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Abstract 

In this paper, we consider a two stage supply chain where the retailer's 

inventory is controlled by the periodic review, base-stock level (R,S) re

plenishment policy and the replenishment lead times are endogenously 

generated by the manufacturer's production system with finite capacity. 

We extend the work of Benjaafar and Kim (2004) who study the effect 

of demand variability in a continuously reviewed base-stock policy with 

single unit demands. In our analysis, we allow for demand in batches of 

variable size, which is a common setting in supply chains. A procedure 

is developed using matrix analytic methods to provide an exact calcula

tion of the lead time distribution, which enables the computation of the 

distribution of lead time demand and consequently the safety stock in an 

exact way instead of using approximations. Treating the lead time as an 

endogenous stochastic variable has a substantial impact on safety stock. 

We numerically show that the exogenous lead time assumption may dra

matically degrade customer service. 

Keywords: Production/inventory systems, base-stock replenishment pol

icy, endogenous lead times, safety stock, D-BMAP queueing system, matrix

analytic methods 
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1 Introduction 

A frequently used stochastic inventory control system is the (R, S) replenish

ment policy in which every R units of time a replenishment order is placed 

of sufficient magnitude to raise the inventory position to a base-stock level S. 

It is referred to as the periodic review, base-stock level control system (Silver 

et al., 1998). When demand is probabilistic, there is a definite chance of not 

being able to satisfy some of the demand directly out of stock. Therefore, a 

buffer or safety stock is required to meet unexpected fluctuations in demand. 

Basically, there are two perspectives on how to determine the amount of 

safety stock. A common approach involves specifying (explicitly of implicitly) a 

way of costing a shortage and then minimizing total cost. Holding more inven

tory reduces the probability of a stock out, but increases the inventory holding 

cost. The cost-minimization approach trades off these costs to find the lowest 

cost policy. As an alternative, service level requirements are widely used. The 

service level is a measure of performance for meeting demand from inventory. 

It can be expressed as the probability of meeting demand from inventory (cus

tomer service level) or as the fraction of demand that is met from inventory (fill 

rate). The service level becomes a constraint in establishing the safety stock of 

an item; for example, minimize the carrying cost of an item subject to satisfying, 

routinely from stock, 95 percent of all demands (Silver et al., 1998). 

A considerable amount of research is devoted to the determination of the 

safety stock that is required to ensure a certain service level (Zipkin, 2000). 

Since the safety stock acts as a buffer between unexpected changes in demand 

during the replenishment lead time, it is affected by the demand variability, the 

replenishment lead time, and the lead time variability. 

Demand variability is a central theme in the inventory literature and it is 

generally accepted that higher demand variability degrades service performance 

(Zipkin, 2000). In particular, Lu et al. (2003) consider an assemble-to-order 

system where the supply system is modeled using an infinite server queue with 

compound Poisson demand. They show that increased variability in order sizes 

degrades order fill rates. Another study done by Jemar and Karaesmen (2004) 

analyses a make-to-stock queue and demonstrates that an increase in demand 

interarrival time variability leads to higher base-stock levels and higher costs. 

The effect oflead times is also widely analysed. Song (1994a; 1994b) proves 

that increased lead time variability causes an increase in the optimal base-stock 

levels and the optimal costs. More recently, Song and Yao (2002) show that 

increased lead time variability also degrades fill rate performance. Chopra et al. 

(2004) state that decreasing lead time is the right lever to cut inventories, rather 

than reducing lead time variability. Finally, an interesting contribution is done 
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by Vendemia et al. (1995), who examine the impact of decreasing lead times 

in conjunction with the characteristics of the demand process. Since inventory 

variance increases with longer lead times because more random variables are 

involved, their results indicate that lead time reduction leads to lower costs. 

In the inventory literature, the focus has been on inventory systems with 

exogenous lead times. However, a two stage supply chain can be modelled as a 

production-inventory system, where the retailer's inventory replenishment lead 

times are endogenously determined and depend on the current level of conges

tion in the manufacturer's production system. This is done by Thonemann and 

Bradley (2002) who consider a decentralized system consisting of a manufacturer 

and several retailers. They use a queueing model to approximate expected man

ufacturing lead time, which they then use to approximate lead time demand. 

By treating leadtimes as LLd. random variables, they are able to decouple the 

analysis of the inventory and production systems. 

It is essential to extend pure inventory sytems with exogenous lead times to 

production-inventory sytems with endogenous lead times. After all, inventory 

influences production by initiating orders, and production influences inventory 

by completing and delivering orders to inventory. Therefore the inventory con

trol system should work with a lead time which is a good estimate of the real 

lead time, depending on the production load, the inter arrival rate of orders, the 

variability of the production system, etc. (Axsater, 1976). Production-inventory 

systems with endogenous lead times are also used by Kim and Benjaafar (2002), 

Benjaafar et al. (2004) and Karaesmen et al. (2002; 2004) to study the effect of 

respectively inventory pooling, product variety and advance demand informa

tion and by Song et al. (1999) to analyse order fulfillment performance measures. 

It is the purpose of this paper to study the impact of demand variability 

on the retailer's safety stock when his inventory is controlled by the periodic 

review base-stock replenishment policy and where the replenishment lead times 

are endogenously generated by the manufacturer's production facility with fi

nite capacity. In our setting we also allow for demand in batches. Our main 

contribution lies in the development of a procedure to estimate the lead time 

distribution as a function of customer demand, so that the safety stock can be 

computed in a correct and accurate way. The remainder of the paper is orga

nized as follows. In section 2, we describe our model and the periodic review 

base-stock policy. In section 3, we explain the procedure that we developed 

to estimate the lead time distribution based on a queueing analysis. Section 4 

analyses the resulting impact on customer service and safety stock. A numer

ical experiment that illustrates our findings is presented in section 5 and the 

concluding remarks are given in section 6. 
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2 Model description 

We consider a two stage supply chain with a single retailer and a single man

ufacturer. Every period, the retailer observes customer demand, denoted by 

D t , which represents a finite number of items that customers buy from the re

tailer. We assume that customer demand Dt is identically and independently 

distributed (LLd.) over time. If there is enough on-hand inventory available, the 

demand is immediately satisfied. If not, the shortage is backlogged. 

In order to replenish the inventory on hand, the retailer places a replenish

ment order with the manufacturer at the end of every review period. The order 

quantity Ot is determined by the retailer's replenishment policy. We assume 

that the manufacturer produces on a make-to-order basis, so he has no finished 

products inventory. The replenishment orders of size Ot enter the production 

facility where they are processed on a first-come-first-served basis. When the 

production facility is busy, they join the queue of unprocessed orders. We as

sume that the production times for a single product are LLd. random variables 

and to ensure stability, we assume that the utilization of the production facility 

(average batch production time divided by average batch inter arrival time) is 

strictly smaller than one. 

Once the complete batch (equal to the replenishment order) is produced, it 

is immediately sent to the retailer. The time from the instant the order arrived 

at the production system to the point that the production of the entire batch 

is finished, is the response time denoted by Tr. Note that the response time Tr 

is a continuous variable. In our model however, events occur on a discrete time 

basis. Therefore we rely on the sequence of events in a period. We assume that 

the retailer first receives goods from the manufacturer, then he observes and 

satisfies customer demand and finally, he places a replenishment order with the 

manufacturer. In this sequence of events, the retailer is always able to satisfy 

demand after receipt of the products from the manufacturer. Therefore, we 

round the response time Tr to the smaller integer Tp (Le., we set Tp = lTrJ), 
such that Tp represents the replenishment lead time. A schematic of the system 

is shown in figure 1. 

There are many different types of replenishment policies, of which two are 

commonly used: on the one hand the periodic review, replenishment interval, 

base-stock policy and on the other hand the continuous review, reorder point, 

order quantity model. Given the common practice in retailing to replenish in

ventories frequently (e.g. daily) and the tendency of manufacturers to produce 

to demand, we will focus our analysis on the periodic review base-stock replen

ishment policy. 
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Figure 1: A two stage supply chain modelled as a production-inventory system 

In a periodic review base-stock replenishment policy, the retailer tracks his 

inventory position at the end of every review period R. The inventory position 

is the sum of the inventory on hand (i.e., items immediately available to meet 

demand) and the inventory on order (Le., items ordered but not yet arrived due 

to the lead time) minus the backlog (i.e., demand that could not be fulfilled and 

still has to be delivered). A replenishment order is placed to raise the inventory 

position to a base-stock level 8, which determines the order quantity Ot: 

Ot = 8 - inventory positiont. (1) 

The base-stock level 8 is the inventory needed to ensure a given customer 

service. The risk period is the time between the moment a replenishment order 

is placed until the subsequent replenishment arrives (Le., the time from ordering 

replenishment i to the arrival of replenishment i + 1) and is equal to the review 

period plus the lead time (R + Tp). Since the lead time and the demand size are 

both random i.i.d. variables independent of each other, the demand during this 

risk period is a sum of a random number of random i.i.d. variables (Ross, 1983). 

Consequently, the base-stock level equals 

8 = (E [Tp] + R) x D + 88, (2) 

with D the average demand and 88 denoting the safety stock. 

In our model we do not assume any order or setup costs. Therefore we 

simple set the review period equal to one base period (R = 1), so that we place 

a replenishment order every period t. The inventory position at the end of 

period t is equal to last period's inventory position (which is raised up to the 

base-stock level 8) minus the observed demand in the current period. Hence, 
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the order quantity placed at the end of period t equals 

(3) 

We simply order what the demand is in the base period. That is why this policy 

is also called 'passing on orders' or 'chasing sales'. In the remainder of this paper 

we will assume the review period R to be one base period. Note however that 

our framework can similarly be used for review periods R > 1. 

3 Estimation of the lead time 

Most inventory models proposed in the literature take the replenishment lead 

time Tp as a fixed constant or as an exogenous variable with a given probability 

distribution. However, the replenishment orders in fact load the production 

facilities, and the nature of this loading process relative to available capacity 

and the variability it creates are the primary determinants of lead times in the 

facility (Karmarkar, 1993). In this section, we develop a procedure to estimate 

the distribution of the lead time based on a queueing analysis. 

The arrival process of orders at the production facility is governed by the 

retailer's replenishment orders. The periodic review base-stock policy generates 

batch arrivals with a fixed inter arrival time (equal to the review period R = 1) 

and with a variable batch size. In the previous section, it is shown that when the 

review period is one base period and customer demand is i.i.d., the replenishment 

orders are exactly the same as the customer demand and hence the batch sizes 

are LLd. random variables with the same distribution as customer demand. 

In our procedure, we fit the probability distribution of the order size Ot by 

a discrete phase type (PH) distribution. A discrete PH distribution is the distri

bution of the number of steps prior to final absorption in an absorbing Markov 

chain. The key idea behind PH distributions is to exploit the Markovian struc

ture of the distribution to simplify the queueing analysis. Moreover, any general 

discrete distribution can be approximated in sufficient detail by means of a PH 

distribution (Horvath and Telek, 2002), since the class of discrete PH distribu

tions is a versatile set that is dense within the set of all discrete distributions on 

the nonnegative integers (Neuts, 1989; Latouche and Ramaswami, 1999; Bobbio 

et al., 2003). As we want to analyse the effect of demand variability on customer 

service, we restrict ourselves to fitting the first two moments only (the mean 

o and standard deviation ao). Including more moments (or including a whole 

empirical distribution) increases the number of phases of the PH distribution 

and consequently the computational complexity of our algorithm. 
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We also fit a PH distribution to the mean M and standard deviation (J M 

of the production time of a single product. Although fitting the mean and 

standard deviation of the order size 0 or the production time M by a PH 

distribution seems analogue, the choice of the time unit of the queueing system 

of interest offers an additional degree of freedom when fitting the production 

time M (Bobbio et al., 2004b). 

In Step (I) we explain the PH fitting procedure. In Step (II) we develop an 

efficient algorithm that computes the lead time distribution given the PH dis

tributions obtained in Step (I) by means of Matrix Analytic Methods (MAMs). 

Matrix analytic techniques, pioneered by Marcel Neuts (1989; 1981), provide a 

framework that is widely used for the exact analysis of a general and frequently 

encountered class of queueing models. In these models, the embedded Markov 

chains are two-dimensional generalizations of elementary GI/M/1 and M/G/1 

queues (Kleinrock, 1975), and their intersection, i.e., quasi-birth-death (QBD) 

processes. We illustrate both steps with an example. 

Step (I): Throughout this section we assume that 0 ;::: 2 is an integer; this 

condition is not necessary, but allows some simplification in the fitting proce

dure. A PH distribution X is characterized by the triple (n, T, a), where n > 0 

is an integer, referred to as the number of phases of the distribution or the 

number of transient states in an absorbing Markov chain, T is an n x n sub

stochastic matrix, delineating the transition probabilities between the transient 

states and a is a stochastic 1 x n vector, which defines the probabilities ai that 

the process is started in the transient state i. The transition probabilities be

tween the transient states and the absorbing state are given by t, which is an 

n x 1 substochastic vector equal to e - Te, where e is a n x 1 column vector 

with all its entries equal to one. Hence the probability that k steps are taken 

prior to absorption is given by 

Pr[X = k] = aTk-1t, (4) 

where k > O. Its mean X and standard deviation (J x obey the following equa

tions: 

- 1 X=a(I-T)- e, 

(JX = Ja(/ - T)-l (2(/ - T)-l + (1 - X)I) e, 

(5) 

(6) 

with / an n x n identity matrix. In order to match the mean order size 0 and 

its standard deviation (JQ, we need to find a PH distribution characterized by a 

triple (n, T, a) such that 0 = X and (J Q = (J x. Moreover, since the algorithm 
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developed in Step (II) speeds up with a smaller n, we want a representation 

(n, T, a) that fits the two first moments with n as small as possible (including 

higher moments will lead to a higher n). 

Denote cVb as the squared coefficient of variation, that is, cVb = (Jb I 0 2 . 

By applying a theorem by Telek (2000, Theorem 1) and the fact that 0 is an 

integer, we find that the minimum number of phases needed to match 0 and 

(Jo equals 

n = max (2) ~ l) . I Ocvo + 1 
(7) 

Next, we choose the 1 x n vector a and the n x n matrix T as follows. These 

choices are motivated by a variety of results when matching continuous time 

PH distributions (Telek and Heindl, 2002; Bobbio et al., 2004a): 

a = (/3,1 - /3,0,0, ... ,0), (8) 

1- Pl Pl 0 0 0 

0 1- P2 P2 0 0 

0 0 1- P2 P2 0 
T= (9) 

0 0 0 0 P2 
0 0 0 0 1- P2 

This leaves us with 3 parameters: /3,Pl and P2, and two equations: 0 = X 

and (Jo = (JX. Therefore, we add an additional constraint which demands that 

the stationary vector of the matrix T + ta is the uniform vector (lin, . .. , lin). 

When combined with the requirement 0 = X, this poses the following conditions 

on /3, Pl and P2: 

Pl = /3nIO, 

P2 = niO. (10) 

Remark, 0 ::; P2 ::; 1 and 0 ::; Pl ::; /3 as 0 2: n. Thus, it remains to determine 

/3, with 0::; /3 ::; 1, based on the remaining condition (Jo = (Jx. 

Let G(z) = 2.:k P[X = k]zk be the generating function of the PH distribu

tion X characterized by Eqns. (8) and (9). Then, 

G(z) = {/3 (1 _ (~l~ pt}z) + (1 - (3)} (1 _ (~2~ P2)Z) n-l , (11) 
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and the condition 0'0 = O'x can be rephrased as 

2 d2G(z) I - -
0'0= ~ +0(1-0). 

Z z=l 
(12) 

Some careful calculations show that this equation is solved by setting f3 equal 

to: 

O < f3 = -= __ --::20=-_--=-_=_ --, 2 :s: 1, 
- 20 + n(n - 0 + n cVoO) 

(13) 

where the first and last inequality is due to Eqn. (7). In conclusion, by making 

use of Eqns. (7-10) and (13), we can fit the mean 0 and standard deviation 0'0 

by a PH distribution. 

The same procedure can be used to match the mean M and standard devia

tion 0' M of the production time of a single product (if we replace the necessary 

O's into M's). However, in this case we can do significantly better. Since the 

lead time is expressed as an integer number of periods and the interarrival time 

is equal to one base period, we have the freedom to choose the time unit U of the 

queueing system in an appropriate manner (Bobbio et al., 2004b). Let U equal 

half of the mean production time of an item, i.e., U = M /2, and denote M u 

and 0' Mu as the mean and standard deviation of the production time expressed 

as multiples of U. By definition, we find M u = 2 and 0' Mu = 20' M / M, implying 

that cvlr(U) = cvlr. Consequently, we only need n = 2 phases, because 

n = max (2, r 1 + ~cvlr 1) = 2. (14) 

Meaning, we can always match the production process of a single product using 

a 2 state PH distribution. The remainder of the matching algorithm is identical 

to the procedure used to fit the order size distribution. 

Example 

• Suppose that every week an order arrives at the manufacturer's production 

facility with an average size of 50 products and a standard deviation of 25 

products. Our objective is to fit a PH distribution to 

{ 0= 50 

0'0 = 25, 

with n as small as possible (as this will speed up our algorithm). Applying 
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Eqns. (7), (13) and (10) successively gives 

no = max (2, r 50 . (0~~5) + ll) = 4, 

2·50 
f3 = 2.50 + 4 (4 - 50 + 4. (0.25) . 50) = 0.8261, 

and 

PI 
(0.8261) ·4 = 0.069 

50 ' 
4 
50 = 0.08. P2 = 

According to Eqns. (8) and (9), this results in 

ao = (0.8261,0.1379,0,0), 

and 

[ 

0.931 0.069 

T. _ 0 0.92 
0- 0 0 

o 0 

o 0 
0.08 0 

0.92 0.08 

o 0.92 

The resulting discrete PH distribution characterized by the triple (no, To, ao) 
describes the distribution of the number of steps prior to final absorption 

in an absorbing Markov chain with 4 transient states and 1 absorbing 

state. The probability that the process is started in a transient state 

i = 1,2,3,4, is given by ao = (0.8261,0.1379,0,0), and the 5 x 5 state 

transition matrix of the Markov chain is given by 

[To to] 
o l' 

with To delineating the transition probabilities between the transient 

states and to the transition probabilities between the transient states and 

the absorbing state (to = e - Toe): 
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Hence the probability that the order size is equal to e.g. 20 corresponds 

to the probability that the number of steps from the moment the process 

is started until it eventually absorbs in the absorbing state is equal to 20 

and can be found from 

Pr [0 = 20] = ao (TO)19 to 

0.0111. 

The complete discrete PH distribution of the order pattern is plotted in 

figure (2). 

0.016 

0.014 

0.012 

~ 0.010 
@ 
Q.. 0.008 

0.006 

0.004 

0.002 

O~L-~-L-L~~ __ L-~~-L~~ __ C=~~ 

o 10 20 30 40 50 60 70 80 90 100 110120 130 140 150 
o 

Figure 2: Discrete PH type distributed order process fitted to 0 = 50 and 
0'0 = 25 . 

• Assume that the production facility is available ten hours per day, five days 

a week. It takes on average 54.054 minutes to produce a single product 

with a coefficient of variation equal to one. Since orders arrive with an 

average batch size of 50 products per week, the production facility is on 

average 50 X 54.054 minutes busy per week, which results in an average load 

of 2702.7/3000 = 90.09%. We first choose the time unit of our queueing 

system equal to U = M /2 = 54.054/6000, so that we actually fit a PH 

distribution to 

{ Mu=2 
O'Mu = 2, 
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which denote the mean and standard deviation of the single product ser

vice times expressed in time units U. Applying the same procedure results 

in the triple (nM,TM,O'.M) given by 

O'.M = (0.3333,0.6667), 

TM = [0.6~67 0.3~33l. 

Step (II): Note that in Step (I) we chose U as the time unit of our queueing 

system. As a consequence, interarrival times, production times and response 

times are expressed in this time unit U. For instance, a replenishment order 

placed every period (R = 1) is translated into a new batch arrival occuring 

every d time slots, with d = l/U. 

Let (no, To, 0'.0) and (n M, T M , 0'. M) be the matrix representations of both 

PH distributions obtained in Step (I). We can reduce the complexity of our 

queueing analysis by exploiting the phase-type nature of the fitted order size 

distribution. To do so, we first apply a discrete time variant of one of the 

closure properties of PH distributions (Latouche and Ramaswami, 1999, The

orem 2.6.3), to find that the production time of an entire batch (an integral 

replenishment order) is PH distributed with representation (ns, Ts, O'.s): 

ns = nonM = 2no, 

(15) 

O'.s = 0'.0 Q9 O'.M, 

where Q9 denotes the Kronecker product between matrices, tM = e - TMe and 

Ix is an identity matrix of dimension x. 

This permits us to treat the entire batch order as a single customer and 

hence, the problem of estimating the lead time is reduced to computing the 

response time distribution of a customer in a D/PH/1 queue. Such a queue 

has a deterministic arrival process that generates a single customer (equal to 

a replenishment order with batch size 0) at fixed time epochs, i.e. every d 

time units. The single service center serves this customer in a PH distributed 

time characterized by the triple (ns, Ts, O'.s). The size of the waiting line is 

infinite (meaning, we assume that orders are never lost nor rejected by the 

manufacturer) . 
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To compute the response time Tr , we construct a Markov chain (Me) (An, Sn), 

where An represents the age of the order in service at the n-th observation point 

tn and Sn reflects the phase of the service process at epoch tn. The age of the 

order in service at time tn is defined as the duration (expressed in time slots) 

of the time interval [an, tn ), where an denotes the arrival time of the replenish

ment order. Instead of observing the Markov chain (An' Sn) at all time epochs, 

we observe the system only when the server is busy (simplifying the boundary 

behavior of the Markov chain). All events such as arrivals, transfers from the 

waiting line to the server and service completions are assumed to occur at in

stants immediately after the discrete time epochs. This implies, amongst others, 

that the age of an order in service at some time epoch tn is at least 1. 

The MC (An' Sn) has an infinite number of states labeled 1,2, .... The set of 

states {(i -1)ns + 1, ... , ins} is referred to as level i of the Me, for i 2: 1. The 

states of level i > 0 are labeled as s, where 1 :::; s :::; ns. Let state s of level i of 

the MC correspond to the situation in which there is an order in service (being 

produced), that arrived i time units ago, while the service process is currently 

in phase s. The transition matrix P of this Me can be written as 

P= o 

o 
o 

o 
o 

Ao 0 

o Ao 

(16) 

where Ao = Ts and Ad = tsas (and ts = e - Tse). Let us explain this by 

distinguishing between two cases: 

(i) Assume that a batch order of age q 2: d is in service at time tn and the 

service process is in phase s (recall, d is the inter arrival time). Then, either 

(a) his service is completed at time tn, with probability (ts)., or (b) his service 

continues and the new phase of the service process equals s', with probability 

(Ts)s,sl. In scenario (a), the next order, who arrived at time an+l = an + d, 

has an age q' = q - d + 1 2: 1 at time tn+! = tn + 1, as q' = tn+! - an+! 

and q = tn - an. The new phase s' of the service process is determined by as. 

In scenario (b), the same order remains in service, hence, tn+ 1 = tn + 1 and 

q'=q+1. 

(ii) Assume the age q of the order in service is less than d at time tn. The 

scenario where this order remains in service is identical to (i). However, if a 

service completion occurs, the next order arrives at time an+l = an + d = 

13 



tn - q + d > tn. Since all arrivals occur immediately after the discrete time 

epochs, the service facility is empty at the time instants tn + 1, ... , tn + d - q. 

Therefore, tn+l = tn + d - q + 1 and the new age q' = tn+1 - an+I = (tn + d

q + 1) - (tn - q + d) = 1, meaning the Markov chain makes a transition to level 

1. The new phase s' is, once more, determined by the vector as. 

The Me characterized by Eqn. (16) is of the GI/M/l type (Neuts, 1981). 

Using Neuts' stability condition, one easily finds that this Me is ergodic if and 

only if p < 1, i.e., OM u < d. For an ergodic Me of the GIIMII type, one 

computes the steady state vector 7r of P, that is, 7rP = 7r and 7re = 1, as 

follows: 

(17) 

(18) 

where 7r = (7rI' 7r2, ... ) and 7ri is a 1 x ns vector, for all i > O. The expression for 

7rl is obtained using the normalization condition L:i 7rie = 1 and the stochastic 

interpretation of 7rI. The ns x ns rate matrix Y is the smallest nonnegative 

solution to the matrix equation Y = Ao + yd Ad and can be numerically solved 

with a variety of algorithms, e.g. Neuts (1981), Ramaswami (1988) and Alfa 

et al. (2002). 

Having obtained the steady state vector 7r = (7rt, 7r2, .•• ), we can obtain the 

response time Tr using the following observation: The probability that a batch 

order has a response time of i time units can be calculated as the expected 

number of orders with an age of i time units that complete their service at an 

arbitrary time instant, divided by the expected number of orders that complete 

their service during an arbitrary time instant (that is, lid for a queue with 

p < l). As such, we find the response time distribution as 

(19) 

Notice, the s-th element of P7ri equals the probability that an order of age i is 

in service at an arbitrary time instant with the service process in phase s. 

In step (I) we chose the time unit U of our queueing system as half of the 

production time of a single product (Le., M 12). Thus, if we want to express the 

replenishment lead time in terms of the number of periods needed to deliver the 

order to the retailer, we still need to make the following conversion: 

Pr[Tp = i] = L Pr[Tr = j]lW/dJ=i}, 
j 
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where lA is 1 if the event A is true and 0 otherwise. Note that this conversion at 

the same time rounds the (possibly fractional) response time Tr to the discrete 

replenishment lead time Tp. 

Example 

We continue with the example described above. Treating the entire batch 

order as a single customer results in aD/PH/I queue, where the service 

time of the entire batch is PH distributed since both batch size and single 

product service times are PH distributed. As the time unit is chosen to be 

U = 54.054/6000 or 27.027 minutes, this queue has a deterministic arrival 

process with an interarrival time of d = 6000/54.054 = 111. The batch 

production time is characterized by the triple (ns, Ts, as) given by Eqn. 

(15): 

ns =8, 

as = (0.2874,0.5747,0.0460,0.0920,0,0,0,0), 

0.6667 0.3333 0 0 0 0 0 0 

0.3103 0.6207 0.0230 0.0460 0 0 0 0 

0 0 0.6667 0.3333 0 0 0 0 

Ts= 
0 0 0.3067 0.6133 0.0267 0.0533 0 0 

0 0 0 0 0.6667 0.3333 0 0 

0 0 0 0 0.3067 0.6133 0.0267 0.0533 

0 0 0 0 0 0 0.6667 0.3333 

0 0 0 0 0 0 0.3067 0.6133 

To compute the response time of this D/PH/l queue, we construct a 

Markov Chain (An' Sn) with An representing the age of the batch in ser

vice and Sn the phase of the service process. To see how this works, we 

take for instance that at time tn a batch order is already more than a 

week in the system, e.g. 54.054 hours, and its service process is currently 

in phase 8. Then, either the production is finished with probability 0.08, 

15 



which is given by ts = e - Tse: 

0 

0 

0 

0 
ts = 

0 

0 

0 

0.08 

or its service continues (with probability 0.92) . 

• In case the batch order is not yet completely produced, then the order's 

age increases with one time unit U at the next time step tn+l (resulting 

in an order's age of 54.054 hours + 27.027 minutes or 54.504 hours) and 

the new phase of the service process is phase 7 with probability 0.3067 or 

phase 8 with probability 0.6133 (dictated by Ts). 

• In case the production is finished, the response time equals 54.054 hours. 

The next batch order that arrived a week (50 hours) later than the current 

order is 4.054 hours in the system at the moment that current production 

finishes, and hence it will be 4.054 hours + 27.027 minutes or 4.504 hours 

in the system at the next time step in the Markov Chain (tn+l). The new 

phase of the service process can be 1,2,3 or 4 with respective probabilities 

of 0.2874,0.5747,0.0460 and 0.0920 (given by as). A response time Tr 

equal to 54.054 hours corresponds to 1.08 weeks. These products are 

immediately sent to the retailer. Since these products can be used to fulfill 

the customer demand that is observed within the second week after the 

order is placed, we round the replenishment lead time Tp to 1 week. 

These transitions constitute the transition matrix P, described by (16). 

Once we find the response times based on the steady state vector of this 

transition matrix, we finally convert them to discrete replenishment lead 

times using Eqn. (20). The resulting discrete lead time distribution is 

graphically illustrated in figure 3. The average replenishment lead time 

and its standard deviation are given by 

E [Tp] = 1.31489 weeks, 

(J' [Tp] 1.3474 weeks. 
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Figure 3: Discrete lead time distribution for 0 = 50, (7'0 = 25 and M = (7' M = 
54.054/3000 weeks. 

4 Impact on safety stock 

Managers have been under increasing pressure to decrease inventories as supply 

chains attempt to become leaner. The goal, however, is to reduce inventories 

without hurting the level of service provided to customers. For a given service 

level, a decision maker has three levers that affect safety stock: demand vari

ability, replenishment lead time, and lead time variability (Chopra et al., 2004). 

In the previous section, we developed a procedure how lead time distribution 

can explicitly be calculated given the demand pattern. In this section, we focus 

on the resulting impact on safety stock. 

Similar to Graves (1999) and Disney et al. (2004), we characterize the in

ventory random variable and use it to find the safety stock requirements for 

the system. After all, the variance of inventory will have an immediate effect 

on customer service: the higher the inventory variance, the more stock will be 

needed to maintain customer service at the target level. 

The inventory balance can be found as follows. Every period t, the retailer 

receives the order that he placed Tp + 1 periods ago and he satisfies the observed 

customer demand (Dt ) from inventory. Hence 

NSt=NSt-l+0t-(Tp+1)-Dt for t=1,2, ... , (21) 

where NSt denotes the net stock or inventory on hand at the end of period t. 
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If Dt = Ot = ° for t < 0, then the initial inventory level N So should cover the 

expected demand until the first replenishment in period Tp + 1 plus a buffer or 

safety stock SS. Hence the initial inventory level equals the base-stock level S. 

By repeated backward substitution, we can rewrite Eqn. (21) for t ;::: Tp + 1 as 

t t 

NSt SS+(E[Tp]+I)D+ I: Ot-k-I:Dt- k 
k=O 

t t 

= S + I: Ot-k - I: Dt- k· (22) 
k=Tp +l k=O 

In a periodic review base-stock replenishment policy, we place an order equal 

to the observed customer demand. Hence, substituting Eqn. (3) into the above 

expression gives 

Tp 

NSt = S - I: Dt-k, 
k=O 

(23) 

with Tp a non-negative integer random variable. The net stock is equal to the 

initial inventory or base-stock level S minus the demand during the lead time 

and the review period. From this, we can easily find measures for the average 

and variance of the net stock. Since Tp is independent of Dt, Dt-l, ... , the mean 

and variance of this sum of a random number of random i.i.d. variables is equal 

to (Ross, 1983): 

E(NS) 

Var(NS) 

= 

S - (E [Tp] + 1) x D 

SS, 
-2 

(E [Tp] + 1) x Var(D) + D x Var(Tp) 

(aTp+1f· 

(24) 

(25) 

Our purpose is to find the minimum amount of safety stock that is needed to 

assure a specified service level. A popular metric to measure customer service is 

the fill rate, which measures the proportion of the demand that can immediately 

be delivered from inventory on hand: 

F .ll expected number of backorders 
1 rate = 1 - . 

expected demand 

In other words, it is based on the fraction of shortages that occur on average 

per period when a stockout occurs. From Eqn. (23) we find that the probability 

of a stockout is the probability that lead time demand exceeds the base-stock 

level: 
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(26) 

Consequently, the average number of shortages can be written as 

(27) 

and the fill rate can be calculated as 

(28) 

In order to compute the fill rate, we need to determine the distribution of 

demand during the replenishment lead time and the review period (also called 

'lead time demand'). Very often a normal distribution is used to approximate 

the distribution of lead time demand. However, this may yield significant er

rors. Bagchi et al. (1986) and Chopra et al. (2004) recommend to use the exact 

compound distribution of demand during the lead time instead of using approx

imations. Since we know both the demand and the lead time distribution, we 

can easily find the distribution of the demand during the replenishment lead 

time and the review period. Let D(z) and Tp(z) be the probability generating 

functions of respectively demand and lead time distribution, 

00 

D(z) = LP[D = n] zn, 
n=O 

00 

Tp(z) = LP[Tp = n] zn, 
n=O 

then the generating function DTp+l(z) of the demand during lead time and 
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review period can be written as 

00 

DTp+1(Z) = 2:: p[D(Tp+ll* = n] Zn 
n=O 
00 00 

n=Oi=l 
00 

D(z) 2:: P [Tp = i - 1] D(z)i-l 
i-l=O 

D(z) . Tp (D (z)) , 

where x n * denotes the n-fold convolution of the random variable X with itself. 

For our numerical example described in section 3, we plot the discrete proba

bility distribution of the demand during lead time and review period in figure 4. 

From this distribution, we can derive its mean and standard deviation: 

115.7447, 

77.3648, 

which could also directly be found from 

(E [Tp] + 1) x D 

(1.3149 + 1) x 50, 

a [I: Dt-k] 
k=O 

V(E [Tp] + 1) x Var(D) + D2 x Var(Tp) 

V(1.3149 + 1) x 252 + 502 X (1.3474)2. 

In practice, decision makers often have to find the minimum safety stock that 

is required to achieve a given fill rate. Since we know the exact distribution of 

lead time demand, we can find from Eqn. (28) the minimal base-stock level S 

that is required such that an imposed fill rate is met. This on his turn results 

in the optimal safety stock equal to 

S S = S - (E [Tp] + 1) D. (29) 

Suppose that the safety stock should be high enough to satisfy 95% of cus

tomer demand immediately from stock. The smallest base-stock level S that 
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Figure 4: Discrete probability distribution of demand during lead time and 
review period for D = 50, aD = 25 and M = aM = 54.054/3000 weeks. 

achieves this fill rate is equal to 

8 = 289. 

Hence, the required safety stock should be at least 

88 = 289 -115.7447 

173.2553, 

meaning that a target buffer of 174 products should be kept in inventory. 

5 Numerical results 

In the previous sections, we described how the lead time distribution can be 

calculated given the mean and the variance of customer demand and we showed 

how the safety stock can be exactly computed given the distribution of demand 

and lead time. In this section, we will present some observations and illustrate 

with numerical examples. 

Observation 1 A more variable demand pattern generates a longer and a more 

variable lead time. As congestion increases, this effect is even stronger. As 

a result, lead time demand becomes considerably larger and more variable 
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and consequently, a substantial higher safety stock is required to maintain 

a given customer service. 

This result is intuitively clear. In a periodic review base-stock policy with 

i.i.d. demand, orders are equal to observed customer demand. As a consequence, 

a more variable demand pattern implies more variability in the arrival pattern 

at the production facility, so that queueing performance degrades and lead times 

increase (Hopp and Spearman, 2001). This on his turn has a reinforced effect 

on the demand during the lead time, which becomes larger and more variable. 

Maintaining customer service at a given target level implies that a significant 

larger amount of safety stock is needed. 

We extend the example used in section 3. The retailer observes a variable 

customer demand with an average of 50 products per week. At the end of the 

week, the retailer places a replenishment order equal to the observed customer 

demand. We analyse the effect of the demand variability by changing customer 

demand's standard deviation over a range from 1 to 50 products per week. 

Figures 5 and 6 numerically show how the average lead time and its standard 

deviation increase as customer demand's standard deviation increases when the 

load is 90%. For example, if variability in customer demand decreases to a 

standard deviation of only 20 products per week, then the replenishment lead 

times decrease to an average of 0.97 periods and a standard deviation of 0.96 

periods. If, on the contrary, customer demand's variability increases to a stan

dard deviation of 40 products per week, then lead times increase as well to an 

average of 2.86 periods with a standard deviation of 3.10 periods. In figures 7 

and 8 we repeat the same experiment for an average production time of 58.82 

minutes (coefficient of variation equal to 1), which corresponds to a congestion 

of 98.04%. We numerically find that the effect on lead times is even stronger in 

this case. 

In figures 9 and 10, we observe the effect of the demand variability on the 

mean and standard deviation of the resulting lead time demand for our initial 

load of 90%. The coefficient of variation of lead time demand is plotted in 

figure 11. Finally, figure 12 plots the safety stock that is required to achieve a 

fill rate of 95 percent. It is clear that more variability in customer demand has 

a substantial impact on the required safety stock. For instance, when customer 

demand's variability increases to a standard deviation of 40 products per week, 

then safety stock should amount 555 products in order to achieve a fill rate of 

95%. An increase of customer demand's standard deviation to 50 products per 

week would even give rise to a safety stock of 977 products. 

22 



4.5 r--,---,---,---,---,---,---,---,---,------, 

4 

3.5 

3 

2.5 
~ 
w 2 

1.5 

°0~--5~~10~-15~-20~-2~5--~~-35~-4~0--45~~50 

o(D) 

Figure 5: Effect of demand variability on average lead time for p = 0.90 
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Figure 6: Effect of demand variability on lead time variability for p = 0.90 
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Figure 7: Effect of demand variability on average lead time for p = 0.98 
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Figure 8: Effect of demand variability on lead time variability for p = 0.98 
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Figure 9: Effect of demand variability on average lead time demand 
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Figure 10: Effect of demand variability on the variability of lead time demand 
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Figure 12: Effect on demand variability on safety stock 
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Observation 2 Ignoring endogenous lead times incorrectly calculates safety 

stocks and may seriously underestimate customer service. 

Assume for instance that the retailer faces a variable customer demand of 

50 products per week on average and a standard devation of 25 products. The 

retailer knows that his lead time distribution is given by figure 3 on which 

he bases his safety stock decision. The base-stock level S equals 289 and the 

safety stock 174 products. When customer demand becomes more variable, i.e. 

standard deviation increases to 40 products per week, and the retailer does not 

include the effect of this demand variability increase on the lead time distribution 

in his safety stock calculations (i.e., he still uses the lead time distribution given 

by figure 3), then he would set a base-stock level equal to Sf = 331 and a 

corresponding safety stock equal to SSf = 331 - 50 x (1 + 1.31489) = 215.26 to 

achieve a supposed fill rate of 95% (see figure 13). 

However, when the retailer holds on this base-stock level and safety stock, 

he obtains a fill rate of less than 43% (see figure 14) due to the increase of the 

lead times and lead time variability caused by the increase in demand variabil

ity. This demonstrates the importance of including endogenous lead times in 

inventory control models. The exogenous lead time assumption dramatically 

degrades customer service. 

2 

oL-~--~~--~~~~~~~~~~ 
50 100 150 200 250 300 450 500 

2:~oDt.k 

Figure 13: Discrete probability distribution of demand during lead time and 
review period for D = 50, (j D = 40 with exogenous lead times given by the lead 
time distribution in figure 3. 
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Figure 14: Discrete probability distribution of demand during lead time and 
review period for D = 50, O"D = 40 with endogenous lead time determination. 

6 Concl usions 

Under a periodic review base-stock replenishment policy and an Li.d. customer 

demand, a more variable demand or a more variable lead time forces the safety 

stock to increase in order to maintain the customer service at a target level. 

In this paper, we incorporate the lead time as an endogenous variable and we 

explicitly analyse the impact of the demand pattern on the lead time distri

bution. The lead time distribution is obtained using phase type distributions 

and matrix analytic methods. We numerically observe that in this production

inventory system a more variable demand pattern results in a longer and more 

variable lead time and due to this reinforced effect, a substantial higher safety 

stock is required to maintain a given service level. Ignoring endogenous lead 

times may degrade customer service considerably. 
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