
Systems Hardening
through the use of
Secure Enclaves
André Luís Godinho de Sousa Brandão
Mestrado Integrado em Engenharia Redes e
Sistemas Informáticos
Departamento de Ciência de Computadores
2020

Orientador
Rolando da Silva Martins
Professor Auxiliar
Faculdade de Ciências da Universidade do Porto

Coorientador
João Miguel Maia Soares de Resende
Professor Assistente Convidado
Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

UNIVERSIDADE DO PORTO

MASTERS THESIS

Systems Hardening through the use of
Secure Enclaves

Author:

André Luı́s Godinho de Sousa

Brandão

Supervisor:

Rolando da Silva Martins

Co-supervisor:

João Miguel Maia Soares de

Resende

A thesis submitted in fulfilment of the requirements

for the degree of MSc. Network and Information Systems Engineering

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

December 15, 2020

Acknowledgements

I want to thank my thesis supervisor, Professor Rolando Martins for the opportunity

to work in this thesis topic that I wanted to pursue.

I also want to thank my thesis co-supervisor, João Resende for all the recommenda-

tions made and helping me through even the most of ridiculous questions that I had,

during the research and development of this thesis.

This work has been supported by the EU H2020-SU-ICT-03-2018 Project No. 830929

CyberSec4Europe (cybersec4europe.eu).

I would also like to thank not only my friends that I made throughout my bachelor’s

and master’s degree, but also those who I still in keep touch from high school through

TeamSpeak and discord, wasting countless hours playing online video games.

Finally, I would like to thank my parents and my grandparents, for supporting me

throughout my life in every possible way and always believing in me.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

MSc. Network and Information Systems Engineering

Systems Hardening through the use of Secure Enclaves

by André Luı́s Godinho de Sousa Brandão

With the rising popularity of the cloud, companies lose control of both the hardware

and the operating system responsible for hosting their software and data. This means

that companies are at risk of losing confidential or personal data when these are utilized

in components controlled by a third-party vendor.

Secure enclaves can solve data theft problems by creating a secure environment where

code can be executed securely, guaranteeing that no unwanted parties read the data inside

the environment. During our research, we found a lack of applications that utilize secure

enclaves in real-world scenarios.

In this thesis we explore the application of secure enclaves in different application

domains, namely the hardening of web servers through the modification of the Apache

web server to further protect its private key from the operating system and hypervisor,

and additionally, we explore application introspection using secure enclaves to protect

video games from cheaters, and test it against a cheat used in the real world in Counter-

Strike: Global Offensive.

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos

Fortificação de sistemas através do uso de enclavos seguros

por André Luı́s Godinho de Sousa Brandão

Com o aumento da utilização de serviços na Cloud, é perdido o controlo não só do

hardware, mas também do código mais privilegiado, que são responsáveis por hospedar

e correr os seus dados e software. Isto significa que as empresas estão a aceitar o risco de

poderem perder dados confidências ou pessoas para terceiros.

Enclaves seguros permitem solucionar o problema do roubo de dados, através da

criação de um ambiente segure onde código pode ser executado, garantindo que tercei-

ros não tenham acesso aos dados de esse mesmo ambiente. Durante a nossa pesquisa

reparamos na falta de aplicações que utilizam este tipo de ambientes seguros no mundo

real.

Nesta tese exploramos a aplicação de enclavos seguros em diversos domı́nios, mais

concretamente a fortificação de servidores web através da modificação do servidor web

da Apache para proteger as chaves privadas do sistema operativo e do hypervisor, adicio-

nalmente, explorámos introspeção aplicacional com enclaves seguros para proteger vı́deo

jogos de cheaters e testámo-la contra um cheat utilizado no mundo real no Counter Strike:

Global Offensive.

Contents

Acknowledgements i

Abstract ii

Resumo iii

Contents iv

List of Figures vii

List of Tables viii

Glossary ix

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Outline . 3

2 Background 5
2.1 Security rings . 5
2.2 Virtualization . 6
2.3 Trusted Execution Environment . 8

2.3.1 Intel SGX . 9
2.3.2 OpenEnclave . 12

3 Related work 13
3.1 Running legacy application on Intel SGX . 13

3.1.1 Scone . 13
3.1.2 Haven . 14
3.1.3 Scone . 15
3.1.4 SGX-LKL . 16
3.1.5 Graphene . 17

3.2 SGX native applications . 18
3.2.1 SafeKeeper . 18
3.2.2 Intel SGX key store . 19
3.2.3 tpmsgx . 19

iv

CONTENTS v

3.2.4 SGX-Kernel . 19
3.3 Secure introspecting . 20

4 Design and Implementation 23
4.1 Apache’s web server SSL module SGX integration 24

4.1.1 Architecture . 24
4.1.2 Cryptography library . 25
4.1.3 Mitigating memory corruption vulnerabilities in SGX enclaves . . . 26
4.1.4 Changes to mod ssl . 27
4.1.5 Limitations . 29
4.1.6 Security Analysis . 30
4.1.7 Summary . 31

4.2 OpenSSL engine integration . 31
4.2.1 Architecture . 31
4.2.2 Cryptography library . 33
4.2.3 Configuring OpenSSL . 33
4.2.4 Required changes to applications . 34
4.2.5 Security Analysis . 34
4.2.6 Summary . 35

4.3 Secure Enclaves in Cheat Detection Hardening 35
4.3.1 Enclave creation . 36
4.3.2 Runtime Protection . 38
4.3.3 Security Analysis . 40
4.3.4 Summary . 42

5 Results 43
5.1 I/O intensive application . 43

5.1.1 Methodology . 44
5.1.2 Results . 44

5.2 OpenSSL Engine . 45
5.2.1 Methodology . 45
5.2.2 Results . 46

5.3 Apache web server - TLS . 47
5.3.1 Methodology . 47
5.3.2 Results . 47

5.4 Cheat Detection Hardening . 49
5.4.1 Methodology . 49
5.4.2 Results . 50

6 Conclusion and future work 52
6.1 Research and development . 52
6.2 Results . 53
6.3 Future work . 54

A Read and Write primitives within Intel SGX 56
A.1 Read Primitive . 56
A.2 Write primitive . 57

CONTENTS vi

B Developer Notes 58
B.1 Callback handling from trusted to unstrusted code 58
B.2 OpenSSL Engine configuration . 59
B.3 Utilizing an OpenSSL engine from command line 60
B.4 Patch to support another engine on Apache web server 60

Bibliography 62

List of Figures

2.1 Common virtualization types . 6

3.1 Secure container designs[4] . 14
3.2 Haven components and interfaces[5] . 15

4.1 Proposed architecture for the Apache’s http server. 24
4.2 Preventing memory corruption in the enclave. 26
4.3 mod ssl input chain . 28
4.4 OpenSSL Engine with SGX key store architecture. 33
4.5 Implemented anti-cheat architecture . 36
4.6 Enclave generation - Existing flow to generated enclave with sections to

verify. 37

5.1 Average sigma time taken to hash 256 MiB of random data on disk with
different buffer sizes. 45

5.2 Throughput versus latency of Apache’s web server workload. The lower
and further right the better . 48

5.3 A time interval of 20 seconds, with the frames per seconds of our solutions
compared with the baseline . 50

vii

List of Tables

4.1 Exported function by the enclave to perform cryptography operations on a
private key . 32

5.1 RSA signatures per second on different solutions and various key sizes . . . 46
5.2 Comparison of the time each frame took, on average, to render 50

viii

Glossary

ABI Application Binary Interface

API Application Programming Interface

EPC Enclave Page Cache

LKL Linux Kernel Library

OS Operating System

PAL Platform Abstraction Layer

PRM Processor Reserved Memory

SGX Software Guard eXtensions

SMM System Management Mode

SSL Secure Sockets Layer

SoC System on Chip

TLS Transport Layer Security

TPM Trusted Platform Module

VMM Virtual Machine Monitor

VPN Virtual Private Network

CS:GO Counter Strike: Global Offensive

DRM Digital Rights Management

EPT Extended Page Table

GOT Global Offsets Table

GnuPG GNU Privacy Guard

HSM Hardware Security Module

ix

GLOSSARY x

HTTPS Hypertext Transfer Protocol Secure

HTTP Hypertext Transfer Protocol

IDS Intrustion Detection System

KPP Kernel Patch Protection

MSBDS Micro architectural Store Buffer Data Sampling

PLT Procedure Linkage Table

ROP Return-Oriented Programming

SDK Software Development Kit

SEV Secure Encrypted Virtualization

SE Secure Element

SMT Simultaneous Multi-Threading

TCB Trusted Compute Base

TEE Trusted Execution Environment

TSX Transactional Synchronization Extensions

TXT Trusted eXecution Technology

URI Uniform Resource Identifier

WTF Write Transient Forwarding

Chapter 1

Introduction

Some of contents of this thesis have been submitted to the Computers & Security journal,

which is still under review as of the publication of this thesis. Additionally, the argumen-

tation given in section 4.3 and its corresponding related work have been published [1] on

the TrustBus 2020 conference.

Most applications assume that the environment they are running is trustworthy and

thus does not employ any defense mechanisms to secure sensitive data (e.g., cleartext

storage of private keys and passwords). This is because unprivileged software alone can-

not defend its memory contents from a more privileged code, i.e., the kernel without extra

protection primitives provided by the hardware.

At first glance, it might not be obvious to consider the operating system or even the

hypervisor in the threat model on devices that we control. The gravity of omitting these

increases when considering rented hardware, as the user cannot be sure what code is

executing in more privileged modes. A malicious hypervisor could modify and read any

physical memory present in the machine; a malicious kernel could do the same to any

memory allocated to user processes. This can arise issues such as non-encrypted data

accessed in any storage type.

The issue above can be partially solved with homomorphic encryption, a field of cryp-

tography that allows a computer to perform operations on the encrypted data as if it were

performing on the original data. This means that the decrypted result after the operation

must be equal to the computed value if performed on the original data. Unfortunately not

many implementations exist that apply symmetric-key homomorphic encryption, and

those that exist have, for the most part, been broken[2]. There are secure asymmetric-

key homomorphic encryption schemes implemented but suffer from performance penalty

1

1. INTRODUCTION 2

when compared to their symmetric counterpart.

An alternative solution to the problem is the use of trusted technologies. Some exam-

ples include secure elements (SEs), Trusted Platform Modules (TPMs), Java Cards, Intel

Trusted Execution Technology (TXT), Trusted Execution Environments (TEE) and Secure

Encrypted Virtualization (SEV). Some with more limitations than others, but all generally

provide in a way or another secure computation. The only limitation of these technologies

is the requirement of dedicated hardware in the host machine.

The recent advancement in the trusted execution environment (TEE) technology (e.g.,

Arm TrustZone, Intel SGX and AMD SEV) has allowed today’s generic processors to cre-

ate such programmable environments on enterprise and consumer-grade devices. This

easily enables anyone to work on such environments and quickly deploy it in the real

world, allowing applications to consider a ”wider” threat model, as it is, in theory, pro-

tected against privileged code.

1.1 Motivation

General-purpose computing devices nowadays run all sorts of software, each one of them

with their vulnerabilities. This means that compromising one of them may lead to access

to the device, potentially compromising the remaining software in it.

Intel SGX gives the developers stronger guarantees that the code executed was not

tampered, while providing confidentially of the data and code inside it. It also provides

the opportunity to securely save sensitive data on external devices through a per-device

and per-application encryption key. This also means that even though with the increasing

popularity of the cloud with many companies moving their infrastructure to adminis-

tratively uncontrolled hardware, they can securely utilize it, without the fear of leaking

sensitive data to unknown third parties.

Given that porting an application to a new environment is usually hard, not much

work has been done to attempt running day-to-day server software on Intel SGX. Focus

has mainly been on tools that separate code automatically [3] or running unmodified

applications inside an enclave[4–7]. The issue with these approaches is that they do not

consider each application’s specifics and can result in a significant performance loss or

even not work at all.

As Intel SGX prevents the tampering of the code executed in an untrusted host, we also

explore on how we can implement tampering detection techniques on applications that

1. INTRODUCTION 3

cannot reliably be ported to Intel SGX, such as video games, by working very similarly to

existing client-side anti-cheat monitoring techniques that are often exploited by misplaced

trust [8].

1.2 Objectives

The main goal of this thesis is to apply Intel SGX in two real-world scenario applications

in order to guarantee integrity, confidentiality of confidential data and detection of appli-

cation tampering. In summary, the objectives of this thesis can be resumed to:

• Identify existing server applications used in the real world and solutions that can

leverage Intel SGX;

• Application of Intel SGX in applications used in the real world;

• Analyze monitoring possibilities and tamper prevention on sensitive applications

(e.g. video games);

• Usage of a complementary kernel module to monitor file access, achieve debug pre-

vention and unauthorized reads/writes on a process;

• Creation and deployment of prototypes, utilizing Intel SGX, in a real-world scenar-

ios

• Definition of a threat model with security analysis for each scenario;

1.3 Outline

Firstly this chapter presented the motivation for this work and the objectives to be achieved

in this thesis.

In chapter 2, we introduce some concepts necessary throughout this thesis. It gives a

brief overview of how modern processors protect higher privilege codes and the multiple

ways to achieve virtualization in the modern world. This chapter also explained what a

trusted execution environment is and how it can break the typical security ring in modern

processors.

1. INTRODUCTION 4

In chapter 3, we present related work that aims to run applications in Intel SGX,

summarize the contributions of other similar work and discuss limitations of existing ap-

proaches. Additionally, we explore some existing commercial game anti-cheat solutions,

and one solution leveraging Intel SGX.

Chapter 4 presents our work on the Apache’s web server, the creation of an OpenSSL

Engine, and the application of anti-cheat monitoring techniques to Intel SGX. Also, with

each implementation, we perform a security analysis.

In chapter 5, we define the test methodology to evaluate our implementations and

present the results so that we can compare them to their original counterpart and, when

applicable, to other existing solutions.

Finally, chapter 6, concludes this thesis by overviewing the results obtained in the

previous chapter. Besides, we discuss some limitations of the current implementations

and possible future iterations of this work.

Chapter 2

Background

In this chapter, we address some necessary concepts before tackling the problem. We start

by describing the concept of security rings in modern processors, followed by an expla-

nation of current virtualization techniques. Finally, we introduce some basic concepts of

Intel SGX that will be necessary throughout this thesis.

2.1 Security rings

Modern processors typically have several execution modes that provide hierarchical lay-

ers of privilege, also known as the security rings [9]. The lower the ring in which the

CPU mode operates, the higher the privilege is. Even though x86 gives various security

rings to work with, general-purpose operating systems such as Linux and Windows only

leverage two CPU modes, running code in kernel mode, ring 0, and user mode (ring 3).

With the evolution of the architecture and the introduction of hypervisors, deeper lev-

els of privilege were introduced. One example of this is the hypervisor mode, also known

as ring -1, capable of preempting and isolating kernel code. Ring -2 refers to the system

management mode (SMM), which can seize the hypervisor code and has nearly unre-

stricted access to the system[10]. It is also in charge of controlling power management,

system hardware and run proprietary code from Intel and the motherboard manufacturer.

Trusted execution environments may break the hierarchical layers of privilege, by only

allowing software to run in a less privileged code and denying access from higher privi-

leged code.

5

2. BACKGROUND 6

2.2 Virtualization

Virtualization is the concept of creating a virtual version of something. This is usually

achieved by an abstraction layer that allows the creation of virtual ”hardware”. In this

section, we will approach solutions that virtualize the hardware the operating system

runs off.

FIGURE 2.1: Common virtualization types

Virtualization via Virtual Machines

To be able to create virtual machines, the bare machine must utilize a Virtual Machine

Monitor (VMM), also commonly known as a hypervisor. The VMM has full control of

the machine resources and aims to create an efficient, isolated virtual machine (b and c

in figure 2.1) duplicate of the real machine[11], and this is accomplished by creating a

Basic Machine Interface[12] for each virtual machine. Buzen and Galglirdi [12] define

the primary machine interface as the set of all software visible objects and instructions

supported by the system’s hardware and firmware.

Nowadays an hypervisor can be either of type one or type two. Type one are also

known as bare metal hypervisors (b in figure 2.1), meaning there is no other operating

system running parallel or beneath the hypervisor, allowing direct access to the hardware

without any overhead. As the hypervisor itself is the ”Operating System” installed on

the physical machine these type of hypervisor generally either have no interface for the

user or a very limited one, requiring another machine to configure it and to deploy virtual

machines.

Type two hypervisors on the other hand run above a ”normal” operating system such

as Windows or Linux and exist mainly for convenience for the end-user to run a virtual

2. BACKGROUND 7

machine without requiring a dedicated machine for it. Memory allocation and I/O is han-

dled by the operating system, providing an increased overhead when compared to type

1 hypervisors. Type 2 hypervisors may be less flexible on the resources and capabilities

they provide as it is dependent on the underlying operating system.

The only way for a malicious or compromised virtual machines to affect others is to

attack first the hypervisor or the processor to break the isolation barrier provided, the

latter can often be attacked by leveraging, for example, side-channel vulnerabilities to

extract information from other virtual machines or even the hypervisor.

Virtualization via virtual machines has become quite popular as it allows for the same

software to run on a panoply of different hardware, without requiring changes to the

software. They are allowing at the same time, if the processor supports, to isolate virtual

machines at the hardware level completely.

Virtualization via Containers

Recently there has been an uprise in the interest of lightweight virtualization through

containerization (d in figure 2.1). The kernel is responsible for isolating the different con-

tainers and protecting itself from it.

The containers share the kernel with the host, and this restricts the operating system

that can run under the virtualization to one that shares the same kernel. It also means

a bug in the kernel may compromise all the containers associated with it and the host

operating system.

The isolation, on linux, is performed via cgroups and namespaces. Cgroups allow for the

kernel to limit and measure the resources utilized by a group of processes, while names-

paces allow the kernel limit the visibility the processes have of the rest of the system.

Because only one kernel is used, the performance and size overhead are significantly re-

duced compared to a virtual machine.

Virtualization via library OS

A Library OS is a library loaded into the user space of a process providing as many kernel-

like features as possible from userspace, only transitioning to kernel space when it is re-

quired, i.e. interfacing with the hardware.

The great advantage of this approach compared to containers is that it dramatically

reduces the number of system-calls that kernel must defend itself from the application. It

2. BACKGROUND 8

may also be possible to create a host OS-dependent, abstraction layer between the library

OS and the actual kernel, allowing the same executable to run in completely different

environments (e.g. Linux and Windows) or even micro kernels that provide minimal

functionality.

As the virtualization provided by a library OS is made purely through user space, the

security boundaries it provides are essentially none, as an attacker can read the whole

memory space in the process and nothing stops them from issuing syscall instructions to

interact directly with the kernel without going through the library OS.

2.3 Trusted Execution Environment

Trusted Execution Environment (TEE) is often referred to, generally, as a secure, integrity-

protected programmable environment with memory and sometimes storage capabilities [13].

Global Platform defines a ”TEE system architecture” [14] which systems must comply in

order to be considered a Trusted Execution Environment, at a very high level the require-

ments for these are:

• Protect assets from environments other than the TEE itself.

• Protection against some physical attacks

• System components (e.g., Debug interfaces) capable of assessing TEE assets are dis-

abled or controlled by an element protected by the TEE.

• The TEE must be instantiated through a ”Secure boot” process by the SoC or an

Off-SoC Security processor

• Provide trusted storage of data and keys

• Software running outside the TEE should not be able to call internal TEE APIs di-

rectly

From the first and last requirements, we can see how a TEE may break the hierarchy of

security rings. Any code other than the one in the TEE itself should not be able to access

the contents of the TEE. This includes code running in higher privilege modes, e.g., kernel

code.

2. BACKGROUND 9

2.3.1 Intel SGX

In 2015, Intel introduced, along with the Skylake microarchitecture, Software Guard Ex-

tension (SGX), which is a set of security instructions that aims to provide users with a

hardware implementation of a Trusted Execution Environments(TEE), allowing integrity

and confidentiality guarantees to computation performed on a device even if all privi-

leged code is compromised.

The creation of a trusted execution environment in Intel SGX is achieved by allo-

cating processor reserved memory (PRM), which the processor protects from all non-

enclave memory accesses, including from kernel, hypervisor and system management

mode code[15].

Memory structure

The PRM holds Enclave Page Cache (EPC) sets, each with 4KB of size, which are assigned

to the enclaves by untrusted software. The CPU makes sure that each EPC belongs exclu-

sively to one enclave by maintaining an Enclave Page cache Metadata.

As the processor reserved memory for Intel SGX is limited to a maximum of 128MB

[16], Intel SGX provides instructions for the Operating System to evict EPC pages to un-

trusted memory and later load them back. As the memory where the evicted EPC pages

are stored is readable by the operating system, SGX uses cryptography operations to en-

sure the integrity, confidentiality, and freshness of the evicted EPC pages[15]. As the EPC

pages and other SGX specific data are required to be stored in the PRM, the usable mem-

ory for applications within Intel SGX is limited to approximately 90MB.

Threat model

Intel SGX’s threat model assumes that the operating system and all application code could

be compromised or malicious and are considered untrusted. The CPU guarantees that the

enclave memory can only be accessed from the code running inside the enclave itself. This

allows for enclaves to execute sensitive computations without worrying about malicious

privileged code to read the sensitive data.

Intel SGX does not protect against application bugs[17, 18] within the enclave, bugs

on the implementation of Intel SGX, nor does it guarantee safety against side channels

attacks.

2. BACKGROUND 10

Memory safety violations

Enclaves can leverage code secrecy by self-modification during runtime[19][20]. This

poses a problem for those wanting to leverage return-oriented programming (ROP) to

exploit existing software. By monitoring the exceptions thrown by the enclave, Jaehyuk

Lee et al [21] demonstrate new techniques to find buffer overflows, ROP gadgets, and

the desired functions (e.g., memcpy) in enclaves utilizing code secrecy. This allows the

attacker to build an ROP-chain to memcpy to copy data from the enclave to normal mem-

ory.

Side channel attacks

A side-channel attack aims to obtain information about an executing system through in-

formation leaked through a side channel, such as power consumption, timing informa-

tion, or even sound. Currently, all known vulnerabilities affecting Intel SGX can be miti-

gated through microcode updates from Intel.

Prime+Probe is an example of a side-channel attack, and it leverages the L1 cache

of the processor to determine what addresses were accessed. First, the attacker primes

the cache by accessing memory to fill the L1 cache in its entirety. Afterward, when the

victim’s process accesses memory addresses, some portions of the previous L1 cache are

evicted and loaded with the victim’s data. The attacker can now probe the same addresses

and measure the time it took to access each address since accesses to the L1 cache are

faster than the ones to ram. He is now aware which cache lines got evicted. As the

attacker knows the code and the victim’s accesses pattern, he could potentially extrapolate

information about sensitive data.

Ferdinand Brasser et al [22] demonstrate the Prime+Probe attack applied to Intel SGX.

Firstly, it requires that the enclave code is executed in the same core as the attacker’s pro-

cess, requiring modifications of the scheduler. Secondly, uninterrupted execution of the

enclave is necessary so that the L1 cache is not polluted further, making it a requirement to

have simultaneous multi-threading (SMT) enabled, known as Hyper-Threading on Intel

processors. The last condition also leads to the necessity of the kernel never interrupting

the core on which both the victim’s code and attacker’s code run.

Foreshadow[23] exploits speculative attacks to read memory from Intel SGX protected

memory regions. This includes the secrets used to seal data and pass attestation services.

Due to SGX’s privacy features, an attestation report cannot be linked to the identity of

2. BACKGROUND 11

its signer. This means a single compromised SGX machine could erode trust in the entire

SGX ecosystem. To fix this, Intel issued an update to the microcode of the affected CPUs

and revoked the attestation keys extracted with by foreshadow.

More recently, in Fallout[24] was demonstrated an issue in an undocumented opti-

mization within Intel CPUs, which was named Write Transient Forwarding (WTF). When

an instruction attempts to write a value to memory, the processor needs to translate the

virtual address to a physical address so that it can acquire exclusive access to it. To pre-

vent stalling the store instruction, the WTF optimization store the address and value in a

buffer and continue executing the program. Later, the addresses in the buffer are resolved

and used to store the values in memory. Once a value is stored in the buffer, subsequent

loads to that address need to load the value from the buffer so that stales values are not

read from memory. The processor matches the address in the load instruction to the ones

stored in the buffer.

To make the decision faster of where the values are stored in the buffer, partial address

matches are used to rule out the need for store-to-load forwarding. An issue arises when a

load instruction with an address stored in the buffer that is bound to fail (e.g. through an

access violation), incorrectly forwards the value of the partially matched store instead of

cleaning the CPU state. An attacker may generate faults so that load instructions would

cause an error and incorrectly forward the store value. Subsequently, an attacker can use

a Flush+Reload side-channel attack similar to Prime+Probe to read the forwarded value.

Intel classified this issue as a Micro-architectural Store Buffer Data Sampling (MSBDS).

Zombieload[25] demonstrates the issues of MSBDS in real-world scenarios leaking

data from user-space applications, the kernel, Intel SGX enclaves, other virtual machines,

and even the hypervisor. The same paper showed a new technique similar to MSBDS

that, in addition to Intel TSX, allows for the data leakage to occur on Intel Cascade CPUs,

supposedly resistant to MSBDS.

Cache-out[26] demonstrates that Intel’s fix on on Whiskey Lake CPUs is not enough

to mitigate MSBDS attacks. It also demonstrated that an attacker could select which cache

sets to read from the CPU’s L1 cache. Additionally, because the L1 cache is often not

cleared on context switches, it is feasible to exploit even on CPUs with Hyper-Threading

disabled, where the victim’s code runs subsequently to the attacker’s code. This attack

can extract secrets in Intel SGX enclaves[27], including the keys used to seal data and pass

attestation. This essentially allows for any code to pass as a legitimate enclave, even if

2. BACKGROUND 12

not running within Intel SGX. Like foreshadow, this requires for the extracted keys to be

revoked by Intel.

2.3.2 OpenEnclave

OpenEnclave[28] is an hardware agnostic Software Development Kit (SDK) for trusted

execution environments. Currently it only supports Intel SGX and Arm TrustZone. This

allows for any developer to support a multitude of enclave solutions without worrying

about the specifics of each system. It automatically partitions applications in two compo-

nents, one to be executed inside the enclave and other outside the enclave for operations

that are not permitted inside the enclave (e.g. system calls).

Chapter 3

Related work

In this chapter we will learn about some applications that Intel SGX has had throughout

its life by discussing their key features and comparing them when applicable by pointing

out the advantages and disadvantages of each solution

Firstly, we explore technologies that aim to run unmodified applications within the

limited instruction set of a secure enclave. Secondly, we analyze some applications that

have been created with Intel SGX in mind, which result in a much smaller code sizes

than the previous solutions. Finally, we discuss secure introspection and how it may be

applicable to Intel SGX.

3.1 Running legacy application on Intel SGX

Since porting entire applications is typically an arduous task, focus has primarily been

on automatically porting applications[3] or running unmodified applications inside In-

tel SGX[4–7]. In this section, we approach some solutions that aims to run unmodified

applications inside the enclave and identify the key differences in each solution.

3.1.1 Scone

As the enclave, in Intel SGX, excludes the operating system from its trust computing base

(TCB), thus eliminating the syscall instruction, it means the number of applications that

can run natively, without any changes, on Intel SGX is somewhat limited. In this section,

we will look at a few solutions that aim to run unmodified applications on Intel SGX.

13

3. RELATED WORK 14

FIGURE 3.1: Secure container designs[4]

While state of the art solutions achieve the same objective, of running unmodified

applications inside Intel SGX, this can be achieved in various ways. Figure 3.1 shows

three possible ways that achieve similar results.

Figure 3.1a shows a design that places a Library OS and a shielding mechanism inside

the enclave. The library OS allows for the enclave to drastically reduce the number of

system calls made to the kernel, thus decreasing the performance penalty associated with

leaving and entering the enclave. The shielding layer protects a security-sensitive set of

system calls, by, for example, encrypting and decrypting I/O operations. The disadvan-

tage of this type of design is that by integrating the library OS inside the enclave, we are

significantly increased the size of TCB. Figure 3.1b shows the extreme opposite of the pre-

vious design, the application and its libraries are loaded onto the enclave with a shim C

library. The shim library intercepts the C library calls and redirects them to the actual C

library that is loaded outside the trusted environment.

To our knowledge, no current implementation follows this extreme approach as they

typically implement some shielding layer. This solution would also imply a significant

increase in the number of transitions to and from the enclave, decreasing the overall per-

formance of the application.

Finally, Figure 3.1c shows a system that gathers the best of both previous solutions. It

includes in its TCB a C library along with a shielding layer. All system calls are passed

down to the operating system either by the C library or the shielding layer.

3.1.2 Haven

Haven[5] was the first solution to implement this kind of paradigm and follows the im-

plementation in 3.1a. It allowed to run unmodified applications shielded from the operat-

ing system. To achieve this Haven builds on top of Drawbridge[29] a system supporting

3. RELATED WORK 15

sandboxing of Windows applications leveraging two mechanisms, microprocessors and a

library OS.

FIGURE 3.2: Haven components and interfaces[5]

A pico process can be seen as a container similar to a docker container. It provides a

relatively narrow application binary interface (ABI) consisting of downcalls, requests for

OS services and upcalls, utilized for initialization, thread startup, and exception delivery.

The pico process is also a way for the operating system to defend itself from the guest (the

application).

The job of the library OS in Haven, besides providing a ”user-mode kernel”, is to pro-

vide an abstraction layer to the application with the ABI and the shielding layer. Because

Intel SGX protects the enclave from the remaining system, Haven enables a mutual dis-

trust between the guest and the host.

3.1.3 Scone

Scone[4] is a Linux solution similar to Haven, with the exception that it does not require

a library OS to be loaded to the TCB (Figure 3.1c). To support applications inside the

enclave, it runs inside the TCB, a modified musl C library[30]. This solution also provides

a M:N threading model in which application threads inside the enclave are mapped to N

OS threads.

3. RELATED WORK 16

Due to the lack of a library OS, Scone relies heavily on the operating system to handle

all the system calls. While on applications with a low amount of system calls, performance

does not suffer too much, on applications with a higher rate of system calls performance

degrades significantly. To combat this issue, Scone allows users to load an additional

kernel module to enable the enclave to perform asynchronous system calls.

As all system calls can potentially return malicious values, the shield layer must per-

form verification, similar to how the kernel OS protects itself from data coming from

userspace.

Scone also permits shielding of external interfaces with transparent encryption of files,

transparent encryption of communication channels via transport layer security (TLS) and

transparent encryption of console streams (STDOUT, STDERR and STDIN).

Scone also allows us to keep confidentiality and integrity on files written and read by

the enclave.

This solution has, since its release, gone closed source offering both a community edi-

tion and paid services[31]. The community edition runs exclusively in pre-release mode

with debugging enabled and provides a set of curated images ready to be used. Alterna-

tively, the community edition also provides compilers and runtimes for some languages.

In the original paper[4] an optional kernel module is mentioned to improve system calls

performance, but the website[31] for Scone does not mention this feature.

3.1.4 SGX-LKL

SGX-LKL[7] is a fork of the early stages of Scone, and contains some similarities. Like

Scone it provides similar functionalities, such as transparent file encryption and a M:N

threading model. Contrary to Scone it embeds a library OS, the Linux Kernel Library

(LKL), in the TCB.

As it contains a library OS inside the TCB, it allows for a minimal host interface, pro-

viding only seven system calls. One system call for time-aware applications, two system

calls for disk I/O, two system calls for network I/O, and two system calls for signaling.

SGX-LKL does not provide the same type of shielding as Scone for network connec-

tions, but it allows the enclave to create a TAP device connecting to a network via the

wireguard[32] virtual private network (VPN). This essentially allows the creation of a

distributed network guaranteeing that only trusted nodes are present.

3. RELATED WORK 17

To hide disk I/O events instead of instantly performing a disk I/O call, these are

inserted into a queue until there are enough changes to be written to disk. This allows us

to hide from the operating system when the applications are reading or writing specific

files. If the application is not generated enough disk I/O activities, random activities are

performed to mask it. This prevents side-channel attacks on the enclave from operating

regarding the enclave’s inner workings when working with I/O operations.

3.1.5 Graphene

Graphane[33] is a library OS that aims to be as host independent as possible, aiming

to be a substitute to current virtualization by containerization solutions. Its goal is to

allow Linux applications to be executed in any environment (e.g., BSD, OS X, Windows),

without relying on virtualization. This is achieved by creating a similar architecture to

Haven, a pico process is created with the wanted executable, its dependencies and the

Graphene library OS. System calls are translated to the host via a platform abstraction

layer (PAL), which, as the name implies, is an abstraction layer that changes with the

operating system. One key difference from Graphene to Scone and its derivative works is

that instead of using the musl c library, it uses the gnu c library.

Graphene-SGX[6] treats Intel SGX as just one more environment on which the appli-

cations may run. To run unmodified applications under Intel SGX, a port of the PAL was

made to Intel SGX. This allows, similarly to Haven, a mutual distrust from the host and

the guest. It is one of the few, if not the only solution, that allows the creation of forks

of existing processes. When a process is forked, a new clean process is created. Then the

two enclaves, via an inter-enclave remote process communication stream, exchange an

encryption key, validates the CPU-generated attestation of each other, and migrates the

parent process snapshot. The current solution leaves for future work the protection of the

network and file system.

To load an unmodified program to Graphene-SGX, it first creates hashes of the pro-

gram, its dependencies, saves it to a file, and signs it, essentially creating a whitelist of

permitted files. Later, when the application executes inside the enclave checks the exe-

cutable and files against the created whitelist.

3. RELATED WORK 18

3.2 SGX native applications

In this section we overview some solutions that utilize Intel SGX in order to widen its

threat model to have stronger guarantees that the desired data is kept confidential from

even the operating system itself.

3.2.1 SafeKeeper

SafeKeeper[34] is approach to protect the confidentiality of passwords in web authen-

ticated systems through the use of Intel SGX, protecting even from malicious or com-

promised servers. It considers a very strong adversary in its design, with access to the

password database, ability to modify the web content sent to the user, access to the

server-client communication, server-sided code execution and phishing attempts. It also

assumes that the user only enters passwords on SafeKeeper enabled web services.

This approach has two components, a server-side password protection service to safe-

guard the passwords from the rest of the code running in the server and a browser add-

on to correctly identify web services running SafeKeeper and securely communicate with

them.

The server sided password protection service is designed as a drop-in replaced for

existing one-way functions. It takes a salted password as an input and the result is a

keyed one-way function, which is stored in the database. In order to protect the key

utilized, it never leaves the enclave in clear text, all computation of the one-way function

is made inside the secure enclave. An adversary that has access to the password database

cannot perform an offline password guessing attack as it does not know the key used in

the one-way function. This forces the adversary to an online only type of attack against

the web service which can be rate limited by the service.

To securely transmit the user’s password, the browser add-on needs to correctly iden-

tify that it is communicating with the SafeKeeper password protection service. The iden-

tification of the service is done via remote attestation of the secure enclave to guarantee

that it is talking to a genuine Intel SGX enclave and to verify its contents. Additionally,

this attestation protocol establishes a shared session key in order for the client to establish

a secure communication channel with the enclave, on which the login creditianls will be

sent.

3. RELATED WORK 19

3.2.2 Intel SGX key store

Keys in the Clouds is a solution presented by Arseny Kurnikov et al [35] that aims to

create a web service that utilizes Intel SGX as its trusted execution environment to create

a secure key store accessible from anywhere.

It works as a web service and leverages Intel SGX to securely store and utilize the key,

the service permits the key owners to utilize keys, delegate it to other users and audit its

usage. Integration with GnuPG and OpenKeychain are provided on Android systems.

To guarantee that the user is in fact speaking with genuine Intel SGX enclave, remote

attestation is performed through the same efficient remote attestation protocol as pro-

posed by the SafeKeeper.

3.2.3 tpmsgx

The utilization of Intel SGX on a cloud-like environment is especially difficuly, because

data is encrypted with a per enclave per device key and because the physical memory

available to the program is at most 128 MB, with around 40 MB being already used for the

management of SGX itself.

Dave Tian et al. [36] propose a system so that applications can leverage Intel SGX in a

cloud like environment for multiple users through the use of an emulated TPM and LXC

containers.

The solution acts like a ”TPM as a service” for applications to use without resorting

to solutions like Haven[5] that requiring moving a big code base to the enclave. Unlike

traditional TPMs, it does not allow the use of the TPM before the operating system is

initialized, meaning it cannot be used for example for secure boot. This service allows for

multiple a

The implementation specifies that, if remote attestation is enabled, communication be-

tween the server and the client is encrypted by an AES128 shared secret that is established

between them. The publication does not specify if, or how the client authenticates that it

is communicating with a genuine Intel SGX enclave.

3.2.4 SGX-Kernel

Although Intel SGX is limited to running code in user mode, Lars Richter et al. [37] pro-

pose a solution that allows the kernel to delegate some of the work to an enclave, in order

to isolate kernel with Intel SGX.

3. RELATED WORK 20

The system is compromised by two components, a kernel module, and a secure en-

clave running in user mode. The kernel module acts as proxy for the secure enclave and

their communicated is made through a Netlink interface, allowing the kernel to delegate

work to be done in the secure enclave.

A proof of concept is demonstrated by creating a file system managed by the enclave,

which is responsible not only for its storage but encryption as well, guaranteeing, that the

encryption key is never exposed to other applications or other kernel mode code.

3.3 Secure introspecting

One way to protect the deployed systems is via introspection of the system itself. As the

hypervisor is generally the most privileged mode that generic software, introspection sys-

tems are typically deployed at this level [38], with solutions like Bitdefender Hypervisor

introspection[39] and Microsoft’s Hypervisor-Protected Code Integrity.

One other common application of secure introspection is in video games, through the

use of ”Anti-Cheats”, to protect the code integrity and guarantee fair play in multiplayer

matches, these solutions are typically deployed in user or kernel space. They are often

an extension to the base game, and depending on what it wants to monitor, it can run

on the client, server, or even in both places. Since anti-cheats on the server-side are lim-

ited to analyzing the client’s input, it is common to deploy an anti-cheat at both ends.

Alternatively, it can just be implemented on the client-side as it permits to monitor the

client’s behavior in more detail. The disadvantage of this option is that it is exploited by

misplaced trust [8] in the anti-cheat. The attacker often has full access to the device, to

tamper with the running software, including but not limited to, the game code and the

anti-cheat itself. This full access can be used to bypass the implemented security checks

in the anti-cheat, giving the illusion that nothing has been tampered.

Sometime after the release of Intel SGX, Erick Bauman et al. [40] introduced a solu-

tion to utilize SGX to protect computer games and, at the same use it as a digital rights

management (DRM) system. The proposed protection model to prevent players from

cheating requires some of the game’s code and data to be moved to the enclave created by

Intel SGX. As the Intel SGX Enclave Page Cache (EPC is limited at maximum to 128 MB

of memory [16] and does not permit the usage of system calls without first exiting the en-

clave. The game developer must first perform a careful analysis of the game’s code not to

exceed the EPC size to degrade performance beyond an unusable point. While this might

3. RELATED WORK 21

be easy for games with a small code base, this task gets harder with the size of code that

must be protected. As the system grows, the likelihood of game code that might leak data

to and from enclaves will increase. While it might not seem an issue at first because tools

such as Cheat Engine are still unable to read game data inside the enclave, it is not enough

to defend from an application that might load additional code in the application [41, 42].

To our knowledge, there does not exist a commercial anti-cheat solution that takes

advantage of Intel SGX to implement cheat detection techniques. Current anti-cheats so-

lutions work in diverse ways from just server-side monitoring to kernel space monitoring

in the attacker’s device. However, almost all typically rely partially on security by obscu-

rity, probably with fear that attackers may more easily find exploits to circumvent these.

Battleye

Battleye [43] works by running code on the client’s device and the server. With the main

component being on the client’s side, and using the servers only for reporting the cheater.

It takes advantage of the client’s device by running code in both user and kernel space to

scan not only the running process but also other processes and impede code injecting on

the game’s process.

Easy Anti-Cheat

Kamu.GG was released initially and later acquired by Epic Games [44], Easy Anti-Cheat [45],

which works similarly to Battleye and achieves the same results in the same or similar

fashion. Working in both kernel and userspace gives the anti-cheat access to the game

process and others to monitor for unwanted activity. This anti-cheat will not load if spe-

cific Windows features that aid debugging of kernel code or loading non-signed windows

drivers are enabled. Such options include disabling Driver Signature Enforcement, Kernel

Debugging, Windows Safe mode or disabling Kernel Patch Protection (KPP), Microsoft’s

solution to prevent patching the Windows NT Kernel.

Fairfight

Fairfight [46] by GameBlocks, LLC, is a non-intrusive, server-sided anti-cheat, that works

much like a behavior-based Intrusion Detection System (IDS). The anti-cheat interprets

the player’s game events and uses them to compare against the rest of the players. The

3. RELATED WORK 22

system may flag those who perform exceptionally well or in a weird way (e.g., point-

ing to other players through opaque objects) for manual review by the developers. The

advantage of this type of anti-cheat is that it allows catching unknown or new types of

cheats, but it might also not catch every cheater, especially the ones playing within what

is considered ’normal’ behavior.

Chapter 4

Design and Implementation

In this chapter we describe our implementations of tamper prevention of sensible data,

particularly encryption keys and a mechanism created to detect tampering of applications

that cannot reliably be executed within Intel SGX.

First, we introduce a modification to the Apache’s web server where the TLS termi-

nation is moved to a secure enclave. Secondly, in section 4.2 we present an encryption

key storage implemented in Intel SGX leveraging OpenSSL, this solution offers less pro-

tection than the former but is contrasted by its versatility and better performance. These

two solutions aims to guarantee the privacy of encryption keys with a threat model sim-

ilar to the one of Intel SGX with a very strong adversary, which is able to arbitrarily run

high privilege code. We assume the cryptographic primitives are implemented correctly

on the chosen libraries. Additionally, we assume the attacker cannot break the security

boundaries imposed by the secure enclave provided by Intel SGX, although we recognize

that this might not always be the case in practice, as presented in section 2.3.1.

Finally, section 4.3 considers applications on which consistent and low execution times,

as well as large quantities of memory, are required, making it unfeasible to deploy them

under Intel SGX. We present a solution that monitors the application from a secure enclave

to guarantee code and limited data integrity. Unlike the previous solutions, in this one we

do not guarantee the privacy of the data, and assume that the protected application does

not contain bugs that could lead to techniques not covered by our solution.

23

4. DESIGN AND IMPLEMENTATION 24

4.1 Apache’s web server SSL module SGX integration

This section describes the modifications made to mod ssl to make it compatible with Intel

SGX in order to protect both the asymmetric private key and the negotiated symmetric

key from unwanted third parties. This is achieved by moving the TLS implementation

to the TEE, preventing access from both the operating system and the hypervisor. In ad-

dition, it also analyzes various cryptography libraries available to Intel SGX and identify

that WolfSSL[47] is suitable for our needs and identifies a new issue on the TaLoS[48]

library.

Initially, we evaluated two of the most popular web servers to integrate Intel SGX, NG-

INX and the Apache webserver. An initial analysis showed that the NGINX module that

handled HTTPS has a much smaller codebase than the Apache’s equivalent. However,

the module’s interaction with the cryptography library was through an API of NGINX.

As we did not want to modify the source code of both the webserver and the module, we

chose to modify the module for Apache as its cryptographic implementation is indepen-

dent from the webserver.

4.1.1 Architecture

Our system should follow the typical architecture of any Intel SGX application containing

both untrusted and trusted components, with the former querying the latter when work

with sensitive data, is necessary.

FIGURE 4.1: Proposed architecture for the Apache’s http server.

4. DESIGN AND IMPLEMENTATION 25

Figure 4.1 demonstrates how the modified SSL module works at a very high level.

By redirecting the calls from the original OpenSSL to our enclave (1 in figure 4.1), the

enclave can utilize the private keys or other sensitive data in its possession along with a

cryptography library (2 in figure 4.1) to establish a TLS connection so that it can encrypt

the outgoing data and decrypt the incoming data.

This guarantees us that the asymmetric private key and the randomly chosen symmet-

ric key of the TLS connection stay inside the enclave, making it impossible to be read by

unwanted parties. Finally, as with any application, the enclave must return the result of

the function to the untrusted code (3 in figure 4.1) so that normal operation can continue.

If the resulting value to the function call to the cryptography library is a pointer, a random

id is generated, added to the proxy and returned instead of the pointer.

To mitigate arbitrary reads and writes to the enclave’s memory[49], we must imple-

ment a proxy that sanitizes the inputs received by the untrusted application seen in figure

4.1.

4.1.2 Cryptography library

Intel provides a fork of OpenSSL compatible with Intel SGX[50](Intel R© SGX SSL), but

its functionality is rather limited, not allowing for an application to terminate its TLS

connections inside the enclave.

Our second choice was TaLoS[48], a LibreSSL implementation for Intel SGX, which

allows applications with little to no changes to terminate their TLS connection inside the

enclave. This would be the ideal candidate since LibreSSL itself is a fork of OpenSSL and

would require minimal changes to achieve our goal. However, Tobias Cloosters et al. [49]

discovered several security vulnerabilities that allow arbitrary read and write to the en-

clave from the untrusted code. The patches necessary to fix this issue are substantial, and

the author of the library claims it will not be fixed. We will, later, explain how we prevent

such attacks in our solution.

The chosen library for our solution was WolfSSL[47], which supports terminating TLS

connections inside Intel SGX. Additionally, it also contains a compatibility layer for Open-

SSL, allowing it to be used on most applications that utilize OpenSSL.

4. DESIGN AND IMPLEMENTATION 26

4.1.3 Mitigating memory corruption vulnerabilities in SGX enclaves

Although there are legitimate cases to receive and return pointers without safety checks,

this is highly discouraged. If incorrectly used, it could very easily allow memory corrup-

tion within the enclave from untrusted code. Leading to arbitrary read and writes in the

enclave and maybe even code execution in certain cases[49].

Any function within the enclave that accepts a pointer without safety checks and is

exposed to untrusted code, could be a potential read/write primitive for an attacker.

Appendix A.1 shows a very simple function in WolfSSL[47]. It returns the variable

rfd in the pointer to a structure of type WOLFSSL. At lower level, this means that the

processor will add the offset of rfd in the structure WOLFSSL to the pointer provided in

ssl, read the contents of the resulting address, and return it. While it may seem harmless

to expose this function to untrusted code, this gives an attacker a read primitive to an Intel

SGX enclave. This is because nothing guarantees that the pointers passed to the function

are of the type WOLFSSL. This function will return an integer at the offset of variable

the rfd in the WOLFSSL structure pointed by the parameter ssl. Since the parameter ssl

can point to anywhere in memory, an attacker can read any memory inside the enclave.

Similarly, the function in appendix A.2 shows a write primitive to an Intel SGX enclave if

exposed to untrusted code.

To mitigate this attack, the enclave must perform safety checks on the passing point-

ers. In our solution, we chose to create a HashMap for each type of structure used and

exported to untrusted code. This allowed for a constant time access to the saved pointers

regardless of the number of existing pointers.

FIGURE 4.2: Preventing memory corruption in the enclave.

4. DESIGN AND IMPLEMENTATION 27

When the untrusted code calls a function in the enclave (1 in 4.2), the enclave will first

check if any of the ids passed exist in the HashMap. If the passed ids contain a valid

entry in the HashMap, the call is forwarded to WolfSSL (2 in figure 4.2). If the resulting

function returns a non-NULL pointer, it is checked if it exists in the HashMap and returns

the corresponding id to the untrusted application. If no entry is found, it will generate

a truly 64-bit integer, through the rdrand instruction, insert it in the HashMap with the

corresponding pointer, and return the id to the untrusted code (4 in 4.2).

An HashSet could have been used in place of the HashMap, but it would require re-

turning a pointer inside the enclave to untrusted code. As any data that resides within the

enclave is not accessible, we believe that this information is not important to the untrusted

code. This way we prevent the attacker from gaining knowledge about the location of the

objects inside the enclave. We also believe that returning an id instead of the pointer to the

enclave’s data may hinder heap-spraying. This attack consists of allocating large amounts

of memory in the heap so that an attacker can place the desired data in a predetermined

location. Because allocations will always return a random 64-bit integer, the attacker will

never know if data was placed in the desired location.

Having a single HashMap would probably suffice in translating ids to pointer (i.e.,

ids to void*), but we decided to create a HashMap for each type used within WolfSS-

l/OpenSSL. This allowed even for more adequate control over the ids passed as it guaran-

tees that the wrong object type is never passed to a function (e.g., passing a WolfSSL RSA

pointer to a function that expects a pointer to BIO), without a performance penalty over

using only one HashMap.

When the function to free the object is called, the corresponding id and pointers are

removed from the corresponding HashMap. This means that the untrusted code cannot

intentionally leverage use-after-free exploits as when calling a function with an id that is

no longer in the HashMap will cause the function call to not be forwarded to WolfSSL and

instead return with an error.

4.1.4 Changes to mod ssl

The approach taken to modify mod ssl was to keep the original code untouched as possi-

ble by changing only the calls to OpenSSL functions. This would allow us to merge even-

tual patches from the original branch more easily. Unfortunately, since the cryptography

4. DESIGN AND IMPLEMENTATION 28

library’s memory region is not accessible from the module, some issues arise, requiring

modifications to the code base of mod ssl.

OpenSSL callback support

The original TLS module takes advantage of OpenSSL’s input/output stream abstraction

layer to tell OpenSSL how it should read data for the SSL read and SSL write functions.

An application can register a callback that will be called by OpenSSL to write and read

the encrypted contents.

After the connection is upgraded to TLS, it creates an SSL context for the connection

and sets the callbacks to handle the input/output.

FIGURE 4.3: mod ssl input chain

Figure 4.3 shows roughly the input chain used in mod ssl. First the http server notifies

the module via the ssl io filter input a request for data. If it determines that it should read

data, it will call an helper function which calls the OpenSSL function SSL read. Since

OpenSSL has been instructed to use bio filter in read to read the data from, it will call it.

Finally bio filter in read will then try to fetch data from the next httpd filter and return it to

SSL read, which will decrypt it and return it to ssl io input read. The output chain follows

the same pattern, registering a function to tell OpenSSL on how to perform writes

If the cryptography library is inside an Intel SGX enclave, the application may still reg-

ister the callback to functions outside the enclave, but when the enclave tries to execute

that function a segmentation fault will occur. This is because enclaves are not allowed to

execute instructions outside its memory range without first issuing a special ocall instruc-

tion to leave the enclave.

To overcome the issue mentioned above, we resort once again to HashMaps, which

will hold a pointer to an array containing all possible callbacks in the BIO METHOD and

a static callback for each callback which will resolve the correct pointer and forward it

to untrusted code to execute. Appendix B.1 shows a simplified concept of this in prac-

tice, when BIO meth set read is called instead of forwarding the call to the enclave it is

saved in its corresponding slot in the created array, the registered callback to WolfSSL

will instead be a function within the enclave. When called, the callback will obtain the

4. DESIGN AND IMPLEMENTATION 29

real pointer saved in the array and tell the untrusted code to execute it. The functions

GetBioCallbackArray and CreateBioCallbackArray simply get and create the necessary array

in the HashMap.

Additional getters/setters

Even though OpenSSL 1.1 removed many of its structures from the public header files so

that they become opaque and force the usage of accessor functions[51], not everything got

the same treatment. Structures such as the GENERAL NAME are not opaque and still rely

on the application to directly access the data in the pointer returned by OpenSSL. This

poses two problems, one specific to our solution, and the other due to Intel SGX. First

as mentioned in subsection 4.1.3, our library does not return real pointers, but instead

randomly generated ids, meaning any attempt to dereference the pointer will most likely

result in an access violation, crashing the program.

Secondly, Intel SGX enclaves when running in release mode do not allow access from

untrusted code. This means, similarly to the first issue, trying to access the data it points to

will cause an access violation. Because of the latter issue, we believe that TaLoS[48], even

though it claims support for Apache’s HTTP server, it does not treat these cases within the

LibreSSL library. This means it will only work in pre-production mode, allowing access

to the enclave’s memory from any code. Attempting to use the library in production, i.e.,

enclave compiled in release mode, would cause segmentation faults when accessing data

that resides in the enclave.

Sealed key detection

As we wanted to retain as many features as of the original module, we decided to have

the possibility of loading normal keys and sealed keys by the enclave. We modified the

module so that it would first try to load a sealed key, and if it failed, try to load the key

normally. For convenience, and to help users identify what kind of key they have in

storage, we append the suffix ’.sealed’ to the end of the file’s name.

4.1.5 Limitations

During its normal operation, the Apache HTTP server will create multiple forks to handle

multiple connections. This property does not work too well with enclaves. Since the en-

clave’s memory space is not accessible to the operating system, it cannot be copied to the

4. DESIGN AND IMPLEMENTATION 30

forked process. While it would be possible to detect a fork and reinitialize the enclave, all

its contents would be reset to the default values, meaning all the data that the server relied

on are gone. Synchronization might be possible, but it would require significant changes

to WolfSSL. This means our solution is limited to working in a single process, severely

limiting the number of possible connections that can be handled simultaneously. This is

a limitation that is present in TaLoS[48] as their source code repository suggests running

the HTTP server in single-process mode. To our knowledge, the only solution that imple-

ments and supports forking is Graphene-SGX[6] through inter-enclave communication.

4.1.6 Security Analysis

In this subsection, we present a security analysis of the proposed solution to move the

TLS termination to a secure enclave.

Access to encryption keys

Since the cryptography library’s code is exclusively inside a secure enclave, this means

that both the asymmetric private key and the negotiated symmetric key between the client

and the server during the TLS connection handshake, are kept secret by Intel SGX. Any

external code to the enclave that attempts to access the protected memory regions will

raise an access violation exception regardless of its privilege.

Enclave memory corruption

As mentioned in [49] if an enclave exposes functions accepting arbitrary memory points

without safety checks, there may exist functions facilitating read and write primates to

the enclave’s memory defeating the purpose of an Intel SGX. As this might be considered

a software bug, this means it is not something Intel SGX should be protecting against. To

ensure that arbitrary write and read are blocked, our solution performs safety checks as

presented in 4.1.3 before forwarding the request to the cryptography library.

Key usage

The current solution allows for any code to call the enclave and utilize the private key.

Future iterations of this solution could log to a remote server the usages of the asymmetric

private key but it is not a clear implementation in this solution, as mod ssl uses the read

and write functions of OpenSSL and we can not be sure when the key is used, only when

4. DESIGN AND IMPLEMENTATION 31

it is loaded. If an attacker finds a way to use the key through some of the exposed WolfSSL

API that we did not cover, usage of the key by the attacker can go unnoticed.

4.1.7 Summary

In this section we described our port of mod ssl to Intel SGX, allowing the utilized private

key to be kept inside a secure enclave as well as the web server’s TLS handshake. Al-

though we wanted to keep the code as close to the original as possible we had to modify

it to be compatible with the changes presented in section 4.1.4. Additionally, during the

development of this solution we got a better understanding of the inner-workings of the

OpenSSL library and discovered that OpenSSL Engines could be used to achieve a similar

result in order to allow any application to take advantage of Intel SGX.

4.2 OpenSSL engine integration

As we will see in chapter 5 the previous solution comes with some big caveats and high-

performance penalty, because of this we started looking for other ways to protect the pri-

vate key used by untrusted software. This section describes our implementation of a key

store that uses Intel SGX to keep its contents secrets and its integration with an OpenSSL

engine. This implementation differs from the previous solution as it allows for any appli-

cation that uses OpenSSL as its cryptography library to leverage the keys protected by an

enclave, guaranteeing its integrity and confidentiality, working very similarly to an hard-

ware secure module or a pkcs#11 device. Unlike the previous solution it does not protect

anything beside the utilized by the private key, meaning the established symmetric keys

by applications in their TLS connections are vulnerable to the attacker.

4.2.1 Architecture

In this implementation the enclave works in a very similar manner to a pkcs#11 device.

It exposes a limited number of functions so that untrusted code can load private keys

and perform operations with it (i.e. Encryption and Decryption). Table 4.1 shows the

functions exported by the enclave and their functionality. As the RSA object in OpenSSL

needs to contain at least the modulus and the public key exponent, a function exists to

export values out of the enclave.

4. DESIGN AND IMPLEMENTATION 32

Exported enclave function Purpose
enclave private encrypt Encrypts(Signs) data with the given private key
enclave private decrypt Decrypts data with the given private key
enclave rsa get n e Gets modulus and the public exponent of a key
enclave rsa load key Loads a key into the enclave
seal data Encrypts data with an unique key to the enclave, used to ’import’ keys
gen rsa key Generates an RSA key inside an enclave, seals it and returns it

TABLE 4.1: Exported function by the enclave to perform cryptography operations on a
private key

To make it possible for applications that use OpenSSL to use our solution easily, we im-

plemented an OpenSSL Engine, which at a very high level essentially instructs OpenSSL

on how to load and utilize keys from a custom solution. Our engine implementation was

based of the Android Open Source Project[52] due to its simplicity. As the source code

targets a version of OpenSSL prior to 1.1, with the OpenSSL Engine’s help for pkcs#11

devices, libp11[53], we updated its source for a more recent version of OpenSSL.

The Engine registers a callback on OpenSSL for the event that loads a key. When this

callback is called, it attempts to load the key. If the key is successfully loaded from the

key store, custom methods are set for the encryption and decryption of data when using

the key. These methods, when called, will forward the request to the enclave.

We chose not to load the enclave inside the OpenSSL engine, as this would mean the

enclave would need to be loaded in the same process as the application using OpenSSL.

This would require installing fork detection in our Engine and reinitializing the enclave

in the forked process, ultimately wasting the physical memory allocated to SGX unneces-

sarily. Instead, our solution runs in a separate application, what we call the server, and

listens on a UNIX socket domain for inter-process communication. The OpenSSL engine

will then connect to the socket and forward its requests and wait for a reply.

In figure 4.4, we exemplify an application that utilizes a private key present within

the enclave to decrypt some data. Firstly, OpenSSL receives this request and checks if

any custom handlers for these requests exist, normally set by an OpenSSL Engine. When

our OpenSSL engine receives a request, it attempts to establish a connection to the server

and send the request to it. The server will then finally forward the request to the secure

enclave, which will process the data and return it.

Similarly, to the implementation in section 4.1, to prevent memory corruption vulner-

abilities within the enclave no real pointers are passed to and from the enclave. When an

4. DESIGN AND IMPLEMENTATION 33

FIGURE 4.4: OpenSSL Engine with SGX key store architecture.

application loads a key via the enclave rsa load key function a key id is returned and on the

remaining functions that require a reference to the key, this id is used instead.

4.2.2 Cryptography library

Unlike the implementation in section 4.1 the functionality required from the cryptography

library is much smaller. The only requirements being the ability to load an RSA private

key and perform operation with it. Fortunately, even though the functionality of Intel R©

SGX SSL[50] is rather limited, it provides support for the required features. We chose this

library over WolfSSL[47] as it is a fork from OpenSSL. It is giving us a simple one to one

match of the functions utilized by other OpenSSL Engines.

4.2.3 Configuring OpenSSL

To make OpenSSL aware of the Engine and make it so that other applications can use it,

a few modifications need to be made to install OpenSSL. On an installation of OpenSSL

through Ubuntu’s package manager, appendix B.2 needs to be added to the configura-

tion file /etc/ssl/openssl.cnf. In addition to configuring OpenSSL, the Engine needs to be

copied to the path specified in the configuration file. This should make it possible for any

application to use the Engine, even from command like as shown in appendix B.3.

4. DESIGN AND IMPLEMENTATION 34

4.2.4 Required changes to applications

Applications that utilize OpenSSL may easily be adapted to use any engine available. By

calling the OpenSSL function ENGINE by id with the id of the Engine, returning a refer-

ence to the Engine is obtained. Subsequently, the application must call ENGINE init to

initialize it. To load a private key from the Engine, OpenSSL provides a function EN-

GINE load private key, which attempts to load a key from the Engine and returns a ref-

erence to a EVP PKEY object which can be used as if it were a key loaded through the

conventional OpenSSL API.

Adding support to Apache’s HTTP server

When Apache’s HTTP server attempts to load a key or a certificate, it checks if the pro-

vided Uniform Resource Identifier (URI) contains a colon, and if its prefix is a supported

OpenSSL Engine. If it is a supported engine, the server attempts to load and initialize

the Engine with the same id as the prefix in the URI, in our case sgxkeystore. Even-

tually requesting it to load the key in the specified URI. For example, the URI sgxkey-

store:key.pem.sealed would result in the initialization of the engine sgxkeystore, loading the

specified URI. As the original code already supports pkcs#11 devices through libp11’s

OpenSSL engine[53], adding support for another engine is a simple process. The only

changes required are to detect the prefix in the URI, as shown by the patch in appendix

B.4.

4.2.5 Security Analysis

This subsection presents a security analysis of creating a key store with SGX and making

it usable to external applications.

Access to encryption keys

Unlike the solution presented in section 4.1 this implementation does not protect the sym-

metric keys during a TLS connection. It works very similarly to a hardware security mod-

ule (HSM) or, more precisely softHSM[54], which emulates an HSM in software. As our

solution only implemented support for RSA keys, it only guarantees the secrecy of these

keys. Meaning if the key store is utilized for TLS, the agreed symmetric key would be

exposed to untrusted code.

4. DESIGN AND IMPLEMENTATION 35

Key usage

Like the first solution presented in 4.1 the current implementation allows for any code

being executed to make requests to the sgx key store to sign and decrypt data with the

private key. The current solution utilizes UNIX domain sockets to communicate with

other applications, and this means that it is easily adaptable to network sockets so that

future iterations could leverage a solution as presented in [35]. Allowing only authen-

ticated access to the keys and logging key usage. Additionally because we only expose

two functions that make operations with the key, we can easily implement logging on its

usage.

4.2.6 Summary

Similarly to the previous solution, this keystore aims to protect the private key from being

read by malicious parties but unlike the port of mod ssl it accomplishes the same objective

through a keystore leveraging SGX and integrating it with OpenSSL via an Engine. Unlike

the ported module, this solution does not terminate the TLS connection inside the secure

enclave. As we will see in chapter 5, the deployed engine contains some overhead over

the unprotected solution but is not enough to affect the Apache web server under normal

usage.

4.3 Secure Enclaves in Cheat Detection Hardening

This section gives the argumentation published in [1]. We explain how we employ secure

enclaves to harden cheat detection mechanisms on modern AAA video games.

As not all applications are suitable to be executed inside a secure enclave due to the re-

strains one might impose, we implemented tamper detection techniques inside an enclave

to detect modifications of an application that would otherwise not be protected.

Our implementation tries to be the least intrusive in the developer’s life by minimizing

the amount of the application’s code that needs to be modified. It stores information about

the application in a secure environment rather than moving the entire application to the

enclave. This change allows for our solution to run efficiently inside the enclave as it does

not exceed the physical memory limit imposed by Intel SGX.

The technique utilized to monitor the application works in a similar fashion as anti-

cheat solutions seen in modern games, the implemented enclave acts as an extra layer of

4. DESIGN AND IMPLEMENTATION 36

security that will monitor changes to the application’s code and data during runtime to

guarantee that nothing has been tampered.

An overview of our solution is given in Figure 4.5, which shows it (Protection Over-

sight) working in parallel with the application’s code while performing integrity checks

on itself and the application’s code. With the help of a kernel module, it achieves ad-

ditional monitoring of the game processes. The communication between the Protection

Oversight and the kernel module uses Netlink.

To see how solution affected the application’s normal behavior we chose to monitor

a fast-paced multiplayer game, Counter-Strike: Global Offensive, where input latency is

critical and could be the deciding factor in a eSports tournament. Because any modifi-

cations to the game are detected, this also means that cheating opportunities are greatly

reduced bringing fair-play to the game.

The proposed solution allows it to deploy on most native applications with no changes

to its workings. It only requires modifications when the more generic type of checks does

not catch application-specific attacks.

FIGURE 4.5: Implemented anti-cheat architecture

4.3.1 Enclave creation

In order to create the protecting enclave, we need to extract some information about the

game, this process can be done during the release process of the game by the developer.

This section defines the type of information needed and how it is obtained in our solution.

4. DESIGN AND IMPLEMENTATION 37

FIGURE 4.6: Enclave generation - Existing flow to generated enclave with sections to
verify.

Analysis of the Protected Application

We need to guarantee that the enclave during runtime can read the memory regions of

the game and its dependencies. This poses a problem as the section table of an ELF binary

is not needed by the program during runtime. This information is copied to the enclave,

during its creation, to circumvent this issue so that the enclave can access it. Additionally,

we take advantage of this process (1 in Figure 4.6) to create hashes of the mapped sections

and store them on the enclave. The information gathered is saved onto the enclave by

generating code to compile along with the enclave’s code (2 in Figure 4.6). This way, the

enclave can, during runtime, monitor the sections in loaded memory with the expected

ones using the hashes of each corresponding section.

The selection of the binaries that need protection is not a trivial task for two reasons.

Firstly, users may have different versions of specific libraries, which will lead to different

resulting hashes of the binary. Secondly, there may be legitimate reasons for the modifica-

tion of a binary’s read-only data [41]. Two examples of the latter include the library used

to measure performance of the game[55], which detours methods within OpenGL so that

it can measure the time between frames, and the popular open-source streaming software

”Open Broadcaster Software” in ”game capture” mode, which uses a detour to capture

the generated frames.

4. DESIGN AND IMPLEMENTATION 38

4.3.2 Runtime Protection

After we have collected the information as mentioned earlier, the enclave can now per-

form, during runtime, the integrity checks on the binaries. A description follows of the

necessary steps required for the enclave to be aware of the application’s memory space.

Enclave Middleware Address Discovery

Since SGX provides a way to allocate memory on the stack in the untrusted environment,

we can use this to find the stack pointer and frame pointer used by the application that

invoked the enclave. With this information, we can calculate the offset at which the return

address to the middleware is from the last known frame pointer with a disassembler’s

help.

With this data recovered, we can perform integrity checks on our solution (Protection

Oversight in Figure 4.5) within the enclave.

Application Address Discovery

In an ideal world, the application would link its dependencies, including the enclave’s

middleware, statically. With this, the enclave could easily cover the game binary, as find-

ing the middleware binary would imply finding the game binary. As statically linking ev-

ery library is not practical, and since applications might load binaries through Operating

System specific APIs (e.g. dlopen on Linux and LoadLibrary on Windows), parsing the

Procedure Linkage Table (PLT) and the Global Offsets Table (GOT) sections of the loaded

binaries might not yield all the required dependencies. As such alternative methods to

find mapped binaries need to be used.

An alternative approach is to use TSX-based Address Probing (TAP) to discover the

mapped memory regions in the game’s process. TAP is a fault-resistant read primitive,

introduced by Michael Schwarz et al. [56]. TAP leverages the Intel Transactional Syn-

chronization Extensions (TSX) way of handling memory violations to stealthy query the

device’s virtual memory without raising a memory access violation on the kernel.

Unfortunately, in the same paper, it is mentioned that TAP takes approximately 45

minutes on an Intel i7-6700k to scan the entire virtual address space. This makes it im-

practical as it would require a substantial amount of time to complete while requiring a

considerable amount of resources, which might affect the game’s performance.

4. DESIGN AND IMPLEMENTATION 39

As it is impossible to modify the selected game’s source code, the enclave needs to

temporarily leave the trusted execution environment SGX to query the mapped regions’

operating systems. This does give us the advantage that it is significantly faster to re-

trieve the mapped regions, but it is also a source that is not considered trustworthy by

Intel SGX’s threat model. It also comes at the advantage of being a more ’universal’ solu-

tion since not all CPUs that support Intel SGX, necessarily support Intel TSX.

Code and Data Integrity Checks

Once the target binaries’ addresses are acquired, the enclave can combine these with the

information gathered in the first phase (1 in Figure 4.6) of the enclave’s creation. The

enclave can now monitor (as shown in Figure 4.5) the game’s memory for any unwanted

changes. While the read-only data section should be straightforward to check, game-

specific values might require the developer to create additional checks within the enclave.

A common code interception technique in CS:GO cheats involves modifying the ob-

jects’ pointer to the virtual function table, as these objects need to be modifiable. They

cannot stay in read-only memory regions meaning that the checks, as mentioned earlier,

do not cover them. The enclave must know where the objects are in memory, which must

be specified by the developer, either by specifying a pointer path starting from a static

address within the binary or by exporting symbols in the game code to allow the enclave

to find the desired addresses, to protect against these types of attacks. This is ultimately

the method used to detect the cheat tested during the evaluation of our results.

Kernel Space Aided Monitoring

Intel SGX is limited to run within user-space, limiting the surface area we can monitor.

To circumvent this, as suggested by Figure 4.5, we load an optional kernel module that

can communicate with the enclave middleware via Netlink. To monitor the application’s

interactions with the operating system, the kernel module takes advantage of the ftrace

framework to intercept system calls in the kernel [57].

With the function sys open intercepted, it is possible to monitor the file system’s file

accesses. To monitor a particular application, the enclave first requests, through the mid-

dleware, the kernel module to start monitoring. Afterward, the kernel obtains the context

4. DESIGN AND IMPLEMENTATION 40

of the process that wishes to be monitored and can start forwarding information to the en-

clave. This way, the enclave can be aware of all the file accesses the game makes and see if

any additional files were loaded or modified. To reduce the number of events generated,

we are strictly generating events for open requests with READ access (flags O RDONLY

or O RDWR) to the file. The kernel module hashes the data and forwards the result along

with the filename to the enclave to reduce the number of transitions between user space

and kernel space instead of sending open events to the enclave.

To prevent external application from reading and to write in the game application,

process vm readv and process vm writev are also analyzed to deny access to the game pro-

cess memory. Additionally, access to the ptrace syscall is blocked when called against the

game’s process id to prevent the target application’s debugging.

The enclave may also query the kernel for the allocated pages’ permissions, as showed

SGX does not provide enough mechanisms to know if the pages have execution permis-

sion.

4.3.3 Security Analysis

In this section, we provide a security analysis of the proposed system. We identify poten-

tial threats and how an attacker may attempt to exploit the system.

Integrity Checker

In a typical scenario, the code that verifies the game’s code should be in theory as easily

modifiable as the game’s code, assuming no extra obfuscation has applied to it. In this

proposal we have moved this code inside a secure enclave with Intel SGX, this gives us a

strong hardware guarantees that an attacker has not modified the code running.

Game Code Modification

An attacker can get code execution within the game code in two scenarios: through the

operating system’s API; or finding an exploit in the game executable. Then it can modify

everything within the game’s memory region, including its code by altering the permis-

sions of the allocated memory regions. To mitigate this, we perform integrity checks of the

game during its runtime, and this means any modification made is visible to the enclave,

and once the enclave is aware of it, it can take actions.

4. DESIGN AND IMPLEMENTATION 41

Malicious Hypervisor

As shown in SPIDER [58] by taking advantage of Intel’s implementation of Second Level

Address Translation, Intel Extended Page Table (EPT), the hypervisor can split code and

data views as seen by the guest operating system. With this, SPIDER manages to place

a breakpoint on the guest’s memory while keeping this change invisible to the guest op-

erating system. The same technique was showed by Satoshi Tanda [59] to place invisible

inline hooks, which allows the modification of the execution flow of the guest’s code to

malicious code.

As stated by Intel, memory regions outside of enclaves are considered untrusted. If

the attacker modifies the game’s code using this method, when our solution attempts to

read code sections of the game, the EPT will cause a data view of the address to be read

and not the code view. This will lead our solution to think that nothing has changed when

that is not the case.

Such scenarios are possible to detect by side-channel information[60, 60] that can be

obtained by measuring the time taken to read or write to a memory region, as these will be

measurably slower than unaffected memory regions. A different approach is to employ

a solution that detects a hypervisor’s presence and refuses to run under those circum-

stances. Igor Korkin[61] classifies four ways of identifying a hypervisor, signature-based,

behavior-based, trusted hypervisor-based, and time-based.

Fault on Transitions To and From the Enclave

If already executing code inside the game, the attacker may attempt to mark the libraries

responsible for transitioning to and from the enclave as non-executable and register an

exception handler to handle these situations.

With this, the attacker can know when the transitions to and from the enclave oc-

cur. We believe that achieving this after the enclave has been loaded does not accomplish

meaningful results to the attacker besides unloading the cheat’s modifications on enclave

entry and loading them on enclave exit. This attack involves continuously altering the

page permissions and exception handling, which comes at a relatively high cost, enough

to be influential in the game’s performance, increasing the time each frame takes to render

and thus lowering the frames per second. Depending on how often the enclave transitions

to and from user space (i.e., how often checks are made to the game), the game’s perfor-

mance could drop to an unplayable state(less than ten frames per second). While it would

4. DESIGN AND IMPLEMENTATION 42

technically allow for cheating to work successfully, the player will have an unsatisfactory

game experience because it will feel jerky and slow, making it impractical.

4.3.4 Summary

The work presented in this sections shows a design and implementation that aims to

move cheat detection techniques to a secure enclave in Intel SGX, giving the developers

a reliable guarantee that the attackers do not tamper the original code of the application.

This is achieved by parsing the necessary information from the binary of the application

in a secure machine during the creation of both the application and the enclave. The gath-

ered information is later on, be used on the attacker’s device to guarantee the integrity of

the application.

Chapter 5

Results

In this chapter we present the performance tests made to our solutions and compare it to

other existing solutions presented in chapter 3.

Our evaluation machine is an Intel Nuc NUC6i7KYK, a quad-core 2.60 GHz Intel Core

i7-6770HQ with 16GB of dual-channel DDR4 memory running Ubuntu 18.04.3 LTS, with

Linux Kernel version 5.0.0-32. The integrated graphics of the processor is used for the

video output, an Intel Iris Pro Graphics 580. The amount of allocated memory to Intel

SGX is 128MB.

The utilized version of Graphene-SGX was the one available in its public GitHub

repository [62] at commit b4673dc171fbe4e972bea4dc79aae17212bc29da.

Just like Graphene-SGX, SGX-LKL was obtained from its public GitHub repository[63]

at commit a4fc0cc6fea39f30d33783e55626afbff3c7a871.

To utilize Scone, access to the community edition was requested and granted. There

wasn’t any kind of versioning besides the date on the docker images. The cross-compilers

image from scone has digest 899ef9b2415bd2252c8a3ce396599cc957405f9c9333f6b7d39d

95fe98fc00f2.

5.1 I/O intensive application

Not all applications can have the privilege to load all the necessary data to memory, espe-

cially in Intel SGX, since its physical memory is at most 128MB with the application only

being able to use around 90MB. To solve this, applications may load data as its needed,

this implies that the application will need to make more I/O operations. As leaving and

43

5. RESULTS 44

entering the enclave is a relatively expensive task, we believe it is also interesting to test

the overhead in these types of applications.

5.1.1 Methodology

To test this type of loads we have ten files each containing 256 MiB of random data. To

increase and decrease the amount of I/O operations, we change the amount of data that

it is loaded to the enclave at a time. We utilize this data to calculate the sha-256 of the files

with various buffer sizes to see how Intel SGX behaves with a big amount of transitions

and exceeds the amount of physical memory available.

5.1.2 Results

In figure 5.1 Native is the application running normally without Intel SGX, it gives us a

baseline so that we can compare with other solutions that leverage Intel SGX. We can see

that increasing the buffer size beyond 1 MiB gives us diminishing returns.

Native-SGX represents our port of the same application to utilize Intel SGX, with a

buffer of just 64 bytes. The average time taken to hash each file was 13,81 seconds. This

first value of this solution is not represented in the graph because we chose to limit the

vertical axis of the graph to 5 seconds to get a better view of the other solution relative to

each other. This considerable increase compared to the other solutions that utilize Intel

SGX is due to the lack of asynchronous calls to and from the enclave.

As the number of transitions decrease, so does the execution time until 1 MiB, buffers

higher than that resulted in an increase of execution time when executed under Intel SGX.

We have no explanation for these results.

From the performed tests, we can also see that Graphene-SGX[6] was the solution

that provided the least impact on performance on this test performing similarly to the

application ported manually to SGX on buffers of size equal to 1 MiB or higher. Scone[4]

performed slightly worse overall when compared to Graphene-SGX.

We were not able to run the application under SGX-LKL as it kept causing segmenta-

tion faults on fread and fclose systems calls.

5. RESULTS 45

FIGURE 5.1: Average sigma time taken to hash 256 MiB of random data on disk with
different buffer sizes.

5.2 OpenSSL Engine

In this section, we present the test case for our Intel SGX key store integrated with Open-

SSL. For this we measure the overhead associated with our solution when utilizing RSA

private keys.

5.2.1 Methodology

Our first engine test was based on OpenSSL’s speed module, which benchmarked various

algorithms within OpenSSL. We tested five different RSA key bit sizes, 512, 1024, 2048,

3072 and 4096. For each key size 15,000 RSA SSL signatures were performed on 36 bytes

of random data and repeated ten times so that we could take the average execution time

and its associated error. The 36 bytes of random data was chosen as it was the value

utilized in OpenSSL’s benchmark. The test was executed on our solution and the default

OpenSSL RSA implementation running outside an SGX enclave and within one using

Graphene-SGX[6], SGX-LKL[7] and Scone[4].

5. RESULTS 46

5.2.2 Results

In table 5.1 we can see our solution described in section 4.2 identified by ”Engine” com-

pared to the standard OpenSSL implementation running natively and under different en-

vironments with various RSA key sizes. When utilizing small key sizes, which results in a

fast signature computation is where our solution is significantly slower than the native so-

lution, decreasing the number of signatures per second by 42.1%. On the more expensive

key sizes the decrease in performance is as low as 4.36%. SSL Labs shows that the most

common key strength, on the Alexa’s list of the most popular sites in the world, is 2048

bit[64], on which our solution performs 15.07% worse than the native solution without

any protection. Verification of signatures are unaffected as it is an operation which uses

the public key, which does not need to have the same level of protection as the private

key, meaning it can run with its native implementation outside the enclave. We can also

Solution

Key size
512 1024 2048 3072 4096

Native 23286± 171 10646± 59 1685± 3 545± 1 252± 0

Engine 13473± 247 7750± 63 1431± 41 523± 5 241± 1

Graphene-SGX 23156± 100 10520± 31 1684± 1 564± 0 252± 0

SGX-LKL 22088± 104 10504± 52 1615± 2 536± 0 240± 0

Scone 18785± 380 8795± 59 1491± 3 504± 1 226± 0

TABLE 5.1: RSA signatures per second on different solutions and various key sizes

see that our solution from the solution that utilizes SGX performs significantly worse up

until RSA key sizes of 2048 bit. We believe this is due to an increase in enclave transitions

and the lack of asynchronous calls. Solutions like Graphene-SGX, SGX-LKL, and Scone

run the entire application inside the enclave, meaning there is no need to leave and enter

the enclave on every operation. As the transitions to and from the enclave decrease, we

can see that our solution’s relative performance approaches the native solution and beats

both SGX-LKL and Scone.

We have also noted that, out of the solutions that aim to run unmodified applications

inside an enclave, Scone seems to be the one that performed the worst in this test case,

just like the one presented in 5.1.

5. RESULTS 47

5.3 Apache web server - TLS

This section presents the test case for our implementations applied to the Apache web

server when utilizing HTTPS. We test our implementations described in section 4 along

with some solutions presented in the state of art that aim to run unmodified applications

within Intel SGX.

5.3.1 Methodology

We use an a two Core 3.90 GHz Intel Pentium Gold G5600 with hyper-threading enabled

with 8GB of dual channel DDR4 memory as the client to benchmark the Apache web

server instances. The server is as indicated at the beginning of section 5. Both machines

are connected to the same local network, the client being connected through an SPF+ 10

Gbps card and the server utilizes a 1 Gbps Ethernet card. We chose to utilize a sepa-

rate machine to run the benchmark tools so that the benchmark tool’s work would not

interfere with the web server’s work, fighting for computational resources.

To measure each solution’s impact on the web server, we utilize ApacheBench[65] on

the client machine to generate a workload on the server. On each test the tool is executed

nine times performing 10000 requests and each time doubling the number of concurrency

connections from the previous execution, with the exception of the last test which we used

196 concurrent requests instead of 256 as it started causing requests to be dropped. The

tools measure the average throughput (requests per second) and the average latency of

each request.

5.3.2 Results

In figure 5.2 we can see both of our solutions compared to the normal Apache web server

running normally and with Graphene-SGX[6]. We can see that our solution utilizing the

custom OpenSSL Engine (Engine-SGX) shows performance similar to the original Apache

web server, clearly outperforming Graphene-SGX while still guaranteeing integrity and

confidentiality of the private key utilized to initialize the TLS connection. We can also see

that the overhead shown in table 5.1 is not enough to affect the Apache web server in our

test, indicating that the bottleneck is somewhere else in Apache’s web server.

Both the original Apache web server and our solution leveraging our key store through

an OpenSSL Engine peak at approximately 10 700 requests per second. Graphene-SGX[6]

5. RESULTS 48

FIGURE 5.2: Throughput versus latency of Apache’s web server workload. The lower
and further right the better

has its peak throughput cut in 51.4% at approximately 5 200 requests per second. Before

the rise in latency all these showed a latency smaller than a millisecond. The solution im-

plemented in section 4.1 is the solution that performed the worse, this can be explained by

the significant increase in transitions to and from the enclave required during the normal

operations of the web server when requiring calls to the cryptography API. If we take the

example of figure 4.3 in our solution, we have four enclave transitions, the call to SSL read

(to enclave), the call to bio filter in read (from enclave), and the return of the previous two

functions. Compared to Graphne-SGX, this input chain would at most, cause two enclave

transitions for the read system call. Additionally, we needed to restrict Apache to a single

process due to forking issues regarding secure enclaves, which might have caused further

performance issues. All this leads to a minimum latency five times higher than the other

solutions and a maximum throughput of 1500 requests per second.

We attempted to load the web server in SGX-LKL but we were not able to utilize it. We

discovered that even though the server started listening on the specified ports and that

it accepted the TCP connections, it did not reply with the contents of the page, and the

connection just hanged.

Although Scone[4] benchmarked Apache’s web server, the current solution[31] does

not provide a curated imaged for the Apache’s web server. Compiling the web server

from source and executing it inside Scone results in the same behavior as SGX-LKL, the

5. RESULTS 49

connection hanged.

Our test does not include TaLoS[48] as we could not compile the web server against it

due to missing functions in the cryptography library when built in hardware mode.

5.4 Cheat Detection Hardening

The results presented in this section have been published in [1].

In this section, we show the test case used during the evaluation of our solution when

applying SGX to an Anti-Cheat engine and show the obtained results. For this, we mea-

sured two metrics: The first test is the overhead associated with our solutions in the load-

ing of the game; the second is the gameplay overhead associated with the middleware

running. To test this, we ran the tests ten times with and without our implementations for

each of the options.

During the game benchmark we measured the time taken to render each frame, also

called the frame time, using libperflogger [55] so that we could take the average frame time

of all the frames, the average frame time of the worst 1% and the average frame time of the

worst 0.1%. With these metrics, we can see how bad the game performs in its worst-case

scenarios, where a small number of frames take a relatively big time to render.

5.4.1 Methodology

Our game of choice to test our solution was Counter-Strike: Global Offensive along with

the Open Source Linux cheat Fuzion [66]. To consistently measure the game’s perfor-

mance, with and without our solution, we use an FPS Benchmark available in the steam

workshop [67].

During our testing, the game used between 1 and 1.5 GB of memory. We have config-

ured our enclave with a maximum stack and heap sizes to 256 kilobytes and 1 megabyte,

respectively. As the generated binary’s size is 862 kilobytes, we can conclude that our

solution uses at most roughly 2.1 megabytes of the Intel SGX allocated memory.

As we used the CPU’s integrated graphic card, we decided to run the game at a resolu-

tion of 1920:1080 with the lowest possible quality settings with smoke grenades disabled.

This is because we wanted the frame time to be CPU-bound as possible to test the impact

of our solution.

5. RESULTS 50

We chose to monitor the game’s executable, its engine client.so dependency along with

the array of global objects present in the exported symbol s pInterfaceRegs, the enclave’s

middleware, and the SGX’s dependencies. While it was possible to monitor all the depen-

dencies of the game binary, it led to some false positives mainly because the library used

to measure the game’s performance, which, in order to do so, must intercept OpenGL

functions. To counter this, we identified the binaries with functions of interest for the

cheaters.

5.4.2 Results

Our enclave took on average 161.60 ms± 45.05 ms to load while only marginally increas-

ing the time taken to load the game from 23.75 s± 0.42 s to 24.12 s± 0.38 s.

Frame time No Protection Every second Every 10 seconds
Avg (ms) 8.52± 2.38 8.60± 2.46 8.57± 2.40

Avg worst 1% (ms) 14.39± 1.08 14.75± 1.20 14.51± 1.12
Avg worst 0.1% (ms) 16.98± 1.08 17.56± 0.99 17.29± 1.10

TABLE 5.2: Comparison of the time each frame took, on average, to render

FIGURE 5.3: A time interval of 20 seconds, with the frames per seconds of our solutions
compared with the baseline

5. RESULTS 51

When looking at how the game performs, it is not enough to look at all the frames’

average frame time. It is essential to identify moments when frames take a relatively long

time to render as these may cause sudden, short freezes during the gameplay. From the

average frame time of all frames in table 5.2, it appears that our solution has a shallow

impact on the gameplay’s performance, while only marginally increasing the frame times

of the worst 1% and 0.1% by 2.50% and 3.42% respectively. In Figure 5.3, we present a 20-

second portion of the benchmark. This allows us to see the increase in frame time when

our solution runs, and we can identify this by the sudden peaks in the graph.

When the enclave is not idle, i.e., it is performing the monitoring of the game code.

We can detect the cheat Fuzion [66] successfully within 31.62 ms± 2.47 ms. This time is

dependent on the number of sections we are verifying. On average 5MB of data takes

13.55 ms± 0.58 ms to verify.

Chapter 6

Conclusion and future work

In this chapter to overview our work and results accomplished throughout this thesis.

First, we make a brief overview of the research and development made during the thesis,

commenting on the goals achieved and complexity of each project. Secondly, we talk

about the results obtained, the effectiveness of the developed and their viability. Finally,

we also hint at possible future iterations of this work so that the utilization of Intel SGX

secure enclaves impacts significantly less the applications used during this thesis.

6.1 Research and development

During the research phase of this thesis, we struggled to find applications that utilized In-

tel SGX, instead we found many solutions that either automatically porting applications[3]

or ran unmodified applications inside Intel SGX[4–7]. As seen by the results obtained in

Chapter 5 some of these solutions, introduce limitations that only allow certain types of

applications to run inside SGX.

Because of the aforementioned situation, we decided to port some applications to uti-

lize Intel SGX through the SGX SDK and compare how these would perform relative to

their original counterparts running without Intel SGX and running with the previously

mentioned solutions.

The Apache’s web server can secure connections via TLS through a separate module

called mod ssl. Porting this module was harder than expected, taking most of the devel-

oping time of this thesis. We encountered many issues, from finding a compatible library

with it and Intel SGX, to modifying the cryptography library so that we could use it from

untrusted code and through its OpenSSL compatibility layer.

52

6. CONCLUSION AND FUTURE WORK 53

Developing the Keystore for Intel SGX took significantly less time than porting mod ssl,

being the harder task of this solution creating the OpenSSL Engine as there were lack of

simple or properly documented implementations.

We also concluded that not every application cannot reliably be executed within an

enclave due to the constrains it imposes on the application. To overcome this, we suc-

cessfully applied anti-cheat monitoring techniques to a secure enclave to protect a game

from unwanted modification. The test case for this solution was Counter-Strike: Global

Offensive, a closed-source first-person shooter created by Valve.

Additionally, in section 4.1 we also identified some issues with the Intel SGX cryptog-

raphy library, TaLoS, and explained why it would not be suitable for production.

6.2 Results

We successfully integrated the mod ssl with WolfSSL and Intel SGX so that the termination

of the TLS connection is made within a secure enclave in order to protect both the private

key and the generated symmetric key during the handshake. This protection however

comes with a great performance penalty when compared to both the original code of

the module and Graphene-SGX, decreasing the performance as much as 90% and 70%

respectively.

Our second approach to guarantee secrecy of private keys, involved implementing a

keystore in Intel SGX and integrating with an OpenSSL engine so that applications could

transparently use it. When applying this solution to the Apache web server it saw no

measurable overhead compared to the original solution and performed significantly bet-

ter than Graphene-SGX. This solution’s caveat is that it does not protect the symmetric

key agreed upon during the TLS handshake. Table 5.1 shows that there is in fact some

overhead in our solution but it was not significant enough to affect the web server.

We were limited to a single Intel SGX capable machine to test our solutions and the

others. Additionally, we were unable to compile a Linux kernel with KVM supporting

Intel SGX for guest virtual machines to analyze how Intel SGX would perform in a cloud-

like scenario, limiting us to only being able to utilize docker.

Given the versatility and performance the second option it is hard to recommend the

first implementation which not only has an inferior performance but may make it harder

to port future updates made to the original mod ssl. While the first solution does pro-

tect the TLS connection inside the secure enclave, an attacker still has access to the web

6. CONCLUSION AND FUTURE WORK 54

server’s code and memory, meaning the encrypted and decrypted data can be read on the

read and write callbacks of the web server, which means the protection is not that much

greater when compared to the implemented OpenSSL Engine.

When applying cheat detection techniques to Intel SGX we noticed a measurable over-

head over the base game, but we concluded that it did not significantly impact the game’s

performance. We were able to successfully monitor the game’s code and data for changes,

which meant we successfully stopped cheating opportunities without requiring to move

the entire game to a secure enclave. During the testing, we would like to have had a better

dedicated GPU in the test machine so that we could better analyze it in a real world sce-

nario, which would probably lead to a better results as a dedicated GPU does not have to

share memory bandwidth with the CPU unlike the utilized integrated CPU. Additionally,

this work resulted in a publication in the 17th International Conference on Trust, Privacy

and Security in Digital Business, TrustBus2020.

6.3 Future work

Although we achieved our goals and utilized Intel SGX to increase key secrecy in real-

world scenarios, our solution is not without limitations, pointed out throughout the the-

sis. Therefore, we would like for future iterations of this work to overcome some of these

limitations.

Asynchronous calls

All our solutions, for simplicity, implemented synchronous function calls to and from the

enclave. We acknowledge that this is not ideal and brings a significant overhead to cer-

tain work scenarios. TaLoS[48] has showed that the implementation of asynchronous has

improved performance on their workload by has much as 117%. In section 5.1, we can see

that other solutions like Scone[4] and [6] which implemented asynchronous function calls

perform significantly better than our solution when an high amount of enclave transitions

are made. To mitigate some of the performance penalty of our solutions, we would like

for future iterations of our work to implement asynchronous function calls.

6. CONCLUSION AND FUTURE WORK 55

Public-key cryptography support

Due to time constrains, the solution presented in section 4.2 only implemented support

for RSA public-key cryptography. Consequently, applications utilizing our engine are

limited to RSA public-key cryptography. Future work of this solution should be able to

support other public-key cryptography algorithms such as Elliptic-curve cryptography.

Enhancing anti-cheat engine

The presented solution requires the executable game information to be present within

the enclave binary, future implementation could take Intel remote attestation service to

guarantee a secure communication with game servers to load this information and also to

inform if a player is cheating.

Due to the limitations imposed by Intel SGX, monitoring a program outside an enclave

is not easy and described in Subsection 4.3.3 that our solution might be prone to some

attacks that are undetectable in the current implementation. We are aware that communi-

cation between the kernel module and the enclave can be intercepted and tampered, but

this attack will only stop detecting some new cheats that use techniques unknown to the

enclave.

In the future work, we want to look at other types of games, measuring how adequate

our solution is to each one of them. It can also be interesting for our solution to integrate

with SGXElide [19] to enable code secrecy of the enclave’s code, making it so the attacker

can only see the enclave as a true black-box.

Appendix A

Read and Write primitives within

Intel SGX

Under normal circumstances the following function declarations would not be considered

a security risk in a program as they perform normal operations necessary for the normal

execution of the program. A problem arises however when these functions are exposed

to untrusted code from the secure enclave, an attacker can pass an arbitrary pointer to the

function, which will cause a read or write from memory, ultimately exposing the secure

memory to untrusted code, which can be used to extract secrets from the enclave.

A.1 Read Primitive

int wolfSSL_get_fd(const WOLFSSL* ssl)

{

int fd = -1;

if (ssl) {

fd = ssl->rfd;

}

return fd;

}

If we analyze at a lower level of what the processor does in this function we can see

that it will add the offset of rfd in the structure WOLFSSL to the pointer provided by the

variable ssl, read the contents of the resulting address, and return it. As C does give any

guarantees that the passed pointer is actually of the type WOLFSSL, an attacker could pass

56

A. READ AND WRITE PRIMITIVES WITHIN INTEL SGX 57

an arbitrary pointer to this exposed function, allowing access to the otherwise inaccessible

memory region of the enclave.

A.2 Write primitive

int wolfSSL_CTX_set_TicketHint(WOLFSSL_CTX* ctx, int hint)

{

if (ctx == NULL)

return BAD_FUNC_ARG;

ctx->ticketHint = hint;

return WOLFSSL_SUCCESS;

}

Similarly to the read primitive, the method wolfSSL CTX set TicketHint shows a write

primitive to the secure memory if exposed to untrusted code. The attacker is able to write

4 bytes, the size of an integer to the address pointed by the variable ctx plus the offset of

ticketHint in the WOLFSSL CTX structure.

Appendix B

Developer Notes

This appendix contains a few notes to help explain the logic of our implementations

through this thesis.

B.1 Callback handling from trusted to unstrusted code

//unstrusted code

int do_BIO_meth_read_cb(BIO bioId, char *out, int inl, void* callback)

{

int(*f)(BIO, char*, int) = callback;

return f(bioId, out, inl);

}

//trusted code

int BIO_meth_set_read_callback_handler

(WOLFSSL_BIO *bio, char *in, int inl)

{

WOLFSSL_BIO_IDENTIFIER bioId = MAP_GET(WolfBioMapInverse, bio);

WOLFSSL_BIO_METHOD* biom = bio->method;

void** array = GetBioCallbackArray(biom);

int retval = 0;

do_BIO_meth_read_cb(&retval, bioId, in, inl,

58

B. DEVELOPER NOTES 59

array[BIO_READ_CALLBACK_INDEX]);

return retval;

}

int sgx_BIO_meth_set_read(WOLFSSL_BIO_METHOD_IDENTIFIER biomId,

void* callback)

{

WOLFSSL_BIO_METHOD* biom = MAP_GET(WolfBioMethodMap, biomId);

if(biom == NULL || callback == NULL) return WOLFSSL_FAILURE;

void ** array = CreateBioCallbackArray(biom);

array[BIO_WRITE_CALLBACK_INDEX] = callback;

return wolfSSL_BIO_meth_set_read(biom,

&BIO_meth_set_read_callback_handler);

}

The code snippet above shows how we handle the callbacks from trusted to untrusted

code. As Intel SGX can not jump between trust and untrusted without first issuing a

special instruction, steps must be taken to accommodate for this requirement. When the

application wishes to register a callback the function sgx BIO meth set read is called, this

function will store the callback in a callback array for the specified BIO METHOD object

and instead register a special stub that resided in trusted code with the cryptography

library. When the stub function is called we resolve the actual function to be called within

untrusted code through the aforementioned array, and forward the function pointer to a

proxy function in untrusted code which will ultimately call the registered function.

B.2 OpenSSL Engine configuration

[openssl_init]

engines=engine_section

[engine_section]

sgxkeystore = sgxkeystore_section

B. DEVELOPER NOTES 60

[sgxkeystore_section]

engine_id = sgxkeystore

dynamic_path = /usr/lib/x86_64-linux-gnu/engines-1.1/sgxkeystore.so

init = 0

For the solution in section 4.2 to be usable we must tell OpenSSL about our engine, this

can be done by modifying its configuration, in our case in the file /etc/ssl/openssl.cnf. In

this file we specify which engines to be aware of on initialization, its id, the path of the

binary and if the engine should be automatically initialized or if the application should

do it.

B.3 Utilizing an OpenSSL engine from command line

$ openssl rsautl -engine sgxkeystore -keyform engine -inkey

sgxkeystore:testkey.pem.sealed -decrypt -in key.b in.enc -out key.bin2

$ openssl dgst -engine sgxkeystore -keyform engine -sign

sgxkeystore:testkey.pem.sealed -out signature.bin -sha256 foo.txt

After configuring the engine, it can even be used via command line to perform crypto-

graphic operations. In order to do that the engine must be specified as well as the key

format, via the -engine and -keyform options.

B.4 Patch to support another engine on Apache web server

--- ssl_util.c 2020-07-16 09:28:12.084116397 +0100

+++ ssl_util.c.sgxkeystore 2020-07-16 09:27:25.444073743 +0100

@@ -477,7 +477,7 @@

{

#if defined(HAVE_OPENSSL_ENGINE_H) && defined(HAVE_ENGINE_INIT)

/* ### Can handle any other special ENGINE key names here? */

- return strncmp(name, "pkcs11:", 7) == 0;

+ return strncmp(name, "pkcs11:", 7) == 0

+ || strncmp(name, "sgxkeystore:", 12) == 0;

#else

B. DEVELOPER NOTES 61

return 0;

#endif

Since Apache’s web server already contains support for pkcs#11 devices and because it

uses the prefix before the colon as the engine id, adding support for our engine required

only a simple patch to include our engine id as a known engine.

Bibliography

[1] A. Brandão, J. Resende, and R. Martins, “Employment of secure enclaves in cheat

detection hardening,” in The 17th International Conference on Trust, Privacy and Security

in Digital Business - TrustBus2020, 2020.

[2] C. Fontaine and F. Galand, “A survey of homomorphic encryption for nonspecial-

ists,” EURASIP Journal on Information Security, vol. 2007, pp. 1–10, 2007.

[3] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin, F. Kelbert, T. Rei-

her, D. Goltzsche, D. Eyers, R. Kapitza et al., “Glamdring: Automatic applica-

tion partitioning for intel {SGX},” in 2017 {USENIX} Annual Technical Conference

({USENIX}{ATC} 17), 2017, pp. 285–298.

[4] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthuku-

maran, D. O’Keeffe, M. L. Stillwell et al., “{SCONE}: Secure linux containers with

intel {SGX},” in 12th {USENIX} Symposium on Operating Systems Design and Imple-

mentation ({OSDI} 16), 2016, pp. 689–703.

[5] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted

cloud with haven,” ACM Transactions on Computer Systems (TOCS), vol. 33, no. 3, p. 8,

2015.

[6] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library {OS} for

unmodified applications on {SGX},” in 2017 {USENIX} Annual Technical Conference

({USENIX}{ATC} 17), 2017, pp. 645–658.

[7] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov, and P. Piet-

zuch, “Sgx-lkl: Securing the host os interface for trusted execution,” arXiv preprint

arXiv:1908.11143, 2019.

62

BIBLIOGRAPHY 63

[8] J. Yan and B. Randell, “A systematic classification of cheating in online games,” in

Proceedings of 4th ACM SIGCOMM workshop on Network and system support for games,

2005, pp. 1–9.

[9] P. Guide, “Intel R© 64 and ia-32 architectures software developer’s manual,” Volume

1, vol. 1, 2011.

[10] C. Domas, “The memory sinkhole,” BlackHat USA, 2015.

[11] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third genera-

tion architectures,” Communications of the ACM, vol. 17, no. 7, pp. 412–421, 1974.

[12] J. P. Buzen and U. O. Gagliardi, “The evolution of virtual machine architecture,” in

Proceedings of the June 4-8, 1973, national computer conference and exposition. ACM,

1973, pp. 291–299.

[13] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment: what

it is, and what it is not,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1. IEEE, 2015,

pp. 57–64.

[14] “Globalplatform technology tee system architecture version 1.2,” https://

globalplatform.org/specs-library/?filter-committee=tee, accessed: 2020-01-12.

[15] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint Archive, vol.

2016, no. 086, pp. 1–118, 2016.

[16] Intel, “Intel R© 64 and ia-32 architectures software developer’s manual,” Volume 3B:

System programming Guide, Part, vol. 3B, 2011.

[17] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado, and B. B. Kang,

“Hacking in darkness: Return-oriented programming against secure enclaves,” in

26th {USENIX} Security Symposium ({USENIX} Security 17), 2017, pp. 523–539.

[18] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock: Exploiting

synchronisation bugs in intel sgx enclaves,” in European Symposium on Research in

Computer Security. Springer, 2016, pp. 440–457.

[19] E. Bauman, H. Wang, M. Zhang, and Z. Lin, “Sgxelide: enabling enclave code secrecy

via self-modification,” in Proceedings of the 2018 International Symposium on Code Gen-

eration and Optimization, 2018, pp. 75–86.

https://globalplatform.org/specs-library/?filter-committee=tee
https://globalplatform.org/specs-library/?filter-committee=tee

BIBLIOGRAPHY 64

[20] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and

M. Russinovich, “Vc3: Trustworthy data analytics in the cloud using sgx,” in 2015

IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 38–54.

[21] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado, and B. B. Kang,

“Hacking in darkness: Return-oriented programming against secure enclaves,” in

26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX

Association, Aug. 2017, pp. 523–539. [Online]. Available: https://www.usenix.org/

conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk

[22] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi,

“Software grand exposure:{SGX} cache attacks are practical,” in 11th {USENIX}

Workshop on Offensive Technologies ({WOOT} 17), 2017.

[23] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,

T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys to the

Intel SGX kingdom with transient out-of-order execution,” in Proceedings of the 27th

USENIX Security Symposium. USENIX Association, August 2018, see also technical

report Foreshadow-NG [68].

[24] M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. Van Bulck, D. Genkin, D. Gruss,

F. Piessens, B. Sunar, and Y. Yarom, “Fallout: Reading kernel writes from user space,”

arXiv preprint arXiv:1905.12701, 2019.

[25] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and

D. Gruss, “ZombieLoad: Cross-privilege-boundary data sampling,” in CCS, 2019.

[26] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom, “Cacheout: Leaking

data on intel cpus via cache evictions,” 2020.

[27] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “SGAxe: How SGX fails in prac-

tice,” https://sgaxeattack.com/, 2020.

[28] “Openenclave github repository,” Set 2020. [Online]. Available: https:

//github.com/openenclave/openenclave

[29] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt, “Rethinking

the library os from the top down,” in ACM SIGARCH Computer Architecture News,

vol. 39, no. 1. ACM, 2011, pp. 291–304.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://sgaxeattack.com/
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave

BIBLIOGRAPHY 65

[30] “musl libc,” 2019. [Online]. Available: https://www.musl-libc.org/

[31] https://scontain.com/index.html. Scone - a secure container environment. [Online].

Available: https://scontain.com/index.html

[32] J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel.” in NDSS,

2017.

[33] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A. Kalodner, V. Kulka-

rni, D. Oliveira, and D. E. Porter, “Cooperation and security isolation of library oses

for multi-process applications,” in Proceedings of the Ninth European Conference on

Computer Systems. ACM, 2014, p. 9.

[34] K. Krawiecka, A. Kurnikov, A. Paverd, M. Mannan, and N. Asokan, “Safekeeper:

Protecting web passwords using trusted execution environments,” in Proceedings of

the 2018 World Wide Web Conference, 2018, pp. 349–358.

[35] A. Kurnikov, A. Paverd, M. Mannan, and N. Asokan, “Keys in the clouds: Auditable

multi-device access to cryptographic credentials,” CoRR, vol. abs/1804.08569, 2018.

[Online]. Available: http://arxiv.org/abs/1804.08569

[36] D. Tian, J. I. Choi, G. Hernandez, P. Traynor, and K. R. Butler, “A practical intel sgx

setting for linux containers in the cloud,” in Proceedings of the Ninth ACM Conference

on Data and Application Security and Privacy, 2019, pp. 255–266.

[37] L. Richter, J. Götzfried, and T. Müller, “Isolating operating system components with

intel sgx,” in Proceedings of the 1st Workshop on System Software for Trusted Execution,

2016, pp. 1–6.

[38] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection based architec-

ture for intrusion detection.” in Ndss, vol. 3, no. 2003. Citeseer, 2003, pp. 191–206.

[39] “Bitdefender hypervisor introspection (hvi) security solution.” [Online]. Avail-

able: https://www.bitdefender.com/business/enterprise-products/hypervisor-

introspection.html

[40] E. Bauman and Z. Lin, “A case for protecting computer games with sgx,” in Proceed-

ings of the 1st Workshop on System Software for Trusted Execution, 2016, pp. 1–6.

https://www.musl-libc.org/
https://scontain.com/index.html
http://arxiv.org/abs/1804.08569
https://www.bitdefender.com/business/enterprise-products/hypervisor-introspection.html
https://www.bitdefender.com/business/enterprise-products/hypervisor-introspection.html

BIBLIOGRAPHY 66

[41] J. Berdajs and Z. Bosnić, “Extending applications using an advanced approach to

dll injection and api hooking,” Software: Practice and Experience, vol. 40, no. 7, pp.

567–584, 2010.

[42] W.-c. Feng, E. Kaiser, and T. Schluessler, “Stealth measurements for cheat detection

in on-line games,” in Proceedings of the 7th ACM SIGCOMM Workshop on Network and

System Support for Games, 2008, pp. 15–20.

[43] B. Innovations. Battleye anticheat. [Online]. Available: https://www.battleye.com/

[44] D. Cowley, “Epic games acquires kamu, game security and player services com-

pany,” Unreal Engine Blog, oct 2018, https://www.unrealengine.com/en-US/blog/

epic-games-acquires-kamu-game-security-and-player-services-company.

[45] I. Epic Games. Easy anti-cheat. [Online]. Available: https://www.easy.ac

[46] L. GameBlocks. Fairfight server-sided anti-cheat. [Online]. Available: https:

//gameblocks.com/

[47] WolfSSL, “Wolfssl,” https://www.wolfssl.com/, online; Acessed on 07-Maio-2020.

[48] P.-L. Aublin, F. Kelbert, D. O’keeffe, D. Muthukumaran, C. Priebe, J. Lind, R. Krahn,

C. Fetzer, D. Eyers, and P. Pietzuch, “Talos: Secure and transparent tls termination

inside sgx enclaves,” Imperial College London, Tech. Rep, vol. 5, p. 2017, 2017.

[49] T. Cloosters, M. Rodler, and L. Davi, “TeeRex: discovery and exploitation of mem-

ory corruption vulnerabilities in SGX enclaves,” in 29th USENIX Security Symposium

(USENIX Security ’20), 2020.

[50] Intel, “Intel R© software guard extensions ssl library,” arXiv preprint arXiv:1908.11143,

2017.

[51] OpenSSL, “Openssl 1.1.0 changes.” [Online]. Available: https://wiki.openssl.org/

index.php/OpenSSL 1.1.0 Changes

[52] Google, “Android Open Source Project,” https://android.googlesource.com/

platform/system/security/, 2015.

[53] OpenSC, “libp11,” https://github.com/OpenSC/libp11, 2020.

https://www.battleye.com/
https://www.unrealengine.com/en-US/blog/epic-games-acquires-kamu-game-security-and-player-services-company
https://www.unrealengine.com/en-US/blog/epic-games-acquires-kamu-game-security-and-player-services-company
https://www.easy.ac
https://gameblocks.com/
https://gameblocks.com/
https://www.wolfssl.com/
https://wiki.openssl.org/index.php/OpenSSL_1.1.0_Changes
https://wiki.openssl.org/index.php/OpenSSL_1.1.0_Changes
https://android.googlesource.com/platform/system/security/
https://android.googlesource.com/platform/system/security/
https://github.com/OpenSC/libp11

BIBLIOGRAPHY 67

[54] OpenDNSSEC. Softhsm. [Online]. Available: https://www.opendnssec.org/

softhsm/

[55] Lurkki14, “libperflogger - game performance logging library,” https://github.com/

Lurkki14/libperflogger, 2019.

[56] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with intel sgx,” in

International Conference on Detection of Intrusions and Malware, and Vulnerability Assess-

ment. Springer, 2019, pp. 177–196.

[57] S. Rosted., “Ftrace kernel hooks: More than just tracing.” Linux Plumbers Conf, 2014.

[58] Z. Deng, X. Zhang, and D. Xu, “Spider: Stealthy binary program instrumentation and

debugging via hardware virtualization,” in Proceedings of the 29th Annual Computer

Security Applications Conference, 2013, pp. 289–298.

[59] S. Tanda, “Ddimon,” https://github.com/tandasat/DdiMon, 2018.

[60] I. Kyte, P. Zavarsky, D. Lindskog, and R. Ruhl, “Enhanced side-channel analysis

method to detect hardware virtualization based rootkits,” in World Congress on In-

ternet Security (WorldCIS-2012). IEEE, 2012, pp. 192–201.

[61] I. Korkin, “Two challenges of stealthy hypervisors detection: time cheating and data

fluctuations,” arXiv preprint arXiv:1506.04131, 2015.

[62] Oscarlab, “Graphene github repository,” Dec 2019. [Online]. Available: https:

//github.com/oscarlab/graphene

[63] “Sgx-lkl github repository,” Nov 2019. [Online]. Available: https://github.com/

lsds/sgx-lkl/

[64] I. Qualys. (2020, jul) Ssl pulse. [Online]. Available: https://www.ssllabs.com/ssl-

pulse/

[65] Apache. Apache http benchmarking tool. [Online]. Available: http:

//httpd.apache.org/docs/2.4/programs/ab.html

[66] LWSS, “Fuzion,” https://github.com/LWSS/Fuzion/, 2019.

[67] Counter strike: Global offensive benchmark map. [Online]. Available: https:

//steamcommunity.com/sharedfiles/filedetails/?id=500334237

https://www.opendnssec.org/softhsm/
https://www.opendnssec.org/softhsm/
https://github.com/Lurkki14/libperflogger
https://github.com/Lurkki14/libperflogger
https://github.com/tandasat/DdiMon
https://github.com/oscarlab/graphene
https://github.com/oscarlab/graphene
https://github.com/lsds/sgx-lkl/
https://github.com/lsds/sgx-lkl/
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/
http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/LWSS/Fuzion/
https://steamcommunity.com/sharedfiles/filedetails/?id=500334237
https://steamcommunity.com/sharedfiles/filedetails/?id=500334237

BIBLIOGRAPHY 68

[68] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,

R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-NG: Breaking the virtual mem-

ory abstraction with transient out-of-order execution,” Technical report, 2018, see also

USENIX Security paper Foreshadow [23].

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline

	2 Background
	2.1 Security rings
	2.2 Virtualization
	2.3 Trusted Execution Environment
	2.3.1 Intel SGX
	2.3.2 OpenEnclave

	3 Related work
	3.1 Running legacy application on Intel SGX
	3.1.1 Scone
	3.1.2 Haven
	3.1.3 Scone
	3.1.4 SGX-LKL
	3.1.5 Graphene

	3.2 SGX native applications
	3.2.1 SafeKeeper
	3.2.2 Intel SGX key store
	3.2.3 tpmsgx
	3.2.4 SGX-Kernel

	3.3 Secure introspecting

	4 Design and Implementation
	4.1 Apache's web server SSL module SGX integration
	4.1.1 Architecture
	4.1.2 Cryptography library
	4.1.3 Mitigating memory corruption vulnerabilities in SGX enclaves
	4.1.4 Changes to mod_ssl
	4.1.5 Limitations
	4.1.6 Security Analysis
	4.1.7 Summary

	4.2 OpenSSL engine integration
	4.2.1 Architecture
	4.2.2 Cryptography library
	4.2.3 Configuring OpenSSL
	4.2.4 Required changes to applications
	4.2.5 Security Analysis
	4.2.6 Summary

	4.3 Secure Enclaves in Cheat Detection Hardening
	4.3.1 Enclave creation
	4.3.2 Runtime Protection
	4.3.3 Security Analysis
	4.3.4 Summary

	5 Results
	5.1 I/O intensive application
	5.1.1 Methodology
	5.1.2 Results

	5.2 OpenSSL Engine
	5.2.1 Methodology
	5.2.2 Results

	5.3 Apache web server - TLS
	5.3.1 Methodology
	5.3.2 Results

	5.4 Cheat Detection Hardening
	5.4.1 Methodology
	5.4.2 Results

	6 Conclusion and future work
	6.1 Research and development
	6.2 Results
	6.3 Future work

	A Read and Write primitives within Intel SGX
	A.1 Read Primitive
	A.2 Write primitive

	B Developer Notes
	B.1 Callback handling from trusted to unstrusted code
	B.2 OpenSSL Engine configuration
	B.3 Utilizing an OpenSSL engine from command line
	B.4 Patch to support another engine on Apache web server

	Bibliography

