11 research outputs found

    Towards a tableau-based procedure for PLTL based on a multi-conclusion rule and logical optimizations

    Get PDF
    We present an ongoing work on a proof-search procedure for Propositional Linear Temporal Logic (PLTL) based on a one-pass tableau calculus with a multiple-conclusion rule. The procedure exploits logical optimization rules to reduce the proof-search space. We also discuss the performances of a Prolog prototype of our procedure

    Proceedings of the Joint Automated Reasoning Workshop and Deduktionstreffen: As part of the Vienna Summer of Logic – IJCAR 23-24 July 2014

    Get PDF
    Preface For many years the British and the German automated reasoning communities have successfully run independent series of workshops for anybody working in the area of automated reasoning. Although open to the general public they addressed in the past primarily the British and the German communities, respectively. At the occasion of the Vienna Summer of Logic the two series have a joint event in Vienna as an IJCAR workshop. In the spirit of the two series there will be only informal proceedings with abstracts of the works presented. These are collected in this document. We have tried to maintain the informal open atmosphere of the two series and have welcomed in particular research students to present their work. We have solicited for all work related to automated reasoning and its applications with a particular interest in work-in-progress and the presentation of half-baked ideas. As in the previous years, we have aimed to bring together researchers from all areas of automated reasoning in order to foster links among researchers from various disciplines; among theoreticians, implementers and users alike, and among international communities, this year not just the British and German communities

    Resolution-based methods for linear temporal reasoning

    Get PDF
    The aim of this thesis is to explore the potential of resolution-based methods for linear temporal reasoning. On the abstract level, this means to develop new algorithms for automated reasoning about properties of systems which evolve in time. More concretely, we will: 1) show how to adapt the superposition framework to proving theorems in propositional Linear Temporal Logic (LTL), 2) use a connection between superposition and the CDCL calculus of modern SAT solvers to come up with an efficient LTL prover, 3) specialize the previous to reachability properties and discover a close connection to Property Directed Reachability (PDR), an algorithm recently developed for model checking of hardware circuits, 4) further improve PDR by providing a new technique for enhancing clause propagation phase of the algorithm, and 5) adapt PDR to automated planning by replacing the SAT solver inside with a planning-specific procedure. We implemented the proposed ideas and provide experimental results which demonstrate their practical potential on representative benchmark sets. Our system LS4 is shown to be the strongest LTL prover currently publicly available. The mentioned enhancement of PDR substantially improves the performance of our implementation of the algorithm for hardware model checking in the multi-property setting. It is expected that other implementations would benefit from it in an analogous way. Finally, our planner PDRplan has been compared with the state-of-the-art planners on the benchmarks from the International Planning Competition with very promising results.Das Ziel dieser Doktorarbeit ist es, das Potential resolutionsbasierter Methoden zur linearer, temporaler Beweisführung zu untersuchen. Von einem abstrakten Gesichtspunkt aus gesehen bedeutet dies, neue Algorithmen über die Eigenschaften von sich zeitlich entwicklenden Systemen im Bereich des automatischen Theorembeweisens zu entwickeln. Konkreter gesagt werden wir 1) aufzeigen, wie sich das Rahmenprogramm der Superposition so anpassen lässt, damit es Theoreme in propositionaler Linear Temporal Logic (LTL) beweist, 2) eine Verbindung zwischen der Superposition und dem CDCL-Kalkül moderner SAT-Solver nutzen, um mit einem effizienten LTL-Prover aufzuwarten, 3) das Vorangegangene auf Erreichbarkeitseigenschaften spezialisieren, und eine starke Verbindung zu der Property Directed Reachability (PDR), einem jüngst eintwickeltem Model-Checking-Algorithmus für Hardware-Schaltkreise, aufzudecken, 4) PDR durch die Einführung neuer Technik verbessern, die die Clause-Propagation-Phase des Algorithmus beschleunigt, und 5) PDR für das automatisierte Planen anpassen, indem wir den inneren SAT-Solver durch eine planungsspezifische Prozedur ersetzen. Wir haben die vorgeschlagenen Ideen implementiert, und es werden experimentelle Ergebnisse angegeben, die das praktische Potential dieser Ideen auf repräsentativen Benchmarks aufzeigt. Es hat sich herausgestellt, dass unser System LS4 der staerkste öffentlich zugängliche LTL-Prover ist. Die erwähnte Erweiterung von PDR verbessern die Leistungsfähigkeit unserer Implementierung des Hardware-Model-Checking-Algorithmus substantiell im Bereich der Multi-Property-Einstellungen. Wir erwarten, dass andere Implementierungen in ähnlicher Weise profitieren würden. Schließlich haben wir viel versprechende Ergebnisse durch den Vergleich unser Planer PDRplan mit anderen state-of-the-art Planer auf den Benchmarks der International Planning Competition erzielt

    Reasoning with Contexts in Description Logics

    Get PDF
    Harmelen, F.A.H. van [Promotor]Schlobach, K.S. [Copromotor

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution
    corecore