied for the current checkpoint, the
checkpointing thread write protects all these pages (4) in the EPT. Since this
does not prevent the user-mode QEMU process from writing to its own guest
physical memory mapping, we further instrumented the respective write methods
in QEMU. This allows us to vector accesses to the CoW fault handler if needed.

It is now safe to resume the VM (5). This ends the downtime. All operations
following this point happen asynchronously to the VM execution.

The checkpointing thread continues by iterating through the copy map to find
pages that need to be copied. When copying (6), the corresponding entry in
the copy map is set accordingly to indicate this operation. If the concurrently
executing VM attempts writing to the same page at this very time, the CoW fault
spins on the copy map entry until the checkpointing thread has finished saving

13Note that KVM writes to the dirty bitmaps even when using scan-based dirty logging whenever
a write triggers a page fault (e.g., CoW fault) or the instruction needs to be emulated.

124 Continuous Checkpointing

the page14. The CoW fault then finds this page to be clean and permits the write
attempt without any further interruption. The same applies to pages that have
already been copied but whose write protection is still intact. If, however, the VM
accesses a dirty page before the checkpointing thread, the CoW fault handler takes
care of saving the page and marking it clean in the copy map. The checkpointing
thread then simply skips the page. For fast access to the EPT, the checkpointing
thread performs all copy operations in kernel space.

Our storage backend (§ 6.2) supplies the buffer space to which all checkpointed
data is saved. This happens in segments of 64 MiB. When the buffer is exhausted
the checkpointing thread submits the filled segment and requests an empty one.
This briefly interrupts the asynchronous copy and the checkpointing thread returns
to user-mode for communicating with the storage backend. After receiving new
buffer space the checkpointing thread continues where it left off.

When all dirty pages have been saved and unprotected, the checkpoint is complete
and the checkpointing thread sleeps (7) until the next checkpoint – i.e., until
the current interval ends. The sleep time is computed by taking the configured
interval length and subtracting the total time for all asynchronous operations15.
In case checkpointing takes longer than permitted by the interval length, the sleep
time becomes negative and we immediately take the next checkpoint.

If pre-scan (8) is active, the sleep time is shortened by the estimated pre-scan
time. We use an exponential moving average for this purpose. The true interval
length thus fluctuates by a few hundred microseconds around the set value.

The (asynchronous) pre-scan basically works the same as the synchronous EPT
scan during the downtime. However, due to fact that the VM is concurrently
running and setting A/D-bits in the EPT, collecting and resetting these bits need
to be done more carefully in order to avoid inconsistencies [235]: To be effective
in shortening the scan in the downtime we have to reset the access bits in higher
EPT levels. At the same time, we must not reset the access bit without atomically
flushing the TLB. Otherwise, writes to clean pages in the corresponding page
table may not be reflected in a newly set access bit and go unnoticed. In order to
mitigate this race, we first collect and reset all access bits in higher EPT levels.
We then flush the TLB and use the collected information to direct the actual scan
for dirty pages.

When the user enters the stop−cp command, the checkpointing thread finalizes
checkpointing (9) the next time it wakes up. This disables dirty logging, frees
respective data structures, and closes the connection to the storage backend.
Eventually, the checkpointing thread terminates.

14Spinning also ends after reaching a threshold, but this causes the checkpoint to fail.
15We do not include the downtime because according to our performance model the interval length

should determine how long the guest may execute between checkpoints. This guarantees that
the guest makes progress irrespective of the length of the downtime.

Continuous Checkpointing 125

6.2 Checkpoint Storage

SimuBoost uses the checkpoints to bootstrap parallel simulations. Since, de-
pending on the simulation speed and the number of available nodes, it can take
some time until a certain interval is actually simulated, we have to persist each
checkpoint on disk in order to free up main memory for the next one16. This also
allows the researcher to repeat the same recorded run with a different analysis,
archive the run, or share it with colleagues.

An important factor in the design of the storage solution constitutes the fact that
we employ incremental checkpointing. This is because each checkpoint depends
on the data of previous checkpoints:

Memory

Device States

Checkpoint 1

Memory

Device States

Checkpoint 3

Memory

Device States

Checkpoint 2

A1
A2
A3
A4
A5
A6
A7
A8

B1

B2
B3 C1

C2

Figure 6.15: Incremental checkpoints are not self-contained, but depend on pre-
vious checkpoints, creating a dependency chain.

In order to load checkpoint 3, we have to restore A, B, and C pages. As in practice
some pages (e.g., kernel text segments) live throughout the entire run time, this
can create long dependency chains and make checkpoint loading cumbersome
and slow. Furthermore, this complicates the distribution of individual checkpoints
to simulation nodes because we also have to identify and send the dependent
checkpoints.

We therefore break the dependency chain by separating the data from the check-
points and instead just retain metadata within each checkpoint to locate all
required data (see Figure 6.16). As the device states are self-contained, this is
only necessary for the memory pages (and disk sectors, if included). The data is
concentrated in a global key-value database, with each page or sector having its
own unique identifier. The checkpoints only comprise a data structure – called
state map – per block-based device (i.e., RAM and disks) that links every address
in the device’s address space to its data in the database via the corresponding
identifier. For the guest memory snapshot, this is done at the granularity of 4 KiB

16Taking checkpoints of SPECjbb with L = 1 s would require around 370 GiB of main memory.

126 Continuous Checkpointing

Memory Map

Device States

Checkpoint 1

Memory Map

Device States

Checkpoint 3

Memory Map

Device States

Checkpoint 2 Key-Value Database

A1 A2

B1 B2
C2

A3

A6
A4

A5

A7
A8

B3
C1

<A1>
<B1>
<A3>
<B2>
<C1>
<A6>
<C2>
<A8>

<A1>
<B1>
<A3>
<B2>
<B3>
<A6>
<A7>
<A8>

<A1>
<A2>
<A3>
<A4>
<A5>
<A6>
<A7>
<A8>

Figure 6.16: Separating the checkpoints from the data breaks the dependency
chain. Pages reside in a central database and checkpoints contain
references only.

pages and besides the physical memory also covers all other QEMU RAM blocks
such as the video buffer. Whenever SimuBoost creates a new incremental check-
point, it copies the states maps over to the new checkpoint and updates them
according to the captured delta. This gives a complete self-contained image of
referenced pages and makes accessing previous checkpoints superfluous. We store
the state maps together with the device states on disk as one file per checkpoint.

To load a particular checkpoint a simulation node now conceptually only has to
read the respective checkpoint file from a shared network file system, establish a
network connection to the database, and retrieve the referenced data blocks. In
our first prototype, we attempted to use various existing key-value stores. However,
we did not find a suitable candidate. While we did not evaluate Redis [12] due
to its missing support for swapping between memory and disk, LevelDB [8],
MongoDB [10], as well as Kyoto Cabinet [6], proved to be too slow for our
purposes [37]. Instead, we found that using an ordinary flat file as "database"
gives best performance. In this design, a simple 64-bit file offset functions as a
unique identifier and new data is simply appended to the end of the file. Swapping
between disk and memory, caching, and read-ahead is taken over by the file system
cache.

Although a flat file hardly fulfills the requirements of a database, we keep the
term to discern it from the individual checkpoint files.

6.2.1 SimuBoost Extension for Simutrace

We integrated the entire checkpoint storage logic in Simutrace [218]. Simutrace
uses a client-server architecture, where the server is responsible for processing
and storing the data. Designed as a fast append-only database for detailed traces
(e.g., memory traces), Simutrace offers a stream-based interface. A client creates
a data store and can then register streams for this store by supplying a description

Continuous Checkpointing 127

Si
m

u
tr

ac
e

Se
rv

er
(S

im
u

B
o

o
st

 B
ac

ke
n

d
)

Device States (opaque)

Memory Stream (pages)

Master Stream

…

Si
m

u
B

o
o

st
 L

ib
ra

ry
(S

im
u

tr
ac

e
C

lie
n

t)

Checkpoint 1

Checkpoint 2

QEMU

KVM

C
h

ec
kp

o
in

t
D

B
C

h
ec

kp
o

in
t

Fi
le

s

ckpt
ckpt

ckpt

Figure 6.17: We use a specialized storage backend and a thin wrapper library to
utilize Simutrace for fast asynchronous processing and storage of
checkpoints.

of the data type that the stream is to receive. Although Simutrace supports
variable-sized entries, elements in each stream are generally expected to be of
fixed size. Accordingly, a type description comprises the size of each record
together with a unique type identifier. In the server, each stream is associated with
a type-specific en-/decoder using this identifier. If the designated type is unknown,
Simutrace selects a default en-/decoder. When the client writes data to a stream,
the corresponding encoder in the server receives it, asynchronously processes
it (e.g., compression), and (optionally) persists the data on disk. Transmission
to the server is done in segments of 64 MiB – for local connections using shared
memory. To make Simutrace more flexible, the actual storage backend defining
the en-/decoders as well as the store’s on-disk format can be exchanged. The
client therefore selects the desired storage backend when creating a new store.

For SimuBoost, we have extended Simutrace with a checkpointing-specific storage
backend and a small wrapper library exporting a custom client interface (see Fig-
ure 6.17). This way, we can make use of the memory management, asynchronous
processing capabilities (see § 7.2), and network connectivity already built into
Simutrace. The library offers simple functions such as for creating or opening a
checkpoint as well as writing or reading pages. Internally, our extensions create
per checkpoint (1) one stream per block-based device (e.g., memory) with the
appropriate data type (e.g., 4 KiB page), and (2) a stream with a variable-sized
opaque type for the device states. To later identify which stream belongs to which
checkpoint, the first stream in the store – the master stream – receives one entry
per checkpoint with index data. Since Simutrace allows a client to seek to a
particular element in a stream, we can quickly read the right entry using the
checkpoint number as the offset.

When QEMU creates a new incremental checkpoint, it writes only the modified
pages to the memory stream. It prepends a small header to each page, which
contains its address so that the storage backend is able to discern what pages
it received. As transmission between client and server happens in the unit of
64 MiB, the server receives around 16K pages with each segment. Due to shared
memory, this does not incur any additional copy. The server then immediately

128 Continuous Checkpointing

responds with a free 64 MiB segment in the existing shared memory buffer and
asynchronously processes the 16K pages while QEMU can continue saving pages.
When QEMU later reads the memory stream to open the respective checkpoint, the
decoder does not only return the incrementally saved pages, but instead provides
a complete memory image of the checkpointed VM.

6.3 Checkpoint Loading

We have extended the monitor in QEMU with a load command (load−cp), which
accepts a number to designate the desired checkpoint. QEMU then establishes a
connection to the Simutrace server17, reads the respective element in the master
stream, and eventually opens the referenced streams for the device states and
block-based devices. As the SimuBoost storage backend returns complete images,
QEMU only has to apply the retrieved elements (e.g., pages) at the address
provided by the respective element’s header. Afterward, the virtual machine can
be resumed and continues execution at the checkpointed location.

In order to run a checkpoint taken in KVM with the binary translation engine (i.e.,
simulation), we had to make slight modifications to TCG. Otherwise, the vCPU
does not correctly transition from kernel to user mode, entering an endless loop of
guest kernel page fault handler invocations. Furthermore, the guest kernel must
not call any KVM paravirtualization features (e.g., to indicate spinlocks) because
these are not implemented in TCG and consequently freeze the simulation.

Although technically working, restoring full VM images for the interval simulations
is suboptimal. This is because only a fraction of the guest’s memory will actually
be accessed during the execution of the intervals (see Table 6.4). Restoring all
memory thus wastes precious resources:

• With a cold file system cache, loading a full image of a 4 GiB VM can take
over 10 s for a Linux kernel build. Even with the entire checkpoint database
in the cache, the process still requires on average 2.7 s. For comparison,
simulating a 100 ms interval with a 60x slowdown takes 6 s. In this case,
we spend at least 30% of the overall time on loading.

• When starting a new VM, QEMU reserves space in its virtual address space
to hold the VM’s various RAM blocks (e.g., guest physical memory, video
buffer, etc.). When we restore a checkpoint, we write to every virtual page
comprising these areas in QEMU. This, in turn, forces the OS to allocate host
physical memory to back all virtual pages, irrespective if the VM actually
accesses the page later18.

17All our commands also take a connection string for the Simutrace server and a checkpoint store
name, allowing to load a checkpoint from a remote server.

18Allocated but untouched pages map to a shared zero-page with CoW, not consuming host RAM.

Continuous Checkpointing 129

stress-ram postmark specjbb kernel build sqlite
Pages 788525 72441 87572 32903 23507
Memory 3080 (75%) 283 (7%) 342 (8%) 129 (3%) 92 (2%)

apache encode-mp3 pybench povray idle
Pages 14058 2480 1111 2070 385
Memory 55 (1.3%) 10 (<1%) 4 (<1%) 8 (<1%) 2 (<1%)

Table 6.4: Working set sizes for 1 s intervals. Memory is given in MiB. Percentage
values relate to the full 4 GiB RAM of the test VM.

Fortunately, the parallelization of simulations hides most of the loading time spent
on unneeded pages when it comes to the impact on the overall parallel simulation
time [225]. Still, this unnecessarily delays progress and wastes computing time,
which is better invested in simulations. The increased memory consumption,
on the other hand, limits the simulation density, that is, the number of parallel
simulations per physical host. A simulation for a VM with 4 GiB RAM, for exam-
ple, requires a little bit over 4 GiB of host memory – excluding any memory for
analysis. Cutting the memory consumption down to the true working set allows
the researcher to employ a smaller cluster or even run the parallel simulation on
a single workstation with acceptable performance. This reduces complexity and
costs, which are important factors regarding the adoption of a new technology.

In this section, we therefore set out to confine the restored data set to what is
actually needed in the interval so as to shorten the loading time and reduce the
memory consumption.

6.3.1 Sparse Checkpoints

The basis for being able to perform a reduction is the use of deterministic replay
in the simulations. This guarantees that the simulations access only the exact
same set of pages. Since all other pages are not touched, they can be considered
irrelevant for the interval and be omitted. However, this assumes that the analysis
does not access these pages either. Otherwise, missing pages need to be explicitly
included or loaded on demand.

A challenge with loading only the pages actually necessary for the simulation is
to identify these pages in the first place. Intuitively, this is the working set of the
virtual machine over the span of the respective interval. In fact, however, only
the read working set is needed. This includes pages that the guest reads, or reads
and writes, but excludes pages only written, as these do not affect the instruction
flow. In practice, though, it is difficult to exclusively measure the read working set
when running a VM with hardware-assisted virtualization. This is because [125]:

130 Continuous Checkpointing

(a) EPTs do not allow permitting write access without read access.
(b) The MMU sets both the access bit and the dirty bit for write accesses.

This prevents us from discerning if a page has only been written or also read.
The deduced working set must therefore include written-only pages to being
measurable with current virtualization technology. Nevertheless, using simulation,
we found that for most workloads, the share of exclusively written pages is below
4% of the determined working set [277]. An exception is sqlite, for which the
share reaches 22%; but even in such cases, the working set is still small compared
to the guest memory size (see Table 6.4). We can thus conclude that, although not
delivering the optimal result, measuring the full working set instead of the read
working set using method (a), i.e., setting page protections, or (b), i.e., collecting
A/D-bits, is sufficient for our intended goal of significantly reducing the loading
time and memory consumption.

Tracking the working set using page protections is a viable solution. However, as
we already have a mechanism for scanning A/D-bits in place, we decided to use
method (b). This way, we could simply extend the (pre-)scan in our incremental
checkpointing to also collect access bits. These bits are then stored in a separate
bitmap (1 bit per page) so that we are still able to name the modified pages for
checkpointing. Just like the copy map, the access bitmap is shared between kernel
space and user space, allowing us to quickly send it to Simutrace for storage.
We append the access bitmap to the data stream for device states. The storage
backend eventually extracts the access information and saves it in a separate
file together with the checkpoint. When loading a checkpoint, we test for the
existence of an access bitmap and, if available, send only the pages marked in the
bitmap. We call such reduced images sparse checkpoints because only the relevant
areas in the guest memory will be populated.

Since we have to measure the working set for a checkpoint over the span of
the corresponding interval, the access bitmap is only available at the end of the
interval (see Figure 6.18). However, this does not constitute a problem because
the dependence on the log of non-deterministic events delays the simulations for
one interval anyways.

t
i [k+1]i [k]

C
h

ec
kp

o
in

t
k

VM

Track Working Set

A
cc

es
s

M
ap

 k

Execu�on Interval

Figure 6.18: Access information is collected over the span of the interval and
added to the checkpoint afterward.

Continuous Checkpointing 131

(a) Full Ckpt., L = 1 s

0

2

4

6

8

10

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

py
be
nc
h

en
co
de
-m
p3

po
vr
ay

ph
pb
en
ch id

le

T
o
ta
l
L
oa

d
in
g
T
im

e
[s
] Cold File Cache

Hot File Cache

(b) SPECjbb, L = 1 s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 280 560 840 1120 1400

Checkpoint

T
o
ta
l
L
oa

d
in
g
T
im

e
[s
]

Sparse w. Cold Cache
Sparse w. Hot Cache

(c) Sparse Ckpt., L = 1 s

0

100

200

300

400

500

600

700

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

py
be
nc
h

en
co
de
-m
p3

po
vr
ay

ph
pb
en
ch id

le

T
im

e
[m

s]

Init VM
Misc.

Devices
Memory

(d) Sparse Checkpointing

0

100

200

300

400

500

600

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

py
be
nc
h

en
co
de
-m
p3

po
vr
ay

ph
pb
en
ch id

le

T
ot
al

L
oa

d
in
g
T
im

e
[m

s]

Interval Length L
100ms
200ms

400ms
800ms

1 s
2 s

4 s
8 s

Figure 6.19: (a) Loading time of full checkpoints easily reaches multiple seconds
per checkpoint. (b) Loading time for SPECjbb with sparse check-
points ranges from 250 ms to 1.75 s, depending on program phase
(clearly visible) and file cache state. (c) Loading time with sparse
checkpointing is consistently shorter than for full checkpoints, with a
high dependency on the workload. Misc. summarizes various opera-
tions such as opening and closing the checkpoint store. (d) Although
loading time increases with growing interval length, dependence on
workload and program phase is stronger.

132 Continuous Checkpointing

Sparse Checkpointing

0

1

2

3

4

st
re
ss
-r
am

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

po
vr
ay

ph
pb
en
ch id

le
U
n
iq
u
e
S
et

S
iz
e
[G

iB
] Interval Length

100ms 1 s 8 s

Figure 6.20: Sparse checkpoints significantly reduce the memory consumption
of the simulations. The unique set size (USS) comprises all pages
private to the started instance of QEMU. The dashed line denotes
the memory consumption when loading full checkpoints.

In Figure 6.19a, we can see that loading full checkpoints takes at least 2 seconds,
even when the file cache already holds substantial parts of the checkpoint database.
Although we load the same number of pages for the three most demanding
workloads, they exhibit a much larger cold cache loading time. This is because
these benchmarks consume large amounts of guest memory, either by explicitly
allocating it (e.g., SPECjbb) or by accessing a lot of files (e.g., kernel build),
which fills the guest file cache. In both cases, checkpoints contain many pages
with unique contents. As we use deduplication (see § 7.2), these checkpoints
access more different (uncached) locations in the checkpoint database19. This
also explains the large variance for the kernel build because the guest file cache
holds less unique pages at the beginning of the compilation than at the end. The
loading time consequently rises over the run time.

With sparse checkpoints, the loading time does no longer depend on the total
number of (unique) pages in the guest RAM at the time of checkpoint creation,
but on the number of pages accessed in the respective interval. This has three
implications:

First, the workload phase is reflected in the loading time. In Figure 6.19b, we
can clearly identify the increase in warehouses over the duration of the SPECjbb
benchmark. Second, the loading time is significantly lower as much fewer pages
need to be restored (see Figure 6.19c). Even for the three most demanding
workloads, we save around 85% of loading time (L = 1 s). For idle, the saving
is 95%. For stress-ram, with its 3 GiB buffer, the saving is still 30%. Looking at

19An exception to this is stress-ram, which fills its 3 GiB with identical pages. Its loading time is
thus around 3 s.

Continuous Checkpointing 133

L = 100 ms L = 1 s L = 8 s
stress-ram - - 48% (↗ 140%)
postmark 111% (↗ 87%) 30% (↗ 58%) 12% (↗ 21%)
kernel build 47% (↗ 68%) 13% (↗ 34%) 6% (↗ 22%)
pybench 15% (↗ 10%) - -

Table 6.5: The savings in loading time and memory consumption come at the
cost of a higher run-time overhead (first value). The second value
provides the percentage increase compared to regular checkpointing
with pre-scan only. For stress-ram, we omit interval lengths for which
we cannot sustain the checkpointing frequency, for pybench, we omit
values below 1%.

Figure 6.19d reveals that this trend can be observed over all interval lengths, with
the workload having a stronger influence on the loading time than the interval
length20. The third implication is the reduction in memory consumption (see
Figure 6.20). Except for stress-ram, every workload can be simulated with less
than one-third of the memory required with full checkpoints. The less demanding
workloads even fit in around 512 MiB, which is only 13% of the original demand.

A noticeable downside of sparse checkpointing is that it comes at the cost of
a higher run-time overhead (see Table 6.5). This is due to the additional time
required for collecting the access bits in the EPT (i.e., transfer information to
bitmap, reset bits also on lowest EPT level), which involves a lot of atomic
instructions. Due to pre-scan, the effect remains negligible on the downtime.

6.4 Conclusion

Naive checkpointing using stop-and-copy incurs significant costs in terms of
downtime and run-time overhead and is thus unsuitable for SimuBoost. We have
shown that combining incremental checkpointing with copy-on-write and efficient
dirty logging achieves superior performance and is fast enough to be leveraged in
SimuBoost.

We found that scanning the EPT for dirty bits is faster than setting write protections,
although scanning noticeably increases the downtime. We presented pre-scan,
a novel approach to dirty logging, which moves most of the scanning time out
of the downtime by performing a first scan asynchronously to the execution
of the workload. This way, pre-scan successfully combines the low downtime
of write-protection-based dirty logging with the reduced run-time overhead of

20The spread between the shortest and the longest interval lengths mirrors the access locality of
the workload. If the access locality is low, increasing the interval length has a strong effect on
the working set size (e.g., sqlite, compare Figure 6.9 on page 113).

134 Continuous Checkpointing

EPT scanning. With less than 10 ms for all real-world benchmarks and L ≤ 8 s,
the downtime is significantly below the limit of 100 ms. This enables us to
provide perceptually fluent interaction even during checkpointing. Although the
downtimes are still visible in network connections (which cannot be completely
avoided), the mean bandwidth is not negatively affected (L = 1 s). The run-time
overhead introduced by checkpointing, however, can become comparably large.
We measured up to 90% overhead for SPECjbb, 60% for postmark, and 30% for a
kernel build with L = 100 ms. With L = 1 s the run-time overhead drops to one
third (i.e., 10% for a kernel build).

Finally, we described sparse checkpoints as a possible way to reduce the loading
time of checkpoints from seconds to a couple of hundred milliseconds as well as
the memory consumption of simulations from gigabytes to less than 512 MiB. This
way, SimuBoost can be run more efficiently on smaller simulation clusters or even
on a single workstation only. However, our evaluation has revealed that this comes
at the cost of increased run-time overhead. Employing sparse checkpointing thus
remains a tradeoff between hardware requirements and probe effect.

Chapter 7

Checkpoint Distribution

When a checkpoint has been created, the next step in SimuBoost is to schedule
the simulation of the respective interval based on the available pool of simulation
nodes. This can be done in two ways: fixed or dynamic.

With fixed scheduling, each node is a priori assigned a defined set of intervals
(i.e., checkpoints). The assumption behind this policy is that we can benefit from
this knowledge in such a way that the total simulation time is reduced. Since we
cannot accelerate the execution of the simulations itself with this method, vectors
for optimization emerge primarily in the initialization phase. The initialization
comprises (a) receiving a checkpoint, (b) starting the simulator, and (c) loading
the checkpoint. In addition, code caches used in the simulation require some time
to heat up, which can be considered part of the initialization phase. A scheduling
policy providing benefits must therefore save time in at least one of these areas.

If we assign each node a consecutive set of intervals, we get a seemingly optimal
case. When we reach the end of an interval, we can simply proceed simulation
without even loading a checkpoint. Due to the deterministic replay, the end state
of the current interval is equal to the initial state of the next interval. Furthermore,
we do not have to start a new instance of the simulator and the code caches are
already hot. In fact, however, scheduling a consecutive set of intervals is equivalent
to choosing a longer interval length (which is only a matter of configuration). As
we can expect to start from an optimal interval length, this will hurt the speedup
which in turn results in higher overall simulation time. We can thus conclude
that a fixed scheduling policy should not assign consecutive intervals to the same
node.

A viable alternative is to assign each node intervals according to a round-robin
policy, that is, node Nk simulates the intervals i[k + jN] with j ∈ [0... n

N), n
being the number of intervals, and N being the number of simulation nodes.
This complies with our performance model and minimizes the idle phase at the
beginning of the parallel simulation. As each node only simulates every N th

136 Checkpoint Distribution

interval, we cannot avoid loading the corresponding checkpoints and the code
caches are likely less hot. In the case that checkpoints must be queued because
the simulation cluster is too small (i.e., N < Nopt), we can benefit from the fixed
assignment by transferring checkpoints to the right nodes before they are actually
needed. In the optimal setup (i.e., N ≥ Nopt), on the other hand, the target
node always completes its last interval when a new interval becomes ready. In
consequence, we cannot save time by transferring checkpoints ahead of time.

With dynamic scheduling, we do not a priori assign intervals to nodes, but instead
dynamically select the next free node whenever an interval can be simulated. If
we apply the assumption from the performance model that every simulation takes
the same amount of time, this is, in fact, equivalent to the fixed round-robin policy.
If, however, the simulation time varies, for example, because of different phases
in the workload (idle = fast, FPU = slow) or due to a heterogeneous simulation
cluster, dynamic scheduling is more flexible. It does not have to wait for a certain
node to become free, but can select another one and thereby keep all nodes busy.
As a downside, transferring checkpoints beforehand is not easily possible.

Dynamic scheduling can be further divided into undirected and directed schedul-
ing. Whereas undirected scheduling picks a free node randomly, directed scheduling
attempts to select a free node for which the costs to simulate a particular interval
are smaller than for the other free nodes. The scheduler could, for example,
incorporate knowledge about redundant data across checkpoints and choose a
node which has already received most of the data from previous checkpoints.

Due to the increased flexibility, we have decided to use dynamic scheduling
in SimuBoost, but leave it undirected to keep the design simple. In addition,
the distribution design as described in this chapter decouples the selection of
a simulation node from the actual checkpoint transfer. This is likely to further
reduce any potential benefits that can be gained from directed scheduling.

Since there are sophisticated solutions for dynamic (undirected) job scheduling
already available (e.g., SLURM [290]), we do not dive any further into scheduling,
but concentrate on how to efficiently get the checkpoint data to the corresponding
nodes. In Section 7.1, we contrast two fundamental approaches to transfer check-
point data. In the following Section 7.2, we present how different compression
techniques can be leveraged to enable fast transfer also with commodity network
infrastructure such as Gigabit Ethernet. Building on this capability, we describe
the actual distribution concept for SimuBoost in Section 7.3.

Just like in Chapter 6, we ignore disk checkpointing in the following as it is
not needed in SimuBoost with deterministic replay in place. Nevertheless,
the discussed techniques are also applicable to disk sectors. We further omit
the replay logs as they are generally small in comparison. See Chapter 8 for
details on the log growth rate.

Checkpoint Distribution 137

7.1 Pulling versus Pushing

Node 1

Node 2

Node 3

Node 4

ckpt

1

Node V
2

3

Bo�leneck

get(1) 1

(a) Pulling

Node 1

Node 2

Node 3

Node 4

Node V

New Pages

(b) Pushing

Figure 7.1: (a) The simplest method is to pull checkpoints from the virtualization
host when needed. In this case, the link on the virtualization host
becomes a bottleneck. (b) An alternative is to let the virtualization
host push new data (here exemplary memory pages) into the network
where they are distributed among the simulation nodes.

When a node has been selected to simulate a certain interval, it has to somehow
receive the corresponding checkpoint. An intuitive approach is to connect to the
virtualization host (i.e., the system creating the checkpoints) and load the check-
point over the network. Our storage backend supports TCP remote connections
as part of Simutrace (see § 6.2.1). That means we can just open the checkpoint
store remotely and read the respective streams over the network. We thereby pull
the (full) checkpoint from the virtualization host to the simulation node.

A major weak point of this solution is, however, its limited scalability. The larger
the simulation cluster, the more checkpoints need to be sent over the single link
of the virtualization host. This quickly exhausts a Gigabit Ethernet adapter and as
a result, loading a checkpoint can take up to multiple minutes in a commodity
network [209]. This is even the case for small setups and amplified by the fact that
checkpoint loading may occur in bursts if the simulation time is mostly uniform
(see Figure 7.2a). Although sparse checkpoints or extensive compression1 can
to some degree free up network bandwidth, the link to the virtualization host
remains a conceptual bottleneck.

For checkpoint creation, we take advantage of the fact that only a fraction of the
guest physical memory is actually modified between checkpoints. This drastically
reduces the amount of data to be saved. We can pass this saving on to the
checkpoint distribution by constantly pushing only the new data into the network,
instead of sending entire checkpoints by request (see Figure 7.1b). This way the
load on the link to the virtualization host only depends on the workload’s page

1The compressibility of complete checkpoints declines with the run time as former zero pages
start to contain less compressible data. Loading thus slows down over time [209].

138 Checkpoint Distribution

6 physical hosts
2 simulations per host

(a) kernel build, L = 5 s

0

20

40

60

80

100

120

0:00:00 0:30:00 1:00:00 1:30:00

Run Time [hr:min:sec]

N
et
w
or
k
L
oa
d
[M

iB
/s
]

Gigabit Ethernet

10 Gigabit Ethernet

(b) Uncompressed Pushing

0

240

480

720

960

1200

1440

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

R
eq
u
ir
ed

B
an

d
w
id
th

[M
iB
/
s] Interval Length

100ms 1 s 8 s

Figure 7.2: (a) Network load with pulling at the virtualization host. Even a small
setup quickly exhausts Gigabit Ethernet. In addition, with uniform
simulation times, the load follows a sequence of bursts (data from
[209]). (b) Gigabit Ethernet neither provides enough bandwidth to
allow pushing. In fact, demanding workloads can even exhaust 10
Gigabit Ethernet. The box illustrates the first and third quartiles with
the median in the middle. The whiskers represent the 2.5 and 97.5
percentiles, respectively. Outliers are plotted as dots3.

modification rate and the interval length, but not on the size of the simulation
cluster2. Although this does not fully remove the bottleneck, it increases scalability.
This is because we can now distribute the data among the simulation nodes so that
the load is evenly spread. This can, for example, be achieved with a distributed
network file system. When a simulation node then loads a checkpoint, the file
system transparently accesses the storage on other simulation nodes, if necessary.

A fundamental prerequisite for this approach is that the amount of data created per
interval does not exceed the bandwidth of the link that connects the virtualization
host with the simulation cluster. For Gigabit Ethernet, that means if SimuBoost
creates one checkpoint per second, each checkpoint must not be larger than
120 MiB. As we can see in Figure 7.2b, this is not the case, especially for demanding
workloads such as postmark or SPECjbb. Even the kernel build, being a moderate
benchmark, occasionally creates exceedingly large checkpoints with L = 1 s. For
100 ms intervals, half the benchmarks overload Gigabit Ethernet, with SPECjbb
peaking at over 12 gigabit/s.

2Having more simulation nodes generally means using a shorter interval length – i.e., more
checkpoints – in order to increase parallelism. However, the number of modified pages
decreases exponentially with shorter intervals (see Figure 6.4 on page 106).

3The repetitive pattern of two high outliers for the more lightweight workloads originates from
loading the test framework which starts the benchmarks.

Checkpoint Distribution 139

As we intend to run SimuBoost on commodity network infrastructure, we therefore
must first reduce the size of the incremental checkpoint data. Only then we can
proceed with distributing it in the simulation cluster using pushing.

7.2 Checkpoint Data Reduction

Every checkpoint consists of (a) opaque device states (e.g., CPU registers), (b) the
state map describing the relationship between guest physical memory addresses
and data locations in the checkpoint database, and (c) the incremental data (i.e.,
pages) itself, which SimuBoost persists in the database.

This primarily gives us two vectors for reducing the data sent over the network:

1. We can deduplicate identical pages (e.g., zero or copied) so as to avoid
sending redundant data into the simulation network.

2. For all non-redundant data, we can apply specialized and/or generic lossless
compression techniques.

We have implemented a corresponding data reduction pipeline in our checkpoint
storage backend for Simutrace (see Figure 7.3):

In step 1, the incoming memory pages are distributed among a set of worker
threads which parallelize the upcoming processing. However, we do not create
jobs with less than 500 pages to limit the overhead for small checkpoints.

Each thread then starts with the data deduplication stage (see § 7.2.1) in step 2.
In this phase, the storage backend filters pages that are already present in the
checkpoint database. In addition, redundant pages within the newly arriving ones
are deduplicated (this works across threads). Whenever the backend recognizes

Data
Deduplica�on

Pages
Delta

Compression
Generic

Compression

Memory
Map

No
No

Yes

Yes

SDS
Compression

Generic
Compression

Device
States

2 3 4

5

6

1 compare

ckpt
ckpt

ckpt

Figure 7.3: Overview of the data reduction pipeline in SimuBoost.

140 Checkpoint Distribution

a known page, the offset of the existing entry in the database is written to the
memory state map and the new (identical) page is dropped.

The pipeline forwards all non-redundant data to the delta compression (see
§ 7.2.2) in step 3. As described in § 2.3.4, memory pages typically experience only
minor changes within each checkpointing interval. In these cases, the compression
ratio can notably be increased by compressing the delta instead of the original
data. However, this effect generally reverses when the changes are too broad. We
thus use a simple heuristic based on the Hamming distance to decide if a page
should be replaced with its delta.

In any case, the pages are passed on to step 4, the generic compression. Afterward,
the storage backend appends the compressed pages to the checkpoint database
and updates the offsets in the memory state map accordingly. We employ LZ4 [68]
as a generic compressor. LZ4 is a popular derivative of the LZ77 algorithm with a
focus on fast lossless operation. Although the amount of data accumulated over
a checkpointing session can quickly reach multiple hundred gigabytes, we favor
speed over compression ratio in this phase to compensate for the overhead we
introduce with the previous stages. Nevertheless, we found this combination to
achieve better compression ratios than simply using a more heavyweight generic
compression such as LZMA [9]. This is conclusive as the stages 1 and 2 reduce
redundancy in both the spatial and the temporal dimensions, and also respect the
special structure of memory pages, whereas a generic compression only works on
the current input data without incorporating any further knowledge. Furthermore,
the incremental nature of the checkpoints requires that pages can be decompressed
individually. Compression must thus be applied separately to each page. This
deprives generic compressors of the ability to deduplicate identical pages.

When all pages have been processed, the storage backend can write the state
map into the corresponding checkpoint file. Since the map for a VM with 4 GiB
of guest physical memory is around 8 MiB in size, the state map is compressed
in step 5 beforehand. We use a custom encoder, called SimuBoost Device State
Compressor (SDS), as we found it to provide superior performance compared to
LZ4 for this particular data structure (see § 7.2.3).

In step 6, the pipeline sends the opaque device states (
∧
= 120 KiB) through the LZ4

compression and finally appends the data to the checkpoint file. The device states
usually compress down to less than 10 KiB, irrespective of the interval length and
workload. This completes the processing and the next checkpoint can be created.

Compression Ratio

To get a better impression of the individual workload characteristics, we omit
the first checkpoint in the evaluation, which captures the base image of the VM
before the workload starts. Since we perform a fresh boot each time, the image

Checkpoint Distribution 141

Gigabit Ethernet

(a) Compressed Pushing

0

20

40

60

80

100

120

140

160

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

R
eq
u
ir
ed

B
an

d
w
id
th

[M
iB
/
s] Interval Length

100ms 1 s 8 s

(b) Overall

0

5

10

15

20

25

30

35

40

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

C
om

p
re
ss
io
n
R
a
ti
o

Interval Length
100ms 1 s 8 s

Figure 7.4: (a) With compression, Gigabit Ethernet provides enough bandwidth
for most checkpoints (compare Figure 7.2b). (b) Compression ratio
over all checkpoints (except the first) is between 4:1 and 39:1, with
lightweight workloads and short intervals yielding better results. The
black points denote results for L ∈ {200, 400,800, 2000,4000}ms.

is identical for all configurations. For our 4 GiB test VM, the compression ratio
is 17.3:1, resulting in a final checkpoint size of around 250 MiB. In practice, we
therefore can expect a one-time delay of around 2 s, depending on the interval
length, before the actual parallel simulation begins.

As illustrated in Figure 7.4a, the presented pipeline sufficiently reduces the re-
quired network bandwidth to generally allow pushing new checkpoint data into
a simulation network based on Gigabit Ethernet4. With compression enabled,
only for postmark and SPECjbb with L = 100 ms, 13 s of 60 s (22%) and 38 s of
1741 s (2%) of workload run time exceed the limit of 120 MiB/s by at most 30 MiB
(i.e. 250 ms transfer time). For postmark, these are primarily the first seconds
of run time, whereas for SPECjbb over 60% of the overload situations occur in
the last third of the benchmark where the page modification rate is the highest.
We can thus expect slight delays in the parallel simulation for benchmarks with
comparable load and a short optimal interval length. Nonetheless, according
to our performance model, both benchmarks possess a higher optimal interval
length than 100 ms (postmark: 150 ms, SPECjbb: 2 s). This means that at least
for the given workloads, this should not be a problem in practice.

The compression ratio (i.e., uncompressed
compressed) inherently depends on the kind of data

generated by the workloads. However, we can observe two general trends (see
Figure 7.4b): (1) lightweight workloads in terms of the page modification rate are

4We excluded stress-ram because its synthetic nature (all identical pages) leads to compression
ratios beyond 11k:1. This reduces the original data volume of over 3 GiB/s to less than 3 MiB/s.

142 Checkpoint Distribution

postmark specjbb kernel build sqlite
L = 100 ms 50 ↘ 5.5 881 ↘ 134 201 ↘ 29 2.64 ↘ 0.14
L = 1 s 11 ↘ 1.5 381 ↘ 82 49 ↘ 9.4 0.87 ↘ 0.07
L = 8 s 1.6 ↘ 0.31 82 ↘ 16 9.5 ↘ 2.0 0.32 ↘ 0.03

apache encode-mp3 povray idle
L = 100 ms 27 ↘ 1.8 4.2 ↘ 0.28 63 ↘ 3.2 4.9 ↘ 0.15
L = 1 s 3.8 ↘ 0.34 0.69 ↘ 0.11 6.6 ↘ 0.38 0.59 ↘ 0.02
L = 8 s 1.3 ↘ 0.13 0.33 ↘ 0.08 1.2 ↘ 0.09 0.13 ↘ 0.003

Table 7.1: Total data per workload before and after compression in GiB.

likely to exhibit a higher overall compression ratio, and (2) the interval length can
be used as an indicator for compressibility, where data from short intervals usually
compresses better. The latter is probably rooted in the fact that long intervals can
accumulate more changes and thereby increase entropy.

In addition to immediate simulation, checkpoints can be stored on the virtualiza-
tion host for later use5. This is also required for small setups, where no additional
network nodes are involved, and helpful for repeated simulations because it al-
lows to free up the cluster in the meantime. Other reasons for permanent storage
may include archiving regulations or the desire to share a recording with other
researchers. The total required disk space per session is thus an equally important
metric. This is also the case for pushing if the data is not distributed among the
simulation nodes, but stored in full on every node (see § 7.3). Table 7.1 provides
a size comparison of raw and compressed data. Our pipeline significantly reduces
the required disk space, even for the more lightweight workloads.

The additional data volume for the access bitmap in sparse checkpoints is negligible
because the compression ratio is generally above 50:1 using LZ4, with the bitmap
encompassing 1 MiB for a 4 GiB VM – i.e., 1 bit per physical page – and shrinking
down to less than 20 KiB. In the sum of all checkpoints, this is only 0.1% of total
compressed data for SPECjbb and 0.3% for a kernel build (L = 100 ms).

When looking at the effectiveness of the individual compression methods in
Figure 7.5, we can see that it strongly varies between the different workloads.
Whereas postmark benefits in particular from data deduplication, all other meth-
ods are only marginally able to reduce the checkpoint size, accounting for less
than 10% of the total compression. This emphasizes the importance of a good mix
of schemes to achieve sufficient overall reduction. Nevertheless, data deduplica-
tion presents itself as a powerful compression technique and for most workloads
delivers an additional data reduction of more than 48% over generic compression
(i.e., a cut in half).

5The current prototype requires (additional) local storage to allow for data deduplication and
delta compression as no cache for the referenced data exists.

Checkpoint Distribution 143

(a) L = 1 s

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

R
ed

u
ct
io
n
in

S
iz
e
[%

]

(b) L = 1 s

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

S
h
a
re

in
T
ot
al

C
o
m
p
re
ss
io
n
[%

]

Generic (LZ4) Deduplication Delta SDS

Figure 7.5: (a) The plot shows the additional reduction in size (over generic
compression) for each of the methods if all methods to the left are
also applied. Generic compression is relative to the uncompressed
image. For instance, in the case of idle, SDS can save an additional
67% of total data volume compared to generic compression, if all
other methods are in effect. (b) The plot shows each method’s share
in the overall compression.

Since SDS is specific to the state maps, its share increases with the number of
stored maps, i.e., checkpoints, which in turn depends on the workload run time
and the interval length (compare Figure B.1). On average we can see the trend
that shorter intervals benefit the specialized compression schemes, whereas longer
intervals improve the effectiveness of the generic compression.

Note that we had to redirect the final (compressed) output to /dev/null for
the benchmarks only encompassing generic compression because the SSD
(380 MB/s) in the test system was unable to write out the data fast enough
(especially postmark, 758 MB/s); at peaks even for L = 1 s.

CPU Usage

Introducing the various checkpointing and data reduction steps does come at the
cost of CPU time. Figure 7.6 depicts the number of additional CPU cores required
to power checkpointing with compression enabled. On average up to three
additional cores running in parallel to the one executing the guest VM are needed
for L = 100 ms. This includes overhead for (1) asynchronously checkpointing
the VM, (2) compressing the captured data, and (3) writing it onto persistent

144 Checkpoint Distribution

(a) Full Pipeline

0

1

2

3

4

5

6

7

8

9

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

U
ti
li
ze
d
C
or
es

p
er

S
ec
o
n
d

Interval Length
100ms 1 s 8 s

(b) Generic Compression Only

0

1

2

3

4

5

6

7

8

9

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

U
ti
li
ze
d
C
or
es

p
er

S
ec
o
n
d

Interval Length
100ms 1 s 8 s

Figure 7.6: Powering the presented data reduction pipeline does not consume
considerable more CPU time than applying fast LZ4 compression only,
despite the significant increase in compression ratio6. The band of
peaks around 5 cores represents the checkpoints where the benchmark
framework in the VM starts.

storage. The overhead falls notably with longer interval lengths (although not
linearly). For 1 s intervals, checkpointing can mostly be handled on one additional
core, except for SPECjbb. Comparing the overhead of the presented pipeline with
employing solely generic compression reveals that the pipeline incurs comparable
costs, despite the significant increase in compression ratio.

7.2.1 Data Deduplication

The deduplication stage removes duplicates (1) between new pages and the ones
already stored in the database as well as (2) within the stream of incoming new
pages itself. The latter is important in order to recognize redundant content as
soon as it first appears and not only in subsequent checkpoints; for example, zero
pages, which usually make up the majority of the first checkpoint.

To detect identical pages we compute a hash for all incoming pages. When we
were looking for a suitable hash function, we wanted to balance uniform distribu-
tion to avoid collisions (i.e., false detection of duplicates) and fast computation.
We did not consider cryptographic hash functions such as the SHA family be-
cause they generally incur high overhead [187]. Instead, we chose the 64-bit

6In fact, (b) does not include the overhead of writing the compressed data onto the SSD due to
the exceedingly large data rate for postmark and SPECjbb. However, the prototype does not
allow disabling actual storage in (a) because data deduplication and delta compression are
involved and pages need to be available for reference. Including the overhead where possible
(not shown) in (b) reveals that our pipeline even requires less CPU power.

Checkpoint Distribution 145

SDKXA BUZP

0 1 2 3 4 5
1
06 7 8 9
1
1
1
2
1
3
1
4
1
5 Bucket

Buckets B

i

Key
Count
Offset

Figure 7.7: For each input key, the fixed-size hash table probes a chain of buckets
(here incremental probing) until (a) the key is found, (b) an empty
bucket is found, or (c) the maximum number of probes is reached, in
which case LFU replacement is used. The buckets map each key to an
offset in the page database.

version of Google’s non-cryptographic FarmHash [5] as it delivers good distri-
bution characteristics (we did not observe a single collision yet) and very high
throughput [208].

Hashing and thereby also the detection of redundant pages is done at the gran-
ularity of 4 KiB pages. Whereas previous work has shown slight improvements
in deduplication for sub-page (e.g., 1 KiB) granularity (see § 2.3.3), we decided
against it to keep the design simple and the number of hash lookups low.

After computing the page hashes, the backend performs a lookup for each hash in
a table of previously seen hashes. In an early prototype, we utilized an unbounded
hash table (i.e., C++ std::unordered_map) for this purpose, using the page
hash as the key. However, we quickly found it to cause frequent delays of multiple
seconds during checkpointing. The delays resulted from the data structure per-
forming a key re-hashing when growing to accommodate the increasing number
of entries. We therefore decided to use a fixed-size hash table which caches only
a limited set of past hashes (see Figure 7.7):

Let B[i] be a bucket in the fixed-size hash table and i ∈ [0, b) with b being the
number of buckets. We then perform a lookup for the key k as follows with
j ∈ [0, l) and l denoting the length of the probing chain for conflict resolution:

i j :=

¨

h(k) mod b if j = 0

(i j−1 + p(j)) mod b if j > 0

The function h is the key hash function. Since we use the page hash as the key,
there is no need to apply any further hashing and we select the identity function
(i.e., h(k) = k). If the bucket B[i0] is not free and does not contain k, we continue
probing according to the rule implemented by p. We tested the following variants:

p(j) :=

1 (L)inear Probing

j (I)ncremental Probing

j2 (Q)uadratic Probing

If we reach an empty cell, we insert the hash at this position and consider the page
to contain previously unseen contents. If we have a hit (i.e., a key match), we

146 Checkpoint Distribution

57.0
39

58.0
39

58.7
39

59.4
39

60.3
39

61.6
40

64.5
41

69.7
44

76.0
69

81.8
94

86.6
103

90.2
108

93.1
113

95.3
161

97.0
193

59.4
50

59.9
50

60.4
50

61.0
50

62.3
51

64.4
53

68.0
54

74.9
58

82.0
89

86.6
121

89.8
135

92.8
143

95.7
162

97.5
228

98.6
253

59.5
61

60.1
61

60.7
60

61.4
61

62.9
64

65.1
66

67.9
67

75.4
72

82.6
98

86.8
149

89.8
162

93.1
170

96.1
186

97.8
269

98.7
312

59.6
72

60.2
72

60.9
72

61.5
73

63.0
75

65.0
77

67.2
79

74.2
84

82.3
106

86.1
164

89.6
176

93.1
182

96.2
202

97.9
304

98.7
363

59.6
80

60.4
80

61.1
80

61.5
81

63.2
84

64.8
87

67.0
88

71.3
93

82.0
115

85.8
185

89.4
196

93.0
203

96.3
224

97.9
338

98.7
463

59.7
90

60.5
91

61.4
91

61.7
91

63.3
95

64.9
97

66.9
99

70.6
103

81.7
125

85.4
203

89.2
221

93.0
232

96.3
252

98.0
396

98.7
452

59.7
100

60.4
100

61.3
99

61.8
100

63.2
105

65.0
108

66.5
110

70.1
114

81.5
135

85.1
205

89.0
224

92.9
234

96.4
260

98.0
390

98.7
484

57.0
25

58.0
25

58.7
25

59.4
25

60.3
26

61.6
26

64.4
27

69.6
29

75.9
35

81.7
51

86.4
62

89.9
68

92.5
70

94.7
75

96.5
99

L Q I I L Q I Q Q I I L I L L

I Q Q I L L L I Q I L L L L L

Q L L Q L L L I Q L L L L L L

L L L L L L L L Q L L L L L L

L L L L L L L L Q L L L L L L

L Q L L L L L L Q L L L L L L

Fixed-Size Hash Table, kernel build, L = 1 s

1

2

3

4

5

6

7

8

C
h
ai
n
L
en

gt
h
l

55.6
43

57.0
43

58.0
43

58.8
44

59.5
45

60.4
46

61.9
47

64.8
49

70.0
72

76.4
97

82.9
107

88.5
112

92.7
116

95.2
174

96.7
210

59.0
63

59.6
63

60.5
63

61.3
64

61.6
67

62.3
66

63.7
68

67.0
69

75.1
85

83.3
135

87.6
149

91.8
156

95.5
161

97.5
257

98.4
335

59.0
108

59.5
108

60.9
108

62.3
108

63.2
110

62.6
110

63.1
111

65.9
111

72.8
125

81.2
222

85.8
220

90.5
223

95.2
227

97.4
403

98.3
496

57.0
25

58.0
25

58.7
25

59.4
25

60.3
26

61.6
26

64.4
27

69.6
29

75.9
35

81.7
51

86.4
62

89.9
68

92.5
70

94.7
75

96.5
99

n-Way Set Associative Cache, kernel build, L = 1 s

1

2

4

8

12
8

25
6

51
2 1k 2k 4k 8k 16

k
32
k

64
k

12
8k

25
6k

51
2k 1m 2m

Total Number of Buckets / Lines

n

Hit Rate [%] (0,60]
(60,70]

(70,80]
(80,90]

(90,95]
(95,100]

Figure 7.8: The fixed-sized hash table delivers higher hit rates than an n-way
associative cache. However, a large direct mapped cache (n= l = 1)
performs best overall. The plots give the hit rate in percent (top) com-
pared to an unbounded hash table, the time in milliseconds (bottom)
to process the checkpointed pages of a kernel build (L = 1 s), and the
probing rule with the best hit-rate-to-time ratio (right).

found a potential duplicate of the new page in the checkpoint database. To rule
out a hash collision, we do a 1:1 data comparison with the existing entry. Finally,
if all probes remain unsuccessful, we evict one of the visited entries. We employ a
least frequently used (LFU) replacement policy by selecting the entry with the
lowest number of hits in the chain. While this generally favors old entries, we did
not see any notable improvement in hit rates with least recently used (LRU).

With this data structure, we can also model a direct mapped cache and an n-
way set associative cache. These work analogously to the described hash table,
except that for the direct mapped cache, l is always 1, and for the n-way set
associative cache, h computes the index of the first entry in the respective set, l
equates to the set size n, and we always use linear probing.

In Figure 7.8, we compare the hit rates of the various configurations of the fixed-
size data structure to an unbounded hash table for a kernel build. We can see
that the configuration as n-way set associative cache performs worse than the
equivalent configurations as hash table (marked in black). The hash table, in
turn, does not provide any relevant improvements in the hit rate for l > 3.

Checkpoint Distribution 147

In addition, linear probing (L) usually offers the best hit-rate-to-time ratio. If
memory consumption is not a concern, however, the configuration as (larger)
direct mapped cache delivers the best performance.

For a kernel build (12.5M pages at L = 1 s) and a hash table with 256k buckets
and above, we approximately reach over 93% of the optimal hit rate. The same
applies to postmark (4M pages) with a table of 64k-128k entries and SPECjbb
(100M pages) with a 2M table7. In all cases, the data structure is fully occupied.
This suggests the general rule of thumb that for a 93% hit rate, the data structure
should comprise about 1 bucket per 8 checkpointed pages. This makes it difficult
to choose a universally optimal solution upfront. Nevertheless, the configuration
as a 1M direct mapped cache proved to be a good tradeoff between memory
consumption, hit rate, and processing time in our tests8. Hence, we set this as
default in SimuBoost and use it in all of our benchmarks.

Deduplication Ratio

With the data structure detailed in the last section, we have a strong filter at the
entrance of the reduction pipeline. Measuring the median deduplication ratio per
checkpoint – i.e., the percentage of pages removed from the input of incrementally
captured new pages – shows the highly redundant nature of modified memory
pages in periodic checkpoints (see Figure 7.9a). This confirms prior research in
the field of memory deduplication (see § 2.3.3); although we determined much
lower deduplication for SPECjbb 2005 than the authors of CloudNet [282] (up to
20% versus 60%).

Just like with the evaluation of the overall compression performance, we left
out the first checkpoint which would otherwise heavily distort the results for the
more lightweight workloads. Since the first checkpoint contains many zero pages,
its deduplication ratio is with 87% exceptionally high. This reduces the 4 GiB
guest RAM image to around 530 MiB. However, considering the effectiveness of
deduplication over generic compression9, we can infer that a substantial share of
identical pages in the subsequent checkpoints are not zero pages, as these would
also be very effectively compressed generically. In fact, zero pages account for
only 0.03% of the total redundancy for postmark and for 41% and 6% in the case
of the kernel build and SPECjbb, respectively. Instead, for these three benchmarks
we observe between 150k and 1.4M different page hashes, which mostly (40% –
77%) occur only twice during the execution of the workload (see Figure 7.9b).

7See Figure B.2 on page 214.
8While adaptive caching policies such as ARC [170], which dynamically balances between

frequency and recency, could potentially improve performance, we see > 90% of the optimal
hit rate as sufficient for our purposes.

9See Figure 7.5a on page 143.

148 Checkpoint Distribution

(a)

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

D
ed
u
p
li
ca
ti
on

R
a
ti
o
[%

]

Interval Length
100ms 1 s 8 s

(b)

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10

≤1
00

>
10
0

Degree of Redundancy

S
h
ar
e
in

D
u
p
li
ca
ti
o
n
[%

] postmark
specjbb
kernel build

Figure 7.9: (a) The deduplication ratio over all checkpoints (except the
first) is highly workload specific with the interval length being
no clear indicator. The black points denote results for L ∈
{200,400,800,2000,4000}ms. (b) The degree of redundancy de-
scribes how often certain page content can be observed. Most contents
show up only twice.

In a study exploring the semantic origin of incrementally captured (i.e., modified)
pages in a kernel build [224], we found that most duplicates stem from anonymous
and free memory, but only 8% are located in the guest page cache.

7.2.2 Delta Compression

Whereas data deduplication targets identity, delta compression leverages similarity
to achieve data reduction. The goal is to generate a patch with zeros on most
positions – using XOR (⊕) – so it can be encoded more efficiently than the original
data. On this route we have to tackle three primary design questions:

Reference Selection Delta compression always depends on a reference against
which the delta is computed. This reference (1) must be available during de-
compression, (2) should produce as many zeros as possible, that is, its degree of
similarity should be high, and (3) the process of selecting it should be fast.

For the first requirement, we must ensure that the simulation node that eventually
loads a checkpoint with a delta compressed page is also in possession of the
corresponding reference page. Employing delta compression in a network is thus
always challenging as it must only be applied within the set of pages that are
local to a certain simulation node. This requires a directed simulation scheduling
with a scheduling-aware reference page selection. Otherwise, decompression
necessitates supplementary network accesses to retrieve missing reference pages,

Checkpoint Distribution 149

which is counterproductive for reducing network traffic10. Nevertheless, for local
operation as well as for the multicast network distribution proposed in § 7.3, delta
compression is applicable and beneficial without having to consider the physical
storage location of pages. In the following, we hence assume that all pages are
available on all nodes, that is, all pages are potential candidates for reference.

The requirements (2) and (3) are tightly intertwined as finding the optimal
reference page from the set of all previously seen pages is a computationally
non-trivial task. Difference Engine [107] as well as Gerofi et al. [100] utilize hash
tables and specifically designed hash functions which provoke hash collisions for
similar page contents. We initially envisioned a similar approach, but eventually
dismissed it in favor of a simpler and faster design: Under the assumption that on
average pages are only marginally modified between successive checkpoints, we
can generally expect the previous version of the same page to be a good candidate.
This entirely eliminates the search for a reference page at the cost of a potentially
lower compression ratio. Considering that we employ further data reduction
mechanisms besides delta compression, we see this an appropriate tradeoff.

Decision Function Delta compression is only effective if the delta can be encoded
more efficiently than the original data. However, if changes are too extensive, the
encoding efficiency can quickly shift to the detriment of delta compression. If,
for example, a randomly filled page R gets cleared by the guest (i.e., all zeros),
the delta will contain the original page contents, as ∆= R⊕ 0= R. Encoding the
new (zero) page is thus more efficient than encoding the delta. In consequence,
we need a decision function which determines if delta compression should be
applied. The optimal decision function computes both the fully compressed version
(i.e., LZ4) of the delta and the original page and compares the resulting sizes.
While this gives the best compression quality it also consumes the most time. We
therefore opted for a heuristic based on the Hamming distance between the page’s
current and previous contents as a measure of similarity.

We calculate the Hamming distance by deriving the delta and counting the number
of non-zero 64-bit words11. If the number exceeds a fixed threshold, we dismiss
the delta and keep the original data. Compared to the optimal decision function,
we save the costly compression of the delta or the original data, respectively.
Figure 7.10 illustrates that selecting the right threshold is crucial for the quality
of the heuristic. With a threshold of at most 25% non-zero words (i.e., 75%
similarity) we achieve the best performance and reach between 79% and 100%
conformity with the optimal decision function.

10Note that this is not the case for data deduplication because no additional data such as the delta
must travel the network.

11Although current x86 CPUs implement fast bit counting with the SSE 4.2 popcnt instruction
[125], we found word-level counting to be faster and sufficiently precise.

150 Checkpoint Distribution

B
es
t
C
h
o
ic
e
(8
/
1
0)

L = 100ms

0

20

40

60

80

100

0 20 40 60 80 100

Similarity Threshold [%]

D
ec
is
io
n
Q
u
a
li
ty

[%
]

postmark
specjbb
kernel build
sqlite
apache
encode-mp3
pybench
povray
phpbench
idle

Figure 7.10: Choosing a similarity threshold of 75% – i.e., 25% of the delta are
non-zero – gives the best average performance, where decisions
match the optimal decision function in between 79% and 100% of
cases. The shapes denote the maximum of each curve.

Chain Length Conceptually, there is nothing preventing a reference page to be
itself delta-encoded. However, each time SimuBoost delta-encodes a page, it also
has to load the corresponding reference page during decompression. This creates
additional overhead not only for checkpoint loading, but also for deduplication
and delta compression, where SimuBoost accesses (compressed) pages in the
database. Although a page cache as in Remus [72, 180] and others [118, 187]
could generally relax the situation, it is favorable to avoid long dependency chains
in the first place. We therefore limit delta compression to non-reference pages.

As detailed above, we only consider the previous contents of the same page as a
reference to avoid costly reference identification. In consequence, the limitation of
delta compression to non-reference pages leads to a constant alteration between
delta and non-delta encoding12, wasting potential for compression. We therefore
lock the reference until the decision function rejects the delta compression:

R Δ R Δ R Δ R Δ

R Δ Δ Δ Δ R Δ Δ Δ

R

Non-Zero
Words

(b)

(a)

Figure 7.11: (a) Alternating between delta and non-delta encoding for a certain
PFN. (b) The reference remains fixed until the decision function
rejects delta encoding using this reference.

12Assuming the particular page is eligible for delta compression according to the decision function.

Checkpoint Distribution 151

Delta Compression Ratio

Evaluating the compression ratio of all pages that passed data deduplication (i.e.,
they contain new contents), reveals that delta compression can be applied on
average in between 20% and 80% of cases (see Figure 7.12a). The benchmarks
again skip the first checkpoint to better reflect workload characteristics. As
expected, short intervals are better suited for delta compression because they
accumulate fewer changes.

In addition, Figure 7.12b shows that delta compression significantly reduces the
storage size of the corresponding pages. This also confirms the effectiveness of
our selection heuristic. Somewhat counterintuitively, the compression ratio for
delta pages increases with the interval length. However, this is conclusive because
for longer intervals only those pages with seldom and little modification remain,
whereas the pages with more extensive modifications and thus less compressible
deltas are already filtered out.

(a)

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

D
el
ta

A
p
p
li
ca
ti
on

R
at
io

[%
]

Interval Length
100ms 1 s 8 s

(b)

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

P
ag
e
S
iz
e
R
ed
u
ct
io
n
[%

]

Interval Length
100ms 1 s 8 s

Figure 7.12: (a) As expected, short intervals and lightweight workloads provide
higher potential for delta compression. The values relate to the
remaining pages after deduplication. The black points denote results
for L ∈ {200, 400, 800, 2000, 4000}ms. (b) Delta compressed pages
are typically at least 50% smaller than before.

7.2.3 Device State Compression

In the deduplication and delta compression stages, the incoming data volume is,
except from the first checkpoint, determined by the workload’s page modification
rate, the interval length, and the actual page contents. It is thus difficult to predict
the overall amount of data before actually executing the workload. Looking solely

152 Checkpoint Distribution

at the RAM state map, it is much simpler. Although this does not include the
miscellaneous other device states such as the CPU registers, even for a small
256 MiB VM the state map consumes over 4x the space of the other devices states
typically stored by QEMU. This makes the state map the next largest position
beside the actual guest memory contents.

We therefore focus on the compression of the RAM state map and resort to
generic compression for all other device states as illustrated in the overview
of our data reduction pipeline in Figure 7.3 on page 139. However, due
to the fact that we also had large sparse devices such as disks13 in mind
when designing the in-memory representation of state maps as well as their
compression, some details go beyond the requirements of a RAM map.

Let P be the number of guest physical pages, then we can estimate that we
generate 8·P

L bytes per second for storing one 64-bit offset into the checkpoint
database per guest physical page per checkpoint. Considering our default VM with
4 GiB of RAM14, we generate over 80 MiB/s with L = 100 ms. This accumulates
to 47 GiB for povray (75% of its total data) and over 150 GiB for SPECjbb (17%).
With L = 1 s, on the other hand, the data rate is only at 8 MiB/s, which is 7% of
a Gigabit Ethernet link. As very large VM configurations with tens of gigabytes
of RAM are less likely, we can conclude that in practice an efficient device state
compression is primarily important for short checkpointing intervals.

From an encoding perspective, the state map possesses a number of interesting
properties:

1. Equal Offsets Due to data deduplication, pages with the same contents
map to the same offset in the checkpoint database. In addition, there are
often contiguous ranges of pages with the same contents (e.g., zero pages)
that all receive the same offset.

2. Small Offset Deltas Pages that cannot be deduplicated are compressed
and appended to the checkpoint database. The delta between the offsets
of two consecutive pages in the state map is thus in most cases (i.e., no
deduplication) very small; smaller than 4 KiB (+ metadata)15.

3. Data Alignment Entries in the checkpoint database are aligned to 16 bytes.
The low 4 bits of each offset are thus always 0; except for sparse regions
(e.g., in disk maps) that hold the invalid offset 0xFFFFFFFF FFFFFFFF, in
the following simply referred to as INV_OFF.

13For disks, checkpoints store only modified sectors in reference to a base image.
14That is, 1052704 pages including device memory regions such as the video buffer.
15This depends on the processing order in the storage backend, which in turn is determined by the

page submission – i.e., the order in which the VMM sends pages – and the non-deterministic
multiprocessing. Nonetheless, we always submit pages in ascending order of their guest
physical address. Furthermore, the backend processes at minimum 500 pages per job, among
which the order is not affected by multiprocessing.

Checkpoint Distribution 153

We devised a custom compression scheme called SimuBoost Device State Compres-
sion (SDS) which leverages these properties for dense encoding of state maps.

To save space for sparsely populated state maps, the actual in-memory data
structure is a hierarchical two-level table, similar to a page table in virtual memory
systems. In the default configuration, the directory table holds 212 second-level
tables each covering 216 64-bit offsets into the checkpoint database for a maximum
device size of 1 TiB with 4 KiB pages. Just like with conventional page tables, each
entry’s address in the address space of the corresponding device (e.g., the guest
physical memory) can be inferred from its location in the table hierarchy.

To simplify the design, the (de-)compression works at the granularity of the
second-level tables. That means we seek a space-efficient encoding for an array
of 216 64-bit offsets, leveraging the domain-specific knowledge presented in the
properties (1) to (3). The compressed representations of the individual tables are
then simply concatenated to create the final output.

For the sake of brevity, we only cover the process of compression. Interested
readers may consult the source code for details on decompression.

/simutrace/storageserver/simuboost/SimuBoost1DeviceState.cpp

Compression

A simple way to benefit from properties (1) and (2) is to use delta encoding.
Instead of storing an array of absolute offsets, we only save the first offset in each
table in absolute form. All following 216− 1 offsets are translated so that they are
relative to their respective predecessor in the table. The resulting deltas are in
most cases much smaller values, which can be represented with less than 64 bits.
An exception to this are deduplicated pages, where the relative offset may still
span several tens of gigabytes. The zero page, for example, will probably be part
of the first checkpoint and in consequence, it will be located at the beginning of

Put O0

Δ1=O1 – O0

l = 0
Table
le�?

Offset
le�? Encode (Δi,l)

no

yesyes

no

Δi=Oi – Oi-1 Δi ≠ Δi-1

Increment
Length l

yes

no

Encode (Δi,l)

l = 0

Figure 7.13: Overview of the SDS compression loop. Oi denotes the absolute
offset in the current table at position i. ∆i is the corresponding
relative representation. l holds the length of a consecutive run of
identical deltas. Put writes a value to the final output.

154 Checkpoint Distribution

the checkpoint database file. If it is referenced by a state map of a much later
checkpoint (i.e., many more pages added to the database), the delta for this entry
will be a large negative number. The resulting array of small delta values is thus
typically interrupted by sporadic large values jumping back and forth between
deduplicated and new pages (and INV_OFF). Conversely, a contiguous range of
identical offsets leads to a sequence of deltas with value 0. To efficiently encode
such areas, we incorporate run-length encoding (RLE). Figure 7.13 summarizes
the central compression loop.

In the next step, SDS tries to find a compact encoding for each delta. If LZ4 cannot
further compress a page, the page’s final size in the database including metadata
is 4144 bytes. We thus observe that most deltas are below this value. To further
compress the representation of these deltas, we employ a dictionary that stores
previously seen deltas. We use the fixed-size hash table described in § 7.2.1 for
this purpose. A configuration with 64 buckets, incremental probing, and a chain
length of 4 proved to be effective. Hits – called matches – can then be encoded by
their position in the dictionary using only 6 bits (26 = 64). Misses, on the other
hand, are directly written to the final output. The same applies to overly large
deltas. We refer to both as literals.

Encode (Δ,l)
Δ <

4144
Δ in

Dict? Put Match (s,l)
yesyes

Add Δ

to Dict Put Literal (Δ,l)
nono

s = Slot
in Dict.

Figure 7.14: Overview of the SDS encode function. Small delta values are matched
against a dictionary of previously seen delta values. Hits are encoded
as their position in the dictionary, misses and large deltas are written
as literals.

The last step is to write the matches and literals to the final output. In this process,
SDS discards the first 4 bits which are always 0; property (3). Since the majority of
literals are usually smaller than 216, we provide separate encodings for short and
long literals, consuming 2 bytes and 4 bytes, respectively. Matches are encoded
using 1 byte only. In each case, a run-length extension of 2 bytes can be added
to express up to 216 repetitions. See Figures B.3 and B.4 for more details on the
encoding format.

SDS Compression Ratio and Time

To get an impression of SDS’s performance, we contrast its compression ratio and
time with that achieved by generic LZ4. Since a key element of SDS is its delta
encoding, we further perform a generic LZ4 compression of the delta (LZ4+Delta).
This allows us to better discern which aspect of SDS is responsible for performance

Checkpoint Distribution 155

-56%

-56%

-70%
-68%-65%

-45%

-65%-66%

-57%

-64%

(a) L = 1 s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

C
om

p
re
ss
ed

M
ap

S
iz
e
[M

iB
]

LZ4
LZ4+Delta
SDS

-28%

-25%

-27%
-24%

-14%

-36%

-15%+6%

-31%
-21%

-28%

-25%

-27%
-24%

-14%

-36%

-15%+6%

-31%
-21%

-28%

-25%

-27%
-24%

-14%

-36%

-15%+6%

-31%
-21%

(b) L = 1 s

0

5

10

15

20

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

C
om

p
re
ss
io
n
T
im

e
[m

s]

LZ4
LZ4+Delta
SDS

Figure 7.15: (a) SDS achieves on average 61% higher reduction in size than LZ4
and still 39% higher than LZ4+Delta. The 8 MiB state maps are
compressed down to between 256 KiB and 1 MiB, depending on the
workload, which is a compression ratio of 32:1 and 8:1. (b) At the
same time, SDS is on average 21% faster than LZ4. Improvements
are especially high for heavyweight workloads with complex state
maps.

differences. This time, we include the first checkpoint in the benchmarks because
checkpoints inherit the state maps from previous checkpoints anyway.

The results show that SDS delivers substantial higher compression than LZ4 in less
time (see Figure 7.15). Only for pybench, the compression with SDS is on average
slightly slower. The comparison with LZ4+Delta reveals that around half of the
improvement in size reduction can be attributed to the delta encoding. The other
half stems from the dense encoding. As LZ4 also supports run-length encoding,
we do not assume RLE to be a major factor. The results for the compression
time demonstrate that the delta encoding does not inherently translate to a faster
generic encoding. We can thus conclude that the custom encoding scheme in SDS
is responsible for the advantage in compression time.

7.3 Multicast Checkpoint Distribution

With effective data compression in place, we are able to push the incremental
checkpoint data into the simulation network. Pushing with undirected scheduling
and data distribution implies that the data must be stored on the simulation
nodes in some form that allows all nodes access to non-local data. A possible
solution is to employ a conventional distributed file system such as CephFS [275].
The file system is mounted into each node’s virtual file system (VFS) tree and

156 Checkpoint Distribution

abstracts the actual storage location from applications. CephFS, for example,
transparently stripes files across the participating nodes and optionally replicates
frequently used contents to improve throughput and load balancing within the
network. A program accessing data on the distributed file system is not aware of
any network transfers happening in the background. For SimuBoost, a distributed
file system is thus a convenient gateway to the network. We can simply switch
the target directory for the checkpoint database and files from a local device to
the distributed file system. On the simulation nodes, the files can then be opened
like if they were stored locally.

We tested two distributed file systems, namely CephFS [275] and GlusterFS [43].
However, we encountered two major performance issues [209]:

First, when appending the checkpoint database during checkpointing, we observed
sporadic delays of up to 90 s with CephFS and frequent delays of multiple seconds
with GlusterFS. We attribute these delays to possible re-balancing operations
and general load from simultaneous reads by the simulation nodes, which were
concurrently starting simulations. However, further experiments are needed to
confirm this presumption.

Second, loading checkpoints even from a fully distributed checkpoint database
could take minutes with both file systems. This was especially the case with later
checkpoints toward the end of a benchmark. The low performance is rooted
in the fact that the structure of the append-only database in conjunction with

kernel build, L = 1 s, DB size: 9.20 GiB

postmark, L = 1 s, DB size: 1.57 GiB

0 1 2 3 4 5 6 7 8 9

0 1

Offset [GiB]

250
500
750
1000

Heat

Figure 7.16: Heatmaps of the references on the respective checkpoint database
when loading the last checkpoint. Accesses are heavily scattered
throughout the entire file. Resolution is 1 MiB with counts capped to
1000, limiting otherwise dominating areas such as the one containing
the zero page. White areas denote ranges with no accesses.

Checkpoint Distribution 157

deduplication and delta compression leads to thousands of small I/O requests
scattered throughout the entire database (see Figure 7.16). Since SimuBoost uses
memory mapping to access the database, reads are triggered by page faults at the
granularity of 4 KiB. Benchmarks for GlusterFS suggest that this access pattern
is particularly slow, irrespective of the stripping or replication scheme, or the
number of nodes16.

Although these are preliminary results only and both file systems offer vast options
for tuning, we decided against using a distributed file system. We expect the access
pattern to be generally unsuited for network access. Looking at previous work that
deals with the distribution of checkpoints (i.e., virtual machines) [232], we instead
opted for distribution based on multicast (point-to-multipoint). This technique
has also been successfully utilized in SnowFlock [146] and VMScatter [69] to
quickly spawn or migrate VMs targeting multiple destination hosts.

In contrast to unicast, each multicast message is sent to all systems configured
for the same recipient group in a single transmission, regardless of the number of
nodes. In the case of SimuBoost, we can employ multicast so that all simulation
nodes receive all checkpoint data and are subsequently able to load every check-
point without further network access. In addition, writing the received data to
disk preheats each node’s file system cache, which notably improves loading times
for demanding workloads17. On the downside, all nodes need to be equipped
with sufficient disk capacity to store the entire checkpoint database as well as all
checkpoint files and supplemental information such as replay logs and bitmaps
for sparse loading.

IP natively supports multicast with a designated address range to specify (private)
multicast groups (239.0.0.0 to 239.255.255.255). We can integrate 1-to-N
multicast distribution into SimuBoost by additionally routing writes of compressed
checkpoint data on the virtualization host to a multicast socket. On the other end,
a listener application, which runs on all simulation nodes, receives the packets
and reconstructs the original files. To discern for which file the received data is
intended, we add a small header to each packet that includes the file name.

Since multicast is inherently not connection-oriented, User Datagram Protocol
(UDP) is often employed at the transport layer. This has important implications:

Packet Ordering Whereas protocols such as TCP guarantee that packets reach
the client application in the same order they were sent, UDP packets may be
received in arbitrary order. In consequence, the listener application cannot just
append new data to the end of the specified file.

We can solve this problem by utilizing sparse files at the destination and adding a
file offset to the packet header.

168 parallel reads using the dd command on 512 KiB files peak at no more than 10 MB/s [43].
17See Figure 6.19 on page 131.

158 Checkpoint Distribution

t

i [1]

Node 1

i [2] i [3] i [4]

Node 2

Node V

i [2] i [4]

i [1] i [3]

SMB Repair
Transmission

UDP Mul�cast

!

! !

!

Figure 7.17: With multicast, all simulation nodes receive all checkpoint data and
store it locally. If packets get lost, loading an affected checkpoint
fails and a lazy repair is done by reading the missing parts from
the healthy copy on the virtualization host using a reliable SMB
connection.

Reliability UDP does not establish a back channel for informing the sender
about successful packet delivery. Packet loss therefore goes undetected. This
may happen when the receiver cannot keep up with the data rate and buffers in
switches, network adapters, or the operating system overflow. Likewise, physical
defects such as broken cables or loose connections can lead to packet loss.

Dealing with unreliability in multicast has a long history in research and many
specialized protocols have been presented [33]. A simple technique is to inform
the sender of successful transmission using acknowledgments (ACKs) or to signal
packet loss with negative acknowledgments (NACKs). While using such a protocol
is a viable solution, we found that for SimuBoost strong reliability in multicast
is not needed. As each node only loads a limited set of (different) checkpoints
we can tolerate data loss as long as it does not affect the checkpoints of interest.
Whereas a reliable multicast protocol would immediately initiate retransmission,
it is sufficient for SimuBoost to lazily detect "holes" in the created sparse files
when actually attempting access18. The corresponding node can then fetch the
missing parts from the original copy on the virtualization host using a reliable
file sharing protocol such as Server Message Block (SMB). As we do not have
to expect high packet loss in a restricted research network, repairs should be a
rare occurrence. Furthermore, due to the simulation slowdown, this might be
after the original execution on the virtualization host ended and multicast traffic
completed (see Figure 7.17).

Despite packet loss, data corruption is a potential concern. However, UDP includes
a 16-bit checksum, where corrupted packets are automatically dropped. In the
improbable event of a checksum collision (in a stable research network), we can
in turn expect checkpoint loading to fail because most data is compressed. In
both cases, a repair can be attempted using the SMB file share.

18This can be done using lseek with SEEK_HOLE.

Checkpoint Distribution 159

We implemented the described multicast distribution approach in an early proto-
type and preliminary results confirm its viability [209]. To maintain a tolerable
packet loss (less than 1.5% for a kernel build) we had to increase the listener’s
socket receive buffer from 208 KiB to 20 MiB19. The experiments further showed
that lazy repair over a secondary SMB connection is an efficient solution that
creates only negligible extra traffic. As a result, the loading times with multicast
are comparable to the ones when loading checkpoints with a hot cache locally on
the virtualization host.

Since we did not integrate multicast distribution in the current SimuBoost
version yet, we do not present any further results, but instead refer the reader
to [209]. We use an alternative method based on pre-distribution in Chapter 9
to nonetheless evaluate SimuBoost.

7.4 Conclusion

In this chapter, we presented how SimuBoost can distribute checkpoints and
accompanied data in a cluster of simulation nodes using contemporary network
technology such as Gigabit Ethernet. Whereas pulling entire checkpoints from the
virtualization host creates a bottleneck and greatly limits scalability, incrementally
pushing new data into the network is a viable solution. A key component in this
course is the demonstrated data reduction pipeline, implementing a combination
of data deduplication, delta, and generic compression as well as custom device
state compression. It reduces the required network bandwidth by a factor of up
to 39, enabling pushing for intervals as short as 100 ms, even for demanding
workloads. Compared to pure generic compression, the specialized pipeline
achieves significantly higher compression at comparable computational overhead.

Although we do not generally rule out pushing based on distributed file systems,
first experiments remained disappointing with long delays during checkpoint stor-
age and loading. We therefore opted for a distribution built around IP multicast
and preliminary results confirm previous work that recommends this technique
for point-to-multipoint transfer of virtual machines. With multicast, all simu-
lation nodes receive all checkpoint data and are thus able to load checkpoints
without having to retrieve substantial amounts of data from other nodes first.
We discussed various technical challenges bound to the unreliability of multicast
transmissions and proposed a lazy repair mechanism based on secondary (reliable)
SMB connections. This solution already proved to be effective and efficient in
first experiments.

19The simulation nodes ran a single-threaded multicast listener with synchronous I/O. As the
built-in SSDs provided a write rate above Gigabit Ethernet, it is likely that the single thread
created a receiver-side bottleneck.

Chapter 8

Heterogeneous Deterministic
Replay

As detailed in § 4.2.1, running simulations based on continuous checkpoints is not
sufficient to exactly reproduce the execution from the hardware-assisted virtual
machine in the (parallel) simulation. This is because the checkpoints miss all
non-determinism that affects the instruction flow in between two consecutive
intervals. This includes input from users or remote devices, but also less notable
factors such as the precise timing of interrupts and even indirect effects from
instructions executed outside the virtual machine.

The common approach to capture this non-determinism is deterministic replay,
where the hypervisor records enough information during the original run so that
it is able to accurately replay the execution. Accurate replay is difficult when
the execution environment changes, which is the case when SimuBoost moves
from recording in a hardware-assisted virtual machine to a replay in a purely
software-based functional simulation. This change considerably increases the
level of complexity because it implies that for all deterministic operations the
software-based simulation behaves functionally equivalent to the previously used
hardware platform. Such a heterogeneous replay system thus has to master
two primary challenges: (1) accurately inject recorded non-determinism and
(2) guarantee identical outcome for all otherwise deterministic operations. The
latter requires us to refine the simulation and in some circumstances extend the
recording logs over what is usually sufficient for homogeneous replay systems.

For SimuBoost, we intend to record the guest system at the machine level, thereby
covering the full system including all privileged operating system components.
Although this first seems to be a waste of computational resources when only a
particular context or kernel module is of interest, the evaluation of V2E [287]
showed that discerning between recording and non-recording realms comes at a
significant run-time overhead (5x to 17x slowdown) during recording. Even the

162 Heterogeneous Deterministic Replay

log growth rate in V2E is comparably high because realm switches often trigger
the copy of entire memory pages. When the operating system should be included
(as in our case), it is thus not only more flexible but also more lightweight to
record the full system.

In research, but also in the commercial world, heterogeneous full system solutions
are rare. In fact, we are aware of only four projects, of which three share the
same (closed-source) codebase and have been developed by VMWare for their
series of proprietary virtualization products (see § 2.4.2). This leaves us with V2E
as the only publication with a research focus. Unfortunately, the source code is
not publicly available either. In this chapter, we therefore provide an insight into
some of the technical challenges we have faced when building a heterogeneous
full system deterministic replay.

We start with an overview of the general architecture of our replay system in
Section 8.1. This includes an evaluation of the system’s run-time overhead, the
log growth rate, and log compressibility. In Section 8.2, we present critical points
at which we had to adapt the simulation to precisely mimic the behavior of the
hardware platform used for virtualization. We conclude in Section 8.3.

We integrated SimuBoost into QEMU/KVM (§ 2.2.5) with a focus on the
x86 architecture - i.e., we record the hardware-assisted execution in KVM
and replay the events with the TCG binary translator in QEMU. The follow-
ing explanations are consequently specific to this platform. Conceptually,
SimuBoost can be ported to other architectures, virtualization products, and
simulators as long as a fast hardware-assisted VM is available. Whereas
checkpointing and data distribution are mostly architecture-independent, the
recording and replay are tightly linked to low-level (functional) hardware
behavior. To explore the potential for other platforms, we have developed
a heterogeneous replay system for the ARMv7 architecture [262]. We also
include some findings from this work.

8.1 General Architecture

To control recording in KVM and replay in TCG we added commands to the QEMU
monitor that start (start−rr) and stop (stop−rr) the deterministic replay
facility, where the start command accepts the mode of operation – i.e., record or
replay. Deterministic replay and checkpointing must be synchronized so that
on a checkpoint the log is pushed into the simulation network. We therefore
added an explicit flush of the event log when SimuBoost creates a checkpoint1.
Moreover, each checkpoint remembers the current offset in the log so that after

1Otherwise, Simutrace receives data only in chunks of 64 MiB, which is the default size of one
segment in the shared-memory buffer between client and server.

Heterogeneous Deterministic Replay 163

loading a checkpoint in the simulation the replay starts at the right position. In
order to recognize an interval end, each checkpoint further adds a special marker
event to the log.

According to § 2.4, we have to deal with three types of events: synchronous events,
asynchronous events, and compound events. In practice, we can generalize this
into having synchronous and asynchronous events that may or may not carry
additional payload. On top of this, asynchronous events must always possess a
landmark which specifies their precise location in the instruction stream. Nonethe-
less, adding a landmark also to synchronous events helps to detect divergences in
the replay. We thus use the following basic structure for all events, where Type
specifies the exact event type such as Read APIC and Length provides the size of
the payload:

Landmark Type Length Payload …

Figure 8.1: Basic event structure.

Despite their common structure, storing synchronous and asynchronous events in
the same log is cumbersome. Consider the scenario in Figure 8.2, where we want
to replay the execution of a waiting loop. In the recording phase, we captured
numerous reads of the CPU’s time stamp counter (RDTSC), one at the beginning
and one for each loop iteration. During the second iteration, an interrupt (INT)
occurred. For brevity, we assume that the binary translator in the simulation
generates a single translation block (TB) for the loop body, including getTime()
and the condition evaluation. Then the second iteration must run a different
version of the TB in order to inject the interrupt. In consequence, we have to
know when the next asynchronous event needs to be replayed before generating
a translation block and before having replayed an arbitrarily long sequence of
preceding synchronous events. To avoid repetitive, time-consuming discovery of
asynchronous events during replay (which would be a linear search), we therefore

RDTSC (Sync) RDTSC (Sync) INT (Async) …

start = getTime();

do {
 now = getTime();

while (now-start < 10);

print(“Finished Waiting“)

RDTSC (Sync)

Loop

2nd Itera�on1st Itera�on 2nd Itera�on

Log

Figure 8.2: The occurrence of asynchronous events must be known before gener-
ating a translation block (TB), otherwise the block will not include the
replay. Here, the 2nd loop iteration requires a different translation.

164 Heterogeneous Deterministic Replay

Si
m

u
tr

ac
e

Se
rv

er
(S

im
Tr

ac
e

B
ac

ke
n

d
)

Si
m

u
tr

ac
e

Li
b

ra
ry

(S
im

u
tr

ac
e

C
lie

n
t)QEMU

KVM

R
ec

o
rd

in
g

Lo
g

CPU 0

Asynchronous Events

Synchronous Events

sim

Figure 8.3: We use the general-purpose tracing backend of Simutrace for fast
asynchronous compression and storage of non-deterministic events.

put synchronous and asynchronous events into separate logs. This way we always
have direct access.

Just like with the checkpoints, we use Simutrace [218] for storage, this time using
the regular tracing backend and general-purpose LZMA [9] compression. The
separate event logs are implemented as two streams of the same store, creating a
single file on disk. Network distribution (§ 7.3) then works in the same way as
for any other file; for example, the checkpoint database.

Over the course of a recording session, SimuBoost captures various types of events
(see Tables B.1 and B.2 for a complete list). As we are running a hardware-assisted
virtual machine with KVM during this phase, the majority of events are recorded
in kernel mode. To simplify the design, we do not directly write the events into
the user-mode buffer supplied by Simutrace, but instead use a combination of slab
and generic memory allocation to temporarily store the events in kernel memory2.
Whenever the vCPU thread leaves the kernel, we collect all events using the same
technique as for iteratively copying pages from kernel into user mode (§ 6.1.4).

8.1.1 Landmark

Existing deterministic replay systems use different landmark designs depending
on the target architecture and the intended purpose for replay. With a focus on
restricted memory consumption, Sundmark and Thane describe a checksum of
CPU registers and stack contents for embedded systems [249]. Similarly, V2E [287]
saves a majority of the CPU state (including the instruction pointer, registers, and
flags) and simply compares the state during replay – after each instruction – with
the saved one of the next asynchronous event. Although the authors do not
explicitly quantify the overhead of this approach, it can be expected to have a
severe impact on the simulation speed, considering how sensitive DBT engines
react to bloat in translation blocks (see § 3.1). Besides performance concerns, this

2Otherwise, we would have to potentially request new buffer space from user mode in the middle
of dispatching a VM exit. We use the slab cache for the common event structure and the
generic memory allocation for the optional event payload.

Heterogeneous Deterministic Replay 165

solution also entails the risk of false positives as the CPU state alone is not unique;
the easiest example being an endless loop of form 0x00: jmp 0x00.

At the other end of the spectrum, the combination of the retired instructions
counter and the RCX register3 creates a minimalistic landmark [63, 194]. It is
superior to the aforementioned design because the landmark is unique and the
instruction counter allows the DBT engine to pinpoint the exact location for
event injection. On the downside, this landmark requires hardware support for
instruction counting during recording. Although x86 does come with a hardware
instruction counter (implemented as a performance counter), it is known to be
unreliable [194,272].

A popular variant therefore drops the instruction counter and incorporates a
combination of branch counter and instruction pointer instead [50,87,128]. The
resulting landmark is still unique but tends to be more reliable.

However, when designing a landmark, one always has to bear in mind that
the underlying counters have to be replicated in the simulation. We therefore
chose a landmark based on the retired instructions counter. This is because we
see detailed tracing as a primary use case for SimuBoost. In this context, we
regard an instruction counter as an important metric to represent the sequence of
operations and to locate events in the instruction flow – more so than a branch
counter. In addition, research has shown that there are still variations and bugs in
counting for the branch counter depending on the specific processor version [274].
Compensating for unreliable counters thus has to be done (on x86) anyway4.

We consequently turned to using a fuzzy landmark. This landmark combines the
retired instructions counter, the instruction pointer (RIP), and the RFLAGS register
with a snapshot of the 16 general-purpose x86 CPU registers5. For asynchronous
events, we position a short window around the instruction count given in the
landmark and single-step in this range, performing a 1:1 register compare after
each instruction. Only when all registers match we inject the asynchronous event
and continue normal execution. This allows us to compensate for little mismatches
in the instruction counting between simulation and hardware (see Figure 8.4). In
order to prevent errors from accumulating and needing ever larger windows, we
remember the offset and correct subsequent landmarks accordingly. By adapting
the landmark values instead of the simulated instruction counter, the counter
does not experience jumps, which would be incomprehensible in traces. We apply
the same corrections for synchronous events but omit the single-stepping window.

3The register is necessary because x86 counts REP-prefixed instructions as one, irrespective of
the number of repetitions [272]. RCX in turn stores the current iteration.

4The instruction counter on our ARM platform turned out to be perfectly reliable [262].
5RAX – RDX, RSI, RDI, RSP, RBP, and R8 – R15. We could restrict the set to RIP and RCX, but a

comprehensive landmark reveals deviating replays more quickly and helps with debugging.

166 Heterogeneous Deterministic Replay

INT
…
0x00212757 mov [rbp-30h], rax
0x0021275B xor eax, eax
0x0021275D mov rax, rsi
0x00212760 and al, 7Fh
0x00212762 and ecx, 80h
0x00212768 cmovz rax, rsi
0x0021276C mov [rbp-40h], ecx
0x0021276F mov rbx, rax
0x00212772 shr rax, 0Eh
0x00212776 shr rbx, 9
0x0021277A and ebx, 1Fh
0x0021277D shl rbx, 39h
0x00212781 or rbx, rax
0x00212784 mov rax, rbx
0x00212787 shr rax, 39h
0x0021278B cmp rax, 1Ch
0x0021278F ja loc_212B43…

ICount

…
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016…

ICOUNT:1008
EIP: 0x0021277A

Current Async. Event

…

Guest Instruc�on Stream

Ev
en

t
W

in
d

o
w

Mismatch: +2

INT

ICOUNT:1104+2
EIP: 0x00220A57

Next Async. Event

…

Figure 8.4: We position a window around the landmark’s instruction count and
single-step in this range, doing a 1:1 compare of the register state after
each instruction. Following landmarks are automatically corrected.

Implementation

To count retired instructions on x86 we use the IA32_PERF_FIXED_CTR0 perfor-
mance counter, which is fixed to INST_RETIRED.ANY. As we are only interested
in instructions executed by the guest and not by the hypervisor, a naive way is to
manually toggle the performance counter at VM enter and exit. However, this
also includes host interrupt handlers that are immediately executed after a VM
exit. We therefore use a VMX feature that allows automatic switching of MSR
configurations when transitioning between host and guest6. In addition, we in-
strument various operations in KVM to manually count instructions; for example,
when KVM traps and emulates an instruction like in the case of port I/O (i.e., the
IN and OUT instructions). Note that KVM virtualizes the performance monitoring
unit (PMU) for the guest. The instruction counter is thus still available.

As expected, we also found the INST_RETIRED.ANY counter to be unreliable,
confirming previous work. In our case, it sporadically undercounts by one. We
first suspected the special counting rules discovered by Weaver and McKee [272];
for example, that hardware interrupts and page faults count as an additional
instruction. However, these are not responsible. Since we have seen only under-
counts so far, we configure the window so that we compare registers for up to
eight instructions following a landmark (i.e., in Figure 8.4, from 1008 to 1015).

To integrate asynchronous event injection into QEMU, we have to adapt the
generation of translation blocks. The code excerpt given in Figure 8.4 translates
to a single TB, with the jump instruction at 0x0021278F terminating the block. If
the vCPU previously visited the code, a translation block for the whole excerpt
may still be in the code cache. When the vCPU then reaches the code again, the

6Toggling the counter using VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL does not work due
to an unfixed CPU bug. Instead, we have to use the MSR-load area in the VMCS.

Heterogeneous Deterministic Replay 167

Get next
asynchronous event

Landmark
match?

In event
window?

no

Set icount limit
to next window

Set icount
limit to 1

yes

no

Inject event
yes

Adjust
icount offset

Lookup next transla�on
block to execute

mov [rbp-30h], rax
xor eax, eax
mov rax, rsi
and al, 7Fh
and ecx, 80h
cmovz rax, rsi
mov [rbp-40h], ecx
mov rbx, rax
shr rax, 0Eh
shr rbx, 9
and ebx, 1Fh
shl rbx, 39h
or rbx, rax
mov rax, rbx
shr rax, 39h
cmp rax, 1Ch
ja loc_212B43

icount limit = 8

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

Check against icount limit
Check for exit reason

Exit transla�on block

Compile shorter
transla�on block

Too many
instruc�ons

in TB

mov [rbp-30h], rax
xor eax, eax
mov rax, rsi
and al, 7Fh
and ecx, 80h
cmovz rax, rsi
mov [rbp-40h], ecx
mov rbx, rax

00
01
02
03
04
05
06
07

Check against icount limit
Check for exit reason

Exit transla�on block

icount += 8

Figure 8.5: Simplified overview of CPU loop during replay. A check in the TB
prolog prevents violating single-stepping windows. If necessary a
shorter TB is generated (figure based on [262]).

control logic takes the existing TB, which blindly runs to end without injecting the
event or even implementing the single-stepping window. Extending the control
logic with appropriate checks before starting a translation block is no option due
to TB chaining. While flushing the code cache after each asynchronous event is a
possible solution, it is a rather expensive one. We therefore test in the TB prolog
how many instructions are left until the beginning of the next single-stepping
window. If the length of the TB exceeds this limit, the execution returns to the
control logic which in turn requests a block of the remaining permissible length.
To perform single-stepping, we allow only one instruction to be executed until
the vCPU has to return to the control logic for landmark comparison.

Special care needs to be taken for instructions with the REP prefix. From the
binary translator’s point of view, each iteration constitutes one instruction because
the conditional jump inherent to the REP prefix ends the underlying translation
block. During normal operation, the translator achieves high simulation speed
by chaining the generated TB to itself. The prefix is often used together with the
MOVS and STOS instructions to implement memcpy() or memset(), respectively.
According to the retired instructions counter in Intel CPUs, it thereby hides possibly
hundreds of repetitions of the same instruction behind what is counted as only one
instruction. This can severely prolong the actual single-stepping phase over our
intended maximum length of 8 instructions and notably harm simulation speed.
We therefore inline the test for the RCX register in this particular TB and only
leave the block for a complete landmark check on a match. Otherwise, execution
of the REP-prefixed instruction continues as normal, including TB chaining.

168 Heterogeneous Deterministic Replay

Similar performance considerations have to be made for the implementation of
the actual simulated instruction counter. Incrementing the counter after every
instruction is slow, albeit easy to do. To reduce the frequency of counter ma-
nipulations we only update its value when leaving the translation block; either
by reaching the block’s end or by invoking helper routines. We further added
a new mnemonic to QEMU’s intermediate language that translates to an ADDM
instruction on x86 and allows us to increment the counter by a 32-bit immediate
value directly in memory.

8.1.2 Replay Boundary

When replaying a full system, we can to some degree decide where to exactly place
the replay boundary in relation to the virtual devices connected to the system: The
most restrictive approach interprets everything outside the vCPU as part of the
replay log. In this configuration, the result of every I/O operation is meticulously
recorded so that the replay does not rely on any implementation of virtual devices.
Instead, the replay is solely fed by the log and all I/O directed toward virtual
devices can simply be dropped [285]. This gives a maximum degree of flexibility
when it comes to the choice of the simulator because it only has to provide a
corresponding CPU model. Such a restrictive variant is also easier to develop and
validate. On the flip side, saving all I/O results produces the largest log.

A less comprehensive logging approach actively involves (some of) the virtual
devices in the replay. For example, accesses to secondary storage devices can
be allowed to pass so that the log does not have to embed the data read from
disk [76,87], only the interrupts. In this case, a matching base image from the
start of the recording phase is needed. This concept, however, cannot generally
be applied if the data is not recoverable from its original source during replay,
such as in the case of a virtual network adapter.

For SimuBoost, both approaches are viable. The first one is especially appealing
due to its simplicity, its flexibility, and because it does not require the checkpoints
to include a disk image. Nevertheless, we do not drop all virtual devices in the
simulation. This has the following two reasons:

First, when developing the replay, we wanted to be able to monitor the output
of the system by displaying the screen contents and connecting to the serial port
(read-only). To enable the replaying system to control these devices, we allow
the vCPU to write to certain I/O addresses7. The initial state of the devices (e.g.,
the screen buffer) is restored from the checkpoints. In order to maintain the
deterministic execution, we do not accept input from any device. That means we
always redirect reads of I/O addresses to the replay log and drop newly generated
interrupts.

7For a complete list of permitted addresses, see Table B.3.

Heterogeneous Deterministic Replay 169

Second, we checkpoint the device states with the interface that comes with QEMU.
This interface does not explicitly save the configuration of the physical address
space (e.g., the mapping of MMIO regions, ROMs, etc.), but merely reconfigures
the underlying virtual chipset by restoring its configuration registers. Remember
that we checkpoint the memory based on QEMU’s RAM blocks (see § 2.2.5), which
require adequate mapping when loaded. Therefore, our prototype includes the
respective chipset and allows certain I/O commands to pass in the replay, as
otherwise these memory regions will not be mapped correctly and connected
devices such as the VGA adapter do not work. A partial solution would be to
checkpoint the final physical address space instead of the individual RAM blocks.
However, this would not allow replaying the BIOS and other early boot code that
changes the mapping of the physical address space at run time by reconfiguring
the chipset. An alternative would be to explicitly record and replay the mapping
and changes thereof as asynchronous event, but we have not experimented with
this solution yet.

Direct Memory Access (DMA)

A majority of I/O in a modern computer system is performed using direct memory
access (DMA), that is a device (e.g., the disk controller) is able to read from
or write to main memory without assistance from the CPU. This significantly
increases I/O bandwidth and reduces CPU load. Just as with other operations,
we are only interested in data that enters the replay domain, which in this case
are DMA writes to memory. However, DMA’s parallel operation to the CPU is
problematic in this context. From the perspective of the deterministic replay, the
DMA-performing device can be regarded as an additional processor that accesses
a shared memory area (the common physical memory). That means we have
to precisely record the order of parallel accesses to this shared area while the
DMA transfer is in progress. Since we are replaying a virtual machine with virtual
devices only, we are not dealing with true hardware DMA, but merely have a
CPU thread in the hypervisor which performs a memory copy. For QEMU, this is
one of the I/O threads that first retrieves the requested data (e.g., a particular
disk sector) using OS services and then performs a memcpy() to its user-mode
mapping of the guest physical memory. Recording the access order can be done
by implementing a single-ownership protocol on the respective DMA target area
using page protections. That means only the vCPU or the I/O thread has exclusive
access to the memory area and if the I/O thread is interrupted by the vCPU, we
record the thread’s copy progress and switch ownership. Ownership changes
again when the I/O attempts to continue copying8.

8Such a protocol can to some degree also be implemented for hardware (R)DMA using IOMMU
page faults, but requires device-specific handling since the actual data is dropped on page
faults. This is problematic if the data cannot be retrieved again.

170 Heterogeneous Deterministic Replay

In normal operation, parallel accesses to a DMA destination are atypical and likely
indicate a bug. Instead, the CPU generally waits for the device to signal comple-
tion. In the prototype for SimuBoost, we therefore simplify the aforementioned
approach by omitting the access protections and only record what data has to be
written where and when. We thereby regard DMA more like a transaction without
supporting correct replay while the operation is still in progress.

Another problem is getting a consistent landmark for the DMA operation. This
is because the I/O thread itself, not being part of the replay domain, does not
possess a landmark. Instead, we have to express the completion time with a
vCPU landmark. The vCPU, however, may concurrently run and constantly update
registers. To get a consistent landmark, we therefore force the vCPU out of the
guest into user mode and record the DMA operation in its context. We use QEMU’s
run_on_cpu() function for this purpose.

8.1.3 Evaluation

Although determining the accuracy of a replay seems simple at first, it is difficult to
provide a definitive quantification. Whereas divergent instruction flows generally
surface as mismatching landmarks that break the replay, more subtle differences
can quickly be overlooked. This, for example, applies to small variations in
memory that do not influence the instruction flow but may affect analysis results
later on (e.g., when searching for redundant memory pages). Such differences
often show up only for short periods of time, for instance on a thread stack.
In order to guarantee absolute parity between recording and replay, it would
be necessary to compare the system states at each instruction. This, in turn,
imposes such an enormous run-time overhead that it eventually produces an
entirely different execution, providing little information about the original run.
Statements regarding the accuracy of a replay, especially in case of heterogeneous
replay, must therefore be done with care.

During development, we utilized varying frequencies of checkpoints, memory
checksums, and debug events to detect anomalies and refine the simulation (see
§ 8.2). However, in the final evaluation, we only measured the share of intervals
that successfully complete, i.e., that do not diverge due to remaining inaccuracies
in the simulator. For these intervals, we further compared the final memory image
with the checkpoint of the next interval. On average over 97% of intervals run to
completion (see Table B.5), while from this set of intervals around 98% of final
memory images match the initial state of the next interval. Whereas these rates
can be increased by investing more time in the refinement of the simulation, we
consider this level sufficiently high to provide reliable results for the evaluation
of SimuBoost in Chapter 9.

Heterogeneous Deterministic Replay 171

Even if the replay matches the original execution, recording itself affects the be-
havior of the workload to dome degree and causes differences to an unsupervised
execution. However, just like with continuous checkpointing, it is difficult to
measure the actual probe effect. We therefore again take the run-time overhead
as one of the primary assessment criteria for evaluation, with the others being
the log growth rate and the log compressibility, considering that the log must be
included in the multicast data distribution.

We do not include a worst-case microbenchmark such as stress-ram for check-
pointing. Such a benchmark would simply cause every instruction to trap into
the hypervisor (e.g., by only executing RDTSC instructions) and would exhibit
a correspondingly high run-time overhead, but with little relevance in practice.
We therefore restrict the evaluation to our set of real-world benchmarks.

Run-Time Overhead

Compared to an unmodified version of QEMU/KVM, we had to additionally trap
the RDTSC instruction, extend the VM enter and VM exit paths for instruction
counting, and install various hooks for event recording. In case of active recording,
these hooks allocate memory, read the vCPU registers to create a landmark,
and finally store the event together with its data. Otherwise, additional traps,
instruction counting, and hooks are still present, but the hooks return early without
performing any further operation. That means our modified KVM version incurs
a certain overhead even without active recording.

Figure 8.6a summarizes the run-time overhead for recording all non-deterministic
events listed in Tables B.1 and B.2 (including optional ones) compared to the
execution of the same workload in an unmodified version of QEMU/KVM – i.e., no
hooks, no additional traps, and no instruction counting. For 7 out of 10 workloads,
recording incurs only negligible overhead, in most cases remaining below 1%.
Exceptions to this are phpbench, SPECjbb, and apache, where the latter reacts
very sensitive to recording with almost twice the run time.

To determine the source of the overhead, we repeat the comparison in Figure 8.6b,
but take our modified version of QEMU/KVM as the baseline. That means we
effectively remove any overhead from the observation that stems from the addi-
tional traps, the instruction counting, and the (disabled) hooks. This leaves us
with the overhead for actual event recording. We can observe that the run-time
overhead for the three aforementioned benchmarks is significantly lower. That
indicates that the majority of overhead is bound to the added RDTSC trap and the
instruction counting. Furthermore, as the other benchmarks do not suffer from
comparably high run-time overhead, we can deduce that instruction counting
is not the primary cost factor of the two. It merely amplifies the overhead for

172 Heterogeneous Deterministic Replay

0

15

30

45

60

75

90

ap
ac

he

R
u
n
-T

im
e

O
v
er

h
ea

d
[%

]

0.
77

0.
15

0.
00

0.
00

8.
51

1.
21

0.
35

0.
04

14
.1
6 Baseline is original KVM

from stock Linux kernel.

(a) Base: Unmodified KVM

0

2

4

6

8

10

12

14

16

po
st
m

ar
k

sp
ec

jb
b

ke
rn

el
bu

ild

gn
up

g

en
co

de
-m

p3

py
be

nc
h

po
vr

ay

ph
pb

en
ch id

le

10
.2
3

0.
52

0.
26

0.
38

0.
00

1.
63

0.
91

0.
21

0.
14

4.
53

Baseline is SimuBoost KVM with
modifications but no recording.

(b) Base: Modified KVM

0

2

4

6

8

10

12

14

16

ap
ac

he

po
st
m

ar
k

sp
ec

jb
b

ke
rn

el
bu

ild

gn
up

g

en
co

de
-m

p3

py
be

nc
h

po
vr

ay

ph
pb

en
ch id

le

Figure 8.6: (a) Recording is very lightweight for most workloads, with the run-
time overhead often remaining below 1%. However, some workloads,
especially apache, react very sensitive. The baseline is an unmodified
KVM. (b) The overhead decreases notably when comparing to the
modified KVM, suggesting that our modifications cause the majority
of overhead, not the actual event recording.

the additional switches between the hypervisor and the VM because each switch
entails the configuration and reading of the corresponding performance counter.

We can conclude that the majority of the run-time overhead of our deterministic
recording solution is caused by the RDTSC trap. This becomes especially visible for
phpbench, SPECjbb, and apache, which show above-average rates for synchronous
events (see Figure 8.7b) with over 98% of recorded events being timestamp
readings (see Figure B.5a).

Log Growth and Log Compressibility

For the distribution with multicast, the log growth and log compressibility are
important metrics as they determine the necessary network bandwidth for the
recording logs. Figure 8.7b illustrates that for all workloads even uncompressed
distribution over Gigabit Ethernet is conceptually viable – also for recording
intensive workloads such as apache. However, under the constraint of parallel
checkpoint distribution, compression is appropriate.

We employ the default compression method of the trace storage backend in
Simutrace, which is a built-in LZMA [9] encoder. In our experiments, all logs
show very good compressibility (see Figures 8.7c and 8.7d), reducing the average
log growth to less than 100 KiB/s for most workloads. Only apache (3 MiB/s),
encode-mp3 (1.3 MiB/s), and SPECjbb (800 KiB/s) exceed this value. Whereas in
the case of apache and SPECjbb the sheer number of RDTSC readings is responsible

Heterogeneous Deterministic Replay 173

(a)

10

100

1K

10K

100K

1M

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

E
ve
n
t
R
at
e
[e
ve
n
ts
/s
]

Event Type
Sync. Async.

Gigabit Ethernet

(b) Uncompressed

0

20

40

60

80

100

120

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

R
eq
u
ir
ed

B
a
n
d
w
id
th

[M
iB
/s
]

Gigabit Ethernet

5.
49

5.
03

16
.8
6

6.
29

5.
65

5.
35

5.
63

6.
62

5.
49

0.
08

Peak

0.
07

0.
77

0.
09

3.
15

0.
04

1.
34

0.
05 0.

06
0.
04

0.
01

Median

(c) Compression: LZMA

0

20

40

60

80

100

120

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

R
eq
u
ir
ed

B
an

d
w
id
th

[M
iB
/
s]

(d) Compression: LZMA

0

5

10

15

20

25

30

35

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

C
om

p
re
ss
io
n
R
a
ti
o

Sync. Async. Overall

(e) Compression: LZMA

0

1

2

3

4

5

6

7

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

U
ti
li
ze
d
C
or
es

p
er

S
ec
on

d

Figure 8.7: (a) SPECjbb (75K/s) and
apache (300K/s) show above av-
erage (3.5K/s) event rates (many
RDTSCs). (b) Uncompressed logs
can grow up to 50 MiB/s on aver-
age. Compression is thus appropri-
ate. (c) LZMA decreases growth to
at most 3 MiB/s on average. (d)
Synchronous events generally com-
press best, whereas DMA notably
harms overall results. (e) CPU uti-
lization increases only marginally
due to compressed recording. Ex-
ceptions are apache and DMA-heavy
phases in general.

174 Heterogeneous Deterministic Replay

for the increased data volume, the log for encode-mp3 comprises almost 70%
DMA transactions (see Figure B.5b). Since DMA events include data read from
secondary storage, their average compressibility is lower compared to other event
types9. This is also clearly visible in Figure 8.7d, where the overall compression
ratio tends to the lower ratio for asynchronous events (e.g., DMA) if the share
of DMA in the log size is high. We can thus observe a clear correlation between
increased DMA content and reduced overall compressibility. Nevertheless, even
these logs can be transferred over network concurrently to the checkpoints of the
respective workloads10. However, phases of increased DMA can reflect in short
peaks. This is the case for the kernel build, where the outliers in Figure 8.7c are
the manifestation of the Linux source code extraction at the beginning of the
benchmark – i.e., the DMA events hold an already compressed archive.

The average CPU utilization due to the compressed recording is generally very low,
remaining below 0.5 cores even for encode-mp3 and SPECjbb (see Figure 8.7e).
Only apache consumes 1.5 additional cores on average. Although the aforemen-
tioned initialization phase of the kernel build has little impact on the average CPU
utilization, the attempt to compress the already compressed DMA data temporarily
(17 s) results in excessively high CPU utilization.

8.2 Simulation Re�ning

A major challenge with heterogeneous replay compared to homogeneous replay is
that the simulation must be refined so that the deterministic parts behave exactly
like in the hardware platform that was used for recording. In the following, we
discuss some of the changes we made to QEMU to imitate our evaluation system.

Most of these (small) adaptations required hours of debugging to track down
the code responsible for a single differing bit in memory (millions of instructions
executed in between) or to find the spot in the instruction flow, where the replay
started to diverge. In the latter case, we instrumented the VM enter and exit
to generate debug events, delivering additional landmarks for state verification.
Often, we had to further increase the frequency of landmarks with the help
of the VMX preemption timer, which forces the CPU out of the guest after a
certain number of CPU cycles. This way we could typically limit the search to less
than a hundred instructions, albeit investigation remained tedious in code with
many branches. For differences that showed up in memory only, we generally
installed memory breakpoints, either in KVM or QEMU, depending on if QEMU
implemented the modification in the first place. We can thus confirm previous
work underlining the high development efforts for deterministic replay [50].

9This is also the case for encode-mp3, where the DMA events include the WAV input file.
Compressing the raw audio with gzip leads to a 4% size reduction only.

10Compare Figure 7.4a on page 141.

Heterogeneous Deterministic Replay 175

8.2.1 Status Flag Computation

The x86 architecture stores status flags in the EFLAGS register, which is the lower
32-bit of the RFLAGS register on 64-bit platforms. The flags are manipulated by a
total of 77 instructions [125], for example as a result of the CMP instruction or
arithmetic computations. For 36 of the 77 instructions, at least one of the status
bits is not defined, that is, the x86 specification does not include a calculation
rule. As there is little use in working with undefined bits, programs generally
do not access them and the instruction flow remains independent of their value.
From this standpoint, undefined status flags are uncritical for deterministic replay.
However, pushing the EFLAGS registers onto the stack using the PUSHF instruction
can leak undefined values into memory. Linux, for example, typically backups the
EFLAGS register this way before deactivating interrupts so that the register can be
easily restored on exit. In consequence, when comparing the replayed contents of
the guest physical memory to dumps from the original run, we have regularly seen
diverging bits spread over the entire guest physical memory. In many cases, these
turned out to be leaked undefined status flags that were differently implemented
in QEMU. A few times this crashed the replay when the undefined flags ended up
surfacing in one of the landmark registers. It is also straightforward for malware
to deliberately exploit this divergence to undermine replay and eventually thwart
inspection with SimuBoost. We therefore adapted the flag computation in QEMU
to match our Xeon E5-2630 evaluation hardware.

To determine the computation rule, we wrote a small test application which
fed the instructions with random values and corner cases and we inspected the
actual status flags in the hardware’s EFLAGS register. Table 8.1 lists some of the
instructions for which we tested and/or changed the undefined flag computation
in QEMU. We skipped 6 of the 36 instructions because they are not valid in 64-bit
mode. In most cases, the auxiliary carry flag (AF), used in BCD arithmetic, is
undefined in the specification but cleared by the hardware. This is also the default
implementation in QEMU. For the bit scan instructions (BSF/BSR), QEMU uses the
wrong operand to compute the parity flag (PF), which indicates an even number
of 1-bits, so we modified it to use the first operand (OP1). For the shift operations,

0

31

0

30

0

29

0

28

0

27

0

26

0

25

0

24

0

23

0

22 21 20 19 18 17 16

0

15 14 13 12

O
F

11 10 9 8

S
F

7

Z
F

6

0

5

A
F

4

0

3

P
F

2

1

1

C
F

0

Overflow Flag (OF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

Figure 8.8: Status flags in the EFLAGS register [125].

176 Heterogeneous Deterministic Replay

Instruction OF SF ZF AF PF CF
AND 0
ANDN 0 parity(DST)
BSF/BSR 0 0† 0 parity(OP1)† 0
BZHI 0 0
MUL/IMUL sign(DST) 0† 0 parity(DST)
OR/XOR 0
SAL/SAR/SHL/SHR 1 0
SAL/SAR/SHL/SHR cnt OF(cnt=1)† 0
TEST 0

† Changed compared to default QEMU implementation.

Table 8.1: Undefined flag computation rules for selected x86 instructions. Blank
fields denote defined values.

QEMU computes the overflow flag (OF), which indicates an overflow for signed
integers, from the final shift result, whereas the hardware always sets the OF flag
according to a shift by one. From a performance perspective, this change is most
expensive because we have to perform two shift operations in software. In our
prototype, we also compute the flag eagerly, even if it is not used.

8.2.2 Read-Write Instructions

When replaying the boot of a Linux kernel the simulation always crashed at a
certain point. A first investigation revealed that the divergence happened in
the guest’s page fault handler in the course of an atomic compare-exchange
(CMPXCHG). To aid debugging, we temporarily extended KVM to trap and log page
fault exceptions. This eventually showed that the memory access mode between
the simulation and the original execution differed. Whereas the simulation first
performed a read and as a result caused a read page fault, the hardware raised
a write page fault. We observed the same behavior for other instructions that
both read and write memory; for instance movs, which copies a word directly in
memory. We assume that the hardware first does a write probe as part of gaining
exclusive access to the target cache line. As this can be omitted in software, QEMU
does not integrate such probes.

Replicating x86 exception behavior is very complex in general and difficult to
implement correctly in software. Hence, the authors of V2E decided to remove
exceptions from QEMU and instead record and replay them [287]. While this
simplifies simulation and makes replay more robust, it also means that guest page
faults always have to trap in the hypervisor so they can be recorded. This takes
away a great part of the performance that is gained from second level address
translation and is a step back toward shadow page tables. We therefore decided

Heterogeneous Deterministic Replay 177

against this approach and adapted the simulation instead. Due to parallelization,
we can tolerate run-time overhead in this phase, but not in the serial hardware-
assisted virtualization run. In total, we extended 28 instructions or variants
thereof that read and write to memory with a prior write probe in TCG:

• adc, add, sbb, sub, xadd
• dec, inc, neg

�

Integer Arithmetic

• and, or, xor, not
• btr, bts, btc
• rcl, rcr, shr, shl, sar, sal, shrd, shrl

 Bit Arithmetic

• xchg, cmpxchg, cmpxchg8b, cmpxchg16b
• movs

�

Data Transfer

8.2.3 MMU-induced Non-Determinism

With second level address translation (SLAT) enabled, the host’s MMU transpar-
ently translates guest virtual memory addresses to host physical memory using
the guest-controlled page table and the EPT. To speed up subsequent accesses, the
MMU caches translations in the TLB. As the different access times to cached and
non-cached data can be measured in the guest, the TLB is not fully transparent.
That means exits to the hypervisor or run time in other VMs can to some degree
become visible through eviction of TLB entries. Nonetheless, from the perspective
of deterministic replay, this is uncritical because the simulation accurately replays
all time measurements, pretending that the same amount of time has passed.
Although the TLB thus seemed unproblematic at first, we eventually found that it
is not transparent to deterministic replay due to the following reason:

Whenever the MMU uses a PTE for address translation, it sets the PTE’s accessed
and dirty (A/D) bits accordingly. If, however, a matching translation is already
present in the TLB, the MMU does not consult the page table and leaves the
A/D-bits untouched. This becomes a severe problem for replay when the guest
resets these bits in memory without also invalidating corresponding TLB entries –
i.e., when the TLB and the guest page tables fall out of synchronization. In this
case, the A/D-bits will only be updated on the next access if the TLB entries have
been evicted in the meantime; either on purpose or as part of a replacement. The
latter, in turn, depends on the size, architecture, and replacement policy of the
TLB (all being CPU specific) as well as on the actual instruction flow and the
memory accesses that accompany it.

As the A/D-bits are often used to estimate working sets and implement page
replacement in operating systems, they directly affect the instruction flow. We
observed this in the page aging algorithm used in Linux since version 3.16 [183].
When the kernel clears the accessed bit in PTEs, it does not invalidate the corre-

178 Heterogeneous Deterministic Replay

sponding TLB entries in order to avoid the potential performance hit resulting
from a TLB miss. Instead, it tolerates inconsistencies between the TLB and the
page table because the accessed bits only function as a loose page usage heuristic
and the chance of a false prediction is considered "relatively low" by the maintain-
ers [154]. In consequence, we had replays regularly crash when memory pressure
in the VM started to rise and Linux invoked its page aging algorithm. We thus
come to the conclusion that as soon as resetting A/D-bits and invalidating TLB
entries is not synchronized, we see MMU-induced non-determinism that needs to
be captured for replay.

Surprisingly, this source of non-determinism has not been widely discussed in
the research. It is even more astonishing, considering that the problem is equally
relevant to the more broadly researched homogeneous full system replay. In fact,
we only found Bressoud and Schneider to describe a vaguely similar situation.
In their case, the non-deterministic replacement in the software-controlled TLB
on HP 9000/720 processors could lead to non-deterministic invocations of the
guest’s TLB miss handler [45]. Although we did not explicitly validate this, we
assume that the commercial replay technology used in VMware products correctly
handles MMU-induced non-determinism. This is because VMware published a
patent (US9928180B2 [166]) that proposes a hardware extension to prevent the
non-determinism by stale TLBs. In contrast to the research community, VMware
engineers thus seem to be well aware of this problem.

For SimuBoost, we set out to quantify the overhead of feasible software alterna-
tives. Our goal is to guarantee a faithful replay even in the presence of stale TLB
entries. Since we cannot replicate the non-deterministic behavior of the TLB in
the simulation, we are left with two options for tracking the state of A/D-bits in
the hardware-assisted virtualization [183]:

1. We can prohibit the MMU write access to the guest page tables by enabling
write protection for the corresponding guest physical pages in the EPT.
Whenever the MMU then attempts to set bits in the guest page table, we
receive a page fault in the hypervisor and can log the operation.

2. Alternatively, we prohibit the guest the read access to its own page tables.
This way, we get a page fault when the guest tries to read the A/D-bits and
we are able to log them before passing them on. This permits diverging
A/D-bits in the page tables when replaying, but ensures that such differences
are not relevant to the instruction flow as they are overridden by the logged
state if necessary.

While the second approach would create a minimal log, disallowing the guest
read access to the page tables also prohibits read access for the MMU. We thereby
lose SLAT and would have to resort to shadow page tables. We therefore decided
against it and evaluated the first approach instead [183].

Heterogeneous Deterministic Replay 179

In order to write-protect the guest page tables in the EPT, we have to identify the
corresponding guest physical pages. We do this by trapping (guest) CR3 changes,
which indicates that a new page table hierarchy is to be configured. We then
traverse this hierarchy to discover all involved guest physical pages. It is further
necessary to track subsequent modifications to the active hierarchy such as the
addition or removal of page tables. This is straightforward having the write
protection established. For simplicity, we discard any information on previous
hierarchies, but lazily keep the write protection until the next page fault.

The following step is to discern (deterministic) guest writes from (non-determi-
nistic) MMU writes on an EPT violation. The first may entail changes in the guest
page table hierarchy, whereas the latter needs to be recorded in the replay log.
Fortunately, the VM exit qualification lets us infer this information.

In both cases, we finally have to determine the intended modification. We tried
different approaches such as single-stepping but eventually settled on using KVM’s
instruction emulator being the fastest option. This way, we route offending in-
structions through the software page table walker where we can log modifications
to A/D-bits. In addition, we can inspect modified PTEs for page table hierarchy
changes before they become effective – i.e., before entering the virtual machine
again. By recording the setting of A/D-bits as asynchronous events, we can use
our existing infrastructure to precisely replay these operations in the simulation.

To evaluate if the approach works as anticipated, we booted a Linux VM with
only 256 MiB of guest physical memory. This leads the kernel into activating the
page aging algorithm and quickly creates stale TLB entries. Without recording
MMU-induced non-determinism, the replay always failed to complete. This is
because either diverging PTEs were loaded into CPU registers and resulted in
fatal landmark mismatches, or the instruction flow diverged altogether. Tracking
and replaying A/D-bits successfully avoids this problem. However, the recording
comes at a considerable cost. We measured an additional run-time overhead of
51% over regular recording for a kernel build, 130% for apache, and 346% for a
worst-case microbenchmark. Only for sqlite and a CPU stress test, the run-time
overhead compared to regular recording was negligible. The overall log size
increased between 30% and 100%. The replay time remained within a 1% to 3%
increase.

We can thus conclude that, albeit being effective, recording MMU-induced non-
determinism is an expensive operation. Considering that performance improve-
ment for SLAT over shadow page tables has been reported with 38% for compiling
the Apache server (compares best to the kernel build) [39], the question arises if,
after all, resorting to the second approach is the more efficient solution. An alter-
native could also be to instrument guest page table reads using paravirtualization.
However, this solution is not adequate for malware inspection.

180 Heterogeneous Deterministic Replay

Since MMU-induced non-determinism does not surface as long as the guest does
not produce stale TLB entries, we regard tracking of A/D-bits as an optional feature
that has to be activated for malicious and otherwise "misbehaving" guests only. We
moreover see that further research is necessary to reduce the run-time overhead11.
For the general evaluation of SimuBoost, we therefore did not integrate tracking of
A/D-bits into the final prototype. Instead, we run the test VMs with 4 GiB of RAM,
where we rarely observe a replay failing due to MMU-induced non-determinism.
Nevertheless, the optimal solution would be to have a hardware extension in
future processors as proposed by VMware [166].

8.2.4 Atomic Instructions (ARM only)

The following issue has been observed on an Odroid-XU3 single-board com-
puter, featuring a Samsung Exynos 5422 processor with four low-power
Cortex-A7 and four high-performance Cortex-A15 cores. The (single-core)
virtual machine for recording was pinned to one of the Cortex-A15 cores.

When experimenting with deterministic replay on the ARMv7 architecture, the
replay of a Linux kernel boot always crashed at a certain point [262]. In almost all
cases, the instruction count in the simulation was off by five instructions compared
to the original recording in KVM. A comparison of the actual instruction stream
during native execution and simulation revealed the cause (see Figure 8.9):

The code from 0x80132710 to 0x80132720 represents a typical use of exclusive
instructions, for example, to implement synchronization primitives: load a value,
modify it, attempt to write it back, check for success, retry if necessary (five
instructions). The excerpt shown in the figure implements an atomic increment
of the value at the address located in register r3. However, the store exclusive
(STREX), which should write back the incremented value, fails during recording
for no apparent reason and the whole operation is retried. The second attempt
finally succeeds. In the simulation, on the other hand, the store exclusive does
not fail, leading to a fatal divergence in the instruction count and preventing the
replay of the next asynchronous event at 0x804630ec.

The ARM Architecture Reference Manual states this to be valid behavior [32],
even with no concurrent access to the locked memory address. The specification
only dictates that progress has to be made at some point. For deterministic
replay, this constitutes a major problem because STREX cannot be trapped or
its result recorded. Furthermore, the instruction is not privileged and thus may
also be freely used in user-mode code. This leaves even approaches based on
paravirtualization unreliable. Up to this point, we are not aware of any generic
solution to this problem.

11It should also be investigated if the issue could be used as a covert channel between VMs running
on the same processor.

Heterogeneous Deterministic Replay 181

…
0x80101448 ldr r3, [r6]
…
0x80132710 ldrex r2, [r3]
0x80132714 add r2, r2, #1
0x80132718 strex r0, r2, [r3]
0x8013271c teq r0, #0
0x80132720 bne 0x80132710

0x80132710 ldrex r2, [r3]
0x80132714 add r2, r2, #1
0x80132718 strex r0, r2, [r3]
0x8013271c teq r0, #0
0x80132720 bne 0x80132710

0x80132724 str r3, [r5, #624]
…
0x804630e8 ldr r0, [r3]
0x804630ec dsb sy
0x804630f0 mov r1, #0
0x804630f4 bx lr
0x801586d0 ldrd r2, [r7, r8]
0x801586d4 ldrd sl, [r6, #8]
0x801586d8 ldr ip, [r6, #28]

ICount

…
3091
…
5334
5335
5336
5337
5338

5339
5340
5341
5342
5343

5344
…
5731
5732
5733
5734
5735
5736
5737

Guest Instruc�on Stream

Recording

…
0x80101448 ldr r3, [r6]
…
0x80132710 ldrex r2, [r3]
0x80132714 add r2, r2, #1
0x80132718 strex r0, r2, [r3]
0x8013271c teq r0, #0
0x80132720 bne 0x80132710

0x80132724 str r3, [r5, #624]
…
0x804630e8 ldr r0, [r3]
0x804630ec dsb sy
0x804630f0 mov r1, #0
0x804630f4 bx lr
0x801586d0 ldrd r2, [r7, r8]
0x801586d4 ldrd sl, [r6, #8]
0x801586d8 ldr ip, [r6, #28]

ICount

…
3091
…
5334
5335
5336
5337
5338

5339
…
5726
5727
5728
5729
5730
5731
5732

Guest Instruc�on Stream

Replay

5 instruc�ons
not executed in replay

r0=1
take

r0=0
skip

r0=0
skip

Figure 8.9: The store exclusive during recording fails for no apparent reason,
causing a retry of the operation which is not present in the simulation
(figure based on [262]).

Since most of the use cases for exclusive instructions in the Linux kernel follow a
similar pattern to the presented excerpt, the difference in the instruction count is
usually five instructions or multiples thereof – in case of further retries or more
than one instance between consecutive landmarks. To some degree, adjusting
the instruction counter as detailed in § 8.1.1 can compensate for the divergence.
Nevertheless, this is not perfectly reliable, does require a rather large single-
stepping window12 and can still be exploited by malicious code to crash the
replay. For the purpose of deterministic replay, we therefore would like to see the
capability to trap STREX instructions. It may be possible to imitate this mechanism
with the help of performance counters13, but this remains open until future
research.

8.2.5 Miscellaneous

In addition to the aforementioned issues, we had to perform numerous other
changes to the simulation in QEMU in order to faithfully imitate the hardware
behavior of our test platform. In the following, we describe three of the more
prominent changes.

12The most common distance between recorded and replayed instruction counts were either 5 or
30 instructions [262].

13The Cortex-A15 supports the Exclusive Instruction Speculatively Executed – STREX pass/fail events.

182 Heterogeneous Deterministic Replay

Page Faults on Code Pages Besides faithfully reproducing page faults on data
accesses, the simulation also has to accurately trigger page faults for code pages.
In the case of QEMU, the binary translator reads guest code when it generates a
translation block. This creates a fundamentally different access pattern compared
to a physical CPU:

• A TB typically comprises multiple instructions but does not cross jumps.

• The translator does not perform speculative execution.

• Previously translated guest code is accessed again only when the respective
TB has been removed from the code cache.

To prevent early page faults due to block translation, we adjusted QEMU to
stop translation at page boundaries. Fortunately, we did not observe or find
corresponding statements in the architecture manual that speculative execution
triggers page faults. Our solution is thus consistent with existing heterogeneous
replay systems [287]. The last point is uncritical because the physical CPU raises a
page fault on a previously faulted code page only if the corresponding mapping is
invalidated or changed in the meantime. These are cases that a binary translator
has to cope with anyways. The last point thus does not constitute a problem for
deterministic replay.

Resume Flag Bit 16 in the EFLAGS register is the so-called resume flag (RF),
which controls whether the CPU stops at an instruction breakpoint [125]. The
flag is intended to prevent recurrence of a breakpoint when a debugger continues
execution. The CPU clears the RF flag after every instruction and sets it by pushing
a corresponding EFLAGS value onto the stack when calling an event handler such
as the breakpoint handler. This way, the set resume flag is popped from the
stack on return. For interrupt handlers, the CPU sets the resume flag only if the
interrupt arrives after any iteration of a repeated (REP) string instruction but the
last iteration.

QEMU does not faithfully implement the resume flag, which leads to divergences
in memory when the flag is pushed onto the stack. Furthermore, we observed that
the physical CPU did not show fully deterministic RF states for interrupts during
the last iteration of REP-prefixed instructions. We therefore replay the resume
flag from the landmark in case of interrupts and replicate the behavior described
in the architecture manual in all other cases.

Floating Point Unit (FPU) Besides the already mentioned reasons for diverging
memory images, we found that many differences later in the system boot phase
(i.e., starting of user-mode services) stemmed from an incomplete FPU imple-
mentation. This became apparent whenever the state of the FPU was written to
memory using the FSAVE or XSAVE instructions, for instance on a context switch.

Heterogeneous Deterministic Replay 183

Deficiencies included:

• Missing reflection of FPU exceptions in the SSE status register (MXCSR).

• Missing implementation of the last FPU instruction pointer (FIP), the last
FPU data pointer (FDP), and the last FPU instruction opcode (FOP) registers.

• Missing initialization of reserved words in the x87 FPU state and XSAVE
areas.

We fixed these issues by extending QEMU and do not have to record any supple-
mental information.

8.3 Conclusion

Bootstrapping simulations based on periodic checkpoints alone does not reproduce
the exact execution of the hardware-assisted virtualization. Instead, this requires
recording and replay of non-deterministic events. In SimuBoost, we implemented
a heterogeneous deterministic replay that collects events during hardware-assisted
execution in KVM and precisely replays these events in QEMU’s binary translator
for simulation. To guarantee identical runs, we have to capture at least nine types
of events, six synchronous (e.g., CPUID, RDTSC, IN) and three asynchronous (INT,
SMI, Write DMA). Although strictly necessary only for asynchronous events, we
also capture landmarks for synchronous events, which greatly simplifies debugging.
The landmarks are built around the retired instruction count and the RCX register to
differentiate individual iterations of repeated instructions (REP). Since, however,
the hardware performance counter for instruction counting is not fully reliable
on x86, the replay matches supplementary CPU registers in a window around the
alleged target instruction to recognize the correct injection time.

A particular challenge with heterogeneous deterministic replay is that besides
exact handling of non-deterministic events, the simulation needs to be refined
to match the recorded hardware platform also in the execution of deterministic
operations. In this course, we adapted QEMU’s status flag computation, added
memory write probing, and many more.

Interestingly, we found MMU-induced non-determinism to be entirely ignored
in research – in contrast to the commercial products from VMware that seem to
handle it. Our results confirm that a software-based solution is feasible, but only
with considerable run-time overhead. We thus support VMware’s proposal for a
corresponding hardware extension. As MMU-induced non-determinism does only
surface in conjunction with stale TLB entries, we regard recording and replaying
it as optional in order to protect against malicious guests. We did not include it in
our final prototype.

184 Heterogeneous Deterministic Replay

The evaluation of our implementation revealed that trapping RDTSC instructions
is responsible for most of the run-time overhead. In consequence, benchmarks
making frequent use of the timestamp counter suffer from notable slowdown
(up to 90% for apache). All other benchmarks are barely affected by recording
and show run-time overheads below 1%. Compression with LZMA proved to be
very effective with recording logs, reducing the necessary network bandwidth to
only 3 MiB/s for the most demanding workload. However, the compression ratio
strongly correlates with the share of DMA events in the log, which can result in
higher bandwidth consumption during DMA-heavy phases – e.g., up to 16 MiB/s
during the initialization phase of the kernel build benchmark. Nevertheless, even
with parallel checkpoint distribution Gigabit Ethernet generally provides enough
bandwidth. Our replay solution thus fulfills the requirements of SimuBoost.

Chapter 9

Evaluation

In the previous chapters, we have described the four building blocks of Simu-
Boost: (1) the performance model, (2) continuous checkpointing, (3) checkpoint
distribution, and (4) heterogeneous deterministic replay. In this chapter, we bring
all these components together and evaluate to what extent SimuBoost is able to
accelerate functional full system simulation.

In particular, the evaluation covers:

• Achievable parallel simulation time and speedup

• Scalability and efficiency with increasing number of simulation nodes

• Applicability of the performance model

We start with a detailed description of our evaluation setup in Section 9.1. In
the following Section 9.2, we show that SimuBoost is able to drastically reduce
the slowdown of functional full system simulation and that it is able to maintain
this performance even with heavyweight instrumentation enabled. Section 9.3
demonstrates that SimuBoost delivers scalability beyond the limits of a single
physical machine and that this is the basis for high acceleration. We further
elaborate on the factors that determine the parallelization efficiency. In Section 9.4,
we compare the predictions of the performance model with the actual results from
our practical experiments and discuss conceptional weaknesses of the current
model. We conclude the results in Section 9.5.

9.1 Evaluation Setup

As mentioned in § 7.3, our final prototype of SimuBoost does not yet integrate
multicast distribution. Although this is a central component to perform immediate
parallel simulation, we can do a representative evaluation of SimuBoost without

186 Evaluation

the live distribution. For this purpose, we separate the checkpointing and recording
phase from the parallel simulation and instead manually copy all data to the
simulation nodes in between. Our evaluation thus misses potential effects of
multicast transmission delays because all data is already present on the target
nodes. The results without live distribution will nevertheless be very close to what
can be expected for a complete prototype. In Chapters 7 and 8, we demonstrate
that the compression pipeline is typically able to reduce the data volume so that it
remains below the bandwidth limit of Gigabit Ethernet. That means with actual
distribution the simulation would start at most with the delay that is necessary for
the compression and transmission of the first checkpoint. This delay is around 2 s
in our experiments. All following checkpoints usually remain below the bandwidth
limit and would not cause significant further delays.

Accordingly, we split each experiment into three consecutive phases:

1. Execution in a hardware-assisted virtual machine with active continuous
checkpointing (copy-on-write, pre-scan, sparse) and recording of non-
deterministic events. All data is compressed live, hence incurring compara-
ble overhead as with multicast distribution. However, instead of sending
the data into the network, we store everything on local storage.

2. Manual distribution of checkpoints and replay data to all systems in the
simulation cluster (machine by machine) using rsync. Based on the afore-
mentioned reasoning, we do not include this phase in the results. As stated
in § 7.3, using a network file system to avoid the copy phase is not an option.

3. Parallel simulation using timed job submission to mimic the gradual avail-
ability of new checkpoints. We log the exact timing of checkpoints in the
hardware-assisted run and then reproduce this very sequence.

Figure 9.1 illustrates our main evaluation setup consisting of five SMP systems
with 108 physical cores – i.e., nodes for simulation – in total (see Tables 9.2 and
9.1 for details on the hardware and software configurations). Whereas the systems
2 to 5 only perform simulations, System V/1 serves as host for both the hardware-
assisted execution at the beginning and simulations later on. To coordinate the
parallel simulations, we establish a global job queue that is shared between
all machines over the network. We use Python’s capability for synchronized
access to remote objects for this purpose. In this case, this is a regular Python
multiprocessing queue hosted on System V/1. Since only a single process per
machine dequeues jobs (i.e., five in our setup), contention on the queue is not
an issue. For larger setups, a more sophisticated job assignment with a cluster
scheduler such as SLURM [290] is certainly appropriate.

To attain a thorough picture of SimuBoost’s speedup characteristics and to be able
to verify the predictions of the performance model, we conduct experiments for
all combinations of the following parameters:

Evaluation 187

System V/1
master

2x Xeon Gold 6138
40 Cores @ 2.00GHz

System 2
slave

2x Xeon E5-2630 v3
16 Cores @ 2.40GHz

10 Gigabit
Ethernet

ckptckptckpt

ckptckptckpt

ckptckptckpt

ckptckptckpt

System 3
slave

2x Xeon E5-2630 v3
16 Cores @ 2.40GHz

System 4
slave

2x Xeon E5-2630 v3
16 Cores @ 2.40GHz

9Shared Job
Queue 8

7
6

10

11
…

1

2

3

4

Log

Timed Job
Submission

System 5
slave

1x Xeon Gold 6138
20 Cores @ 2.00GHzckptckptckpt

5

Figure 9.1: The hardware-assisted virtual machine runs on System V/1. Afterward,
the checkpoints and replay data are copied to all other machines.
Then, the benchmark framework starts parallel simulations that are
coordinated with a shared job queue. A timed submission of jobs
mimics the gradual availability of new checkpoints.

Workload In the previous chapters, we have found that the run-time overhead
for continuous checkpointing and recording of non-deterministic events heavily
differs between various benchmarks. As the run-time overhead defines a line
below which decreasing the interval length does not lead to higher but lower
speedup, we can expect considerable differences in maximum achievable speedup
between workloads. We run applications from the same set of workloads as in
the previous chapters.

Although we see truly interactive workloads such as user-driven desktop usage
as an important workload category for operating system research, we do not
explicitly include such a benchmark. In Chapter 6, we demonstrate that SimuBoost
is able to maintain interactivity for real-world workloads with downtimes below
10 ms. The deterministic replay, in turn, injects all interactions into the simulation.
Regarding interactive workloads, this is the decisive improvement of SimuBoost
over conventional slow functional full system simulation, where it is impossible
to faithfully capture and simulate realistic user behavior. As interactive workloads
generally exhibit a disproportionate amount of idle phases, we include the idle
workload for comparison. Depending on the applications run, a true interactive
scenario will then be located between idle and one of the other workloads.

Number of Simulation Nodes Gradually increasing the number of nodes allows
us to explore the scalability of SimuBoost. Although our simulation cluster pro-
vides a total of 216 logical cores due to hyperthreading, we only consider physical
cores for simulation (i.e., 108). This is because preliminary experiments showed
that running simulations on logical cores (i.e., two simulations per physical core)
rarely increases performance. In fact, the opposite is often the case, which we

188 Evaluation

attribute to exceeding memory bandwidth limits and mutual cache pollution. This
confirms results from Wallace and Hazelwood [267] who also did not observe
further gain from using hyperthreads.

Accordingly, we repeat all parallel simulations with the following number of
physical nodes: N ∈ {4,8,16,24,32,48,64,80,96,108}. We use the same set
of checkpoints and replay data for every configuration. In order to somewhat
balance the load between the hosts, we assign each system a share of parallel jobs
proportional to its number of physical cores.

Interval Length In order to find the optimal interval length for a certain number
of nodes and to verify the predictions of the performance model, we run each
benchmark configuration with different interval lengths: L ∈ {100,300,500,
1000,2000, 3000,4000}ms. We take the one with the highest speedup.

Simulation Slowdown While the simulation slowdown already varies between
workloads due to each workload’s individual instruction mix, we additionally run
each simulation a second time with activated hooks for tracing memory writes
(w), and a third time with tracing hooks for both memory reads and writes (r+w).
This gives an impression on how speedup, scalability, and optimal interval length
react to changes in simulation slowdown as it would be the case for different types
of analyses connected to the simulation. Since collecting memory traces requires
considerable computational resources (e.g., for compression) that we rather want
to use for exploring larger simulation clusters, we do not perform actual tracing.
Instead, we only activate the hooks. This adds a helper call to a tracing function
for each memory access (depending on the tracing mode). Compared to actual
tracing, the function only assembles the trace entry but leaves out submitting
it. This slows down the simulation without taxing other CPU cores. We omit
configurations with N ∈ {4, 8} for the tracing runs as the higher slowdown makes
such small setups less interesting.

For a more genuine comparison, we run conventional serial simulations without
tracing with an unmodified version of TCG. Besides the tracing hooks, this version
also misses the instruction counting and the refinements discussed in § 8.2. These
are all features that further slow down the simulation. Both tracing runs, in
contrast, add the hooks to our refined version of TCG.

We determine for each combination of workload and tracing mode the best config-
uration of L and N by gradually increasing N until a further increase does not
provide any significant improvement in parallel simulation time but only harms
efficiency1. Based on our results, we found a threshold of 10 percent points to be
appropriate. If, for instance, selecting the next higher N only reduces the slow-
down from 1.5x to 1.45x, we prefer the smaller setup with the higher slowdown
but better efficiency.

1The ratio between the number of simulation nodes and the speedup over serial simulation.

Evaluation 189

9.1.1 Hardware and Software Con�guration

The machines in our simulation cluster are connected with a 10 Gigabit Ethernet
network in order to reduce the time for the copy of checkpoints and replay data.
Since the transfer time is not taken into account, choosing 10 Gigabit Ethernet
over Gigabit Ethernet does not affect the results.

In Chapter 8, we identified reading the timestamp counter (RDTSC) to be respon-
sible for the majority of run-time overhead for event recording. When running
multiple iterations of benchmarks that make heavy use of the timestamp counter
such as apache, we first observed strong fluctuations in the run-time overhead
between multiple iterations. Looking at the recording logs revealed that the guest
Linux kernel sporadically changes its clock source from the timestamp counter
(TSC) to the high performance event timer (HPET) or to the ACPI power man-
agement timer (PMT). Both the HPET and the PMT, however, do not just trap
into KVM, but also require a round trip through the user-mode device emulation
in QEMU, multiplying the overhead for each clock reading. Since this behavior
heavily distorts benchmark results, we disable the HPET via QEMU’s −no−hpet
command line argument. We further adjust the fixed ACPI description table
(FADT) in QEMU’s ACPI implementation to not report the availability of an ACPI
PMT. This can be done by setting the PM_TMR_BLK and PM_TMR_LEN fields to zero
and is officially supported by ACPI [19, p. 130ff].

Software Specification

Systems V/1 – 5
Operating System Ubuntu 16.04.6 LTS (64-bit)

Kernel (System V/1) Linux 4.3.0 (KVM modified for SimuBoost)
Kernel (others) Linux 4.4.0

QEMU 2.6.50 (modified for SimuBoost)
Simutrace 3.4.1

Guest VM
Operating System Ubuntu 16.04.5 LTS (64-bit)

Kernel Linux 4.8.10†

Phoronix Test Suite 5.2.1‡

SPECjbb 2005
Java JRE 1.5.0_22
stress 1.0.4 (modified)

† KVM paravirtualization disabled to allow checkpoints to load in the binary translator.
‡ See § 9.1.2 for the selected benchmarks and their respective versions. Configured to run one
iteration only: export FORCE_TIMES_TO_RUN=1.

Table 9.1: Overview of Software Configuration

190 Evaluation

Component Model & Specification

System V/1
Primary evaluation system; used for all benchmarks in Chapters 6 to 8. Serves as host for the
hardware-assisted virtualization as well as for parallel simulations.

CPUs 2x Intel Xeon Gold 6138
Cores 40 (80 logical) @ 2.00 GHz†

Memory 128 GiB (8x16 GiB DDR4-2666)
Board Supermicro X11DPi-NT
System Disk Samsung SSD 960 EVO 256 GB
Data Disks 2x Samsung SSD 850 EVO 1 TB

Systems 2 – 4
Used for parallel simulations only.

CPUs 2x Intel Xeon E5-2630 v3
Cores 16 (32 logical) @ 2.40 GHz†

Memory 64 GiB (8x8 GiB DDR4-2133)
Board Supermicro X10DRi
System Disk Crucial SSD MX100 256 GB
Data Disk Samsung SSD 850 EVO 1 TB

System 5
Used for parallel simulations and runs the time-consuming serial simulations for comparison
with SimuBoost.

CPU Intel Xeon Gold 6138
Cores 20 (40 logical) @ 2.00 GHz†

Memory 64 GiB (4x16 GiB DDR4-2666)
Board Supermicro X11DPi-NT
System Disk Samsung SSD 960 EVO 256 GB

Guest VM
Benchmark virtual machine; executes all workloads. We checkpoint and replay this VM.

CPU P6 Pentium M compatible (qemu64)
Cores 1 (1 logical)
Ext. Features 64-bit long mode, NX, SSE3, CX16, MTRR

CLFLUSH, huge pages
Memory 4 GiB
Board Intel 440FX+PIIX3 chipset‡

System Disk 16 GB virtual disk file (qcow2)
† TurboBoost disabled for consistent performance between runs with few and many busy cores.
‡ High precision event timer (HPET) and ACPI power management timer (PMT) disabled to force
more lightweight timestamp counter (TSC) as clock source.

Table 9.2: Overview of Hardware Configuration

Evaluation 191

9.1.2 Benchmark Scenarios

Throughout this thesis, we primarily use benchmarks from the Phoronix Test
Suite [11], a popular automated open-source benchmark framework. This ensures
reproducibility and embeds each application into the same environment. We have
selected the benchmarks so that they execute a fixed amount of work (except
idle and SPECjbb2005). This way we can determine the slowdown compared
to hardware-assisted execution simply by measuring the run time. The version
number identifies the exact Phoronix test profile.

pts/apache (v1.7.1) The apache benchmark starts a local instance of the Apache
web server (version 2.4.7) and runs the ab tool to create a total of 1M requests,
with 100 requests being carried out concurrently. The server responds with a
static web page consisting of two files: a 3064 bytes HTML page containing a
4758 bytes PNG logo of the Phoronix Test Suite.

pts/build-linux-kernel (v1.6.0) The kernel build benchmark compiles and links
the Linux kernel (version 4.3 - MD5:737570130236c2256cfa67920fa721cf)
from kernel.org with make defconfig. The test starts by first extracting the
source code from the compressed archive. Since we run a single-core VM only,
the benchmark compiles one source file at a time (−j1).

pts/encode-mp3 (v1.7.1) This workload executes LAME 3.100 to encode a WAV
rip of the 5-minute song Demon Seed by Nine Inch Nails to MP3 (−h option for
high quality). The input file is 78.1 MiB in size. The encoded output is directly
piped to /dev/null, thus creating no disk writes.

pts/gnupg (v2.4.0) The benchmark runs the GnuPG 1.4.22 cryptographic soft-
ware suite to perform a symmetric AES128 encryption of a 2 GiB file, containing
zeros only. The test dynamically creates the input file from /dev/zero using dd.
As with encode-mp3, the output is directly dropped by sending it to /dev/null.

pts/phpbench (v1.1.5) The PHP benchmark measures the performance of the
PHP interpreter by running 56 test cases which stress input parsing (e.g., removal
of comments), language features (e.g., loops, assignments, typecasting), and vari-
ous built-in functions such as md5() and crc32(). We increase the benchmark’s
run time by executing 10M iterations instead of the default 1M.

pts/postmark (v1.1.1) NetApp PostMark 1.5.1 simulates file operations similar
to what a web or mail server would do. It first creates 500 files with random
contents and size between 5 KiB and 512 KiB. Then, it executes 250K random
transactions (e.g., read, append, delete). PostMark closes with removing all files.

pts/pybench (v1.1.2) The pybench workload performs 20 rounds of the Python
Benchmark Suite 2.0 to tax the Python interpreter similarly to phpbench.

192 Evaluation

pts/povray (v1.2.1) A particularly challenging workload
for simulation is POV-Ray 3.7.0.7. The ray tracer renders
a 512x512 image of a standard 3D scene coming with the
software. The benchmark heavily relies on FPU arithmetic,
which in software is much slower than integer arithmetic.
The povray benchmark thus experiences a tremendous slow-
down, even with plain serial simulation. Hence, we skip the
N ∈ {4,8} configurations. Standard Scene

pts/sqlite (v2.0.1) The sqlite benchmark imitates a lightweight database work-
load that performs 7500 insertions into an SQLite 3.22 database. The final table
has the format [SMALLINT, TIMESTAMP, VARCHAR(4), VARCHAR(16)], thereby
consuming around 200 KiB at 28 bytes per row.

idle The idle benchmark performs a 1-minute sleep. It is the optimal case in
terms of checkpointing and recording overhead and allows the replay to skip most
of its run time due to HLT instructions being ignored in replays. However, because
its run time is predefined, the serial simulation also runs for only one minute,
despite having simulated much less idle cycles.

Only used in previous chapters

stress-ram This benchmark serves as worst-case for the checkpointing compo-
nent (not the compression pipeline) by allocating a 3 GiB buffer and touching it
as fast as possible. It first runs over all pages and sets the first byte to ’Z’. It then
iterates a second time over the buffer, reading the character back in. We modified
the underlying stress 1.0.4 application to allow the specification of a number of
iterations rather than a target run time. We use 3000 iterations.

SPECjbb2005 This popular benchmark [14] evaluates the performance of server-
side Java by emulating a client/server application that exercises the JVM, JIT
compiler, garbage collection, and the operating system. The workload includes
XML processing and large decimal computations. Just like the idle benchmark,
SPECjbb runs for a predefined amount of time (i.e., 30 mins), irrespective of
the virtualization technique. Instead, SPECjbb returns a number of transactions
completed in this time frame. As we base our final evaluation on the run time of
the workloads, we omit experiments with SPECjbb in this chapter.

9.2 Speedup

To get an impression of the speedup that we gain from SimuBoost, we compare
the parallel simulation with a conventional serial simulation. In both cases, we
give the slowdown relative to fast hardware-assisted virtualization with a regular
unmodified KVM. When comparing SimuBoost with conventional serial simulation,

Evaluation 193

25.8

19.4

40.9

45.0

61.1

76.7

23.922.7

33.1
36.7

48.5

55.2

2.04.1 2.6
5.4 3.5

7.7

29.829.1

38.2
43.3

51.3

59.5

8.28.0

16.7
22.2

31.9

40.9

16.815.0

25.7
28.7

55.3

63.4

28.5
22.9

50.151.4

83.8

94.9

80.481.5

93.3

101.8

131.3

144.6

26.8
20.7

46.744.4

77.8
81.0

0.01.0 0.01.0 0.11.0

Baseline: Hardware-assisted Virtualization

0

25

50

75

100

125

150

postmark
kernel build

sqlite
apache

gnupg
encode-mp3

pybench
povray

phpbench
idle

S
lo
w
d
ow

n
[×

]

Serial Sim. Serial Sim.+Tracing (w) Serial Sim.+Tracing (r+w)

Serial Replay Serial Replay+Tracing (w) Serial Replay+Tracing (r+w)

Figure 9.2: Without tracing, conventional simulation is typically faster as it does
not include instruction counting and the refinements from § 8.2. With
all refinements included and tracing enabled, replay is faster. The
replay for the idle benchmark skips all halt cycles. The figure shows
the replay of the best configuration (see Table B.6).

we have to bear in mind that a heterogeneous replay differs from a conventional
simulation and that these differences may lead to varying slowdowns for the same
combination of workload and degree of instrumentation. This is important as
SimuBoost parallelizes a replay, not a conventional serial simulation, and we are
using the slowdown as basis for our assessment. Before looking at the speedup
of parallel simulation, we therefore first quantify the difference between serial
replay2 and conventional serial simulation.

Detailed numbers for most results in this and the following section can be
found in Table B.6. The table also contains additional information (e.g., N
and L) on the selected configurations.

In Figure 9.2, we see that for both tracing iterations the slowdown of conventional
simulation is between 8% and 25% higher than in the case of the serial replay. This
stems from the fact that our conventional simulation does not employ a timing
model, whereas the replay reproduces the recorded timing. With the overhead for
instrumentation, it takes more time to simulate instructions. Albeit, the virtual
timers in the conventional simulation keep firing at the same rate (relative to
the wall-clock time), causing more kernel-mode code to be executed over the
duration of the workload. Since all workloads process a fixed amount of work,
the conventional simulation thus executes more instructions until the workload
completes. A higher instrumentation overhead amplifies this effect.

2Replay without parallelization under the premise that event logs already exist. We sum the
replay times of the 4 s intervals to get a total time even with potential replay failures.

194 Evaluation

1.6

25.8

1.7

40.9

1.8

61.1

1.2

23.9

1.2

33.1

1.2

48.5

0.9 2.00.9 2.60.9
3.5 2.2

29.8

2.2

38.2

2.2

51.3

1.3

8.2

1.4

16.7

1.4

31.9

1.1

16.8

1.1

25.7

1.2

55.3

1.1

28.5

1.2

50.1

1.2

83.8

1.1

80.4

1.1

93.3

1.3

131.3

1.2

26.8

1.1

46.7

1.2

77.8

1.0 0.01.0 0.01.0 0.1

Baseline: Hardware-assisted Virtualization

0

25

50

75

100

125

150

postmark
kernel build

sqlite
apache

gnupg
encode-mp3

pybench
povray

phpbench
idle

S
lo
w
d
ow

n
[×

]

SimuBoost SimuBoost+Tracing (w) SimuBoost+Tracing (r+w)

Serial Replay Serial Replay+Tracing (w) Serial Replay.+Tracing (r+w)

Figure 9.3: Parallel simulation with SimuBoost is much faster than conventional
serial simulation. Baseline is a run with hardware-assisted virtualiza-
tion using an unmodified KVM.

In case of plain simulation without tracing, the replay is between 2% and 33%
slower because, as mentioned previously, the conventional simulation does not
include the instruction counting and the refined TCG in this configuration.

In the following, we use the serial replay as reference for comparison as this is the
actual simulation that is parallelized. Moreover, due to its higher representative-
ness of a timing-realistic execution irrespective of the instrumentation slowdown,
the replay is typically also more interesting.

Figure 9.3 contrasts the slowdown of the serial replay with the drastically reduced
slowdown attainable with a parallel simulation. SimuBoost is able to fully simulate
a kernel build in just 16% more time (N = 24, L = 2.0 s) than required for an
execution with fast hardware-assisted virtualization. The baseline is again an
unmodified KVM. Even the povray benchmark with its high slowdown completes
in only 6% more time (N = 80, L = 0.5 s). By choosing different configurations
for N and L (typically higher N and shorter L), SimuBoost is able to deliver the
same performance even in the tracing scenarios.

Nevertheless, the high run-time overhead for checkpointing and recording for
some workloads reflects in a reduced speedup. This can be seen in the case of
postmark, which possesses a 44% overhead in the best configuration (N = 24,
L = 0.5 s) and therefore still shows a 63% slowdown with parallel simulation.
The apache benchmark is even worse with a 102% overhead during the hardware-
assisted virtualization and a final slowdown of 2.19x (N = 16, L = 1.0 s). From the
evaluations in Chapters 6 and 8, we know that for postmark the run-time overhead
is primarily caused by the checkpointing, whereas for apache the recording is the
major cost factor.

Evaluation 195

These results underline the importance of fast checkpointing and recording tech-
nologies in this context. Furthermore, they illustrate that a higher speedup cannot
be achieved by just using more nodes for simulation. In order to supply these
additional nodes with work, we have to shorten the interval length. This increases
the production rate of checkpoints but at the same time entails a higher run-time
overhead. As described in Chapter 5 and as visible in the results for postmark
and apache, this eventually leads to a higher parallel simulation time and less
speedup. Only if the slowdown of the serial simulation increases, for example, due
to higher instrumentation costs, the rise in run-time overhead for more frequent
checkpointing is compensated.

The results for sqlite and idle represent special cases. As described in § 6.1.3,
the sqlite benchmark completes faster with activated checkpointing due to the
deactivation of transparent huge page support. This results in a slight speedup
for parallel simulation compared to a run with an unmodified KVM (i.e., no
checkpointing and active transparent huge page support). The idle benchmark,
in turn, is slower with parallel simulation compared to a serial replay because
for the serial replay we assume that event logs are already present. That allows
the serial replay to skip the entire idle phase, completing the 60 s benchmark
in just 2 s. In the case of the parallel simulation with SimuBoost, intervals are
simulated individually and gradually as they are produced. This creates overhead
for checkpoint loading and prevents the parallel simulation from skipping the
entire idle phase at once. Instead, each simulation only skips the idle cycles
covered by the corresponding interval. We therefore effectively get a slowdown
compared to the serial replay. Nevertheless, the idle benchmark still completes
1 s faster than the reference execution with an unmodified KVM. This is due to
saving the idle cycles in the last simulated interval.

9.3 Scalability and E�ciency

Depending on the characteristics of the scenario such as the workload’s run
time, the overhead for checkpointing and recording, and the slowdown for serial
replay and instrumentation, SimuBoost is able to efficiently utilize a varying
number of simulation nodes. Figure 9.4 depicts the attainable speedup over serial
replay using an increasing number of simulation nodes. For each combination of
workload, tracing mode, and N , the figure shows the configuration of L with the
maximum speedup.

At first sight, the horizontal lines in the figure suggest low scalability. In fact,
however, when the speedup stops rising and begins to progress horizontally, Simu-
Boost already removed most of the slowdown of the serial replay. In consequence,
the breaks are located near the serial replay slowdown of the corresponding
combination of workload and tracing mode. The difference is what we observe as

196 Evaluation

S
p

ee
d
u
p

[×
]

P
er

fe
ct

E
ffi

ci
en

cy
(1

00
%

)

(a) No Tracing

1

16

32

48

64

80

96

108

1 16 48 80 108

P
er

fe
ct

E
ffi

ci
en

cy
(1

00
%

)

(b) Tracing (w)

1

16

32

48

64

80

96

108

1 16 48 80 108

P
er

fe
ct

E
ffi

ci
en

cy
(1

00
%

)

(c) Tracing (r+w)

1

16

32

48

64

80

96

108

1 16 48 80 108

Nodes N

postmark
kernel build

sqlite
apache

gnupg
encode-mp3

pybench
povray

phpbench
idle

Figure 9.4: Breaks in scalability are located close to the serial replay slowdown of
the respective workload and tracing mode combination (horizontal
lines). The results for povray demonstrate that SimuBoost is able to
efficiently scale beyond the limits of a single physical machine. The
parallelization efficiency, however, differs between scenarios. N is the
configured number of nodes, not the number of actually busy nodes
(see below).

remaining slowdown as described in the last section. For instance, with tracing of
writes enabled (w), we see a speedup of around 88x for povray. The remaining
slowdown of the respective parallel simulation is 6% compared to a run with an
unmodified KVM (Figure 9.3), which gives us the original slowdown for serial
replay (88 · 1.06≈ 93.3).

Since the FPU-heavy computations performed by povray exhibit an exceeding
simulation slowdown, SimuBoost utilizes more nodes for povray than for any
other workload. With full memory tracing enabled, all 108 cores of our cluster
are busy3. This demonstrates that SimuBoost can effectively scale beyond the
capacity of a single physical machine.

A closely related metric in this context is the parallelization efficiency with which
additional nodes can be leveraged for parallel simulation. With perfect efficiency,
doubling the number of nodes results in double the speedup – at least to the
point, where we reach the horizontal line and no further speedup can be made.
Especially in Figure 9.4c, we can see that the parallelization of, for instance,
pybench exhibits much lower efficiency than, for example, in the case of povray.
The degree of efficiency depends on multiple factors that can be best understood
graphically.

3The increase of the remaining slowdown from 6% to 30% (Figure 9.3) suggests that even more
cores are required for maximum acceleration.

Evaluation 197

Q
u
eu

e
L

en
gt

h
/

P
ar

al
le

l
S
im

u
la

ti
on

s

13:42

0
1
:1

7
:0

0Speedup: 3.97x
Efficiency: 99%

kernel build, no tracing, L = 4.0 s, N = 4

0

50

100

150

200

00:00:00 00:30:00 01:00:00 01:17:40

13:42

3
9
:0

5Speedup: 7.75x
Efficiency: 97%

kernel build, no tracing, L = 4.0 s, N = 8

0

50

100

150

200

00:00 10:00 20:00 30:00 39:49

13:42

2
0
:2

7Speedup: 14.54x
Efficiency: 91%

kernel build, no tracing, L = 4.0 s, N = 16

0

25

50

75

100

00:00 05:00 10:00 15:00 21:15

13:55

1
4:

2
9Speedup: 20.68x

Efficiency: 86%

kernel build, no tracing, L = 2.0 s, N = 24

0

10

20

30

40

50

00:00 04:00 08:00 12:00 14:55

13:53

1
4:

15Speedup: 20.99x
Efficiency: 66%

kernel build, no tracing, L = 2.0 s, N = 32

0

10

20

30

40

50

00:00 04:00 08:00 12:00 14:41

Time [hh:mm:ss]

Queue Length Parallel Simulations

Figure 9.5: With too few nodes (N < 24), intervals need to be queued. With
N = 24, production and consumption are in balance and utilization
is still high. More nodes provide little benefit but notably reduce
parallelization efficiency by just idling. The red line denotes the end
of the virtualization run (i.e., end of production). The gray rectangle
shows the simulation of the last produced interval. The dotted line
marks the number of configured nodes N .

198 Evaluation

Q
u
eu

e
L

en
g
th

/
P

a
ra

ll
el

S
im

u
la

ti
on

s

00:41

00
:5

4

Speedup: 5.09x
Efficiency: 64% Phase of intervals with

above average simulation speed

gnupg, no tracing, L = 300 ms, N = 8

0

10

20

30

00:00 00:10 00:20 00:30 00:40 00:50 00:54

00:40

0
0
:4

4

Speedup: 6.17x
Efficiency: 39% Phase of intervals with

above average simulation speed

gnupg, no tracing, L = 300 ms, N = 16

0

10

20

30

00:00 00:10 00:20 00:30 00:40 00:44

Time [mm:ss]

Queue Length Parallel Simulations

Figure 9.6: The intervals with above average simulation speed create a phase of
under-utilization that reduces efficiency. See Figure 9.5 for a descrip-
tion of the graphical elements.

Figure 9.5 illustrates the node utilization and the length of the queue of outstand-
ing intervals (i.e., checkpoints created but not yet simulated) for a set of parallel
kernel build simulations with increasing number of nodes.

With only four nodes, we measure the lowest parallel simulation time with an
interval length of 4 s. As the four nodes cannot keep up with the production rate,
new checkpoints quickly accumulate and the queue length rises. It takes almost
an hour until all intervals have been simulated. However, during this time all
nodes are permanently busy. Increasing the number of nodes shortens the overall
parallel simulation time and moves the end of the simulation closer to the end of
the virtualization. The idle phases typical for SimuBoost can be clearly seen at
the beginning and the end.

With L = 2.0 s and N = 24, the production and consumption rates are in perfect
balance which reflects in the periodicity of the queue length. Except from the
idle phases at the beginning and the end, all nodes are busy4. Further increasing
the number of nodes to N = 32 provides only a marginal improvement in overall
simulation time. As the consumption rate now exceeds the production rate, there
is always a free node available and no interval gets ever queued. At this point,
some of the simulation nodes remain permanently idle and the parallelization
efficiency drops from 86% to 66%.

4Small fluctuations are caused by the job submission which our benchmark environment does
not count as busy phase. Furthermore, it does not account simulation time for intervals that
failed to replay.

Evaluation 199

0

20

40

60

80

po
st
m
ar
k

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

S
h
ar
e
of

In
it
ia
li
za
ti
o
n
T
im

e
[%

]

Mode
No Tracing
Tracing (w)
Tracing (r+w)

Figure 9.7: The initialization time is typically less than 10% of the busy time.

Idle Time We can conclude that everything creating space between the dotted
line (the number of configured nodes) and the blue line (the number of busy
nodes) entails a reduction in efficiency by causing idle time. Besides a general
oversupply of nodes, this can also be the result of changing program behavior.
We can observe this in particular with gnupg (see Figures 9.6 and B.7). The
majority of simulations in the first 15 s complete on average in 1.2 s, all following
simulations, in contrast, require on average 3.0 s. Whereas eight nodes are more
than sufficient for achieving optimal speedup in the first phase, the cluster is
clearly overloaded in the second phase (queue length rises). The growing backlog
forces us to use more than eight nodes, otherwise we do not attain the overall
minimum parallel simulation time. However, this creates (even more) idle time
in the first program phase and notably reduces the efficiency.

Another factor lowering the efficiency is the share of busy time that is not spent
on actual simulation. This factor consists of three components:

Initialization Time This is the time consumed for the initialization of the in-
dividual parallel simulations. Figure 9.7b shows that for our set of workloads
(except sqlite and idle), the initialization accounts for less than 10% of the total
busy time. The share shrinks with increasing simulation slowdown5, but grows
with the number of intervals (i.e., shorter intervals) and per-interval initialization
cost, the latter being dominated by the checkpoint loading time (see § 6.3).

Per-Interval SimulationOverhead Figure 9.8a illustrates that with a fixed num-
ber of nodes (N = 16), the sum of the simulation time over all intervals increases
with smaller interval lengths. This indicates that besides the explicit initialization,
we have to pay further per-interval costs. We assume that most of this overhead

5Hence the high values for sqlite (2x - 3.5x) and idle (<1x), where the slowdowns are very low.

200 Evaluation

(a) Tracing (r+w), N = 16

0

10

20

30

40

0 1 2 3 4

Interval Length L [s]

N
or
m
a
li
ze
d
S
lo
w
d
ow

n
[%

]

(b) Tracing (r+w), L = 100ms

0

2

4

6

8

48 16 32 48 64 80 96 108

Busy Nodes

N
or
m
a
li
ze
d
S
lo
w
d
ow

n
[%

]

postmark
kernel build

sqlite
apache

gnupg
encode-mp3

pybench
povray

phpbench

Figure 9.8: (a) Short intervals lead to higher accumulated simulation time. The
graph shows the slowdown normalized to a simulation with 4 s inter-
vals. (b) With increasing number of utilized nodes, simulations run
slower due to the pressure on shared computing resources such as the
memory bus and caches.

stems from the dynamic binary translation, that is, the actual code generation.
Since each individual simulation starts with an empty code cache, shorter intervals
increase the overall translation effort.

SMP Load Running a multitude of simulations in parallel on the same SMP
system negatively affects the simulation speed. This relationship can be seen in
Figure 9.8b. Especially povray, which is able to fully utilize our simulation cluster,
suffers from this effect when going from 96 to 108 busy nodes. We attribute
this to reaching limits in the memory bandwidth and the cache capacity. This
is not surprising, considering that SimuBoost runs 40 simulations (i.e., virtual
machines) in this configuration in parallel on our primary system alone.

Figure 9.7a depicts the efficiency for the various benchmark scenarios based on the
median number of actually busy nodes, not the configured number of (potentially
idle) nodes. This way, we remove surplus nodes and get an indication of the
true efficiency values for parallelization despite the limited set of node numbers
examined. Due to the described idle phase in gnupg, the efficiency is comparably
low with only 62%. The efficiency for the idle benchmark is much worse (4%
to 6%) as the speedup (the basis for calculating the efficiency) is effectively a
slowdown compared to the serial replay. We can thus expect interactive workloads
(e.g., user-driven desktop usage) to generally exhibit a rather low efficiency,
depending on the share of idle cycles. The other measured scenarios have a
parallelization efficiency between 72% (sqlite) and 95% (povray).

Evaluation 201

Base: Median of Busy Nodes

0

20

40

60

80

100

po
st
m

ar
k

ke
rn

el
bu

ild
sq

lit
e

ap
ac

he

gn
up

g

en
co

de
-m

p3

py
be

nc
h

po
vr

ay

ph
pb

en
ch id

le

E
ffi

ci
en

cy
E

[%
]

Mode
No Tracing
Tracing (w)
Tracing (r+w)

Figure 9.9: Measured parallelization efficiency based on the number of actually
busy nodes is between 62% and 95%, except for idle (4% to 6%).

From the findings of this section, we can infer the following characteristics:

• Idle phases in the cluster (e.g., due to changing program behavior) have
the most negative effect on the efficiency.

• Reducing the interval length is likely to decrease efficiency, especially for
workloads with low code and memory access locality (high translation costs
and checkpoint loading time).

• A high serial simulation slowdown originating from the instruction mix or
instrumentation is likely to improve efficiency.

Remember that, in accordance with our performance model, the given results for
the efficiency relate to the parallel simulation only. They can be used to weigh
a reasonable size for the simulation cluster. As outlined in Chapters 6 and 7,
additional CPU cores are needed for the compression of the checkpoints and the
event log. For the measured optimal interval lengths and the workloads examined
in our final evaluation, we have to provide between two and four additional cores.
Furthermore, we require one core to run the workload with hardware-assisted
virtualization. It is, moreover, likely that utilizing spare cores on the virtualization
host for running parallel simulations induces a probe effect in the workload being
recorded – similar to the reduction in parallelization efficiency we observe due to
SMP load. Depending on the requirements of the specific research question, it may
thus be recommended to use a physically separate host for the hardware-assisted
virtualization (possibly wasting idle cores). These factors must be taken into
account when estimating SimuBoost’s overall resource requirements.

202 Evaluation

9.4 Performance Model

In Chapter 5, we have introduced a first formalization of the parallelization process
in order to predict the parallel simulation time (Tps) and find the optimal interval
length (Lopt) for a particular scenario.

We begin the evaluation of the performance model by comparing the parallel
simulation time that we measured in our experiments with the predictions of
the model. We use the same measured best configurations of N and L as in
the previous sections. We calculate Tps with Equation 5.8 of the optimal model
in case the configured number of nodes N is greater than N(L), which is the
model’s estimated optimal number of nodes for the specified interval length
(Equation 5.14)6. This describes a scenario in which our simulation cluster is
large enough to provide optimal speedup for the given combination of workload
and tracing mode. Therefore, the equations of the optimal setup apply. Note
that we insert the interval length actually used in the practical experiments, not
the model’s estimated optimal interval length Lopt . This allows us to evaluate
the accuracy of the Tps estimation separately from the Lopt prediction. If our
simulation cluster does not provide sufficient parallelism, that is, N < N(L), we
calculate Tps with Equation 5.25 of the constrained model.

We compute the model output using the precise overheads and times observed
during the corresponding practical experiment. The model thus receives the input
parameters that describe the performance characteristics in the measured optimal
configuration. The results thereby represent the minimum error.

Figure 9.10a illustrates the divergence of the model’s estimated parallel simulation
time from the measured one. We can see that for most benchmark scenarios the
performance model delivers a good estimation, with errors ranging from -4.8%
to +0.4%. In the majority of experiments, the model tends to underestimate the
parallel simulation time. This is rooted in the fact that the model considers all
intervals to be perfectly uniform. For example, it assumes the same simulation
slowdown ssim over the whole duration of the workload. In practice, however,
this is rarely the case and intervals do show varying characteristics (slowdown,
checkpoint loading time, etc.). Since variations are less likely to level out toward
the end of the parallel simulation, variations concerning the last intervals have
a strong influence on the model’s estimation quality. In gnupg, for instance, the
simulation of the last interval has a 50% higher slowdown than the average
interval in the experiment. This delays the completion of the parallel simulation.
The model, in contrast, assumes the same average simulation time for the last
interval as for every other interval and consequently underestimates Tps.

6See Table B.7 for results. In most cases, the prediction is close to the observed number of busy
nodes (one to two cores difference).

Evaluation 203

(a)

-8

-6

-4

-2

0

2

po
st
m
ar
k

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

T
p
s
E
rr
or

[%
]

No Tracing Tracing (w) Tracing (r+w)

(b)

0.1
0.5

1

2

3

4

po
st
m
ar
k

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

In
te
rv
al

L
en
gt
h
[s
]

Mode
No Tracing

Tracing (w)

Tracing (r+w)

Observed Lopt

Predicted Lopt

Figure 9.10: (a) The performance model tends to underestimate the parallel
simulation time (Tps). Uses of the constrained model (i.e., N < Nopt)
are marked with the red dotted border. (b) Since the model does
not incorporate the increasing costs for reducing the interval length,
it typically recommends shorter intervals.

In our experiments, we also observe the opposite case, that is, the last interval
completes earlier than expected by the model. That means the model’s assumption
that the parallel simulation always finishes with the completion of the last pro-
duced interval is not true (see kernel build in Figures 9.5). Nevertheless, this only
marginally manifests as prediction error in the case of the kernel build because
the overall completion time of the simulation barely changes (see Figure B.6).

Next, we review the accuracy of the model’s estimation of the optimal interval
length. Figure 9.10b compares the predicted Lopt with the actually measured one.
In many cases, the model recommends a smaller interval length (e.g., kernel build,
L = 2 s vs. Lopt = 0.5 s). This reveals a decisive weakness of the model. It ignores
how changing the parallelization degree and interval length influences the input
parameters that describe overheads and delays:

• svm: Checkpointing and recording overhead

• ssim: Simulation slowdown

• tc: Checkpointing downtime

• ts: Simulation start-up time

Following the model’s recommendation7 in case of the kernel build (no tracing)
leads in practice to a 12% higher simulation time with the same number of nodes
deployed (equals the model’s Nopt). The simulation of sqlite even takes 73%
longer in the predicted optimal configuration. This is because the model does

7We use the results from the experiments with the closest matching configuration.

204 Evaluation

(a) kernel build, Tracing (r+w)
Base: L = 1.0 s, N = 16

1.0

1.5

2.0

2.5

3.0

16 32 48 64 80 96 108

Nodes N

T
p
s
[1
00
0
s]

Interval Length L
100ms

1 s

4 s

Observed Tps

Predicted Tps

(b) kernel build, Tracing (r+w)
Base: L = 0.1 s, N = 16

1.0

1.5

2.0

2.5

3.0

16 32 48 64 80 96 108

Nodes N

T
p
s
[1
00
0
s]

Interval Length L
100ms

1 s

4 s

Observed Tps

Predicted Tps

Figure 9.11: (a) The model noticeably underestimates the parallel simulation
time for L = 100ms, if we use the overheads and delays measured
in a run with 1 s intervals. (b) The model, in turn, overestimates
Tps for L ∈ {1, 4} s, if we use the parameters measured with 100 ms
intervals.

not incorporate the rising overhead (e.g., translation costs) when shortening the
interval length. In consequence, the supposedly optimal interval length can, in
fact, be too short. Alternatively, more nodes are needed than estimated to attain
a comparable performance (i.e., Nopt is too small).

In practice, this shortcoming makes it difficult to properly characterize a workload
and find representative values for the model parameters. The model does only
deliver good estimations for interval lengths that exhibit similar overheads and
delays as the interval length used to determine the parameters. In Figure 9.11a,
we measure the parameters for a kernel build with 1 s intervals and 16 nodes
and subsequently use the observed values to estimate the parallel simulation
time for other configurations. While the model closely predicts Tps with varying
number of nodes and L ∈ {1,4}, it fails to do so for L = 100 ms, where the
overheads are much larger. Conversely, if we determine the parameters with
100 ms intervals, the estimation quality for L ∈ {1,4} is unsatisfying, while the
results for L = 100 ms are much better.

9.5 Conclusion

In this chapter, we demonstrated that SimuBoost is able to significantly reduce the
slowdown of functional full system simulation. For most of the workloads, only
a 10% to 30% slowdown compared to fast hardware-assisted virtualization re-

Evaluation 205

mains. SimuBoost efficiently scales beyond the limits of a single physical machine,
thereby also presenting an alternative to user-mode tools such as SuperPin that
are restricted in parallelization due to the use of forking instead of checkpointing.

We identified various factors that affect the efficiency of the parallelization. Idle
times in the cluster that stem from phase behavior in the workload have the most
impact. In addition, reducing the interval length generally entails a decrease in
efficiency, which is especially notable for workloads with low code and memory
access locality. We can confirm previous research in that the concept of partitioning
and parallelization of simulation time is an effective and efficient acceleration
approach. SimuBoost is the first project to apply this concept to functional full
system simulation.

To estimate the parallel simulation time and determine the optimal interval length
for a given scenario, we presented a performance model. The evaluation shows
that while the model is generally able to provide estimations of the simulation time
with low error (-4.5% to +0.4%), this heavily depends on the interval length used
to measure the input parameters that describe overheads and delays (e.g., the sim-
ulation slowdown). In our benchmarks, we could only attain satisfying prediction
quality for interval lengths that exhibit similar input parameters. Consequently, to
get accurate estimations for the optimal case requires that the input parameters
have been retrieved with this very optimal interval length. As the model infers
the optimal interval length from its estimation of the parallel simulation time, this
creates a dependency circle and, in turn, results in low prediction quality for the
optimal interval length.

Chapter 10

Conclusion

Functional full system simulation is a powerful tool for gathering detailed in-
formation on the run-time behavior of applications and the operating system.
A major downside of this technology is the immense slowdown that is bound
to the software-driven execution model. Workloads that complete in minutes
natively, can quickly run hours or even days with functional full system simulation,
especially with heavyweight instrumentation. A slowdown between one and
two orders of magnitude is common. This makes experiments not only time-
consuming, but also prevents natural interaction with the examined workload
and distorts timing whenever external input is involved (e.g, I/O).

SimuBoost leverages the concept of partitioning and parallelization of simulation
time to drastically reduce the slowdown. The workload is first executed in a fast
hardware-assisted virtual machine (VM). Periodic checkpoints serve as starting
points for parallel simulations with one job per interval. Heterogeneous deter-
ministic replay guarantees that the simulations repeat the exact same execution
as in the hardware-assisted VM, including interactions and recorded timing.

With continuous checkpointing being a key technology for SimuBoost, we eval-
uated various checkpointing techniques by extending QEMU/KVM and found a
combination of asynchronous (i.e., copy-on-write) and incremental checkpointing
to provide the best performance. We further devised a fast method for tracking
of modified pages, which we call pre-scan. Pre-scan asynchronously scans the
EPT for set status bits before the downtime so as to reduce the time necessary
for a consistent scan while the VM is suspended. This way, SimuBoost attains an
average downtime of only 8 ms and preserves interactivity during checkpointing.
The run-time overhead varies with the workload and interval length, ranging
from less than 1% up to 100% in our experiments.

In order to distribute the checkpoints in a network of simulation nodes, we pro-
pose the use of a point-to-multipoint protocol such as IP multicast. This mitigates
the bottleneck at the network interface of the checkpointing host. Since the

208 Conclusion

data volume generated during checkpointing can quickly exceed the bandwidth
limit of contemporary networks, we demonstrated how a combination of data
deduplication, delta compression, generic compression, and special-purpose com-
pression is able to considerably reduce the size of continuous checkpoints. With a
compression ratio of up to 39:1, SimuBoost can be used with Gigabit Ethernet.

The implementation of the heterogeneous deterministic replay turned out to
be technically challenging. Eventually getting the intervals to faithfully replay
in the simulation required various changes in the binary translation of QEMU.
This also includes numerous adaptations to make the simulation work like the
recorded hardware counterpart (e.g., status flag computation and instruction
counting). Our prototype is capable of successfully replaying on average over 97%
of intervals. The additional run-time overhead for recording is typically below 1%.
However, we found that the trap for capturing timestamp counter readings can
impose a considerable overhead if the workload performs excessive time keeping
(e.g., apache: 90% run-time overhead).

Our final evaluation of SimuBoost confirms previous research that has shown
significant speedup potential for the partitioning and parallelization of simulation
time. SimuBoost, for the first time, demonstrates that the concept can also be
very effectively used to accelerate continuous functional full system simulation.
For most workloads, we measured a remaining slowdown for simulation over
hardware-assisted virtualization of less than 30%, irrespective of the degree of
instrumentation (tracing memory reads and writes). Only benchmarks with
considerable run-time overhead during the checkpointing and recording phase
show higher remaining slowdowns (apache: 120%, postmark: 63% – 81%).

10.1 Limitations and Future Work

While SimuBoost overcomes major limitations of previous work, some aspects
have not yet been addressed or show room for further improvement:

Three-Stage SimuBoost

SimuBoost’s property to accurately replay the execution from the hardware-
assisted virtualization is one of its greatest strengths because it (re-)produces
realistic timing in the simulation. This makes measurements more representative
of real-world executions without the necessity of complex CPU and device timing
models. However, this is only true as long as the overhead for checkpointing and
recording remains low. Otherwise, the overhead can become visible in distorted
timing and create a noticeable probe effect, which, for example, embodies in
shorter effective time slices for guest processes due to intermittent VM exits. In
Chapter 6, we demonstrated that, despite advanced checkpointing techniques,

Conclusion 209

t

HW-assist.
Virtualiza�on

i [1]

Node 1

i [2] … i [n]

…

Node V2

Parallel
Simula�on …

i [1]

Node V1
HW-assist.

Virtualiza�on

Replay & Checkpoin�ng

Recording only

Replay & Simula�on

2

1

3

Non-Det. Events

Figure 10.1: The first stage records non-deterministic events only. The execution
is concurrently replayed in a second VM that periodically takes the
checkpoints. The parallel simulations receive the same events.

heavyweight workloads such as postmark and SPECjbb may still experience high
run-time overheads. In Chapter 8, we moreover showed that in case of frequent
time stamps reads, recording of non-deterministic events can incur a notable
further overhead. Nevertheless, the majority of overhead stems from the check-
pointing and the overhead for recording remains below 1% for most workloads.
It would thus be desirable to decouple the checkpointing from the recording so
that the overhead of the checkpointing does not reflect in the recorded execution.
This, in turn, would entirely eliminate any probe effect related to checkpointing
from the simulations and produce more stable and realistic results.

We can accomplish this by splitting the checkpointing and recording into dedicated
stages (see Figure 10.1). In the first stage, we only record non-deterministic events.
We then feed these events to a concurrently running second hardware-assisted
virtual machine. This VM consequently reproduces the low-overhead execution
from stage one. Since the replay is not influenced by additional overhead (just
like in the case of the much slower simulation), we can take checkpoints in the
second VM without inflicting a probe effect.

It is, however, open to what extent the parallelization is negatively affected by
this. Although the second VM may start without delay and immediately receive
events1, we can expect the virtual machine to run somewhat slower than in
the original design. This is because we probably see additional overhead for
asynchronous event injection, which on x86 requires multiple VM exits2 [87].
The increased run-time overhead during checkpointing, in turn, possibly leads
to slower parallelization and increased parallel simulation time. We already
started exploring the advantages and disadvantages of the three-stage design in
an ongoing bachelor’s thesis.

1We can pause the VM as soon as the event queues run empty.
2Although the instruction counter can be configured to generate an interrupt, the stop does not

occur instantaneously and we may miss the desired value. We thus have to stop earlier and
step toward the correct instruction.

210 Conclusion

Multiprocessor Support

A major limitation of the current SimuBoost prototype is its restriction to single-
core virtual machines. SimuBoost shares this shortcoming with many projects
based on deterministic replay. As described in § 2.4.3, this originates from the
difficulty to efficiently track accesses to shared memory regions in multiprocessor
systems. While it is technically possible to accurately record and replay the order
of memory accesses in software, for example, with a CREW protocol, this generally
comes at a high run-time overhead. SMP-Revirt [88], for instance, incurs a 2x
slowdown for a kernel build on two processors, and a 9x slowdown for four
processors. Samsara [215] improves upon these values with better scalability
(e.g., 6x slowdown for four cores). While we validated the general applicability of
chunk-based recording to heterogeneous deterministic replay [293], the overhead
still presents a considerable probe effect, which cannot even be avoided with
the aforementioned three-stage SimuBoost design. The most promising solution
is a CPU-integrated hardware recording logic, as demonstrated by Intel with
QuickRec [205]. The FPGA-based prototype suffered only negligible performance
degradation for tracking shared memory accesses in user processes.

Performance Model

Our evaluation of the performance model reveals that describing the overheads
and delays in the model with nonconstant functions could improve the output
quality. This is especially necessary to get good estimations when changing the
interval length, which is indispensable for obtaining an accurate prediction of the
optimal interval length. Since determining overhead functions is a cumbersome
and nontrivial task, it is desirable to develop a method for fast automated workload
characterization.

Appendix A

Deutsche Zusammenfassung

Für das Sammeln detaillierter Laufzeitinformationen, wie Speicherzugriffsmus-
tern, wird in der Betriebssystem- und Sicherheitsforschung häufig auf die funktio-
nale Systemsimulation zurückgegriffen. Der Simulator führt dabei die zu untersu-
chende Arbeitslast in einer virtuellen Maschine (VM) aus, indem er schrittweise
Instruktionen interpretiert oder derart übersetzt, sodass diese auf dem Zustand der
VM arbeiten. Dieser Prozess ermöglicht es, eine umfangreiche Instrumentierung
durchzuführen und so an Informationen zum Laufzeitverhalten zu gelangen, die
auf einer physischen Maschine nicht zugänglich sind.

Obwohl die funktionale Systemsimulation als mächtiges Werkzeug gilt, stellt die
durch die Interpretation oder Übersetzung resultierende immense Ausführungs-
verlangsamung eine substanzielle Einschränkung des Verfahrens dar. Im Vergleich
zu einer nativen Ausführung messen wir für QEMU eine 30-fache Verlangsamung,
wobei die Aufzeichnung von Speicherzugriffen diesen Faktor verdoppelt. Mit
Simulatoren, die umfangreichere Instrumentierungsmöglichkeiten mitbringen als
QEMU, kann die Verlangsamung um eine Größenordnung höher ausfallen. Dies
macht die funktionale Simulation für lang laufende, vernetzte oder interaktive
Arbeitslasten uninteressant. Darüber hinaus erzeugt die Verlangsamung ein unrea-
listisches Zeitverhalten, sobald Aktivitäten außerhalb der VM (z. B. Ein-/Ausgabe)
involviert sind.

In dieser Arbeit stellen wir SimuBoost vor, eine Methode zur drastischen Beschleu-
nigung funktionaler Systemsimulation. SimuBoost führt die zu untersuchende
Arbeitslast zunächst in einer schnellen hardwaregestützten virtuellen Maschine
aus. Dies ermöglicht volle Interaktivität mit Benutzern und Netzwerkgeräten.
Während der Ausführung erstellt SimuBoost periodisch Abbilder der VM (engl.
Checkpoints). Diese dienen als Ausgangspunkt für eine parallele Simulation, bei
der jedes Intervall unabhängig simuliert und analysiert wird. Eine heterogene
deterministische Wiederholung (engl. heterogeneous deterministic Replay) ga-

212 Deutsche Zusammenfassung

rantiert, dass in dieser Phase die vorherige hardwaregestützte Ausführung jedes
Intervalls exakt reproduziert wird, einschließlich Interaktionen und realistischem
Zeitverhalten.

Unser Prototyp ist in der Lage, die Laufzeit einer funktionalen Systemsimulation
deutlich zu reduzieren. Während mit herkömmlichen Verfahren für die Simulation
des Bauprozesses eines modernen Linux über 5 Stunden benötigt werden, schließt
SimuBoost die Simulation in nur 15 Minuten ab. Dies sind lediglich 16% mehr
Zeit, als der Bau in einer schnellen hardwaregestützten VM in Anspruch nimmt.
SimuBoost ist imstande, diese Geschwindigkeit auch bei voller Instrumentierung
zur Aufzeichnung von Speicherzugriffen beizubehalten.

Die vorliegende Arbeit ist das erste Projekt, welches das Konzept der Partitio-
nierung und Parallelisierung der Ausführungszeit auf die interaktive Systemvir-
tualisierung in einer Weise anwendet, die eine sofortige parallele funktionale
Simulation gestattet. Wir ergänzen die praktische Umsetzung mit einem mathe-
matischen Modell zur formalen Beschreibung der Beschleunigungseigenschaften.
Dies erlaubt es, für ein gegebenes Szenario die voraussichtliche parallele Simula-
tionszeit zu prognostizieren und gibt eine Orientierung zur Wahl der optimalen
Intervalllänge. Im Gegensatz zu bisherigen Arbeiten legt SimuBoost einen starken
Fokus auf die Skalierbarkeit über die Grenzen eines einzelnen physischen Systems
hinaus. Ein zentraler Schlüssel hierzu ist der Einsatz moderner Checkpointing-
Technologien. Im Rahmen dieser Arbeit präsentieren wir zwei neuartige Methoden
zur effizienten und effektiven Kompression von periodischen Systemabbildern.

Appendix B

Additional Figures and Data

(a) L = 100ms

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

R
ed
u
ct
io
n
in

S
iz
e
[%

]

(b) L = 100ms

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

S
h
ar
e
in

T
ot
al

C
om

p
re
ss
io
n
[%

]

Generic (LZ4) Deduplication Delta SDS

(a) L = 8 s

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

R
ed
u
ct
io
n
in

S
iz
e
[%

]

(b) L = 8 s

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

S
h
ar
e
in

T
ot
al

C
om

p
re
ss
io
n
[%

]

Generic (LZ4) Deduplication Delta SDS

Figure B.1: On average, the specialized compression techniques profit from shorter
intervals (i.e., more checkpoints), whereas longer intervals accumu-
late more entropy and make generic compression more effective.

214 Additional Figures and Data

12.5
286

13.3
286

13.9
286

14.4
286

14.7
287

15.0
288

15.6
289

17.1
302

20.7
521

27.2
755

36.0
845

46.3
893

58.2
944

70.8
1341

81.6
1656

15.4
380

15.7
375

15.9
373

16.0
376

16.4
387

16.9
395

18.1
404

20.7
426

25.7
672

34.0
1014

45.3
1137

57.4
1201

70.7
1369

83.8
2010

92.3
2286

15.5
485

15.9
481

16.1
477

16.2
486

16.4
499

17.0
508

17.9
514

20.4
548

26.1
796

35.4
1220

47.0
1365

59.4
1440

73.4
1595

86.3
2461

93.6
2897

15.5
580

16.1
575

16.3
574

16.2
580

16.5
615

17.1
619

17.8
622

20.3
662

26.3
930

35.7
1370

47.1
1470

59.3
1517

74.0
1809

86.5
2823

93.6
3439

15.5
653

16.1
651

16.3
650

16.3
656

16.6
688

17.0
704

17.6
713

19.6
748

26.1
1071

35.5
1495

46.7
1652

58.6
1713

74.5
2055

86.2
3170

93.5
4020

15.5
745

16.1
744

16.3
744

16.3
750

16.6
780

17.1
795

17.6
802

19.2
835

26.2
1083

35.3
1625

46.3
1809

57.7
1915

72.9
2126

85.9
3423

93.4
4387

15.5
826

16.1
825

16.3
825

16.3
830

16.6
871

17.1
899

17.6
918

19.1
940

26.1
1189

35.1
1738

45.8
2028

56.8
2094

72.3
2340

85.6
3705

93.3
4790

12.5
173

13.3
173

13.9
173

14.4
173

14.7
177

15.0
182

15.6
186

17.1
189

20.7
217

27.2
390

36.0
495

46.2
545

58.1
577

70.7
610

81.5
839

L L I L I I L Q Q L L L Q Q L

I Q Q L L L L L Q L L L Q L L

I I I I L L L Q Q L L L L L L

L L L L L L L L Q L L L Q L L

L L L L L L L L Q L L L L L L

L L L L L L L L Q L L L L L L

Fixed-Size Hash Table, specjbb, L = 1 s

1

2

3

4

5

6

7

8
C
h
ai
n
L
en

gt
h
l

11.6
328

12.5
318

13.3
315

13.9
322

14.4
335

14.8
340

15.1
346

15.7
351

17.2
543

21.0
785

28.2
875

37.8
924

48.3
953

59.6
1311

71.6
1795

15.2
498

15.4
497

15.8
497

16.1
498

16.2
510

16.1
530

16.6
531

17.5
533

21.8
615

28.5
1110

39.3
1230

50.3
1286

63.2
1324

76.8
1915

87.4
3051

15.2
900

15.3
900

15.5
902

15.8
903

16.3
919

16.3
927

16.3
926

17.1
927

20.8
1018

26.6
1677

34.4
1839

44.6
1915

57.3
1983

70.7
2916

81.1
4614

12.5
173

13.3
173

13.9
173

14.4
173

14.7
177

15.0
182

15.6
186

17.1
189

20.7
217

27.2
390

36.0
495

46.2
545

58.1
577

70.7
610

81.5
839

n-Way Set Associative Cache, specjbb, L = 1 s

1

2

4

8

12
8

25
6

51
2 1k 2k 4k 8k 16

k
32
k

64
k

12
8k

25
6k

51
2k 1m 2m

Total Number of Buckets / Lines

n

Hit Rate [%] (0,60]
(60,70]

(70,80]
(80,90]

(90,95]
(95,100]

59.5
18

69.6
18

76.0
16

81.8
15

85.0
14

86.4
14

87.5
14

88.4
16

89.6
20

91.5
20

93.6
22

96.1
24

98.2
26

99.4
27

99.8
29

66.9
22

81.0
23

86.1
23

87.1
22

87.6
23

87.8
23

88.2
23

88.9
26

90.0
30

91.8
29

94.3
34

96.9
36

99.0
32

99.8
31

100.0
30

72.5
25

84.3
26

87.1
27

87.5
26

87.7
27

87.8
28

88.2
28

88.9
30

90.0
36

91.9
32

94.4
39

97.2
40

99.2
35

99.9
32

100.0
31

75.6
27

85.5
28

87.3
28

87.6
28

87.6
29

87.8
31

88.2
30

88.9
33

90.0
40

91.9
36

94.5
40

97.3
42

99.3
37

99.9
33

100.0
31

76.6
29

86.3
30

87.3
30

87.6
30

87.6
31

87.8
32

88.2
33

88.8
35

90.0
41

91.9
39

94.5
42

97.3
45

99.4
38

100.0
33

100.0
31

77.1
30

87.0
31

87.4
32

87.6
32

87.6
33

87.8
34

88.2
35

88.8
37

90.0
44

91.9
41

94.5
45

97.4
47

99.4
39

100.0
33

100.0
31

77.5
32

86.9
33

87.5
33

87.6
33

87.6
34

87.8
35

88.1
37

88.8
39

90.0
43

91.9
43

94.5
48

97.4
49

99.5
40

100.0
33

100.0
31

59.5
14

69.6
14

76.0
14

81.8
12

85.0
12

86.4
11

87.5
11

88.4
12

89.5
15

91.4
15

93.5
16

95.6
16

97.4
17

98.6
19

99.3
19

L L L L L L L L L L I L L L L

Q L I I Q L I I L L L L L L L

Q I I I I I I Q L L L L L L L

I I I I I L I I L L L L L L L

L I I I Q I I Q I L L L L L L

L I I I L I L I I L L L L L L

Fixed-Size Hash Table, postmark, L = 1 s

1

2

3

4

5

6

7

8

C
h
ai
n
L
en

gt
h
l

48.2
17

59.5
20

69.6
19

76.0
18

81.8
17

85.2
16

86.7
16

87.8
18

88.7
22

89.9
27

92.5
32

95.7
33

98.2
33

99.4
33

99.8
32

64.0
24

78.0
27

85.7
28

87.4
28

87.6
29

87.8
28

88.1
28

88.6
32

89.3
41

90.5
41

92.9
46

96.5
48

99.1
47

99.9
44

100.0
39

77.2
35

85.0
35

87.3
35

87.5
34

87.6
35

87.8
35

88.1
35

88.5
39

89.1
54

89.9
56

91.7
58

96.0
60

99.3
59

100.0
56

100.0
49

59.5
14

69.6
14

76.0
14

81.8
12

85.0
12

86.4
11

87.5
11

88.4
12

89.5
15

91.4
15

93.5
16

95.6
16

97.4
17

98.6
19

99.3
19

n-Way Set Associative Cache, postmark, L = 1 s

1

2

4

8

12
8

25
6

51
2 1k 2k 4k 8k 16

k
32
k

64
k

12
8k

25
6k

51
2k 1m 2m

Total Number of Buckets / Lines

n

Hit Rate [%] (0,60]
(60,70]

(70,80]
(80,90]

(90,95]
(95,100]

Figure B.2: Overview of fixed-size hash table and n-way associative cache hit rates
for data deduplication in SPECjbb and postmark.

Additional Figures and Data 215

Short
Literal

Long
Literal

Match

0 0

0 1

R
L
E
R
L
E

Delta [4..16] Run Length1 [0..15]

Delta [4..40]

0

Dict
[0..5]

1 2 3 4 5 6

Run Length1 [0..15]

R
L
E

1 Run Length1 [0..15]

0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1

4
0
4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5
0
5
1
5
2
5
3
5
4
5
5

3
9…

1 Only with RLE bit set.

Figure B.3: SDS match and literal encoding. Short literals comprise deltas up
to 216 bytes. Long literals describe deltas that span at most 240 bytes.
That means the offsets in the checkpoint database for two consecutive
pages in the state map may not exceed 1 TiB. Runs of up to 216 identical
deltas (a full table) can be encoded with the RLE extension.

(a) L = 1 s

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild
sq
lit
e

ap
ac
he

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

S
h
ar
e
in

T
ot
al

E
n
co
d
in
gs

[%
]

Short Lit. Short Lit.+RLE
Long Lit. Long Lit.+RLE
Match Match+RLE

10
48
0

24
84

97
2

10
77

86
1

19 8 2 11

(b) kernel build, L = 1 s

0

20

40

60

80

100

1 2 3 4 5 6 7 8 >8

Run Length [2x]

S
h
ar
e
in

R
L
E

E
n
co
d
in
gs

[%
]

Figure B.4: (a) The final output of an SDS encoded RAM state map contains
mostly short literals (2 bytes) and matches (1 byte). Long literals with
RLE extension (7 bytes) are rarely used. (b) A run length of 2 (i.e.,
1 repetition) is most frequent, making up 66% of all RLE encodings.
Except for 21, values depict the share of run lengths between 2x−1

and up to 2x . The annotations provide the average absolute number
of occurrences for each run length in kernel build checkpoints for a
4 GiB VM.

216 Additional Figures and Data

Sync. Event Site Size Description
CPUID KVM 16 The return value of the x86 CPUID instruction.

It contains information about supported CPU
features and a CPU identification.

Recorded information:
EAX(4), EBX(4), ECX(4), EDX(4)

RDTSC KVM 8 The time stamp returned by the RDTSC
instruction.

Recorded information:
EAX(4), EDX(4)

RDMSR
WRMSR [Opt.]

KVM 12 The value read from or written to a model
specific register (MSR) using the RDMSR
and WRMSR instructions. Needed to fake
unimplemented hardware CPU features. ECX
specifies the MSR register.

Recorded information:
EAX(4), EDX(4), ECX(4) [Opt.]

IN
OUT [Opt.]

KVM 12 The value read or written using port I/O.

Recorded information:
Port(4), Value(4), Length(4) [Opt.]

Read APIC†

Write APIC† [Opt.]
KVM 12 The value read from or written to the APIC

memory at 0xFEE00000 – 0xFEEFFFFF in
guest physical memory. We inject interrupts
from the log and do not faithfully emulate the
APIC.

Recorded information:
Address(4), Value(4), Length(4) [Opt.]

Read HPET
Write HPET [Opt.]

QEMU 12 The value read from or written to the APIC
memory at 0xFED00000 – 0xFED003FF in
guest physical memory. Required for correct
clock and timer replay.

Recorded information:
Address(4), Value(4), Length(4) [Opt.]

† Requires deactivation of direct interrupt delivery (APICv) to virtual machines.

Table B.1: Synchronous non-deterministic events recorded by SimuBoost. Site
denotes recording location. Optional events or information are not
needed for successful replay, but help detecting diverging replays. The
value in parentheses indicates size in bytes. Total size is also in bytes
and comprises event specific data only.

Additional Figures and Data 217

Async. Event Site Size Description
INT† KVM 4 Interrupt

Recorded information:
Vector(4)

SMI KVM 0 System management interrupt (SMI) to enter
system management mode (SMM).

Recorded information:
-

Write DMA QEMU 8+X Write from a virtual device into guest physical
memory using (virtual) DMA.

Recorded information:
Address(8), Data(X)

† Requires deactivation of direct interrupt delivery (APICv) to virtual machines.

Table B.2: Asynchronous non-deterministic events recorded by SimuBoost. Site
denotes recording location. The value in parentheses indicates size in
bytes. Total size is also in bytes and comprises event specific data only.

Port Address Description
0x1CE – 0x1D0 VESA BIOS Extension (VBE)

0x3B0 – 0x3DF Video Graphics Array (VGA)

0x3F8 – 0x3FC COM1 Serial Port

0x402 [Opt.] SeaBIOS Debug Port

0xCF8 PCI Index

0xCFC – 0xCFF PCI Data
Only if chipset or video adapter are selected via the PCI
index port.

Table B.3: To make output over the video adapter or the serial port accessible
during replay, the given ports must be forwarded to the corresponding
virtual devices. This also allows proper configuration of the physical
address space when loading a checkpoint or replaying the BIOS.

218 Additional Figures and Data

(a)

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

S
h
a
re

in
E
ve
n
ts

[%
]

(b) Uncompressed

0

20

40

60

80

100

po
st
m
ar
k

sp
ec
jb
b

ke
rn
el
bu
ild

ap
ac
he

gn
up
g

en
co
de
-m
p3

py
be
nc
h

po
vr
ay

ph
pb
en
ch id

le

S
h
a
re

in
L
o
g
S
iz
e
[%

]
DMA IN / OUT RDTSC INT / SMI Others

Figure B.5: (a) With a share of 60% to 99%, timestamp readings (RDTSC) are by
far the most common events. (b) Looking at the share in the overall
log size, however, reveals that DMA operations possess the highest
per-event size. Shares encompass reads and writes. See Tables B.1
and B.2 for a complete list of event types.

postmark specjbb kernel build apache gnupg
76 ↘ 26 22996 ↘ 1560 1010 ↘ 319 9816 ↘ 699 71 ↘ 25

encode-mp3 pybench povray phpbench idle
144 ↘ 105 60 ↘ 26 684 ↘ 135 3427 ↘ 146 5 ↘ 0.6

Table B.4: Total log size per workload before and after compression in MiB.

L Failed Total Rate L Failed Total Rate
sqlite 3.0 s 1 11 9.09% phpbench 3.0 s 1 145 0.69%
encode-mp3 4.0 s 1 19 5.26% pybench 0.1 s 1 647 0.15%
kernel build 4.0 s 8 208 3.85% apache 0.3 s 1 843 0.12%
gnupg 0.5 s 1 86 1.16% postmark 0.1 s 0 1040 0.00%
povray 3.0 s 4 380 1.05% idle 0.1 s 0 587 0.00%

∅ 2.14%

Table B.5: Maximum replay failure rate observed over all configurations according
to Chapter 9.

Additional Figures and Data 219

Tvm Tps Tsim (ssim)
HW-Virt. SimuBoost Serial Replay Serial Sim.

apache 01:58 04:20 (2.19x) 59:03 (29.84x) 57:31 (29.06x)
L=1.0 s tc=4.24 ms svm =2.02 n=241 N=16(16) ts=432 ms S=13.62x E=85(85)%

+ tracing (w) 04:18 (2.18x) 01:15:32 (38.17x) 01:25:41 (43.30x)
L=0.5 s tc=3.87 ms svm =2.05 n=489 N=24(20) ts=338 ms S=17.51x E=73(88)%

+ tracing (r+w) 04:21 (2.20x) 01:41:36 (51.34x) 01:57:39 (59.45x)
L=0.3 s tc=3.64 ms svm =2.09 n=825 N=32(27) ts=292 ms S=23.30x E=73(86)%

encode-mp3 01:04 01:10 (1.10x) 17:53 (16.75x) 16:00 (15.00x)
L=0.1 s tc=2.73 ms svm =1.04 n=659 N=24(20) ts=135 ms S=15.23x E=63(76)%

+ tracing (w) 01:11 (1.11x) 27:29 (25.74x) 30:40 (28.72x)
L=0.1 s tc=2.73 ms svm =1.04 n=659 N=32(29) ts=136 ms S=23.10x E=72(80)%

+ tracing (r+w) 01:15 (1.18x) 59:03 (55.30x) 01:07:44 (63.43x)
L=0.1 s tc=2.73 ms svm =1.04 n=665 N=64(60) ts=135 ms S=47.02x E=73(78)%

gnupg 00:33 00:45 (1.33x) 04:37 (8.17x) 04:30 (7.97x)
L=0.3 s tc=3.42 ms svm =1.20 n=135 N=16(10) ts=227 ms S=6.17x E=39(62)%

+ tracing (w) 00:48 (1.42x) 09:28 (16.73x) 12:34 (22.20x)
L=0.3 s tc=3.42 ms svm =1.20 n=135 N=24(15) ts=233 ms S=11.80x E=49(79)%

+ tracing (r+w) 00:48 (1.43x) 18:03 (31.90x) 23:10 (40.94x)
L=0.1 s tc=3.00 ms svm =1.23 n=417 N=48(36) ts=153 ms S=22.34x E=47(62)%

idle 01:00 00:59 (1.00x) 00:02 (0.04x) 01:00 (1.01x)
L=1.0 s tc=4.11 ms svm =1.00 n=59 N=16(1) ts=125 ms S=0.04x E=0(4)%

+ tracing (w) 00:59 (1.00x) 00:02 (0.04x) 01:00 (1.00x)
L=1.0 s tc=4.11 ms svm =1.00 n=59 N=16(1) ts=127 ms S=0.04x E=0(4)%

+ tracing (r+w) 00:59 (1.00x) 00:03 (0.06x) 01:00 (1.00x)
L=1.0 s tc=4.39 ms svm =1.00 n=59 N=16(1) ts=126 ms S=0.06x E=0(6)%

kernel build 12:52 14:54 (1.16x) 05:08:12 (23.93x) 04:51:49 (22.66x)
L=2.0 s tc=6.13 ms svm =1.08 n=410 N=24(24) ts=439 ms S=20.68x E=86(86)%

+ tracing (w) 15:35 (1.21x) 07:05:37 (33.05x) 07:53:02 (36.73x)
L=2.0 s tc=6.13 ms svm =1.08 n=410 N=32(32) ts=461 ms S=27.31x E=85(85)%

+ tracing (r+w) 15:13 (1.18x) 10:25:10 (48.55x) 11:50:43 (55.19x)
L=1.0 s tc=5.33 ms svm =1.10 n=838 N=48(48) ts=516 ms S=41.06x E=86(86)%

phpbench 06:31 07:42 (1.18x) 02:54:29 (26.78x) 02:14:56 (20.71x)
L=0.5 s tc=2.87 ms svm =1.09 n=849 N=24(24) ts=129 ms S=22.64x E=94(94)%

+ tracing (w) 07:24 (1.14x) 05:04:21 (46.70x) 04:49:27 (44.42x)
L=0.3 s tc=2.78 ms svm =1.09 n=1424 N=48(47) ts=125 ms S=41.09x E=86(87)%

+ tracing (r+w) 07:31 (1.15x) 08:26:53 (77.78x) 08:48:01 (81.02x)
L=0.3 s tc=2.77 ms svm =1.09 n=1422 N=80(78) ts=128 ms S=67.35x E=84(86)%

postmark 00:59 01:37 (1.63x) 25:35 (25.82x) 19:12 (19.37x)
L=0.5 s tc=6.51 ms svm =1.43 n=172 N=24(17) ts=384 ms S=15.80x E=66(93)%

+ tracing (w) 01:42 (1.72x) 40:29 (40.85x) 44:36 (45.01x)
L=0.5 s tc=6.51 ms svm =1.43 n=172 N=32(27) ts=387 ms S=23.78x E=74(88)%

+ tracing (r+w) 01:47 (1.81x) 01:00:32 (61.09x) 01:15:58 (76.66x)
L=0.3 s tc=5.67 ms svm =1.54 n=306 N=48(41) ts=511 ms S=33.72x E=70(82)%

Continues on next page→

220 Additional Figures and Data

Tvm Tps Tsim (ssim)
HW-Virt. SimuBoost Serial Replay Serial Sim.

povray 18:47 19:57 (1.06x) 25:11:21 (80.40x) 25:31:56 (81.49x)
L=0.5 s tc=2.88 ms svm =1.01 n=2249 N=80(80) ts=153 ms S=75.75x E=95(95)%

+ tracing (w) 19:51 (1.06x) 29:14:22 (93.32x) 31:54:10 (101.82x)
L=0.3 s tc=2.82 ms svm =1.01 n=3806 N=96(95) ts=186 ms S=88.34x E=92(93)%

+ tracing (r+w) 24:20 (1.29x) 41:08:52 (131.33x) 45:17:48 (144.57x)
L=0.3 s tc=2.74 ms svm =1.01 n=3776 N=108(108) ts=182 ms S=101.44x E=94(94)%

pybench 01:02 01:11 (1.15x) 29:46 (28.51x) 23:55 (22.92x)
L=0.1 s tc=2.91 ms svm =1.03 n=643 N=32(30) ts=171 ms S=24.87x E=78(83)%

+ tracing (w) 01:13 (1.17x) 52:19 (50.12x) 53:40 (51.42x)
L=0.1 s tc=2.91 ms svm =1.03 n=643 N=64(54) ts=253 ms S=42.84x E=67(79)%

+ tracing (r+w) 01:17 (1.23x) 01:27:26 (83.76x) 01:39:03 (94.89x)
L=0.1 s tc=3.01 ms svm =1.03 n=646 N=96(88) ts=183 ms S=68.10x E=71(77)%

sqlite 00:28 00:25 (0.89x) 00:57 (2.04x) 01:57 (4.15x)
L=0.3 s tc=3.47 ms svm =0.84 n=79 N=16(3) ts=233 ms S=2.28x E=14(76)%

+ tracing (w) 00:25 (0.91x) 01:13 (2.61x) 02:32 (5.41x)
L=0.3 s tc=3.47 ms svm =0.84 n=79 N=16(4) ts=258 ms S=2.88x E=18(72)%

+ tracing (r+w) 00:25 (0.92x) 01:38 (3.49x) 03:37 (7.70x)
L=0.3 s tc=3.41 ms svm =0.84 n=79 N=16(5) ts=224 ms S=3.81x E=24(76)%

Table B.6: Detailed overview of SimuBoost evaluation results. The numbers given
in parenthesis are the slowdown compared to Tvm for the corresponding
execution mode. For N and E, the number in parenthesis denotes the
median number of actually used nodes and the corresponding efficiency,
respectively. Run times are in the format [hh:mm:ss]. Measurements
reflect the best configuration according to Chapter 9. See Chapter 5 for
a description of the symbols.

No Tracing Tracing (w) Tracing (r+w)
N Busy N(L) N Busy N(L) N Busy N(L)

apache 16 16 16 24 20 21 32 27 27
encode-mp3 24 20 19 32 29 28 64 60 57
gnupg 16 10 9 24 15 17 48 36 29
idle 16 1 1 16 1 1 16 1 1
kernel build 24 24 24 32 32 33 48 48 48
phpbench 24 24 25 48 47 44 80 78 72
postmark 24 17 19 32 27 29 48 41 43
povray 80 80 81 96 95 94 108 108 133
pybench 32 30 32 64 54 54 96 88 89
sqlite 16 3 4 16 4 5 16 5 6

Table B.7: Estimated optimal number of nodes (Equation 5.14) is close to the
measured number of busy nodes, when using the measured optimal
interval length. In case of povray (r+w), our cluster is not large enough.

Additional Figures and Data 221

1 2 3 4 5 6 7

8 9

10

11

12

13

14

16

18

19

20

21 22 2324 2526 27 28 29 3031 32 33 34 3536

37

38

39 41

42 4344 45 46 4748

495051 52 535455 5657

58

5960 61 6263 6465 66676869 70 7172 73 747576 77 7879

80

81

828384 8586 87 888990 91 9293 94 9596 97 9899 10
0

10
1

10
210

3 10
4

10
510
6

10
7

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8 12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
2 15
3

15
4

15
5

15
6

15
7

15
8

15
9

16
0

16
1

16
2

16
3

16
4

16
616
7

16
8

16
9

17
0

17
1

17
2

17
3

17
4

17
5

17
6 17
7

17
8

17
9

18
0

18
1

18
2

18
3

18
4

18
5

18
6

18
7

18
8

18
9

19
0

19
1

19
2

19
3

19
4

19
5

19
6

19
7

19
8

19
9

20
0

20
1

20
2

20
3

20
4

20
5

20
6

20
7

20
8 20
9

21
0

21
1

21
2

21
3

21
4

21
5

21
6

2
17 21
8

21
9

22
0

2
2122
2

22
3

22
4

22
5

22
6

22
7

2
282
29 2
3023
1

23
2

2
33

2
342
3523
6

23
7

23
8

23
9

24
0

24
1

24
2

24
3

2
44 24
5

2
46

2
4
7

2
4
8

2
49 25
0

2
5
1

2
5
2

2
5
3

2
5
4

2
5
5

25
6

2
5
7

2
5
8

2
5
9

2
60 2
6
1

2
6
2

26
3

26
4

2
6
5

2
66 2
6
7

2
6
8 26
9

2
7
0 2
71 2
7
2

2
73 2
742
7
5

2
7
6

27
7

2
7
8

27
9

2
8
0

2
8
1

2
8
2

2
8
3

2
84 28
5

2
8
6

2
87 28
8

2
8
9

2
90 2
91 29
2 2
93

2
94 2
9
5

29
6

29
7

2
9
8

2
9930
0

3
01

3
023
03 3
0
4

3
0
5

30
6

3
0
7

3
0
8

3
093
1
0

3
1
1

3
12 31
3

3
1
4

3
1
5

3
16 31
7

31
8

3
19 3
2
0

3
2
1

3
2
2

3
2
3

3
2
4

3
2
5

3
2
6

3
2
7

3
2
8

3
29

3
3033
1

3
323
3
3

33
4

3
3
5

3
363
37 33
8

3
3
9

34
0

3
4
1 34

2

3
4
3

3
443
45 3
4
6

34
7

34
8

3
4
9

3
50 3
5
1

3
5
2

3
5
3

35
4

3
5535
6

35
7

3
5
8

35
9

36
036
1

3
623
6
3

3
6
4

3
6
5 36

6

3
6
7

3
6836
9

3
70 3
713
7
2

3
7
3

3
7
4

3
75

3
76

3
7
7

3
7
8

3
7
9

3
80 38
1

3
8
2

3
8
338
4

3
8
5

3
8
6

3
873
8
8

3
8
9 39
0

39
1

3
9239
3

39
4

39
5

39
6 39
7

39
8

3
994
0
0

4
0
1

4
0
2

40
3

40
4

4
0
5

4
06

4
074
08 4
09 4
1
0

4
11

4
124
1
3 4
14

4
1
5

4
1
6

30
60

90
12

0
15

0
18

0
21

0
24

0
2
70

30
0

3
3
0

3
60

3
9
0

8
9
4
.4
1
s

ke
rn
el

b
u
il
d
,
L
=

2.
0
s,

N
=

24

V
1,
1

2,
1

2,
2

4,
1

4,
2

3,
1

3,
2

5,
1

3,
3

5,
2

3,
4

1,
2

5,
3

1,
3

2,
3

4,
3

1,
4

2,
4

4,
4

1,
5

1,
6

1,
7

1,
8

1,
9

00
:0
0

04
:0
0

08
:0
0

1
2:
0
0

14
:5
4

R
u
n
T
im

e
[m

m
:s
s]

Node(System,CPU)

Fi
gu

re
B

.6
:S

im
ul

at
io

n
di

ag
ra

m
of

a
ke

rn
el

bu
ild

.
In

te
rv

al
s

at
th

e
be

gi
nn

in
g

co
m

pl
et

e
fa

st
er

.
T

he
la

st
pr

od
uc

ed
in

te
rv

al
ta

ke
s

on
ly

50
%

of
th

e
av

er
ag

e
in

te
rv

al
si

m
ul

at
io

n
ti

m
e.

H
ow

ev
er

,d
ue

to
th

e
de

la
ye

d
si

m
ul

at
io

n
(r

ed
ba

r)
,t

he
ov

er
al

l
co

m
pl

et
io

n
ti

m
e

on
ly

m
ar

gi
na

lly
ch

an
ge

s.
M

is
si

ng
in

te
rv

al
s

in
th

e
di

ag
ra

m
fa

ile
d

to
re

pl
ay

.

222 Additional Figures and Data

1

2

3

456

7

8

9101
1

12

13141
5 161

7 1
819 202

122 2324

2
5

26 2
7

2
8 2930 31

323
334 35

363
7 383940 41

4
243 44

454
6 4
7 4
8

495051 52 5354 5556 5758596061 6263 64 65 6667 6869 707172 7
3 747

5 767
7 7879 8

0 81 828384 858687 8
8 8990 91 9

293 9
495 96 9

7 9899100101

102103 104

105 106107 108

109 110111112113114

115 116

117 118119 120

121 122

123124125126

127128 129

130131 132133 134 135

1
0

2
0

3
0

40
50

60
70

80
90

1
00

110
120

130
45.04

s

gn
u
p
g,

L
=

30
0
m
s,

N
=

16

V

3,1

1,1

2,1

3,2

4,1

2,2

5,1

4,2

1,2

1,3

3,3

4,3

1,4

2,3

1,5

1,6

00:00
00:10

00:20
00

:30
0
0:40

00
:45

R
u
n
T
im

e
[m

m
:ss]

Node (System,CPU)

Figure
B

.7:Sim
ulation

diagram
of

gnupg.
T

he
tw

o
program

phases
are

clearly
visible

in
the

interval
sim

ulation
tim

es.
T

he
last

produced
intervalm

arks
the

end
of

the
parallelsim

ulation,but
takes

50%
longer

to
sim

ulate
than

the
average

interval.
A

s
w

e
use

m
ore

nodes
than

necessary,a
lot

of
idle

tim
e

is
created.

List of Tables

2.1 Overview of System Virtual Machines 41

6.1 Shortest Interval Length per Workload 111
6.2 Run Time per Page Size . 120
6.3 Copy Excess with Large Pages . 121
6.4 Working Set Sizes for 1 s Intervals . 129
6.5 Run-Time Overhead of Sparse Checkpointing 133

7.1 Total Checkpoint Data per Workload 142

8.1 Undefined Flag Computation for Selected X86 Instructions 176

9.1 Software Configuration . 189
9.2 Hardware Configuration . 190

B.1 Recorded Synchronous Non-Deterministic Events 216
B.2 Recorded Asynchronous Non-Deterministic Events 217
B.3 Writable Port Addresses During Replay 217
B.4 Total Log Size per Workload . 218
B.5 Replay Failure Rate . 218
B.6 Detailed SimuBoost Evaluation Results 220
B.7 Estimated Optimal Interval Length 220

List of Figures

1.1 Parallel Simulation with SimuBoost 3

2.1 Virtualization as Isomorphism . 11
2.2 Computer System Architecture . 13
2.3 Process and System Virtual Machines 14
2.4 Type I and Type II Hypervisors . 16
2.5 Computer Hardware Division . 17

224 List of Figures

2.6 Classic RISC Processor Pipeline . 19
2.7 Simple Interpreter . 20
2.8 Simple Binary Translator . 22
2.9 Translation Block Chaining . 24
2.10 Virtual Machine Extensions (VMX) Operation 28
2.11 Two-level Page Table . 31
2.12 Levels of Memory Virtualization . 32
2.13 Software MMU . 34
2.14 Shadow Page Tables (SPT) . 35
2.15 Second Level Address Translation (SLAT) 37
2.16 Spectrum of Virtualization Techniques 42
2.17 QEMU/KVM: Overview . 43
2.18 QEMU/KVM: Memory Regions and RAM Blocks 45

3.1 Slowdown of Serial Full System Simulation 67

4.1 Division of Simulation Time . 79
4.2 Parallel Simulation with SimuBoost 80

5.1 Optimal Setup: Overview of Parameters 88
5.2 Optimal Setup: Interval Length . 91
5.3 Optimal Setup: ∆S(n) . 92
5.4 Optimal Setup: Number of Nodes . 93
5.5 Constrained Setup: Queuing of Simulations 95
5.6 Constrained Setup: Interval Length 97
5.7 Constrained Setup: Sawtooth Steps 97

6.1 Continuous Checkpointing in SimuBoost 101
6.2 Downtime with Stop-and-Copy Checkpointing 104
6.3 Run Time and Bandwidth with Stop-and-Copy 105
6.4 Number of Dirty Pages per Interval Length 106
6.5 Per-Checkpoint Downtime with Incremental Checkpointing 108
6.6 Per-Checkpoint Downtime with Incremental Copy-on-Write 109
6.7 Downtime and Async. Time with Incremental Copy-on-Write . . . 110
6.8 Run-Time Overhead with Incremental Copy-on-Write 112
6.9 Percentage of Pages Copied via Copy-on-Write Fault 113
6.10 Number of Page Faults and Scanned PTEs 116
6.11 Run-Time Overhead per Dirty Logging Technique 117
6.12 Downtime per Dirty Logging Technique 118
6.13 Run-Time Overhead per Guest Size and Network Bandwidth Com-

parison . 119
6.14 Copy Excess of 2 MiB Pages Compared to 4 KiB Pages 120
6.15 Dependency Chain in Incremental Checkpoints 125
6.16 Separation of Checkpoints and Data 126
6.17 Simutrace as Storage Solution for Checkpoints 127

List of Figures 225

6.18 Working Set Tracking for Sparse Checkpointing 130
6.19 Loading Time of Full and Sparse Checkpoints 131
6.20 Sparse Memory Consumption and Run-Time Overhead 132

7.1 Pulling versus Pushing . 137
7.2 Network Bandwidth Limitations . 138
7.3 Data Reduction Pipeline . 139
7.4 Compressed Bandwidth and Compression Ratio 141
7.5 Effectiveness of Compression Methods (L = 1000 ms) 143
7.6 CPU Usage . 144
7.7 Fixed-Size Hash Table . 145
7.8 Data Deduplication Hit Rates for kernel build 146
7.9 Deduplication Ratio . 148
7.10 Decision Quality and Configuration for Delta Application Heuristic 150
7.11 Delta Chain . 150
7.12 Delta Application and Compression Ratios 151
7.13 SDS Compression Loop . 153
7.14 SDS Encode Function . 154
7.15 SDS Compression versus LZ4 . 155
7.16 Checkpoint Database Reference Distribution 156
7.17 Multicast Repair . 158

8.1 Basic Event Structure . 163
8.2 Synchronous and Asynchronous Events in a Common Log 163
8.3 Simutrace as Storage Solution for Recording Logs 164
8.4 Fuzzy Landmark . 166
8.5 Simplified CPU Loop . 167
8.6 Run-Time Overhead of Deterministic Recording 172
8.7 Event Rate, Data Volume, and Compression Ratio in Det. Replay . 173
8.8 Status Flags in EFLAGS Register . 175
8.9 Store Exclusive Divergence on ARM 181

9.1 Overview of Evaluation Setup . 187
9.2 Slowdown of Serial Replay vs. Serial Simulation 193
9.3 Normalized Parallel Simulation Time 194
9.4 Scalability and Efficiency . 196
9.5 Queue Length and Parallel Simulations for a Kernel Build 197
9.6 Queue Length and Parallel Simulations for GnuPG 198
9.7 Share of Initialization Time in Busy Time 199
9.8 Influences on Simulation Speed . 200
9.9 Efficiency based on Median Number of Busy Nodes 201
9.10 Tps and Lopt Errors . 203
9.11 Tps Estimation with Varying Base Intervals 204

10.1 Three-Stage SimuBoost . 209

226 List of Figures

B.1 Effectiveness of Compression Methods (L ∈ {100, 8000}ms) . . . 213
B.2 Data Deduplication Hit Rates for SPECjbb and Postmark 214
B.3 SDS Match and Literal Encoding . 215
B.4 Share of SDS Encodings and Run Lengths 215
B.5 Shares of Event Types in Replay Logs 218
B.6 Simulation Diagram of a Kernel Build (L = 2000, N = 24) 221
B.7 Simulation Diagram of GnuPG (L = 300, N = 16) 222

Bibliography

[1] Apache HTTP Server Project. http://httpd.apache.org/. [Online;
retrieved June 11, 2019].

[2] Bochs IA-32 Emulator. http://bochs.sourceforge.net/. [Online;
retrieved Apr. 17, 2018].

[3] FFmpeg. http://ffmpeg.org/. [Online; retrieved June 12, 2018].

[4] GNU Gzip. http://www.gnu.org/software/gzip/. [Online; re-
trieved June 11, 2018].

[5] Google FarmHash. https://github.com/google/farmhash. [On-
line; retrieved Jan. 28, 2019].

[6] Kyoto Cabinet. http://fallabs.com/kyotocabinet/. [Online; re-
trieved Dec. 31, 2018].

[7] Lempel-Ziv-Oberhumer (LZO). http://www.oberhumer.com/
opensource/lzo/. [Online; retrieved June 12, 2018].

[8] LevelDB. https://github.com/google/leveldb/. [Online; re-
trieved Dec. 31, 2018].

[9] LZMA SDK. https://www.7-zip.org/sdk.html. [Online; retrieved
Jan. 21, 2019].

[10] MongoDB. https://www.mongodb.com/. [Online; retrieved Dec. 31,
2018].

[11] Phoronix Test Suite. http://www.phoronix-test-suite.com/. [On-
line; retrieved May 29, 2018].

[12] Redis. https://redis.io/. [Online; retrieved Dec. 31, 2018].

[13] RUBiS. http://rubis.ow2.org/. [Online; retrieved June 11, 2018].

http://httpd.apache.org/
http://bochs.sourceforge.net/
http://ffmpeg.org/
http://www.gnu.org/software/gzip/
https://github.com/google/farmhash
http://fallabs.com/kyotocabinet/
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
https://github.com/google/leveldb/
https://www.7-zip.org/sdk.html
https://www.mongodb.com/
http://www.phoronix-test-suite.com/
https://redis.io/
http://rubis.ow2.org/

228 Bibliography

[14] SPECjbb2005. http://spec.org/jbb2005/. [Online; retrieved June
11, 2018].

[15] SPECweb99. http://www.spec.org/web99/. [Online; retrieved June
11, 2018].

[16] SuperFastHash. http://www.azillionmonkeys.com/qed/hash.
html. [Online; retrieved June 8, 2018].

[17] Sysbench Benchmark Suite. https://github.com/akopytov/
sysbench. [Online; retrieved June 12, 2018].

[18] The x86 KVM Shadow MMU. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/virtual/kvm/mmu.txt. [Online; retrieved May 15,
2018].

[19] Advanced Configuration and Power Interface (ACPI) Specification - Version
6.3, Jan. 2019.

[20] K. Adams and O. Agesen. A comparison of software and hardware tech-
niques for x86 virtualization. In Proceedings of the international Conference
on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS’06, pages 2–13, San Jose, California, USA, Oct. 2006. URL:
https://doi.org/10.1145/1168857.1168860.

[21] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual -
Volume 2: System Programming, Dec. 2017.

[22] O. Agesen, A. Garthwaite, J. Sheldon, and P. Subrahmanyam. The evolution
of an x86 virtual machine monitor. ACM SIGOPS Operating Systems Re-
view, 44(4):3–18, 2010. URL: https://doi.org/10.1145/1899928.
1899930.

[23] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon. Software techniques
for avoiding hardware virtualization exits. In Proceedings of the USENIX
Annual Technical Conference, USENIX ATC’12, pages 373–385, Boston,
Massachusetts, USA, June 2012. URL: https://www.usenix.org/
system/files/conference/atc12/atc12-final158.pdf.

[24] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, F. Xia, and S. A. Madani.
Virtual machine migration in cloud data centers: a review, taxonomy, and
open research issues. The Journal of Supercomputing, 71(7):2473–2515,
July 2015. URL: https://doi.org/10.1007/s11227-015-1400-5.

http://spec.org/jbb2005/
http://www.spec.org/web99/
http://www.azillionmonkeys.com/qed/hash.html
http://www.azillionmonkeys.com/qed/hash.html
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/virtual/kvm/mmu.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/virtual/kvm/mmu.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/virtual/kvm/mmu.txt
https://doi.org/10.1145/1168857.1168860
https://doi.org/10.1145/1899928.1899930
https://doi.org/10.1145/1899928.1899930
https://www.usenix.org/system/files/conference/atc12/atc12-final158.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final158.pdf
https://doi.org/10.1007/s11227-015-1400-5

Bibliography 229

[25] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi. McSimA+: A manycore simula-
tor with application-level+ simulation and detailed microarchitecture mod-
eling. In Proceedings of the International Symposium on Performance Analysis
of Systems and Software, ISPASS’13, pages 74–85, Austin, Texas, USA, Apr.
2013. URL: https://doi.org/10.1109/ISPASS.2013.6557148.

[26] S. Akiyama, T. Hirofuchi, R. Takano, and S. Honiden. Fast wide area
live migration with a low overhead through page cache teleportation.
In Proceedings of the International Symposium on Cluster, Cloud and Grid
Computing, CCGrid’13, pages 78–82, Delft, Netherlands, May 2013. URL:
https://doi.org/10.1109/CCGrid.2013.57.

[27] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu. VMFlock: Virtual
machine co-migration for the cloud. In Proceedings of the International
Symposium on High Performance Distributed Computing, HPDC’11, pages
159–170, San Jose, California, USA, June 2011. URL: https://doi.
org/10.1145/1996130.1996153.

[28] A. R. Alameldeen, M. M. Martin, C. J. Mauer, K. Moore, M. Xu, M. D. Hill,
D. A. Wood, and D. J. Sorin. Simulating a $2m commercial server on a $2k
pc. Computer, 36(2):50–57, 2003. URL: https://doi.org/10.1109/
MC.2003.1178046.

[29] A. R. Alameldeen and D. A. Wood. Variability in architectural simulations of
multi-threaded workloads. In Proceedings of the International Symposium on
High-Performance Computer Architecture, HPCA-9’03, pages 7–18, Anaheim,
California, USA, Feb. 2003. URL: https://doi.org/10.1109/hpca.
2003.1183520.

[30] G. Altekar and I. Stoica. Output-deterministic replay for multicore de-
bugging. Technical Report UCB/EECS-2009-108, University of California
at Berkeley, EECS Department, Aug. 2009. URL: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2009/EECS-2009-108.html.

[31] B. Amstadt and M. K. Johnson. Wine. Linux Journal, 1994(4es):3, Aug.
1994.

[32] ARM Limited. ARM architecture reference manual - ARMv8, for ARMv8-A
architecture profile, Dec. 2017.

[33] J. W. Atwood. A classification of reliable multicast protocols. IEEE Net-
work, 18(3):24–34, May 2004. URL: https://doi.org/10.1109/
MNET.2004.1301019.

https://doi.org/10.1109/ISPASS.2013.6557148
https://doi.org/10.1109/CCGrid.2013.57
https://doi.org/10.1145/1996130.1996153
https://doi.org/10.1145/1996130.1996153
https://doi.org/10.1109/MC.2003.1178046
https://doi.org/10.1109/MC.2003.1178046
https://doi.org/10.1109/hpca.2003.1183520
https://doi.org/10.1109/hpca.2003.1183520
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-108.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-108.html
https://doi.org/10.1109/MNET.2004.1301019
https://doi.org/10.1109/MNET.2004.1301019

230 Bibliography

[34] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic
optimization system. In Proceedings of the Conference on Programming
Language Design and Implementation, PLDI’00, pages 1–12, Vancouver,
British Columbia, Canada, June 2000. URL: https://doi.org/10.
1145/349299.349303.

[35] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings of
the Symposium on Operating Systems Principles, SOSP’03, pages 164–177,
Bolton Landing, New York, USA, Oct. 2003. URL: https://doi.org/
10.1145/945445.945462.

[36] S. K. Barker, T. Wood, P. J. Shenoy, and R. K. Sitaraman. An empiri-
cal study of memory sharing in virtual machines. In Proceedings of the
USENIX Annual Technical Conference, USENIX ATC’12, pages 273–284,
Boston, Massachusetts, USA, June 2012. URL: https://www.usenix.
org/system/files/conference/atc12/atc12-final226.pdf.

[37] N. Baudis. Deduplicating virtual machine checkpoints for distributed
system simulation. Bachelor’s thesis, Karlsruhe Institute of Technology
(KIT), Operating Systems Group, Nov. 2013.

[38] F. Bellard. QEMU, a fast and portable dynamic translator. In Pro-
ceedings of the USENIX Annual Technical Conference, FREENIX Track,
USENIX ATC’05, pages 41–46, Anaheim, California, USA, Apr. 2005.
URL: https://www.usenix.org/legacy/event/usenix05/tech/
freenix/full_papers/bellard/bellard.pdf.

[39] N. Bhatia. Performance evaluation of Intel EPT hardware assist. Technical
report, VMware, Inc, Mar. 2009. URL: https://www.vmware.com/pdf/
Perf_ESX_Intel-EPT-eval.pdf.

[40] N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla, M. Hiltunen, and M. Satya-
narayanan. Jettison: Efficient idle desktop consolidation with partial VM
migration. In Proceedings of the European Conference on Computer Sys-
tems, EuroSys’12, pages 211–224, Bern, Switzerland, Apr. 2012. URL:
https://doi.org/10.1145/2168836.2168858.

[41] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator.
ACM SIGARCH Computer Architecture News, 39(2):1–7, May 2011. URL:
https://doi.org/10.1145/2024716.2024718.

[42] N. Boehr. Evaluating copy-on-write for high frequency checkpoints. Bach-
elor’s thesis, Karlsruhe Institute of Technology (KIT), Operating Systems
Group, Sept. 2015.

https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://www.usenix.org/system/files/conference/atc12/atc12-final226.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final226.pdf
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
https://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
https://doi.org/10.1145/2168836.2168858
https://doi.org/10.1145/2024716.2024718

Bibliography 231

[43] E. B. Boyer, M. C. Broomfield, and T. A. Perrotti. GlusterFS one storage
server to rule them all. Technical Report LA-UR-12-23586, Los Alamos
National Lab, July 2012.

[44] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-area
migration of virtual machines including local persistent state. In Proceedings
of the International Conference on Virtual Execution Environments, VEE’07,
pages 169–179, San Diego, California, USA, June 2007. URL: https:
//doi.org/10.1145/1254810.1254834.

[45] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. ACM
Transactions on Computer Systems (TOCS), 14(1):80–107, 1996. URL:
https://doi.org/10.1145/225535.225538.

[46] K. Buchacker and V. Sieh. Framework for testing the fault-tolerance of sys-
tems including OS and network aspects. In Proceedings of the International
Symposium on High Assurance Systems Engineering, HASE’01, pages 95–105,
Oct. 2001. URL: https://doi.org/10.1109/HASE.2001.966811.

[47] B. Buck and J. K. Hollingsworth. An API for runtime code patching. The In-
ternational Journal of High Performance Computing Applications, 14(4):317–
329, 2000.

[48] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors. ACM Trans-
actions on Computer Systems (TOCS), 15(4):412–447, Nov. 1997. URL:
https://doi.org/10.1145/265924.265930.

[49] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y. Wang. Bring-
ing virtualization to the x86 architecture with the original VMware work-
station. ACM Transactions on Computer Systems (TOCS), 30(4):12, Nov.
2012. URL: https://doi.org/10.1145/2382553.2382554.

[50] A. Burtsev, D. Johnson, M. Hibler, E. Eide, and J. Regehr. Abstractions for
practical virtual machine replay. In Proceedings of the International Con-
ference on Virtual Execution Environments, VEE’16, pages 93–106, Atlanta,
Georgia, USA, Apr. 2016. URL: https://doi.org/10.1145/2892242.
2892257.

[51] J. P. Buzen and U. O. Gagliardi. The evolution of virtual machine architec-
ture. In Proceedings of the National Computer Conference and Exposition,
AFIPS’73, pages 291–299, New York, New York, USA, June 1973. URL:
https://doi.org/10.1145/1499586.1499667.

https://doi.org/10.1145/1254810.1254834
https://doi.org/10.1145/1254810.1254834
https://doi.org/10.1145/225535.225538
https://doi.org/10.1109/HASE.2001.966811
https://doi.org/10.1145/265924.265930
https://doi.org/10.1145/2382553.2382554
https://doi.org/10.1145/2892242.2892257
https://doi.org/10.1145/2892242.2892257
https://doi.org/10.1145/1499586.1499667

232 Bibliography

[52] J. Caballero, G. Grieco, M. Marron, and A. Nappa. Undangle: Early detec-
tion of dangling pointers in use-after-free and double-free vulnerabilities.
In Proceedings of the International Symposium on Software Testing and Anal-
ysis, ISSTA’12, pages 133–143, Minneapolis, Minnesota, USA, July 2012.
URL: https://doi.org/10.1145/2338965.2336769.

[53] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti. Precise and
accurate processor simulation. In Workshop on Computer Architecture
Evaluation using Commercial Workloads, CAECW’02, pages 13–22, Boston,
Massachusettes, USA, Feb. 2002.

[54] K. Chanchio, C. Leangsuksun, H. Ong, V. Ratanasamoot, and A. Shafi. An
efficient virtual machine checkpointing mechanism for hypervisor-based
HPC systems. In High Availability and Performance Computing Workshop,
2008.

[55] C.-J. Chang, J.-J. Wu, W.-C. Hsu, P. Liu, and P.-C. Yew. Efficient memory
virtualization for cross-ISA system mode emulation. In Proceedings of the
International Conference on Virtual Execution Environments, VEE’14, pages
117–128, Salt Lake City, Utah, USA, Mar. 2014. URL: https://doi.org/
10.1145/2576195.2576201.

[56] J. B. Chen and B. N. Bershad. The impact of operating system structure on
memory system performance. In Proceedings of the Symposium on Operating
Systems Principles, SOSP’93, pages 120–133, Asheville, North Carolina,
USA, Dec. 1994. URL: https://doi.org/10.1145/168619.168629.

[57] P. M. Chen and B. D. Noble. When virtual is better than real. In Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS’01, pages 133–
138, Elmau, Germany, May 2001. URL: https://doi.org/10.1109/
HOTOS.2001.990073.

[58] S. Chen. Direct SMARTS: Accelerating microarchitectural simulation
through direct execution. Master’s thesis, Carnegie Mellon, Computer
Architecture Lab, May 2004.

[59] Y. Chen and H. Chen. Scalable deterministic replay in a parallel full-system
emulator. In Proceedings of the Symposium on Principles and Practice of
Parallel Programming, PPoPP’13, pages 207–218, Shenzhen, China, Feb.
2013. URL: https://doi.org/10.1145/2442516.2442537.

[60] Y. Chen, S. Zhang, Q. Guo, L. Li, R. Wu, and T. Chen. Deterministic replay:
A survey. ACM Computing Surveys (CSUR), 48(2):17, Nov. 2015. URL:
https://doi.org/10.1145/2790077.

https://doi.org/10.1145/2338965.2336769
https://doi.org/10.1145/2576195.2576201
https://doi.org/10.1145/2576195.2576201
https://doi.org/10.1145/168619.168629
https://doi.org/10.1109/HOTOS.2001.990073
https://doi.org/10.1109/HOTOS.2001.990073
https://doi.org/10.1145/2442516.2442537
https://doi.org/10.1145/2790077

Bibliography 233

[61] A. Chernoff and R. Hookway. DIGITAL FX!32 running 32-bit x86
applications on Alpha NT. In Proceedings of the USENIX Windows NT
Workshop, Seattle, Washington, USA, Aug. 1997. URL: https://www.
usenix.org/legacy/publications/library/proceedings/
usenix-nt97/full_papers/chernoff/chernoff.pdf.

[62] J.-H. Chiang, H.-L. Li, and T.-c. Chiueh. Introspection-based memory de-
duplication and migration. In Proceedings of the International Conference on
Virtual Execution Environments, VEE’13, pages 51–62, Houston, Texas, USA,
Mar. 2013. URL: https://doi.org/10.1145/2451512.2451525.

[63] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program analysis
from execution in virtual environments. In Proceedings of the USENIX Annual
Technical Conference, USENIX ATC’08, pages 1–14, Boston, Massachusetts,
USA, June 2008. URL: https://www.usenix.org/legacy/event/
usenix08/tech/full_papers/chow/chow.pdf.

[64] J. Chow, D. Lucchetti, T. Garfinkel, G. Lefebvre, R. Gardner, J. Mason,
S. Small, and P. M. Chen. Multi-stage replay with Crosscut. In Proceedings
of the International Conference on Virtual Execution Environments, VEE’10,
pages 13–24, Pittsburgh, Pennsylvania, USA, Mar. 2010. URL: https:
//doi.org/10.1145/1735997.1736002.

[65] C. Cifuentes and K. J. Gough. Decompilation of binary programs. Software:
Practice and Experience, 25(7):811–829, July 1995. URL: https://doi.
org/10.1002/spe.4380250706.

[66] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
Proceedings of the Symposium on Networked Systems Design & Imple-
mentation, NSDI’05, pages 273–286, Boston, Massachusetts, USA, May
2005. URL: https://www.usenix.org/legacy/events/nsdi05/
tech/full_papers/clark/clark.pdf.

[67] B. Cmelik and D. Keppel. Shade: A fast instruction-set simulator
for execution profiling. In Fast Simulation of Computer Architectures,
pages 5–46. Springer, 1995. URL: https://doi.org/10.1007/
978-1-4615-2361-1_2.

[68] Y. Collet et al. Lz4: Extremely fast compression algorithm. https://lz4.
github.io/lz4/, Apr. 2011. [Online; retrieved Jan. 21, 2019].

[69] L. Cui, J. Li, B. Li, J. Huai, C. Hu, T. Wo, H. Al-Aqrabi, and L. Liu. VM-
Scatter: Migrate virtual machines to many hosts. In Proceedings of the
International Conference on Virtual Execution Environments, VEE’13, pages
63–72, Houston, Texas, USA, Mar. 2013. URL: https://doi.org/10.
1145/2451512.2451528.

https://www.usenix.org/legacy/publications/library/proceedings/usenix-nt97/full_papers/chernoff/chernoff.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix-nt97/full_papers/chernoff/chernoff.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix-nt97/full_papers/chernoff/chernoff.pdf
https://doi.org/10.1145/2451512.2451525
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/chow/chow.pdf
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/chow/chow.pdf
https://doi.org/10.1145/1735997.1736002
https://doi.org/10.1145/1735997.1736002
https://doi.org/10.1002/spe.4380250706
https://doi.org/10.1002/spe.4380250706
https://www.usenix.org/legacy/events/nsdi05/tech/full_papers/clark/clark.pdf
https://www.usenix.org/legacy/events/nsdi05/tech/full_papers/clark/clark.pdf
https://doi.org/10.1007/978-1-4615-2361-1_2
https://doi.org/10.1007/978-1-4615-2361-1_2
https://lz4.github.io/lz4/
https://lz4.github.io/lz4/
https://doi.org/10.1145/2451512.2451528
https://doi.org/10.1145/2451512.2451528

234 Bibliography

[70] L. Cui, T. Wo, B. Li, J. Li, B. Shi, and J. Huai. Pars: A page-aware replication
system for efficiently storing virtual machine snapshots. In Proceedings
of the International Conference on Virtual Execution Environments, VEE’15,
pages 215–228, Istanbul, Turkey, Mar. 2015. URL: https://doi.org/
10.1145/2731186.2731190.

[71] T. Cui, H. Jin, X. Liao, and H. Liu. A virtual machine replay system based
on para-virtualized Xen. In Proceedings on the International Conference
on Network and Parallel Computing, NPC’09, pages 44–50, Gold Coast,
Queensland, Australia, Oct. 2009. URL: https://doi.org/10.1109/
NPC.2009.29.

[72] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield.
Remus: High availability via asynchronous virtual machine replication.
In Proceedings of the Symposium on Networked Systems Design and Imple-
mentation, NSDI’08, pages 161–174, San Francisco, California, USA, Apr.
2008. URL: https://www.usenix.org/legacy/events/nsdi08/
tech/full_papers/cully/cully.pdf.

[73] C. Dall and J. Nieh. KVM/ARM: Experiences building the linux ARM hy-
pervisor. Technical Report CUCS-010-13, Columbia University, Department
of Computer Science, June 2013. URL: https://doi.org/10.7916/
D8FN1FQS.

[74] C. Dall and J. Nieh. KVM/ARM: the design and implementation of the
Linux ARM hypervisor. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS’14, pages 333–348, Salt Lake City, Utah, USA, Mar. 2014. URL:
https://doi.org/10.1145/2541940.2541946.

[75] A. d’Antras, C. Gorgovan, J. Garside, J. Goodacre, and M. Luján.
HyperMAMBO-X64: Using virtualization to support high-performance
transparent binary translation. In Proceedings of the International Conference
on Virtual Execution Environments, VEE’17, pages 228–241, Xi’an, China,
Apr. 2017. URL: https://doi.org/10.1145/3050748.3050756.

[76] D. A. de Oliveira, J. R. Crandall, G. Wassermann, S. F. Wu, Z. Su, and F. T.
Chong. ExecRecorder: VM-based full-system replay for attack analysis and
system recovery. In Proceedings of the Workshop on Architectural and System
Support for Improving Software Dependability, ASID’06, pages 66–71, San
Jose, California, USA, Oct. 2006. URL: https://doi.org/10.1145/
1181309.1181320.

[77] P. J. Denning. Virtual memory. ACM Computing Surveys (CSUR), 2(3):153–
189, Sept. 1970. URL: https://doi.org/10.1145/356571.356573.

https://doi.org/10.1145/2731186.2731190
https://doi.org/10.1145/2731186.2731190
https://doi.org/10.1109/NPC.2009.29
https://doi.org/10.1109/NPC.2009.29
https://www.usenix.org/legacy/events/nsdi08/tech/full_papers/cully/cully.pdf
https://www.usenix.org/legacy/events/nsdi08/tech/full_papers/cully/cully.pdf
https://doi.org/10.7916/D8FN1FQS
https://doi.org/10.7916/D8FN1FQS
https://doi.org/10.1145/2541940.2541946
https://doi.org/10.1145/3050748.3050756
https://doi.org/10.1145/1181309.1181320
https://doi.org/10.1145/1181309.1181320
https://doi.org/10.1145/356571.356573

Bibliography 235

[78] P. J. Denning. Working sets past and present. IEEE Transactions on Software
Engineering, SE-6(1):64–84, Jan. 1980. URL: https://doi.org/10.
1109/TSE.1980.230464.

[79] U. Deshpande, X. Wang, and K. Gopalan. Live gang migration of virtual ma-
chines. In Proceedings of the International Symposium on High Performance
Distributed Computing, HPDC’11, pages 135–146, San Jose, California, USA,
June 2011. URL: https://doi.org/10.1145/1996130.1996151.

[80] R. Desikan, D. Burger, and S. W. Keckler. Measuring experimental error in
microprocessor simulation. In Proceedings of the International Symposium
on Computer Architecture, ISCA’11, pages 266–277, Göteborg, Sweden, July
2001. URL: https://doi.org/10.1145/379240.565338.

[81] J.-H. Ding, P.-C. Chang, W.-C. Hsu, and Y.-C. Chung. PQEMU: A parallel
system emulator based on QEMU. In Proceedings of the International
Conference on Parallel and Distributed Systems, ICPADS’11, pages 276–283,
Tainan, Taiwan, Dec. 2011. URL: https://doi.org/10.1109/icpads.
2011.102.

[82] J.-H. Ding, C.-J. Lin, P.-H. Chang, C.-H. Tsang, W.-C. Hsu, and Y.-C.
Chung. ARMvisor: System virtualization for ARM. In Proceedings of
the Ottawa Linux Symposium, OLS’12, pages 93–107, Ottawa, Ontario,
Canada, July 2012. URL: https://www.kernel.org/doc/ols/2012/
ols2012-chang.pdf.

[83] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee. Tappan zee (north)
bridge: mining memory accesses for introspection. In Proceedings of the
Conference on Computer & Communications Security, CCS’13, pages 839–
850, Berlin, Germany, Nov. 2013. URL: https://doi.org/10.1145/
2508859.2516697.

[84] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie. Leveraging
3D PCRAM technologies to reduce checkpoint overhead for future exascale
systems. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC’09, page 57, Portland, Oregon, USA,
Nov. 2009. URL: https://doi.org/10.1145/1654059.1654117.

[85] P. Dovgalyuk. Deterministic replay of system’s execution with multi-target
QEMU simulator for dynamic analysis and reverse debugging. In Pro-
ceedings of the European Conference on Software Maintenance and Reengi-
neering, CSMR’12, pages 553–556, Szeged, Hungary, Mar. 2012. URL:
https://doi.org/10.1109/CSMR.2012.74.

https://doi.org/10.1109/TSE.1980.230464
https://doi.org/10.1109/TSE.1980.230464
https://doi.org/10.1145/1996130.1996151
https://doi.org/10.1145/379240.565338
https://doi.org/10.1109/icpads.2011.102
https://doi.org/10.1109/icpads.2011.102
https://www.kernel.org/doc/ols/2012/ols2012-chang.pdf
https://www.kernel.org/doc/ols/2012/ols2012-chang.pdf
https://doi.org/10.1145/2508859.2516697
https://doi.org/10.1145/2508859.2516697
https://doi.org/10.1145/1654059.1654117
https://doi.org/10.1109/CSMR.2012.74

236 Bibliography

[86] Y. Du and H. Yu. Paratus: Instantaneous failover via virtual machine
replication. In Proceedings of the International Conference on Grid and
Cooperative Computing, GCC’09, pages 307–312, Lanzhou, Gansu, China,
Aug. 2009. URL: https://doi.org/10.1109/GCC.2009.58.

[87] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. ReVirt:
Enabling intrusion analysis through virtual-machine logging and replay. In
Proceedings of the Symposium on Operating Systems Design and Implemen-
tation, OSDI’02, pages 211–224, Boston, Massachusetts, USA, Dec. 2002.
URL: https://doi.org/10.1145/844128.844148.

[88] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Ex-
ecution replay of multiprocessor virtual machines. In Proceedings of
the International Conference on Virtual Execution Environments, VEE’08,
pages 121–130, Seattle, Washington, USA, Mar. 2008. URL: https:
//doi.org/10.1145/1346256.1346273.

[89] B. Eicher. Virtual machine checkpoint storage and distribution for Simu-
Boost. Master’s thesis, Karlsruhe Institute of Technology (KIT), Operating
Systems Group, Sept. 2015.

[90] M. Ekman and P. Stenstrom. A robust main-memory compression scheme.
In Proceedings of the International Symposium on Computer Architecture,
ISCA’05, pages 74–85, Madison, Wisconsin USA, June 2005. URL: https:
//doi.org/10.1109/ISCA.2005.6.

[91] F. A. Endo, D. Couroussé, and H.-P. Charles. Micro-architectural simula-
tion of in-order and out-of-order ARM microprocessors with gem5. In
Proceedings of the International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, SAMOS’14, pages 266–273, Agios
Konstantinos, Greece, July 2014. URL: https://doi.org/10.1109/
SAMOS.2014.6893220.

[92] A. Fog. Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs. http://www.
agner.org/optimize/instruction_tables.pdf, 2018. [Online;
retrieved Apr. 16, 2018].

[93] A. Fog. The microarchitecture of Intel, AMD and VIA CPUs: An optimiza-
tion guide for assembly programmers and compiler makers. http://www.
agner.org/optimize/microarchitecture.pdf, 2018. [Online; re-
trieved Apr. 13, 2018].

[94] J. Fotheringham. Dynamic storage allocation in the Atlas computer, in-
cluding an automatic use of a backing store. Communications of the ACM,
4(10):435–436, Oct. 1961. URL: https://doi.org/10.1145/366786.
366800.

https://doi.org/10.1109/GCC.2009.58
https://doi.org/10.1145/844128.844148
https://doi.org/10.1145/1346256.1346273
https://doi.org/10.1145/1346256.1346273
https://doi.org/10.1109/ISCA.2005.6
https://doi.org/10.1109/ISCA.2005.6
https://doi.org/10.1109/SAMOS.2014.6893220
https://doi.org/10.1109/SAMOS.2014.6893220
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf
https://doi.org/10.1145/366786.366800
https://doi.org/10.1145/366786.366800

Bibliography 237

[95] S.-Y. Fu, J.-J. Wu, and W.-C. Hsu. Improving SIMD code generation in
QEMU. In Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition, DATE’15, pages 1233–1236, Grenoble, France, Mar. 2015.
URL: https://doi.org/10.7873/date.2015.0356.

[96] J.-l. Gailly and M. Adler. Zlib compression library. 2004.

[97] T. Garfinkel and M. Rosenblum. A virtual machine introspection based
architecture for intrusion detection. In Proceedings of the Symposium on
Network and Distributed System Security, NDSS’03, pages 191–206, San
Diego, California, USA, Feb. 2003.

[98] R. Garg. DéjàVu: Live record-replay of virtual machines for malware
analysis. Technical report, Northeastern University, Khoury College of
Computer Sciences, May 2012. URL: http://www.ccs.northeastern.
edu/home/rohgarg/cs5650sp12-14457303-235210-130.pdf.

[99] T. Garnett. Dynamic optimization of IA-32 applications under DynamoRIO.
PhD thesis, Massachusetts Institute of Technology, May 2003.

[100] B. Gerofi, Z. Vass, and Y. Ishikawa. Utilizing memory content similarity for
improving the performance of replicated virtual machines. In Proceedings
of International Conference on Utility and Cloud Computing, UCC’11, pages
73–80, Victoria, New South Wales, Australia, Dec. 2011. URL: https:
//doi.org/10.1109/UCC.2011.20.

[101] S. Girbal, G. Mouchard, A. Cohen, and O. Temam. DiST: A simple, reli-
able and scalable method to significantly reduce processor architecture
simulation time. In Proceedings of the International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS’03, pages 1–12, San
Diego, California, USA, June 2003. URL: https://doi.org/10.1145/
781027.781029.

[102] R. P. Goldberg. Architecture of virtual machines. In Proceedings of the
Workshop on Virtual Computer Systems, pages 74–112, Cambridge, Mas-
sachusetts, USA, Mar. 1973. ACM. URL: https://doi.org/10.1145/
800122.803950.

[103] R. P. Goldberg. Survey of virtual machine research. Computer, 7(6):34–45,
June 1974. URL: https://doi.org/10.1109/MC.1974.6323581.

[104] J. Gray. Why do computers stop and what can be done about it? In
Proceedings of the Symposium on Reliability in Distributed Software and
Database Systems, SRDS’86, pages 3–12, Los Angeles, California, USA,
Jan. 1986. URL: https://www.hpl.hp.com/techreports/tandem/
TR-85.7.pdf.

https://doi.org/10.7873/date.2015.0356
http://www.ccs.northeastern.edu/home/rohgarg/cs5650sp12-14457303-235210-130.pdf
http://www.ccs.northeastern.edu/home/rohgarg/cs5650sp12-14457303-235210-130.pdf
https://doi.org/10.1109/UCC.2011.20
https://doi.org/10.1109/UCC.2011.20
https://doi.org/10.1145/781027.781029
https://doi.org/10.1145/781027.781029
https://doi.org/10.1145/800122.803950
https://doi.org/10.1145/800122.803950
https://doi.org/10.1109/MC.1974.6323581
https://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf
https://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf

238 Bibliography

[105] T. Gröninger. On statistical properties of duplicate memory pages. Diploma
thesis, Karlsruhe Institute of Technology (KIT), Operating Systems Group,
Oct. 2013.

[106] P. H. Gum. System/370 extended architecture: facilities for virtual ma-
chines. IBM Journal of Research and Development, 27(6):530–544, 1983.
URL: https://doi.org/10.1147/rd.276.0530.

[107] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese, G. M.
Voelker, and A. Vahdat. Difference Engine: Harnessing memory redun-
dancy in virtual machines. In Proceedings of the Symposium on Operating
Systems Design and Implementation, OSDI’08, pages 85–93, San Diego, Cal-
ifornia, USA, Dec. 2008. URL: https://doi.org/10.1145/1831407.
1831429.

[108] S. Hacking and B. Hudzia. Improving the live migration process of large
enterprise applications. In Proceedings of the International Workshop on
Virtualization Technologies in Distributed Computing, VTDC’09, pages 51–
58, Barcelona, Spain, June 2009. URL: https://doi.org/10.1145/
1555336.1555346.

[109] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster and
more flexible program phase analysis. Journal of Instruction Level Paral-
lelism, 7(4):1–28, 2005. URL: http://cseweb.ucsd.edu/~calder/
papers/JILP-05-SimPoint3.pdf.

[110] S. Hassani, G. Southern, and J. Renau. LiveSim: Going live with mi-
croarchitecture simulation. In Proceedings of the International Sympo-
sium on High Performance Computer Architecture, HPCA’16, pages 606–617,
Barcelona, Spain, Mar. 2016. URL: https://doi.org/10.1109/hpca.
2016.7446098.

[111] P. Heidelberger and H. S. Stone. Parallel trace-driven cache simulation by
time partitioning. In Proceedings of the Winter 1990 Simulation Conference,
pages 734–737, New Orleans, Louisiana, USA, Dec. 1990. URL: https:
//doi.org/10.1109/wsc.1990.129605.

[112] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative ap-
proach. Morgan Kaufmann, fourth edition, 2007. ISBN: 978-0123704900.

[113] M. R. Hines and K. Gopalan. Post-copy based live virtual machine migration
using adaptive pre-paging and dynamic self-ballooning. In Proceedings
of the International Conference on Virtual Execution Environments, VEE’09,
pages 51–60, Washington, D.C., USA, Mar. 2009. URL: https://doi.
org/10.1145/1508293.1508301.

https://doi.org/10.1147/rd.276.0530
https://doi.org/10.1145/1831407.1831429
https://doi.org/10.1145/1831407.1831429
https://doi.org/10.1145/1555336.1555346
https://doi.org/10.1145/1555336.1555346
http://cseweb.ucsd.edu/~calder/papers/JILP-05-SimPoint3.pdf
http://cseweb.ucsd.edu/~calder/papers/JILP-05-SimPoint3.pdf
https://doi.org/10.1109/hpca.2016.7446098
https://doi.org/10.1109/hpca.2016.7446098
https://doi.org/10.1109/wsc.1990.129605
https://doi.org/10.1109/wsc.1990.129605
https://doi.org/10.1145/1508293.1508301
https://doi.org/10.1145/1508293.1508301

Bibliography 239

[114] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi. Reactive Cloud: Con-
solidating virtual machines with postcopy live migration. Information and
Media Technologies, 7(2):614–626, 2012. URL: https://doi.org/10.
11185/imt.7.614.

[115] D.-Y. Hong, C.-C. Hsu, P.-C. Yew, J.-J. Wu, W.-C. Hsu, P. Liu, C.-M. Wang,
and Y.-C. Chung. HQEMU: a multi-threaded and retargetable dynamic
binary translator on multicores. In Proceedings of the International Sympo-
sium on Code Generation and Optimization, CGO’12, pages 104–113, San
Jose, California, USA, Mar. 2012. URL: https://doi.org/10.1145/
2259016.2259030.

[116] R. N. Horspool and N. Marovac. An approach to the problem of detransla-
tion of computer programs. The Computer Journal, 23(3):223–229, Aug.
1980. URL: https://doi.org/10.1093/comjnl/23.3.223.

[117] K.-Y. Hou, K. G. Shin, and J.-L. Sung. Application-assisted live migration
of virtual machines with Java applications. In Proceedings of the European
Conference on Computer Systems, EuroSys’15, page 15, Bordeaux, France,
Apr. 2015. URL: https://doi.org/10.1145/2741948.2741950.

[118] K.-Y. Hou, K. G. Shin, Y. Turner, and S. Singhal. Tradeoffs in compressing
virtual machine checkpoints. In Proceedings of the International Workshop
on Virtualization Technologies in Distributed Computing, VTDC’13, pages
41–48, New York, USA, June 2013. URL: https://doi.org/10.1145/
2465829.2465834.

[119] C.-C. Hsu, P. Liu, C.-M. Wang, J.-J. Wu, D.-Y. Hong, P.-C. Yew, and W.-C.
Hsu. LnQ: Building high performance dynamic binary translators with
existing compiler backends. In The International Conference on Parallel
Processing, ICPP’11, pages 226–234, Taipei City, Taiwan, Sept. 2011. URL:
https://doi.org/10.1109/ICPP.2011.57.

[120] C.-C. Hsu, P. Liu, J.-J. Wu, P.-C. Yew, D.-Y. Hong, W.-C. Hsu, and C.-M. Wang.
Improving dynamic binary optimization through early-exit guided code
region formation. In Proceedings of the International Conference on Virtual
Execution Environments, VEE’13, pages 23–32, Houston, Texas, USA, Mar.
2013. URL: https://doi.org/10.1145/2451512.2451519.

[121] J. Huang and T.-C. Peng. Analysis of x86 instruction set usage for DOS/Win-
dows applications and its implication on superscalar design. IEICE Trans-
actions on Information and Systems, 85(6):929–939, June 2002.

[122] W. Huang. Introduction of AMD advanced virtual interrupt controller.
XenSummit, San Diego, California, USA, Aug. 2012.

https://doi.org/10.11185/imt.7.614
https://doi.org/10.11185/imt.7.614
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.1093/comjnl/23.3.223
https://doi.org/10.1145/2741948.2741950
https://doi.org/10.1145/2465829.2465834
https://doi.org/10.1145/2465829.2465834
https://doi.org/10.1109/ICPP.2011.57
https://doi.org/10.1145/2451512.2451519

240 Bibliography

[123] K. Z. Ibrahim, S. Hofmeyr, C. Iancu, and E. Roman. Optimized pre-copy
live migration for memory intensive applications. In Proceedings of the
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC’11, page 40, Seattle, Washington, Nov. 2011. URL:
https://doi.org/10.1145/2063384.2063437.

[124] IEEE. Portable Operating System Interface (POSIX(R)) Base Specifications,
Issue 7, Jan. 2018.

[125] Intel. Intel 64 and IA-32 architectures software developer’s manual - combined
volumes, Dec. 2017.

[126] C. Irvin and J. Robin. Analysis of the Intel Pentium’s ability to sup-
port a secure virtual machine monitor. In Proceedings of USENIX Se-
curity Symposium, USENIX SEC’00, pages 129–144, Denver, Colorado,
USA, Aug. 2000. URL: https://www.usenix.org/legacy/events/
sec00/full_papers/robin/robin.pdf.

[127] E. Itskova. Echo: A deterministic record/replay framework for debugging
multithreaded applications. Technical report, Imperial College, London,
June 2006. URL: http://www3.imperial.ac.uk/pls/portallive/
docs/1/18619711.PDF.

[128] S. Jaffer, P. Kedia, and S. Bansal. Improving remote desktopping through
adaptive record/replay. In Proceedings of the International Conference on
Virtual Execution Environments, VEE’15, pages 161–172, Istanbul, Turkey,
Mar. 2015. URL: https://doi.org/10.1145/2731186.2731193.

[129] N. Jia, C. Yang, J. Wang, D. Tong, and K. Wang. SPIRE: improving dy-
namic binary translation through SPC-indexed indirect branch redirecting.
In Proceedings of the International Conference on Virtual Execution Envi-
ronments, VEE’13, pages 1–12, Houston, Texas, USA, Mar. 2013. URL:
https://doi.org/10.1145/2451512.2451516.

[130] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live virtual machine migra-
tion with adaptive, memory compression. In Proceedings of the Interna-
tional Conference on Cluster Computing, CLUSTER’09, pages 1–10, New
Orleans, Louisiana, USA, Aug. 2009. URL: https://doi.org/10.1109/
CLUSTR.2009.5289170.

[131] C. Jo, E. Gustafsson, J. Son, and B. Egger. Efficient live migration of virtual
machines using shared storage. In Proceedings of the International Con-
ference on Virtual Execution Environments, VEE’13, pages 41–50, Houston,
Texas, USA, Mar. 2013. URL: https://doi.org/10.1145/2451512.
2451524.

https://doi.org/10.1145/2063384.2063437
https://www.usenix.org/legacy/events/sec00/full_papers/robin/robin.pdf
https://www.usenix.org/legacy/events/sec00/full_papers/robin/robin.pdf
http://www3.imperial.ac.uk/pls/portallive/docs/1/18619711.PDF
http://www3.imperial.ac.uk/pls/portallive/docs/1/18619711.PDF
https://doi.org/10.1145/2731186.2731193
https://doi.org/10.1145/2451512.2451516
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1145/2451512.2451524
https://doi.org/10.1145/2451512.2451524

Bibliography 241

[132] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Geiger: Mon-
itoring the buffer cache in a virtual machine environment. In Proceedings
of the International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’06, pages 14–24, San Jose, Cal-
ifornia, USA, Oct. 2006. URL: https://doi.org/10.1145/1168857.
1168861.

[133] M. Jurczyk and G. Coldwind. Bochspwn: Identifying and exploiting win-
dows kernel race conditions via memory access patterns. In The Sympo-
sium on Security for Asia Network, SyScan’13, Singapore, Sept. 2013. URL:
https://ai.google/research/pubs/pub42189.

[134] A. Kangarlou, P. Eugster, and D. Xu. VNsnap: Taking snapshots of
virtual networked environments with minimal downtime. In Proceed-
ings of the International Conference on Dependable Systems & Networks,
DSN’09, pages 524–533, Lisbon, Portugal, July 2009. URL: https:
//doi.org/10.1109/DSN.2009.5270298.

[135] S. Kim, F. Liu, Y. Solihin, R. Iyer, L. Zhao, and W. Cohen. Accelerating
full-system simulation through characterizing and predicting operating
system performance. In Proceedings of the International Symposium on
Performance Analysis of Systems & Software, ISPASS’07, pages 1–11, San
Jose, California, USA, May 2007. URL: https://doi.org/10.1109/
ISPASS.2007.363731.

[136] S. T. King, G. W. Dunlap, and P. M. Chen. Operating system support for
virtual machines. In Proceedings of the USENIX Annual Technical Confer-
ence, General Track, USENIX ATC’03, pages 71–84, San Antonio, Texas,
USA, June 2003. URL: https://www.usenix.org/legacy/events/
usenix03/tech/full_papers/king/king.pdf.

[137] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating systems
with time-traveling virtual machines. In Proceedings of the USENIX Annual
Technical Conference, General Track, USENIX ATC’05, pages 1–15, Anaheim,
California, USA, Apr. 2005. URL: https://www.usenix.org/events/
usenix05/tech/general/king/king.pdf.

[138] J. Kiszka. Architecture of the kernel-based virtual machine (KVM). In
17th International Linux System Technology Conference, Nuremberg, Ger-
many, Sept. 2010. URL: http://www.linux-kongress.org/2010/
slides/KVM-Architecture-LK2010.pdf.

[139] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux
virtual machine monitor. In Proceedings of the Linux Symposium, pages 225–
230, Ottawa, Ontario, Canada, June 2007. URL: https://www.kernel.
org/doc/ols/2007/ols2007v1-pages-225-230.pdf.

https://doi.org/10.1145/1168857.1168861
https://doi.org/10.1145/1168857.1168861
https://ai.google/research/pubs/pub42189
https://doi.org/10.1109/DSN.2009.5270298
https://doi.org/10.1109/DSN.2009.5270298
https://doi.org/10.1109/ISPASS.2007.363731
https://doi.org/10.1109/ISPASS.2007.363731
https://www.usenix.org/legacy/events/usenix03/tech/full_papers/king/king.pdf
https://www.usenix.org/legacy/events/usenix03/tech/full_papers/king/king.pdf
https://www.usenix.org/events/usenix05/tech/general/king/king.pdf
https://www.usenix.org/events/usenix05/tech/general/king/king.pdf
http://www.linux-kongress.org/2010/slides/KVM-Architecture-LK2010.pdf
http://www.linux-kongress.org/2010/slides/KVM-Architecture-LK2010.pdf
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf

242 Bibliography

[140] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark
workload for simulation-based computer architecture research. Computer
Architecture Letters, 1(1):7, 2002. URL: https://doi.org/10.1109/
L-CA.2002.8.

[141] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-
gard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting
speculative execution. In Symposium on Security and Privacy, S&P’19, San
Francisco, California, USA, May 2019. URL: https://arxiv.org/pdf/
1801.01203.

[142] R. Koller and R. Rangaswami. I/O Deduplication: Utilizing content similar-
ity to improve I/O performance. ACM Transactions on Storage (TOS),
6(3):13, Sept. 2010. URL: https://doi.org/10.1145/1837915.
1837921.

[143] A. Koto, H. Yamada, K. Ohmura, and K. Kono. Towards unobtrusive VM live
migration for cloud computing platforms. In Proceedings of the Asia-Pacific
Workshop on Systems, APSYS’12, page 7, Seoul, Republic of Korea, July
2012. URL: https://doi.org/10.1145/2349896.2349903.

[144] M. Kozuch, M. Satyanarayanan, T. Bressoud, and Y. Ke. Effi-
cient state transfer for Internet suspend/resume. Technical Re-
port IRP-TR-02-03, Intel Research Pittburgh, Apr. 2002. URL:
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/satya/Web/
docdir/kozuch-irp-tech-report-may-2002.pdf.

[145] C. Krintz and R. Wolski. Using phase behavior in scientific application
to guide Linux operating system customization. In 19th International
Symposium on Parallel and Distributed Processing, IPDPS’05, page 219,
Denver, Colorado, USA, Apr. 2005. URL: https://doi.org/10.1109/
IPDPS.2005.449.

[146] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M. Rumble,
E. De Lara, M. Brudno, and M. Satyanarayanan. SnowFlock: Rapid virtual
machine cloning for cloud computing. In Proceedings of the European Confer-
ence on Computer Systems, EuroSys’09, pages 1–12, Nuremberg, Germany,
Apr. 2009. URL: https://doi.org/10.1145/1519065.1519067.

[147] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in
distributed systems: Theory and practice. ACM Transactions on Computer
Systems (TOCS), 10(4):265–310, Nov. 1992. URL: https://doi.org/
10.1145/138873.138874.

https://doi.org/10.1109/L-CA.2002.8
https://doi.org/10.1109/L-CA.2002.8
https://arxiv.org/pdf/1801.01203
https://arxiv.org/pdf/1801.01203
https://doi.org/10.1145/1837915.1837921
https://doi.org/10.1145/1837915.1837921
https://doi.org/10.1145/2349896.2349903
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/satya/Web/docdir/kozuch-irp-tech-report-may-2002.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/satya/Web/docdir/kozuch-irp-tech-report-may-2002.pdf
https://doi.org/10.1109/IPDPS.2005.449
https://doi.org/10.1109/IPDPS.2005.449
https://doi.org/10.1145/1519065.1519067
https://doi.org/10.1145/138873.138874
https://doi.org/10.1145/138873.138874

Bibliography 243

[148] R. Lantz. Fast functional simulation with parallel Embra. In Proceedings
of the Workshop on Modeling, Benchmarking and Simulation, MoBS’08,
page 5, Beijing, China, June 2008. URL: https://www-cs.stanford.
edu/~rlantz/papers/lantz-mobs08-final.pdf.

[149] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the International Sym-
posium on Code Generation and Optimization, CGO’04, pages 75–88, Palo
Alto, California, USA, Mar. 2004. URL: https://doi.org/10.1109/
cgo.2004.1281665.

[150] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. PEBIL:
Efficient static binary instrumentation for Linux. In Proceedings of the
International Symposium on Performance Analysis of Systems & Software,
ISPASS’10, pages 175–183, White Plains, New York, USA, Mar. 2010. URL:
https://doi.org/10.1109/ISPASS.2010.5452024.

[151] G. Lauterbach. Accelerating architectural simulation by parallel execution
of trace samples. In Proceedings of the Hawaii International Conference
on System Sciences, HICSS’94, Wailea, Hawaii, USA, Apr. 1994. URL:
https://doi.org/10.1109/hicss.1994.323171.

[152] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs
with Instant Replay. Technical Report ADA179902, Rochester University,
Department of Computer Science, Sept. 1986. URL: https://apps.
dtic.mil/dtic/tr/fulltext/u2/a179902.pdf.

[153] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and
J. Flinn. Respec: Efficient online multiprocessor replay via speculation and
external determinism. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS’10, pages 77–90, Pittsburgh, Pennsylvania, USA, Mar. 2010. URL:
https://doi.org/10.1145/1736020.1736031.

[154] S. Li. Linux v4.18 Page Aging. https://github.com/torvalds/
linux/blob/v4.18/arch/x86/mm/pgtable.c#L522. [Online; re-
trieved Mar. 4, 2019].

[155] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java virtual machine
specification. Oracle, twelfth edition, Feb. 2019.

[156] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Read-
ing kernel memory from user space. In USENIX Security Sympo-
sium, USENIX Security’18, Baltimore, Maryland, USA, Aug. 2018.
URL: https://www.usenix.org/system/files/conference/
usenixsecurity18/sec18-lipp.pdf.

https://www-cs.stanford.edu/~rlantz/papers/lantz-mobs08-final.pdf
https://www-cs.stanford.edu/~rlantz/papers/lantz-mobs08-final.pdf
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1109/ISPASS.2010.5452024
https://doi.org/10.1109/hicss.1994.323171
https://apps.dtic.mil/dtic/tr/fulltext/u2/a179902.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a179902.pdf
https://doi.org/10.1145/1736020.1736031
https://github.com/torvalds/linux/blob/v4.18/arch/x86/mm/pgtable.c#L522
https://github.com/torvalds/linux/blob/v4.18/arch/x86/mm/pgtable.c#L522
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf

244 Bibliography

[157] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of virtual machine
based on full system trace and replay. In Proceedings of the International
Symposium on High Performance Distributed Computing, HPDC’09, pages
101–110, Garching, Germany, June 2009. URL: https://doi.org/10.
1145/1551609.1551630.

[158] P. Liu, Z. Yang, X. Song, Y. Zhou, H. Chen, and B. Zang. Heterogeneous live
migration of virtual machines. In International Workshop on Virtualization
Technology, IWVT’08, 2008.

[159] G. H. Loh, S. Subramaniam, and Y. Xie. Zesto: A cycle-level simulator
for highly detailed microarchitecture exploration. In Proceedings of the
International Symposium on Performance Analysis of Systems and Software,
ISPASS’09, pages 53–64, Boston, Massachusetts, USA, Apr. 2009. URL:
https://doi.org/10.1109/ISPASS.2009.4919638.

[160] M. Lu and T.-c. Chiueh. Fast memory state synchronization for
virtualization-based fault tolerance. In Proceedings of the International
Conference on Dependable Systems & Networks, DSN’09, pages 534–543,
Lisbon, Portugal, Sept. 2009. URL: https://doi.org/10.1109/DSN.
2009.5270295.

[161] P. Lu, B. Ravindran, and C. Kim. VPC: Scalable, low downtime check-
pointing for virtual clusters. In Proceedings of the International Sympo-
sium on Computer Architecture and High Performance Computing, SBAC-
PAD’12, pages 203–210, New York, New York, USA, Oct. 2012. URL:
https://doi.org/10.1109/SBAC-PAD.2012.31.

[162] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Proceedings of the Conference on
Programming Language Design and Implementation, PLDI’05, pages 190–
200, Chicago, Illinois, USA, June 2005. URL: https://doi.org/10.
1145/1065010.1065034.

[163] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, Aug. 2002. URL: https:
//doi.org/10.1109/2.982916.

[164] P. S. Magnusson, F. Larsson, A. Moestedt, B. Werner, J. Nilsson, P. Stenström,
F. Lundholm, M. Karlsson, F. Dahlgren, and H. Grahn. Simics/sun4m: A
virtual workstation. In Proceedings of the USENIX Annual Technical Con-
ference, USENIX’98, pages 119–130, New Orleans, Louisiana, USA, June
1998. URL: https://www.usenix.org/legacy/publications/
library/proceedings/usenix98/full_papers/magnusson/
magnusson.pdf.

https://doi.org/10.1145/1551609.1551630
https://doi.org/10.1145/1551609.1551630
https://doi.org/10.1109/ISPASS.2009.4919638
https://doi.org/10.1109/DSN.2009.5270295
https://doi.org/10.1109/DSN.2009.5270295
https://doi.org/10.1109/SBAC-PAD.2012.31
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/2.982916
https://doi.org/10.1109/2.982916
https://www.usenix.org/legacy/publications/library/proceedings/usenix98/full_papers/magnusson/magnusson.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix98/full_papers/magnusson/magnusson.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix98/full_papers/magnusson/magnusson.pdf

Bibliography 245

[165] P. S. Magnusson and B. Werner. Some efficient techniques for simulating
memory. Technical Report SICS-R–94/16–SE, Sept. 1994. URL: http:
//soda.swedish-ict.se/2136/.

[166] V. V. Malyugin, B. Weissman, G. Venkitachalam, and M. Xu. Synchronizing
a translation lookaside buffer with page tables, Mar. 2018. US Patent
9,928,180.

[167] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi. Testing CPU emula-
tors. In Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA’09, pages 261–272, Chicago, Illinois, USA, July 2009. URL:
https://doi.org/10.1145/1572272.1572303.

[168] C. May. Mimic: a fast System/370 simulator. In Proceedings of the Sym-
posium on Interpreters and Interpretive Techniques, pages 1–13, St. Paul,
Minnesota, USA, June 1987. URL: https://doi.org/10.1145/29650.
29651.

[169] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrasting
characteristics and cache performance of technical and multi-user com-
mercial workloads. In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ASPLOS’94, pages 145–156, San Jose, California, USA, Oct. 1994. URL:
https://doi.org/10.1145/195473.195524.

[170] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead re-
placement cache. In Proceedings of the USENIX Conference on File and
Storage Technologies, FAST’03, pages 115–130, San Francisco, California,
USA, Mar. 2003. URL: https://www.usenix.org/legacy/event/
fast03/tech/full_papers/megiddo/megiddo.pdf.

[171] T. Merrifield and H. R. Taheri. Performance implications of extended page
tables on virtualized x86 processors. In Proceedings of the International
Conference on Virtual Execution Environments, VEE’16, pages 25–35, Atlanta,
Georgia, USA, Apr. 2016. URL: https://doi.org/10.1145/2892242.
2892258.

[172] R. A. Meyer and L. H. Seawright. A virtual machine time-sharing system.
IBM Systems Journal, 9(3):199–218, 1970. URL: http://www.eecs.
harvard.edu/~margo/cs261/papers/meyer-1970.pdf.

[173] Microsoft. Hyper-V. https://msdn.microsoft.com/de-de/
library/mt169373(v=ws.11).aspx. [Online; retrieved Apr. 4, 2018].

http://soda.swedish-ict.se/2136/
http://soda.swedish-ict.se/2136/
https://doi.org/10.1145/1572272.1572303
https://doi.org/10.1145/29650.29651
https://doi.org/10.1145/29650.29651
https://doi.org/10.1145/195473.195524
https://www.usenix.org/legacy/event/fast03/tech/full_papers/megiddo/megiddo.pdf
https://www.usenix.org/legacy/event/fast03/tech/full_papers/megiddo/megiddo.pdf
https://doi.org/10.1145/2892242.2892258
https://doi.org/10.1145/2892242.2892258
http://www.eecs.harvard.edu/~margo/cs261/papers/meyer-1970.pdf
http://www.eecs.harvard.edu/~margo/cs261/papers/meyer-1970.pdf
https://msdn.microsoft.com/de-de/library/mt169373(v=ws.11).aspx
https://msdn.microsoft.com/de-de/library/mt169373(v=ws.11).aspx

246 Bibliography

[174] D. Mihocka and S. Shwartsman. Virtualization without direct execution or
jitting: Designing a portable virtual machine infrastructure. In Workshop on
Architectural and Microarchitectural Support for Binary Translation, AMAS-
BT’08, Beijing, China, June 2008. URL: http://www.emulators.com/
docs/VirtNoJit_Paper.pdf.

[175] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator
for multicores. In Proceedings of the International Symposium on High
Performance Computer Architecture, HPCA’10, pages 1–12, Bangalore, India,
Jan. 2010. URL: https://doi.org/10.1109/hpca.2010.5416635.

[176] K. Miller. Efficient Main Memory Deduplication Through Cross Layer Inte-
gration. PhD thesis, Karlsruhe Institute of Technology (KIT), Operating
Systems Group, July 2014.

[177] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and F. Bellosa. XLH:
More effective memory deduplication scanners through cross-layer hints.
In Proceedings of the 2013 USENIX Annual Technical Conference, USENIX
ATC’13, pages 279–290, San Jose, California, USA, June 2013.

[178] R. B. Miller. Response time in man-computer conversational transactions.
In Proceedings of the Fall 1968 Joint Computer Conference, pages 267–277,
Dec. 1968.

[179] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman. Satori: En-
lightened page sharing. In Proceedings of the USENIX Annual Technical
Conference, USENIX ATC’09, pages 1–14, San Diego, California, USA,
June 2009. URL: http://static.usenix.org/events/usenix09/
tech/full_papers/milos/milos.pdf.

[180] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem, and
A. Warfield. RemusDB: Transparent high availability for database systems.
The International Journal on Very Large Data Bases (VLDB), 22(1):29–45,
Feb. 2013. URL: https://doi.org/10.1007/s00778-012-0294-6.

[181] F. F. Moghaddam and M. Cheriet. Decreasing live virtual machine migration
down-time using a memory page selection based on memory change PDF.
In Proceedings of the International Conference on Networking, Sensing and
Control, ICNSC’10, pages 355–359, Chicago, Illinois, USA, Apr. 2010. URL:
https://doi.org/10.1109/ICNSC.2010.5461517.

[182] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and de-
terministically replaying shared-memory multiprocessor execution effi-
ciently. In Proceedings of the International Symposium on Computer Ar-
chitecture, ISCA’08, pages 289–300, Beijing, China, June 2008. URL:
https://doi.org/10.1109/ISCA.2008.36.

http://www.emulators.com/docs/VirtNoJit_Paper.pdf
http://www.emulators.com/docs/VirtNoJit_Paper.pdf
https://doi.org/10.1109/hpca.2010.5416635
http://static.usenix.org/events/usenix09/tech/full_papers/milos/milos.pdf
http://static.usenix.org/events/usenix09/tech/full_papers/milos/milos.pdf
https://doi.org/10.1007/s00778-012-0294-6
https://doi.org/10.1109/ICNSC.2010.5461517
https://doi.org/10.1109/ISCA.2008.36

Bibliography 247

[183] B. Morbach. Accurate record and replay of x86 MMU behavior for Simu-
Boost. Master’s thesis, Karlsruhe Institute of Technology (KIT), Operating
Systems Group, Sept. 2018.

[184] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri. Shadow
Profiling: Hiding instrumentation costs with parallelism. In Proceed-
ings of the International Symposium on Code Generation and Optimization,
CGO’07, pages 198–208, San Jose, California, USA, Mar. 2007. URL:
https://doi.org/10.1109/cgo.2007.35.

[185] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
recording program execution for deterministic replay debugging. In
Proceedings of the International Symposium on Computer Architecture,
ISCA’05, pages 284–295, Madison, Wisconsin USA, June 2005. URL:
https://doi.org/10.1109/ISCA.2005.16.

[186] S. Nathan, U. Bellur, and P. Kulkarni. Towards a comprehensive performance
model of virtual machine live migration. In Proceedings of the Symposium
on Cloud Computing, SoCC’15, pages 288–301, Kohala Coast, Hawaii, Aug.
2015. URL: https://doi.org/10.1145/2806777.2806838.

[187] S. Nathan, U. Bellur, and P. Kulkarni. On selecting the right optimizations
for virtual machine migration. In Proceedings of the International Con-
ference on Virtual Execution Environments, VEE’12, pages 37–49, Atlanta,
Georgia, USA, Apr. 2016. URL: https://doi.org/10.1145/2892242.
2892247.

[188] S. Nathan, P. Kulkarni, and U. Bellur. Resource availability based perfor-
mance benchmarking of virtual machine migrations. In Proceedings of
the International Conference on Performance Engineering, ICPE’13, pages
387–398, Prague, Czech Republic, Apr. 2013. URL: https://doi.org/
10.1145/2479871.2479932.

[189] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent mi-
gration for virtual machines. In Proceedings of the USENIX
Annual Technical Conference, General Track, USENIX ATC’05,
pages 391–394, Anaheim, California, USA, Apr. 2005. URL:
http://static.usenix.org/legacy/events/usenix05/tech/
general/full_papers/short_papers/nelson/nelson.pdf.

[190] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation, PLDI’07, pages 89–100,
San Diego, California, USA, June 2007. URL: https://doi.org/10.
1145/1250734.1250746.

https://doi.org/10.1109/cgo.2007.35
https://doi.org/10.1109/ISCA.2005.16
https://doi.org/10.1145/2806777.2806838
https://doi.org/10.1145/2892242.2892247
https://doi.org/10.1145/2892242.2892247
https://doi.org/10.1145/2479871.2479932
https://doi.org/10.1145/2479871.2479932
http://static.usenix.org/legacy/events/usenix05/tech/general/full_papers/short_papers/nelson/nelson.pdf
http://static.usenix.org/legacy/events/usenix05/tech/general/full_papers/short_papers/nelson/nelson.pdf
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746

248 Bibliography

[191] R. H. Netzer. Optimal tracing and replay for debugging shared-memory
parallel programs. Technical Report CS-93-15, Brown University, Depart-
ment of Computer Science, Sept. 1993. URL: ftp://ftp.cs.brown.
edu/pub/techreports/93/cs93-15.pdf.

[192] A.-T. Nguyen, P. Bose, K. Ekanadham, A. Nanda, and M. Michael. Accu-
racy and speed-up of parallel trace-driven architectural simulation. In
Proceedings of the International Parallel Processing Symposium, IPPS’97,
pages 39–44, Geneva, Switzerland, Aug. 1997. URL: https://doi.org/
10.1109/ipps.1997.580842.

[193] K. Nguyen. APIC virtualization performance testing and Io-
zone. https://software.intel.com/en-us/blogs/2013/12/17/
apic-virtualization-performance-testing-and-iozone, Dec.
2013. [Online; retrieved May 23, 2018].

[194] O. Oppitz. A particular bug trap: Execution replay using virtual ma-
chines. In Workshop on Automated and Algorithmic Debugging, AADE-
BUG’03, Ghent, Belgium, Sept. 2003. URL: https://arxiv.org/pdf/
cs/0310030.

[195] Oracle. VirtualBox. http://www.virtualbox.org. [Online; retrieved
Apr. 4, 2018].

[196] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: An execution-driven
simulator for ILP-based shared-memory multiprocessors and uniprocessors.
Technical Committee on Computer Architecture Newsletter, Oct. 1997. URL:
https://scholarship.rice.edu/handle/1911/20182.

[197] D. Z. Pan and M. A. Linton. Supporting reverse execution for parallel
programs. In Proceedings of the Workshop on Parallel and Distributed De-
bugging, PADD’88, pages 124–129, Madison, Wisconsin, USA, May 1988.
URL: https://doi.org/10.1145/68210.69227.

[198] E. Park, B. Egger, and J. Lee. Fast and space-efficient virtual machine check-
pointing. In Proceedings of the International Conference on Virtual Execution
Environments, VEE’11, pages 75–86, Newport Beach, California, USA, Mar.
2011. URL: https://doi.org/10.1145/1952682.1952694.

[199] A. Patel, F. Afram, and K. Ghose. MARSS-x86: A QEMU-based micro-
architectural and systems simulator for x86 multicore processors. In Pro-
ceedings of the International QEMU Users’ Forum, pages 29–30, Greno-
ble, France, Mar. 2011. URL: http://adt.cs.upb.de/quf/quf11/
QUF11-papers/quf2011-10.pdf.

ftp://ftp.cs.brown.edu/pub/techreports/93/cs93-15.pdf
ftp://ftp.cs.brown.edu/pub/techreports/93/cs93-15.pdf
https://doi.org/10.1109/ipps.1997.580842
https://doi.org/10.1109/ipps.1997.580842
https://software.intel.com/en-us/blogs/2013/12/17/apic-virtualization-performance-testing-and-iozone
https://software.intel.com/en-us/blogs/2013/12/17/apic-virtualization-performance-testing-and-iozone
https://arxiv.org/pdf/cs/0310030
https://arxiv.org/pdf/cs/0310030
http://www.virtualbox.org
https://scholarship.rice.edu/handle/1911/20182
https://doi.org/10.1145/68210.69227
https://doi.org/10.1145/1952682.1952694
http://adt.cs.upb.de/quf/quf11/QUF11-papers/quf2011-10.pdf
http://adt.cs.upb.de/quf/quf11/QUF11-papers/quf2011-10.pdf

Bibliography 249

[200] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay: A
framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the International Symposium on Code Generation
and Optimization, CGO’10, pages 2–11, Toronto, Ontario, Canada, Apr.
2010. URL: https://doi.org/10.1145/1772954.1772958.

[201] D. A. Patterson and J. L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann, fifth edition, 2013.
ISBN: 978-0124077263.

[202] PCI-SIG. Single Root I/O Virtualization and Sharing Specification, Revision
1.1, 2010.

[203] N. Penneman, D. Kudinskas, A. Rawsthorne, B. De Sutter, and K. De Boss-
chere. Formal virtualization requirements for the ARM architecture. Jour-
nal of Systems Architecture, 59(3):144–154, Mar. 2013. URL: https:
//doi.org/10.1016/j.sysarc.2013.02.003.

[204] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transpar-
ent checkpointing under UNIX. In Proceedings of the USENIX Techni-
cal Conference, USENIX TCON’95, New Orleans, Louisiana, USA, Jan.
1995. URL: https://www.usenix.org/legacy/publications/
library/proceedings/neworl/plank.html.

[205] G. Pokam, K. Danne, C. Pereira, R. Kassa, T. Kranich, S. Hu, J. Gottschlich,
N. Honarmand, N. Dautenhahn, S. T. King, and J. Torrellas. QuickRec:
Prototyping an Intel architecture extension for record and replay of mul-
tithreaded programs. In Proceedings of the International Symposium on
Computer Architecture, ISCA’13, pages 643–654, Tel-Aviv, Israel, June 2013.
URL: https://doi.org/10.1145/2485922.2485977.

[206] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17(7):412–421,
July 1974. URL: https://doi.org/10.1145/361011.361073.

[207] A. Portero, A. Scionti, Z. Yu, P. Faraboschi, C. Concatto, L. Carro, A. Garbade,
S. Weis, T. Ungerer, and R. Giorgi. Simulating the future kilo x86-64
core processors and their infrastructure. In Proceedings of the Simulation
Symposium, ANSS’12, Orlando, Florida, USA, Mar. 2012. URL: http:
//www3.diism.unisi.it/~giorgi/papers/Portero12a.pdf.

[208] A. Pranckevičius. More hash function tests. https://aras-p.info/
blog/2016/08/09/More-Hash-Function-Tests/, Aug. 2016. [On-
line; retrieved Jan. 29, 2019].

[209] A. Pusch. Checkpoint distribution for simuboost. Master’s thesis, Karlsruhe
Institute of Technology (KIT), Operating Systems Group, Oct. 2017.

https://doi.org/10.1145/1772954.1772958
https://doi.org/10.1016/j.sysarc.2013.02.003
https://doi.org/10.1016/j.sysarc.2013.02.003
https://www.usenix.org/legacy/publications/library/proceedings/neworl/plank.html
https://www.usenix.org/legacy/publications/library/proceedings/neworl/plank.html
https://doi.org/10.1145/2485922.2485977
https://doi.org/10.1145/361011.361073
http://www3.diism.unisi.it/~giorgi/papers/Portero12a.pdf
http://www3.diism.unisi.it/~giorgi/papers/Portero12a.pdf
https://aras-p.info/blog/2016/08/09/More-Hash-Function-Tests/
https://aras-p.info/blog/2016/08/09/More-Hash-Function-Tests/

250 Bibliography

[210] W. Qin, J. D’Errico, and X. Zhu. A multiprocessing approach to accelerate
retargetable and portable dynamic-compiled instruction-set simulation. In
Proceedings of the International Conference on Hardware/Software Codesign
and System Synthesis, CODES+ISSS’06, pages 193–198, Seoul, Korea, Oct.
2006. URL: https://doi.org/10.1145/1176254.1176302.

[211] A. Quinn, D. Devecsery, P. M. Chen, and J. Flinn. JetStream: Cluster-scale
parallelization of information flow queries. In Proceedings of the Symposium
on Operating Systems Design and Implementation, OSDI’16, pages 451–466,
Savannah, Georgia, USA, Nov. 2016. URL: https://www.usenix.org/
system/files/conference/osdi16/osdi16-quinn.pdf.

[212] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting system emulators. In
Proceedings of the International Conference on Information Security, ISC’07,
pages 1–18, Valparaíso, Chile, Oct. 2007. URL: https://doi.org/10.
1007/978-3-540-75496-1_1.

[213] S. Rajagopalan, B. Cully, R. O’Connor, and A. Warfield. SecondSite: Disaster
tolerance as a service. In Proceedings of the Conference on Virtual Execution
Environments, VEE’12, pages 97–108, London, England, Mar. 2012. URL:
https://doi.org/10.1145/2151024.2151039.

[214] B. Randell and C. Kuehner. Dynamic storage allocation systems. Communi-
cations of the ACM, 11(5):297–306, May 1968.

[215] S. Ren, L. Tan, C. Li, Z. Xiao, and W. Song. Samsara: Efficient de-
terministic replay in multiprocessor environments with hardware vir-
tualization extensions. In Proceedings of the USENIX Annual Tech-
nical Conference, USENIX ATC’16, pages 551–564, Denver, Colorado,
USA, June 2016. URL: https://www.usenix.org/system/files/
conference/atc16/atc16_paper-ren.pdf.

[216] P. Riteau, C. Morin, and T. Priol. Shrinker: Improving live migration of
virtual clusters over WANs with distributed data deduplication and content-
based addressing. In Proceedings of the European Conference on Parallel
Processing, Euro-Par’11, pages 431–442, Bordeaux, France, Aug. 2011.
URL: https://doi.org/10.1007/978-3-642-23400-2_40.

[217] M. Rittinghaus. Runtime benefits of memory deduplication. Diploma thesis,
Karlsruhe Institute of Technology (KIT), Operating Systems Group, July
2012.

[218] M. Rittinghaus, T. Groeninger, and F. Bellosa. Simutrace: A toolkit for full
system memory tracing. White paper, Karlsruhe Institute of Technology
(KIT), Operating Systems Group, May 2015.

https://doi.org/10.1145/1176254.1176302
https://www.usenix.org/system/files/conference/osdi16/osdi16-quinn.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-quinn.pdf
https://doi.org/10.1007/978-3-540-75496-1_1
https://doi.org/10.1007/978-3-540-75496-1_1
https://doi.org/10.1145/2151024.2151039
https://www.usenix.org/system/files/conference/atc16/atc16_paper-ren.pdf
https://www.usenix.org/system/files/conference/atc16/atc16_paper-ren.pdf
https://doi.org/10.1007/978-3-642-23400-2_40

Bibliography 251

[219] M. Rittinghaus, K. Miller, M. Hillenbrand, and F. Bellosa. SimuBoost:
Scalable parallelization of functional system simulation. In Proceedings
of the International Workshop on Dynamic Analysis, WODA’13, Houston,
Texas, USA, Mar. 2013.

[220] M. Ronsse and K. De Bosschere. RecPlay: A fully integrated practical
record/replay system. ACM Transactions on Computer Systems (TOCS),
17(2):133–152, 1999. URL: https://doi.org/10.1145/312203.
312214.

[221] M. Rosenblum. The reincarnation of virtual machines. Queue - Vir-
tual Machines, 2(5):34, July 2004. URL: https://doi.org/10.1145/
1016998.1017000.

[222] M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current tech-
nology and future trends. Computer, 38(5):39–47, May 2005. URL:
https://doi.org/10.1109/MC.2005.176.

[223] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete computer
system simulation: The SimOS approach. IEEE Parallel & Distributed
Technology: Systems & Applications, 3(4):34–43, 1995. URL: https://
doi.org/10.1109/88.473612.

[224] J. Ruh. Analyzing duplication in incremental high frequency checkpoints.
Bachelor’s thesis, Karlsruhe Institute of Technology (KIT), Operating Sys-
tems Group, Sept. 2015.

[225] J. Ruh. Optimizing continuous checkpoints for deterministic replay. Mas-
ter’s thesis, Karlsruhe Institute of Technology (KIT), Operating Systems
Group, July 2018.

[226] R. Russell. virtio: towards a de-facto standard for virtual I/O devices. ACM
SIGOPS Operating Systems Review - Research and Developments in the Linux
Kernel, 42(5):95–103, July 2008. URL: https://doi.org/10.1145/
1400097.1400108.

[227] M. Russinovich and B. Cogswell. Replay for concurrent non-deterministic
shared-memory applications. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation, PLDI’96, pages 258–266,
Philadelphia, Pennsylvania, USA, May 1996. URL: https://doi.org/
10.1145/231379.231432.

[228] Y. Saito. Jockey: A user-space library for record-replay debugging. In
Proceedings of the International Symposium on Automated Analysis-driven
Debugging, AADEBUG’05, pages 69–76, Monterey, California, USA, Sept.
2005. URL: https://doi.org/10.1145/1085130.1085139.

https://doi.org/10.1145/312203.312214
https://doi.org/10.1145/312203.312214
https://doi.org/10.1145/1016998.1017000
https://doi.org/10.1145/1016998.1017000
https://doi.org/10.1109/MC.2005.176
https://doi.org/10.1109/88.473612
https://doi.org/10.1109/88.473612
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/231379.231432
https://doi.org/10.1145/231379.231432
https://doi.org/10.1145/1085130.1085139

252 Bibliography

[229] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and
D. Black-Schaffer. Full speed ahead: Detailed architectural simulation
at near-native speed. In Proceedings of the International Symposium on
Workload Characterization, IISWC’15, pages 183–192, Atlanta, Georgia,
USA, Oct. 2015. URL: https://doi.org/10.1109/IISWC.2015.29.

[230] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosen-
blum. Optimizing the migration of virtual computers. In Proceedings of
the Symposium on Operating Systems Design and Implementation, OSDI’02,
pages 377–390, Boston, Massachusetts, USA, Dec. 2002. URL: https:
//doi.org/10.1145/844128.844163.

[231] D. J. Scales, M. Nelson, and G. Venkitachalam. The design of a practical
system for fault-tolerant virtual machines. ACM SIGOPS Operating Sys-
tems Review, 44(4):30–39, 2010. URL: https://doi.org/10.1145/
1899928.1899932.

[232] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben. Efficient dis-
tribution of virtual machines for cloud computing. In Proceedings of
the International Conference on Parallel, Distributed and Network-Based
Processing, PDP’10, pages 567–574, Pisa, Italy, Feb. 2010. URL: https:
//doi.org/10.1109/PDP.2010.39.

[233] T. Schmidt. Evaluating techniques for full system memory tracing. Bach-
elor’s thesis, Karlsruhe Institute of Technology (KIT), Operating Systems
Group, Oct. 2017.

[234] J. Schoetterl-Glausch. Intel page modification logging for lightweight con-
tinuous checkpointing. Bachelor’s thesis, Karlsruhe Institute of Technology
(KIT), Operating Systems Group, Oct. 2016.

[235] J. Schötterl-Glausch. Exploring pre-scan, parallel copy, and large pages for
continuous checkpointing. Master’s thesis, Karlsruhe Institute of Technol-
ogy (KIT), Operating Systems Group, Nov. 2018.

[236] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy. SpotCheck: Designing a
derivative IaaS cloud on the spot market. In Proceedings of the European
Conference on Computer Systems, EuroSys’15, page 16, Bordeaux, France,
Apr. 2015. URL: https://doi.org/10.1145/2741948.2741953.

[237] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically char-
acterizing large scale program behavior. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS’02, pages 45–57, San Jose, California, USA, Oct.
2002. URL: https://doi.org/10.1145/605397.605403.

[238] S. Shwartsman and D. Mihoka. How Bochs Works Under the Hood. Second
edition, June 2012.

https://doi.org/10.1109/IISWC.2015.29
https://doi.org/10.1145/844128.844163
https://doi.org/10.1145/844128.844163
https://doi.org/10.1145/1899928.1899932
https://doi.org/10.1145/1899928.1899932
https://doi.org/10.1109/PDP.2010.39
https://doi.org/10.1109/PDP.2010.39
https://doi.org/10.1145/2741948.2741953
https://doi.org/10.1145/605397.605403

Bibliography 253

[239] B. Smith. ARM and Intel battle over the mobile chip’s future. Computer,
41(5):15–18, May 2008. URL: https://doi.org/10.1109/MC.2008.
142.

[240] J. Smith and R. Nair. Virtual machines: versatile platforms for systems and
processes. Morgan Kaufmann, July 2005. ISBN: 978-1558609105.

[241] X. Song, J. Shi, R. Liu, J. Yang, and H. Chen. Parallelizing live migration of
virtual machines. In Proceedings of the International Conference on Virtual
Execution Environments, VEE’13, pages 85–96, Houston, Texas, USA, Mar.
2013. URL: https://doi.org/10.1145/2451512.2451531.

[242] SPARC International, Inc. The SPARC Architecture Manual, eights edition,
1992.

[243] T. Spink, H. Wagstaff, and B. Franke. Hardware-accelerated cross-
architecture full-system virtualization. ACM Transactions on Architec-
ture and Code Optimization (TACO), 13(4):36, Dec. 2016. URL: https:
//doi.org/10.1145/2996798.

[244] D. Srinivasan and X. Jiang. Time-traveling forensic analysis of VM-based
high-interaction honeypots. In Proceedings of the International Conference
on Security and Privacy in Communication Systems, SecureComm’11, pages
209–226, London, England, Sept. 2011. URL: https://doi.org/10.
1007/978-3-642-31909-9_12.

[245] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flash-
back: A lightweight extension for rollback and deterministic
replay for software debugging. In Proceedings of the USENIX
Annual Technical Conference, General Track, USENIX ATC’04,
pages 29–44, Boston, Massachusetts, USA, July 2004. URL:
https://www.usenix.org/legacy/events/usenix04/tech/
general/full_papers/srinivasan/srinivasan.pdf.

[246] J. Stevens, P. Tschirhart, and B. Jacob. Fast full system memory checkpoint-
ing with SSD-aware memory controller. In Proceedings of the International
Symposium on Memory Systems, MEMSYS’16, pages 96–98, Alexandria,
Virginia, USA, Oct. 2016. URL: https://doi.org/10.1145/2989081.
2989126.

[247] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O
devices on VMware Workstation’s hosted virtual machine monitor.
In Proceedings of the USENIX Annual Technical Conference, General
Track, USENIX ATC’01, pages 1–14, Boston, Massachusetts, USA,
June 2001. URL: http://usenix.org/publications/library/
proceedings/usenix01/sugerman/sugerman.pdf.

https://doi.org/10.1109/MC.2008.142
https://doi.org/10.1109/MC.2008.142
https://doi.org/10.1145/2451512.2451531
https://doi.org/10.1145/2996798
https://doi.org/10.1145/2996798
https://doi.org/10.1007/978-3-642-31909-9_12
https://doi.org/10.1007/978-3-642-31909-9_12
https://www.usenix.org/legacy/events/usenix04/tech/general/full_papers/srinivasan/srinivasan.pdf
https://www.usenix.org/legacy/events/usenix04/tech/general/full_papers/srinivasan/srinivasan.pdf
https://doi.org/10.1145/2989081.2989126
https://doi.org/10.1145/2989081.2989126
http://usenix.org/publications/library/proceedings/usenix01/sugerman/sugerman.pdf
http://usenix.org/publications/library/proceedings/usenix01/sugerman/sugerman.pdf

254 Bibliography

[248] M. H. Sun and D. M. Blough. Fast, lightweight virtual machine check-
pointing. Technical report, Georgia Institute of Technology, 2010. URL:
http://hdl.handle.net/1853/36671.

[249] D. Sundmark and H. Thane. Pinpointing interrupts in embedded real-
time systems using context checksums. In Proceedings of the International
Conference on Emerging Technologies and Factory Automation, ETFA’08,
pages 774–781, Hamburg, Germany, Sept. 2008. URL: https://doi.
org/10.1109/ETFA.2008.4638487.

[250] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of delta com-
pression techniques for efficient live migration of large virtual machines.
In Proceedings of the International Conference on Virtual Execution Envi-
ronments, VEE’11, pages 111–120, Newport Beach, California, USA, Mar.
2011. URL: https://doi.org/10.1145/1952682.1952698.

[251] P. Svärd, J. Tordsson, B. Hudzia, and E. Elmroth. High performance live
migration through dynamic page transfer reordering and compression. In
Proceedings of the International Conference on Cloud Computing Technology
and Science, CloudCom’11, pages 542–548, Athens, Greece, Nov. 2011.
URL: https://doi.org/10.1109/CloudCom.2011.82.

[252] P. Ta-Shma, G. Laden, M. Ben-Yehuda, and M. Factor. Virtual machine
time travel using continuous data protection and checkpointing. ACM
SIGOPS Operating Systems Review, 42(1):127–134, Jan. 2008. URL: https:
//doi.org/10.1145/1341312.1341341.

[253] Y. Tamura, K. Sato, S. Kihara, and S. Moriai. Kemari: Virtual machine
synchronization for fault tolerance. In USENIX Annual Technical Conference
(Poster Session), USENIX ATC’08, Boston, Massachusetts, USA, June 2008.
URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.580.7704&rep=rep1&type=pdf.

[254] A. S. Tanenbaum and H. Bos. Modern Operating System. Pearson Education,
Inc, fourth edition, 2015. ISBN: 978-1292061429.

[255] M. M. Theimer, K. A. Lantz, and D. R. Cheriton. Preemptable remote
execution facilities for the V-system. Technical Report ADA166948, Stan-
ford University, Department of Computer Science, Sept. 1985. URL:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a166948.pdf.

[256] X. Tong, T. Koju, M. Kawahito, and A. Moshovos. Optimizing memory
translation emulation in full system emulators. ACM Transactions on
Architecture and Code Optimization (TACO), 11(4):60, Jan. 2015. URL:
https://doi.org/10.1145/2686034.

http://hdl.handle.net/1853/36671
https://doi.org/10.1109/ETFA.2008.4638487
https://doi.org/10.1109/ETFA.2008.4638487
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1109/CloudCom.2011.82
https://doi.org/10.1145/1341312.1341341
https://doi.org/10.1145/1341312.1341341
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.580.7704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.580.7704&rep=rep1&type=pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a166948.pdf
https://doi.org/10.1145/2686034

Bibliography 255

[257] D. Trendafilov, N. Memon, and T. Suel. zdelta: An efficient delta compres-
sion tool. Technical Report CIS-2002-02, Polytechnic University, Brooklyn,
Department of Computer and Information Science, June 2002.

[258] J. Tröger and D. Mihocka. Fast microcode interpretation with transactional
commit/abort. In Workshop on Architectural and Microarchitectural Support
for Binary Translation, AMAS-BT’11, San Jose, California, USA, June 2011.
URL: http://www.emulators.com/docs/amas-bt2011.pdf.

[259] C.-C. Tu, M. Ferdman, C.-t. Lee, and T.-c. Chiueh. A comprehensive imple-
mentation and evaluation of direct interrupt delivery. In Proceedings of the
International Conference on Virtual Execution Environments, VEE’15, pages
1–15, Istanbul, Turkey, Mar. 2015. URL: https://doi.org/10.1145/
2731186.2731189.

[260] R. Uhlig, R. Fishtein, and O. Gershon. SoftSDV: A presilicon software
development environment for the IA-64 architecture. Intel Technology
Journal, Nov. 1999.

[261] G. Vallee, T. Naughton, H. Ong, and S. L. Scott. Checkpoint/restart
of virtual machines based on Xen. In High Availability and Performace
Computing Workshop, HAPCW’06, Santa Fe, New Mexico, USA, Oct.
2006. URL: https://www.cct.lsu.edu/~estrabd/LACSI2006/
workshops/workshop1/papers/cr-xen-hapcw06-final.pdf.

[262] S. Veith. Towards heterogeneous record and replay on the ARM architecture.
Master’s thesis, Karlsruhe Institute of Technology (KIT), Operating Systems
Group, Jan. 2017.

[263] N. Viennot, S. Nair, and J. Nieh. Transparent mutable replay for multicore
debugging and patch validation. In Proceedings of the International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’13, pages 127–138, Houston, Texas, USA, Mar. 2013.
URL: https://doi.org/10.1145/2451116.2451130.

[264] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M.
Voelker, and S. Savage. Scalability, fidelity, and containment in the Potemkin
virtual honeyfarm. In Proceedings of the Symposium on Operating Systems
Principles, SOSP’05, pages 148–162, Brighton, United Kingdom, Oct. 2005.
URL: https://doi.org/10.1145/1095810.1095825.

[265] C. Waldspurger and M. Rosenblum. I/O virtualization. Queue - Virtual-
ization, 9(11):30–39, Nov. 2011. URL: https://doi.org/10.1145/
2063166.2071256.

http://www.emulators.com/docs/amas-bt2011.pdf
https://doi.org/10.1145/2731186.2731189
https://doi.org/10.1145/2731186.2731189
https://www.cct.lsu.edu/~estrabd/LACSI2006/workshops/workshop1/papers/cr-xen-hapcw06-final.pdf
https://www.cct.lsu.edu/~estrabd/LACSI2006/workshops/workshop1/papers/cr-xen-hapcw06-final.pdf
https://doi.org/10.1145/2451116.2451130
https://doi.org/10.1145/1095810.1095825
https://doi.org/10.1145/2063166.2071256
https://doi.org/10.1145/2063166.2071256

256 Bibliography

[266] C. A. Waldspurger. Memory resource management in VMware ESX server.
In Proceedings of the Symposium on Operating Systems Design and Imple-
mentation, OSDI’02, pages 181–194, Boston, Massachusetts, USA, Dec.
2002. URL: https://doi.org/10.1145/844128.844146.

[267] S. Wallace and K. Hazelwood. SuperPin: Parallelizing dynamic instru-
mentation for real-time performance. In Proceedings of the International
Symposium on Code Generation and Optimization, CGO’07, pages 209–
220, San Jose, California, USA, Mar. 2007. URL: https://doi.org/10.
1109/cgo.2007.37.

[268] K. Wang, Y. Zhang, H. Wang, and X. Shen. Parallelization of IBM mambo
system simulator in functional modes. ACM SIGOPS Operating Systems
Review, 42(1):71–76, Jan. 2008. URL: https://doi.org/10.1145/
1341312.1341325.

[269] L. Wang, Z. Kalbarczyk, R. K. Iyer, and A. Iyengar. VM-µCheckpoint: Design,
modeling, and assessment of lightweight in-memory VM checkpointing.
IEEE Transactions on Dependable and Secure Computing, 12(2):243–255,
Mar. 2015. URL: https://doi.org/10.1109/TDSC.2014.2327967.

[270] Z. Wang, J. Li, C. Wu, D. Yang, Z. Wang, W.-C. Hsu, B. Li, and Y. Guan.
HSPT: Practical implementation and efficient management of embedded
shadow page tables for cross-ISA system virtual machines. In Proceedings
of the International Conference on Virtual Execution Environments, VEE’15,
pages 53–64, Istanbul, Turkey, Mar. 2015. URL: https://doi.org/10.
1145/2731186.2731188.

[271] Z. Wang, R. Liu, Y. Chen, X. Wu, H. Chen, W. Zhang, and B. Zang. COREMU:
A scalable and portable parallel full-system emulator. In Proceedings of the
Symposium on Principles and Practice of Parallel Programming, PPoPP’11,
pages 213–222, San Antonio, Texas, USA, Feb. 2011. URL: https://doi.
org/10.1145/1941553.1941583.

[272] V. M. Weaver and S. A. McKee. Can hardware performance counters be
trusted? In Proceedings of the International Symposium on Workload Char-
acterization, IISWC’08, pages 141–150, Seattle, Washington, USA, Sept.
2008. URL: https://doi.org/10.1109/IISWC.2008.4636099.

[273] V. M. Weaver and S. A. McKee. Using dynamic binary instrumentation to gen-
erate multi-platform SimPoints: Methodology and accuracy. In Proceedings
of the International Conference on High Performance Embedded Architectures
and Compilers, HiPEAC’08, pages 305–319, Göteborg, Sweden, Jan. 2008.
URL: https://doi.org/10.1007/978-3-540-77560-7_21.

https://doi.org/10.1145/844128.844146
https://doi.org/10.1109/cgo.2007.37
https://doi.org/10.1109/cgo.2007.37
https://doi.org/10.1145/1341312.1341325
https://doi.org/10.1145/1341312.1341325
https://doi.org/10.1109/TDSC.2014.2327967
https://doi.org/10.1145/2731186.2731188
https://doi.org/10.1145/2731186.2731188
https://doi.org/10.1145/1941553.1941583
https://doi.org/10.1145/1941553.1941583
https://doi.org/10.1109/IISWC.2008.4636099
https://doi.org/10.1007/978-3-540-77560-7_21

Bibliography 257

[274] V. M. Weaver, D. Terpstra, and S. Moore. Non-determinism and overcount on
modern hardware performance counter implementations. In Proceedings
of the International Symposium on Performance Analysis of Systems and
Software, ISPASS’13, pages 215–224, Austin, Texas, USA, Apr. 2013. URL:
https://doi.org/10.1109/ISPASS.2013.6557172.

[275] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Pro-
ceedings of the Symposium on Operating Systems Design and Imple-
mentation, OSDI’06, pages 307–320, Seattle, Washington, USA, Nov.
2006. URL: https://www.usenix.org/legacy/events/osdi06/
tech/full_papers/weil/weil.pdf.

[276] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. Simulation sam-
pling with live-points. In Proceedings of the International Symposium on Per-
formance Analysis of Systems and Software, ISPASS’06, pages 2–12, Austin,
Texas, USA, Mar. 2006. URL: https://doi.org/10.1109/ispass.
2006.1620785.

[277] J. Werner. Assessment of virtual machine working-sets in SimuBoost. Bach-
elor’s thesis, Karlsruhe Institute of Technology (KIT), Operating Systems
Group, Mar. 2018.

[278] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and performance in the
Denali isolation kernel. In Proceedings of the Symposium on Operating
Systems Design and Implementation, OSDI’02, pages 195–209, Boston,
Massachusetts, USA, Dec. 2002. URL: https://doi.org/10.1145/
844128.844147.

[279] F. Wilhelm. Tracing privileged memory accesses to discover software
vulnerabilities. Master’s thesis, Karlsruhe Institute of Technology (KIT),
Operating Systems Group, Nov. 2015.

[280] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for compressed
caching in virtual memory systems. In Proceedings of the USENIX Annual
Technical Conference, General Track, USENIX ATC’99, pages 101–116, Mon-
terey, California, USA, June 1999. URL: https://www.usenix.org/
legacy/events/usenix01/cfp/wilson/wilson.pdf.

[281] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation.
In Proceedings of the International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS’96, pages 68–79, Philadelphia, Penn-
sylvania, USA, May 1996. URL: https://doi.org/10.1145/233013.
233025.

https://doi.org/10.1109/ISPASS.2013.6557172
https://www.usenix.org/legacy/events/osdi06/tech/full_papers/weil/weil.pdf
https://www.usenix.org/legacy/events/osdi06/tech/full_papers/weil/weil.pdf
https://doi.org/10.1109/ispass.2006.1620785
https://doi.org/10.1109/ispass.2006.1620785
https://doi.org/10.1145/844128.844147
https://doi.org/10.1145/844128.844147
https://www.usenix.org/legacy/events/usenix01/cfp/wilson/wilson.pdf
https://www.usenix.org/legacy/events/usenix01/cfp/wilson/wilson.pdf
https://doi.org/10.1145/233013.233025
https://doi.org/10.1145/233013.233025

258 Bibliography

[282] T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der Merwe. CloudNet:
dynamic pooling of cloud resources by live WAN migration of virtual
machines. In Proceedings of the International Conference on Virtual Execution
Environments, VEE’11, pages 121–132, Newport Beach, California, USA,
Mar. 2011. URL: https://doi.org/10.1145/1952682.1952699.

[283] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and M. D.
Corner. Memory Buddies: Exploiting page sharing for smart colocation in
virtualized data centers. ACM SIGOPS Operating Systems Review, 43(3):27–
36, July 2009. URL: https://doi.org/10.1145/1618525.1618529.

[284] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Ac-
celerating microarchitecture simulation via rigorous statistical sampling.
In Proceedings of the International Symposium on Computer Architecture,
ISCA’03, pages 84–95, San Diego, California, USA, June 2003. URL:
https://doi.org/10.1109/ISCA.2003.1206991.

[285] M. Xu, R. Bodik, and M. D. Hill. A flight data recorder for enabling
full-system multiprocessor deterministic replay. In Proceedings of the In-
ternational Symposium on Computer Architecture, ISCA’03, pages 122–133,
San Diego, California, USA, June 2003. URL: https://doi.org/10.
1145/859618.859633.

[286] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weissman.
ReTrace: Collecting execution trace with virtual machine determinis-
tic replay. In Proceedings of the Workshop on Modeling, Benchmark-
ing and Simulation, MoBS’07, page 3, San Diego, California, USA, jun
2007. URL: http://www-mount.ece.umn.edu/~jjyi/MoBS/2007/
program/01C-Xu.pdf.

[287] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin. V2E: combining hard-
ware virtualization and software emulation for transparent and extensible
malware analysis. In Proceedings of the Conference on Virtual Execution
Environments, VEE’12, pages 227–238, London, England, Mar. 2012. URL:
https://doi.org/10.1145/2151024.2151053.

[288] S. Yang. Extending KVM with new Intel Virtualization technology. Napa
Valley, California, USA, June 2008. URL: https://www.linux-kvm.
org/images/c/c7/KvmForum2008%24kdf2008_11.pdf.

[289] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins. Charac-
terizing and comparing prevailing simulation techniques. In Proceedings of
the International Symposium on High-Performance Computer Architecture,
HPCA’05, pages 266–277, San Francisco, California, USA, Feb. 2005. URL:
https://doi.org/10.1109/HPCA.2005.8.

https://doi.org/10.1145/1952682.1952699
https://doi.org/10.1145/1618525.1618529
https://doi.org/10.1109/ISCA.2003.1206991
https://doi.org/10.1145/859618.859633
https://doi.org/10.1145/859618.859633
http://www-mount.ece.umn.edu/~jjyi/MoBS/2007/program/01C-Xu.pdf
http://www-mount.ece.umn.edu/~jjyi/MoBS/2007/program/01C-Xu.pdf
https://doi.org/10.1145/2151024.2151053
https://www.linux-kvm.org/images/c/c7/KvmForum2008%24kdf2008_11.pdf
https://www.linux-kvm.org/images/c/c7/KvmForum2008%24kdf2008_11.pdf
https://doi.org/10.1109/HPCA.2005.8

Bibliography 259

[290] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux utility for
resource management. In Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, JSSPP’03, pages 44–60, Seattle, Washing-
ton, USA, June 2003. URL: https://doi.org/10.1007/10968987_3.

[291] P. Yosifovich, A. Ionescu, M. E. Russinovich, and D. A. Solomon. Win-
dows Internals Part 1. Microsoft Press, seventh edition, 2017. ISBN:
978-0735684188.

[292] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microarchitectural
simulator. In Proceedings of the International Symposium on Performance
Analysis of Systems & Software, ISPASS’07, pages 23–34, San Jose, Cal-
ifornia, USA, Apr. 2007. URL: https://doi.org/10.1109/ISPASS.
2007.363733.

[293] M. Zangl. Towards heterogeneous deterministic replay for symmetric
multiprocessors. Master’s thesis, Karlsruhe Institute of Technology (KIT),
Operating Systems Group, Nov. 2017.

[294] H. Zeng, M. Yourst, K. Ghose, and D. Ponomarev. MPTLsim: A cycle-
accurate, full-system simulator for x86-64 multicore architectures with
coherent caches. ACM SIGARCH Computer Architecture News, 37(2):2–9,
May 2009. URL: https://doi.org/10.1145/1577129.1577132.

[295] X. Zhang, Q. Guo, Y. Chen, T. Chen, and W. Hu. HERMES: a fast cross-ISA
binary translator with post-optimization. In Proceedings of the International
Symposium on Code Generation and Optimization, CGO’15, pages 246–256,
San Francisco, California, USA, Feb. 2015. URL: https://doi.org/10.
1109/CGO.2015.7054204.

[296] X. Zhang, Z. Huo, J. Ma, and D. Meng. Exploiting data deduplication to
accelerate live virtual machine migration. In Proceedings of the Interna-
tional Conference on Cluster Computing, CLUSTER’10, pages 88–96, Her-
aklion, Crete, Greece, Sept. 2010. URL: https://doi.org/10.1109/
CLUSTER.2010.17.

https://doi.org/10.1007/10968987_3
https://doi.org/10.1109/ISPASS.2007.363733
https://doi.org/10.1109/ISPASS.2007.363733
https://doi.org/10.1145/1577129.1577132
https://doi.org/10.1109/CGO.2015.7054204
https://doi.org/10.1109/CGO.2015.7054204
https://doi.org/10.1109/CLUSTER.2010.17
https://doi.org/10.1109/CLUSTER.2010.17

	Introduction
	Contributions
	Scope of This Thesis
	Underlying Publications and Theses
	Organization

	Background
	Virtualization
	Virtual Machines
	Conclusion and Terms

	Virtualization Techniques
	Processor Virtualization
	Memory Virtualization
	I/O Virtualization
	Conclusion and Terms
	Case Study: QEMU/KVM

	Checkpointing
	Pre- and Post-Copy
	Data Exclusion
	Data Deduplication
	Data Compression
	Other Techniques
	Conclusion

	Deterministic Replay
	Homogeneous Replay
	Heterogeneous Replay
	Multiprocessor Replay
	Conclusion

	Functional Full System Simulation
	Assessment of Simulation Speed
	Acceleration Techniques
	Optimizing the Execution Engine
	Reducing the Observation Space
	Parallelizing Multicore Simulations
	Parallelizing the Simulation Time

	Conclusion: Limitations of the State of the Art

	SimuBoost
	Goals
	Approach
	State Deviation

	Comparison with Related Work
	Conclusion

	Performance Model
	Optimal Setup
	Parallel Simulation Time and Speedup
	Optimal Interval Length
	Optimal Number of Nodes and Efficiency

	Constrained Setup
	Parallel Simulation Time and Speedup
	Optimal Interval Length

	Conclusion

	Continuous Checkpointing
	Checkpoint Creation
	Incremental Checkpointing
	Dirty Logging Techniques
	Dirty Logging Granularity
	Design and Implementation

	Checkpoint Storage
	SimuBoost Extension for Simutrace

	Checkpoint Loading
	Sparse Checkpoints

	Conclusion

	Checkpoint Distribution
	Pulling versus Pushing
	Checkpoint Data Reduction
	Data Deduplication
	Delta Compression
	Device State Compression

	Multicast Checkpoint Distribution
	Conclusion

	Heterogeneous Deterministic Replay
	General Architecture
	Landmark
	Replay Boundary
	Evaluation

	Simulation Refining
	Status Flag Computation
	Read-Write Instructions
	MMU-induced Non-Determinism
	Atomic Instructions (ARM only)
	Miscellaneous

	Conclusion

	Evaluation
	Evaluation Setup
	Hardware and Software Configuration
	Benchmark Scenarios

	Speedup
	Scalability and Efficiency
	Performance Model
	Conclusion

	Conclusion
	Limitations and Future Work

	Deutsche Zusammenfassung
	Additional Figures and Data
	Lists
	Tables
	Figures
	Bibliography

