

Edinburgh Research Explorer

A Retargetable System-Level DBT Hypervisor

Citation for published version:
Spink, T, Wagstaff, H & Franke, B 2019, A Retargetable System-Level DBT Hypervisor. in Proceedings of
the 2019 USENIX Annual Technical Conference. USENIX Association, Renton, WA, pp. 505-520, 2019
USENIX Annual Technical Conference, Renton, United States, 10/07/19.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2019 USENIX Annual Technical Conference

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/224804173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/a-retargetable-systemlevel-dbt-hypervisor(8ba6ca45-cf74-407f-b91b-84c600cc1211).html

A Retargetable System-Level DBT Hypervisor

Tom Spink
University of Edinburgh

Harry Wagstaff
University of Edinburgh

Björn Franke
University of Edinburgh

Abstract
System-level Dynamic Binary Translation (DBT) provides
the capability to boot an Operating System (OS) and execute
programs compiled for an Instruction Set Architecture (ISA)
different to that of the host machine. Due to their performance-
critical nature, system-level DBT frameworks are typically
hand-coded and heavily optimized, both for their guest and
host architectures. While this results in good performance
of the DBT system, engineering costs for supporting a new,
or extending an existing architecture are high. In this paper
we develop a novel, retargetable DBT hypervisor, which in-
cludes guest specific modules generated from high-level guest
machine specifications. Our system simplifies retargeting of
the DBT, but it also delivers performance levels in excess of
existing manually created DBT solutions. We achieve this by
combining offline and online optimizations, and exploiting
the freedom of a Just-in-time (JIT) compiler operating in a
bare-metal environment provided by a Virtual Machine (VM)
hypervisor. We evaluate our DBT using both targeted micro-
benchmarks as well as standard application benchmarks, and
we demonstrate its ability to outperform the de-facto stan-
dard QEMU DBT system. Our system delivers an average
speedup of 2.21× over QEMU across SPEC CPU2006 integer
benchmarks running in a full-system Linux OS environment,
compiled for the 64-bit ARMv8-A ISA and hosted on an x86-
64 platform. For floating-point applications the speedup is
even higher, reaching 6.49× on average. We demonstrate that
our system-level DBT system significantly reduces the effort
required to support a new ISA, while delivering outstanding
performance.

1 Introduction

System-level DBT is a widely used technology that comes in
many disguises: it powers the Android Open Source Project
(AOSP) Emulator for mobile app development, provides back-
wards compatibility for games consoles [52], implements
sandbox environments for hostile program analysis [41] and

enables low-power processor implementations for popular
ISAs [17]. All these applications require a complete and faith-
ful, yet efficient implementation of a guest architecture, in-
cluding privileged instructions and implementation-defined
behaviors, architectural registers, virtual memory, memory-
mapped I/O, and accurate exception and interrupt semantics.

The broad range of applications has driven an equally broad
range of system-level DBT implementations, ranging from
manually retargetable open-source solutions such as QEMU
[4] to highly specialized and hardware supported approaches
designed for specific platforms, e.g. Transmeta Crusoe [17].
As a de-facto industry standard QEMU supports all major plat-
forms and ISAs, however, retargeting of QEMU to a new guest
architecture requires deep knowledge of its integrated Tiny
Code Generator (TCG) as it involves manual implementation
of guest instruction behaviors. Consequently, retargeting is
time-consuming and error-prone: e.g. the official QEMU com-
mit logs contain more than 90 entries to bugfixes related to
its ARM model alone.

In this paper we present Captive, our novel system-level
DBT hypervisor, where users are relieved of low-level imple-
mentation effort for retargeting. Instead users provide high-
level architecture specifications similar to those provided by
processor vendors in their ISA manuals. In an offline stage ar-
chitecture specifications are processed, before an architecture-
specific module for the online run-time is generated. Captive
applies aggressive optimizations: it combines the offline opti-
mizations of the architecture model with online optimizations
performed within the generated JIT compiler, thus reducing
the compilation overheads while providing high code quality.
Furthermore, Captive operates in a virtual bare-metal environ-
ment provided by a VM hypervisor, which enables us to fully
exploit the underlying host architecture, especially its system
related and privileged features not accessible to other DBT
systems operating as user processes.

The envisaged use of Captive is to provide software devel-
opers with early access to new platforms, possibly hosted in a
cloud environment. To facilitate this goal, ease of retargetabil-
ity is as important as delivering performance levels sufficient

ARMv8

x86

x86

Figure 1: High-level overview of Captive.

to drive substantial workloads, i.e. software development tool
chains and user applications. Whilst we currently focus on a
single-core implementation, the key ideas can be translated
to multi-core architectures.

We evaluate the implementation of Captive using a 64-bit
ARMv8-A guest model and an x86-64 host. From a descrip-
tion comprising just 8100 lines of code1 we generate a DBT
hypervisor outperforming QEMU by a factor of 2.21× for
SPEC CPU2006 integer applications, and up to 6.49× for
floating-point workloads. This means Captive is capable of
hosting a full and unmodified ARM Linux OS environment
while delivering around 40% of the performance of a phys-
ical system comprising a 2.0GHz server-type Cortex-A57
processor.

1.1 Overview and Motivating Example

Figure 1 shows a high-level overview of Captive: an ARMv8-
A2 architecture description is processed by an offline tool
to produce a platform-specific DBT module. Already at this
stage optimizations are applied, which aid later JIT code gen-
eration. The software stack on the x86-64 host machine com-
prises a Kernel Virtual Machine (KVM)-based DBT hypervi-
sor, operating on top of the host’s Linux OS. This provides
a virtual bare-metal x86-64 Host Virtual Machine (HVM) in
which Captive together with the previously generated DBT
module and a minimal execution engine reside to provide
the Guest Virtual Machine (GVM), which can boot and run
an unmodified ARMv8-A Linux kernel image. Since the JIT
compiler in our system-level DBT system operates in a bare-

1Compared to 17766 LoC for QEMU’s ARM model plus a further 7948
LoC in their software floating-point implementation.

2Or any other guest architecture, e.g. RISC-V.

metal HVM it has full access to the virtual host’s resources
and can generate code to exploit these resources.

For example, consider Figure 2. A conventional system-
level DBT system hosted on an x86-64 architecture, e.g.
QEMU, operates entirely as a user process in protection ring
3 on top of a host OS operating in ring 0. This means that
any code generated by QEMU’s JIT compiler, either guest
user or system code, also operates in the host’s ring 3, which
restricts access to system features such as page tables. Such
a system operating exclusively in ring 3 needs to provide
software abstractions and protection mechanisms for guest
operations, which modify guest system state. In contrast, Cap-
tive operates in VMX root mode, and provides a bare-metal
HVM with rings 0-3. Our execution engine and DBT operate
in the virtual machine’s ring 0, and track the guest system’s
mode. This enables us to generate code operating in ring 0, for
guest system code, and ring 3, for guest user code. This means
we can use the HVM’s hardware protection features to effi-
ciently implement memory protection or allow the hypervisor
to modify the HVM’s page tables in order to directly map the
GVM’s virtual address space onto host physical memory.

Porting to a different host architecture can be accomplished
by utilising similar features offered by that architecture, e.g.
Arm offers virtualization extensions that are fully supported
by KVM, and privilege levels PL0 and PL1, which are similar
to x86’s ring 3 and ring 0, respectively. These similarities also
enable our accelerated virtual memory system to work across
platforms.

1.2 Contributions

Captive shares many concepts with existing DBT systems,
but it goes beyond and introduces unique new features. We

Ring 0

Ring 1

Ring 2

Ring 3

QEMU DBT
Hypervisor

QEMU's
Generated

Code

Host
Operating

System

Ring 1

Ring 2

Ring 3

Our
Hypervisor

Our DBT's
Generated

Code

Execution
Engine/DBT

Ring 0

Ring 1

Ring 2

Ring 3

Ring 0

KVM

VMX
Root Mode

VMX
Non-root Mode

Figure 2: x86 protection rings. Ring 0 is the most privileged (kernel mode), and ring 3 is the least privileged (user mode). QEMU
operates in ring 3, whereas Captive takes advantage of a host VM to operate in ring 0 and ring 3. The hypervisor component
operates outside the host virtual machine, in VMX root mode.

Q
E

M
U

[4
]

H
Q

E
M

U
[2

1]

PQ
E

M
U

[1
8]

W
al

ka
bo

ut
[1

2]

Y
ir

r-
M

a
[4

4]

IS
A

M
A

P
[3

8]

Tr
an

sm
et

a
C

M
S

[1
7]

H
ar

m
on

ia
[3

1]

Q
ui

ck
Tr

an
si

t[
26

]

H
yp

er
M

A
M

B
O

-x
64

[1
5]

C
ap

tiv
e

(2
01

6)
[4

0]

M
ag

iX
en

[1
0]

C
ap

tiv
e

System-Level 3 7 3 7 7 7 3 7 3 3 3 3 3

Retargetable 3 3 7 3 3 3 7 7 3 7 3 7 3

Architecture Description Language 7 7 7 3 3 3 7 7 7 7 3 7 3

Hypervisor 7 7 7 7 7 7 7 7 3 3 3 3 3

Host FP Supprt 7 3 7 N/A 7 3 3 7 3 3 3 3 3

FP bit-accurate 3 7 3 N/A N/A N/A 3 N/A N/A N/A 7 3 3

Host SIMD Support (3) (3) (3) 7 7 3 3 7 N/A N/A 7 3 3

64-bit support 3 3 7 3 3 3 7 7 N/A 7 7 7 3

Publicly Available 3 7 3 7 7 7 7 7 7 7 7 7 3

Table 1: Feature comparison of DBT systems. Brackets indicate partial support.

provide a feature comparison in Table 1, and present further
information on related work in Section 4. Among the contri-
butions of this paper are:

1. We develop a generic system-level DBT framework,
where the effort to support new guest platforms is reduced by
using high-level architecture descriptions.

2. We use split compilation in a DBT, combining offline and
online optimization to reduce pressure on the performance
critical JIT compiler while maintaining code quality.

3. We pioneer a DBT approach where the integrated JIT
compiler is part of a DBT hypervisor and can generate code
that takes full advantage of this execution context.

Captive has been released as an open-source project, to en-

able community-driven development and independent perfor-
mance evaluation.3

2 Retargetable DBT Hypervisor

2.1 Overview
In this section, we describe the key concepts of Captive, which
comprises two main components, (1) an offline generation
component, and (2) an online runtime component.

The offline phase involves describing the target machine
architecture, and is discussed in Section 2.2. In this phase,
modules for inclusion in the runtime component are generated.
Complex architectural behaviour (such as the operation of the

3See https://gensim.org/simulators/captive

Optimization Active in Opt. Level
Dead Code Elimination O1–4
Unreachable Block Elimination O1–4
Control Flow Simplification O1–4
Block Merging O1–4
Inlining O1–4
Dead Variable Elimination O1–4
Jump Threading O2–4
Constant Folding O3–4
Constant Propagation O3–4
Value Propagation O3–4
Load Coalescing O3–4
Dead Write Elimination O3–4
PHI Analysis O4
PHI Elimination O4

Table 2: Optimizations applied in the offline stage.

Memory Management Unit (MMU)) are described in regular
source-code files, and compiled together with the generated
source-code. The online runtime component is discussed in
Section 2.3, and comprises a further two sub-components,
(1) a user-mode application that activates and configures a
KVM Virtual Machine, and (2) a unikernel that runs inside
the KVM VM, and implements guest instruction translation
and general guest machine execution.

The DBT system itself runs inside a VM with no standard
OS support. Normally, a virtual machine provides a bare-
metal environment in which an OS is loaded, and then user
applications are executed. We instead skip the OS entirely,
and implement our DBT on the virtual bare-metal hardware.
Whilst this adds complexity to the implementation of the
DBT, it also allows the DBT to directly use host architec-
tural features, without having to negotiate with an OS. This
is in contrast to the majority of other system-level DBTs,
which typically run as user-mode applications in an OS. The
trade-off here is that Captive relies on KVM, reducing host
operating system portability.

2.2 Offline Stage

2.2.1 Architecture Description

The guest machine architecture is described using a high-
level Architecture Description Language (ADL) that defines
instruction syntax (i.e. how to decode instructions) and in-
struction semantics (i.e. how to execute instructions). The
ADL is also used to describe architectural features, such as
the register file size and layout, word sizes, endianness, etc.

The ADL is based on a modified version of ArchC [1], and
our offline generator tool processes the description into an
intermediate form, performs some optimization and analysis,
before finally producing modules for the DBT as output.

Instruction semantics (the functional behavior of guest ma-
chine instructions) are described in a high-level C-like lan-

1 execute(add) {
2 uint64 rn = read_register_bank(BANK0 , inst.a);
3 uint64 rm = read_register_bank(BANK0 , inst.b);
4 uint64 rd = rn + rm;
5 write_register_bank(BANK0 , inst.a, rd);
6 }

Figure 3: High-level C-like representation of instruction be-
havior

guage. This Domain Specific Language (DSL) allows the
behavior of instructions to be specified easily and naturally,
by, e.g. translating the pseudo-code found in architecture man-
uals into corresponding C-like code.

Figure 3 provides an example description of an add in-
struction that loads the value from two guest registers (lines
3 and 4), adds them together (line 5), then stores the result
to another guest register (line 6). This example shows how
a typical instruction might look, and how its behavior can
be naturally expressed. Of course, this is a simple example:
most ‘real-world’ instruction descriptions contain branching
paths to select specific instruction variants (e.g., flag-setting
or not), more complex calculations, and floating point and
vector operations, all of which can be handled by the ADL.

2.2.2 Intermediate SSA Form

During the offline phase, instruction behavior descriptions are
translated into a domain-specific Static Single Assignment
(SSA) form, and aggressively optimized. The optimization
passes used have been selected based on common idioms in
instruction descriptions. For example, very few loop-based
optimizations are performed, since most individual instruc-
tions do not contain loops. Optimizing the model at the offline
stage makes any simplifications utilized by the designer in the
description less of a performance factor in the resulting code.

The domain-specific SSA contains operations for reading
architectural registers, performing standard arithmetic oper-
ations on values of integral, floating-point and vector types,
memory and peripheral device access and communication,
and a variety of built-in functions for common architectural
behaviors (such as flag calculations and floating point NaN/In-
finity comparisons).

Additionally, meta-information about the SSA is held, indi-
cating whether each operation is fixed or dynamic. Fixed op-
erations are evaluated at instruction translation time, whereas
dynamic operations must be executed at instruction run-time.
For example, the calculation of a constant value, or control
flow based on instruction fields is fixed, but computations
which depend on register or memory values are dynamic [46].
Fixed operations can produce dynamic values, but dynamic
operations must be executed as part of instruction emulation.

Figure 4 shows the direct translation of the instruction
behavior (from Figure 3) into corresponding SSA form. A

1 action void add (Instruction sym_1_3_parameter_inst) [
2 uint64 sym_14_0_rd
3 uint64 sym_5_0_rn
4 uint64 sym_9_0_rm
5] {
6 block b_0 {
7 s_b_0_0 = struct sym_1_3_parameter_inst a;
8 s_b_0_1 = bankregread 7 s_b_0_0;
9 s_b_0_2: write sym_5_0_rn s_b_0_1;
10 s_b_0_3 = struct sym_1_3_parameter_inst b;
11 s_b_0_4 = bankregread 7 s_b_0_3;
12 s_b_0_5: write sym_9_0_rm s_b_0_4;
13 s_b_0_6 = read sym_5_0_rn;
14 s_b_0_7 = read sym_9_0_rm;
15 s_b_0_8 = binary + s_b_0_6 s_b_0_7;
16 s_b_0_9: write sym_14_0_rd s_b_0_8;
17 s_b_0_10 = struct sym_1_3_parameter_inst a;
18 s_b_0_11 = read sym_14_0_rd;
19 s_b_0_12: bankregwrite 0 s_b_0_10 s_b_0_11;
20 s_b_0_13: return;
21 }
22 }

Figure 4: Unoptimized domain-specific SSA form of the add
instruction from Figure 3.

1 action void add (Instruction sym_1_3_parameter_inst) [] {
2 block b_0 {
3 s_b_0_0 = struct sym_1_3_parameter_inst a;
4 s_b_0_1 = bankregread 7 s_b_0_0;
5 s_b_0_2 = struct sym_1_3_parameter_inst b;
6 s_b_0_3 = bankregread 7 s_b_0_2;
7 s_b_0_4 = binary + s_b_0_1 s_b_0_3;
8 s_b_0_5 = struct sym_1_3_parameter_inst a;
9 s_b_0_6: bankregwrite 0 s_b_0_5 s_b_0_4;
10 s_b_0_7: return;
11 }
12 }

Figure 5: Equivalent optimized domain-specific SSA form of
the add instruction from Figure 3.

series of optimizations (given in Table 2) are then applied to
this SSA, until a fixed-point is reached. Figure 5 shows the
optimized form of the SSA.

The offline optimizations allow the user to be expressive
and verbose in their implementation of the model, whilst
retaining a concise final representation of the user’s intent.
For example, dead code elimination is necessary in the case
where helper functions have been inlined, and subsequently
subjected to constant propagation/folding, which eliminates a
particular control-flow path through the function.

2.2.3 Generator Function

The domain-specific SSA itself is not used at runtime, but
instead is used in the final offline stage to build simulator-
specific generator functions. These functions are either com-
piled in, or dynamically loaded, by the DBT, and are invoked
at JIT compilation time. The generator functions call into the
DBT backend, which produces host machine code. When an
instruction is to be translated by the DBT, the corresponding
generator function is invoked.

Figure 6 shows the corresponding generator function, pro-
duced from the optimized SSA form in Figure 5. The genera-
tor function is clearly machine generated, but host compiler
optimizations (in the offline stage) will take care of any in-
efficiencies in the output source-code. Additionally (and not
shown for brevity) the offline stage generates source-code
comments, to assist in debugging.

2.3 Online Stage

The online stage of Captive involves the actual creation and
running of the guest virtual machine. This takes the form of
a KVM-based DBT hypervisor, which instantiates an empty
host virtual machine, which then loads the execution engine
(a small, specialized unikernel) that implements the DBT. The
KVM-based portion of the hypervisor also includes software
emulations of guest architectural devices (such as the inter-
rupt controller, UARTs, etc). The DBT comprises four main
phases, as shown in Figure 7: Instruction Decoding, Trans-
lation, Register Allocation, and finally Instruction Encod-
ing.

2.3.1 Instruction Decoding

The first phase in our execution pipeline is the instruction
decoder, which will decode one guest basic block’s worth of
instructions at a time. The decoder routines are automatically
generated from the architecture description during the offline
stage, utilizing techniques such as Krishna and Austin [27],
Theiling [43].

2.3.2 Translation

During the translation phase, a generator function (that was
created in the offline stage) is invoked for each decoded in-
struction. The generator function calls into an invocation
Directed Acyclic Graph (DAG) builder, which builds a DAG
representing the data-flow and control-flow of the instruc-
tion under translation. Operations (represented by nodes in
the DAG) that have side effects result in the collapse of the
DAG at that point, and the emission of low-level Intermediate
Representation (IR) instructions representing the collapsed
nodes.

A node with side effects is one through which control-flow
cannot proceed without the state of the guest being mutated
in some way. For example, a STORE node is considered to
have side-effects, as the guest machine register file has been
changed.

During emission, the tree rooted at that node is traversed,
emitting IR for the operations required to produce the input
values for that node. This feed-forward technique removes the
need to build an entire tree then traverse it later. Collapsing
nodes immediately to IR improves the performance of the
DBT, as instructions are generated as soon as possible.

1 bool generator::translate_add(const test_decode_test_F1& insn , dbt_emitter& emitter) {
2 basic_block *__exit_block = emitter.create_block();
3 goto fixed_block_b_0;
4 fixed_block_b_0: {
5 auto s_b_0_1 = emitter.load_register(emitter.const_u32((uint32_t)(256 + (16 * insn.a))), dbt_types::u64);
6 auto s_b_0_3 = emitter.load_register(emitter.const_u32((uint32_t)(256 + (16 * insn.b))), dbt_types::u64);
7 auto s_b_0_4 = emitter.add(s_b_0_1 , s_b_0_3);
8 emitter.store_register(emitter.const_u32((uint32_t)(0 + (8 * insn.a))), s_b_0_4);
9 goto fixed_done;
10 }
11 fixed_done:
12 emitter.jump(__exit_block);
13 emitter.set_current_block(__exit_block);
14 if (!insn.end_of_block) emitter.inc_pc(emitter.const_u8(4));
15 return true;
16 }

Figure 6: Generator function produced from ADL code shown in Figure 3

Decoder Translator
Register
Allocator

ARM Guest
Instructions

x86 Host
InstructionsEncoder

Figure 7: Online flow including decoder, translator, register allocation and instruction encoder.

STORE

+x0

x0 #1

(a)

x0

STORE

x1 +x31

PC #4

STORE STORE

+PC

PC #12

(b) (c) (d)

ENTRY EXIT

add x0, x0, #1 mov x1, x0 bl 0x100c

Figure 8: Example ARM assembly, and the corresponding
(uncollapsed) DAG built during translation. Nodes (a), (b), (c),
and (d) have side effects, causing the emission of low-level
IR based on the tree rooted at that node.

This strategy enables high-level operations to take place
on transparent values, and implements a weak form of tree
pattern matching on demand. When a node is collapsed, spe-
cializations can be made depending on how the tree is formed
at the node. For example, the STORE node ((d) in Figure 8) that
updates the PC by incrementing its value, can be emitted as a
single x86 instruction. Instruction selection also takes place
at this level, where the generator can utilize host instructions,
such as fused-multiply-add when available.

In the case of an x86 host machine, the low-level IR is
effectively x86 machine instructions, but with virtual register
operands in place of physical registers, as shown in Figure 9.
For other host machines, the IR is similar.

2.3.3 Register Allocation

After the low-level IR has been produced by the translation
phase, the register allocator makes a forward pass over these
instructions to discover live ranges, and then a backward pass
to split live ranges into live intervals. During live-range split-

1 mov (%rbp), %VREG0 ; Load guest reg. into temporary
2 add $1, %VREG0 ; Add one.
3 mov %VREG0 , (%rbp) ; Store temporary to guest reg.
4 mov (%rbp), %VREG1 ; Load guest reg. into temporary
5 mov %VREG1 , 8(%rbp) ; Store temporary to guest reg.
6 lea 4(%r15), %VREG2 ; Load PC+4 into temporary
7 mov %VREG2 , 0xf8(%rbp) ; Store into guest reg.
8 add $12, %r15 ; Increment PC by 12

Figure 9: As each node with side-effects is inserted into the
DAG, low-level IR is emitted that implements that node. This
IR represents host instructions, but with virtual registers in-
stead of physical registers.

ting, host machine registers are allocated to virtual registers,
and conflicts are resolved. Whilst not producing an optimal
solution, the register allocator is fast. The allocator also marks
dead instructions, so that at encoding time those instructions
are ignored. Our register allocation algorithm is similar to the
simplified graph-coloring scheme from Cai et al. [9], but with
additional dead code elimination.

2.3.4 Instruction Encoding

After register allocation is complete, the low-level intermedi-
ate form of instructions can be directly lowered into machine
code. The list of instructions is traversed for a final time, and
the machine code is generated directly from the instruction’s
meta-data, into a code buffer. Any instructions that were clas-
sified as dead during register allocation are skipped.

Once machine code emission is completed, a final pass is
made to apply patches to relative jump instructions, as this
value is only known once each instruction has been emitted,
and therefore sized.

1 fmov d0, #1.5 ; Store constant 1.5 in d0
2 fmul d0, d1, d2 ; Multiply d1 with d2, and store in d0

Figure 10: Arm floating-point input assembly

2.4 Exploiting Host Architectural Features

System-level DBT naturally involves emulating a range of
guest architectural components, most notably the MMU. Tra-
ditionally, this emulation is performed in software, where
each memory access must perform an address translation that
takes a virtual address, and translates it via the guest page
tables to a corresponding guest physical address. In QEMU, a
cache is used to accelerate this translation, but in Captive we
utilize the host MMU directly by mapping guest page table
entries to equivalent host page table entries. This reduces the
overhead of memory access instructions significantly, as we
do not need to perform cache look-ups, and can work with
the guest virtual address directly. Larger guest page sizes are
supported by the host MMU directly, as multiple host pages
can represent a single larger guest page. In the case of smaller
guest pages, we must emulate memory accesses carefully to
ensure permissions within a page are not violated. In general,
we support an n : m mapping between guest and host page
sizes, where n, m are powers of 2.

This technique is not possible with a DBT that runs in user-
mode, as the OS retains control of the host MMU page tables
(although attempts have been made to emulate this by using
the mmap system call [51]). However, with Captive, we are
operating in a bare-metal environment (see Figure 1), and are
able to configure the host architecture in any way we want.
By tracking the protection ring of the guest machine, and
executing the translated guest code in the corresponding host
protection ring, we can take advantage of the host system’s
memory protection mechanism, for efficient implementation
of guest memory protection.

We also take advantage of the x86 software interrupt mech-
anism (invoked using the int instruction), the x86 port-based
I/O instructions (in and out), and the x86 fast system call
instructions (syscall and sysret). These features are used
to accelerate implementations of instructions that require ad-
ditional non-trivial behaviors, e.g. accessing co-processors,
manipulation of page tables, flushing Translation Lookaside
Buffers (TLBs), and other operations specific to system-level
DBT.

2.5 Floating Point/SIMD Support

In order to reduce JIT complexity, QEMU uses a software
floating-point implementation, where helper methods are used
to implement floating-point operations. This results in the
emission of a function call as part of the instruction execution,
adding significant overhead to the emulation of these instruc-

1 movabs $0x3ff8000000000000 , %rbp ; Store const FP value
2 mov %rbp, 0x8c0(%r14) ; of 1.5 in guest
3 movq $0, 0x8c8(%r14) ; register file.
4 lea 0x8d0(%r14), %rbp
5 mov %rbp, %rdi
6 mov $0x3bd , %esi
7 xor %edx, %edx
8 callq 0x55d337b70220 ; call gvec_dup8 helper
9 lea 0x2b68(%r14), %rbp ; Prepare arguments for
10 mov 0x9c0(%r14), %rbx ; invocation of FP
11 mov 0xac0(%r14), %r12 ; multiply helper
12 mov %rbx, %rdi ; function.
13 mov %r12, %rsi
14 mov %rbp, %rdx
15 callq 0x55d337bd0050 ; Invoke helper
16 mov %rax, 0x8c0(%r14) ; Store result in
17 movq $0, 0x8c8(%r14) ; guest register file.

Figure 11: QEMU output assembly for the instruction se-
quence in Figure 10.

1 movabs $0x3ff8000000000000 ,%rax ; Store const FP value
2 mov %rax ,0x100(%rbp) ; of 1.5 in guest
3 movq $0x0 ,0x108(%rbp) ; register file.
4 add $0x4 ,%r15 ; Increment PC
5 movq 0x110(%rbp),%xmm0 ; Load FP multiply operand
6 mulsd 0x120(%rbp),%xmm0 ; Perform multiplication
7 movq %xmm0 ,0x100(%rbp) ; Store result
8 movq $0x0 ,0x108(%rbp)
9 add $0x4 ,%r15 ; Increment PC

Figure 12: Captive output assembly for the instruction se-
quence in Figure 10.

tions. Figure 10 gives an example of two ARM floating-point
instructions, which are translated by QEMU to the x86 code
in Figure 11, and by Captive to the code in Figure 12. Whilst
QEMU implements the fmov directly (lines 1—3), in much
the same way as Captive, QEMU issues a function call for
the floating-point multiplication (fmul). In contrast, Captive
emits a host floating-point multiplication instruction, which
operates directly on the guest register file.

Not all floating-point operations are trivial, however. No-
tably, there are significant differences with the way floating-
point flags, NaNs, rounding modes, and infinities are handled
by the underlying architecture, and in some cases this incom-
patibility between floating-point implementations needs to be
accounted for. In these cases, Captive emits fix-up code that
will ensure the guest machine state is bit-accurate with how
the guest machine would normally operate. Captive only sup-
ports situations where the host machine is at least as precise
as the guest. This is the most common scenario for our use
cases, but in the event of a precision mismatch, we can either
(a) use the x86 80-bit FPU (to access additional precision), or
(b) utilise a software floating-point library.

Like QEMU, Captive emits Single Instruction Multiple Data
(SIMD) instructions when translating a guest vector instruc-
tion, however QEMU’s support is restricted to integer and
bit-wise vector operations whereas Captive more aggressively
utilizes host SIMD support.

2.6 Translated Code Management

Captive employs a code cache, similar to QEMU, which main-
tains the translated code sequences. The key difference is that
we index our translations by guest physical address, while
QEMU indexes by guest virtual address. The consequence of
this is that our translations are retained and re-used for longer,
whereas QEMU must invalidate all translations when the guest
page tables are changed. In contrast, we only invalidate trans-
lations when self-modifying code is detected. We utilize our
ability to write-protect virtual pages to efficiently detect when
a guest memory write may modify translated code, and hence
invalidate translations only when necessary. A further benefit
is that translated code is re-used across different virtual map-
pings to the same physical address, e.g. when using shared
libraries.

2.7 Virtual Memory Management

To accelerate virtual memory accesses in the guest, we ded-
icate the lower half of the host VMs virtual address space
for the guest machine, and utilise the upper half for use by
Captive. The lower half of the address space is mapped by
taking corresponding guest page table entries, and turning
them into equivalent host page table entries.

To make a memory access, the guest virtual address is
masked, to keep it within the lower range, and if the address
actually came from a higher address, the host page tables are
switched to map the lower addresses to guest upper addresses.
The memory access is then performed using the masked ad-
dress directly, thus benefitting from host MMU acceleration.

3 Evaluation

Performance comparisons in the DBT space are difficult: most
of the existing systems are not publicly available, and insuf-
ficient information is provided to reconstruct these systems
from scratch. Furthermore, results published in the literature
often make use of different guest/host architecture pairs and
differ in supported features, which prohibit meaningful rela-
tive performance comparisons.4 For this reason we evaluate
Captive against the widely used QEMU DBT as a baseline,
supported by targeted micro-benchmarks and comparisons to
physical platforms.

3.1 Experimental Set-up

While we support a number of guest architectures, we choose
to evaluate Captive using an ARMv8-A guest and an x86-64

4For example, Harmonia [31] achieves a similar speedup of 2.2 over
QEMU, but this is for user-level DBT of a 32-bit guest on a 64-bit host system
whereas we achieve a speedup of 2.2 over QEMU for the harder problem of
system-level DBT of a 64-bit guest onto a 64-bit host system.

System HP z440

Architecture x86-64 Model Intel® Xeon®

E5-1620 v3
Cores/Threads 4/8 Frequency 3.5 GHz
L1 Cache I$128kB/D$128kB L2 Cache 1MB
L3 Cache 10 MB Memory 16 GB

Table 3: DBT Host System

System AMD Opteron A1170
Architecture ARMv8-A Model Cortex A57
Cores/Threads 8/8 Frequency 2.0 GHz
L1 Cache I$48kB/D$32kB L2 Cache 4×1 MB
L3 Cache 8 MB Memory 16 GB
System Raspberry Pi 3 Model B
Architecture ARMv8-A Model Cortex A53
Cores/Threads 4/4 Frequency 1.2 GHz
L1 Cache I$16kB/D$16kB L2 Cache 512kB
L3 Cache -/- Memory 1 GB

Table 4: Native Arm Host Systems

host.5 We conducted the following experiments on the host
machine described in Table 3, and performed our comparison
to native architectures on a Raspberry PI 3B, and an AMD
Opteron A1100 (Table 4). We utilized both the integer and
C++ floating-point benchmarks from SPEC CPU2006. Our
comparisons to QEMU were made with version 2.12.1.

3.2 Application Benchmarks
We have evaluated the performance of Captive and QEMU
using the standard SPEC2006 benchmark suite with the Ref-
erence data set. As can be seen in Figure 13, we obtain signif-
icant speedups in most Integer benchmarks, with a geometric
mean speedup of 2.2×. The two benchmarks where we ex-
perience a slow-down are 456.hmmer and 462.libquantum,
which can be attributed to suboptimal register allocation in hot
code. Figure 14 shows the speed up of Captive over QEMU
on the C++ Floating Point portion of the benchmark suite.6

Here we obtain a geometric mean speedup of 6.49×. This
large speedup can mainly be attributed to QEMU’s use of a
software floating point implementation, while we use the host
FPU and vector units directly.

3.3 Additional Guest Architectures
We also have descriptions in our ADL for other guest archi-
tectures, detailed in Table 5. However, with the exception of
ARMv7-A, these implementations currently lack full-system
support. For the ARMv7-A case, we have observed similar
average speed-ups of 2.5×, and up to 6× across the SPEC
CPU2006 benchmark suite using Captive.

5Additional RISC-V and x86 models will be released together with Cap-
tive.

6Missing Fortran benchmarks are due to the benchmarks not working
both natively, and in QEMU.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

400.perlbench
401.bzip2
403.gcc
429.m

cf
445.gobm

k
456.hm

m
er

458.sjeng
462.libquantum
464.h264ref
471.om

netpp
473.astar
483.xalancbm

k

A
b
so

lu
te

 r
u
n
ti

m
e
 (

s)

QEMU
Our DBT

(a) Absolute runtime in seconds (lower is better)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

400.perlbench
401.bzip2
403.gcc
429.m

cf
445.gobm

k
456.hm

m
er

458.sjeng
462.libquantum
464.h264ref
471.om

netpp
473.astar
483.xalancbm

k
G

eo. M
ean.

S
p

e
e
d

-u
p

Speed-up over QEMU

(b) Speed-up of Captive over QEMU (higher is better)

Figure 13: Application Performance: SPEC CPU2006 Integer benchmark results for Captive vs QEMU.

Architecture Challenges Solution
ARMv8-A 64-bit guest on 64-bit host emulation Additional techniques for MMU emulation
ARMv7-A If-then-else blocks, possibly spanning page boundaries Complex control-flow handling in the JIT
x86-64 Complex instruction encoding, requiring stateful decoder. Use of an external decoder library [23]
RISC-V No significiant challenges None required
TI TMS320C6x DSP VLIW instructions, nested branch delay slots Extensions to decoder generator, control-flow recovery
Arm Mali-G71 GPU Complex instruction bundle headers External “pre”-decoder for bundle headers.

Table 5: Architectures currently supported by Captive, and the architecture-specific challenges that required special attention for
implementation.

 0

 5

 10

 15

 20

 25

482.sphinx3

433.m
ilc

435.grom
acs

444.nam
d

470.lbm

G
eo. M

ean

S
p

e
e
d

-u
p

Speed-up over QEMU

Figure 14: Speed-up of Captive over QEMU on the Floating
Point portion of the SPEC2006 benchmark suite (higher is
better)

3.4 JIT Compilation Performance

Captive is on average 2.6× slower at translating guest basic
blocks than QEMU. This is due in part to the more aggressive
online optimizations we perform, but additionally QEMU’s
DBT has had years of hand-tuning, and benefits from a mono-
lithic implementation.

However, the previous results clearly indicate that our com-
pilation latency does not affect the runtime of the benchmarks.
In fact, the extra effort we put into compilation ensures that
our code quality surpasses that of QEMU’s, as will be demon-
strated in Section 3.6. Figure 15 shows that indeed, when
using the SimBench micro-benchmark suite [47], the Large-
Blocks and Small-Blocks benchmark indicate that our code
generation speed is 65% and 85% slower, respectively. These

 0

 2

 4

 6

 8

 10

M
em

-H
ot-M

M
U

M
em

-H
ot-N

oM
M

U

M
em

-C
old-M

M
U

M
em

-C
old-N

oM
M

U

U
ndef-Instruction

Syscall
D

ata-Fault
Instruction-Fault

Sm
all-B

locks
Large-B

locks
Sam

e-Page-Indirect

Inter-Page-Indirect

Sam
e-Page-D

irect

Inter-Page-D
irect

TLB
-Flush

TLB
-Evict

S
p
e
e
d
-u

p

3
2

.3
8

2
5

.8
8

Figure 15: Speed-up of Captive over QEMU on the SimBench
micro-benchmark suite

benchmarks are described in Section 3.5.
Figure 16 provides a further breakdown of the time spent

for JIT compilation: instruction translation (including invo-
cation DAG generation and instruction selection) takes up
more than 50% of the total JIT compilation time, followed by
register allocation (including liveness analysis and dead code
elimination), then host instruction encoding. Guest instruction
decoding takes up 2.75% of the compilation pipeline.

We have also collected aggregate translation size statistics
for 429.mcf. We found that Captive generates larger code
than QEMU, with Captive generating 67.53 bytes of host code
per guest instruction, compared to QEMU’s 40.26 bytes. This
is due the use of vector operations in the benchmarks: while
QEMU frequently emits (relatively small) function calls for

Decode
2.75%

Translate
54.54%

Register
Allocation
25.63%

Encode
17.08%

Figure 16: % time spent in each compilation phase: Decode,
Translate, Register Allocation and Encode.

these operations, Captive emits vector operations directly. In
particular, vector load and store operations require that vectors
are packed and unpacked element by element, each of which
can require 2–3 instructions.

3.5 Targeted Micro-Benchmarks

As well as using the SPEC benchmark suite, we have also
evaluated the performance of both Captive and QEMU using
SimBench[47]. This is a targeted suite of micro-benchmarks
designed to analyze the performance of full system emulation
platforms in a number of categories, such as the performance
of the memory emulation system, control flow handling, and
translation speed (in the case of DBT-based systems).

Figure 15 shows the results of running SimBench on Cap-
tive and QEMU, in terms of speedup over QEMU. Captive
outperforms QEMU in most categories, except for code gener-
ation (Large-Blocks and Small-Blocks) and Data Fault han-
dling. Captive’s use of the host memory management systems
results in large speedups on the memory benchmarks.

3.6 Code Quality

We assess code quality by measuring the individual basic
block execution time for each block executed as part of a
benchmark. For example, consider the scatter plot in Fig-
ure 17, where we show the measured aggregated block exe-
cution times across the 429.mcf benchmark for Captive and
QEMU. In order to limit the influence of infrastructure compo-
nents of both platforms we have disabled block chaining for
both platforms. Block execution times have been measured
in the same way for both systems using the host’s rdtscp
instruction, inserted around generated native code regions
representing a guest block.

A regression line and 1:1 line are also plotted in the log-
log scale plot. Most points are above the 1:1 line, indicating

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 1x1010

 1x1011

 100 1000 10000 100000 1x106 1x107 1x108 1x109 1x1010

3.44x speed-up

Q
e
m

u
 (

n
s)

Our DBT (ns)

Guest Basic Blocks
Regression Line

1:1

Figure 17: Measuring code quality: accumulated execution
times of guest basic blocks from 429.mcf. Blocks compiled
by Captive execute, on average, 3.44× faster than their QEMU
counterparts.

 0

 0.5

 1

 1.5

 2

 2.5

 3

QEMU Raspberry PI 3 Our DBT AMD A1100

S
p

e
e
d

-u
p

Figure 18: Comparison of Captive against native execution
on two physical ARMv8-A platforms: Raspberry Pi 3 Model
B & AMD Opteron A1170.

that the vast majority of blocks are executed more quickly on
Captive than on QEMU. In fact, we observe a code quality
related speedup of 3.44 for this benchmark, represented by
the positive shift of the regression line along the y-axis.

Further investigation reveals that Captive emits and exe-
cutes, on average, 10 host instructions per guest instruction in
addition to any block prologue and epilogue.

3.6.1 Impact of offline optimizations

Our offline generation system has four levels of optimization
(O1–O4), although in practice we only use the maximum opti-
mization level. These optimizations directly affect the amount
of source code generated in the offline phase, where lower
levels (e.g. O1) emit longer code sequences in the generator
functions. This translates to more operations to perform at
JIT compilation time, and therefore (a) larger JIT compilation
latency, and (b) poorer code quality.

At the O1 optimization level, only function inlining is
performed, and results in the ARMv8A model comprising
271,299 lines of generated code. At O4 (where a series of ag-
gressive domain specific optimizations are performed), there
is a reduction of 56%, to 120,162 lines of generated code.

DBT System (Year) Guest ISA Host ISA Distinct Contributions

U
se

r-
L

ev
el

D
B

T

Shade [13] (1993) SPARC/MIPS SPARC DBT, code caching, tracing
DAISY [19] (1997) RS/6000 VLIW Dyn. parallel scheduling
FX!32 [11] (1998) IA-32 Alpha profiling & static BT
UQDBT [45] (2000) IA-32 SPARC Retargetability
Dynamo [2] (2000) PA-RISC, IA-32 PA-RISC, IA-32 Same ISA Optimization
Strata [34, 35] (2001) SPARC/MIPS/IA-32 SPARC/MIPS Extensibility
Vulcan [42] (2001) IA-32, IA-64, MSIL IA-32, IA-64, MSIL Het. binaries, distr. opt.
bintrans [32] (2002) PowerPC Alpha Dynamic liveness analysis

Walkabout [12] (2002) Retargetable Retargetable Arch. Descr. Lang.
(SPARC v8) (SPARC v9) Interpreter and JIT generated

DynamoRIO [7] (2003) IA-32 IA-32 Dyn. Adapt. Optimization
QuickTransit [26] (2004) MIPS, PowerPC, SPARC IA-32, IA-64, x86-64 KVM for memory translation

Yirr-Ma [44] (2005) Retargetable Retargetable Dyn. Opt., Part. Inlining
(SPARC, IA-32, ARM, PowerPC) (SPARC, IA-32, PowerPC) Gen. from Spec.

IA-32 EL [28] (2006) IA-32 IA-64 SIMD Support
StarDBT [48] (2007) IA-32, x86-64 IA-32, x86-64 Trace lengthening
N/A [6] (2008) MIPS, VLIW x86-64 LLVM JIT Compilation
EHS [24] (2008) ARC700 IA-32 Large translation regions
Strata-ARM [30] (2009) ARM ARM, IA-32 Handling of exposed PC
ISAMAP [38] (2010) PowerPC IA-32 Arch. Descr. Language
ARCSim [5] (2011) ARC700 x86-64 Parallel JIT task farm

Harmonia [31] (2011) ARM IA-32 Reg. Map., Cond. codes
Tiered compilation

HQEMU [21] (2012) ARMv7A x86-64 Multithreaded Compilation
HERMES [55] (2015) IA-32, ARM MIPS Post-Optimization
Pydgin [29] (2015) ARM/MIPS x86-64 Meta-Tracing JIT Compiler

MAMBO-X64 [16] (2017) AArch32 AArch64
Dyn. mapping of FP regs.
Overflow address calculations
Return address prediction

HyperMAMBO-X64 [15] (2017) AArch32 AArch64 Hypervisor support
Pico [14] (2017) x86-64, AArch64 x86-64, POWER8 multicore, multi-threaded DBT

Sy
st

em
-L

ev
el

D
B

T

Embra [53] (1996) MIPS MIPS Multi-core, block chaining
MMU relocation array

Transmeta CMS [17] (2003) IA-32 Custom VLIW
Aggressive speculation
Hardware support
Adaptive recompilation

QEMU [4] (2204) Retargetable Retargetable Pseudo Instructions
MagiXen [10] IA-32 IA-64 Integration with XEN
PQEMU [18] (2011) ARM x86-64 Multi-core guest platform
LIntel [37] (2012) IA-32 Elbrus Adapt. background opt.
Captive [40] ARMv7A x86-64 VT Hardware Acceleration
HybridDBT [33] (2017) RISC-V VLIW Custom DBT Hardware

Captive Retargetable Retargetable Aggressive offline optim.
(ARMv8) (x86-64 + VT) VM & bare-metal JIT

Table 6: Related Work: Feature comparison of existing DBT systems.

Reference Guest ISA Host ISA Static/Dynamic User/System Distinct Contribution
Xu et al. [54] IA-32 IA-64 Dynamic User Compiler Metadata

Bansal and Aiken [3] PowerPC IA-32 Static User Peephole translation rules
learned by superoptimizer

Kedia and Bansal [25] x86-64 x86-64 Dynamic System Kernel-level DBT
Hawkins et al. [20] x86-64 x86-64 Dynamic User Optimization of Dyn. Gen. Code
Spink et al. [39] ARMv5T x86-64 Dynamic User Support for Dual-ISA
Wang et al. [49] IA-32 x86-64 Dynamic User Persistent code caching
Shigenobu et al. [36] ARMv7A LLVM-IR Static User ARM-to-LLVM IR
Wang et al. [50] ARMv5 x86-64 Dynamic System Learning of translation rules
Hong et al. [22] ARM NEON x86 AVX2/AVX-512 Dynamic User Short-SIMD to Long-SIMD

Table 7: Related Work: Individual compilation techniques for Binary Translation systems.

3.6.2 Hardware Floating-point Emulation

In contrast to QEMU, Captive utilises a hardware emulated
floating-point approach, where guest floating-point instruc-
tions are directly mapped to corresponding host floating-point
instructions, if appropriate. Any fix-ups required to maintain
bit-accuracy are performed inline, rather than calling out to
helper functions. This increases the complexity of host porta-
bility, but significantly improves performance.

To determine the effect of this, we utilised a microbench-
mark that exercised a small subset of (common) floating-point
operations, and observed a speed-up of 2.17× of Captive
(with hardware floating-point emulation) over QEMU (with
software floating-point emulation). We then replaced our
DBT’s floating-point implementation with a software-based
one (taken directly from the QEMU source-code), and ob-
served a speed-up of 1.68×. This translates to a speed-up of
1.3× within Captive itself.

3.7 Comparison to Native Execution

We also compare the performance of Captive against two
ARMv8-A hardware platforms: a Raspberry Pi 3 Model B
and an AMD Opteron A1170 based server (see Table 4). The
results of this comparison can be seen in Figure 18 and en-
able us to compare absolute performance levels in relation to
physical platforms: across the entire SPEC CPU2006 suite
Captive is about twice as fast as a 1.2GHz Cortex-A53 core
of a Raspberry Pi 3, and achieves about 40% of the perfor-
mance of a 2.0GHz Cortex-A57 core of the A1170. While
outperformed by server processors it indicates that Captive
can deliver performance sufficient for complex applications.

Finally, we compare the performance of Captive against
native execution of the benchmarks compiled for and directly
executed on the x86-64 host. Across all benchmarks we ob-
serve a speedup of 7.24 of native execution over system-level
DBT, i.e. the overhead is still substantial, but Captive has
significantly narrowed the performance gap between native
execution, and system-level DBT.

4 Related Work

Due to their versatility DBT systems have found extensive
interest in the academic community, especially since the mid-
90s. In Table 6 we compare features and highlight specific
contributions of many relevant DBT systems and techniques
presented in the academic literature. The vast majority of
existing DBT systems only provide support for user-level ap-
plications, but there also exist a number of system-level DBT
approaches to which we compare Captive. In addition, numer-
ous individual compilation techniques have been developed
specifically for binary translators. Those relevant to our work
on Captive are summarized in Table 7.

Captive is inspired by existing system-level DBT sys-
tems and we have adopted proven features while developing
novel. Like Shade [13], Embra [53], and QEMU [4] Captive
is interpreter-less and uses a basic block compiler with block
chaining and trace caching. Our binary translator, however,
is not hand-coded, but generated from a machine description.
This allows for ease-of-retargeting comparable to Pydgin [29],
but at substantially higher performance levels. Unlike Walka-
bout [12], Yirr-Ma [44], or ISAMAP [38], which similarly rely
on machine descriptions, Captive employs split compilation
and applies several optimizations offline, i.e. at module gener-
ation time, rather than relying on expensive runtime optimiza-
tions only. Instead of software emulation of floating-point
(FP) arithmetic like QEMU or unsafe FP implementation like
HQEMU [21], our FP implementation is bit-accurate, but still
leverages the host system’s FP capabilities wherever possible.
Similar to IA-32 EL [28, 54] Captive translates guest SIMD
instructions to host SIMD instructions wherever possible, but
this mapping is generalized for any guest/host architecture
pair. Like QuickTransit [26] or HyperMAMBO [15] Captive
operates as a hypervisor, but provides a full-system environ-
ment rather than hosting only a single application. Captive
shares this property with MagiXen [10], but provides full sup-
port for 64-bit guests on a 64-bit host rather than only 32-bit
guests on a 64-bit host (which avoids address space mapping
challenges introduced by same word-size system-level DBT).

5 Summary & Conclusion

In this paper we developed a novel system-level DBT hyper-
visor, which can be retargeted to new guest systems using a
high-level ADL. We combine offline and online optimizations
as well as a JIT compiler operating in a virtual bare-metal
environment with full access to the virtual host processor to
deliver performance exceeding that of conventional, manually
optimized DBT systems operating as normal user processes.
We demonstrate this using an ARMv8-A guest running a
full unmodified ARM Linux environment on an x86-64 host,
where Captive outperforms the popular QEMU DBT across
SPEC CPU2006 application benchmarks while on average
reaching 2× the performance of a 1.2GHz entry-level Cortex-
A53 or 40% of a 2.0GHz server-type Cortex-A57.

5.1 Future Work
Our future work will consider support for multi- and many-
core architectures, heterogeneous platforms, and support for
various ISA extensions, e.g. for virtualization or secure en-
claves, inside the virtualized guest system. We also plan to
investigate possibilities for synthesizing guest and host archi-
tecture descriptions in the spirit of Buchwald et al. [8], or
using existing formal specifications. We are also investigating
a tiered compilation approach, to aggressively optimize hot
code, and adding support for host retargeting, by using the
same ADL as for our guest architectures.

References

[1] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu,
Guido Araujo, Cristiano Araujo, and Edna Barros. The
ArchC architecture description language and tools. In-
ternational Journal of Parallel Programming, 33(5):
453–484, Oct 2005. ISSN 1573-7640. doi: 10.
1007/s10766-005-7301-0. URL https://doi.org/
10.1007/s10766-005-7301-0.

[2] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Baner-
jia. Dynamo: A transparent dynamic optimization sys-
tem. In Proceedings of the ACM SIGPLAN 2000 Con-
ference on Programming Language Design and Im-
plementation, PLDI ’00, pages 1–12, New York, NY,
USA, 2000. ACM. ISBN 1-58113-199-2. doi: 10.
1145/349299.349303. URL http://doi.acm.org/10.
1145/349299.349303.

[3] Sorav Bansal and Alex Aiken. Binary translation using
peephole superoptimizers. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 177–192, Berkeley,
CA, USA, 2008. USENIX Association. URL http://
dl.acm.org/citation.cfm?id=1855741.1855754.

[4] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05,
pages 41–41, Berkeley, CA, USA, 2005. USENIX Asso-
ciation. URL http://dl.acm.org/citation.cfm?
id=1247360.1247401.

[5] Igor Böhm, Tobias J.K. Edler von Koch, Stephen C.
Kyle, Björn Franke, and Nigel Topham. Generalized
just-in-time trace compilation using a parallel task farm
in a dynamic binary translator. In Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’11, pages
74–85, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0663-8. doi: 10.1145/1993498.1993508. URL
http://doi.acm.org/10.1145/1993498.1993508.

[6] Florian Brandner, Andreas Fellnhofer, Andreas Krall,
and David Riegler. Fast and accurate simulation using
the LLVM compiler framework. In Workshop on Rapid
Simulation and Performance Evalution: Methods and
Tools (RAPIDO), 2008.

[7] Derek Bruening, Timothy Garnett, and Saman Amaras-
inghe. An infrastructure for adaptive dynamic opti-
mization. In Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, CGO ’03, pages
265–275, Washington, DC, USA, 2003. IEEE Com-
puter Society. ISBN 0-7695-1913-X. URL http:
//dl.acm.org/citation.cfm?id=776261.776290.

[8] Sebastian Buchwald, Andreas Fried, and Sebastian Hack.
Synthesizing an instruction selection rule library from
semantic specifications. In Proceedings of the 2018
International Symposium on Code Generation and Op-
timization, CGO 2018, pages 300–313, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5617-6. doi:
10.1145/3168821. URL http://doi.acm.org/10.
1145/3168821.

[9] Z. Cai, A. Liang, Z. Qi, L. Jiang, X. Li, H. Guan, and
Y. Chen. Performance comparison of register allo-
cation algorithms in dynamic binary translation. In
2009 International Conference on Knowledge and Sys-
tems Engineering, pages 113–119, Oct 2009. doi:
10.1109/KSE.2009.16.

[10] Matthew Chapman, Daniel J. Magenheimer, and
Parthasarathy Ranganathan. Magixen: Combining bi-
nary translation and virtualization. Technical Report
HPL-2007-77, Enterprise Systems and Software Labo-
ratory, HP Laboratories Palo Alto, 2007.

[11] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris
Reeve, Norman Rubin, Tony Tye, S. Bharadwaj Ya-
davalli, and John Yates. Fx!32: A profile-directed
binary translator. IEEE Micro, 18(2):56–64, March
1998. ISSN 0272-1732. doi: 10.1109/40.671403. URL
http://dx.doi.org/10.1109/40.671403.

[12] Cristina Cifuentes, Brian Lewis, and David Ung. Walk-
about: A retargetable dynamic binary translation frame-
work. Technical report, Sun Microsystems, Inc., Moun-
tain View, CA, USA, 2002.

[13] Robert F. Cmelik and David Keppel. Shade: A fast
instruction set simulator for execution profiling. Techni-
cal report, Sun Microsystems, Inc., Mountain View, CA,
USA, 1993.

[14] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P.
Carloni. Cross-isa machine emulation for multicores. In
Vijay Janapa Reddi, Aaron Smith, and Lingjia Tang,
editors, Proceedings of the 2017 International Sym-
posium on Code Generation and Optimization, CGO
2017, Austin, TX, USA, February 4-8, 2017, pages 210–
220. ACM, 2017. ISBN 978-1-5090-4931-8. URL
http://dl.acm.org/citation.cfm?id=3049855.

[15] Amanieu d’Antras, Cosmin Gorgovan, Jim Garside,
John Goodacre, and Mikel Luján. Hypermambo-x64:
Using virtualization to support high-performance trans-
parent binary translation. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’17, pages 228–
241, New York, NY, USA, 2017. ACM. ISBN 978-1-
4503-4948-2. doi: 10.1145/3050748.3050756. URL
http://doi.acm.org/10.1145/3050748.3050756.

https://doi.org/10.1007/s10766-005-7301-0
https://doi.org/10.1007/s10766-005-7301-0
http://doi.acm.org/10.1145/349299.349303
http://doi.acm.org/10.1145/349299.349303
http://dl.acm.org/citation.cfm?id=1855741.1855754
http://dl.acm.org/citation.cfm?id=1855741.1855754
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://doi.acm.org/10.1145/1993498.1993508
http://dl.acm.org/citation.cfm?id=776261.776290
http://dl.acm.org/citation.cfm?id=776261.776290
http://doi.acm.org/10.1145/3168821
http://doi.acm.org/10.1145/3168821
http://dx.doi.org/10.1109/40.671403
http://dl.acm.org/citation.cfm?id=3049855
http://doi.acm.org/10.1145/3050748.3050756

[16] Amanieu D’Antras, Cosmin Gorgovan, Jim Garside, and
Mikel Luján. Low overhead dynamic binary transla-
tion on arm. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, PLDI 2017, pages 333–346, New
York, NY, USA, 2017. ACM. ISBN 978-1-4503-4988-
8. doi: 10.1145/3062341.3062371. URL http://doi.
acm.org/10.1145/3062341.3062371.

[17] James C. Dehnert, Brian K. Grant, John P. Banning,
Richard Johnson, Thomas Kistler, Alexander Klaiber,
and Jim Mattson. The transmeta code morphing™
software: Using speculation, recovery, and adaptive re-
translation to address real-life challenges. In Proceed-
ings of the International Symposium on Code Genera-
tion and Optimization: Feedback-directed and Runtime
Optimization, CGO ’03, pages 15–24, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-
1913-X. URL http://dl.acm.org/citation.cfm?
id=776261.776263.

[18] Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and
Yeh-Ching Chung. Pqemu: A parallel system emulator
based on qemu. In Proceedings of the 2011 IEEE 17th
International Conference on Parallel and Distributed
Systems, ICPADS ’11, pages 276–283, Washington, DC,
USA, 2011. IEEE Computer Society. ISBN 978-0-7695-
4576-9. doi: 10.1109/ICPADS.2011.102. URL https:
//doi.org/10.1109/ICPADS.2011.102.

[19] Kemal Ebcioğlu and Erik R. Altman. Daisy: Dy-
namic compilation for 100 In Proceedings of the
24th Annual International Symposium on Computer
Architecture, ISCA ’97, pages 26–37, New York, NY,
USA, 1997. ACM. ISBN 0-89791-901-7. doi: 10.
1145/264107.264126. URL http://doi.acm.org/10.
1145/264107.264126.

[20] Byron Hawkins, Brian Demsky, Derek Bruening, and
Qin Zhao. Optimizing binary translation of dynam-
ically generated code. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’15, pages 68–78,
Washington, DC, USA, 2015. IEEE Computer Society.
ISBN 978-1-4799-8161-8. URL http://dl.acm.org/
citation.cfm?id=2738600.2738610.

[21] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew,
Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu, Chien-Min
Wang, and Yeh-Ching Chung. Hqemu: A multi-threaded
and retargetable dynamic binary translator on multicores.
In Proceedings of the Tenth International Symposium
on Code Generation and Optimization, CGO ’12, pages
104–113, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1206-6. doi: 10.1145/2259016.2259030. URL
http://doi.acm.org/10.1145/2259016.2259030.

[22] Ding-Yong Hong, Yu-Ping Liu, Sheng-Yu Fu, Jan-Jan
Wu, and Wei-Chung Hsu. Improving simd parallelism
via dynamic binary translation. ACM Trans. Embed.
Comput. Syst., 17(3):61:1–61:27, February 2018. ISSN
1539-9087. doi: 10.1145/3173456. URL http://doi.
acm.org/10.1145/3173456.

[23] Intel. Intel xed, 2018. URL https://intelxed.
github.io/. Retrieved on 01/11/2018.

[24] Daniel Jones and Nigel Topham. High speed cpu
simulation using ltu dynamic binary translation. In
Proceedings of the 4th International Conference on
High Performance Embedded Architectures and Com-
pilers, HiPEAC ’09, pages 50–64, Berlin, Heidelberg,
2009. Springer-Verlag. ISBN 978-3-540-92989-5. doi:
10.1007/978-3-540-92990-1_6. URL http://dx.doi.
org/10.1007/978-3-540-92990-1_6.

[25] Piyus Kedia and Sorav Bansal. Fast dynamic bi-
nary translation for the kernel. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 101–115, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2388-8. doi:
10.1145/2517349.2522718. URL http://doi.acm.
org/10.1145/2517349.2522718.

[26] Paul Knowles. Transitive and QuickTransit overview,
2008.

[27] Rajeev Krishna and Todd Austin. Efficient software
decoder design. Technical Committee on Computer
Architecture (TCCA) Newsletter, October 2001.

[28] Jianhui Li, Qi Zhang, Shu Xu, and Bo Huang. Optimiz-
ing dynamic binary translation for simd instructions. In
Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’06, pages 269–280,
Washington, DC, USA, 2006. IEEE Computer Society.
ISBN 0-7695-2499-0. doi: 10.1109/CGO.2006.27. URL
http://dx.doi.org/10.1109/CGO.2006.27.

[29] D. Lockhart, B. Ilbeyi, and C. Batten. Pydgin: gener-
ating fast instruction set simulators from simple archi-
tecture descriptions with meta-tracing jit compilers. In
2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 256–
267, March 2015. doi: 10.1109/ISPASS.2015.7095811.

[30] Ryan W. Moore, José A. Baiocchi, Bruce R. Childers,
Jack W. Davidson, and Jason D. Hiser. Addressing
the challenges of dbt for the arm architecture. In Pro-
ceedings of the 2009 ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers, and Tools for Embedded
Systems, LCTES ’09, pages 147–156, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-356-3. doi:
10.1145/1542452.1542472. URL http://doi.acm.
org/10.1145/1542452.1542472.

http://doi.acm.org/10.1145/3062341.3062371
http://doi.acm.org/10.1145/3062341.3062371
http://dl.acm.org/citation.cfm?id=776261.776263
http://dl.acm.org/citation.cfm?id=776261.776263
https://doi.org/10.1109/ICPADS.2011.102
https://doi.org/10.1109/ICPADS.2011.102
http://doi.acm.org/10.1145/264107.264126
http://doi.acm.org/10.1145/264107.264126
http://dl.acm.org/citation.cfm?id=2738600.2738610
http://dl.acm.org/citation.cfm?id=2738600.2738610
http://doi.acm.org/10.1145/2259016.2259030
http://doi.acm.org/10.1145/3173456
http://doi.acm.org/10.1145/3173456
https://intelxed.github.io/
https://intelxed.github.io/
http://dx.doi.org/10.1007/978-3-540-92990-1_6
http://dx.doi.org/10.1007/978-3-540-92990-1_6
http://doi.acm.org/10.1145/2517349.2522718
http://doi.acm.org/10.1145/2517349.2522718
http://dx.doi.org/10.1109/CGO.2006.27
http://doi.acm.org/10.1145/1542452.1542472
http://doi.acm.org/10.1145/1542452.1542472

[31] Guilherme Ottoni, Thomas Hartin, Christopher Weaver,
Jason Brandt, Belliappa Kuttanna, and Hong Wang. Har-
monia: A transparent, efficient, and harmonious dy-
namic binary translator targeting the intel architecture.
In Proceedings of the 8th ACM International Con-
ference on Computing Frontiers, CF ’11, pages 26:1–
26:10, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0698-0. doi: 10.1145/2016604.2016635. URL
http://doi.acm.org/10.1145/2016604.2016635.

[32] M. Probst, A. Krall, and B. Scholz. Register live-
ness analysis for optimizing dynamic binary transla-
tion. In Ninth Working Conference on Reverse Engi-
neering, 2002. Proceedings., pages 35–44, 2002. doi:
10.1109/WCRE.2002.1173062.

[33] S. Rokicki, E. Rohou, and S. Derrien. Hardware-
accelerated dynamic binary translation. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE),
2017, pages 1062–1067, March 2017. doi: 10.23919/
DATE.2017.7927147.

[34] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W.
Davidson, and M. L. Soffa. Retargetable and reconfig-
urable software dynamic translation. In Proceedings
of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Op-
timization, CGO ’03, pages 36–47, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-
1913-X. URL http://dl.acm.org/citation.cfm?
id=776261.776265.

[35] Kevin Scott and Jack Davidson. Strata: A software
dynamic translation infrastructure. Technical report,
University of Virginia, Charlottesville, VA, USA, 2001.

[36] K. Shigenobu, K. Ootsu, T. Ohkawa, and T. Yokota.
A translation method of arm machine code to llvm-
ir for binary code parallelization and optimization.
In 2017 Fifth International Symposium on Comput-
ing and Networking (CANDAR), volume 00, pages
575–579, Nov. 2018. doi: 10.1109/CANDAR.2017.
75. URL doi.ieeecomputersociety.org/10.1109/
CANDAR.2017.75.

[37] R. A. Sokolov and A. V. Ermolovich. Back-
ground optimization in full system binary transla-
tion. Programming and Computer Software, 38(3):
119–126, Jun 2012. ISSN 1608-3261. doi: 10.1134/
S0361768812030073. URL https://doi.org/10.
1134/S0361768812030073.

[38] Maxwell Souza, Daniel Nic$#225;cio, and Guido
Araújo. Isamap: Instruction mapping driven by dynamic
binary translation. In Proceedings of the 2010 Interna-
tional Conference on Computer Architecture, ISCA’10,

pages 117–138, Berlin, Heidelberg, 2012. Springer-
Verlag. ISBN 978-3-642-24321-9. doi: 10.1007/
978-3-642-24322-6_11. URL http://dx.doi.org/
10.1007/978-3-642-24322-6_11.

[39] Tom Spink, Harry Wagstaff, Björn Franke, and Nigel P
Topham. Efficient dual-isa support in a retargetable,
asynchronous dynamic binary translator. In SAMOS,
pages 103–112, 2015.

[40] Tom Spink, Harry Wagstaff, and Björn Franke.
Hardware-accelerated cross-architecture full-system vir-
tualization. ACM Trans. Archit. Code Optim., 13(4):
36:1–36:25, October 2016. ISSN 1544-3566. doi:
10.1145/2996798. URL http://doi.acm.org/10.
1145/2996798.

[41] Michael Spreitzenbarth, Thomas Schreck, Florian
Echtler, Daniel Arp, and Johannes Hoffmann. Mobile-
sandbox: Combining static and dynamic analysis with
machine-learning techniques. Int. J. Inf. Secur., 14
(2):141–153, April 2015. ISSN 1615-5262. doi:
10.1007/s10207-014-0250-0. URL http://dx.doi.
org/10.1007/s10207-014-0250-0.

[42] Amitabh Srivastava, Andrew Edwards, and Hoi
Vo. Vulcan: Binary transformation in a dis-
tributed environment. Technical report, Mi-
crosoft Research, April 2001. URL https://www.
microsoft.com/en-us/research/publication/
vulcan-binary-transformation-in-a-distributed-environment/.

[43] Henrik Theiling. Generating decision trees for decod-
ing binaries. In Proceedings of the 2001 ACM SIG-
PLAN Workshop on Optimization of Middleware and
Distributed Systems, OM ’01, pages 112–120, New York,
NY, USA, 2001. ACM. ISBN 1-58113-426-6. doi:
10.1145/384198.384213. URL http://doi.acm.org/
10.1145/384198.384213.

[44] Jens Tröger. Specification-driven dynamic binary trans-
lation. PhD thesis, Queensland University of Tech-
nology, 2005. URL https://eprints.qut.edu.au/
16007/.

[45] David Ung and Cristina Cifuentes. Machine-adaptable
dynamic binary translation. In Proceedings of the
ACM SIGPLAN Workshop on Dynamic and Adaptive
Compilation and Optimization, DYNAMO ’00, pages
41–51, New York, NY, USA, 2000. ACM. ISBN 1-
58113-241-7. doi: 10.1145/351397.351414. URL
http://doi.acm.org/10.1145/351397.351414.

[46] H. Wagstaff, M. Gould, B. Franke, and N. Topham. Early
partial evaluation in a jit-compiled, retargetable instruc-
tion set simulator generated from a high-level architec-
ture description. In 2013 50th ACM/EDAC/IEEE Design

http://doi.acm.org/10.1145/2016604.2016635
http://dl.acm.org/citation.cfm?id=776261.776265
http://dl.acm.org/citation.cfm?id=776261.776265
doi.ieeecomputersociety.org/10.1109/CANDAR.2017.75
doi.ieeecomputersociety.org/10.1109/CANDAR.2017.75
https://doi.org/10.1134/S0361768812030073
https://doi.org/10.1134/S0361768812030073
http://dx.doi.org/10.1007/978-3-642-24322-6_11
http://dx.doi.org/10.1007/978-3-642-24322-6_11
http://doi.acm.org/10.1145/2996798
http://doi.acm.org/10.1145/2996798
http://dx.doi.org/10.1007/s10207-014-0250-0
http://dx.doi.org/10.1007/s10207-014-0250-0
https://www.microsoft.com/en-us/research/publication/vulcan-binary-transformation-in-a-distributed-environment/
https://www.microsoft.com/en-us/research/publication/vulcan-binary-transformation-in-a-distributed-environment/
https://www.microsoft.com/en-us/research/publication/vulcan-binary-transformation-in-a-distributed-environment/
http://doi.acm.org/10.1145/384198.384213
http://doi.acm.org/10.1145/384198.384213
https://eprints.qut.edu.au/16007/
https://eprints.qut.edu.au/16007/
http://doi.acm.org/10.1145/351397.351414

Automation Conference (DAC), pages 1–6, May 2013.
doi: 10.1145/2463209.2488760.

[47] H. Wagstaff, B. Bodin, T. Spink, and B. Franke. Sim-
bench: A portable benchmarking methodology for full-
system simulators. In 2017 IEEE International Sympo-
sium on Performance Analysis of Systems and Software
(ISPASS), pages 217–226, April 2017. doi: 10.1109/
ISPASS.2017.7975293.

[48] Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R.
Nair, Mauricio Breternitz, Zhiwei Ying, and Youfeng
Wu. Stardbt: An efficient multi-platform dynamic bi-
nary translation system. In Proceedings of the 12th Asia-
Pacific Conference on Advances in Computer Systems
Architecture, ACSAC’07, pages 4–15, Berlin, Heidel-
berg, 2007. Springer-Verlag. ISBN 3-540-74308-1, 978-
3-540-74308-8. URL http://dl.acm.org/citation.
cfm?id=2392163.2392166.

[49] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and
Stephen McCamant. A general persistent code caching
framework for dynamic binary translation (dbt). In Pro-
ceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’16, pages
591–603, Berkeley, CA, USA, 2016. USENIX Associa-
tion. ISBN 978-1-931971-30-0. URL http://dl.acm.
org/citation.cfm?id=3026959.3027013.

[50] Wenwen Wang, Stephen McCamant, Antonia Zhai, and
Pen-Chung Yew. Enhancing cross-isa dbt through au-
tomatically learned translation rules. In Proceedings
of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’18, pages 84–97, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-4911-
6. doi: 10.1145/3173162.3177160. URL http://doi.
acm.org/10.1145/3173162.3177160.

[51] Zhe Wang, Jianjun Li, Chenggang Wu, Dongyan Yang,
Zhenjiang Wang, Wei-Chung Hsu, Bin Li, and Yong
Guan. Hspt: Practical implementation and efficient man-
agement of embedded shadow page tables for cross-isa
system virtual machines. In ACM SIGPLAN Notices,
volume 50, pages 53–64. ACM, 2015.

[52] Tom Warren. Microsoft built an xbox 360 emulator
to make games run on the xbox one, 2015. URL
https://www.theverge.com/2015/6/15/8785955/
microsoft-xbox-one-xbox-360-emulator-software.

[53] Emmett Witchel and Mendel Rosenblum. Embra:
Fast and flexible machine simulation. In Proceedings
of the 1996 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’96, pages 68–79, New York,
NY, USA, 1996. ACM. ISBN 0-89791-793-6. doi:
10.1145/233013.233025. URL http://doi.acm.org/
10.1145/233013.233025.

[54] Chaohao Xu, Jianhui Li, Tao Bao, Yun Wang, and
Bo Huang. Metadata driven memory optimizations
in dynamic binary translator. In Proceedings of the
3rd International Conference on Virtual Execution En-
vironments, VEE ’07, pages 148–157, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-630-1. doi:
10.1145/1254810.1254831. URL http://doi.acm.
org/10.1145/1254810.1254831.

[55] Xiaochun Zhang, Qi Guo, Yunji Chen, Tianshi Chen,
and Weiwu Hu. Hermes: A fast cross-isa binary transla-
tor with post-optimization. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’15, pages 246–256,
Washington, DC, USA, 2015. IEEE Computer Society.
ISBN 978-1-4799-8161-8. URL http://dl.acm.org/
citation.cfm?id=2738600.2738631.

http://dl.acm.org/citation.cfm?id=2392163.2392166
http://dl.acm.org/citation.cfm?id=2392163.2392166
http://dl.acm.org/citation.cfm?id=3026959.3027013
http://dl.acm.org/citation.cfm?id=3026959.3027013
http://doi.acm.org/10.1145/3173162.3177160
http://doi.acm.org/10.1145/3173162.3177160
https://www.theverge.com/2015/6/15/8785955/microsoft-xbox-one-xbox-360-emulator-software
https://www.theverge.com/2015/6/15/8785955/microsoft-xbox-one-xbox-360-emulator-software
http://doi.acm.org/10.1145/233013.233025
http://doi.acm.org/10.1145/233013.233025
http://doi.acm.org/10.1145/1254810.1254831
http://doi.acm.org/10.1145/1254810.1254831
http://dl.acm.org/citation.cfm?id=2738600.2738631
http://dl.acm.org/citation.cfm?id=2738600.2738631

	Introduction
	Overview and Motivating Example
	Contributions

	Retargetable DBT Hypervisor
	Overview
	Offline Stage
	Architecture Description
	Intermediate SSA Form
	Generator Function

	Online Stage
	Instruction Decoding
	Translation
	Register Allocation
	Instruction Encoding

	Exploiting Host Architectural Features
	Floating Point/SIMD Support
	Translated Code Management
	Virtual Memory Management

	Evaluation
	Experimental Set-up
	Application Benchmarks
	Additional Guest Architectures
	JIT Compilation Performance
	Targeted Micro-Benchmarks
	Code Quality
	Impact of offline optimizations
	Hardware Floating-point Emulation

	Comparison to Native Execution

	Related Work
	Summary & Conclusion
	Future Work

