1,598 research outputs found

    Using the probabilistic evaluation tool for the analytical solution of large Markov models

    Get PDF
    Stochastic Petri net-based Markov modeling is a potentially very powerful and generic approach for evaluating the performance and dependability of many different systems, such as computer systems, communication networks, manufacturing systems, etc. As a consequence of their general applicability, SPN-based Markov models form the basic solution approach for several software packages that have been developed for the analytic solution of performance and dependability models. In these tools, stochastic Petri nets are used to conveniently specify complicated models, after which an automatic mapping can be carried out to an underlying Markov reward model. Subsequently, this Markov reward model is solved by specialized solution algorithms, appropriately selected for the measure of interest. One of the major aspects that hampers the use of SPN-based Markov models for the analytic solution of performance and dependability results is the size of the state space. Although typically models of up to a few hundred thousand states can conveniently be solved on modern-day work-stations, often even larger models are required to represent all the desired detail of the system. Our tool PET (probabilistic evaluation tool) circumvents problems of large state spaces when the desired performance and dependability measure are transient measures. It does so by an approach named probabilistic evaluatio

    Closed-form solution of decomposable stochastic models

    Get PDF
    Markov and semi-Markov processes are increasingly being used in the modeling of complex reconfigurable systems (fault tolerant computers). The estimation of the reliability (or some measure of performance) of the system reduces to solving the process for its state probabilities. Such a model may exhibit numerous states and complicated transition distributions, contributing to an expensive and numerically delicate solution procedure. Thus, when a system exhibits a decomposition property, either structurally (autonomous subsystems), or behaviorally (component failure versus reconfiguration), it is desirable to exploit this decomposition in the reliability calculation. In interesting cases there can be failure states which arise from non-failure states of the subsystems. Equations are presented which allow the computation of failure probabilities of the total (combined) model without requiring a complete solution of the combined model. This material is presented within the context of closed-form functional representation of probabilities as utilized in the Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE) tool. The techniques adopted enable one to compute such probability functions for a much wider class of systems at a reduced computational cost. Several examples show how the method is used, especially in enhancing the versatility of the SHARPE tool

    Transient analysis of manufacturing system performance

    Get PDF
    Includes bibliographical references (p. 28-34).Supported by the INDO-US Science and Technology Fellowship Program.Y. Narahari, N. Viswanadham

    Implicit ODE solvers with good local error control for the transient analysis of Markov models

    Get PDF
    Obtaining the transient probability distribution vector of a continuous-time Markov chain (CTMC) using an implicit ordinary differential equation (ODE) solver tends to be advantageous in terms of run-time computational cost when the product of the maximum output rate of the CTMC and the largest time of interest is large. In this paper, we show that when applied to the transient analysis of CTMCs, many implicit ODE solvers are such that the linear systems involved in their steps can be solved by using iterative methods with strict control of the 1-norm of the error. This allows the development of implementations of those ODE solvers for the transient analysis of CTMCs that can be more efficient and more accurate than more standard implementations.Peer ReviewedPostprint (published version

    Asymptotology of Chemical Reaction Networks

    Full text link
    The concept of the limiting step is extended to the asymptotology of multiscale reaction networks. Complete theory for linear networks with well separated reaction rate constants is developed. We present algorithms for explicit approximations of eigenvalues and eigenvectors of kinetic matrix. Accuracy of estimates is proven. Performance of the algorithms is demonstrated on simple examples. Application of algorithms to nonlinear systems is discussed.Comment: 23 pages, 8 figures, 84 refs, Corrected Journal Versio

    Periodic review base-stock replenishment policy with endogenous lead times.

    Get PDF
    In this paper, we consider a two stage supply chain where the retailer's inventory is controlled by the periodic review, base-stock level (R,S) replenishment policy and the replenishment lead times are endogenously generated by the manufacturer's production system with finite capacity. We extend the work of Benjaafar and Kim (2004) who study the effect of demand variability in a continuously reviewed base-stock policy with single unit demands. In our analysis, we allow for demand in batches of variable size, which is a common setting in supply chains. A procedure is developed using matrix analytic methods to provide an exact calculation of the lead time distribution, which enables the computation of the distribution of lead time demand and consequently the safety stock in an exact way instead of using approximations. Treating the lead time as an endogenous stochastic variable has a substantial impact on safety stock. We numerically show that the exogenous lead time assumption may dramatically degrade customer service.Production/inventory systems; Base-stock replenishment policy; endogenous lead times; Safety stock; Phase-type distribution; Matrix-analytical methods;
    • 

    corecore