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Preface

Computer Science Logic (CSL) is the annual conference of the European Association for
Computer Science Logic (EACSL). It is an interdisciplinary conference, spanning across both
basic and application oriented research in mathematical logic and computer science. CSL
started as a series of international workshops on Computer Science Logic, and became at its
sixth meeting the Annual Conference of the EACSL.

The 27th annual EACSL conference Computer Science Logic (CSL 2018) was held in
Birmingham (UK) from September 4 to September 7, 2018. It was hosted by the School of
Computer Science of the University of Birmingham, and held on its Edgbaston campus.

The conference received 100 abstracts of which 86 were followed up by paper submissions.
Each paper was assigned for reviewing to at least three programme committee members,
assisted by 132 external reviewers. The reviewing process consisted of two stages. First,
submissions with potential technical problems or deemed not original enough were rejected.
Less than 15% of submissions fell into this category. Of the remaining papers the 36
submissions deemed as the most interesting were selected for presentation at the conference
and publication in these proceedings. The number was dictated by the duration of the
conference and individual talks. All papers deemed “very interesting” by at least two members
of the PC were accepted, while each accepted paper was deemed as “very interesting” by at
least one member.

The invited speakers for this conference were:

Bob Coecke, University of Oxford
Emmanuel Filiot, Université libre de Bruxelles
Catuscia Palamidessi, École polytechnique (Paris-Saclay)
Christine Tasson, Université Paris Diderot
Szymon Toruńczyck, Uniwersytet Warszawski

A special regular item in the CSL programme is the Ackermann Award presentation.
This is the EACSL Outstanding Dissertation Award for Logic in Computer Science. This
year, the jury decided to give the Ackermann Award for 2018 to Amina Doumane for her
thesis On the Infinitary Proof Theory of Logics with Fixed Points. The award was officially
presented at the conference on September 7, 2018. The citation of the award, an abstract of
the thesis and a biographical sketch of the recipient is included in the proceedings.

We wish to thank all members of the programme committee and all external reviewers for
their hard and highly professional work on reviewing and discussing the papers. Our thanks
also go to Marco Devesas Campos for maintaining the conference web site and publicising
the conference. We also wish to thank Thomas Schwentick who, as the EACSL president,
provided useful guidance. Michael Wagner from the Dagstuhl/LIPIcs team assisted us in the
production of the proceedings, for which we are grateful.

The conference also hosted the workshop An Intersection of Neighbourhoods which took
place the day after, September 8th. The workshop, organised by Dan Ghica on behalf of
the School of Computer Science of the University of Birmingham, was dedicated to Achim
Jung’s contributions to research in domain theory, topological logic, programming language
semantics, and computer science education, on the occasion of his 60th birthday. The invited
speakers were Samson Abramsky (University of Oxford), Thorsten Altenkirch (University
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of Nottingham), Mai Gehrke (Université Côte d’Azur), Michael Huth (Imperial College
London), Ho Weng Kin (Nanyang Technological University), Jimmie Lawson (Louisiana
State University), Michael Mislove (Tulane University), Frank Pfenning (Carnegie Mellon
University), and Alex Simpson (University of Ljubljana).



Programme Committee

Christel Baier, TU Dresden
Martin Berger, University of Sussex
Lars Birkedal, Aarhus University
Veronique Bruyere, University of Mons
Agata Ciabattoni, TU Wien
Ugo Dal Lago, University of Bologna
Ross Duncan, University of Strathclyde
Jamie Gabbay, Heriot-Watt University
Marco Gaboardi, University at Buffalo, SUNY
Dan R. Ghica, University of Birmingham (Co-chair)
Russ Harmer, CNRS & ENS Lyon
Achim Jung, University of Birmingham (Co-chair)
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The Ackermann Award 2018

Dexter Kozen
Computer Science Department, Cornell University, Ithaca, NY 14853, USA
kozen@cs.cornell.edu

Thomas Schwentick
Fakultät für Informatik, TU Dortmund, Dortmund, Germany
thomas.schwentick@udo.edu

Abstract
The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in Computer
Science. It is presented during the annual conference of the EACSL (CSL’xx). This contribution
reports on the 2018 edition of the award.

2012 ACM Subject Classification Theory of computation, Software and its engineering →
Formal language definitions, Software and its engineering → Formal software verification

Keywords and phrases Ackermann Award

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.1

Category Award Description

1 The Ackermann Award 2018

The fourteenth Ackermann Award is presented at CSL’18 in Birmingham, UK. The 2018
Ackermann Award was open to any PhD dissertation on any topic represented at the annual
CSL and LICS conferences that were formally accepted by a degree-granting institution in
fulfillment of the PhD degree between 1 January 2016 and 31 December 2017. The Jury
received eleven nominations for the 2018 Award. The candidates came from a number of
different countries around the world. The institutions at which the nominees obtained their
doctorates represent six different countries in Asia, Europe and North America.

The EACSL Ackermann Award is generously sponsored by the association Alumni der
Informatik Dortmund e.V.1

The topics covered a wide range of topics in Logic and Computer Science as represen-
ted by the LICS and CSL conferences. All submissions were of a very high quality and
contained significant contributions to their particular fields. The jury wish to extend their
congratulations to all the nominated candidates for their outstanding work.

The wide range of excellent candidates presented the jury with a difficult task. After an
extensive discussion, one candidate stood out and the jury unanimously decided to award
the 2018 Ackermann Award to:

Amina Doumane from France, for her thesis
On the Infinitary Proof Theory of Logics with Fixed Points
approved by the Université Paris Diderot in 2017.

1 www.cs.tu-dortmund.de/nps/en/Alumni/index.html

© Dexter Kozen and Thomas Schwentick;
licensed under Creative Commons License CC-BY
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1:2 The Ackermann Award 2018

Citation
Amina Doumane receives the 2018 Ackermann Award of the European Association of
Computer Science Logic (EACSL) for her thesis

On the infinitary proof theory of logics with fixed points.

Doumane’s thesis is a new and significant contribution to proof theory in computation,
focussing on logics extended with fixpoints. As a main contribution, it gives the first
constructive proof of the completeness of Kozen’s axiomatisation of the linear-time mu-
calculus, which is an ingenious application of automata over infinite words. Another large part
studies the infinitary proof theory of a fixpoint extension of multiplicative additive linear logic,
a challenging topic due to the non-well-founded nature of infinitary proofs. The dissertation is
lengthy, but sustains a high level of technical sophistication throughout, including a masterful
and innovative blend of proof-theoretic and automata-theoretic techniques.

Background of the Thesis
Amina Doumane’s thesis lies at the interface between two of the main areas of logic in
computer science: proof theory and verification.

Proof theory deals with the definition of formal proof objects and the study of their
structure, with a particular emphasis on various forms of computational content in proofs.
Indeed, for about fifty years, several proof transformations originally designed to obtain
normal forms of proofs (typically, to ease their study in logic) have been shown to correspond
to interesting computational mechanisms, often independently implemented in programming
languages. This conceptual bridge is known as the Curry-Howard correspondence. In its
simplest form, it relates proof normalization in natural deduction for intuitionistic logic with
program reductions in lambda calculus. It has been further extended to incorporate classical
logic, sequent calculus, cut elimination, and focalization, generating in this way a fruitful
dialogue between logic and programming.

In verification, logic also plays a central role. In this context, one is particularly interested
in logics that allow expressive specifications of software systems while remaining decidable.
Automata theory is often used for this purpose, exploiting its deep connections with the
logics under consideration. One may also rely on deductive systems such as analytic tableaux
that are similar to those studied in proof theory, but appear here in the context of verification
algorithms.

Amina Doumane has worked more specifically on fixed point logics, also called µ-calculi,
such as the modal µ-calculus, but also on first-order logic extended with (co)inductive
predicates. To reason informally about these logics, various (co)inductive proof principles
have been proposed. Dr. Doumane has formalized and transferred these principles to
first-order logic and studied their properties extensively. She allows infinite proofs (non-
well-founded derivation trees) while imposing some validity condition to rule out unsound
derivations, to obtain formal proofs that may be seen as modelling the informal proofs
by infinite descent. This approach, which can be found in some form in many tableaux
systems for µ-calculi, is of particular interest since it introduces objects which are close to
the (infinitary) semantics of the considered fixed point logics. It often yields useful support
for algorithmic methods and provides an intermediate system between semantics and finitary
proof systems.
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Despite the natural character and the usefulness of such infinitary deduction systems, no
general framework had been developed for their study at the beginning of Amina Doumane’s
PhD. Moreover, infinite proofs had not been considered from the point of view of structural
proof theory. The only exception was the seminal work of Luigi Santocanale who proved,
together with Jérôme Fortier, that an infinitary sequent calculus – for a purely additive logic
– satisfied the cut-elimination property. However, the logical fragment they captured was
quite restrictive.

Contributions of the Thesis

In this setting, Amina Doumane has obtained several important results during her PhD,
while developing her scientific vision:

After some initial results on the semantics of linear logic with fixed points in Ludics, the
thesis investigates completeness problems in more expressive logics and develops potential
connections with ω-automata. Amina Doumane considered the linear-time µ-calculus and,
together with David Baelde, Lucca Hirschi and Alexis Saurin, obtained a completeness
result restricted to a fragment corresponding to inclusions of Büchi automata. This result
is a consequence of the completeness theorem proved by Kaivola in 1995, but the approach
differs, relying on infinite proofs to obtain a new and more perspicuous argument.
The previous work crucially relies on structural aspects of infinitary calculi (notably, the
proper distinction of occurrences) which come from proof theory. This has motivated
further developments aimed at giving a truly proof-theoretic status to infinite proofs.
Specifically, Amina has shown that the infinitary calculus for multiplicative additive
linear logic enjoys cut elimination and focalization. These two results form the basis
of the modern study of proofs, an open and exciting field of future research, especially
regarding the computational expressivity of these calculi. One should note here that,
while this result adds only multiplicative connectives to the earlier result by Fortier and
Santocanale, this addition is both highly challenging and significant, since it now seems
easy to obtain cut elimination for richer systems, e.g., classical first-order logic with fixed
points.
Finally, Amina has pursued her own earlier work on completeness for linear-time µ-calculus.
By identifying new connections between infinitary proofs and automata theory (e.g.,
non-determinization of alternating parity automata), she has managed to obtain a new
constructive completeness argument; previous completeness proofs were non-constructive.
For this result, published at LICS 2017, she has received the Kleene award for the best
student paper.
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Mikołaj Bojańczyk (University of Warsaw),
Anuj Dawar (University of Cambridge),
Dexter Kozen (Cornell University),
Dale Miller (INRIA Saclay), SigLog representative,
Luke Ong (University of Oxford),
Simona Ronchi Della Rocca (University of Torino), the vice-president of EACSL,
Thomas Schwentick (TU Dortmund University), the president of EACSL.
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Mikołaj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
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Balder ten Cate from the Netherlands, and
Stefan Milius from Germany.

2007, Lausanne:
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China.

2008, Bertinoro:
Krishnendu Chatterjee from India.

2009, Coimbra:
Jakob Nordström from Sweden.

2011, Bergen:
Benjamin Rossman from USA.

2012, Fontainebleau:
Andrew Polonsky from Ukraine, and
Szymon Toruńczyk from Poland.

2013, Turin:
Matteo Mio from Italy.

2014, Vienna:
Michael Elberfeld from Germany.

2015, Berlin:
Hugo Férée from France, and
Mickael Randour from Belgium.

2016, Marseille:
Nicolai Kraus from Germany
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2017, Stockholm:
Amaury Pouly from France.

Detailed reports on their work appeared in the CSL proceedings and are also available on
the EACSL homepage.
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Abstract
Combinatorial games are widely used in finite model theory, constraint satisfaction, modal logic
and concurrency theory to characterize logical equivalences between structures. In particular,
Ehrenfeucht-Fraïssé games, pebble games, and bisimulation games play a central role. We show
how each of these types of games can be described in terms of an indexed family of comonads on
the category of relational structures and homomorphisms. The index k is a resource parameter
which bounds the degree of access to the underlying structure. The coKleisli categories for these
comonads can be used to give syntax-free characterizations of a wide range of important logical
equivalences. Moreover, the coalgebras for these indexed comonads can be used to characterize
key combinatorial parameters: tree-depth for the Ehrenfeucht-Fraïssé comonad, tree-width for
the pebbling comonad, and synchronization-tree depth for the modal unfolding comonad. These
results pave the way for systematic connections between two major branches of the field of logic
in computer science which hitherto have been almost disjoint: categorical semantics, and finite
and algorithmic model theory.
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1 Introduction
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pressiveness and complexity (“Power”). It is remarkable because these two fundamental
aspects of our field are studied using almost disjoint technical languages and methods, by
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in Computer Science, and may hold the key to fundamental advances in the field.
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In this paper, we develop a novel approach to relating categorical semantics, which
exemplifies the first strand, to finite model theory, which exemplifies the second. It builds on
the ideas introduced in [2], but goes much further, showing clearly that there is a strong and
robust connection, which can serve as a basis for many further developments.

The setting
Relational structures and the homomorphisms between them play a fundamental rôle in finite
model theory, constraint satisfaction and database theory. The existence of a homomorphism
A → B is an equivalent formulation of constraint satisfaction, and also equivalent to the
preservation of existential positive sentences [7]. This setting also generalizes what has
become a central perspective in graph theory [15].

Model theory and deception
In a sense, the purpose of model theory is “deception”. It allows us to see structures not “as
they really are”, i.e. up to isomorphism, but only up to definable properties, where definability
is relative to a logical language L. The key notion is logical equivalence ≡L. Given structures
A, B over the same vocabulary:

A ≡L B
∆⇐⇒ ∀ϕ ∈ L. A |= ϕ ⇐⇒ B |= ϕ.

If a class of structures K is definable in L, then it must be saturated under ≡L. Moreover,
for a wide class of cases of interest in finite model theory, the converse holds [20].

The idea of syntax-independent characterizations of logical equivalence is quite a classical
one in model theory, exemplified by the Keisler-Shelah theorem [30]. It acquires additional
significance in finite model theory, where model comparison games such as Ehrenfeucht-
Fraïssé games, pebble games and bisimulation games play a central role [21].

We offer a new perspective on these ideas. We shall study these games, not as external
artefacts, but as semantic constructions in their own right. Each model-theoretic comparison
game encodes “deception” in terms of limited access to the structure. These limitations
are indexed by a parameter which quantifies the resources which control this access. For
Ehrenfeucht-Fraïssé games and bisimulation games, this is the number of rounds; for pebble
games, the number of pebbles.

Main Results
We now give a conceptual overview of our main results. Technical details will be provided in
the following sections.

We shall consider three forms of model comparison game: Ehrenfeucht-Fraïssé games,
pebble games and bisimulation games [21]. For each of these notions of game G, and
value of the resource parameter k, we shall define a corresponding comonad Ck on the
category of relational structures and homomorphisms over some relational vocabulary. For
each structure A, CkA is another structure over the same vocabulary, which encodes the
limited access to A afforded by playing the game on A with k resources. There is always
an associated homomorphism εA : CkA → A (the counit of the comonad), so that CkA
“covers” A. Moreover, given a homomorphism h : CkA→ B, there is a Kleisli coextension
homomorphism h∗ : CkA → CkB. This allows us to form the coKleisli category Kl(Ck)
for the comonad. The objects are relational structures, while the morphisms from A to B

in Kl(Ck) are exactly the homomorphisms of the form CkA → B. Composition of these
morphisms uses the Kleisli coextension. The connection between this construction and the
corresponding form of game G is expressed by the following result:
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I Theorem 1. The following are equivalent:
1. There is a coKleisli morphism CkA→ B

2. Duplicator has a winning strategy for the existential G-game with k resources, played from
A to B.

The existential form of the game has only a “forth” aspect, without the “back”. This means
that Spoiler can only play in A, while Duplicator only plays in B. This corresponds to the
asymmetric form of the coKleisli morphisms CkA → B. Intuitively, Spoiler plays in CkA,
which gives them limited access to A, while Duplicator plays in B. The Kleisli coextension
guarantees that Duplicator’s strategies can always be lifted to CkB; while we can always
compose a strategy CkA→ CkB with the counit on B to obtain a coKleisli morphism.

This asymmetric form may seem to limit the scope of this approach, but in fact this is
not the case. For each of these comonads Ck, we have the following equivalences:

A�k B iff there are coKleisli morphisms CkA→ B and CkB→ A. Note that there need
be no relationship between these morphisms.
A ∼=Kl(Ck) B iff A and B are isomorphic in the coKleisli category Kl(Ck). This means that
there are morphisms CkA→ B and CkB→ A which are inverses of each other in Kl(Ck).

Clearly, ∼=Kl(Ck) strictly implies �k. We can also define an intermediate “back-and-forth”
equivalence ↔k, parameterized by a winning condition WA,B ⊆ CkA× CkB.

For each of our three types of game, there are corresponding fragments Lk of first-order
logic:

For Ehrenfeucht-Fraïssé games, Lk is the fragment of quantifier-rank ≤ k.
For pebble games, Lk is the k-variable fragment.
For bismulation games over relational vocabularies with symbols of arity at most 2, Lk is
the modal fragment [4] with modal depth ≤ k.

In each case, we write ∃Lk for the existential positive fragment of Lk, and Lk(#) for the
extension of Lk with counting quantifiers [21].

We can now state our first main result, in a suitably generic form.

I Theorem 2. For finite structures A and B:
(1) A ≡∃Lk B ⇐⇒ A�k B.
(2) A ≡Lk B ⇐⇒ A↔k B.
(3) A ≡Lk(#) B ⇐⇒ A ∼=Kl(Ck) B.

Note that this is really a family of three theorems, one for each type of game G. Thus in
each case, we capture the salient logical equivalences in syntax-free, categorical form.

We now turn to the significance of indexing by the resource parameter k. When k ≤ l, we
have a natural inclusion morphism CkA→ ClA, since playing with k resources is a special
case of playing with l ≥ k resources. This tells us that the smaller k is, the easier it is to
find a morphism CkA→ B. Intuitively, the more we restrict Spoiler’s abilities to access the
structure of A, the easier it is for Duplicator to win the game.

The contrary analysis applies to morphisms A→ CkB. The smaller k is, the harder it is
find such a morphism. Note, however, that if A is a finite structure of cardinality k, then
A�k CkA. In this case, with k resources we can access the whole of A. What can we say
when k is strictly smaller than the cardinality of A?

It turns out that there is a beautiful connection between these indexed comonads and
combinatorial invariants of structures. This is mediated by the notion of coalgebra, another
fundamental (and completely general) aspect of comonads. A coalgebra for a comonad Ck on
a structure A is a morphism A→ CkA satisfying certain properties. We define the coalgebra
number of a structure A, with respect to the indexed family of comonads Ck, to be the least
k such that there is a Ck-coalgebra on A.

CSL 2018
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We now come to our second main result.

I Theorem 3.
For the pebbling comonad, the coalgebra number of A corresponds precisely to the tree-
width of A.
For the Ehrenfeucht-Fraïssé comonad, the coalgebra number of A corresponds precisely to
the tree-depth of A [27].
For the modal comonad, the coalgebra number of A corresponds precisely to the modal
unfolding depth of A.

The main idea behind these results is that coalgebras on A are in bijective correspondence with
decompositions of A of the appropriate form. We thus obtain categorical characterizations
of these key combinatorial parameters.

2 Game Comonads

In this section we will define the comonads corresponding to each of the forms of model
comparison game we consider.

Firstly, a few notational preliminaries. A relational vocabulary σ is a set of relation
symbols R, each with a specified positive integer arity. A σ-structure A is given by a set
A, the universe of the structure, and for each R in σ with arity k, a relation RA ⊆ Ak. A
homomorphism h : A → B is a function h : A → B such that, for each relation symbol R
of arity k in σ, for all a1, . . . , ak in A: RA(a1, . . . , ak) ⇒ RB(h(a1), . . . , h(ak)). We write
R(σ) for the category of σ-structures and homomorphisms.

We shall write A≤k for the set of non-empty sequences of length ≤ k on a set A. We
use list notation [a1, . . . , aj ] for such sequences, and indicate concatenation by juxtaposition.
We write s v t for the prefix ordering on sequences. If s v t, there is a unique s′ such
that ss′ = t, which we refer to as the suffix of s in t. For each positive integer n, we define
n := {1, . . . , n}.

We shall need a few notions on posets. The comparability relation on a poset (P,≤)
is x↑y iff x ≤ y or y ≤ x. A chain in a poset (P,≤) is a subset C ⊆ P such that, for all
x, y ∈ C, x↑y. A forest is a poset (F,≤) such that, for all x ∈ F , the set of predecessors
↓(x) := {y ∈ F | y ≤ x} is a finite chain. The height ht(F ) of a forest F is maxC |C|, where
C ranges over chains in F .

We recall that a comonad (G, ε, δ) on a category C is given by a functor G : C → C, and
natural transformations ε : G ⇒ I (the counit), and δ : G ⇒ G2 (the comultiplication),
subject to the conditions that the following diagrams commute, for all objects A of C:

GA GGA

GGA GGGA

δA

δA GδA

δGA

GA GGA

GGA GA

δA

δA GεA

εGA

An equivalent formulation is comonad in Kleisli form [23]. This is given by an object
map G, arrows εA : GA → A for every object A of C, and a Kleisli coextension operation
which takes f : GA→ B to f∗ : GA→ GB. These must satisfy the following equations:

ε∗A = idGA, ε ◦ f∗ = f, (g ◦ f∗)∗ = g∗ ◦ f∗.

We can then extend G to a functor by Gf = (f ◦ ε)∗; and if we define the comultiplication
δ : G ⇒ G2 by δA = id∗GA, then (G, ε, δ) is a comonad in the standard sense. Conversely,
given a comonad (G, ε, δ), we can define the coextension by f∗ = Gf ◦ δA. This allows us
to define the coKleisli category Kl(G), with objects the same as those of C, and morphisms
from A to B given by the morphisms in C of the form GA → B. Kleisli composition of
f : GA→ B with g : GB → C is given by g • f := g ◦ f∗.
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2.1 The Ehrenfeucht-Fraïssé Comonad

We shall define a comonad Ek on R(σ) for each positive integer k. It will be convenient to
define Ek in Kleisli form. For each structure A, we define a new structure EkA, with universe
EkA := A≤k. We define the map εA : EkA→ A by εA[a1, . . . , aj ] = aj . For each relation
symbol R of arity n, we define REkA to be the set of n-tuples (s1, . . . , sn) of sequences which
are pairwise comparable in the prefix ordering, and such that RA(εAs1, . . . , εAsn). Finally,
we define the coextension. Given a homomorphism f : EkA→ B, we define f∗ : A≤k → B≤k

by f∗[a1, . . . , aj ] = [b1, . . . , bj ], where bi = f [a1, . . . , ai], 1 ≤ i ≤ j.

I Proposition 4. The triple (Ek, ε, (·)∗) is a comonad in Kleisli form.

Intuitively, an element of A≤k represents a play in A of length ≤ k. A coKleisli morphism
EkA → B represents a Duplicator strategy for the existential Ehrenfeucht-Fraïssé game
with k rounds, where Spoiler plays only in A, and bi = f [a1, . . . , ai] represents Duplicator’s
response in B to the i’th move by Spoiler. The winning condition for Duplicator in this
game is that, after k rounds have been played, the induced relation {(ai, bi) | 1 ≤ i ≤ k} is a
partial homomorphism from A to B.

These intuitions are confirmed by the following result.

I Theorem 5. The following are equivalent:
1. There is a homomorphism EkA→ B.
2. Duplicator has a winning strategy for the existential Ehrenfeucht-Fraïssé game with k

rounds, played from A to B.

2.2 The Pebbling Comonad

We now turn to the case of pebble games. The following construction appeared in [2]. Given
a structure A, we define PkA, which will represent plays of the k-pebble game on A.2 The
universe is (k×A)+, the set of finite non-empty sequences of moves (p, a), where p ∈ k is
a pebble index, and a ∈ A. We shall use the notation s = [(p1, a1), . . . , (pn, an)] for these
sequences, which may be of arbitrary length. Thus the universe of PkA is always infinite, even
if A is a finite structure. This is unavoidable, by [2, Theorem 7]. We define εA : PkA→ A

to send a play [(p1, a1), . . . , (pn, an)] to an, the A-component of its last move.
Given an n-ary relation R ∈ σ, we define RPkA(s1, . . . , sn) iff (1) the si are pairwise

comparable in the prefix ordering; (2) the pebble index of the last move in each si does not
appear in the suffix of si in sj for any sj w si; and (3) RA(εA(s1), . . . , εA(sn)).

Finally, given a homomorphism f : PkA→ B, we define f∗ : PkA→ PkB by
f∗[(p1, a1), . . . , (pj , aj)] = [(p1, b1), . . . , (pj , bj)], where bi = f [(p1, a1), . . . , (pi, ai)], 1 ≤ i ≤ j.

I Proposition 6. The triple (Pk, ε, (·)∗) is a comonad in Kleisli form.

The following is [2, Theorem 13].

I Theorem 7. The following are equivalent:
1. There is a homomorphism PkA→ B.
2. There is a winning strategy for Duplicator in the existential k-pebble game from A to B.

2 In [2] we used the notation Tk for this comonad.
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2.3 The Modal Comonad
For the modal case, we assume that the relational vocabulary σ contains only symbols of
arity at most 2. We can thus regard a σ-structure as a Kripke structure for a multi-modal
logic, where the universe is thought of as a set of worlds, each binary relation symbol Rα
gives the accessibility relation for one of the modalities, and each unary relation symbol P
give the valuation for a corresponding propositional variable. If there are no unary symbols,
such structures are exactly the labelled transition systems widely studied in concurrency [25].

Modal logic localizes its notion of satisfaction in a structure to a world. We shall reflect
this by using the category of pointed relational structures R?(σ). Objects of this category
are pairs (A, a) where A is a σ-structure and a ∈ A. Morphisms h : (A, a) → (B, b) are
homomorphisms h : A→ B such that h(a) = b. Of course, the same effect could be achieved
by expanding the vocabulary σ with a constant, but pointed categories appear in many
mathematical contexts.

For each k > 0, we shall define a comonad Mk, where Mk(A, a) corresponds to unravelling
the structure A, starting from a, to depth k. The universe of Mk(A, a) comprises the unit
sequence [a], which is the distinguished element, together with all sequences of the form
[a0, α1, a1, . . . , αj , aj ], where a = a0, 1 ≤ j ≤ k, and RA

αi
(ai, ai+1), 0 ≤ i < j. The map

εA : Mk(A, a) → (A, a) sends a sequence to its last element. Unary relation symbols P
are interpreted by PMk(A,a)(s) iff PA(εAs). For binary relations Rα, the interpretation is
R

Mk(A,a)
α (s, t) iff for some a′ ∈ A, t = s[α, a′]. Given a morphism f : Mk(A, a)→ (B, b), we

define f∗ : Mk(A, a)→Mk(B, b) recursively by f∗[a] = [b], f∗(s[α, a′]) = f∗(s)[α, b′] where
b′ = f(s[α, a′]). This is well-defined since f is a morphism by assumption.

I Proposition 8. The triple (Mk, ε, (·)∗) is a comonad in Kleisli form on R?(σ).

We recall the notion of simulation between Kripke structures [5]. Given structures A,
B, we define relations �k ⊆ A×B, k ≥ 0, by induction on k: �0 = A ×B, and a �k+1 b

iff (1) for all unary P , PA(a) implies PB(b), and (2) for all Rα, if RA
α (a, a′), then for some

b′, RB
α (b, b′) and a′ �k b′. It is standard that these relations are equivalently formulated in

terms of a modified existential Ehrenfeucht-Fraïssé game [5, 14].

I Theorem 9. Let A, B be Kripke structures, with a ∈ A and b ∈ B, and k > 0. The
following are equivalent:
1. There is a homomorphism f : Mk(A, a)→ (B, b).
2. a �k b.
3. There is a winning strategy for Duplicator in the k-round simulation game from (A, a) to

(B, b).

3 Logical Equivalences

We now show how our game comonads can be used to give syntax-free characterizations of a
range of logical equivalences, which play a central rôle in finite model theory and modal logic.

We shall be considering logics L which arise as fragments of L∞,ω, the extension of
first-order logic with infinitary conjunctions and disjunctions, but where formulas contain
only finitely many variables. In particular, we will consider the fragments Lk, of formulas
with quantifier rank ≤ k, and Lk, the k-variable fragment. These play a fundamental rôle in
finite model theory.

We shall also consider two variants for each of these fragments L. One is the existential
positive fragment ∃L, which contains only those formulas of L built using existential quan-
tifiers, conjunction and disjunction. The other is L(#), the extension of L with counting
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quantifiers. These have the form ∃≤n, ∃≥n, where the semantics of A |= ∃≥nx. ψ is that
there exist at least n distinct elements of A satisying ψ.

Each of these logics L induces an equivalence on structures in R(σ):

A ≡L B
∆⇐⇒ ∀ϕ ∈ L. A |= ϕ ⇐⇒ B |= ϕ.

Our aim is to characterize these equivalences in terms of our game comonads, and more
specifically, to use morphisms in the coKleisli categories as witnesses for these equivalences.

Two equivalences can be defined uniformly for any indexed family of comonads Ck:
A �C

k B iff there are coKleisli morphisms CkA → B and CkB → A. Note that there
need be no relationship between these morphisms. This is simply the equivalence induced
by the preorder collapse of the coKleisli category.
A ∼=C

k B iff A and B are isomorphic in the coKleisli category Kl(Ck). This means that
there are morphisms CkA→ B and CkB→ A which are inverses of each other in Kl(Ck).

Clearly, ∼=C
k strictly implies �C

k .
We shall also define an intermediate, “back-and-forth” equivalence ↔C

k . This will be
more specific to “game comonads” defined on a concrete category such as R(σ), but it will
still be defined and shown to have the appropriate properties in considerable generality.
We assume that for each structure A, the universe CkA has a forest order v, as seen in
our concrete constructions using the prefix ordering on sequences. We add a root ⊥ for
convenience. We write the covering relation for this order as ≺; thus s ≺ t iff s v t, s 6= t,
and for all u, s v u v t implies u = s or u = t. We shall also assume that, for any coKleisli
morphism f : CkA → B, the Kleisli coextension preserves the covering relation: s ≺ s′

implies f∗(s) ≺ f∗(s′).
The definition will be parameterized on a set WA,B ⊆ CkA×CkB of “winning positions”

for each pair of structures A, B. We assume that a function f : CkA→ B such that, for all
s ∈ CkA, (s, f∗(s)) ∈WA,B, is a coKleisli morphism.

We define the back-and-forth Ck game between A and B as follows.
At the start of each round of the game, the position is specified by (s, t) ∈ CkA× CkB.

The initial position is (⊥,⊥). The round proceeds as follows. Either Spoiler chooses some
s′ � s, and Duplicator responds with t′ � t, resulting in a new position (s′, t′); or Spoiler
chooses some t′′ � t and Duplicator responds with s′′ � s, resulting in (s′′, t′′). Duplicator
wins the round if the new position is in WA,B.

We can then define S(A,B) to be the set of all functions f : CkA→ B such that, for all
s ∈ CkA, (s, f∗(s)) ∈WA,B.

We define a locally invertible pair (F,G) from A to B to be a pair of sets F ⊆ S(A,B),
G ⊆ S(B,A), satisfying the following conditions:
1. For all f ∈ F , s ∈ CkA, for some g ∈ G, g∗f∗(s) = s.
2. For all g ∈ G, t ∈ CkB, for some f ∈ F , f∗g∗(t) = t.
We define A↔C

k B iff there is a non-empty locally invertible pair from A to B.

I Proposition 10. The following are equivalent:
1. A↔C

k B.
2. There is a winning strategy for Duplicator in the Ck game between A and B.

Proof. Assuming (1), with a locally invertible pair (F,G), we define a strategy for Duplicator
inductively, such that after each round, the play is within the set

{(s, f∗(s)) | s ∈ CkA, f ∈ F} = {(g∗(t), t) | t ∈ CkB, g ∈ G}.
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Assume (s, t) has been played. If Spoiler now plays s′ � s in CkA, then there is f ∈ F such
that f∗(s) = t, and we respond with t′ = f∗(s′) � f∗(s). Since f ∈ S(A,B), (s′, t′) ∈WA,B.
The case when Spoiler plays in CkB is symmetric.

Assuming (2), let Φ be the set of all plays (s, t) following the Duplicator strategy. Define

F := {f : CkA→ B | ∀s ∈ CkA. (s, f∗(s)) ∈ Φ},
G := {g : CkB → A | ∀t ∈ CkB. (g∗(t), t) ∈ Φ}.

Since the strategy is winning, Φ ⊆ WA,B, and F ⊆ S(A,B), G ⊆ S(B,A). We claim that
for all (s, t) ∈ Φ: (A) ∃f ∈ F. f∗(s) = t, and (B) ∃g ∈ G. g∗(t) = s. (A) follows by extending
(s, t) to a morphism f : CkA→ B. For any s′ v s, we assign the corresponding predecessor
of t. For any s′ which is not a predecessor of s, let s1 = s u s′, the meet of s and s′. We
write t1 for the corresponding predecessor of t. We define f on s′ by assigning t1 in response
to s1, and then following Duplicator’s responses as Spoiler plays according to s′ in CkA. (B)
follows by a symmetric argument.

Now for any f ∈ F and s ∈ CkA, (s, f∗(s)) ∈ Φ, and hence by (B) we can find g ∈ G to
witness local invertibility; the case for g ∈ G and t ∈ CkB is symmetric. J

The local invertibility condition on a pair of sets (F,G) has a fixpoint characterization,
which may be of some interest. We define set functions Γ : P(S(A,B)) → P(S(B,A)),
∆ : P(S(B,A))→ P(S(A,B)):

Γ(F ) = {g ∈ T | ∀t ∈ CkB.∃f ∈ F. f∗g∗t = t},
∆(G) = {f ∈ S | ∀s ∈ CkA.∃g ∈ G. g∗f∗s = s}.

These functions are monotone. Moreover, a pair of sets (F,G) is locally invertible iff F ⊆ ∆(G)
and G ⊆ Γ(F ). These conditions in turn imply that F ⊆ ∆Γ(F ), and if this holds, then
we can set G := Γ(F ) to obtain a locally invertible pair (F,G). Thus existence of a locally
invertible pair is equivalent to the existence of non-empty F such that F ⊆ Θ(F ), where
Θ = ∆Γ. Since Θ is monotone, by Knaster-Tarski this is equivalent to the greatest fixpoint
of Θ being non-empty. (Note that Θ(∅) = ∅).

If A and B are finite, so is S, and we can construct the greatest fixpoint by a finite
descending sequence S ⊇ Θ(S) ⊇ Θ2(S) ⊇ · · · . This fixpoint is non-empty iff A↔E

k B.
We shall now turn to a detailed study of each of our comonads in turn.

3.1 The Ehrenfecht-Fraïssé comonad
A coKelisli morphism f : EkA→ B is an I-morphism if s v t and εA(s) = εA(t) implies that
f(s) = f(t). An equivalent statement is that, if we add a binary relation symbol I to the
vocabulary, and set IA to be the identity relation on A, and IB to be the identity relation
on B, then f is also a homomorphism with respect to I. The significance of this condition
is that, if f : EkA → B and g : EkB → A are I-morphisms, then f∗(s) = t, g∗(t) = s

imply that (s, t) defines a partial isomorphism from A to B. We refine the definition of the
equivalence ∼=E

k accordingly. We say that A ∼=E
k B iff there are I-morphisms f : EkA → B

and g : EkB→ A with f∗−1 = g∗.
Note that, for any coKleisli morphism f : EkA→ B, there is an I-morphism fI : EkA→ B,

obtained by firstly restricting f to non-repeating sequences, then extending it by applying
the I-morphism condition for repetitions. It is easy to verify that fI is a homomorphism.
Thus there is no need to modify the equivalence �E

k .
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We define WEk

A,B to be the set of pairs (s, t) ∈ EkA × EkB such that s = [a1, . . . , aj ],
t = [b1, . . . , bj ], and {(ai, bi) | 1 ≤ i ≤ j} defines a partial isomorphism from A to B. This
specifies the back-and-forth equivalence ↔E

k .
We now recall the bijection game [16]. In this variant of the Ehrenfeuch-Fraïssé game,

Spoiler wins if the two structures have different cardinality. Otherwise, at round i, Duplicator
chooses a bijection ψi between A and B, and Spoiler chooses an element ai of A. This
determines the choice by Duplicator of bi = ψi(ai). Duplicator wins after k rounds if the
relation {(ai, bi) | 1 ≤ i ≤ k} is a partial isomorphism.

I Proposition 11. The following are equivalent, for finite structures A and B:
1. A ∼=E

k B.
2. There is a winning strategy for Duplicator in the k-round bijection game.

Proof. Assuming (1), we have I-morphisms f : EkA→ B and g : EkB→ A with g∗ = f∗−1.
For each s ∈ {[]} ∪ A<k, we can define a map ψs : A → B, by ψs(a) = f(s[a]). This is
a bijection, with inverse defined similarly from g. These bijections provide a strategy for
Duplicator. Since each (s, f∗(s)) is a partial isomorphism, this is a winning strategy.

Conversely, a winning strategy provides bjiections ψs, which we can use to define f by
f(s[a]) = ψs(a). The winning conditions imply that this is an I-isomorphism in the coKleisli
category. J

We can now state our main result on logical equivalences for the Ehrenfeucht-Fraïssé co-
monad.

I Theorem 12.
1. For all structures A and B: A ≡∃Lk B ⇐⇒ A�E

k B.
2. For all structures A and B: A ≡Lk B ⇐⇒ A↔E

k B.
3. For all finite structures A and B: A ≡Lk(#) B ⇐⇒ A ∼=E

k B.

Proof. (1) follows from Theorem 5 and standard results [19]. (2) follows from Proposition 10
and the Ehrenfeucht-Fraïssé theorem [11]. (3) follows from Proposition 11 and results
originating in [16] and expounded in [21]. J

If we modify WEk

A,B, and hence ↔E
k , by asking for partial correspondences rather than

partial isomorphisms, we obtain a characterization of elementary equivalence for equality-free
logic [6].

3.2 The Pebbling Comonad
A similar notion of I-morphism applies to the pebbling comonad as we saw previously with
the Ehrenfeucht-Fraïssé comonad [2].

Given s = [(p1, a1), . . . , (pn, an)] ∈ PkA and t = [(p1, b1), . . . , (pn, bn)] ∈ PkB, we define
φs,t = {(ap, bp) | p ∈ k, p occurs in s}, where the last occurrence of p in s is on ap, and the
corresponding last occurrence in t is on bp. We define WPk

A,B to be the set of all such (s, t)
for which φs,t is a partial isomorphism. This specifies the back-and-forth equivalence ↔P

k.
We now state the following result, characterizing the equivalences induced by finite-variable

logics Lk.

I Theorem 13.
1. For all structures A and B: A ≡∃Lk

B ⇐⇒ A�P
k B.

2. For all finite structures A and B: A ≡Lk

B ⇐⇒ A↔P
k B.

3. For all finite structures A and B: A ≡Lk(#) B ⇐⇒ A ∼=P
k B.

Proof. This follows from Theorems 14, 18 and 20 of [2]. J
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3.3 The Modal Comonad
The key notion of equivalence in modal logic is bisimulation [5, 29]. We shall define the finite
approximants to bisimulation [17].3 Given Kripke structures A and B, we define a family
of relations ∼k ⊆ A × B: ∼0 = A × B; a ∼k+1 b iff (1) for all unary P , PA(a) iff PB(b);
and (2) for all binary Rα, RA

α (a, a′) implies for some b′, RB
α (b, b′) and a′ ∼k b′, and RB

α (b, b′)
implies for some a′, RA

α (a, a′) and a′ ∼k b′.
We define WMk

A,B to be the set of all (s, t) ∈ Mk(A, a) × Mk(B, b) such that s =
[a0, α1, a1, . . . , αj , aj ], t = [b0, α1, b1, . . . , αj , bj ], and for all i and all unary P , PA(ai) iff
PB(bi). This specifies the back-and-forth equivalence ↔M

k .

I Theorem 14. For pointed Kripke structures (A, a) and (B, b): a ∼k b iff (A, a)↔M
k (B, b).

Turning to logic, we will consider Mk, the modal fragment of modal depth ≤ k. This
arises from the standard translation of (multi)modal logic into L∞,ω [5]. Let us fix a
relational vocabulary σ with symbols of arity ≤ 2. For each unary symbol P , there will be a
corresponding propositional variable p. Formulas are built from these propositional variables
by propositional connectives, and modalities �α, ♦α corresponding to the binary relation
symbols Rα in σ. Modal formulas ϕ then admit a translation into formulas JϕK = ψ(x) in
one free variable. The translation sends propositional variables p to P (x), commutes with
the propositional connectives, and sends ♦αϕ to ∃y.Rα(x, y) ∧ ψ(y), where ψ(x) = JϕK.
This translation is semantics-preserving: given a σ-structure A and a ∈ A, then A, a |= ϕ

in the sense of Kripke semantics iff A |= ψ(a) in the standard model-theoretic sense, where
ψ(x) = JϕK.

We define the modal depth of a modal formula ϕ as the maximum nesting depth of
modalities occurring in ϕ. Mk is then the image of the translation of modal formulas of
modal depth ≤ k. The existential positive fragment ∃Mk arises from the modal sublanguage
in which formulas are built from propositional variables using only conjunction, disjunction
and the diamond modalities ♦α.

Extensions of the modal language with counting capabilities have been studied in the
form of graded modalities [10]. These have the form ♦nα, �nα, where A, a |= ♦nαϕ if there are
at least n Rα-successors of a which satisfy ϕ. We defineMk(#) to be the extension of the
modal fragment with graded modalities.

A corresponding notion of graded bisimulation is given in [10]. This is in turn related
to resource bismulation [8], which has been introduced in the concurrency setting. The two
notions are shown to coincide for image-finite Kripke structures in [3], who also show that
they can be presented in a simplified form. We recall that a Kripke structure A is image-finite
if for all a ∈ A and Rα, Rα(a) := {a′ | RA(a, a′)} is finite.

Adapting the results in [3], we define approximants ∼g
k for graded bisimulation: ∼g

0 =
A × B, and a ∼g

k+1 b if for all P , PA(a) iff PB(b), and for all Rα, there is a bijection
θ : RA(a) ∼= RB(b) such that, for all a′ ∈ RA(a), a′ ∼g

k θ(a′).
We can also define a corresponding graded bisimulation game between (A, a) and (B, b).

At round 0, the elements a0 = a and b0 = b are chosen. Duplicator wins if for all P ,
PA(a) iff PB(b), otherwise Spoiler wins. At round i + 1, Spoiler chooses some Rα, and
Duplicator chooses a bijection θi : RA

α (ai) ∼= RB
α (bi). If there is no such bijection, Spoiler

wins. Otherwise, Spoiler then chooses ai+1 ∈ RA(ai), and bi+1 := θi(ai+1). Duplicator wins
this round if for all P , PA(ai+1) iff PB(bi+1), otherwise Spoiler wins.

3 Our focus on finite approximants in this paper is for uniformity, and because they are relevant in
resource terms. We can extend the comonadic semantics beyond the finite levels. We shall return to
this point in the final section.
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This game is evidently analogous to the bijection game we encountered previously.

I Proposition 15. The following are equivalent:
1. There is a winning strategy for Duplicator in the k-round graded bisimulation game

between (A, a) and (B, b).
2. a ∼g

k b.
3. (A, a) ∼=M

k (B, b).

I Theorem 16.
1. For all Kripke structures A and B: A ≡∃Mk B ⇐⇒ A�M

k B.
2. For all Kripke structures A and B: A ≡Mk B ⇐⇒ A↔M

k B.
3. For all image-finite Kripke structures A and B: A ≡Mk(#) B ⇐⇒ A ∼=M

k B.

Proof. (1) follows from Proposition 9 and standard results on preservation of existential
positive modal formulas by simulations [5]. (2) follows from Theorem 14 and the Hennesy-
Milner Theorem [17, 5]. (3) follows from Proposition 15 and the results in [10, 3]. J

4 Coalgebras and combinatorial parameters

Another fundamental aspect of comonads is that they have an associated notion of coalgebra.
A coalgebra for a comonad (G, ε, δ) is a morphism α : A → GA such that the following
diagrams commute:

A GA

GA G2A

α

α δA

Gα

A GA

A

α

idA

εA

Our use of indexed comonads Ck opens up a new kind of question for coalgebras. Given
a structure A, we can ask: what is the least value of k such that a Ck-coalgebra exists on A?
We call this the coalgebra number of A. We shall find that for each of our comonads, the
coalgebra number is a significant combinatorial parameter of the structure.

4.1 The Ehrenfeucht-Fraïssé comonad and tree-depth
A graph is G = (V,_), where V is the set of vertices, and _ is the adjacency relation, which
is symmetric and irreflexive. A forest cover for G is a forest (F,≤) such that V ⊆ F , and
if v _ v′, then v↑v′. The tree-depth td(G) is defined to be minF ht(F ), where F ranges
over forest covers of G.4 It is clear that we can restrict to forest covers of the form (V,≤),
since given a forest cover (F,≤) of G = (V,_), (V, ≤ ∩ V 2) is also a forest cover of G, and
ht(V ) ≤ ht(F ). Henceforth, by forest covers of G we shall mean those with universe V .

Given a σ-structure A, the Gaifman graph G(A) is (A,_), where a _ a′ iff for some
relation R ∈ σ, for some (a1, . . . , an) ∈ RA, a = ai, a′ = aj , a 6= a′. The tree-depth of A is
td(G(A)).

I Theorem 17. Let A be a finite σ-structure, and k > 0. There is a bijective correspondence
between
1. Ek-coalgebras α : A→ EkA.
2. Forest covers of G(A) of height ≤ k.

4 We formulate this notion in order-theoretic rather than graph-theoretic language, but it is equivalent to
the definition in [27].
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Proof. Suppose that α : A → EkA is a coalgebra. For a ∈ A, let α(a) = [a1, . . . , aj ]. The
first coalgebra equation says that α(ai) = [a1, . . . , ai], 1 ≤ i ≤ j. The second says that aj = a.
Thus α : A→ A≤k is an injective map whose image is a prefix-closed subset of A≤k. Defining
a ≤ a′ iff α(a) v α(a′) yields a forest order on A, of height ≤ k. If a _ a′ in G(A), for some
a1, . . . , an with a = ai, a′ = aj , we have RA(a1, . . . , an). Since α is a homomorphism, we
must have REkA(α(a1), . . . , α(an)), hence α(ai)↑α(aj), and so ai↑aj . Thus (A,≤) is a forest
cover of A, of height ≤ k.

Conversely, given such a forest cover (A,≤), for each a ∈ A, its predecessors form a chain
a1 < · · · < aj , with aj = a, and j ≤ k. We define α(a) = [a1, . . . , aj ], which yields a map
α : A→ A≤k, which evidently satisfies the coalgebra equations. If RA(a1, . . . , an), then since
(A,≤) is a forest cover, we must have ai↑aj for all i, j, and hence α(ai)↑α(aj). Thus α is a
homomorphism. J

We write κE(A) for the coalgebra number of A with respect to the the Ehrenfeucht-Fraïssé co-
monad.

I Theorem 18. For all finite structures A: td(A) = κE(A).

4.2 The pebbling comonad and tree-width
We review the notions of tree decompositions and tree-width. A tree (T,≤) is a forest with
a least element (the root). A tree is easily seen to be a meet-semilattice: every pair of
elements x, x′ has a greatest lower bound x ∧ x′ (the greatest common ancestor). The path
from x to x′ is the set path(x, x′) := [x ∧ x′, x] ∪ [x ∧ x′, x′], where we use interval notation:
[y, y′] := {z ∈ T | y ≤ z ≤ y′}.

A tree-decomposition of a graph G = (V,_) is a tree (T,≤) together with a labelling
function λ : T → P(V ) satisfying the following conditions:

(TD1) for all v ∈ V , for some x ∈ T , v ∈ λ(x);
(TD2) if v _ v′, then for some x ∈ T , {v, v′} ⊆ λ(x);
(TD3) if v ∈ λ(x) ∩ λ(x′), then for all y ∈ path(x, x′), v ∈ λ(y).

The width of a tree decomposition is given by maxx∈T |λ(x)| − 1. We define the tree-width
tw(G) of a graph G as minT width(T ), where T ranges over tree decompositions of G.

We shall now give an alternative formulation of tree-width which will provide a useful
bridge to the coalgebraic characterization. It is also interesting in its own right: it clarifies
the relationship between tree-width and tree-depth, and shows how pebbling arises naturally
in connection with tree-width.

A k-pebble forest cover for a graph G = (V,_) is a forest cover (V,≤) together with
a pebbling function p : V → k such that, if v _ v′ with v ≤ v′, then for all w ∈ (v, v′],
p(v) 6= p(w).

The following result is implicit in [2], but it seems worthwhile to set it out more clearly.

I Theorem 19. Let G be a finite graph. The following are equivalent:
1. G has a tree decomposition of width < k.
2. G has a k-pebble forest cover.

Proof. (1)⇒ (2). Assume that G = (V,_) has a tree decomposition (T,≤, λ) of width < k.
We say that a tree decomposition is orderly if it has the following property: for all x ∈ T ,
there is at most one v ∈ λ(x) such that for all x′ < x, v 6∈ λ(x′). Nice tree decompositions
are orderly [18]; hence by standard results, without loss of generality we can assume that the
given tree decomposition is orderly.
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For any v ∈ V , the set of x ∈ T such that v ∈ λ(x) is non-empty by (TD1), and closed
under meets by (TD3). Since T is a tree, this implies that this set has a least element τ(v).
This defines a function τ : V → T . The fact that tree decomposition is orderly implies that
τ is injective. We can define an order on V by v ≤ v′ iff τ(v) ≤ τ(v′). This is isomorphic to
a sub-poset of T , and hence is a forest order.

We define p : V → k by induction on this order. Assuming p(v′) is defined for all v′ < v,
we consider τ(v). Since the tree decomposition is orderly, this means in particular that p(v′)
is defined for all v′ ∈ S := λ(τ(v)) \ {v}. Since the decomposition is of width < k, we must
have |S| < k. We set p(v) := min(k \ {p(v′) | v′ ∈ S}).

To verify that (V,≤) is a forest cover, suppose that v _ v′. By (TD2), for some x ∈ T ,
{v, v′} ⊆ λ(x). We have τ(v) ≤ x ≥ τ(v′), and since T is a tree, we must have τ(v) ↑ τ(v′),
whence v ↑ v′.

Finally, we must verify the condition on the pebbling function p. Suppose that v _ v′,
and v < w ≤ v′. Since v _ v′, for some x, {v, v′} ⊆ λ(x). But then τ(v) < τ(w) ≤ τ(v′) ≤ x.
Since v ∈ λ(τ(v)) ∩ λ(x), by (TD3), v ∈ λ(τ(w)). By construction of the pebbling function,
this implies p(v) 6= p(w).

(2)⇒ (1). Suppose that (V,≤, p) is a k-pebble forest cover of G. We define a tree T = V⊥
by adjoining a least element ⊥ to V . We say that v is an active predecessor of v′ if v ≤ v′,
and for all w ∈ (v, v′], p(v) 6= p(w). We define the labelling function by setting λ(v) to be
the set of active predecessors of v; λ(⊥) := ∅. Since p|λ(v) is injective, |λ(v)| ≤ k.

We verify the tree decomposition conditions. (TD1) holds, since v ∈ λ(v). (TD2) If
v _ v′, then v↑v′. Suppose v ≤ v′. Then v is an active predecessor of v′, and {v, v′} ⊆ λ(v′).
(TD3) Suppose v ∈ λ(v1) ∩ λ(v2). Then v is an active predecessor of both v1 and v2. This
implies that for all w ∈ path(v1, v2), v is an active predecessor of w, and hence v ∈ λ(w). J

I Theorem 20. Let A be a finite σ-structure. There is a bijective correspondence between:
1. Pk-coalgebras α : A→ PkA
2. k-pebble forest covers of G(A).

Proof. See [2, Theorem 6]. J

We write κP(A) for the coalgebra number of A with respect to the the pebbling comonad.

I Theorem 21. For all finite structures A: tw(A) = κP(A)− 1.

4.3 The modal comonad and synchronization tree depth
Let A be a Kripke structure. It will be convenient to write labelled transitions a α→ a′

for Rα(a, a′). Given a ∈ A, the submodel generated by a is obtained by restricting the
universe to the set of a′ such that there is a path a

α1→ · · · αk→ a′. This submodel forms a
synchronization tree [24] if for all a′, there is a unique such path. The height of such a tree
is the maximum length of any path from the root a.

I Proposition 22. Let A be a Kripke structure, with a ∈ A. The following are equivalent:
1. There is a coalgebra α : (A, a)→Mk(A, a).
2. The submodel generated by a is a synchronization tree of height ≤ k.
We define the modal depth md(A, a) = k if the submodel generated by a is a synchronization
tree of height k.

I Theorem 23. Let A be a Kripke structure, and a ∈ A be such that the submodel generated
by a is a synchronization tree of finite height. Then md(A, a) = κM(A, a).
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Note the conditional nature of this result, which contrasts with those for the other
comonads. The modal comonad is defined in such a way that the universe Mk(A, a) reflects
information about the possible transitions. Thus having a coalgebra at all, regardless of the
value of the resource parameter, is a strong constraint on the structure of the transition
system.

5 Further Directions

From the categorical perspective, there is considerable additional structure which we have
not needed for the results in this paper, but which may be useful for further investigations.

Coequaliser requirements. In Moggi’s work on computational monads, there is an “equaliser
requirement” [26]. The dual version for a comonad (G, ε, δ) is that for every object A, the
following diagram is a coequaliser:

G2A GA A
GεA

εGA

εA

This says in particular that the counit is a regular epi, and hence GA “covers” A in a strong
sense.

This coequaliser requirement holds for all our comonads. For Ek, this is basically the
observation that, given a sequence of sequences [s1, . . . , sj ], we have ε[εs1, . . . , εsj ] = εsj .
The other cases are similar.

Indexed and graded structure. Our comonads Ek, Pk, Mk are not merely discretely indexed
by the resource parameter. In each case, there is a functor (Z+,≤)→ Comon(R(σ)) from
the poset category of the positive integers to the category of comonads on R(σ). Thus if
k ≤ l there is a natural transformation with components ik,lA : EkA→ ElA, which preserves
the counit and comultiplication; and similarly for the other comonads. Concretely, this is
just including the plays of up to k rounds in the plays of up to l rounds, k ≤ l.

Another way of parameterizing comonads by resource information is grading [12]. Recall
that comonads on C are exactly the comonoids in the strict monoidal category ([C, C], ◦, I) of
endofunctors on C [22]. Generalizing this description, a graded comonad is an oplax monoidal
functor G : (M, ·, 1)→ ([C, C], ◦, I) from a monoid of grades into this endofunctor category.
This means that for each m ∈ M , there is an endofunctor Gm, there is a graded counit
natural transformation ε : G1 ⇒ I, and for all m,m′ ∈M , there is a graded comultiplication
δm,m

′ : Gm·m′ ⇒ GmGm′ .
The two notions can obviously be combined. We can see our comonads as (trivially)

graded, by viewing them as oplax monoidal functors (Z+,≤,min, 1)→ ([C, C], ◦, I). Given
k ≤ l, we have e.g. Ek ⇒ EkEk ⇒ EkEl. The question is whether there are more interesting
graded structures which arise naturally in considering richer logical and computational
settings.

Colimits and infinite behaviour. In this paper, we have dealt exclusively with finite resource
levels. However, there is an elegant means of passing to infinite levels. We shall illustrate
this with the modal comonad. Using the inclusion morphisms described in the previous
discussion of indexed structure, for each structure A we have a diagram

M1A→M2A→ · · · →MkA→ · · ·
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By taking the colimits of these diagrams, we obtain a comonad Mω, which corresponds
to the usual unfolding of a Kripke structure to all finite levels. This will correspond to
the bisimulation approximant ∼ω, which coincides with bisimulation itself on image-finite
structures [17]. Transfinite extensions are also possible. Similar constructions can be applied
to the other comonads. This provides a basis for lifting the comonadic analysis to the level
of infinite models.

Relations between fragments and parameters. We can define morphisms between the
different comonads we have discussed, which yield proofs about the relationships between
the logical fragments they characterize. This categorical perspective avoids the cumbersome
syntactic translations in the standard proofs of these results. For illustration, there is a
comonad morphism t : Ek ⇒ Pk with components tA : EkA→ PkA given by [a1, . . . , aj ] 7→
[(1, a1), . . . , (j, aj)]. Together with theorems 13 and 12, this shows that ∃Lk ⊆ ∃Lk and
Lk(#) ⊆ Lk(#). Moreover, composing t with a coalgebra A → EkA yields a coalgebra
A→ PkA, demonstrating that tw(A) + 1 ≤ td(A). Another morphism Mω ⇒ P2 shows that
modal logic can be embedded into 2-variable logic.

Concluding remarks
Our comonadic constructions for the three major forms of model comparison games show a
striking unity, on the one hand, but also some very interesting differences. For the latter, we
note the different forms of logical “deception” associated with each comonad, the different
forms of back-and-forth equivalences, and the different combinatorial parameters which arise
in each case.

One clear direction for future work is to gain a deeper understanding of what makes these
constructions work. Another is to understand how widely the comonadic analysis of resources
can be applied. We are currently investigating the guarded fragment [4, 14]; other natural
candidates include existential second-order logic, and branching quantifiers and dependence
logic [32].

Since comonads arise naturally in type theory and functional programming [31, 28], can
we connect the study of finite model theory made here with a suitable type theory? Can this
lead, via the Curry-Howard correspondence, to the systematic derivation of some significant
meta-algorithms, such as decision procedures for guarded logics based on the tree model
property [13], or algorithmic metatheorems such as Courcelle’s theorem [9]?

Another intriguing direction is to connect these ideas with the graded quantum monad
studied in [1], which provides a basis for the study of quantum advantage in R(σ). This may
lead to a form of quantum finite model theory.
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Abstract
Automatic structures are structures that admit a finite presentation via automata. Their most
prominent feature is that their theories are decidable. In the literature, one finds automatic struc-
tures with non-elementary theory (e.g., the complete binary tree with equal-level predicate) and
automatic structures whose theories are at most 3-fold exponential (e.g., Presburger arithmetic
or infinite automatic graphs of bounded degree). This observation led Durand-Gasselin to the
question whether there are automatic structures of arbitrary high elementary complexity.

We give a positive answer to this question. Namely, we show that for every h ≥ 0 the forest
of (infinitely many copies of) all finite trees of height at most h+ 2 is automatic and it’s theory
is complete for STA(∗, exph(n, poly(n)), poly(n)), an alternating complexity class between h-fold
exponential time and space. This exact determination of the complexity of the theory of these
forests might be of independent interest.
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1 Introduction

The idea of an automatic structure goes back to Büchi and Elgot who used finite automata
to decide, e.g., Presburger arithmetic [6]. In essence, a structure is automatic if the elements
of the universe are strings form a regular language and every relation of the structure is
synchronously-rational [11]. The notion was introduced in [13] and a systematic study was
initiated by Khoussainov and Nerode [15] and started to attract quite some interest with
the work by Blumensath and Grädel [3, 4], see the surveys [23, 1, 24, 14]. One of the
main motivations for investigating automatic structures is that their first-order theories are
decidable. This decidability holds even if one extends first-order logic by quantifiers “there
exist infinitely many” [3], “the number of elements satisfying ϕ is a finite multiple of p” [16],
and “there exists an infinite relation satisfying ϕ” (provided ϕ mentions the infinite relation
only negatively) [19].

Already in [3, 4], the authors observe that the first-order theory of an automatic structure
is, in general, non-elementary (i.e., does not belong to n-EXPSPACE for any n ∈ N). The
simplest example is provided by the set of binary words with the prefix relation, the two
successor relations, and the equal-length predicate. An inspection of the decidability proof
for arbitrary automatic structures shows that validity of a formula in Σn+1 can be decided
in n-EXPSPACE. Note that this problem has two inputs: a formula from Σn+1 and an
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3:2 Elementary Complexity Classes with Theories of Automatic Structures

automatic structure (given by a tuple of automata). In [18], it is shown that fixing one of
the two inputs does not make the problem simpler. In other words: both the expression and
the data complexity are complete for n-EXPSPACE.

On the positive side, there are also automatic structures whose theories are much simpler.
One example is Presburger’s arithmetic, i.e., the structure (N,+) that is automatic [6] and
has a theory in 2-EXPSPACE [22, 8]. Another example are automatic structures of bounded
degree [20] whose theories are in 2-EXPSPACE. Finally, let us mention structures, which have
an automatic presentation over a unary alphabet, e.g. the natural Numbers with successor
(N, S). The first-order theory of every such structure is decidable in polynomial time [17].

To the authors’ knowledge, no automatic structure is known whose theory is elementary
but not in 2-EXPSPACE. In this article, we provide such examples. More precisely, for any
h ∈ N, we provide an automatic structure whose theory is complete for the class of problems
that can be decided in h-fold exponential time with polynomially many alternations, i.e., for
Berman’s complexity class STA(∗, exph(2, poly(n)), poly(n)) [2].

This structure is the forest Fh+2 consisting of countably many copies of all trees of height
at most h+ 2. Containment in STA(∗, exph(2, poly(n)), poly(n)) is shown as follows: Let ϕ
be a first-order sentence of quantifier rank r. In a first step, we show that any tree of height
≤ h+ 2 is indistinguishable from some tree of size h-fold exponential in r by any formula of
quantifier rank r. Consequently, to determine the truth of the sentence ϕ in the forest Fh+2,
it suffices to determine it in a forest whose trees have size h-fold exponential in r. Since
the elements of this forest can be described by words of h-fold exponential size, its model
checking can be done in the said complexity class.

For the lower bound, we first reduce any problem in the said complexity class to the
theory of the free monoid where quantification is restricted to words of h-fold exponential
length. This theory is then reduced to the theory of the forest Fh+2. This second step is
based on an encoding of h-fold exponential numbers and their addition in the forest.

Thus, technically, the main result of this paper is the complete characterisation of the
complexity of the theory of the forest Fh+2. Since this forest is automatic, we get an
affirmative answer to the open question from the theory of automatic structures. Besides
this, the forest Fh+2 is a natural structure, so that our result can have consequences in other
contexts as well.

The results presented in this paper close the gap that was left open in the third author’s
master thesis [21].

2 Preliminaries

The set of natural numbers is denoted N = {0, 1, 2, . . .}; N>0 = {1, 2, 3, . . .} denotes the
positive natural numbers. For m,n, r ∈ N we write m =r n if m = n or m,n ≥ r. Inductively,
we define the class of functions expm : N2 → N for m, c, n ∈ N:

expm(c, n) =
{
n if m = 0
cexpm−1(c,n) if m > 0

Intuitively, expm(c, n) is a stack of cs of height m with the number n on top of this stack.
By poly(n) we denote the class of all polynomial functions N→ N.

We assume that the reader is familiar with the basics of automata theory and formal
logic, especially first-order logic. We use this section to recall some of the key notions in
order to fix our notation.
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A (directed) graph is a tuple G = (V,E), where V is a set and E ⊆ V ×V \{(v, v) | v ∈ V }
is a binary irreflexive relation. A tree is a finite graph T = (V,E) such that, for some node
r ∈ V , any node v ∈ V has precisely one path from r to v. The node r, being unique, is
called the root of T . Now let T = (V,E) be a tree and v ∈ V . The depth of v is the length
of the path from r to v (i.e., the number of edges such that the depth of the root is 0). The
height of v is the maximal length of a path starting in v. A node v is a leaf if its height is 0.
The height of T is the height of the root r or, equivalently, the maximal depth of a node in
T . A subtree is an induced subgraph of a tree T = (V,E) whose vertex set is of the form
{w ∈ V | w is reachable from v} for some node v ∈ V . Note that v is the root of this subtree
and every subtree is uniquely dertermined by its root. Therefore we denote the subtree with
root v by Tv.

An automatic graph is a graph G = (V,E) such that V ⊆ Σ∗ is a regular language over
some alphabet Σ and the edge relation E is synchronously rational [11].

First-order formulas (over the language of graphs) are build up from variables {xi | i ∈ N},
the Boolean connectives {¬,∨,∧,→}, the edge relation symbol E, quantifiers {∀, ∃}, and the
bracket symbols {(, )}. The quantifier rank qr(ϕ) of a formula ϕ is the maximal nesting depth
of quantifiers within ϕ. Two graphs G andH are r-equivalent (denoted G ≡r H) if they cannot
be distinguished by any formula of quantifier rank ≤ r. For a tuple a = (a1, . . . , ak) ∈ Ak and
B ⊆ A let a�B denote the restriction of a to the components in B, i.e. the tuple (ai1 , . . . , ai`)
with {i1, . . . , ik} = {i | ai ∈ B} and i1 < i2 < · · · < i`.

The Ehrenfeucht-Fraïssé-game is a game-theoretic characterisation of elementary equival-
ence. It is played on two graphs G and H, where the two players, Spoiler and Duplicator,
choose alternately elements of these two structures for a prescribed number of rounds. More
precisely the i-th round of an r-round Ehrenfeucht-Fraisse-game on G = (V G, EG) and
H = (V H , EH) (Gr(G,H)) has the following form: First Spoiler picks an element ai from
G or an element bi from H. Duplicator answers by choosing an element bi from H or an
element ai from G, respectively. Therefore the two players iteratively construct two tuples
(a1, . . . , ar) ∈ (V G)r and (b1, . . . , br) ∈ (V H)r. Duplicator wins if the mapping ai 7→ bi is a
partial isomorphism, that is if ai = aj ⇔ bi = bj and (ai, aj) ∈ EG ⇔ (bi, bj) ∈ EH for all
1 ≤ i, j ≤ r. Otherwise Spoiler wins.

I Theorem 1 ([5]). Let G and H be two graphs. Then Duplicator has a winning strategy in
the game Gr(G,H) if, and only if, G ≡r H.

The main object of study in this paper is the following forest:

I Definition 2. For H ∈ N, let FH denote the disjoint union of ℵ0 many copies of all trees
of height at most H.

Thus, FH is the forest of all trees of height at most H, containing countably many copies of
every such tree.

I Remark 3. Natural variants of this forest are, among others, the following:
The disjoint union F∞H of ℵ0 many copies of all countably infinite (or at most countably
infinite) trees of height at most H.
The disjoint union F 1

H of all finite (or at most countably infinite) trees of height at most
H up to isomorphism (i.e., one tree per isomorphism class).

We will show that FH is automatic which is not the case for F∞H (it is ω-automatic) and we
conjecture that also F 1

H is not automatic.
Nevertheless, the proofs of the complexity results can easily be transformed to show that

also the theories of these forests are complete for STA(∗, expH−2(2, poly(n)), poly(n)).
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3 Trees of Bounded Height

The goal of this section is to provide an automatic copy of the forrest FH for every H ∈ N.
The idea is to use XML-like notation to describe a tree and to encode an element by marking
its position in the tree that it belongs to. Because the nesting-depth of parentheses will be
bounded for every H, the resulting languages remain regular. Let Σ = {〈〉, 〈\〉, 〈x〉, 〈\x〉}.
We define regular languages JH and KH for every H ∈ N:

J0 = {〈〉〈\〉}
K0 = {〈x〉〈\x〉}

and

JH+1 = 〈〉J∗H〈\〉
KH+1 = 〈x〉J∗H〈\x〉 ∪ 〈〉J∗HKHJ

∗
H〈\〉.

Every word in w ∈ KH contains the tag 〈x〉 . . . 〈\x〉 exactly once. This tag marks the selected
node in the tree that is presented by w.

Next we show that the edge relation on KH is synchronously-rational [11]. Two nodes
u and v from FH are connected by a directed edge if, and only if, they belong to the same
tree and u is the parent of v. To describe the edge relation EH of our automatic copy, write

L�2 =
{(

w

w

)
: w ∈ L

}
for any language L. Then we have

E0 = ∅

E1 =
(
〈x〉
〈〉

)(
〈〉 〈\〉
〈〉 〈\〉

)∗( 〈〉 〈\〉
〈x〉 〈\x〉

)(
〈〉 〈\〉
〈〉 〈\〉

)∗(〈\x〉
〈\〉

)
EH+2 =

(
〈x〉
〈〉

)
(J�2
H+1)∗

(
〈〉
〈x〉

)
(J�2
H )∗

(
〈\〉
〈\x〉

)
(J�2
H+1)∗

(
〈\x〉
〈\〉

)
∪
(
〈〉
〈〉

)
(J�2
H+1)∗EH+1(J�2

H+1)∗
(
〈\〉
〈\〉

)
.

Note that the languages that we defined so far do not induce an isomorphic copy of FH .
We need to modify the languages such that every tree of height at most H will appear

infinitely often. Therefore let LH = $∗KH and E′H =
(

$
$

)∗
EH . Then (LH , E′H) ∼= FH is an

automatic copy of FH .

4 Upper Bound

We provide a simple decision procedure for the theory of FH+2 that runs in alternating H-fold
exponential time while making only polynomially many alternations. We found it more
convenient to first prove this result in the realm of order trees: An order tree is a finite partial
order (V,≤) with a minimal element such that, for any v ∈ V , the set {w ∈ V | w ≤ v}
is finite and linearly ordered by ≤. An order forest is a disjoint union of order trees. The
length of an order forest is the maximal size of a linearly ordered subset, its height is the
predecessor of its length.

Let oFh denote the order version of the forest Fh, i.e., the disjoint union of infinitely
many copies of any order tree of height ≤ H. The theory of this order forest can be decided
as follows: We determine from a sentence ϕ of quantifier rank r a finite order forest satisfying
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ϕ iff oFH+2 |= ϕ. The size of this order forest can be bounded since, as we show below,
every finite order tree of height ≤ H + 2 is r-equivalent to an order tree of size at most
expH+1(r + 1, poly(n+ 1)). The elements of this finite order forest have encodings by words
of length ≤ expH+1(r + 1, poly(n + 1)). Then, the standard alternating model checking
algorithm is applied to this forest (without computing it explicitely). The result on the forest
FH+2 follows because of a polynomial-time reduction of the theory of the forest FH+2 to
that of the order forest oFH+2.

The following lemma on order forests prepares the construction of a “small” equivalent
order tree.

I Lemma 4. Let (Si)i∈I and (Tj)j∈J be nonempty (possibly infinite) families of order trees
such that

|{i ∈ I | Si ∈ τ}| =r |{j ∈ J | Tj ∈ τ}| (1)

holds for any ≡r-equivalence class τ . Then⊎
i∈I

Si ≡r
⊎
j∈J

Tj . (2)

Proof. We show that Duplicator has a winning strategy in the r-round Ehrenfeucht-Fraïssé-
game on the forests S =

⊎
i∈I Si and T =

⊎
j∈J Tj . More precisely we show that Duplicator

can maintain the following invariant after ` ∈ {0, 1, . . . , r} rounds (when the current position
is (a, b)):

For all i ∈ I, there exists j ∈ J such that for all k ∈ {1, 2, . . . , `}, we have
ak ∈ Si ⇐⇒ bk ∈ Tj and (Si, a�Si

) ≡r−` (Tj , b�Tj
).

Since no edge connects distinct trees in a forest, every position (a1, . . . , ar, b1, . . . , br) satisfying
this invariant describes a partial isomorphism ai 7→ bi. Therefore it remains to be shown
that Duplicator can maintain this invariant.

So let 0 ≤ ` < r, a1, . . . , a` ∈ S, and b1, . . . , b` ∈ T such that the invariant holds. Note
that the invariant is equivalent to its dual:

For all j ∈ J , there exists i ∈ I such that for all k ∈ {1, 2, . . . , `}, we have
bk ∈ Ti ⇐⇒ ak ∈ Sj and (Tj , a�TJ

) ≡r−` (Si, a�Si
).

Hence, by symmetry, we can assume that Spoiler chooses an element a`+1 of S in round
`+ 1 ≤ r. Then there is i ∈ I such that a`+1 is a node from Si. We distinguish two cases:
either there is k ∈ {1, 2, . . . , `} with ak ∈ Si or there is no such k.

First, assume ak ∈ Si for some 1 ≤ k ≤ `. By the induction hypothesis, there ex-
ists j ∈ J with bk ∈ Tj and (Si, a�Si

) ≡r−` (Tj , b�Tj
). Hence, there is b`+1 ∈ Tj with

(Si, aa`+1�Si
) ≡r−`−1 (Tj , bb`+1�Tj

). Chosing this element b`+1, Duplicator can move the
play into a position that satisfies the invariant.

Now consider the second case, ak /∈ Si for all 1 ≤ k ≤ `. Let I ′ = {i′ ∈ I | Si ≡r Si′}
and, similarly, J ′ = {j′ ∈ J | Si ≡r Tj′}. If |I ′| = |J ′|, the invariant implies the existence of
j ∈ J ′ such that no element bk belongs to Tj . Otherwise, we have |J ′| ≥ r by (1). Since only
` < r many nodes bk have been chosen so far, also in this case there exists j ∈ J ′ such that
no element bk belongs to Tj . Because of Si ≡r Tj , the tree Tj has some element b`+1 with
(Si, a`+1) ≡r−1 (Tj , b`+1) (and therefore also (Si, a`+1) ≡r−`−1 (Tj , b`+1)). Thus, also in this
case, Duplicator can move the play into a position that satisfies the invariant. J
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I Lemma 5. Let r, h ∈ N. There exists a polynomial function ph : N → N such that the
following holds: For any order tree S of height ≤ h, there exists an ≡r-equivalent order tree
T of height ≤ h and size

≤

{
ph(r + 1) if h ≤ 2
exph−2(r + 1, ph(r + 1)) if h > 2 .

Proof. For each h, r ∈ N, we let ≡hr denote the restriction of the relation ≡r to order trees
of height ≤ h.

By induction on h, we prove in addition

index(≡hr ) ≤
{

1 if h = 0
exph−1(r + 1, r + 1) if h ≥ 1 .

For h = 0, there is only one order tree of height h and this tree has size 1, hence we set
p0(x) = 1. Furthermore, index(≡0

r) = 1 is obvious.
Now let h > 0 and let S be some order tree of height h. Let I denote the set of nodes of

depth 1 and, for i ∈ I, let Si denote the subtree of S rooted at i. By the induction hypothesis,
any ≡h−1

r -equivalence class τ contains some order tree Tτ of size ≤ ph−1(r + 1) (if h ≤ 3)
and ≤ exph−3(r + 1, ph−1(r + 1)) otherwise. For i ∈ I, let Ti = T[Si] be the representative of
the ≡h−1

r -class of Si. Let J ⊆ I such that

min
(
r, |{i ∈ I | Si ∈ τ}|

)
= |{j ∈ J | Tj ∈ τ}|

for any ≡r-equivalence class τ . Then (1) from Lemma 4 holds, implying
⊎
i∈I Si ≡r

⊎
j∈J Tj

by Lemma 4. Let the order tree T arise from the order forest
⊎
j∈J Tj by the addition of

a root that is smaller than any other node. Note that T is quantifier free definable in the
disjoint sum of

⊎
j∈J Tj and a single node.1 Since S arises in the same way from the order

forest
⊎
i∈I Si, we get S ≡r T [7].

Next, we prove the upper bound for the size of the order tree T . Note that this size is at
most |J | multiplied with the maximal size of an order tree Tj . Since J contains at most r
elements per ≡h−1

r -equivalence class, we obtain

|J | ≤ r · index(≡h−1
r )

≤ r ·


1 if h = 1
r + 1 if h = 2
exph−2(r + 1, r + 1) if h ≥ 3 .

Since the size of the order trees Tj is bounded as described above, the size of the order tree
T is

≤ r ·


1 · p0(r + 1) if h = 1
(r + 1) · p1(r + 1) if h = 2
exp1(r + 1, r + 1) · p2(r + 1) if h = 3
exph−2(r + 1, r + 1) · exph−3(r + 1, ph−1(r + 1)) if h > 3

≤

{
ph(r + 1) if h ≤ 2
exph−2(r + 1, ph(r + 1)) if h ≥ 3

for a suitably chosen polynomial function ph. This proves the claim from the lemma.

1 Here we need order trees since this does not hold for successor trees (V, E).
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It remains to prove the additional inductive invariant on the number of equivalence classes
of ≡hr . Note that the order tree T constructed above is completely given by a mapping from
the ≡h−1

r -equivalence classes into the set of numbers {0, 1, . . . , r}. Hence, the number of
distinct order trees T that can arise in the above way, is

≤ (r + 1)index(≡h−1
r )

≤

{
(r + 1) if h = 1
(r + 1)exph−2(r+1,r+1) if h > 1

= exph−1(r + 1, r + 1) . J

For r, k ∈ N, we let oFr,kh denote the disjoint union of r copies of every order tree of
height ≤ h and size ≤ k.

I Proposition 6. Let r, h ∈ N. There exists a polynomial function ph : N → N such that
oFh ≡r oFr,kh with

k =
{
ph(r + 1) if h ≤ 2
exph−2(r + 1, ph(r + 1)) if h > 2 .

Proof. Let τ be some ≡r-equivalence class containing some order tree S of height ≤ h. The
order forest oFh contains infinitely many copies of S. By Lemma 5, there exists an order tree
T in oFr,kh with T ∈ τ . More precisely, there are ≥ r such order trees (possibly isomorphic).
From Lemma 4, we obtain Fh ≡r Fhr,k. J

I Corollary 7. For H ∈ N, the theory of oFH+2 belongs to STA(∗, expH(2, poly(n)), poly(n)).

Proof. Let ϕ be a sentence of size n. Without loss of generality, we assume ϕ to be in prenex
normal form. Let furthermore p be the polynomial pH+2 from Proposition 6.

The quantifier rank of ϕ is ≤ n. Hence, by Proposition 6, it suffices to decide whether ϕ
holds in the finite order forest oFn,kH+2 with k = expH(r + 1, p(r + 1)). Using the encoding of
FH+2 as automatic structure, the elements of oFn,kH+2 can be encoded as strings of length
O(n+ k). Hence the standard alternating model-checking algorithm for first-order logic uses
time O(poly(n+ k)) and ≤ n alternations. Note that this algorithm does not calculate the
order forest oFn,kH+2 explicitely, but only handles words of length O(n+ k). J

As a consequence, we get the following result about the forest FH+2.

I Theorem 8. For H ∈ N, the theory of FH+2 belongs to STA(∗, expH(2, poly(n)), poly(n)).

Proof. We reduce this theory to the theory of the ordered forest oFH+2: Let ϕ be a sentence
in the signature of trees. In ϕ, replace every occurrence of the atomic formula E(x, y) by

x < y ∧ ¬∃z : x < z < y

and call the resulting sentence ϕ′. Then FH+2 |= ϕ ⇐⇒ oFH+2 |= ϕ′. Since ϕ′ can be
computed from ϕ in polynomial time, the claim follows from Corollary 7. J
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5 Lower Bound

Let H ≥ 1 be fixed throughout this section. We want to show that the theory of the forest
FH+2 is hard for the class STA(∗, expH(2, poly(n)), poly(n)).

We will reduce an arbitrary language L ⊆ Σ∗ from the said complexity class to the theory
of the forest FH+2 in two steps: First, we reduce L to the theory of the free monoid ∆∗. In
this reduction, we can restrict quantification to words of length ≤ expH(2, poly(|x|)). In a
second step, we reduce this bounded theory of the free monoid to the theory of the forest
FH+2.

Let ϕ be a formula and k ≥ 1. Then ∃≥ky : ϕ abbreviates the formula

∃y1, y2, . . . , yk :
∧

1≤i<j≤k
yi 6= yj ∧ ∀y :

( ∨
1≤i≤k

y = yi

)
→ ϕ


and ∃=ky : ϕ stands for ∃≥ky ϕ∧¬∃≥k+1y ϕ. Note that the size of these formulas is O(k2+|ϕ|).

5.1 Reduction to the theory of the bounded free monoid

Let N ≥ 0 and let ∆ be an alphabet. The N -bounded free monoid is the structure

(∆≤expH(N,N), ·, (a)a∈∆)

where ∆≤expH(N,N) is the set of words over ∆ of length ≤ expH(N,N), · is the concatenation
of such words (considered as a ternary relation such that the product of two “long” words is
not defined), and any letter a ∈ ∆ serves as a constant.

An alternating Turing machine is a tuple M = (Q,Σ,Γ, δ, ι,�, tp, F ) where Q is the finite
set of states, Σ ⊆ Γ are the input- and tape-alphabets, δ ⊆ Q× Γ×Q× Γ× {−1, 0, 1} is the
transition relation, ι ∈ Q is the initial state, � ∈ Γ \ Σ is the blank symbol, tp: Q→ {∀, ∃}
is the type function with tp(ι) = ∃, and F ⊆ Q is the set of final states. We assume the tape
of M to be infinite on the right, only. We write ∆ for the set Γ ∪Q ∪ {/, .} (assuming these
three sets to be mutually disjoint).

A configuration is a word from .Γ∗QΓ∗/. We write c ` c′ for configurations c and c′ if
the machine can move from c to c′ in one step. The type of a configuration is the type of its
state. A computation is a finite sequence of configurations (ci)0≤i≤n for some n ∈ N with
ci ` ci+1 for all 0 ≤ i < n. We say that it is a computation from c0 to cn. It is existential if
all configurations are existential; it is homogeneous if

the types of c0, c1, . . . , cn−1 are the same and
the types of c0 and cn are different.

For configurations c and c′, we write

c `∃ c′ and c `hom c′

if there exists an existential and a homogeneous computation, respectively, from c to c′. Note
that the latter implies that c and c′ have distinct types.

Let f : N → N be a function. The alternating Turing machine is f(n)-time bounded if
any computation (ci)0≤i≤N with first configuration in .ιw�∗/ and w ∈ Σ∗ makes ≤ f(|w|)
steps, i.e., satisfies N + 1 ≤ f(|w|).
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Now let a ∈ N be odd and w ∈ Σ∗. Then x is accepted by M with a alternations if there
exists a configuration c0 ∈ .ιw�∗/ such that the following holds:

∃ configuration c1 with c0 `hom c1

∀ configurations c2 with c1 `hom c2

∃ configuration c3 with c2 `hom c3

∀ configurations c4 with c3 `hom c4

. . . (3)
∃ configuration ca−2 with ca−3 `hom ca−2

∀ configuration ca−1 with ca−2 `hom ca−1

∃ accepting configuration ca : ca−1 `∃ ca

For our reduction, fix a language L ∈ STA(∗, expH(2, poly(n)), poly(n)). Then there exist
an alternating Turing machine M and polynomial functions p, q : N → N such that M is
expH(2, p(n))-time bounded and L is the set of words w that are accepted by M with q(|w|)
alternations. For notational simplicity, we assume q(n) to be odd for all n ∈ N.

Let w ∈ Σ∗. Furthermore, let N = p(|w|)2. We want to express the acceptance of w by
M by a formula of polynomial size over

Mp(n)2 = (∆≤expH(p(n)2,p(n)2), ·, (a)a∈∆) .

To achieve this, first note the following:
A word c is an existential configuration if it satisfies

conf∃(c) = ∃x, y ∀z1, z2 :
∧

a∈Q∪{/,.}

(
x 6= z1az2 ∧ y 6= z1az2

)
∧

∨
q∈Q,tp(q)=∃

c = .xqy / .

Universal and accepting configurations are described similarly by formulas conf∀(c) and
confacc(c), respectively. Let conf = conf∃ ∨ conf∀.
A word c is an initial configuration with input w, i.e., c ∈ .ιw�∗/, iff it satisfies

initw(c) = ∃y
(
c = .ιwy / ∧∀z1, z2 :

∧
a∈∆\{�}

y 6= z1az2

)
.

c `M c′ iff they satisfy

step(c, c′) = conf(c) ∧ conf(c′) ∧ ∃x, y :
∨

(`,r)∈R

(
c = x`y ∧ c′ = xry

)
where R is some finite subset of ∆3 ×∆3.

I Lemma 9. There is a formula comphom(x, y) such that for any configurations c and c′,
we haveMp(n)2 |= comphom(c, c′) if, and only if, there exists a homogeneous computation

c = c0 ` c1 ` c2 ` · · · ` cK = c′

with ∑
0≤i≤K

|ci| ≤ expH(p(n)2, p(n)2) . (4)

Similarly, there is a formula comp∃ expressing the existence of an existential computation
with the same length bound.
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Proof. We will express the existence of a word W = c0 c1 c2 . . . cK such that
c = c0,
ci `M ci+1 for all 0 ≤ i < K,
cK = c′,
and all configurations ci for i < K have the type of c0.

Note that this is the case iff there exists a word W such that
c is a prefix of W ,
c′ is a suffix of W ,
any factor x of W that is a configuration is either a suffix of W or followed by a factor y
which is a configuration satisfying x `M y. In the latter case, its type is that of c.

If we consider this formula in the free monoid ∆∗, then it expresses the existence of a
homogeneous computation from c to c′ of arbitrary length. In the structure Mp(n)2 , the
length of the word W is bounded by expH(p(n)2, p(n)2). Hence we get (4). J

I Proposition 10. From w ∈ Σ∗ with |w| = n, we can compute in polynomial time a sentence
ϕw such that w ∈ L if, and only if, Mp(n)2 |= ϕw.

Proof. Let ϕw be the following sentence:

∃c0 : initw(c0)
∧ ∃c1 : conf(c1) ∧ comphom(c0, c1)

∧ ∀c2 : conf(c2) ∧ comphom(c1, c2)
→ ∃c3 : conf(c3) ∧ comphom(c2, c3)

∧ ∀c4 : conf(c4) ∧ comphom(c3, c4)
. . .
∃cq(n)−2 : conf(cq(n)−2) ∧ comphom(cq(n)−3, cq(n)−2)

∧ ∀cq(n)−1 : conf(cq(n)−1) ∧ comphom(cq(n)−2, cq(n)−1)
→ ∃cq(n) : confacc(cq(n))

∧ comp∃(cq(n)−1, cq(n))

Since this is the direct translation of the acceptance condition by alternating Turing
machines (3), we obtain thatMp(n)2 |= ϕw implies w ∈ L.

Conversely, suppose w ∈ L, i.e., (3) holds. Since M is exp(2, p(n))-time bounded,
any computation starting from a configuration c0 ∈ .ιw�∗/ has length ≤ expH(2, p(n));
in particular, the machine’s head can only move expH(2, p(n)) cells to the right. Since
(3) quantifies over reachable configurations, only, we can restrict quantification in (3) to
configurations of length ≤ expH(2, p(n)). Furthermore, (3) quantifies over computations
(hidden in the statements ci `hom ci+1 and ca−1 `∃ ca). Since these computations start
in reachable configurations, their length is at most expH(2, p(n)) and all intermediate
configurations are reachable and therefore of length ≤ expH(2, p(n)). Note that

(expH(2, p(n)) + 1) · expH(2, p(n)) ≤ expH(p(n)2, p(n)2) .

Hence, statements of the form ci `hom ci+1 can be replaced by statements of the form
Mp(n)2 |= comphom(ci, ci+1) (and similarly for cq(n)−1 `∃ cq(n)). Thus, in summary, we get
Mp(n)2 |= ϕw. J
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5.2 Interpretation of the bounded free monoid in FH+2

To complete the reduction of L to the theory of the forest FH+2, it remains to provide an
interpretation of the theory ofMp(n)2 in FH+2. This interpretation has to be computable
in time polynomial in N = p(n)2. This reduction requires to express certain numerical
properties. Therefore, we first show how to encode numbers by nodes from FH+2 and how
to do some restricted form of arithmetic.

5.2.1 Nodes as numbers
Let N ≥ 3. We define the number JvKN for any node v of the forest FH+2. Let v1, . . . , v` be
the children of v (if v is of height 0, then there is no such child, i.e., ` = 0). For k ∈ N, let tk
denote the number of children vi with JviKN = k, i.e.,

tk = |{i | 1 ≤ i ≤ `, JviKN = k}| .

Note that tk = 0 for almost all k since any node of FH+2 has only finitely many children.
We want to consider the number tk as k-th digit in a base-N -representation of some natural
number. Therefore, we normalize this number to

dk = min(tk, N − 1)

such that dk ∈ {0, 1, . . . , N − 1}. Let χN (v) = (dk)k∈N denote the characteristic of v and
define

JvKN =
∑
k∈N

dk · bk .

Note that the sequence χN (v) is the base-N -representation of the number JvKN .2

I Example 11. The number 0 is represented by all nodes of height 0, i.e., all leaves in
FH+2. A number i ∈ {1, 2, . . . , N − 2} is represented by all nodes of height 1 with precisely
i children. Any height-1-node with ≥ N − 1 children represents the number N − 1. If
am ∈ {0, 1, . . . , N − 1} for 0 ≤ m < n, then a =

∑
0≤m<N amb

m is represented, e.g., by a
height-2-node v such that am children v have m children, i.e., represent the number m (for
all 0 ≤ m < N). If am = N − 1, then we can even add further children representing m
without changing JvKN .

By induction, one obtains for any node v of height h:

JvKN = 0 if h = 0
exph−2(N,N) ≤ JvKN < exph−1(N,N) if h ≥ 1

Conversely (for h ≤ H + 2), any a < exph−1(N,N) is represented by some node of height
≤ h.

We next show that the relations Jv1KN < Jv2KN and Jv1KN = Jv2KN can be defined by
first-order formulas.

2 For N = 2, this is a simple variation of the encoding from [9]. For this case, Flum and Grohe also prove
Lemma 12i, but neither Lemma 12ii nor Lemma 13. In contrast to them, we measure the size of our
formulas in terms of N while H is considered a constant.
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I Lemma 12. From N ∈ N, one can compute formulas eqN (x1, x2) and lessN (x1, x2) in
time polynomial in N such that for any two nodes v1 and v2 in FH+2 the following hold:
(i) (FH+2, v1, v2) |= eqN if, and only if, Jv1KN = Jv2KN and
(ii) (FH+2, v1, v2) |= lessN if, and only if, Jv1KN < Jv2KN .

Proof. For 0 ≤ h ≤ H+2, we can construct a formula in time O(h) expressing that the height
of a node is at most h: ¬∃x0, x1, . . . , xh+1 : x = x0 ∧

∧
0≤i≤hE(xi, xi+1). We abbreviate this

formula by hgt≤h(x).
Let v1 and v2 be nodes of FH+2. Then Jv1KN = Jv2KN if, and only if, χN (v1) = χN (v2).

But this is the case if, and only if, for all children v of v1 or v2, the number of children v′1
of v1 with JvKN = Jv′1KN equals the number of children v′2 of v2 with JvKN = Jv′2KN or both
numbers are ≥ N − 1. Thus, to build the formula eqN , we have to apply the same formula
to nodes of smaller height. Therefore, we first construct formulas eqhN that satisfy i at least
for all nodes v1 and v2 of height at most h (for 0 ≤ h ≤ H + 2). The first claim then follows
with eqN = eqH+2

N .
The formula eq0

N = (x1 = x1) satisfies i for nodes of height ≤ 0 since, whenever v1 and
v2 are nodes of height 0, they both represent 0. We define eqh+1

N as follows:

eqh+1
N = ∀y :

(E(x1, y) ∨ E(x2, y)
)
→

∧
1≤i<N

(
∃≥iy1 : E(x1, y1) ∧ eqhN (y, y1)

↔ ∃≥iy2 : E(x2, y2) ∧ eqhN (y, y2)

)
By the above explanation and by induction, this formula satisfies i for all nodes of height
≤ h+ 1. This completes the definition of the formula eqN = eqH+2

N .
By induction, there are constants c1, c2, . . . , cH+2 such that, for sufficiently large n, we

have |eqh+1
N | ≤ ch+1|(n3 + |eqhN |). Consequently,

|eqH+1
N | ∈ O(N3·(H+2)) .

Since H was fixed from the beginning, the formula eqH+2
N = eqN can be constructed from N

in time polynomial in N .

Similarly, we construct formulas lesshN that satisfy ii at least for all nodes v1 and v2 of
height at most h (for 0 ≤ h ≤ H + 2). The second claim then follows with lessN = lessH+2

N .
Let χN (vi) = (dik)k∈N for i ∈ {1, 2} be the characteristic of vi. Then Jv1KN < Jv2KN if,

and only if, χN (v1) is lexicographically properly smaller than χN (v2). This means that there
is some k ∈ N with d1

k < d2
k and d1

i ≤ d2
i for all i < k. Since, in particular, d2

k > 0, there is a
child v′ of v2 with Jv′KN = k.

The formula less0
N = (x1 = x1) satisfies the required property. Let lessh+1

N denote the
following formula:

∃y : E(x2, y) ∧
∨

1≤i<N

(
¬∃≥iy1 : E(x1, y1) ∧ eqhN (y, y1)

∧ ∃≥iy2 : E(x2, y2) ∧ eqhN (y, y2)

)
∧

∧
1≤i<N

∀z :
( (

E(x1, z) ∧ lesshN (z, y) ∧ ∃≥iz1 : E(x1, z1) ∧ eqhN (z, z1)
)

→ ∃≥iz2 : E(x2, z2) ∧ eqhN (z, z2)

)
By induction, there are constants c1, c2, . . . , cH+2 such that, for sufficiently large N , we

have |lessh+1
N | ≤ ch+1(N3 + |eqhN |+ |lesshN |). Consequently,

|lessH+1
N | ∈ O(N3·(H+2)) .

Since H was fixed from the beginning, the formula lessH+2
N = lessN can be constructed

from N in time polynomial in N . J
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Using the two formulas from above, we are now able to also define addition:

I Lemma 13. From N ∈ N, one can compute a formula addN (x1, x2, x3) in time polynomial
in N such that for any three nodes v1, v2, and v3 in FH+2, the following holds:

(FH+2, v1, v2, v3) |= addN if, and only if, Jv1KN + Jv2KN = Jv3KN .

Proof. In the following explanations, let t = expH(N,N).
Let v1, v2, and v3 be nodes from FH+2, and let χN (vi) = (dik)k∈N for all 1 ≤ i ≤ 3. Then

dik = 0 for all k ≥ t since the height of vi is ≤ H+2, i.e, its children (being of height ≤ H+1)
represent numbers < t. Since (dik)0≤i<t is the base-N -representation of JviKN , the following
are equivalent:

Jv1KN + Jv2KN = Jv3KN
There exist ek ∈ {0, 1} (the carry bits) for 0 ≤ k < t such that

(a) e0 = 0,
(b) d3

k +N · ek+1 = d1
k + d2

k + ek for 0 ≤ k < t− 1, and
(c) d3

t−1 = d1
t−1 + d2

t−1 + et−1.
We will translate this description into the formula addN . Note that nodes of height H+2 have
characteristics of length t (more precisely: from the entry number t on, they are constantly
zero). Hence any sequence (e0, e1, . . . , et−1, 0, 0, . . . ) of bits is the characteristics of some
node y. Furthermore note that we have to quantify over numbers k with 0 ≤ k < t – but
these are precisely the values of nodes of height ≤ H + 1. Therefore, the following formulas
succN and maxN will become useful.

The formula

succN (z, z′) = hgt≤H+1(z)∧hgt≤H+1(z′)∧ lessN (z, z′)∧¬∃z′′ : lessN (z, z′′)∧ lessN (z′′, z′)

expresses that z and z′ are two nodes of height ≤ H + 1 satisfying JzKN + 1 = Jz′KN .
Furthermore, the formula

maxN (z) = hgt≤H+1(z) ∧ ¬∃z′ : hgt≤H+1(z′) ∧ lessN (z, z′)

expresses that z is a node of height at most H + 1 that represents the maximal possible value
for such a node, i.e., JzKN = t− 1.

Let I denote the set of quintuples (a1, a2, b1, a3, b2) of natural numbers from {0, 1, . . . , n−
1} with a1 + a2 + b1 = a3 +N · b2. Finally, for i ∈ {0, 1, . . . , N − 1} set

Qixϕ =
{
∃=ixϕ if i < N − 1
∃≥N−1xϕ if i = N − 1 .

Now consider the following formula addN (x1, x2, x3):

∃y ∀z, z′ :
(
E(y, z) ∧ E(y, z′) ∧ eqN (z, z′)

)
→
(
z = z′ ∧ ∃y′ : E(z, y′)

)

∧ succ(z, z′)→
∨

(a1,a2,b1,a3,b2)∈I


Qa1x′1 : E(x1, x

′
1) ∧ eqN (x′1, z)

∧ Qa2x′2 : E(x2, x
′
2) ∧ eqN (x′2, z)

∧ Qb1y′ : E(y, y′) ∧ eqN (y′, z)
∧ Qa3x′3 : E(x3, x

′
3) ∧ eqN (x′3, z)

∧ Qb2y′ : E(y, y′) ∧ eqN (y′, z′)



∧ max(z)→
∨

(a1,a2,b1,a3,0)∈I


Qa1x′1 : E(x1, x

′
1) ∧ eqN (x′1, z)

∧ Qa2x′2 : E(x2, x
′
2) ∧ eqN (x′2, z)

∧ Qb1y′ : E(y, y′) ∧ eqN (y′, z)
∧ Qa3x′3 : E(x3, x

′
3) ∧ eqN (x′3, z)
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Let y be some node of FH+2 such that the formula starting with ∀z holds. Let furthermore
(ek)k∈N be the characteristic of the node y. Since the height of y is ≤ H + 2, we get ek = 0
for all k ≥ t. The first conjunct expresses ek ∈ {0, 1} (since no two distinct children of y
represent the same number) and e0 = 0 (since no child of y has height 0, i.e., represents 0).
Having said this, it is clear that the second and third conjunct ensure properties (b) and (c)
from above. Thus, indeed, the formula addN expresses the relation Jv1KN + Jv2KN = Jv3KN .

Furthermore note that |I| ≤ N5. Hence, using Lemma 12, the formula addN can be
constructed in polynomial time from N . J

5.2.2 Tuples of nodes as words
In the previous section, we agreed how to consider a node v of depth ≥ 1 (and therefore of
height ≤ H+ 1) as a number JvKN between 0 and expH(N,N)− 1. Now, we want to consider
a tuple v = (va)a∈∆ of nodes as word wordN (v) over the alphabet ∆. To this aim, let

Pa = {Jv′aKN | (va, v′a) ∈ E}

denote the set of numbers represented by children of the node va (for a ∈ ∆). The word
wordN (v) is defined only in case these sets of numbers are mutually disjoint and the union
of these sets is an initial segment of the natural numbers. Let ` = sup

(⋃
a∈∆ Pa

)
. Then

wordN (v) is the word

a0a1a2 . . . a`

with ak = a ⇐⇒ k ∈ Pa ⇐⇒ k = Jv′aKN for some child v′a of va. Thus, the children of the
node va represent the positions of the letter a in wordN (v). Since children of nodes have
height ≤ H + 1, the word wordN (v) has length ≤ expH(N,N). Conversely, any word of this
length can be represented by a tuple of nodes wordN (v).

I Lemma 14. From N ∈ N, one can compute in polynomial time formulas is wordN (x) and
prod(x, y, z), such that, for any ∆-tuples u, v, and w of nodes, the following hold:

(FH+2, v) |= is wordN if, and only if, the tuple wordN (v) is defined.
(FH+2, u, v, w) |= prod if, and only if, wordN (u), wordN (v), and wordN (w) are defined
and wordN (u) wordN (v) = wordN (w).

Proof. The formula is wordN looks as follows:

∀x, y

(∨
a∈∆

E(xa, y) ∧ lessN (x, y)
)
→ ∃x′

(∨
b∈∆

E(xb, x′) ∧ eqN (x, x′)
)

∧
∧

a,b∈∆,a 6=b

((
E(xa, x) ∧ E(xb, y)

)
→ ¬eqN (x, y)

)
The first line expresses that

⋃
a∈∆ Pa is an initial segment of (N,≤), the second one ensures

that the sets Pa are mutually disjoint.
Note that the length of the word wordN (v) is the successor of the maximal number

represented by any of the children of nodes va from the tuple v. Therefore, the following
formula ensures that the length of wordN (x) equals J`KN :

∀x :
∧
a∈∆

(
E(xa, x)→ lessN (x, `)

)
∧∃x :

∨
a∈∆

E(xa, x) ∧ ¬∃y : lessN (x, y) ∧ lessN (y, `)
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We just remark that representable words have length ≤ expH(N,N). Hence, their length is
always represented by some node of height ≤ H + 2.

We denote the above formula by |wordN (x)| = `. Now the formula prod looks as follows:

∃`x, `y, `z : is wordN (x) ∧ is wordN (y) ∧ is wordN (z)
∧ |wordN (x)| = `x ∧ |wordN (y)| = `y ∧ |wordN (z)| = `z

∧ addN (`x, `y, `z)

∧
∧
a∈∆

∀x∃z : E(xa, x)→ E(za, z) ∧ eqN (x, z)

∧
∧
a∈∆

∀y∃z : E(ya, y)→ E(za, z) ∧ addN (y, `x, z) J

I Observation 15. From N ∈ N and a ∈ ∆, one can construct in polynomial time a formula
is letterN,a(x) such that, for any ∆-tuple u of nodes, we have

(FH+2, u) |= is letterN,a(x) ⇐⇒ wordN (u) is defined and equals a .

This is obtained by the formula

is wordN (u) ∧
∧
b6=a
∀y ¬E(xb, y) ∧ ∃=1y E(xa, y) .

This finishes the construction of an interpretation of the bounded free monoidMN in the
forest FH+2. Since all the formulas is wordN , prodN , and is letterN,a can be computed in
polynomial time, we can reduce the theory of the bounded free monoid MN in polynomial
time to the theory of FH+2. Together with Proposition 10, this finishes the proof of the
following theorem:

I Theorem 16. The theory of the forest FH+2 is hard for the class

STA(∗, expH(2, poly(n)), poly(n)).

6 Conclusion

We have shown that for every h there is an automatic structure, whose theory is complete
for the Berman complexity class STA(∗, exph(2, poly(n)), poly(n)). Therefore theories of
automatic structures are distributed across all stages of elementary complexity. The variants
F 1
H and F∞H of our structure FH that we mentioned in the beginning might be interesting in

their own right. A careful analysis of our proof reveals without much effort that the theories
of these two structures have the same complexity as the theory of FH .

I Theorem 17. The theories of F 1
H and F∞H are complete for

STA(∗, expH(2, poly(n)), poly(n)).

Finally let us mention a related problem from parameterized complexity theory.

I Conjecture 18. There is no algorithm that determines correctly for every tree T of height
at most H and every first-order sentence ϕ whether T |= ϕ in time expH−3(2, poly(|ϕ|)) ·
poly(|T |).

An upper bound this problem is given in [12]. It might be possible to prove Conjecture 18
(under suitable complexity theoretic assumptions) with a similar strategy as it was used in
[10] for the class of all finite trees. The formulas that we defined for our lower bound might
be useful in this case.
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1 Introduction

1.1 Initial Semantics
The concept of characterizing data through an initiality property is standard in computer
science, where it is known under the terms Initial Semantics and Algebraic Specification [21],
and has been popularized by the movement of Algebra of Programming [5].

This concept offers the following methodology to define a formal language2:
1. Introduce a notion of signature.
2. Construct an associated notion of model (suitable as domain of interpretation of the

syntax generated by the signature). Such models should form a category.
3. Define the syntax generated by a signature to be its initial model, when it exists3.
4. Find a satisfactory sufficient condition for a signature to generate a syntax.
For a notion of signature to be satisfactory, it should satisfy the following conditions:

it should extend the notion of algebraic signature, and
complex signatures should be built by assembling simpler ones, thereby opening room for
compositionality properties.

In the present work we consider a general notion of signature – together with its associated
notion of model – which is suited for the specification of untyped programming languages
with variable binding. On one hand, our signatures are fairly more general than those
introduced in some of the seminal papers on this topic [10, 15, 11], which are essentially
given by a family of lists of natural numbers indicating the number of variables bound in
each subterm of a syntactic construction (we call them “algebraic signatures” below). On the
other hand, the existence of an initial model in our setting is not automatically guaranteed.

The main result of this paper is a sufficient condition on a signature to ensure such an
existence. Our condition is still satisfied far beyond the algebraic signatures mentioned above.
Specifically, our signatures form a cocomplete category and our condition is preserved by
colimits (Section 7). Examples are given in Section 8.

Our notions of signature and syntax enjoy modularity in the sense introduced by [13]:
indeed, we define a “total” category of models where objects are pairs consisting of a signature
together with one of its models; and in this total category of models, merging two extensions
of a syntax corresponds to building an amalgamated sum.

The present work improves a previous attempt [18] in two main ways: firstly, it gives a
much simpler condition for the existence of an initial model, secondly, it provides computer-
checked proofs for all the main statements.

2 Here, the word “language” encompasses data types, programming languages and logic calculi, as well as
languages for algebraic structures as considered in Universal Algebra.

3 In the literature, the word signature is often reserved for the case where such sufficient condition is
automatically ensured.
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1.2 Computer-checked formalization
The intricate nature of our main result made it desirable to provide a mechanically checked
proof of that result, in conjunction with a human-readable summary of the proof.

Our computer-checked proof is based on the UniMath library [26], which itself is based on
the proof assistant Coq [25]. The main reasons for our choice of proof assistant are twofold:
firstly, the logical basis of the Coq proof assistant, dependent type theory, is well suited for
abstract algebra, in particular, for category theory. Secondly, a suitable library of category
theory, ready for use by us, had already been developed [2].

The formalization consists of about 8,000 lines of code, and can be consulted on https:
//github.com/amblafont/largecatmodules. A guide is given in the README.

Here below, we give in teletype font the name of the corresponding result in the
computer-checked library, when available – often in the format filename:identifier.

1.3 Related work
The idea that the notion of monad is suited for modeling substitution concerning syntax (and
semantics) has been retained by many contributions on the subject (see e.g. [6, 13, 24, 4]).

Matthes, Uustalu [24], followed by Ghani, Uustalu, and Hamana [13], are the first
to consider a form of colimits (namely coends) of signatures. Their treatment rests on
the technical device of strength4 and so did our preliminary version of the present work
[18]. Notably, the present version simplifies the treatment by avoiding the consideration of
strengths.

We should mention several other mathematical approaches to syntax (and semantics).
Fiore, Plotkin, Turi [10] develop a notion of substitution monoid. Following [3], this

setting can be rephrased in terms of relative monads and modules over them [1]. Accordingly,
our present contribution could probably be customized for this “relative” approach.

The work by Fiore with collaborators [10, 8, 9] and the work by Uustalu with collaborators
[24, 13] share two traits: firstly, the modelling of variable binding by nested abstract syntax,
and, secondly, the reliance on tensorial strengths in the specification of substitution. In the
present work, variable binding is modelled using nested abstract syntax; however, we do
without strengths.

Gabbay and Pitts [11] employ a different technique for modelling variable binding, based
on nominal sets. We do not see yet how our treatment of more general syntax carries over to
nominal techniques.

Yet another approach to syntax is based on Lawvere Theories. This is clearly illustrated
in the paper [20], where Hyland and Power also outline the link with the language of monads
and put in an historical perspective.

Finally, let us mention the classical approach based on Cartesian closed categories recently
revisited and extended by T. Hirschowitz [19].

1.4 Organisation of the paper
Section 2 gives a succinct account of modules over a monad. Our categories of signatures and
models are described in Sections 3 and 4 respectively. In Section 5 we give our definition of a
syntax, and we show our modularity result about merging extensions of syntax. In Section 6

4 A (tensorial) strength for a functor F : V → V is given by a natural transformation βv,w : v ⊗ Fw →
F (v ⊗ w) commuting suitably with the associator and the unitor of the monoidal structure on V .
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we show through examples how recursion can be recovered from initiality. Our notions of
presentable signature and presentable syntax appear in Section 7. Finally, in Section 8, we
give examples of presentable signatures and syntaxes.

2 Categories of modules over monads

2.1 Modules over monads
We recall only the definition and some basic facts about modules over a monad in the specific
case of the category Set of sets, although most definitions are generalizable. See [17] for a
more extensive introduction on this topic.

A monad (over Set) is a monoid in the category Set −→ Set of endofunctors of Set, i.e.,
a triple R = (R,µ, η) given by a functor R : Set −→ Set, and two natural transformations
µ : R ·R −→ R and η : I −→ R such that the following equations hold:

µ · µR = µ ·Rµ, µ · ηR = 1R, µ ·Rη = 1R.

Let R be a monad.

I Definition 1 (Modules). A left R-module is given by a functor M : Set −→ Set equipped
with a natural transformation ρ : M ·R −→M , called module substitution, which is compatible
with the monad composition and identity:

ρ · ρR = ρ ·Mµ, ρ ·Mη = 1M .

There is an obvious corresponding definition of right R-modules that we do not need to
consider in this paper. From now on, we will write “R-module” instead of “left R-module”
for brevity.

I Example 2.
Every monad R is a module over itself, which we call the tautological module.
For any functor F : Set −→ Set and any R-module M : Set −→ Set, the composition
F ·M is an R-module (in the evident way).
For every set W we denote by W : Set −→ Set the constant functor W := X 7→W . Then
W is trivially an R-module since W = W ·R.
Let M1, M2 be two R-modules. Then the product functor M1 ×M2 is an R-module (see
Proposition 4 for a general statement).

I Definition 3 (Linearity). We say that a natural transformation of R-modules τ : M −→ N

is linear5 if it is compatible with module substitution on either side:

τ · ρM = ρN · τR.

We take linear natural transformations as morphisms among modules. It can be easily
verified that we obtain in this way a category that we denote Mod(R).

5 Given a monoidal category C, there is a notion of (left or right) module over a monoid object in C
(see https://ncatlab.org/nlab/show/module+over+a+monoid for details). The term “module” comes
from the case of rings: indeed, a ring is just a monoid in the monoidal category of Abelian groups.
Similarly, our monads are just the monoids in the monoidal category of endofunctors on Set, and our
modules are just modules over these monoids. Accordingly, the term “linear(ity)” for morphisms among
modules comes from the paradigmatic case of rings.

https://ncatlab.org/nlab/show/module+over+a+monoid
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Limits and colimits in the category of modules can be constructed point-wise:

I Proposition 4. Mod(R) is complete and cocomplete.

See LModule_Colims_of_shape and LModule_Lims_of_shape in Prelims/LModuleColims for the
formalized proofs.

2.2 The total category of modules
We already introduced the category Mod(R) of modules with fixed base R. It it often useful
to consider a larger category which collects modules with different bases. To this end, we
need first to introduce the notion of pullback.

I Definition 5 (Pullback). Let f : R −→ S be a morphism of monads6 and M an S-module.
The module substitution M ·R Mf−→M ·S ρ−→M defines an R-module which is called pullback
of M along f and noted f∗M .7

I Definition 6 (The total module category). We define the total module category
∫
R

Mod(R)
as follows8:

its objects are pairs (R,M) of a monad R and an R-module M .
a morphism from (R,M) to (S,N) is a pair (f,m) where f : R −→ S is a morphism of
monads, and m : M −→ f∗N is a morphism of R-modules.

The category
∫
R

Mod(R) comes equipped with a forgetful functor to the category of monads,
given by the projection (R,M) 7→ R.

I Proposition 7. The forgetful functor
∫
R

Mod(R) → Mon given by the first projection is
a Grothendieck fibration with fibre Mod(R) over a monad R. In particular, any monad
morphism f : R −→ S gives rise to a functor

f∗ : Mod(S) −→ Mod(R)

given on objects by Definition 5.

The formal proof is available as Prelims/modules:cleaving_bmod.

I Proposition 8. For any monad morphism f : R −→ S, the functor f∗ preserves limits
and colimits.

See pb_LModule_colim_iso and pb_LModule_lim_iso in Prelims/LModuleColims for the formal-
ized proofs.

2.3 Derivation
For our purposes, important examples of modules are given by the following general con-
struction. Let us denote the final object of Set as ∗.

6 An explicit definition of morphism of monads can be found in [17].
7 The term “pullback” is standard in the terminology of Grothendieck fibrations (see Proposition 7).
8 Our notation for the total category is modelled after the category of elements of a presheaf, and, more
generally, after the Grothendieck construction of a pseudofunctor. It overlaps with the notation for
categorical ends.
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I Definition 9 (Derivation). For any R-module M , the derivative of M is the functor
M ′ := X 7→M(X + ∗). It is an R-module with the substitution ρ′ : M ′ ·R −→M ′ defined
as in the diagram

M(R(X) + ∗)
ρ′X //

M(R(iX)+ηX+∗·∗)
��

M(X + ∗)

M(R(X + ∗))
ρX+∗

77
(1)

where iX : X −→ X + ∗ and ∗ : ∗ −→ X + ∗ are the obvious maps.

Derivation is a cartesian endofunctor on the category Mod(R) of modules over a fixed monad
R. In particular, derivation can be iterated: we denote by M (k) the k-th derivative of M .

I Definition 10. Given a list of non negative integers (a) = (a1, . . . , an) and a left moduleM
over a monad R, we denote by M (a) = M (a1,...,an) the module M (a1)× · · · ×M (an). Observe
that, when (a) = () is the empty list, we have M () = ∗ the final module.

I Proposition 11. Derivation yields an endofunctor of
∫
R

Mod(R) which commutes with
any functor f∗ induced by a monad morphism f (Proposition 7).

See LModule_deriv_is_functor in Prelims/DerivationIsFunctorial and
pb_deriv_to_deriv_pb_iso in Prelims/LModPbCommute for the formalized proofs.

We have a natural substitution morphism σ : M ′ ×R −→M defined by σX = ρX ◦ wx,
where wX : M(X + ∗)×R(X)→M(R(X)) is the map

wX : (a, b) 7→M(ηX + b), b : ∗ 7→ b.

I Lemma 12. The transformation σ is linear.

See Prelims/derivadj:substitution_laws for the formalized proof.

The substitution σ allows us to interpret the derivative M ′ as the “module M with one
formal parameter added”.

Abstracting over the module turns the substitution morphism into a natural transforma-
tion that is the unit of the following adjunction:

I Proposition 13. The endofunctor of Mod(R) mapping M to the R-module M ×R is left
adjoint to the derivation endofunctor, the unit being the substitution morphism σ.

See Prelims/derivadj:deriv_adj for the formalized proof.

3 The category of signatures

In this section, we give our notion of signature. The destiny of a signature is to have actions
in monads. An action of a signature Σ in a monad R should be a morphism from a module
Σ(R) to the tautological one R. For instance, in the case of the signature Σ of a binary
operation, we have Σ(R) := R2 = R × R. Hence a signature assigns, to each monad R, a
module over R in a functorial way.

I Definition 14. A signature is a section of the forgetful functor from the category
∫
R

Mod(R)
to the category Mon.
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Now we give our basic examples of signatures.

I Example 15. The assignment R 7→ R is a signature, which we denote by Θ.

I Example 16. For any functor F : Set −→ Set and any signature Σ, the assignment
R 7→ F · Σ(R) yields a signature which we denote F · Σ.

I Example 17. The assignment R 7→ ∗R, where ∗R denotes the final module over R, is a
signature which we denote by ∗.

I Example 18. Given two signatures Σ and Υ, the assignment R 7→ Σ(R) × Υ(R) is a
signature which we denote by Σ × Υ . In particular, Θ2 = Θ × Θ is the signature of any
(first-order) binary operation, and, more generally, Θn is the signature of n-ary operations.

I Example 19. Given two signatures Σ and Υ, the assignment R 7→ Σ(R) + Υ(R) is a
signature which we denote by Σ + Υ. In particular, Θ2 + Θ2 is the signature of a pair of
binary operations.

This example explains why we do not need to distinguish here between “arities” – usually
used to specify a single syntactic construction – and “signatures” – usually used to specify a
family of syntactic constructions; our signatures allow us to do both (via Proposition 23 for
families that are not necessarily finitely indexed).

I Definition 20. For each sequence of non-negative integers s = (s1, . . . , sn), the assignment
R 7→ R(s1) × · · · ×R(sn) (see Definition 10) is a signature, which we denote by Θ(s), or by Θ′
in the specific case of s = 1. Signatures of this form are said elementary.

I Remark 21. The product of two elementary signatures is elementary.

I Definition 22. A morphism between two signatures Σ1,Σ2 : Mon −→
∫
R

Mod(R) is a nat-
ural transformation m : Σ1 −→ Σ2 which, post-composed with the projection

∫
R

Mod(R) −→
Mon, becomes the identity. Signatures form a subcategory Sig of the category of functors
from Mon to

∫
R

Mod(R).

Limits and colimits of signatures can be easily constructed point-wise:

I Proposition 23. The category of signatures is complete and cocomplete. Furthermore, it is
distributive: for any signature Σ and family of signatures (So)o∈O, the canonical morphism∐
o∈O(So × Σ)→ (

∐
o∈O So)× Σ is an isomorphism.

See Sig_Lims_of_shape and Sig_Colims_of_shape in Signatures/SignaturesColims, and
Sig_isDistributive in Signatures/PresentableSignatureBinProdR for the formalized proofs.

I Definition 24. An algebraic signature is a (possibly infinite) coproduct of elementary
signatures.

These signatures are those which appear in [10]. For instance, the algebraic signature of the
lambda-calculus is ΣLC = Θ2 + Θ′.

4 Categories of models

We define the notion of action of a signature in a monad.

CSL 2018
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I Definition 25. Given a monad R over Set, we define an action9 of the signature Σ in R
to be a module morphism from Σ(R) to R.

I Example 26. The usual app : LC2 −→ LC is an action of the elementary signature Θ2 into
the monad LC of syntactic lambda calculus. The usual abs : LC′ −→ LC is an action of the
elementary signature Θ′ into the monad LC. Then app + abs is an action of the algebraic
signature of the lambda-calculus Θ2 + Θ′ into the monad LC.

I Definition 27. Given a signature Σ, we build the category MonΣ of models of Σ as follows.
Its objects are pairs (R, r) of a monad R equipped with an action r : Σ(R) → R of Σ. A
morphism from (R, r) to (S, s) is a morphism of monads m : R → S compatible with the
actions in the sense that the following diagram of R-modules commutes:

Σ(R) r //

Σ(m)
��

R

m

��
m∗(Σ(S))

m∗s
// m∗S

This is equivalent to asking that the square of underlying natural transformations commutes,
i.e., m ◦ r = s ◦ Σ(m). Here, the horizontal arrows come from the actions, the left vertical
arrow comes from the functoriality of signatures, and m : R −→ m∗S is the morphism of
monads seen as morphism of R-modules.

I Proposition 28. These morphisms, together with the obvious composition, turn MonΣ into
a category which comes equipped with a forgetful functor to the category of monads.

In the formalization, this category is recovered as the fiber category over Σ of the displayed
category [2] of models, see Signatures/Signature:rep_disp.

I Definition 29 (Pullback). Let f : Σ −→ Υ be a morphism of signatures and R = (R, r) a
model of Υ. The linear morphism Σ(R) f−→ Υ(R) r−→ R defines an action of Σ in R. The
induced model of Σ is called pullback10 of R along f and noted f∗R.

5 Syntax

We are primarily interested in the existence of an initial object in the category MonΣ of
models of a signature Σ. We call this object the syntax generated by Σ.

5.1 Representability
I Definition 30. Given a signature Σ, a representation of Σ is an initial object in MonΣ. If
such an object exists, we call it the syntax generated by Σ and denote it by Σ̂. In this case,
we also say that Σ̂ represents Σ, and we call the signature Σ representable11.

I Theorem 31. Algebraic signatures are representable.

9 This terminology is borrowed from the vocabulary of algebras over a monad: an algebra over a monad
T on a category C is an object X of C with a morphism ν : T (X) −→ X that is compatible with the
multiplication of the monad. This morphism is sometimes called an action.

10Following the terminology introduced in Definition 5, the term “pullback” is justified by Lemma 33.
11For an algebraic signature Σ without binding constructions, the map assigning to any monad R its set

of Σ-actions can be upgraded into a functor which is corepresented by the initial model.
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This result is proved in a previous work [16, Theorems 1 and 2]. The proof goes as follows:
an algebraic signature induces an endofunctor on the category of endofunctors on Set. Its
initial algebra (constructed as the colimit of the initial chain) is given the structure of a
monad with an action of the algebraic signature, and then a routine verification shows that
it is actually initial in the category of models. As part of the present work, we provide a
computer-checked proof as algebraic_sig_representable in the file Signatures/BindingSig.

In the following we present a more general representability result: Theorem 35 states that
presentable signatures, which form a superclass of algebraic signatures, are representable.

5.2 Modularity
In this section, we study the problem of how to merge two syntax extensions. Our answer,
a “modularity” result (Theorem 32), was stated already in the preliminary version [18,
Section 6], there without proof.

Suppose that we have a pushout square of representable signatures,

Σ0 //

��

Σ1

��
Σ2 // Σ

p

Intuitively, the signatures Σ1 and Σ2 specify two extensions of the signature Σ0, and Σ
is the smallest extension containing both these extensions. Modularity means that the
corresponding diagram of representations,

Σ̂0 //

��

Σ̂1

��
Σ̂2 // Σ̂

is a pushout as well – but we have to take care to state this in the “right” category. The
right category for this purpose is the following total category

∫
Σ MonΣ of models:

An object of
∫

Σ MonΣ is a triple (Σ, R, r) where Σ is a signature, R is a monad, and r is
an action of Σ in R.
A morphism in

∫
Σ MonΣ from (Σ1, R1, r1) to (Σ2, R2, r2) consists of a pair (i,m) of a

signature morphism i : Σ1 −→ Σ2 and a morphism m of Σ1-models from (R1, r1) to
(R2, i

∗(r2)).
It is easily checked that the obvious composition turns

∫
Σ MonΣ into a category.

Now for each signature Σ, we have an obvious inclusion from the fiber MonΣ into
∫

Σ MonΣ,
through which we may see the syntax Σ̂ of any representable signature as an object in∫

Σ MonΣ. Furthermore, a morphism i : Σ1 −→ Σ2 of representable signatures yields a
morphism i∗ := Σ̂1 −→ Σ̂2 in

∫
Σ MonΣ. Hence our pushout square of representable signatures

as described above yields a square in
∫

Σ MonΣ.

I Theorem 32. Modularity holds in
∫

Σ MonΣ, in the sense that given a pushout square of
representable signatures as above, the associated square in

∫
Σ MonΣ is a pushout again.

In particular, the binary coproduct of two signatures Σ1 and Σ2 is represented by the binary
coproduct of the representations of Σ1 and Σ2.

Our computer-checked proof of modularity is available as pushout_in_big_rep in the file
Signatures/Modularity. The proof uses, in particular, the following fact:
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4:10 High-Level Signatures and Initial Semantics

I Lemma 33. The projection π :
∫

Σ MonΣ → Sig is a Grothendieck fibration.

See rep_cleaving in Signatures.Signature for the formalized proof.

6 Recursion

We now show through examples how certain forms of recursion can be derived from initiality.

6.1 Example: Translation of intuitionistic logic into linear logic
We start with an elementary example of translation of syntaxes using initiality, namely the
translation of second-order intuitionistic logic into second-order linear logic [14, page 6]. The
syntax of second-order intuitionistic logic can be defined with one unary operator ¬, three
binary operators ∨, ∧ and ⇒, and two binding operators ∀ and ∃. The associated (algebraic)
signature is ΣLK = Θ+(3×Θ2)+(2×Θ′). As for linear logic, there are four constants >,⊥, 0, 1,
two unary operators ! and ?, five binary operators &, `, ⊗, ⊕, ( and two binding operators
∀ and ∃. The associated (algebraic) signature is ΣLL = (4×∗) + (2×Θ) + (5×Θ2) + (2×Θ′).

By universality of the coproduct, a model of ΣLK is given by a monad R with module
morphisms:

r¬ : R −→ R

r∀, r∃ : R′ −→ R

r∧, r∨, r⇒ : R×R −→ R

and similarly, we can decompose an action of ΣLL into as many components as there are
operators.

The translation will be a morphism of monads between the initial models (i.e. the syntaxes)
o : Σ̂LK −→ Σ̂LL that further satisfies the properties of a morphism of ΣLK-models, for
example o(r∃(t)) = r∃(r!(o(t))). The strategy is to use the initiality of Σ̂LK . Indeed,
equipping Σ̂LL with an action r′α : α(Σ̂LL) −→ Σ̂LL for each operator α of intuitionistic
logic (>,⊥, ∨,∧,⇒,∀ ,∃, ∈ and =) yields a morphism of monads o : Σ̂LK −→ Σ̂LL such that
o(rα(t)) = r′α(α(o)(t)) for each α.

The definition of r′α is then straightforward to devise, following the recursive clauses given
on the right:

r′¬ = r( ◦ (r! × r0) (¬A)o := (!A) ( 0
r′∧ = r& (A ∧B)o := Ao&Bo

r′∨ = = r⊕ ◦ (r! × r!) (A ∨B)o :=!Ao⊕!Bo

r′⇒ = r( ◦ (r! × id) (A⇒ B)o :=!Ao ( Bo

r′∃ = r∃ ◦ r! (∃xA)o := ∃x!Ao

r′∀ = r∀ (∀xA)o := ∀xAo

The induced action of ΣLK in the monad Σ̂LL yields the desired translation morphism
o : Σ̂LK → Σ̂LL. Note that variables are automatically preserved by the translation because
o is a monad morphism.

6.2 Example: Computing the set of free variables
We denote by P (X) the power set of X. The union gives us a composition operator
P (P (X))→ P (X) defined by u 7→

⋃
s∈u s, which yields a monad structure on P .
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We now define an action of the signature of lambda calculus ΣLC in the monad P . We
take union operator ∪ : P × P → P as action of the application signature Θ×Θ; this is a
module morphism since binary union distributes over union of sets. Next, given s ∈ P (X + ∗)
we define Maybe−1(s) = s ∩X. This defines a morphism of modules Maybe−1 : P ′ → P ; a
small calculation using a distributivity law of binary intersection over union of sets shows that
this natural transformation is indeed linear. It can hence be used to model the abstraction
signature Θ′ in P .

Associated to this model of ΣLC in P we have an initial morphism free : LC→ P . Then,
for any t ∈ LC(X), the set free(t) is the set of free variables occurring in t.

6.3 Example: Computing the size of a term
We now consider the problem of computing the “size” of a λ-term, that is, for any set X, a
function sX : LC(X) −→ N such that

sX(x) = 0 (x ∈ X variable)
sX(abs(t)) = 1 + sX+∗(t)

sX(app(t, u)) = 1 + sX(t) + sX(u)

This problem (and many similar other ones) does not fit directly in our vision because this
computation does not commute with substitution, hence does not correspond to a (potentially
initial) morphism of monads.

Instead of computing the size of a term (which is 0 for a variable), we compute a
generalized size gs which depends on arbitrary (formal) sizes attributed to variables. We
have

gs : ∀X : Set, LC(X)→ (X → N)→ N

Here, we recognize the continuation monad (see also [22])

ContN := X 7→ (X → N)→ N

with multiplication λf.λg.f(λh.h(g)). The sets ContA(∅) and A are in natural bijection and
we will identify them in what follows.

Now we can define gs through initiality by endowing the monad ContN of a structure of
ΣLC-model as follows.

The function α(m,n) = 1 +m+ n induces a natural transformation

α+ : ContN × ContN −→ ContN

thus an action for the application signature Θ×Θ in the monad ContN.
Next, given f ∈ ContN(X + ∗), define f ′ ∈ ContN(X) by f ′(x) = 1 + f(x) for all x ∈ X

and f ′(∗) = 0. This induces a natural transformation

β : Cont′N −→ ContN
f 7→ f ′

which is the desired action of the abstraction signature Θ′.
Altogether, we have the desired action of ΣLC in ContN and thus an initial morphism,

i.e., a natural transformation ι : LC→ ContN which respects the ΣLC-model structure. Now
let 0X be the identically zero function on X. Then the sought “size” map is given by
sX(x) = ιX(x, 0X).

CSL 2018
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6.4 Example: Counting the number of redexes
We now consider an example of recursive computation: a function r such that r(t) is the
number of redexes of the λ-term t of LC(X). Informally, the equations defining r are

r(x) = 0, (x variable)
r(abs(t)) = r(t),

r(app(t, u)) =
{

1 + r(t) + r(u) if u is an abstraction
r(t) + r(u) otherwise

Here the (standard) recipe is to make the desired function appear as a projection of an
iterative function with values in a product. Concretely, we will proceed by first defining a
ΣLC-action on the monad product W := ContN × LC. First, consider the linear morphism
β : Cont′N → ContN given by β(f)(x) = f(x) for all f ∈ ContN(X + ∗) and x ∈ X. Since we
have W ′ = Cont′N × LC′, the product

β × abs : W ′ −→W

is an action of the abstraction signature Θ′ in W .
Next we specify the action of the application signature Θ × Θ. Given ((u, s), (v, t)) ∈

W (X)×W (X) and k : X → A we define

c((u, s), (v, t)) :=
{

(1 + u(k) + v(k))(k) if t is an abstraction
(u(k) + v(k))(k) otherwise

and

a((u, s), (v, t)) := app(s, t)

The pair map (c, a) : W ×W →W is our action of app in W .
From this ΣLC-action, we get an initial morphism ι : LC → ContN × LC. The second

component of ι is nothing but the identity morphism. By taking the projection on the first
component, we find a module morphism π1 · ι : LC→ ContN. Finally, if 0X is the constant
function X → N returning zero, then π1(ι(0X)) : LC(X)→ N is the desired function r.

7 Presentable signatures and syntaxes

In this section, we identify a superclass of algebraic signatures that are still representable:
we call them presentable signatures.

I Definition 34. A signature Σ is presentable12 if there is an algebraic signature Υ and an
epimorphism of signatures p : Υ −→ Σ.

I Remark. By definition, any construction which can be encoded through a presentable
signature can alternatively be encoded through the “presenting” algebraic signature. The
former encoding is finer than the latter in the sense that terms which are different in the
latter encoding can be identified by the former. In other words, a certain amount of semantics
is integrated into the syntax.

12 In algebra, a presentation of a group G is an epimorphism F → G where F is free (together with a
generating set of relations among the generators).



B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:13

The main desired property of our presentable signatures is that, thanks to the following
theorem, they are representable:

I Theorem 35. Any presentable signature is representable.

A sketch of the proof is available in Appendix A.
See PresentableisRepresentable in Signatures/PresentableSignature for the formalized
proof.

I Definition 36. We call a syntax presentable if it is generated by a presentable signature.

Next, we give important examples of presentable signatures:

I Theorem 37. The following hold:
1. Any algebraic signature is presentable.
2. Any colimit of presentable signatures is presentable.
3. The product of two presentable signatures is presentable.

(Signatures/PresentableSignatureBinProdR:har_binprodR_isPresentable in the case
when one of them is Θ).

Proof. Items 1–2 are easy to prove. For Item 3, if Σ1 and Σ2 are presented by
∐
i Υi and∐

j Φj respectively, then Σ1 × Σ2 is presented by
∐
i,j Υi × Φj . J

I Corollary 38. Any colimit of algebraic signatures is representable.

8 Examples of presentable signatures

In this section we present various constructions which, thanks to Theorem 35, can be
“safely” added to a presentable syntax. Safely here means that the resulting signature is still
presentable.

8.1 Example: Adding a syntactic binary commutative operator
Here we present a signature that could be used to formalize a binary commutative operator, for
example the addition of two numbers. The elementary signature Θ×Θ already provides a way
to extend the syntax with a constructor with two arguments. By quotienting this signature, we
can enforce commutativity. To this end, consider the signature S2 ·Θ (see Example 16) where
S2 is the endofunctor that assigns to each set X the set of its unordered pairs. It is presentable
because the epimorphism between the square endofunctor ∆ = X 7→ X ×X and S2 yields an
epimorphism from ∆ ·Θ ∼= Θ×Θ to S2 ·Θ. This signature could alternatively be defined as
the coequalizer of the identity morphism and the signature morphism swap : Θ×Θ→ Θ×Θ
that exchanges the first and the second projection.

An action of the signature S2 ·Θ in a monad R is given by an operation on unordered
pairs of elements of R(X) for any set X, or equivalently, thanks to the universal property of
the quotient, by a module morphism m : R2 → R such that, for any set X and a, b ∈ R(X),
mX(a, b) = mX(b, a).

8.2 Example: Adding a syntactic closure operator
Given a quantification construction (e.g., abstraction, universal or existential quantification),
it is often useful to take the associated closure operation. One well-known example is the
universal closure of a logic formula. Such a closure is invariant under permutation of the
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fresh variables. A closure can be syntactically encoded in a rough way by iterating the
closure with respect to one variable at a time. Here our framework allows a refined syntactic
encoding which we explain below.

Let us start with binding a fixed number k of fresh variables. The elementary signature
Θ(k) already specifies an operation that binds k variables. However, this encoding does
not reflect invariance under variable permutation. To enforce this invariance, it suffices to
quotient the signature Θ(k) with respect to the action of the group Sk of permutations of
the set k, that is, to consider the colimit of the following one-object diagram:

Θ(k)

Θ(σ)

where σ ranges over the elements of Sk. We denote by S(k)Θ the resulting (presentable)
signature. By universal property of the quotient, a model of it consists of a monad R with
an action m : R(k) → R that satisfies the required invariance.

Now, we want to specify an operation which binds an arbitrary number of fresh variables,
as expected from a closure operator. One rough solution is to consider the coproduct∐
k S(k)Θ. However, we encounter a similar inconvenience as for Θ(k). Indeed, for each

k′ > k, each term already encoded by the signature S(k)Θ may be considered again, encoded
(differently) through S(k′)Θ.

Fortunately, a finer encoding is provided by the following simple colimit of presentable
signatures. The crucial point here is that, for each k, all natural injections from Θ(k) to
Θ(k+1) induce the same canonical injection from S(k)Θ to S(k+1)Θ. We thus have a natural
colimit for the sequence k 7→ S(k)Θ and thus a signature colimk S(k)Θ which, as a colimit of
presentable signatures, is presentable (Theorem 37, item 2).

Accordingly, we define a total closure on a monad R to be an action of the signature
colimk S(k)Θ in R. It can easily be checked that a model of this signature is a monad R

together with a family of module morphisms (ek : R(k) → R)k∈N compatible in the sense
that for each injection i : k → k′ the following diagram commutes:

R(k)

ek
##

R(i)
// R(k′)

ek′

��
R

8.3 Example: Adding an explicit substitution
In this section, we explain how we can extend any presentable signature with an explicit
substitution construction. In fact we will show three solutions, differing in the amount of
“coherence” which is handled at the syntactic level (e.g., invariance under permutation and
weakening). We follow the approach initiated by Ghani, Uustalu, and Hamana in [13].

Let R be a monad. We have already considered (see Lemma 12) the (unary) substitution
σR : R′ ×R→ R. More generally, we have the sequence of substitution operations

substp : R(p) ×Rp −→ R. (2)

We say that substp is the p-substitution in R; it simultaneously replaces the p extra variables
in its first argument with the p other arguments, respectively. (Note that subst1 is the
original σR).
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We observe that, for fixed p, the group Sp of permutations on p elements has a natural
action on R(p) ×Rp, and that substp is invariant under this action.

Thus, if we fix an integer p, there are two ways to internalize substp in the syntax: we
can choose the elementary signature Θ(p) ×Θp, which is rough in the sense that the above
invariance is not reflected; and alternatively, if we want to reflect the permutation invariance
syntactically, we can choose the quotient Qp of the above signature by the action of Sp.

By universal property of the quotient, a model of our quotient Qp is given by a monad R
with an action m : R(p) ×Rp → R satisfying the desired invariance.

Before turning to the encoding of the entire series (substp)p∈N, we recall how, as noticed
already in [13], this series enjoys further coherence. In order to explain this coherence, we
start with two natural numbers p and q and the module R(p) × Rq. Pairs in this module
are almost ready for substitution: what is missing is a map u : Ip −→ Iq. But such a map
can be used in two ways: letting u act covariantly on the first factor leads us into R(q) ×Rq
where we can apply substq; while letting u act contravariantly on the second factor leads us
into R(p) ×Rp where we can apply substp. The good news is that we obtain the same result.
More precisely, the following diagram is commutative:

R(p) ×Rq R(p) ×Rp

R(q) ×Rq R

R(p)×Ru

R(u)×Rp substp

substq

(3)

Note that in the case where p equals q and u is a permutation, we recover exactly the
invariance by permutation considered earlier.

Abstracting over the numbers p, q and the map u, this exactly means that our series factors
through the coend

∫ p:N
R(p) ×Rp, where covariant (resp. contravariant) occurrences of the

bifunctor have been underlined (resp. overlined), and the category N is the full subcategory
of Set whose objects are natural numbers. Thus we have a canonical morphism

isubstR :
∫ p:N

R(p) ×Rp −→ R.

Abstracting over R, we obtain the following:

I Definition 39. The integrated substitution

isubst :
∫ p:N

Θ(p) ×Θp −→ Θ

is the signature morphism obtained by abstracting over R the linear morphisms isubstR.

Thus, if we want to internalize the whole sequence (substp)p:N in the syntax, we have
at least three solutions: we can choose the algebraic signature

∐
p:N Θ(p) × Θp, which is

rough in the sense that the above invariance and coherence is not reflected; we can choose
the presentable signature

∐
p:NQp, which reflects the invariance by permutation, but not

more; and finally, if we want to reflect the whole coherence syntactically, we can choose the
presentable signature

∫ p:N Θ(p) ×Θp.
Thus, whenever a signature is presentable, we can safely extend it by adding one or the

other of the three above signatures, for a (more or less coherent) explicit substitution.
Ghani, Uustalu, and Hamana already studied this problem in [13]. Our solution proposed

here does not require the consideration of a strength.
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8.4 Example: Adding a coherent fixed point operator
In the same spirit as in the previous section, we define, in this section,

for each n ∈ N, a notion of n-ary fixed point operator in a monad;
a notion of coherent fixed point operator in a monad, which assigns, in a “coherent” way,
to each n ∈ N, an n-ary fixed point operator.

We furthermore explain how to safely extend any presentable syntax with a syntactic coherent
fixed point operator.

There is one fundamental difference between the integrated substitution of the previ-
ous section and our coherent fixed points: while every monad has a canonical integrated
substitution, this is not the case for coherent fixed point operators.

Let us start with the unary case.

I Definition 40. A unary fixed point operator for a monad R is a module morphism f from
R′ to R that makes the following diagram commute,

R′ R′ ×R

R

(idR′ ,f)

f σ

where σ is the substitution morphism defined in Lemma 12.

Accordingly, the signature for a syntactic unary fixpoint operator is Θ′, ignoring the
commutation requirement (which we plan to address in a future work by extending our
framework with equations).

Let us digress here and examine what the unary fixpoint operators are for the lambda
calculus, more precisely, for the monad LCβη of the lambda-calculus modulo β- and η-
equivalence. How can we relate the above notion to the classical notion of fixed-point
combinator? Terms are built out of two constructions, app : LCβη × LCβη → LCβη and
abs : LC′βη → LCβη. A fixed point combinator is a term Y satisfying, for any (possibly open)
term t, the equation

app(t, app(Y, t)) = app(Y, t).

Given such a combinator Y , we define a module morphism Ŷ : LC′βη → LCβη. It associates,
to any term t depending on an additional variable ∗, the term Ŷ (t) := app(Y, abs t). This
term satisfies t[Ŷ (t)/∗] = Ŷ (t), which is precisely the diagram of Definition 40 that Ŷ must
satisfy to be a unary fixed point operator for the monad LCβη. Conversely, we have:

I Proposition 41. Any fixed point combinator in LCβη comes from a unique fixed point
operator.

The proof can be found in Appendix B.

After this digression, we now turn to the n-ary case.

I Definition 42.
A rough n-ary fixed point operator for a monad R is a module morphism f : (R(n))n → Rn

making the following diagram commute:

(R(n))n
id(R(n))n ,f ,..,f //

f

��

(R(n))n × (Rn)n

∼=

Rn (R(n) ×Rn)n
(substn)n

oo

where substn is the n-substitution as in Section 8.3.
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An n-ary fixed point operator is just a rough n-ary fixed point operator which is further-
more invariant under the natural action of the permutation group Sn.

The type of f above is canonically isomorphic to

(R(n))n + (R(n))n + . . .+ (R(n))n → R,

which we abbreviate to13 n× (R(n))n → R.
Accordingly, a natural signature for encoding a syntactic rough n-ary fixpoint operator is

n× (Θ(n))n.
Similarly, a natural signature for encoding a syntactic n-ary fixpoint operator is (n ×

(Θ(n))n)/Sn obtained by quotienting the previous signature by the action of Sn.
Now we let n vary and say that a total fixed point operator on a given monad R assigns

to each n ∈ N an n-ary fixpoint operator on R. Obviously, the natural signature for the
encoding of a syntactic total fixed point operator is

∐
n(Θ(n))n/Sn. Alternatively, we may

wish to discard those total fixed point operators that do not satisfy some coherence conditions
analogous to what we encountered in Section 8.3, which we now introduce.

Let R be a monad with a sequence of module morphisms fixn : n× (R(n))n → R. We call
this family coherent if, for any p, q ∈ N and u : p→ q, the following diagram commutes:

p× (R(p))q p× (R(p))p

q × (R(q))q R

p×(R(p))u

u×(R(u))q fixp

fixq

(4)

These conditions have an interpretation in terms of a coend, just as we already encountered
in Section 8.3. This leads us to the following

I Definition 43. Given a monad R, we define a coherent fixed point operator on R to be a
module morphism from

∫ n:N
n× (R(n))n to R where, for every n ∈ N, the n-th component is

a (rough)14 n-ary fixpoint operator.

Now, the natural signature for a syntactic coherent fixed point operator is
∫ n:N

n×(Θ(n))n.
Thus, given a presentable signature Σ, we can safely extend it with a syntactic coherent fixed
point operator by adding the presentable signature

∫ n:N
n× (Θ(n))n to Σ.

9 Conclusions and future work

We have presented notions of signature and model of a signature. A signature is said to be
representable when its category of models has an initial model. We have defined a class of
presentable signatures, which contains traditional algebraic signatures, and which is closed
under various operations, including colimits. Our main result says that any presentable
signature is representable.

One difference to other work on Initial Semantics, e.g., [24, 12, 7, 9], is that we do not
rely on the notion of strength. However, a signature endofunctor with strength as used in the
aforementioned articles can be translated to a high-level signature as presented in this work.
In future work, we will show that this translation extends faithfully to models of signatures,
and preserves initiality.

13 In the following, we similarly write n instead of In in order to make equations more readable.
14As in Section 8.3, the invariance follows from the coherence.
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Furthermore, we plan to generalize our representability criterion to encompass explicit
join (see [24]); to generalize our notions of signature and models to (simply-)typed syntax;
and to provide a systematic approach to equations for our notion of signature and models.
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A Proof of Theorem 35

The results of this section, as well as Theorem 35 for which these results are used, are
mechanically checked in our library; the reader may thus prefer to check the formalized
statements in the library rather than their proofs in this section.

The proof of Theorem 35 rests on the more technical Lemma 48 below, which requires
the notion of epi-signature:

I Definition 44. An epi-signature is a signature Σ that preserves the epimorphicity in the
category of endofunctors on Set: for any monad morphism f : R −→ S, if U(f) is an epi
of functors, then so is U(Σ(f)). Here, we denote by U the forgetful functor from monads
resp. modules to the underlying endofunctors.

I Example 45. Any algebraic signature is an epi-signature.

This example is formalized in Signatures/BindingSig:BindingSigAreEpiSig.

I Proposition 46. Epimorphisms of signatures are pointwise epimorphisms.
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Proof. The proof if formalized in Signatures/EpiArePointwise:epiSig_is_pwEpi. In any
category, a morphism f : a→ b is an epimorphism if and only if the following diagram is a
pushout diagram ([23, exercise III.4.4]) :

a b

b b

f

f id

id

Using this characterization of epimorphisms, the proof follows from the fact that colimits are
computed pointwise in the category of signatures. J

Another important ingredient will be the following quotient construction for monads. Let
R be a monad, and let ∼ be a “compatible” family of relations on (the functor underlying) R,
that is, for any X : Set0, ∼X is an equivalence relation on RX such that, for any f : X → Y ,
the function R(f) maps related elements in RX to related elements in RY . Taking the
pointwise quotient, we obtain a quotient π : R → R in the functor category, satisfying
the usual universal property. We want to equip R with a monad structure that upgrades
π : R→ R into a quotient in the category of monads. In particular, this means that we need
to fill in the square

R ·R

π·π
��

µ // R

π
��

R ·R
µ // R

with a suitable µ : R ·R −→ R satisfying the monad laws. But since π, and hence π · π, is
epi, this is possible when any two elements in RRX that are mapped to related elements by
π · π (the left vertical morphism) are also mapped to related elements by π ◦ µ (the top-right
composition). It turns out that this is the only extra condition needed for the upgrade. We
summarize the construction in the following lemma:

I Lemma 47. Given a monad R, and a compatible relation ∼ on R such that for any set X
and x, y ∈ RRX, we have that if (π · π)X(x) ∼ (π · π)X(y) then π(µ(x)) ∼ π(µ(y)). Then
we can construct the quotient π : R → R in the category of monads, satisfying the usual
universal property.

We are now in a position to state and prove the main technical lemma:

I Lemma 48. Let Υ be a representable signature. Let F : Υ→ Σ be a morphism of signatures.
Suppose that Υ is an epi-signature and F is an epimorphism. Then Σ is representable.

Sketch of the proof. We denote by R the initial Υ-model, as well as – by abuse of notation
– its underlying monad. For each set X, we consider the equivalence relation ∼X on R(X)
defined as follows: for all x, y ∈ R(X) we stipulate that x ∼X y if and only if iX(x) = iX(y)
for each (initial) morphism of Υ-models i : R→ F ∗S with S a Σ-model and F ∗S the Υ-model
induced by F : Υ→ Σ.

Per Lemma 47 we obtain the quotient monad, which we call R/F , and the epimorphic
projection π : R→ R/F . We now equip R/F with a Σ-action, and show that the induced
model is initial, in four steps:
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(i) We equip R/F with a Σ-action, i.e., with a morphism of R/F -modules mR/F :
Σ(R/F ) → R/F . We define u : Υ(R) → Σ(R/F ) as u = FR/F ◦ Υ(π). Then
u is epimorphic, by composition of epimorphisms and by using Corollary 46. Let
mR : Υ(R)→ R be the action of the initial model of Υ. We define mR/F as the unique
morphism making the following diagram commute in the category of endofunctors on
Set:

Υ(R) R

Σ(R/F ) R/F

mR

u π

mR/F

Uniqueness is given by the pointwise surjectivity of u. Existence follows from the
compatibility of mR with the congruence ∼X . The diagram necessary to turn mR/F

into a module morphism on R/F is proved by pre-composing it with the epimorphism
π · (Σ(π) ◦ FS) and unfolding the definitions.

(ii) Now, π can be seen as a morphism of Υ-models between R and F ∗R/F , by naturality
of F and using the previous diagram.
It remains to show that (R/F ,mR/F ) is initial in the category of Σ-models.

(iii) Given a Σ-model (S,ms), the initial morphism of Υ-models iS : R → F ∗S induces a
monad morphism ιS : R/F → S. We need to show that the morphism ι is a morphism
of Σ-models. Pre-composing the involved diagram by the epimorphism Σ(π)FR and
unfolding the definitions shows that ιS : R/F → S is a morphism of Σ-models.

(iv) We show that ιS is the only morphism R/F → S. Let g be such a morphism. Then
g ◦ π : R→ S defines a morphism in the category of Υ-models. Uniqueness of iS yields
g ◦ π = iS , and by uniqueness of the diagram defining ιS it follows that g = i′S . J

In the formalization, this result is derived from the existence of a left adjoint to the
pullback functor F ∗ from Σ-models to Υ-models. The right adjoint is constructed in
is_right_adjoint_functor_of_reps_from_pw_epi in Signatures/EpiSigRepresentability, and
transfer of representability is shown in push_initiality in the same file.

Proof of Thm. 35. Let Σ be presentable. We need to show that Σ is representable. By
hypothesis, we have a presenting algebraic signature Υ and an epimorphism of signatures
e : Υ −→ Σ.

As the signature Υ is algebraic, it is representable (by Theorem 31) and is an epi-signature
(by Example 45). We can thus instantiate Lemma 48 to deduce representability of Σ. J

B Miscellanea

Proof of Prop. 41. We construct a bijection between the set LCβη∅ of closed terms on the
one hand and the set of module morphisms from LC′βη to LCβη satisfying the fixed point
property on the other hand.

A closed lambda term t is mapped to the morphism u 7→ t̂ u := app(t, abs u). We have
already seen that if t is a fixed point combinator, then t̂ is a fixed point operator.

For the inverse function, note that a module morphism f from LC′βη to LCβη induces a
closed term Yf := abs(f1(app(∗, ∗∗))) where f1 : LCβη({∗, ∗∗})→ LCβη{∗}.

A small calculation shows that Y 7→ Ŷ and f 7→ Yf are inverse to each other.
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It remains to be proved that if f is a fixed point operator, then Yf satisfies the fixed
point combinator equation. Let t ∈ LCβηX, then we have

app(Yf , t) = app(abs f1(app(∗, ∗∗)), t) (5)
= fX(app(t, ∗∗)) (6)
= app(t, app(Yf , t)) (7)

where (6) comes from the definition of a fixed point operator. Equality (7) follows from the
equality app(Yf , t) = fX(app(t, ∗∗)), which is obtained by chaining the equalities from (5) to
(6). This concludes the construction of the bijection. J
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1 Introduction

“What more do we know when we have proved a theorem
by restricted means than if we merely know it is true?”

Kreisel’s question is the driving force for much modern Proof Theory. This paper is concerned
with Herbrand’s Theorem, perhaps the earliest result in that direction. It is a simple
consequence of completeness and compactness in first-order logic. So it is an example of
information being extracted from the bare fact of provability. Usually by contrast one thinks
in terms of extracting information from the proofs themselves, typically - as in Kohlenbach’s
proof mining - via some form of functional interpretation. This has the advantage that
information is extracted compositionally in the spirit of functional programming. Specifically
information for ` A and ` A→ B can be composed to give information for ` B; or, in terms
of the sequent calculus, we can interpret the cut rule.

It seems to be folklore that there is a problem for Herbrand’s Theorem. That is made
precise in Kohlenbach [17] which shows that one cannot hope directly to use collections of
Herbrand terms for ` A and ` A→ B to give a collection for ` B. That leaves the possibility
of making some richer data compositional, realised indirectly in Gerhardy and Kohlenbach [11]
with data provided by Shoenfield’s version [30] of Gödel’s Dialectica Interpretation [14].
Now functional interpretations make no pretence to be faithful to the structure of proofs as
encapsulated in systems like the sequent calculus: they explore in a sequential order terms
proposed by a proof as witnesses for existential quantifiers, but this order is certainly not
intrinsic to the proof. Thus it is compelling to seek some compositional form of Herbrand’s
Theorem faithful to the structure of proofs and to the dependency between terms; for
cut-free proofs, Miller’s expansion trees [24] capture precisely this “Herbrand content” (the
information pertaining to quantifier instantiations), but not compositionally.

In this paper, we provide such a compositional form of Herbrand’s theorem, presented as
a game semantics for first-order classical logic. Our games have two players, both playing on
the quantifiers of a formula ϕ. ∃loïse, playing the existential quantifiers, defends the validity
of ϕ. ∀bélard, playing the universal quantifiers, attempts to falsify it. This understanding
of formulas as games is folklore in mathematical logic and computer science. However, like
functional interpretations, such games are usually sequential [7, 19]. In contrast, our model
captures the exact dependence and independence between quantifiers. To achieve that we
build on concurrent/asynchronous games [23, 27, 4], which marry game semantics with the
so-called true concurrency approach to models of concurrent systems, and avoid interleavings.
So in a formal sense, our model highlights a parallelism inherent to classical proofs. In
essence, our strategies are close to expansion trees enriched with an explicit acyclicity witness.

The computational content of classical logic is a longstanding active topic, with a wealth
of related works, and it is hard to do it justice in this short introduction. There are, roughly
speaking, two families of approaches. On the one hand, some (including the functional
interpretations mentioned above) extract from proofs a sequential procedure, e.g. via
translation to sequential calculi or by annotating a proof to sequentialize or determinize its
behaviour under cut reduction [13, 8]. Other than that cited above, influential developments in
this “polarized” approach include work by Berardi [2], Coquand [7], Parigot [26], Krivine [18],
and others. Polarization yields better-behaved dynamics and a non-degenerate equational
theory, but distorts the intent of the proof by an added unintended sequentiality. On the other
hand, some works avoid polarization – including, of course, Gentzen’s Hauptsatz [10]. This
causes issues, notably unrestricted cut reduction yields a degenerate equational theory [13]
and enjoys only weak, rather than strong, normalization [8]. Nevertheless, witness extraction
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remains possible (though it is non-deterministic). Particularly relevant to our endeavour is a
recent activity around the matter of enriching expansion trees so as to support cuts. This
includes Heijltjes’ proof forests [15], McKinley’s Herbrand nets [21], and Hetzl and Weller’s
recent expansion trees with cuts [16]. In all three cases, a generalization of expansion trees
allowing cuts is given along with a weakly normalizing cut reduction procedure. Intuitions
from games are often mentioned, but the methods used are syntactic and based on rewriting.

Other related works include Laurent’s model for the first-order λµ-calculus [19], whose
annotation of moves via first-order terms is similar to ours; and Mimram’s categorical present-
ation of a games model for a linear first-order logic without propositional connectives [25].

Since our model avoids polarization, some phenomena from the proof theory of classical
logic reflect in it: our semantics does not preserve cut reduction – if it did, it would be a
boolean algebra [13]. Yet it preserves it in a sense for first-order MLL [12]. Likewise, just
as classical proofs can lead to arbitrary large cut-free proofs [8], our semantics may yield
infinite strategies, from which finite sub-strategies can nonetheless always be extracted. This
reflects that non-polarized proof systems for classical logic are often only weakly normalizing.

In Section 2 we recall Herbrand’s theorem, and introduce the game-theoretic language
leading to our compositional reformulation of it. The rest of the paper describes the
interpretation of proofs as winning strategies: in Section 3 we give the interpretation of
propositional MLL, in Section 4 we deal with quantifiers, and finally, in Section 5, we add
contraction and weakening and complete the interpretation.

2 From Herbrand to winning Σ-strategies

A signature is Σ = (Σf ,Σp), with Σf a countable set of function symbols (f, g, h, etc.
range over function symbols), and Σp a countable set of predicate symbols (P,Q, etc.
range over predicate symbols). There is an arity function ar : Σf ]Σp → N where ] is the
usual set-theoretic union, where argument sets are disjoint. For a relative gain in simplicity
in some arguments and examples, we assume that Σ has at least one constant symbol, i.e., a
function symbol of arity 0. We use a, b, c, . . . to range over constant symbols.

If V is a set of variable names, we write TmΣ(V) for the set of first-order terms on Σ
with free variables in V. We use variables t, s, u, v, . . . to range over terms. Literals have
the form P(t1, . . . , tn) or ¬P(t1, . . . , tn), where P is a n-ary predicate symbol and the tis are
terms. Formulas are also closed under quantifiers, and the connectives ∨ and ∧. Negation
is not considered a logical connective: the negation ϕ⊥ of ϕ is obtained by De Morgan
rules. We write FormΣ(V) for the set of first-order formulas on Σ with free variables in V ,
and use ϕ,ψ, . . . to range over them. We also write QFΣ(V) for the set of quantifier-free
formulas. Finally, we write fv(ϕ) or fv(t) for the set of free variables in a formula ϕ or a
term t. Formulas are considered up to α-conversion and satisfy Barendregt’s convention.

2.1 Herbrand’s theorem
Intuitionistic logic has the witness property: if ∃xϕ holds intuitionistically, then there is
some term t such that ϕ(t) holds. While this fails in classical logic, Herbrand’s theorem, in
its popular form, gives a weakened classical version, a finite disjunction property.

I Theorem 1. Let T be a theory finitely axiomatized by universal formulas. Let ψ =
∃x1 . . . ∃xnϕ(x1, . . . , xn) be a purely existential formula (ϕ ∈ QFΣ). Then, T |= ψ iff there
are closed terms (ti,j)1≤i≤p,1≤j≤n such that T |=

∨p
i=1 ϕ(ti,1, . . . , ti,n).
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∃x∀y¬P(x) ∨ P(y)
x:=c x:=y

∀y¬P(c) ∨ P(y)
y

∀z¬P(y) ∨ P(z)
z

¬P(c) ∨ P(y) ¬P(y) ∨ P(z)

∃c
_���

∃y
_���

∀y

7 77A

∀z

Figure 1 An expansion tree and winning Σ-strategy for DF.

∀x1
_��� � %%,

∀x2
+rry _���

∃f(x2,x1) ∃x1

Figure 2 A partially
ordered winning Σ-strategy.

∃x1∀y1P(x1, y1) ∨ ∃x2∀y2¬P(y2, x2)

∃x1∀y1P(x1, y1)
x1:=y2

∃x2∀y2¬P(y2, x2)
x2:=y1

∀y1P(y2, y1)
y1

∀y2¬P(y2, y1)
y2

P(y2, y1) ¬P(y2, y1)

Figure 3 An incorrect expansion tree.

∃1 . . . ∃n . . .

∀1 ∀n

Figure 4 The arena JDF K∃.

I Example 2. Consider the formula ψ = ∃x¬P(x)∨P(f(x)) (where f ∈ Σf ). A valid Herbrand
disjunction for ψ is (¬P(c)∨P(f(c)))∨(¬P(f(c))∨P(f(f(c)))) where c is some constant symbol.

A similar disjunction property holds for general formulas, though it is harder to state. A
common way to do so is by reduction to the above: a formula ϕ is converted to prenex normal
form and universally quantified variables are replaced with new function symbols added to
Σ, in a process called Herbrandization (dual to Skolemization). For instance, the drinker’s
formula (DF): ∃x∀y¬P(x) ∨ P(y), yields by Herbrandization the formula ψ of Example 2.

Instead, to avoid prenexification and Skolemization and the corresponding distortion of
the formula, one may adopt a representation of proofs that displays the instantiation of
existential quantifiers with finitely many witnesses while staying structurally faithful to the
original formula. To that end Miller proposes expansion trees [24]. They can be introduced
via a game-theoretic metaphor, reminiscent of [7]. Two players, ∃loïse and ∀bélard, debate
the validity of a formula. On a formula ∀xϕ, ∀bélard provides a fresh variable x and the game
keeps going on ϕ. On ∃xϕ, ∃loïse provides a term t, possibly containing variables previously
introduced by ∀bélard. ∃loïse, though, has a special power: at any time she can backtrack to
a previous existential position, and propose a new term. Figure 1 (left) shows an expansion
tree for DF. It may be read from top to bottom, and from left to right: ∃loïse plays c, then
∀bélard introduces y, then ∃loïse backtracks (we jump to the right branch) and plays y, and
finally ∀bélard introduces z. ∃loïse wins: the disjunction of the leaves is a tautology.

However the metaphor has limits, it suggests a sequential ordering between branches,
which expansion trees do not have in reality: the order is only implicit in the term annotations.
Besides, the natural ordering between quantifiers induced by terms is not always sequential.
It is, of course, always acyclic – on expansion trees this is ensured by an acyclicity correctness
criterion, whose necessity is made obvious by the (incorrect) expansion tree of Figure 3
“proving” a falsehood. This acyclicity entails the existence of a sequentialization, but
committing to one is an arbitrary choice not forced by the proof.

A partial order is much more faithful to the proof. In this paper, we show that expansion
trees can be made compositional modulo a change of perspective: rather than derived we
consider this order primitive, and only later decorate it with term annotations. For instance,



A. Alcolei, P. Clairambault, M. Hyland, and G. Winskel 5:5

we display in Figure 2 the formal object, called a (sequential) winning Σ-strategy, matching
in our framework the expansion tree for DF. Another winning Σ-strategy, displayed in Figure
2, illustrates that this order is not always naturally sequential. By lack of space we do not
define expansion trees here, though they are captured in essence by our strategies.

2.2 Expansion trees as winning Σ-strategies
We now introduce our formulation of expansion trees as Σ-strategies. Although our definitions
look superficially very different from Miller’s, the only fundamental difference is the explicit
display of the dependency between quantifiers. Σ-strategies will be certain partial orders,
with elements either “∀ events” or “∃ events”. Events will carry terms, in a way that respects
causal dependency. Σ-strategies will play on games representing the formulas. The first
component of a game is its arena, that specifies the causal ordering between quantifiers.

I Definition 3. An arena is A = (|A|,≤A, polA) where |A| is a set of events, ≤A is a
partial order that is forest-shaped:
(1) if a1 ≤A a and a2 ≤A a, then either a1 ≤A a2 or a2 ≤A a1, and
(2) for all a ∈ |A|, the branch [a]A = {a′ ∈ A | a′ ≤A a} is finite.
Finally, polA : |A| → {∀, ∃} is a polarity function which expresses if a move belongs to
∃loïse or ∀bélard.

A configuration of an arena (or any partial order) is a down-closed set of events. We
write C∞(A) for the set of configurations of A, and C (A) for the set of finite configurations.

The arena only describes the moves available to both players; it says nothing about terms
or winning. Similarly to expansion trees where only ∃loïse can replicate her moves, our
arenas will at first be biased towards ∃loïse: each ∃ move exists in as many copies as she
might desire, whereas ∀ events are a priori not copied. Figure 4 shows the ∃-biased arena
JDF K∃ for DF. The order is drawn from top to bottom. Although only ∃loïse can replicate
her moves, the universal quantifier is also copied as it depends on the existential quantifier.

Strategies on an arena A will be certain augmentations of prefixes of A. They carry causal
dependency between quantifiers induced by term annotations, but not the terms themselves.

For any partial order A and a1, a2 ∈ |A|, we write a1 _A a2 (or a1 _ a2 if A is clear from
the context) if a1 <A a2 with no other event in between – this notation was used implicitly
in Figures 1 and 2. We call _ immediate causal dependency.

I Definition 4. A strategy σ on arena A, written σ : A, is a partial order (|σ|,≤σ) with
|σ| ⊆ |A|, such that for all a ∈ |σ|, [a]σ is finite (an elementary event structure); subject to:
(1) Arena-respecting. We have C∞(σ) ⊆ C∞(A),
(2) Receptivity. If x ∈ C (σ) s.t. x ∪ {a∀} ∈ C (A), then a ∈ |σ|,
(3) Courtesy. If a1_σa2 and (pol(a1) = ∃ or pol(a2) = ∀), then a1_Aa2.

These strategies are essentially the receptive ingenuous strategies of Melliès and Mimram
[23], though their formulation, with a direct handle on causality, is closer to Rideau and
Winskel’s later concurrent strategies [27]. Receptivity means that ∃loïse cannot refuse to
acknowledge a move by ∀bélard, and courtesy that the only new causal constraints that she
can enforce with respect to the game is that some existential quantifiers depend on some
universal quantifiers. Ignoring terms, Figure 2 (right) displays a strategy on the arena of
Figure 4 – in Figure 2 we also show via dotted lines the immediate dependency of the arena.

Let us now add terms, and define Σ-strategies.
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5:6 The True Concurrency of Herbrand’s Theorem

I Definition 5. A Σ-strategy on arena A is a strategy σ : A, with a labelling function
λσ : |σ| → TmΣ(|σ|), satisfying (with [a]∀σ = {a′ ∈ |σ| | a′ ≤σ a & polA(a′) = ∀}):
(1) Σ-receptivity: ∀a∀ ∈ |σ|, λσ(a) = a,
(2) Σ-courtesy: ∀a∃ ∈ |σ|, λσ(a) ∈ TmΣ([a]∀σ).
Rather than having ∀ moves introduce fresh variables, we consider them as variables
themselves. Hence, the ∃ moves carry terms having as free variables the ∀ moves in their
causal history. For instance the diagram of Figure 1 (right) is meant formally to denote the
one on the right (where superscripts are the terms given by λ). In the sequel we omit the
(redundant) annotation of ∀bélard’s events.

∃c1
_���

∃∀1
2_���

∀1
∀1

4 55?

∀2
∀2

Besides the fact that they are not assumed finite, Σ-strategies are more
general than expansion trees: they have an explicit causal ordering, which
may be more constraining than that given by the terms. A Σ-strategy σ : A
is minimal iff whenever a1 _σ a2 such that a1 6∈ fv(λσ(a2)), then a1 _A a2
as well. In a minimal Σ-strategy σ : A, the ordering ≤σ is actually redundant and can be
uniquely recovered from λσ and ≤A.

Now, we adjoin winning conditions to arenas and define winning Σ-strategies. As in
expansion trees, we aim to capture that the substitution (by terms from the strategies) of
the expansion of the original formula is a tautology.

I Definition 6. A game A is an arena A, with WA : (x ∈ C∞(A))→ QF∞Σ (x) expressing
winning conditions, where QF∞Σ (x) denotes the infinitary quantifier-free formulas –
obtained from QFΣ(x) by adding infinitary connectives

∨
i∈I ϕi and

∧
i∈I ϕi, with I countable.

For a game interpreting a formula ϕ, the winning conditions associate configurations of
the arena JϕK with the propositional part of the corresponding expansion of ϕ. For instance:

WJDF K∃({∃3, ∀3, ∃6, ∀6}) = (¬P(∃3) ∨ P(∀3)) ∨ (¬P(∃6) ∨ P(∀6))
WJDF K∃({∃3, ∀3, ∃6}) = (¬P(∃3) ∨ P(∀3)) ∨ >

recalling that the arena for DF appears in Figure 4. In the second clause, > (the true
formula) comes from ∀bélard not having played ∀6 yet, yielding victory to ∃loïse on that
copy. The winning conditions yield syntactic, uninterpreted formulas: we keep the second
formula as-is although it is equivalent to >. Finally, we can define winning strategies.

I Definition 7. If σ : A is a Σ-strategy and x ∈ C∞(σ), we say that x is tautological
in σ if the formula WA(x)[λσ] corresponding to the substitution of WA(x) ∈ QF∞Σ (x) by
λσ : x→ TmΣ(x), is a (possibly infinite) tautology.

Then, a Σ-strategy σ : A is winning if for any x ∈ C∞(σ) that is ∃-maximal (i.e., such
that for all a ∈ |σ| with x ∪ {a} ∈ C∞(σ), polA(a) = ∀), x is tautological.

Finally, a Σ-strategy σ : A is top-winning if |σ| ∈ C∞(σ) is tautological.

2.3 Constructions on games and Herbrand’s theorem
To complete our statement of Herbrand’s theorem with Σ-strategies, it remains to set the
interpretation of formulas as games. To that end we introduce a few constructions on games,
first at the level of arenas and then enriched with winning conditions. We write ∅ for the
empty arena. If A is an arena, A⊥ is its dual, with same events and causality but polarity
reversed. We review some other constructions.

I Definition 8. The simple parallel composition A1 ‖ A2 of A1 and A2 has as events the
tagged disjoint union {1}×|A1|]{2}×|A2|, as causal order that given by (i, a) ≤A1‖A2 (j, a′)
iff i = j and a ≤Ai

a′, and, as polarity polA1‖A2
((i, a)) = polAi

(a).
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J>K∃V = 1 JP(t1, . . . , tn)K∃V = P(t1, . . . , tn) J∃xϕK∃V = ?∃x.JϕKV]{x} Jϕ1 ∨ ϕ2K∃V = Jϕ1K∃V ` Jϕ2K∃V
J⊥K∃V = ⊥ J¬P(t1, . . . , tn)K∃V = ¬P(t1, . . . , tn) J∀xϕK∃V = ∀x.JϕKV]{x} Jϕ1 ∧ ϕ2K∃V = Jϕ1K∃V ⊗ Jϕ2K∃V

Figure 5 ∃-biased interpretation of formulas.

Configurations x ∈ C∞(A ‖ B) have the form {1} × xA ∪ {2} × xB with xA ∈ C∞(A)
and xB ∈ C∞(B), which we write x = xA ‖ xB . This construction has a general counterpart
‖i∈I Ai with I at most countable, defined likewise. In particular we will later use the uniform
countably infinite parallel composition ‖ω A. Another important construction is prefixing.

I Definition 9. For α ∈ {∀, ∃} and A an arena, α.A has events {(1, α)} ∪ {2} × |A| and
causality (i, a) ≤ (j, a′) iff i = j = 2 and a ≤A a′, or (i, a) = (1, α); i.e., (1, α) is the unique
minimal event. Its polarity is polα.A((1, α)) = α and polα.A((2, a)) = polA(a).

Configurations x ∈ C∞(α.A) are ∅, or {(1, α)} ∪ {2} × xA (xA ∈ C∞(A)), written α.xA.
Now, let us enrich these with winning, yielding the constructions on games used for

interpreting formulas. Importantly, the inductive interpretation of formulas requires us to
consider formulas with free variables. For V a finite set, a V-game is defined as a game A
(Def. 6), except that winning may also depend on V: for x ∈ C∞(A), WA(x) ∈ QF∞Σ]V(x).

We now define all our constructions, on V-games rather than games. The duality
(−)⊥ extends to V-games, simply by negating the winning conditions: for all x ∈ C∞(A),
WA⊥(x) =WA(x)⊥. The ‖ of arenas gives rise to two constructions, ⊗ and `, on V-games:

I Definition 10. For A and B V-games, we define two V-games with arena A ‖ B and winning
conditionsWA⊗B(xA ‖ xB) =WA(xA)∧WB(xB) andWA`B(xA ‖ xB) =WA(xA)∨WB(xB).

Note the implicit renaming so that WA(xA),WB(xB) are in QF∞Σ]V(xA ‖ xB) rather than
QF∞Σ]V(xA),QF∞Σ]V(xB) respectively – we will often keep such renamings implicit.

Observe that ⊗ and ` are De Morgan duals, i.e., (A⊗ B)⊥ = A⊥ ` B⊥. We write these
operations ⊗ and ` rather than ∧ and ∨, because they behave more like the connectives of
linear logic [12] than those of classical logic; for each V the ⊗ and ` will form the basis of a
∗-autonomous structure and hence a model of multiplicative linear logic (see Section 3).

To interpret classical logic however, we will need replication.

I Definition 11. For V-game A, we define the V-games !A, ?A with arena ‖ωA and winning:

W!A(‖i∈ω xi) =
∧
i∈ω
WA(xi) W?A(‖i∈ω xi) =

∨
i∈ω
WA(xi)

Though W!A(x) (resp. W?A(x)) is an infinite conjunction (resp. disjunction), it simplifies
to a finite one when x visits finitely many copies (with cofinitely many copies of WA(∅)).

Next we show how V-games support quantifiers.

I Definition 12. Let A a (V ] {x})-game, we define the V-game ∀x.A and its dual ∃x.A
with arenas ∀.A and ∃.A respectively, with W∀x.A(∅) = >, W∃x.A(∅) = ⊥, and:

W∀x.A(∀.xA) =WA(xA)[∀/x] W∃x.A(∃.xA) =WA(xA)[∃/x]

Finally, we regard a literal ϕ as a V-game on arena ∅, with Wϕ(∅) = ϕ. We write 1 and
⊥ for the unit V-games on arena ∅ with winning conditions respectively > and ⊥.

Putting these together, we give in Figure 5 the ∃-biased interpretation of a formula
ϕ ∈ FormΣ(V) as a V-game. Note the difference between the case of existential and universal
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V-MLL

Ax
`V ϕ⊥, ϕ

fv(ϕ) ⊆ V Cut
`V Γ, ϕ `V ϕ⊥,∆

`V Γ,∆
Ex
`V Γ, ϕ, ψ,∆
`V Γ, ψ, ϕ,∆

>I
`V >

⊥I
`V Γ
`V Γ,⊥

∧I
`V Γ, ϕ `V ψ,∆
`V Γ, ϕ ∧ ψ,∆

∨I
`V Γ, ϕ, ψ,∆
`V Γ, ϕ ∨ ψ,∆

First-order MLL (MLL1)

∀I
`V]{x} Γ, ϕ
`V Γ, ∀x. ϕ

x 6∈ fv(Γ) ∃I
`V Γ, ϕ[t/x]
`V Γ, ∃x. ϕ

t ∈ TmΣ(V)

LK

C
`V Γ, ϕ, ϕ
`V Γ, ϕ

W
`V Γ
`V Γ, ϕ

Figure 6 Rules for the sequent calculus LK.

formulas, reflecting the bias towards ∃loïse. This is indeed compatible with the examples
given previously. We can now state our concurrent version of Herbrand’s theorem.

I Theorem 13. For any ϕ ∈ FormΣ, |= ϕ iff there exists a finite, top-winning σ : JϕK∃.

Besides the game-theoretic language, the difference with expansion trees is superficial: on
ϕ, expansion trees essentially coincide with the minimal top-winning Σ-strategies σ : JϕK∃.
The effort to change view point, from a syntactic construction to a (game) semantic one, will
however pay off now, when we show how to compose Σ-strategies.

2.4 Compositional Herbrand’s theorem

Unlike expansion trees, strategies can be composed. Whereas Theorem 13 above could be
deduced via the connection with expansion trees, that proof would intrinsically rely on the
admissibility of cut in the sequent calculus. Instead, we will give an alternative proof of
Herbrand’s theorem where the witnesses are obtained truly compositionally from any sequent
proof, without first eliminating cuts. In other words, strategies will come naturally from the
interpretation of the classical sequent calculus in a semantic model.

To compose Σ-strategies, we must restore the symmetry between ∃loïse and ∀bélard in the
interpretation of formulas. The non-biased interpretation JϕKV of ϕ ∈ FormΣ(V) is defined as
for JϕK∃V , except for J∀xϕKV = !∀x.JϕKV]{x}. Thus we lose finiteness: ∃loïse must be reactive
to the infinite number of copies potentially opened by ∀bélard. But we can now state:

I Theorem 14. For ϕ closed, the following are equivalent: (1) |= ϕ, (2) there exists a finite,
top-winning Σ-strategy σ : JϕK∃, (3) there exists a winning Σ-strategy σ : JϕK.

Proof. That (2) implies (1) is easy, as a finite top-winning σ : JϕK∃ directly informs a proof.
That (3) implies (2) is more subtle: first, one may restrict a winning σ : JϕK to JϕK∃ to

obtain a finite top-winning strategy. However, this top-winning strategy may not be finite.
Yet, it follows by compactness that there is always a finite top-winning sub-strategy that
may be effectively computed from σ. See the Appendix C for details.

The proof that (1) implies (3) is our main contribution: a winning strategy will be
computed from a proof using our denotational model of classical proofs. J
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Our source sequent calculus (Figure 6) is fairly standard, one-sided, with rules presented
in the multiplicative style. A notable variation is that sequents carry a set V of free variables,
that may appear freely in formulas. The introduction rule for ∀ introduces a fresh variable,
whereas the introduction rule for ∃ provides a term whose free variables must be in V.

What mathematical structure is required to interpret this sequent calculus? Ignoring the
V annotations, the first group is nothing but Multiplicative Linear Logic (MLL). Propositional
(V-)MLL can be interpreted in a ∗-autonomous category [3]. Accordingly, in Section 3, we first
construct a ∗-autonomous category Ga of games and winning Σ-strategies. Then, in Section 4,
we build the structure required for the interpretation of quantifiers, still ignoring contraction
and weakening. For each set of variables V we construct a ∗-autonomous category V-Ga,
with a fibred structure to link the V-Ga together for distinct Vs and suitable structure to
deal with quantifiers, obtaining a model of first-order MLL. Finally in Section 5 we complete
the interpretation by adding the exponential modalities from linear logic to the interpretation
of quantifiers, and get from that an interpretation of contraction and weakening.

3 A ∗-autonomous category

The following theorem, on cut reduction for MLL, is folklore.

I Theorem 15. There is a set of reduction rules on MLL sequent proofs, written  MLL,
such that for any proof π of a sequent ` Γ, there is a cut-free π′ of Γ such that π  ∗MLL π

′.

The reduction  MLL comprises logical reductions, reducing a cut on a formula ϕ/ϕ⊥,
between two proofs starting with the introduction rule for the main connective of ϕ/ϕ⊥; and
structural reductions, consisting in commutations between rules so as to reach the logical
steps. We assume some familiarity with this process.

In this section we aim to give an interpretation of MLL proofs, which should be invariant
under cut-elimination. Categorical logic tells us that this is essentially the same as producing
a ∗-autonomous category. We opt here for the equivalent formulation by Cockett and Seely
as a symmetric linearly distributive category with negation [6].

I Definition 16. A symmetric linearly distributive category is a category C with
two symmetric monoidal structures (⊗, 1) and (`,⊥) which distribute: there is a natural
δA,B,C : A⊗(B`C) C→ (A⊗B)`C, the linear distribution, subject to coherence conditions [6].

A symmetric linearly distributive category with negation also has a function (−)⊥ on
objects and families of maps ηA : 1 C→A⊥ `A and εA : A⊗A⊥ C→⊥ such that the canonical
composition A→ A⊗ (A⊥`A)→ (A⊗A⊥)`A→ A, and its dual A⊥ → A⊥, are identities.

Note also the degenerate case of a compact closed category, which is a symmetric
linearly distributive category where the monoidal structures (⊗, 1) and (`,⊥) coincide.

Abusing terminology, we will refer to symmetric linearly distributive categories with
negation by the shorter ∗-autonomous categories. This should not create any confusion
in the light of their equivalence [6]. If C a ∗-autonomous category comes with a choice of
JP(t1, . . . , tn)K (an object of C) for all closed literal, then this interpretation can be extended
to all closed quantifier-free formulas following Figure 5. For all such ϕ, we have Jϕ⊥K = JϕK⊥.

The interpretation of MLL proofs in a ∗-autonomous category C is standard [29]: a proof
π of a MLL sequent ` ϕ1, . . . , ϕn is interpreted as a morphism JπK : 1 C→ Jϕ1K ` · · ·` JϕnK.
This interpretation is sound w.r.t. provability: if ϕ is provable, then 1→C JϕK is inhabited.
Furthermore, the categorical laws make this interpretation invariant under cut reduction.

I Theorem 17. If π  MLL π
′ are proofs of ` Γ, JπK = Jπ′K.
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Figure 7 Interaction of σ : 1⊥ ‖ (∃1∀2∃3 ‖ ∃4) and τ : (∃1∀2∃3 ‖ ∃4)⊥ ‖ ∃5.

So a proof has the same denotation as its cut-free form obtained by Theorem 15. In the
rest of this section we construct a concrete ∗-autonomous category of games and winning
Σ-strategies; supporting the interpretation of MLL. This is done in three stages: first we focus
on composition of Σ-strategies (without winning), then we extend this to a compact closed
category. Finally, adding back winning, we split ‖ into two ⊗ and `, and prove ∗-autonomy.

3.1 Composition of Σ-strategies
We construct a category ArΣ having arenas as objects, and as morphisms from A to B
the Σ-strategies σ : A⊥ ‖ B, also written σ : AArΣ

+ //B. The composition of σ : AArΣ
+ //B and

τ : B ArΣ
+ //C will be computed in two stages: first, the interaction τ ~ σ is obtained as the

most general partial-order-with-terms satisfying the constraints given by both σ and τ –
Figure 7 displays such an interaction. Then, we will obtain the composition τ � σ by hiding
events in B. In the example of Figure 7 we get the single annotated event ∃f(g(c),h(c))

5 .
We fix some definitions on terms and substitutions. If V1,V2 are sets, a substitution

γ : V1 S→V2 is a function γ : V2 → TmΣ(V1). For t ∈ TmΣ(V2), we write t[γ] ∈ TmΣ(V1)
for the substitution operation. Substitutions form a category S, which is cartesian: the
empty set ∅ is terminal, and the product of V1 and V2 is their disjoint union V1 + V2. From
γ : V1 S→V2 and γ′ : V ′1 S→V2, we say that γ subsumes γ′, written γ′ 4 γ, if there is α : V ′1 S→V2
s.t. γ ◦ α = γ′ – giving a preorder on substitutions with codomain V2.

Consider first the closed interaction of two Σ-strategies σ : A and τ : A⊥. As they disagree
on the polarities on A we drop them – τ ~ σ will be a neutral Σ-strategy on a neutral arena:

I Definition 18. A neutral arena is an arena, without polarities. Neutral strategies
σ : A, are defined as in Definition 4 without (2), (3). Neutral Σ-strategies additionally
have λσ : (s ∈ |σ|)→ TmΣ([s]σ), and are idempotent: for all a ∈ |a|, λσ(a)[λσ] = λσ(a).

Forgetting polarities, every Σ-strategy is a neutral one. Given σ and τ , τ ~σ is a minimal
strengthening of σ and τ , regarding both the causal structure and term annotations, i.e., a
meet for the partial order (idempotence above is required for it to be antisymmetric):

I Definition 19. For σ, τ : A neutral Σ-strategies, we write σ 4 τ iff |σ| ⊆ |τ |, C∞(σ) ⊆
C∞(τ), and for all x ∈ C (|σ|), λτ � x subsumes λσ � x (regarded as substitutions x S→x).

Ignoring terms, any two σ and τ have a meet σ ∧ τ ; this is a simplification of the pullback
in the category of event structures, exploiting the absence of conflict [31]. The partial order
(|σ ∧ τ |,≤σ∧τ ) has events all common moves of σ and τ with a causal history compatible
with both ≤σ and ≤τ , and for ≤σ∧τ the minimal causal order compatible with both.

However, two neutral Σ-strategies do not necessarily have a meet for 4 (see Example 45
in Appendix A). Hence, we focus on the meets occurring from compositions of Σ-strategies
and show that for σ : A and τ : A⊥ dual Σ-strategies the meet does exists:
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I Lemma 20. Any two Σ-strategies σ : A and τ : A⊥ have a meet σ ∧ τ .

Proof. We start with the causal meet σ ∧ τ , which we enrich with λσ∧τ the most general
unifier of λσ � |σ ∧ τ | and λτ � |σ ∧ τ |, obtained by well-founded induction on ≤σ∧τ :

λσ∧τ (a) =
{
λσ(a)[λσ∧τ � [a)] if polA(a) = ∃
λτ (a)[λσ∧τ � [a)] if polA(a) = ∀

where [a) = {a′ ∈ A | a′ <σ∧τ a}. It follows that this is indeed the m.g.u. – in particular, we
exploit that from Σ-courtesy, if a∃ ∈ |σ| then λσ(a) ∈ TmΣ([a)σ). J

However this is not sufficient: for composable σ : A⊥ ‖ B and τ : B⊥ ‖ C, the games are
not purely dual; we need to “pad out” σ and τ and compute instead (σ ‖ C⊥) ∧ (A ‖ τ),
where the parallel composition of Definition 8 is extended with terms in the obvious way, and
where λA(a) = a for all a ∈ |A|. Now σ ‖ C⊥ : A⊥ ‖ B ‖ C⊥ and A ‖ τ : A ‖ B⊥ ‖ C are
dual, but Σ-courtesy from Σ-strategies is relaxed to idempotence. Yet, Lemma 20 still holds
since, from idempotence, if a∃ ∈ |σ| then either λσ(a) ∈ TmΣ([a)σ) or λσ(a) = a. Hence, we
can define τ ~ σ = (σ ‖ C⊥) ∧ (A ‖ τ) : A ‖ B ‖ C.

Variables appearing in λτ~σ cannot be events in B – they must be negative in A⊥ ‖ C.
So we can define τ � σ = (τ ~ σ) ∩ (A ‖ C) the restriction of τ ~ σ to A ‖ C, with same
causal order and term annotation. The pair (|τ � σ|,≤τ�σ) is a strategy, as an instance of
the constructions in [4], and this extends to terms so that τ � σ : A⊥ ‖ C is a Σ-strategy,
the composition of σ and τ . Because interaction is defined as a meet for 4, it follows that
it is compatible with it, i.e., if σ 4 σ′, then τ ~ σ 4 τ ~ σ′. This is preserved by projection,
and hence τ � σ 4 τ � σ′ as well. This compatibility of composition with 4 will be used
later on, together with the easy fact that 4 is more constrained on Σ-strategies:

I Lemma 21. For σ, σ′ : A Σ-strategies, if σ 4 σ′, then λσ(s) = λσ′(s) for all s ∈ |σ|.

To complete our category, we also define the copycat strategy.

I Definition 22. For an arena A, the copycat Σ-strategy ccA : A⊥ ‖ A has events
| ccA| = A⊥ ‖ A. Writing (i, a) = (3− i, a), its partial order ≤ ccA

is the transitive closure of
≤A⊥‖A ∪{(c, c) | c∀ ∈ |A⊥ ‖ A|} and its labelling function is λ ccA

(c∀) = c, λ ccA
(c∃) = c.

The proof of categorical laws are variations on construction of the bicategory in [4].

I Proposition 23. There is a poset-enriched category ArΣ with arenas as objects, and
Σ-strategies as morphisms.

3.2 Compact closed structure
We show that ArΣ is compact closed. The tensor product of arenas A and B is A ‖ B.
For Σ-strategies σ1 : A⊥1 ‖ B1 and σ2 : A⊥2 ‖ B2, we have σ1 ‖ σ2 : (A⊥1 ‖ B1) ‖ (A⊥2 ‖ B2),
which is isomorphic to (A1 ‖ A2)⊥ ‖ (B1 ‖ B2) – overloading notations, we also write
σ1 ‖ σ2 : (A1 ‖ A2)⊥ ‖ (B1 ‖ B2) for the obvious renaming. It is not difficult to prove:

I Proposition 24. Simple parallel composition yields an enriched functor ‖ : ArΣ ×ArΣ →
ArΣ.

For the compact closed structure, we elaborate the renaming used above. We write
f : A ∼= B for an isomorphism of arenas, preserving and reflecting all structure.
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5:12 The True Concurrency of Herbrand’s Theorem

I Definition 25. For f : A ∼= B and σ : A a Σ-strategy, the renaming f ∗ σ : B has
components |f ∗ σ| = f |σ|, ≤f∗σ= {(f a1, f a2) | a1 ≤σ a2} and λf∗σ(f a) = λσ(a)[f ].

In particular, if f : A ∼= B, then the corresponding copycat strategy is cc f = (A⊥ ‖
f) ∗ ccA : A⊥ ‖ B. We use this to define the structural morphisms for the symmetric
monoidal structure of ArΣ. For instance, the iso αA,B,C : (A ‖ B) ‖ C ∼= A ‖ (B ‖ C)
yields cc αA,B,C

: (A ‖ B) ‖ C ArΣ
+ //A ‖ (B ‖ C). The other structural morphisms arise similarly.

Coherence and naturality then follows from the key copycat lemma:

I Lemma 26. For σ : A⊥ ‖ B a Σ-strategy and f : B ∼= C, cc f � σ = (A⊥ ‖ f) ∗ σ : A⊥ ‖ C.

As a corollary we get coherence for the structural morphisms (following from those on
isomorphisms), and naturality. For all A we get ηA : ∅ArΣ

+ //A⊥ ‖ A and εA : A ‖ A⊥ ArΣ
+ //∅

as the obvious renamings of copycat. Checking the law for compact closed categories is a
variation of the idempotence of copycat. Overall:

I Proposition 27. ArΣ is a poset-enriched compact closed category.

3.3 A linearly distributive category with negation
Finally, we reinstate winning conditions. We first note:

I Proposition 28. There is a (poset-enriched) category GaΣ with objects the games (Defini-
tion 6) on Σ, and morphisms Σ-strategies σ : A⊥ ` B, also written σ : AGaΣ

+ //B.

That copycat is winning boils down to the excluded middle. That τ � σ : A⊥ ` C is
winning if σ : A⊥ ` B and τ : B⊥ ` C are, is as in [5]: for x ∈ C (τ � σ) ∃-maximal we find
a witness y ∈ C (τ ~ σ) (i.e., y ∩ (A ‖ C) = x) s.t. y ∩ (A ‖ B) ∈ σ, y ∩ (B ‖ C) ∈ τ are
∃-maximal; and apply transitivity of implication. The equations follow from ArΣ. Likewise:

I Proposition 29. The functor ‖ : ArΣ ×ArΣ → ArΣ splits into ⊗,` : GaΣ ×GaΣ → GaΣ.

It suffices to check winning, which is straightforward. It remains to prove that all
structural morphisms from ArΣ (copycat strategies) are winning, which boils down to the
following sufficient conditions to hold: For A,B games, a win-iso f : A → B is an iso
f : A ∼= B such that (WA(x))⊥ ∨WB(f x) is a tautology, for all x ∈ C∞(A).

I Lemma 30. If f : A → B is a win-iso, then cc f : A⊥ ` B is a winning Σ-strategy.

This easily entails that all structural morphisms (including linear distributivity) are
winning. Finally ηA : 1GaΣ

+ //A⊥ `A and εA : A⊗A⊥GaΣ
+ //⊥ are winning, which concludes:

I Proposition 31. GaΣ is a poset-enriched ∗-autonomous category.

4 A model of first-order MLL

We move on to MLL1, i.e., all rules except for contraction and weakening. Before developing
the interpretation, we discuss cut elimination. There are three new cut reduction rules,
displayed in Figure 8: the new logical reduction (∀/∃), and two for the propagation of cuts
past introduction rules for ∀ and ∃. Writing π  MLL1 π

′ for the reduction obtained with
these new rules together with  MLL:

I Proposition 32. Let π be any MLL1 proof of `V Γ. Then, there is a cut-free proof π′ of
`V Γ s.t. π  ∗MLL1

π′.



A. Alcolei, P. Clairambault, M. Hyland, and G. Winskel 5:13

Cut

∀I

π1

`V]{x} Γ, ϕ
`V Γ, ∀x. ϕ

∃I

π2

`V ϕ⊥[t/x],∆
`V ∃x. ϕ⊥,∆

`V Γ,∆
 ∀/∃ Cut

π1[t/x]
`V Γ, ϕ[t/x]

π2

`V ϕ⊥[t/x],∆
`V Γ,∆

Cut

π1

`V Γ, ψ
∀I

π2

`V]{x} ψ⊥,∆, ϕ
`V ψ⊥,∆, ∀x. ϕ

`V Γ,∆, ∀x. ϕ
 Cut/∀

Cut

π1

`V]{x} Γ, ψ
π2

`V]{x} ψ⊥,∆, ϕ

∀I
`V]{x} Γ,∆, ϕ
`V Γ,∆, ∀x. ϕ

Cut

π1

`V Γ, ψ
∃I

π2

`V ψ⊥,∆, ϕ[t/x]
`V ψ⊥,∆, ∃x. ϕ

`V Γ,∆, ∃x. ϕ
 Cut/∃

Cut

π1

`V Γ, ψ
π2

`V ψ⊥,∆, ϕ[t/x]

∃I
`V Γ,∆, ϕ[t/x]
`V Γ,∆, ∃x. ϕ

Figure 8 Additional cut elimination rules for MLL1.

The first rule of Figure 8 requires the introduction of substitution on proofs. In general,
for a proof π of `V2 Γ and γ : V1 → V2 we obtain π[γ] a proof of `V1 Γ[γ] by propagating γ
through π, substituting formulas and terms. A degenerate case of this is the substitution of
a proof π of `V Γ by weakening wV,x : V ] {x} → V, obtaining π1[wV,x], a proof of `V]x Γ.
As this leaves the formulas and terms unchanged we leave it implicit in the reduction rules –
it is used for instance implicitly in the commutation Cut/∀.

Substitution is key in the cut reduction of quantifiers. However it is best studied
independently of quantifiers, in a model of V-MLL (see Figure 6). This is the topic of the
next subsection, prior to the interpretation of the introduction rules for quantifiers.

4.1 A fibred model of V-MLL
Following [20, 28], we expect to model V-MLL and substitution in:

I Definition 33. Let ∗-Aut be the category of ∗-autonomous categories and functors pre-
serving the structure on the nose. A strict S-indexed ∗-autonomous category is a
functor T : Sop → ∗-Aut.

Such definitions (e.g. hyperdoctrines [28]) are usually phrased only up to isomorphism;
for simplicity we opt here for a lighter definition. Writing Vn = {x1, . . . , xn}, we say that T
supports Σ if for every predicate symbol P of arity n there is JPKVn a chosen object of T (Vn).
For t1, . . . , tn ∈ TmΣ(V) we can then set JP(t1, . . . , tn)K = T ([t1/x1, . . . , tn/xn])(JPKVn

) an
object of T (V), also written JPKVn [t1/x1, . . . , tn/xn].

For any finite V , this lets us interpret V-MLL in T (V) as in Section 3. Besides V-MLL in
isolation, this also models substitutions. In games the functorial action of T on γ : V1 → V2
will correspond to substitution on games A[γ] = T (γ)(A) and strategies σ[γ] = T (γ)(σ).
This matches syntactic substitution, as T (γ) preserves the ∗-autonomous structure.

Let us now introduce the concrete structure. For any finite V, the fibre T (V) is the
category GaΣ]V built in Section 3, on the extended signature Σ ] V . Recall that its objects
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5:14 The True Concurrency of Herbrand’s Theorem

are games on the signature Σ ] V, i.e., the V-games of Section 2.3. Morphisms between
V-games A and B are winning (Σ]V)-strategies on A⊥`B regarded as a game on signature
Σ ] V – also called winning Σ-strategies on the V-game A⊥ ` B.

Finally, for A a V2-game and γ : V1 → V2 a substitution, the game T (γ)(A) = A[γ]
is defined as having arena A, and, for x ∈ C∞(A), WA[γ](x) = WA(x)[γ] ∈ QF∞Σ]V1

(x).
Likewise, given A and B two V-games and σ : A⊥ ` B, σ[γ] has the same components as σ,
but term annotations λσ[γ](s) = λ(s)[γ] ∈ TmΣ]V1(x). It is a simple verification to prove:

I Proposition 34. For any γ : V1 S→V2, T (γ) : T (V2) → T (V1) is a strict ∗-autonomous
functor preserving the order.

4.2 Quantifiers
Finally, we give the interpretation of ∀I and ∃I. For now, we consider a linear interpretation
J−K` of formulas defined like J−K∃V except for J∃xϕK`V = ∃x.JϕK`V .

Besides preserving the ∗-autonomous structure, substitution also propagates through
quantifiers, from which we have:

I Lemma 35. Let ϕ ∈ FormΣ(V2) and γ : V1 → V2 a substitution, then Jϕ[γ]K`V1
= JϕK`V2

[γ].

This will be used implicitly from now on. The definition of quantifiers on games of
Definition 12 extends to functors ∀V,x, ∃V,x : T (V ] {x}) → T (V). From σ : A⊥ ` B,
∀V,x(σ) : (∀x.A)⊥`∀x.B plays copycat on the initial ∀, then plays as σ (similarly for ∃V,x(σ)).
Following Lawvere [20], one expects adjunctions ∃V,x a T (wV,x) a ∀V,x. Unfortunately, this
fails – we present this failure later as the non-preservation of  Cut/∀.

We now interpret ∀I and ∃I. First, we give a strategy introducing a witness t.

I Definition 36. The (Σ ] V)-strategy ∃tA : A⊥ ‖ ∃.A is (|A⊥ ‖ ∃. A|,≤∃t
A
, λ∃t

A
) where ≤∃t

A

includes ≤ ccA
, plus dependencies {((2, ∃), (2, a)) | a ∈ A}]{((2, ∃), (1, a)) | ∃a∀0 ∈ A. a0 ≤A a}

and term assignment that of ccA plus λ∃t
A

((2, ∃)) = t.

In other words, ∃tA plays ∃ annotated with t, then proceeds as copycat on A. We have:

I Proposition 37. Let A be a V-game, and t ∈ TmΣ(V). Then, ∃tA : A[t/x] V-GaΣ
+ // ∃x.A.

Indeed, any ∃-maximal xA ‖ ∃.xA ∈ C∞(∃tA) corresponds to a tautology WA[t/x](xA)⊥ ∨
WA(xA)[t/x]. We interpret ∃I by post-composing with ∃tA (as in Figure 10 without the last
step). This validates  Cut/∃, by associativity of composition.

To a strategy σ, the operation interpreting ∀I adds ∀ as new minimal event, and sets it
as a dependency for all events whose annotation comprise the distinguished variable x.

I Definition 38. For σ a (Σ ] V ] {x})-strategy on A⊥ ‖ B, the (Σ ] V)-strategy ∀I x
A,B(σ) :

A⊥ ‖ ∀.B has events |σ| ] {(2, ∀)}, term assignment λ((2, ∀)) = (2, ∀) and causality λ(s) =
λσ(s)[(2, ∀)/x] (s ∈ |σ|), and ≤=≤σ ∪{((2, ∀), s) | s ∈ ∀.B ∨ ∃s′ ≤σ s, x ∈ fv(λσ(s′))}.

I Proposition 39. If σ is winning on a (V]{x})-game A[wV,x]`B, then ∀I x
A,B(σ) is winning

on the V-game A` ∀x.B.
Indeed, if ∀bélard does not play (2, ∀) we get a tautology, otherwise the remaining

configuration is in σ and so is tautological. This completes the interpretation of MLL1. This
interpretation leaves  ∀/∃ invariant, but fails  Cut/∀. This stems from the fact that the
minimal Σ-strategies are not stable under composition (see Example 46 in Appendix A).
The interpretation of cut-free proofs yield minimal Σ-strategies. In contrast, in compositions
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!∀x. 1 |Ga // !∀x. 1⊗ !∀x. 1
(i, ∀)

9ww�
(j, ∀)

%oou(2i, ∃) (2j + 1, ∃)

?∃x. 1 |Ga// ?∃x. 1⊗?∃x. 1
(i, ∀)

� ''. � %%,
(i, ∃) (i, ∃)

Figure 9 Two examples of contraction.

interpreting cuts, causality may flow through the syntax tree of the cut formula, and create
causal dependencies not reflected in the variables. Hence, cut reduction may weaken the
causal structure.

I Lemma 40. For σ : AArΣ
+ //B and τ : BArΣ]{x}

+ // C, we have ∀I x
A,C(τ � σ) 4 ∀I x

B,C(τ)� σ.

By Lemma 21 these two have the same terms on common events. In fact, ∀I x
A,C(τ � σ)

and ∀I x
B,C(τ)� σ also have the same events – they correspond to the same expansion tree,

only the acyclicity witness differs. But the variant of 4 with |σ1| = |σ2| is not a congruence:
relaxing causality of σ in τ � σ may unlock new events, previously part of causal loops.

As 4 is preserved by all operations on Σ-strategies, we deduce:

I Theorem 41. If π  MLL1 π
′, then Jπ′K 4 JπK.

For MLL1, we conjecture that “having the same expansion tree” (i.e., same events and
term annotations) is actually a congruence, yielding a ∗-autonomous hyperdoctrine. As this
would not hold in the presence of contraction and weakening, we leave this for future work.

5 Contraction and weakening

In this section we reinstate ! and ? in the interpretation of quantifiers, i.e., J∀x. ϕKV =
!∀x. JϕKV]{x} and J∃xϕKV = ?∃x JϕKV]x – this is reminiscent of Melliès’ discussion on the
interaction between quantifiers and exponential modalities in a polarized setting [22].

Unlike for MLL1, we only aim to map proofs to Σ-strategies on the appropriate game,
with no preservation of reduction. We must interpret contraction and weakening, but also
revisit the interpretation of rules for quantifiers as the interpretation of formulas has changed.

Weakening is easy: for any game A, any Σ-strategy σ : A + //1 is winning; for definiteness,
we use the minimal eA : A + //1, only closed under receptivity. Contraction is much more
subtle. To illustrate the difficulty, we present in Figure 9 two simple instances of the
contraction Σ-strategy (without term annotations). The first looks like the usual contraction
of AJM games [1]. It can be used to interpret the contraction rule on existential formulas,
where it has the effect of taking the union of the different witnesses proposed. But in LK,
one can also use contraction on a universal formula, which will appeal to a strategy like the
second. Any witness proposed by ∀bélard will then have to be propagated to both branches
to ensure that we are winning (mimicking the effect of cut reduction).

In order to define this contraction Σ-strategy along with the tools to revisit the introduction
rules for quantifiers, we will first study some properties of the exponential modalities.

Recall ! and ? from Definition 11, both based on arena ‖ω A. First, we examine their
functorial action. Let σ : AArΣ

+ //B. Then, ‖ωσ : ‖ω(A⊥ ‖ B) which is isomorphic to
(‖ωA)⊥ ‖ (‖ωB); overloading notion we still write ‖ω σ :‖ωAArΣ

+ // ‖ωB.

I Lemma 42. Let σ : AGaΣ
+ //B. Then, we have !σ =‖ω σ : !AGaΣ

+ // !B and ?σ =‖ω σ : ?AGaΣ
+ //?B.

Rather than defining directly the contraction, we build coϕ : JϕKV
GaΣ]V

+ // !JϕKV by induction
on ϕ ∈ FormΣ(V). For ϕ quantifier-free, the empty coϕ : JϕKV + // !JϕKV is winning. We
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u

w
vC

π

`V Γ, ϕ, ϕ
`V Γ, ϕ

}

�
~ = Γ⊥

JπK
T (V)→ ϕ` ϕ

δ⊥
ϕ⊥

T (V)→ ϕ

u

ww
v∀I

π

`V]{x} Γ, ϕ
`V Γ, ∀x. ϕ

}

��
~ = Γ⊥

coΓ⊥

T (V)→ !Γ⊥
!(∀I (JπK))
T (V)→ !∀x. ϕ

u

w
v∀I

π

`V Γ, ϕ[t/x]
`V Γ, ∃x. ϕ

}

�
~ = Γ⊥

JπK
T (V)→ ϕ[t/x]

∃t
ϕ

T (V)→ ∃x.ϕ T (V)→ ?∃x.ϕ

Figure 10 Interpretation of the remaining rules of LK.

!A → !!A !A → !A⊗ !A ?!A → !?A !A⊗ !B → !(A⊗ B) !A` !B → !(A` B)
(〈i, j〉, a) 7→ (i, (j, a)) (2i, a) 7→ (1, (i, a)) (i, (j, a)) 7→ (j, (i, a)) (j, (i, a)) 7→ (i, (j, a)) (j, (i, a)) 7→ (i, (j, a))

(2i+ 1, a) 7→ (2, (i, a))

Figure 11 Some win-isos with exponentials whose lifting are used in the interpretation.

get co∀x. ϕ : !∀x. JϕKV + // !!∀x. JϕKV as a particular case of !A + // !!A from Figure 11. We get
coϕ∧ψ and coϕ∨ψ by induction and composition with !A⊗ !B + // !(A⊗B), !A` !B + // !(A`B).

Finally, co?∃x. JϕKx is obtained analogously to the contraction on the right of Figure 9.

I Lemma 43. For any (V ] {x})-game A, there is a winning µA,x : ∃x. !A
V-Ga

+ // !∃x.A.

Proof. After the unique minimal ∀ move (on the left hand side), the strategy simultaneously
plays all the (i, ∃) (on the right hand side) with annotation ∀; then proceeds as cc !A. J

We get co?∃x. JϕKx by induction, post-composition with ?µJϕK,x and distribution of ? over !.

I Proposition 44. For any ϕ ∈ FormΣ(V), there is a winning coJϕKV : JϕKV
V-Ga

+ // !JϕKV .

Combining Proposition 44 with other primitives (including !A + //A, playing copy-
cat between A and the 0th copy on the left, closed under receptivity), we get δJϕKV :
JϕKV + //JϕKV ⊗ JϕKV for ϕ ∈ FormΣ(V). We complete the interpretation in Figure 10, omit-
ting W, which is by post-composition with eA and silently using the isomorphism between
winning Σ-strategies from 1 to Γ ` A and from Γ⊥ to A. This concludes the proof of
Theorem 14.

6 Conclusion

For LK there is no hope of preserving unrestricted cut reduction without collapsing to a
boolean algebra [13]. There are non-degenerate models for classical logic with an involutive
negation, e.g. Führman and Pym’s classical categories [9] with reduction only preserved in a
lax sense; but our model does not preserve reduction even in this weaker sense. Besides, our
semantics is infinitary: from the structural dilemma in [8] we obtained a proof of some ∃x. ϕ
with ϕ quantifier-free (no ∀bélard moves) yielding an infinite Σ-strategy (see Appendix B).
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Both phenomena could be avoided by adopting a polarized model, abandoning however
our faithfulness to the raw Herbrand content of proofs. It is a fascinating open question
whether one can find a non-polarized model of classical first-order logic that remains finitary
– this is strongly related to the actively investigated question of finding a strongly normalizing
reduction strategy on syntaxes for expansion trees [15, 21, 16].
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A Counter-examples

In this section, we detail a few counter-examples referred to in the main text.

I Example 45. The neutral Σ-strategies σ1 =
ee11
k���
ee22S���

e
f(e1)
3

and σ2 =
ee11
k���
ee22S���

e
f(e2)
3

, have no meet.

Assume they have a meet σ. Necessarily, since ee11 ee22 4 σ1, σ2, then σ must comprise
the events-with-annotations ee11 and ee22 . But we also have

ec
1
� ��%

ec
2<yy�

e
f(c)
3

4 σ1, σ2

for any constant symbol c. Therefore, σ must also include event-with-annotation et3. But t
must be an instance of f(e1), f(e2); and must instantiate to f(c) for all constant symbol c.
So t must have the form f(e) for some e ∈ [e3], i.e., e ∈ {e1, e2, e3}. It is direct to check that
none of those options gives a neutral Σ-strategy that is below both σ1 and σ2 for 4.

I Example 46. Consider σ : ∀11 + //∀2∀31 and τ : ∀2∀31 + //∀41 two Σ-strategies:

∀11 |σ // ∀2∀31 ∀2∀31 |τ // ∀41
∀2_���

∀4
*qqx∀3

,rrz
∃∀4

2_���
∃∀3

1 ∃c
3

http://dx.doi.org/10.1007/BFb0013061
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where we omit the annotation of negative events, forced by Σ-receptivity.
Their composition has ∀4 _ ∃c

1, which is not a minimal strategy since c does not have ∀4
as a free variable.

This counter-example also means that we do not have the adjunction expected from
categorical logic ∃V,x a T (wV,x) a ∀V,x. More precisely, Lemma 40 cannot be strengthened
into an equality. Indeed, note that τ = ∀I x

(∀2∀31),1(∃x
2 _ ∃c

3). On the other hand, τ � σ =
∀4 _ ∃c

1, which cannot be of the form ∀I x
∀11,1 – this construction would put no causal link

from ∀4 to ∃c
1, since c does not involve the variable x.

The intuition behind this failure is that ∀I x
A,B only introduces causal links that follow

occurrences of a variable x. However, after composition, we may end up with Σ-strategies
that are not minimal, i.e., they have immediate causal links not reflecting directly a syntactic
dependency. In other words, in order to get an adjunction as one would expect, only the
term information would have to be retained – but our interpretation remembers more.

B Non-finiteness of the interpretation

From the infinitary primitives in the interpretation, it is natural to expect the interpretation
to be infinitary. It was surprisingly difficult to find such an example, however one can do so
by revisiting standard pathological examples in the proof theory of classical logic, having
arbitrarily large normal forms.

More precisely, we construct an LK proof of the formula ∃x.> whose interpretation is
infinite, despite the fact that there is no move by ∀bélard in the game.

Our starting point is the following proof:

$ =

Ax
` ϕ,ϕ⊥

Ax
` ϕ,ϕ⊥

∧I
` ϕ ∧ ϕ,ϕ⊥, ϕ⊥

C
` ϕ ∧ ϕ,ϕ⊥

Ax
` ϕ,ϕ⊥

Ax
` ϕ,ϕ⊥

∧I
` ϕ,ϕ, ϕ⊥ ∧ ϕ⊥

C
` ϕ,ϕ⊥ ∧ ϕ⊥

Cut
` ϕ ∧ ϕ,ϕ⊥ ∧ ϕ⊥

This proof is referred to in [8] as a structural dilemma. There are two ways to push the
Cut beyond contraction, as the two proofs interact, and try to duplicate one another. This
is an example of a proof where unrestricted cut reduction does not necessarily terminate;
and which has infinitely large cut-free forms.

In order to construct a proof with an infinite interpretation, we will start with this proof,
with ϕ = ∀x.⊥ ∨ ∃y.>, which to shorten notations we will just write as ∀ ∨ ∃.

Omitting details, here is the interpretation of the left branch of $ (we omit term
annotations, which always coincide with the unique predecessor for ∃loïse’s moves).

u

ww
v

Ax
` ϕ,ϕ⊥

Ax
` ϕ,ϕ⊥

∧I
` ϕ ∧ ϕ,ϕ⊥, ϕ⊥

C
` ϕ ∧ ϕ,ϕ⊥

}

��
~ =

(∀ ∨ ∃) ∧ (∀ ∨ ∃) , (∃ ∧ ∀)
∀i

� **1∃〈0,i〉

∀j
� ))/∃〈1,j〉

∀k
"mmt $nnu∃k ∃k
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The second branch of $ is symmetric, so we do not make it explicit. Now, we interpret
the Cut rule and the composition yields J$K below.

(∀ ∨ ∃) ∧ (∀ ∨ ∃) , (∃ ∧ ∀) ∧ (∃ ∧ ∀)
∀i

� **1 � ++1∃〈0,i〉 ∃〈0,i〉

∀j
� ((/ � **0∃〈1,j〉 ∃〈1,j〉

∀k
"mmt %oou∃〈0,k〉 ∃〈0,k〉

∀l
!mms "mmt∃〈1,k〉 ∃〈1,k〉

It is interesting to note that although $ has arbitrarily large cut-free forms, the corres-
ponding strategy only plays finitely many ∃loïse moves for every ∀bélard move. However, we
are on the right path to finding an infinitary Σ-strategy.

The next step is to set (with s some unary function symbol) the proof $2 below with
interpretation

u

www
v

Ax
`x >[s(x)/y],⊥

∃I
`x ∃y.>,⊥

∀I
` ∃y.>, ∀x.⊥

W
` ∀x.⊥, ∃y.>, ∀x.⊥, ∃x.>

∨I
` (∀x.⊥ ∨ ∃y.>) ∨ (∀x.⊥ ∨ ∃x.>)

}

���
~

=

(∀ ∨ ∃) ∨ (∀ ∨ ∃)
∀i ∀j,rrz

∃s(∀j)
〈j,0〉

We now use these to compute the interpretation of $3, a cut between $ and $2:

t
$

` ϕ ∧ ϕ,ϕ⊥ ∧ ϕ⊥
$2

` (∀ ∨ ∃) ∨ (∀ ∨ ∃)
Cut

` ϕ ∧ ϕ

|

=

(∀ ∨ ∃) ∧ (∀ ∨ ∃)
∀i

� ''.
� **1∃s(∀i)

〈0,〈〈0,i〉,0〉〉 ∃s(∀i)
〈0,〈〈0,i〉,0〉〉

∀j'ppw � ''.
∃s(∀j)
〈0,〈〈1,j〉,0〉〉 ∃s(∀j)

〈0,〈〈1,j〉,0〉〉

We are almost there. It suffices now to note that $3 provides a proof of (∃x.> =⇒
∃x.>) ∧ (∃x.> =⇒ ∃x.>). These two implications can be composed by cutting $3 against
the following proof $4:

u

www
v

Ax
` ∀, ∃

Ax
` ∀, ∃

∧I
` ∀, ∃ ∧ ∀, ∃

Ax
` ∀, ∃

∧I
` ∀, ∃ ∧ ∀, ∃ ∧ ∀, ∃

Ex
` ∃ ∧ ∀, ∃ ∧ ∀, ∃, ∀

∨I
` (∃ ∧ ∀) ∨ (∃ ∧ ∀), ∃ ∨ ∀

}

���
~

=

(∃ ∧ ∀) ∨ (∃ ∧ ∀) , ∃ ∨ ∀
∀i

� %%,
∀j

� $$,
∀k

"mmt∃k ∃i ∃j

Write $5 for the proof of ∃x.>∨∀y.⊥ obtained by cutting $3 and $4. The interpretation
of $5 is the composition of J$3K and J$4K, which triggers the feedback loop causing
the infiniteness phenomenon. We display below the corresponding interaction. For the
“synchronised” part of formulas, we will use 0 for components resulting from matching dual
quantifiers, and ‖ for components resulting for matching dual propositional connectives.
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We write ◦ for synchronized events (i.e., of neutral polarity), and omit copy indices, which
get very unwieldy. For readability, we also annotate the immediate causal links with the
sub-proof that they originate from, i.e., $3 or $4.

(0 ‖ 0) ‖ (0 ‖ 0) , ∃ ∨ ∀
∀

$4!mms◦∀
$3 � &&- $3

� **1◦s(∀)
$4 � ''.

◦s(∀)
$4 � ''.◦s(∀)

$3'ppw $3 � ''.
∃s(∀)

◦s(s(∀))
$4 � ''.

◦s(s(∀))
$4 � ''.◦s(s(∀))

$3(ppw $3 � ''.
∃s(s(∀))

◦s3(∀)
$4 � ''.

◦s3(∀)
$4 � ''.◦s3(∀)

$3%oou $3 � ))/
∃s3(∀))

. . . . . . . . .

Therefore, after hiding, ∃loïse responds to an initial ∀bélard move ∀ by playing simultan-
eously all ∃sn(∀), for n ≥ 1. Finally, cutting $5 against a proof of ∃x.> playing a constant
symbol 0, we get a proof $6 of ` ∃x.> whose interpretation plays simultaneously all ∃sn(0)

for n ≥ 1.

C Compactness

Restricting any winning Σ-strategy σ : JϕK to JϕK∃ (ignoring ∀bélard’s replications) yields
σ∃ : JϕK∃, not necessarily finite. Yet, we will show that it has a finite top-winning sub-strategy.

A game A is a prefix of B if |A| ⊆ |B|, and all the structure coincides on |A|. Notice
that JϕK∃ embeds (subject to renaming) as a prefix of JϕK. Keeping the renaming silent, we
have:

I Lemma 47. For any winning σ : JϕK, setting

|σ∃| = {a ∈ |σ| | [a]σ ⊆ |JϕK∃|}

and inheriting the order, polarity and labelling from σ, we obtain σ∃ : JϕK∃ a winning
Σ-strategy.

Proof. Most conditions are direct. For σ∃ : JϕK∃ winning we use that for any ∃-maximal
x ∈ C∞(σ∃), x ∈ C∞(σ) ∃-maximal as well: this follows from JϕK∃ being itself ∃-maximal
in JϕK. J

As mentioned above, the extracted σ∃ may not be finite! Indeed there are classical
proofs for which our interpretation yields infinite strategies, even after removing ∀bélard’s
replications (see Appendix B). This reflects the usual issues one has in getting strong
normalization in a proof system for classical logic [8] without enforcing too much sequentiality
as with a negative translation.

Despite this, the compactness theorem for propositional logic entails that we can always
extract a finite top-winning sub-strategy. For σ : JϕK∃ any Σ-strategy, we denote C ∀(σ) the
set of ∀-maximal configurations of σ, i.e., they can only be extended in σ by ∃loïse moves –
inheriting all structure from σ they correspond to its sub-strategies, as they are automatically
receptive. The proof relies on:

CSL 2018



5:22 The True Concurrency of Herbrand’s Theorem

I Lemma 48. Let X be a directed set of ∀-maximal configurations. Then, WJϕK∃(
⋃
X) is

logically equivalent to
∨
x∈XWJϕK∃(x).

Proof. By induction on ϕ, using simple logical equivalences and that if x1 ⊆ x2 are ∀-maximal,
then WJϕK∃(x1) implies WJϕK∃(x2). J

We complete the proof. For σ : JϕK∃ winning, by the lemma above the (potentially
infinite) disjunction of finite formulas∨

x∈C ∀(σ)

WJϕK∃(x)[λσ]

is a tautology. By the compactness theorem there is a finite X = {x1, . . . , xn} ⊆ C ∀(σ) such
that

∨
x∈XWJϕK∃(x)[λσ] is a tautology – w.l.o.g. X is directed as C ∀(σ) is closed under

union. By Lemma 48 again, WJϕK∃(
⋃
X)[λσ] is a tautology. So, restricting σ to events

⋃
X

gives a top-winning finite sub-strategy of σ.
Although this argument is non-constructive, the extraction of a finite sub-strategy can

still be performed effectively: Σ-strategies and their operations can be effectively presented,
and the finite top-winning sub-strategy can be computed by Markov’s principle.
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6:2 Cartesian Cubical Computational Type Theory

1 Introduction

Martin-Löf has proposed two rather different approaches to equality in dependent type theory,
in the guise of his extensional [24] and intensional [25] type theories. Extensional type theory,
particularly its realization as Nuprl’s computational type theory [2], is justified by meaning
explanations in which closed terms are programs equipped with an operational semantics,
and variables are considered to range over closed terms of their given type.

One consequence is that equations hold whenever they are true for all closed terms; for
instance, n : nat,m : nat� n+m

.=m+n ∈ nat as a judgmental equality because N +M and
M +N compute the same natural number for any closed natural numbers N,M . Another
consequence is known as equality reflection: the equality type EqA(M,N) has at most one
element, and is inhabited if and only if M .=N ∈ A judgmentally.

In contrast, in intensional type theory, judgmental equality is precisely β- (and at certain
types, η-) equivalence, and context variables are treated as additional axioms whose form is
indeterminate. The identity type IdA(M,N) mediates equality reasoning; in an empty context
it is inhabited by a single element if and only if M ≡ N : A judgmentally, but in non-empty
contexts includes additional equalities such as n : nat,m : nat ` P : Idnat(n+m,m+n), which
does not hold judgmentally for variables n,m.

Traditional type theories, extensional or intensional, are constructive in the sense that
they admit an interpretation of proofs as programs, often distilled into the canonicity property
that closed elements of type bool evaluate and are judgmentally equal to either true or false.
In computational type theory, this is the very definition of M ∈ bool (see Theorem 15), while
in intensional type theory, canonicity can be verified by a metatheoretic argument.

Homotopy type theory [29] extends intensional type theory with a number of axioms,
including Voevodsky’s univalence axiom [31] and higher inductive types [23]. These axioms
are justified by mathematical models interpreting types as spaces (e.g., simplicial sets [20]
or fibrant objects in a model category [10]), elements of types as points, and identity types
as path spaces. In such models, homotopy type theory serves as a framework for synthetic
homotopy theory [29], in which higher inductive types provide concrete homotopy types (e.g.,
n-spheres), the rules of the identity type assert that all constructions respect paths, and
univalence asserts moreover that all constructions are invariant under homotopy equivalence.

Despite the success of homotopy type theory as a medium for synthetic results in homotopy
theory [11, 30, 14], it is believed that certain objects – famously, semi-simplicial types –
cannot be constructed without reference to some notion of exact equality stricter than paths
[8, 33]. Because exact equality does not respect paths, any theory with both exact equality
and paths must therefore stratify types into fibrant types that respect paths, and non-fibrant
types that do not. Candidate such two-level type theories include the Homotopy Type System
(HTS) of Voevodsky [33] and the two-level type theory of Altenkirch et al. [3].

Critically, homotopy type theory and existing two-level type theories lack the aforemen-
tioned canonicity property, because the ordinary judgmental equalities of intensional type
theory do not apply to uses of the univalence axiom or paths in higher inductive types. Nor
are they known to satisfy the weaker homotopy canonicity property that for any closed
M : bool there exists a proof P : Idbool(M, true) or P : Idbool(M, false) [32].

1.1 Contributions
We define a two-level computational type theory satisfying the canonicity property, whose
fibrant types include a cumulative hierarchy of univalent universes of fibrant types, universes of
non-fibrant types, dependent function, dependent pair, and path types, and whose non-fibrant
types include also exact equality types with equality reflection.
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Our type theory is the first two-level type theory with canonicity, and the second univalent
type theory with canonicity, after the cubical type theory of Cohen et al. [17]. Like Cohen
et al. [17], our type theory is inspired by a model of homotopy type theory in cubical sets
[12], and represents n-dimensional cubes as terms parametrized by n variables ranging over
a formal interval. However, the fibrant fragment of our type theory differs from Cohen et al.
[17] by endowing the interval with less (namely, Cartesian) structure, and defining fibrancy
with a substantially different uniform Kan condition. Thus we affirmatively resolve the open
question of whether Cartesian interval structure constructively models univalence [18, 22].

In the spirit of Martin-Löf’s meaning explanations [24], we define the judgments of type
theory as relations on programs in an untyped programming language. In Section 2, we define
a λ-calculus extended by nominal constants representing elements of a formal interval object
[26]. In Section 3, we define a cubical generalization of Allen’s partial equivalence relation
(PER) semantics of Nuprl [1], sufficient to describe non-fibrant types and their elements
at all dimensions. In Section 4, we define fibrant types as non-fibrant types equipped with
two Kan operations, called coercion and homogeneous composition. In Sections 5 and 6
we summarize the semantics of each type former, and provide valid rules of inference. We
conclude in Section 7 with comparisons to related work.

Full details and proofs for our construction are available in our associated preprint [7].
Our type theory is currently being implemented in the RedPRL proof assistant [28], in
which we have already formalized a proof of univalence (https://git.io/vFjUQ).

2 Programming language

We begin by defining an untyped cubical programming language, a call-by-name λ-calculus
extended by nominal constants [26], whose terms serve as the types and elements of our
cubical type theory. Names (or dimensions) x, y, . . . represent generic elements of an abstract
interval I with two constant elements (or endpoints) 0, 1. Given any two finite sets of names
Ψ,Ψ′, a dimension substitution ψ : Ψ′ → Ψ sends each name in Ψ to 0, 1, or a name in Ψ′.
We write 〈r/x〉 : Ψ→ (Ψ, x) for the dimension substitution sending x to r ∈ Ψ ∪ {0, 1} and
constant on Ψ. Given ψ : Ψ′ → Ψ and a term M whose free names are contained in Ψ, we
write Mψ for the term obtained by replacing each x ∈ Ψ in M with ψ(x).

Geometrically, a term M with free dimension names in Ψ (henceforth, a Ψ-dimensional
term) represents a |Ψ|-dimensional cube – a point (|Ψ| = 0), line (|Ψ| = 1), square (|Ψ| =
2), and so forth. Dimension substitutions are compositions of permutations, face maps
〈0/x〉, 〈1/x〉 : Ψ→ (Ψ, x), diagonal maps 〈y/x〉 : (Ψ, y)→ (Ψ, x, y), and (silent) degeneracy
maps (Ψ, y) → Ψ, and perform the corresponding geometric operation when applied to a
term M . Below, we illustrate the faces of a square M in dimensions {x, y}; note that the
bottom endpoint of the left face and the left endpoint of the bottom face are drawn as a
single point, because 〈0/x〉〈1/y〉 = 〈1/y〉〈0/x〉.

y
x

M〈0/x〉〈0/y〉

M〈0/x〉〈1/y〉

M〈1/x〉〈0/y〉

M〈1/x〉〈1/y〉

M〈0/x〉 M〈1/x〉

M〈0/y〉

M〈1/y〉

M
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This notion of cubes is Cartesian because sets of names and dimension substitutions
form a free finite-product category generated by the two endpoint maps 〈0/x〉, 〈1/x〉 :
∅ → {x} [22, 9, 15]. In contrast, Cohen et al. [17] equip the interval with a De Morgan
algebra structure also containing connections 〈(x ∧ y)/y〉, 〈(x ∨ y)/y〉 : (Ψ, x, y)→ (Ψ, y) and
reversals 〈(1− y)/y〉 : (Ψ, y) → (Ψ, y). Cartesian cubes are appealing for their ubiquity
and simplicity: dimensions behave like structural variables (with exchange, weakening, and
contraction) and have a trivial equational theory (as opposed to De Morgan laws).

Following Martin-Löf’s meaning explanations [24], we only give operational meaning to
closed terms, and consider term variables to range over closed terms of their given types.
However, we cannot treat dimension names as ranging only over {0, 1} – such a semantics
would enforce uniqueness of identity proofs, by equating all lines whose boundaries coincide.

We therefore define a deterministic small-step operational semantics on terms with no
free term variables, but any number of free dimension names. We write V val for values,
M 7−→ M ′ when M takes one step of computation to M ′, and M ⇓ V (M evaluates to
V ), when M 7−→∗ V (in zero or more steps) and V val. Notably, the operational semantics
are not stable under dimension substitution: because face and diagonal maps can expose
new simplifications, we have neither (1) if V val then V ψ val, nor (2) if M 7−→∗ M ′ then
Mψ 7−→∗ M ′ψ. Consider the circle (Section 5.2), inductively generated by a point base and
a line loopx. We arrange that the faces of loopx are base by including an operational step
(loopx)〈0/x〉 = loop0 7−→ base. On the other hand, loopx val because it is a constructor,
contradicting (1). Maps out of the circle are determined by a point P (the image of base)
and an abstracted line x.L (the image of loopx). Thus S1-elimc.A(loopx;P, x.L) 7−→ L but

(S1-elimc.A(loopx;P, x.L))〈0/x〉 = S1-elimc.A〈0/x〉(loop0;P 〈0/x〉, x.L)
7−→ S1-elimc.A〈0/x〉(base;P 〈0/x〉, x.L)
7−→ P 〈0/x〉

where L and P 〈0/x〉 are a priori unrelated, contradicting (2). Fortunately, most rules of the
operational semantics are in fact cubically stable, or preserved by dimension substitutions: for
instance, (loop0)ψ 7−→ baseψ for all ψ : Ψ′ → Ψ. We write M 7−→� M ′ when Mψ 7−→M ′ψ

for all ψ : Ψ′ → Ψ, and V val� when V ψ val for all ψ : Ψ′ → Ψ.
We include some operational semantics rules in Fig. 1, but omit the many rules pertaining

to the Kan operations (defined in Section 4), as well as rules that evaluate the principal
argument of an elimination form (for example, app(M,N) 7−→ app(M ′, N) when M 7−→M ′).
We adopt the convention that a, b, c, . . . are term variables, x, y, z, . . . are dimension names,
and r, r′, ri are dimension expressions (names x or constants 0, 1).

3 Cubical PER semantics

Type theory is built on the judgments of typehood (and equality of types) and membership in
a type (and equality of members in a type). Intensional type theories – including homotopy
type theory and the cubical type theory of Cohen et al. [17] – typically define these judgments
inductively by a collection of syntactic inference rules. We instead define these judgments
semantically as partial equivalence relations (PERs, or symmetric and transitive relations)
over terms of the language described in Section 2. Such an approach can be seen as a
mathematically precise reading of Martin-Löf’s meaning explanations of type theory [24], or
as a relational semantics of type theory in the style of Tait [27], and is the approach adopted
by Nuprl [2]. The role of inference rules is therefore not definitional, but rather to summarize
desirable properties validated by the semantics.
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(a:A)→ B val�
λa.M val�

app(λa.M,N) 7−→� M [N/a]
(a:A)×B val�
〈M,N〉 val�

fst(〈M,N〉) 7−→� M

snd(〈M,N〉) 7−→� N

Pathx.A(M,N) val�
〈x〉M val�

(〈x〉M)@r 7−→� M〈r/x〉
EqA(M,N) val�

? val�
bool val�
true val�
false val�

ifb.A(true;T, F ) 7−→� T

ifb.A(false;T, F ) 7−→� F

S1 val�
base val�

loopx val
loopε 7−→� base (ε ∈ {0, 1})

S1-elimc.A(base;P, x.L) 7−→� P

S1-elimc.A(loopx;P, y.L) 7−→ L〈x/y〉
Vx(A,B,E) val

Vε(A0, A1, E) 7−→� Aε (ε ∈ {0, 1})
Vinx(M,N) val

Vinε(M0,M1) 7−→� Mε (ε ∈ {0, 1})
Vprojx(Vinx(M,N), F ) 7−→ N

Vproj0(M,F ) 7−→� app(F,M)
Vproj1(M,F ) 7−→� M

Uκj val� (κ ∈ {pre,Kan})

Figure 1 Operational semantics, selected rules.

We adopt this semantical approach for multiple reasons. By defining types as relations
over programs, we ensure the constructive character of the theory; for instance, it will follow
from the definitions that elements of boolean type are programs that evaluate to true or false
(Theorem 15). Moreover, because the meaning of open terms is given by their closed (term)
substitution instances, it will naturally follow that judgmental equality is extensional and
that the exact equality type satisfies equality reflection.

In Allen’s PER semantics of Nuprl [1], a type A is interpreted as a symmetric and
transitive relation JAK on values; the judgment M .= N ∈ A holds whenever M ⇓ M0,
N ⇓ N0, and JAK(M0, N0) (which we henceforth write JAK⇓(M,N)); and M ∈ A whenever
M

.=M ∈ A. Thus, ignoring equality, A is defined by its set of values {V val | JAK(V, V )},
and the elements of A are the programs whose values are elements of that set. (We write ∈
rather than : to emphasize the semantic character of these judgments.)

We generalize Nuprl’s semantics by instead interpreting types as cubical sets: every type
has a PER of Ψ-dimensional values for every Ψ, and each ψ : Ψ′ → Ψ sends its Ψ-dimensional
values to its Ψ′-dimensional values. Complications arise when defining the latter functorial
action. First, dimension substitutions can engender computation even on values, so the action
of ψ must send V to the value of the program V ψ. Second, substitution-then-evaluation
is not necessarily functorial: if V ψ ⇓ V ′, there is in general no relationship between the
values of V ψψ′ and V ′ψ′. Third, types are themselves programs because of dependency,
and therefore suffer from the same coherence issues. We solve these issues by interpreting
(Ψ-dimensional) types as value-coherent Ψ-PERs on values:

I Definition 1. A Ψ-relation α (resp., Ψ-relation on values) is a family of binary relations
αψ for every Ψ′ and ψ : Ψ′ → Ψ, over Ψ′-dimensional terms (resp., values). If αψ varies only
in the choice of Ψ′ and not ψ, we say α is context-indexed and write αΨ′ for αψ.
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6:6 Cartesian Cubical Computational Type Theory

I Definition 2. For any Ψ-relation on values α, define the Ψ-relation Tm(α)(M,N) to hold
when for all ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1, α⇓ψ1ψ2

relates pairwise M1ψ2, Mψ1ψ2, N1ψ2,
and Nψ1ψ2, where Mψ1 ⇓M1 and Nψ1 ⇓ N1.

A Ψ-relation α can be precomposed with a dimension substitution ψ : Ψ′ → Ψ, yielding
a Ψ′-relation (αψ)ψ′ := αψψ′ .

IDefinition 3. A Ψ-relation on values α is value-coherent, or Coh(α), when for all ψ : Ψ′ → Ψ,
if αψ(V, V ′) then Tm(αψ)(V, V ′).

Definition 1 captures the idea that types vary with dimension substitutions (for example,
S1-elimc.UKan

j
(loopx;A, x.B) under 〈0/x〉), Definition 2 lifts Ψ-relations on values to arbitrary

terms by substitution-then-evaluation, and Definition 3 defines functoriality of that lifting.

I Remark. Writing C for the category of finite sets of names and dimension substitutions, a
value-coherent context-indexed PER determines a functor Cop → Set, and a value-coherent
Ψ-PER determines a functor (C/Ψ)op → Set.

3.1 Judgments
We define the judgments of our type theory relative to a value-coherent context-indexed
PER of types, each of which gives rise to another PER. In the style of Allen [1] and recently,
Anand and Rahli [4], we present this data in a single relation.

I Definition 4. A cubical type system is a relation τ(Ψ, A0, B0, ϕ) over Ψ-dimensional values
A0, B0, and binary relations ϕ over Ψ-dimensional values, satisfying:

Functionality: if τ(Ψ, A0, B0, ϕ) and τ(Ψ, A0, B0, ϕ
′) then ϕ = ϕ′.

PER-valuation: if τ(Ψ, A0, B0, ϕ) then ϕ is a PER.
Symmetry: if τ(Ψ, A0, B0, ϕ) then τ(Ψ, B0, A0, ϕ).
Transitivity: if τ(Ψ, A0, B0, ϕ) and τ(Ψ, B0, C0, ϕ) then τ(Ψ, A0, C0, ϕ).
Value-coherence: Coh({(Ψ, A0, B0) | τ(Ψ, A0, B0, ϕ)}).

The first three components of τ define a Ψ-PER for every Ψ, which we write τΨ. If
Tm(τΨ)(A,B), then the fourth component of τ assigns a Ψ-PER to A,B sending each
ψ : Ψ′ → Ψ to the relation ϕψ where τ⇓(Ψ′, Aψ,Bψ, ϕψ). We write this Ψ-PER JAK; it is
unique by functionality, and independent from the choice of B by symmetry and transitivity.

For the remainder of this section, fix a cubical type system τ . We start by defining the
closed judgments relative to τ : when are A and B equal Ψ-dimensional types, and when are
M and N equal Ψ-dimensional elements of A?

I Definition 5. A .= B typepre [Ψ] holds when Tm(τΨ)(A,B) and Coh(JAK). We write
A typepre [Ψ] for A .=A typepre [Ψ].

I Definition 6. M .=N ∈ A [Ψ], presupposing 2 A typepre [Ψ], when Tm(JAK)(M,N). We
write M ∈ A [Ψ] for M .=M ∈ A [Ψ].

We extend the judgments to open terms by functionality: an open type (resp., elements)
is a map sending equal elements of the context to equal closed types (resp., elements). The
open judgments must be defined simultaneously, by induction on the length of the context.

2 A presupposition is a fact that must be established before a judgment can be sensibly considered. Here,
it does not make sense to demand Tm(JAK)(M, N) unless JAK is known to exist by A typepre [Ψ].
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I Definition 7. (a1 :A1, . . . , an :An) ctx [Ψ] when A1 typepre [Ψ], a1 :A1 � A2 typepre [Ψ],
. . . , and a1 :A1, . . . , an−1 :An−1 � An typepre [Ψ].

I Definition 8. a1 : A1, . . . , an : An � B
.= B′ typepre [Ψ], presupposing (a1 : A1, . . . , an :

An) ctx [Ψ], when for any ψ : Ψ′ → Ψ, N1
.= N ′1 ∈ A1ψ [Ψ′], N2

.= N ′2 ∈ A2ψ[N1/a1] [Ψ′],
. . . , and Nn

.=N ′n ∈ Anψ[N1, . . . , Nn−1/a1, . . . , an] [Ψ′], when

Bψ[N1, . . . , Nn/a1, . . . , an] .=B′ψ[N ′1, . . . , N ′n/a1, . . . , an] typepre [Ψ′].

Under the same hypotheses, a1 :A1, . . . , an :An �M
.=M ′ ∈ B [Ψ] when

Mψ[N1, . . . , Nn/a1, . . . , an] .=M ′ψ[N ′1, . . . , N ′n/a1, . . . , an] ∈ Bψ[N1, . . . , Nn/a1, . . . , an] [Ψ′].

Given the distinct roles of term variables and dimension names in Definition 8, it is
natural for our judgments to separate the contexts (a1 :A1, . . . , an :An) and Ψ. In RedPRL,
we utilize a single mixed context of terms and dimensions, as do Cohen et al. [17].

I Remark. Allen’s PER semantics are an instance of our semantics, in the case that types
are constant presheaves and terms have no free dimension names. If M , N , A, and B have
no free dimensions, then A .=B typepre [Ψ] if and only if τ⇓(Ψ′, A,B, JAKΨ′) for all Ψ′, and
M

.=N ∈ A [Ψ] if and only if (JAKΨ′)⇓(M,N) for all Ψ′.

3.2 Properties of Judgments
The main result of this paper is the construction of a cubical type system closed under a
variety of type formers. However, many global properties of judgments hold in any cubical
type system. For instance, equality judgments are all symmetric, transitive, and closed under
dimension substitution (if J [Ψ] and ψ : Ψ′ → Ψ, then Jψ [Ψ′]). Open judgments satisfy the
hypothesis (if (Γ, a :A,Γ′) ctx [Ψ] then Γ, a :A,Γ′ � a ∈ A [Ψ]) and weakening rules. Equal
types have the same elements (if A .=B typepre [Ψ] and M .=N ∈ A [Ψ] then M .=N ∈ B [Ψ]).

To prove M ∈ A [Ψ] in a particular cubical type system, we must compare the definition
of JAK with the evaluation behavior of all dimension substitution instances of M . When all
instances of M begin to evaluate in lockstep, it suffices to consider only M itself (Lemma 9);
otherwise, it suffices to show that the instances of M become coherent up to equality at A,
after some number of steps (Lemma 10).

I Lemma 9 (Head expansion). If M ′ ∈ A [Ψ] and M 7−→∗� M ′, then M .=M ′ ∈ A [Ψ].

I Lemma 10. Suppose that M is a Ψ-dimensional term, and we have a family of terms
{Mψ} for each ψ : Ψ′ → Ψ such that Mψ 7−→∗ Mψ. If Mψ

.= (MidΨ)ψ ∈ Aψ [Ψ′] for all ψ,
then M .=MidΨ ∈ A [Ψ].

Once we have established that substitution-then-evaluation of M is functorial, it follows
that the instances of M are equal to the instances of its value.

I Lemma 11. If M ∈ A [Ψ], then M ⇓ V and M .= V ∈ A [Ψ].

On the other hand, certain properties typical of intensional type theories are generally
not expected to hold in our semantics. To check M ∈ A [Ψ], one must, at minimum, show
that M terminates; this is clearly undecidable, because M can be an arbitrary untyped
term. Moreover, terms do not have unique types, because the meanings of types need not be
disjoint. In fact, modern Nuprl has a “Base” type containing every term [4].
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6:8 Cartesian Cubical Computational Type Theory

4 Kan types

The judgmental apparatus described in Section 3 accounts for non-fibrant or pretypes –
whose paths are not necessarily composable or invertible. A pretype is Kan fibrant, or a Kan
type, when equipped with two Kan operations: coercion (coe) and homogeneous composition
(hcom). Coercion for a (Ψ, x)-dimensional type states that elements of A〈r/x〉 can be coerced
to A〈r′/x〉 for any r, r′, and this operation is the identity when r = r′. The coercion of
M is written coer r′

x.A (M). For example, if M ∈ A〈0/x〉 [∅], then coe0 1
x.A (M) ∈ A〈1/x〉 [∅].

Moreover, coe0 x
x.A (M) ∈ A [x] is a line in A whose 〈0/x〉 face is M (because 0 = x〈0/x〉),

and whose 〈1/x〉 face is coe0 1
x.A (M).

x

y

M coe0 1
x.A (M)

coe0 x
x.A (M)

· ·

· ·

M

N0 N1

hcom0 1
A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1)

hcom0 y
A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1)

Homogeneous composition is significantly more complicated, but essentially states that
any open box in A (an n-cube without an interior or one of its faces) has a composite (the
missing face). For example, given two lines in y, N0 ∈ A〈0/x〉 [y] and N1 ∈ A〈1/x〉 [y], and
a line in x, M ∈ A [x], that agrees with the y-lines when y = 0 (M〈0/x〉 .=Nε ∈ A〈ε/x〉 [∅]
for ε ∈ {0, 1}), we can obtain an x-line that agrees with the y-lines when y = 1, written
hcom0 1

A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1). Moreover, we can obtain the interior of that
square, its filler, by composing to y rather than 1. The difficulty of homogeneous composition
is that we must define arbitrary open boxes, at any dimension, in a manner that commutes
with substitution. We introduce dimension context restrictions Ξ, or sets of pairs of dimension
expressions (suggestively written as equations), to describe the spatial relationship between
the faces of an open box.

I Definition 12. A context restriction
−−−−⇀
ri = r′i is valid in Ψ when all ri, r′i are dimension

expressions in Ψ, and either ri = r′i for some i, or ri = rj , r′i = 0, and r′j = 1 for some i, j.

I Definition 13. A restricted judgment J [Ψ |
−−−−⇀
ri = r′i] holds when Jψ [Ψ′] holds for every

ψ : Ψ′ → Ψ for which riψ = r′iψ for all i.

Restricted judgments behave as one might expect: J [Ψ | ∅] if and only if J [Ψ],
J [Ψ, x | x = 0] if and only if J 〈0/x〉 [Ψ], and J [Ψ | 0 = 1] always. Crucially, they are
closed under dimension substitution: if J [Ψ | Ξ] and ψ : Ψ′ → Ψ, then Jψ [Ψ′ | Ξψ].

I Definition 14. B typeKan [Ψ], presupposing B typepre [Ψ], when for all ψ : Ψ′ → Ψ, the
rules in Fig. 2 hold for A := Bψ. (B .=B′ typeKan [Ψ], presupposing B .=B′ typepre [Ψ], when
B and B′ are equipped with equal Kan operations.)

Operationally, both hcom and coe evaluate their type argument and behave according
to the outermost type former. For each type former, we will first show that the formation,
introduction, elimination, computation, and eta rules hold; then, using those rules, we show
that if its component types are Kan, then it is Kan (for example, if A typeKan [Ψ] and
a :A� B typeKan [Ψ], then (a:A)→ B typeKan [Ψ]). The only exceptions are exact equality
types EqA(M,N) (Section 5.5), which are not generally Kan even when A is Kan.
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−−−−⇀
ri = r′i valid [Ψ]
A typeKan [Ψ]
M ∈ A [Ψ]

(∀i, j) Ni
.=Nj ∈ A [Ψ, y | ri = r′i, rj = r′j ]

(∀i) Ni〈r/y〉
.=M ∈ A [Ψ | ri = r′i]

hcomr r′

A (M ;
−−−−−−−−−−⇀
ri = r′i ↪→ y.Ni) ∈ A [Ψ]

.=
{
M when r = r′

Ni〈r′/y〉 when ri = r′i

A typeKan [Ψ, x] M ∈ A〈r/x〉 [Ψ]
coer r

′

x.A (M) ∈ A〈r′/x〉 [Ψ]
coer rx.A (M) .=M ∈ A〈r/x〉 [Ψ]

Figure 2 Kan operations.

These Kan operations are variants of the uniform Kan conditions first proposed by
Bezem et al. [12]. In unpublished work in 2014, Licata and Brunerie [22] and Coquand
[18] considered uniform Kan operations in Cartesian cubical sets, but did not succeed in
defining univalent type theories based on those operations. Our Kan operations introduce
two important innovations. First, we allow open boxes with sides attached along diagonals
x = z, in addition to faces; this is essential to construct univalent universes (Sections 5.6
and 6). Second, the validity condition requires that every box must contain at least one
opposing pair of sides x = 0 and x = 1; this sharpens our canonicity results for higher
inductive types (Section 5.2). We defer further comparison of Kan operations to Section 7.

5 Type formers

We proceed to construct a cubical type system with booleans and the circle (as a representative
higher inductive type), and closed under dependent function and pair types, path types,
exact equality types, and univalent universes. (Our preprint [7] also includes an empty type
and natural numbers.) Each of these type formers is given meaning as a value-coherent
Ψ-PER on values, and shown to validate the appropriate rules of inference. (We focus on
closed-term rules, from which the open rules follow.) In this section we analyze each type
former separately, excepting pretype and Kan universes, which we defer to Section 6.

5.1 Booleans
There are two boolean values at every dimension: JboolKΨ = {(true, true), (false, false)}.
This context-indexed PER is clearly value-coherent, as the constructors are unaffected by
dimension substitution. The canonicity property follows directly from this definition:

I Theorem 15 (Canonicity). If M ∈ bool [Ψ] then M ⇓ V and M
.= V ∈ bool [Ψ], for

V = true or V = false.

Proof. Then Tm(JboolK)(M,M), so M ⇓ V and JboolK(V, V ). By Lemma 11, M .= V ∈
bool [Ψ], and by the definition of JboolK, V = true or V = false. J

Consistency is similar: true .=false ∈ bool [Ψ] implies JboolK(true, false), which is impossible.
The rules in Fig. 3 all hold: true and false are elements, the elimination rule holds

essentially by Theorem 15, and the computation rules hold by Lemma 9. The Kan operations
of bool are identity functions, because every line in bool is degenerate.
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bool typeKan [Ψ] true ∈ bool [Ψ] false ∈ bool [Ψ]

b : bool� A typepre [Ψ] M ∈ bool [Ψ] T ∈ A[true/b] [Ψ] F ∈ A[false/b] [Ψ]
if (M ;T, F ) ∈ A[M/b] [Ψ]

T ∈ A [Ψ]
if (true;T, F ) .= T ∈ A [Ψ]

F ∈ A [Ψ]
if (false;T, F ) .= F ∈ A [Ψ]

S1 typeKan [Ψ] base ∈ S1 [Ψ] loopr ∈ S1 [Ψ] loopε
.= base ∈ S1 [Ψ]

c : S1 � A typeKan [Ψ] M ∈ S1 [Ψ]
P ∈ A[base/c] [Ψ] L ∈ A[loopx/c] [Ψ, x] (∀ε) L〈ε/x〉 .= P ∈ A[base/c] [Ψ]

S1-elimc.A(M ;P, x.L) ∈ A[M/c] [Ψ]

P ∈ B [Ψ]
S1-elimc.A(base;P, x.L) .= P ∈ B [Ψ]

L ∈ B [Ψ, x] (∀ε) L〈ε/x〉 .= P ∈ B〈ε/x〉 [Ψ]
S1-elimc.A(loopr;P, x.L) .= L〈r/x〉 ∈ B〈r/x〉 [Ψ]

Figure 3 Boolean and circle type.

5.2 Circle
It is tempting to define the circle as the least context-indexed PER generated by a base point
and a loop: JS1KΨ(base, base) and JS1K(Ψ,x)(loopx, loopx). Unlike bool, S1 has non-degenerate
lines, so we must explicitly add composites of open boxes to S1 if we want it to be Kan. We
therefore equip S1 with the following free Kan structure (writing ξi to abbreviate ri = r′i):

coer r
′

x.S1 (M) 7−→� M

hcomr r′

S1 (M ;
−−−−−−−⇀
ξi ↪→ y.Ni) 7−→� M if r = r′

hcomr r′

S1 (M ;
−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ Nj〈r′/y〉 if r 6= r′, rj = r′j , ri 6= r′i for i < j

hcomr r′

S1 (M ;
−−−−−−−⇀
ξi ↪→ y.Ni) val if r 6= r′, ri 6= r′i

These operational semantics satisfy the equations in Fig. 2: when r = r′ in hcom, line
(2) applies; when ri = r′i, line (3) applies; and for every hcom, one of lines (2–4) applies.
Disequalities are needed in lines (3–4) to maintain determinacy. To account for value hcoms,
we add a clause that JS1KΨ(hcomr r′

S1 (M ;
−−−−−−−⇀
ξi ↪→ y.Ni), hcomr r′

S1 (M ′;
−−−−−−−⇀
ξi ↪→ y.N ′i)) whenever

these are values and satisfy the premises of the hcom rule in Fig. 2. Value-coherence of JS1K
follows from the operational semantics of hcomS1 and the premises of the hcom typing rule.
By limiting the Kan operations to valid context restrictions, we ensure that JS1K∅ contains
no hcoms – there are no valid restrictions at dimension ∅ in which ri 6= r′i for all i.

The rules for the circle can be found in Fig. 3, including the eliminator mapping from
S1 into any Kan type with a point P and line x.L satisfying L〈0/x〉 .= L〈1/x〉 .= P . The
eliminator sends base to P , loopy to L〈y/x〉, and hcomS1 to a Kan composition in the target
type. (See our preprint [7] for the latter operational semantics step, which requires a derived
notion of heterogeneous composition in which the type varies across the open box.) It is
therefore essential that the target type is Kan.
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5.3 Dependent function and pair types
When A typepre [Ψ] and a :A� B typepre [Ψ],

J(a:A)→ BKψ = {(λa.N, λa.N ′) | a :Aψ � N
.=N ′ ∈ Bψ [Ψ′]}

J(a:A)×BKψ = {(〈M,N〉, 〈M ′, N ′〉) |M .=M ′ ∈ Aψ [Ψ′] ∧N .=N ′ ∈ Bψ[M/a] [Ψ′]}

Rules for dependent function and dependent pair types are listed in Fig. 4, including
judgmental η principles. The Kan operations for dependent function types are:

hcomr r′

(a:A)→B(M ;
−−−−−−−⇀
ξi ↪→ y.Ni) 7−→� λa.hcomr r′

B (app(M,a);
−−−−−−−−−−−−⇀
ξi ↪→ y.app(Ni, a))

coer r
′

x.(a:A)→B(M) 7−→� λa.coer r
′

x.B[coer′ x
x.A

(a)/a](app(M, coer
′ r
x.A (a)))

If A typeKan [Ψ] and a :A� B typeKan [Ψ], then by the above steps and the introduction,
elimination, and eta rules, (a:A)→ B typeKan [Ψ] (and similarly [7], (a:A)×B typeKan [Ψ]).

5.4 Path types
Whenever A typepre [Ψ, x] and Pε

.= P ′ε ∈ A〈ε/x〉 [Ψ] for ε ∈ {0, 1}, JPathx.A(P0, P1)Kψ =
{(〈x〉M, 〈x〉M ′) | M .= M ′ ∈ Aψ [Ψ′, x] ∧ ∀ε.(M〈ε/x〉 .= Pεψ ∈ Aψ〈ε/x〉 [Ψ′])}. That is,
paths are abstracted lines with specified endpoints, and dimension abstraction (〈x〉M) and
application (M@r) pack and unpack them. Rules for path types are listed in Fig. 4; once
again, Kan operations (see [7]) ensure that Pathx.A(P0, P1) typeKan [Ψ] when A typeKan [Ψ, x].

Notably, while homotopy type theory relies on the identity type to generate path structure,
in this setting the path type merely internalizes a preexisting judgmental notion of paths.
The homotopy-type-theoretic identity elimination principle is definable for Path_.A(M,N)
when A is Kan, but as in Cohen et al. [17], its computation rule holds only up to a path.

5.5 Exact equality types
Whenever A typepre [Ψ],M ∈ A [Ψ], and N ∈ A [Ψ], we have JEqA(M,N)Kψ = {(?, ?) |Mψ

.=
Nψ ∈ Aψ [Ψ′]}. That is, EqA(M,N) is (uniquely) inhabited if and only if M .=N ∈ A [Ψ],
and therefore equality reflection holds. Rules for equality types are listed in Fig. 4.

Unlike the previous cases, EqA(M,N) is not necessarily Kan when A is Kan, because coer-
cion in EqA(M,N) implies uniqueness of identity proofs in A. We allow EqA(M,N) typeKan [Ψ]
when A is discrete Kan [7], roughly, contains only degenerate paths (for example, A = bool).

5.6 Univalence
Voevodsky’s univalence axiom [31] concerns a notion of type equivalence Equiv(A,B):

isContr(C) := C × ((c:C)→ (c′:C)→ Path_.C(c, c′))
Equiv(A,B) := (f :A→ B)× ((b:B)→ isContr((a:A)× Path_.B(app(f, a), b)))

Essentially, Equiv(A,B) if there is a map A→ B such that the (homotopy) preimage in A of
any point in B is contractible (has exactly one point up to homotopy). In homotopy type
theory, univalence states that idtoequiv : IdU (A,B)→ Equiv(A,B) (definable in intensional
type theory) is itself an equivalence. By a theorem of Licata [21], univalence in the present
setting is equivalent to the existence of a map ua : Equiv(A,B) → Path_.UKan

j
(A,B) and a

homotopy uaβ(E) between the functions underlying the equivalences E and idtoequiv(ua(E)).

CSL 2018
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A typeκ [Ψ] a :A� B typeκ [Ψ]
(a:A)→ B typeκ [Ψ]

a :A�M ∈ B [Ψ]
λa.M ∈ (a:A)→ B [Ψ]

M ∈ (a:A)→ B [Ψ] N ∈ A [Ψ]
app(M,N) ∈ B[N/a] [Ψ]

a :A�M ∈ B [Ψ] N ∈ A [Ψ]
app(λa.M,N) .=M [N/a] ∈ B[N/a] [Ψ]

M ∈ (a:A)→ B [Ψ]
M

.= λa.app(M,a) ∈ (a:A)→ B [Ψ]

A typeκ [Ψ] a :A� B typeκ [Ψ]
(a:A)×B typeκ [Ψ]

M ∈ A [Ψ] N ∈ B[M/a] [Ψ]
〈M,N〉 ∈ (a:A)×B [Ψ]

P ∈ (a:A)×B [Ψ]
fst(P ) ∈ A [Ψ]

P ∈ (a:A)×B [Ψ]
snd(P ) ∈ B[fst(P )/a] [Ψ]

M ∈ A [Ψ]
fst(〈M,N〉) .=M ∈ A [Ψ]

N ∈ B [Ψ]
snd(〈M,N〉) .=N ∈ B [Ψ]

P ∈ (a:A)×B [Ψ]
P
.= 〈fst(P ), snd(P )〉 ∈ (a:A)×B [Ψ]

A typeκ [Ψ, x]
(∀ε) Pε ∈ A〈ε/x〉 [Ψ]

Pathx.A(P0, P1) typeκ [Ψ]

M ∈ A [Ψ, x]
(∀ε) M〈ε/x〉 .= Pε ∈ A〈ε/x〉 [Ψ]
〈x〉M ∈ Pathx.A(P0, P1) [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]
M@r ∈ A〈r/x〉 [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]
M@ε .= Pε ∈ A〈ε/x〉 [Ψ]

M ∈ A [Ψ, x]
(〈x〉M)@r .=M〈r/x〉 ∈ A〈r/x〉 [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]
M

.= 〈x〉(M@x) ∈ Pathx.A(P0, P1) [Ψ]

A typepre [Ψ] M ∈ A [Ψ] N ∈ A [Ψ]
EqA(M,N) typepre [Ψ]

M
.=N ∈ A [Ψ]

? ∈ EqA(M,N) [Ψ]

E ∈ EqA(M,N) [Ψ]
M

.=N ∈ A [Ψ]
E ∈ EqA(M,N) [Ψ]

E
.= ? ∈ EqA(M,N) [Ψ]

Figure 4 Dependent functions, dependent pairs, paths, and exact equalities.
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M

app(F,M) .=N〈0/x〉 N〈1/x〉

F

N

Vinx(M,N)
∈

A

B〈0/x〉 B〈1/x〉

F

B

Vx(A,B, 〈F,_〉)

We achieve both conditions by defining a new type former “ V”, such that whenever
A typepre [Ψ, x | x = 0], B typepre [Ψ, x], and E ∈ Equiv(A,B) [Ψ, x | x = 0], Vx(A,B,E)
is a type with faces A〈0/x〉 and B〈1/x〉, whose elements are pairs of N ∈ B [Ψ, x] and
M ∈ A〈0/x〉 [Ψ] such that E sends M to exactly N〈0/x〉. (Bezem et al. [13] employ the
same approach in their “G” types.) We then define:

idtoequiv := λp.coe0 1
x.Equiv(A,p@x)(〈λa.a, idisequiv〉)

ua := λe.〈x〉Vx(A,B, e)
uaβ := λe.λa.〈x〉coex 1

_.B (app(fst(e), a))

where idisequiv is a proof that the identity function is an equivalence, and uaβ relies on coercion
across an equivalence: coe0 r′

x.Vx(A,B,E)(M) 7−→� Vinr′(M, coe0 r′

x.B (app(fst(E〈0/x〉),M))).
When implementing coey r

′

x.Vx(A,B,E)(M), we make essential use of an open box with a
diagonal y = r′ side, to ensure coercion y  y is the identity. (See our preprint [7] for this
and the other Kan operations.) We have formalized the full proof of univalence for our
system in RedPRL (see https://git.io/vFjUQ).

6 Universes

Finally, we define two cumulative hierarchies of universes, Upre
j and UKan

j , classifying pretypes
and Kan types respectively, each closed under the appropriate type formers, and satisfying:

Uκj typeKan [Ψ]
A ∈ Uκj [Ψ]
A typeκ [Ψ]

A ∈ Uκj [Ψ]
A ∈ Uκj+1 [Ψ]

A ∈ UKan
j [Ψ]

A ∈ Upre
j [Ψ]

In order for our type theory to be a suitable setting for synthetic homotopy theory, it is
essential that UKan

j is Kan; this is needed, for example, to define maps S1 → UKan
j used in

the calculation of the fundamental group of the circle [29]. As with S1, universes are not
automatically Kan, so we equip both with free Kan structure analogous to hcomS1 .

Because elements of Upre
j are pretypes, we must ensure hcomr r′

Upre
j

(A;
−−−−−−⇀
ξi ↪→ y.Bi) typepre [Ψ]

for pretypes A,−⇀Bi satisfying the appropriate equations. We define these types to be empty.
Similarly, we require hcomr r′

UKan
j

(A;
−−−−−−⇀
ξi ↪→ y.Bi) typeKan [Ψ] for Kan types A,−⇀Bi satisfying

the appropriate equations. In order to equip hcomUKan
j

with Kan operations, we define its
elements to be open boxes consisting of an element M ∈ A [Ψ], and a family of elements
Ni ∈ Bi〈r′/y〉 [Ψ | ξi] such that coer′ r

y.Bi
(Ni)

.=M ∈ A [Ψ | ξi]. The diagram below illustrates
an element of H := hcom0 1

UKan
j

(A;x = 0 ↪→ y.B0, x = 1 ↪→ y.B1).

coe1 0
y.B0

(N0) coe1 0
y.B1

(N1)

N0 N1

M

box0 1(M ;N0, N1) ∈

· ·

B0〈1/y〉 B1〈1/y〉

A

B0 B1H

CSL 2018
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When r = r′, H .=A and the box .=M . When ξi holds, H
.=Bi〈r′/y〉 and the box .=Ni. These

agree when both r = r′ and ξi hold: A
.=Bi〈r/y〉 = Bi〈r′/y〉 and M

.= coer′ r
y.Bi

(Ni)
.=Ni.

For the complete definition of hcomUKan
j

and its Kan operations, see our preprint [7]. Coer-
cion requires heterogeneous compositions that may not be valid in the sense of Definition 12,
but which are nevertheless definable in our setting. (Such compositions are closely related to
the ∀i.ϕ operation of Cohen et al. [17].) Finally, to ensure these Kan operations agree with
those of A when r = r′, we once again make essential use of open boxes with diagonal sides.

Intuitively, each universe JUκj K is defined as the least context-indexed PER closed under all
type formers yielding κ-types, that are present in a type theory with j universes. Of course,
typehood and membership are mutually defined (EqA(M,N) typepre [Ψ] whenM,N ∈ A [Ψ]),
so the values of each universe depend on both the names and semantics of types.

Following Allen [1], we make this construction precise by introducing candidate cubical type
systems, relations τ(Ψ, A0, B0, ϕ) as in Definition 4 without any conditions of functionality,
symmetry, and so forth. Candidate cubical type systems form a complete lattice when
ordered by inclusion, so we define each universe as the least fixed point of a monotone
operator (guaranteed to exist by the Knaster–Tarski fixed point theorem).

For each κ, we define an operator Fκ(τu, τpre, τKan) whose arguments are candidate
cubical type systems defining (1) all smaller universes, (2) pretype formers, and (3) Kan type
formers, following the meanings given in Section 5. These operators are monotone because
Tm(−) is monotone, and hence the judgments defined in Section 3 are monotone in τ .

Then construct the simultaneous least fixed points τκi = Fκ(τui , τ
pre
i , τKan

i ) for each i ≥ 0,
where τui defines each JUκj K (for j < i) as τui (Ψ,Uκj ,Uκj , {(A0, B0) | τκj (Ψ, A0, B0,_)}), that
is, the typehood relation of τκj . We establish by induction that each τκi is in fact a cubical
type system in the sense of Definition 4, and each is closed under the appropriate type
formers. We take the “outermost” cubical type system τpre

ω (containing universes for all j)
as our model, validating every rule presented in this paper. This construction requires no
classical reasoning, and in fact Anand and Rahli [4] carry out Allen’s original Nuprl semantics
inside the Coq proof assistant using inductive types rather than fixed points.

7 Conclusion and Related Work

We have constructed a two-level type theory with fibrant, univalent universes closed under
dependent function, dependent pair, and path types. The non-fibrant (pretype) level includes
these type formers as well as exact (strict) equality types with equality reflection. Following the
tradition of the Nuprl computational type theory [2] and Martin-Löf’s meaning explanations,
our types are relations over untyped programs equipped with an operational semantics, and
thereby satisfy canonicity (Theorem 15) by construction. Full details and proofs are available
in our associated preprint [7]. An early version of our cubical PER semantics appeared in
Angiuli et al. [6], but for a type theory including neither univalence, nor universes, nor exact
equality, and equipped with a variant of our Kan operations restricted to open boxes with
sides −−−−−−−−−⇀ri = 0, ri = 1 (and in particular, without x = z sides critical for univalent universes).

We are currently implementing the RedPRL [28] proof assistant based on this type
theory. RedPRL implements a proof refinement sequent calculus in the style of Nuprl,
rather than the natural deduction rules presented in this paper; we view it as the extension
of core Nuprl to a higher-dimensional notion of program.

Cavallo and Harper [16] define a schema of higher inductive types constructible in the
semantic framework we describe. Their fiber family type validates the rules of the homotopy-
type-theoretic identity type (strictly, unlike path types). Our type theory, extended with
fiber families, constitutes a fully computational model of univalent intensional type theory.
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7.1 Two-level type theories
Voevodsky’s HTS [33] extends homotopy type theory with exact equality types satisfying
equality reflection. Our semantics validate the rules of HTS, excepting resizing rules. More
recently, Altenkirch et al. [3] have proposed a two-level type theory with two intensional
identity types: one to internalize paths, and the other satisfying uniqueness of identity proofs
and function extensionality, but not equality reflection. Both theories consider all strict
equality types non-fibrant, and neither theory satisfies canonicity, because univalence (and
in the latter, uniqueness of identity proofs and function extensionality) are added as axioms
that do not compute.

Our contributions to two-level type theory are twofold: (1) we define the first two-level
type theory satisfying canonicity, and (2) by introducing the notion of discrete Kan types
(see our preprint [7]), we obtain a type theory in which some exact equality types are fibrant.

7.2 Cubical type theories
Our use of cubical structure and uniform Kan conditions traces back to the Bezem et al. [12]
cubical set model of type theory, which has only face and degeneracy maps. The cubical
type theory of Cohen et al. [17] uses a De Morgan algebra of cubes containing not only face,
diagonal, and degeneracy maps, but also connection and reversal maps.

From a proof-theoretic perspective, our semantics can be seen as cubical logical relations
suitable for proving canonicity (and consistency) for a set of inference rules. In fact, Huber’s
canonicity argument [19] for Cohen et al. [17] resembles our PER semantics in various ways,
most notably his “expansion lemma,” which is closely related to Lemma 10.

The fibrant fragment of our system constitutes the second univalent type theory with
canonicity – after the cubical type theory of Cohen et al. [17] – and the first to employ
Cartesian cubical structure. Licata and Brunerie [22] and Coquand [18] previously considered
Cartesian cubes, but did not succeed in defining univalent universes. However, neither
considered Kan operations with diagonal sides x = z, which figure prominently in our
constructions of both univalence and fibrant universes. Diagonal sides also permit us to
define connections in Kan types, although we remain unable to define an involutive reversal
operation, as in Cohen et al. [17].

In ongoing work with Brunerie, Coquand, and Licata [5], we are investigating proof-
theoretic and category-theoretic aspects of “diagonal” Kan composition. That project includes
an Agda formalization of the Kan operations of various type formers, including a variant of
the “Glue” types employed by Cohen et al. [17] to obtain both univalence and fibrancy of
the universe. Here we decompose Glue types into V and hcomUKan

j
, simplifying uaβ .

Unlike prior Kan conditions, we restrict to open boxes containing a pair of sides x =
0, x = 1 (Definition 12), in order to trivialize all Kan compositions at dimension zero. Thus
we obtain a stronger canonicity result for the circle than Cohen et al. [17]: if M ∈ S1 [∅] then
M ⇓ base. We believe this property to be valuable for programming applications of cubical
type theory, by allowing higher inductive types to function as observables at dimension zero.
The tradeoff is that we must develop additional machinery to define coercion in hcomUKan

j
,

essentially because the ∀i.ϕ operation of Cohen et al. [17] does not preserve box validity.

CSL 2018
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Abstract
We consider the hardness of approximation of optimization problems from the point of view of
definability. For many NP-hard optimization problems it is known that, unless P = NP, no
polynomial-time algorithm can give an approximate solution guaranteed to be within a fixed
constant factor of the optimum. We show, in several such instances and without any complexity
theoretic assumption, that no algorithm that is expressible in fixed-point logic with counting
(FPC) can compute an approximate solution. Since important algorithmic techniques for approx-
imation algorithms (such as linear or semidefinite programming) are expressible in FPC, this
yields lower bounds on what can be achieved by such methods. The results are established by
showing lower bounds on the number of variables required in first-order logic with counting to
separate instances with a high optimum from those with a low optimum for fixed-size instances.
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7:2 Definable Inapproximability

constant factor. Consider for instance the problem MAX 3SAT. Here we are given a Boolean
formula in 3CNF and we are asked to determine m∗, the maximum number of clauses that
can be simultaneously satisfied by an assignment of Boolean values to its variables. It is a
consequence of the PCP theorem that there is a constant c < 1 such that, assuming P 6= NP,
no polynomial-time algorithm can be guaranteed to produce an assignment that satisfies at
least cm∗ clauses, or indeed determine the value of m∗ up to a factor of c. The proof of the
PCP theorem introduced sophisticated new techniques into complexity theory such as the
probabilistically checkable proofs that gave the theorem its name. Over the years, stronger
results were proved, improving the constant c and, by reductions, proving inapproximability
results for a host of other NP-hard problems.

A structural theory of hardness of approximation was introduced by Papadimitriou
and Yannakakis [23] who defined the class MAX SNP of approximation problems, with a
definition rooted in descriptive complexity theory. They showed that for every problem in
this class, there is a constant d such that a polynomial-time algorithm can find approximate
solutions within a factor d of the optimum. At the same time, for all problems that are
MAX SNP-hard, under approximation-preserving reductions defined by [23], there is a
constant c such that no polynomial-time algorithm can approximate solutions within a
factor c. This makes it a challenge, for each MAX SNP-complete problem, to determine
the exact approximation ratio that is achievable by an efficient algorithm. In some cases,
this has been pinned down exactly. For instance, for MAX 3SAT we know that there is a
polynomial-time algorithm that will produce an assignment satisfying 7/8 of the clauses in
any formula but, unless P = NP, there is no polynomial-time algorithm that is guaranteed
to produce a solution within 7/8 + ε of the optimal, for any ε > 0 [16]. Another interesting
case is MAX 3XOR, where we are given a formula which is the conjunction of clauses,
each of which is the XOR of three literals. Here, satisfiability is decidable in polynomial
time as the problem is essentially that of solving a system of linear equations over the
two-element field. However, determining, for an unsatisfiable system, how many of its clauses
can be simultaneously satisfied is MAX SNP-hard, and the exact approximation ratio that
is achievable efficiently is known: unless P = NP, no polynomial-time algorithm can achieve
an approximation ratio bounded above 1/2 [16].

To give a problem of another flavour, consider minimum vertex cover, the problem of
finding, in a graph G, a minimum set S of vertices such that every edge is incident on a
vertex in S. Let vc(G) denote the size of a minimum size vertex cover in G. There are
algorithms that are guaranteed to find a vertex cover no larger than 2vc(G) (this being
a minimization problem, the approximation ratio is expressed as a number c ≥ 1). It has
been proved, by means of rather sophisticated reductions starting at the PCP theorem, that,
unless P = NP, no polynomial-time algorithm can achieve a ratio better than 1.36 [14]. Very
recent results announced in [20] improve this lower bound to

√
2. It is conjectured that

indeed no such algorithm could achieve a ratio of 2− ε for arbitrarily small ε > 0 but, as of
our current knowledge, the right threshold constant could be somewhere between

√
2 and 2.

We approach these questions on the hardness of approximability from the point of view
of definability. Our aim is to show that the tools of descriptive complexity can be brought
to bear in showing lower bounds on the definability of approximations and that these
definability lower bounds have consequences on understanding commonly used techniques in
approximation algorithms.

A reference logic in descriptive complexity is fixed-point logic with counting, FPC. The
class of problems definable in this logic form a proper subclass of the complexity class P.
However, FPC is very expressive and many natural problems in P are expressible in this logic.
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For instance, any polynomial-time decidable problem on a proper-minor closed class of graphs
is expressible in FPC [15]. Also, problems that can be formulated as linear programming
or semidefinite programming problems are in FPC [2, 9, 13]. At the same time, for many
problems we are able to prove categorically, i.e., without complexity theoretic assumptions,
that they are not definable in FPC. Among these are NP-complete problems like 3SAT,
graph 3-colourability and Hamiltonicity (see [11]). We can also prove that certain problems
in P are not in FPC, such as 3XOR.

A particularly interesting class of problems are the optimization problems known as
MAX CSP or constraint maximization problems, where we are given a collection of con-
straints and the problem is to find the maximum number of constraints that can be sim-
ultaneously satisfied. When it comes to finding exact solutions, definability in FPC turns
out to be an excellent guide to the tractability of such problems. It is known that each
such problem is either in P and definable in FPC or it is NP-complete and provably not
definable in FPC [12]. We would like to extend such results also to the approximability of
such problems. This paper develops the methodology for doing so.

For MAX 3SAT, we prove, without any complexity theoretic assumption, that no
algorithm expressible in FPC can achieve an approximation ratio of 7/8 + ε. The question
seems ill-posed at first sight as FPC is a formalism for defining problems rather than expressing
algorithms. We return to the precise formulation shortly, but first note that there is a sense
in which FPC can express, say the ellipsoid method for solving linear programs [2]. This is
the basis for showing that many commonly used algorithmic techniques for approximation
problems, such as semidefinite programming relaxations, are also expressible in FPC. Thus,
on the one hand, reductions from MAX SNP-hard problems show inapproximability by any
polynomial-time algorithm, assuming P 6= NP. On the other hand, our results show, without
the assumption, inapproximability by the most commonly used polynomial-time methods.

Undefinability of a class of structures C in FPC is typically established by showing
that structures in C cannot be distinguished from structures not in C in Ck – first-order
logic with counting and just k variables – for any fixed k. In the terminology of [13], C has
unbounded counting width. On the other hand, hardness of approximation for a maximization
problem is typically established by showing that every class that includes all instances with
an optimum m∗ and excludes all instances with an optimum less than cm∗, is NP-hard.
Our method combines these two. We aim to show that any class separating instances with
an optimum m∗ from instances with an optimum less than cm∗ has unbounded counting
width. In general, we not only show that counting width is unbounded, but establish stronger
bounds on how it grows with the size of instances, as such bounds are directly tied to
lower bounds on semidefinite programming hierarchies [13]. This methodology poses new
challenges for Spoiler-Duplicator games in finite model theory. Such games are typically
played on pairs of structures that are minimally different. In the new setting, we need to
show Duplicator winning strategies in games on pairs of structures that differ substantially,
on some numeric parameters.

The PCP theorem is the fons et origo of results on hardness of approximation. It
established the first provably NP-hard constant gap between the fully satisfiable instances
of MAX 3SAT, i.e., those in which all clauses can be satisfied, and the less satisfiable
ones, those where no more than 1− ε0 can be satisfied, for some explicit ε0 > 0. The gap
between 1 and 1− ε0 was then amplified and also transferred to other problems by means of
reductions. For us, the starting point is the problem MAX 3XOR. We are able to establish
a definability gap between the satisfiable instances of this and instances in which little more
than 3/4 of the clauses can be satisified. The methods for establishing this initial gap are
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7:4 Definable Inapproximability

very different from that for the PCP theorem. We construct a k-locally satisfiable instance
of MAX 3XOR which, by a random construction is at the same time highly unsatisfiable.
We can then combine this with a construction adapted from [6] to obtain a gap that defeats
any fixed counting width. With such an initial gap in hand, we can then amplify the gap and
transfer it to other problems by means of reductions, just as in classical inapproximability.
Our reductions have to preserve FPC definability and we mostly rely on first-order definable
reductions. Indeed, many of the reductions used in the classical theory of approximability
turn out to be first-order reductions but this requires close examination and proof.

By expressing the long-code reductions from [16] in first-order logic and composing them
with our initial gap, we show optimal hardness for MAX 3SAT and MAX 3XOR. For the
first, we show that FPC cannot achieve an approximation ratio of 7/8 + ε, even on satisfiable
instances, and for the second it cannot achieve an approximation ratio of 1/2 + ε. These
match known algorithmic lower bounds and are provably tight. For the vertex cover problem,
direct reductions from these show that FPC cannot give an approximation better than 7/6.
This can be improved, using the reduction of [14] to 1.36 and the details of this may be found
in the full version of this paper [8]. It is possible that this could be improved to

√
2 using

the recent breakthrough of [20] but we leave this to future work.

2 Preliminaries

We use F2 to denote the 2-element field. For any positive integer n, let [n] := {1, . . . , n}.

Logics and games. We assume familiarity with first-order logic FO. All our vocabularies
are finite and relational, and all structures are finite. For a structure A, we write A to
denote its universe. We refer to fixed-point logic with counting FPC but the definition is
not required for the technical development in this paper. Here, it suffices to consider the
bounded variable fragments of first-order logic.

For a fixed positive integer k, we write Lk to denote the fragment of first-order logic
in which every formula has at most k variables, free or bound. We also write ∃Lk,+ for
the existential positive fragment of Lk. This consists of those formulas of Lk formed using
only the positive Boolean connectives ∧ and ∨, and existential quantification. FOC is the
extension of first-order logic with counting quantifiers. For each natural number i, we have
a quantifier ∃i where A |= ∃ixφ if, and only if, there are at least i distinct elements a ∈ A
such that A |= φ[a/x]. While the extension of first-order logic with counting quantifiers is no
more expressive than FO itself, the presence of these quantifiers does affect the number of
variables that are necessary to express a query. Let Ck denote the k-variable fragment of
FOC in which no more than k variables appear, free or bound.

For two structures A and B, we write A ≡Ck B to denote that they are not distinguished
by any sentence of Ck. All that we need to know about FPC is that for every formula φ
of FPC there is a k such that if A ≡Ck B then A |= φ if, and only if, B |= φ. We also write
A Vk B to denote that every sentence of ∃Lk,+ that is true in A is also true in B. While ≡Ck

is an equivalence relation, Vk is reflexive and transitive but not symmetric. These relations
have well established characterizations in terms of two-player pebble games. The relation
Vk is characterized by the existential k-pebble game [21] and ≡Ck by the k-pebble bijective
game [17]. Rather than review the definitions here, we refer the reader to the sources.

For undirected graphs, the relation ≡C2 has a simple combinatorial characterization
in terms of vertex refinement (see [19]). For any graph G, there is a coarsest partition
C1, . . . , Cm of the vertices of G such that for each 1 ≤ i, j ≤ m there exists δij such that each
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v ∈ Ci has exactly δij neighbours in Cj . Let H be another graph and D1, . . . Dm′ be the
corresponding partition of H with constants γij . Then G ≡C2 H if, and only if, m = m′ and
there is a permutation h ∈ Symm such that |Ci| = |Dh(i)| and δij = γh(i)h(j) for all i and j.

Let C be a class of structures and for any n ∈ N, let Cn denote the structures in C with
at most n elements. The counting width of C [13] is the function k : N→ N where k(n) is
the smallest value such that for any A ∈ Cn and any B 6∈ C, we have A 6≡Ck(n) B. Note that
k(n) ≤ n. Because A 6≡C1 B whenever A and B have different numbers of elements, k(n) is
also the smallest value such that Cn is a union of ≡Ck(n) -classes. In particular, it follows that
the counting width of C is the same as that of its complement. For k : N→ N, we say that
two disjoint classes C and D are Ck-separable if whenever A ∈ Cn and B ∈ Dn, then we have
A 6≡Ck(n) B. Equivalently C and D are Ck-separable if there is a class E of counting width at
most k such that C ⊆ E and D ⊆ E.

Interpretations. Consider two signatures σ and τ . A d-ary FO-interpretation of τ in σ is a
sequence of first-order formulas in vocabulary σ consisting of: (i) a formula δ(x); (ii) a formula
ε(x, y); (iii) for each relation symbol R ∈ τ of arity k, a formula φR(x1, . . . , xk); and (iv) for
each constant symbol c ∈ τ , a formula γc(x), where each x, y or xi is a d-tuple of variables.
We call d the dimension of the interpretation. If d = 1, we say that the interpretaion is
linear. We say that an interpretation Θ associates a τ -structure B to a σ-structure A if there
is a map h from {a ∈ Ad | A |= δ[a]} to the universe B of B such that: (i) h is surjective
onto B; (ii) h(a1) = h(a2) if, and only if, A |= ε[a1, a2]; (iii) RB(h(a1), . . . , h(ak)) if, and
only if, A |= φR[a1, . . . , ak]; and (iv) h(a) = cB if, and only if, A |= γc[a]. Note that an
interpretation Θ associates a τ -structure with A only if ε defines an equivalence relation on
Ad that is a congruence with respect to the relations defined by the formulae φR and γc. In
such cases, however, B is uniquely defined up to isomorphism and we write Θ(A) = B. It is
also worth noting that the size of B is at most nd, if A is of size n. But, it may in fact be
smaller. We call an interpretation p-bounded, for a polynomial p, if |B| ≤ p(|A|), and say
the interpretation is linearly bounded if p is linear. Every linear interpretation is linearly
bounded, but the converse is not necessarily the case.

For a class of structures C and an interpretation Θ, we write Θ(C) to denote the class
{Θ(A) | A ∈ C}. We mainly use interpretations to define reductions between classes of
structures. These allow us to transfer bounds on separability, by the following lemma, which
is established by simply composing formulas. The details may be found in Appendix A.

I Lemma 2.1. Let Θ be a p-bounded interpretation of dimension d and let t be the maximum
number of variables appearing in any formula of Θ. If C and D are two disjoint classes of
structures such that Θ(C) and Θ(D) are Ck-separable, then C and D are Cdk(p(n))+t-separable.

When we wish to define a reduction from a class C by a first-order interpretation, it
suffices to give an interpretation Θ for all structures in C with at least two elements (or,
indeed, at least k elements for any fixed k). This is because we can define an arbitrary map on
a finite set of structures by a first-order formula, so we just need to take the disjunction of Θ
with the formula that defines the required interpretation on the structures with one element.
With this in mind, we define the method of finite expansions which gives us interpretations Θ
that take a structure A with universe A to a structure with a universe consisting of l labelled
disjoint copies of S for some definable subset S of A. Note that Θ would not, in general, be
linear, but it is linearly bounded.

So, fix a value l, and let t be the least integer such that l ≤ 2t. In a structure A with
at least two elements, we say that a t+ 1-tuple of elements (a1, . . . , at+1) codes an integer
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7:6 Definable Inapproximability

i ∈ [2t] if b1 · · · bt is the binary representation of i− 1 and bj = 1 if, and only if, aj+1 6= a1.
For each i, we can clearly define a formula γi(y) with t+ 1 free variables that defines those
tuples that code i. Now, for any formula σ(x), let δ(x, y) be the formula σ(x) ∧

∨
i≤l γi(y)

and let ε(x1, y1, x2, y2) be the formula x1 = x2 ∧
∨
i γi(y1) ∧ γi(y2). In other words, δ picks

out those t+ 2 tuples (s, a) where s satisfies σ and a codes an integer in [l], and ε identifies
distinct tuples which have the same s and the same integer l. An interpretation using these
can be seen to yield a structure with l disjoint copies of the set of elements of A satisfying σ.

3 The Basic Gap Construction

The problems 3SAT and 3XOR both ask to decide if a formula consisting of the conjunction
of Boolean constraints each on exactly three Boolean variables is satisfiable. In 3SAT the
constraints are disjunctions of literals on three distinct variables. In 3XOR the constraints
are parities of three distinct variables. Both problems are known to have unbounded counting
width [6]: the class of satisfiable instances cannot be separated in Ck, for bounded k, from the
class of unsatisfiable ones. Our aim is to show that this result can be strengthened to show
that the class of satisfiable instances is not Ck-separable (for constant or, indeed, moderately
growing values of k) from the class of instances that are highly unsatisfiable, meaning that
no assignment to the variables can satisfy more than a fraction s of the constraints for some
fixed s ∈ (0, 1). In this section, we give a basic construction for 3XOR, based on that in [6],
that establishes this for any s > 3/4, with a lower bound on the value of k that is linear in
the number of variables in the system.

3.1 Systems of constraints
Let Γ be a finite set of relations over a finite domain D, also called a constraint language.
Let I = {c1, . . . , cm} be a collection (multi-set) of constraints, each of the form R(xi1 , . . . , xik ),
where R is a k-ary relation in Γ, and xi1 , . . . , xik are k distinct D-valued variables from a set
x1, . . . , xn of n variables. For c ∈ [0, 1], we say that the system I is c-satisfiable if there is
an assignment f : {x1, . . . , xn} → D that satisfies at least cm constraints; i.e., that satisfies
(f(xi1), . . . , f(xik )) ∈ R for at least cm constraints R(xi1 , . . . , xik ) from I. Note that, as we
are counting the number of satisfied constraints, multiplicities matter and this is why we
have multi-sets rather than sets of constraints.

We think of a system I = {c1, . . . , cm} over the constraint language Γ as a finite structure
in two ways. In the first encoding, the universe is the disjoint union of x1, . . . , xn and
c1, . . . , cm. The vocabulary includes binary relations E1, E2, . . . such that Ei(x, c) holds if the
constraint c has arity at least i and x is the ith variable in c. The vocabulary also includes
a unary relation ZR for each relation R in Γ such that ZR(c) holds if c is an R-constraint:
a constraint of the form R(xi1 , . . . , xik ) for some variables xi1 , . . . , xik , where k is the arity
of R. In the second encoding, the universe is just the set of variables x1, . . . , xn, and the
vocabulary includes a k-ary relation symbol R for each k-ary relation R in Γ, such that
R(xi1 , . . . , xik ) holds if this is one of the constraints in the collection c1, . . . , cm. Note that
in this second encoding the collection of constraints is treated as a set. In particular, the
multiplicity of constraints is lost, which could affect its c-satisfiability.

The constraint language Γ is also encoded as a finite structure in two ways. In the first
encoding the domain is D≤r = D ∪D2 ∪D3 ∪ · · · ∪Dr, where r is the maximal arity of a
relation in Γ. The relations E1, E2, . . . are interpreted by the projections: Ei(b, (b1, . . . , bk))
holds for b ∈ D and (b1, . . . , bk) ∈ Dk if, and only if, i ≤ k and b = bi. The relations ZR are
interpreted by the relation R itself as a unary relation over the universe: ZR((b1, . . . , bk))
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holds if k is the arity of R and (b1, . . . , bk) belongs to R. In the second encoding, the universe
is just D, and the relation symbol R is interpreted by R itself. Where it causes no confusion,
we do not distinguish between a constraint language Γ and the structure that encodes it,
and similarly between an instance I and its encoding structure.

It is easily seen that, in both encodings as finite structures, a system I over Γ is satisfiable
if, and only if, there is a homomorphism from the structure that encodes I to the structure
that encodes Γ. We say that the system is k-locally satisfiable if I Vk Γ.

For 3SAT, the constraint language is denoted Γ3SAT. It has domain D = {0, 1} and the
relations are the eight relations R1, . . . , R8 ⊆ {0, 1}3 defined by the eight possible clauses on
three variables. For 3XOR, the constraint language is denoted Γ3XOR. It also has domain
D = {0, 1} and the relations are the two relations R0, R1 ⊆ {0, 1}3 defined by the two
possible linear equations x+ y + z = b with three variables over F2 = {0, 1}. Accordingly,
3XOR instances can be identified with systems of linear equations Ax = b over F2.

3.2 Gap construction
We now focus on 3XOR and hence on systems of linear equations over F2. A starting point
for us is the following construction which allows us to convert any k-locally satisfiable system
of equations into a pair of systems that are ≡Ck -indistinguishable. See [1, Prop. 32] for a
related construction, which is inspired by the proof in [6] that satisfiability of systems of
linear equations over F2 is not invariant under ≡Ck for any k.

For any instance I of 3XOR we define another instance G(I) of 3XOR which has two
variables x0

j and x1
j for each variable xj of I. For each equation xj + xk + xl = b in I,

we have eight equations in G(I) given by the eight possible values of a1, a2, a3 ∈ {0, 1} in
xa1
j + xa2

k + xa3
l = b+ a1 + a2 + a3. We now establish some properties of this construction.

I Lemma 3.1. For any instance I of 3XOR and any c, s ∈ [0, 1], the following hold:
1. if I is c-satisfiable, then G(I) is c-satisfiable,
2. if I is not s-satisfiable, then G(I) is not (1/2 + s/2)-satisfiable.

Proof. In Appendix B. J

If I is the system Ax = b, then the homogeneous companion of I is the system Ax = 0,
which we denote I0. Since any homogeneous system is satisfiable, the system G(I0) is
satisfiable for any I by Lemma 3.1. We show that, despite this, as long as I is locally
satisfiable, then G(I) is hard to distinguish from its homogeneous companion G(I0).

I Lemma 3.2. For any instance I of 3XOR and any k, if I is k-locally satisfiable, then
G(I) ≡Ck G(I0).

Proof. In Appendix B. J

To apply this construction to get a gap, we need the following fact. Entirely analogous
claims have been known and proved in the context of the proof complexity of propositional
resolution; indeed, our proof builds on the methods for resolution width [10], and their
relationship to existential pebble games from [5, 7].

In the proof, we need the notion of a graph G that is a bipartite unique-neighbour expander
graph with parameters (m,n, d, s, e) where m,n, d and s are integer parameters with s < n

and e is a positive real number. What this means is that G is a bipartite graph with parts U
and V with m and n vertices respectively; each u ∈ U has exactly d neighbours in V ; and
for every A ⊆ U with |A| ≤ s we have |∂A| ≥ e|A|, where |∂A| denotes the set of vertices in
V that are unique neighbours of A; i.e., they are neighbours of a single vertex in A.
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7:8 Definable Inapproximability

I Lemma 3.3. For every ε > 0 there exist an integer c > 0 and a γ > 0 such that for every
sufficiently large integer n there is an instance I of 3XOR with n variables and cn equations
such that I is not (1/2 + ε)-satisfiable and I is k-locally satisfiable for k ≤ γn.

Proof. Fix ε > 0 and let c > 1/ε2. Let n ≥ 2 be sufficiently large that we can construct a
graph G that is a bipartite unique-neighbour expander graph with parameters (cn, n, 3, αn, e)
for a fixed α > 0. For the existence of such graphs with these parameters see [26, Chaper 4].
For each b = (bu : u ∈ U) ∈ {0, 1}U , we produce an instance I of 3XOR by introducing
one variable xv for each v ∈ V , and one equation eu : xv1(u) + xv2(u) + xv3(u) = bu for
each u ∈ U . We claim that there is at least one choice of b ∈ {0, 1}U that makes I be not
(1/2 + ε)-satisfiable. We also show that every choice of b ∈ {0, 1}U gives that I is k-locally
satisfiable for k ≤ γn with γ = eα/9.

I Claim 3.4. There exists b ∈ {0, 1}U such that system I is not (1/2 + ε)-satisfiable.

Proof. We prove that such a b exists by the probabilistic method: a random b ∈ {0, 1}U
has a good chance of making I be not (1/2 + ε)-satisfiable. For each assignment f : {xv :
v ∈ V } → {0, 1} and each u ∈ U , let Xf,u be the indicator random variable for the event
that f(xv1(u)) + f(xv2(u)) + f(xv3(u)) = bu; i.e., for the event that f satisfies the equation
xv1(u) + xv2(u) + xv3(u) = bu. The probability of this event is 1/2, and all such events, as
u ranges over U , are mutually independent. Thus, setting Xf =

∑
u∈U Xf,u, we have that

Xf is a binomial random variable with expectation E[Xf ] = m/2. By Hoeffding’s inequality,
the probability that Xf − E[Xf ] ≥ t is at most e−2t2/m. In particular, the probability that
Xf ≥ (1/2+ε)m is at most e−2ε2m. By the union bound, the probability that some f satisfies
Xf ≥ (1/2 + ε)m is at most 2ne−2ε2m. Since m = cn and c > 1/ε2 this probability is at most
2ne−2n and so approaches 0 as n grows. Indeed, it is less than 1/2 for all values of n ≥ 2.
Thus, for any large enough n there exists a b such that I is not (1/2 + ε)-satisfiable. J

I Claim 3.5. For every b ∈ {0, 1}U , every set of at most αn equations from I is satisfiable.

Proof. For each A ⊆ U , let eA be the set of equations that are indexed by vertices in A, and
let vA be the set of variables that appear in eA. We prove, by induction on t ≤ αn, that if
A ⊆ U and |A| = t, then there exists an assignment that sets all the variables in vA and that
satisfies all the equations in eA. For t = 0 the claim is obvious. Assume now that 1 ≤ t ≤ αn
and let A be a subset of U of cardinality t. Then |∂A| ≥ e|A| > 0. Let v0 be some element
in ∂A and let u0 ∈ A be the unique neighbour of v0 in A. The induction hypothesis applied
to B = A \ {u0} gives an assignment g that sets all the variables in vB and satisfies all the
equations in eB . The assignment g may assign some of the variables of the equation eu0 , but
not all, since v0 is not a neighbour of any vertex in B. Let f be the unique extension of g
that first sets all the variables in vA \ (vB ∪ {xv0}) to 0, and then sets xv0 to the unique
value that satisfies the equation eu0 . This assignment sets all the variables in vA and satisfies
all the equations in eA. The proof is complete. J

I Claim 3.6. For every b ∈ {0, 1}U and k ≤ γn, the instance I is k-locally satisfiable.

Proof. If I is satisfiable, then Duplicator certainly has a winning strategy and there is
nothing to prove. Assume then that I is unsatisfiable and let I ′ be a minimally unsatisfiable
subsystem; a subset of the equations of I that is unsatisfiable and every proper subset of
it is satisfiable. For each equation eu : xv1(u) + xv2(u) + xv3(u) = bu of I, let Fu be the four
clauses {x(a1)

v1(u), x
(a2)
v2(u), x

(a3)
v3(u)} with a1, a2, a3 ∈ F2 with a1 + a2 + a3 = bu, where z(a) stands
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for the negative literal ¬z if e = 0 and the positive literal z if e = 1. Let F be the 3CNF
formula that is the union of all the Fu as u ranges over U . Observe that F is an unsatisfiable
3CNF. We intend to apply Theorem 5.9 from [10] to it.

Let A be the collection of all Boolean functions fu : {0, 1}V → {0, 1} defined by

fu(xv : v ∈ V ) = xv1(u) + xv2(u) + xv3(u) + bu mod 2,

for u ∈ U . Each function in A is sensitive in the sense of Definition 5.5 from [10], and
compatible with F in the sense of Definition 5.3 from [10]. Moreover, if A0 ⊆ A is the
set of functions that corresponds to the minimally unsatisfiable subsystem I ′ of I, then its
cardinality m0 satisfies m0 > αn by Claim 3.5. It follows that the expansion e(A) in the
sense of Definition 5.8 from [10] is at least eαn/3. By Theorem 5.9 in [10], every resolution
refutation of F requires width at least eαn/3, and hence at least 3k since k ≤ γn = eαn/9.
By Theorem 2 in [7], Duplicator has a winning strategy for the existential 3k-pebble game
played on the structures F and the constraint language Γ3SAT of 3SAT, in the second
encoding discussed in Section 3.1. We use this winning strategy to design a winning strategy
for Duplicator in the existential k-pebble game played on I and Γ3XOR.

While playing the game on I, Duplicator plays the game on F on the side and keeps the
invariant that each pebbled variable in the game on I is also pebbled in the side game, and
each pebbled equation in the game on I has its three variables pebbled in the side game.
Whenever a new variable is pebbled in the game on I, Duplicator pebbles the same variable
in the side game, and copies the answer from its strategy on it. Whenever a new equation
is pebbled in the game on I, Duplicator pebbles its three variables in the side game, and
answers the pebbled equation accordingly from its strategy. Since at each position of the
game on I there are no more than k pebbles on the board, at each time during the simulation
the side game has no more than 3k pebbles on the board. This shows that the simulation
can be carried on forever and the proof is complete. J

This completes the proof of Lemma 3.3. J

We can now prove our first two gap theorems.

I Theorem 3.7. For any ε > 0, if C is the collection of 3XOR instances that are satisfiable
and D is the collection of 3XOR instances that are not (3/4 + ε)-satisfiable, then C and D

are not Ck-separable for any k = o(n).

Proof. By Lemma 3.3, there is a family of systems (Sk)k≥1 with O(k) variables and equations
such that Sk is k-locally satisfiable but not (1/2 + 2ε)-satisfiable. Let I1

k = G(Sk) and
I0
k = G(S0

k). Note that, by Lemma 3.1, the system I0
k is satisfiable and I1

k is not (3/4 + ε)-
satisfiable. However, I0

k ≡Ck I1
k by Lemma 3.2. Since each of I0

k and I1
k has two variables for

each variable in Sk and eight equations for each equation in Sk, they also have O(k) variables
and equations and the result follows. J

I Theorem 3.8. For any ε > 0, if C is the collection of 3SAT instances that are satisfiable
and D is the collection of 3SAT instances that are not (15/16 + ε)-satisfiable, then C and D

are not Ck-separable for any k = o(n).

Proof. Consider again the reduction Θ from 3XOR to 3SAT given by translating each
equation into a conjunction of four clauses. Thus x + y + z = d translates into the four
clauses {x(a), y(b), z(c)} with a, b, c ∈ F2 with a+ b+ c = d, where z(e) stands for the negative
literal ¬z if e = 0 and the positive literal z if e = 1. This is easily defined in first-order logic.
As the set of variables in I is the same as in Θ(I), it is linearly bounded. We claim that
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7:10 Definable Inapproximability

applying Θ to Theorem 3.7 with ε reset to ε/4 gives the theorem through Lemma 2.1. First,
it is clear that if I is a 3XOR instance that is satisfiable, then Θ(I) is also satisfiable. Now,
suppose that I is a system of m equations that is not (3/4 + ε/4)-satisfiable, and let g be
an assignment of truth values to the variables X of Θ(I). Applied to I, the assignment g
falsifies at least (1/4− ε/4)m of the equations. For each equation, g must falsify at least one
of the four corresponding clauses in Θ(I). Thus, g falsifies at least (1/4− ε/4)m clauses in
Θ(I) and so satisfies at most 4m− (1/4− ε/4)m = (15/16 + ε) · 4m of the 4m clauses. J

4 Amplifying the Gap

In this section we show that certain reductions from the theory of inapproximability can be ex-
pressed as FO-interpretations, allowing us to derive optimal and unconditional undefinability
results that match the optimal NP-hardness results from [16].

4.1 Parallel repetition
An instance I of the LABEL COVER problem is given by two disjoint sets of variables U
and V with domains of values A and B, respectively, a predicate P : U ×V ×A×B → {0, 1},
and an assignment of weights W : U × V → N. If all the non-zero weights W (u, v)
are equal, then the instance is said to have uniform weights. If for all u ∈ U the sums
W (u) :=

∑
v∈V W (u, v) of incident weights are equal, then the instance is called left-regular.

A right-regular instance is defined analogously in terms of W (v) :=
∑
u∈U W (u, v). The

instance is a projection game if for every (u, v) ∈ U × V with W (u, v) 6= 0 it holds that for
every a ∈ A there is exactly one b ∈ B satisfying P (u, v, a, b) = 1. It is called a unique game
if |A| = |B| and it is a projection game both ways: from A to B, and from B to A. The
instance is said to have parameters (m,n, p, q) if |U | = m, |V | = n, |A| = p and |B| = q. Its
domain size is p+ q.

A value-assignment for an instance I is a pair of functions f : U → A and g : V → B. The
weight v(f, g) of the value-assignment (f, g) is the total weight of the pairs (u, v) ∈ U × V
satisfying the constraint P (u, v, f(u), g(v)) = 1; i.e.,

v(f, g) =
∑

(u,v)∈U×V

W (u, v)P (u, v, f(u), g(v)). (1)

For c ∈ [0, 1], we say that the instance is c-satisfiable if there is a value-assignment whose
weight is at least c ·W0, where W0 =

∑
(u,v)∈U×V W (u, v) is the maximum possible weight.

We call it satisfiable if it is 1-satisfiable.
The bipartite reduction takes an instance I of 3XOR and produces a projection game

instance L(I) of LABEL COVER defined as follows. The sets U and V are the set of
equations in I and the set of variables in I, respectively. The weight W (u, v) is 1 if v is
one of the variables in the equation u, and 0 otherwise. The domains of values associated
to U and V are A = {(a1, a2, a3) ∈ F3

2 : a1 + a2 + a3 = 0} and B = F2, respectively. The
predicate P associates to the pair (u, v), where u is the equation v1 + v2 + v3 = b and v = vi
for i ∈ {1, 2, 3}, the set of pairs ((a1, a2, a3), a) ∈ A×B satisfying a = ai + b. In other words,
P (u, v, (a1, a2, a3), a) = 1 if, and only if, v appears in the equation u, and if u is v1+v2+v3 = b

and v = vi, then the (partial) assignment {v1 7→ a1 + b, v2 7→ a2 + b, v3 7→ a3 + b}, which
satisfies the equation v1 + v2 + v3 = b by construction, agrees with the (partial) assignment
{vi 7→ a}. Clearly, this defines a projection game.
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I Lemma 4.1. For every instance I of 3XOR and every c, s ∈ [0, 1], the following hold:
1. if I is c-satisfiable, then L(I) is c-satisfiable,
2. if I is not s-satisfiable, then L(I) is not (s+ 2)/3-satisfiable.
Moreover, L(I) is a left-regular projection game that has uniform weights.

Proof. Let m be the number of equations in I, so L(I) has exactly 3m pairs (u, v) of unit
weight. Such pairs are called constraints. For proving 1, let h be an assignment for I that
satisfies at least cm of the m equations in I. For each equation u in I, say v1 + v2 + v3 = b,
define f(u) = (h(v1) + b, h(v2) + b, h(v3) + b) if h satisfies v1 + v2 + v3 = b, and define
f(u) = (0, 0, 0) otherwise. For each variable v in I, define g(v) = h(v). Each equation in I
gives rise to exactly three constraints in L(I), and if the equation is satisfied by h, then all
three constraints associated to it in L(I) are satisfied by (f, g). Thus (f, g) satisfies at least
3cm of the 3m constraints in L(I), so L(I) is c-satisfiable. For proving 2, let (f, g) be an
assigment for L(I) that satisfies at least (s+ 2)m of the 3m constraints in L(I). For each
variable v in I, define h(v) = g(v). Let t be the number of equations of I that are satisfied
by h. In terms of t, the assignment (f, g) satisfies at most 3t+ 2(m− t) of the 3m constraints
of L(I). Thus t ≥ sm, so I is s-satisfiable. J

The parallel repetition reduction takes an instance I of LABEL COVER, and a positive
integer t ≥ 1, and produces another instance R(I, t) of LABEL COVER defined as follows.
Let U and V be the sets of variables in I and letW : U×V → N be the weight assignment. The
sets of variables of R(I, t) are U t and V t. For u = (u1, . . . , ut) ∈ U t and v = (v1, . . . , vt) ∈ V t,
the weight W (u, v) is defined as

∏t
i=1 W (ui, vi). If A and B are the domains of values

associated to U and V , then the domains of values associated to U t and V t are At and Bt
respectively. For u = (u1, . . . , ut) ∈ U t, v = (v1, . . . , vt) ∈ V t, a = (a1, . . . , at) ∈ At and
b = (b1, . . . , bt) ∈ Bt, the predicate P (u, v, a, b) is defined as

∏t
i=1 P (ui, vi, ai, bi). Observe

that this definition guarantees that if I is a projection game, then so is R(I, t).

I Theorem 4.2 (Parallel Repetition Theorem [24, 18]). There exists a constant α > 0 such
that for every instance I of LABEL COVER with domain size at most d ≥ 1, every s ∈ [0, 1]
and every t ≥ 1 the following hold:
1. if I is satisfiable, then R(I, t) is satisfiable,
2. if I is not s-satisfiable, then R(I, t) is not (1− (1− s)3)αt/d-satisfiable.
Moreover, if I is a projection game, left-regular, right-regular, or has uniform weights, then
so is R(I, t).

Although it is the case that the bipartite and the parallel repetition reductions are both
FO-interpretations, we do not need to formulate this. Instead, we show the FO-definability
of the composition of these reductions with the long-code reductions that we discuss next.

4.2 First long-code reduction
The first long-code reduction that we consider takes a projection game instance I of
LABEL COVER and a rational ε ∈ [0, 1] and produces an instance C(I, ε) of 3XOR
defined as follows. Let U and V be the sets of variables of sizes m and n, respectively,
with associated domains of values A = [p] and B = [q], let W : U × V → N be the weight
assignment, let P : U ×V ×A×B → {0, 1} be the predicate of I, and for each (u, v) ∈ U ×V
with W (u, v) 6= 0 and each a ∈ A let πu,v(a) be the unique value b ∈ B that satisfies
P (u, v, a, b) = 1. The existence of such a function πu,v : A → B is guaranteed from the
assumption that I is a projection game. The set of variables of C(I, ε) includes one variable
u(a) for each u ∈ U and a ∈ Fp−1

2 , and one variable v(b) for each v ∈ V and b ∈ Fq−1
2 ,
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for a total of m2p−1 + n2q−1 variables. Before we are able to define the set of equations
of C(I, ε) we need a piece of notation. For a vector z = (z1, . . . , zd) ∈ Fd2 of dimension
d ≥ 2, we write S(z) = zd and F (z) = (z1 + S(z), . . . , zd−1 + S(z)). Note that S(z) is
a single field element, and F (z) is a vector of dimension d − 1. With this notation, the
set of equations of C(I, ε) includes W (u, v) ·Mq · εD · (1 − ε)q−D copies of the equation
v(F (x)) + u(F (y)) + u(F (z)) = S(x) + S(y) + S(z) for each (u, v) ∈ U × V , each x ∈ Fq2 and
each y, z ∈ Fp2, where M is the denominator of ε = N/M reduced to lowest terms, D is the
number of positions i ∈ [p] such that zi 6= xπ(i) + yi, and π = πu,v if W (u, v) 6= 0.

I Theorem 4.3 (Håstad 3-Query Linear Test [16]). For every s, ε ∈ [0, 1] with ε > 0 and s > 0
and every projection game instance I of LABEL COVER, the following hold:
1. if I is satisfiable, then C(I, ε) is (1− ε)-satisfiable,
2. if I is not s-satisfiable, then C(I, ε) is not (1/2 + (s/ε)1/2/4)-satisfiable.

The proof of Theorem 4.3 follows from Lemmas 5.1 and 5.2 in [16]. There are notational
differences that may obscure this and a detailed explanation is provided in Appendix C.

Next, by composing Lemma 4.1, Theorem 4.2, and Theorem 4.3 with the appropriate
parameters we get the following:

I Theorem 4.4. For every s, ε ∈ [0, 1] with 0 < s < 1 and ε > 0, there is an FO-interpretation
Θ that maps instances of 3XOR to instances of 3XOR in such a way that, for every 3XOR
instance I the following hold:
1. if I is satisfiable, then Θ(I) is (1− ε)-satisfiable,
2. if I is not s-satisfiable, then Θ(I) is not (1/2 + ε)-satisfiable.

Proof. First we define Θ(I) and then check that this definition is an FO-interpretation. In
anticipation for the proof, let t be a large enough integer so that the following inequality
holds:

(1− (1− (s+ 2)/3)3)αt/6 ≤ 16ε3, (2)

where α is the constant in Theorem 4.2. Such a t exists because s < 1 and ε > 0. Apply the
bipartite reduction to I to obtain the instance I ′ = L(I) from Lemma 4.1. Observe that the
domain size d of I ′ is |A|+ |B| = 6. Next apply the parallel repetition reduction to I ′ with
parameter t to obtain a new instance I ′′. Finally apply the long-code reduction to I ′′ with
parameter ε to obtain the system I ′′′. The parameters were chosen in a way that the system
I ′′′ satisfies properties 1 and 2, through Theorem 4.3.

It remains to argue that I ′′′ can be produced from I by an FO-interpretation. To define
I ′ from I there is no difficulty at all: the FO-interpretation is even linear. To define I ′′ from
I ′ we note that t is a constant, and that the weights W (u, v) of I ′ are 0 or 1, so again there
is no difficulty. In this case the FO-interpretation has dimension t, and it is nt-bounded. To
define I ′′′ from I ′′ we note that the domain sizes p and q of the instance I ′′ are constants,
indeed p = 4t and q = 2t. This means that there are |U | · 2p−1 variables of type u(a), and
|V | · 2q−1 variables of type v(b), and these are constant multiples of |U | and |V |, respectively.
Such domains are FO-definable by the method of finite expansions (see Section 2). Finally,
since the weights W (u, v) of I ′′ are still zeros or ones and both ε and q are constants, the
multiplicities of the equations of I ′′′ are also constants, and hence FO-definable. J

4.3 Second long-code reduction
The second long-code reduction takes a projection game instance I of LABEL COVER and
a rational δ ∈ [0, 1] and produces an instance D(I, δ) of 3SAT defined as follows. Before we
define D(I, δ), let us define an intermediate instance D′(I, ε) of 3SAT that takes a different
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parameter ε ∈ [0, 1]. Let U , V , m, n, A, B, p, q,W , P , and πu,v(a) be as in the first long-code
reduction. The set of variables of D(I, ε) is defined as in the first long-code reduction: a
variable u(a) for each u ∈ U and each a ∈ Fp−1

2 , and a variable v(b) for each v ∈ V and each
b ∈ Fq−1

2 . We also use the folding notation F (z) and S(z) from the first long-code reduction.
Now the instance D′(I, ε) includes W (u, v) ·Mq · εD · (1 − ε)E−D ·H copies of the clause
{v(F (x))(S(x)), u(F (y))(S(y)), u(F (z))(S(z))} for each (u, v) ∈ U × V , each x ∈ Fq2 and each
y, z ∈ Fp2, where M is the denominator of ε = N/M reduced to lowest terms, E is the number
of positions i ∈ [p] with xπ(i) = 1 and D is the number of positions i ∈ [p] with xπ(i) = 1 and
zi 6= yi for π = πu,v if W (u, v) 6= 0, while H ∈ {0, 1} is the indicator for the event that in
each position i ∈ [p] with xπ(i) = 0 we have zi 6= yi. Finally, to define the instance D(I, δ),
set t = dδ−1e and ε1 = δ, and εi+1 = δ712−35εi for i = 1, . . . , t− 1, and let the instance be⋃t
i=1 D

′(I, εi).

I Theorem 4.5 (Håstad 3-Query Disjunction Test [16]). There exists s0 > 0 such that for
every s ∈ [0, 1] with 0 < s < s0 and every projection game instance I of LABEL COVER
the following hold:
1. if I is satisfiable, then C(I, ε) is satisfiable,
2. if I is not s-satisfiable, then C(I, ε) is not (7/8 + log2(1/s)−1/2)-satisfiable.
For the proof of Theorem 4.5, see Lemmas 6.12 and 6.13 in [16]. As in the first long-code
reduction, some explanation is needed for seeing this.

Besides the notational differences that were already pointed out in the first long-code
reduction, the second long-code reduction adds the following. First, the constants 71 and 35
in the definition of εi+1 come from setting c = 1/35 in the definition of Test F3Sδ(u) in [16].
According to Lemma 6.9 in [16], this is an acceptable setting of c. Second, the constant
s0 > 0 in Theorem 4.5 is meant to be chosen small enough so as to ensure that, for each s
satisfying s < s0, we have 2−64δ−2/25 < 2−dδ−1 log2(δ−1) for δ = 8 log2(1/s)−1/2/5, where d is
the constant hidden in the asymptotic O-notation of Lemma 6.13 in [16]. Such an s0 exists
because N log2(N) = o(N2) as N → +∞. With this notation, Lemma 6.12 in [16] gives
point 1, and Lemma 6.13 in [16] with δ = 8 log2(1/s)−1/2/5 gives point 2 in Theorem 4.5.

By composing Lemma 4.1, Theorem 4.2, and Theorem 4.5 with the appropriate parameters
we get the following:

I Theorem 4.6. For every s, ε ∈ [0, 1] with 0 < s < 1 and ε > 0, there is an FO-interpretation
Θ that maps instances of 3XOR to instances of 3SAT in such a way that, for every 3XOR
instance I the following hold:
1. if I is satisfiable, then Θ(I) is satisfiable,
2. if I is not s-satisfiable, then Θ(I) is not (7/8 + ε)-satisfiable.

Proof. First we define Θ(I) and then check that this definition is an FO-interpretation. Let
t be a large enough integer so that the following inequality holds:

(1− (1− (s+ 2)/3)3)αt/6 ≤ min{2−1/ε2
, s0} (3)

where α is the constant in Theorem 4.2 and s0 > 0 is small enough as in Theorem 4.5. Such
a t exists because s < 1 and ε > 0 as well as s0 > 0. Apply the bipartite reduction to I
to obtain the instance I ′ = L(I) from Lemma 4.1. Observe that the domain size d of I ′ is
|A|+ |B| = 6. Next apply the parallel repetition reduction to I ′ with parameter t to obtain
a new instance I ′′. Finally apply the second long-code reduction to I ′′ to obtain the system
I ′′′. The parameters were chosen so that the system I ′′′ satisfies properties 1 and 2, through
Theorem 4.5. As in the proof of Theorem 4.4 this reduction is FO-definable. J
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4.4 Optimal gap inexpressibility
We are ready to state the main results of this section. Composing Theorem 3.7, Theorem 4.4,
and Lemma 2.1 we get the following.

I Theorem 4.7. For each ε > 0, there is a δ > 0 such that if C is the collection of 3XOR
instances that are (1− ε)-satisfiable and D is the collection of 3XOR instances that are not
(1/2 + ε)-satisfiable then C and D are not Ck-separable for any k = o(nδ).

Composing Theorem 3.7, Theorem 4.6, and Lemma 2.1 we get the following.

I Theorem 4.8. For each ε > 0, there is a δ > 0 such that if C is the collection of
3SAT instances that are satisfiable and D is the collection of 3SAT instances that are not
(7/8 + ε)-satisfiable then C and D are not Ck-separable for any k = o(nδ).

A statement similar to Theorem 4.8 can be obtained from applying the standard reduction
from 3XOR to 3SAT to Theorem 4.7 as in Theorem 3.8. However, this would only show
that the class of 3SAT instances that are (1− ε)-satisfiable is Ck-inseparable from the class
of instances that are not (7/8 + ε)-satisfiable; note that Theorem 4.8 states the stronger claim
that this is the case for the class of fully satisfiable instances, instead of the (1− ε)-satisfiable
ones. A natural question to ask is whether the (1− ε) in Theorem 4.7 could be improved to 1.
This would, however, require different techniques since there is a polynomial-time algorithm
that separates the satisfiable instances of 3XOR from the unsatisfiable ones.

On the other hand, 7/8 + ε bound in Theorem 4.8 and the 1/2 + ε bound in Theorem 4.7
are optimal. Every instance of 3SAT is 7/8-satisfiable, and every instance of 3XOR is
1/2-satisfiable. Thus, the algorithms that achieve these approximation ratios are trivial and
expressible in FPC.

It is also worth comparing the statement of Theorem 3.8 to that of Theorem 4.8. While
the latter has the stronger bound on the approximability ratio (7/8 rather than 15/16) the
former gives the stronger lower bound on the counting width. One significance of the lower
bounds on counting width is that they provide bounds on the number of levels of semidefinite
programming hierarchies such as Lasserre hierarchy needed to solve a problem. Thus, it is
known [13, 9] that if a constraint maximization problem can be solved using t levels of the
Lasserre hierarchy, its counting width is at most O(t). Thus, it is an immediate consequence
of our results that approximation algorithms obtained through o(nδ) levels of the Lasserre
hierarchy cannot achieve an approximation ratio for 3SAT and 3XOR better than the trivial
7/8 and 1/2 respectively. These lower bounds on Lasserre relaxations are already known
(see [25]) but our results provide a systematic explanation in terms of definability.

5 Vertex Cover

We investigate gap inexpressibility results for the vertex cover problem VC on graphs. Recall
that a set X ⊆ V of vertices in a graph G = (V,E) is a vertex cover if every edge in E has
at least one of its endpoints in X. If the graph comes with a weight function w : V → R+,
then the weight of X is the sum of the weights of the vertices in X. If the weights of the
vertices are omitted in the specification of the graph, then all the vertices are assumed to
have unit weight. The problem of finding the minimum weight vertex cover in a graph is a
classic NP-complete problem.

In the following we write vc(G) for the weight of a minimum weight vertex cover, and
vc(G) := vc(G)/W0, where W0 :=

∑
v∈V w(v). Analogously, we write IS(G) for the weight

of a maximum weight independent set, and isd(G) := IS(G)/W0. Clearly vc(G) = 1− isd(G)
holds for all weighted graphs.
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The standard reduction that proves the NP-completeness of the vertex cover problem
(see, e.g. [22, Thm. 9.4]) takes an instance I of 3SAT with n variables and m clauses and
gives a graph G with 3m vertices in which the minimum vertex cover has size exactly 2cm,
if cm is the maximum number of clauses in I that can be simultaneously satisfied. It is also
easy to see that this reduction can be given as an FO-interpretation. This interpretation
is linearly bounded and therefore it follows from Theorem 4.8 and Lemma 2.1 that for any
ε > 0, there is a δ > 0 such that the collection of graphs G with vc(G) ≤ 7/12 + ε and the
collection of graphs G with vc(G) ≥ 2/3− ε cannote be separated in Ck for any k = o(nδ).
This has the consequence that no approximation algorithm for the vertex cover problem
expressible in FPC can achieve an approximation ratio better than 8/7.

We can improve on this by considering instead the so-called FGLSS reduction from 3XOR
to vertex-cover, which we describe next.

I Theorem 5.1. There is a linearly-bounded first-order reduction G that takes an instance I
of 3XOR with m equations to a graph G(I) with 4m vertices so that if m∗ is the maximum
number of equations of I that can be simultaneously satisfied, then vc(G) = 4m−m∗.

Proof. For each equation x+ y + z = b in I, G(I) has a 4-clique of vertices, each labelled
with a distinct assignment of values to the three variables that make the equation true. In
addition, we have an edge between any pair of vertices that are labelled by inconsistent
assignments. It is easily seen that the largest independent set in G(I) is obtained by taking
an assignment g of values to the variables of I that satisfies m∗ equations and, for each
satisfied equation, selecting the vertex in its 4-clique that is the projection of g. This yields
an independent set of size exactly m∗ and the result follows. J

From this, and Theorem 3.7, we immediately get the following result.

I Corollary 5.2. For any ε > 0, if C is the collection of graphs G with vc(G) ≤ 3/4 and D

is the collection of graphs G with vc(G) ≥ 13/16− ε then C and D are not Ck-separable for
any k = o(n).

Similarly, combining Theorem 5.1 and Theorem 4.7 yields the following corollary.

I Corollary 5.3. For any ε > 0, there is a δ > 0 such that, if C is the collection of graphs G
with vc(G) ≤ 3/4 + ε and D is the collection of graphs G with vc(G) ≥ 7/8− ε then C and D

are not Ck-separable for any k = o(nδ).

These two corollaries are incomparable. While the latter yields the stronger approximation
ratio (7/6 rather than 13/12), the former gives the stronger lower bound on k.

Better lower bounds on the approximation ratio are known under the assumption that
P 6= NP. One such lower bound was achieved by Dinur and Safra [14] who showed that,
under this assumption, no polynomial-time algorithm for approximating vertex cover can
achieve an approximation ratio better than 1.36. In the full version of this paper [8] we argue
that this reduction is also an FO-interpretation, so we get the same inapproximability ratio
for algorithms that are expressible in FPC, giving a strengthening of Corollary 5.3.

There are straightforward polynomial-time algorithms that yield a vertex cover in a graph
with guaranteed approximation ratio 2. It is conjectured that no polynomial-time algorithm
can achieve an approximation ratio of 2− ε for any ε > 0. It would be interesting to prove a
version of this conjecture for algorithms expressible in FPC, and without the assumption
that P 6= NP. This could be established by a strengthened version of Corollary 5.3 with
better ratios. We next show that we can at least do this for the special case of k = 2.
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I Theorem 5.4. For any ε > 0, if C is the collection of graphs G with vc(G) ≤ 1/2 and D

is the collection of graphs G with vc(G) ≥ 1− ε then C and D are not C2-separable.

Proof. Let (Gn)n∈N be a family of 3-regular expander graphs on n vertices, so that the largest
independent set in Gn has size o(n). For the existence of such graphs see [26, Chapter 4]. It
follows that the smallest vertex cover in Gn has size n− o(n). Hence, we can choose a value
m such that G2m has no vertex cover smaller than 2m(1− ε).

Let Hm be a 3-regular bipartite graph on two sets of m vertices. Now, each part of a
bipartite graph is a vertex cover, so Hm has a vertex cover of size m. However, it is known
that G ≡C2 H holds for any pair G and H of d-regular graphs with the same number of
vertices, for any d. Thus, G2m ≡C2 Hm and the result follows. J

Essentially, Theorem 5.4 tells us that no algorithm that is invariant under ≡C2 can
determine vc(G) to an approximation better than 2, and Corollary 5.3 tells us that no
algorithm that is invariant under ≡Ck for constant or even slowly growing k can determine
vc(G) to an approximation better than 7/6. A legitimate question at this point is whether
there is any algorithm that is invariant under ≡Ck , such as one expressible in FPC would
be, that does achieve an approximation ratio of 2. The natural polynomial-time algorithms
that give a vertex cover with size at most 2vc(G) are not expressible in FPC. Indeed, we
cannot expect a formula of FPC to define an actual vertex cover in a graph G as this is not
invariant under automorphisms of G. We can only ask for an estimate of the size, i.e. of
vc(G), and this we can get up to a factor of 2. For this, it turns out that k = 2 is enough,
showing that the lower bound of Theorem 5.4 is tight:

I Theorem 5.5. For any δ, if C is the collection of graphs G with vc(G) ≤ δ and D is the
collection of graphs G with vc(G) > 2δ then C and D are ≡C2-separable.

The proof of Theorem 5.5 can be found in Appendix D.

6 Conclusions

This paper introduces a new method for studying the hardness of approximability of op-
timization problems by showing that the approximation cannot be defined in a suitable
logic such as FPC. This is done by showing that no class of bounded counting width can
separate instances of the problem with a high optimum from those with a low one. This
raises a number of new challenges in the application of this method. A clear demonstration
of the power of this method would be to derive a lower bound stronger than one for which
NP-hardness is known. For instance, can we improve, in the context of inexpressibility, on the
1.36-inapproximability for vertex cover from the NP-hardness result of Dinur and Safra [14]?
In other words, can show that the class of graphs that have a vertex cover of density δ is not
Ck-separable from the class of graphs that do not have a vertex cover of density cδ, for some
δ ∈ (0, 1) and some constant c greater than 1.36? If this were achieved for unbounded k,
it would have major consequences in the study of semidefinite programming hierarchies of
relaxations of vertex cover. And this applies, indeed, to any optimization problem for which
the exact inapproximability factor is not known, including MAX CUT, sparsest cut, etc.
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A Proof of Lemma 2.1

Proof of Lemma 2.1. Let A ∈ Cn and B ∈ Dn be two structures. Then, since Θ(A) and
Θ(B) have size at most p(n), there is a formula φ ∈ Ck(p(n)) such that Θ(A) |= φ and
Θ(B) 6|= φ. We compose φ with the interpretation Θ to obtain φ′. That is to say, we replace
every relation symbol by its defining formula, including replacing all occurrences of equality
by ε, and we relativize all quantifiers to δ. Note that this involves replacing quantification
over elements with quantification over tuples. It is well known that a counting quantifier over
tuples ∃ix can be replaced by a series of counting quantifiers over single elements without
increasing the total number of variables. Then A |= φ′ and B 6|= φ′. It is also easy to check
that φ′ has at most dk(p(n)) + t variables. The multiplicative factor d comes from the fact
that every variable in φ is replaced by a d-tuple and the additive t accounts for any other
variables that may appear in the formulas of Θ. J

B Proofs Omitted from Section 3.2

Proof of Lemma 3.1. For proving 1, let h : {x1, . . . , xn} → {0, 1} be an assignment of values
to the variables of I that satisfies at least cm of the m equations in I. Define the assignment
g on the variables of G(I) by g(xa) = g(x) + a. For each equation e satisfied by h, all eight
equations arising from e are satisfied by g and so g satisfies at least 8cm of the 8m equations
in G(I).

For proving 2, suppose g is an assignment of values in {0, 1} to the variables xai in G(I).
Let h : {x1, . . . , xn} → {0, 1} be the assignment defined by h(xj) = g(x0

j ). We claim that if
ei is an equation xj +xk + xl = b in I that is not satisfied by h then at least four of the eight
equations in G(I) arising from ei are falsified by g. To see this, consider two cases. First,
suppose that g(x0

t ) = g(x1
t ) for some t ∈ {j, k, l}. Without loss of generality, we assume t = j.

Then consider the four pairs of equations

x0
j + xa1

j + xa2
k = bi + a1 + a2,

x1
j + xa1

j + xa2
k = bi + a1 + a2 + 1

obtained by taking the four possible values of a1 and a2. Since g(x0
j ) = g(x1

j ), if one equation
in a pair is satisfied by g the other is necessarily falsified. Thus, at least four equations
are falsified. For the second case, suppose that for each t ∈ {j, k, l} occurring in ei we
have g(x0

t ) 6= g(x1
t ). But then, since we assume that h falsifies ei, it follows that g falsifies

x0
j + x0

k + x0
l = b and hence it falsifies all eight equations arising from ei. In either case, g

falsifies at least four of the equations arising from ei.
Now, suppose that g satisifes at least (1/2 + s/2) · 8m of the 8m equations in G(I). We

claim that h satisfies at least sm equations in I. Suppose for contradiction that h falsifies a
proportion ε > 1− s of the equations. By the above argument, then g falsifies at least 4εm
of the equations in G(I). But 4εm > (1/2− s/2) · 8m contradicting the assumption that g
satisfies at least (1/2 + s/2) · 8m equations. J

Proof of Lemma 3.2. We describe a strategy for Duplicator in the bijective k-pebble game
played on G(I) and G(I0), given a strategy in the existential k-pebble game on I and
Γ = Γ3XOR.

Suppose we have a position in the existential k-pebble game on I and Γ with pebbles
on x1, . . . , xk′ , for some k′ ≤ k in I, and corresponding pebbles on v1, . . . , vk′ ∈ {0, 1} in Γ.
Suppose further that this is a winning position for Duplicator, i.e. she has a strategy to play
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forever from this position. Then, we claim that the position in the bijective game where the
pebbles in G(I) are on xa1

1 , . . . , x
ak′
k′ , for some a1, . . . , ak′ ∈ {0, 1} and the matching pebbles

in G(I0) are on xa1+v1
1 , . . . , x

ak′+vk′
k′ is a winning position in the bijective game on these two

structures. To see this, note first that, if xr+xs+xt = bi is an equation in I, for 1 ≤ r, s, t ≤ k′,
then by assumption that the position is winning in the existential game, vr + vs + vt = bi.
Hence, xar

r + xas
s + xat

t = bi is an equation in G(I) if, and only if, xar
r + xas

s + xat
t = 0 is

an equation in G(I0) if, and only if, xar+vr
r + xas+vs

s + xat+vt
t = vr + vs + vt is an equation

in G(I0), but this last equation is xar+vr
r + xas+vs

s + xat+vt
t = bi. Thus, the map from

xa1
1 , . . . , x

ak′
k′ to xa1+v1

1 , . . . , x
ak′+vk′
k′ is a partial isomorphism. To see that Duplicator can

maintain the condition, suppose Spoiler moves the pebble on xaj . By assumption, Duplicator
has a response in the existential game whenever Spoiler moves the pebble from xj to xl.
This response defines a function f from the variables in x to {0, 1}. We use this to define
the bijection taking xal to xa+f(xl)

l . This is a winning move in the bijective game. J

C Deriving Theorem 4.3 from [16]

The proof of Theorem 4.3 follows from Lemmas 5.1 and 5.2 in [16]. In order too see this,
we need to explain how our notation matches the one in [16]. Besides the obvious and
minor correspondance between multiplicative and additive notation for F2, with −1↔ 1 and
+1↔ 0, there are three other noticeable differences between the statement of Theorem 4.3
and the statements of Lemmas 5.1 and 5.2 in [16].

The first difference is that Theorem 4.3 applies to arbitrary projection game instances
of LABEL COVER, while the statements in [16] are phrased only for the special cases of
the problem that result from applying parallel repetition to a suitable bipartite reduction
applied to a 3SAT instance. We chose to formulate Theorem 4.3 in this more general and
modular form because this is what the proofs of Lemmas 5.1 and 5.2 in [16] show, and also
because this is how more recent expositions of these results are presented (see, e.g., [3]).

The second difference is that the conclusion of our statement is phrased in terms of the
c-satisfiability of a 3XOR instance, while the statements of Lemmas 5.1 and 5.2 in [16]
are phrased in terms of the acceptance rate of a probabilistic test that has the following
form: given access to certain tables Au and Av, with F2 entries {Au(x)}x∈I and {Av(y)}y∈J
for certain index sets I and J , respectively, choose a random 3-variables parity test on the
Au(x) and Av(y) entries under a specially designed distribution, and check if it is satisfied.
This difference is only notational and minor: our instance of XOR is built by viewing the
Au(x) and Av(y) entries as variables u(x) and v(y), and assigning weight to each 3-variable
parity equation on these variables proportionally to the probability that it is checked by the
probabilistic test on the Au and Av tables. With this change, c-satisfiability of the instance
translates into the probability of acceptance of the test being at least c, and vice-versa.

The third difference in the notation is that our variables u(x) and v(y), and the corres-
ponding entries Au(x) and Av(y) of the tables Au and Av, are indexed by Fp−1

2 and Fq−1
2

instead of the more natural Fp2 and Fq2, respectively. This is due to the fact that we imple-
ment the operations of folding over true and conditioning upon h from [16] directly in our
construction. In other words, our tables Au and Av are what [16] calls AW,h,true and AU,true,
respectively. Folding over true as in AU,true is achieved for Av through the notation S(z) and
F (z) defined above: we chose to partition Fp2 into 2p−1 pairs of the form (z, 0), (F ((z, 1)), 1),
as z ranges over Fp−1

2 , and view an arbitrary Av : Fp−1
2 → F2 as representing the function

A′v : Fp2 → F2 defined by A′v(z) = Av(F (z)) + S(z) for every z ∈ Fp2. It is straightfoward to
see that A′v is folded over true, in the definition of [16], by construction.
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Conditioning upon h as in AW,h,true for Au is achieved through the same mechanism as
folding over true with the additional observation that the operation of conditioning upon h
is necessary only if the instance of LABEL COVER fails to satisfy the property that for
every (u, v) ∈ U × V and every a ∈ A there is at least one b ∈ B that satisfies the predicate
P (u, v, a, b). When this is the case, one defines h = hu,v : A → {0, 1} as the predicate
indicating if a given a has at least one b that satisfies P (u, v, a, b), and conditions the table
Au upon h. In our case we do not require this since the given instance of LABEL COVER
is a projection game instance, and, in particular, for every a there is exactly one b, and hence
at least one b, such that P (u, v, a, b) = 1; i.e., h = hu,v is the constant 1 predicate. It should
be added that the reason why we can assume that I is a projection game instance is that our
bipartite reduction is designed in such a way that the values a in A are partial assignments
that always satisfy the corresponding constraints u in U . In constrast, in [16] the values
are taken as arbitrary truth assignments to the variables of a collection of clauses, and not
all such assignments satisfy all the clauses. Our exposition is again more modular and also
matches more recent expositions of the results in [16] (again, see, e.g., [3]).

With this notational correspondance, it is now easy to see that Lemma 5.1 in [16] gives
the first claim in Theorem 4.3, and Lemma 5.2 in [16] applied with δ = (s/ε)1/2/4 gives the
second claim in Theorem 4.3.

D Proof of Theorem 5.5

The proof of Theorem 5.5 proceeds through a series of lemmas.

I Lemma D.1. If G is a d-regular graph on n vertices, for any d ≥ 1, then vc(G) ≥ n/2.

Proof. Let S be any set of vertices in G. Then the number of edges incident on vertices in
S is at most d|S|. Since the number of edges in G is dn/2, if S is a vertex cover d|S| ≥ dn/2
and so |S| ≥ n/2. J

Let G be a graph and C1, . . . , Cm be the partition of the vertices of G given by vertex
refinement. So, there are constants δij such that each v ∈ Ci has exactly δij neighbours in
Cj . Since the graph is undirected, the number of edges from Ci to Cj is the same as in the
other direction and so δij |Ci| = δji|Cj |, for all i and j. Also, δij = 0 if, and only if, δji = 0.

Let X = {i | δii = 0} and Y = {i | δii > 0}. Consider the undirected graph XG with
vertices X and edges {(i, j) | δij > 0}. Consider the instance (XG, w) of weighted vertex
cover obtained by taking the graph XG and giving each vertex i the weight w(i) = |Ci|.
Let pG denote the value of the minimum weighted vertex cover of this instance. Also, let
qG =

∑
i∈Y |Ci|. Finally, define vG = pG + qG.

I Lemma D.2. If G ≡C2 H then vG = vH .

Proof. The value vG is determined entirely by the sizes of Ci in the vertex refinement of G
and the corresponding values of δij . Since G ≡C2 H, these values are the same for H. J

I Lemma D.3. vc(G) ≤ vG.

Proof. Let Z ⊆ X be a minimum-weight vertex cover in (XG, w). Take the set S ⊆ V (G)
defined by S =

⋃
i∈Y ∪Z Ci. Note that the sets Y and Z are disjoint,

∑
i∈Y |Ci| = qG by

definition, and
∑
i∈Z |Ci| = pG by construction. So S has exactly vG vertices. We claim that

S is a vertex cover in G. Let e be any edge of G with endpoints in Ci and Cj . If either i or
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j is in Y , then the corresponding endpoint of e is in S since Ci ⊆ S for all i ∈ Y . If both i
and j are not in Y then both are in X and δij > 0. Thus, since Z is a vertex cover for the
graph XG then one of i or j must be in Z and again at least one endpoint of e is in S. J

For the proof of the next lemma, we need the notion of a fractional vertex cover of a
graph G = (V,E). This is a function f : V → [0, 1] satisfying the condition that for every
(u, v) ∈ E, f(u) + f(v) ≥ 1. It is known that if f is a fractional vertex cover of G, then∑

v∈V f(v) ≥ vc(G)/2 (see [27, Thm. 14.2]). More generally, suppose we have an instance of
weighted vertex cover, i.e. G along with a weight function w : V → N where vc(G,w) is defined
as the value of the minimum weighted vertex cover. Then

∑
v∈V f(v)w(v) ≥ vc(G,w)/2.

I Lemma D.4. vG ≤ 2vc(G).

Proof. Let S be any vertex cover of G. Let UX =
⋃
i∈X Ci and UY =

⋃
i∈Y Ci and note that

these sets are disjoint. We claim that |S ∩ UX | ≥ pG/2 and |S ∩ UY | ≥ qG/2, and therefore
|S| = |S ∩ UX |+ |S ∩ UY | ≥ vG/2, establishing the result.

First, consider S ∩ UY . Note that for any i ∈ Y , the subgraph of G induced by Ci is
δii-regular. Since δii > 0 by definition of Y , by Lemma D.1 we have |S ∩ Ci| ≥ |Ci|/2 and
therefore |S ∩ UY | ≥ qG/2.

Secondly, consider the function f : X → [0, 1] defined by f(i) = |S ∩ Ci|/|Ci|. We claim
that this is a fractional vertex cover of the graph XG. To verify this, we need to check that
f(i)+f(j) ≥ 1 whenever δij > 0. There are δij |Ci| edges between Ci and Cj . Each element of
S∩Ci can cover at most δij of these edges and similarly each element of S∩Cj covers at most
δji of them. Thus, since S is a vertex cover |S ∩ Ci|δij + |S ∩ Cj |δji ≥ δij |Ci|. Substituting
for δji using the identity δij |Ci| = δji|Cj | gives |S ∩ Ci|δij + |S ∩ Cj |δij |Ci|/|Cj | ≥ δij |Ci|.
Now dividing through by δij |Ci| gives f(i) + f(j) ≥ 1.

Thus, we have that the weighted vertex cover instance (Xg, w) admits the fractional
solution f whose total weight is∑

i∈X
f(i)|Ci| =

∑
i∈X
|S ∩ Ci| = |S ∩ UX |.

Since pG is the value of the minimum weight vertex cover of (Xg, w), we have |S∩UX | ≥ pG/2,
as was to be shown. J

Proof of Theorem 5.5. Suppose for contradiction that there is a G ∈ C and H ∈ D such that
G ≡C2 H . Since G and H must have the same number of vertices, we have 2vc(G) < vc(H).
But, by Lemma D.4 we have vG ≤ 2vc(G), by Lemma D.3 we have vc(H) ≤ vH and by
Lemma D.2 we have vG = vH , giving a contradiction. J

CSL 2018





Safety, Absoluteness, and Computability
Arnon Avron
School of Computer Science, Tel Aviv University
Tel Aviv, Israel
aa@post.tau.ac.il

Shahar Lev
School of Computer Science, Tel Aviv University
Tel Aviv, Israel
shaharle@post.tau.ac.il

Nissan Levi
School of Computer Science, Tel Aviv University
Tel Aviv, Israel
nisnis.levi@gmail.com

Abstract
The semantic notion of dependent safety is a common generalization of the notion of absoluteness
used in set theory and the notion of domain independence used in database theory for charac-
terizing safe queries. This notion has been used in previous works to provide a unified theory of
constructions and operations as they are used in different branches of mathematics and computer
science, including set theory, computability theory, and database theory. In this paper we provide
a complete syntactic characterization of general first-order dependent safety. We also show that
this syntactic safety relation can be used for characterizing the set of strictly decidable relations
on the natural numbers, as well as for characterizing rudimentary set theory and absoluteness of
formulas within it.
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1 Introduction

The semantic notion of dependent safety is a common generalization of the notion of
absoluteness used in set theory ([14, 9]) and the notion of domain independence used in
database theory for characterizing safe queries ([1, 20]). It has been introduced in [3] and
used there to provide a unified theory of constructions and operations as they are used in
different branches of mathematics and computer science, including set theory, computability
theory, and database theory. The notion is based on the following two basic ideas (taken
from logic programming and database theory):

From an abstract logical point of view, the focus of a general theory of computations
should be on functions of the form:

λy1, . . . , yk.{〈x1, . . . , xn〉 ∈ Sn | S |= ϕ(x1, . . . , xn, y1, . . . , yk)}

where S is a structure for some first-order signature σ, ϕ is some formula of σ, and
{{x1, . . . , xn}, {y1, . . . , yk}} is a partition of the set Fv(ϕ) of the free variables of ϕ. Here
the tuple 〈y1, . . . , yk〉 provides the input, while the output is the set of answers to the
resulting query.
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An allowable query should be safe in the sense that the answer to it does not depend
on the exact domain of S, but only on the values of the parameters {y1, . . . , yk} and the
part of S which is relevant to them and to the query, under certain conditions concerning
the language and the structures that are taken as relevant to the query.

Examples.
1. In every computerized system, what is taken as the type of natural numbers is actually

only some finite initial segment of the full set of natural numbers. Therefore a reasonable
query should be one that has the same answer in all implementations in which this initial
segment includes the inputs to the query and the natural numbers mentioned in it.

2. Query languages for database theory allow only domain independent queries, that is:
queries for which the corresponding answer would be the same in all databases which
have the same scheme and exactly the same tables for it.

The above two principles were translated in [3, 4, 5, 6] into precise definitions. Those works
(especially [3]) also naturally lead to the following two theses concerning the development of
a general theory of decidability and computability in arbitrary structures:

The study of decidability of relations should be a part of a more general study of
absoluteness of formulas and queries;
The study of computability/constructibility should be a part of a more general study of
dependent safety of formulas and queries. (We call this type of safety ‘dependent’ because
it is a property of queries which might contain parameters.)

A significant step in this program of developing general theory of dependent safety,
absoluteness, and computability was made in [3, 5], where a syntactic framework for these
notions was developed. The main virtues of that framework are its generality and universality:
it is based on few basic simple syntactic principles, that can be used in what seem to be very
different and unrelated areas. The main result of this paper is that it is actually complete for
general first-order dependent safety and general first-order absoluteness. This explains its
generality, and why its principles were independently discovered in different areas. 1

With the exception of the relatively simple case of databases, the above mentioned general
syntactic principles may of course be insufficient in more complex particular cases. Still, we
show that they suffice also in the case of the arithmetics of the natural numbers, while in
the especially important case of set theory our syntactic characterization of absoluteness is
equivalent to the usual syntactic approximation that is currently in use.

The structure of the rest of this paper is as follows. Section 2 we review (an improvement
of) the framework developed in [3], including all the necessary definitions. In Section 3
we prove the completeness of our syntactic approximation of general first-order dependent
safety, while in Section 4 we provide a direct syntactic approximation of general first-order
absoluteness. (The latter is a very important special case of the former.) In Section 5 we
give a syntactic characterization of absoluteness in the structure N of the natural numbers.
Finally, in Section 6 we study absoluteness in rudimentary set theory, using a language that
includes abstract set terms. We show that while the use of such terms involves a proper
extension of our syntactic dependent safety, this is not true for syntactic absoluteness.

1 The principles were originally identified as generalizations of principles used in database theory. As far
as we know, this is a rare case in which ideas and principles originally taken from computer science are
applied for understanding purely mathematical theories like set theories and number theory.
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2 Preliminaries

Throughout this paper, σ is a first-order signature with equality, and no function symbols
(except for constants). Fv(ϕ) and Bv(ϕ) respectively denote the set of free variables and the
set of bound variables of ϕ. The notation ϕ(z1, . . . , zk) means that Fv(ϕ) = {z1, . . . , zk}.

2.1 Basic Definitions
I Definition 1. Let S1 and S2 be two structures for σ. S1 is a weak substructure of
S2 (notation: S1 ⊆σ S2) if the domain of S1 is a subset of the domain of S2, and the
interpretations in S1 and S2 of the constants of σ are identical.

I Definition 2. Let S1 ⊆σ S2, where S1 and S2 are structures for σ. A formula of
σ ϕ(x1, . . . , xn, y1, . . . , ym) is safe for S1 and S2 with respect to {x1, . . . , xn} (notation:
ϕ �S1;S2 {x1, . . . , xn}), if for all b1 . . . , bm ∈ S1:

{−→a ∈ Sn2 | S2 |= ϕ(−→a ,
−→
b )} = {−→a ∈ Sn1 | S1 |= ϕ(−→a ,

−→
b })

In other words, ϕ is safe for S1 and S2 with respect to {x1, . . . , xn} if by viewing
y1, . . . , ym as parameters, and assigning elements from S1 to these parameters, we get a
query in x1, . . . , xn having the same answers in S1 and S2.

I Definition 3. A safety-signature is a pair (σ, F ), where σ is an ordinary first-order signature
with equality and no function symbols, and F is a function which assigns to every n-ary
predicate symbol of σ a subset of the powerset of {1, . . . , n}, so that F (=) is {{1}, {2}}.

I Definition 4. Let (σ, F ) be a safety-signature, and let S1, S2 be structures for σ. S2 is
called a (σ, F )−extension of S1 (and S1 is a (σ, F )−substructure of S2) if S1 ⊆σ S2 and
p(x1, . . . , xn) �S1;S2 {xi1 , . . . , xik} whenever p is an n-ary predicate of σ, x1, . . . , xn are n
distinct variables, and {i1, . . . , ik} ∈ F (p).

I Definition 5. Let (σ, F ) be a safety-signature, S a structure for σ, and ϕ a formula of σ.
1. ϕ is (S, F )−safe w.r.t. X (notation: ϕ �(S,F ) X) if ϕ �S′;S X whenever S is a

(σ, F )−extension of S′. ϕ is (S, F )−absolute if ϕ �(S,F ) ∅.
2. ϕ is (σ, F )−safe w.r.t. X (ϕ �(σ,F ) X) if it is (S, F )−safe w.r.t. X for every structure S

for σ. ϕ is (σ, F )−absolute if ϕ �(σ,F ) ∅.

I Note 6. The reason that we have demanded F (=) to be {{1}, {2}} (or {{1}, {2}, ∅}, which
is equivalent) is that x1 = x2 is always safe w.r.t. both {x1} and {x2}, but usually not w.r.t.
{x1, x2}.

I Note 7. If ϕ �(σ,F ) X and Z ⊆ X, then ϕ �(σ,F ) Z. In particular: if ϕ �(σ,F ) X for some
X then ϕ is (σ, F )-absolute. The same applies to (S, F )−safety and to (S, F )−absoluteness.

I Note 8. If F (p) is nonempty for every p in σ, then by Note 7 S1 is a substructure of S2
(in the usual sense of model theory) whenever S2 is a (σ, F )-extension of S1.

2.2 Examples
2.2.1 Computability Theory
Several applications of dependent safety to the theory of computability and decidability have
been made in [3]. Here is one of them.

Define the safety-signature (σN , FN ) as follows:
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σN is the first-order signature which includes the constant 0, the binary predicate ≤, and
the ternary relations P+, P×.
FN (≤) = {{1}}, FN (P+) = FN (P×) = {∅}.

The standard structure N for σN has the set N of natural numbers as its domain, with
the usual interpretations of 0 and ≤, and the (graphs of the) operations + and × on N

(viewed as ternary relations on N) as the interpretations of P+ and P×, respectively. It is
easy to see that N is a (σN , FN )-extension of a structure S for σN iff the domain of S is an
initial segment of N (where the interpretations of the relation symbols are the corresponding
reductions of the interpretations of those symbols in N ). Thus ϕ �(N ,FN ) X iff the query
{〈x1, . . . , xn〉 ∈ Sn | S |= ϕ(x1, . . . , xn, y1, . . . , yk)} is “reasonable” in the sense explained
in example 1 above (where X = {x1, . . . , xn}). Using this observation, it was proved in [3]
that a relation R on N is recursively enumerable iff R is definable by a formula of the form
∃y1, . . . , ynψ, where the formula ψ is (σN , FN )-absolute.

2.2.2 Set Theory
Let σZF = {∈}, FZF (∈) = {{1}}. A structure S2 for σZF is a (σZF , FZF )−extension of S1
iff S2 is an extension of S1, and x1 ∈ x2 �S1;S2 {x1}. The latter condition means that S1 is a
transitive substructure of S2. Therefore ϕ �(σZF ,FZF ) ∅ iff the following holds whenever S1 is
a transitive substructure of S2: S1 |= ϕ ⇔ S2 |= ϕ. Hence a formula is (σZF , FZF )-absolute
iff it is absolute in the usual sense of set theory. (See e.g. [14].)

Other applications to set theories of dependent safety in general, and of �(σZF ,FZF ) in
particular, have been made in [5] and [4]. In [5] it is suggested that an abstract set term
{x | ϕ} denotes a predicatively acceptable set if ϕ �(σZF ,FZF ) {x}. In [4] the relation
�(σZF ,FZF ) is used as the basis for purely logical characterizations of the comprehension
schemas allowed in various set theories (including ZF ).

2.2.3 Databases
From a logical point of view, a database of scheme D = {P1, . . . , Pn} is just a given set of
finite interpretations of P1, . . . , Pn. A corresponding query language is usually an ordinary
first-order language which is based on a signature σ with equality such that σ contains D, but
no function symbols. A query is called domain independent ([1, 20]) if its answer is the same in
all interpretations in which P1, , . . . , , Pn are given by the database, while the interpretations
of all other predicate symbols (like < or ≤) and of the constants are absolute (and externally
given). It can easily be seen that a formula ϕ is domain independent iff ϕ �(σ,F ) Fv(ϕ) for
the function F defined by: F (Q) = {{1, . . . , nQ}} in case Q ∈ {P1, . . . , Pn} (where nQ is the
arity of Q), while F (Q) = {∅} otherwise.

2.2.4 Querying the Web
In [15] the web is modeled as an ordinary database augmented with three more special relations
(together with some other, which for simplicity we ignore): N(id, title, . . .), C(node, value),
L(source, destination, . . .). The intuitive interpretations of these relations are the following:

The relation N contains the Web objects which are identified by a Uniform Resource
Locator (URL). id represents the URL and is a key.
The meaning of C is that the string which is represented by its second argument occurs
within the body of the document in the URL which is represented by its first argument.
The relation L holds between nodes source and destination if there is a hypertext link
from the first to the second.
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The question investigated in [15] is: what queries should be taken as safe, if we assume that
what is practically possible in the case of N and L is to list all their tuples which correspond
to a given first argument, while C is only assumed to be decidable. It is not difficult to see
that the notion of safety given there for this framework is equivalent to (σweb, Fweb)-safe in
our sense, where {L,N,C} ⊆ σweb, and F is defined like in ordinary databases, except that
F (L) = {2, , . . . , ,m} (where m is the arity of L), F (N) = {2, , . . . , , k} (where k is the arity
of N), and F (C) = {∅}.

2.3 The Corresponding Syntactic Relation
In [10] it was proved that the property of domain independence in databases is undecidable.
In [3] it was shown that the property of (σ, F )-absoluteness is also in general undecidable.
This means that in order to use the relation �(σ,F ) in practice we need a decidable syntactic
approximation. The one that was used in [3, 4, 5] is presented in the next definition. It was
inspired by the recursive definition of syntactic safety given in [20], and generalizes it in a
sense explained below.2

I Definition 9. Given a safety-signature (σ, F ), we recursively define the relation �s(σ,F )
between formulas of σ and sets of variables as follows:
1. p(t1, . . . , tn) �s(σ,F ) X in case p is an n-ary predicate symbol of σ, and there is I ∈ F (p)

such that:
a. For every x ∈ X there is i ∈ I such that x = ti.
b. X ∩ Fv(tj) = ∅ for every j ∈ {1, . . . , n}\I.

2. ¬ϕ �s(σ,F ) ∅ if ϕ �s(σ,F ) ∅.
3. ϕ ∨ ψ �s(σ,F ) X if ϕ �s(σ,F ) X and ψ �s(σ,F ) X

4. ϕ∧ψ �s(σ,F ) X∪Y if ϕ �s(σ,F ) X, ψ �s(σ,F ) Y , and either Fv(ϕ)∩Y = ∅ or Fv(ψ)∩X = ∅.
5. ∃y.ϕ �s(σ,F ) X\{y} if y ∈ X and ϕ �s(σ,F ) X.

I Theorem 10 ([3]). �s(σ,F ) is sound: if ϕ �s(σ,F ) {x1, . . . , xn} then ϕ �(σ,F ) {x1, . . . , xn}

I Note 11. In what follows ∀x1 . . . ∀xn.ϕ→ ψ as an abbreviation for ¬∃x1 . . . ∃xn.ϕ ∧ ¬ψ.
Using items 2,4, and 5 from Definition 9, this implies that ∀x1 . . . ∀xn.ϕ → ψ �s(σ,F ) ∅ if
ϕ �s(σ,F ) {x1, . . . , xn} and ψ �s(σ,F ) ∅. We shall use this fact freely.

I Note 12. It follows from Definition 9 and the fact that F (=) is {{1}, {2}} that x =
t �s(σ,F ) {x} and t = x �s(σ,F ) {x} in case x /∈ Fv(t), and t = s �s(σ,F ) ∅ for every t, s.

Examples.

1. The set of formulas ϕ such that ϕ �s(σN ,FN ) ∅ includes all formulas in the well-known set
of arithmetical ∆0-formulas (also called “bounded formulas” or “σ0-formulas” in [17]).
In the context of σN these are the formulas in which all quantifications are of the form
∃x ≤ y (or ∀x ≤ y, by Note 11), where x and y are distinct variables.

2. Similarly, the set of formulas ϕ such that ϕ �s(σZF ,FZF ) ∅ is an extension of the set of set-
theoretical ∆0 formulas ([14]).3 However, in this case not only this special case of syntactic
dependent safety is important. In fact, if ϕ(x1, . . . , xn, y1, . . . , yk) �s(σZF ,FZF ) {x1, . . . , xn}
then the function λy1, . . . , yk.{〈x1, . . . , xn〉 | ϕ} is rudimentary. (Rudimentary functions

2 Other closely related works in database theory are e.g. [16], [19], and [18].
3 In the context of σZF ∆0-formulas (again also called “bounded formulas”) are the formulas in which all

quantifications are of the form ∃x ∈ y (or ∀x ∈ y, by Note 11), where x and y are variables.
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were independently introduced by Gandy in [12] and by Jensen in [13]. See also [9].) In
particular: if ϕ(x1, . . . , xn, y1, . . . , yk) �s(σZF ,FZF ) {x1, . . . , xn} then the function λy1 ∈
HF , . . . , yk ∈ HF .{〈x1, . . . , xn〉 ∈ HFn | HF |= ϕ(x1, . . . , xn, y1, . . . , yk)} (where HF is
the set of hereditarily finite sets) is a computable function from HFk to HF . (We shall
return to this example in Section 6.)

3. Let D, σ, and F be like in Section 2.2.3. Then ϕ �s(σ,F ) Fv(ϕ) for any formula ϕ which
is syntactically safe according to the definition in [20].

4. ϕ �s(σweb,Fweb) Fv(ϕ) for any formula ϕ which is safe according to the “Safe Web Calculus”
given in [15] as a syntactic approximation for the class of (σweb, Fweb)-safe formulas.

I Note 13. It is easy to see that if ϕ �s(σ,F ) X and Y ⊆ X then ϕ �s(σ,F ) Y . In particular,
if ϕ �s(σ,F ) X then ϕ �s(σ,F ) ∅.

3 The General Completeness Theorem

Our main goal in this section is to prove an appropriate converse to Theorem 10.

I Notation 14. ϕ ≡ ψ if ϕ and ψ are logically equivalent, and Fv(ϕ) = Fv(ψ).

I Lemma 15. Let (σ, F ) be a safety-signature. Let ϕ and ψ be two formulas of σ such that
Y ⊆ Fv(ϕ) ∩ Fv(ψ). If ϕ and ψ are logically equivalent, then ϕ �(σ,F ) Y iff ψ �(σ,F ) Y . In
particular: if ϕ ≡ ψ then for every Y it holds that ϕ �(σ,F ) Y iff ψ �(σ,F ) Y .

Proof. Immediate from the definitions. J

I Theorem 16. Let (σ, F ) be a safety-signature such that σ includes a constant. Then for
every ϕ and Y , ϕ �(σ,F ) Y iff there exists ψ such that ψ �s(σ,F ) Y and ϕ ≡ ψ.

Proof. We begin with some notations. If S is a structure for σ, and v is an assignment
in S, then S, v |= ϕ denotes that ϕ is satisfied in S by the assignment v. T `t ϕ denotes
that S, v |= ϕ whenever S, v |= ψ for every ψ ∈ T . If x̄ = 〈x1, . . . , xm〉 is a finite list of
distinct variables, and ā ∈ Sm, then we denote by x̄ := ā some assignment v in S such that
v(xi) = ai for every 1 ≤ i ≤ m. If Fv(ϕ) = {x1, . . . , xm} and ā ∈ Sm, then S |= ϕ(ā) means
that S, x̄ := ā |= ϕ.

Let (σ, F ) be a safety-signature.

I Lemma 17. Let (σ̂, F̂ ) be the safety-signature such that σ̂ is σ without the predicates p
for which F (p) = ∅ and F̂ is the restriction of F to predicates of σ̂. If ϕ �(σ,F ) Y then there
exists a formula ϕ̂ of σ̂ such that ϕ̂ �(σ̂,F̂ ) Y and ϕ ≡ ϕ̂.

Proof. Let S1 and S2 be two structures for σ that have the same domain and the same
interpretations for the constants of σ and the predicates of σ̂. Then S1 and S2 are (σ, F )-
substructures of one another, and so S1, v |= ϕ iff S2, v |= ϕ for every assignment v in their
common domain. Therefore Beth definability theorem implies that there exists a formula ϕ̂
of σ̂ such that ϕ ≡ ϕ̂. By Lemma 15, ϕ̂ �(σ,F ) Y and so ϕ̂ �(σ̂,F̂ ) Y . J

I Lemma 18. Let S1, S2, S3 be structures for σ such that S1 is a substructure of S2, S2 is a
substructure of S3, and S1 is a (σ, F )-substructure of S3. Then S1 is a (σ, F )-substructure
of S2.

Proof. Let p be a n-ary predicate of σ, and let I ∈ F (p). Suppose that a1, . . . , an ∈ S2 and
ai ∈ S1 for every i ∈ {1, . . . , n}\I.
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Assume S2 |= p(ā). Since S2 is a substructure of S3 then S3 |= p(ā). Since S1 is a
(σ, F )-substructure of S3, ā ∈ Sn1 and S1 |= p(ā).
Assume ā ∈ Sn1 and S1 |= p(ā). Since S1 is a substructure of S2 then S2 |= p(ā). J

I Lemma 19. For a structure S for σ and ā ∈ Sm, let α(σ,F )[S, ā] be the substructure of S
whose domain is the set of all b ∈ S for which there exists a formula θ(x1, . . . , xm, z) of σ
(where x1, . . . , xm, z are m+1 distinct variables) such that θ(x̄, z) �s(σ,F ) {z} and S |= θ(ā, b).
Then α(σ,F )[S, ā] is a (σ, F )-substructure of S.

Proof. First note that α(σ,F )[S, ā] is indeed a well-defined substructure of S. This follows
from the facts that σ contains no function symbols, and that for every constant c in σ,
the formula c = z of σ satisfies c = z �s(σ,F ) {z}, assuring that α(σ,F )[S, ā] contains all the
interpretations in S of the constants of σ. (In particular: α(σ,F )[S, ā] 6= ∅.)4

Now suppose that p is a n-ary predicate of σ, I ∈ F (p), b̄ ∈ Sn, and bj ∈ α(σ,F )[S, ā] for
every j ∈ {1, . . . , n}\I.

Assume bi ∈ α(σ,F )[S, ā] for every i ∈ I and α(σ,F )[S, ā] |= p(b̄). Since α(σ,F )[S, ā] is a
substructure of S, we get that S |= p(b̄).
Assume S |= p(b̄). Let x1, . . . , xm, y1, . . . , yn, z be m + n + 1 distinct variables. Let
j ∈ {1, . . . , n}\I. Since we assume that bj ∈ α(σ,F )[S, ā], the definition of α(σ,F )[S, ā]
implies that there exists a formula θj(x̄, yj) of σ such that θj(x̄, yj) �s(σ,F ) {yj} and
S |= θj(ā, bj). Define the following formulas of σ:

ξ(x̄, ȳ) :

 ∧
j∈{1,...,n}\I

θj(x̄, yj)

 ∧ p(ȳ)

µi(x̄, z) : ∃ȳ[ξ(x̄, ȳ) ∧ z = yi] (i ∈ I)

Now we know that:∧
j∈{1,...,n}\I

θj(x̄, yj) �s(σ,F )
{
yj | j ∈ {1, . . . , n}\I

}
p(ȳ) �s(σ,F ) {yi | i ∈ I}

It follows that ξ(x̄, ȳ) �s(σ,F ) {y1, . . . yn}. Moreover, S |= ξ(ā, b̄). Thus µi(x̄, z) �s(σ,F ) {z}
and S |= µi(ā, bi) for every i ∈ I. By definition of α(σ,F )[S, ā], bi ∈ α(σ,F ) for every i ∈ I.
Since α(σ,F )[S, ā] is a substructure of S then α(σ,F )[S, ā] |= p(b̄). J

I Definition 20. Let ϕ and ψ(x1, . . . , xm, z) be two formulas of σ such that ϕ contains no
bound instances of x1, . . . , xm. Reψ(x̄,z)[ϕ] is the formula obtained by recursively replacing
in ϕ all subformulas of the forms ∃wθ with ∃w.ψ(x̄, w) ∧ θ.

I Lemma 21. Assume that F (p) 6= ∅ for every predicate p of σ. Let ϕ and ψ(x1, . . . , xm, z) be
two formulas of σ such that ϕ contains no bound instances of x1, . . . , xm, and ψ(x̄, z) �s(σ,F )
{z}. Then Reψ(x̄,z)[ϕ] �s(σ,F ) ∅.

Proof. The proof is by induction on the structure of ϕ:
1. Since F (p) 6= ∅ for every predicate p of σ, θ �s(σ,F ) ∅ for every atomic formula θ of σ (see

Note 7).

4 This is the place in the proof of Theorem 16 where we use the assumption that σ includes a constant.
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2. By clauses 3,4,5 of Definition 9, θ �s(σ,F ) ∅ for every boolean combination θ of formulas
θ1, . . . , θk of σ such that θi �s(σ,F ) ∅ for every 1 ≤ i ≤ k.

3. By clause 6 of Definition 9 ∃w.ψ(x̄, w) ∧ θ �s(σ,F ) ∅ whenever θ �s(σ,F ) ∅. J

End of the proof of Theorem 16

By Theorem 10 and Lemma 15, it suffices to prove that if ϕ �(σ,F ) Y then there exists a
formula ψ of σ such that ψ �s(σ,F ) Y and ϕ ≡ ψ. Moreover, by Lemma 17 we may assume
that σ contains no predicate p for which F (p) = ∅.

Let x1, . . . , xm, y1, . . . , yn, z be m+ n+ 1 distinct variables, and let ϕ(x̄, ȳ) be a formula
of σ such that ϕ(x̄, ȳ) �(σ,F ) {y1, . . . , yn}. Without a loss in generality, we may assume that
ϕ contains no bound instances of x1, . . . , xm. Let σq be obtained from σ by the addition of
a new (m+ 1)-ary predicate symbol q. Define in σq:

ψ′(x̄, ȳ) := Req(x̄,z)[ϕ(x̄, ȳ)] ∧
n∧
i=1

q(x̄, yi)

Let T be the set of all formulas of σq of the form ∀z[θ(x̄, z)→ q(x̄, z)] where θ(x̄, z) �s(σ,F ) {z}
(and so θ is in σ). We will prove that T `t ∀ȳ(ϕ(x̄, ȳ)↔ ψ′(x̄, ȳ)).

Let S be a structure for σq and let ā be a tuple in Sm such that S, x̄ := ā |= T . Let S3
be the structure for σ obtained from S by restricting it to σ. Let S2 be the substructure
of S3 whose domain is the set of all b ∈ S such that S |= q(ā, b). Let S1 be the structure
α(σ,F )[S3, ā]. By definition of T and the fact that S, x̄ := ā |= T , S1 is a substructure of
S2. By Lemmas 19 and 18, S1 is a (σ, F )-substructure of both S2 and S3. In addition,
ϕ(x̄, ȳ) �(σ,F ) {y1, . . . , yn} and ā ∈ Sm1 . (The latter can be justified by the fact that for
every 1 ≤ i ≤ m, the formula xi = z of σ satisfies xi = z �s(σ,F ) {z}.) Therefore, for every
b̄ ∈ Sn3 :

S3 |= ϕ(ā, b̄) ⇐⇒ b̄ ∈ Sn1 ∧ S1 |= ϕ(ā, b̄)

S3 |= ϕ(ā, b̄) ⇐⇒ b̄ ∈ Sn2 ∧ S2 |= ϕ(ā, b̄)

Since ϕ(x̄, ȳ) is a formula of σ (since it does not contain the predicate q), we get that for
every b̄ ∈ Sn3 , S |= ϕ(ā, b̄) iff S3 |= ϕ(ā, b̄). By relativization and definition of S2, we get that
for every b̄ ∈ Sn3 , b̄ ∈ Sn2 ∧ S2 |= ϕ(ā, b̄) iff S |= ψ′(ā, b̄). By transitivity, we get that for every
b̄ ∈ S3

n, S |= ϕ(ā, b̄) iff S |= ψ′(ā, b̄). Because S3 and S have the same domain, we get that
S, x̄ := ā |= ∀ȳ(ϕ(x̄, ȳ)↔ ψ′(x̄, ȳ)).

We proved that T `t ∀ȳ(ϕ(x̄, ȳ)↔ ψ′(x̄, ȳ)). By compactness, there exists a finite subset
T1 of T such that:

(∗) T1 `t ∀ȳ(ϕ(x̄, ȳ)↔ ψ′(x̄, ȳ))

Suppose T1 = {∀z[θi(x̄, z) → q(x̄, z)] | 1 ≤ i ≤ n}, and let µ(x̄, z) be the disjunction of
θ1(x̄, z), . . . , θn(x̄, z). Then µ is a formula of σ such that µ(x̄, z) �s(σ,F ) {z}. Obtain the set of
formulas T2 of σ and the formula ψ(x̄, ȳ) of σ from T1 and ψ′ respectively by replacing every
atom of the form q(x̄, z) in them by µ(x̄, z). Since classical first-order logic is structural (that
is: its consequence relation is closed under allowed substitutions of formulas for predicates
symbols), (∗) implies that T2 `t ∀ȳ(ϕ(x̄, ȳ) ↔ ψ(x̄, ȳ)). Since the definition of µ entails
that all formulas in T2 are logically valid, this implies that ϕ ≡ ψ. Moreover, ψ(x̄, ȳ) is
Reµ(x̄,z)[ϕ(x̄, ȳ)] ∧

n∧
i=1

µ(x̄, yi). Hence Lemma 21 entails that ψ(x̄, ȳ) �s(σ,F ) {y1, . . . , yn}

(relying on earlier assumption that F (p) 6= ∅ for every predicate p in σ). J
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I Note 22. Theorem 16 is not always correct as is in case σ contains no constant. Take for
example the case where σ is empty. (So the language has ‘=’ as its sole predicate symbol,
and no constants or function symbols.) It is easy to prove that there is no formula ψ of
this language such that ψ �s(σ,F ) Fv(ψ). Hence there is no ψ in this language such that
ψ ≡ x 6= x and ψ �s(σ,F ) {x}, even though obviously x 6= x �(σ,F ) {x} (where F (=) is
{{1}, {2}}). Still, x 6= x is logically equivalent to some formula ψ such that ψ �s(σ,F ) {x}
and x ∈ Fv(ψ) (e.g. ψ := x = y ∧ x 6= x). It is indeed easy to infer from Theorem 16 that in
general, if σ contains no constant and ϕ �(σ,F ) X then there is a formula ψ such that ψ is
logically equivalent to ϕ, ψ �s(σ,F ) {x}, and Fv(ϕ) ⊆ Fv(ψ).

4 Characterization of General Absoluteness

As we saw in the first section, while in database theory the main interest is in formulas which
are domain-independent (i.e. formulas which are safe with respect to their full set of free
variables), in formal number theory (and in computability theory) and in set theory the main
interest has been in absolute formulas. 5 Now in the previous section we have given a general
syntactic characterization of absoluteness: Given a safety signature (σ, F ), a formula ϕ is
(σ, F )-absolute iff there exists a formulas ψ such that ϕ ≡ ψ, and ϕ �s(σ,F ) ∅. However, this
characterization of the property of absoluteness is based in an essential way on the relation
�s(σ,F ) between formulas and sets of variables. Therefore in order to check whether a certain
formula ϕ is absolute using this characterization, one should check on the way with respect
to what sets of variables are the subformulas of ϕ safe. In contrast, in formal number theory
and in set theory a direct syntactic approximation of absoluteness has been used in the form
of what is called in both ∆0-formulas. In this section we generalize the notion of ∆0-formulas
to arbitrary safety signatures, and use the generalized notion for providing a direct syntactic
characterization of (σ, F )-absoluteness. Note that in order to use this characterization one
needs not know anything about the more general binary relation �s(σ,F ).

I Notation 23. For a formula ϕ and a set of variables Z = {z1, . . . , zk}, ∃Z .ϕ denotes the
formula ∃z1, . . . ∃zk.ϕ, and ∀Z .ϕ denotes the formula ∀z1, . . . ∀zk.ϕ.

I Definition 24. Let (σ, F ) be a safety signature. The class ∆(σ,F ) of formulas6 is recursively
defined as follows:
1. p(t1, . . . , tn) ∈ ∆(σ,F ) in case p is an n-ary predicate symbol of σ, and F (p) 6= ∅.
2. If ϕ,ψ ∈ ∆(σ,F ) then so is any boolean combination of them.
3. ∃Z .ϕ1 ∧ ϕ2 ∈ ∆(σ,F ) and ∀Z .ϕ1 → ϕ2 ∈ ∆(σ,F ) in case ϕ2 ∈ ∆(σ,F ), ϕ1 = p(t1, . . . , tn),

where p is an n-ary predicate of σ other than =, and ϕ1 �s(σ,F ) Z, that is: there is
I ∈ F (p) such that:
a. For every z ∈ Z there is i ∈ I such that z = ti.
b. Z ∩ Fv(tj) = ∅ for every j ∈ {1, . . . , n}\I.

Examples

∆(σZF ,FZF ) is exactly the class ∆0 used in set theory. Similarly, ∆(σN ,FN ) is equivalent to
the class ∆0 used in formal number theory. (See the first two examples in Section 2.3.)

5 Actually, absolute formulas may be of interest for databases too, since they can be used for effectively
decidable yes-or-no queries. See [3].

6 This is a proper extension of the class GF of guarded formulas ([2]), in case F is the particular function
which assigns the powerset of {1, ..., n} to every n-ary primitive predicate R of σ.
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I Theorem 25. ϕ �s(σ,F ) ∅ iff there exists a formula ϕ′ ∈ ∆(σ,F ) such that ϕ ≡ ϕ′.

Proof. Obviously, if ϕ′ ∈ ∆(σ,F ) then ϕ′ �s(σ,F ) ∅. Hence the condition is sufficient. In order
to prove that it is also necessary, we need the following lemma:

I Lemma 26. Let �∗(σ,F ) be defined like �s(σ,F ), except that the clause for conjunction is
replaced by:

If ϕ1 �∗(σ,F ) Y1, ϕ2 �∗(σ,F ) Y2, Fv(ϕ1)∩ Y2 = ∅ and ϕ1 is an atomic formula or Y1 = ∅, then
ϕ1 ∧ ϕ2 �∗(σ,F ) Y1 ∪ Y2.

Then for every formula ϕ, ϕ �s(σ,F ) Y iff there is a formula ϕ′ such that ϕ′ �∗(σ,F ) Y and
ϕ ≡ ϕ′.

Proof. Obviously, if ϕ′ �∗(σ,F ) Y then ϕ′ �s(σ,F ) Y . Hence the condition is sufficient. In
order to prove that it is also necessary, it suffices to show that up to logical equivalence,
�∗(σ,F ) abides the condition concerning ∧ used in the definition of �s(σ,F ). So assume e.g.
that ϕ1 �∗(σ,F ) Y1, ϕ2 �∗(σ,F ) Y2 and Fv(ϕ1) ∩ Y2 = ∅. We prove the existence of a formula
ϕ′ such that ϕ1 ∧ ϕ2 ≡ ϕ′ and ϕ′ �∗(σ,F ) Y1 ∪ Y2. The proof is by induction on the structure
of ϕ1:

Assume ϕ1 is an atomic formula. Then ϕ1 ∧ ϕ2 �∗(σ,F ) Y1 ∪ Y2 by the new conjunction
safety clause.
Assume ϕ1 is the formula ψ1 ∨ ψ2 where ψ1 �∗(σ,F ) Y1 and ψ2 �∗(σ,F ) Y1. Since Fv(ϕ1) =
Fv(ψ1) ∪ Fv(ψ2), we know that Fv(ψ1) ∩ Y2 = Fv(ψ2) ∩ Y2 = ∅. Then, by induction
assumption, there exist formulas θ1 and θ2 such that ψ1∧ϕ2 ≡ θ1, ψ2∧ϕ2 ≡ θ2, θ1 �∗(σ,F )
Y1 ∪ Y2 and θ2 �∗(σ,F ) Y1 ∪ Y2. Therefore ϕ1 ∧ ϕ2 ≡ θ1 ∨ θ2 and θ1 ∨ θ2 �∗(σ,F ) Y1 ∪ Y2.
Assume ϕ1 is the formula ψ1 ∧ ψ2 where ψ1 �∗(σ,F ) Z1, ψ2 �∗(σ,F ) Z2, Fv(ψ1) ∩ Z2 = ∅,
Y1 = Z1 ∪ Z2 and ψ1 is an atomic formula or Z1 = ∅, Since Fv(ψ2) ∩ Y2 = ∅, we
get by induction assumption the existence of a formula θ such that ψ2 ∧ ϕ2 ≡ θ and
θ �∗(σ,F ) Z2 ∪ Y2. Since Fv(ψ1) ∩ (Z2 ∪ Y2) = ∅, we get that ϕ1 ∧ ϕ2 ≡ ψ1 ∧ θ and
ψ ∧ θ �∗(σ,F ) Y1 ∪ Y2.
Assume ϕ1 is the formula ¬ψ where ψ �∗(σ,F ) ∅. Then Y1 = ∅ and then ϕ1 ∧ ϕ2 �∗(σ,F )
Y1 ∪ Y2 by the new conjunction safety clause.
Assume ϕ1 = ∃zψ where ψ �∗(σ,F ) Y1 ∪ {z} and z /∈ Y1. In addition, assume w.l.o.g. that
z /∈ Fv(ϕ2). Since Fv(ψ) ∩ Y2 = ∅, we get by induction assumption the existence of a
formula θ such that ψ ∧ ϕ2 ≡ θ and θ �∗(σ,F ) Y1 ∪ Y2 ∪ {z}. Then ϕ1 ∧ ϕ2 ≡ ∃zθ and
∃zθ �∗(σ,F ) Y1 ∪ Y2.

This completes the induction. J

End of the proof of Theorem 25

We show the necessity of the condition by proving a stronger claim: For every formula ϕ
such that ϕ �s(σ,F ) Y there exists a formula ϕ′ ∈ ∆(σ,F ) such that ∃Y ϕ ≡ ϕ′. By Lemma 26,
we only need to prove the latter under the assumption that ϕ �∗(σ,F ) Y . The proof in this
case is by induction on the structure of ϕ:

Assume ϕ is atomic. If Y = ∅ then ϕ ∈ ∆(σ,F ). Otherwise, choosing y ∈ Y , we get
y = y �(σ,F ) ∅, ∃Y (ϕ ∧ y = y) ∈ ∆(σ,F ) and ∃Y ϕ ≡ ∃Y (ϕ ∧ y = y).
Assume ϕ is the formula ψ1 ∨ ψ2 where ψ1 �∗(σ,F ) Y and ψ2 �∗(σ,F ) Y . By induction
assumption, there exists formulas θ1 ∈ ∆(σ,F ) and θ2 ∈ ∆(σ,F ) such that ∃Y ψ1 ≡ θ1 and
∃Y ψ2 ≡ θ2. Then θ1 ∨ θ2 ∈ ∆(σ,F ) and ∃Y ϕ ≡ θ1 ∨ θ2.
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Assume ϕ is ψ1 ∧ ψ2 where ψ1 �∗(σ,F ) Y1, ψ2 �∗(σ,F ) Y2, Fv(ψ1) ∩ Y2 = ∅, Y = Y1 ∪ Y2
and ψ1 is an atomic formula or Y1 = ∅. By induction assumption, there exists a
formula θ2 ∈ ∆(σ,F ) such that ∃Y2ψ2 ≡ θ2. If Y1 = ∅ then, by induction assumption,
there exists a formula θ1 ∈ ∆(σ,F ) such that ψ1 ≡ θ1 and so θ1 ∧ θ2 ∈ ∆(σ,F ) and
∃Y ϕ ≡ θ1 ∧ θ2. Otherwise, if Y1 6= ∅ then ψ1 is an atomic formula, ∃Y1(ψ1 ∧ θ2) ∈ ∆(σ,F )
and ∃Y ϕ ≡ ∃Y1(ψ1 ∧ θ2).
Assume ϕ is the formula ¬ψ where ψ �∗(σ,F ) ∅. Then Y = ∅ and, by induction assumption,
there exists a formula θ ∈ ∆(σ,F ) such that ψ ≡ θ and so ¬θ ∈ ∆(σ,F ) and ϕ ≡ ¬θ.
Assume ϕ = ∃zψ where ψ �∗(σ,F ) Y ∪ {z} and z /∈ Y . By induction assumption, there
exists a formula θ ∈ ∆(σ,F ) such that ∃Y ϕ ≡ ∃Y ∪{z}.ψ ≡ θ.

By Note 11, this completes the proof. J

5 Characterization of Absoluteness in N

Theorem 25 is about general (σ, F )- absoluteness, and so it is not applicable to the notion of
(S, F )-absoluteness, where S is a structure for σ. In this section we prove a similar theorem
for one particular, but very important, case of (S, F )-absoluteness: (N , σN )-absoluteness.

I Note 27. Recall that in Section 2.2.1 it was noted that by a result of [3], relation R on
N is recursively enumerable iff R is definable by a formula of the form ∃y1, . . . , ynψ, where
the formula ψ is (σN , FN )-absolute. It was further observed there that every relation on
N that is defined by a (N , FN )-absolute formula is decidable, and that there are decidable
relations on N that are not definable by any formula ϕ such that ϕ �s(σN ,FN ) ∅. It was left
open whether every decidable relation on N is definable by a (σN , FN )-absolute formula,
and whether every relation which is definable by such a formula is already definable by a
formula ϕ such that ϕ �s(σN ,FN ) ∅. In view of the above-mentioned observations, the next
theorem implies that the answer to the first question is negative, while the answer to the
second is positive.

I Theorem 28. A formula ϕ such that Fv(ϕ) 6= ∅ is (N , σN )-absolute iff there is an
arithmetical bounded formula7 ϕ′ such that ϕ is equivalent in N to ϕ′.

Proof. We assume without loss of generality that for every formula ψ it holds that Fv(ψ) ∩
Bv(ψ) = ∅, and that any two variables that appear in ψ to the right of two different
occurrences of quantifiers are different. For k ∈ N we denote by Nk the structure with
domain {0, 1, . . . , k}, and the interpretations of the relation symbols are the corresponding
reductions of the interpretations of those symbols in N . For an assignment v, a variable u,
and a natural value n, we denote v[u := n] the assignment that agree with v on all variables
except u, and assigns the value n to u.

Given a formula ϕ and a set {x1, . . . , xk} of variables such that {x1, . . . , xk}∩Bv(ϕ) = ∅,
we denote by ϕ≤x1,...,xk the formula Reψ(x̄,z)[ϕ] (Definition 20), where ψ(x̄, z) is z ≤ x1 ∨
. . . ∨ z ≤ xk. The proof of the theorem is based on the following three lemmas:

I Lemma 29. ϕ≤x1,...,xk is logically equivalent to a bounded formula for every formula ϕ.

Proof. This follows immediately from the definitions, and the fact that ∃z.(z ≤ x1∨ . . .∨z ≤
xk) ∧ ψ is logically equivalent to the formula ∃z ≤ x1.ψ ∧ . . . ∧ ∃z ≤ xk.ψ. J

7 See first example in Section 2.3.
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I Lemma 30. Let ϕ be a formula, let {y, x1, . . . , xk} be a set of variables s.t. Bv(ϕ) ∩
{y, x1, . . . , xk} = ∅, and let v be an assignment s.t. v(y) ≤ max(v(x1), . . . , v(xk)). Then the
following holds

N , v � ϕ≤x1,...,xk iff N , v � ϕ≤y,x1,...,xk

Proof. We prove it by a structural induction on ϕ. The only non-trivial case is when ϕ is
of the form ∃z.ψ. In this case ϕ≤x1,...,xk is ∃z.(z ≤ x1 ∨ . . . ∨ z ≤ xk) ∧ ψ≤x1,...,xk . Hence
N , v � ϕ≤x1,...,xk iff (*) there exists n ∈ N such that:

N , v[z := n] � (z ≤ x1 ∨ . . . ∨ z ≤ xk) ∧ ψ≤x1,...,xk

Obviously, v′(y) ≤ max(v′(x1), . . . , v′(xk)) for every assignment v′ that agrees with v on
{y, x1, . . . , xk}. Hence the induction hypothesis for ψ implies that for any such v′:

N , v′ � ψ≤x1,...,xk iff N , v′ � ψ≤y,x1,...,xk . (1)

Also for any such v′, N , v′ � z ≤ y ∨ z ≤ x1 ∨ . . . ∨ z ≤ xk iff N , v′ � z ≤ x1 ∨ . . . ∨ z ≤ xk
(because z 6∈ Bv(ϕ), and so z 6∈ {y, x1, . . . , xn}). This observation and 1 imply that (*) holds
iff there exists n ∈ N such that:

N , v[z := n] � (z ≤ y ∨ z ≤ x1 ∨ . . . ∨ z ≤ xk) ∧ ψ≤y,x1,...,xk

And this is equivalent to: N , v � ϕ≤y,x1,...,xk . J

I Lemma 31. Let {x1, . . . , xk} be a non-empty set of variables, let ϕ be a formula such that
Fv(ϕ) ⊆ {x1, . . . , xk}, and let v be an assignment. Denote by m̃ := max(v(x1), . . . , v(xk)).
Then:

Nm̃, v � ϕ iff N , v � ϕ≤x1,...,xk (2)

Proof. By a structural induction on ϕ. Again the only non-trivial case is when ϕ is of the
form ∃z.ψ. So let v be an assignment, and assume that Nm̃, v � ∃y.ψ. It follows that there
exists n ∈ N , 0 ≤ n ≤ m̃, s.t. Nm̃, v[y := n] � ψ. By the induction hypothesis for ψ and
{y, x1, . . . , xk}, it holds that N , v[y := n] � ψ≤y,x1,...,xk . Denote the assignment v[y := n] by
v′. Since v′(y) = n ≤ m̃ = max(v′(x1), . . . , v′(xk)), N , v[y := n] � ψ≤x1,...,xk by Lemma 30.
Hence N , v � ∃y.(y ≤ x1 ∨ . . .∨ y ≤ xk)∧ψ≤x1,...,xk , that is: N , v � ϕ≤x1,...,xk . To prove the
converse we just repeat the argument in reverse order: Assume that N , v � ϕ≤x1,...,xk . This
means that N , v � ∃y.(y ≤ x1 ∨ . . .∨ y ≤ xk)∧ψ≤x1,...,xk . It follows that there is 0 ≤ n ≤ m̃
s.t. N , v[y := n] � ψ≤x1,...,xk . Using Lemma 30, it follows that N , v[y := n] � ψ≤y,x1,...,xk .
Therefore the induction hypothesis and the fact that m̃ := max(v(x1), . . . , v(xk)) together
imply that Nm̃, v[y := n] � ψ. Hence Nm̃, v � ϕ. J

End of the proof of Theorem 28

Suppose that ϕ �(N ,FN ) ∅, and let Fv(ϕ) = {x1, . . . , xk} where k ≥ 1. Consider the formula
ϕ′ = ϕ≤x1,...,xk . (ϕ′ �sN ∅ by Lemma 29.) We show that

{n̄ ∈ Nk | N , x̄ := n̄ � ϕ} = {n̄ ∈ Nk | N , x̄ := n̄ � ϕ≤x1,...,xk}

Let 〈n1, . . . , nk〉 ∈ Nk, and let v be an assignment that assigns ni to xi for every 1 ≤ i ≤ k.
Since ϕ �(N ,FN ) ∅, N , v � ϕ iff Nmax(n1,...,nk), v � ϕ. By Lemma 31 Nmax(n1,...,nk), v � ϕ iff
N , v � ϕ≤x1,...,xk , and the claim follows. J
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6 Absoluteness in Rudimentary Set Theory

To complete the picture concerning absoluteness, we return in this section to the area in
which this notion has first been introduced: set theory. In Sections 2.2.2 and 2.3 (second
example) we have noted that the notion of (σZF , FZF )-absoluteness is identical to Gödel’s
original notion of absoluteness, and that {ϕ | ϕ �s(σZF ,FZF ) ∅} is a natural extension of the
set of ∆0-formulas in the language of σZF . However, in order to fully exploit the power
of the idea of dependent safety in the framework of set theory, we need to use a language
which is stronger (and more natural) than the official language of ZF . The main feature
of the stronger language, LRST , is that it employs a rich class of set terms of the form
{x | ϕ}. Of course, not every formula ϕ can be used in such a term. The basic idea in [5]
was that from a predicative point of view, one should allow only formulas which are safe
with respect to {x}. Since safety is a semantic notion, again what is used instead in [5] is a
formal approximation �RST . �RST is basically the natural extension of �s(σZF ,FZF ) to the
richer language. However, the definition of that very language depends in turn on that of
�RST . Accordingly, the sets of terms and formulas of LRST , and the relation �RST , are
defined together by a simultaneous induction:

I Definition 32. The language LRST is defined as follows:
Terms:

1. Every variable is a term.
2. If x is a variable, and ϕ is a formula such that ϕ �RST {x}, then {x | ϕ} is a term

(and Fv({x | ϕ}) = Fv(ϕ)− {x}).
Formulas:

1. If t, s are terms than t = s and t ∈ s are atomic formulas.
2. If ϕ and ψ are formulas, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), and ∃xϕ are formulas.

The safety relation �RST :
1. ϕ �RST ∅ if ϕ is atomic.
2. ϕ �RST {x} if ϕ ∈ {x ∈ x, x = t, t = x, x ∈ t}, and x 6∈ Fv(t).
3. ¬ϕ �RST ∅ if ϕ �RST ∅.
4. ϕ ∨ ψ �RST X if ϕ �RST X and ψ �RST X.
5. ϕ ∧ ψ �RST X ∪ Y if ϕ �RST X, ψ �RST Y , and Y ∩ Fv(ϕ) = ∅ or X ∩ Fv(ψ) = ∅.
6. ∃yϕ �RST X − {y} if y ∈ X and ϕ �RST X.

I Theorem 33 ([5]). Every term of LRST with n free variables explicitly defines an n-ary
rudimentary function, and every rudimentary function is defined by some term of LRST .

The two most basic formal set theories in the language LRST are described next.

I Definition 34.
1. RSTm is the first-order theory with equality in the language LRST 8 which has the

following axioms:
Extensionality: ∀z(z ∈ x↔ z ∈ y)→ x = y

Comprehension: ∀x(x ∈ {x | ϕ} ↔ ϕ) if ϕ �RST {x}.
2. RST is the system obtained from RSTm by the addition of the following schema:

∈-induction: (∀x(∀y(y ∈ x→ ϕ{y/x})→ ϕ))→ ∀xϕ

8 LRST has richer classes of terms than those allowed in orthodox first-order systems. In particular: a
variable can be bound in them within a term. The notion of a term being free for substitution should
be extended accordingly. Otherwise the rules/axioms concerning the quantifiers, terms, and equality
remain unchanged.
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I Note 35. The use of ∈-induction seems to be predicatively justified. Therefore RST is the
basic system used in [5]. However, for the results below we use just one very weak corollary
of it: ∀x.x 6∈ x. (It is needed for the new clause x ∈ x �RST {x} in Definition 32.)

I Note 36. RST (or even just RSTm) serves in [5], [6] and [7] as the basis of computational
set theories. By this we mean a theory whose set of closed terms suffices for defining its
minimal model, and can be used to make explicit the potential computational content of set
theories (first suggested and partially demonstrated in [8]). On the other hand, such theories
also suffice (as is shown in [6] and [7]) for developing large portions of what was called by
Feferman in [11] ‘scientifically applicable mathematics’.

I Note 37. Despite the fact that the definition of �RST uses almost exactly the same
principles that underlie that of �s(σZF ,FZF ) (with the slight addition that x ∈ x �RST {x},
while we only have x ∈ x �s(σZF ,FZF ) ∅), the use of abstract set terms induces a significantly
stronger safety relation on the basic language of σZF . The reason is that the fact that
x = t �RST {x} is equivalent in RSTm to the following principle:

If ϕ �RST {y} then ∀y(y ∈ x↔ ϕ) �RST {x} if x 6∈ Fv(ϕ).
(It is not difficult to show that the addition of this clause indeed suffices for getting a system
in the language of ZF which is equivalent to RST .) Nevertheless, the next theorem and its
corollary imply that when it comes to absoluteness, the addition of the abstract set terms
does not provide extra expressive power.

I Theorem 38. Let ψ be a ∆0 formula of σZF (that is, without abstract set terms).
1. If x is a variable, and t is a term which is free for x in ψ, then ψ{t/x} is equivalent in

RST to a ∆0-formula of σZF .
2. If ϕ �RST {x1, . . . , xn} then the formula ∃x1 . . . xn(ϕ ∧ ψ) is equivalent in RST to a

∆0-formula of σZF .

Proof. By a simultaneous induction on the complexity of t and ϕ.
If t is a variable then the claim is obvious.
Suppose t is {y | ϕ}, where ϕ �RST {y}. We prove the claim for t by an internal induction
on the complexity of ψ.

If x is not free in ψ then the claim is obvious.
If ψ is x ∈ x then ψ{t/x} is equivalent in RST to the formula ∃x ∈ x.x ∈ x.
If ψ is x = x then ψ{t/x} is equivalent in RST to the formula ¬∃x ∈ x.x ∈ x.
Suppose ψ is z ∈ x, where z is different from x. We may assume that z is not bound
in ϕ. Then ψ{t/x} is equivalent in RST to ϕ{z/y}. Since ϕ �RST ∅, ϕ is equivalent
in RST to a ∆0-formula by the induction hypothesis. Hence so does ϕ{z/y}.
Suppose ψ is z = x or x = z, where z is a variable different from x. We may assume
that z is not y. Then ψ{t/x} is equivalent in RST to (∀y ∈ z.ϕ) ∧ ¬∃y(ϕ ∧ y 6∈ z).
Since ϕ �RST {y} and ϕ �RST ∅, ϕ and ∃y(ϕ ∧ y 6∈ z) are equivalent in RST to
∆0-formulas by the external induction hypothesis for ϕ. It follows that so is ψ{t/x}.
Suppose ψ is x ∈ z, where z is a variable different from x. Let w be a fresh variable.
Then ψ{t/x} is logically equivalent to ∃w ∈ z.w = t. By the previous case, w = t is
equivalent in RST to a ∆0 formula. Hence so is ψ{t/x}.
If ψ is ¬ψ1 or ψ1 ∧ ψ2, or ψ1 ∨ ψ2, then the claim for ψ follows from the induction
hypothesis for ψ1 and ψ2.
If ψ is of the form ∃z ∈ w.ψ1, where both w and z are different from x, then the claim
for ψ is immediate from the internal induction hypothesis for ψ1.
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Suppose ψ is of the form ∃z ∈ x.ψ1 (where z is different from x). Since t is free for
x in ψ, z does not occur free in ϕ, and we may assume that it does not occur in ϕ

at all. Then ψ{t/x} is equivalent in RST to ∃z(ϕ{z/y} ∧ ψ1{t/x}). Since z does not
occur in ϕ and ϕ �RST {y}, also ϕ{z/y} �RST {z}. Hence by the external induction
hypothesis for ϕ and the internal induction hypothesis for ψ1, ψ{t/x} is equivalent in
RST to a ∆0 formula.

Suppose ϕ is atomic (and so ϕ �RST ∅). Then ϕ is either t1 ∈ t2 or t1 = t2 for some
terms t1 and t2. Since x ∈ y and x = y are ∆0-formulas, it follows by applying the
induction hypotheses for t1 and t2 that ϕ is equivalent to a ∆0-formula. Hence ϕ ∧ ψ is
equivalent to a ∆0-formula whenever ψ is.
Suppose that ϕ is of the form x ∈ x, where x is a variable, Then ϕ �RST {x}, and so we
have to prove that ∃x ∈ x.ψ is equivalent to a ∆0-formula. This is obvious.
Suppose that ϕ is of the form x ∈ t, where x 6∈ Fv(t). Since ϕ �RST {x} in this case, we
have to prove that for every ∆0-formula ψ, ∃x(x ∈ t ∧ ψ) is equivalent to a ∆0-formula.
This follows from the induction hypothesis for t, since the last formula is θ{t/z}, where z
is a fresh variable, and θ is the ∆0-formula ∃x(x ∈ z) ∧ ψ (note that since x 6∈ Fv(t), t is
free for z in θ).
Suppose that ϕ is of the form x = t or t = x, where x is not free in t. Since ϕ �RST {x}
in this case, we have to prove that for every ∆0-formula ψ, ∃x(x = t ∧ ψ) is equivalent
to a ∆0-formula. By changing bound variables, we may assume that t is free for x in ψ.
This and the fact that x 6∈ Fv(t) together imply that ∃x(x = t∧ψ) is logically equivalent
to ψ{t/x}. This formula, in turn, is equivalent in RST to a ∆0-formula by our induction
hypothesis for t.
Suppose ϕ is ¬ϕ1, where ϕ1 �RST ∅ (and so ¬ϕ1 �RST ∅). By induction hypothesis for
ϕ, ϕ is equivalent in RST to a ∆0-formula. Hence so is ¬ϕ ∧ ψ for every ∆0-formula ψ.
Suppose ϕ is ϕ1 ∨ ϕ2, where ϕ1 �RST {x1, . . . , xn} and ϕ2 �RST {x1, . . . , xn} (and so
ϕ �RST {x1, . . . , xn}). Then ∃x1 . . . xk(ϕ ∧ ψ) is logically equivalent to ∃x1 . . . xk(ϕ1 ∧
ψ) ∨ ∃x1 . . . xk(ϕ2 ∧ ψ). Hence the induction hypothesis for ϕ1 and ϕ2 entails that
∃x1 . . . xk(ϕ ∧ ψ) is equivalent in RST to a ∆0-formula whenever ψ is.
Suppose ϕ is ϕ1 ∧ ϕ2, ϕ1 �RST {x1, . . . , xn}, ϕ2 �RST {y1, . . . , yk}, {y1, . . . , yk} ∩
Fv(ϕ1) = ∅ (so ϕ �RST {x1, . . . , xn, y1, . . . , yk}). Then ∃x1 . . . xny1 . . . yk(ϕ ∧ ψ) is
equivalent to ∃x1 . . . xn(ϕ1 ∧ ∃y1 . . . yk(ϕ2 ∧ ψ)). By applying the induction hypothesis
twice, we get that ∃x1 . . . yk(ϕ ∧ ψ) is equivalent in RST to a ∆0-formula whenever ψ is.
Suppose ϕ is ∃yϕ1 where ϕ1 �RST {x1, . . . , xn, y}. Let ψ be a ∆0-formula. Then
∃x1 . . . xn(ϕ ∧ ψ) is logically equivalent to the formula ∃x1 . . . xnz(ϕ1{z/y} ∧ ψ), where
z is a fresh variable. Since ϕ1{z/y} �RST {x1, . . . , xn, z}, the induction hypothesis
implies that ∃x1 . . . xnz(ϕ1{z/y} ∧ ψ) is equivalent in RST to a ∆0-formula. Hence so is
∃x1 . . . xn(ϕ ∧ ψ). J

I Corollary 39. If ϕ �RST ∅ then ϕ is equivalent in RST to a ∆0-formula of σZF .

I Note 40. On the other hand, if X 6= ∅, then it can happen that ϕ �RST X, but θ 6�RST X,
where θ is the ∆0-formula to which ϕ is equivalent according to the construction given in
the last proof. Thus if ϕ is x = {y}, then θ is the y ∈ x∧ ∀z ∈ x.z = y, so θ 6�RST {x}, even
though ϕ �RST {x}. This problem cannot be solved by adding to the definition of �RST
the clause mentioned in Note 37, because ∀y(y ∈ x↔ ϕ) is not necessarily a ∆0-formula in
case ϕ is. From the above theorem it follows that it is equivalent in RST to a ∆0-formula θ,
but then again there seems to be no guarantee that θ �RST {x}.

CSL 2018



8:16 Safety, Absoluteness, and Computability

7 Conclusion and Further Research

We have shown that the syntactic framework developed in [3, 5] for the semantic notions
of dependent safety and absoluteness is complete in the case of general first-order logic in
languages without function symbols. Therefore it promises to be rather adequate for the
general theory of constructibility, decidability, and computability envisaged in [3]. The next
stages of this research program will involve the following goals:
1. Extending the general theory of dependent safety for languages with function symbols.
2. The completeness result given in this paper is with respect to the class of all structures

for a given signature. However, frequently we are mainly interested only with a subclass
of that class. two particularly important cases for which an extension of the general
theory developed here is needed are:
a. The class of finite models.
b. The class of the models of some given theory.

3. For computability theory we might need to restrict our attention to specific central
structures. Thus in section (5) we characterized the absolute formulas of the important
structure (N , FN ). It is not clear whether the same can be done for other basic important
structures, like the structure of hereditarily finite sets HF = (HF, 〈∈〉) (where ∈ has its
usual meaning, and x ∈ y is safe with respect to {x}).

4. Providing concrete applications of our results in specific areas. This includes:
Database theory (e.g. Datalog extended with arithmetic).
MKM (Mathematical Knowledge Management), in particular: the formalization of
scientifically applicable mathematics in a type-free, predicative setting ([5]).
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Abstract
Several type systems have been proposed to statically control the time complexity of lambda-
calculus programs and characterize complexity classes such as FPTIME or FEXPTIME. A first
line of research stems from linear logic and restricted versions of its !-modality controlling duplica-
tion. A second approach relies on the idea of tracking the size increase between input and output,
and together with a restricted recursion scheme, to deduce time complexity bounds. However
both approaches suffer from limitations : either a limited intensional expressivity, or linearity
restrictions. In the present work we incorporate both approaches into a common type system, in
order to overcome their respective constraints. Our system is based on elementary linear logic
combined with linear size types, called sEAL, and leads to characterizations of the complexity
classes FPTIME and 2k-FEXPTIME, for k >= 0.
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1 Introduction

Controlling the time complexity of programs is a crucial aspect of program development.
Complexity analysis can be performed on the overall final program and some automatic
techniques have been devised for this purpose. However, if the program does not meet our
expected complexity bound it might not be easy to track which subprograms are responsible
for the poor performance and how they should be rewritten in order to improve the global
time bound. Can one instead investigate some methodologies to program while staying
in a given complexity class? Can one carry such program construction without having to
deal with explicit annotations for time bounds? These are some of the questions that have
been explored by implicit computational complexity, a line of research which defines calculi
and logical systems corresponding to various complexity classes, such as FP, FEXPTIME,
FLOGSPACE . . .

A first success in implicit complexity was the recursion-theoretic characterization of FP [9].
This work on safe recursion leads to languages for polynomial time [18], for oracle functionals
or for probabilistic computation [13, 25]. Among the other different approaches of implicit
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complexity one can mention two important threads of work. The first one is issued from linear
logic, which provides a decomposition of intuitionistic logic with a modality, !, accounting for
duplication. By designing variants of linear logic with weak versions of the ! modality one
obtains systems corresponding to different complexity classes, like light linear logic (LLL)
for the class FP [15] and elementary linear logic (ELL) for the classes k-FEXPTIME, for
k ≥ 0. [15, 2, 14]. These logical systems can be seen as type systems for some variants of
lambda-calculi. A key feature of these systems, and the main ingredient for proving their
complexity properties, is that they induce a stratification of the typed program into levels.
We will thus refer to them as level-based systems. Their advantage is that they deal with a
higher-order language, and that they are also compatible with polymorphism. Unfortunately
from a programming point of view they have a critical drawback: only few and very specific
programs are actually typable, because the restrictions imposed to recursion by typing
are in fact very strong... A second thread of work relies on the idea of tracking the size
increase between the input and the output of a program. This approach is well illustrated by
Hofmann’s Non-size-increasing (NSI) type system [19] : here the types carry information
about the input/output size difference, and the recursion is restricted in such a way that
typed programs admit polynomial time complexity. An important advantage with respect
to LLL is that the system is algorithmically more expressive, that is to say that far more
programs are typable. This has triggered a fertile research line on type-based complexity
analysis using ideas of amortized cost analysis [20, 17, 16]. Some aspects of higher-order have
been adressed [22] but note that this approach deals with complexity analysis and not with
the characterization of complexity classes. In particular it does not suggest disciplines to
program within a given complexity class. A similar idea is also explored by the line of work
on quasi-interpretations [10, 4], with a slightly different angle : here the kind of dependence
between input and output size can be more general but the analysis is more of a semantic
nature and in particular no type system is provided to derive quasi-interpretations. The
type system d`T of [3] can be thought of as playing this role of describing the dependence
between input and output size, and it allows to derive time complexity bounds, even though
these are not limited to polynomial bounds. Altogether we will refer to these approaches
as size-based systems. However they also have a limitation: characterizations of complexity
classes have not been obtained for full-fledged higher-order languages, but only for linear
higher-order languages, that is to say languages in which functional arguments have to be
used at most once (as in [19, 4]).

Problematic and methodology. So on the one hand level-based systems manage higher-
order but have a poor expressivity, and on the other hand sized-based systems have a
good expressivity but do not characterize complexity classes within a general higher-order
language. . . On both sides some attempts have been made to repair these shortcomings but
only with limited success: in [6] for instance LLL is extended to a language with recursive
definitions, but the main expressivity problem remains; in [4] quasi-interpretations are defined
for a higher-order language, but with a linearity condition on functional arguments. The goal
of the present work is precisely to improve this situation by reconciliating the level-based
and the size-based approaches. From a practical point of view we want to design a system
which would bring together the advantages of the two approaches. From a fundamental point
of view we want to understand how the levels and the input/output size dependencies are
correlated, and for instance if one of these two characteristics subsumes the other one.

One way to bridge these two approaches could be to start with a level-based system such
as LLL, and try to extend it with more typing rules so as to integrate in it some size-based
features. However a technical difficulty for that is that the complexity bounds for LLL and
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variants of this system are usually obtained by following specific term reduction strategies
such as the level-by-level strategy. Enriching the system while keeping the validity of such
reduction strategies turns out to be very intricate. For instance this has been done in [6]
for dealing with recursive definitions with pattern-matching, but at the price of technical
and cumbersome reasonings on the reduction sequences. Our methodology to overcome this
difficulty in the present work will be to choose a variant of linear logic for which we can
prove the complexity bound by using a measure which decreases for any reduction step. So
in this case there is no need for specific reduction strategy, and the system is more robust to
extensions. For that purpose we use elementary linear logic (ELL), and more precisely the
elementary lambda-calculus studied in [24].

Our language. Let us recall that ELL is essentially obtained from linear logic by dropping
the two axioms !A( A and !A(!!A for the ! functor (the co-unit and co-multiplication of
the comonad). Basically, if we consider the family of types W (!iW (where W is a type for
binary words), the larger the integer i, the more computational power we get... This results in
a system that can characterize the classes k-FEXPTIME, for k ≥ 0 [2]. The paper [24] gives
a reformulation of the principles of ELL in an extended lambda-calculus with constructions
for !. It also incorporates other features (references and multithreading) which we will not
be interested in here. Our idea will be to enrich the elementary lambda-calculus by a kind of
bootstrapping, consisting in adding more terms to the “basic” type W ( W. For instance we
can think of giving to this type enough terms for representing all polynomial time functions.
The way we implement this idea is by using a second language. We believe that several
equivalent choices could be made for this second language, and here we adopt for simplicity
a variant of the language d`T from [3], a descendant of previous work on linear dependent
types [23]. This language is a linear version of system T, that is to say a lambda-calculus
with recursion, with types annotated with size expressions. Actually the type system of our
second language can be thought of as a linear cousin of sized types [21, 1] and we call it
s`T. So on the whole our global language can be viewed as a kind of two-layer system, the
lower one used for tuning first-order intensional expressivity, and the upper one for dealing
with higher-order computation and non-linear use of functional arguments. We will call it
sEAL, for sized Elementary affine logic typed λ-calculus. We do not include polymorphism
in sEAL for the simplicity of exposition, but we are convinced that our results could be
adapted to the polymorphic extension.

Roadmap. We will first define the language s`T of sized linear types and investigate its
properties (Sect. 2). Then we will recall the elementary lambda-calculus, define our enriched
calculus sEAL, describe some examples of programs and study the reduction properties of
this calculus (Sect. 3). After that we will establish the complexity results (Sect. 4).

2 Presentation of s`T and Control of the Reduction Procedure

We present s`T which is a linear λ-calculus with constructors for base types and a constructor
for high-order primitive recursion. Types are enriched with a polynomial index describing
the size of the value represented by a term, and this index imposes a restriction on recursions.
With this, we are able to derive a weight on terms in order to control the number of reduction
steps.

CSL 2018
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if(V, V ′) tt → V (λx.t) V → t[V/x]
if(V, V ′) ff → V ′ let x⊗ y = V ⊗ V ′ in t → t[V/x][V ′/y]

ifn(V, V ′) zero → V ′ ifn(V, V ′) succ(W ) → V W

itern(V, V ′) zero → V ′ itern(V, V ′) succ(W ) → itern(V, V V ′) W
ifw(V0, V1, V

′) ε → V ′ ifw(V0, V1, V
′) si(W ) → Vi W

iterw(V0, V1, V
′) ε → V ′ iterw(V0, V1, V

′) si(W ) → iterw(V0, V1, Vi V
′) W

Figure 1 Base rules for s`T.

2.1 Syntax of s`T and Type System
I Definition 1 (Substitution). For an object t with a notion of free variable and substitution
we write t[t′/x] the term t in which free occurrences of x have been replaced by t′.

Terms. Terms and values of s`T are defined by the following grammars :
t := x | λx.t | t t′ | t⊗ t′ | let x⊗ y = t in t′ | zero | succ(t) | ifn(t, t′) | itern(V, t) | ε

| s0(t) | s1(t) | ifw(t0, t1, t′) | iterw(V0, V1, t) | tt | ff | if(t, t′)
V := x | λx.t | V ⊗ V ′ | zero | succ(V ) | ifn(V, V ′) | itern(V, V ′) | ε | s0(V ) | s1(V )

| ifw(V0, V1, V
′) | iterw(V0, V1, V

′) | tt | ff | if(V, V ′)
We define free variables and free occurrences as usual and we work up to α-renaming.

In the following, we will often use the notation si to regroup the cases s0 and s1. Here, we
choose the alphabet {0, 1} for simplification, but we could have taken any finite alphabet Σ
and in this case, the constructors ifw and iterw would need a term for each letter.

The definitions of the constructors will be more explicit with their reductions rules and
their types. For intuition, the constructor ifn(t, t′) can be seen as λn.match n with succ(n′)
7→ t n′ | 0 7→ t′, and the constructor itern(V, t) is such that itern(V, t) n→∗ V n t, if n is
the coding of the integer n, that is succn(zero).

Reductions. Base reductions in s`T are given by the rules described in Figure 1.
Note that in the iterw rule, the order in which we apply the steps functions is the reverse

of the one for iterators we see usually. In particular, it does not correspond to the reduction
defined in [3]. This is not a problem since we can compute the mirror of a word and the
subject reduction is easier to prove with this definition. Those base reductions can be applied
in contexts C defined by the following grammar : C := [] | C t | V C | C ⊗ t | t ⊗ C |
let x ⊗ y = C in t | succ(C) | ifn(C, t) | ifn(t, C) | itern(V,C) | si(C) | ifw(C, t, t′) |
ifw(t, C, t′) | ifw(t, t′, C) | iterw(V0, V1, C) | if(C, t) | if(t, C).

Linear Types with Sizes. Base types are given by the following grammar :
U := WI | NI | B I, J, · · · := a | n ∈ N∗ | I + J | I · J
N∗ is the set of non-zero integers. I represents an index and a represents an index variable.

We define for indexes the notions of free variables and free occurrences in the usual way and
we work up to renaming of variables. We also define the substitution of a free variable in
an index in the usual way. Then, we can generalize substitution to types, with for example
NI [J/a] = NI[J/a].

The intended meaning is that closed values of type NI (resp. WI) will be integers (resp.
words) of size (resp. length) at most I.

I Definition 2 (Order on Indexes). For two indexes I and J , we say that I ≤ J if for any
valuation φ mapping free variables of I and J to non-zero integers, we have Iφ ≤ Jφ. Iφ is I
where free variables have been replaced by their value in φ, thus Iφ is a non-zero integer.
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We now consider that if I ≤ J and J ≤ I then I = J (ie we take the quotient set for the
equivalence relation). Remark that by definition of indexes, we always have 1 ≤ I. For two
indexes I and J , we say that I < J if for any valuation φ mapping free variables of I and J
to non-zero integers, we have Iφ < Jφ. This is not equivalent to I ≤ J and I 6= J , as we can
see with a ≤ a · b.

Here we only consider polynomial indexes. This is a severe restriction w.r.t. linear
dependent types, used for example in [12, 3], in which indexes can use any set of functions
described by some rewrite rules. But in the present setting this is sufficient because we only
want s`T to characterize polynomial time computation.

I Definition 3. Types are given by the grammar D,E, · · · := U | D ( D′ | D ⊗D′

We define a subtyping order @ on types given by the following rules :
B @ B and if I ≤ J then NI @ NJ and WI @ WJ .
D1 ( D′1 @ D2 ( D′2 iff D2 @ D1 and D′1 @ D′2.
D1 ⊗D′1 @ D2 ⊗D′2 iff D1 @ D2 and D′1 @ D′2.

I Definition 4 (Contexts). Variables contexts are denoted Γ, with the shape Γ = x1 :
D1, . . . , xn : Dn. We say that Γ @ Γ′ when Γ and Γ′ have exactly the same variables, and
for x : D in Γ and x : D′ in Γ′ we have D @ D′. Ground variables contexts, denoted dΓ,
are variables contexts in which all types are base types. We write Γ = Γ′, dΓ to denote the
decomposition of Γ into a ground variable context dΓ and a variable context Γ′ in which
types are non-base types. For a variable context without base types, we note Γ = Γ1,Γ2
when Γ is the concatenation of Γ1 and Γ2, and Γ1 and Γ2 do not have any common variables.

We denote proofs as π C Γ ` t : D and we define an index ω(π) called the weight for such a
proof. The idea is that the weight will be an upper-bound for the number of reduction steps
of t. Note that since ω(π) is an index, this bound can depend of some index variables. The
rules for those proofs are described by Figure 2. The rules for words and booleans can be
found in the appendix 6.1, they can be deduced from the rules for integers. Observe that this
system enforces a linear usage of variables of non-base types (see e.g. the rule for application
in Fig. 2). Note that in the rule for itern described in Figure 2, the index variable a must
be a fresh variable.

Example in s`T. We sketch here the multiplication in s`T, other examples can be found in
the appendix 6.3. The multiplication can be written mult = λx.itern(λy.add x y, zero) :
NI ( NJ ( NI·J , if we are given the term add : NI ( NJ ( NI+J .

x : NI , y : NI·a ` add x y : NI·a+I

x : NI ` λy.add x y : NI·a ( NI·a[a+ 1/a] x : NI ` zero : NI

x : NI ` itern(λy.add x y, zero) : NJ ( NI·J

2.2 Subject Reduction and Upper Bound
In order to prove the subject reduction for s`T and that the weight is a bound on the
number of reduction steps of a term, we give some important intermediate lemmas. Other
lemmas can be found in the appendix 6.2, and more details are available in [7], as for
other sections in this paper. First, we show that values are indeed linked to normal
forms. In particular, this theorem shows that a value of type integer is indeed of the form
succ(succ(. . . (succ(zero)) . . . )). This imposes that in this call-by-value calculus, when an
argument is of type N, it is the encoding of an integer.
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D @ D′
πC

Γ, x : D ` x : D′
ω(π) = 1

σ C Γ, x : D ` t : D′
πC

Γ ` λx.t : D ( D′
ω(π) = 1 + ω(σ)

σ1 C Γ1, dΓ ` t : D′ ( D σ2 C Γ2, dΓ ` t′ : D′
πC

Γ1,Γ2, dΓ ` t t′ : D
ω(π) = ω(σ1) + ω(σ2)

σ2 C Γ2, dΓ ` t′ : D′ σ1 C Γ1, dΓ ` t : D
πC

Γ1,Γ2, dΓ ` t⊗ t′ : D ⊗D′
ω(π) = ω(σ1) + ω(σ2) + 1

σ2 C Γ2, dΓ, x : D, y : D′ ` t′ : D′′ σ1 C Γ1, dΓ ` t : D ⊗D′
πC

Γ1,Γ2, dΓ ` let x⊗ y = t in t′ : D′′
ω(π) = ω(σ1) + ω(σ2)

πC
Γ ` zero : NI ω(π) = 0

J + 1 ≤ I σ C Γ ` t : NJ

πC
Γ ` succ(t) : NI

ω(π) = ω(σ)

σ1 C Γ1, dΓ ` t : NI ( D σ2 C Γ2, dΓ ` t′ : D
πC

Γ1,Γ2, dΓ ` ifn(t, t′) : NI ( D
ω(π) = ω(σ1) + ω(σ2) + 1

D @ E E[I/a] @ F

σ1 C dΓ ` V : D ( D[a+ 1/a]
E @ E[a+ 1/a]

σ2 C Γ, dΓ ` t : D[1/a]
πC

Γ, dΓ ` itern(V, t) : NI ( F

ω(π) = I + ω(σ2) + I · ω(σ1)[I/a]

Figure 2 Type system for s`T.

I Theorem 5. Let t be a term in s`T, if t is closed and has a typing derivation ` t : D then
t is normal if and only if t is a value V.

Another important lemma is the one for subtyping.

I Lemma 6 (Subtyping). If π C Γ ` t : D then for all Γ′, D′ such that D @ D′ and Γ′ @ Γ,
we have a proof π′ C Γ′ ` t : D′ with ω(π′) ≤ ω(π)

This lemma shows that we do not need an explicit rule for subtyping and subtyping does
not harm the upper bound derived from typing. Moreover, this lemma is important in order
to substitute variables, since the axiom rule allows subtyping.

We can now express the subject-reduction of the calculus and the fact that the weight of
a proof strictly decreases during a reduction.

I Theorem 7. Let τ C Γ ` t0 : D, and t0 → t1, then there is a proof τ ′ C Γ ` t1 : D such
that ω(τ ′) < ω(τ).

The proof of this theorem can be found in [7]. The main difficulty is to prove the statement
for base reductions. Base reductions that induce a substitution, like the usual β reduction,
are proved by a substitution lemma. The other interesting cases are the rules for iterators.
For such a rule, the subject reduction is given by a good use of the fresh variable given in
the typing rule.

As the indexes can only define polynomials, the weight of a sequent can only be a
polynomial on the index variables. And so, in s`T, we can only define terms that work in
time polynomial in their inputs.
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Polynomial Indexes and Degree. For the following section on the elementary affine logic,
we need to define a notion of degree of indexes and explicit some properties of this notion.

I Definition 8. The indexes can be seen as multi-variables polynomials, and we can define
the degree of an index I by induction on I.

• ∀n ∈ N∗, d(n) = 0 • For an index variable a, d(a) = 1
• d(I + J) = max(d(I), d(J)) • d(I · J) = d(I) + d(J).

This definition of degree is primordial for the control of reductions in sEAL, that we
present in the following section.

3 Elementary Affine Logic and Sizes

We work on an elementary affine lambda calculus based on [24] without multithreading and
side-effects, that we present here. In order to solve the problem of intensional expressivity
of this calculus, we enrich it with constructors for integers, words and booleans, and some
iterators on those types following the usual constraint on iteration in elementary affine logic
(EAL). Then, using the fact that the proof of correctness in [24] is robust enough to support
functions computable in polynomial time with type N ( N (see Section 6.4 in the appendix),
we enrich EAL with the polynomial time calculus defined previously. We call this new
language sEAL (EAL with sizes). More precisely, we add the possibility to use first-order
s`T terms in this calculus in order to work on those base types, particularly we can then do
controlled iterations for those types. We then adapt the measure used in [24] to sEAL to
find an upper-bound on the number of reductions for a term.

3.1 An EAL-Calculus
First, let us present a λ-calculus for the elementary affine logic. In this calculus, any sequence
of reduction terminates in elementary time. The keystone of this proof is the use of the
modality “!”, called bang, inspired by linear logic. In order to have this bound, there are
some restrictions in the calculus like linearity (or affinity if we allow weakening) and an
important notion linked with the “!” is used, the depth. We follow the presentation from [24]
and we encode the usual restrictions in a type system.

Syntax. Terms are given by the grammar: M := x | λx.M |M M ′ |!M | let !x = M in M ′

The constructor let !x = M in M ′ binds the variable x in M ′. We define as usual the
notion of free variables, free occurrences and substitution.
The semantic of this calculus is given by the two following rules

(λx.M) M ′ →M [M ′/x] let !x =!M in M ′ →M ′[M/x].
Those rules can be applied in any contexts.

Type System. We add to this calculus a polymorphic type system that also restrains the
possible terms we can write. Types are given by the grammar T := α | T ( T ′ |!T | ∀α.T

I Definition 9 (Contexts). Linear variables contexts are denoted Γ, with the shape Γ =
x1 : T1, . . . , xn : Tn. We write Γ1,Γ2 the disjoint union between Γ1 and Γ2. Global variables
contexts are denoted ∆, with the shape ∆ = x1 : T1, . . . , xn : Tn, y1 : [T ′1], . . . yn : [T ′m]. We
say that [T] is a discharged type, as we could see in light linear logic [15, 26]. When we need
to separate the discharged types from the others, we will write ∆ = ∆′′, [∆′]. In this case, if
[∆′] = y1 : [T ′1], . . . , ym : [T ′m], then we note ∆′ = y1 : T ′1, . . . , ym : T ′m.
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(Lin Ax)
Γ, x : T | ∆ ` x : T

(Glob Ax)
Γ | ∆, x : T ` x : T

Γ, x : T | ∆ `M : T ′
(λ)

Γ | ∆ ` λx.M : T ( T ′
Γ | ∆ `M : T ′ ( T Γ′ | ∆ `M ′ : T ′

(App)
Γ,Γ′ | ∆ `M M ′ : T

∅ | ∆ `M : T
(! Intro)

Γ | ∆′, [∆] `!M : !T
Γ′ | ∆ `M : !T Γ | ∆, x : [T ] `M ′ : T ′

(! Elim)
Γ,Γ′ | ∆ ` let !x = M in M ′ : T ′

Γ | ∆ `M : T α fresh in Γ, ∆
(∀ Intro)

Γ | ∆ `M : ∀α.T
Γ | ∆ `M : ∀α.T

(∀ Elim)
Γ | ∆ `M : T [T ′/α]

Figure 3 Type system for the EAL-calculus.

Typing judgments have the shape Γ | ∆ `M : T .
The rules are given in Figure 3. Observe that all the rules are multiplicative for Γ, and

the “! Intro” rule erases linear contexts, non-discharged types and transforms discharged
types into usual types. With this, we can see that some restrictions appears in a typed term.
First, in λx.M , x occurs at most once in M , and moreover, there is no “! Intro” rule behind
the axiom rule for x. Then, in let !x = M in M ′, x can be duplicated, but there is exactly
one “! Intro” rule behind each axiom rule for x. For example, with this type system, we can
not type terms like λx.!x, λf, x.f (f x) or let !x = M in x.

With this type system, we obtain as a consequence of the results exposed in [24] that
any sequence of reductions of a typed term terminates in elementary time. This proof relies
on the notion of depth linked with the modality “!” and a measure on terms bounding the
number of reduction for this term. We will adapt those two notions in the following part on
sEAL, but for now, let us present some terms and encoding in this EAL-calculus.

Examples of Terms in EAL and Church Integers. First, a useful term proving the functori-
ality of ! : fonct = λf, x.let !g = f in let !y = x in !(g y) : ∀α, α′.!(α( α′) (!α(!α′.

Integers can be encoded in this calculus, using the type N = ∀α.!(α ( α) (!(α ( α).
For example, 3 is described by the term 3 = λf.let !g = f in !(λx.g (g (g x))) : N.

With this encoding, addition and multiplication can be defined, with type N ( N ( N.
add = λn,m, f.let !f ′ = f in let !g = n !f ′ in let !h = m !f ′ in !(λx.h (g x))
mult = λn,m, f.let !g = f in n(m !g)

And finally, one can also define an iterator using integers.
iter = λf, x, n.fonct (n f) x : ∀α.!(α ( α) (!α ( N (!α with iter !M !M ′ n →∗
!(Mn M ′).

Intensional Expressivity. Those examples show that this calculus suffers from limitation.
First, we need to work with Church integers, because of a lack of data structure. Furthermore,
we need to be careful with the modality, and this can be sometimes a bit tricky, as one can
remark with the addition. And finally if we want to do an iteration, we are forced to work
with types with bangs. This implies that each time we need to use an iteration, we are forced
to add a bang in the final type. Typically this prevents from iterating a function which
has itself been defined by iteration. It has been proved [5] that polynomial and exponential
complexity classes can be characterized in this calculus, by fixing types. For example, with
a type for words W and booleans B we have that !W (!!B characterizes polynomial time
computation. However, because of the restrictions mentioned above some natural polynomial
time programs cannot be typed with the type !W (!!B. We say that this calculus has a
limited intensional expressivity. One goal of this paper is to try to lessen this problem, and
for that, we now present an enriched version of this calculus, sEAL, using the language s`T.
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3.2 Syntax and Type System for sEAL
Notation. Let us first give some notations on terms and vectors.

I Definition 10 (Applications). For an object with a notion of application M and an integer
n, we write MnM ′ to denote n applications of M to M ′. In particular, M0M ′ = M ′

We also define for a word w, given objects Ma for all letter a, MwM ′. This is defined by
induction on words with M εM ′ = M ′ and Maw′M ′ = Ma (Mw′M ′)

I Definition 11 (Vectors). In the following we will work with vectors of Nn+1, for n ∈
N. We introduce here some notations on those vectors. We usually denote vectors by
µ = (µ(0), . . . , µ(n)). When there is no ambiguity with the value of n, for 0 ≤ k ≤ n,
we note 1k the vector µ with µ(k) = 1 and ∀i, 0 ≤ i ≤ n, i 6= k, µ(i) = 0. We extend
this notation for k > n. In this case, 1k is the zero-vector. Let µ0 ∈ Nn+1 and µ1 ∈
Nm+1. We denote µ = (µ0, µ1) ∈ Nm+n+2 the vector with ∀i, 0 ≤ i ≤ n, µ(i) = µ0(i)
and ∀i, 0 ≤ i ≤ m,µ(i + n + 1) = µ1(i). Let µ0, µ1 ∈ Nn+1. We write µ0 ≤ µ1 when
∀i, 0 ≤ i ≤ n, µ0(i) ≤ µ1(i). And we write µ0 < µ1 when µ0 ≤ µ1 and µ0 6= µ1. We also
write µ0 ≤lex µ1 for the lexicographic order on vectors. For k ∈ N, when there is no ambiguity
with the value of n, we write k̃ the vector µ such that ∀i, 0 ≤ i ≤ n, µ(i) = k.

Terms and Reductions. Terms of sEAL are defined by the following grammar :
M := x | λx.M |M M ′ |!M | let !x = M in M ′ |M ⊗M ′ | let x⊗ y = M in M ′

| zero | succ(M) | ifn(M,M ′) | iter!
N (M,M ′) | tt | ff | if(M,M ′) | ε | s0(M) | s1(M)

| ifw(M0,M1,M) | iter!
W (M0,M1,M) | [λxn . . . x1.t](M1, . . . ,Mn)

Note that the t used in [λxn . . . x1.t](M1, . . . ,Mn) refers to terms defined in s`T. This
notation means that we call the function t defined in s`T with arguments M1, . . . ,Mn.
Moreover, n can be any integer, even 0. Constructors for iterations directly follow from the
ones we can define usually in EAL for Church integers or Church words, as we could see
in the previous section on EAL. Once again, we often write si to denote s0 or s1, and the
choice of the alphabet {0, 1} is arbitrary, we could have used any finite alphabet. As usual,
we work up to α-isomorphism and we do not explicit the renaming of variables.

I Definition 12 (Base type values). We note v for base type values, defined by the grammar
v := zero | succ(v) | ε | si(v) | tt | ff.

In particular, if n is an integer and w is a binary word, we note n for the base value
succn(zero), and w = w1 · · ·wn for the base value sw1(. . . swn(ε) . . . ). We define the size
|v| of v by |zero| = |ε| = |tt| = |ff| = 1 and |succ(v)| = |si(v)| = 1 + |v|.

Base reductions are defined by the rules given in Figure 4. Note that for some of these
rules, for example the last one, v can denote either the s`T term or the sEAL term.

Those reductions can be extended to any contexts, and so we have M → M ′ if there
is a context C and a base reduction M0 → M ′0 such that M = C(M0) and M ′ = C(M ′0).
However, the scope of those contexts does not allow context reduction in s`T. For reduction
in s`T, we use the last reduction rule.

Types. Types are usual types for intuitionistic linear logic enriched with some base types
for booleans, integers and words. Base types are given by the grammar : A := B | N |W.
Types are given by the grammar : T := A | T ( T ′ |!T | T ⊗ T ′

I Definition 13 (Contexts and Type System). Linear variables contexts are denoted Γ and
global variables contexts are denoted ∆. They are defined in the same way as in the previous
part on the EAL-calculus. Typing judgments have the usual shape of dual contexts judgments
π C Γ | ∆ `M : T . For such a proof π, and i ∈ N, we define a weight ωi(π) ∈ N.
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(λx.M) M ′ →M [M ′/x] let !x =!M in M ′ →M ′[M/x]
let x⊗ y = M ⊗M ′ in N → N [M/x][M ′/y] ifn(M,M ′) zero →M ′

ifn(M,M ′) succ(N) →M N iter!
N (!M, !M ′) n →!(Mn M ′)

ifw(M0,M1,M) ε →M ifw(M0,M1,M) si(N) →Mi N

iter!
W (!M0, !M1, !M ′) w →!(Mw M ′) if(M,M ′) tt →M

if(M,M ′) ff →M ′ if t→ t′ in s`T, [t]() → [t′]()
[λxn . . . x1.t](M1, . . . ,Mn−1, v) → [λxn−1 . . . x1.t[v/xn]](M1, . . . ,Mn−1)

[v]() → v

Figure 4 Base rules for sEAL.

πC
Γ, x : T | ∆ ` x : T µn(π) = 10

πC
Γ | ∆, x : T ` x : T µn(π) = 10

σ C Γ, x : T | ∆ `M : T ′
πC

Γ | ∆ ` λx.M : T ( T ′
µn(π) = µn(σ) + 10

σ C Γ | ∆ `M : T ′ ( T τ C Γ′ | ∆ `M ′ : T ′
πC

Γ,Γ′ | ∆ `M M ′ : T
µn(π) = µn(σ) + µn(τ) + 10

σ C ∅ | ∆ `M : T
πC

Γ | ∆′, [∆] `!M : !T
µn(π) = (1, µn−1(σ))

σ C Γ′ | ∆ `M : !T τ C Γ | ∆, x : [T ] `M ′ : T ′
πC

Γ,Γ′ | ∆ ` let !x = M in M ′ : T ′
µn(π) = µn(σ) + µn(τ) + 10

σ C Γ | ∆ `M : T τ C Γ′ | ∆ `M ′ : T ′
πC

Γ,Γ′ | ∆ `M ⊗M ′ : T ⊗ T ′
µn(π) = µn(σ) + µn(τ) + 10

σ C Γ′ | ∆ `M : T ⊗ T ′ τ C Γ, x : T, y : T ′ | ∆ `M ′ : T ′′
πC

Γ,Γ′ | ∆ ` let x⊗ y = M in M ′ : T ′′
µn(π) = µn(σ) + µn(τ) + 10

Figure 5 Type and measure for generic constructors in sEAL.

I Definition 14 (Measure and Depth). For all k, n ∈ N, we note µkn(π) = (ωk(π), . . . , ωn(π)),
with the convention that if k > n, then µkn(π) is the null-vector. We write µn(π) to denote
the vector µ0

n(π). In the definitions given in the type system, instead of defining ωi(π) for all
i, we define µn(π) for all n, from which one can recover the weights. We will often call µn(π)
the measure of the proof π. The depth of a proof (or a typed term) is the greatest integer i
such that ωi(π) 6= 0. It is always defined for any proof.

The idea behind the definition of measure is to show that with a reduction step, this
measure strictly decreases for the lexicographic order and we can control the growing of the
weights. The rules are given on Figures 5, 6 and 7, and the rules for words and booleans can
be found in the appendix 6.5.

The rules given in figure 5 represent the usual constructors in EAL. Those rules impose
some restrictions in the use of variables similar to the one described in the previous section
on classical EAL. Remark that the constructors for base types values such as zero and
succ given in Figure 6 influence the weight only in position 1 and not 0 like the others
constructors.

For the rule given by Figure 7, some explanations are necessary. The premise for t is
a proof τ in s`T. In this proof, we add on each base types Ai an index, more precisely an
index variable ai. There is here an abuse of notation, since in s`T there is no indexes on the
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πC
Γ | ∆ ` zero : N µn(π) = 11

σ C Γ | ∆ `M : N
πC

Γ | ∆ ` succ(M) : N
µn(π) = µn(σ) + 11

σ C Γ | ∆ `M : N ( T τ C Γ′ | ∆ `M ′ : T
πC

Γ,Γ′ | ∆ ` ifn(M,M ′) : N ( T
µn(π) = µn(σ) + µn(τ) + 10

σ C Γ | ∆ `M : !(T ( T ) τ C Γ′ | ∆ `M ′ : !T
πC

Γ,Γ′ | ∆ ` iter!
N (M,M ′) : N (!T

µn(π) = µn(σ) + µn(τ) + 10

Figure 6 Type and measure for constructors on integers in sEAL.

∀i, (1 ≤ i ≤ k), σi C Γi | ∆ ` Mi : Ai τ C x1 : Aa1
1 , . . . , xk : Aakk `s`T t : AI

πC
Γ,Γ1, . . . ,Γk | ∆ ` [λxk . . . x1.t](M1, . . . ,Mk) : A

µn(π) =
k∑
i=1

µn(σi) + k(d(ω(τ) + I) + 1) · 10 + ((ω(τ) + I)[1/b1] · · · [1/bl] + 1) · 11

where {b1, . . . , bl} = FV (ω(τ)) ∪ FV (I).

Figure 7 Typing rule and measure for the s`T call in sEAL.

boolean type B. So when Ai = B, we just do not put any index on the type B. The same
goes for the type A, if A is the boolean type B, then there is no index I, and we just replace
in the measure I by 1. The previous section gives us a weight ω(τ) for this proof in s`T. Let
us now comment on the definition of µn(π). The degrees of ω(τ) and I influence the weight
at position 0, and their values when all free variables are replaced by 1 influence the weight
at position 1. Having the degree at position 0 will allow us the replacement of the arguments
xi by their values given by Mi, and the measure at position 1 will allow us to bound the
number of reductions in s`T and the size of the output. Furthermore, when k = 0, the term
[t]() influences only the weight at position 1, as constructors for base types.

3.3 Example: Testing Satisfiability of a Propositional Formula
Some examples of sEAL terms, like towers of exponentials, can be found in the appendix
6.6. We sketch here the construction of a term for deciding the SAT problem. Some other
examples are given in the appendix, like testing the satisfiability of quantified boolean
formulas (QBFk) and deciding the subset-sum problem.

The term for SAT has type N⊗W (!B and given a formula on conjunctive normal form
encoded in the type N⊗W, it checks its satisfiability. The modality in front of the output !B
shows that we used a non-polynomial computation, or more precisely an iteration in EAL,
as expected of a term for satisfiability.

We encode formula in conjunctive normal form in the type N ⊗W, representing the
number of distinct variables in the formula and the encoding of the formula by a word on
the alphabet Σ = {0, 1,#, |}. A literal is represented by the number of the corresponding
variable written in binary and the first bit determines if the literal is positive or negative.
Then # and | are used as separator for literals and clauses.

For example, the formula (x1 ∨ x0 ∨ x2) ∧ (x3 ∨ x0 ∨ x1) ∧ (x2 ∨ x0 ∨ x3) is represented
by 4⊗ |#11#10#110|#111#00#01|#010#10#011

Intermediate terms in s`T. For the sake of simplicity, we sometimes omit to describe all
terms in ifw or iterw , especially for the letters # and |, when they are not important.
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First, we can easily define a term occa : WI ( NI that gives the number of occurrences of
a ∈ Σ in a word. In the appendix 6.3, some important terms are defined. We have a term
Cbinarytounary : NI ( WJ ( NI such that Cbinarytounary n w computes the minimum
between n and the unary representation of the binary integer w. We also have a term that
gives the nth bit (from right) of a binary word as a boolean nth : WI ( NI ( B. And
finally, we have a term Extracta : WI ( WI ⊗WI that separates a word w = w0aw1 in
w0 ⊗ w1 such that w1 does not contain any a. This function will allow us to extract the last
clause/literal of a word representing a formula.

A valuation is represented by a binary word with a length equal to the number of variable,
such that the nth bit of the word represents the boolean associated to the nth variable.

We define a term ClausetoBool : NI ( WJ ( WK ( B such that, given the number of
variables, a valuation and a word representing a clause, this term outputs the truth value of
this clause using the valuation.
ClausetoBool = λn,wv, wc. let w ⊗ b = itern(λw′ ⊗ b′.let w0 ⊗ w1 = Extract# w′ in
w0 ⊗ (or b′ (LittoBool n wv w1)), wc ⊗ ff) (occ#wc) in b

With LittoBool : NI ( WJ ( WK ( B converting a literal into the boolean given by
the valuation : LittoBool = λn,wv, wl.ifw(λw′.nth wv (Cbinarytounary n w′),
λw′.not (nth wv (Cbinarytounary n w′)), ff) wl.

With this we can check if a clause is true given a certain valuation. We can define in the
same way a term FormulatoBool : NI ( WJ ( WK ( B.

Testing all different valuations. Now all we have to do is to test this term with all possible
valuations. If n is the number of variables, all possible valuations are described by all the
binary integer from 0 to 2n − 1. Then we only need to use the iterator in s`Twith base
type-inputs in order to check if one valuation satisfies the formula. We use a constructor for
iteration defined in the appendix 6.3 : REC(V, t) n→∗ V n− 1 (V n− 2 (. . . (V zero t) . . . )).
We can then give the term for SAT :
SAT = λn⊗ w.let !r = iter!

N (!(λn0 ⊗ n1.succ(n0)⊗ [double](n1)), !(0⊗ 1)) n in
let !wf = coerc w in !(let n⊗ exp = r in [λn, exp,wf .
REC(λval, b.or b (FormulatoBool n (Cunarytobinary n val) wf ), ff) exp](n, exp,wf )).

The first iteration computes both 2n and a copy of n. This technique is important as it
shows that the linearity of EAL for base variables is not too constraining for the iteration. In
the last line the term is a big “or” on the term FormulatoBool applied to different valuations.
And with that we have SAT : N⊗W (!B.

3.4 Subject Reduction and Measure

In this section, we show that we can bound the number of reduction steps of a typed term
using the measure. This is done by showing that a reduction preserves some properties
on the measure, and then give an explicit integer bound that will strictly decrease after a
reduction. This proof uses the same logic as the one from [24]. The relation R defined in the
following is a generalization of the usual requirements exposed in elementary linear logic in
order to control reductions.

Let us first express substitution lemmas for sEAL. There are 3 cases to consider, linear
variables and discharged and non-discharged global variables.

I Lemma 15 (Linear Substitution). If πCΓ1, x : T ′ | ∆ `M : T and σCΓ2 | ∆ `M ′ : T ′ then
we have a proof π′CΓ1,Γ2 | ∆ `M [M ′/x] : T . Moreover, for all n, µn(π′) ≤ µn(π) +µn(σ).
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The proof comes from the fact that rules are multiplicative for Γ, and so x only appears
in one of the premises for each rule. Thus the proof σ is used only once in the new proof π′.

I Lemma 16 (General substitution). If π C Γ | ∆, x : T ′ ` M : T and σ C ∅ | ∆ ` M ′ : T ′
and the number of occurrences of x in M is less than K, then we have a proof π′ C Γ | ∆ `
M [M ′/x] : T . Moreover, for all n, µn(π′) ≤ µn(π) +K · µn(σ).

This time, the non-linearity of the variable x induces a duplication of the proof σ, that’s
why the measure µn(σ) is also duplicated.

I Lemma 17 (Discharged substitution lemma). If π C Γ | ∆′, [∆], x : [T ′] ` M : T and
σ C ∅ | ∆ `M ′ : T ′ then we have a proof π′ C Γ | ∆′, [∆] `M [M ′/x] : T . Moreover, for all
n, µn(π′) ≤ (ω0(π), (µ1

n(π) + ω1(π) · µn−1(σ))).

The proof of this lemma relies directly on the previous one. Indeed, a variable with a
discharged type can be used only after crossing a (!-Intro) rule, and then the upper bound
on µn(π′) comes from the previous lemma since the number of occurrences of x in M is less
than ω1(π).

Then, let us give two important definition, tα and R, in order to derive the upper bound
on the number of reduction in sEAL.

I Definition 18 (tα). We define a family of tower functions tα(x1, . . . , xn) on vectors of
integers by induction on n, where we assume α ≥ 1 and xi ≥ 2 for all i :

tα() = 0 and tα(x1, . . . , xn) = (α · xn)2tα(x1,...,xn−1) for n ≥ 1

I Definition 19 (R). We define a relation on vectors denoted R. Intuitively, we want
R(µ, µ′) to express the fact that a proof of measure µ has been reduced to a proof of measure
µ′. Let µ, µ′ ∈ Nn+1. We have R(µ, µ′) if and only if :
1. µ ≥ 2̃ and µ′ ≥ 2̃.
2. µ′ <lex µ. Thus, we write µ = (ω0, . . . , ωn) and µ′ = (ω0, . . . , ωi0−1, ω

′
i0
, . . . , ω′n), with

ωi0 > ω′i0 .
3. There exists d ∈ N, 1 ≤ d ≤ (ωi0 − ω′i0) such that ∀j > i0, ω

′
j ≤ ωj · (ωi0+1)d−1

The first condition with 2̃, that can also be seen in the definition of tα, makes calculation
easier, since with this condition, exponentials and multiplications conserve the strict order
between integers. This does not harm the proof, since we can simply add 2̃ to each vector
we will consider. We can then connect those two definitions :

I Theorem 20. Let µ, µ′ ∈ Nn+1 and α ≥ n, α ≥ 1. If R(µ, µ′) then tα(µ′) < tα(µ)

It shows that if we want to ensure that a certain integer defined with tα strictly decreases
for a reduction, it is sufficient to work with the relation R.

We can now state the subject reduction of sEAL and we show that the measure allows
us to construct a bound on the number of reductions.

I Theorem 21. Let τ C Γ | ∆ ` M0 : T and M0 → M1. Let α be an integer equal
or greater than the depth of τ . Then there is a proof τ ′ C Γ | ∆ ` M1 : T such that
R(µα(τ) + 2̃, µα(τ ′) + 2̃). Moreover, the depth of τ ′ is smaller than the depth of τ .

The proof uses the substitution lemma for reductions in which substitution appears, and
for the others constructors, one can see that the measure given in the type system for sEAL is
following this idea of the relation R, e.g., in the reduction [λxn . . . x1.t](M1, . . . ,Mn−1, v)
→ [λxn−1 . . . x1.t[v/xn]](M1, . . . ,Mn−1) , the degree that appears at position 0 is here to
compensate the growing of the measure at position 1. Now using the previous results, we
can easily conclude our bound on the number of reductions.
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I Theorem 22. Let π C Γ | ∆ `M : T . Denote α = max(depth(π), 1), then tα(µα(π) + 2̃)
is a bound on the number of reductions from M .

4 Complexity Results: Characterization of 2k-EXP and 2k-FEXP

Now that we have proved the preceding theorem, we have obtained a bound on the number of
reduction steps from a term. More precisely, this bound shows that between two consecutive
weights ωi+1 and ωi, there is a difference of 2 in the height of the tower of exponentials. This
will allow us to give a characterization of the classes 2k-EXP for k ≥ 0, and each modality “!”
in the type of a term will induce a difference of 2 in the height of the tower of exponentials.
With exactly the same method, we also have a characterization of the classes 2k-FEXP for
k ≥ 0.

Restricted Reductions and Values. First, we show that the precedent bound on the number
of reductions in Theorem 22 can be improved. Indeed, if we restrict the possible reductions,
we obtain a more precise bound.

I Definition 23 (Reductions up to a Certain Depth). For i ∈ N, we define the i-reductions,
that we note →i :
∀i ≥ 1, [t]()→i [t′]() if t→ t′ in s`T. Moreover, [v]()→i v
For the other base reductions M →M ′, we have ∀i ∈ N,M →i M

′

For all i ∈ N, if M →i M
′ then !M →i+1!M ′

For all others constructors, the index i stays the same. For example for the application,
we have for all i ∈ N, if M →i M

′ then M N →i M
′ N .

Now, we can find a more precise measure to bound the number of i-reductions. The proof is
very similar to the proof of theorem 21 and 22.

I Lemma 24. Let i ∈ N, τ C Γ | ∆ ` M0 : T and M0 →i M1. Then there is a proof
τ ′ C Γ | ∆ `M1 : T such that R(µi(τ) + 2̃, µi(τ ′) + 2̃)

I Theorem 25. Let π C Γ | ∆ `M : T and α = max(i, 1). Then tα(µi(π) + 2̃) is a bound
on the number of i-reductions from M .

I Definition 26 (Values Associated to Restricted Reductions). We give the form of closed
normal terms for i-reductions. For that, we define for all i ∈ N, closed i-values V i by the
following grammar :

V 0 := M

∀i ≥ 1, V i := λx.M |!V i−1 | V i0 ⊗ V i1 | zero | succ(V i) | ifn(V i0 , V i1 ) | iter!
N (V i0 , V i1 ) |

tt | ff | if(V i0 , V i1 ) | ε | si(V i) | ifw(V i0 , V i1 , V i2 ) | iter!
W (V i0 , V i1 , V i2 ).

We can then prove the following lemma:

I Lemma 27. Let M be a term. If M is closed and has a typing derivation then, for all
i ∈ N, if M is normal for i-reductions then M is a i-value V i.

The proof can be found in [7]. From the previous results, we now have that, from a typed
term M , we can reach the normal form for i-reductions for M in less than ti(µi(π) + 2̃)
reductions, and this form is an i-value.
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A Characterization of 2k-EXP. Now, we sketch how the type !W (!k+1B can characterize
the class 2k-EXP for k ≥ 0. Recall that 2xk is defined by 2x0 = x and 2xk+1 = 22xk . The class
k-EXP is the class of problem solvable by a Turing machine that works in time 2p(n)

k on an
entry of size n, where p is a polynomial. First we show that the number of reductions for
such a term is bounded by a tower of exponentials of height 2k.

I Lemma 28. Let π C · | · ` t :!W (!k+1B. Let w be a word of size |w|. We can compute
the result of t !w in less than a 2k-exponential tower in the size of w.

Observe that the result of this computation is of type !k+1B, and a (k + 2)-value of type
!k+1B is exactly of the form !k+1tt or !k+1ff. So it is enough to only consider (k+2)-reductions
to compute the result, by lemma 27. The measure µn of t !w is µn = µn(π) + 2 ·10 + |w| ·12.
By theorem 25, we can bound the number of reductions from t !w by tk+2(µk+2 + 2̃). By
definition, in tk+2(µk+2 + 2̃), we can see that the weight at position 2, where the size of w
appears, is at height 2k. This concludes the proof of lemma 28.
Now we have to prove that we can simulate a Turing-machine in our calculus. This proof
is usual in implicit complexity [5, 2]. A sketch of this proof can be found in the appendix,
section 6.7. With this, using the lemma 28, we obtain the following theorem

I Theorem 29. Terms of type !W (!k+1B characterize the class 2k-EXP.

As explained previously, this theorem can be expanded for the classes 2k-FEXP, that
is the class of function from words to words that can be computed by a one-tape Turing
machine running with a time at most 2p(|w|)

2k on a word w. For a more precise definitions of
such classes, see [5]. This characterization uses the same proof by replacing !W (!k+1B by
!W (!k+1W.

Moreover, in EAL, we can characterize k-EXP with the type !W (!k+1B. The difference
with sEAL can be explained by the fact that in EAL, in the type N ( N we only have
polynomials of degree 1 (polynomials in general have the type !N (!N), whereas in our case,
polynomials have the type N ( N.

5 Conclusion

We believe that our main contribution is to define a new methodology to combine size-based
and level-based type systems, which we have illustrated here with the example of s`T and
EAL, but we think is of more general interest. In the present particular setting of sEAL we
can wonder which enrichment we can add to EAL while keeping the properties, for instance:
new data-types (lists, trees), the possibility to freely duplicate base types . . .We should also
investigate type inference techniques, by drawing inspiration from linear dependent types
[11, 3] and EAL [8]. But more importantly we would like to explore to which other systems
we could apply this methodology:

First can we define a similar system in which we could move up one level of ! and stay
in polynomial time? We conjecture that this could be obtained with EAL but replacing
s`T with a system of indexes of degree at most 1, instead of polynomial indexes. In
this case we believe that the type !W (!!B would correspond to PTIME. An alternative
choice could be to use a Non-size-increasing types system [19] instead of s`T.
Can we define a system in which all levels stay in FPTIME? Beside the condition on
indexes (degree at most 1) we would also need for that purpose to replace EAL with
another level-based system. Light linear logic [15] is a natural candidate, but we would
need to find a measure-based argument for its complexity bound, which is a challenging
objective.
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6 Appendix

6.1 Type System for Words and boolean in s`T

πC
Γ ` ε : WI ω(π) = 0

σ C Γ ` t : WJ J + 1 ≤ I
πC

Γ ` si(t) : WI
ω(π) = ω(σ)

σ1 C Γ1, dΓ ` t1 : WI ( D

σ0 C Γ0, dΓ ` t0 : WI ( D σ C Γ, dΓ ` t′ : D
πC

Γ0,Γ1,Γ, dΓ ` ifw(t0, t1, t′) : WI ( D

ω(π) = ω(σ1) + ω(σ0) + ω(σ) + 1

D @ E E @ E[a+ 1/a]
σ1 C dΓ ` V1 : D ( D[a+ 1/a]
σ0 C dΓ ` V0 : D ( D[a+ 1/a]

E[I/a] @ F

σ C Γ, dΓ ` t : D[1/a]
πC

Γ, dΓ ` iterw(V0, V1, t) : NI ( F

ω(π) = I + ω(σ) + I · (ω(σ1) + ω(σ0))[I/a]

πC
Γ ` tt(or ff) : B ω(π) = 0

σ1 C Γ1, dΓ ` t : D σ2 C Γ2, dΓ ` t′ : D
πC

Γ1,Γ2, dΓ ` if(t, t′) : B ( D
ω(π) = ω(σ1) + ω(σ2) + 1

6.2 Some Intermediate Lemmas for the Subject Reduction
Index Variable Substitution and Subtyping. We give some intermediate lemmas in order
to prove the subject reduction theorem. Some intuition and more detailed proofs can be
found in the technical report [7]

I Lemma 30 (Weakening). Let ∆,Γ be disjoint typing contexts, and π C Γ ` t : D then we
have a proof π′ C Γ,∆ ` t : D with ω(π) = ω(π′).

I Lemma 31 (Index substitution). Let I be an index.
1. Let J1, J2 be indexes such that J1 ≤ J2 then J1[I/a] ≤ J2[I/a]
2. Let D,D′ be types such that D @ D′ then D[I/a] @ D′[I/a]
3. If π C Γ ` t : D then π[I/a] C Γ[I/a] ` t : D[I/a]
4. ω(π[I/a]) = ω(π)[I/a]
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I Lemma 32 (Monotonic index substitution). Take J1, J2 such that J1 ≤ J2.
1. Let I be an index, then I[J1/a] ≤ I[J2/a].
2. For any proof π, ω(π[J1/a]) ≤ ω(π[J2/a]).
3. Let E be a type. If E @ E[a+ 1/a] then E[J1/a] @ E[J2/a] and if E[a+ 1/a] @ E then

E[J2/a] @ E[J1/a]

I Lemma 33. If πC Γ, dΓ ` V : U then we have a proof π′ C dΓ ` V : U with ω(π) = ω(π′).
Moreover, ω(π′) ≤ 1.

Term Substitution Lemma. In order to prove the subject reduction of the calculus, we
explicit what happens during a substitution of a value in a term. There are two cases, first
the substitution of variables with base types, that is to say duplicable variables, and then the
substitution of variables with a non-base type for which the type system imposes linearity.

I Lemma 34 (Value Substitution). If π C Γ1, dΓ, x : D′ ` t : D and σ C Γ2, dΓ ` V : D′ then
we have a proof π′CΓ1,Γ2, dΓ ` t[V/x] : D. Moreover, if D′ is a base type then ω(π′) ≤ ω(π).
Otherwise, ω(π′) ≤ ω(π) + ω(σ).

This is proved by induction on π. For the base type case, we use lemma 33 to show that
Γ2 can be ignored, and then as dΓ is duplicable, the proof is rather direct. For the non-base
case, in multiplicative rules such as application and if , the property holds by the fact that x
only appears in one of the premises, and so ω(σ) appears only once in the total weight.

6.3 Examples in s`T
Reverse of a word, and mirror iterator. We can compute the reverse of a word (a0a1 . . . an
7→ an . . . a1a0) with the term rev = iterw(λw.s0(w), λw.s1(w), ε) : WI ( WI .

Now we define ITERW (V0, V1, t) = λw.(iterw(V0, V1, t)(rev w) that is the iterator on
words with the right order (ITERW (V0, V1, t) si1 (si2 (. . . sin(ε) . . . ))→∗ Vi1 (Vi2 (. . . Vin(t) . . . )).
The typing rule we can make for this constructor is exactly the same as the one for iterw.

Iterator with base type argument. We show that for integers we can construct a term
REC(V, t) such that REC(V, t) n→∗ V n− 1 (V n− 2 (. . . (V zero t) . . . )).
REC(V, t) = λn.let x⊗ y = (itern(λr ⊗ n′.(V n′r)⊗ succ(n′), t⊗ zero) n) in x

We can give this constructor a typing rule close to the one for the iteration, with an
additional argument in the step term of type Na. This constructor can also be defined for
words.

Addition for unary words. The addition can be written in s`T. We give a sketch of the
proof tree.

NI+a @ NI+a

x : NI , y : NI+a ` y : NI+a I + a+ 1 ≤ I + a+ 1
x : NI , y : NI+a ` succ(y) : NI+a+1

x : NI ` λy.succ(y) : NI+a ( NI+a[a+ 1/a] . . .
x : NI ` itern(λy.succ(y), x) : NJ ( NI+J

πadd(I, J)C
· ` λx.itern(λy.succ(y), x) : NI ( NJ ( NI+J

add = λx.itern(λy.succ(y), x), πadd(I, J) C · ` add : NI ( NJ ( NI+J . And
the rules give us, for two integers n and m, add n m → itern(λy.succ(y), n) m →∗
(λy.succ(y))m n→∗ n+m. The weight of this term is ωadd(I, J) = 1+J+1+J ·(1+1)[J/a] =
3J + 2
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Addition on binary integers. Now, we define some terms working on integers written in
binary, with type WI . First, we define an addition on binary integers in s`T with a control
on the number of bits. More precisely, we give a term Cadd : NI ( WJ1 ( WJ2 ( WI such
that Cadd n w1 w2 outputs the least significant n bits of the sum w1 + w2. For example,
Cadd 3 101 110 = 011, and Cadd 5 101 110 = 01011. This will usually be used with a n
greater than the expected number of bits, the idea being that those extra 0 can be useful for
some other programs. The term follows the usual idea for addition: the result is computed
bit by bit, and we keep track of the carry. For simplification, we do not give an explicit term
but we show that we have to use conditionals and work on each cases one by one.
Cadd = λn,w1, w2. let c′ ⊗ r′ ⊗ w′1 ⊗ w′2 = itern(λc⊗ r ⊗ w ⊗ w′. match c, w,w′ with
(ff, ε, ε) 7→ ff⊗s0(r)⊗ε⊗ε | . . . | (tt, s1(v), s1(v′)) 7→ tt⊗s1(r)⊗v⊗v′, ff⊗ε⊗ (rev w1)⊗
(rev w2)) n in r.

For the typing of this term, we use in the iteration the type B⊗Wa ⊗WJ1 ⊗WJ2 , with c
representing the carry, r the current result, and w,w′ the binary integers that we read from
right to left.

Unary integers to binary integers. We define a term Cunarytobinary : NI ( NJ ( WI

such that on the input n, n′, this term computes the least n significant bit of the representation
of n′ in binary : Cunarytobinary = λn.itern(λw.Cadd n w (s1(ε)), Cadd n ε ε)

Binary integers to unary integers. We would like a way to compute the unary integer for
a given binary integer. However, this function is exponential in the size of its input, so it
is impossible to write such a function in s`T. Nevertheless, given an additional information
bounding the size of this unary word, we can give a term Cbinarytounary : NI ( WJ ( NI
such that on an input n,w this term computes the minimum between n and the unary
representation of w. First we describe a term min : NI ( NJ ( NI . min = λn, n′.let r0 ⊗
n0 = (itern(λr1 ⊗ n1.ifn(λp.succ(r1)⊗ p, r1 ⊗ zero) n1, zero⊗ n′) n) in r0

In order to type this term, we use in the iteration the type Na ⊗ NJ . Remark that this
term allows us to erase the index J . Now that we have this term, we can define the following
term Cbinarytounary = λn.iterw(λn′.min n (mult n′ 2), λn′.min n succ(mult n′ 2), zero)

Some examples on words. We can define a term that gives the nth bit (from right) of a
binary word as a boolean :
nth = λw, n.ifw(λw′.ff, λw′.tt, ff) ((itern(pred, rev w)) n) : WI ( NI ( B, with
pred : WI ( WI = ifw(λw.w, λw.w, ε).

We can also define a term of type WI ( WI ⊗WI that separates a word w = w0aw1 in
w0 ⊗ w1 such that w1 does not contain any a.
Extracta = λw.let b′ ⊗ w′0 ⊗ w′1 = ITERW (V0, V1, V#, V|, Vε) w in w′0 ⊗ w′1

with Va = λb⊗ w0 ⊗ w1.if(tt⊗ sa(w0)⊗ w1, tt⊗ w0 ⊗ w1) b
∀c 6= a, Vc = λb⊗ w0 ⊗ w1.if(tt⊗ sc(w0)⊗ w1, ff⊗ w0 ⊗ sc(w1)) b
Vε = ff ⊗ ε⊗ ε
For the intuition on this term, the boolean b′ used in the iteration is a boolean that

indicates if we have already read the letter “a” previously.

States. A state is a tensor of boolean for which we can have a match case. More precisely,
for n ∈ N∗, we define by induction the type Bn = B ⊗ Bn−1 with B1 = B. Bn describes
states of size n. In the following, we will ignore the term for the associativity of the tensor.
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In order to precise the decomposition, we will note let xD ⊗ yD′ = t in t′ to explicit the
decomposition when it is ambiguous.

There are 2n base states of size n, given by the 2n possibilities of associating n times tt or
ff. Moreover, there is a constructor to do a match-case on those states, casen(t0n , . . . , t1n).
We will consider in order to simplify the notations that those indexes are the integers from 0
to 2n − 1 written in binary, with 1 referring to tt. We define it by induction, and give the
typing.

For n = 1, case1(t0, t1) = if(t1, t0) and for n ≥ 0 :
casen+1(t0n+1 , . . . , t1n+1) = λs.let s′Bn⊗xB = s in casen(t′0n , . . . , t′1n) s′ with, for all boolean
word i, t′i = if(ti1, ti0) x.

With this definition, by noting i = b1 · · · bn the state and the boolean word, we have
casen(t0n , . . . , t1n) (b1 · · · bn)→∗ casen−1(t0n−1bn , . . . t1n−1bn) (b1 · · · bn−1)→∗ ti

Moreover, we can deduce this rule:
∀i, 0 ≤ i ≤ 2n − 1,Γi, dΓ ` ti : D

Γ0, . . . ,Γ2n−1, dΓ ` casen(t0, . . . , t2n−1) : Bn ( D

6.4 Adding Polynomial Time Functions in EAL
Here we explain very informally how we can add polynomial time functions in the calculus
defined in [24], keeping the same kind of proof relying on the measure.

Suppose given a function f from integers to integers. We define a new constructor f in
the classical EAL-calculus, and a new reduction rule f n→ f(n), saying that f applied to
the encoding of the integer n is reduced to the encoding of the integer f(n). We add a cost
to this reduction, depending on the integer n, that we call Cf (n). We give a typing rule for
this constructor, f has type N ( N.

If this function f is a polynomial time computable function, we can bound the cost
function Cf (n) by a polynomial function (n+ 2)d for a certain d, and we can also bound the
size of f(n) by the cost, and so f(n) ≤ (n + 2)d. Now if we look at the reduction rule, if
we call µ(f) the measure for f , we go from µ(f) + (1, n+ 1) to (0, (n+ 2)d), if we want to
take in consideration the cost, we can add it in the measure, and suppose that in the right
part of the reduction we have the measure (0, 2(n+ 2)d). Now, see that if µ(f) = (d, 1), this
reduction follows the relation R defined in section 3, and with that we can deduce that this
construction works with the measure.

6.5 Type System for Words and Boolean in sEAL

πC
Γ | ∆ ` ε : W µn(π) = 11

σ C Γ | ∆ `M : W
πC

Γ | ∆ ` si(M) : W
µn(π) = µn(σ) + 11

σ1 C Γ1 | ∆ `M1 : W ( T

σ0 C Γ0 | ∆ `M0 : W ( T σ C Γ | ∆ `M ′ : T
πC

Γ0,Γ1,Γ | ∆ ` ifw(M0,M1,M
′) : W ( T

µn(π) = µn(σ0) + µn(σ1) + µn(σ) + 10

σ1 C Γ1 | ∆ `M1 : !(T ( T )
σ0 C Γ0 | ∆ `M0 : !(T ( T ) σ C Γ | ∆ `M : !T

πC
Γ0,Γ1,Γ | ∆ ` iter!

W (M0,M1,M) : W (!T
µn(π) = µn(σ0) + µn(σ1) + µn(σ) + 10

πC
Γ | ∆ ` tt(or ff) : B µn(π) = 11

σ C Γ | ∆ `M : T τ C Γ′ | ∆ `M ′ : T
πC

Γ,Γ′ | ∆ ` if(M,M ′) : B ( T
µn(π) = µn(σ) + µn(τ) + 10
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6.6 Examples in sEAL
We give some examples of terms in sEAL, first some terms we can usually see for the
elementary affine logic, and then we give the term for computing tower of exponentials.

Some general results and notations on sEAL.
For base types A we have the coercion A(!A. For example, for words, this is given by
the term coercw = iter!

W (!(λw′.s0(w′)), !(λw′.s1(w′)), !ε), with coercw w →∗ !w
We write λx⊗ y.M for the term λc.let x⊗ y = c in M .

Polynomials and Tower of Exponentials in sEAL Recall that we defined polynomials in
s`T. With this we can define polynomials in EAL with type N ( N using the s`T call.
Moreover, using the iteration in EAL, we can define a tower of exponential.

We can compute the function k 7→ 22k in sEAL with type N (!N

n : N | · ` n : N x1 : Na1 `s`T mult x1 x1 : Na1·a1

n : N | · ` [λx1.mult x1 x1](n) : N
· | · ` λn.[λx1.mult x1 x1](n) : N ( N
· | · `!(λn.[λx1.mult x1 x1](n)) :!(N ( N) · | · `!2 :!N
· | · ` exp = iter!

N (!λn.[λx1.mult x1 x1](n), !2) : N (!N

With iter!
N (!λn.[λx1.mult x1 x1](n), !2) k →∗!((λn.[λx1.mult x1 x1](n))k 2)→∗!(22k).

For an example of measure, for the subproof
π C · | · ` λn.[λx1.mult x1 x1](n) : N ( N, we have depth(π) = 1 and as the weight for
σ C x1 : Na1 `s`T mult x1 x1 : Na1·a1 is ω(σ) = 4 + a1 + 3a3

1, we can deduce
µ(π) = (1 + 1 + 1 · (d(ω(σ) + a1 · a1) + 1), 1 + (ω(σ) + a1 · a1)[1/a1]) = (6, 10)

If we define, 2x0 = x and 2xk+1 = 22xk , with the use of polynomials, we can represent the
function n 7→ 2P (n)

2k for all k ≥ 0 and polynomial P with a term of type N (!kN.
Some other big examples, such as QBFk and the SUBSET_SUM problem can be found

in the technical report [7]

6.7 Simulation of a Turing Machine in sEAL
The first thing we prove is the existence of a term in s`T to simulate n steps of a deterministic
Turing-machine on a word w. We give here the intuition of the encoding, and a more detailed
explanation on how to work with this encoding can be found in the technical report [7].

Suppose given two variables w : Waw and n : Nan , we note Confb the type Waw+b ⊗ B⊗
Waw+b ⊗ Bq, with q an integer and Bq being q tensors of booleans. This type represents a
configuration on a Turing machine after b steps, with Bq coding the state, and then w0⊗b⊗w1
represents the tape, with b being the position of the head, w0 represents the reverse of the
word before b, and w1 represents the word after b. We can then define multiple term in
s`T with this encoding. First we have a term init such that w : Waw , n : Nan ` init : Conf1
and init computes the initial configuration of the Turing machine. Then, we have a term step

with · ` step : Confb ( Confb+1 that computes the result of the transition function from a
configuration to the next one, and finally we have a term final with · ` final : Confb ( B
verifying if the final configuration is accepted or not. Now that we have that, if we can
compute an integer n bounding the number of steps of a Turing-machine on an entry w, then
we can effectively simulate the Turing-machine in our calculus using a s`T call. The height
of the tower of exponential we can compute in this calculus is closely linked to the difference
of ! modalities between the input and the output. You can see this with the examples in the
appendix 6.6. This shows that, by using a ! modality, we can increase the integer n we can
compute and thus increase the working time of the Turing-machine we want to simulate.
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1 Introduction

The canonical model to formalize the reactive synthesis problem are two-player win/lose
perfect information games played on finite (directed) graphs [22, 1]. In recent years, more
general objectives and multiplayer games have been studied (see e.g. [17] or [7] and additional
references therein). When moving beyond two-player win/lose games, the traditional solution
concept of a winning strategy needs to be updated by another notion. The game-theoretic
literature offers a variety of concepts of rationality to be considered as candidates.

The notion we focus on here is admissibility: roughly speaking, judging strategies according
to this criterion allows to deem rational only strategies that are not worse than any other
strategy (ie, that are not dominated). In this sense, admissible strategies represent maximal
elements in the whole set of strategies available to a player. One attractive feature of
admissibility, or more generally, dominance based rationality notions is that they work on
the level of an individual agent. Unlike e.g. to justify Nash equilibria, no common rationality,
shared knowledge or any other assumptions on the other players are needed to explain why a
specific agent would avoid dominated strategies.

The study of admissibility in the context of games played on graphs was initiated by
Berwanger in [4] and subsequently became an active research topic (e.g. [12, 9, 2, 8, 10],
see related work below). In [4], Berwanger established in the context of perfect-information
games with boolean objectives that admissibility is the good criterion for rationality: every
strategy is either admissible or dominated by an admissible strategy.

Unfortunately, this fundamental property does not hold when one considers quantitative
objectives. Indeed, as soon as there are three different possible payoffs, one can find instances
of games where a strategy is neither dominated by an admissible strategy, nor admissible itself
(see Example 1). This third payoff actually allows for the existence of infinite domination
sequences of strategies, where each element of the sequence dominates its predecessor and
is dominated by its successor in the chain. Consequently, no strategy in such a chain is
admissible. However, it can be the case that no admissible strategy dominates the elements
of the chain. In the absence of a maximal element above these strategies, one may ask why
they should be discarded in the quest of a rational choice. They may indeed represent a type
of behaviour that is rational but not captured by the admissibility criterion.

Our contributions. To formalize this behaviour, we study increasing chains of strategies
(Definition 3). A chain is weakly dominated by some other chain, if every strategy in the
first is below some strategy in the second. The question then arises whether every chain
is below a maximal chain. Based on purely order-theoretic argument, a sufficient criterion
is given in Theorem 11. However, Corollary 17 shows that our sufficient criterion does not
apply to all games of interests. We can avoid the issue by restricting to some countable class
of strategies, e.g. just the regular, computable or hyperarithmetic ones (Corollary 19).
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We test the abstract notion in the concrete setting of generalised safety/reachability
games (Definition 21). Based on the observation that the crucial behaviour captured by
chains of strategies, but not by single strategies is Repeat this action a large but finite number
of times, we introduce the notion of a parameterized automaton (Definition 28), which
essentially has just this ability over the standard finite automata. We then show that any
finite memory strategy is below a maximal chain or strategy realized by a parameterized
automaton (Theorem 31).

Finally, we consider some algorithmic properties of chains and parameterized automata
in generalised safety/reachability games. It is decidable in PTime whether a parameterized
automaton realizes a chain of strategies (Theorem 35). It is also decidable in PTime whether
the chain realized by one parameterized automaton dominates the chain realized by another
(Theorem 36).

Most proofs are omitted in the paper due to space restrictions. The appendix contains a
selection of those. For the full account, we refer to the arXiv version [3].

Related work. As mentioned above, the study of dominance and admissibility for games
played on graphs was initiated by Berwanger in [4]. Faella analyzed several criteria for how a
player should play a win/lose game on a finite graph that she cannot win, eventually settling
on the notion of admissible strategy [15].

Admissibility in quantitative perfect-information sequential games played on graphs
was studied in [9]. Concurrent games were considered in [2]. In [8], games with imperfect
information, but boolean objectives were explored. The study of decision problems related to
admissibility (as we do in Subsection 4.3) was advanced in [12]. The complexity of decision
problems related to dominance in normal form games has received attention, see [21] for an
overview. For the role of admissibility for synthesis, we refer to [10].

Our Subsection 3.1 involves an investigation of cofinal chains in certain partially ordered
sets. A similar theme (but with a different focus) is present in [25].

2 Background

2.1 Games on finite graphs
A turn-based multiplayer game G on a finite graph G is a tuple G = 〈P,G, (pi)i∈P 〉 where:

P is the non-empty finite set of players of the game,
G = 〈V,E〉 where the finite set V of vertices of G is equipped with a |P |-partition ]i∈PVi,
and E ⊆ V × V is the edge relation of G,
for each player i in P , pi is a payoff function that associates to every infinite path in G a
payoff in R.

Outcomes and histories. An outcome ρ of G is an infinite path in G, that is, an infinite
sequence of vertices ρ = (ρk)k∈N ∈ V ω, where for all k ∈ N, (ρk, ρk+1) ∈ E. The set of all
possible outcomes in G is denoted Out(G). A finite prefix of an outcome is called a history.
The set of all histories in G is denoted Hist(G). For an outcome ρ = (ρk)k∈N and an integer
`, we denote by ρ≤` the history (ρk)0≤k≤`. The length of the history ρ≤`, denoted |ρ≤`| is
`+ 1. Given an outcome or a history ρ and a history h, we write h ⊆pref ρ if h is a prefix of
ρ, and we denote by h−1.ρ the unique outcome (or history) such that ρ = h.(h−1.ρ). Given
an outcome ρ or a history h and k ∈ N (respectively k < |h|), we denote by ρk (respectively
hk) the k + 1-th vertex of ρ (respectively of h). For a history h, we define the last vertex
of h to be last(h) := h|h|−1 and its first vertex first(h) := h0. For a vertex v ∈ V , its set of
successors is Ev = {v′ ∈ V | (v, v′) ∈ E}.
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Strategy profiles and payoffs. A strategy of a player i is a function σi that associates to
each history h such that last(h) ∈ Vi, a successor state v ∈ Elast(h). A tuple of strategies
(σi)i∈P ′ where P ′ ⊆ P , one for each player in P ′ is called a profile of strategies. Usually,
we focus on a particular player i, thus, given a profile (σi)i∈P , we write σ−i to designate
the collection of strategies of players in P \ {i}, and the complete profile is written (σi, σ−i).
The set of all strategies of player i is denoted Σi(G), while Σ(G) =

∏
i∈P Σi(G) is the

set of all profiles of strategies in the game G and Σ−i(G) is the set of all profiles of all
players except Player i. As we consider games with perfect information and deterministic
transitions, any complete profile σP = (σi)i∈P yields, from any history h, a unique outcome,
denoted Outh(G, σP ). Formally, Outh(G, σP ) is the outcome ρ such that ρ≤|h|−1 = h

and for all k ≥ |h| − 1, for all i ∈ P , its holds that ρk+1 = σi(ρ≤k) if ρk ∈ Vi. The set
of outcomes (resp. histories) compatible with a strategy σ of player i after a history h

is Outh(G, σi) = {ρ ∈ Out(G) | ∃σ−i ∈ Σ−i(G) such that ρ = Outh(G, (σi, σ−i))} (resp.
Histh(σ) = {h ∈ Hist(G) | ∃ρ ∈ Outh(G, σi), n ∈ N such that h = ρ≤n}). Each outcome ρ
yields a payoff pi(ρ) for each Player i. We denote with pi(h, σ, τ) the payoff of a profile of
strategies (σ, τ) after a history h.

Usually, we consider games instances such that players start to play at a fixed vertex.
Thus, we call an initialized game a pair (G, v0) of a game G and a vertex v0 ∈ V . When
the initial vertex v0 is clear from context, we speak directly from G, Out(G, σP ) and pi(σP )
instead of (G, v0), Outv0(G, σP ) and pi(v0, σP ).

Dominance relation. In order to compare different strategies of a player i in terms of
payoffs, we rely on the notion of dominance between strategies: A strategy σ ∈ Σi is weakly
dominated by a strategy σ′ ∈ Σi at a history h compatible with σ and σ′, denoted σ �h σ′,
if for every τ ∈ Σ−i, we have pi(h, σ, τ) ≤ pi(h, σ′, τ). We say that σ is weakly dominated
by σ′, denoted σ � σ′ if σ �v0 σ

′, where v0 is the initial state of G. A strategy σ ∈ Σi is
dominated by a strategy σ′ ∈ Σi, at a history h compatible with σ and σ′, denoted σ ≺h σ′,
if σ �h σ′ and there exists τ ∈ Σ−i, such that pi(h, σ, τ) < pi(h, σ′, τ). We say that σ is
dominated by σ′, denoted σ ≺ σ′ if σ ≺v0 σ

′, where v0 is the initial state of G. Strategies
that are not dominated by any other strategies are called admissible: A strategy σ ∈ Σi is
admissible (respectively from h) if σ 6≺ σ′ (resp. σ 6≺h σ′) for every σ′ ∈ Σi.

Antagonistic and Cooperative Values. To study the rationality of different behaviours in a
game G, it is useful to be able to know, for a player i, a fixed strategy σ ∈ Σi and any history
h, the worst possible payoff Player i can obtain with σ from h (i.e., the payoff he will obtain
assuming the other players play antagonistically), as well as the best possible payoff Player i
can hope for with σ from h (i.e., the payoff he will obtain assuming the other players play
cooperatively). The first value is called the antagonistic value of the strategy σ of Player i at
history h in G and the second value is called the cooperative value of the strategy σ of Player i
at history h in G. They are formally defined as aVali(G, h, σ) := infτ∈Σ−i pi(Outh(σ, τ )) and
cVali(G, h, σ) := supτ∈Σ−i pi(Outh(σ, τ)).

Prior to any choice of strategy of Player i, we can define, for any history h, the antagonistic
value of h for Player i as aVali(G, h) := supσ∈Σi aVali(G, h, σ) and the cooperative value of
h for Player i as cVali(G, h) := supσ∈Σi cVali(G, h, σ). Furthermore, one can ask, from a
history h, what is the maximal payoff one can obtain while ensuring the antagonistic value
of h. Thus, we define the antagonistic-cooperative value of h for Player i as acVali(G, h) :=
sup{cVali(G, h, σ) | σ ∈ Σi and aVali(G, h, σ) ≥ aVali(G, h)}. From now on, we will omit to
precise G when it is clear from the context.
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v0 v1 `2`1

Figure 1 The Help-me?-game.

An initialized game (G, v0) is well-formed for Player i if, for every history h ∈ Histv0(G),
there exists a strategy σ ∈ Σi such that aVali(h, σ) = aVal(h), and a strategy σ′ ∈ Σi such
that cVali(h, σ′) = cVal(h). In other words, at every history h, Player i has a strategy that
ensures the payoff aVali(h), and a strategy that allows the other players to cooperate to
yield a payoff of cVali(h).

In the following, we will always focus on the point of view of one player i, thus we will
sometimes refer to him as the protagonist and assume it is the first player, while the other
players −i can be seen as a coalition and abstracted to a single player, that we will call the
antagonist. Furthermore, we will omit the subscript i to refer to the protagonist when we
use the notations aVali, cVali, acVali, pi, etc..

I Example 1. Consider the game depicted in Figure 1. The protagonist owns the circle
vertices. The payoffs are defined as follows for the protagonist :

p(ρ) =


0 if ρ = (v0v1)ω,
1 if ρ = (v0v1)nv0`

ω
1 where n ∈ N,

2 if ρ = (v0v1)n`ω2 where n ∈ N.

Let us first look at the possible behaviours of the protagonist in this game, when he makes
no assumption on the payoff function of the antagonist. He can choose to be “optimistic”
and opt to try (at least for some time, or forever) to go to v1 in the hope that the antagonist
will cooperate to bring him to `2, or settle from the start and go directly to `1, not counting
on any help from the antagonist. We denote by sk the strategy that prescribes to choose
v1 as the successor vertex at the first k visits of v0, and `1 at the k + 1-th visit, while sω
denotes the strategy that prescribes v1 at every visit of v0.

Fix k ∈ N. Then, sk ≺ sk+1: Indeed, for all τ ∈ Σ−i, if p(sk, τ) = 2, then there exists
j ≤ k such that τ((v0v1)j) = `2. As sk and sk+1 agree up to (v0v1)kq0, we have that
Out(sk+1, τ) = (v0v1)j`ω2 = Out(sk, τ), thus p(sk+1, τ) = 2 as well. Furthermore, consider
a strategy τ such that τ((v0v1)j) = v0 for all j ≤ k and τ((v0v1)k+1) = `2. Then p(sk, τ) = 1
while p(sk+1, τ) = 2. Finally, consider the strategy τ such that τ((v0v1)k) = v0 for all
k ∈ N. Then p(sk, τ) = 1 = p(sk+1, τ). Hence, sk ≺ sk+1. In addition, we observe that sω
is admissible: for any strategy sk, the strategy τ of the antagonist that moves to `2 at the
k + 1-th visit of v1 yields a payoff of 1 against strategy sk but 2 against strategy sω. Thus,
sω 6� sk for any k ∈ N.

Quantitative vs Boolean setting. Remark that in the boolean variant of the Help-me?
game considered in Example 1, where the payoff associated with the vertex `1 is 0 and the
payoff associated with the vertex `2 is 1, every strategy sk for k ∈ N is in fact dominated
by sω, as sk and sω both yield payoff 0 against τ such that τ((v0v1)k) = v0 for all k ∈ N.
In fact, Berwanger in [4], showed that boolean games with ω-regular objectives enjoy the
following fundamental property: every strategy is either admissible, or dominated by an
admissible strategy. The existence of an admissible strategy in any such game follows as an
immediate corollary.
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Let us now illustrate how admissibility fails to capture fully the notion of rational
behaviour in the quantitative case. Firstly, recall that the existence of admissible strategies is
not guaranteed in this setting (see for instance the examples given in [9]). In [9], the authors
identified a class of games for which the existence of admissible strategies (for Player i) is
guaranteed: well-formed games (for Player i). However, even in such games, the desirable
fundamental property that holds for boolean games is not assured to hold anymore. In
fact, this is already true for quantitative well-formed games with only three different payoffs
and really simple payoff functions. Indeed, consider again the Help-me? game in Figure 1.
Remark that it is a well-formed game for the protagonist. We already showed that any
strategy sk is dominated by the strategy sk+1. Thus, none of them is admissible. The only
admissible strategy is sω. It is easy to see that sk 6� sω for any k ∈ N: Let τ ∈ Σ−i be such
that τ((v0v1)k) = v0 for all k ∈ N. Then p(sk, τ) = 1 > 0 = p(sω, τ). To sum up, we see
that there exists an infinite sequence (sk)k∈N of strategies such that none of its elements
is dominated by the only admissible strategy sω. However, the sequence (sk)k∈N is totally
ordered by the dominance relation. Based on these observations, we take the approach to
not only consider single strategies, but also such ordered sequences of strategies, that can
represent a type of rational behaviour not captured by the admissibility concept.

2.2 Order theory

In this paragraph we recall the standard results from order theory that we need (see e.g. [19]).
A linear order is a total, transitive and antisymmetric relation. A linearly ordered set

(R,≺) is a well-order, if every subset of R has a minimal element w.r.t. ≺. The ordinals
are the canonical examples of well-orders, in as far as any well-order is order-isomorphic to
an ordinal. The ordinals themselves are well-ordered by the relation < where α ≤ β iff α

order-embeds into β. The first infinite ordinal is denoted by ω, and the first uncountable
ordinal by ω1.

A partial order is a transitive and reflexive relation. Let (X,�) be a partially ordered set
(poset for short). A chain in (X,�) is a subset of X that is totally ordered by �. An increasing
chain is an ordinal-indexed family (xβ)β<α of elements of X such that β < γ < α⇒ xβ ≺ xγ .
If we only have that β < γ implies xβ � xγ , we speak of a weakly increasing chain. We
are mostly interested in (weakly) increasing chains in this paper, and will thus occasionally
suppress the words weakly increasing and only speak about chains.

A subset Y of a partially ordered set (X,�) is called cofinal, if for every x ∈ X there is
a y ∈ Y with x � y. A consequence of the axiom of choice is that every chain contains a
cofinal increasing chain, which is one reason for our focus on increasing chains. It is obvious
that having multiple maximal elements prevents the existence of a cofinal chain, but even a
lattice can fail to admit a cofinal chain. An example we will go back to is ω1 × ω (cf. [19]).

If (X,�) admits a cofinal chain, then its cofinality (denoted by cof(X,�)) is the least
ordinal α indexing a cofinal increasing chain in (X,�). The possible values of the cofinality
are 1 or infinite regular cardinals (it is common to identify a cardinal and the least ordinal
of that cardinality). In particular, a countable chain can only have cofinality 1 or ω. The
first uncountable cardinal ℵ1 is regular, and cof(ω1) = ω1.

We will need the probably most-famous result from order theory:

I Lemma 2 (Zorn’s Lemma). If every chain in (X,�) has an upper bound, then every
element of X is below a maximal element.
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3 Increasing chains of strategies

3.1 Ordering chains
In this subsection, we study the poset of increasing chains in a given poset (X,�). We
denote by IC(X,�) the set of increasing chains in (X,�). Our intended application will be
that (X,�) is the set of strategies for the protagonist in a game ordered by the dominance
relation. However, in this subsection we are not exploiting any properties specific to the
game-setting. Instead, our approach is purely order-theoretic.

I Definition 3. We introduce an order v on IC(X,�) by defining:

(xβ)β<α v (yγ)γ<δ if ∀β < α ∃γ < δ xβ � yγ

Note that v is a partial order. Let .= denote the corresponding equivalence relation. We
will occasionally write short IC for (IC(X,�),v).

Inspired by our application to dominance between strategies in games, we will refer to
both � and v as the dominance relation, and might express e.g. (xβ)β<α v (yγ)γ<δ as
(xβ)β<α is dominated by (yγ)γ<δ, or (yγ)γ<δ dominates (xβ)β<α. There is no risk to confuse
whether � or v is meant, since x � y iff (x)β<1 v (y)γ<1. Continuing the identification of
x ∈ X and (x)β<1 ∈ IC, we will later also speak about a single strategy dominating a chain
or vice versa.

The central notion we are interested in will be that of a maximal chain:

I Definition 4. A ∈ IC is called maximal, if A v B for B ∈ IC implies B v A.

We desire situations where every chain in IC is either maximal or below a maximal chain.
Noting that this goal is precisely the conclusion of Zorn’s Lemma (Lemma 2), we are led to
study chains of chains; for if every chain of chains is bounded, Zorn’s Lemma applies. Since
(IC,v) is a poset just as (X,�) is, notions such as cofinality apply to chains of chains just
as they apply to chains. We will gather a number of lemmas we need to clarify when chains
of chains are bounded.

In a slight abuse of notation, we write (xβ)β<α ⊆ (yγ)γ<δ iff {xβ | β < α} ⊆ {yγ | γ < δ}.
Clearly, (xβ)β<α ⊆ (yγ)γ<δ implies (xβ)β<α v (yγ)γ<δ. We can now express cofinality by
noting that (xβ)β<α is cofinal in (yγ)γ<δ iff (xβ)β<α ⊆ (yγ)γ<δ and (yγ)γ<δ v (xβ)β<α. We
recall that the cofinality of (yγ)γ<δ (denoted by cof((yγ)γ<δ) is the least ordinal α such that
there exists some (xβ)β<α which is cofinal in (yγ)γ<δ.

I Lemma 5. If (xβ)β<α
.= (yγ)γ<δ, then there is some (y′λ)λ<α′ ⊆ (yγ)γ<δ with α′ ≤ α and

(y′λ)λ<α′
.= (yγ)γ<δ.

I Corollary 6. cof((yγ)γ<δ) is equal to the least ordinal α such that there exists (xβ)β<α
with (xβ)β<α

.= (yγ)γ<δ.

I Corollary 7. For every chain (yγ)γ<δ there exists an equivalent chain (xβ)β<α such that
α = 1 or α is an infinite regular cardinal. In particular, if δ is countable, then (yγ)γ<δ is
equivalent to a singleton or some chain (xn)n<ω.

We briefly illustrate the concepts introduced so far in the game setting. Notice that for a
game G and a Player i, the pair (Σi(G),�) is indeed a partially ordered set. We can thus
consider the set IC(Σi(G),�) of increasing chains of strategies in G.
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I Example 8. Recall the Help-me? game of Figure 1 and consider the set (Σi,�) of strategies
of the protagonist partially ordered by the weak dominance relation. Any single strategy
is an increasing chain, indexed by the ordinal 1. We already noted that the strategy sω
is admissible, thus the chain consisting of sω is maximal with respect to v. Furthermore,
the sequence of strategies (sk)k<ω is an increasing chain. Indeed, we know that for any
k < ω, we have sk ≺ sk+1. It is a maximal one: in fact, since the set of strategies of the
protagonist solely consists of the strategies of this chain and sω, and as sk 6� sω for any k < ω,
we get that any chain (σβ)β<α such that (sk)k<ω v (σβ)β<α satisfies (σβ)β<α ⊆ (sk)k<ω.
Thus, (σβ)β<α v (sk)k<ω. Let (σβ)β<α be an increasing chain indexed by the ordinal α.
First, remark that α ≤ ω. If α < ω, then the cofinality of (σβ)β<α is 1 as (σβ)β<α is
equivalent to the strategy σα−1: every strategy of (σβ)β<α is weakly dominated by σα−1,
and as the strategy σα−1 is included in the increasing chain (σβ)β<α, it is weakly dominated
by (σβ)β<α. If α = ω, then the cofinality of (σβ)β<α is ω: As for every finite chain (σ′β′)β′<α′
with 1 < α′ < ω, there exists n < ω such that (σ′β′)β′<α′ @ σn, and thus (σβ)β<α is not
(weakly) dominated by (σ′β′)β′<α′ . Moreover, we have that (σβ)β<α

.= (sk)k<ω and is thus
maximal. Indeed, since (σβ)β<α is a chain that is not a singleton, we already know that
(σβ)β<α ⊆ (sk)k<ω, that is (σβ)β<α v (sk)k<ω. Let now k < ω. As (σβ)β<α is an increasing
chain and α = ω, we have that there exists n < ω and k′ ≥ k such that σn = sk′ . Thus,
sk � σn since (sk)k<ω is an increasing chain. Hence, we also have (sk)k<ω v (σβ)β<α.

Now we are ready to prove the main technical result of this section 3.1, which identifies
the potential obstructions for each chain in IC to have an upper bound:

I Lemma 9. The following are equivalent:
1. If ((xγβ)β<αγ )γ<δ is an increasing chain in IC, then it has an upper bound in IC.
2. If ((xγβ)β<α)γ<δ is an increasing chain in IC with α 6= δ, cof((xγβ)β<α) = α > 1 and

cof(((xγβ)β<α)γ<δ) = δ > 1, then it has an upper bound in IC.

Let us illustrate the problem of extending Lemma 9 by an example:

I Example 10 ([19, Example 1]). Let (X,�) = ω1 × ω, i.e. the product order of the first
uncountable ordinal and the first infinite ordinal. Consider the chain of chains given by
xγn = (γ, n), this corresponds to the case α = ω, δ = ω1 in Lemma 9. If this chain of chains
had an upper bound, then ω1 × ω would need to admit a cofinal chain. However, this is not
the case.

However, we can guarantee the existence of a maximal chain above any chain when there
is no uncountable increasing chain of increasing chains.

I Theorem 11. If all increasing chains of elements in IC (i.e., increasing chains of increasing
chains of elements of (X,�)) have a countable number of elements, then for every A ∈ IC
there exists a maximal B ∈ IC with A v B.

Proof. We first argue that Condition 2 in Lemma 9 is vacuously true. As all increasing
chains in IC are countable, the only possible value δ > 1 for δ = cof(((xγβ)β<α)γ<δ) is δ = ω.
As (X,�) embeds into IC, if all chains in IC are countable, then so are all chains in (X,�).
This tells us that the only possible value for α is α = ω. But then α 6= δ cannot be satisfied.

By Lemma 9, Condition 1 follows. We can then apply Zorn’s Lemma (Lemma 2) to
conclude the claim. J

A small modification of the example shows that we cannot replace the requirement that
IC has only countable increasing chains in Theorem 11 with the simpler requirement that
(X,�) has only countable increasing chains:
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v0

v1 v2 `2`1

(a) A variant of the Help-me? game with an extra
loop.

v0

v1

v2 `2`1

b

a

(b) A variant of the Help-me? game with two paths
from v0 to v2.

Figure 2 Two variants of the Help-me? game.

I Example 12. Let X = ω1 × ω, and let (α, n) ≺ (β,m) iff α ≤ β and n < m. Then (X,�)
has only countable increasing chains, but IC still has the chain of chains given by xγn = (γ, n)
as in Example 10.

3.2 Uncountably long chains of chains

Unfortunately, we can design a game such that there exists an uncountable increasing chain
of increasing chains. Thus the existence of a maximal element above any chain is not
guaranteed by Theorem 11. In fact, we will see that the chain of chains of uncountable length
we construct is not below any maximal chain.

I Example 13. We consider a variant of the Help-me? game (Example 1), depicted in
Figure 2a. The strategies of the protagonist in this game can be described by functions
f : N→ N ∪ {∞} describing how often the protagonist is willing to repeat the second loop
(between v1 and v2) given the number of repetitions the antagonist made in the first loop (at
v0). With the same reasoning as in Example 1 we find that the strategy corresponding to a
function g dominates the strategy corresponding to f iff ∀n ∈ N f(n) =∞⇔ g(n) =∞ and
∀n ∈ Nf(n) ≤ g(n).

I Definition 14. Let NN denote the set of functions f : N → N. For f, g ∈ NN, let f ≤ g

denote that ∀n ∈ N f(n) ≤ g(n).

I Observation 15. There is an embedding of (NN,≤) into the strategies of the game in
Example 13 ordered by dominance such that no strategy in the range of embedding is
dominated by a strategy outside the range of the embedding.

I Proposition 16 (1). For every chain (fn)n∈N in (NN,≤) there exists a chain of chains
((fαn )n<ω)α<ω1 of length ω1 with (f0

n)n<ω w (fn)n<ω.

I Corollary 17. The game in Example 13 has uncountably long chains of chains not below
any maximal chains.

Proof. Combine Observation 15 and Proposition 16. J

1 This result is adapted from an answer by user Deedlit on math.stackexchange.org [16].
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3.3 Chains over countable posets (X,�)
Our proof of Proposition 16 crucially relied on functions of type f : N→ N with arbitrarily
high rate of growth. In concrete applications such functions would typically be unwelcome. In
fact, for almost all classes of games of interest in (theoretical) computer science, a countable
collection of strategies suffices for the players to attain their attainable goals. Restricting
to computable strategies often makes sense. Many games played on finite graphs are even
finite-memory determined (see [18] for how this extends to the quantitative case), and thus
strategies implementable by finite automata are all that need to be considered.

Restricting consideration to a countable set of strategies indeed circumvents the obstacle
presented by Proposition 16. The reason is that the cardinality of the length of a chain of
chains cannot exceed that of the underlying partially ordered set (X,�):

I Proposition 18. For any increasing chain ((xγβ)β<α)γ<δ in IC(X,�) we find that |δ| ≤ |X|.

Proof. Let Xγ = {x ∈ X | ∃β < α x � xγβ}. We find that Xγ1 ( Xγ2 for any γ1 < γ2 < δ

as a direct consequence of (xγ1
β )β<α @ (xγ2

β )β<α. Pick for each γ < δ some yγ ∈ Xγ+1 \Xγ .
Then y· : δ → X is an injection, establishing |δ| ≤ |X|. J

I Corollary 19. If (X,�) is countable, then any increasing chain is maximal or below a
maximal chain.

Proof. Proposition 18 shows that Theorem 11 applies. J

I Example 20. We return to the Help-me? game (Example 1, Figure 1). With the analysis
done in Example 8, we have seen that any increasing chain C is either maximal or such that
C v (σn)n<ω, which is maximal. This fact can be derived directly from Corollary 19 as the
number of strategies in G is countable. Note also that the seemingly irrelevant loop we added
in Figure 2a has a fundamental impact on the behaviour of chains of strategies!

4 Generalised safety/reachability games

I Definition 21. A generalised safety/reachability game (for Player i) G = 〈P,G,L, (pi)i∈P 〉
is a turn-based multiplayer game on a finite graph such that:

L ⊆ V is a finite set of leaves,
for each ` ∈ L, we have that (`, v) ∈ E if, and only if v = `, that is, each leaf is equipped
with a self-loop, and no other outgoing transition,
for each ` ∈ L, there exists an associated payoff n` ∈ Z such that: for each outcome ρ,

we have pi(ρ) =
{
n` if ρ ∈ V ∗`ω,
0 otherwise.

The traditional reachability games can be recovered as the special case where all leaves
are associated with the same positive payoff, whereas the traditional safety games are those
generalised safety/reachability games with a single negative payoff attached to leaves. This
class was studied under the name chess-like games in [5, 6].

Generalised safety/reachability games are well-formed for Player i. Furthermore, they
are prefix-independent, that is, for any outcome ρ and history h, we have that pi(hρ) = pi(ρ).
Without loss of generality, we consider that there is either a unique leaf `(n) ∈ L or no leaf
for each possible payoff n ∈ Z.

It follows from the transfer theorem in [18] (in fact, already from the weaker transfer
theorem in [13]) that generalised safety/reachability games are finite memory determined.
With a slight modification, we see that for any history h and strategy σ, there exists a
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finite-memory strategy σ′ such that cVal(h, σ′) = cVal(h, σ) and aVal(h, σ′) = aVal(h, σ).
We shall thus restrict our attention to finite memory strategies, of which there are only
countably many. We then obtain immediately from Corollary 19:

I Corollary 22. In a generalised safety/reachability game, every increasing chain comprised
of finite memory strategies is either maximal or dominated by a maximal such chain.

If our goal is only to obtain a dominance-related notion of rationality, then for generalised
safety/reachability games we can be satisfied with maximal chains comprised of finite memory
strategies. However, for applications, it would be desirable to have a concrete understanding
of these maximal chains. For this, having used Zorn’s Lemma in the proof of their existence
surely is a bad omen!

After collecting some useful lemmas on dominance in generalised safety/reachability
games in Section 4.1, we will introduce the notion of uniform chains in Section 4.2. These
are realized by automata of a certain kind, and thus sufficiently concrete to be amenable to
algorithmic manipulations.

4.1 Dominance in generalised safety/reachability games
Given a generalised safety/reachability game G and two strategies σ1 and σ2 of Player i, we
can provide a criterion to show that σ1 is not dominated by σ2:

I Lemma 23. Let σ1 and σ2 be two strategies of Player i in a generalised safety/reachability
game G. Then, σ1 6� σ2 if, and only if, there exists a history h compatible with σ1 and σ2
such that last(h) ∈ Vi, σ1(h) 6= σ2(h) and cVal(h, σ1) > aVal(h, σ2).

Intuitively, if there is no history where the two strategies disagree, they are in fact
equivalent, and if, at every history where they disagree, the best payoff σ1 can achieve (that
is, cVal(h, σ1)) is less than the one σ2 can ensure (that is, aVal(h, σ2)), then σ1 � σ2. On
the other hand, if they disagree at a history h and the best payoff σ1 can achieve is strictly
greater than the one σ2 can ensure, then there exist a strategy of the antagonist that will
yield exactly these payoffs against σ1 and σ2 respectively, which means that σ1 6� σ2. This
result follows from the proof of Theorem 11 in [9]. The proof adapted to our setting can be
found in the appendix.

We call such a history h a non-dominance witness of σ1 by σ2. The existence of non-
dominance witnesses allows us to conclude that in generalised safety/reachability games, all
increasing chains are countable (not just those comprised of finite memory strategies).

I Corollary 24. If (σβ)β<α is an increasing chain in generalised safety/reachability game,
then α is countable.

Proof. Assume that a history h is a witness of non-dominance of σ2 by σ1, and of σ3 by σ2,
but not of σ1 by σ2 or σ2 by σ3. Then cVal(h, σ2) > aVal(h, σ1), cVal(h, σ3) > aVal(h, σ2),
cVal(h, σ1) ≤ aVal(h, σ2) and cVal(h, σ2) ≤ aVal(h, σ3). It follows that aVal(h, σ1) <

aVal(h, σ3) and cVal(h, σ1) < cVal(h, σ3). Thus, if there are k different possible values, then
any increasing chain of strategies using h as witness of non-dominance between them can
have length at most 2k − 1.

But if there were an uncountably long increasing chain, by the pigeon hole principle it
would have an uncountably long subchain where all non-dominance witnesses in the reverse
direction are given by the same history. J
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As we only handle countable chains, in the following we use the usual notation (σn)n∈N
to index chains.

The following lemma states that we can also extract witnesses for a strategy to be
non-maximal (non-admissible or strictly dominated):

I Lemma 25. Let G be a generalised safety/reachability game and σ a strategy of Player i.
The strategy σ is not admissible if, and only if there exists a history h compatible with σ such
that aVal(h, σ) ≤ cVal(h, σ) ≤ aVal(h) ≤ acV al(h) where at least one inequality is strict.

This result is a reformulation of Theorem 11 in [9] catered to our context and with a
focus on the non-admissibility rather than on admissibility (see the arXiv version [3] for a
proof adapted to our setting).

I Definition 26. Call a history h as in Lemma 25 a non-admissibility witness for σ. Call
σ preadmissible, if for every non-admissibility witness hv of σ we find that h = h′vh′′ with
aVal(h′v, σ) = aVal(h′v) and cVal(h′v, σ) = acV al(h′v).

While a preadmissible strategy may fail to be admissible, it is not possible to improve
upon it the first time it enters some vertex. Only when returning to a vertex later it may
make suboptimal choices. Moreover, before a dominated choice is possible at a vertex,
previously both the antagonistic and the antagonistic-cooperative value were realized at that
vertex by the preadmissible strategy.

I Lemma 27. In a generalised safety/reachability game, every strategy is either preadmissible
or dominated by a preadmissible strategy.

Proof sketch. Essentially, we can change how a strategy behaves locally on those histories
that are an obstacle to it being preadmissible by replacing by a finite memory strategy that
realizes the antagonistic and the antagonistic-cooperative value there. J

4.2 Parameterized automata and uniform chains
Let a parameterized automaton be a Mealy automaton that in addition can access a single
counter in the following way: In a counter-access-state, a transition is chosen based on
whether the counter value is 0 or not. Furthermore, in these counter-access-states, when the
counter value is greater than 0, the counter is decremented by 1, otherwise, it stays at 0. In
the remaining states, only one transition is possible and the counter value is not affected.

I Definition 28. A parameterized automaton for Player i ∈ P over a game graph G = (V,E)
is a tupleM = (M,MC ,m0, V, µ, ν) where:

M is a non-empty finite set of memory states and MC ⊆M is the set of counter-access
states,
m0 is the initial memory state,
V is the set of vertices of G,
µ : M × V × N→M × N is the memory and counter update function,
ν : M ×Vi×N→ V is the move choice function for Player i, such that (v, ν(m, v, n)) ∈ E
for all m ∈M and v ∈ Vi and n ∈ N.

The memory and counter-update function µ respects the following conditions: for each
m ∈M \MC , and v ∈ V , there exists m′ ∈M such that µ(m, v, n) = (m′, n) for all n ∈ N.
for each m ∈ MC , and v ∈ V , there exists m′ ∈ M such that µ(m, v, n) = (m′, n − 1) for
all n > 0 and m′′ ∈M such that µ(m, v, 0) = (m′′, 0). The move choice function ν respects
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v0 v1 `(2)`(1)

Figure 3 Product of the Help-me? game with parameterized automaton with a single memory
state realizing (sk)k∈N.

the following conditions: for each m ∈ M \MC , and v ∈ Vi, there exists v′ ∈ V such that
ν(m, v, n) = v′ for all n ∈ N. For each m ∈MC , and v ∈ Vi, there exists v′, v′′ ∈ V such that
ν(m, v, n) = v′ for all n > 0 and ν(m, v, 0) = v′′.

To ease presentation and understanding, we call transitions that decrement the counter
green transitions, the transitions only taken when the counter value is 0 red transitions,
and the ones that do not depend on the counter value black transitions. This classification
between green, red and black transitions extends naturally to the edges of the productM×G
(that is, the graph with set of vertices M × V and edges induced by the functions µ and ν).

Parameterized automata can be seen as a collection of finite Mealy automata, one for
each initialization of the counter. Thus, we say that a parameterized automaton M realizes
a sequence of finite-memory strategies (σn)n∈N. In the remainder of the paper, we focus on
chains realized by parameterized automata:

I Definition 29. Let a chain (σn)n∈N of strategies be called a uniform chain if there is
a parameterized automaton M that realizes σn if the counter is initialized with the value
n. If (σn)n∈N is maximal for v amongst the increasing chains comprised of finite memory
strategies, we call it a a maximal uniform chain.

I Example 30. The Help-me? game from Figure 1 is clearly a generalised safety/reachability
game with two leaves. The chain of strategies (sk)k∈N exposed in Example 1 is a uniform
chain, as it is realized by the parameterized automaton that loops k times when its counter is
initialized with value k. Figure 3 shows the product between this parameterized automaton
and the game graph. The green (doubled) edge corresponds to the transition to take when
the counter value is greater than 0 and should be decremented, while the red (dashed) edge
corresponds to the transition to take when the counter value is 0.

The following theorem shows us that uniform chains indeed suffice to realize any rational
behaviour in the sense of maximal chains:

I Theorem 31. In a generalised safety/reachability game, every dominated finite memory
strategy is dominated by an admissible finite memory strategy or by a maximal uniform chain.

Theorem 31 cannot be extended to state that every chain comprised of finite memory
strategies is below an admissible strategy or a maximal uniform chain. Note that there are
only countably many uniform chains.

I Example 32. There is a generalised safety/reachability game where there are uncountably
many incomparable maximal chains of finite memory strategies.

Proof. Consider the game depicted in Figure 2b. For any p ∈ {a, b}ω, define a chain of finite
memory strategies by letting the n-strategy be loop n times while playing the symbols from
p≤n, then quit. For each p, we obtain a different maximal chain. J
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4.3 Algorithmic properties
In this section, we prove two decidability results concerning parametrized automata.

First, we prove that we can decide whether the sequence of strategies realized by a
parameterized automaton is a chain. Note that this decision problem is not trivial: not every
parameterized automaton realizes an (increasing) chain of strategies. For instance, if we
switch the red and green transitions in the automaton/game graph product of figure 3, the
sequence of strategies realized consists of sω when the counter is initialized with value 0, and
s0 when it is initialized with any other value. As sω 6� s0, it is not a chain.

Second, we demonstrate that we can compare uniform chains: given two parametrized
automata defining chains of strategies, we can decide whether one is dominated by the other.
We begin by proving that strategies realized by Mealy automata are comparable.

I Lemma 33. Let G be a generalised safety/reachability game, let σ and σ′ be finite-memory
strategies realized by the finite Mealy automataM andM′. It is decidable in PTime whether
σ � σ′.

Proof sketch. We construct the game G′ of perfect information for two players, Challenger
and Prover, such that Prover wins the game if and only if σ � σ′. The goal of Challenger
is to show that there exists a non-dominance witness of σ by σ′, that is, according to
Lemma 23, a history h compatible with σ and σ′ such that last(h) ∈ Vi, σ(h) 6= σ′(h) and
cVal(h, σ) > aVal(h, σ′). The game can be decomposed into the following phases:

first, Challenger chooses a path h̃ in M× G ×M′ such that h̃ has no successor in
M×G×M′. This guarantees that h is compatible with σ and σ′, and that σ(h) 6= σ′(h).
Challenger then announces two values: c and a, such that c > a.
Prover now can choose to contest either value c or value a.
If Prover chooses to contest c, the game proceeds to a subgame C, where Challenger has to
find a continuation path in (M×G) that yields a payoff c, to prove that cVal(h, σ) ≥ c.
If Prover chooses to contest a, the game proceeds to a subgame A, where Challenger
has to find a valid continuation path in (M′ ×G) that yields a payoff a, to prove that
aVal(h, σ′) ≤ a.

Informally, if σ 6� σ′, Challenger is able to select correctly a non-dominance witness h of σ
by σ′, and the two values c = cVal(h, σ) and a = aVal(h, σ′) such that c > a. Thus, he can
follow in G′ the path h̃ corresponding to h, then continue, depending on the choice of Prover,
to follow either a continuation of h that yields a payoff c with strategy σ or a continuation
of h that yields a payoff a with strategy σ′. Symmetrically, if σ � σ′, then for any history h
compatible with σ and σ′ where σ(h) 6= σ′(h), we have that cVal(h, σ) ≤ aVal(h, σ′). Thus
any choice of pair (c, a) with c > a by Challenger is faulty: either c > cVal(h, σ), in which
case Prover can let the game proceed to C, and Challenger will fail to expose a continuation
of h that yields a payoff c with strategy σ′ , or a < aVal(h, σ′), in which case Prover can
let the game proceed to A, and Challenger will fail expose a continuation of h that yields
a payoff a with strategy σ′. As the game graph we construct for this Prover game has a
size polynomial in the size of the strategy automata and the game graph, and as solving
this game amounts to solving a polynomially bounded number of reachability and safety
subgames, we obtain that the question whether σ � σ′ is decidable in PTime. J

We now expose equivalences between the decision problems we are interested in, and
properties (P1), (P2) and (P3) that can be decided with the use of Lemma 33.
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I Proposition 34. Let G be a generalised safety/reachability game over a graph G. LetM be
a Mealy automaton realizing a finite memory strategy M , and let S and T be parameterized
automata realizing sequences (Sn)n∈N and (Tn)n∈N of finite memory strategies. Then:
1. Let N� = |G||S|.

Then (Sn)n∈N is a chain if and only if (P1) Si � Si+1 for every 1 ≤ i ≤ N�.
2. Let NT = |G||T |(|M|+ 1) + 1, and suppose that (Tn)n∈N is a chain.

Then M 6v (Tn)n∈N if and only if (P2) M 6� TNT .
3. Let NS = |G||S|(2|T |+ 1), and suppose that (Sn)n∈N and (Tn)n∈N are chains.

Then (Sn)n∈N 6v (Tn)n∈N if and only if (P3) SNS 6� (Tn)n∈N.

Proof sketch. Note that for every item, the backward implication is straightforward. The
proof of each forward implication relies on the study of the loops that appear in witnesses
of non dominance, whose existence is guaranteed by Lemma 23. For item 1, we prove that,
given a witness of non-dominance of Ti by Ti+1 for any integer i > N�, we are able to
construct a witness of non-dominance of Tj by Tj+1 for some j ≤ N� by exposing loops that
can be pumped down.

To prove item 2, we show that since (Tn)n∈N is a chain, M 6v (Tn)n∈N if and only if M is
not dominated by TN for arbitrarily large N . If M is dominated by TNT , we exhibit a loop
in a witness of non dominance, which, once pumped, allows us to create witnesses of non
dominance of M by TN for arbitrarily large N , yielding the desired result.

Finally, item 3 is proved as follows. Since (Sn)n∈N and (Tn)n∈N are chains, (Sn)n∈N 6v
(Tn)n∈N if and only if there exists and integer N such that SN 6v (Tn)n∈N. Once again, we
show that if such an N exists, there is at least one that is smaller than NS . J

Since the property P1 can be decided in PTime by applying Lemma 33 with adequately
chosen Mealy automata as parameters, we obtain the following theorem.

I Theorem 35. Given a generalised safety/reachability game and a parameterized automaton,
we can decide in PTime whether the automaton realizes a chain of strategies.

Similarly, the property P2 can be decided in PTime by applying Lemma 33 with M
and the Mealy automaton corresponding to the strategy TNT as parameters. Moreover, by
Proposition 34.2, the problem of deciding property P3 can be reduced in polynomial time to
the problem of deciding property P2. Therefore Proposition 34.3 implies our final decidability
result.

I Theorem 36. Given a generalised safety/reachability game and two parameterized automata
realizing uniform chains of strategies, we can decide in PTime whether the chain realized by
the first is dominated by the one from the second.

5 Conclusion and outlook

In quantitative games with more than three possible payoffs, there are strategies that are
dominated but not dominated by any admissible strategy. Example 1 suggests that chains
of strategies could provide a suitable framework to circumvent this issue. Abstract order-
theoretic considerations revealed that in the most general case, this does not work. However,
if we restrict to countable collections of strategies, every chain is below a maximal chain.
This restriction is very natural, as it covers all computable strategies.

We explored the abstract approach in the concrete setting of generalized safety/reachability
games. Here, parameterized automata can give a very concrete meaning to chains of
strategies. Several fundamental algorithmic questions are decidable in PTime. There are
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more algorithmic questions to investigate: first and foremost, deciding, given a parameterized
automaton, whether the chain realized is maximal or not, is a relevant question left open.

Moreover, our results on this class of games mostly rely on the prefix-independence and
finite-range of the payoff function, and on the restriction to finite-memory strategies. Thus, it
seems achievable to extend our approach to other classes of games that enjoy these properties,
such as quantitative extensions of parity or Muller games, in the sense of [20] and [24]. A
more ambitious objective would be to tackle more general classes of games, starting by
dropping the finite-range hypothesis to encompass, for instance, mean-payoff games [14].

Finally, in the boolean case, in addition to the fundamental property that a strategy is
either admissible or dominated by an admissible strategy, the admissibility notion exhibits
other good properties. Indeed, in [4], the author proves that, in games with ω-regular
winning conditions on finite graphs, the set of admissible strategies is itself an ω-regular set.
Furthermore, as shown in [11], assuming all the players are rational (that is, play admissible
strategies) yields robust and resilient solutions for strategy synthesis.

This synthesis problem remains to be investigated in the quantitative setting.
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Here we present some, but not all omitted proofs. For the complete account, we refer to
the arXiv version at [3].

A Proofs omitted from Section 3

I Lemma 37. If (xβ)β<α v (yγ)γ<δ and α < cof((yγ)γ<δ), then there exists γ0 < δ such
that

(xβ)β<α v (yγi)i<1

Proof of Lemma 9. It is clear that 2 is a special case of 1. We thus just need to show that
any potential obstruction to 1 can be assumed to have the form in 2.
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By replacing each (xγβ)β<αγ with some suitable cofinal increasing chain if necessary, we
can assume that cof((xγβ)β<αγ ) = αγ for all γ < δ.

Consider {(xγβ)β<αγ | ∃γ′ > γ αγ < αγ′}. If this set is cofinal in ((xγβ)β<αγ )γ<δ, then for
each γ inside that set pick some witness γ′, and let yγ be the witness obtained from Lemma
37. Now {yγ | ∃γ′ > γ αγ < αγ′} is the desired upper bound.

If the set from the paragraph above is not cofinal, then there exists some δ′ < δ such that
for δ′ ≤ γ < γ′ < δ we always have that αγ ≥ αγ′ . As the αγ are ordinals, decreases can
happen only finitely many times. Thus, by moving to a suitable cofinal subset we can safely
assume that all αγ are equal to some fixed α.

Again by moving to a suitable cofinal subset, we can assume that cof(((xγβ)β<α)γ<δ) = δ.
If δ = 1, the statement is trivial. If α = 1, then (xγ0)γ<δ is the desired upper bound. It
remains to handle the case α = δ > 1.

We construct some function f : α→ α, such that the desired upper bound (yε)ε<α is of
the form yε = xεf(ε). We proceed as follows: Set f(0) = 0. Once f(ζ) has been defined for
all ζ < ε, pick for each ζ < ε some g(ζ) such that xζf(ζ) � x

ε
g(ζ) and xζε � xεg(ζ). As ε < α, it

cannot be that {xεg(ζ) | ζ < ε} is cofinal in {xεβ | β < α}. Thus, it has some upper bound,
and we define f(ε) such that xεf(ε) is such an upper bound. J

Proof of Proposition 16. For each countable limit ordinal α, we fix2 some fundamental
sequence (α[m])m<ω of ordinals with α[m] < α and supm∈ω α[m] = α.

Let f0
n(k) = max{f(k), k}. Let fα+1

n (k) = maxj≤k(fαn+j)(k) + 1, and for limit ordinals α,
let fαn (k) = maxm≤n+k f

α[m]
n (k).

Claim: If α ≤ β, then (fαn )n<ω v (fβm)m<ω.

Proof. It suffices to show that if α ≤ β, then fαn ≤ fβn for all n greater than some t. If
β = α+ 1, this is immediate already for t = 0. For β a limit ordinal, we note that fβ[m]

n ≤ fβn
for n ≥ m.

The claim then follows by induction over β. Recall that if β is a limit ordinal and α < β,
then there is some m ∈ ω with α ≤ β[m]. Since for any given α, β, the ordinals γ between
α and β we will need to inspect in the induction form a decreasing chain, there are only
finitely many such ordinals. In particular, the maximum of all thresholds t we encounter is
well-defined. J

Claim: If α > β, then (fαn )n<ω 6v (fβm)m<ω.

Proof. Due to transitivity of v and the previous claim, it suffices to show that (fα+1
m )m<ω 6v

(fαn )n<ω. Write gn = fαn . Assume the contrary, i.e. that for all n < ω there exists some
m < ω such that for all k ∈ N and for all j ≤ k we have that gn+j(k) + 1 ≤ gm(k). In
particular, for n = 0 we would have that ∀k ∈ N ∀j ≤ k gj(k) + 1 ≤ gm(k), and then setting
k = j = m, that gm(m) + 1 ≤ gm(m), which is a contradiction. J

J

2 We have no computability or other uniformity requirements to satisfy, and can thus just invoke the
axiom of choice. Otherwise, as discussed e.g. in [23, Section 3.1] this approach would fail.
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B Proofs omitted from Subsection 4.1

Proof of Lemma 23.
=⇒ Suppose that for every history h compatible with σ1 and σ2 such that last(h) ∈ Vi and

σ1(h) 6= σ2(h), we have that cVal(h, σ1) ≤ aVal(h, σ2). We show that σ1 � σ2. Let τ
be a strategy of Player −i. Consider ρ1 = Out(σ1, τ) and ρ2 = Out(σ2, τ). If for all
prefixes h′ ⊆pref ρ1 such that last(h′) ∈ Vi, it holds that σ1(h′) = σ2(h′), then in fact
ρ1 = ρ2 and pi(σ1, τ) = pi(σ2, τ). Otherwise, let h be the least common prefix of ρ1 and
ρ2 such that last(h) ∈ Vi and σ1(h) 6= σ2(h). We know that pi(ρ1) ≤ cVal(h, σ1) and
pi(ρ2) ≥ aVal(h, σ2) since h ⊆pref ρ1 and h ⊆pref ρ2. As cVal(h, σ1) ≤ aVal(h, σ2), we
have that pi(σ1, τ) ≤ pi(σ2, τ). Thus, for every τ ∈ Σ−i, it holds that pi(σ1, τ) ≤ pi(σ2, τ),
that is, σ1 � σ2.

⇐= Let h be a history compatible with σ1 and σ2 such that last(h) ∈ Vi, σ1(h) 6= σ2(h)
and cVal(h, σ1) > aVal(h, σ2). Then, there exists two strategies τ1 and τ2 of player −i
such that pi(h, σ1, τ1) = cVal(h, σ1) and pi(h, σ2, τ2) = aVal(h, σ2). Let τ be a strategy

of player −i compatible with h, and define τ ′(h′) =


τ1(h′) if hσ1(h) ⊆pref h

′,

τ2(h′) if hσ2(h) ⊆pref h
′,

τ(h′) otherwise.
The strategy τ ′ is well defined, as σ1(h) 6= σ2(h). Furthermore, we have that pi(σ1, τ

′) =
pi(h, σ1, τ1) = cVal(h, σ1) > aVal(h, σ2) = pi(h, σ2, τ2) = pi(σ2, τ

′), since generalised
safety/reachability games are prefix-independent. Thus, σ1 6� σ2. J

Proof of Lemma 27. For each vertex v in the game, we fix a finite memory strategy τv that
realizes aVal(v) and acV al(v). Note that since generalised safety/reachability games are
prefix independent, values depend only on the current vertex, but not on the entire history.

We start with a finite memory strategy σ. If it is not already preadmissible, then it has
witnesses of non-admissibility violating the desired property. Whether a history h is a witness
of non-admissibility for a finite memory strategy σ depends only on the last vertex of h and
the current state of σ. We now modify σ such that whenever σ is in a combination of vertex
v and state s corresponding to a problematic witness of non-admissibility, the new strategy
σ′ moves to playing τv instead. The choices of v, s and τk ensure that σ′ dominates σ.

The new strategy σ′ may fail to be preadmissible, again, and we repeat the construction.
Now any problematic history in σ′ needs to enter the automaton for some τv at some point.
By choice of τv, the history where τv has just been entered cannot be a witness of non-
admissibility. It follows that a problematic history entering τv cannot end in v. Repeating
the updating process for at most as many times as there are vertices in the game graph will
yield a preadmissible finite memory strategy dominating σ. J

C Proofs omitted from Subsection 4.2

To complete the proof of Theorem 31, we need the following intermediary results:

I Lemma 38. If h is not a witness of non-admissibility of σ, and not a witness of non-
dominance of σ by τ , then h is not a witness of non-dominance of τ by σ.

I Lemma 39. Given an initialized game with initial vertex v0, the following holds: If for two
strategies σ and τ it holds that for any maximal history h compatible with both, there is a prefix
h′ with aVal(h′, σ) = aVal(h′, τ) and cVal(h′, σ) = cVal(h′, τ), then aVal(v0, σ) = aVal(v0, τ)
and cVal(v0, σ) = cVal(v0, τ).
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I Lemma 40. Given an initialized game with initial vertex v0, the following holds: If σ is
preadmissible and σ � τ , then aVal(v0, σ) = aVal(v0, τ) and cVal(v0, σ) = cVal(v0, τ).

Proof. We show that the conditions of Lemma 39 are satisfied, which will imply our desired
conclusion. Consider a maximal history h compatible with both σ and τ . First, assume that
h is not a witness of non-admissibility of σ. Since σ � τ , by Lemma 23 h cannot be a witness
of non-dominance of σ by τ , i.e. cVal(h, σ) ≤ aVal(h, τ). By Lemma 38, it follows that h is
not a witness of non-dominance of τ by σ either, i.e. cVal(h, τ) ≤ aVal(h, σ). Put together,
we have aVal(h, σ) = cVal(h, σ) = aVal(h, τ) = cVal(h, τ).

It remains the case where h is a witness of non-admissibility of σ. Then by preadmissibility
of σ, h has some prefix h′ with aVal(h′, σ) = aVal(h′) and cVal(h′, σ) = acVal(h′). Since σ �
τ , we must have aVal(h′, σ) ≤ aVal(h′, τ), so it follows that aVal(h′, σ) = aVal(h′, τ), and then
that cVal(h′, τ) ≤ acVal(h′) = cVal(h′, σ) ≤ cVal(h′, τ), i.e. cVal(h′, σ) = cVal(h′, τ). J

Proof of Theorem 31. By Lemma 27 it suffices to prove the claim for preadmissible strategies
(Definition 26). We thus start with a preadmissible finite memory strategy σ.

Preliminaries. Since we are working with prefix-independent outcomes and strategies re-
alized by automata, we see that any of the values of σ at some history h depends only on
the final vertex v of h and the state s the strategy σ is in after reading h. We can thus
overload our notation to write aVal(v, s) for aVal(h, σ) and aVal(v) for aVal(h), and so on.
In particular, whether some history h is a witness of non-admissibility of σ or not depends
only on the final vertex v of h and the state s that σ is in after reading h. Let WNA be the
set of such pairs (v, s) corresponding to non-admissibility witnesses. By the definition of
preadmissibility, we cannot reach any (v, s) ∈WNA without first passing through some (v, sv)
with aVal(v, sv) = aVal(v) and cVal(v, sv) = acV al(v, sv). By expanding the automaton if
necessary (to remember where we were when first encountering some vertex), we can assume
that for any (v, s) ∈WNA there is canonic choice of prior (v, sv).

I Lemma 41. For any (v, s) ∈WNA and corresponding (v, sv) we find that aVal(v, sv) =
aVal(v, s) = cVal(v, s) < cVal(v, sv).

The construction. We now construct a parameterized automaton M from σ that either
realizes a single maximal strategy, or a maximal uniform chain. The parameterized automaton
is identical to the one realizing σ everywhere except at the (v, s) ∈ WNA. In particular,
if WNA = ∅, we are done. Otherwise, for each (v, s) ∈ WNA we make the following
modifications: If aVal(v, sv) ≤ 0, we modify the automaton to act in (v, s) as it does in
(v, sv). If aVal(v, sv) > 0, then we add green edges to let the automaton act in (v, s) as in
(v, sv), and red edges to act as it would do originally.

Correctness. The comparison of the values lets us conclude via Lemma 23 that the param-
eterized automaton M either realizes a single strategy dominating σ, or a uniform chain
dominating σ.

It remains to argue that the strategy/uniform chain realized byM is maximal. Let σn be
the strategy whereM is initialized with n ∈ N. Assume that τ � σn, and let h be a witness
of τ � σn according to Lemma 23, i.e. satisfying cVal(h, τ) > aVal(h, σn). Since σn � τ , we
have cVal(h, σn) ≤ aVal(h, τ), so aVal(h, σn) ≤ cVal(h, σn) ≤ aVal(h, τ) ≤ cVal(h, τ) with
one inequality being strict. In particular, h is a witness of non-admissibility of σn. By
construction ofM the next move after h must be given by a red edge. This already implies
that ifM realizes a single strategy, then that strategy is maximal.
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Let m be the size of the parameterized automatonM, let t be the size of the automaton
realizing τ , and N = mt+ 1.

I Lemma 42. At any maximal history compatible with σN and τ , σN will follow a green or
black edge next.

Proof. Assume there were such a history hv compatible with both σN and τ where σN is
about to apply a red edge, being in state s. If the combination (v, s) has been reached more
than t times during hv, then it has to hold that on histories extending hv, τ always acts at v
asM does following the green edge at (v, s), for τ cannot count up to t+ 1 (in particular, h
is maximal for being compatible with τ and σN ). It follows that aVal(hv, τ ) ≤ 0. Let h′v be
a prefix of this form of hv compatible with σn not ending in a red edge (this exists, since
n > m). Then aVal(h′v, τ ) ≤ 0, and since τ � σn, aVal(h′v, σn) = aVal(v, sv) ≤ 0. But then
when constructingM, we would not have placed red and green edges at (v, sv), leading to a
contradiction. Thus, at any maximal history compatible with σN and τ , σN will follow a
green or black edge next.

If the combination (v, s) has been visited at most t times during hv, then there has to be
some other pair of counter access state s′ and vertex v′ which was reached more often than t
times during hv by the pigeon hole principle (for since σN is about to follow a red edge, it
has reached a counter access state at least N = mt + 1 many times), with σN taking the
green edge there. Again, by the same reasoning as above, τ always follows the green edge at
the corresponding histories, leading to the conclusion that the antagonistic value obtained
by τ there is 0, and ultimately a contradiction to s′ being created as a counter access state
when constructingM. J

If τ is part of a chain (τi)i∈N with (σi)i∈N v (τi)i∈N, then τ and σN have a common
upper bound τ ′. We proceed to show that this suffices to conclude τ � σN . This completes
our argument, since by induction it follows that if (σn)n∈N v (τn)n∈N, then also (τn)n∈N v
(σn)n∈N.

I Lemma 43. If τ and σN have common upper bound τ ′, then τ � σN .

Proof. We proceed by ruling out all candidates for witnesses of non-dominance of τ by σN ,
and conclude our claim by Lemma 23. Any candidate is a maximal history h compatible
with both σN and τ .
Case 1. Either h is not compatible with τ ′, or τ ′(h) 6= σN (h).

If h is not compatible with τ ′, then h has a longest prefix h′ compatible with τ ′. If
h is compatible with τ ′, but τ ′(h) 6= σN (h), we set h′ = h. By Lemma 42, h′ cannot
be a witness of non-admissibility of σN , and by Lemma 23 it cannot be a witness of
non-dominance of σN by τ ′, since σN � τ ′. Lemma 38 then gives us that h′ is not a
witness of non-dominance of τ ′ by σN , i.e. cVal(h′, τ ′) ≤ aVal(h′, σN ). Together with
σN � τ ′ we get that aVal(h′, σN ) = cVal(h′, σN ). Since h is compatible with σN and
extends h′, it follows that aVal(h′, σN ) = aVal(h, σN ) = cVal(h, σN ). Since τ � τ ′, it
follows that cVal(h′, τ) ≤ cVal(h′, τ ′) = aVal(h′, σN ). Since h is compatible with τ and
extends h′, it follows that cVal(h, τ) ≤ cVal(h′, τ) ≤ aVal(h′, σN ) = aVal(h, σN ), i.e. that
h is not a witness of non-dominance of τ by σN .

Case 2. h is compatible with τ ′ and τ ′(h) = σN (h).
Consider the subgame starting after that move. Since we have chosen N sufficiently big,
in this subgame it is impossible for σN to pass through a red edge without previously
passing through a green edge at the same vertex. By construction, this ensures that
σN is still preadmissible in this subgame. Since reaching the subgame is compatible
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with τ ′ and σN , restricting to this subgame, we still have that σN � τ ′. Thus, we
can apply Lemma 40 to the subgame, and conclude that aVal(h, τ ′) = aVal(h, σN )
and cVal(h, τ ′) = cVal(h, σN ). Since h cannot be a witness of non-dominance of τ by
τ ′, it holds that cVal(h, τ) ≤ aVal(h, τ ′) = aVal(h, σN ). Thus, h is not a witness of
non-dominance of τ by σN either. J

J

D Proofs omitted from Subsection 4.3

The proof of Proposition 34.1 is based on the following auxiliary Lemma, whose demonstration
relies on the study of the loops that appear in witnesses of non dominance.

I Lemma 44. Let G be a generalised safety/reachability game, let M be a parametrized
automaton over the game graph of G, and let (Tn)n∈N be the sequence of finite-memory
strategies realized byM. Then for every pair of integers n1, n2 > |G||M| satisfying Tn1 6� Tn2 ,
there exists 0 < k ≤ |G||M| such that for every i ∈ N, Tn1+(i−1)k 6� Tn2+(i−1)k.

Proof of Proposition 34.1. Let G be a generalised safety/reachability game, and let S be a
parametrized automaton over the game graph of G. We denote by (Sn)n∈N the sequence of
finite-memory strategies realized by S. Let N� = |G||S|.

Let US denote the set composed of the integers n satisfying Sn 6� Sn+1. It is clear that
if US is not empty, then (Sn)n∈N is not a chain. Conversely, if US is empty, then (Sn)n∈N
is a chain, since for every pair of integers n1 < n2, we have Sn1 � Sn1+1 � . . . � Sn2 .
Let us suppose, towards building a contradiction, that the minimal element m of US is
strictly greater than N�. Then, we obtain from Lemma 44 that there exists an integer k > 0
such that Sm−k 6� Sm−k+1 by setting i = 0. This contradicts the minimality of m. As a
consequence, m ≤ N�. This proves that (Sn)n∈N is a chain if and only if Si � Si+1 for every
1 ≤ i ≤ N�. J



Rule Algebras for Adhesive Categories
Nicolas Behr1

IRIF, Université Paris-Diderot (Paris 07), France

Paweł Sobociński
ECS, University of Southampton, UK

Abstract
We show that every adhesive category gives rise to an associative algebra of rewriting rules
induced by the notion of double-pushout (DPO) rewriting and the associated notion of concurrent
production. In contrast to the original formulation of rule algebras in terms of relations between
(a concrete notion of) graphs, here we work in an abstract categorical setting. Doing this, we
extend the classical concurrency theorem of DPO rewriting and show that the composition of
DPO rules along abstract dependency relations is, in a natural sense, an associative operation.
If in addition the adhesive category possesses a strict initial object, the resulting rule algebra is
also unital. We demonstrate that in this setting the canonical representation of the rule algebras
is obtainable, which opens the possibility of applying the concept to define and compute the
evolution of statistical moments of observables in stochastic DPO rewriting systems.

2012 ACM Subject Classification Theory of computation→ Concurrency, Mathematics of com-
puting → Markov processes

Keywords and phrases Adhesive categories, rule algebras, Double Pushout (DPO) rewriting

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.11

1 Introduction

Double pushout graph (DPO) rewriting [9] is the most well-known approach to algebraic
graph transformation. The underlying rewriting mechanics are specified in terms of the
universal properties of pushouts – for this reason, the approach is domain-independent
and instantiates across a number of concrete notions of graphs and graph-like structures.
Moreover, the introduction of adhesive and quasi-adhesive categories [11, 10] (which, roughly
speaking, ensure that the pushouts involved are “well-behaved”, i.e. they satisfy similar
exactness properties as pushouts in the category of sets and functions) entailed that a
standard corpus of theorems [14] that ensures the “good behavior” of DPO rewriting holds if
the underlying ambient category is (quasi-)adhesive.

An important classical theorem of DPO rewriting is the concurrency theorem, which
involves an analysis of two DPO productions applied in series. Given a dependency relation
(which, intuitively, determines how the right-hand side of the first rule overlaps with the
left-hand side of the second), a purely category-theoretic construction results in a composite
rule which applies the two rules simultaneously. The concurrency theorem then states that
in any graph, the two rules can be applied in series in a way consistent with the relevant
dependency relation if and only if the composite rule can be applied, yielding the same result.

1 Corresponding author email: nicolas.behr@irif.fr; supported by a Marie Skłodowska-Curie Individual
Fellowship (Grant Agreement No. 753750 – RaSiR).

© Nicolas Behr and Pawel Sobocinski;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 11; pp. 11:1–11:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


11:2 Rule Algebras for Adhesive Categories

The operation that takes two rules together with a dependency relation and produces a
composite rule can be considered as an algebraic operation on the set of DPO productions
for a given category. From this viewpoint, it is natural to ask whether this operation is
associative. It is remarkable that this appears to have been open until now. Our main
contribution is an elementary proof of associativity of this type of composition.

Associativity is advantageous for a number of reasons. In [2, 4], the first author and his
team developed the rule algebra framework for a concrete notion of multigraphs. Inspired by
a standard construction in mathematical physics, the operation of rule composition along a
common interface yields an associative algebra: given a free vector space with basis the set
of DPO rules, the product of the associative algebra takes two basis elements to a formal
sum, over all possible dependency relations, of their compositions. This associative algebra
is useful in applications, being the formal carrier of combinatorial information that underlies
stochastic interpretations of rewriting. The most famous example in mathematical physics
is the Heisenberg-Weyl algebra [6, 7], which served as the starting point for [2]. Indeed,
[2, 4] generalized the Heisenberg-Weyl construction from mere set rewriting to multigraph
rewriting. Our work, since it is expressed abstractly in terms of adhesive categories, entails
that the Heisenberg-Weyl and the DPO graph rewriting rule algebra can both be seen as two
instances of the same construction, expressed in abstract categorical terms.

Structure of the paper. Following the preliminaries in Section 2, we prove our main result in
Section 3. Next, in Section 4 we give the abstract definition of rule algebra, and demonstrate
that it captures the well-known Heisenberg-Weyl algebra in Section 5. We conclude with
applications to combinatorics and stochastic mechanics in Sections 6 and 7.

2 Adhesive categories and Double-Pushout rewriting

We briefly review standard material, following mostly [11] (see [8, 14] for further references).

I Definition 2.1 ([11], Def. 3.1). A category C is said to be adhesive if
(i) C has pushouts along monomorphisms,
(ii) C has pullbacks, and if
(iii) pushouts along monomorphisms are van Kampen (VK)squares.

Examples include Set (the category of sets and set functions), Graph (the category of
directed multigraphs and graph homomorphisms), any presheaf topos, and any elementary
topos [12]. One might further generalize by considering quasi-adhesive categories (see [11, 10]).
We now recall Double-Pushout (DPO) rewriting in an adhesive category.

I Definition 2.2 ([11], Def. 7.1). A span p of morphisms

L
l←− K r−→ R (1)

is called a production. p is said to be left linear if l is a monomorphism, and linear if both l
and r are monomorphisms. We denote the set of linear productions by Lin(C). We will also
frequently make use of the alternative notation L p−⇀ R where p = (L l←− K r−→ R) ∈ Lin(C).

A homomorphism of productions p→ p′ consists of arrows, L→ L′, K → K ′ and R→ R′,
such that the obvious diagram commutes. A homomorphism is an isomorphism when all of
its components are isomorphisms. We do not distinguish between isomorphic productions.
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I Definition 2.3 ([11], Def. 7.2). Given a production p as in (1), a match of p in an object
C ∈ ob(C) is a morphism m : L→ C. A match is said to satisfy the gluing condition if there
exists an object E and morphisms g : K → E and v : E → C such that (2) is a pushout.

L K

C E

l

m g

q v

(2)

More concisely, the gluing condition holds if there is a pushout complement of C m←− L l←− K.

To proceed, we need to recall a number of properties of pushouts and pushout complements
in adhesive categories. We start with some basic pasting properties that hold in any category.

I Lemma 2.4. Given a commutative diagram as below,

A B E

C D F

(pullback version) if the right square is a pullback then the left square is a pullback if and
only if the entire exterior rectangle is a pullback.
(pushout version) If the left square is a pushout then the right square is a pushout if and
only if the entire exterior rectangle is a pushout.

I Lemma 2.5 ([11], Lemmas 4.2, 4.3 and 4.5). In any adhesive category:
(i) Monomorphisms are stable under pushout.
(ii) Pushouts along monomorphisms are also pullbacks.
(iii) Pushout complements of monomorphisms (if they exist) are unique up to isomorphism.

From here on, we will focus solely on linear productions, which entails due to the above
statements a number of practical simplifications.

I Definition 2.6 (compare [11], Def. 7.3). Let C be an adhesive category, and denote by
Lin(C) the set of linear productions on C. Given an object C ∈ C and a linear production
p ∈ Lin(C), we denote the set of admissible matches Mp(C) as the set of monomorphisms
m : L ↪→ C for which m satisfies the gluing condition. As a consequence, there exists objects
and morphisms such that in the diagram below both squares are pushouts:

L K R

C K ′ D

l

m k

r

m′

l′ r′ (3)

We write pm(C) := D for the object “produced” by the above diagram. The process is called
derivation of C along production p and admissible match m, and denoted C ==⇒

p,m
pm(C).

Note that by virtue of Lemma 2.5, the object pm(C) produced via a given derivation of an
object C along a linear production p and an admissible match m is unique up to isomorphism.
From here on, we will refer to linear productions as linear (rewriting) rules. Next, we recall
the concept of (concurrent) composition of linear rules.
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11:4 Rule Algebras for Adhesive Categories

3 Concurrent composition and associativity

Convention. unless mentioned otherwise, all arrows are assumed to be monomorphisms.
For rules p1, p2 ∈ Lin(C), a dependency relation consists of an object X12 and a span of

monomorphisms m : R1
x1←− X12

x2−→ L2, s.t. K12, K21 and morphisms illustrated below exist,
where the cospan R1 → Y12 ← L2 is the pushout of m, and the two indicated regions are also
pushouts; i.e. there exist pushouts complements of K1

r1−→ R1 → Y12 and K2
l2−→ L2 → Y12.

K21 Y12 K12

K1 R1 X12 L2 K2

r′1 l′2

r1

p

x1 x2

p

l2

p

(4)

Intuitively, the existence of the left and right pushout diagrams amounts to the two rules
agreeing on the overlap specified by X12, and amenable to being executed concurrently. We
refer to such m as an admissible match of p2 in p1 and denote the set of these by p2  p1.

Algebraically speaking, given p1, p2 and m ∈ p2  p1, we can consider “concurrent
execution” to be an operation that composes p1 and p2 “along” m to obtain a rule p2

m
J p1.

To obtain p2
m
J p1, we extend (4) by taking two further pushouts (marked with dotted arrows)

and take a pullback (marked with dashed arrows):

Z12

L12 K21 Y12 K12 R12

L1 K1 R1 X12 L2 K2 R2

y1 y2

r′1l′1

p

l′2 r′2

r1l1

pp
x1 x2

p

l2 r2
p

p (5)

Now we define the composite of p1 with p2 along m as

p2
m
J p1 := (L12

z1←−↩ Z12
z2
↪−→ R12) , z1 := l′1 ◦ y1 , z2 := r′2 ◦ y2 . (6)

The following well-known result shows that composition is compatible with application.

I Theorem 3.1 (Concurrency Theorem; [11], Thm. 7.11). Let p, q ∈ Lin(C) be two linear
rules and C ∈ ob(C) an object.

Given a two-step sequence of derivations C ==⇒
p,m

pm(C) ==⇒
q,n

qn(pm(C)), there exists

a composite rule r = p2
d
J p1 for unique d ∈ q  p, and a unique admissible match

e ∈Mr(C), such that C =⇒
r,e

re(C) and re(C) ∼= qn(pm(C)).

Given a dependency relation d ∈ q  p, r = p2
d
J p1 and an admissible match e ∈Mr(C),

there exists a unique pair of admissible matches m ∈Mp(C) and n ∈Mq(pm(C)) such
that C ==⇒

p,m
pm(C) ==⇒

q,n
qn(pm(C)) with qn(pm(C)) ∼= re(C).

The following technical lemma will be of use when proving our main result.

I Lemma 3.2 (Admissibility is compatible with composition). Suppose that p1, p2 ∈ Lin(C)
and suppose that m(12)3 ∈ p3 

(
p2

m12J p1

)
. Let p2

m12J p1 be as shown in (6), computed as

in (5). Let p′2 = Y12
l′2←− K12

r′
2−→ R12. Then m(12)3 ∈ p′2  p3.
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Proof. By the assumption m(12)3 ∈ p3 
(
p2

m12J p1

)
, there exists the pushout below left.

Z ′
12 Y(12)3

Z12 R12

p

Z ′
12 K ′

12 Y(12)3

Z12 K12 R12

By construction (see (5)), the arrow Z12 → R12 factors through K12. Taking the pushout
of the span Z ′12 ← Z12 → K12 results in the diagram drawn above right. Since the whole
region and the left square are pushouts, the right square is a pushout (Lemma 2.4). J

We now show that concurrent composition of linear rules is, in a natural sense, associative.

I Theorem 3.3 (Associativity Theorem). The composition operation .
.
J . is associative in the

following sense: given linear rules p1, p2, p3 ∈ Lin(C), there exists a bijective correspondence
between pairs of admissible matches m21 ∈ p2  p1 and m3(21) ∈ p3 

(
p2

m12J p1

)
, and

pairs of admissible matches m32 ∈ p3  p2 and m(32)1 ∈
(
p3

m23J p2

)
 p1 such that

p3
m3(21)
J

(
p2

m21J p1

)
=
(
p3

m32J p2

) m(32)1
J p1 . (7)

Proof. Since DPO derivations are symmetric, it suffices to show one side of the correspon-
dence. Our proof is constructive, demonstrating how, given a pair of admissible matches

(m21 ∈ p2  p1 and m3(21) ∈ p3 
(
p2

m12J p1

)
) ,

one obtains m32 ∈ p3  p2 and m(32)1 ∈ (p3
m32J p2)  p1 satisfying (7). We begin with

p2
m21J p1, p3 and the dependency relation m3(21), illustrated below.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3

By Lemma 3.2, since the match m3(21) is by assumption admissible, we can find a pushout
complement and pushout to extend the above diagram as follows,

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)

and again as below.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

CSL 2018



11:6 Rule Algebras for Adhesive Categories

In the next step, we compute X23 as the evident pullback. Then we further extend the
diagram via repeating the components of rule p3.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Now we push out R2 and L3 along X23, obtaining Y23 → Y(12)3 from the universal property.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23

Next, we compute K32 by pulling back Y23 and K1(23) along Y(12)3. We obtain K3 → K32
from the universal property. To obtain the other morphisms, push out K32 and R3 along K3.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23

We need to establish that the newly constructed front face on the left is a pushout. To do so,
let us consider the cube on the left in isolation.

Y(12)3 K(12)3

Y23 K32

L3 K3

L3 K3

The rear face is a pushout, and therefore also a pullback. The bottom face is trivially both a
pushout and a pullback. Pasting these two pushouts together yields a pushout, and since the
top face – by construction – is a pullback, the front face is a pushout by Lemma 2.4: hence
all faces of the cube, apart from the left and the right, are both pushouts and pullbacks.

We take advantage of the symmetry involved, and obtain two further pushouts as front
faces in the following. Moreover, the two new upper faces are pushouts also.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23
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The next step is a trivial repetition of rule p1: the new upper faces are both pushouts since
they both arise as two pushouts pasted together.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1

We now obtain X(12)3 by pulling back R1 and L23 along Y1(23), the remaining monomorphism
X12 → X(12)3 follows from the universal property.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1 X1(23)

The final step consists in proving that the cospan R1 → Y1(23) ← L23 is the pushout of the
span R1 ← X1(23) → L23. Since the proof requires a somewhat lengthy diagram chase, we
relegate this part of the proof to Appendix A.1. To conclude, the associativity property
manifests itself in the following form, whereby the data provided along the path highlighted
in orange below permits to uniquely compute the data provided along the path highlighted
in blue (with both sets of overlaps computing the same “triple composite” production):

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1 X1(23)

L2 K2 R2 X23 L3

Y12 K21 R12 X(12)3 L3

L23 K23 Y23

Y1(23) K3(12) Y(12)3

J

4 From associativity of concurrent derivations to rule algebras

In DPO rewriting, each linear rewriting rule has a non-deterministic effect when acting on a
given object, in the sense that there generically exist multiple possible choices of admissible
match of the rule into the object. One interesting way of incorporating this non-determinism
into a mathematical rewriting framework is motivated by the physics literature:

Each linear rule is lifted to an element of an abstract vector space.
Concurrent composition of linear rules is lifted to a bilinear multiplication operation on
this abstract vector space, endowing it with the structure of an algebra.
The action of rules on objects is implemented by mapping each linear rule (seen as an
element of the abstract algebra) to an endomorphism on an abstract vector space whose
basis vectors are in bijection with the objects of the adhesive category.

While this recipe might seem somewhat ad hoc, we will demonstrate in Section 5 that it recov-
ers in fact one of the key constructions of quantum physics and enumerative combinatorics,
namely we recover the well-known Heisenberg-Weyl algebra and its canonical representation.

CSL 2018
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I Definition 4.1. Let δ : Lin(C)→ RC be defined as a morphism which maps each linear
rule p = (I r−⇀ O) ∈ Lin(C) to a basis vector δ(p) of a free R-vector space RC ≡ (RC,+, ·).
In order to distinguish between elements of Lin(C) and RC, we introduce the notation

(O r⇐ I) := δ
(
I
r−⇀ O

)
. (8)

We will later refer to RC as the R-vector space of rule algebra elements.

I Definition 4.2. Define the rule algebra product ∗RC as the binary operation

∗RC : RC ×RC → RC : (R1, R2) 7→ R1 ∗RC R2 , (9)

where for two basis vectors Ri = δ(pi) encoding the linear rules pi ∈ Lin(C) (i = 1, 2),

R1 ∗RC R2 :=
∑

m12∈p1p2

δ
(
p1

m12J p2

)
. (10)

The definition is extended to arbitrary (finite) linear combinations of basis vectors by
bilinearity, whence for pi, pj ∈ Lin(C) and αi, βj ∈ R,(∑

i

αi · δ(pi)
)
∗RC

∑
j

βj · δ(pj)

 :=
∑
i,j

(αi · βj) · (δ(pi) ∗RC δ(pj)) . (11)

We refer to RC ≡ (RC, ∗RC) as the rule algebra (of linear DPO-type rewriting rules over
the adhesive category C).

I Theorem 4.3. For every adhesive category C, the associated rule algebra RC ≡ (RC, ∗RC)
is an associative algebra. If C in addition possesses a strict initial object c∅ ∈ ob(C), RC is
in addition a unital algebra, with unit element R∅ := (c∅

∅⇐ c∅).

Proof. Associativity follows immediately from the associativity of the operation .
.
J . proved

in Theorem 3.3. The claim that R∅ is the unit element of the rule algebra RC of an
adhesive category C with strict initial object follows directly from the definition of the rule
algebra product for R∅ ∗RC R and R ∗RC R∅ for R ∈ RC. For clarity, we present below the
category-theoretic composition calculation that underlies the equation R∅ ∗RC R = R:

K

L L L K R

∅ ∅ ∅ ∅ L K R

l p

l r

p

p p

l r

p p (12)

J

The property of a rule algebra being unital and associative has the important consequence
that one can provide representations for it. The following definition, given at the level of
adhesive categories with strict initial objects, captures several of the concrete notions of
canonical representations in the physics literature; in particular, it generalizes the concept of
canonical representation of the Heisenberg-Weyl algebra as explained in Section 5.
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I Definition 4.4. Let C be an adhesive category with a strict initial object c∅ ∈ ob(C), and
let RC be its associated rule algebra of DPO type. Denote by Ĉ the R-vector space of objects
of C, whence (with |C〉 denoting the basis vector of Ĉ associated to an element C ∈ ob(C))

Ĉ := spanR ({ |C〉|C ∈ ob(C)}) ≡ (Ĉ,+, ·) . (13)

Then the canonical representation ρC of RC is defined as the algebra homomorphism
ρC : RC → End(Ĉ), with

ρC(p) |C〉 :=
{∑

m∈Mp(C) |pm(C)〉 ifMp(C) 6= ∅
0Ĉ otherwise,

(14)

extended to arbitrary elements of RC and of Ĉ by linearity.

The fact that ρC as given in Definition 4.4 is a homomorphism is shown below.

I Theorem 4.5 (Canonical Representation). For C adhesive with strict initial object, ρC :
RC → End(Ĉ) of Definition 4.4 is a homomorphism of unital associative algebras.

Proof. See Appendix A.2. J

5 Recovering the blueprint: the Heisenberg-Weyl algebra

As a first consistency check and interesting special (and arguably simplest) case of rule
algebras, consider the adhesive category F of equivalence classes of finite sets, and functions.
This category might alternatively be interpreted as the category of isomorphism classes
of discrete graphs, whose monomorphisms are precisely the injective partial morphisms of
discrete graphs. Specializing to a subclass or morphisms, namely to trivial monomorphisms,

I
∅−⇀ O ≡ (I ← ∅ → O) ,

we recover the famous Heisenberg-Weyl algebra and its canonical representation:

I Definition 5.1. Let R0 denote the rule algebra of DPO type rewriting for discrete graphs.
Then the subalgebra H of R0 is defined as the algebra whose elementary generators are

x† := (• ∅⇐ ∅) , x := (∅ ∅⇐ •) , (15)

and whose elements are (finite) linear combinations of words in x† and x (with concatenation
given by the rule algebra multiplication ∗R0) and of the unit element R∅ = (∅ ∅⇐ ∅). The
canonical representation of H is the restriction of the canonical representation of R0 to H.
The following theorem demonstrates how well-known properties of the Heisenberg-Weyl
algebra (see e.g. [7, 4, 5] and references therein) follow directly from the previously introduced
constructions of the rule algebra and its canonical representation. This justifies our claim
that the Heisenberg-Weyl construction is a special case of our general framework.

I Theorem 5.2 (Heisenberg-Weyl algebra from discrete graph rewriting rule algebra).
(i) For integers m,n > 0,

x† ∗R0 . . . ∗R0 x
†︸ ︷︷ ︸

m times

= x† ] . . . ] x†︸ ︷︷ ︸
m times

, x ∗R0 . . . ∗R0 x︸ ︷︷ ︸
n times

= x ] . . . ] x︸ ︷︷ ︸
n times

, (16)

where we define for linear rules p1, p2 ∈ Lin(C)

δ(p1) ] δ(p2) := δ(p1
∅
J p2) . (17)
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11:10 Rule Algebras for Adhesive Categories

(ii) The generators x, x† ∈ H fulfill the canonical commutation relation

[x, x†] ≡ x ∗R0 x
† − x† ∗R0 x = R∅ , R∅ = (∅ ∅⇐ ∅) . (18)

(iii) Every element of H may be expressed as a (finite) linear combination of so-called
normal-ordered expressions x† ∗r ∗ x∗s (with r, s ∈ Z≥0).

(iv) Denoting by |n〉 ≡ |•] n〉 (n ∈ Z≥0) the basis vector associated to the discrete graph with
n vertices in the vector space Ĝ0 of isomorphism classes discrete graphs, the canonical
representation of H according to Definition 4.4 reads explicitly

a† |n〉 = |n+ 1〉 , a |n〉 =
{
n · |n− 1〉 if n > 0
0Ĝ0

else
, (19)

with a† := ρR0(x†) (the creation operator) and a := ρR0(x) (the annihilation operator).

Proof. See Appendix A.3. J

6 Applications of rule algebras to combinatorics

In this section we consider an example application, working with undirected multigraphs.
Given a set X, let P2X be the set of subsets of X of cardinality 2. Note that, unlike

the ordinary powerset construction, P2 fails to be a covariant functor on the category of
sets, since it is undefined on non-injective functions. An undirected multigraph is a triple
U = (V, E, t : E → P2V ) where V is a set of vertices, E a set of edges, and t assigns two
distinct vertices to each edge. A homomorphism f : U → U ′ of undirected multigraphs
consists of two functions, fE : E → E′ and fV : V → V ′, such that fV is

non-edge collapsing, i.e. for all e ∈ E with t(e) = {v, v′}, we have fV (v) 6= fV (v′), and
edge preserving, i.e. for all e ∈ E with t(e) = {v, v′}, we have t′fE(e) = {fV (v), fV (v′)}.

Let uGraph the the category of undirected multigraphs and their morphisms. It is easy to
see that the empty multigraph (V = E = ∅) is a strict initial object. Moreover, it is not
difficult to show that pullbacks and pushouts exist and are calculated point-wise for vertices
and edges in the category of sets. It follows that uGraph is adhesive for similar reasons to
why the usual category of directed multigraphs – which is a presheaf category – is adhesive.

For convenience, we adopt a notation in which we consider a rule algebra basis element
(O f⇐ I) ∈ RuGraph as the graph of its induced injective partial morphism (I f−⇀ O) ∈
Inj(I,O) of graphs I and O, with the input graph I drawn at the bottom, O at the top,
where the structure of the morphism f is indicated with dotted lines. See the example below:

I Definition 6.1. We define the algebra A as the one generated2 by the rule algebra elements

e+ := 1
2 ·
( )

, e− := 1
2 ·
( )

, d := 1
2 ·
( )

. (20)

The algebra thus defined may be characterized via its commutation relations, which read
(with [x, y] := x ∗R y − y ∗R x for R ≡ RuGraph)

[e−, e+] = d , [e+, d] = [e−, d] = 0 . (21)

2 As in the case of the Heisenberg-Weyl algebra, by “generated” we understand that a generic element of
A is a finite linear combination of (finite) words in the generators and of the identity element R∅, with
concatenation given by the rule algebra composition.
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Here, the only nontrivial contribution (i.e. the one that renders the first commutator non-zero)
may be computed from the DPO-type composition diagram3 below (compare (5) and (6))
and its variant for the admissible match 1 2 ← 12′ 21′ → 1′ 2′ :

1 2 11′ 22′ 1′ 2′

= =

p

pp p p

p (22)

We find an interesting structure for the representation of A:

I Lemma 6.2. Let E± := ρ(e±) and D := ρ(d), and for an arbitrary basis vector |G〉 ∈ Ĝ
(with G denoting the set of isomorphism classes of finite undirected multigraphs), we find that
the linear endomorphisms ρ(X) for X ∈ {E+, E−, D} admit a decomposition into invariant
subspaces Ĝn, with n ∈ Z≥0 denoting the number of vertices of the graphs in a given subspace:

ρ(X) =
⊕
n≥0

(ρ(X))|Ĝn
. (23)

Proof. The three rules that define the algebra A do not modify the number of vertices when
applied to a given graph (via the canonical representation). J

One may easily verify that the operator D = ρ(d) may be equivalently expressed as

D = 1
2 · ρ

( )
= 1

2 (O•O• −O•) , O• := ρ

( )
. (24)

Since the diagonal operator O• when applied to an arbitrary graph state |G〉 for G ∈ G
effectively counts the number nV (G) of vertices of G,

O• |G〉 = nV (G) |G〉 , (25)

one finds that

D |G〉 = 1
2O•(O• − 1) |G〉 = 1

2nV (G)(nV (G)− 1) |G〉 . (26)

One may thus alternatively analyze the canonical representation of A split into invariant
subspaces ofD. The lowest non-trivial such subspace is the space Ĝ2 of undirected multigraphs
on two vertices. It in fact furnishes a representation of the Heisenberg-Weyl algebra, with E+
and E− taking the roles of the creation and of the annihilation operator, respectively, and with
the number vectors |n〉 ≡ |•] n〉 implemented as follows (with (m)n := Θ(m−n)m!/(m−n)!):

En+ | 〉 =
∣∣∣∣ ...

n times

〉
, E−

∣∣∣∣ ...
n times

〉
= (n)1

∣∣∣∣ ...
(n − 1) times

〉
. (27)

3 Note that the number indices are used solely to specify the precise structure of the match, and are not
to be understood as actual vertex labels or types.
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11:12 Rule Algebras for Adhesive Categories

But already the invariant subspace based on the initial vector | 〉 ∈ Ĝ3 has a very
interesting combinatorial structure:

E+ | 〉 = 3 | 〉 ≡ 3 |{1, 0, 0}〉
E2

+ | 〉 = 3 (| 〉+ 2 | 〉) ≡ 3 (|{2, 0, 0}〉+ 2 |{1, 1, 0}〉)
E3

+ | 〉 = 3 (| 〉+ 6 | 〉+ 2 | 〉)
≡ 3 (|{3, 0, 0}〉+ 6 |{2, 1, 0}〉+ 2 |{1, 1, 1}〉)
...

En+ | 〉 ≡ En+ |{0, 0, 0}〉 = 3
n∑
k=0

T (n, k) |S(n, k)〉

(28)

Here, the state |{f, g, h}〉 with f ≥ g ≥ h ≥ 0 and f + g + h = n is the graph state on
three vertices with (in one of the possible presentations of the isomorphism class) f edges
between the first two, g edges between the second two and h edges between the third and the
first vertex. Furthermore, T (n, k) and S(n, k) are given by the entry A286030 of the OEIS
database [1]. The interpretation of S(n, k) and T (n, k) is that each triple S(n, k) encodes
the outcome of a game of three players, counting (without regarding the order of players) the
number of wins per player for a total of n games. Then T (n, k)/3(n−1) gives the probability
that a particular pattern S(n, k) occurs in a random sample.

It thus appears to be an interesting avenue of future research to investigate the apparently
quite intricate interrelations between representation theory and combinatorics.

7 Applications of rule algebras to stochastic mechanics

One of the main motivations that underpinned the development of the rule algebra framework
prior to this paper [2, 4] has been the link between associative unital algebras of transitions
and continuous-time Markov chains (CTMCs). Famous examples of such particular types of
CTMCs include chemical reaction systems (see e.g. [5] for a recent review) and stochastic
graph rewriting systems (see [2] for a rule-algebraic implementation). With our novel
formulation of unital associative rule algebras and their canonical representation for generic
strict initial adhesive categories, it is possible to specify a general stochastic mechanics
framework. While we postpone a detailed presentation of this result to future work, suffice
it here to define the basic framework and to indicate the potential of the idea with a short
worked example. We begin by specializing the general definition of continuous-time Markov
chains (see e.g. [13]) to the setting of rewriting systems (compare [2, 5]):

I Definition 7.1. Consider an adhesive category C with strict initial object o∅ ∈ ob(C), and
let Ĉ denote the free R-vector space of objects of C according to Definition 4.4. Then we
define the space Prob(C) as the space of sub-probability distributions in the following sense:

Prob(C) :=

|Ψ〉 =
∑

o∈ob(C)

ψo |o〉

∣∣∣∣∣∣ ∀o ∈ ob(C) : ψo ∈ R≥0 ∧
∑

o∈ob(C)

ψo ≤ 1

 . (29)

In particular, this identifies the sequences {ψo}o∈ob(C) ∈ `1R(ob(C)) as special types of `1R-
summable sequences indexed by objects of C. Let Stoch(C) := End(Prob(C)) be the space
of sub-stochastic operators. Then a continuous-time Markov chain (CTMC) is specified
in terms of a tuple of data (|Ψ(0)〉 , H), where |Ψ(0)〉 ∈ Prob(C) is the initial state, and

https://oeis.org/A286030
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where H ∈ EndR(SC) is the infinitesimal generator or Hamiltonian of the CTMC (with SC
the Fréchet space of real-valued sequences f ≡ (fo)o∈ob(C) with semi-norms ‖f‖o := |fo|). H
is required to be an infinitesimal (sub-)stochastic operator, whence to fulfill the constraints

H ≡ (ho,o′)o,o′∈ob(C) ∀o, o′ ∈ ob(C) :

(i) ho,o ≤ 0 , (ii)∀o 6= o′ : ho,o′ ≥ 0 , (iii)
∑
o′

ho,o′ = 0 . (30)

Then this data encodes the evolution semi-group E : R≥0 → Stoch(C) as the (point-wise
minimal non-negative) solution of the Kolmogorov backwards or master equation:

d
dtE(t) = HE(t) , E(0) = 1EndR(SC) ⇒ ∀t, t′ ∈ R≥0 : E(t)E(t′) = E(t+ t′) . (31)

Consequently, the time-dependent state |Ψ(t)〉 of the system is given by

∀t ∈ R≥0 : |Ψ(t)〉 = E(t) |Ψ(0)〉 . (32)

Typically, our interest in analyzing a given CTMC will consist in studying the dynamical
statistical behavior of so-called observables:

I Definition 7.2. Let OC ⊂ EndR(SC) denote the space of observables, defined as the space
of diagonal operators,

OC := {O ∈ EndR(SC) | ∀o ∈ ob(C) : O |o〉 = ωO(o) |o〉 , ωO(o) ∈ R} . (33)

We furthermore define the so-called projection operation 〈| : SC → R via extending by
linearity the definition of 〈| acting on basis vectors of Ĉ,

∀o ∈ ob(C) : 〈 | o〉 := 1R . (34)

These definitions induce a notion of correlators of observables, defined for O1, . . . , On ∈ OC
and |Ψ〉 ∈ Prob(C) as

〈O1, . . . , On〉|Ψ〉 := 〈|O1, . . . , On |Ψ〉 =
∑

o∈ob(C)

ψo · ωO1(o) · · ·ωOn(o) . (35)

The precise relationship between the notions of CTMCs and DPO rewriting rules as encoded
in the rule algebra formalism is established in the form of the following theorem (compare [2]):

I Theorem 7.3 (Stochastic mechanics framework). Let C be an adhesive category with strict
initial object, let {(Oj

rj⇐ Ij) ∈ RC}j∈J be a (finite) set of rule algebra elements and
{κj ∈ R≥0}j∈J a collection of non-zero parameters (called base rates). Then one may
construct a Hamiltonian H from this data according to

H := Ĥ + H̄ , Ĥ :=
∑
j∈J

κj · ρ
(
Oj

rj⇐ Ij

)
, H̄ := −

∑
j∈J

κj · ρ
(
Ij

iddom(rj )⇐ Ij

)
. (36)

Here, for arbitrary (I r−⇀ O) ≡ (I i←− K o−→ O) ∈ Lin(C), we define

(I
iddom(r)−−−−−⇀ I) := (I i←− K i−→ I) . (37)

The observables for the resulting CTMC are operators of the form

OtM = ρ
(
M

t⇐M
)
. (38)

We furthermore have the jump-closure property, whereby for all (O r⇐ I) ∈ RC

〈| ρ(O r⇐ I) = 〈|Oiddom(r)
I . (39)
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Proof. See Appendix A.4. J

We illustrate the framework with an example for C = uGraph (the category of (isomor-
phism classes of) undirected multigraphs and morphisms thereof), where we pick the two
rule algebra elements e+ and e− specified in (20) to define the transitions of the system.
Together with two non-negative real parameters κ+, κ− ∈ R≥0, the resulting Hamiltonian
H = Ĥ + H̄ reads (with E± := ρ(e±) and O• as in (24))

Ĥ = κ+E+ + κ−E− , H̄ = − 1
2κ+O•(O• − 1)− κ−OE , OE := 1

2ρ

( )
. (40)

Using the general fact that a Hamiltonian as constructed according to Theorem 7.3 verifies

〈|H = 0 , (41)

we may for example compute the time evolution of the expectation values of observables for
this CTMC. Intuitively, the CTMC describes a stochastic system where edges are added
and removed at random. Since these transitions do not modify the number of vertices, we
immediately conclude that if the initial state |Ψ(0)〉 ∈ Prob(uGraph) is a pure state, i.e. if
|Ψ(0)〉 = |G0〉 for some G0 ∈ ob(uGraph), one finds4

∀t ≥ 0 : 〈|O• |Ψ(t)〉 = 〈|O• |G0〉 = NV , (42)

with NV the number of vertices of G0. Let us analogously denote by NE the number of
edges of G0, determined according to

NE = 〈|OE |G0〉 . (43)

The time evolution of the moments of the edge-counting observable OE may be computed by
means of algebraic methods. Referring to [2, 5] for more extensive computations, suffice it here
to demonstrate the derivation of the evolution of the average edge-count for |Ψ(0)〉 = |G0〉:

d
dt 〈|OE |Ψ(t)〉 = 〈|OEH |Ψ(t)〉 = 〈| (HOE + [OE , H]) |Ψ(t)〉

(41)= κ+ 〈|E+ |Ψ(t)〉 − κ− 〈|E− |Ψ(t)〉
(39)= 1

2κ+ 〈|O•(O• − 1) |Ψ(t)〉 − κ− 〈|OE |Ψ(t)〉
(42)= 1

2κ+NV (NV − 1)− κ− 〈|OE |Ψ(t)〉 .

(44)

Together with the initial value 〈|OE |Ψ(0)〉 = NE , this ODE is solved (for κM 6= 0 and with
the convention

(
x
y

)
:= 0 for x < y) by

〈OE〉(t) ≡ 〈|OE |Ψ(t)〉 = e−tκM

(
NE − κP

κM

(
NV
2

))
+ κP

κM

(
NV
2

)
−−−→
t→∞

κP

κM

(
NV
2

)
. (45)

Interestingly, the coefficient
(
NV

2
)
is precisely the number of edges of a complete graph on

NV vertices, Moreover, if κP = κM and NE∗ =
(
NV

2
)
, 〈OE〉(t) = NE∗ = const for all t ≥ 0.

4 More precisely, one may verify that [O•, H] = 0, whence the claim follows from 〈| O• |Ψ(0)〉 = NV and
d
dt 〈| O• |Ψ(t)〉 = 〈| O•H |Ψ(t)〉 = 〈| (HO• + [O•, H]) |Ψ(t)〉 = 0 .
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Figure 1 Time-evolution of 〈OE〉(t) for |Ψ(0)〉 = |G0〉 with NV = 100.

We present in Figure 1 the time-evolution of 〈OE〉(t) for three different choices of parameters
κ+ and κ−, and for four different choices each of initial number of edges NE .

As an outlook and reference to ongoing and future work, techniques such as the ones
developed in [2] and [3] in favorable cases even permit to derive the full time-dependent
probability distribution of observables – in fact, in the present example, one may demonstrate
that the distribution of the edge-counting observable OE stabilizes for t→∞ onto a Poisson
distribution of parameter κP

κM

(
NV

2
)
. This result might be somewhat anticipated, in that for

the special case NV = 2 we found in the previous section that E+ and E− acting on the
states with two vertices effectively yield a representation of the Heisenberg-Weyl algebra,
whence in this case the process reduces to a birth-death process on edges with rates κ+ and
κ− (see [5] for further details on chemical reaction systems).

8 Conclusion and Outlook

Based on our novel theorem on the associativity of the operation of forming DPO-type
concurrent compositions of linear rewriting rules, we introduced the concept of rule algebras:
each linear rule is mapped to an element of an abstract vector space of linear rules, on which
the concurrent composition operation is implemented as a binary, bilinear multiplication
operation. For every adhesive category C, the associated rule algebra is associative, and if
the category possesses a strict initial object (i.e. if C is an extensive category), this algebra is
in addition unital. We hinted at the potential of our approach in the realm of combinatorics,
and, as a first major application of our framework, we presented a universal construction of
continuous-time Markov chains based on linear rules of extensive categories C. It appears
reasonable in light of the deep insights gained into such CTMC theories for the special
cases of discrete rewriting rules [5] and multigraph rewriting rules [3, 2] to expect that our
approach will lead to progress in the understanding and analysis of stochastic rewriting
systems in both theory and practice.
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A Proofs

A.1 Proof of associativity of rule compositions
I Lemma A.1. Let C be an adhesive category, and consider the following commutative
diagram, in which all arrows are monomorphisms, and where

X1 Z12

A1 P12

B X12

Y12 A2

• the bottom and left faces are pushout squares, and

• the front and back faces are pullback squares.

Then the right and top faces are pushout squares.

Proof. Composition of the back square and the bottom square yields a pullback square,
whence according to Lemma 2.4 the top face is also a pullback square. Since thus all faces
but the right one are pullbacks and the left face is a pushout square due to the VK property
of C. Analogously, since the bottom square is a pushout square and all vertical faces are
pullback squares, the top face is a pushout square. J

I Theorem 3.3 (Associativity Theorem). The composition operation .
.
J . is associative in the

following sense: given linear rules p1, p2, p3 ∈ Lin(C), there exists a bijective correspondence

https://arxiv.org/abs/1612.06240
https://arxiv.org/abs/1712.06575
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between pairs of admissible matches m21 ∈ p2  p1 and m3(21) ∈ p3 
(
p2

m12J p1

)
, and

pairs of admissible matches m32 ∈ p3  p2 and m(32)1 ∈
(
p3

m23J p2

)
 p1 such that

p3
m3(21)
J

(
p2

m21J p1

)
=
(
p3

m32J p2

) m(32)1
J p1 . (7)

Proof. We refer the readers to the main text for the first part of the proof. To prove the
final part, whence that the Y1(23) is the pushout of R1 ← X1(23) → L23, we construct the
following extended diagram (with S23, T23, V23 and W23 obtained by taking the indicated
pullbacks PB(. . . ), and where the remaining new morphisms are formed as those that make
the respective triangles involving the aforementioned objects commute):

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1 X1(23)

L2 K2 R2 X23 L3

Y12 K21 R12 X(12)3 L3

L23 K23 Y23

Y1(23) K3(12) Y(12)3

S23 = PB(K3(12) → Y(12)3 ← L3)

T23 = PB(K21 → R12 ← X(12)3)

V23 = PB(K23 → Y23 ← L3)

W23 = PB(K2 → R2 ← X23)

V23

W23

T23

S23

Invoking Lemma A.1 twice, we may conclude that the squares �W23,V23,K23,K2 , �W23,V23,L3,X23 ,
�T23,S23,K3(12),K21 and �T23,S23,L3,X(12)3 are pushout squares. In addition, since the squares
�W23,V23,L23,L2 and �T23,S23,Y1(23),Y12 are compositions of pushout squares, according to
Lemma 2.4 they are pushout squares themselves. In order to prove the claim, we have
to demonstrate that the monomorphisms of the cospan R1 → Y1(23) ← L23 are jointly
epimorphic. Since Y12 is the pushout of R1 ← X12 → L2, and since Y12 is included in Y1(23)
(as encoded in the arrow Y12 → Y1(23)), the proof reduces to proving that the monomor-
phism L23 → Y1(23) covers Y1(23) \ Y12. The proof is facilitated by taking advantage of
the notion of algebra of subobjects available in every adhesive category (see [11] for the de-
tails). Note first that according to the structure of the auxiliary diagram constructed above,
Y1(23) = Y12 ∪T23 S23, while S23 in turn is the pushout complement of T23 → X(12)3 → L3,
whence S23 = L3 \ (X(12)3 \ T23). Analogously, L23 = L2 ∪W23 V23, where V23 is the pushout
complement of W23 → X23 → L3, whence V23 = L3 \ (X23 \ W23). In addition, since
L23 → Y1(23), L2 → L23 and W23 → L2, we conclude that W23 → T23. But since the
monomorphism X23 → X(12)3 encodes that X23 is a subobject of X(12)3, combining all
arguments reveals that the portion of L3 in Y1(23) not already covered by Y12 is always
strictly smaller than the portion of L3 in L23 not already covered by L2, whence the claim
that R1 → Y1(23) ← L23 is jointly epimorphic follows. In summary, we have proved that each
triple of linear rules and choice of admissible overlaps (X12, X(12)3) induces an overlap pair
(X23, X1(23)) as given in the construction, which concludes the proof of associativity. J

CSL 2018



11:18 Rule Algebras for Adhesive Categories

A.2 Proof of the homomorphism property of the canonical
representations

I Theorem 4.5 (Canonical Representation). For C adhesive with strict initial object, ρC :
RC → End(Ĉ) of Definition 4.4 is a homomorphism of unital associative algebras.

Proof. In order for ρC to qualify as an algebra homomorphism (of unital associative algebras
RC and End(Ĉ)), we must have (with R∅ = δ(r∅), r∅ = c∅

∅−⇀ c∅)

(i) ρC(R∅) = 1End(Ĉ) and (ii) ∀R1, R2 ∈ RC : ρC(R1 ∗RC R2) = ρC(R1)ρC(R1) .

Due to linearity, it suffices to prove the two properties on basis elements δ(p), δ(q) of RC
and on basis elements |C〉 of Ĉ. Property (i) follows directly from the definition,

∀C ∈ ob(C) : ρC(R∅) |C〉
(14)=

∑
m∈Mr∅ (C)

|(r∅)m(C)〉 = |C〉 .

Property (ii) follows from Theorem 3.1 (the concurrency theorem): for all basis elements
δ(p), δ(q) ∈ RC (with p, q ∈ Lin(C)) and for all C ∈ ob(C),

ρC (δ(q) ∗C δ(p)) |C〉 (10)=
∑

d∈qp

ρC

(
δ

(
q

d
J p
))
|C〉

(14)=
∑

d∈qp

∑
e∈Mrd (C)

|(rd)e(C)〉 (rd = q
d
J p)

=
∑

m∈Mp(C)

∑
n∈Mq(pm(C))

|qn(pm(C)〉 (via Thm. 3.1)

(14)=
∑

m∈Mp(C)

ρC (δ(q)) |pm(C)〉

(14)= ρC (δ(q)) ρC (δ(p)) |C〉 . J

A.3 Proof of the relationship between discrete graph rewriting and the
Heisenberg-Weyl algebra

Proof.
(i) Since there is no partial injection possible between the input of one copy and the output

of another copy of x† other than the trivial match, and similarly for two copies of x,
the claim follows.

(ii) Computing the commutator [x, x†] = x ∗ x† − x† ∗ x (with ∗ ≡ ∗R0) explicitly, we find
that

x ∗ x† = x ] x† + idR0 , x† ∗ x = x† ] x , (46)

from which the claim follows due to commutativity of the operation ] on R0, x ] x† =
x† ] x.

(iii) It suffices to prove the statement for basis elements of H. Consider thus an arbitrary
composition of a finite number of copies of the generators x and x†. Then by repeated
application of the commutation relation [x, x†] = idR0 , and since idR0 is the unit
element for ∗ on R0, we can convert the arbitrary basis element of H into a linear
combination of normal-ordered elements.
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(iv) Note first that by definition |0〉 = |∅〉. To prove the claim that for all n ≥ 0

a† |n〉 = |n+ 1〉 ,

we apply Definitions 2.6 and 4.4 by computing the following diagram (compare (3)):
there exists precisely one admissible match of the empty graph ∅ ∈ G0 into the n-vertex
discrete graph ] n, whence constructing the pushout complement marked with dashed
arrows and the pushout marked with dotted arrows we verify the claim:

∅ ∅

] n ] n ] (n+1)

∃!

Proceeding analogously in order to prove the formula for the representation a = ρR0(x),

a |n〉 :=
{
n · |n− 1〉 if n > 0
0Ĝ0

else,

we find that for n > 0 there exist n admissible matches of the 1-vertex graph into
the n-vertex graph ] n, for each of which the application of the rule −⇀ ∅ along the
match results in the graph ] (n−1):

∅ ∅

] n ] (n−1) ] (n−1)

n different matches

⇒ ∀n > 0 : a | ] n〉 = n ·
∣∣∣ ] (n−1)

〉
Finally, for n = 0, since by definition there exists no admissible match from the 1-vertex
graph into the empty graph ∅, whence indeed

a |∅〉 = ρR0

(
∅ ∅⇐

)
|∅〉 = 0Ĝ0

. J

A.4 Proof of the stochastic mechanics framework theorem
I Theorem 7.3 (Stochastic mechanics framework). Let C be an adhesive category with strict
initial object, let {(Oj

rj⇐ Ij) ∈ RC}j∈J be a (finite) set of rule algebra elements and
{κj ∈ R≥0}j∈J a collection of non-zero parameters (called base rates). Then one may
construct a Hamiltonian H from this data according to

H := Ĥ + H̄ , Ĥ :=
∑
j∈J

κj · ρ
(
Oj

rj⇐ Ij

)
, H̄ := −

∑
j∈J

κj · ρ
(
Ij

iddom(rj )⇐ Ij

)
. (36)

Here, for arbitrary (I r−⇀ O) ≡ (I i←− K o−→ O) ∈ Lin(C), we define

(I
iddom(r)−−−−−⇀ I) := (I i←− K i−→ I) . (37)

The observables for the resulting CTMC are operators of the form

OtM = ρ
(
M

t⇐M
)
. (38)

We furthermore have the jump-closure property, whereby for all (O r⇐ I) ∈ RC

〈| ρ(O r⇐ I) = 〈|Oiddom(r)
I . (39)
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Proof. By definition, the canonical representation of a generic rule algebra element (O r⇐
I) ∈ RC is both a row- and a column-finite object, since for every object C ∈ ob(C) the
set of admissible matches Mp(C) of the associated linear rule p ≡ (I r−⇀ O) is finite, and
since for every object C ∈ ob(C) there exists only finitely many objects C ′ ∈ ob(C) such that
C = pm(C ′) for some match m ∈Mp(C ′). Consequently, ρC(O r⇐ I) lifts consistently from
a linear operator in End(Ĉ) to a linear operator in End(SC). Let us prove next the claim
on the precise structure of observables. Recall that according to Definition 7.2, an observable
O ∈ OC must be a linear operator in End(SC) that acts diagonally on basis states |C〉 (for
C ∈ ob(C)), whence that satisfies for all C ∈ ob(C)

O |C〉 = ωO(C) |C〉 (ωO(C) ∈ R) .

Comparing this equation to the definition of the canonical representation (Definition 4.4) of
a generic rule algebra basis element δ(p) ∈ RC (for p ≡ (I i←− K o−→ O) ∈ Lin(C)),

ρC(δ(p)) |C〉 :=
{∑

m∈Mp(C) |pm(C)〉 ifMp(C) 6= ∅
0Ĉ else,

we find that in order for ρC(δ(p)) to be diagonal we must have

∀C ∈ ob(C) : ∀m ∈Mp(C) : pm(C) = C .

But by definition of derivations of objects along admissible matches (Definition 2.6), the only
linear rules p ∈ Lin(C) that have this special property are precisely the rules of the form

prM = (M r←− K r−→M) .

In particular, defining OrM := ρC(δ(prM )), we find that the eigenvalue ωOr
M

(C) coincides with
the cardinality of the setMpr

M
(C) of admissible matches,

∀C ∈ ob(C) : OrM |C〉 = |Mpr
M

(C)| · |C〉 .

This proves that the operators OrM form a basis of diagonal operators on End(C) (and thus
on End(SC)).

To prove the jump-closure property, note that it follows from Definition 2.6 that for
an arbitrary linear rule p ≡ (I i←− K

o−→ O) ∈ Lin(C), a generic object C ∈ C and a
monomorphism m : I → C, the admissibility of m as a match is determined by whether or
not the match fulfills the gluing condition (Definition 2.3), i.e. whether or not the following
pushout complement exists,

I K

C E

i

m g

q v
.

Thus we find that with p′ = (I i←− K i−→ I) ∈ Lin(C), the setMp(C) of admissible matches of
p in C andMp′(C) of p′ in C have the same cardinality. Combining this with the definition
of the projection operator 〈| (Definition 7.2),

∀C ∈ ob(C) : 〈 |C〉 := 1R ,

we may prove the claim of the jump-closure property via verifying it on arbitrary basis
elements (with notations as above):

〈| ρC(δ(p)) |C〉 = |Mp(C)| = |Mp′(C)| = 〈| ρC(δ(p′)) |C〉 .
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Since C ∈ ob(C) was chosen arbitrarily, we thus have indeed that

〈| ρC(δ(p)) = 〈| ρC(δ(p′)) .

Finally, combining all of these findings, one may verify that H as stated in the theorem fulfills
all required properties in order to qualify as an infinitesimal generator of a continuous-time
Markov chain. J
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Valued constraint satisfaction problems (VCSPs) are a large class of combinatorial optimisation
problems. It is desirable to classify the computational complexity of VCSPs depending on a
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VCSPs for finite sets of cost functions over finite domains has been classified in this sense. Many
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problems can be modelled as a valued constraint satisfaction problem. By allowing the cost
functions to evaluate to +∞, we can even model ‘crisp’ constraints, given by relations that
have to be satisfied by the variable assignments. Hence the class of (classical) constraint
satisfaction problems (CSPs) is a subclass of the class of all VCSPs.

If the domain is finite, the computational complexity of the VCSP has recently been
classified for all sets of cost functions, assuming the Feder-Vardi conjecture for classical
CSPs [14, 13, 15]. Even more recently, two solutions to the Feder-Vardi conjecture have been
announced [18, 6]. These fascinating achievements settle the complexity of the VCSP over
finite domains.

Several outstanding combinatorial optimisation problems cannot be formulated as VCSPs
over a finite domain, but they can be formulated as VCSPs over the domain Q, the set of
rational numbers. One example is the famous linear programming problem, where the task is
to optimise a linear function subject to linear inequalities. This can be modelled as a VCSP
by allowing unary linear cost functions and cost functions of higher arity to express the crisp
linear inequalities. Another example is the minimisation problem for sums of piecewise linear
convex cost functions (see, e.g., [5]). Both of these problems can be solved in polynomial
time, e.g. by the ellipsoid method (see, e.g., [10]).

Despite the great interest in such concrete VCSPs over the rational numbers in the
literature, VCSPs over infinite domains have not yet been studied systematically. In order
to obtain general results we need to restrict the class of cost functions that we investigate,
because without any restriction it is already hopeless to classify the complexity of infinite-
domain CSPs (any language over a finite alphabet is polynomial-time Turing equivalent to
an infinite domain CSP [2]). One restriction that captures a variety of optimisation problems
of theoretical and practical interest is the class of all piecewise linear homogeneous cost
functions over Q, defined below. We first illustrate by an example the type of cost functions
that we want to capture in our framework.

I Example 1.1. An internet provider charges the clients depending on the amount of data
x downloaded and the amount of data y that is uploaded. The cost function of the provider
could be the partial function f : Q2 → Q given by

f(x, y) :=


3x if 0 ≤ y < 2x
3
2y if 0 ≤ 2x ≤ y
undefined otherwise.

A partial function f : Qn → Q is called piecewise linear homogeneous (PLH) if it is first-
order definable over the structure L := (Q;<, 1, (c·)c∈Q); being undefined at (x1, . . . , xn) ∈ Qn
is interpreted as f(x1, . . . , xn) = +∞. The structure L has quantifier elimination (see
Section 3.2) and hence there are finitely many regions such that f is a homogeneous linear
polynomial in each region; this is the motivation for the name piecewise linear homogeneous.
The cost function from Example 1.1 is PLH.

The cost function in Example 1.1 satisfies an additional important property: it is
submodular (defined in Section 3.3). Submodular cost functions naturally appear in several
scientific fields such as, for example, economics, game theory, machine learning, and computer
vision, and play a key role in operational research and combinatorial optimisation (see,
e.g., [9]). Submodularity also plays an important role for the computational complexity
of VCSPs over finite domains, and guided the research on VCSPs for some time (see, e.g.,
[7, 12]), even though this might no longer be visible in the final classification obtained
in [14, 13, 15].
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In this paper we show that VCSPs for submodular PLH cost functions can be solved in
polynomial time (Theorem 5.1 in Section 5). To solve this problem, we first describe how
to solve the feasibility problem (does there exist a solution satisfying all crisp constraints)
and then how to find the optimal solution. The first step follows from a new, more general
polynomial-time tractability result, namely for max-closed PLH constraints (Section 4). To
then solve the optimisation problem for PLH constraints, we introduce a technique to reduce
the task to a problem over a finite domain that can be solved by a fully combinatorial
polynomial-time algorithm for submodular set-function optimisation by Iwata and Orlin [11].
Moreover, we show that submodularity defines a maximal tractable class: adding any cost
function that is submodular leads to an NP-hard VCSP (Section 6). Section 7 closes with
some problems and challenges.

2 Valued Constraint Satisfaction Problems

A valued constraint language Γ (over D) (or simply language) consists of
a signature τ consisting of function symbols f , each equipped with an arity ar(f),
a set D = dom(Γ) (the domain),
for each f ∈ τ a cost function, i.e., a function fΓ : Dar(f) → Q ∪ {+∞}.

Here, +∞ is an extra element with the expected properties that for all c ∈ Q ∪ {+∞}

(+∞) + c = c+ (+∞) = +∞
and c < +∞ iff c ∈ Q.

Let Γ be a valued constraint language with a finite signature τ . The valued constraint
satisfaction problem for Γ, denoted by VCSP(Γ), is the following computational problem.

I Definition 2.1. An instance I of VCSP(Γ) consists of
a finite set of variables VI ,
an expression φI of the form

m∑
i=1

fi(xi1, . . . , xiar(fi))

where f1, . . . , fm ∈ τ and all the xij are variables from VI , and
a value uI ∈ Q ∪ {+∞}.

The task is to decide whether there exists a map α : VI → dom(Γ) whose cost, defined as
m∑
i=1

fΓ
i (α(xi1), . . . , α(xiar(fi)))

is finite, and if so, whether there is one whose cost is smaller or equal to uI .

A solution of an instance of VCSP(Γ) is a tuple x ∈ D|VI | such that x ∈ dom(f) for all
valued constraint f in the instance.
Note that since the signature τ of Γ is finite, it is inessential for the computational complexity
of VCSP(Γ) how the function symbols in φI are represented. The function described by the
expression φI is also called the objective function. When uI = +∞ then this problem is called
the feasibility problem, which can also be modelled as a (classical) constraint satisfaction
problem. The choice of defining the VCSP as a decision problem and not as an optimisation
problem is motivated by two major issues that do not occur in the finite domain case: in the
infinite domain setting one needs to decide whether the infimum is attained, and to model
the case in which the infimum is −∞.

CSL 2018
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Many well-known optimisation problems can only be formulated when we allow infinite
domains D.

I Example 2.2. Let Γ be the valued constraint language with signature τ = {g1, g2, g3} and
the cost functions

gΓ
1 : Q→ Q defined by g1(x) = −x,
gΓ

2 : Q2 → Q defined by g2(x, y) := min(x,−y), and
gΓ

3 : Q3 → Q defined by g3(x, y, z) := max(x, y, z).
Two examples of instances of VCSP(Γ) are

g1(x) + g1(y) + g1(z) + g2(x, y)
+g3(x, y, z) + g3(x, x, x) + g3(x, x, x) (1)

and g1(x) + g1(y) + g1(z)
+g3(x, y, z) + g3(x, x, y) + g3(y, z, z) (2)

We can make the cost function described by the expression in (1) arbitrarily small by fixing
x to 0 and choosing y and z sufficiently large. On the other hand, the minimum for the cost
function in (2) is 0, obtained by setting x, y, z to 0. Note that g1 and g3 are convex functions,
but g2 is not, nevertheless, as we will see later, VCSP(Γ) can be solved in polynomial time.

3 Cost functions over the rationals

In this section we describe natural and large classes of cost functions over the domain
D = Q, the rational numbers. These classes are most naturally introduced using first-order
definability.

We give two examples of structures that play an important role in this article.

I Example 3.1. Let S be the structure with domain Q and the signature {+, 1,≤} where
+ is a binary function symbol that denotes the usual addition over Q,
1 is a constant symbol that denotes 1 ∈ Q, and
≤ is a binary relation symbol that denotes the usual linear order of the rationals.

I Example 3.2. Let L be the structure with the (countably infinite) signature τ0 :=
{<, 1} ∪ {c·}c∈Q where

< is a relation symbol of arity 2 and <L is the strict linear order of Q,
1 is a constant symbol and 1L := 1 ∈ Q, and
c· is a unary function symbol for every c ∈ Q such that (c·)L is the function x 7→ cx

(multiplication by c).

3.1 Quantifier Elimination
Let τ be a signature. We adopt the usual definition of first-order logic.

We say that a τ -structure A has quantifier elimination if every first-order τ -formula is
equivalent to a quantifier-free τ -formula over A.

I Theorem 3.3 ([8]). The structure S from Example 3.1 has quantifier elimination.

I Theorem 3.4. The structure L from Example 3.2 has quantifier elimination.

Proof. See the appendix. J
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Observe that every atomic τ0-formula has at most two variables:
if it has no variables, then it is equivalent to > or ⊥,
if it has only one variable, say x, then it is equivalent to c·xσ d·1 or to d·1σ c·x for
σ ∈ {<,=} and c, d ∈ Q. Moreover, if c = 0 then it is equivalent to a formula without
variables, and otherwise it is equivalent to xσ d

c ·1 or to d
c ·1σ x for σ ∈ {<,=}, which we

abbreviate by the more common x < d
c , x = d

c , and
d
c < x, respectively.

if it has two variables, say x and y, then it is equivalent to c·xσ d·y or c·xσ d·y for
σ ∈ {<,=}. Moreover, if c = 0 or d = 0 then the formula is equivalent to a formula with
at most one variable, and otherwise it is equivalent to xσ d

c ·y or to d
c ·y σ x.

3.2 Piecewise Linear Homogeneous Functions
A partial function of arity n ∈ N over a set A is a function

f : dom(f)→ A for some dom(f) ⊆ An .

Let A be a τ -structure with domain A. A partial function over A is called first-order definable
over A if there exists a first-order τ -formula φ(x0, x1, . . . , xn) such that for all a1, . . . , an ∈ A

if (a1, . . . , an) ∈ dom(f) then A |= φ(a0, a1, . . . , an) if and only if
a0 = f(a1, . . . , an), and
if f(a1, . . . , an) /∈ dom(f) then there is no a0 ∈ A such that
A |= φ(a0, a1, . . . , an).

In the following, we consider cost functions over Q, which will be functions from Qn →
Q∪{+∞}. It is sometimes convenient to view a cost function as a partial function over Q.
If t ∈ Qar(f) \ dom(f) we interpret this as f(t) = +∞.

I Definition 3.5. A cost function f : Qn → Q∪{+∞} (viewed as a partial function) is called
piecewise linear (PL) if it is first-order definable over S, piecewise linear functions are
sometimes called semilinear functions;
piecewise linear homogeneous (PLH) if it is first-order definable over L (viewed as a
partial function).

A valued constraint language Γ is called piecewise linear (piecewise linear homogeneous) if
every cost function in Γ is PL (or PLH, respectively).

Every piecewise linear homogeneous cost function is also piecewise linear, since all
functions of the structure L are clearly first-order definable in S. The cost functions in the
valued constraint language from Example 2.2 are PLH.

We would like to point out that already the class of PLH cost functions is very large.
In particular, one can view it as a generalisation of the class of all cost functions over a
finite domain D. Indeed, every VCSP for a valued constraint language over a finite domain
is also a VCSP for a language that is PLH. To see this, suppose that f : Dd → Q∪{+∞}
is such a cost function, identifying D with a subset of Q in an arbitrary way. Then the
function f ′ : Qd → Q∪{+∞} defined by f ′(x1, . . . , xn) := f(x1, . . . , xn) if x1, . . . , xn ∈ D,
and f ′(x1, . . . , xn) = +∞ otherwise, is PLH.

3.3 Submodularity
Let D be a set. When x1, . . . , xk ∈ Dn and g : Dk → D is a function, then g(x1, . . . , xk)
denotes the n-tuple obtained by applying g component-wise, i.e.,

g(x1, . . . , xk) := (g(x1
1, . . . , x

k
1), . . . , g(x1

n, . . . , x
k
n)).
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I Definition 3.6. Let D be a totally ordered set and let G be a totally ordered Abelian
group. A partial function f : Dn → G is called submodular if for all x, y ∈ Dn

f(max(x, y)) + f(min(x, y)) ≤ f(x) + f(y).

Note that in particular if x, y ∈ dom(f), then min(x, y) ∈ dom(f) and max(x, y) ∈ dom(f).
All cost functions in Example 2.2 are submodular.
Other examples of submodular PLH functions are those that can be written as the maximum
of two increasing linear homogeneous functions or as the minimum of two linear homogeneous
functions with different monotonicity.

4 Tractability of Max-Closed PLH Constraints

The question whether an instance of VCSP(Γ) is feasible, namely has a solution, can be
viewed as a (classical) constraint satisfaction problem. Formally, the constraint satisfaction
problem for a structure A with a finite relational signature τ is the following computational
problem, denoted by CSP(A):

the input is a finite conjunction ψ of atomic τ -formulas, and
the question is whether ψ is satisfiable in A.

We can associate to Γ the following relational structure Feas(Γ): for every cost function f of
arity n from Γ the signature of Feas(Γ) contains a relation symbol Rf of arity n such that
R

Feas(Γ)
f = dom(f).
Every polynomial-time algorithm for VCSP(Γ), in particular, has to solve CSP(Feas(Γ)).

In fact, an instance φ of VCSP(Γ) can be translated into an instance ψ of CSP(Feas(Γ)) by
replacing subexpressions of the form f(x1, . . . , xn) in φ by Rf (x1, . . . , xn) and by replacing +
by ∧. It is easy to see that φ is a feasible instance of VCSP(Γ) if and only if ψ is satisfiable
in Feas(Γ).

I Definition 4.1. Let A be a structure with relational signature τ and domain A. Then
a function g : Ak → A is called a polymorphism of A if for all R ∈ τ we have that RA

is preserved by g, namely g(x1, . . . , xk) ∈ RA for all x1, . . . , xk ∈ RA (where g is applied
component-wise).

I Definition 4.2. A relation R ⊆ Qn is called piecewise linear homogeneous (PLH) if it is
first-order definable over L (see Example 3.2).

In general, a valued constraint language can have infinitely many cost functions. If we
consider Γ to be a finite submodular PLH valued constraint language, then Feas(Γ) is a
relational structure all of whose relations are

PLH, and
preserved by the polymorphisms max and min.

We observed that for the polynomial-time tractability of VCSP(Γ) we need, in particular,
that CSP(Feas(Γ)) be tractable. In this section we prove a more general result:

I Theorem 4.3. Let A be a structure having domain Q and finite relational signature τ .
Assume that for all R ∈ τ , the interpretation RA is PLH and preserved by max. Then
CSP(A) is polynomial-time solvable.

This result is incomparable to known results about max-closed semilinear relations [4]. In
particular, there, the weaker bound NP ∩ co-NP has been shown for a larger class, and
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polynomial tractability only for a smaller class (which does not contain many max-closed
PLH relations, for instance x ≥ max(y, z)).

We use a technique introduced in [3] which relies on the following concept.

I Definition 4.4. Let A be a structure with a finite relational signature τ . A sampling
algorithm for A takes as input a positive integer d and computes a finite τ -structure B such
that every finite conjunction of atomic τ -formulas having at most d distinct free variables is
satisfiable in A if, and only if, it is satisfiable in B. A sampling algorithm is called efficient
if its running time is bounded by a polynomial in d.

The definition above is a slight re-formulation of Definition 2.2 in [3], and it is easily
seen to give the same results using the same proofs. We decided to bound the number of
variables instead of the size of the conjunction of atomic τ -formulas because this is more
natural in our context. These two quantities are polynomially related by the assumption
that the signature τ is finite.

I Definition 4.5. A k-ary function g : Dk → D is called totally symmetric if g(x1, . . . , xk) =
g(y1, . . . , yk) for all x1, . . . , xk, y1, . . . , yk ∈ D such that {x1 . . . , xk} = {y1, . . . , yk}.

I Theorem 4.6 (Bodirsky-Macpherson-Thapper, [3], Theorem 2.5). Let A be a structure over
a finite relational signature with totally symmetric polymorphisms of all arities. If there
exists an efficient sampling algorithm for A then CSP(A) is in P.

In this section, we study CSP(A), where A is a τ -structure satisfying the hypothesis
of Theorem 4.3. We give a formal definition of the numerical data in A, we will need it
later on. By quantifier elimination (Theorem 3.4), we can write each of the finitely many
relations RA for R ∈ τ as a quantifier-free τ0-formula φR. We can assume (as in the proof of
Theorem 3.4) that all formulas φR are positive (namely contain no negations). From now on,
we will fix one such representation. Let At(φR) denote the set of atomic subformulas of φR.
Each atomic τ0-formula is of the form t1

<
= t2, where t1 and t2 are terms. We call the atomic

formula non-trivial if it is not equivalent to ⊥ or >, from now on we make the following
assumptions on the atomic formulas (cf. again the proof of Theorem 3.4)

that atomic formulas except >,⊥ are non-trivial
that the functions k· are never composed, because k · h · x can be replaced by (kh) · x
that, in any atomic formula k · xi <=h · xj , the constants k and h are not both negative.

Given a set of non-trivial atomic formulas Φ, we define

H(Φ) =
{
c1
c2

∣∣∣∣ t1 = c1 · xi, t2 = c2 · xj , for some t1
<

= t2 in Φ
}

K(Φ) =
{
c2
c1

∣∣∣∣ t1 = c1 · xi, t2 = c2 · 1, for some t1
<

= t2 in Φ
}

∪
{
c1
c2

∣∣∣∣ t1 = c1 · 1, t2 = c2 · xj , for some t1
<

= t2 in Φ
}

We describe now the numeric domain Q? in which our algorithm operates.

I Definition 4.7. We call Q? the ordered Q-vector space

Q? = {x+ yε | x, y ∈ Q}
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12:8 Submodular Functions and VCSPs over Infinite Domains

where ε is merely a formal device, namely x+yε represents the pair (x, y). We define addition
and multiplication by a scalar component-wise

(x1 + y1ε) + (x2 + y2ε) = (x1 + x2) + (y1 + y2)ε
c · (x+ yε) = (cx) + (cy)ε.

The order is induced by Q extended with 0 < ε� 1, namely the lexicographical order of the
components x and y

(x1 + y1ε) < (x2 + y2ε) iff
{
x1 < x2 or
x1 = x2 ∧ y1 < y2.

Q is clearly embedded in Q? (the embedding is given by the map k 7→ k + 0ε).
Any τ0-formula has an obvious interpretation in any ordered Q-vector space Q extending Q,
and, in particular, in Q?.

I Proposition 4.8. Let φ(x1 . . . xd) and ψ(x1 . . . xd) be τ0-formulas. Then φ and ψ are
equivalent in Q if, and only if, they are equivalent in any ordered Q-vector space Q extending Q
(for instance Q = Q?).

Proof. It follows from [17, Chapter 1, Remark 7.9] that the first-order theory of ordered
Q-vector spaces in the signature τ0 ∪ {+,−} is complete. As a consequence the formula
∀x1 . . . xdφ(x1 . . . xd)↔ ψ(x1 . . . xd) holds in Q if and only if it does in Q. J

The proposition gives us a natural extension A? of A to the domain Q?. Namely the
τ -structure obtained by interpreting each relation symbol R ∈ τ by the relation RA? defined
on Q? by the same (quantifier-free) τ0-formula φR that defines RA over Q (by the proposition,
the choice of equivalent τ0-formulas is immaterial). Similarly, we will see that, as long as
satisfiability is concerned, there is no difference between A and A?.

I Corollary 4.9. Let φ be an instance of CSP(A), and let φ? be the corresponding instance
of CSP(A?). Then φ is satisfiable if and only if φ? is.

Proof. From Proposition 4.8 observing that φ (resp. φ?) is unsatisfiable if and only if it is
equivalent to ⊥. J

As a consequence, we can work in the extended structure A?. Our goal is to prove the
following theorem.

I Theorem 4.10. There is an efficient sampling algorithm for A?.

Assuming, for a moment, Theorem 4.10, it is easy to prove Theorem 4.3.

Proof of Theorem 4.3. By Proposition 4.7, for all k ≥ 1 the function

(x1, . . . , xk) 7→ max(x1, . . . , xk)

is a k-ary totally symmetric polymorphism of CSP(A?). Therefore, CSP(A?) is in P by
Theorem 4.10 and Theorem 4.6. Finally, by Corollary 4.9, CSP(A?) and CSP(A) are
equivalent. J

Let φ be an atomic τ0-formula. We write φ̄ for the formula t1 ≤ t2 if φ is of the form
t1 < t2, and for the formula t1 = t2 if φ is of the form t1 = t2.
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I Lemma 4.11. Let Φ be a finite set of atomic τ0-formulas having free variables in {x1 . . . xd}.
Assume that Φ̄ :=

⋃
φ∈Φ φ̄ has a simultaneous solution (x1 . . . xd) ∈ Q>0 in positive numbers.

Then Φ̄ has a solution taking values in the set CΦ,d ⊂ Q defined as follows

CΦ,d =
{
|k|

s∏
i=1
|hi|ei

∣∣∣∣∣ k ∈ K(Φ), e1 . . . es ∈ Z,
s∑
r=1
|er| < d

}

where h1 . . . hs is an enumeration of the (finitely many) elements of H(Φ).

Proof. See the appendix. J

I Lemma 4.12. Let Φ be a finite set of atomic τ0-formulas having free variables in {x1 . . . xd}.
Assume that the formulas in Φ are simultaneously satisfiable in Q. Then they are simultan-
eously satisfiable in DΦ,d := −C?Φ,d ∪ {0} ∪ C?Φ,d where

C?Φ,d = {x+ nxε | x ∈ CΦ,d, n ∈ Z, −d ≤ n ≤ d}

CΦ,d is defined as in Lemma 4.11, and −C?Φ,d denotes the set {−x | x ∈ C?Φ,d}.

Proof. See the appendix. J

Proof of Theorem 4.10. The sampling algorithm produces the finite substructure A?At(τ),d
of A? having domain DAt(τ),d where At(τ) :=

⋃
R∈τ At(φR), namely the τ -structure with

domainDAt(τ),d in which each relation symbol R ∈ τ denotes the restriction of RA? toDAt(τ),d.
It is immediate to observe that this structure has size polynomial in d.

Since A?At(τ),d is a substructure of A?, it is clear that if an instance is satisfiable in A?At(τ),d,
then it is a fortiori satisfiable in A?.

The vice versa follows from Lemma 4.12. In fact, consider a set Ψ of atomic τ -formulas
having free variables x1 . . . xd. Assume that Ψ is satisfied in A? by one assignment xi = ai
for i ∈ {1 . . . d}. For each φR ∈ Ψ let ΦR ⊂ At(φR) be the set of atomic subformulas of φR
which are satisfied by our assignment ai. Clearly the atomic τ0-formulas Φ :=

⋃
φR∈Ψ ΦR

are simultaneously satisfiable. Remembering that the formulas φR have no negations by
construction, it is obvious that any simultaneous solution of Φ must also satisfy Ψ. By
Lemma 4.12, Φ has a solution in the set DΦ,d defined therein. We can observe that
CΦ,d ⊂ CAt(τ),d, hence DΦ,d ⊂ DAt(τ),d and the claim follows. J

5 Tractability of Submodular PLH Valued Constraints

Here we extend the method developed in Section 4 to the treatment of VCSPs. To better
highlight the parallel with Section 4, so that the reader already familiar with it may quickly get
an intuition of the arguments here, we will use identical notations to represent corresponding
objects. This choice has the drawback that some symbols, notably Q?, need to be re-defined
(the new Q?, for instance, will contain the old one). In this section, we will sometimes skip
details that can be borrowed unchanged from Section 4.

Our goal is to prove the following result

I Theorem 5.1. Let Γ be a PLH valued finite constraint language. Assume that all cost
functions in Γ are submodular. Then VCSP(Γ) is polynomial-time solvable.

Let us begin with the new definition of Q?.
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I Definition 5.2. We let Q? denote the ring Q((ε)) of formal Laurent power series in the
indeterminate ε. Namely Q? is the set of formal expressions

+∞∑
i=−∞

aiε
i

where ai 6= 0 for only finitely many negative values of i. Clearly Q is embedded in Q?. The
ring operations on Q? are defined as usual

+∞∑
i=−∞

aiε
i +

+∞∑
i=−∞

biε
i =

+∞∑
i=−∞

(ai + bi)εi

+∞∑
i=−∞

aiε
i ·

+∞∑
i=−∞

biε
i =

+∞∑
i=−∞

 +∞∑
j=−∞

ajbi−j

 εi
where the sum in the product definition is always finite by the hypothesis on ai, bi with
negative index i. The order is the lexicographical order induced by 0 < ε� 1, namely

+∞∑
i=−∞

aiε
i <

+∞∑
i=−∞

biε
i iff ∃i ai < bi ∧ ∀j < i aj = bj .

It is well known that Q? is an ordered field, namely all non-zero elements have a multiplicative
inverse and the order is compatible with the field operations. We define the following subsets
of Q? for m ≤ n

Q?m,n :=
{

n∑
i=m

εiai

∣∣∣∣∣ ai ∈ Q

}
⊂ Q?

I Definition 5.3. We define a new structure L?, that is both an extension and an expansion
of L (see Example 3.2), namely it has Q? as domain and τ1 := τ0 ∪ {k}k∈Q?

−1,1
as signature,

where the interpretation of symbols in τ0 is formally the same as for L and the symbols
k ∈ Q?−1,1 denote constants (zero-ary functions).

Notice that, for technical reasons, we allow only constants in Q?−1,1. During the rest of this
section, τ1-formulas will be interpreted in the structure L?. We make on τ1-formulas the
same assumptions of Section 4 (that atomic subformulas are non-trivial and not negated),
also H(Φ) and K(Φ) where Φ is a set of atomic τ1-formulas are defined similarly to Section 4.
Observe that the reduct of L? obtained by restricting the language to τ0 is elementarily
equivalent to L, namely it satisfies the same first-order sentences.

The following lemmas 5.4, 5.5, and 5.6 are analogues of Lemma 4.11 and Lemma 4.12.

I Lemma 5.4. Let Φ be a finite set of atomic τ1-formulas having free variables in {x1 . . . xd}.
Call Φ̄ the set φ̄ | φ ∈ Φ. Suppose that there is 0 < r ∈ Q? such that all satisfying assignments
of Φ̄ in the domain Q? also satisfy 0 < xi ≤ r for all i. Let u, α1 . . . αd be elements of Q?.
Assume that the formulas in Φ are simultaneously satisfiable by a point (x1 . . . xd) ∈ Q? such
that

∑
i αixi < u. Let us define the set

CΦ,d =
{
|k|

s∏
i=1
|hi|ei

∣∣∣∣∣ k ∈ K(Φ), e1 . . . es ∈ Z,
s∑
r=1
|er| < d

}
⊆ Q?−1,1

where h1 . . . hs is an enumeration of the (finitely many) elements of H(Φ). Then there is
a point in (x′1 . . . x′d) ∈ CdΦ,d ⊆ Q? with

∑
i αix

′
i < u that satisfies simultaneously all φ̄,

for φ ∈ Φ.
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Proof. See the appendix. J

I Lemma 5.5. Let Φ be a finite set of atomic τ1-formulas having free variables in {x1 . . . xd}.
Suppose that there are 0 < l < r ∈ Q? such that all satisfying assignments of Φ in the
domain Q? also satisfy l < xi < r for all i. Let α1 . . . αd be rational numbers and u ∈ Q?−1,1.
Assume that the formulas in Φ are simultaneously satisfiable by a point (x1 . . . xd) ∈ Q?

such that
∑
i αixi ≤ u. Then the same formulas are simultaneously satisfiable by a point

(x′1 . . . x′d) ∈ (C?Φ,d)d ⊆ (Q?)d such that
∑
i αix

′
i ≤ u where

C?Φ,d = {x+ nxε3 | x ∈ CΦ,d, n ∈ Z, −d ≤ n ≤ d} ⊆ Q?−1,4 .

Proof. See the appendix. J

I Lemma 5.6. Let Φ be a finite set of atomic τ0-formulas having free variables in {x1 . . . xd}.
Let u, α1 . . . αd be rational numbers. Then the following are equivalent
1. The formulas in Φ are simultaneously satisfiable in Q, by a point (x1 . . . xd) ∈ Qd such

that
∑
i αixi ≤ u.

2. The formulas in Φ are simultaneously satisfiable in DΦ,d ⊆ Q?, by a point (x′1 . . . x′d) ∈
Dd

Φ,d such that
∑
i αix

′
i ≤ u, where the set DΦ,d is defined as follows

DΦ,d := −C?Φ′,d ∪ {0} ∪ C?Φ′,d ⊆ Q?−1,4

Φ′ := Φ ∪ {x > ε, x < −ε, x > −ε−1, x < ε−1}

Proof. The implication 2→ 1 is immediate observing that the conditions Φ and
∑
i αixi ≤ u

are first-order definable in S. In fact, any assignment with values in DΦ,d satisfying the
conditions is, in particular, an assignment in Q?, and, by completeness of the first-order
theory of ordered Q-vector spaces, we have an assignment taking values in Q.

For the vice versa, fix any assignment xi = ai with ai ∈ Q for i ∈ {1 . . . d}. We pre-process
the formulas in Φ producing a new set of atomic formulas Φ′ as follows. We replace all
variables xi such that ai = 0 with the constant 0 = 0·1. Then we replace each of the remaining
variables xi with either yi or −yi according to the sign of ai. Finally, we add the constraints
ε < yi and yi < ε−1 for each of these variables. Similarly we produce new coefficients
α′i = sign(ai)αi. It is clear that the new set of formulas Φ′ has a satisfying assignment in
positive rational numbers with

∑
i α
′
iyi ≤ u. Observing that a positive rational x always

satisfies ε < x < ε−1, we see that Φ′ satisfies the hypothesis of Lemma 5.5 with l = ε

and r = ε−1. Hence the statement. J

Two roads diverge now. Clearly the formulas Φ in Lemma 5.6 are going to define a
piece of the domain of a piecewise linear homogeneous function, while the coefficients αi
define the function on that piece. We could decide to interpret our PLH functions in the
domain Q? or we could decide to substitute a suitably small rational value of ε in the formal
expression of DΦ,d and map the problem to Q. In the first case we have to transfer the
known approaches for Q to the new domain, in the second case we can use them (after having
computed a suitable ε). It is not clear which road is the less traveled by. For reasons that
will be discussed in Subsection 5.1 we take the one of transferring.

It is obvious that one can extend Definition 2.1 considering VCSPs whose cost functions
take values in any totally ordered ring containing Q, and in particular in Q?. We will need
to establish the basics of such extended VCSPs. More precisely, we will need to prove
Corollary 5.12 hereafter, that builds on a fully combinatorial algorithm (Theorem 5.11) due
to Iwata and Orlin [11].
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I Definition 5.7. Let R be a totally ordered commutative ring with unit. Let R be a totally
ordered commutative ring with unit. A problem over R can be solved in fully combinatorial
polynomial time if there exists a polynomial-time (uniform) machine on R (see [1], Chapters
3-4) solving it by performing only additions and comparisons of elements in R as fundamental
operations. We recall that a uniform machine on a totally ordered commutative ring with
unity operates on strings of symbols that represent elements of an ordered commutative ring,
rather than bits as in classical Turing machines. (Notice that in such a machine there are no
machine-constants except 1.)

I Definition 5.8. A set function is a function ψ defined on the set 2V , of subsets of a given
set V .

I Definition 5.9. A set function ψ : 2V → Q with values in a totally ordered Abelian group
Q is submodular if for all U,W ∈ 2V

ψ(U) + ψ(W ) ≥ ψ(U ∩W ) + ψ(U ∪W ).

I Definition 5.10. A collection C of subsets of a given set Q is said to be a ring family if it
is closed under union and intersection.

Equivalently, a ring family is a distributive sublattice of P(Q) with respect to union and
intersection, notably every distributive lattice can be represented in this form (Birkhoff’s
representation theorem). Computationally, we represent a ring family following [16, Section 6].
Namely, fixed a representation for the elements of Q, the ring family C is represented by
the smallest set M ⊆ Q in C, and an oracle that given an element of v ∈ Q returns the
smallest Mv ⊂ Q in C such that v ∈Mv. The construction of Section 6 in [16] proves that
any algorithm capable of minimising submodular set functions can be used to minimise
submodular set functions defined on a ring family represented in this way. Observe that this
construction is fully combinatorial.

I Theorem 5.11 (Iwata-Orlin [11] + Schrijver [16]). There exists a fully combinatorial
polynomial-time algorithm over Q that

taking as input a finite set Q = {1, . . . , n} and a ring family, C ⊆ 2Q, represented as
in [16, Section 6] (namely as above),
having access to an oracle computing a submodular set-function ψ : C → Q,

computes an element S ∈ C such that ψ(S) = minA∈C ψ(A) in time bounded by a polynomial
p(n) in the size n of the domain.

I Corollary 5.12. Let R be a totally ordered commutative ring with unit (for instance Q?),
there exists a fully combinatorial polynomial-time algorithm over R that

taking as input a finite set Q = {1, . . . , n} and a ring family, C ⊆ 2Q, represented as in
Theorem 5.11,
having access to an oracle computing a submodular set-function ψ : C → R,

computes an element S ∈ C such that ψ(S) = minA∈C ψ(A) in time bounded by a polynomial
p(n) in the size n of the domain.

Proof. Theorem 5.11 provides a fully combinatorial algorithm to minimise submodular
functions that, over Q, runs in polynomial time and computes a correct result. We claim
that any such algorithm must be correct and run in polynomial time over R as well. To show
this, we prove the following:
1. The algorithm terminates in time p(n), where p(n) is as in Theorem 5.11.
2. The output of the algorithm coincides with the minimum of ψ.
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Let Rψ denote the subgroup of the additive group (R,+) generated by ψ(C), and let
Eψ := {g1, . . . , gm} be a set of free generators of Rψ. For any tuple r = (r1, . . . , rm) ∈ Qm,
we define a group homomorphism hr : Rψ → Q, by hr(gi) = ri. Let RN := N ·(Eψ∪{0}∪−Eψ)
be the subset of R consisting of the elements of the form ±x1 ± x2 . . . ± xk, with k ≤ N ,
x1, x2, . . . , xk ∈ Eψ.

In general, the group homomorphisms hr are not order preserving. We claim that for
all N , there exists r ∈ Qm such that hr|RN

is order preserving. To see this, assume that no
such tuple r exists. The inequalities denoting that hr|RN

is order preserving are expressed
by a finite linear program P in the variables r1, . . . , rm. By the assumption and Farkas’
lemma there is a linear combination (with coefficients in Z) of the inequalities of P which
is contradictory. Therefore P is contradictory in any ordered ring, and, in particular, in R.
However ri = gi, for all i ∈ {1, . . . ,m}, is a valid solution of P in R.

Fix N := N̂ · 2p(n), where N̂ is such that ψ(S) ∈ RN̂ for all S ∈ C. For this N , let r be
a tuple satisfying the claim. We run two parallel instances of the algorithm, one over R
with input ψ, and the other in Q with input hr ◦ ψ. We can prove that the two runs are
exactly parallel for at least p(n) steps, therefore, since the second run stops within these p(n)
steps, also the first one must do so. Formally, we prove, in a register machine model, that,
at each step i ≤ p(n), if a register contains the value g in the first run, it must contain the
value hr(g) in the second. This is easily established proving by induction on i that a value
computed at step i must be in RN̂ ·2i . Point 1 is thus established.

For point 2, let minR and minQ be the output of the algorithm over (ψ,R) and (hr ◦ψ,Q),
respectively. The induction above shows, in particular, that minQ = hr(minR). We know
that hr(minR) = minQ = hr ◦ ψ(S0) for some S0 and hr ◦ ψ(S) ≥ minQ = hr(minR) for
each element S of C. By our choice of N , the corresponding relations, minR = ψ(S0) and
ψ(S) ≥ minR for each element S of C, must hold in R. J

The following lemma is essentially contained in [7, Theorem 6.7], except that we replace
the set of values by an arbitrary totally ordered commutative ring with unit R. To state
the lemma properly, we need to observe that, given a submodular function f defined on Qd,
where Q = {1, . . . , n}, we can associate to it the following ring family Cf ⊆ P(Q×{1, . . . , d}).
For every x = (x1, . . . , xd) ∈ Qd define

Cx := {(q, i) | q ∈ Q, q ≤ xi} ⊆ Q× {1, . . . , d}

then we let Cf be the union of Cx for all x such that f(x) < +∞.

I Lemma 5.13. Let R ⊇ Q be a totally ordered ring. There exists a fully combinatorial
polynomial-time algorithm over R that

taking as input a finite set Q = {1, . . . , n} and an integer d,
having access to an oracle computing a partial submodular f : Qd → R,
given the representation of Cf as in Theorem 5.11,

computes an x ∈ Qd such that f(x) is minimal, in time polynomial in n and d.

Proof. The problem reduces to minimising a submodular set-function on the ring family Cf ,
for the details see the proof of Theorem 6.7 in [7]. J

Proof of Theorem 5.1. Similarly to the proof of Theorem 4.3, we will use a sampling
technique. Namely, given an instance I of VCSP(Γ), we will employ Lemma 5.6 to fix a finite
structure ΓI , of size (and also representation size) polynomial in |VI |, having a subset Q?I
of Q?−1,4 as domain, such that the variables VI of I have an assignment in Q having cost ≤ uI
if and only if they have one in Q?I . Once we have ΓI , we will conclude by Lemma 5.13.
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The structure ΓI obviously needs to have the same signature τ as Γ. For each function
symbol f ∈ τ we consider a τ0-formula φf defining fΓ and we let fΓI be the function defined
in Q? by the same formula. By Proposition 4.8 the choice of φf is immaterial. Remains to
define the domain Q?I ⊂ Q?.

By quantifier-elimination (Theorem 3.4), any piecewise linear homogeneous cost function
f : Qn → Q∪{+∞} can be written as

f(x1, . . . , xn) =


tf,1 if χf,1
· · ·
tf,mf

if χf,mf

+∞ otherwise

where tf,1, . . . , tf,mf
are τ0-terms, χf,1, . . . , χf,mf

are conjunctions of atomic τ0-formulas
with variables from {x1, . . . , xn, and χf,1, . . . , χf,mf

define disjoint subsets of Qn. We fix
such a representation for each of the cost functions in Γ, and we collect all the atomic
formulas appearing in every one of the conjunctions χf,i, for f ∈ Γ and 1 ≤ i ≤ mf , into the
set Φ. Clearly Φ is finite and depends only on the fixed language Γ. Finally, Q?I := DΦ,|VI |
as defined in Lemma 5.6.

The size of Q?I is clearly polynomial by simple inspection of the definition. Its repres-
entation has also polynomial size if the numbers are represented in binary, and, with this
representation, the evaluation of fΓI for f ∈ τ takes polynomial time.

Given an assignment α : VI → Q?I of value ≤ uI we have, a fortiori, an assignment VI → Q?

of value ≤ uI , hence, by the usual completeness of the first-order theory of ordered Q-vector
spaces, there is an assignment VI → Q with the same property.

Finally let β : VI → Q be an assignment having value ≤ uI . We need to find an
assignment β′ : VI → Q?I with value ≤ uI . Let

φI =
m∑
i=1

fi(xi1, . . . , xiar(fi))

(cf. Definition 2.1). For each i ∈ {1, . . . ,m} select the formula χi among χfi,1, . . . , χfi,mfi
that

is satisfied by the assignment β. Clearly, the conjunction of atomic τ0-formulas χ :=
∧m
i=1 χi

is satisfiable. Moreover, φI restricted to the subset of (Q?)|VI | where χ holds is obviously
linear. Then we can apply Lemma 5.6, and we get an assignment β′ whose values are
in Dχ,|VI | (where, by a slight abuse of notation, we wrote χ for the set of conjuncts of χ).
We conclude observing that Dχ,|VI | ⊆ DΦ,|VI | = Q?I .

It remains to check that Lemma 5.13 applies to our situation. Clearly R = Q?, the
function f is the objective function described by φI , and we let n = |Q?I | so that we identify
Q with an enumeration of Q?I in increasing order (which can be computed in polynomial
time without obstacle). The oracle computing f is straightforward to implement since sums
and comparisons in Q? merely reduce to the corresponding component-wise operations on
the coefficients. The representation of the ring family Cf requires a moment of attention.
To construct the oracle, as well as to find the minimal element M , we need an algorithm
that, given a variable x ∈ VI and a value q ∈ Q?I , finds the component-wise minimal feasible
assignment αx : VI → Q?I that gives to x a value ≥ q (which exists observing that the set of
feasible assignments is min-closed). This algorithm is easy to construct observing that the
feasibility problem is a min-closed CSP. We describe how to find M , the procedure for Mv is
essentially the same.
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Suppose that for each variable x ∈ VI we can find the smallest element β(x) ∈ Q?I
such that there is a feasible assignment γx : VI → Q?I such that γx(x) = β(x), then, by the
min-closure, β = minx∈VI

γx is the minimal assignment. To find β(x) it is sufficient to solve
the feasibility problem, using Theorem 4.3, adding a constraint x ≥ k for increasing values
of k ∈ Q?I . J

5.1 Why Q??

It might appear that in more than one occasion we chose to work in mathematically
overcomplicated structures. For example, the algorithm for Theorem 5.1 merely manipulates
points in Q?−1,4, which is just Q6 with the lexicographic order, yet we went to the trouble
of introducing the field of formal Laurent power series. More radically, one might observe
that assigning a rational value to the formal variable ε small enough, we could have mapped
the entire algorithm to Q, thus dispensing with non-Archimedean extensions entirely. As we
believe to owe to our reader an explanation for this, we better give three.

First, the idea of limiting our horizon to Q?−1,4 ' Q6 might seem a simplification, but,
in practice, it makes things more complicated. For example, in several places we used the
fact that Q? has a field structure to make proofs more direct and intuitive. Second, going
for the most elementary exposition, namely choosing an ε small enough explicitly, would
have completely obfuscated any idea in the arguments, which would have been converted
in some unsightly bureaucracy of inequalities. Even computationally, mapping everything
to Q is tantamount as converting arrays of small integers into bignums by concatenation,
hardly an improvement. Finally, the existence of an efficiently computable rational value
of ε that works is not necessary for our method, even though, in this case, a posteriori, such
an ε exists.

Our third, and most important, justification, is that we desire to present the approach
used in this paper, which is quite generic, as much as the results. To this aim, it is convenient
to express the underlying ideas in their natural language. For example, Corollary 5.12 is
a completely black-boxed way to transfer combinatorial algorithms between domains that
share some algebraic structure. We do not claim great originality in that observation, yet we
believe that the method is interesting, and worthy of being presented in the cleanest form
that we could devise.

6 Maximal Tractability

A sublanguage of a valued constraint language Γ is a valued constraint language that can be
obtained from Γ by dropping some of the cost functions.

I Definition 6.1. Let V be a class of valued constraint languages over a fixed domain D and
let Γ be a language of V. We say that Γ is maximally tractable within V if

VCSP(Γ′) is polynomial time solvable for every finite sublanguage Γ′ of Γ; and
for every valued constraint language ∆ in V properly containing Γ, there exists a finite
sublanguage ∆′ of ∆ such that VCSP(∆′) is NP-hard.

Using [7, Theorem 6.7], it is easy to show the following. (See the appendix for details.)

I Theorem 6.2. The valued constraint language consisting of all submodular PLH cost
functions is maximally tractable within the class of PLH valued constraint languages.
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7 Conclusion and Outlook

We have presented a polynomial-time algorithm for submodular PLH cost functions over
the rationals. In fact, our algorithm not only decides the feasibility problem and whether
there exists a solution of cost at most uI , but can also be adapted to efficiently compute the
infimum of the cost of all solutions (which might be −∞), and decides whether the infimum
is attained. The modification is straightforward observing that the sample computed does
not depend on the threshold uI .

We also showed that submodular PLH cost functions are maximally tractable within the
class of PLH cost functions. Such maximal tractability results are of particular importance
for the more ambitious goal to classify the complexity of the VCSP for all classes of PLH cost
functions: to prove a complexity dichotomy it suffices to identify all maximally tractable
classes.

Another challenge is to extend our tractability result to the class of all submodular
piecewise linear VCSPs. We believe that submodular piecewise linear VCSPs are in P,
too. But note that already the structure (Q; 0, S,D) where S := {(x, y) | y = x + 1} and
D := {(x, y) | y = 2x} (which has both min and max as a polymorphism) does not admit an
efficient sampling algorithm (it is easy to see that for every d ∈ N every d-sample must have
exponentially many vertices in d), so a different approach than the approach in this paper is
needed.
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A Appendix

A.1 Quantifier Elimination: Proof of Theorem 3.4
To prove Theorem 3.4 it suffices to prove the following lemma.

I Lemma A.1. For every quantifier-free τ0-formula ϕ there exists a quantifier-free τ0-formula
ψ such that ∃x.ϕ is equivalent to ψ over L.

Proof. We define ψ in seven steps.
1. Rewrite ϕ, using De Morgan’s laws, in such a way that all the negations are applied to

atomic formulas.
2. Replace

¬(s = t) by s < t ∨ t < s, and
¬(s < t) by t < s ∨ s = t,

where s and t are τ0-terms.
3. Write ϕ in disjunctive normal form in such a way that each of the clauses is a conjunction

of non-negated atomic τ0-formulas (this can be done by distributivity).
4. Observe that ∃x

∨
i

∧
j χi,j , where the χi,j are atomic τ0-formulas, is equivalent to∨

i ∃x
∧
j χi,j . Therefore, it is sufficient to prove the lemma for ϕ =

∧
j χj where the χj

are atomic τ0-formulas. As explained above, we can assume without loss of generality
that the χj are of the form >, ⊥, xσ c, c σ x, or xσ cy, for c ∈ Q and σ ∈ {<,=}. If χj
equals ⊥, then ϕ is equivalent to ⊥ and there is nothing to be shown. If χj equals >
then it can simply be removed from ϕ. If χj equals x = c or x = cy then replace every
occurrence of x by c · 1 or by c · y, respectively. Then ϕ does not contain the variable x
anymore and thus ∃x.ϕ is equivalent to ϕ.
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5. We are left with the case that all atomic τ0-formulas involving x are (strict) inequalities,
that is, ϕ =

∧
i χi ∧

∧
i χ
′
i ∧
∧
i χ
′′
l , where

the χi are atomic formulas not containing x,
the χ′i are atomic formulas of the form x > ui,
the χ′′i are atomic formulas of the form x < vi.

Then ∃x.ϕ is equivalent to
∧
i χi ∧

∧
i,j(ui < vj).

Each step of this procedure preserves the satisfying assignments for ϕ and the resulting
formula is in the required form; this is obvious for all but the last step, and for the last step
follows from the correctness of Fourier-Motzkin elimination for systems of linear inequalities.
Therefore the procedure is correct. J

Proof (of Theorem 3.4). Let ϕ be a τ0-formula. We prove that it is equivalent to a quantifier-
free τ0-formula by induction on the number n of quantifiers of ϕ. For n = 1 we have two
cases:

If ϕ is of the form ∃x.ϕ′ (with ϕ′ quantifier-free) then, by Lemma A.1, it is equivalent to
a quantifier-free τ0-formula ψ.
If ϕ is of the form ∀x.ϕ′ (with ϕ′ quantifier-free), then it is equivalent to ¬∃x.¬ϕ′. By
Lemma A.1, ∃x.¬ϕ′ is equivalent to a quantifier-free τ0-formula ψ. Therefore, ϕ is
equivalent to the quantifier-free τ0-formula ¬ψ.

Now suppose that ϕ is of the form Q1x1Q2x2 · · ·Qnxn.ϕ′ for n ≥ 2 and Q1, . . . , Qn ∈ {∀, ∃},
and suppose that the statement is true for τ0-formulas with at most n− 1 quantifiers. In
particular, Q2x2 · · ·Qnxn.ϕ′ is equivalent to a quantifier -free τ0-formula ψ. Therefore, ϕ
is equivalent to Q1x1.ψ, that is, a τ0-formula with one quantifier that is equivalent to a
quantifier-free τ0-formula, again by inductive hypothesis. J

A.2 Proof of Lemma 4.11 and Lemma 4.12
Proof of Lemma 4.11. Let γ ≤ β be maximal such that there are Ψ1,Ψ2,Ψ3 with

Φ̄ = {s1 = s′1, . . . , sα = s′α} ∪ {t1 ≤ t′1, . . . , tβ ≤ t′β}
Ψ1 = {s1 = s′1, . . . , sα = s′α}
Ψ2 = {t1 = t′1, . . . , tγ = t′γ}
Ψ3 = {tγ+1 ≤ t′γ+1, . . . , tβ ≤ t′β},

where si, s′i, tj , t′j are τ0-terms for all i, j, and Ψ1 ∪Ψ2 ∪Ψ3 is satisfiable in positive numbers.
Clearly the space of positive solutions of Ψ1 ∪Ψ2 must be contained in that of Ψ3. In fact,
by construction, they intersect: consider any straight line segment connecting a solution of
Ψ1 ∪Ψ2 ∪Ψ3 and a solution of Ψ1 ∪Ψ2 not satisfying Ψ3, on this segment there must be a
solution of Ψ1 ∪Ψ2 ∪Ψ3 lying on the boundary of one of the inequalities of Ψ3, contradicting
the maximality of γ. By the last observation it suffices to prove that there is a solution
of Ψ1 ∪Ψ2 taking values in CΦ,d. Put an edge between two variables xi and xj when they
appear in the same formula of Ψ1 ∪Ψ2. For each connected component of the graph thus
defined, either it contains at least one variable xi such that there is a constraint of the
form h · xi = k · 1, or all constraints are of the form h · xi = h′ · xj . In the first case assign
xi = k

h , in the second assign one of the variables xi arbitrarily to 1, then, in any case, since
the diameter of the connected component is < d, all variables in it are forced to take values
in CΦ,d by simple propagation of xi. J
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Proof of Lemma 4.12. First we fix a solution xi = ai for i = 1 . . . d of Φ. In general, some
of the values ai will be positive, some 0, and some negative: we look for a new solution
z1 . . . zd ∈ DΦ,d such that zi is positive, respectively 0 or negative, if and only if ai is.

To this aim we rewrite the formulas in Φ replacing each variable xi with either yi, or 0
(formally 0 · 1), or −yi (formally −1 · yi). We call Φ+ the new set of formulas, which, by
construction, is satisfiable in positive numbers yi = bi. To establish the lemma, it suffices to
find a solution of Φ+ taking values in C?Φ,d.

By Lemma 4.11, we have an assignment yi = ci of values c1 . . . cd in CΦ+,d ⊆ CΦ,d that
satisfies simultaneously all formulas φ̄ with φ ∈ Φ+. Let −d ≤ n1 . . . nd ≤ d be integers such
that for all i, j

ni < nj if and only if bi

ci
<

bj

cj

0 < ni if and only if 1 < bi

ci

ni < 0 if and only if bi

ci
< 1

Such numbers exist: simply sort the set {1} ∪
{
bi

ci
| i = 1 . . . d

}
and consider the positions in

the sorted sequence counting from that of 1. We claim that the assignment yi = ci+niciε ∈ Q?

satisfies all formulas of Φ+. To check this, we consider the different cases for atomic formulas
k · yi < h · yj : if kci < hcj this is obviously satisfied. Otherwise kci = hcj , in this case k
and h are positive and the constraint

kci + kniciε < hcj + hnjcjε

is equivalent to ni < nj . This, in turn, is equivalent by construction to bi

ci
<

bj

cj
which we

get by observing that bihcj = bikci < bjhci.
k ·yi = h ·yj : obviously kbi = hbj and kci = hcj , therefore bi

ci
= bj

cj
, and, as a consequence,

also ni = nj from which the statement.
k · 1 < h · yj : similarly to the first case, if k < hcj this is immediate. Otherwise k = hcj ,
so k and h are positive, the constraint

k · 1 < hcj + hnjcjε

is equivalent to 0 < nj , in other words 1 < bj

cj
, which follows observing that hcj = k < hbj .

k · yi < h · 1: as the case above.
k · 1 = h · yj : obviously k · 1 = hbj = hcj , therefore bj

cj
= 1, so nj = 0 and the case follows.

k · yi = h · 1: as the case above. J

A.3 Proof of Lemma 5.4 and Lemma 5.5
Proof of Lemma 5.4. As in the proof of Lemma 4.11 (to which we direct the reader for
many details) we take a maximal γ ≤ β such that there are Ψ1,Ψ2,Ψ3 with

Φ̄ = {s1 = s′1, . . . , sα = s′α} ∪ {t1 ≤ t′1, . . . , tβ ≤ t′β}
Ψ1 = {s1 = s′1, . . . , sα = s′α}
Ψ2 = {t1 = t′1, . . . , tγ = t′γ}
Ψ3 = {tγ+1 ≤ t′γ+1, . . . , tβ ≤ t′β}

and Ψ1 ∪ Ψ2 ∪ Ψ3 is satisfiable by an assignment with
∑
i αixi < u. As in the proof of

Lemma 4.11 the set of solutions of Ψ1∪Ψ2 satisfying
∑
i αixi < u is contained in the solutions

of Ψ3. So, here too, it suffices to show that there is a solution of Ψ1 ∪Ψ2 with
∑
i αixi < u

CSL 2018
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taking values in CΦ,d. The proof of Lemma 4.11 shows that there is a solution of Ψ1 ∪Ψ2
taking values in CΦ,d without necessarily meeting the requirement that

∑
i αixi < u. We

will prove that, in fact, any such solution meets the additional constraint.
Let xi = ai, bi be two distinct satisfying assignments for Ψ1 ∪Ψ2 such that

∑
i αiai < u

and
∑
i αibi ≥ u. We know that the first exists, and we assume the second towards a

contradiction. The two assignments must differ, so, without loss of generality a1 6= b1. For
t ∈ Q?, with t ≥ 0, define the assignment xi(t) = (1 + t)ai − tbi. Since all constraints
in Ψ1 ∪ Ψ2 are equalities, it is clear that the new assignment xi(t) satisfies Ψ1 ∪ Ψ2 for
all t ∈ Q?. Moreover, if t ≥ 0

∑
i

αixi(t) ≤
∑
i

αiai − t

(∑
i

αibi −
∑
i

αiai

)
< u

Let t = 2r
|b1−a1| . Then

x1(t) = a1 + 2r
|b− a|

(a− b)

is either ≥ 2r or < 0 depending on the sign of (a− b). In either case we have a solution xi =
xi(t) of Ψ1 ∪ Ψ2 satisfying

∑
i αixi(t) < u, which must therefore be a solution of Φ, that

does not satisfy 0 < xi ≤ r. J

Proof of Lemma 5.5. We consider two cases: either all satisfying assignments satisfy the
inequality

∑
i αixi ≥ u or there is a satisfying assignment (x1 . . . xd) for Φ such that∑

i αixi < u.
In the first case, we claim that all satisfying assignments, in fact, satisfy

∑
i αixi = u.

In fact, assume that xi = ai, bi are two satisfying assignments such that
∑
i αiai = u

and v :=
∑
i αibi > u. As in the proof of Lemma 5.4, consider assignments of the form xi(t) =

(1+t)ai−tbi for t ∈ Q?. Clearly
∑
i αixi(t) = u−t(v−u) < u for all t > 0. As in Lemma 5.4,

the new assignment must satisfy all equality constraints in Φ. Each inequality constraint
implies a strict inequality on t (remember that Φ only has strict inequalities). Since all of
these must be satisfied by t = 0, there is an open interval of acceptable values of t around 0,
and, in particular, an acceptable t > 0. Our claim is thus established. Therefore, in this
case, it suffices to find any satisfying assignment for Φ taking values in C?Φ,d. The assignment
is now constructed as in the proof of Lemma 4.12, replacing the formal symbol ε in that
proof by ε3. Namely take a satisfying assignment xi = bi for Φ, and, by Lemma 5.4, one
satisfying assignment xi = ci for Φ̄ taking values in CΦ,d. Observe that the hypothesis that
all solutions of Φ satisfy l < xi for all i is used here to ensure that all solutions of Φ̄ assign
positive values to the variables, which is required by Lemma 5.4. Let −d ≤ n1 . . . nd ≤ d be
integers such that for all i, j

ni < nj if and only if bi

ci
<

bj

cj

0 < ni if and only if 1 < bi

ci

ni < 0 if and only if bi

ci
< 1

The assignment yi = ci + niciε
3 can be seen to satisfy all formulas of Φ by the same check

as in the proof of Lemma 4.12. Observe that we have to replace ε in Lemma 4.12 by ε3 here,
so that Q?−1,1 ∩ ε3 Q?−1,1 = ∅.

For the second case, fix a satisfying assignment xi = bi. By Lemma 5.4 there is an
assignment xi = ci ∈ CΦ,d such that

∑
i αici < u and this assignment satisfies φ̄ for all φ ∈ Φ.
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From these two assignments construct the numbers ni and then the assignment yi = ci+niciε3

as before. For the same reason it is clear that the new assignment satisfies Φ. To conclude
that

∑
i αiyi < u we write∑

i

αiyi =
∑
i

αici + ε3
∑
i

αinici < u

because the first summand is in Q?−1,1 and < u, therefore the second summand is neglected
in the lexicographical order. J

A.4 Proof of the maximal tractability
In this appendix we prove Theorem 6.2. We will make use of the following result.

I Theorem A.2 (Cohen-Cooper-Jeavons-Krokhin, [7], Theorem 6.7). Let D be a finite totally
ordered set. Then the valued constraint language consisting of all submodular cost functions
over D is maximally tractable within the class of all valued constraint languages over D.

We show that the class of submodular piecewise linear homogeneous languages is maximally
tractable within the class of PLH valued constraint languages.

I Definition A.3. Given a finite set D ⊂ Q, we define the partial function χD : Q→ Q by

χD(x) =
{

0 x ∈ D
+∞ x ∈ Q \D.

For every finite set D ⊂ Q, the cost function χD is submodular and PLH.

I Definition A.4. Given a finite domain D ⊂ Q and a partial function f : Dn → Q we define
the canonical extension of f as f̂ : Qn → Q, by

f̂(x) =
{
f(x) x ∈ Dn

+∞ otherwise.

Note that the canonical extension of a submodular function over a finite domain is
submodular and PLH.

Proof of Theorem 6.2. Polynomial-time tractability of the VCSP for finite sets of submod-
ular PLH cost functions has been shown in Theorem 5.1.

Now suppose that f is a cost function over Q that is not submodular, i.e., there exists a
couple of points, a := (a1, . . . , an), b := (b1, . . . , bn) ∈ Qn such that

f(a) + f(b) < f(min(a, b)) + f(max(a, b)).

Let ΓD be the language of all submodular functions on

D := {a1, . . . , an, b1, . . . , bn} ⊂ Q .

Notice that f |D is not submodular, for our choice of D. Therefore, by Theorem A.2, there
exists a finite language Γ′D ⊂ ΓD such that VCSP(Γ′D ∪ {f |D}) is NP-hard.

We define the finite submodular PHL language Γ′ by replacing every cost function g in
Γ′D by its canonical extension ĝ. Then Γ′ ∪ {f, χD}, where χD is defined as in Definition
A.3, has an NP-hard VCSP. Indeed, for every instance I of VCSP(Γ′D ∪ {f |D}), we define an
instance J of VCSP(Γ′ ∪ {f, χD}) in the following way:
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replace every function symbol g in φI by the symbol for its canonical extension,
replace the function symbol for f |D in φI by f , and
add to Jφ the summand χD(v) for every variable v ∈ VI .

Because of the terms involving χD, the infimum of φJ is smaller than +∞ if, and only if, it
is attained in a point having coordinates in D. Therefore, the infimum of φJ coincides with
the infimum of φI . Since J is computable in polynomial-time from I, the NP-hardness of
VCSP(Γ′ ∪ {f, χD}) follows from the NP-hardness of VCSP(Γ′ ∪ {f |D}). J
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Abstract
The Calculus of Conjunctive Queries (CCQ) has foundational status in database theory. A
celebrated theorem of Chandra and Merlin states that CCQ query inclusion is decidable. Its
proof transforms logical formulas to graphs: each query has a natural model – a kind of graph –
and query inclusion reduces to the existence of a graph homomorphism between natural models.

We introduce the diagrammatic language Graphical Conjunctive Queries (GCQ) and show
that it has the same expressivity as CCQ. GCQ terms are string diagrams, and their algebraic
structure allows us to derive a sound and complete axiomatisation of query inclusion, which
turns out to be exactly Carboni and Walters’ notion of cartesian bicategory of relations. Our
completeness proof exploits the combinatorial nature of string diagrams as (certain cospans of)
hypergraphs: Chandra and Merlin’s insights inspire a theorem that relates such cospans with
spans. Completeness and decidability of the (in)equational theory of GCQ follow as a corol-
lary. Categorically speaking, our contribution is a model-theoretic completeness theorem of free
cartesian bicategories (on a relational signature) for the category of sets and relations.
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1 Introduction

Conjunctive queries (CCQ) are first-order logic formulas that use only relation symbols,
equality, truth, conjunction, and existential quantification. They are a kernel language of
queries to relational databases and are the foundations of several languages: they are select-
project-join queries in relational algebra [16], or select-from-where queries in SQL [13]. While
expressive enough to encompass queries of practical interest, they admit algorithmic analysis:
in [14], Chandra and Merlin showed that the problem of query inclusion is NP-complete.

For an example of query inclusion in action, consider formulas

φ = ∃z0 : (x0 = x1)∧R(x0, z0) and ψ = ∃z0, z1 : R(x0, z0)∧R(x1, z0)∧R(x0, z1)∧R(x1, z1),

with free variables x0, x1. Irrespective of model, and thus the interpretation of the relation
symbol R, every free variable assignment satisfying φ satisfies ψ: i.e. φ is included in ψ.

Chandra and Merlin’s insight involves an elegant reduction to graph theory, namely the
existence of a hypergraph homomorphism from a graphical encoding of ψ to that of φ. Below
on the left we give a graphical rendering of ψ and φ, respectively: vertices represent variables,
while edges are labelled with relation symbols. The dotted connections are not, strictly
speaking, a part of the underlying hypergraphs. They constitute an interface: a mapping
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from the free variables {x0, x1} to the vertices. The aforementioned query inclusion is
witnessed by an interface-preserving hypergraph homomorphism, displayed above on the
right. In category-theoretic terms, hypergraphs-with-interfaces are discrete cospans, and the
homomorphisms are cospan homomorphisms.

In previous work [5], the first and third authors with Gadducci, Kissinger and Zanasi
showed that such cospans characterise an important family of string diagrams – i.e. diagram-
matic representations of the arrows of monoidal categories – namely those equipped with
an algebraic structure known as a special Frobenius algebra. This motivated us to study
the connection between this fashionable algebraic structure – which has been used in fields
as diverse as quantum computing [1, 17, 30, 25], concurrency theory [7, 8, 10, 9], control
theory [6, 3] and linguistics [31] – and conjunctive queries.

We introduce the logic of Graphical Conjunctive Queries (GCQ). Although superficially un-
like CCQ, we show that it is equally expressive. Its syntax lends itself to string-diagrammatic
representation and diagrammatic reasoning respects the underlying logical semantics. GCQ
string diagrams for ψ and φ are drawn below. Note that, while GCQ syntax does not have
variables, the concept of CCQ free variable is mirrored by “dangling” wires in diagrams.

R

R

R

R

R

While interesting in its own right as an example of a string-diagrammatic representation
of a logical language – which has itself become a topic of recent interest [21] – GCQ comes
into its own when reasoning about query inclusion, which is characterised by the laws of
cartesian bicategories. This important categorical structure was introduced by Carboni and
Walters [12] who were, in fact, aware of the logical interpretation, mentioning it in passing
without giving the details. Our definition of GCQ, its expressivity, and soundness of the laws
of cartesian bicategories w.r.t. query inclusion is testament to the depth of their insights.

The main contribution of our work is the completeness of the laws of cartesian bicategories
for query inclusion (Theorem 17).

As a side result, we obtain a categorical understanding of the proof by Chandra and Merlin.
This uncovers a beautiful triangle relating logical, combinatorial and categorical structures,
similar to the Curry-Howard-Lambek correspondence relating intuitionistic propositional
logic, λ-calculus and free cartesian closed categories.

Logical
CCQ=GCQ

pp

Chandra and Merlin [14]
..

hh

Theorem 17 ++

Combinatorial
hypergraphs

with interfaces55

Theorem 31ss

Categorical
free cartesian bicategories

The rightmost side of the triangle (Theorem 31) provides a combinatorial characterisation
of free cartesian bicategories as discrete cospans of hypergraphs, with the Chandra and
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Merlin ordering: the existence of a cospan homomorphism in the opposite direction. This
result can also be regarded as an extension of the aforementioned [5] to an enriched setting.
The fact that the Chandra and Merlin ordering is not antisymmetric forces us to consider
preorder-enrichment as opposed to the usual [12] poset-enrichment of cartesian bicategories.1

The step from posets to preorders is actually beneficial: it provides a one-to-one corres-
pondence between hypergraphs and models which we see as functors, following the tradition
of categorical logic. The model corresponding to a hypergraph G is exactly the (contravariant)
Hom-functor represented by G. By a Yoneda-like argument, we obtain a “preorder-enriched
analogue” of Theorem 17 (Theorem 37). With this result, proving Theorem 17 reduces to
descending from the preorder-enriched setting down to poset-enrichment.

Working with both poset- and preorder-enriched categories means that there is a relatively
large number of categories at play. We give a summary of the most important ones in the
table below, together with pointers to their definitions. The remainder of this introduction is
a roadmap for the paper, focussing on the roles played by the categories mentioned below.

preordered posetal
free categories CB≤Σ (Def 29) CBΣ (Def 21)

semantic domains for the logic Span≤ Set (Def 33) Rel (Ex 20)
combinatorial structures Csp≤ FHypΣ (Def 26) -

We begin by justifying the “equation” CCQ=GCQ in the triangle above: we recall CCQ
and introduce GCQ in Sections 2 and 3, respectively, and show that they have the same
expressivity. We explore the algebraic structure of GCQ in Sections 4 and 5, which – as we
previously mentioned – is exactly that of cartesian bicategories. As instances of these, we
introduce CBΣ, the free cartesian bicategory, and Rel, the category of sets and relations.

In Section 6 we introduce preordered cartesian bicategories (the free one denoted by CB≤Σ)
and the category of discrete cospans of hypergraphs with the Chandra and Merlin preorder,
denoted by Csp≤ FHypΣ. Theorem 31 states that these two are isomorphic.

Theorem 37 is proved in Section 7. Rather than Rel, the preordered setting calls for
models in Span≤ Set, the preordered cartesian bicategory of spans of sets. In Section 8, we
explain the passage from preorders to posets, completing the proof of Theorem 17.

We delay a discussion of the ramification of our work, a necessarily short and cursory
account – due to space restrictions – of the considerable related work, and directions for future
work to Section 9. We conclude with the observation that (i) the diagrammatic language
for formulas, (ii) the semantics, e.g. of composition of diagrams – what we understand in
modern terms as the combination of conjunction and existential quantification – and (iii)
the use of diagrammatic reasoning as a powerful method of logical reasoning actually go
back to the pre-Frege work of the 19th century American polymath CS Peirce on existential
graphs. Interestingly, it is only recently (see, e.g. [29]) that this work has been receiving the
attention that it richly deserves.

Preliminaries. We assume familiarity with basic categorical concepts, in particular symmet-
ric monoidal, ordered and preordered categories. We do not assume familiarity with cartesian
bicategories: the acquainted reader should note that what we call “cartesian bicategories”

1 While cartesian bicategories were later generalised [11] to a bona fide higher-dimensional setting, our
preorder-enriched variant seems to be an interesting stop along the way.
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13:4 Graphical Conjunctive Queries

are “cartesian bicategories of relations” in [12]. A prop is a symmetric strict monoidal
category where objects are natural numbers, and the monoidal product on objects is addition
m⊕ n := m+ n. Due to space restrictions, most proofs are in the Appendix.

2 Calculus of Conjunctive Queries

Assume a set Σ of relation symbols with arity function ar : Σ → N and a countable set
V ar = {xi | i ∈ N} of variables. The grammar for the calculus of conjunctive queries is:

Φ ::= > | Φ ∧ Φ | xi = xj | R(→x) | ∃x.Φ (CCQ)

where R ∈ Σ, ar(R) = n, and →x is a list of length n of variables from V ar. We assume the
standard bound variable conventions and some basic metatheory of formulas; in particular we
write φ[→x/→y ], where →x,→y are variable lists of equal length, for the simultaneous substitution
of variables from →

x for variables in →y . We write →x [m,n], where m ≤ n, for the list of variables
xm, xm+1, . . . , xn. Given a formula φ, fv(φ) is the set of its free variables.

The semantics of (CCQ) formulas is standard and inherited from first order logic.

I Definition 1. A modelM = (X, ρ) is a set X and, for each R ∈ Σ, a set ρ(R) ⊆ Xar(R).

Given a modelM = (X, ρ), the semantics [[φ]]M is the set of all assignments of elements from
X to fv(φ) that makes it evaluate to truth, given the usual propositional interpretation.

In order to facilitate a principled definition of the semantics (Definition 3) and to serve
the needs of our diagrammatic approach, we will need to take a closer look at free variables.
To this end, we give an alternative, sorted presentation of (CCQ) that features explicit free
variable management. As we shall see, the system of judgments below will allow us to derive
n ` φ where n ∈ N, whenever φ is a formula of CCQ and fv(φ) ⊆ {x0, . . . , xn−1}.

(>)
0 ` >

R ∈ Σ ar(R) = n
(Σ)

n ` R(x0, . . . , xn−1)

n ` φ
(∃)

n− 1 ` ∃xn−1.φ

(=)
2 ` x0 = x1

m ` φ n ` ψ
(∧)

m+ n ` φ ∧ (ψ[→x [m,m+n−1]/
→
x [0,xn−1]])

Note that the above are restrictive: e.g. (∧) enforces disjoint sets of variables, and (∃) allows
quantification only over the last variable. To overcome these limitations we include three
structural rules that allow us to manipulate (swap, identify, and introduce) free variables.

n ` φ (0 ≤ k < n− 1)
(Swn,k)

n ` φ[xk+1, xk/xk, xk+1]

n ` φ
(Idn)

n− 1 ` φ[xn−2/xn−1]
n ` φ

(Nun)
n+ 1 ` φ

Rule Sw allows us to swap two free variables. Alone, Id identifies the final and the penultimate
free variable; used together with Sw it allows for the identification of any two. Finally, Nu
introduces a free variable. The eight suffice for any CCQ formula, in the following sense:

I Proposition 2. φ is a formula derived from (CCQ) with fv(φ) ⊆ {x0, . . . , xn−1} iff n ` φ.

We use the sorted presentation to define the semantics.

I Definition 3. Given a model M = (X, ρ), the semantics of n ` φ is a set of tuples
[[n ` φ]]M ⊆ Xn. We define it in Figure 1 by recursion on the derivation of n ` φ.

Finally, we define the concepts that are of central interest: query equivalence and inclusion.

I Definition 4. Given n ` φ and n ` ψ, we say that φ and ψ are equivalent and write
φ ≡ ψ if for all modelsM we have [[n ` φ]]M = [[n ` ψ]]M. We write φ 5 ψ when, for allM,
[[n ` φ]]M ⊆ [[n ` ψ]]M. Clearly φ 5 ψ and ψ 5 φ implies φ ≡ ψ.



F. Bonchi, J. Seeber, and P. Sobociński 13:5

[[0`>]]M = {•} (>) (→u , v, w,→x ) ∈ [[n`φ[xk+1,xk/xk,xk+1]]]M ⇔ (→u ,w, v,→x ) ∈ [[n`φ]]M (Swn,k)

[[n`R(x0,...,xn−1)]]M = ρ(R) (Σ) (→v , w) ∈ [[n−1`φ[xn−2/xn−1]]]M ⇔ (→v , w,w) ∈ [[n`φ]]M (Idn)

[[2`x0=x1]]M = {(v, v) | v ∈ X} (=) →
v ∈ [[n−1`∃xn−1.φ]]M ⇔ ∃w ∈ X. (

→
v , w) ∈ [[n`φ]]M (∃)

[[n+1`φ]]M = [[n`φ]]M ×X (Nun) [[m+n`φ∧(ψ[... ])]]M = [[m`φ]]M × [[n`ψ]]M (∧)

Figure 1 Semantics of CCQ for a modelM = (X, ρ). We write • for the unique element of X0.

: (1, 2) : (1, 0)

R∈Σn,m

R : (n,m) : (2, 1) : (0, 1) : (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c;d : (n,m)

c : (n,m) d : (p, q)

c⊕d : (n+p,m+q)

Figure 2 Sort inference rules.

3 Graphical conjunctive queries

We introduce an alternative logic, called Graphical Conjunctive Queries (GCQ). GCQ and
CCQ are – superficially – quite different. Nevertheless, in Propositions 9 and 10 we show
that they have the same expressive power. The grammar of GCQ formulas is given below.

c ::= | | | | | | | c⊕ c | c ; c | R (GCQ)

GCQ syntax is a radical departure from (CCQ). Rather than use CCQ’s existential quanti-
fication and conjunction, GCQ uses the operations of monoidal categories: composition and
monoidal product. There are no variables, thus no assumptions of their countable supply,
nor any associated metatheory of capture-avoiding substitution.

The price is a simple sorting discipline. A sort is a pair (n, m), with n,m ∈ N. We
consider only terms sortable according to Figure 2. There and in (GCQ), R ranges over the
symbols of a monoidal signature Σ, a set of relation symbols equipped with both an arity and
a coarity: Σn,m consists of the symbols in Σ with arity n and coarity m. A GCQ signature
plays a similar role to relation symbols in CCQ: we abuse notation for this reason. A simple
induction shows sort uniqueness: if c : (n, m) and c : (n′, m′) then n = n′ and m = m′.

In (GCQ) we used a graphical rendering of GCQ constants. Indeed, we will not write
terms of GCQ as formulas, but instead represent them as 2-dimensional diagrams. The
justification for this is twofold: the diagrammatic conventions introduced in this section mean
that a diagram is a readable, faithful and unambiguous representation of a sorted (GCQ)
term. More importantly, our characterisation of query inclusion in subsequent sections
consists of intuitive topological deformations of the diagrammatic representations of formulas.

A GCQ term c : (n, m) is drawn as a diagram with n “dangling wires” on the left,
and m on the right. Roughly speaking, dangling wires are GCQ’s answer to the free
variables of CCQ. Composing (;) means connecting diagrams in series and tensoring means
stacking. The shorthand m stands for m wires in parallel. The box n m

R stands
for a relation symbol R ∈ Σn,m. Thus, given c : (n, m), c′ : (m, k), c ; c′ : (n, k)

is drawn kmn
c c0 , and given d : (p, q), c ⊕ d : (n + p, m + q) is drawn

m
c

d
p q

n

.
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[[ ]]M =
{(
x,
(

x
x

))
| x ∈ X

}
[[ ]]M = {(x, •) | x ∈ X} [[c⊕ d]]M = [[c]]M ⊕ [[d]]M [[ ]]M = {(•, •)}

[[ ]]M =
{((

x
x

)
, x
)
| x ∈ X

}
[[ ]]M = {(•, x) | x ∈ X} [[c ; d]]M = [[c]]M ; [[d]]M [[R]]M = ρ(R)

[[ ]]M =
{((

x
y

)
,
(

y
x

))
| x, y ∈ X

}
[[ ]]M = {(x, x) | x ∈ X}

Figure 3 Semantics of GCQ for a modelM = (X, ρ). We used the notation R ; S = {(x, z) | ∃y ∈
Y s.t. (x, y) ∈ R and (y, z) ∈ S} and R ⊕ S = {

((
x
u

)
,
(

y
v

))
| (x, y) ∈ R and (u, v) ∈ S}. • is the

unique element of X0 and
 x0

.

.

.

xn−1

 an element of Xn.

I Example 5. Consider (( ⊕ ) ⊕ ); (R ⊕ S) : (2, 1), assuming
R ∈ Σ2,0, S ∈ Σ1,1. Its diagrammatic rendering is on the right. Note that the
use of the dotted boxes induces a tree-like quality to diagrams. Indeed, they
are a faithful representation for syntactic terms constructed from (GCQ).

S

R

We now turn to semantics. First, the notion of model of GCQ is similar to a model of CCQ.

I Definition 6. A modelM = (X, ρ) is a set X and, for each R ∈ Σn,m, ρ(R) ⊆ Xn ×Xm.

Given a modelM = (X, ρ), the semantics of c : (n, m) is the relation [[c]]M ⊆ Xn ×Xm

defined recursively in Figure 3. Armed with a notion of semantics, we can define query
equivalence (≡) and inclusion (5) for GCQ terms analogously to Definition 4.

I Example 7. Consider the GCQ term of sort (0, 0). For a model M = (X, ρ), its
semantics [[ ]]M ⊆ X0 ×X0 is either the empty relation ∅, if X is empty, or the relation
{(•, •)}, if X is not empty. Since ∅ ⊆ {(•, •)}, and since [[ ]]M = {(•, •)} for all modelsM,
it holds that 5 . Intuitively, the first term corresponds to the CCQ formula ∃x.>,
holding in all non empty models, while the second corresponds to the formula >. In the
remainder of this section we will make this intuition precise.

3.1 Expressivity
We now give a semantics preserving translation Θ from CCQ to GCQ. For each CCQ
relation symbol R ∈ Σ of arity n, we assume a corresponding GCQ symbol R ∈ Σn,0. Using
Proposition 2, it suffices to consider judgments n ` φ. For each, we obtain a GCQ term
Θ(n ` φ) : (n, 0). The translation Θ, given in Figure 4, is defined by recursion on the
derivation of n ` φ. Given a CCQ modelM = (X, ρ), let Θ(M) = (X, ρ′) be the obvious
corresponding GCQ model: ρ′(R) = ρ(R)× {•}. The following confirms that semantics is
preserved.

I Proposition 8. For a CCQ modelM = (X, ρ): →v ∈ [[n ` φ]]M iff (→v , •) ∈ [[Θ(n ` φ)]]Θ(M).

Furthermore, to characterise query inclusion in CCQ, it is enough to characterise it in GCQ.

I Proposition 9. For all CCQ formulas n ` φ and n ` ψ, φ 5CCQ ψ iff Θ(φ) 5GCQ Θ(ψ).

Proposition 8 yields the left-to-right direction. For right-to-left, we give a semantics-preserving
translation Λ from GCQ to CCQ in Appendix A. Modulo ≡, Λ is inverse of Θ.

I Proposition 10. There exists a semantics preserving translation Λ from GCQ to CCQ
such that for all GCQ terms c, d : (n, m), it holds that c 5GCQ d iff Λ(c) 5CCQ Λ(d).
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Θ (0 ` >) = (>) Θ (n ` φ[xk+1, xk/xk, xk+1]) = ⇥(n ` �)

k

n� k � 2
(Swn,k)

Θ (2 ` x0 = x1) = (=) Θ (n− 1 ` φ[xn−2/xn−1]) = ⇥(n ` �)

n� 2

(Idn)

Θ (n ` R(x0, . . . , xn−1)) = R
n (Σ) Θ (n− 1 ` ∃xn−1.φ) = ⇥(n ` �)

n� 1

(∃)

Θ (n+ 1 ` φ) = ⇥(n ` �)
n

(Nun) Θ (m+ n ` φ ∧ (ψ[. . . ])) =
m

⇥(m ` �)

n ⇥(n `  )
(∧)

Figure 4 Translation Θ from CCQ to GCQ.

Propositions 9 and 10 together imply that CCQ and GCQ have the same expressive power.

I Example 11. Recall from Example 7, that is related to ∃x.>. By translating the

CCQ formula 0 ` ∃x0.> via Θ, one obtains . The latter and are different –

syntactically – but they are equal modulo ≡. Note that their diagrams are similar: in the
next section, we prove that terms differing only by dashed boxes are equal modulo ≡.

4 From terms to string diagrams

The first step towards an equational characterisation of query inclusion is to move from GCQ,
where the graphical notation was a faithful representation of ordinary syntactic terms, to
bona fide string diagrams; that is, graphical notation for the arrows of a prop, a particularly
simple kind of symmetric monoidal category (SMC). This is an advantage of GCQ syntax: its
operations are amenable to an elegant axiomatisation. A hint of the good behaviour of GCQ
operations is that query inclusion (and, therefore, query equivalence is) a (pre)congruence.

I Lemma 12.
(i) Let c, c′ : (n, m) and d, d′ : (m, k) with c 5 c′ and d 5 d′. Then (c ; d) 5 (c′ ; d′).
(ii) Let c, c′ : (n, m) and d, d : (p, q) with c 5 c′ and d 5 d′ Then (c⊕ d) 5 (c′ ⊕ d′).

We now consider the laws of strict symmetric monoidal categories (Figure 5) and discover
that any two GCQ terms identified by them are logically equivalent. This means that we
can eliminate the clutter of dashed boxes from our graphical notation.

I Proposition 13. ≡ satisfies the axioms in Figure 5.

The terms of GCQ up-to query equivalence, therefore, organise themselves as arrows of
a monoidal category (axioms (i)-(v)), and the operation of “erasing all dotted boxes” from
diagrams is well-defined. The resulting structure is the well-known combinatorial/topological
concept of string diagram. Equality reduces to the connectivity of their components, and is

CSL 2018
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c1 c2 c3
(i)= c1 c2 c3

c1
(ii)= c1

(ii)= c1

c1

c2

c3

(iii)=

c1

c2

c3

c1

(iv)= c1

(iv)= c1

c1 c2

c3 c4

(v)=
c1 c2

c3 c4

mj

n
c

j (vi)=
c mj

n j

m

n
c

j

j

(vii)= c
mj

n j

j

m m

j

(viii)= m

j

m

j

Figure 5 Axioms of strict symmetric monoidal categories. Wire annotations in (i)-(v) have been
omitted for clarity.

thus stable under intuitive topological transformations, known as diagrammatic reasoning.
For instance, axioms (ii) and (v) in Figure 5 imply that for c1 : (m1, n1) and c2 : (m2, n2)

c1

c2

≡
c1

c2

.

Axioms (vi)-(viii) assert that GCQ terms modulo ≡ form a symmetric monoidal category

(SMC). Therein,
n

nm

m

stands for the crossing of n wires over m wires. This has a standard

recursive definition, using , and the operations of GCQ. Intuitively, boxes “slide
over” wire crossings. Moreover, it is well-known that (vi) and (vii) of Figure 5 imply the
Yang-Baxter equation for crossings, which – with (viii) – implies that in diagrammatic
reasoning wires do not “tangle” and crossings act like permutations of finite sets.

5 Axiomatisation

We have seen that, up-to query equivalence, GCQ enjoys the structural properties of SMCs.
Here we give further properties that characterise query equivalence (≡) and inclusion (5).

Our first observation is that and form, modulo ≡, a commutative monoid,
i.e., they satisfy axioms (A), (C) and (U) in Figure 6. Similarly, and form a
cocommutative comonoid (axioms (Aop), (Cop) and (Uop)). Monoid and comonoid together
give rise to a special Frobenius bimonoid (axioms (S) and (F )), a well-known algebraic
structure that is important in various domains [1, 17, 7, 6].

I Proposition 14. ≡ satisfies the axioms in Figure 6.

Figure 7 shows a set of properties of query inclusion. The two axioms on the left state
that is the left adjoint of and the central axioms assert that is the left adjoint
of . For the rightmost ones, it is convenient to introduce some syntactic sugar: n ,

n , n and n stand for the n-fold versions of monoid and comonoid. Now, axiom (L1)
asserts that n m

R laxly commutes with m , while axiom (L2) states that it laxly commutes

with m . In a nutshell, n m
R is required to be a lax comonoid morphism.

I Proposition 15. 5 satisfies the axioms of Figure 7.

Interestingly, the observations we made so far suffice to characterise query equivalence
and inclusion. This is the main theorem which we will prove in the remainder of this paper.
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(A)=

(C)=

(U)=

(Aop)=

(Cop)=

(Uop)=

(S)=
(F )=

Figure 6 Axioms for special Frobenius bimonoids.

(UC)
≤

(CU)
≤

(MC)
≤

(CM)
≤

mn
R

(L1)
≤ n

mn
R

(L2)
≤ m

n

R

m
R

Figure 7 Axioms for adjointness of and (left) adjointness of and (center) lax
comonoid morphism (right).

I Definition 16. The relation ≤CBΣ on the terms of GCQ is the smallest precongruence
containing the equalities in Figures 5, 6, their converses and the inequalities in Figure 7. The
relation =CBΣ is the intersection of ≤CBΣ and its converse.

I Theorem 17. ≤CBΣ=5

I Remark. There is an apparent redundancy in Figure 7: (CM) follows immediately from (S)
in Figure 6, while (S) can by derived from (CU), (Uop) and (U) for one inclusion and (CM)
for the other. We kept both (CM) and (S) because, as we shall see in §6, it is important to
keep the algebraic structures of Figures 6 and 7 separate.

I Example 18. Recall the example from the Introduction. We can now prove the inclusion
of queries using diagrammatic reasoning, as shown below. In the unlabeled equality we make
use of the well-known spider theorem, which holds in every special Frobenius algebra [27].

R

R

R

R

(L2)
≥

R

R

= R

R (MC)
≥ R

R

(L2)
≥ R

(S)= R
(Uop)= R

5.1 Cartesian bicategories
The structure in Figures 6 and 7 is not arbitrary: these are exactly the laws of cartesian
bicategories, a concept introduced by Carboni and Walters [12], that we recall below.

I Definition 19. A cartesian bicategory is a symmetric monoidal category B with tensor ⊕
and unit I, enriched over the category of partially ordered sets, such that:
1. every object X has a special Frobenius bimonoid: a monoid X : X⊕X → X, X : I →

X, a comonoid X : X → X ⊕X, X : X → I satisfying the axioms in Figure 6;
2. the monoid and comonoid on X are adjoint (axioms in Figure 7, left and center);
3. every arrow R : X → Y is a lax comonoid morphism (axioms in Figure 7, right).
Furthermore, a morphism F of cartesian bicategories is a functor F : B1 → B2 preserving
the tensor, the partial orders and the monoid and comonoid on every object.
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13:10 Graphical Conjunctive Queries

I Example 20. The archetypal cartesian bicategory is the category of sets and relations
Rel, with cartesian product × as tensor and 1 = {•} as unit. To be precise, Rel has
sets as objects and relations R ⊆ X × Y as arrows X → Y . Composition and tensor
are defined as in Figure 3. For each set X, the monoid and comonoid structure is:

X = {(x, ( xx )) | x ∈ X} , X = {(x, •) | x ∈ X} , X = {(( xx ) , x) | x ∈ X} , X = {(•, x) | x ∈ X} .

Cartesian bicategories allow us to employ the usual construction from categorical logic:
the arrows of the cartesian bicategory freely generated from Σ are GCQ terms modulo =CBΣ ,
and morphisms from this cartesian bicategory to Rel are exactly GCQ models.

I Definition 21. The ordered prop CBΣ has GCQ terms of sort (n, m) modulo =CBΣ as
arrows n→ m. These are ordered by ≤CBΣ .

I Lemma 22. CBΣ is a cartesian bicategory.

I Proposition 23. Models of GCQ (Definition 6) are in bijective correspondence with
morphisms of cartesian bicategories CBΣ → Rel.

6 Discrete cospans of hypergraphs

In order to prove Theorem 17, in this section we give a combinatorial characterisation of free
cartesian bicategories as hypergraphs-with-interfaces, formalised as a (bi)category of cospans
equipped with an ordering inspired by Merlin and Chandra [14].

Indeed, the appearance of graph-like structures in the context of conjunctive queries
should not come as a shock. Merlin and Chandra, to compute inclusion ϕ 5 ψ of CCQ queries,
translate them into hypergraphs Gϕ, Gψ with “interfaces” that represent free variables. Then
ϕ 5 ψ iff there exists an interface-preserving homomorphism from Gψ to Gφ.

6.1 Hypergraphs and Cospans
Our goal in this part is the characterisation of GCQ diagrams as certain combinatorial
structures. We start by introducing the notion of Σ-hypergraph.

I Definition 24 (Σ-hypergraph). Let Σ be a monoidal signature. A Σ-hypergraph G is a set
GV of vertices and, for each R ∈ Σn,m, a set of R-labeled hyperedges GR, with source and
target functions sR : GR → (GV )n, tR : GR → (GV )m. A morphism f : G→ G′ is a function
fV : GV → G′V and a family fR : GR → G′R, for each R ∈ Σn,m, s.t. the following commutes.

(GV )n
fV

��

GR
sRoo

tR //

fR
��

(GV )m
fV

��

(G′V )n G′R
s′R

oo

t′R

// (G′V )m

A Σ-hypergraph G is finite if GV and GR are finite. Σ-hypergraphs and morphisms form the
category HypΣ. Its full subcategory of finite Σ-hypergraphs is denoted by FHypΣ.

We visualise hypergraphs as follows: is a vertex and R is a hyperedge with ordered
tentacles. An example is shown below left, where S ∈ Σ1,0 and R ∈ Σ2,1.

R

SR

R

SR
0

1
2

0

(1)
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In order to capture GCQ diagrams, we need to equip hypergraphs with interfaces, as
illustrated in (1) on the right. Roughly speaking, an interface consists of two sets, called the
left boundary and the right boundary. Each has an associated function to the underlying set
of hypergraph vertices, depicted by the dotted arrows. Graphical structures with interfaces
are common in computer science, (e.g., in automata theory [22], graph rewriting [18], Petri
nets [32]). Categorically speaking, they are (discrete) cospans.

I Definition 25 (Cospan). Let C be a finitely cocomplete category. A cospan from X to Y is a
pair of arrows X → A ← Y in C. A morphism α : (X → A ← Y ) ⇒
(X → B ← Y ) is an arrow α : A→ B in C s.t. the diagram on the right
commutes. Cospans X → A← Y and X → B ← Y are isomorphic if

A

α
��

X

..

00

Y

nn

qqB

(2)

there exists an isomorphism A → B. For X ∈ C, the identity cospan is X idX−−→ X
idX←−− X.

The composition of X → A
f←− Y and Y

g−→ B ← Z is X → A +f,g B ← Z, obtained by
taking the pushout of f and g. This data is the bicategory [4] Cospan(C): the objects are
those of C, the arrows are cospans and 2-cells are homomorphisms. Finally, Cospan(C) has
monoidal product given by the coproduct in C, with unit the initial object 0 ∈ C.

To avoid the complications of non-associative composition, it is common to consider
a category of cospans, where isomorphic cospans are equated: let therefore Cospan≤C be
the monoidal category that has isomorphism classes of cospans as arrows. Note that,
when going from bicategory to category, after identifying isomorphic arrows it is usual
to simply discard the 2-cells. Differently, we consider Cospan≤C to be locally preordered
with (X → A ← Y ) ≤ (X → B ← Y ) if there exists a morphism α going the other way:
α : (X → B ← Y )⇒ (X → A← Y ). It is an easy exercise to verify that this (pre)ordering is
well-defined and compatible with composition and monoidal product. Note that, in general,
≤ is a genuine preorder: i.e. it is possible that both (X → A← Y ) ≤ (X → B ← Y ) and
(X → B ← Y ) ≤ (X → A← Y ) without the cospans being isomorphic.

Armed with the requisite definitions, we can be rigorous about hypergraphs with interfaces.

I Definition 26. The preorder-enriched category Csp≤ FHypΣ is the full subcategory of
Cospan≤ FHypΣ with objects the finite ordinals and arrows (isomorphism classes of) finite
hypergraphs, inheriting the preorder. We call its arrows discrete cospans.

The above deserves an explanation: an ordinal n can be considered as the discrete hypergraph
with vertices {0, . . . , n− 1}. An arrow n→ m in Csp≤ FHypΣ is thus a cospan n→ G← m

where G is a hypergraph and n→ G and m→ G are functions to its vertices. The picture
in (1) shows a discrete cospan 3→ 1, with dotted lines representing the two morphisms.

6.2 Preordered cartesian bicategories
Here we explore the algebraic structure of Cospan≤C. It is closely related to that of cartesian
bicategories, yet – given the discussion above – it is more natural to consider Cospan≤C as a
locally preordered category. We therefore need a slight generalisation of Definition 19.

I Definition 27. A preordered cartesian bicategory has the same structure as a cartesian
bicategory (Definition 19), with one difference: the ordering is not required to be a partial
order, merely a preorder – it is for this reason we separated the equational and inequational
theories in Figures 6 and 7. The definition of morphism is as expected.

I Proposition 28. Cospan≤C is a preordered cartesian bicategory.
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bb cc = 1→ 1← 2, bb cc = 2→ 1← 1, bb cc = 1→ 1← 1
bb cc = 1→ 1← 0, bb cc = 0→ 1← 1, bb cc = 0→ 0← 0

bb cc = 0
1

0
1 , bbc ; dcc = bbccc ; bbdcc, bbc⊕ dcc = bbccc ⊕ bbdcc

bbRcc =
0
1

0

n-1
R

1

m-1

Figure 8 Inductive definition of the isomorphism bb·cc : CB≤Σ → Csp≤ FHypΣ. In the first two
lines, the finite ordinal n denotes the discrete hypergraph with n vertexes, and the functions between
ordinals are uniquely determined by initiality of 0 and finality of 1.

As a consequence, Cospan≤ FHypΣ, and thus also Csp≤ FHypΣ, are preordered cartesian
bicategories. The latter is of particular interest: the main result of this section, Theorem 31,
states that Csp≤ FHypΣ is the free preordered cartesian bicategory on Σ, defined as follows.

I Definition 29. The preordered prop CB≤Σ has, as arrows n → m, GCQ terms of sort
(n, m) modulo the smallest congruence generated by = in Figures 5 and 6. These are ordered
by the smallest precongruence generated by ≤ in Figure 7.

I Remark. Intuitively, the ordered prop CBΣ of Definition 21 is the “poset reduction” of the
preordered prop CB≤Σ introduced above. We will make this formal in Section 8.

Theorem 3.3 in [5] states that Csp≤ FHypΣ and CB≤Σ are isomorphic as mere categories,
i.e. forgetting the preorders. We thus need only to prove that the preorder of the two
categories coincides, that is for all c, d in CB≤Σ ,

c ≤ d iff bbccc ≤ bbdcc (3)

where bb·cc : CB≤Σ → Csp≤ FHypΣ is the isomorphism from [5] recalled in Figure 8. The
‘only-if’ part is immediate from Proposition 28. An alternative proof consists of checking, for
each of the inclusions c ≤ d in Figure 7, that there exists a morphism of cospans from bbdcc
to bbccc, as illustrated by the following example.

I Example 30. The left and the right hand side of (L2) in Figure 7 for R ∈ Σ1,1 are translated
via bb·cc into the cospans on the left and right below. The morphism from the rightmost
hypergraph to the leftmost one, depicted by the dashed lines, witnesses the preorder.

R

R
R

00
00

11

00

00

11

The ‘if’ part of (3) requires some work. Its proof is given in full detail in Appendix B.2.

I Theorem 31. Csp≤ FHypΣ
∼= CB≤Σ as preordered cartesian bicategories.

I Example 32. Recall Example 18. The derivation corresponds via bb·cc to the homomorphism
of cospans of hypergraphs illustrated in the Introduction.

7 Completeness for spans

Having established a combinatorial characterisation of the free preordered cartesian bicategory,
here we prove our central completeness result, Theorem 37. In the preordered setting,
completeness holds for “multirelational” models: the role of the poset-enriched category Rel
of sets and relations is taken by a (preorder-enriched) bicategory of spans of functions.
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I Definition 33 (Span, Span≤). Given a finitely complete category C, the bicategory
Span(C) is dual to that of cospans of Definition 25: it can be defined
as Cospan(Cop). More explicitly, objects are those of C, arrows of
type X → Y are spans X ← A → Y , composition ; is defined by
pullback and ⊕ by categorical product. The 2-cells from

B
����

X Y

A

BB]]
α

OO

(4)

X ← A → Y to X ← B → Y are span homomorphisms, that is arrows α : A → B

such that the diagram on the right commutes. As before, the bicategory Span(C) can be
seen as a category by identifying isomorphic spans. We obtain a category Span≤C, on
which we define a preorder in a similar way to Cospan≤C, but in the reverse direction:
(X → A← Y ) ≤ (X → B ← Y ) when there is a homomorphism (4).
I Lemma 34. Span≤C is a preordered cartesian bicategory.

Models are now morphismsM : CB≤Σ → Span≤ Set of preordered cartesian bicategories.
Observe that, since the interpretation of the monoid and comonoid structure is predetermined,
a morphism is uniquely determined by its value on the object 1 and on R ∈ Σ. In other words,
a model consists of a setM(1) and, for each R ∈ Σn,m, a spanM(1)n ← Y →M(1)m. This
data is exactly the definition of a (possibly infinite) Σ-hypergraph (Definition 24).

I Proposition 35. Morphisms M : CB≤Σ → Span≤ Set are in bijective correspondence with
Σ-hypergraphs.

Given this correspondence and the fact that CB≤Σ ∼= Csp≤ FHypΣ, each hypergraph G

induces a morphism UG : Csp≤ FHypΣ → Span≤ Set. Moreover, G acts like a representing
object of a contravariant Hom-functor, in the following sense: UG maps n ι−→ G′

ω←− m to

HypΣ[n,G] ι;−←−− HypΣ[G′, G] ω;−−−→ HypΣ[m,G]

where HypΣ[G′, G] is the set of hypergraph homomorphisms from G′ to G, and (ι ; −) and
(ω ; −) are defined, given f ∈ HypΣ[G′, G], by (ι ; −)(f) = ι ; f and (ω ; −)(f) = ω ; f .

I Proposition 36. Suppose that n ι−→ G′
ω←− m a discrete cospan in Csp≤ FHypΣ. Then

UG(n ι→ G′
ω← m) = HypΣ[n,G] ι;−←−− HypΣ[G′, G] ω;−−−→ HypΣ[m,G].

Proof. The conclusion of Theorem 31 allows us to use induction on n
ι→ G′

ω← m. The
inductive cases follow since the contravariant Hom-functor sends colimits to limits. Four of
the base cases, bb cc, bb cc, bb cc and bb cc, follow by the same argument, and the
others (bb cc, bb cc and bbRcc) are easy to check. The details are in Appendix B.3. J

I Theorem 37 (Completeness for Span≤ Set). Let n ι−→ G
ω←− m and n

ι′−→ G′
ω′←− m be

arrows in Csp≤ FHypΣ. If, for all morphisms M : Csp≤ FHypΣ → Span≤ Set, we have
M(n ι−→ G

ω←− m) ≤M(n ι′−→ G′
ω′←− m), then (n ι−→ G

ω←− m) ≤ (n ι′−→ G′
ω′←− m).

Proof. If the inequality holds for all morphisms, it holds for UG. By the conclusion of
Proposition 36, there is a function α : HypΣ[G,G]→ HypΣ[G′, G] making the diagram on

HypΣ[G,G] ω;−
))

ι;−
uu

α

��

G′

α(idG)
��

HypΣ[n,G] HypΣ[m,G] n

ι --

ι′ 11

m

ω′mm

ωppHypΣ[G′, G] ω′;−

55

ι′;−

ii

G

the left commute. We take the identity idG ∈ HypΣ[G,G] and consider α(idG) : G′ → G.
By the commutativity of the left diagram, we have that ι = ι′ ; α(idG) and ω = ω′ ; α(idG).
This means that the right diagram commutes, that is (n ι−→ G

ω←− m) ≤ (n ι′−→ G′
ω′←− m). J
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I Remark. The reader may have noticed that, in the above proof, UG plays a role analogous
to Chandra and Merlin’s [14] natural model for the formula corresponding to n ι−→ G

ω←− m.
Given the completeness theorem of this section, proving completeness for models of CBΣ

in Rel is a simple step that we illustrate in the next section.

8 Completeness for relations

We conclude by showing how Theorem 37 leads to a proof of Theorem 17. The key observation
lies in the tight connection between the preordered setting and the posetal one.

I Definition 38. Let C be a preorder-enriched category. The poset-reduction of C is the
category C∼ having the same objects as C and morphisms in C∼ are equivalence classes of
those in C modulo ∼=≤ ∩ ≥. Composition is inherited from C; this is well-defined as ∼ is a
congruence wrt composition.

This assignment extends to a functor (·)∼ from the category of preorder-enriched categories
and functors to the category of poset-enriched ones. See Appendix B.4 for details.

We have already seen, although implicitly, an example of this construction in passing
from CB≤Σ (Definition 29) to CBΣ (Definition 21): it is indeed immediate to see that(
CB≤Σ

)∼
= CBΣ. Another crucial instance is provided by the following observation, where

Span∼C is a shorthand for
(

Span≤C
)∼

.

I Proposition 39. Span∼ Set ∼= Rel as cartesian bicategories.

The above proposition implicitly makes use of the following fact.

I Proposition 40. The functor (·)∼ maps preorder-enriched cartesian bicategories and
morphisms into poset-enriched cartesian bicategories and morphisms.

To conclude, it is convenient to establish a general theory of completeness results.

I Definition 41. Let C,D be preorder-enriched categories and let F be a class of preordered
functors C → D. We say that C is F -complete for D if for all arrows x, y in C,M(x) ≤M(y)
for allM∈ F entails that x ≤ y.

I Lemma 42 (Transfer lemma). Let C,D be preorder-enriched categories and F a class of
preordered functors C → D. Assume C to be F-complete for D.
1. Then C∼ is F∼-complete for D∼, where F∼ = {F∼ | F ∈ F}.
2. If F ⊆ F ′, then C is F ′-complete for D.

All the pieces are now in place for a

Proof of Theorem 17. We need to show completeness – that is – assuming c 5 c′, we need
to prove c ≤CBΣ c

′ for all GCQ terms c and c′. Observe that c ≤CBΣ c
′ if and only if

c ≤ c′ as arrows of CBΣ (Definition 21). (†)

Moreover, using Proposition 23, c 5 c′ iff

Mc ≤Mc′, for all morphisms of cartesian bicategoriesM : CBΣ → Rel . (‡)

Our task becomes, therefore, to show that (‡) implies (†). In other words, we need to prove
CBΣ to be G-complete for Rel, where G is the class of morphisms of cartesian bicategories
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of type : CBΣ → Rel. Let F be the class of morphisms of preorder-enriched cartesian bicat-
egories from CB≤Σ to Span≤ Set. Since, by Theorem 37, CB≤Σ is F-complete for Span≤ Set,
we can conclude by Lemma 42.1 that

(
CB≤Σ

)∼
is F∼-complete for

(
Span≤ Set

)∼
. By Pro-

position 39, this is equivalent to CBΣ being F∼-complete for Rel. Now, by Proposition 40
F∼ ⊆ G, so the claim follows by Lemma 42.2. J

9 Discussion, related and future work

We introduced a string diagrammatic language for conjunctive queries and demonstrated a
sound and complete axiomatisation for query equivalence and inclusion. To prove complete-
ness, we showed that our language provides an algebra able to express all hypergraphs and
that our axioms characterise both hypergraph isomorphisms and existence of hypergraph
morphisms. A recent result [19] introduced an extension of the allegorical fragment of
the algebra of relations [33] that is able to express all graphs with tree-width at most 2.
Furthermore, the isomorphism of these graphs can be axiomatised. The algebra in [19], which
is clearly less expressive than ours, can be elegantly encoded into our string diagrams. The
same holds for the representable allegories by Freyd and Scedrov [20].

We also prove completeness with respect to Span≤ Set, the structure of which is closely
related to the bag semantics of conjunctive queries in SQL. Indeed, the join of two SQL-tables
is given by composition in Span≤ Set and not in Rel: in the resulting table the same row
can occur several times. As we have seen, with the relational semantics, query inclusion can
be decided with Chandra and Merlin’s algorithm [14] and its reduction to existence of a
hypergraph homomorphism. On the other hand, decidability of inclusion for the bag semantic
is, famously, open. Originally posed by Vardi and Chaudhuri [15], it has been studied for
different fragments and extensions of conjunctive queries [23, 2, 24]. It is worth mentioning
that it is known [26] that there is a reduction to the homomorphism domination problem,
which seems intimately related with our Proposition 36. Unfortunately, the preorder in
Span≤ Set – the existence of a span morphism – does not directly correspond to bag inclusion:
one must restrict to the existence of an injective morphism. We leave this promising path for
future work.
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A A translation from GCQ to CCQ

To translate GCQ diagrams to CCQ formulas we need to introduce a minor syntactic variant
of CCQ, this time assuming two countable sets of variables V arl = {xi | i ∈ N} and
V arr = {yi | i ∈ N}. The idea is that a diagram c : (n, m) will translate to a formula that
has its free variables in {x0, . . . , xn−1} ∪ {y0, . . . , ym−1}, i.e. there are “left” free variables →x
and “right” free variables →y .

I Definition 43. We write n,m ` φ if fr(φ) ⊆ {x0, . . . , xn−1}∪{y0, . . . , ym−1} and n+m `
φ[x[n,n+m−1]/y[0,m−1]].

Next, for R ∈ Σn,m we assume a CCQ signature in which R is a relation symbol with arity
n+m. Then, given a GCQ modelM = (X, ρ) we can obtain a CCQ model Λ(M) = (X, ρ′)
in the obvious way. With this in place, we can give a recursive translation Λ from GCQ
terms to CCQ formulas. The details are given in Figure 9. and Λ preserves the semantics:

I Proposition 44. Fix a GCQ model M = (X, ρ) and suppose that c : (n, m) is a GCQ
formula. Then (→v ,→w) ∈ [[c : (n, m)]]M iff (→v ,→w) ∈ [[n+m ` Λ(c)]]Λ(M).

Proof. Induction on the derivation of c : (n, m). J

The following is immediate from the definition of the translations Θ and Λ.

I Lemma 45. Let n ` φ andM be a CCQ model. Then [[n ` φ]]M = [[ΛΘ(n ` φ)]]ΛΘ(M). J

I Example 46. An interesting case is . It is the translation, via Θ, of 2 ` x0 = x1.
Returning to CCQ via Λ, we obtain 2, 0 ` ∃z. (x0 = z) ∧ (x1 = z) ∧ >. The formulas are
quite different, but they are logically equivalent. The case of GCQ terms and is
also interesting. The first translates via Λ to 0, 0 ` >, the second to 0, 0 ` ∃z0.> ∧>.
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Λ( )=1,2`(x0=y0)∧(x0=y1), Λ( )=1,0`>, Λ( )=2,1`(x0=y0)∧(x1=y0), Λ( )=0,1`>,

Λ( )=0,0`>, Λ( )=1,1`x0=y0, Λ( )=2,2`(x0=y1)∧(x1=y0)

m1 n1c1 7−→ m1,n1`Λ(c1)
m2 n2c2 7−→ m2,n2`Λ(c2)

(⊕)
m1 n1

m2 n2

c1

c2

7−→ m1+m2,n1+n2`Λ(c1)∧(Λ(c2)[x[m1,m1+m2−1],y[n1,n1+n2−1]/x[0,m2−1],y[0,n2−1]])

k m
c1 7−→ k,m`Λ(c1) nm

c2 7−→ m,n`Λ(c2)

(;)
k m nc1 c2 7−→ k,n`∃

→
z . (Λ(c1)[

→
z /
→
y ])∧(Λ(c2)[

→
z /
→
x ])

Figure 9 Translation Λ from GCQ to CCQ.

B Proofs

B.1 Proofs of Sections 2, 3, 4, and 5
Proof of Proposition 2. The ‘only if’ direction is a straightforward induction on the deriva-
tion of a formula generated by (CCQ). The ‘if’ is a trivial induction on derivations obtained
from {(>), (R), (∃), (=), (∧), (Swn,k), (Idn), (Nun)}. J

Proof of Proposition 8. Easy induction on the derivation of n ` φ. J

Proof of Proposition 9 and 10. The translation is given in Figure 9. The rest follows easily
from Propositions 8 and 44 and Lemma 45. J

Proof of Lemma 12. Follows immediately from the definition of semantics and relational
composition / tensor in Figure 3. J

Proof of Proposition 13. For each fixed model the axioms of Figure 5 are satisfied because
the category of relations with monoidal product × is symmetric monoidal. J

Proof of Lemma 22. For every object n, the monoid and comonoid are given by n , n ,
n and n , standing for the “stacking” of n of these diagrams respectively in the usual

manner. An easy induction shows that these satisfy the required laws. The definition of CBΣ

asserts that for every R ∈ Σn,m, n m
R is a lax comonoid morphism in CBΣ, but cartesian

bicategories require this for all arrows. This follows by another induction. J

Proof of Lemma 23. In the easy direction, to extract a modelM = (X, ρ) from a morphism
of cartesian bicategories F : CBΣ → Rel, define X := F(1) and let ρ(R) := F(R) for R ∈ Σ.

Conversely, given a modelM = (X, ρ), we observe that the semantics map [[·]]M (Figure 3)
gives rise to a morphism of cartesian bicategories [[·]]M : CBΣ → Rel. To prove that it is well
defined and preserves the ordering, one can easily see that the axioms of =CBΣ and ≤CBΣ are
sound. By the inductive definition, [[·]]M preserves composition ; and tensor ⊕. Finally, we
observe that, by definition, [[·]]M maps the monoids and comonoids of CBΣ into those of Rel.

J



F. Bonchi, J. Seeber, and P. Sobociński 13:19

B.2 Proofs of Section 6
We first prove Proposition 28 and then we work towards a proof of Theorem 31.

Proof of Proposition 28. We endow every object with a monoid and comonoid structure,
prove these structures to be adjoint and satisfy the special Frobenius property.
1. Define the monoid/comonoid structure on every object: Considering C as a cocartesian

monoidal category via its coproduct, it is well known, that every object comes with
a natural monoid structure. There is a monoidal functor F : C → Cospan≤C sending
f : X → Y to the cospan X Y Y

f id and mapping the natural monoid structure on every
object through F yields the monoid structures in Cospan≤C. Furthermore, there is a
duality operation •op on Cospan≤C given by mapping X Z Y

f g to Y Z X
g f . Now

define the comonoid structure on every object as the dual of the monoid. It is easy to see
that every morphism in Cospan≤C is a lax comonoid homomorphism, which follows from
the fact that every morphism in C preserves the monoid structure.

2. The monoid and comonoid structures are adjoint: In general, for f : X → Y a morphism
in C, we have F (f) ; F (f)op ≤ idX and idY ≤ F (f)op ; F (f). This follows easily from
the definition and implies the adjointness of monoid and comonoid.

3. The monoid and comonoid enjoy the special Frobenius property: The Frobenius law is a
consequence of associativity of the natural monoid and its definition. The special law
follows from the multiplication being epi. J

We will prove in Theorem 31 that Csp≤ FHypΣ
∼= CB≤Σ . It is convenient to begin with

Σ = ∅. Consider the category F: objects are finite ordinals n = {0, . . . , n− 1} and arrows all
functions. Then Cospan≤F is the free preordered cartesian bicategory on the empty signature.

I Theorem 47. Cospan≤F ∼= CB≤∅ as preordered cartesian bicategories.

Proof. The translation in Figure 8 defines an isomorphism bb·cc : CB≤∅ → Cospan≤F (first
three lines). The translation dd·ee : Cospan≤F→ CB≤∅ can be found in [5, Theorem 3.3], where
it is proved that it defines an isomorphism between categories, i.e. forgetting the ordering. It
thus suffices to prove, that both translations preserve the ordering. For c, d ∈ CB≤∅ , we have

c ≤ d implies bbccc ≤ bbdcc by Proposition 28. Consider a morphism of cospans
S

n m

T

α .

We want to prove ddn→ T ← mee ≤ ddn→ S ← mee. Since every function α : S → T can be
decomposed into sums and compositions of 2→ 1 and 0→ 1 as demonstrated for example
in [28, VII.5], we can consider only these cases. In the case α : 0→ 1, we have n = m = 0
and we have to prove ≤ which is axiom (UC). The case α : 2 → 1, can be

further reduced by the following observation: Given a diagram
2

n1 + n2 m1 +m2

1

, one

easily computes the composite of spans n1 + n2 2 2 2 2 2 m1 +m2
id id id id

to be

n1 + n2 → 2← m1 +m2 and the composite n1 + n2 2 2 1 2 2 m1 +m2
id id

to be n1 + n2 → 1← m1 +m2. By compositionality, it suffices to consider the case
2

2 2
1

CSL 2018
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which corresponds to ≤ which is axiom (MC). J

A cospan of hypergraphs is said to be disconnected if it is of the form bbR0cc ⊕ bbR1cc ⊕
. . . bbRncc for R0, . . . Rn ∈ Σ.

I Lemma 48. Let n ι→ E
ω← m and n′ ι

′

→ E′
ω′← m′ be disconnected cospans. If there are

functions f : n→ n′, g : m→ m′ and h : E → E′ s.t. the following commutes

n
ι //

f ��

E
h ��

m
g��

ωoo

n′
ι′

// E′ m′
ω′

oo

(5)

then ddn f ;ι′−−→ E′
g;ω′←−− mee ≤ ddn ι−→ E

ω←− mee.

Proof. First note that in the case of disconnected cospans, h uniquely determines f and g. To
give a hypergraph homomorphism h : E → E′ is the same as giving a label-preserving function
between their sets of hyperedges, so we identify E and E′ with their sets of hyperedges. We
can now consider the labels separately, so assume to have only one label. Furthermore, we
can consider each fiber over elements of E′ separately, so assume E′ = 1. So n′ → E′ ← m′

consist of a single hyperedge with label R ∈ Σi,j , yielding

ddn′ ι
′

−→ E′
ω′←− m′ee = ji

R

and thus n′ = i and m′ = j. It now suffices to consider cases where the size of E is either 0 or

2, yielding diagrams
0 //

¡
��

0
¡

��

0oo

¡
��

i
ι′

// 1 j
ω′

oo

(6) and i+ i
ι′+ι′

//

∇ ��

2
! ��

j + j
ω′+ω′

oo

∇��
i

ι′
// 1 j

ω′
oo

. (7)

The result for |E| ≥ 2 can be obtained inductively from these base cases. For (6),

dd0→ 0← 0ee = , and dd0→ 1← 0ee = ji
R .

The following derivation thus suffices: ji
R

(L1)
≤ i

(UC)
≤ . For (7),

ddi+ i→ 1← j + jee = ji
R

i

i

j

j
, ddi+ i

ι′+ι′−−−→ 2 ω′+ω′←−−−− j + jee =
j

R

j
R

i

i . This de-

rivation thus completes the proof: ji
R

i

i

j

j

(L2)
≤ i

Ri

i R

j

j

(MC)
≤

j
R

j
R

i

i J

We have now all the ingredients to prove Theorem 31.

Proof of Theorem 31. The proof relies on a result appearing in the proof of Theorem 3.3
in [5]: every discrete cospan of hypergraphs n ι→ G

ω← m can be written as the composition

GV GV ⊕ Ẽ GV

n

ι ??

GV + ñ

[id,j]dd

id⊕i

77

GV + m̃
id⊕o

gg [id,p] 99

m

ω``
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where ñ i→ Ẽ
o← m̃ is disconnected, GV is the set of vertices of G2, j : ñ → GV and

j : m̃→ GV maps the vertices of ñ→ Ẽ ← m̃ into those of G. We only need to prove the
right-to-left implication of (3). We will show that if n → G′ ← m ≤ n → G ← m then
ddn→ G′ ← mee ≤ ddn→ G← mee.

Assume now that n ι′→ G′
ω′← m ≤ n ι→ G

ω← m, i.e., there exists an f : G→ G′ such that
fι = ι′ and fω = ω′. The morphism f induces fV : GV → G′V , fE : Ẽ → Ẽ′, fñ : ñ→ ñ′ and
fm̃ : m̃→ m̃′ making the following commute.

GV

fV

��

GV ⊕ Ẽ

fV ⊕fE

��

GV

fV

��

n

ι′ ��

ι ??

GV + ñ

[id,j]ee

fV ⊕fñ

��

id⊕i 77

GV + m̃

id⊕ogg

fV ⊕fm̃

��

[id,p] 99

m

ω``

ω′��

G′V G′V ⊕ Ẽ′ G′V

G′V + ñ′
[id,j′]

dd

id⊕i′
88

G′V + m̃′
id⊕o′

gg

[id,p′]

::

From the commutativity of the above diagram, one has:

(γ1 :=) n→ G′V ← GV + ñ ≤ n→ GV ← GV + ñ (=: δ1)
(γ2 :=) GV + m̃→ G′V ← m ≤ GV + m̃→ GV ← m (=: δ2)
(γ3 :=) GV → G′V ← GV ≤ GV → GV ← GV (=: δ3)
(γ4 :=) ñ→ Ẽ′ ← m̃ ≤ ñ→ Ẽ ← m̃ (=: δ4)

Since the first three inequations only involve sets and functions, one can use the conclusion
of Theorem 47 and deduce that: ddγiee ≤ ddδiee for i ∈ {1, 2, 3}. From the fourth inequation,
via Lemma 48, one obtains furthermore ddγ4ee ≤ ddδ4ee and concludes as follows.

ddn→ G′ ← mee = ddγ1 ; (γ3 ⊕ γ4) ; γ2ee = ddγ1ee ; (ddγ3ee ⊕ ddγ4ee) ; ddγ2ee
≤ ddδ1ee ; (ddδ3ee ⊕ ddδ4ee) ; ddδ2ee = ddδ1 ; (δ3 ⊕ δ4) ; δ2ee = ddn→ G← mee J

B.3 Proofs of Section 7
Proof of Lemma 34. Immediate from Proposition 28 by duality. J

Proof of Proposition 35. As stated in the main text,M is uniquely determined by the set
M(1) and, for each R ∈ Σn,m, a span M(R) : M(1)n → M(1)m. This data is that of a
(possibly infinite) hypergraph (Definition 24). J

Proof of Proposition 36. By definition, UG(1) = GV and UG(bbRcc) = (GV )n sR← GR
tR→

(GV )m for each R ∈ Σn,m. Below, we also use the fact that (GV )n is HypΣ[n,G].
The conclusion of Theorem 31 allows us to argue by induction on n

ι→ G′
ω← m. The

base cases are bb cc, bb cc, bb cc, bb cc, bb cc, bb cc and bbRcc. Let us consider
the last of these, where n ι→ G′

ω← m is

bbRcc =
0
1

0

n-1
R

1

m-1
.

2 Since cospans are taken up-to isomorphism and since G is finite one can always assume, without loss of
generality, that GV is a finite ordinal.
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Any homomorphism f : G′ → G maps its single hyperedge to an R-hyperedge of G, call it
ef , the n vertices in the image of ι to the source of ef (ι ; f = sR(ef )) and the m vertices in
the image of ω to the target of ef (ω ; f = tR(ef )). This means that the following commutes:

GR tR

((

sR

vv

(GV )n (GV )m

HypΣ[G′, G] ω;−

66

ι;−

gg
e−

OO

The function e− : HypΣ[G′, G]→ GR is clearly an isomorphism of spans. The other base
cases are simpler or, as stated in the main text, follow from the fact that HypΣ[_, G] maps
colimits to limits, which also immediately implies the inductive case. J

B.4 Proofs of Section 8
Observe that we have a canonical identity-on-objects-functor AC : C → C∼ that sends a
morphism in C to its ∼-equivalence class in C∼. We will omit the subscript on A whenever
possible. An immediate consequence of the definition is that A preserves and reflects the
ordering in the following sense:

I Lemma 49. For C a preorder-enriched category, and x, y morphisms in C, we have
A(x) ≤ A(y) if and only if x ≤ y. J

The functors A exhibit the following universal property:

I Lemma 50. For every preordered functor F : C → D between the preordered category C and
poset-enriched category D, there is a unique poset-enriched functor G : C∼ → D making the
left diagram commute. Hence, for every preordered functor H : C → C′, C′ preorder-enriched,
there is a unique functor H∼ : C∼ → C′∼ making the right diagram commute.

C D C C′

C∼ C∼ C′∼

F

AC

H

AC AC′
G H∼

Proof. For a morphism f ∈ C let [f ] denote the equivalence class of f modulo ∼. Then
setting G([f ]) = F (f) is well-defined, since D is a poset-enriched category. G defines a
functor since ∼ is a congruence, hence compatible with composition. Since AC is surjective
on objects and morphisms, there can be at most one such functor G, hence G is unique. J

In other words, we get a function, (·)∼, that turns functors between preorder-enriched
categories into functors between the associated poset-enriched ones.

Proof of Proposition 39. We recall a well-known construction of the ordinary category of
relations: a span X f←− A g−→ Y induces a relation RA ⊆ X × Y by factorising A [f,g]−−−→ X × Y
as a surjection followed by an injection; the injection, when composed with the projections,
yields a jointly-injective span. These, up-to span isomorphism, are the same thing as subsets
RA ⊆ X × Y . This procedure respects composition and monoidal product, yielding a
functorial mapping Span≤ Set→ Rel on objects and arrows. Given the above, it suffices to
show that there exists a span homomorphism (X ← A→ Y )→ (X ← B → Y ) iff RA ⊆ RB
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as relations. The ‘only if’ direction is implied by the dotted function below, which is an
injection since it is the first part of a factorisation of an injection.

A //

����

B // // RB_�
��

RA �� //

33

X × Y

For the ‘if’ part, since (by the axiom of choice) surjective functions split, we obtain RB → B.
Then A // // RA // RB // B is easily shown to be a homomorphism of spans. J

Proof of Proposition 40. We stated the axioms of preordered cartesian bicategories and
cartesian bicategories in a way that makes the first part obvious. Given a morphism
F : B1 → B2 of preorder-enriched cartesian bicategories, clearly F∼ is still an order-preserving
monoidal functor. It also preserves the monoid and comonoid structures. J

Proof of Lemma 42. The second item is trivial. For the first one, let x, y be morphisms
in C∼ such that G(x) ≤ G(y) for all G ∈ F∼. We want to prove x ≤ y. Now let F ∈ F be
arbitrary. Then F∼(x) ≤ F∼(y) by assumption on x, y. Since morphisms in C∼ are just
equivalence classes of morphisms in C, choose representatives, i.e. morphisms f, g in C such
that A(f) = x and A(g) = x. Since the diagram

C D

C∼ D∼

F

A A
F∼

commutes, we get A(F (f)) = F∼(A(f)) = F∼(x) ≤ F∼(y) = F∼(A(g)) = A(F (g)). Since
A reflects the ordering (Lemma 49), we get F (f) ≤ F (g). But F ∈ F was arbitrary, therefore
f ≤ g, since C is F -complete for D. But therefore x = A(f) ≤ A(g) = y. J
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Abstract
A probabilistic finite automaton (PFA) A is said to be regular-approximable with respect to
(x, y), if there is a regular language that contains all words accepted by A with probability at
least x+y, but does not contain any word accepted with probability at most x. We show that the
problem of determining if a PFA A is regular-approximable with respect to (x, y) is not recursively
enumerable. We then show that many tractable sub-classes of PFAs identified in the literature
– hierarchical PFAs, polynomially ambiguous PFAs, and eventually weakly ergodic PFAs – are
regular-approximable with respect to all (x, y). Establishing the regular-approximability of a
PFA has the nice consequence that its value can be effectively approximated, and the emptiness
problem can be decided under the assumption of isolation.
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1 Introduction

Probabilistic finite automata (PFA), introduced by Rabin [26], are finite state machines that
read symbols from an input string and whose state transitions are determined by the input
symbol being read and the result of a coin toss. For an input string w, the probability of
accepting w is the measure of all runs of the automaton on w that end in an accepting state.
Given a threshold x, the language recognized by a PFA is the collection of all words w whose
probability of acceptance is at least x. Probabilistic finite automata serve as convenient
models of open stochastic systems. Despite their simplicity, PFAs are a surprisingly powerful
model of computation and typical decision problems of PFAs are undecidable. For example,
the classical decision problem that arises when verifying a design described by a PFA against
regular specifications, namely emptiness, is undecidable [11].
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14:2 Approximating PFAs by regular languages

The reason for the computational hardness of problems involving PFAs is because they
can “simulate” powerful computational models like Turing machines. The question we
ask is if, despite this evidence of expressive power, languages recognized by PFAs can be
“approximated” by regular languages, in a sense that we will make precise later in this
introduction. If PFAs can be approximated by regular languages, it opens up the possibility
of solving some of these decision problems partially. For example, if we want to verify
that a stochastic open system modeled by a PFA meets a regular specification, we could
approximate the PFA language by a regular language, and then check containment/emptiness.
This approach would be similar to the effective role finite state abstractions have played in
verifying real world designs.

So what type of regular approximations are we talking about? For a PFA A, let L≥x(A)
and L≤x(A) be the sets of strings accepted with probability ≥ x and ≤ x, respectively. We
say that A is regular-approximable with respect to (x, y) if there is a regular language L that
separates L≥x+y(A) and L≤x(A), i.e., L≥x+y(A) ⊆ L and L∩ L≤x(A) = ∅ (i.e., L ⊆ L>x(A)).
Thus, L is a “over-approximation” of L≥x+y(A) and an “under-approximation” of L>x(A).
Such a notion of separability has been previously studied in the context of PFAs [24].
Separability using regular languages have played a significant role in understanding the
expressive power of formal languages and coming up with decision procedures [12, 25].

First, even if L≥x+y(A) and L≤x(A) are not regular, A maybe regular-approximable with
respect to (x, y) (see Example 7). On the other hand, there are PFAs A and (x, y) such
that A is not regular-approximable with respect to (x, y) (see [24] and Theorem 8). So how
difficult is it to check regular-approximability? We show that the problem of determining
if a PFA A is regular-approximable with respect to (x, y) is not recursively enumerable
(Theorem 9). Our proof relies on showing that a closely related problem of determining if
a PFA A is regular-approximable with respect to some (x, y) is Σ0

2-hard; Σ0
2 is the second

level of the arithmetic hierarchy.
Given that determining if a PFA A is regular-approximable with respect to (x, y) is

undecidable, we try to identify sufficient conditions that guarantee the regular-approximability
of PFAs in a very strong sense. In particular, we identify conditions under which a PFA is
guaranteed to be regular-approximable with respect to every pair (x, y). Further, we’d like
to identify when the regular language approximating the PFA can be effectively constructed
from A and (x, y). PFAs that satisfy such strong properties are amenable to automated
analysis. We show that problems that are undecidable (or open) for general PFAs, become
decidable in such situations. We give examples of two such problems. The first is the value
problem for PFAs, where the goal is to compute the supremum of the acceptance probabilities
of all input words. When a PFA A represents the product of an open probabilistic system
and an incorrectness property given as deterministic automaton on the system executions,
then value of A gives a tight upper bound on the probability of incorrectness of the system
on all input sequences. Decision versions of the value problem are known to be Σ0

2-complete.
The second problem is checking emptiness under isolation. A threshold x is said to be
isolated for PFA A with a degree of isolation ε if the acceptance probability of every word is
ε-bounded away from x. A classical result is that when x is isolated, the language L≥x(A) is
regular [26]. The emptiness under isolation problem, is to determine if the language L≥x(A)
is empty, under the promise that x is an isolated cut-point for A (but no degree of isolation
is given). The decidability of this is a long standing open problem. We prove that for PFAs
that are effectively regular-approximable (that is regular separator L can be constructed for
every (x, y)), the value problem can be approximated with arbitrary precision (Theorem 11)
and the emptiness under isolation is decidable (Corollary 12).
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Our semantic condition that identifies when a PFA is regular-approximable is as follows.
A leaky transition is a transition whose probability is less than 1. A PFA A is said to be leak
monotonic if for every ε, there is a number Nε such that, for any input u, the measure of all
accepting runs ρ on u that have at least Nε leaks is < ε. In other words, runs with many
leaky transitions contribute very little to the acceptance probability of a word. We prove that
leak monotonic PFAs are regular-approximable with respect to every (x, y) (Corollary 20).
If a leak monotonic PFA in addition has the property that Nε can be computed from ε, then
one can show that the regular separator of L≥x+y(A) and L≤x(A) can also be effectively
constructed (Corollary 20). The deterministic automaton B that recognizes the regular
separator has the property that its computation on any input u can be used to approximately
compute A’s acceptance probability as follows – one can associate a function from states of
B to [0, 1] such that the label of the state reached on reading u is an approximation of the
acceptance probability of u.

Our last set of results in the paper show that many of the tractable sub-classes of
PFAs discovered, enjoy the nice decidability properties because of regular-approximability.
Hierarchical PFAs [9] are those that obey the restriction that states can be partitioned into a
hierarchy of ranks, and transitions from a state only go to states of the same or higher rank
(for a precise definition, see paragraph before Theorem 26). Another class of PFAs are those
with polynomial ambiguity [16]. These are PFAs with the property that on any input u, the
number of accepting runs on u (not its probability) is bounded by a polynomial function of
the input length |u|. Both these sub-classes of PFAs are effectively leak monotonic, and hence
effectively regular-approximable. Thus their value can be effectively approximated, and the
emptiness problem is decidable under the promise of isolation for these classes. These results
for hierarchical PFAs subsume [8], and are new for polynomial ambiguous PFAs. Our results
also show the existence of a large class of non-trivial PFAs that exhibit exponential ambiguity
but are nonetheless still leak monotonic and hence regular approximable; Theorem 21 gives
a method of obtaining such PFAs (Figure 2a shows such a PFA Az). In this paper, we also
show that the emptiness problem is undecidable for linearly ambiguous PFAs, thus resolving
an open problem posed in [16], and tightening the decidability results presented in [16].
Another tractable class of PFAs is that of eventually weakly ergodic PFAs [10]. We show
that though eventually weakly ergodic PFAs are not leak monotonic, they are effectively
regular-approximable. Once again, as a consequence, the decidability results proved in [10]
follow from observations made here.

The rest of the paper is organized as follows. We conclude this section with a discussion
of closely related work. Basic definitions and notations are introduced in Section 2. Regular-
approximability is defined and the undecidability of deciding of a PFA regular-approximable
with respect to (x, y) is proved in Section 3. Next, in Section 4, we give the semantic
definition of leak monotonicity, its relation to regular-approximability, and its application
to computing the value and deciding the emptiness problem. Section 5 presents results
establishing the regular-approximability of hierarchical PFAs and polynomially ambiguous
PFAs, and Section 6 shows that eventually weakly ergodic PFAs are also regular-approximable.
Conclusions are presented in Section 7. All missing proofs can be found in the Appendix.

Related Work

The problem of checking whether the language recognized by a PFA is regular known to be
undecidable [17, 4]. As mentioned above, regular-approximability of PFAs was first studied
in [24], where Paz gave an alternate, semantic characterization of regular-approximable
PFAs. We are not aware of any further work on this topic in the context PFAs, though
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separation using regular languages has been used to obtain expressiveness and decidability
results [12, 25]. \-acyclic automata and their generalization leak-tight automata [15, 14], are
special classes of PFAs for which the value 1 problem is decidable. The classes of leaktight
and leak monotonic automata (introduced in this paper) are incomparable – PFA A3 in
Figure 1c on page 7 is leaktight but not leak monotonic. On the other hand, consider any
PFA A that is not leaktight, and let B be PFA that is identical to A, but with an empty
set of final states. B is still not leaktight, but B is trivially leak monotonic (and hence
regular approximable). The relationship between \-acyclic automata/leaktight automata and
regular-approximable automata still needs further investigation. In particular, it is open
whether \-acyclic and leaktight automata are a subclass of regular approximable automata.
Bounding the ambiguity of PFAs as been a way to identify subclasses of PFAs for which
certain computational problems become decidable [6, 8, 16]. However, all these results only
pertain to automata with constant ambiguity and their subclasses. In this paper, we obtain
positive results for more general classes of PFAs that go beyond polynomially ambiguous
automata. The undecidability of the emptiness problem for linearly ambiguous automata
was also independently observed in [13].

2 Preliminaries

We assume that the reader is familiar with probability distributions, stochastic matrices,
finite-state automata, and regular languages. The set of natural numbers will be denoted by
N, the closed unit interval by [0, 1] and the open unit interval by (0, 1). The power-set of a
set X will be denoted by 2X . For any function f : X → Y and Y1 ⊆ Y , f−1(Y1) is the set
{x ∈ X | f(x) ∈ Y1}. If X is a finite set |X| will denote its cardinality. We assume that the
reader is familiar with the arithmetic hierarchy.

Sequences. Given a finite sequence s = s0s1 . . . over S, |s| will denote the length of s and
s[i] will denote the ith element si of the sequence with s[0] being the first. We will use λ to
denote the (unique) empty string/sequence. For natural numbers i, j, i ≤ j < |s|, s[i : j] is
the sequence si . . . sj . As usual S∗ will denote the set of all finite sequences/strings/words
over S, S+ will denote the set of all finite non-empty sequences/strings/words over S.

Given u ∈ S∗ and v ∈ S∗, uv is the sequence obtained by concatenating the two sequences
in order. Given L1 ⊆ S∗ and L2 ⊆ S∗, the set L1L2 is defined to be {uv | u ∈ L1 and v ∈ L2}.

Ambiguity and Pumping Lemma

Let A be a nondeterministic automaton recognizing a regular language over alphabet Σ. The
degree of ambiguity [22, 21, 27] of A on input word u ∈ Σ∗, denoted dA(u), is the number of
accepting runs of A on u. It is shown in [28, 20] that the degree of ambiguity of a NFA A is
one the following.
1. A is finitely ambiguous if there is a constant k such that dA(u) ≤ k for all input words

u ∈ Σ∗.
2. A is polynomially ambiguous if there is a non-constant polynomial p : N→ N such that

dA(u) ≤ p(|u|) for all all input words u ∈ Σ∗; if p has degree 1 or 2 then A is said to be
linearly or quadratically ambiguous, respectively.

3. A is exponentially ambiguous if for every polynomial p : N→ N, there is a word u ∈ Σ∗
such that dA(u) > p(|u|).

A trim NFA is an automaton that does not have any silent edges. The following can be
concluded from the results of [28]:
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I Lemma 1. The problems of deciding whether a trim A is finitely ambiguous, whether
A is polynomially ambiguous and whether A is exponentially ambiguous are decidable in
polynomial time. If A is polynomially ambiguous then a constant C and a constant ` can be
computed in polynomial time such that dA(u) ≤ C|u|` for all input words u ∈ Σ∗.

The following lemma, used in parts of the paper, states a simple property of regular
languages and is easily proved along the same lines as the standard pumping lemma.

I Lemma 2. For a regular language L ⊆ Σ∗, where |Σ| ≥ 2, there exists an integer constant
N > 0 such that the following property holds for each a ∈ Σ and each k ≥ 1: if there exists a
string of the form u1au2a...uka ∈ L, where each ui ∈ (Σ \ {a})∗, for 1 ≤ i ≤ k, then there
exists such a string such that |ui| ≤ N , for each i, 1 ≤ i ≤ k.

Probabilistic automaton (PFA)

Informally, a PFA is like a finite-state deterministic automaton except that the transition
function from a state on a given input is described as a probability distribution which
determines the probability of the next state.

I Definition 3. A finite-state probabilistic automaton (PFA) [26, 24] on finite strings over
a finite alphabet Σ is a tuple A = (Q, qs, δ, Qf ) where Q is a finite set of states, qs ∈ Q is
the initial state, δ : Q× Σ×Q→ [0, 1] is the transition relation such that for all q ∈ Q and
a ∈ Σ, δ(q, a, q′) is a rational number and

∑
q′∈Q δ(q, a, q′) = 1, and Qf ⊆ Q is the set of

accepting/final states. We say that the PFA A is a deterministic automaton if, for every
q ∈ Q, a ∈ Σ there exists exactly one q′ ∈ Q such that δ(q, a, q′) = 1.

I Notation. The transition function δ of PFA A on input a can be seen as a square matrix δa
of order |Q| with the rows labeled by “current” state, columns labeled by “next state” and the
entry δa(q, q′) equal to δ(q, a, q′). Given a word u = a0a1 . . . an ∈ Σ+, δu is the matrix product
δa0δa1 . . . δan . For the empty word λ ∈ Σ∗ we take δλ to be the identity matrix. Finally
for any Q0 ⊆ Q, we say that δu(q,Q0) =

∑
q′∈Q0

δu(q, q′). Given a state q ∈ Q and a word
u ∈ Σ+, post(q, u) = {q′ | δu(q, q′) > 0}. For a set C ⊆ Q, let post(C, u) = ∪q∈C post(q, u).

Intuitively, the PFA starts in the initial state qs and if after reading a0, a1 . . . , ai it is in
state q, then the PFA moves to state q′ with probability δai+1(q, q′) on symbol ai+1. A run
of the PFA A starting in a state q ∈ Q on an input u ∈ Σ∗ is a sequence ρ ∈ Q∗ such that
|ρ| = 1 + |u|, ρ[0] = q and for each i ≥ 0, δu[i](ρ[i], ρ[i+ 1]) > 0. The probability measure of
such a run ρ on u is defined to be the value

∏
0≤i<|ρ| δu[i](ρ[i], ρ[i+ 1]). We say that the run

ρ is an accepting run if ρ[|ρ|] ∈ Qf , i.e., it ends in an accepting state. Unless otherwise stated,
a run for us will mean a run starting in the initial state qs. The probability of acceptance of
u ∈ Σ∗ by the PFA A, denoted by PA(u), is defined to be the sum of probability measures
of all accepting runs of A on u. Note that PA(u) = δu(qs, Qf ).

PFA languages

Given a PFA A, a rational threshold x ∈ [0, 1] and ♦ ∈ {<,≤,=,≥, >}, the language
L♦x(A) = {u ∈ Σ∗ | PA(u) ♦ x} is the set of finite words accepted by A with probability
♦x. If A is a deterministic automaton then we let L(A) denote the language L≥1(A). In
general, the language L♦x(A) for a PFA A, threshold x, and ♦ ∈ {<,≤,=,≥, >}, may be
non-regular. However, when x is an extremal threshold (x ∈ {0, 1}), it is regular.

I Proposition 4. For any PFA A, the languages L♦x(A) is effectively regular for x ∈ {0, 1}
and ♦ ∈ {<,≤,=,≥, >}.

CSL 2018



14:6 Approximating PFAs by regular languages

Given a PFA A and rational threshold x, the problem of checking whether L>x(A) = ∅ is
known to be co-R.E.-complete [24, 11].

Isolated cut-points

For a PFA A, a rational threshold x ∈ [0, 1] is said to be an isolated cut-point of A if there is
an ε > 0 such that for each word u ∈ Σ∗, |PA(u)− x| > ε. If such an ε exists, then ε is said
to be a degree of isolation. An important observation about PFAs with isolated cut-points,
is that their language is regular; however, the deterministic finite automaton recognizing this
language is known to be constructible only given a degree of isolation.

I Theorem 5 (Rabin [26]). For any PFA A with an isolated cut-point x, the languages
L♦x(A) are regular, where ♦ ∈ {<,≤,=,≥, >}.

The isolation decision problem is the problem of deciding for a given PFA A and a rational
x ∈ [0, 1] whether x is an isolated cut-point of A. The isolation decision problem is known to
be undecidable [3], even when x is 0 or 1 [18]. The problem is known to be Σ0

2-complete [10].

The value problem. For a PFA A, let value(A) denote the least upper bound of the set
{PA(u) | u ∈ Σ∗}. The value computation problem for a PFA is the problem of computing
value(A) for a given A. The value decision problem is the problem of deciding for a given
PFA A and a rational threshold x ∈ [0, 1] whether value(A) = x. The value decision problem
is known to be undecidable [3, 18] and known to be Π0

2-complete [10] even when x is taken
to be 1 [10].

3 Approximability and Value problem

3.1 Regular Approximability.
The problem of approximating a PFA by a regular language was first discussed by Paz [24].
We will say that PFA A can be approximated by a regular language L at a threshold x with
precision y if L separates the languages L≥x+y(A) and L≤x(A). Formally,

I Definition 6. Given x, y ∈ [0, 1] such that y > 0, a PFA A = (Q, qs, δ, Qf ) over Σ is said
to be regular-approximable with respect to the pair (x, y) if there is a regular language L
such that L≥x+y(A) ⊆ L ⊆ L>x(A).

It is easy to see that A is regular-approximable with respect to (x, y) if either L>x(A) or
L≥x+y(A) is a regular set. We say that the pair (x, y), x, y ∈ [0, 1], is a trivial pair if either
x = 0 or x+ y ≥ 1. It is seen that every PFA is regular-approximable with respect to every
trivial pair thanks to Proposition 4.

I Example 7. Consider the PFA A1, shown in Figure 1a. It has been shown in [7] that both
L> 1

2
(A1) and L≥ 1

2
(A1) are non-regular. Further, given this observation, we can also conclude

that L≥ 3
4
(A1) is non-regular. This is because L≥ 1

2
(A1) = 1{0,1}∗∪0L≥ 3

4
(A1). Inspite of this,

we can show that a regular language can separate L≥ 3
4
(A1) and L≤ 1

2
(A1), i.e., A1 is regular-

approximable with respect to the pair ( 1
2 ,

1
4 ). Observe that L≥ 2

3
(A1) = 1{0,1}∗ is a regular

set. Since L≥ 3
4
(A1) ⊆ L≥ 2

3
(A1) ⊆ L> 1

2
(A1), we can conclude that A1 is regular-approximable

with respect to the pair ( 1
2 ,

1
4 ). In fact, as we will show later, A1 is regular-approximable

with respect to every pair (x, y) where y > 0.
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Figure 1 On the left (a) is PFA A1, in the middle (b) is PFA A2, and on the right (c) is PFA
A3. In these pictures, for states q and q′ and input letter a, if δ(q, a, q′) > 0 then we label the edge
from q to q′ by a|δ(q, a, q′). The initial state is indicated by a dangling → and the final state by two
concentric circles.

While A1 is an example of a PFA that is regular-approximable with respect to every
pair (x, y) such that y > 0, the following theorem shows the existence of a PFA that is not
regular-approximable with respect to any non-trivial pair.

I Theorem 8. There exists a PFA A that is not regular-approximable with respect to any
pair (x, y) such that x, y > 0 and x+ y < 1.

Proof. We prove the theorem by construction. Consider the PFA A2 over the input alphabet
Σ = {0,1}, shown in Figure 1b. This automaton was used in [1] to show that the language
recognized by a Probabilistic Büchi automaton (PBA) with threshold 0 can be nonregular.

We make the following observations, which are easily seen. Every word starting with 1 or
that contains two consecutive 1s is accepted by A2 with probability zero. For every k > 0
and every z, 0 < z < 1, there is a word in (0∗1)k that is accepted with probability ≥ z.

Consider any pair (x, y) such that x, y > 0 and x + y < 1. We show that A2 is not
regular-approximable with respect to (x, y), by contradiction. Assume for contradiction, that
there is a regular language L such that L≥x+y(A2) ⊆ L ⊆ L>x(A2). Since L is a regular
language, let N be the constant satisfying Lemma 2. Now, let k ∈ N be any integer such
that (1− 1

2N )k ≤ x. Such a k exists since x > 0. From our earlier observation, we see that
there exists a string u ∈ (0∗1)k that is in L≥x+y(A2). Clearly, u ∈ L. Now, from Lemma 2,
we see that there exists a string v = 0n110n21 · · ·0nk1 where ni ≤ N , for 1 ≤ i ≤ k such
that v ∈ L. Word v is accepted by A2, with probability

∏
1≤i≤k (1− 1

2ni ). Since each ni ≤ N ,
we have (1 − 1

2ni ) ≤ (1 − 1
2N ). From this we see that the probability of acceptance of v

by A2 is ≤ (1 − 1
2N )k ≤ x. Hence v /∈ L>x(A2) which contradicts our assumption that

L ⊆ L>x(A2). J

The following theorem shows that the problem of checking if a given PFA A is regular-
approximable with respect to a given pair (x, y) is undecidable.

I Theorem 9. Given a PFA A and rational values x, y ∈ [0, 1], the problem of checking if
A is approximable with respect to (x, y), is undecidable. Formally the language Approx =
{(A, x, y) |x, y ∈ [0, 1], A is a PFA that is regular-approximable w.r.t. (x, y)} is undecidable.
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14:8 Approximating PFAs by regular languages

3.2 Value Problem and Emptiness under isolation
PFAs that are effectively regular-approximable for every pair (x, y) enjoy nice properties.

I Definition 10. We say that A is regular-approximable if it is regular-approximable with
respect to every pair (x, y) such that x, y ∈ [0, 1] and y > 0.We further say that A is effectively
regular-approximable if there is a procedure that, given x and y terminates and outputs a
deterministic automaton that accepts a language L where L≥x+y(A) ⊆ L ⊆ L>x(A). A class
C of regular-approximable PFAs is said to be effectively regular-approximable if there is a
procedure that, given A ∈ C, x and y terminates and outputs a deterministic automaton
that accepts a language L where L≥x+y(A) ⊆ L ⊆ L>x(A).

We shall establish later that the class of hierarchical probabilistic automata (HPAs)
is effectively regular-approximable (See Theorem 26). It has been shown in [5, 8, 2] that
the emptiness problem and the value decision problem continues to be undecidable if we
restrict our attention to HPAs. Thus, there is no algorithm that given an effectively regular-
approximable PFA A computes its value. Nevertheless, we now show that if A is effectively
regular-approximable then its value can be computed to a given precision.

I Theorem 11. There is a procedure ComputeVal that given an effectively regular-approxima-
ble PFA A and ε > 0 terminates and returns an interval [z1, z2] such that value(A) ∈ [z1, z2]
and z2 − z1 ≤ ε.

Proof. ComputeVal works as follows. Initially, it checks if there is u such that PA(u) = 1 or
if for every u, PA(u) = 0. If either of these conditions hold then it returns the corresponding
value as value(A). Observe that these conditions can be checked thanks to Proposition 4. If
neither of these conditions holds, it acts as follows. It maintains two variables z1, z2 such
that 0 ≤ z1 < z2 ≤ 1 and value(A) ∈ [z1, z2]. Initially z1, z2 are set to 0, 1 respectively.

The following procedure is iterated until z2− z1 ≤ ε. In each iteration, it first computes a
deterministic automaton B such that L≥x+y(A) ⊆ L(B) ⊆ L>x(A) where x = z1 + z2−z1

3 and
y = z2−z1

3 . Such an automaton B can be computed since A is effectively regular-approximable.
(Observe that both x+ y− z1 and z2− x are equal to 2

3 (z2− z1).) Now, the algorithm checks
if L(B) = ∅. If L(B) = ∅ then this implies L≥x+y(A) = ∅ and hence value(A) lies in the
interval [z1, x+ y]; in this case, it repeats the above procedure by setting z2 = x+ y and
keeping z1 unchanged. On the other hand, if L(B) 6= ∅, then this implies that value(A) lies
in the interval [x, z2]; so, in this case the algorithm sets z1 = x, keeps z2 unchanged and
repeats the above procedure.

Notice that the length of the interval (z1, z2) at the beginning of each succeeding iteration
is 2

3 rd of its value at the beginning of the preceding iteration; further, at the beginning
of the first iteration, its value is 1. From this we see that this algorithm terminates after
k iterations where k is the least value such that ( 2

3 )k ≤ ε, that is, k = dlog 3
2
( 1
ε )e. From

our arguments, we see that at the beginning of each iteration, we have value(A) ∈ (z1, z2)
and when it terminates z2 − z1 ≤ ε. Thus, it returns an interval in which value(A) lies and
its length is at most ε. Observe that, in the above procedure, we only need to check the
emptiness of L(B) in each iteration; no explicit computation of B is needed. J

An immediate consequence of the above observation is that if A is effectively regular-
approximable and x is an isolated cut-point of A, then we can check the emptiness of
L>x(A).

I Corollary 12. There is a procedure IsoEmpty that given an effectively regular-approximable
PFA A and a threshold x such that x is an isolated cut-point of A, terminates and decides if
L>x(A) = ∅.
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Proof. Observe that A is isolated at x with a degree of isolation ε0 then either value(A) ≥
x+ ε0 or value(A) ≤ x− ε0. IsoEmpty works iteratively as follows. Initially it sets ε = 1

2 and
uses the algorithm ComputeVal in Theorem 11 to compute [z1, z2] such that value(A) ∈ [z1, z2]
and z2 − z1 ≤ ε. If x ∈ [z1, z2] then it sets ε = ε

2 and repeats. Otherwise if z1 > x then it
returns 1 and if z2 < x then it returns 0. It is easy to see that IsoEmpty always returns the
correct answer and terminates when ε takes a value < ε0. J

4 Leak monotonicity and complexity

We shall now identify a semantic class of PFAs that are regular-approximable. Our proof of
the fact that polynomial ambiguous automata are regular-approximable shall be established
by showing that they belong to this class. In order to define these classes, we shall need the
concept of a leak. Intuitively, a leak happens at a position i in a run q0q1 . . . qn of A on input
u if the probability of transitioning from qi to qi+1 is non-zero and yet is less than 1.

I Definition 13. Consider a PFA A = (Q, qs, δ, Qf ) over an alphabet Σ. We say that a
triple (q, a, q′), where q, q′ ∈ Q and a ∈ Σ, is a leaky transition of A if 0 < δ(q, a, q′) < 1.
Let u ∈ Σ∗ be a finite word and ρ be a run of A on u. We let NbrLeaks(A, u, ρ) to be the
number of leaky transitions in ρ with respect to the word u; formally, it is |{i | 0 ≤ i < |ρ|,
δ(ρ[i], u[i], ρ[i+ 1]) < 1}|.

4.1 Leak Monotonicity
The class of PFAs that we will be interested in are PFAs in which the measure of accepting
a word is concentrated mostly in runs with a few leaks. We formalize this intuition below:

I Definition 14. Let ε ∈ (0, 1) be a rational number. We say that A is ε-leak monotonic if
there exists some Nε ∈ N such that for all u ∈ Σ∗, the measure of accepting runs of A on u
having at least Nε leaks is strictly less than ε. Such an Nε will be called a horizon of ε-leak
monotonicity of A.

I Example 15. The PFA A1 in Figure 1a on page 7, can be shown to be ε-leak monotonic
by taking Nε to be any integer n such that ( 2

3 )n ≤ ε. In contrast, the PFA A2 in Figure 1b
is not ε-leak monotonic for any ε ∈ (0, 1). This is an immediate consequence of Theorem 8
and Theorem 16 established below.

The following theorem connects ε-leak monotonicity with regular-approximability.

I Theorem 16. If A is a PFA over an alphabet Σ which is ε-leak monotonic then A is
regular-approximable with respect to every pair (x, ε), for x ∈ [0, 1] and ε > 0.

Proof. Let PFA A = (Q, qs, δ, Qf ) over alphabet Σ be ε-leak monotonic. Let N ∈ N be an
integer such that ∀u ∈ Σ∗, the probability measure, of all accepting runs of A on u having at
least N leaks, is at most ε. Let x ∈ [0, 1]. Now, we give the construction of a deterministic
automaton B on alphabet Σ such that L≥x+ε(A) ⊆ L(B) ⊆ L>x(A).

Without loss of generality, let Q = {q0, q1, ..., qn−1} with the start state qs = q0. For
any u ∈ Σ∗, let LeakPru be a n × N matrix such that, for 0 ≤ i < n and 0 ≤ j < N ,
LeakPru(i, j) is the probability measure of all runs ρ of A on input u starting from q0,
ending in state qi and having exactly j leaky transitions, i.e., NbrLeaks(A, u, ρ) = j.

Consider the automaton (not necessarily finite) B = (R, r0, δ
′, Rf ) where R = {LeakPru |

u ∈ Σ∗}; r0 is the matrix such that r0(0, 0) = 1 and r0(i, j) = 0 when i 6= 0 or j 6= 0;
Rf = {r | (

∑
i:qi∈Qf

∑
0≤j<N r(i, j)) > x}. We define δ′ as follows. Let r ∈ R and a ∈ Σ.
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By definition, there exists u ∈ Σ∗ such that r = LeaksPru. Let r′ = LeaksPrua. Fix any i, j
such that 0 ≤ i < n and 0 ≤ j < N. Let p1 be the sum of all r(i′, j) such that δ(qi′ , a, qi) = 1,
i.e., the transition (qi′ , a, qi) is not a leaky transition of A. Let p2 be a value defined as
follows: if j = 0 then p2 = 0, otherwise p2 is the sum of r(i′, j − 1) · δ(qi′ , a, qi) where the
sum is taken over all i′ such that δ(qi′ , a, qi) < 1, i.e., (qi′ , a, qi) is a leaky transition of A. It
is easily shown that r′(i, j) = p1 + p2. We call r′ as the a-successor of r. Observe that the
values p1, p2 for a given pair i, j are independent of u and hence, the relationship between
r, r′, as given above, is independent of u. This leads us to the following definition of δ′. We
define δ′ so that δ′(r, a, r′) = 1 iff r′ is the a-successor of r. Now, by induction on |u|, we can
easily show that, for any r ∈ R, δ′u(r0, r) = 1 iff r = LeaksPru.

Now, we show that R is a finite set and bound its size. Let D be the maximum of the
denominators of the non-zero transition probabilities of A. The probability of any run of
A, on some input, having less than N leaks is a rational number x′

y′ where y′ is a positive
integer such that y′ ≤ DN . For any state r ∈ R and for any i, j, i < n, j < N , the value of
the entry r(i, j) is the sum of the probabilities of some runs of A each having fewer than N
leaks; the least common multiple of the denominators of these probabilities is bounded by
DN ·DN . Hence r(i, j) is either zero, or is a rational number whose denominator is bounded
by DN ·DN . This implies that the number of distinct values r(i, j) can take is bounded by
1 + (DN ·DN )2 = 1 +D2N ·DN . Since r has n ·N such entries, we see that |R|, which is the
number of distinct values r can take, is bounded by (1 +D2N ·DN )n·N and hence is finite.

Now we show that L≥x+ε(A) ⊆ L(B) ⊆ L>x(A). Consider any u ∈ Σ∗. The set of accepting
runs of A on u can be partitioned into two sets X1, X2 which are, respectively, the sets of
runs having less than N leaks, or having at least N leaks. Let z1, z2, respectively, be the
probability measures of these two sets of runs. Clearly, PA(u) = z1 + z2. Based on the value
of N , we have z2 ≤ ε. Suppose that r is the unique state in R such that δ′u(r0, r) = 1. Then,
from our earlier observations, we see that

∑
i:qi∈Qf

∑
j<N r(i, j) = z1. If u ∈ L≥x+ε(A) then

z1 > x since z2 < ε, and from the definition of Rf , it follows that r ∈ Rf and u ∈ L(B).
Thus, we see that L≥x+ε(A) ⊆ L(B). If u ∈ L(B) then, from the definition of Rf , we have
z1 > x and hence u ∈ L>x(A). Thus, we see that L(B) ⊆ L>x(A). J

I Remark. The deterministic automaton B that we construct for an ε-leak monotonic PFA
A in the proof of Theorem 16 has the following property: for each input string u, the state
r that is reached in B on input u, starting from its initial state, gives the probability of
acceptance of u by A with precision ε. Equivalently, there is a function f from the states of
B to [0, 1] such that f(q) ≤ PA(u) < f(q) + ε. f(q) can be computed in time polynomial in
the size of the representation of q. The above observations imply that the value of A lies in
the interval [v, v + ε] where v = max f(q). Thus, if B can be constructed then value of A can
be approximated within ε.

However, there are regular-approximable PFAs that are not ε-leak monotonic for any ε.

I Proposition 17. There is a PFA A that is regular-approximable but not ε-leak monotonic
for any ε ∈ (0, 1).

Proof. Consider the PFA A3 shown in Figure 1c on page 7. Given x ∈ (0, 1), let nx be the
largest integer such that 1

2
nx > x. It is easy to see that L>x(A3) = λ + {0,1}∗1(λ + 0 +

02 + . . .0nx) where λ is the empty word. Thus, L>x(A3) is regular for each x and hence
regular-approximable. Furthermore, observe that for each n, the word un = (01)n is accepted
by A3 with probability 1. In addition, for each n, un has exactly 2n runs, each of which is
accepting and has exactly n leaks. From these observations, it is easy to see that A3 is not
ε-leak monotonic for any ε – for every possible horizon Nε there are infinitely many words
such that the measure of accepting runs having at least Nε leaks is 1. J
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The following theorem shows that the problem of checking if a given PFA is ε-leak
monotonic with respect to given ε ∈ (0, 1) is undecidable.

I Theorem 18. Given a PFA A and a rational value ε ∈ (0, 1), the problem of checking if A is
ε-leak monotonic is undecidable. Formally the set LeakMon = {(A, ε) |ε ∈ (0, 1), A is a PFA
that is ε-leak monotonic} is undecidable.

It is easy to see that we can give a simple algorithm that takes as input A, x,N and
constructs the deterministic automaton B defined in the proof of Theorem 16. Such an
algorithm starts with an initial set of states of B which is taken to be r0 and enlarges this
set by choosing an unexplored state from it, and explores it by constructing and adding
all its a-successors, that are not already present, to the set of states, for each a ∈ Σ. This
algorithm terminates when no new states can be added. Hence if we can compute a horizon
of ε-leak monotonicity of an ε-leak monotonic A then we can compute the regular language
that approximates L>x(A) for every threshold x.

I Definition 19. We say that a PFA A is leak monotonic if A is ε-leak monotonic with
respect to every ε ∈ (0, 1). A is said to be effectively leak monotonic if there is an algorithm
that given ε outputs a horizon of ε-leak monotonicity of A. A class C of leak monotonic
PFAs is said to be effectively leak monotonic if there is a procedure that, given A ∈ C and
ε > 0 terminates and outputs a horizon of ε-leak monotonicity of A.

The PFA A1 given in Figure 1a on page 7 is leak monotonic. We have the following as a
consequence of Theorem 16.

I Corollary 20. If a PFA is (effectively) leak monotonic then it is (effectively) regular-
approximable.

The following theorem allows us to construct leak monotonic PFAs from smaller leak
monotonic PFAs.

I Theorem 21. If a PFA A = (Q, δ, qs, Qf ) over Σ is such that Q can be partitioned into
sets Q0, . . . , Qm such that qs ∈ Q0 and the following conditions hold:
1. For each i ≥ 1, q ∈ Qi and a ∈ Σ, post(q, a) ⊆ Qi.
2. There is a constant m > 0 such that from every state in Q0 and on every input u of

length at least m, some state outside Q0 is reachable, and
3. For i > 0, the restriction of A to each Qi, when started in any state q ∈ Qi, is leak

monotonic,
then A is leak monotonic.

4.2 Leak Complexity
In this subsection, we introduce a syntactic class of PFAs that are leak monotonic. The
syntactic class of PFAs shall be defined through the concept of leak complexity defined below.

I Definition 22. Let f : N → N be a function. We say that the leak complexity of A is
given by f (or is simply f) if for all u ∈ Σ∗, for all ` ∈ N, the number of accepting runs of A
on u having exactly ` leaks is at most f(`), i.e., |{ρ | ρ is an accepting run of A on u and
NbrLeaks(A, u, ρ) = `}| ≤ f(`).

Notice that we are only using the accepting runs to define the leak complexity. Further,
observe that if f, g are functions from N to N such that f(`) ≤ g(`) for all ` ∈ N, and the
leak complexity of A is given by f , then its leak complexity is also given by g. We try to use
the tightest function to specify the leak complexity of a PFA.

We shall be interested in PFAs whose leak complexity is given by special functions.
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q0

q1

q2

q5

q4

q3

2| 12

2| 12

2|1

0|z1|1− z

0|z1|1− z

0,1,2|1

0,1,2|1
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1|z

0|1− z

1|z
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0| 12

0| 12

1|1

0|1
1|1

0,1|1

Figure 2 Automaton Az on the left (a) and Automaton A5 on the right (b).

I Definition 23. Let A = (Q, δ, qs, Qf ) be a PFA.
A is said to have polynomial leak complexity if its leak complexity is given by a polynomial
function h.
For A, let MaxTrPr(A) be maximum probability of a leaky transition, i.e., the value
max{δ(q, a, q′) | 0 < δ(q, a, q′) < 1, q, q′ ∈ Q, a ∈ Σ}. We say that A has sub-exponential
leak complexity if there exist constants c, d > 0 such that d < 1

MaxTrPr(A) and the leak
complexity of A is c · d`.

Clearly, if A has polynomial leak complexity then it has sub-exponential leak complexity.

I Example 24. For the PFA A1 in Figure 1a on page 7, on any input, the number of accepting
runs having ` leaks is at most 1 and hence its leak complexity is constant. Figure 2a shows a
PFA Az over the input alphabet Σ = {0,1,2} that has sub-exponential leak complexity, but
not polynomial leak complexity. Here z ∈ (0, 1) is a number that is left unspecified. In the
figure, all unspecified transitions, from states q0, q1, q2, q5, on the appropriate input symbols,
go to the reject state q4 with probability 1. Both q3, q4 are absorbing states in which q3 is the
accepting state. It is not difficult to see that all accepting runs of Az on an input word have
an even number of leaks. Furthermore, for an even `, the number of accepting runs having
` leaks is exactly 2 `2 , i.e., (

√
2)`. Observe that MaxTrPr(Az) = z if z > 1

2 else it is 1− z.
Hence, Az has subexponential leak complexity iff 1− 1√

2 < z < 1√
2 . Thus, for example, Az has

sub-exponential leak complexity if z = 2
3 . On the other hand Az does not have subexponential

leak complexity if z = 3
4 . However, note that Az is leak monotonic for each z ∈ (0, 1) as

Az satisfies conditions of Theorem 21 with m = 2, Q0 = {q0, q1, q5, q2}, Q1 = {q4} and
Q2 = {q3}.

We show that every PFA that has sub-exponential leak complexity is leak monotonic.

I Theorem 25. If a PFA A over an alphabet Σ has sub-exponential leak complexity then A
is leak monotonic and hence regular-approximable.

Proof. Let A = (Q, qs, δ, Qf ) be a PFA over alphabet Σ with sub-exponential leak complexity.
This means, there exist constants c, d > 0 such that d < 1

MaxTrPr(A) and the leak complexity
of A is c · d`, i.e. on every word u ∈ Σ∗ the number of accepting runs of A on u having
` leaks is bounded by c · d`. We prove the theorem by showing that A is leak monotonic
and appealing to Corollary 20. Let ε ∈ [0, 1] be such that ε > 0. Let p = d ·MaxTrPr(A).
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Observe that 0 < p < 1 since d < 1
MaxTrPr(A) . Now, let N ∈ N be the smallest integer such

that

N >
log( c

ε·(1−p) )
log 1

p

(1)

Consider any u ∈ Σ∗. Let z2 be the probability measure of accepting runs of A having at least
N leaks. The probability of any single run having ` leaks is bounded by (MaxTrPr(A))`.
Since there are at most c · d` accepting runs of A on u having ` leaks, we see that z2 ≤∑
`≥N c · d` · (MaxTrPr(A))`. Using p = d ·MaxTrPr(A), we have

z2 ≤
∑
`≥N

c · p` = c · pN ·
∑
`≥0

p`.

From this we see that z2 ≤ c · pN · 1
1−p . Now using inequality (1) and raising both its

two sides to the power of 2, after simplification, we get ( 1
p )N > c

ε·(1−p) , which leads to
ε > pN · c

1−p ≥ z2. Hence, we see that A is ε-leak monotonic. Clearly this holds for every
ε ∈ [0, 1] such that ε > 0. Hence A is leak monotonic. J

Observe that the proof of Theorem 25 also shows that if the (sub-exponential) leak
complexity function of A is known (or can be computed) then A is effectively regular-
approximable. Theorem 25 can be used to identify classes of PFAs that are leak monotonic.
In conjunction with Theorem 21 and Theorem 16, it can be used to identify regular-
approximable PFAs . We conclude by showing that the class of Hierarchical PFAs (HPA)s
(introduced in [9, 6]) is effectively leak monotonic.

Hierarchical PFAs (HPA)s

(HPAs), introduced in [9, 6], are defined as follows. A k-HPA A on Σ is a probabilistic
automaton whose states can be partitioned into k+ 1 levels Q0, Q1, . . . , Qk such that for any
state q and input symbol a ∈ Σ, at most one successor state is at the same level, and others are
higher level states. In other words for each q ∈ Qi and a ∈ Σ, post(q, a) ⊆ Qi ∪Qi+1 · · · ∪Qk
and |post(q, a) ∩Qi| ≤ 1. Without loss of generality, we can assume that the initial state is
at level 0. The following theorem shows that the class of HPAs are effectively leak monotonic
and hence regular-approximable.

I Theorem 26. Every k-HPA A with n-states and k > 0, has leak complexity at most
nk`k−1. Hence, the class of hierarchical probabilistic automata is effectively leak monotonic
and hence regular-approximable.

I Example 27. The automaton A1 in Figure 1a on page 7 is a 1-HPA whose leak complexity
is 1. Automaton Az in Figure 2a on page 12 is not a HPA.

Thanks to Theorem 11 and Corollary 12, the values of HPAs can be approximated and
emptiness checked under isolation. These facts are also established in [2] through an
alternative proof.

5 Ambiguity and Approximability

We now identify a large class of PFAs which are effectively leak monotonic. Any PFA A over
Σ can be viewed as a non-deterministic finite automaton NFA nfa(A) over Σ by ignoring the
probability of transitioning from one state to another: nfa(A) has the same set of states as
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A and there is a transition from state q to q′ on a in nfa(A) iff δ(q, a, q′) > 0. The degree
of ambiguity of A on word u is the degree of ambiguity of nfa(A) on word u. We will be
interested in PFAs that are polynomially ambiguous. We have the following observation.

I Proposition 28. If a PFA A has polynomial leak complexity with polynomial h(`) then A
is polynomially ambiguous with polynomial nh(n).

Proof. Let A have polynomial leak complexity with polynomial h(`). Any accepting run of
A on a word of length n can have at most n leaks. Thus the number of accepting runs of A
on a word of length n is bounded above by

∑n
`=1 h(`) ≤ nh(n). J

From the proof of Theorem 26 and Proposition 28, we can conclude that every HPA is
polynomially ambiguous. However, the converse is not true. We give an example of a linearly
ambiguous PFA that is not a HPA.

I Example 29. Consider the PFA A5 on Σ = {0,1} shown in Figure 2b on page 12. A5 is
not hierarchical. This can be seen as follows. Since S = {q0, q1} form a strongly connected
component, they must be in the same level. However, then post(q0,0) = {q0, q1} has two
successors in the same level. Next, observe that on input 0k there are only two runs that
remain in S. Thus, on input 0k there are k − 1 accepting runs. On the other hand, on input
0k1 there is exactly one run that remains in S, and this run ends in q0. Further, the number
of accepting runs on 0k1 is k. Now a general input over Σ is either u = 0k110k21 · · ·1kn or
u1. Putting the above observations together, we have the number of accepting runs on u is
k1 + k2 + · · · kn−1 + (kn − 1) and on u1 is k1 + k2 + · · · kn. Thus, A5 has linear ambiguity.

Thanks to Theorem 26 and Proposition 28, we can conclude that a k-HPA is polynomially
ambiguous with polynomial O(nk). Since the value decision problem and emptiness problem
of 2-HPAs are undecidable [8, 2], we get that the value decision problem and emptiness
problem for quadratically ambiguous PFAs is also undecidable. The emptiness problem for
quadratically ambiguous PFAs is shown to be undecidable in [16] as well. The problem of
emptiness of linearly ambiguous PFAs was left open. A close examination of the 2-HPAs
constructed in the undecidability proof of the emptiness problem for 2-HPAs established
in [2], shows that the resulting automata have only linear ambiguity (instead of quadratic
ambiguity). This observation proves that the emptiness problem of linearly ambiguous
automata is undecidable. This result (with a different proof) was also independently observed
in [13].

I Theorem 30. The emptiness problem for linearly ambiguous PFAs is undecidable.

In contrast, we will show that polynomially ambiguous automata are effectively regular-
approximable, which will imply that their value can be approximated and emptiness under
isolation be checked thanks to Theorem 11 and Corollary 12. We establish this by showing that
every polynomially ambiguous PFA has polynomial leak complexity. This is a consequence
of Lemma 32 below, which will allow us to bound leak complexity from bounds on degree of
ambiguity. We need one further definition.

I Definition 31. For a PFA A on Σ, word u ∈ Σ∗ and ` ∈ N, let accruns(A, u, `) be
the set of accepting runs of A on u with leaks ≤ `. Formally, accruns(A, u, `) is the set
{ρ | ρ is accepting and NbrLeaks(A, u, ρ) ≤ `}.

We now show that for any word u and any integer `, there is a short word v such that v
has at least as many accepting runs with at most ` leaks as u does.
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q0 q1 q2 q3

0|1 1|1
1|1

0|1

1|1

0|1

1|1

0|1

Figure 3 Deterministic automaton A6 that is not eventually weakly ergodic.

I Lemma 32. Let A be a PFA with m states. For any word u and integer ` > 0, there is a
word v of length ≤ m+ ((`+ 1)m)m such that |accruns(A, v, `)| ≥ |accruns(A, u, `)|.

Polynomial ambiguity implies polynomial leak complexity follows from Lemma 32.

I Theorem 33. If PFA A with m states is polynomially ambiguous with polynomial p(n)
then A has polynomial leak complexity with polynomial h(`) = p(m+ ((`+ 1)m)m).

Proof. Let A be a PFA withm states. Fix an input word u and an integer `. From Lemma 32,
there is a word v such that |v| ≤ m+ ((`+ 1)m)m and |accruns(A, u, `)| ≤ |accruns(A, v, `)|.
Now accruns(A, v, `) is a subset of the accepting runs of A on input v. Since A is polynomially
ambiguous, we get accruns(A, v, `) ≤ p(|v|) = p(m+ ((`+ 1)m)m). J

Thanks to Theorem 33, we get that

I Corollary 34. The class of polynomially ambiguous PFAs is effectively regular-approximable.
The value of a polynomially ambiguous PFA can be approximated to any degree of precision
and emptiness checked under isolation.

6 Eventually Weakly Ergodic PFAs

Not all effectively regular-approximable PFAs are leak monotonic. We exhibit a class of PFAs
from the literature that is effectively regular-approximable but not leak monotonic. Recall
that a Markov Chain is ergodic if it is aperiodic and its underlying transition graph is strongly
connected. Ergodicity in the context of PFAs have been studied in [29, 23, 19]. Intuitively,
a PFA is weakly ergodic if any sequence of input symbols has only one terminal strongly
connected component and this component is aperiodic. Weak ergodicity was generalized
in [10] to define a new class of PFAs, called eventually weakly ergodic PFAs. Informally, a
PFA A is eventually weakly ergodic if its states can be partitioned into sets QT , Q1, . . . , Qr
and there is an ` such that in the transition graph on any word of length `, Q1, . . . , Qr are
the only terminal strongly connected components, and in addition, they are aperiodic. (See
Appendix F for the formal definition.) Every unary PFA turns out to be eventually weakly
ergodic [10]. The problem of checking whether a PFA is eventually weakly ergodic is also
decidable [10].

I Example 35. The PFA A3 in Figure 1c on page 7 is eventually weakly ergodic but not
leak monotonic. This can be seen by taking ` = 1, QT = ∅, Q1 = {q0, q1}. On the other hand,
the deterministic automaton A6 in Figure 3 is shown to be not eventually weakly ergodic
in [10]. Thus, the class of leak monotonic automata and eventually weakly ergodic automata
are not comparable.

Using the techniques of [10], we can show that the class of weakly ergodic PFAs is
effectively regular-approximable. (See Appendix F for the proof.)
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I Theorem 36. The class of eventually weakly ergodic PFAs is effectively regular-approxima-
ble.

Thus, we can approximate the value of eventually weakly ergodic PFAs and check emptiness
under isolation for eventually weakly ergodic PFAs. Please note that the latter result is also
given in [10].

7 Conclusions

In this paper, we addressed the problem of regular-approximability of PFAs. We showed
that regular-approximability problem is undecidable. We also showed that if a PFA is
regular-approximable then its value can be computed with arbitrary precision. We also
showed that emptiness problem is decidable for regular-approximable PFAs when the given
cut-point is isolated. We defined a class of PFAs, called leak monotonic PFAs and showed
them to be regular-approximable. For PFAs belonging to this class, we gave an effective
procedure for computing a deterministic automaton that approximates the language accepted
by the given PFA with a given minimum probability threshold. We showed that PFAs with
polynomial ambiguity as well as all HPAs are leak monotonic. We also introduced leak
complexity and showed that PFAs with sub-exponential leak complexity are leak monotonic.
We also solved an open problem showing that the emptiness problem is undecidable for PFAs
with linear ambiguity. Finally, we showed that eventually weakly ergodic PFAs are also
regular-approximable. As part of future work, it will be interesting to investigate algorithms
to decide if a given PFA has sub-exponential leak complexity. The decidability of determining
whether a given PFA is leak monotonic and checking emptiness under isolation for general
PFAs are some other open problems.
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A Proof of Theorem 9

Proof. Let SomeApprox be the set of all PFAs A such that there is a non-trivial rational
pair (x, y) such that (A, x, y) ∈ Approx. We show that SomeApprox is Σ0

2-hard where Σ0
2

is the second level in the arithmetical hierarchy. This automatically implies that Approx is
not even recursively enumerable; for if it were recursively enumerable this would imply that
SomeApprox is also recursively enumerable which will be a contradiction.

Let ValueNot1 = {A | A is a PFA and value(A) < 1}. It has been shown in [10] that
ValueNot1 is Σ0

2-complete. We prove that SomeApprox is Σ0
2-hard by reducing ValueNot1

to SomeApprox. Our reduction, given a PFA A over Σ, constructs a PFA B such that
value(A) < 1 iff B ∈ SomeApprox. Let A = (Q, qs, δ, Qf ) be any PFA over some alphabet Σ.
Now, we define B as follows. If ∃u ∈ Σ∗ such that PA(u) = 1 then B is simply the PFA A2
given in Figure 1b on page 7; observe that in this case, A /∈ ValueNot1, and B /∈ SomeApprox
as shown by Theorem 8. Note that the above condition can be checked effectively thanks to
Proposition 4. If there is no such a string u, then we define B to be a PFA over the alphabet
Σ′ = Σ ∪ {]} defined as follows. B = (Q′, qs, δ′, Qf ) where Q′ = Q ∪ {qr} where qr /∈ Q
and δ′ defined as follows: δ′(q, a, q′) = δ(q, a, q′) for q, q′ ∈ Q and a ∈ Σ; δ′(q, ], qs) = 1 for
q ∈ Qf ; δ′(q, ], qr) = 1 for q /∈ Qf ; δ′(qr, a, qr) = 1 for all a ∈ Σ′. Now, we make the following
observations. For any u ∈ Σ∗, the acceptance probabilities of u by A and B are the same.
Now consider any string v of the form u1]u2]...uk] where each ui ∈ Σ∗, for 1 ≤ i ≤ k. It is
easy to see that PB(v) =

∏
1≤i≤k PA(ui). Also, value(B) = value(A).

Now, we show that A ∈ ValueNot1 iff B ∈ SomeApprox. Suppose A ∈ ValueNot1. In this
case, take any x, y ∈ (0, 1) such that value(A) < x < x + y < 1. Clearly such x, y exist,
since value(A) < 1. Since value(B) = value(A), we have value(B) < x < x + y < 1. Clearly
L>x(B) = L≥x+y(B) = ∅. Since the empty set is a regular set, we see that B is approximable
with respect to (x, y) and hence B ∈ SomeApprox. Now, assume A /∈ ValueNot1. This means
value(A) = 1. Now, we have two cases. In the first case, ∃u ∈ Σ∗ such that PA(u) = 1.
In this case, by construction, B is the automaton A2 which is not in SomeApprox. The
second case is when there is no such string u. This means, for each i > 0, ∃ui ∈ Σ∗ such
that PA(ui) > (1 − 1

2i ). Since PB(ui) = PA(ui), we have PB(ui) > (1 − 1
2i ). We show

that B /∈ SomeApprox by contradiction. Suppose B ∈ SomeApprox. This means ∃x, y and a
regular language over L ⊆ (Σ′)∗ such that 0 < x < x+ y < 1 and L≥x+y(B) ⊆ L ⊆ L>x(B).
Since L is a regular language, there exists an integer N > 0 satisfying Lemma 2. Now,
let z1 = max{PA(u′) | u′ ∈ Σ∗, |u′| ≤ N}. Fix an integer k > 0 such that (z1)k ≤ x. Now,
let v ∈ Σ∗ be any string such that v = ui for some i > 0 such that (PA(v))k ≥ x + y.

Clearly such a string v exists. Now consider the string w = (v])k in (Σ′)∗. Now, we have
PB(w) = (PA(v))k ≥ x+ y. Hence w ∈ L. Now applying Lemma 2, we see that there exists
a string w′ = w1]w2] · · ·wk] such that wi ∈ Σ∗,|wj | ≤ N , for 1 ≤ j ≤ k and w′ ∈ L. Clearly,
PA(wi) ≤ z1, for each i, 1 ≤ i ≤ k. Now, PB(w) =

∏
1≤i≤k PA(wi) ≤ (z1)k. Since (z1)k ≤ x,

we see that PB(w) ≤ x which contradicts our assumption that L ⊆ L>x(B). J

B Proof of Theorem 18

Proof. Let SomeLeakMon be the set of all PFAs A such that there is an ε such that
(A, ε) ∈ LeakMon. We show that SomeLeakMon is Σ0

2-hard where Σ0
2 is the second level in

the arithmetical hierarchy, which implies that LeakMon is not even recursively enumerable.
As in the proof of Theorem 9, ValueNot1 = {A | A is a PFA and value(A) < 1} which is a
Σ0

2-hard problem. We can conclude the theorem by reducing ValueNot1 to SomeLeakMon.
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Our reduction, given a PFA A = (Q, qs, δ, Qf ) over Σ, constructs a PFA B such that
value(A) < 1 iff B ∈ SomeLeakMon. Let A = (Q, qs, δ, Qf ) be any PFA over some alphabet
Σ. Now, we define B as follows. If ∃u ∈ Σ∗ such that PA(u) = 1 then B is simply the
PFA A3 given in Figure 1c on page 7; observe that in this case, A /∈ ValueNot1, and
B /∈ SomeLeakMon.

If there is no such a string u, then we define B to be a PFA over the alphabet Σ as
follows. B = (Q × {1, 2}, (qs, 1), δ′, Qf × {1, 2}) where δ′((q, i), a, (q′, j)) = 1

2δ(q, a, q
′) for

q, q′ ∈ Q, a ∈ Σ and i, j ∈ {1, 2}.
Now, we make the following observations. For any u ∈ Σ∗, the acceptance probabilities

of u by A and B are the same. Thus, value(B) = value(A). Furthermore, every accepting
run of B on u has |u| leaks. Using these observations, we shall show that A ∈ ValueNot1 iff
B ∈ SomeLeakMon.

SupposeA ∈ ValueNot1. Then there must exist ε0 such that value(B) = value(A) < ε0 < 1.
As no word is accepted by B with probability ≥ ε0, B is ε0-leak monotonic with horizon
Nε0 = 0.

Suppose A 6∈ ValueNot1. Then value(A) = 1. As there is no word accepted by A with
probability 1 and Σ is finite, we get that there must be an infinite sequence of non-empty
words u1, u2, . . . such that for each i, |ui| < |ui+1| and PA(ui) > 1 − 1

i . Suppose, for
contradiction, B ∈ SomeLeakMon. This means that there must exist ε0 ∈ (0, 1) and Nε0

such that B is ε0-leak monotonic with horizon Nε0 . Please note that as ε0 < 1, there must
exist a j0 such that 1− 1

i > ε0 for all i ≥ j0. Fix k = max(Nε0 , j0). Consider the word uk.
We have that |uk| ≥ k ≥ Nε0 and every run of B on uk has exactly |k| leaks. As Nε0 is a
horizon of ε0-leak monotonicity we must have PA(uk) < ε0. This contradicts the fact that
PA(uk) = 1− 1

k > ε0. J

C Proof of Theorem 21

Proof. For i > 0, q ∈ Qi, let Ai,q be the restriction of A to the set Qi of states with starting
state q. For any ε ∈ (0, 1), let Nε > 0 be a constant such that, for each i > 0, q ∈ Qi and
each u ∈ Σ∗, the measure of the set of accepting runs of Ai,q on u, having at least Nε leaks,
is less than ε. Such a constant Nε exists since each Ai,q is leak monotonic. Now let p be the
minimum of the probabilities of reaching a state in Q \ Q0, from any state in Q0, on any
input string of length exactly m, where m is the constant specified in the theorem. Clearly
p > 0. Now, fix an ε ∈ (0, 1). We specify a constant Mε such that on every u ∈ Σ∗, the
measure of the set of accepting runs of A on u, having at least Mε leaks, is less than ε. Let
n′ be the smallest integer such that (1− p)n′

< ε
2 and let L ε

2
= m · n′. Observe that for any

u ∈ Σ∗ of length at least L ε
2
, δu(qs, Q0) < ε

2 , i.e., the probability that A is in some state in
Q0 after u is < ε

2 .

Now, let Mε = L ε
2

+N ε
2
. We show that Mε satisfies the desired property. Now, consider

any input string u ∈ Σ∗. If |u| < Mε then the measure of the set of all runs of A on u having
at least Mε leaks is zero. So, assume that |u| ≥Mε. Let u1 be the prefix of u of length L ε

2

and u2 ∈ Σ∗ be the suffix of u following u1, i.e., u = u1u2. For any i > 0, q ∈ Qi, let pq be
the probability measure of the set of all runs of Ai,q, on input u2, having at least N ε

2
leaks.

Observe that pq < ε
2 . Now, we see that the probability measure of the set of all accepting

runs of A on u, having at least Mε leaks, is bounded by ε
2 +

∑
q∈Q\Q0

δu1(qs, q) · pq. In the
above expression, the first term in the sum bounds the probability of all such runs that
remain entirely with in Q0 and the second term bounds the probability of all such runs that
end in a state outside Q0. Since pq < ε

2 for q ∈ Q \Q0 and since
∑
q∈Q\Q0

δu1(qs, q) ≤ 1, we
see that the probability measure of the set of all accepting runs of A on u, having at least
Mε leaks, is less than ε. J
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D Proof of Theorem 26

Proof. The theorem is an easy consequence of Theorem 25, Theorem 16 and the following
claim:

I Claim. Every k-HPA A with n-states and k > 0, has leak complexity at most nk`k−1.

Proof. We prove this claim by induction on k. The base case is when k = 1. In this case,
any accepting run that has ` leaks, either completely stays at level 0 or goes from a level
0 state to a higher level state making a non-leaky transition, or it goes to a level 1 state
exactly after the `th leak (this is so because there can not be any leaks from level 1 states).
Clearly, there can be at most m such runs that end in a level 1 accepting state, where m is
the number of level 1 states. Thus, the total number of such runs can be at most 1 +m ≤ n,
which is a constant independent of `.

Now, assume that the claim is true for any k > 0. We show that that claim holds for
(k + 1)-HPA as well. Consider a (k + 1)-HPA A on an input alphabet Σ. Let m be the total
number of states at levels 1 and higher. Consider an input u ∈ Σ∗. Let X be the set of
accepting runs of A on an input u, having ` > 0 leaks. Let `′ be the maximum of the number
of leaks from a level 0 state in any of the runs in X. Observe that `′ ≤ `. The set X can be
partitioned into `′ + 1 disjoint sets Xb, X1, ..., X`′ , where Xb is a singleton consisting of the
run that stays at level 0 or transitions from a level 0 state to a higher level state using a
non-leaky transition, and Xi are the set of runs that made a transition from a level 0 state to
a higher level state on the ith leak, for 1 ≤ i ≤ `′. For each i, 1 ≤ i ≤ `′, let ui be the prefix
of the input after which the ith leak occurred, and vi be the suffix of u following ui. All runs
in Xi have the same prefix, say ρi, until the level 0 state from which the ith leak occurred
and they transition to one or more of the m higher level states after this leak. Thus, we can
partition Xi into mi ≤ m disjoint sets Xi,1, ..., Xi,mi such that all runs in Xi,j transition to
the same higher level state, say qi,j , after the ith leak, which is immediately after ρi. Now
Xi,j is simply the set of runs having prefix ρi followed by the set X ′i,j of all accepting runs
of A starting from the state qi,j on the input vi and having `− i leaks. Since qi,j is a higher
level state, the restriction of A having qi,j as a start state is a k′-HPA for some k′ ≤ k. Now
by the induction hypothesis, we see that the number of runs in X ′i,j and hence those in Xi,j

is bounded by nk · (`− i)k−1. From this we see that the number of runs in Xi is bounded by
m · nk · (`− i)k−1. From this we see that |X| ≤ 1 +

∑
1≤i≤`′ m · nk · (`− i)k−1. Since `′ ≤ `,

we get |X| ≤ 1 +m · nk · `k ≤ nk+1`k. J

The Theorem follows. J

E Proof of Lemma 32

Proof. Fix u and `. Let v be the word of the shortest length such that |accruns(A, v, `)| ≥
|accruns(A, u, `)|. We will show that length of v is ≤ m+ ((`+ 1)m)m. Observe that the set
of finite non-empty prefixes of accruns(A, v, `) can be arranged as a tree T as follows. The
initial state qs is the root of the tree. If ρq is a prefix of some run in accruns(A, v, `) then ρq
is a child of ρ. Attach to each node ρ of T, two labels: a state label st(ρ) which is the last
state of ρ and a leak label lk(ρ) which is the number of leaks in ρ. For each depth i, let ci
be the set of nodes at depth i. We say that a leak occurs at node ρ if there is a state q′ such
that ρq′ is in the tree T and lk(ρq′) = lk(ρ) + 1. Observe that if there is a leak at a node ρ
at depth i with state label ρ then there is a leak at every node ρ′ at depth i with state label
q. We say that a leak occurs at depth i if a leak occurs at some node ρ ∈ ci. We show that
leaks in T cannot be too far apart.
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I Claim. Let i, j ≤ |v| be such that j − i > mm then there is a i ≤ k ≤ j such that a leak
occurs at depth k.

Proof. We proceed by contradiction. Assume that there are i and j with j− i > mm with no
leak occurring at any depth k between i and j. Consider any node ρ ∈ ci. By our assumption,
for each i ≤ k ≤ j, there is a unique descendant of ρk of ρ. The leak label of ρk is exactly the
leak label of ρ. Furthermore, for any two nodes ρ and ρ′ of ci with the same state labels, the
state labels of ρk and ρ′k are exactly the same. From this, it is easy to see that there are k1
and k2 with i ≤ k1 < k2 ≤ j such that for each node ρ of ci, the state and leak labels of ρk1

and ρk2 are exactly the same. Let w be the string obtained from u by deleting the subword
u[k1 + 1 : k2] from v. It is easy to see that accruns(A, w, `) ≥ accruns(A, v, `) contradicting
the minimality of v. J

A similar argument shows that there must be an i ≤ m such that there is a leak at depth i.
Thus, we can conclude the Lemma if we can show that there are at most (`+ 1)m depths at
which a leak can occur; this is so due to the fact that the first depth at which a leak occurs
is in the first m input symbols, and there are at most (`+ 1)m depths at which leaks can
occur and there are at most mm input symbols between two successive such depths.

I Claim. There are at most (`+ 1)m depths at which a leak can occur.

Proof. For each depth i, we define a function smli : Q→ {⊥, 1, 2, . . . , `} as follows

smli(q) =
{
⊥ if {ρ | ρ ∈ ci, st(ρ) = q, lk(ρ) > 0} = ∅
n if n = min{j > 0 | ∃ρ ∈ ci, st(ρ) = q and lk(ρ) = j}

.

Since there are only (` + 1)m possible functions smli, it suffices to show that for any two
depths i < j such that there is a leak at some depth i ≤ k < j, we have that smli 6= smlj .
Observe that if there is no leak up-to depth i, then the latter is trivially true. So, we consider
the case when there has been at least one leak before depth i.

To each depth j such that there is a leak before depth j, we associate an integer
1 ≤ levelj ≤ `+ 1. If there is no leak at depth j, levelj = `+ 1. Otherwise levelj is the smallest
integer 1 ≤ r ≤ `+ 1 such there is a leak at node ρ of cj with leak label r.

Fix j such that there is a leak before depth j. We make the following two observations:
(a) For each r < levelj , we have that |sml−1

j ({1, 2, . . . , r})| ≥ |sml−1
j+1({1, 2, . . . , r})|. This

follows from the fact that there is a surjection g from the set sml−1
j ({1, 2, . . . , r}) to the

set sml−1
j+1({1, 2, . . . , r}) defined as follows. Let q ∈ sml−1

j ({1, 2, . . . , r}). The definition
of sml implies that there is a unique state q′ such that δ(q, v[j], q′) = 1. Let g(q) = q′.

The function g is easily seen to be a surjection.
(b) If there is a leak at depth j then |sml−1

j ({1, 2, . . . , levelj})| > |sml−1
j+1({1, 2, . . . , levelj})|.

This can be concluded as follows. Let A ⊆ sml−1
j ({1, 2, . . . , levelj)} be the set of states

q such that there is no leak at any node ρ ∈ cj with state label q. Clearly A is a
proper subset of sml−1

j ({1, 2, . . . , levelj}). We can again define a surjection g from A onto
|sml−1

j+1({1, 2, . . . , levelj})| as in (a) above.
Now, let i < j be such that such that there is a leak at some depth i ≤ k < j. Let
r = min(levelt | i ≤ t < j). Observations (a) and (b) above imply that |sml−1

i ({1, 2, . . . , r})| >
|sml−1

j ({1, 2, . . . , r})|. Thus, smli 6= smlj . J

This concludes the proof of the Lemma. J
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F Eventually weakly ergodic PFAs are regular-approximable

We recall the formal definition of eventually weakly ergodic PFAs.

I Definition 37. A PFA A = (Q, δ, qs, Qf ) is said to be eventually weakly ergodic if there is a
partition QT , Q1, . . . , Qr of Q and a natural number ` > 0 such that the following conditions
hold:

For each word u of length `, each 1 ≤ i ≤ r and state qi ∈ Qi, post(qi, u) ⊆ Qi.
For each word u of length ` and each 1 ≤ i ≤ r, there exists a state qui ∈ Qi such that
qui ∈ post(qi, u) for each qi ∈ Qi.
For each word u of length ` and each state q ∈ QT , post(q, u) ∩ (∪1≤j≤rQj) 6= ∅.

It is shown in [10] that the acceptance probability of each word u can be approximated by
a short word v. In order to describe this result, we recall the following definition from [10]:

I Definition 38. Given an alphabet Σ and natural numbers `, `′ > 0 such that `′ divides `,
let c(`,`′) : Σ∗ → Σ∗ be defined as follows.

c(`,`′)(u) =
{
u if |u| < `′ + 2`;
u0u1v1 if u = u0u1wv1, |u0| < `′, |u1| = `, w ∈ (Σ`′)+ and |v1| = `

.

I Remark. Observe that c(`,`′)(·) is well defined. If |u| ≥ `′ + 2` then there are unique
u0, u1, w, v1 such that u = u0u1wv1, |u0| < `′, |u1| = `, w ∈ (Σ`′)+, |v1| = `.

The following is shown in [10].

I Lemma 39. Given an eventually weakly ergodic PFA A = (Q, δ, qs, Qf ) and y > 0, there
are ` > 0 and `′ > 0 s.t. `′ divides ` and

∀u ∈ Σ∗. |PA(u)− PA(c(`,`′)(u))| < y

2 .

Furthermore, if y is rational then `, `′ can be computed from A and y.

Given x, y, Lemma 39 can be used to show that an eventually weakly ergodic PFA A is
regular-approximable with respect to (x, y). The proof proceeds as follows. First, we compute
`′, ` as given in Lemma 39. Next, we construct a regular language L that approximates
L>x(A) as follows. L is the union of two regular languages Lshort and Llong. Lshort = {u ∈
Σ∗ | |u| < `′ + 2`,PA(u) > x}. It is easy to see that Lshort is finite and hence regular.

We construct Llong by constructing a NFA B that recognizes Llong. The set of states of B
is a union of four sets Q0, Q1, Q2, Q3 defined as follows:

Q0 = {u0 ∈ Σ∗ | |u0| < `′}.
Q1 = {(u0, u1) ∈ Σ∗ | |u0| < `′, |u1| ≤ `}.
Q2 = ∅ if `′ = 1 else Q2 = {(u0, u1, i) ∈ Σ∗ | |u0| < `′, |u1| = `, 1 ≤ i ≤ `′ − 1}.
Q3 = {(u0, u1, v1) ∈ Σ∗ | |u0| < `′, |u1| = `, |v1| ≤ `}.

The transition relation of B is defined as follows. For each input symbol a:
For each u0 ∈ Q0, there is a transition from u0 to (u0, a) ∈ Q1 on a. Furthermore, there
is also a transition from u0 to u0a if |u0a| < `′.

For each (u0, u1) ∈ Q1 such that |u1| < `, there is a transition from (u0, u1) to (u0, u1a)
on a.
For each (u0, u1) ∈ Q1 such that |u1| = `, there are two transitions on input a:
1. There is a transition to (u0, u1, a) ∈ Q3 on a.
2. If `′ = 1 then there is a transition from (u0, u1) to itself on a. If `′ > 1 then there is a

transition from (u0, u1) to (u0, u1, 1) ∈ Q2 on a.
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For each (u0, u1, i) ∈ Q2 such that i < `′ − 1, there is a transition to (u0, u1, i+ 1) ∈ Q2
on input a.
For each (u0, u1, `

′ − 1) ∈ Q2, there is a transition to (u0, u1) ∈ Q1 on input a.
For each (u0, u1, v1) ∈ Q3 such that |v1| < `, there is a transition to (u0, u1, v1a) ∈ Q3
on input a.
There are no other transitions of B.

The initial state of B is the empty string λ. The set of final states of B is the set:

{(u0, u1, v1) ∈ Q3 | |v1| = `,PA(u0u1v1) ≥ x+ y

2}.

Thanks to Lemma 39, it is easy to see that L≥x+y(A) ⊆ L ⊆ L>x(A).
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Abstract
We examine some combinatorial properties of parallel cut elimination in multiplicative linear
logic (MLL) proof nets. We show that, provided we impose some constraint on switching paths,
we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant
net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into
another sum of nets, while keeping coefficients finite. We moreover show that our constraints are
stable under reduction.

Our approach is motivated by the quantitative semantics of linear logic: many models have
been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear
logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut
elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential
nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut
elimination is essentially multiplicative. We moreover show that the set of differential nets that
occur in the Taylor expansion of an MELL net automatically satisfy our constraints.

In the present work, we stick to the unit-free and weakening-free fragment of linear logic, which
is rich enough to showcase our techniques, while allowing for a very simple kind of constraint: a
bound on the number of cuts that are crossed by any switching path.
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1 Introduction

1.1 Context: quantitative semantics and Taylor expansion
Linear logic takes its roots in the denotational semantics of λ-calculus: it is often presented,
by Girard himself [15], as the result of a careful investigation of the model of coherence
spaces. Since its early days, linear logic has thus generated a rich ecosystem of denotational
models, among which we distinguish the family of quantitative semantics. Indeed, the first
ideas behind linear logic were exposed even before coherence spaces, in the model of normal
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functors [16], in which Girard proposed to consider analyticity, instead of mere continuity, as
the key property of the interpretation of λ-terms: in this setting, terms denote power series,
representing analytic maps between modules.

This quantitative interpretation reflects precise operational properties of programs: the
degree of a monomial in a power series is closely related to the number of times a function
uses its argument. Following this framework, various models were considered – among which
we shall include the multiset relational model as a degenerate, boolean-valued instance. These
models allowed to represent and characterize quantitative properties such as the execution
time [5], including best and worst case analysis for non-deterministic programs [18], or the
probability of reaching a value [2]. It is notable that this whole approach gained momentum
in the early 2000’s, after the introduction by Ehrhard of models [7, 8] in which the notion
of analytic maps interpreting λ-terms took its usual sense, while Girard’s original model
involved set-valued formal power series. Indeed, the keystone in the success of this line
of work is an analogue of the Taylor expansion formula, that can be established both for
λ-terms and for linear logic proofs.

Mimicking this denotational structure, Ehrhard and Regnier introduced the differential
λ-calculus [12] and differential linear logic [13], which allow to formulate a syntactic version
of Taylor expansion: to a λ-term (resp. to a linear logic proof), we associate an infinite linear
combination of approximants [14, 11]. In particular, the dynamics (i.e. β-reduction or cut
elimination) of those systems is dictated by the identities of quantitative semantics. In turn,
Taylor expansion has become a useful device to design and study new models of linear logic,
in which morphisms admit a matrix representation: the Taylor expansion formula allows to
describe the interpretation of promotion – the operation by which a linear resource becomes
freely duplicable – in an explicit, systematic manner. It is in fact possible to show that any
model of differential linear logic without promotion gives rise to a model of full linear logic
in this way [4]: in some sense, one can simulate cut elimination through Taylor expansion.

1.2 Motivation: reduction in Taylor expansion
There is a difficulty, however: Taylor expansion generates infinite sums and, a priori, there
is no guarantee that the coefficients in these sums will remain finite under reduction. In
previous works [4, 18], it was thus required for coefficients to be taken in a complete semiring:
all sums should converge. In order to illustrate this requirement, let us first consider the
case of λ-calculus.

The linear fragment of differential λ-calculus, called resource λ-calculus, is the target
of the syntactical Taylor expansion of λ-terms. In this calculus, the application of a
term to another is replaced with a multilinear variant: 〈s〉[t1, . . . , tn] denotes the n-linear
symmetric application of resource term s to the multiset of resource terms [t1, . . . , tn].
Then, if x1, . . . , xk denote the occurrences of x in s, the redex 〈λx.s〉[t1, . . . , tn] reduces
to the sum

∑
f :{1,...,k}∼→{1,...,n} s[tf(1)/x1, . . . , tf(k)/xk]: here f ranges over all bijections

{1, . . . , k} ∼→ {1, . . . , n} so this sum is zero if n 6= k. As sums are generated by reduction,
it should be noted that all the syntactic constructs are linear, both in the sense that they
commute to sums, and in the sense that, in the elimination of a redex, no subterm is copied
nor erased. The key case of Taylor expansion is that of application:

T (MN) =
∑
n∈N

1
n! 〈T (M)〉T (N)n (1)

where T (N)n is the multiset made of n copies of T (N) – by n-linearity, T (N)n is itself an
infinite linear combination of multisets of resource terms appearing in T (N). Admitting that
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Figure 1 Taylor expansion of a promotion box (thick wires denote an arbitrary number of wires).
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Figure 2 Example of a family of nets, all reducing to a single net.

〈M〉[N1, . . . , Nn] represents the n-th derivative of M , computed at 0, and n-linearly applied
to N1, . . . , Nn, one immediately recognizes the usual Taylor expansion formula.

From (1), it is immediately clear that, to simulate one reduction step occurring in N , it
is necessary to reduce in parallel in an unbounded number of subterms of each component of
the expansion. Unrestricted parallel reduction, however, is ill defined in this setting. Consider
the sum

∑
n∈N〈λxx〉[· · · 〈λxx〉[y] · · ·] where each summand consists of n successive linear

applications of the identity to the variable y: then by simultaneous reduction of all redexes
in each component, each summand yields y, so the result should be

∑
n∈N y which is not

defined unless the semiring of coefficients is complete in some sense.
Those considerations apply to linear logic as well as to λ-calculus. We will use proof nets

[15] as the syntax for proofs of multiplicative exponential linear logic (MELL). The target of
Taylor expansion is then in promotion-free differential nets [13], which we call resource nets
in the following, by analogy with resource λ-calculus: these form the multilinear fragment of
differential linear logic.

In linear logic, Taylor expansion consists in replacing duplicable subnets, embodied by
promotion boxes, with explicit copies, as in Fig. 1: if we take n copies of the box, the
main port of the box is replaced with an n-ary ! link, while the ? links at the border of
the box collect all copies of the corresponding auxiliary ports. Again, to follow a single
cut elimination step in P , it is necessary to reduce an arbitrary number of copies. And
unrestricted parallel cut elimination in an infinite sum of resource nets is broken, as one can
easily construct an infinite family of nets, all reducing to the same resource net p in a single
step of parallel cut elimination: see Fig. 2.

1.3 Our approach: taming the combinatorial explosion of antireduction
The problem of convergence of series of linear approximants under reduction was first tackled
by Ehrhard and Regnier, for the normalization of Taylor expansion of ordinary λ-terms [14].
Their argument relies on a uniformity property, specific to the pure λ-calculus: the support
of the Taylor expansion of a λ-term forms a clique in some fixed coherence space of resource
terms. This method cannot be adapted to proof nets: there is no coherence relation on
differential nets such that all supports of Taylor expansions are cliques [22, section V.4.1].

An alternative method to ensure convergence without any uniformity hypothesis was first
developed by Ehrhard for typed terms in a λ-calculus extended with linear combinations
of terms [9]: there, the presence of sums also forbade the existence of a suitable coherence
relation. This method can be generalized to strongly normalizable [20], or even weakly
normalizable [23] terms. One striking feature of this approach is that it concentrates on
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the support (i.e. the set of terms having non-zero coefficients) of the Taylor expansion. In
each case, one shows that, given a normal resource term t and a λ-term M , there are finitely
many terms s, such that:

the coefficient of s in T (M) is non zero; and
the coefficient of t in the normal form of s is non zero.

This allows to normalize the Taylor expansion: simply normalize in each component, then
compute the sum, which is component-wise finite.

The second author then remarked that the same could be done for β-reduction [23], even
without any uniformity, typing or normalizability requirement. Indeed, writing s ⇒ t if s
and t are resource terms such that t appears in the support of a parallel reduct of s, the size
of s is bounded by a function of the size of t and the height of s. So, given that if s appears
in T (M) then its height is bounded by that of M , it follows that, for a fixed resource term t

there are finitely many terms s in the support of T (M) such that s⇒ t: in short, parallel
reduction is always well-defined on the Taylor expansion of a λ-term.

Our purpose in the present paper is to develop a similar technique for MELL proof nets:
we show that one can bound the size of a resource net p by a function of the size of any of its
parallel reducts, and of an additional quantity on p, yet to be defined. The main challenge is
indeed to circumvent the lack of inductive structure in proof nets: in such a graphical syntax,
there is no structural notion of height.

We claim that a side condition on switching paths, i.e. paths in the sense of Danos–
Regnier’s correctness criterion [3], is an appropriate replacement. Backing this claim, there
are first some intuitions:

the culprits for the unbounded loss of size in reduction are the chains of consecutive cuts,
as in Fig. 2;
we want the validity of our side condition to be stable under reduction so, rather than
chains of cuts, we should consider cuts in switching paths;
indeed, if p reduces to q via cut elimination, then the switching paths of q are somehow
related with those of p;
and the switching paths of a resource net in T (P ) are somehow related with those of P .

In the following, we establish this claim up to some technical restrictions, which will allow us
to simplify the exposition:

we use generalized n-ary exponential links rather than separate (co)dereliction and
(co)contraction, as this allows to reduce the dynamics of resource nets to that of multi-
plicative linear logic (MLL) proof nets;1
we limit our study to a strict fragment of linear logic, i.e. we do not consider multiplicative
units, nor the 0-ary exponential links – weakening and coweakening – as dealing with
them would require us to introduce much more machinery.

1.4 Outline
In Section 2, we first introduce proof nets formally, in the term-based syntax of Ehrhard [10].
We define the parallel cut elimination relation ⇒ in this setting, that we decompose into
multiplicative reduction ⇒m and axiom-cut reduction ⇒ax. We also present the notion of
switching path for this syntax, and introduce the quantity that will be our main object of
study in the following: the maximum number cc(p) of cuts that are crossed by any switching
path in the net p. Let us mention that typing plays absolutely no role in our approach, so
we do not even consider formulas of linear logic: we will rely only on the acyclicity of nets.

1 In other words, we adhere to a version of linear logic proof nets and resource nets which is sometimes
called nouvelle syntaxe, although it dates back to Regnier’s PhD thesis [21]. See also the discussion in
our conclusion (Section 6).
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Section 3 is dedicated to the proof that we can bound cc(q) by a function of cc(p),
whenever p ⇒ q: the main case is the multiplicative reduction, as this may create new
switching paths in q that we must relate with those in p. In this task, we concentrate on the
notion of slipknot: a pair of residuals of a cut of p occurring in a path of q. Slipknots are
essential in understanding how switching paths are structured after cut elimination.

We show in Section 4 that, if p⇒ q then the size of p is bounded by a function of cc(p)
and the size of q. Although, as explained in our introduction, this result is motivated by the
study of quantitative semantics, it is essentially a theorem about MLL.

We establish the applicability of our approach to the Taylor expansion of MELL proof
nets in Section 5: we show that if p is a resource net of T (P ), then the length of switching
paths in p is bounded by a function of the size of P – hence so is cc(p).

Finally, we discuss further work in the concluding Section 6.

2 Definitions

We provide here the minimal definitions necessary for us to work with MLL proof nets. We
use a term-based syntax, following Ehrhard [10].

As stated before, let us stress the fact that the choice of MLL is not decisive for the
development of Sections 2 to 4. The reader can check that we rely on two ingredients only:

the definition of switching paths;
the fact that multiplicative reduction amounts to plug bijectively the premises of a ⊗
link with those of ` link.

The results of those sections are thus directly applicable to resource nets, thanks to our
choice of generalized exponential links: this will be done in Section 6.

2.1 Structures
Our nets are finite families of trees and cuts; trees are inductively defined as MLL connectives
connecting trees, where the leaves are elements of a countable set of variables V . The duality
of two conclusions of an axiom is given by an involution x 7→ x over this set.

Formally, the set T of raw trees (denoted by s, t, etc.) is generated as follows:

t ::= x | ⊗(t1, . . . , tn) | `(t1, . . . , tn)

where x ranges over a fixed countable set of variables V , endowed with a fixpoint-free
involution x 7→ x.

We also define the subtrees of a given tree t, written T(t), in the natural way : if t ∈ V ,
then T(t) = {t}. If t = α(t1, . . . , tn), then T(t) = {t} ∪

⋃
i∈{1,...,n}T(ti), for α ∈ {⊗,`}. In

particular, we write V(t) for T(t)∩ V . A tree is a raw tree t such that if α(t1, . . . , tn) ∈ T(t)
(with α = ⊗ or `), then the sets V(ti) for 1 ≤ i ≤ n are pairwise disjoint: in other words,
each variable x occurs at most once in t. A tree t is strict if {⊗(),`()} ∩T(t) = ∅.

From now on, we will consider strict trees only, i.e. we rule out the multiplicative units.
This restriction will play a crucial rôle in expressing and establishing the bounds of Sections 3
and 4. It is possible to generalize our results in presence of units: we postpone the discussion
on this subject to Section 6.2

2 An additional consequence is the fact that, given a (strict) tree t, any other tree u occurs at most
once as a subtree of t: e.g., in `2(t1, t2), V(t1) and V(t2) are both non empty and disjoint, so that
t1 6= t2. In other words, we can identify T(t) with the positions of subtrees in t, that play the rôle of
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A cut is an unordered pair c = 〈t|s〉 of trees such that V(t) ∩V(s) = ∅, and then we set
T(c) = T(t) ∪T(s). A reducible cut is a cut 〈t|s〉 such that t is a variable and t 6∈ V(s), or
such that we can write t = ⊗(t1, . . . , tn) and s = `(s1, . . . , sn), or vice versa. Note that, in
the absence of typing, we do not require all cuts to be reducible, as this would not be stable
under cut elimination.

Given a set A, we denote by −→a any finite family of elements of A. In general, we
abusively identify −→a with any enumeration (a1, . . . , an) ∈ An of its elements, and write
−→a ,
−→
b for the union of disjoint families −→a and

−→
b . If −→γ is a family of trees or cuts, we write

V(−→γ ) =
⋃
γ∈−→γ V(γ) and T(−→γ ) =

⋃
γ∈−→γ T(γ). An MLL proof net is a pair p = (−→c ;−→t )

of a finite family −→c of cuts and a finite family −→t of trees, such that for all cuts or trees
γ, γ′ ∈ −→c ,−→t , V(γ) ∩V(γ′) = ∅, and such that for any x ∈ V(p) = V(−→c ) ∪V(−→t ), we have
x ∈ V(p) too. We then write C(p) = −→c .

2.2 Cut elimination
The substitution γ[t/x] of a tree t for a variable x in a tree (or cut, or net) γ is defined in
the usual way. By the definition of trees, we notice that this substitution is essentially linear,
since each variable x appears at most once in a tree.

There are two basic cut elimination steps, one for each kind of reducible cut:
the elimination of a connective cut yields a family of cuts: we write 〈⊗(t1, . . . , tn)| `
(s1, . . . , sn)〉 →m (〈ti|si〉)i∈{1,...,n} that we extend to nets by setting (c,−→c ;−→t ) →m

(−→c ′,−→c ;−→t ) whenever c→m
−→c ′;

the elimination of an axiom cut generates a substitution: we write (〈x|t〉,−→c ;−→t ) →ax

(−→c ;−→t )[t/x] whenever x 6∈ V(t).

We are in fact interested in the simultaneous elimination of any number of reducible cuts,
that we describe as follows: we write p⇒ p′ if p = (〈x1|t1〉, . . . , 〈xn|tn〉, c1, . . . , ck,−→c ;−→t ) and
p′ = (−→c ′1, . . . ,−→c ′k,

−→c ;−→t )[t1/x1] · · · [tn/xn], with ci →m
−→c ′i for 1 ≤ i ≤ k, and xi 6∈ V(tj)

for 1 ≤ i ≤ j ≤ n. We moreover write p⇒m p′ (resp. p⇒ax p) in case n = 0 (resp. k = 0).
It is a simple exercise to check that if p⇒ p′ then there exists q such that p⇒m q ⇒ax p

′:
the converse does not hold, though, as the elimination of connective cuts may generate new
axiom cuts.

2.3 Paths
In order to control the effect of parallel reduction on the size of proof nets, we rely on a side
condition involving the number of cuts crossed by switching paths, i.e. paths in the sense of
Danos–Regnier’s correctness criterion [3].

In our setting, a switching of a net p is a partial map I : T(p)→ T(p) such that, for each
t = `(t1, . . . tn) ∈ T(p), I(t) ∈ {t1, . . . , tn}. Given a net p and a switching I of p, we define
adjacency relations between the elements of T(p), written ∼t,s for t, s ∈ T(p) and ∼c for
c ∈ C(p), as the least symmetric relations such that:

for any x ∈ V(p), x ∼x,x x;
for any t = ⊗(t1, . . . , tn) ∈ T(p), t ∼t,ti ti for each i ∈ {1, . . . , n};
for any t = `(t1, . . . , tn) ∈ T(p), t ∼t,I(t) I(t);
for any c = 〈t|s〉 ∈ C(p), t ∼c s.

vertices when considering t as a graphical structure. This will allow us to keep notations concise in our
treatment of paths. This trick is of course inessential for our results.
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Whenever necessary, we may write, e.g., ∼pt,s or ∼
p,I
t,s for ∼t,s to make the underlying net and

switching explicit. Let l and m ∈ (T(p)×T(p)) ∪C(p) be two adjacency labels: we write
l ≡ m if l = m or m = (x, x) and l = (x, x) for some x ∈ V .

Given a switching I in p, an I-path is a sequence of trees t0, . . . , tn of T(p) such that there
exists a sequence of pairwise 6≡ labels l1, . . . , ln with, for each i ∈ {1, . . . , n}, ti−1 ∼p,Ili ti.3
For instance, if p = (;⊗(x, y),`(y, x)) and I(`(y, x)) = x, then the chain of adjacencies
`(x, y) ∼`(x,y),x x ∼x,x x ∼⊗(x,y),x ⊗(x, y) ∼⊗(x,y),y y ∼y,y y defines an I-path in p, which
can be depicted as the dashed line in the following graphical representation of p:

⊗ `
ax axx x y

|

y

.

We call path in p any I-path for I a switching of p, and we write P(p) for the set of
all paths in p. We write t  s or t  p s whenever there exists a path from t to s in p.
Given χ = t0, . . . , tn ∈ P(p), we call subpaths of χ the subsequences of χ: a subpath is
either the empty sequence ε or a path of p. We moreover write χ for the reverse path:
χ = tn, . . . , t0 ∈ P(p). We say a net p is acyclic if for all χ ∈ P(p) and t ∈ T(p), t occurs at
most once in χ: in other words, there is no cycle t, χ, t. From now on, we consider acyclic
nets only: it is well known that if p is acyclic and p⇒ q then q is acyclic too.

If c = 〈t|s〉 ∈ C(p), we may write χ1, c, χ2 for either χ1, s, t, χ2 or χ1, t, s, χ2: by acyclicity,
this notation is unambiguous, unless χ1 = χ2 = ε.

For all χ ∈ P(p), we write ccp(χ), or simply cc(χ), for the number of cuts crossed
by χ: ccp(χ) = #{〈t|s〉 ∈ C(p) | t ∈ χ} (recall that cuts are unordered). Observe that,
by acyclicity, a path χ crosses each cut c = 〈t|s〉 at most once: either χ = χ1, c, χ2, or
χ = χ1, t, χ2, or χ = χ1, s, χ2, with neither t nor s occurring in χ1, χ2. Finally, we write
cc(p) = max{cc(χ) | χ ∈ P(p)}: in the following, we show that the maximal number of cuts
crossed by any switching path is a good parameter to limit the decrease in size induced by
parallel reduction.

3 Variations of cc(p) under reduction

Here we establish that the possible increase of cc(p) under reduction is bounded. It should be
clear that if p⇒ax q then cc(q) ≤ cc(p): intuitively, the only effect of ⇒ax is to straighten
some paths, thus decreasing the number of crossed cuts. In the case of connective cuts
however, cuts are duplicated and new paths are created.

Consider for instance a net r, as in Fig. 3, obtained from three nets p1, p2 and q, by
forming the cut 〈⊗(t1, t2)|`(s1, s2)〉 where t1 ∈ T(p1), t2 ∈ T(p2) and s1, s2 ∈ T(q). Observe
that, in the reduct r′ obtained by forming two cuts 〈t1|s1〉 and 〈t2|s2〉, we may very well
form a path that travels from p1 to q then p2; while in p, this is forbidden by any switching
of `(s1, s2). For instance, if we consider I(`(s1, s2)) = s1, we may only form a path between
p1 and p2 through ⊗(t1, t2), or a path between q and one of the pi’s, through s1 and the cut.

In the remainder of this section, we fix a reduction step p⇒m q, and we show that the
previous example describes a general mechanism: if a new path is created in this step p⇒m q,
it must involve a path ξ between two premises of a ` involved in a cut c of p, unfolded into
a path between the residuals of this cut. We call such an intermediate path ξ a slipknot.

3 In standard terminology of graph theory, an I-path in p is a trail in the unoriented graph with vertices
in T(p) and edges given by the sum of adjacency relations defined by I (identifying ∼x,x with ∼x,x).
The only purpose of our choice of labels for adjacency relations and the definition of ≡ is indeed to
capture this notion of path in the unoriented graph of subtrees induced by a switching in a net.
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p1 p2

⊗

q

`
|

cut

p1 p2

cut
cut

q

Figure 3 A cut, the resulting slipknot, and examples of paths before and after reduction.

3.1 Residual cuts and slipknots
Notice that T(q) ⊆ T(p). Observe that, given a switching J of q, it is always possible to
extend J into a switching I of p, so that, for all t, s ∈ T(q):

if t ∼q,Jt,s s then t ∼p,It,s s, and
if c ∈ C(p) and t ∼q,Jc s then t ∼p,Ic s.

To determine I uniquely, is remains only to select a premise for each ` involved in an
eliminated cut. Consider c = 〈⊗(t1, . . . , tn)|`(s1, . . . , sn)〉 ∈ C(p) and assume c is eliminated
in the reduction p⇒m q. Then the residuals of c in q are the cuts 〈ti|si〉 ∈ C(q) for 1 ≤ i ≤ n.

If ξ ∈ P(q), a slipknot of ξ is any pair (d, d′) of (necessarily distinct) residuals in q of a cut
in p, such that we can write ξ = χ1, d, χ2, d

′, χ3. We now show that a path in q is necessarily
obtained by alternating paths in p and paths between slipknots, that recursively consist
of such alternations. This will allow us to bound cc(q) depending on cc(p), by reasoning
inductively on these paths. The main tool is the following lemma:

I Lemma 1. If ξ ∈ P(q) then there exists a path ξ− ∈ P(p) with the same endpoints as ξ.

Proof. Assuming ξ is a J-path of q, we construct an I-path ξ− in p with the same endpoints
as ξ for an extension I of J as above. The definition is by induction on the number of
residuals occurring as subpaths of ξ. In the process, we must ensure that the constraints
we impose on I in each induction step can be satisfied globally: the trick is that we fix the
value of I(`(−→s )) only in case exactly one residual of the cut involving `(−→s ) occurs in ξ.

First consider the case of ξ = χ1, d, χ2, d
′, χ3, for a slipknot (d, d′), where d and d′ are

residuals of c ∈ C(p). We can assume, w.l.o.g, that: (i) no other residual of c occurs in χ1,
nor in χ3; (ii) no residual of a cut c′ 6= c occurs in both χ1 and χ3. By the definition of
residuals, we can write c = 〈⊗(−→t )|` (−→s )〉 ∈ C(p), d = 〈t|s〉 and d′ = 〈t′|s′〉 with t, t′ ∈ −→t
and s, s′ ∈ −→s . It is then sufficient to prove that ξ = χ1, t, s, χ2, s

′, t′, χ3, in which case we can
set ξ− = χ−1 , t,⊗(−→t ), t′, χ−3 , where χ

−
1 and χ−3 are obtained from the induction hypothesis

(or by setting ε− = ε for empty subpaths): by condition (ii), the constraints we impose on I
by forming χ−1 and χ−3 are independent.

Let us rule out the other three orderings of d and d′: (a) ξ = χ1, s, t, χ2, t
′, s′, χ3, (b)

ξ = χ1, s, t, χ2, s
′, t′, χ3 or (c) ξ = χ1, t, s, χ2, t

′, s′, χ3. First observe that χ2 is not empty.
Indeed, if t ∼ql t′ (or t ∼

q
l s
′, or s ∼ql t′) then: l cannot be a cut of q because 〈t|s〉 and

〈t′|s′〉 ∈ C(q); l cannot be of the form (α(t1, · · · , tn), tn) because the trees t, t′, s, s′ are
pairwise disjoint; so l must be an axiom and we obtain a cycle in q.

Let u and v be the endpoints of χ2, and consider χ−2 ∈ P(p) with the same endpoints,
obtained by induction hypothesis. Necessarily, we have t ∼q,Jl u in cases (a) and (b), s ∼q,Jl u

in case (c), t′ ∼q,Jm v in cases (a) and (c), and s′ ∼q,Jm v in case (b), where l 6≡ m, and nor l nor
m is a cut: it follows that the same adjacencies hold in p for any extension I of J . Observe
that ⊗(−→t ) 6∈ χ−2 : otherwise, we would obtain a path t p ⊗(−→t ) (or ⊗(−→t ) p t

′) that we
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could extend into a cycle. Then in case (a), we obtain a cycle in p directly: t, χ−2 , t′,⊗(−→t ), t.
In cases (b) and (c), we deduce that `(−→s ) 6∈ χ−2 , and we obtain a cycle, e.g. in case (b):
t, χ−2 , s

′,`(−→s ),⊗(−→t ), t′, for any I such that I(`(−→s )) = s′.
We can now assume that each cut of p has at most one residual occurring as a subpath of

ξ. If no residual occurs in ξ, then we can set ξ− = ξ. Now fix c = 〈⊗(−→t )|` (−→s )〉 ∈ C(p) and
assume, w.l.o.g (otherwise, consider ξ), that ξ = χ1, t, s, χ2 with t ∈ −→t and s ∈ −→s . Then we
set I(`(−→s )) = s and ξ− = χ−1 , t, c, s, χ

−
2 ∈ P(p): this is the only case in which we impose a

value for I to construct ξ−, so this choice, and the choices we make to form χ−1 and χ−2 are
all independent. J

I Lemma 2. If ξ ∈ P(q) and c = 〈⊗(−→t )| ` (−→s )〉 ∈ C(p), then at most two residuals of
c occur as subpaths of ξ, and then we can write ξ = χ1, t, s, χ2, s

′, t′, χ3 with t, t′ ∈ −→t and
s, s′ ∈ −→s .

Proof. Assume ξ = χ1, d, χ2, d
′, χ3 and d = 〈t|s〉 and d′ = 〈t′|s′〉 with t, t′ ∈ −→t and s, s′ ∈ −→s .

Using Lemma 1, we establish that ξ = χ1, t, s, χ2, s
′, t′, χ3: we can exclude the other cases

exactly as in the proof of Lemma 1. Then, as soon as three residuals of c occur in ξ, a
contradiction follows. J

I Lemma 3. Slipknots are well-bracketed in the following sense: there is no path ξ =
d1, χ1, d2, χ2, d

′
1, χ3, d

′
2 ∈ P(q) such that both (d1, d

′
1) and (d2, d

′
2) are slipknots.

Proof. Assume c1 = 〈⊗(−→t 1)|`(−→s 1)〉, c2 = 〈⊗(−→t 2)|`(−→s 2)〉, and, for 1 ≤ i ≤ 2, di = (ti, si)
and d′i = (t′i, s′i), with ti, t

′
i ∈
−→
t i and si, s′i ∈

−→s i. By the previous lemma, we must have
ξ = t1, s1, χ1, t2, s2, χ2, s

′
1, t
′
1, χ3, s

′
2, t
′
2. Observe that nor χ−1 nor χ−3 can cross c1 or c2:

otherwise, we obtain a cycle in p. Then s1, χ
−
1 , t2, c1, s

′
2, χ
−
3 , t
′
1, c2, s1 is a cycle in p. J

I Corollary 4. Any path of q is of the form ζ1, c1, χ1, c
′
1, ζ2, . . . ζn, cn, χn, c

′
n, ζn+1 where each

subpath ζi is without slipknot, and each (ci, c′i) is a slipknot.

The previous result describes precisely how paths in q are related with those in p: it will
be crucial in the following.

3.2 Bounding the growth of cc
Now we show that we can bound cc(q) depending only on cc(p). For each ξ ∈ P(q), we
define the width wp(ξ) (or just w(ξ)): wp(ξ) = max{ccp(χ−)|χ subpath of ξ}. We have:

I Lemma 5. For any path ζ ∈ P(q), ccp(ζ−) ≤ wp(ζ) ≤ cc(p) and wp(ζ) ≤ ccq(ζ). If
moreover ζ has no slipknot, then wp(ζ) = ccq(ζ) = ccp(ζ−).

Defining ϕ : N→ N by ϕ(0) = 0 and ϕ(n+ 1) = 2(n+ 1) + (n+ 1)(ϕ(n)), we obtain:

I Lemma 6. If ξ ∈ P(q) then cc(ξ) ≤ ϕ(wp(ξ)).

Proof. The proof is by induction on w(ξ). If w(ξ) = 0, then we can easily check that cc(ξ) = 0.
Otherwise assume w(ξ) = n+ 1. Then we set ξ = ζ1, c1, χ1, c

′
1, ζ2, . . . ζk, ck, χk, c

′
n, ζk+1 as in

Corollary 4.
First observe that for all i ∈ {1, . . . , k}, w(χi) ≤ w(ξ) − 1. Indeed, ci, χi is a subpath

of ξ and w(ci, χi) = w(χi) + 1 by the definition of width. So, by induction hypothesis,
cc(χi) ≤ ϕ(n). We also have that

∑k+1
i=1 cc(ζi) ≤ w(ξ)− k. Observe indeed that cc(ξ−) =∑k+1

i=1 cc(ζi) + k, because of Lemma 5 applied to ζi, and because of the construction of ξ−
that contracts the slipknots ci, χi, c′i; also recall that cc(ξ−) ≤ w(ξ).
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We obtain:

cc(ξ) =
∑

1≤i≤k
cc(χi) +

∑
1≤j≤k+1

cc(ζj) + 2k ≤ kϕ(n) + w(ξ)− k + 2k

and, since k ≤ cc(ξ−) ≤ w(ξ) = n+1, we obtain cc(ξ) ≤ (n+1)ϕ(n)+2(n+1) = ϕ(n+1). J

Using Lemma 5 again, we obtain:

I Corollary 7. Let p⇒m q. Then, cc(q) ≤ ϕ(cc(p)).

I Remark. It is in fact possible to show that cc(q) ≤ 2n!cc(p), which is a better bound and
closer to the graphical intuition, but the proof is much longer, and we are only interested in
the existence of a bound.

4 Bounding the size of antireducts

For any tree, cut or net γ, we define the size of γ as #γ = card(T(γ)): graphically, #p is
nothing but the number of wires in p. In this section, we show that the loss of size during
parallel reduction is directly controlled by cc(p) and #q: more precisely, we show that the
ratio #p

#q is bounded by a function of cc(p).
First observe that the elimination of multiplicative cuts cannot decrease the size by more

than a half:

I Lemma 8. If p⇒m q then #p ≤ 2#q.

Proof. It is sufficient to observe that if c→m
−→c then #c = 2 + #−→c ≤ 2#−→c .4 J

4.1 Elimination of axiom cuts
Observe that:

if x ∈ V(γ) then #γ[t/x] = #γ + #t− 1;
if x 6∈ V(γ) then #γ[t/x] = #γ.

It follows that, in the elimination of a single axiom cut p→ax q, we have #p = #q + 1. But
we cannot reproduce the proof of Lemma 8 for ⇒ax: as stated in our introduction, chains of
axiom cuts reducing into a single wire are the source of the collapse of size. We can bound
the length of those chains by cc(p), however, and this allows us to bound the loss of size
during reduction.

I Lemma 9. If p⇒ax q then #p ≤ (2cc(p) + 1)#q.

Proof. Assume p = (〈x1|t1〉, . . . , 〈xn|tn〉,−→c ;−→s ) and q = (−→c ;−→s )[t1/x1] · · · [tn/xn] with xi 6∈
V(tj) for 1 ≤ i ≤ j ≤ n. In case cc(p) = 0, we have n = 0 and p = q so the result is
obvious. We thus assume cc(p) > 0: to establish the result in this case, we make the chains
of eliminated axiom cuts explicit.

Due to the condition on free variables, there exists a (necessarily unique) permutation of
〈x1|t1〉, . . . , 〈xn|tn〉 yielding a family of the form −→c 1, . . . ,

−→c k such that:

4 This is due to the fact that all the trees are strict, so −→c is not empty and #−→c ≥ 1. Without the
strictness condition, we would have to deal with annihilating reductions 〈⊗()|` ()〉 →m ε: this will be
discussed in the conclusion.
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for 1 ≤ i ≤ k, we can write −→c i = 〈xi0|xi1〉, . . . , 〈xini−1|xini
〉, 〈xini

|ti〉;
each −→c i is maximal with this shape, i.e. xi0 6∈ {x1, . . . , xn, t1, . . . , tn} and, in case ti is a
variable, ti 6∈ {x1, . . . , xn, t1, . . . , tn};
if i < j, then the cut 〈xini

|ti〉 occurs before 〈xjnj
|tj〉 in 〈x1|t1〉, . . . , 〈xn|tn〉.

It follows that if xi0 ∈ V(tj) then j < i, and then q = (−→c ;−→s )[t1/x1
0] · · · [tk/xk0 ], by applying

the same permutation to the substitutions as we did to cuts: we can do so because, by a
standard argument, if x 6= y, x 6∈ V(u) and y 6∈ V(u) then γ[u/x][v/y] = γ[v/y][u/x].

For 1 ≤ i ≤ k, since −→c i is a chain of ni + 1 cuts, it follows that ni ≤ cc(p) − 1. So
#p = #−→c + #−→s +

∑k
i=1(#ti + 2ni + 1) ≤ #−→c + #−→s +

∑k
i=1 #ti + k(2cc(p)− 1). Moreover

#q = #−→c + #−→s +
∑k
i=1 #ti − k. It follows that #p ≤ #q + 2kcc(p) and, to conclude, it

will be sufficient to prove that #q ≥ k.
For 1 ≤ i ≤ k, let Ai = {j > i | xj0 ∈ V(ti)}, and then let A0 = {i | xi0 ∈ V(−→c ,−→s )}. It fol-

lows from the construction that {A0, . . . , Ak−1} is a partition (possibly including empty sets)
of {1, . . . , k}. By construction, #ti > card(Ai). Now consider qi = (−→c ;−→s )[t1/x1

0] · · · [ti/xi0]
for 0 ≤ i ≤ k so that q = qk. For 1 ≤ i ≤ k, we obtain #qi = #qi−1 + #ti − 1 ≥
#qi−1 + card(Ai). Also observe that #q0 = #(−→c ;−→s ) ≥ card(Ai). We can then conclude:
#q = #qk ≥

∑k
i=0 card(Ai) = k. J

4.2 General case
Recall that any parallel cut elimination step p⇒ q can be decomposed into a multiplicative-
then-axiom pair of reductions: p⇒m q′ ⇒ax q. This allows us to bound the loss of size in
the reduction p⇒ q, using the previous results:

I Theorem 10. If p⇒ q then #p ≤ 4(ϕ(cc(p)) + 1)#q.

Proof. Consider first q′ such that p⇒m q′ and q′ ⇒ax q. By Lemma 8, #p ≤ 2#q′. Lemma
9 states that #q′ ≤ (2cc(q′) + 1)#q. Finally, Corollary 7, entails that cc(q′) ≤ ϕ(cc(p)), and
we can conclude: #p ≤ 2(ϕ(cc(p) + 1)#q) ≤ 4(ϕ(cc(p)) + 1)#q. J

I Corollary 11. If q is an MLL net and n ∈ N, then {p | p⇒ q and cc(p) ≤ n} is finite.

To be precise, due to our term syntax, the previous corollary holds only up to renaming
variables in axioms: we keep this precision implicit in the following.

It follows that, given an infinite linear combination of
∑
i∈I ai.pi, such that {cc(pi) | i ∈ I}

is finite, we can always consider an arbitrary family of reductions pi ⇒ qi for i ∈ I and form
the sum

∑
i∈I ai.qi: this is always well defined.

5 Taylor expansion

We now show how the previous results apply to Taylor expansion. For that purpose, we must
extend our syntax to MELL proof nets. Our presentation departs from Ehrhard’s [11] in our
treatment of promotion boxes: instead of introducing boxes as tree constructors labelled by
nets, with auxiliary ports as inputs, we consider box ports as 0-ary trees, that are related
with each other in a box context, associating each box with its contents. This is in accordance
with the usual presentation of promotion as a black box, and has two motivations:

In Ehrhard’s syntax, the promotion is not a net but an open tree, for which the trees
associated with auxiliary ports must be mentioned explicitly: this would complicate the
expression of Taylor expansion.
The nouvelle syntaxe imposes constraints on auxiliary ports, that are easier to express
when these ports are directly represented in the syntax.
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Then we show that if p is a resource net in the support of the Taylor expansion of an MELL
proof net P , then cc(p) (and in fact the length of any path in p) is bounded by a function
of P .

Observe that we need only consider the support of Taylor expansion, so we do not
formalize the expansion of MELL nets into infinite linear combinations of resource nets:
rather, we introduce T (P ) as a set of approximants. Also, as we limit our study to strict
nets, we will restrict T (P ) to those approximants that take at least one copy of each box of
P : this is enough to cover the case of weakening-free MELL.

5.1 MELL nets
In addition to the set of variables, we fix a denumerable set A of box ports: we assume given
an enumeration A = {abi | i, b ∈ N}. We call principal ports the ports ab0 and auxiliary ports
the other ports. In the so-called nouvelle syntaxe of MELL, contractions and derelictions are
merged together in a generalized contraction cell, and auxiliary ports must be premises of
such generalized contractions.

We introduce the corresponding term syntax, as follows. Raw pre-trees (S◦, T ◦, etc.)
and raw trees (S, T , etc.) are defined by mutual induction as follows:

T ::= x | ab0 | ⊗(T1, . . . , Tn) | `(T1, . . . , Tn) | ?(T ◦1 , . . . , T ◦n) and T ◦ ::= T | abi+1

requiring that each ⊗, ` and ? is of arity at least 1. We write V(S) (resp. B(S)) for the set
of variables (resp. of principal and auxiliary ports) occurring in S. A tree (resp. a pre-tree)
is a raw tree (resp. raw pre-tree) in which each variable and port occurs at most once. A cut
is an unordered pair of trees C = 〈T |S〉 with disjoints sets of variables and ports.

We now define box contexts and pre-nets by mutual induction as follows. A box context
Θ is the data of a finite set BΘ ⊂ N, and, for each b ∈ BΘ, a closed pre-net Θ(b), of the form
(Θb;
−→
C b;Tb,

−→
S ◦b). Then we write −→S ◦b = S◦b,1, . . . , S

◦
b,nb

. A pre-net is a triple P ◦ = (Θ;−→C ;−→S ◦)
where Θ is a box context, each variable and port occurs at most once in −→C ,−→S ◦, and moreover,
if abi ∈ B(−→C ;−→S ◦) then b ∈ BΘ and i ≤ nb. A closed pre-net is a pre-net P ◦ = (Θ;−→C ;−→S ◦)
such that x occurs iff x occurs, and moreover, if b ∈ BΘ then each abi with 0 ≤ i ≤ nb occurs.
Then a net is a closed pre-net of the form P = (Θ;−→C ;−→S ).

We write T(γ) for the set of sub-pre-trees of a pre-tree, or cut, or pre-net γ: the definition
extends that for subtrees in MLL nets, moreover setting T(a) = {a} for any a ∈ A (so we
do not look into the content of boxes). As for MLL, we set #γ = card(T(γ)). We write
depth(P ◦) for the maximum level of nesting of boxes in P ◦, i.e. the inductive depth in the
previous definition. Also, the size of MELL pre-nets includes that of their boxes: we set
size(P ◦) = #P ◦ +

∑
b∈BΘ

size(Θ(b)).
We extend the switching functions of MLL to ? links: for each T = ?(T1, . . . , Tn),

I(T ) ∈ {T1, . . . , Tn}, which induces a new adjacency relation T ∼T,I(T ) I(T ). We also
consider adjacency relations ∼b for b ∈ BΘ, setting abi ∼b abj whenever 0 ≤ i < j ≤ nb: w.r.t.
paths, a box be behaves like an (nb + 1)-ary axiom link and the contents is not considered.
We write P(P ◦) for the set of paths in P ◦. We say a pre-net P ◦ is acyclic if there is no cycle
in P(P ◦) and, inductively, each Θ(b) is acyclic. From now on, we consider acyclic pre-nets
only.

5.2 Resource nets and Taylor expansion
The Taylor expansion of a net P will be a set of resource nets: these are the same as the
multiplicative nets introduced before, except we have two new connectives ! and ?. Raw trees
are given as follows:

t ::= x | ⊗(t1, . . . , tn) | `(t1, . . . , tn) | !(t1, . . . , tn) | ?(t1, . . . , tn).
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Again, we will consider strict trees only: each ⊗, `, ! and ? is of arity at least 1. In resource
nets, we extend switchings to ? links as in MELL nets, and for each t = ?(t1, . . . , tn), we set
t ∼t,I(t) I(t). Moreover, for each t = !(t1, . . . , tn), we set t ∼t,ti ti for 1 ≤ i ≤ n.

We are now ready to introduce the expansion of MELL nets. During the construction, we
need to track the conclusions of copies of boxes, in order to collect copies of auxiliary ports
in the external ? links: this is the rôle of the intermediate notion of pre-Taylor expansion.

I Definition 12. Taylor expansion is defined by induction on depth as follows. Given a
closed pre-net P ◦ = (Θ;−→C ;−→S ◦), a pre-Taylor expansion of P ◦ is any pair (p, f) of a resource
net p = (−→c ;−→t ), together with a function f : −→t → −→S ◦ such that f−1(T ) is a singleton
whenever T ∈ −→S ◦ is a tree, obtained as follows:

for each b ∈ BΘ, fix a number kb > 0 of copies;
for 1 ≤ j ≤ kb, fix a pre-Taylor expansion (pbj , f bj ) of Θ(b), and write pbj = (−→c bj ; tbj ,

−→s bj) so
that f bj (tbj) = Tb;
up to renaming the variables of the pbj ’s, ensure that the sets V(pbj) are pairwise disjoint,
and also disjoint from V(−→C ) ∪V(−→S ◦);
(−→c ;−→t ) is obtained from (−→C ;−→S ◦) by replacing each ab0 with !(tb1, . . . , tbkb

) and each abi+1

with an enumeration of
⋃kb

j=1(f bj )−1(S◦b,i+1) – thus increasing the arity of the ?-connective
having abi+1 as a premise, or increasing the number of trees in −→t if abi+1 ∈

−→
S ◦ – and then

concatenating −→c bj for b ∈ BΘ and 1 ≤ j ≤ kb;
for t ∈ −→t , set f(t) = abi+1 if f bj (t) = S◦b,i+1 for some j, otherwise let f(t) be the only
pre-tree of −→S ◦ such that t is obtained from f(t) by the previous substitution.

The Taylor expansion5 of a net P is then T (P ) = {p | (p, f) is a pre-Taylor expansion of P}.

5.3 Paths in Taylor expansion
In the following, we fix a pre-Taylor expansion (p, f) of P ◦ = (Θ;−→C ;−→S ◦), and we describe
the structure of paths in p. Observe that if t ∈ T(p) then:

either t is at top level, i.e. t is obtained from some T ∈ T(P ◦) \ A by substituting box
ports with trees from resource nets, and then we say t is outer and write t∗ = T ;
or t is in a copy of a box, i.e. t ∈ T(pbj) for some b ∈ BΘ and 1 ≤ j ≤ kb, and then we say
t is inner and write β(t) = b and ι(t) = (b, j);
or t is a cocontraction, i.e t = !(tb1, . . . , tbkb

) for some b ∈ BΘ, and then we write β(t) = b

and t = !b.
We moreover distinguish the boundaries, i.e. the cocontractions of p, together with all the
elements of the families −→s bj of Definition 12: we write b!bc = ab0 and bsc = f(s) if s ∈ −→s bj .

We say a subpath ξ = t1, . . . , tn of χ ∈ P(p) is an inner subpath (resp. an outer subpath)
if each ti is inner (resp. outer), and ξ is a box subpath if each ti is inner or a cocontraction.

I Lemma 13. If ξ = t0, . . . , tn is an inner path of p then ι(ti) = ι(tj) for all i and j. We
then write β(ξ) = b and ι(ξ) = (b, j).

Proof. If t ∼ s and t and s are both inner then ι(t) = ι(u). J

5 More extensive presentations of Taylor expansion of MELL nets exist in the literature, in various styles
[19, 17, 6]. Our only purpose here is to introduce sufficient notations to present our analysis of the
length of paths in T (P ) by a function of the size of P .
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I Lemma 14. If ξ is a box path of p then ξ is an inner path or there is b ∈ BΘ such that
ξ = χ1, !b, χ2 with χ1 and χ2 inner subpaths. In the latter case: if χ1 6= ε then β(χ1) = b; if
χ2 6= ε then β(χ2) = b; and ι(χ1) 6= ι(χ2) in case both subpaths are non empty.

Proof. If t ∼ s and t and s are both inner then ι(t) = ι(u); if t ∼ !b and t is inner then
β(t) = b; and no other adjacency relation can hold between the elements of a box path. J

I Lemma 15. If ξ = t0, . . . , tn is outer then ξ∗ = t∗0, . . . , t
∗
n ∈ P(P ◦).

Proof. If t and s are outer, then t ∼p,Il s iff t∗ ∼P
◦,I∗

l∗ s∗, where I∗ is obtained by restricting
I to outer trees and then composing with −∗. Moreover, −∗ is injective. J

I Lemma 16. Assume ξ = ξ0, χ1, ξ1, . . . , χn, ξn ∈ P(p) where each χi is a box path and each
ξi is outer. Then we can write χi = ui, χ

′
i, vi where ui and vi are boundaries. Moreover,

β(χi) 6= β(χj) when i 6= j, and we obtain ξ∗ = ξ∗0 , bu1c, bv1c, ξ∗1 , . . . , bunc, bvnc, ξ∗n ∈ P(P ◦).

Proof. The proof is by induction on n. If n = 0, i.e. ξ is outer, then we conclude by the
previous lemma. We can thus assume n > 0.

The endpoints of χi are boundaries, because χi is a box path and the endpoints of ξi−1
and ξi are outer. Since each boundary is adjacent to at most one outer tree, of which it is an
immediate subtree or against which it is cut, χi is not reduced to a single boundary. For
1 ≤ i ≤ n, write χi = (ui, χ′i, vi).

Write bi = β(χi). Observe that, up to −∗, the only new adjacency relations in ξ∗ are the
buic ∼bi

bvic for 1 ≤ i ≤ n. Hence, to conclude that ξ∗ is indeed a path, it will be sufficient
to prove that bi 6= bj when i 6= j. If i < j then, by applying the induction hypothesis, we
obtain ζ = ξ∗i , . . . , buj−1c, bvj−1c, ξ∗j−1 ∈ P(P ◦). Then, if we had bi = bj , we would obtain a
cycle bvic, ζ, bujc, bvic in P ◦, which is a contradiction. J

From Lemma 16, we can derive that p is acyclic as soon as P ◦ is. Indeed, if ξ is a cycle
in p:

either there is a tree at top level in ξ and we can apply Lemma 16 to obtain a cycle in P ◦;
or ξ is an inner path, and we proceed inductively in Θ(β(ξ)).

Our final result is a quantitative version of this corollary: not only there is no cycle in
p but the length of paths in p is bounded by a function of P ◦. If ξ = t1, . . . , tn, we write
|ξ| = n for the length of ξ.

I Theorem 17. If p ∈ T (P ◦) and ξ ∈ P(p) then |ξ| ≤ 2depth(P◦)size(P ◦).

Proof. Write ξ = ξ0, χ1, ξ1, . . . , χn, ξn ∈ P(p) where each χi is a box path and each ξi is an
outer path.

Write bi = β(χi). By Lemma 14, χi is either an inner path or of the form ζi, !bi , ζ
′
i with

ζi and ζ ′i inner subpaths in bi. By induction hypothesis applied to those inner subpaths, we
obtain |χi| ≤ 1 + 2× 2depth(Θ(bi))size(Θ(bi)).

Let ξ∗ be as in Lemma 16: we have |ξ∗| = 2n +
∑n
i=0|ξ∗i | ≤ #(P ◦). It follows that∑n

i=0|ξi| ≤ #(P ◦)− 2n.
We obtain: |ξ| =

∑n
i=0|ξi|+

∑n
i=1|χi| ≤ #(P ◦)−2n+

∑n
i=1(1+2depth(Θ(bi)+1)size(Θ(bi)))

hence |ξ| ≤ #(P ◦) +
∑n
i=1 2depth(Θ(bi)+1)size(Θ(bi)) and, since depth(Θ(bi)) < depth(P ◦),

|ξ| ≤ 2depth(P◦)(#(P ◦)+
∑n
i=1 size(Θ(bi))

)
. We conclude recalling that size(P ◦) = #(P ◦)+∑

b∈BΘ
size(Θ(b)). J

In particular, we obtain cc(p) ≤ 2depth(P◦)size(P ◦).
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5.4 Cut elimination in Taylor expansion
In resource nets, the elimination of the cut 〈?(t1, . . . , tn)|!(s1, . . . , sm)〉 yields the finite sum∑
σ:{1,...,n}∼→{1,...,m}〈t1|sσ(1)〉, . . . , 〈tn|sσ(n)〉. It turns out that the results of Sections 3 and 4

apply directly to resource nets: setting 〈?(t1, . . . , tn)|!(s1, . . . , sn)〉 → 〈t1|sσ(1)〉, . . . , 〈tn|sσ(n)〉
for each permutation σ, we obtain an instance of multiplicative reduction, as the order of
premises is irrelevant from a combinatorial point of view – this is all the more obvious because
no typing constraint was involved in our argument. In other words, Corollary 11 also applies
to the parallel reduction of resource nets. With Theorem 17, we obtain:

I Corollary 18. If q is a resource net and P is an MELL net, {p ∈ T (P ); p⇒ q} is finite.

6 Conclusion

Recall that our original motivation was the definition of a reduction relation on infinite linear
combinations of resource nets, simulating cut elimination in MELL through Taylor expansion.
We claim that a suitable notion is as follows:

I Definition 19. Write
∑
i∈I aipi ⇒

∑
i∈I aiqi as soon as:

for each i ∈ I, the resource net pi reduces to qi (which may be a finite sum);
for any resource net q, there are finitely many i ∈ I such that q is a summand of qi.

In particular, if
∑
i∈I aipi is a Taylor expansion, then Theorem 18 ensures that the second

condition of the definition of ⇒ is automatically valid. The details of the simulation in a
quantitative setting remain to be worked out, but the main stumbling block is now over: the
necessary equations on coefficients are well established, as they have been extensively studied
in the various denotational models; it only remained to be able to form the associated sums
directly in the syntax.

Let us mention that another important incentive to publish our results is the normalization-
by-evaluation programme that we develop with Guerrieri, Pellissier and Tortora de Falco [1] –
which is limited to strict nets for independent reasons. Indeed, if P is cut-free, the elements
of the semantics of P are in one-to-one correspondence with T (P ). Then, given a sequence
P1, . . . , Pn of MELL nets such that Pi reduces to Pi+1 by cut elimination and Pn is normal,
from pn ∈ T (Pn) we can construct a sequence p1, . . . , pn−1 of resource nets, such that each
pi ∈ T (Pi) and pi ⇒ pi+1. Then our results ensure that #p1 is bounded by a function of n,
size(P1) and #pn, which is a crucial step of our construction.

We finish the paper by reviewing the restrictions that we imposed on our framework.
Strictness is not an essential condition for the main results to hold. It is possible to deal with
units and weakenings (0-ary `, ⊗ and ? nodes), and then with complete Taylor expansion,
including 0-ary developments of boxes (generating weakenings and coweakenings). In this
case, we need to introduce additional structure – jumps from weakenings, that can be part
of switching paths – and some other constraint – a bound on the number of weakenings that
can jump to a given tree. The proof is naturally longer, and the bounds much greater, but
the finiteness property still holds. We leave a formal treatment of this extension for further
work.

The other notable constraint is the use of the nouvelle syntaxe, with generalized expo-
nential links. It is also possible to deal with a standard representation, including separate
derelictions and coderelictions, with a finer grained cut elimination procedure. This introduces
additional complexity in the formalism but, by contrast with lifting the strictness condition,
it essentially requires no new concept or technique: the difficulty in parallel reduction is to
control the chains of cuts to be simultaneously eliminated, and decomposing cut elimination
into finer reduction steps can only decrease the length of such chains.
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Abstract
We compare three models of the probabilistic λ-calculus: the probabilistic Böhm trees of Leventis,
the probabilistic concurrent games of Winskel et al., and the weighted relational model of Ehrhard
et al. Probabilistic Böhm trees and probabilistic strategies are shown to be related by a precise
correspondence theorem, in the spirit of existing work for the pure λ-calculus. Using Leventis’
theorem (probabilistic Böhm trees characterise observational equivalence), we derive a full ab-
straction result for the games model. Then, we relate probabilistic strategies to the weighted
relational model, using an interpretation-preserving functor from the former to the latter. We
obtain that the relational model is also fully abstract.
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1 Introduction

The interest in probabilistic programs in recent years, driven in particular by applications in
machine learning and statistical modelling, has triggered the need for theoretical foundations,
going beyond the pioneering work of Kozen [14] and Saheb-Djahromi [21]. Although a variety
of approaches exist, we focus on the probabilistic λ-calculus Λ+, which extends the pure
(untyped) λ-calculus with a probabilistic choice operator. The extension is natural and
applications are quick to arise – see for instance [3]. But in order for Λ+ to become a useful
formal model for probabilistic computation, the extensive classical theory of the λ-calculus
must be readapted.

Among the existing research in this direction, we are especially interested in the work
of Ehrhard, Pagani and Tasson [11], and of Leventis [16, 17]. In [11], the authors define an
operational semantics for Λ+ and study a model in the category of probabilistic coherence
spaces, an existing model [9] of Probabilistic PCF. They prove an adequacy theorem for Λ+,
and this result also applies to the weighted relational model, of which probabilistic coherence
spaces are a refinement.
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More recently, the PhD thesis of Leventis [16] offers a thorough exploration of the
syntactical aspects of the calculus. In particular the author defines a notion of probabilistic
Böhm tree, and redevelops the Böhm theory of the λ-calculus in a probabilistic setting. This
includes Böhm ’s separation theorem: probabilistic Böhm trees, in their infinitely extensional
form, precisely characterise observational equivalence in Λ+.

In this paper, we propose an alternative model in the framework of concurrent games,
integrating ideas from our earlier work on a concurrent games model of probabilistic PCF [5]
and from Ker, Ong and Nickau’s fully abstract semantics of the pure untyped λ-calculus [13].

In [13], an exact correspondence is proved between strategies and infinitely extensional
Böhm trees. Drawing inspiration from that work, we relate probabilistic strategies and
probabilistic Böhm trees, but unlike [13], the correspondence is not bijective, because of the
additional branching information contained in probabilistic strategies. By quotienting out
this information, we derive from Leventis’ theorem a full abstraction result for the games
model.

Finally, we study a functor from the probabilistic games model to the weighted relational
model. This functor is a time-forgetting operation on strategies, in the spirit of [1]. Note that
proving the functoriality of such operations is usually challenging even without probabilities,
see for example Melliès’ work [19] – here, we address this by leveraging a “deadlock-free
lemma” proved for concurrent strategies in [5]. We show that this functor preserves the
interpretation of Λ+, with significant consequences: Ehrhard et al.’s adequacy result can be
lifted to strategies, and the full abstraction result obtained for games via probabilistic Böhm
trees can be shown to hold also for the weighted relational model, so far only known to be
adequate1.

In Section 2, we present Λ+ and its operational semantics; we also recall Leventis’ work
on probabilistic Böhm trees and define concurrent probabilistic strategies, hinting at the
correspondence between the two. In Section 3, we outline the construction of a category of
concurrent games and probabilistic strategies, and the reflexive object that it contains. We
then study, in Section 4, the correspondence between probabilistic strategies and probabilistic
Böhm trees, and prove full abstraction for the games model. Finally, in Section 5, we collapse
probabilistic strategies down to weighted relations, thus showing full abstraction for the
relational model.

2 The Probabilistic λ-calculus

2.1 Syntax
The set Λ+ of terms of the probabilistic λ-calculus is defined by the following grammar,
where p ranges over the interval [0, 1] and x over an infinite set Var:

M,N ::= x | λx.M |MN |M +p N.

Write Λ+
0 for the set of closed terms, i.e. those with no free variables.

The operator +p represents probabilistic choice, so that a term of the form M +p N

has two possible reduction steps: to M , with probability p, and to N , with probability
1− p. Accordingly, the reduction relation we consider is a Markov process over the set Λ+,
and corresponds to a probabilistic variant of the standard head-reduction. It is defined
inductively:

1 Independently and using a different method, Leventis and Pagani have obtained an alternative proof of
full abstraction, but this work is so far unpublished.
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(λx.M)N 1−→M [N/x] M +p N
p−→M M +p N

1−p−−→ N

M
p−→M ′

λx.M
p−→ λx.M ′

M
p−→M ′ M 6= λx.P

MN
p−→M ′N

For M,N ∈ Λ+, there may be many reduction paths from M to N . The weight of a
path π : M p1−→ . . .

pn−→ N is the product of the transition probabilities: w(π) =
∏n
i=1 pi. The

probability of M reducing to N is then defined as Pr(M → N) =
∑
π:M→∗N w(π).

The normal forms for this reduction are terms of the form λx0 . . . xn−1. y M0 . . .Mk−1,

where n, k ∈ N and Mi ∈ Λ+ for all i. Such terms are called head-normal forms (hnfs). A
pure λ-term has at most one hnf called – if it exists – its hnf, though of course, this does not
hold in the presence of probabilities.

Given a set H of hnfs, we set Pr(M → H) =
∑
H∈H Pr(M → H). The probability

of convergence of a term M , denoted Pr⇓(M), is the probability of M reducing to some
hnf: Pr⇓(M) = Pr(M → {H ∈ Λ+ | H hnf}). Finally we say that two terms M and N

are observationally equivalent, written M =obs N , if for all contexts C[ ], Pr⇓(C[M ]) =
Pr⇓(C[N ]).

2.2 Probabilistic Böhm trees
Infinitely extensional Böhm trees for pure λ-terms

There are several notions of infinite normal forms for pure λ-terms, including e.g. the Böhm
trees [2] and the Lévy-Longo trees, among others. The normal forms for the probabilistic
λ-terms considered in this paper build on the infinitely extensional Böhm trees (also
called Nakajima trees), which provide a notion of infinitely η-expanded normal form.

The infinitely extensional Böhm tree of M is in general an infinite tree, which can be
defined as the limit of a sequence of finite-depth approximants. In fact those approximants
will suffice for the purposes of this paper: given a λ-term M and d ∈ N, the tree BTd(M) is
⊥ if d = 0 or if M has no head-normal form, and

λz0 . . . zn−1x0x1 . . . • y

BTd−1(P0) . . . BTd−1(Pk−1) BTd−1(x0) BTd−1(x1) . . .

if d > 0 and M has hnf λz0 . . . zn−1.y P0 . . . Pk−1.
In order to deal with issues of α-renaming, we adopt the same convention as Leventis [16],

whereby the infinite sequence of abstracted variables at the root of a tree of depth d > 0 is
labelled xd0, xd1, . . . so that any tree is determined by the pair (y, (Tn)n∈N) of its head variable
and sequence of subtrees.

Leventis’ probabilistic trees

Infinitely extensional Böhm trees for the λ-calculus have striking properties: they characterise
observational equivalence of terms, and as a model they yield the maximal consistent
sensible λ-theory (see [2] for details). In his PhD thesis, Leventis [16] proposes a notion of
probabilistic Böhm tree which plays the same role for Λ+. Intuitively, because a term of
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the form λx0 . . . xn−1.z P0 . . . Pk−1 +p λy0 . . . ym−1.w Q0 . . . Ql−1 has two hnfs, it may be
represented by a probability distribution over trees of the form of that above. Accordingly,
two different kinds of trees are considered: value trees, representing head-normal forms
(without probability distribution at top-level), and probabilistic Böhm trees, representing
general terms:

I Definition 1. For each d ∈ N, the sets PT d of probabilistic Böhm trees of depth d
and VT d of value trees of depth d are defined as:

VT 0 = ∅,

VT d+1 =
{

(y, (Tn)n∈N) | y ∈ Var and ∀n ∈ N, Tn ∈ PT d
}

and

PT d =
{
T : VT d → [0, 1] |

∑
t∈VT d T (t) ≤ 1

}
.

We can then assign trees to individual terms:

I Definition 2. Given M ∈ Λ+ and d ∈ N, its probabilistic Böhm tree of depth d is
the tree PTd(M) ∈ PT d defined as follows:

PTd(M) : VT d −→ [0, 1]
t 7−→ Pr(M → {H hnf | VTd(H) = t})

where for any hnf H = λz0 . . . zn−1.y P0 . . . Pk−1, the value tree of depth d of H is
defined as

VTd(H) =
(
y,
(
PTd−1 (P0) , . . . ,PTd−1 (Pk−1) ,PT d−1 (xdn) , . . .)) .

Consider for example the term M1 = λxy.x (y+ 1
3

(λz.z)), a head-normal form. Figure 1a
outlines the first steps in the construction of its value tree of depth d, for some fixed d ≥ 2;
note that we use the symbol δt to denote the distribution in which t has probability 1, and
all other trees 0.

Infinitely extensional probabilistic Böhm trees precisely characterise observational equi-
valence in Λ+; writing M =PT N if for every d ∈ N, PTd(M) = PTd(N), we have:

I Theorem 3 (Leventis [16]). For any M,N ∈ Λ+, M =obs N if and only if M =PT N .

So infinitely extensional probabilistic Böhm trees provide a fully abstract interpretation of
the probabilistic λ-calculus. We will see now that similar trees arise as probabilistic strategies
when interpreting λ-terms in a denotational games model.

2.3 Strategies and event structures
Moving towards our game semantics of Λ+, we will first introduce our probabilistic strategies
as a more economical, syntax-free presentation of probabilistic Böhm trees. The usual
correspondence between Böhm trees and innocent strategies [12, 13] is thus naturally extended
to the probabilistic and nondeterministic case.

First, we notice that the precise name given to variables in e.g. Figure 1a does not matter.
Techniques like De Bruijn levels or indices do not apply here since we abstract infinitely many
variables at each level – however, a variable occurrence is uniquely identified by a pointer
to the node where it was abstracted, along with a number n, expressing that the variable
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λxd0x
d
1x
d
2 . . . • xd0

1
3δVTd−1(xd

1) + 2
3δVTd−1(λz.z)δVTd−1(xd

2)δVTd−1(xd
3) . . .

where VTd−1(xdl ) (for l ∈ N) and VTd−1(λz.z) are
λxd−1

0 xd−1
1 xd−1

2 . . . • xdl

δVTd−2(xd−1
0 )δVTd−2(xd−1

1 ) . . .

λxd−1
0 xd−1

1 xd−1
2 . . . • xd−1

0

δVTd−2(xd−1
1 )δVTd−2(xd−1

2 ) . . .

and so on.
(a) As a value tree of depth d ≥ 2.

	

⊕0

	0 	i

⊕1 ⊕0 ⊕i+1

	j 	k ...

⊕j ⊕k+1

...
...

1
3

2
3

(b) As a probabilistic strategy.

Figure 1 Two interpretations of the term M1 = λxy.x (y + 1
3

(λz.z)).

was the (n+ 1)-th introduced at this node. For example, the variable xd0 is expressed with a
pointed to the initial node, along with number 0. As a consequence of this representation,
we can omit the abstractions: at each node, there are always countably many variables being
introduced, and their name does not matter as they will be referred to differently.

Next, we split each node of the Böhm tree into two: first a node intuitively carrying the
abstractions (the target of pointers – we refer to these nodes as negative), and one carrying
the variable occurrence (the source of pointers – we refer to those as positive). Besides
bringing us closer to games, this allows us to easily distinguish the two kinds of branching
of probabilistic Böhm trees. The different arguments of a variable node form a negative
branching: each comes with its own (implicit) distinct set of fresh variables, and a subtree
(by convention, we annotate by n the negative node corresponding to the nth argument). In
contrast, for a probabilistic choice such as 1

3δVTd−1(xd
1) + 2

3δVTd−1(λz.z) in Figure 1a, the two
subtrees start by defining the same variables – so instead we represent this using a positive
branching, where we further annotate the first node of each branch with its probability.

Altogether, and ignoring the wiggly line for now, the reader may check that
the diagram of Figure 1b matches the Böhm tree of Figure 1a according to these conventions
(the correspondence will be made formal in Section 4). Read from top to bottom, these
diagrams have an interactive flavour: they describe the actions of a player ⊕ depending on
those of its opponent 	. Our formalisation in terms of strategies will follow this intuition.

Probabilistic Böhm trees as probabilistic event structures

Now, we formalise the representation introduced above as a probabilistic strategy in the
sense of [24], i.e. a form of probabilistic event structure. In this section we only provide
this as a static representation, and leave the mechanism to compose strategies for Section
3. Our strategies (such as the one of Figure 1b) involve a partial order: the dependency
relation (going from top to bottom); a relation indicating conflict and generated
by probabilistic choice; and an annotation for probabilities. These are naturally formalised
as probabilistic concurrent strategies [24] (though for the purposes of this paper we will only
make use of sequential such strategies). We first recall the definition of event structures.
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I Definition 4. An event structure [22] is a tuple (E,≤,Con) where E is a set of events,
≤ a partial order indicating causal dependency, and Con a non-empty set of consistent
finite subsets of E, such that

[e] = {e′ | e′ ≤ e} is finite for all e ∈ E
{e} ∈ Con for all e ∈ E
Y ⊆ X ∈ Con =⇒ Y ∈ Con
X ∈ Con and e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

The event structures we consider additionally have a polarity function pol : E → {+,−}
indicating for each event whether it is a move of Player (+) or Opponent (−). We call them
event structures with polarity (esps).

We fix some notation. Write e _ e′ for immediate causality, i.e. e < e′ with no events
in between. Write C(E) for the set of finite configurations of E, i.e. those finite x ⊆ E such
that x ∈ Con and x is down-closed: if e ≤ e′ ∈ x then e ∈ x. If E has polarity, we sometimes
annotate an event e to specify its polarity, as in e+, e−. If x, y ∈ C(E), write x ⊆+ y (resp.
x ⊆− y) if x ⊆ y and every event in y \ x has positive (resp. negative) polarity.

Ignoring probabilities and pointers, the diagram of Figure 1b is an esp: ≤ is the transitive
reflexive closure of _, and consistent sets are those finite sets whose down-closure do not
contain two events related by the immediate conflict . We now equip esps with
probabilities, which comes in the form of a [0, 1]-valued function called a valuation.

For the forest-like event structures required to represent probabilistic λ-terms, it suffices to
fix, for each Opponent event, a probability distribution on the Player events that immediately
follow, as in Figure 1b. But to compose them we apply the more general machinery of [24],
where valuations assign a coefficient to each configuration and not simply to each event. For
x ∈ C(E), the coefficient v(x) is the probability that the configuration x will be reached in
an execution, provided the Opponent moves in x occur. The following definition is from [24]:

I Definition 5. A probabilistic event structure with polarity consists of an esp (E,≤
,Con, pol) and a valuation, that is, a map v : C(E)→ [0, 1] satisfying

v(∅) = 1;
if x ⊆− y, then v(x) = v(y); and
if y ⊆+ x1, . . . , xn, then

v(y) ≥
∑
I

(−1)|I|+1 v

(⋃
i∈I

xi

)

where I ranges over non-empty subsets of {1, . . . , n} such that
⋃
i∈I xi is a configuration.

Leaving aside pointers the diagram of Figure 1b represents a probabilistic esp, setting
the valuation of a configuration x to be 1

3 (resp. 2
3 ) if it contains the event annotated with 1

3
(resp. 2

3 ), and 1 otherwise – a configuration cannot contain both labelled events.
Probabilistic strategies are certain probabilistic esps, equipped with a labelling map into

the game they play on. Games are themselves esps, with the following particular shape:

I Definition 6. An arena is an esp A which is
forest-shaped: if a, b, c ∈ A with a ≤ b and c ≤ b then a ≤ c or c ≤ a; and
alternating: if a _ b then pol(a) 6= pol(b).
race-free: if x ∈ C(A) has x ⊆− y ∈ C(A) and x ⊆+ z ∈ C(A), then y ∪ z ∈ C(A).
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Usually in game semantics, arenas represent types. For our untyped language, strategies
representing terms all play on a universal arena U , introduced soon. For now though, we
define a probabilistic strategy playing on arbitrary arena A as an esp, labelled by A.

I Definition 7. A probabilistic strategy on A consists of a probabilistic esp S, and a
labelling function σ : S → A on events, preserving polarity, and such that:
(1) σ preserves configurations: for every x ∈ C(S), σx ∈ C(A);
(2) σ is locally injective: if s, s′ ∈ x ∈ C(S) and σs = σs′, then s = s′;
(3) σ is receptive: for x ∈ C(S), if σx ⊆− y ∈ C(A), there is a unique x ⊆ x′ ∈ C(S) such

that σx′ = y;
(4) σ is courteous: for s, s′ ∈ S, if s _S s′ and if pol(s) = + or pol(s′) = −, then

σs _A σs
′.

Conditions (1) and (2) express that σ is amap of event structures from S to A. Conditions
(3) and (4) are there to restrict the behaviour of Player: they prevent any further constraints
from being put on Opponent events than those already specified by the game.

The diagram of Figure 1b presents a probabilistic strategy σ : S → A – or more precisely
the diagram presents S, with the pointers being representations of the immediate dependency
in A of positive moves (though we do not display A for lack of space).

Winskel [24], building on previous work [20], showed how to compose probabilistic
strategies and organise them into a category. But his games are affine, and cannot deal with
the replication of resources. In recent work [5], we have extended probabilistic strategies
with symmetry, that augments the expressivity of esps by allowing interchangeable copies of
the same event. In the next section we introduce probabilistic strategies with symmetry, and
give the interpretation of Λ+. Because of this replication of resources the interpretation of
the term M1 of Figure 1 will be an expansion of Figure 1b, taking into account Opponent’s
replications – and in general, our correspondence theorem will associate a probabilistic Böhm
tree with its expansion in that sense, formulated as a probabilistic strategy.

3 Game semantics for Λ+

In this section we construct our game semantics for Λ+. The category of games we use is
close to our earlier concurrent games model of probabilistic PCF [5], in which we introduce a
universal arena inspired from [13].

3.1 Games and strategies with symmetry
Symmetry in event structures [23] can be presented via isomorphism families:

I Definition 8. An isomorphism family on an event structure E is a set Ẽ of bijections
between configurations of E, such that:

Ẽ contains all identity bijections, and is closed under composition and inverse of bijections.
For every θ : x ∼= y ∈ Ẽ and x′ ∈ C(E) such that x′ ⊆ x, then θ|x′ ∈ Ẽ.
For every θ : x ∼= y ∈ Ẽ and every extension x ⊆ x′ ∈ C(E), there exists a (non-necessarily
unique) y ⊆ y′ ∈ C(E) and an extension θ ⊆ θ′ such that θ′ : x′ ∼= y′ ∈ Ẽ.

As usual [23], it follows from these axioms that any θ ∈ Ẽ is an order-isomorphism, i.e.
preserves and reflects the order. An event structure with symmetry is a pair (E, Ẽ),
with Ẽ an isomorphism family on E. If E has polarity, then we ask that every θ ∈ Ẽ

preserves it, and call (E, Ẽ) an event structure with symmetry and polarity (essp).
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We illustrate this definition by presenting as an essp the universal arena – the game
that Λ+ strategies will play on. It is an infinitely deep tree, with at every level, ω available
moves, corresponding to calls from one of the players to a variable in context. There are ω
‘symmetric’ copies of each move. Formally:

I Definition 9. The esp (U,≤,Con, pol) is defined as having:
events: U = (N× N)∗, finite sequences of ordered pairs;
causality: s ≤ t if s is a prefix of t;
consistency: no conflicts, Con = Pfin(U);
polarity: pol(s) = − if |s| is even, + if it is odd.

In a pair (m,n) ∈ N× N, m represents the variable address (the subscript in Figure 1b) and
n is the copy index of the move (not displayed in Figure 1b).

We now add symmetry to U , following the intuition that different copies of the same
move should be interchangeable. The isomorphism family Ũ is generated by an equivalence
relation ∼ on events, defined as the smallest equivalence relation satisfying s ∼ s′ =⇒
s · (m,n) ∼ s′ · (m,n′) for any s, s′ ∈ U and m,n, n′ ∈ N. Then, a bijection θ : x ∼= y between
configurations of U is in Ũ whenever for all e ∈ x, e ∼ θ(e).

The elements of Ũ are reindexing bijections, which may update the copy indices of moves
in a configuration. In the sequel, we will identify strategies differing only by the choice of
positive copy indices, hence we need to formally identify the bijections in Ũ which do not
affect Opponent’s copy indices. Because of the dual nature of games we must do the same for
Player; thus we define ∼+ and ∼− to be the smallest equivalence relations on U satisfying:

s ∼p s′ =⇒ s · (m,n) ∼p s′ · (m,n) (for p ∈ {+,−})
s ∼+ s′ and |s| is even =⇒ s · (m,n) ∼+ s′ · (m,n′)
s ∼− s′ and |s| is odd =⇒ s · (m,n) ∼− s′ · (m,n′)

for any s, s′,m, n, n′. Just like ∼ generates Ũ , the relations ∼+ and ∼− generate isomorphism
families Ũ+ and Ũ−, respectively.

In general, the compositional mechanism will require all arenas to come with similar data:

I Definition 10. A ∼-arena is a tuple A = (A, Ã, Ã−, Ã+) with A an arena, and Ã, Ã−,
and Ã+ isomorphism families on A, such that

Ã− and Ã+ are subsets of Ã;
if θ ∈ Ã− ∩ Ã+ then θ is an identity bijection;
if θ ∈ Ã− and θ ⊆− θ′ ∈ Ã then θ′ ∈ Ã− (where the notation ⊆− makes sense since
bijections preserve polarity);
if θ ∈ Ã+ and θ ⊆+ θ′ ∈ Ã then θ′ ∈ Ã+.

In particular, ∼-arenas are certain thin concurrent games, in the terminology of [7, 8].

I Lemma 11. U = (U, Ũ , Ũ−, Ũ+) is a ∼-arena.

Strategies are in turn equipped with symmetry:

I Definition 12. A probabilistic essp is an essp S with a valuation v : C(S)→ [0, 1], such
that for every θ : x ∼= y in S̃, v(x) = v(y). A probabilistic ∼-strategy on a ∼-arena A
consists of a probabilistic essp S, and a labelling σ : S → A, such that:
(1) the underlying map σ : S → A is a strategy;
(2) σ preserves symmetry: if θ : x ∼= y ∈ S̃ then σθ : σx ∼= σy defined as {(σ s, σ s′) | (s, s′) ∈

θ}, is in Ã (that is, it is a map of essps (S, S̃)→ (A, Ã));
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(3) σ is ∼-receptive: if θ ∈ S̃ and σθ ⊆− ψ ∈ Ã, there is a unique θ ⊆ θ′ ∈ S̃ s.t. σθ′ = ψ.
(4) S is thin: for θ : x ∼= y in S̃ with x ⊆+ x∪{s}, there is a unique t ∈ S s.t. θ∪{(s, t)} ∈ S̃.
Finally, before we define our category of games and strategies with symmetry, let us say
what it means for strategies to be the same up to Player copy indices:

I Definition 13. Probabilistic ∼-strategies σ : S → A and τ : T → A are weakly
isomorphic if there is an isomorphism of essps ϕ : S → T , such that for any x ∈ C(S),
vS(x) = vT (ϕx), and moreover the diagram

S
σ ��

ϕ // T
τ}}

A

commutes up to positive symmetry, in the sense that for any x ∈ C(S), the set {(σe, τ (ϕe)) |
e ∈ x} is (the graph of) a bijection in Ã+.

3.2 The category PG
We now define a category with objects the ∼-arenas, and morphisms probabilistic ∼-strategies.

Let us first define some constructions on games: if A is a ∼-arena, its dual A⊥ is
the ∼-arena obtained by reversing the polarity of events in A, and swapping the positive
and negative isomorphism families. If A and B are ∼-arenas, their parallel composition
A ‖ B is the tuple (A ‖ B, Ã ‖ B̃, Ã− ‖ B̃−, Ã+ ‖ B̃+), where A ‖ B is the esp with events
A + B (the tagged disjoint union), componentwise causal dependency and polarity, and
consistent sets those of the form XA ‖ XB for XA ∈ ConA and XB ∈ ConB ; and where the
parallel composition Ã ‖ B̃ of isomorphism families Ã and B̃ comprises bijections of the
form θ : xA ‖ xB ∼= yA ‖ yB , defined as θ(1, a) = (1, θA(a)) and θ(2, b) = (2, θB(b)) for some
θA : xA ∼= yA and θB : xB ∼= yB in the component iso families. Note that we will often make
use of the parallel composition ‖i∈I Ai of a family of ∼-arenas; it is defined analogously.

With that in place, a probabilistic ∼-strategy from A to B is a probabilistic ∼-
strategy on the ∼-arena A⊥ ‖ B. Given σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, we can form
their interaction as the pullback

T ~ SΠ1
uu

Π2
))

S ‖ C
σ‖C

((
A ‖ T

A‖τ
uu

A ‖ B ‖ C

in the category of event structures with symmetry (and without polarity). The interaction is
probabilistic: for any configuration x ∈ C(T ~S), we set vT~S(x) = vS((Π1x)S)×vT ((Π2x)T ),
where (Π1x)S is the S-component of Π1x ∈ C(S ‖ C), and likewise for (Π2x)T . The resulting
map τ ~ σ : T ~ S → A ‖ B ‖ C is not quite a probabilistic ∼-strategy, because σ and τ play
on dual versions of B, making ambiguous the polarity of some events.

So as in [20, 6], the composition of S and T is obtained after hiding those moves
of the interaction which act as synchronisation events – the moves e ∈ T ~ S such that
(τ ~ σ)e = (2, b) for some b ∈ B. The remaining set of events (so-called visible) induces
an event structure T � S with all structure inherited from T ~ S, and polarity induced
from A⊥ ‖ C. Any configuration x ∈ C(T � S) has a unique witness [x] ∈ C(T ~ S). The
isomorphism family T̃ � S comprises bijections θ : x ∼= y such that there is θ′ : [x] ∼= [y] in
T̃ ~ S with θ ⊆ θ′. We get a map τ � σ : T � S → A⊥ ‖ C which satisfies all the conditions
for a probabilistic ∼-strategy, with vT�S(x) = vT~S([x]) for every x ∈ C(T � S).
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Copycat

As usual in game semantics, the identity morphism on a ∼-arena A will be a probabilistic
∼-strategy ccA : CCA → A⊥ ‖ A called copycat, in which Player deterministically copies
the behaviour of Opponent – so any Opponent move immediately triggers the corresponding
Player move in the dual game, with probability 1. Formally, CCA has the same events,
polarity, and consistent subsets as A⊥ ‖ A and the extra immediate causal dependencies
{((1, a), (2, a)) | a ∈ A, polA⊥(a) = −} and {((2, a), (1, a)) | a ∈ A, polA(a) = −} (from this
≤CCA

is obtained by transitive closure). Copycat has an isomorphism family CC
Ã
which we

do not define here for lack of space (it can be found e.g. in [8]). Together with the valuation
vCCA

(x) = 1 for all x ∈ C(CCA), this turns copycat into a probabilistic ∼-strategy.
Recall that strategies are considered up to weak isomorphism (Definition 13). Doing so

crucially relies on the thinness axiom on strategies, which implies [8] that weak isomorphism
is stable under composition, so that we may perform a quotient and retain a well-defined
notion of composition. Though identity and associativity laws for strategies only hold up to
isomorphism, the quotient will turn them into strict equalities. So as in [5], we have:

I Lemma 14. There is a category PG having
objects: ∼-arenas
morphisms A +→ B: weak isomorphism classes of probabilistic ∼-strategies on A⊥ ‖ B.

Categorical structure

PG itself is a compact closed category, but we are interested in the subcategory PG−, where
∼-arenas and strategies are negative (that is, all initial moves are negative), and strategies
are moreover well-threaded (meaning that events in S depend on a unique initial move).

Let A and B be objects of PG−. Their tensor product A ⊗ B is simply defined as
A ‖ B. The tensorial unit is the empty ∼-arena, and moreover the tensor is closed: the
function space A ( B has events those of (‖min(B) A

⊥) ‖ B with same polarity. The
causal dependency is induced, with extra causal links {((2, b), (1, (b, a))) | b ∈ min(B), a ∈ A}.
The function χ : (A( B)→ A⊥ ‖ B defined as (1, (b, a)) 7→ (1, a) and (2, b) 7→ (2, b) allows
us to characterise consistent sets and iso families concisely: ConA(B is defined as the largest
set making χ a map of esps, and an order-isomorphism θ between configurations of A( B

is in Ã( B iff χθ ∈ Ã⊥ ‖ B. PG− also has cartesian products, with A& B defined as
A ‖ B, only with consistent sets restricted to those of A ‖ ∅ and ∅ ‖ B. The rest of the
structure, including symmetry, is induced from A ‖ B by restriction.

Finally there is a linear exponential comonad [18] ! on PG−. Given A ∈ PG−,
the ∼-arena !A is an expanded version of A with countably many copies of every move.
Accordingly, the esp !A is simply ‖i∈ω A, and the bijections in !̃A are those θ : ‖i∈Ixi ∼= ‖j∈Jyj
such that there exists a permutation π : I ∼= J and bijections θi ∈ Ã with θ((i, a)) = (πi, θia)
for all (i, a) ∈‖i∈I xi. Recall that A is negative, so the set !̃A+ of positive bijections (those
in which only Player moves are reindexed) comprises those θ ∈ !̃A for which I = J and
π : I → J is the identity function, and such that each θi ∈ Ã+. On the other hand, bijections
in !̃A− can consist of any π : I ∼= J , so long as θi ∈ Ã− for all i.

We leave out all further details of the categorical structure of PG−, including the various
constructions on morphisms. It can be shown that PG−, together with the data above, is a
model of Intuitionistic Linear Logic. From here it is standard that the Kleisli category for !
is a ccc:
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I Lemma 15. There is a cartesian closed category PG−! having
objects: negative ∼-arenas
morphisms A +→ B: (weak isomorphism classes of) negative and well-threaded probabilistic
∼-strategies on !A⊥ ‖ B.

With a slight abuse of notation, we shall keep using � for composition in the Kleisli category
PG−! . We use the following notations for the cartesian closed structure: A ⇒ B is the
function space !A ( B, cur is the bijection PG−! (A & B, C) ∼= PG−! (A,B ⇒ C), and
evA,B : (A ⇒ B) &A +→ B is the evaluation morphism.

3.3 Interpretation of Λ+

We finally come to our interpretation of Λ+ terms as probabilistic strategies. We start by
imposing one key new condition on strategies: sequential innocence. The cut-down model
will be closer to the language, allowing us to prove a correspondence result in Section 4. We
assume from now on that all strategies are negative and well-threaded:

I Definition 16. A probabilistic ∼-strategy σ : S → A is sequential innocent if
a subset X ⊆ S is a configuration if and only if it is an Opponent-branching tree (that is,
causality is tree-shaped and if a _ b and a _ c in X then pol(a) = +) and σX ∈ C(A);
for every x, y, z ∈ C(S) such that x = y ∩ z and y ∪ z ∈ C(S), either v(x) = 0 or

v(y ∪ z)
v(x) = v(y)

v(x)
v(z)
v(x) .

Less formally, innocence forces the independence (causal and probabilistic) of Opponent-
forking branches of the strategy. Sequential innocent probabilistic ∼-strategies are closed
under composition, stable under weak isomorphism, and copycat verifies all conditions, so we
can consider the subcategory PGsi

! of PG! consisting of those strategies. It is easy to check
that PGsi

! is still a ccc; it is the category we will use to interpret Λ+, and in what follows we
refer to PGsi

! -strategies simply as Λ+-strategies.

A reflexive object

Recall the ∼-arena U defined in 3.1. It is a reflexive object, meaning that there are maps
λ ∈ PGsi

! (U ⇒ U ,U) and app ∈ PGsi
! (U ,U ⇒ U) such that app� λ = idU⇒U . It is easy to

see that there is an isomorphism of essps ρ : U ∼= U ⇒ U . To turn this into a isomorphism
is PGsi

! , we can lift it to a copycat-like strategy which “plays following ρ”. Details of this
lifting are omitted but can be found in [8].

Closed terms of the probabilistic λ-calculus are interpreted as probabilistic strategies on
U . Open terms M with free variables in Γ are interpreted as Λ+-strategies JMKΓ : UΓ +→ U ,
where UΓ =

˘
x∈Γ U . The interpretation of the λ-calculus constructions is standard, using

that U is a reflexive object in a ccc:

JxKΓ = πx, the xth projection
Jλx.MKΓ = λ� cur(JMKΓ,x)
JMNKΓ = evU,U � 〈app� JMKΓ, JNKΓ〉

In order to give an interpretation to the probabilistic choice operator, we must define the
sum of two strategies. Let σ : S → (UΓ)⊥ ‖ U and τ : T → (UΓ)⊥ ‖ U be Λ+-strategies, and
let p ∈ [0, 1]. The essp S +p T has a unique initial Opponent move (as do S and T – wlog
call this move ε), and continues as either S or T non-deterministically. That is, it has events
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{ε} ] (S \ {ε}) ] (T \ {ε}), and all structure induced from S and T , with X ∈ ConS+pT iff
X ∈ ConS or X ∈ ConT . We define vS+pT (x) to be 1 if x = ∅, {ε}, pvS(x) if x ∈ C(S), and
(1− p)vT (x) if x ∈ C(T ). The obvious map σ +p τ : S +p T → (UΓ)⊥ ‖ U is a Λ+-strategy,
and the interpretation of the syntactic +p is simply JM +p NKΓ = JMKΓ +p JNKΓ. We have:

I Theorem 17 (Adequacy). For any M ∈ Λ+
0 , writing σ : S → U for JMK, we have

Pr⇓(M) =
∑

x∈C(S)
|x+|=1

vS(x),

where x+ is the set of positive events of x.

We only state the result at this point; it will follow directly from the interpretation-preserving
functor of Section 5 and the adequacy of the weighted relational model for Λ+. A direct
corollary of Theorem 17 is the following soundness result:

I Lemma 18 (Soundness). For any M,N ∈ Λ+ with free variables in Γ, if JMKΓ = JNKΓ

then M =obs N .

In fact we will prove in Section 5 that the converse, full abstraction, also holds modulo
a mild (effective) quotient. It will also follow that the weighted relational model itself is
also fully abstract, which was open. These facts rely on Leventis’ result [16] along with the
formal correspondence between strategies and Böhm trees, to which we now move on.

4 The Correspondence Theorem

In [13], the authors prove an exact correspondence theorem for the pure λ-calculus: infinitely
extensional Böhm trees precisely correspond to deterministic innocent strategies on a universal
arena. They work in a different games framework, but the analogous phenomenon occurs
in ours (the main technical difference, if we were to conduct the proof in the deterministic
case, would be the explicit duplication of moves: our strategies are expanded, in order to
accommodate Opponent’s choice of copy index for every move).

For Λ+ however, the correspondence is not so exact: although terms M and M +pM

have the same probabilistic Böhm tree, they have different interpretations in PGsi
! , where

each probabilistic choice is recorded as an explicit branching point.2 In what follows, we
identify a class of Böhm tree-like probabilistic strategies for which the exact correspondence
does hold, and we show that any strategy can be reduced to a Böhm tree-like one. Two
strategies can then be considered equivalent if they reduce to the same.

First, given a Λ+-strategy σ : S → U , define a relation ≈ on the events of S as the smallest
equivalence relation such that if s1 ≈ s′1, s1 _ s2, s′1 _ s′2 and there is an order-isomorphism
ϕ : {s ∈ S | s2 ≤ s} ∼= {s′ ∈ S | s′2 ≤ s′} such that σ s ∼+ (σ ◦ ϕ) s for all s ≥ s2, then
s2 ≈ s′2. Informally, ≈ identifies events coming from the same syntactic construct in two
copies of a term in an idempotent probabilistic sum, as in M +pM (where Opponent has
played the same copy indices).

I Definition 19. We say σ is Böhm tree-like if it satisfies
(1) for every x ∈ C(S), vS(x) > 0; and
(2) for every s, s′ ∈ S, if s ≈ s′ then s = s′.

2 In particular, PGsi
! does not yield a probabilistic λ-theory in the sense of Leventis [16].



P. Clairambault and H. Paquet 16:13

In other words, a Böhm tree-like strategy is one with no redundant branches. Many
Λ+-strategies do not satisfy this property, but all can be reduced to one that does:

I Definition 20. Given a Λ+-strategy σ : S → U , let Sbt be the set of ≈-equivalence classes
containing at least one event s such that vS([s]) > 0 (where [s] is the down-closure of s).

It is direct to turn Sbt into an essp Sbt with structure induced by S. The (partial) quotient
map f : S → Sbt is then used to push-forward the valuation, i.e.

vSbt(x) =
∑

y∈C(S)
fy=x

vS(y).

Then, σbt : Sbt → U is a Böhm tree-like Λ+-strategy. Write σ =bt τ when σbt = τbt.
We can now make formal the connection between Λ+-strategies and probabilistic Böhm

trees. To do so we define a bijective map from the set of Böhm tree-like Λ+-strategies of
depth d on (UΓ)⊥ ‖ U , to the set PT Γ

d of probabilistic Böhm trees of depth d with free
variables in Γ. Let us say first what we mean by the depth of a strategy:

I Definition 21. The depth of a Λ+-strategy σ : S → U , depth(σ), is the maximum number
of Player moves in a chain s0 _ · · ·_ sn in S, and ∞ if such chains have unbounded length.

We can show by induction on d:

I Lemma 22. For every d ∈ N and every Γ ⊆fin Var there is a bijection

Ψd
Γ : {σbt | σ ∈ PGsi

! (UΓ,U) and depth σ ≤ d}
∼=−→ PT dΓ.

Proof (sketch). In Section 2.3, we motivated the definition of probabilistic strategies via
a geometric correspondence with probabilistic Böhm trees, to be expected in the light of
standard definability results in game semantics.

However, probabilistic strategies differ from the picture of Section 2.3 due to the necessity
for Player to acknowledge Opponent’s replications, spawning countably many symmetric
copies of branches starting with an Opponent move. It follows however from the axioms of
symmetry that events differing only by Opponent’s choice of copy indices have isomorphic
futures. One can, with no loss of information, focus on a sub-strategy where Opponent
performs no duplication, and apply the correspondence explained in Section 2.3. J

We now show that this bijection preserves the interpretation of Λ+.

I Theorem 23 (Correspondence theorem). For any M ∈ Λ+ and d ∈ N, Ψd
Γ((JMKd)bt) =

PTd(M), where JMKd is the maximal sub-strategy of JMK with depth ≤ d.

Proof (sketch). The proof is by induction on d, and follows a similar argument as in the
non-probabilistic case [13], with the additional difficulty of dealing with infinite width: a
probabilistic Böhm tree may be a probability distribution with infinite support, and the first
level of Player moves in a probabilistic strategy may be infinite. One must therefore consider
finite-width approximations.

Probabilistic strategies are traditionally ordered using a probabilistic version of the prefix
order: given σ : S → A and τ : T → A we say σ v τ if S ⊆ T (i.e. S ⊆ T and all data
is inherited), and for all x ∈ C(S), vS(x) ≤ vT (x). However the naive restriction of this
order to the set of Böhm tree-like strategies is not sensible, because σ v τ does not imply
σbt v τbt. An alternative is given by Leventis [16, p. 111], who defines an order 4 on the set
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PT dΓ, characterised in this setting as follows: t 4 t′ iff there exists a strategy σ such that(
Ψd

Γ
)−1 (t) =bt σ and σ v

(
Ψd

Γ
)−1 (t′). Intuitively, the branches of σ are those of

(
Ψd

Γ
)−1 (t),

duplicated and assigned probability in such a way that they can be extended to those of(
Ψd

Γ
)−1 (t′) using the prefix order v.
Under 4 the set PT dΓ is a cpo, and we also call 4 the corresponding order on the set of

Böhm tree-like strategies (this automatically makes Ψd
Γ a continuous bijection).

Leventis proves the crucial property that for every term M there is a chain t0, t1, . . .

of finite-width trees satisfying PTd(M) =
∨
ti. Replaying his argument in our game

semantics, we show that the chain
(
Ψd

Γ
)−1 (ti), i ∈ N has lub (JMKd)bt. We conclude, because(

Ψd
Γ
)−1

(
PTdΓ(M)

)
=
(
Ψd

Γ
)−1 (∨

i∈N ti
)

=
∨
i∈I
(
Ψd

Γ
)−1 (ti) = (JMKd)bt. J

Using the correspondence it follows easily that:

I Lemma 24. For any M,N ∈ Λ+, M =PT N if and only if JMK =bt JNK.

I Theorem 25 (Full abstraction). The model PGsi
! / =bt is fully abstract, i.e. M =obs N if

and only if JMK =bt JNK.

5 Weighted Relational Semantics

In this final section, we consider the weighted relational model of Λ+. It lives in the
category PRel! whose objects are sets and whose morphisms are certain matrices with
coefficients in the set R+ = R+ ∪ {∞}. This interpretation of probabilistic λ-terms was first
suggested in [11], where authors consider the category PCoh! of probabilistic coherence
spaces, a refinement (using biorthogonality) of the model PRel! presented here. PCoh!
has desirable properties (notably, all coefficients are finite) but because there is a faithful
functor PCoh! → PRel! preserving the interpretation of Λ+, all the results of [11] hold for
the simpler model PRel!, which we focus on in this paper and proceed to define.

5.1 The weighted relational model of Λ+

We use the notation PRel! to indicate that the model is obtained as the Kleisli category
for a comonad !, much like PG!. The underlying category PRel is a well-known model
of intuitionistic linear logic (see e.g. [15]), but we skip its construction and give a direct
presentation of PRel!:

I Definition 26. The category PRel! is defined as follows:
objects: sets;
morphisms from X to Y : maps ϕ : Mf (X) × Y → R+, where Mf (X) is the set of
finite multisets of elements of X;
composition: for ϕ ∈ PRel!(X,Y ), ψ ∈ PRel!(Y, Z), define ψ ◦ϕ :Mf (X)×Z → R+ as

(ψ ◦ ϕ)(m, c) =
∑

p∈Mf(Y )

ψp,c
∑

(mb)b∈p

s.t. m=]mb

∏
b∈p

ϕ(mb,b)

for every m ∈Mf (X) and c ∈ Z.
identity: for any set X, and for any m ∈Mf (X) and a ∈ X, define

idX(m, a) =
{

1 if m = [a]
0 otherwise.
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PRel! is cartesian closed, with X & Y = X ] Y and X ⇒ Y = Mf (X) × Y . There is a
reflexive object D in PRel!, supporting the interpretation of Λ+, and defined as the least
fixed point of the operation mapping X to the setMf (X)(ω) of quasi-finite sequences of
finite multisets over X, i.e. with all but finitely many elements equal to [ ]. Concretely, D
is the lub of the chain D0, D1, . . . where D0 = ∅ and Di+1 =Mf (Di)(ω) for all i. It is the
case that D ∼= D ⇒ D; the set-theoretical bijection and its lifting to a PRel! isomorphism
can be found in [11].

Terms of Λ+ are interpreted in the standard way, with JM+pNKΓ
PRel!

(d) = pJMKΓ
PRel!

(d)+
(1− p)JNKΓ

PRel!
(d) for every d ∈ D. We have:

I Theorem 27 (Adequacy [11]). For any M ∈ Λ+
0 , the map JMKPRel! : D → R+ satisfies

Pr⇓(M) =
∑
d∈D2

JMKPRel!(d).

5.2 Relational collapse
We now connect the two models via a functor ↓ : PGsi

! → PRel!, which intuitively forgets the
causal information in a strategy, only remembering the states reached during the execution.

If (E, Ẽ) is an event structure with symmetry, write ∼= for the equivalence relation on
C(E) defined as x ∼= y if and only if there is θ : x ∼= y in Ẽ. For A an arbitrary negative
∼-arena, the set ↓A is then defined as the quotient {x ∈ C(A) | x non-empty}/ ∼=.

For any A,B, there is a bijection ↓(A ⇒ B) 'Mf (↓A)×↓B, enabling morphisms of PGsi
!

to be mapped to those of PRel!: if σ : S → !A ⇒ B is a Λ+-strategy and x ∈ ↓(A ⇒ B)
(so x is an equivalence class of configurations), the set of witnesses of x is defined as
witS(x) = {z ∈ C(S) | σz ∈ x and the maximal moves of z have polarity +}/ ∼= . Because
vS is invariant under symmetry, we can transport σ to ↓σ : ↓(A ⇒ B)→ R+ via

↓σ(x) =
∑

z∈witS(x)

vS(z)

for each x ∈ ↓(A ⇒ B). One can then easily deduce from the deadlock-free lemma of [5]:

I Lemma 28. ↓ is a functor PGsi
! → PRel!.

Furthermore, ↓ preserves the interpretation of Λ+ terms and is well-defined on the quotiented
model PGsi

! / =bt:

I Lemma 29. ↓U ∼= D and up to this iso, for any M ∈ Λ+ we have ↓JMKPGsi
!

= JMKPRel! .

I Lemma 30. If σ =bt τ then ↓σ = ↓ τ .

Combining the previous two lemmas and the soundness theorem, we finally get:

I Theorem 31 (Full abstraction). For any M,N ∈ Λ+ with free variables in Γ , M =obs N

if and only if JMKPRel! = JNKPRel! .

6 Conclusion

An immediate corollary of Theorem 31 is that the probabilistic coherence space model of [11]
is fully abstract, since PCoh! and PRel! induce the same equational theory on Λ+ terms.

Interestingly, the results of this paper should further entail that the interpretation of
Λ+ in the simpler model of Danos and Harmer [10] is also fully abstract, since one can in
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principle map our strategies functorially to theirs. Note however that since it is not known
how to state a notion of probabilistic innocence in Danos and Harmer’s model, definability
fails and the present work could not have been carried out there.

So using probabilistic concurrent games, we obtain probabilistic analogues of well-
established results from the theory of the pure λ-calculus: the correspondence between
Böhm trees and innocent strategies [13], and the full abstraction property of the relational
model [4].
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Abstract
Transitive closure logic is a known extension of first-order logic obtained by introducing a
transitive closure operator. While other extensions of first-order logic with inductive definitions
are a priori parametrized by a set of inductive definitions, the addition of the transitive closure
operator uniformly captures all finitary inductive definitions. In this paper we present an
infinitary proof system for transitive closure logic which is an infinite descent-style counterpart
to the existing (explicit induction) proof system for the logic. We show that, as for similar
systems for first-order logic with inductive definitions, our infinitary system is complete for the
standard semantics and subsumes the explicit system. Moreover, the uniformity of the transitive
closure operator allows semantically meaningful complete restrictions to be defined using simple
syntactic criteria. Consequently, the restriction to regular infinitary (i.e. cyclic) proofs provides
the basis for an effective system for automating inductive reasoning.
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1 Introduction

A core technique in mathematical reasoning is that of induction. This is especially true
in computer science, where it plays a central role in reasoning about recursive data and
computations. Formal systems for mathematical reasoning usually capture the notion of
inductive reasoning via one or more inference rules that express the general induction schemes,
or principles, that hold for the elements being reasoned over.

Increasingly, we are concerned with not only being able to formalise as much mathematical
reasoning as possible, but also with doing so in an effective way. In other words, we seek to
be able to automate such reasoning. Transitive closure (TC) logic has been identified as a
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potential candidate for a minimal, “most general” system for inductive reasoning, which is
also very suitable for automation [1, 10, 11]. TC adds to first-order logic a single operator
for forming binary relations: specifically, the transitive closures of arbitrary formulas (more
precisely, the transitive closure of the binary relation induced by a formula with respect to
two distinct variables). In this work, for simplicity, we use a reflexive form of the operator;
however the two forms are equivalent in the presence of equality. This modest addition
affords enormous expressive power: namely it provides a uniform way of capturing inductive
principles. If an induction scheme is expressed by a formula ϕ, then the elements of the
inductive collection it defines are those “reachable” from the base elements x via the iteration
of the induction scheme. That is, those y’s for which (x, y) is in the transitive closure of ϕ.
Thus, bespoke induction principles do not need to be added to, or embedded within, the
logic; instead, all induction schemes are available within a single, unified language. In this
respect, the transitive closure operator resembles the W-type [22], which also provides a
single type constructor from which one can uniformly define a variety of inductive types.

TC logic is intermediate between first- and second-order logic. Furthermore, since the TC
operator is a particular instance of a least fixed point operator, TC logic is also subsumed
by fixed-point logics such as the µ-calculus [19]. However, despite its minimality TC logic
retains enough expressivity to capture inductive reasoning, as well as to subsume arithmetics
(see Section 4.2.1). Moreover, from a proof theoretical perspective the conciseness of the
logic makes it of particular interest. The use of only one constructor of course comes with a
price: namely, formalizations (mostly of non-linear induction schemes) may be somewhat
complex. However, they generally do not require as complex an encoding as in arithmetics,
since the TC operator can be applied on any formula and thus (depending on the underlying
signature) more naturally encode induction on sets more complex than the natural numbers.

Since its expressiveness entails that TC logic subsumes arithmetics, by Gödel’s result,
any effective proof system for it must necessarily be incomplete for the standard semantics.
Notwithstanding, a natural, effective proof system which is sound for TC logic was shown
to be complete with respect to a generalized form of Henkin semantics [9]. In this paper,
following similar developments in other formalizations for fixed point logics and inductive
reasoning (see e.g. [4, 5, 6, 24, 27]), we present an infinitary proof theory for TC logic which,
as far as we know, is the first system that is (cut-free) complete with respect to the standard
semantics. More specifically, our system employs infinite-height, rather than infinite-width
proofs (see Section 3.2). The soundness of such infinitary proof theories is underpinned
by the principle of infinite descent: proofs are permitted to be infinite, non-well-founded
trees, but subject to the restriction that every infinite path in the proof admits some infinite
descent. The descent is witnessed by tracing terms or formulas for which we can give a
correspondence with elements of a well-founded set. In particular, we can trace terms that
denote elements of an inductively defined (well-founded) set. For this reason, such theories
are considered systems of implicit induction, as opposed to those which employ explicit rules
for applying induction principles. While a full infinitary proof theory is clearly not effective,
in the aforementioned sense, such a system can be obtained by restricting consideration
to only the regular infinite proofs. These are precisely those proofs that can be finitely
represented as (possibly cyclic) graphs.

These infinitary proof theories generally subsume systems of explicit induction in expressive
power, but also offer a number of advantages. Most notably, they can ameliorate the primary
challenge for inductive reasoning: finding an induction invariant. In explicit induction
systems, this must be provided a priori, and is often much stronger than the goal one is
ultimately interested in proving. However, in implicit systems the inductive arguments and
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hypotheses may be encoded in the cycles of a proof, so cyclic proof systems seem better for
automation. The cyclic approach has also been used to provide an optimal cut-free complete
proof system for Kleene algebra [15], providing further evidence of its utility for automation.

In the setting of TC logic, we observe some further benefits over more traditional formal
systems of inductive definitions and their infinitary proof theories (cf. LKID [6, 21]). TC (with
a pairing function) has all first-order definable finitary inductive definitions immediately
“available” within the language of the logic: as with inductive hypotheses, one does not need
to “know” in advance which induction schemes will be required. Moreover, the use of a single
transitive closure operator provides a uniform treatment of all induction schemes. That is,
instead of having a proof system parameterized by a set of inductive predicates and rules
for them (as is the case in LKID), TC offers a single proof system with a single rule scheme
for induction. This has immediate advantages for developing the metatheory: the proofs of
completeness for standard semantics and adequacy (i.e. subsumption of explicit induction) for
the infinitary system presented in this paper are simpler and more straightforward. Moreover,
it permits a cyclic subsystem, which also subsumes explicit induction, to be defined via a
simple syntactic criterion that we call normality. The smaller search space of possible proofs
further enhances the potential for automation. TC logic seems more expressive in other ways,
too. For instance, the transitive closure operator may be applied to arbitrarily complex
formulas, not only to collections of atomic formulas (cf. Horn clauses), as in e.g. [4, 6].

We show that the explicit and cyclic TC systems are equivalent under arithmetic, as is
the case for LKID [3, 26]. However, there are cases in which the cyclic system for LKID is
strictly more expressive than the explicit induction system [2]. To obtain a similar result for
TC, the fact that all induction schemes are available poses a serious challenge. For one, the
counter-example used in [2] does not serve to show this result holds for TC. If this strong
inequivalence indeed holds also for TC, it must be witnessed by a more subtle and complex
counter-example. Conversely, it may be that the explicit and cyclic systems do coincide for
TC. In either case, this points towards fundamental aspects that require further investigation.

The rest of the paper is organised as follows. In Section 2 we reprise the definition of
transitive closure logic and both its standard and Henkin-style semantics. Section 3 presents
the existing explicit induction proof system for TC logic, and also our new infinitary proof
system. We prove the latter sound and complete for the standard semantics, and also derive
cut-admissibility. In Section 4 we compare the expressive power of the infinitary system
(and its cyclic subsystem) with the explicit system. Section 5 concludes and examines the
remaining open questions for our system as well as future work. Due to lack of space, proofs
are omitted but can be found in an extended version [12].

2 Transitive Closure Logic and its Semantics

In this section we review the language of transitive closure logic, and two possible semantics
for it: a standard one, and a Henkin-style one. For simplicity of presentation we assume
(as is standard practice) a designated equality symbol in the language. We denote by
v[x1 := an, . . . , xn := an] the variant of the assignment v which assigns ai to xi for each
i, and by ϕ

{
t1
x1
, . . . , tnxn

}
the result of simultaneously substituting each ti for the free

occurrences of xi in ϕ.

I Definition 1 (The language LRTC). Let σ be a first-order signature with equality, whose
terms are ranged over by s and t and predicates by P , and let x, y, z, etc. range over
a countable set of variables. The language LRTC consists of the formulas defined by the
grammar:

ϕ,ψ ::= s = t | P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∀x.ϕ | ∃x.ϕ | (RTCx,y ϕ)(s, t)
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As usual, ∀x and ∃x bind free occurrences of the variable x and we identify formulas up to
renaming of bound variables, so that capturing of free variables during substitution does not
occur. Note that in the formula (RTCx,y ϕ)(s, t) free occurrences of x and y in ϕ are also
bound (but not those in s and t).

I Definition 2 (Standard Semantics). Let M = 〈D, I〉 be a first-order structure (i.e. D is a
non-empty domain and I an interpretation function), and v an assignment in M which we
extend to terms in the obvious way. The satisfaction relation |= between model-valuation
pairs 〈M,v〉 and formulas is defined inductively on the structure of formulas by:

M, v |= s = t if v(s) = v(t);
M, v |= P (t1, . . . , tn) if (v(t1), . . . , v(tn)) ∈ I(P );
M, v |= ¬ϕ if M, v 6|= ϕ;
M, v |= ϕ1 ∧ ϕ2 if both M,v |= ϕ1 and M, v |= ϕ2;
M, v |= ϕ1 ∨ ϕ2 if either M,v |= ϕ1 or M, v |= ϕ2;
M, v |= ϕ1 → ϕ2 if M, v |= ϕ1 implies M,v |= ϕ2;
M, v |= ∃x.ϕ and M,v |= ∀x.ϕ if M, v[x := a] |= ϕ for some (respectively all) a ∈ D;
M, v |= (RTCx,y ϕ)(s, t) if v(s) = v(t), or there exist a0, . . . , an ∈ D (n > 0) s.t. v(s) = a0,
v(t) = an, and M,v[x := ai, y := ai+1] |= ϕ for 0 ≤ i < n.

We say that a formula ϕ is valid with respect to the standard semantics when M,v |= ϕ

holds for all models M and valuations v.

We next recall the concepts of frames and Henkin structures (see, e.g., [18]). A frame is
a first-order structure together with some subset of the powerset of its domain (called its set
of admissible subsets).

I Definition 3 (Frames). A frame M is a triple 〈D, I,D〉, where 〈D, I〉 is a first-order
structure, and D ⊆ ℘(D).

Note that if D = ℘(D), the frame is identified with a standard first-order structure.

I Definition 4 (Frame Semantics). LRTC formulas are interpreted in frames as in Definition 2
above, except for:

M, v |= (RTCx,y ϕ)(s, t) if for every A ∈ D, if v(s) ∈ A and for every a, b ∈ D: a ∈ A
and M,v[x := a, y := b] |= ϕ implies b ∈ A, then v(t) ∈ A.

We now consider Henkin structures, which are frames whose set of admissible subsets is
closed under parametric definability.

I Definition 5 (Henkin structures). A Henkin structure is a frame M = 〈D, I,D〉 such that
{a ∈ D | M,v[x := a] |= ϕ} ∈ D for every ϕ, and v in M .

We refer to the semantics induced by quantifying over the (larger) class of Henkin structures
as the Henkin semantics.

It is worth noting that the inclusion of equality in the basic language is merely for
notational convenience. This is because the RTC operator allows us, under both the standard
and Henkin semantics, to actually define equality s = t on terms as (RTCx,y ⊥)(s, t).

3 Proof Systems for LRTC

In this section, we define two proof systems for LRTC. The first is a finitary proof system
with an explicit induction rule for RTC formulas. The second is an infinitary proof system,
in which RTC formulas are simply unfolded, and inductive arguments are represented via
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(Axiom):
ϕ⇒ ϕ

(WL):
Γ⇒ ∆

Γ, ϕ⇒ ∆
(WR):

Γ⇒ ∆

Γ⇒ ∆, ϕ

(=L1):
Γ⇒ ϕ

{
s
x

}
,∆

Γ, s = t⇒ ϕ
{

t
x

}
,∆

(=L2):
Γ⇒ ϕ

{
t
x

}
,∆

Γ, s = t⇒ ϕ
{

s
x

}
,∆

(=R):
⇒ t = t

(∨L):
Γ⇒ ϕ,∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(∧L):

Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
(→L):

Γ⇒ ϕ,∆ Γ, ψ ⇒ ∆

Γ, ϕ→ ψ ⇒ ∆
(¬L):

Γ⇒ ϕ,∆

Γ,¬ϕ⇒ ∆

(∨R):
Γ⇒ ϕ,ψ,∆

Γ⇒ ϕ ∨ ψ,∆
(∧R):

Γ⇒ ϕ,∆ Γ⇒ ψ,∆

Γ⇒ ϕ ∧ ψ,∆
(→R):

Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ→ ψ,∆
(¬R):

Γ, ϕ⇒ ∆

Γ⇒ ¬ϕ,∆

(∃L):
Γ, ϕ⇒ ∆

x 6∈ fv(Γ,∆)
Γ, ∃x.ϕ⇒ ∆

(∀L):
Γ, ϕ

{
t
x

}
⇒ ∆

Γ, ∀x.ϕ⇒ ∆
(Cut):

Γ⇒ ϕ,∆ Σ, ϕ⇒ Π

Γ,Σ⇒ ∆,Π

(∃R):
Γ⇒ ϕ

{
t
x

}
,∆

Γ⇒ ∃x.ϕ,∆
(∀R):

Γ⇒ ϕ,∆
x 6∈ fv(Γ,∆)

Γ⇒ ∀x.ϕ,∆
(Subst):

Γ⇒ ∆

Γ
{

t1
x1
, . . . , tn

xn

}
⇒ ∆

{
t1
x1
, . . . , tn

xn

}
Figure 1 Proof rules for the sequent calculus LK= with substitution.

infinite descent-style constructions. We show the soundness and completeness of these proof
systems, and also compare their provability relations.

Our systems for LRTC are extensions of LK=, the sequent calculus for classical first-order
logic with equality [16, 28] whose proof rules we show in Fig. 1.3 Sequents are expressions of
the form Γ⇒ ∆, for finite sets of formulas Γ and ∆. We write Γ,∆ and Γ, ϕ as a shorthand
for Γ ∪∆ and Γ ∪ {ϕ} respectively, and fv(Γ) for the set of free variables of the formulas in
the set Γ. A sequent Γ⇒ ∆ is valid if and only if the formula

∧
ϕ∈Γ ϕ→

∨
ψ∈∆ ψ is.

3.1 The Finitary Proof System
We briefly summarise the finitary proof system for LRTC. For more details see [10, 11]. We
write ϕ(x1, . . . , xn) to emphasise that the formula ϕ may contain x1, . . . , xn as free variables.

I Definition 6. The proof system RTCG for LRTC is defined by adding to LK= the following
inference rules:

Γ⇒ ∆, (RTCx,y ϕ)(s, s) (1)

Γ⇒ ∆, (RTCx,y ϕ)(s, r) Γ⇒ ∆, ϕ
{
r
x ,

t
y

}
Γ⇒ ∆, (RTCx,y ϕ)(s, t)

(2)

Γ, ψ(x), ϕ(x, y)⇒ ∆, ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (RTCx,y ϕ)(s, t)⇒ ∆, ψ

{
t
x

} x 6∈ fv(Γ,∆) and y 6∈ fv(Γ,∆, ψ) (3)

Rule (3) is a generalized induction principle. It states that if an extension of formula ψ is
closed under the relation induced by ϕ, then it is also closed under the reflexive transitive
closure of that relation. In the case of arithmetic this rule captures the induction rule of
Peano’s Arithmetics PA [11].

3 Here we take LK= to include the substitution rule, which was not a part of the original systems.
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3.2 Infinitary Proof Systems
We now present our infinitary proof systems for LRTC which are based on the principle of
infinite descent. This is in contrast to infinite-width proof systems based on a variant of the
infinite branching ω-rule [25, 17]. Such systems have been widely investigated and known to
be useful for attaining completeness (e.g. for arithmetics). Nonetheless, the infinite ω-rule
renders them practically useless for automated reasoning. Since our motivation here is that
of effectiveness and automation we opt for a finite system in which we allow infinite-height,
non-well-founded proofs.

I Definition 7. The infinitary proof system RTCωG for LRTC is defined like RTCG, but
replacing Rule (3) by:

Γ, s = t⇒ ∆ Γ, (RTCx,y ϕ)(s, z), ϕ
{
z
x ,

t
y

}
⇒ ∆

Γ, (RTCx,y ϕ)(s, t)⇒ ∆
(4)

where z is fresh, i.e. z does not occur free in Γ, ∆, or (RTCx,y ϕ)(s, t). The formula
(RTCx,y ϕ)(s, z) in the right-hand premise is called the immediate ancestor (cf. [7, §1.2.3])
of the principal formula, (RTCx,y ϕ)(s, t), in the conclusion.

There is an asymmetry between Rule (2), in which the intermediary is an arbitrary term
r, and Rule (4), where we use a variable z. This is necessary to obtain the soundness of the
cyclic proof system. It is used to show that when there is a counter-model for the conclusion
of a rule, then there is also a counter-model for one of its premises that is, in a sense that
we make precise below, “smaller”. In the case that s 6= t, using a fresh z allows us to pick
from all possible counter-models of the conclusion, from which we may then construct the
required counter-model for the right-hand premise. If we allowed an arbitrary term r instead,
this might restrict the counter-models we can choose from, only leaving ones “larger” than
the one we had for the conclusion. See Lemma 15 below for more details.

Proofs in this system are possibly infinite derivation trees. However, not all infinite
derivations are proofs: only those that admit an infinite descent argument. Thus we use the
terminology “pre-proof” for derivations.

I Definition 8 (Pre-proofs). An RTCωG pre-proof is a possibly infinite (i.e. non-well-founded)
derivation tree formed using the inference rules. A path in a pre-proof is a possibly infinite
sequence of sequents s0, s1, . . . (, sn) such that s0 is the root sequent of the proof, and si+1 is
a premise of si for each i < n.

The following definitions tell us how to track RTC formulas through a pre-proof, and
allow us to formalize inductive arguments via infinite descent.

I Definition 9 (Trace Pairs). Let τ and τ ′ be RTC formulas occurring in the left-hand side
of the conclusion s and a premise s′, respectively, of (an instance of) an inference rule. (τ, τ ′)
is said to be a trace pair for (s, s′) if the rule is:

the (Subst) rule, and τ = τ ′θ where θ is the substitution associated with the rule instance;
Rule (4), and either:

(a) τ is the principal formula of the rule instance and τ ′ is the immediate ancestor of τ , in
which case we say that the trace pair is progressing;

(b) otherwise, τ = τ ′.
any other rule, and τ = τ ′.
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I Definition 10 (Traces). A trace is a (possibly infinite) sequence of RTC formulas. We say
that a trace τ1, τ2, . . . (, τn) follows a path s1, s2, . . . (, sm) in a pre-proof P if, for some k ≥ 0,
each consecutive pair of formulas (τi, τi+1) is a trace pair for (si+k, si+k+1). If (τi, τi+1) is
a progressing pair then we say that the trace progresses at i, and we say that the trace is
infinitely progressing if it progresses at infinitely many points.

Proofs, then, are pre-proofs which satisfy a global trace condition.

I Definition 11 (Infinite Proofs). A RTCωG proof is a pre-proof in which every infinite path
is followed by some infinitely progressing trace.

Clearly, we cannot reason effectively about such infinite proofs in general. In order to
do so we need to restrict our attention to those proof trees which are finitely representable.
These are the regular infinite proof trees, which contain only finitely many distinct subtrees.
They can be specified as systems of recursive equations or, alternatively, as cyclic graphs
[14]. Note that a given regular infinite proof may have many different graph representations.
One possible way of formalizing such proof graphs is as standard proof trees containing open
nodes (called buds), to each of which is assigned a syntactically equal internal node of the
proof (called a companion). Due to space limitation, we elide a formal definition of cyclic
proof graphs (see, e.g., Sect. 7 in [6]) and rely on the reader’s basic intuitions.

I Definition 12 (Cyclic Proofs). The cyclic proof system CRTCωG for LRTC is the subsystem
of RTCωG comprising of all and only the finite and regular infinite proofs (i.e. those proofs
that can be represented as finite, possibly cyclic, graphs).

Note that it is decidable whether a cyclic pre-proof satisfies the global trace condition,
using a construction involving an inclusion between Büchi automata (see, e.g., [4, 26]).
However since this requires complementing Büchi automata (a PSPACE procedure), our
system cannot be considered a proof system in the Cook-Reckhow sense [13]. Notwithstanding,
checking the trace condition for cyclic proofs found in practice is not prohibitive [23, 29].

3.3 Soundness and Completeness
The rich expressiveness of TC logic entails that the effective system RTCG which is sound
w.r.t. the standard semantics, cannot be complete (much like the case for LKID). It is
however both sound and complete w.r.t. Henkin semantics.

I Theorem 13 (Soundness and Completeness of RTCG [9]). RTCG is sound for standard
semantics, and also sound and complete for Henkin semantics.

Note that the system RTCG as presented here does not admit cut elimination. The culprit
is the induction rule (3), which does not permute with cut. We may obtain admissibility
of cut by using the following alternative formulation of the induction rule which, like the
induction rule for LKID, incorporates a cut with the induction formula ψ.

Γ⇒ ψ
{
s
x

}
Γ, ψ(x), ϕ(x, y)⇒ ψ

{
y
x

}
Γ, ψ

{
t
x

}
⇒ ∆

Γ, (RTCx,y ϕ)(s, t)⇒ ∆
x 6∈ fv(Γ,∆), y 6∈ fv(Γ,∆, ψ)

For the system with this rule, a simple adaptation of the completeness proof in [9], in the
spirit of the corresponding proof for LKID in [6], suffices to obtain cut-free completeness.
However, the tradeoff is that the resulting cut-free system no longer has the sub-formula
property. In contrast, cut-free proofs in RTCG do satisfy the sub-formula property, for a
generalized notion of a subformula that incorporates substitution instances (as in LK=).
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We remark that the soundness proof of LKID is rather complex since it must handle
different types of mutual dependencies between the inductive predicates. For RTCG the proof
is much simpler due to the uniformity of the rules for the RTC operator.

The infinitary system RTCωG, in contrast to the finitary system RTCG, is both sound and
complete w.r.t. the standard semantics. To prove soundness, we make use of the following
notion of measure for RTC formulas.

I Definition 14 (Degree of RTC Formulas). For φ ≡ (RTCx,y ϕ)(s, t), define δφ(M,v) = 0 if
v(s) = v(t), and δφ(M,v) = n if v(s) 6= v(t) and a0, . . . , an is a minimal-length sequence of
elements in the domain ofM such that v(s) = a0, v(t) = an, andM,v[x := ai, y := ai+1] |= ϕ

for 0 ≤ i < n. We call δφ(M,v) the degree of φ with respect to the model M and valuation v.

Soundness then follows from the following fundamental lemma.

I Lemma 15 (Descending Counter-models). If there exists a standard model M and valuation
v that invalidates the conclusion s of (an instance of) an inference rule, then
1) there exists a standard model M ′ and valuation v′ that invalidates some premise s′ of the

rule; and
2) if (τ, τ ′) is a trace pair for (s, s′) then δτ ′(M ′, v′) ≤ δτ (M,v). Moreover, if (τ, τ ′) is a

progressing trace pair then δτ ′(M ′, v′) < δτ (M, v).

As is standard for infinite descent inference systems [4, 5, 6, 15, 23, 29], the above result
entails the local soundness of the inference rules (in our case, for standard first-order models).
The presence of infinitely progressing traces for each infinite path in a RTCωG proof ensures
soundness via a standard infinite descent-style construction.

I Theorem 16 (Soundness of RTCωG). If there is a RTCωG proof of Γ⇒ ∆, then Γ⇒ ∆ is
valid (w.r.t. the standard semantics)

The soundness of the cyclic system is an immediate corollary, since each CRTCωG proof is
also a RTCωG proof.

I Corollary 17 (Soundness of CRTCωG). If there is a CRTCωG proof of Γ⇒ ∆, then Γ⇒ ∆ is
valid (w.r.t. the standard semantics)

Following a standard technique (as used in e.g. [6]), we can show cut-free completeness of
RTCωG with respect to the standard semantics.

I Definition 18 (Schedule). A schedule element E is defined as any of the following:
a formula of the form ¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ;
a pair of the form 〈∀xϕ, t〉 or 〈∃xϕ, t〉 where ∀xϕ and ∃xϕ are formulas and t is a term;
a tuple of the form 〈(RTCx,y ϕ)(s, t), r, z,Γ,∆〉 where (RTCx,y ϕ)(s, t) is a formula, r is
a term, Γ and ∆ are finite sequences of formulas, and z is a variable not occurring free in
Γ, ∆, or (RTCx,y ϕ)(s, t); or
a tuple of the form 〈s = t, x, ϕ, n,Γ,∆〉 where s and t are terms, x is a variable, ϕ is a
formula, n ∈ {1, 2}, and Γ and ∆ are finite sequences of formulas.

A schedule is a recursive enumeration of schedule elements in which every schedule element
appears infinitely often (these exist since our language is countable).

Each schedule corresponds to an exhaustive search strategy for a cut-free proof for each
sequent Γ⇒ ∆, via the following notion of a “search tree”.
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I Definition 19 (Search Tree). Given a schedule {Ei}i>0, for each sequent Γ ⇒ ∆ we
inductively define an infinite sequence of (possibly open) derivation trees, {Ti}i>0, such that
T1 consists of the single open node Γ⇒ ∆, and each Ti+1 is obtained by replacing all suitable
open nodes in Ti with applications of first axioms and then the left and right inference rules
for the formula in the ith schedule element.

We give the definition of Ti+1 when Ei is an RTC schedule element, i.e. of the form
〈(RTCx,y ϕ)(s, t), r, z,Γ,∆〉 (the other cases are similar). Ti+1 is then obtained by:
1. first closing as such any open node that is an instance of an axiom (after left and right

weakening, if necessary);
2. next, replacing every open node Γ′, (RTCx,y ϕ)(s, t)⇒ ∆′ of the resulting tree for which

Γ′ ⊆ Γ and ∆′ ⊆ ∆ with the derivation:

Γ′, (RTC x,y ϕ)(s, t), s = t⇒ ∆′ Γ′, (RTC x,y ϕ)(s, t), (RTC x,y ϕ)(s, z), ϕ
{

z
x
, t

y

}
⇒ ∆′

Γ′, (RTC x,y ϕ)(s, t)⇒ ∆′ (4)

3. finally, replacing every open node Γ′ ⇒ ∆′, (RTCx,y ϕ)(s, t) of the resulting tree with the
derivation:

Γ′ ⇒ ∆′, (RTC x,y ϕ)(s, t), (RTC x,y ϕ)(s, r) Γ′ ⇒ ∆′, (RTC x,y ϕ)(s, t), ϕ
{

r
x
, t

y

}
Γ′ ⇒ ∆′, (RTC x,y ϕ)(s, t) (2)

The limit of the sequence {Ti}i>0 is a possibly infinite (and possibly open) derivation tree
called the search tree for Γ⇒ ∆ with respect to the schedule {Ei}i>0, and denoted by Tω.

Search trees are, by construction, recursive and cut-free. We construct special “sequents”
out of search trees, called limit sequents, as follows.

I Definition 20 (Limit Sequents). When a search tree Tω is not an RTCωG proof, either:
(1) it is not even a pre-proof, i.e. it contains an open node; or
(2) it is a pre-proof but contains an infinite branch that fails to satisfy the global trace

condition.
In case 1 it contains an open node to which, necessarily, no schedule element applies (e.g. a
sequent containing only atomic formulas), for which we write Γω ⇒ ∆ω. In case 2 the global
trace condition fails, so there exists an infinite path {Γi ⇒ ∆i}i>0 in Tω which is followed
by no infinitely progressing traces; we call this path the untraceable branch of Tω. We then
define Γω =

⋃
i>0 Γi and ∆ω =

⋃
i>0 ∆i, and call Γω ⇒ ∆ω the limit sequent.4

Note that use of the word “sequent” here is an abuse of nomenclature, since limit sequents
may be infinite and thus technically not sequents. However their purpose is not to play a
role in syntactic proofs, but to induce counter-models as follows.

I Definition 21 (Counter-interpretations). Assume a search tree Tω which is not a RTCωG
proof with limit sequent Γω ⇒ ∆ω. Let ∼ be the smallest congruence relation on terms such
that s ∼ t whenever s = t ∈ Γω. Define a structure Mω = 〈D, I〉 as follows (where [t] stands
for the ∼-equivalence class of t):

D = {[t] | t is a term} (i.e. the set of terms quotiented by the relation ∼).
For every k-ary function symbol f : I(f)([t1], . . . , [tk]) = [f(t1, . . . , tk)]
For every k-ary relation symbol q: I(q) = {([t1], . . . , [tk]) | q(t1, . . . , tk) ∈ Γω}

We also define a valuation vω for Mω by vω(x) = [x] for all variables x.

4 To be rigorous, we may pick e.g. the left-most open node or untraceable branch.
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Counter-interpretations 〈Mω, vω〉 have the following property, meaning that Mω is a
counter-model for the corresponding sequent Γ⇒ ∆ if its search tree Tω is not a proof.

I Lemma 22. If ψ ∈ Γω then Mω, vω |= ψ; and if ψ ∈ ∆ω then Mω, vω 6|= ψ.

The completeness result therefore follows since, by construction, a sequent S is contained
within its corresponding limit sequents. Thus, for any sequent S, if some search tree Tω
contracted for S is not an RTCωG proof then it follows from Lemma 22 that S is not valid
(Mω is a counter model for it). Hence if S is valid, then Tω is a recursive RTCωG proof for it.

I Theorem 23 (Completeness). RTCωG is complete for standard semantics.

We obtain admissibility of cut as the search tree Tω is cut-free.

I Corollary 24 (Cut admissibility). Cut is admissible in RTCωG.

3.4 LRTC with Pairs
To obtain the full inductive expressivity we must allow the formation of the transitive closure
of not only binary relations, but any 2n-ary relation. In [1] it was shown that taking such
a RTCn operator for every n (instead of just for n = 1) results in a more expressive logic,
namely one that captures all finitary first-order definable inductive definitions and relations.
Nonetheless, from a proof theoretical point of view having infinitely many such operators
is suboptimal. Thus, we here instead incorporate the notion of ordered pairs and use it to
encode such operators. For example, writing 〈x, y〉 for the application of the pairing function
〈〉(x, y), the formula (RTC2

x1,x2,y1,y2
ϕ)(s1, s2, t1, t2) can be encoded by:

(RTCx,y ∃x1, x2, y1, y2 . x = 〈x1, x2〉 ∧ y = 〈y1, y2〉 ∧ ϕ)(〈s1, s2〉, 〈t1, t2〉)

Accordingly, we may assume languages that explicitly contain a pairing function, providing
that we (axiomatically) restrict to structures that interpret it as such (i.e. the admissible
structures). For such languages we can consider two induced semantics: admissible standard
semantics and admissible Henkin semantics, obtained by restricting the (first-order part of
the) structures to be admissible.

The above proof systems are extended to capture ordered pairs as follows.

I Definition 25. For a signature containing at least one constant c, and a binary function
symbol denoted by 〈〉, the proof systems 〈RTC〉G, 〈RTC〉ωG, and 〈CRTC〉ωG are obtained from
RTCG, RTCωG, CRTCωG (respectively) by the addition of the following rules:

Γ⇒ 〈x, y〉 = 〈u, v〉,∆
Γ⇒ x = u ∧ y = v,∆ Γ, 〈x, y〉 = c⇒ ∆

The proofs of Theorems 13 and 23 can easily be extended to obtain the following results
for languages with a pairing function. For completeness, the key observation is that the
model of the counter-interpretation is one in which every binary function is a pairing function.
That is, the interpretation of any binary function is such that satisfies the standard pairing
axioms. Therefore, the model of the counter-interpretation is an admissible structure.

I Theorem 26 (Soundness and Completeness of 〈RTC〉G and 〈RTC〉ωG). The proof systems
〈RTC〉G and 〈RTC〉ωG are both sound and complete for the admissible forms of Henkin and
standard semantics, respectively.
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(WL,WR,Ax)
Γ, ψ

{
v
x

}
⇒ ∆, ψ

{
v
x

}
(=L1)

Γ, ψ
{
v
x

}
, v = w ⇒ ∆, ψ

{
w
x

}
..
..
..
..

Γ, ψ
{
v
x

}
, (RTCx,y ϕ)(v, w)⇒ ∆, ψ

{
w
x

}
(Subst)

Γ, ψ
{
v
x

}
, (RTCx,y ϕ)(v, z)⇒ ∆, ψ

{
z
x

} Γ, ψ, ϕ⇒ ∆, ψ
{
y
x

}
(Subst)

Γ, ψ
{
z
x

}
, ϕ
{
z
x ,

w
y

}
⇒ ∆, ψ

{
w
x

}
(Cut)

Γ, ψ
{
v
x

}
, (RTCx,y ϕ)(v, z), ϕ

{
z
x ,

w
y

}
⇒ ∆, ψ

{
w
x

}

(4)
Γ, ψ

{
v
x

}
, (RTCx,y ϕ)(v, w)⇒ ∆, ψ

{
w
x

}
(Subst)

Γ, ψ
{
s
x

}
, (RTCx,y ϕ)(s, t)⇒ ∆, ψ

{
t
x

}
Figure 2 CRTCω

G derivation simulating Rule (3). The variables v and w are fresh (i.e. do not
occur free in Γ, ∆, ϕ, or ψ).

4 Relating the Finitary and Infinitary Proof Systems

This section discusses the relation between the explicit and the cyclic system for TC. In
Section 4.1 we show that the former is contained in the latter. The converse direction, which
is much more subtle, is discussed in Section 4.2.

4.1 Inclusion of RTCG in CRTCω
G

Provability in the explicit induction system implies provability in the cyclic system. The key
property is that we can derive the explicit induction rule in the cyclic system, as shown in
Figure 2.

I Lemma 27. Rule (3) is derivable in CRTCωG.

This leads to the following result (an analogue to [6, Thm. 7.6]).

I Theorem 28. CRTCωG ⊇ RTCG, and is thus complete w.r.t. Henkin semantics.

Lemma 27 is the TC counterpart of [6, Lemma 7.5]. It is interesting to note that the
simulation of the explicit LKID induction rule in the cyclic LKID system is rather complex
since each predicate has a slightly different explicit induction rule, which depends on the
particular productions defining it. Thus, the construction for the cyclic LKID system must
take into account the possible forms of arbitrary productions. In contrast, CRTCωG provides
a single, uniform way to unfold an RTC formula: the construction given in Fig. 2 is the
cyclic representation of the RTC operator semantics, with the variables v and w implicitly
standing for arbitrary terms (that we subsequently substitute for).

This uniform syntactic translation of the explicit RTCG induction rule into CRTCωG allows
us to syntactically identify a proper subset of cyclic proofs which is also complete w.r.t.
Henkin semantics.5 The criterion we use is based on the notion of overlapping cycles. Recall
the definition of a basic cycle, which is a path in a (proof) graph starting and ending at
the same point, but containing no other repeated nodes. We say that two distinct (i.e. not
identical up to permutation) basic cycles overlap if they share any nodes in common, i.e. at

5 Note it is not clear that a similar complete structural restriction is possible for LKID.
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some point they both traverse the same path in the graph. We say that a cyclic proof is
non-overlapping whenever no two distinct basic cycles it contains overlap. The restriction to
non-overlapping proofs has an advantage for automation, since one has only to search for
cycles in one single branch.

I Definition 29 (Normal Cyclic Proofs). The normal cyclic proof system NCRTCωG is the
subsystem of RTCωG comprising of all and only the non-overlapping cyclic proofs.

The following theorem is immediate due to the fact that the translation of an RTCG proof
into CRTCωG, using the construction shown in Figure 2, results in a proof with no overlapping
cycles.

I Theorem 30. NCRTCωG ⊇ RTCG.

Henkin-completeness of the normal cyclic system then follows from Theorem 30 and
Theorem 13.

4.2 Inclusions of CRTCω
G in RTCG

This section addresses the question of whether the cyclic system is equivalent to the explicit
one, or strictly stronger. In [6] it was conjectured that for the system with inductive
definitions, LKID and CLKIDω are equivalent. Later, it was shown that they are indeed
equivalent when containing arithmetics [3, 26]. We obtain a corresponding theorem in
Section 4.2.1 for the TC systems. However, it was also shown in [2] that in the general case
the cyclic system is stronger than the explicit one. We discuss the general case for TC and
its subtleties in Section 4.2.2.

4.2.1 The Case of Arithmetics
Let LRTC be a language based on the signature {0, s,+}. Let RTCG+A and CRTCωG+A be
the systems for LRTC obtained by adding to RTCG and CRTCωG, respectively, the standard
axioms of PA together with the RTC -characterization of the natural numbers, i.e.:
(i) s x = 0⇒
(ii) s x = s y ⇒ x = y

(iii) ⇒ x+ 0 = x

(iv) ⇒ x+ s y = s (x+ y)
(v) ⇒ (RTCw,u sw = u)(0, x)
Note that we do not need to assume multiplication explicitly in the signature, nor do we
need to add axioms for it, since multiplication is definable in LRTC and its standard axioms
are derivable [1, 11].

Recall that we can express facts about sequences of numbers in PA by using a β-function
such that for any finite sequence k0, k1, ..., kn there is some c such that for all i ≤ n,
β(c, i) = ki. Accordingly, let B be a well-formed formula of the language of PA with three
free variables which captures in PA a β-function. For each formula ϕ of the language of PA
define ϕβ := ϕ, and define ((RTCx,y ϕ)(s, t))β to be:

s = t ∨ (∃z, c . B(c, 0, s) ∧B(c, s z, t) ∧
(∀u ≤ z . ∃v, w . B(c, u, v) ∧ B(c, su,w) ∧ ϕβ

{
v
x ,

w
y

}
))

The following result, which was proven in [8, 11], establishes an equivalence between
RTCG+A and PAG (a Gentzen-style system for PA). It is mainly based on the fact that in
RTCG+A all instances of PAG induction rule are derivable.
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I Theorem 31 (cf. [11]). The following hold:
1. `RTCG+A ϕ⇔ ϕβ.
2. `RTCG+A Γ⇒ ∆ iff `PAG

Γβ ⇒ ∆β.

We show a similar equivalence holds between the cyclic system CRTCωG and CAG, a cyclic
system for arithmetic shown to be equivalent to PAG [26].

I Theorem 32. `CRTCω
G

+A Γ⇒ ∆ iff `CAG
Γβ ⇒ ∆β.

These results allow us to show an equivalence between the finitary and cyclic systems for
TC with arithmetic.

I Theorem 33. RTCG+A and CRTCωG+A are equivalent.

Note that the result above can easily be extended to show that adding the same set of
additional axioms to both RTCG+A and CRTCωG+A results in equivalent systems. Also note
that in the systems with pairs, to embed arithmetics there is no need to explicitly include
addition and its axioms. Thus, by only including the signature {0, s} and the corresponding
axioms for it we can obtain that 〈RTC〉G+A and 〈CRTC〉ωG+A are equivalent.

In [3], the equivalence result of [26] was improved to show it holds for any set of inductive
predicates containing the natural number predicate N. On the one hand, our result goes
beyond that of [3] as it shows the equivalence for systems with a richer notion of inductive
definition, due to the expressiveness of TC. On the other hand, TC does not support
restricting the set of inductive predicates, i.e. the RTC operator may operate on any formula
in the language. To obtain a finer result which corresponds to that of [3] we need to further
explore the transformations between proofs in the two systems. This is left for future work.

4.2.2 The General Case
As mentioned, the general equivalence conjecture between LKID and CLKIDω was refuted in
[2], by providing a concrete example of a statement which is provable in the cyclic system but
not in the explicit one. The statement (called 2-Hydra) involves a predicate encoding a binary
version of the “hydra” induction scheme for natural numbers given in [20], and expresses that
every pair of natural numbers is related by the predicate.6 However, a careful examination of
this counter-example reveals that it only refutes a strong form of the conjecture, according
to which both systems are based on the same set of productions. In fact, already in [2] it is
shown that if the explicit system is extended by another inductive predicate, namely one
expressing the ≤ relation, then the 2-Hydra counter-example becomes provable. Therefore,
the less strict formulation of the question, namely whether for any proof in CLKIDωφ there is a
proof in LKIDφ′ for some φ′ ⊇ φ, has not yet been resolved. Notice that in TC the equivalence
question is of this weaker variety, since the RTC operator “generates” all inductive definitions
at once. That is, there is no a priori restriction on the inductive predicates one is allowed to
use. Indeed, the 2-Hydra counter-example from [2] can be expressed in LRTC and proved in
CRTCωG. However, this does not produce a counter-example for TC since it is also provable in
RTCG, due to the fact that s ≤ t is definable via the RTC formula (RTCw,u sw = u)(s, t).

Despite our best efforts, we have not yet managed to settle this question, which appears to
be harder to resolve in the TC setting. One possible approach to solving it is the semantical
one, i.e. exploiting the fact that the explicit system is known to be sound w.r.t. Henkin

6 In fact, the falsifying Henkin model constructed in [2] also satisfies the “0-axiom” (∀x.0 6= s x), and the
“s -axiom” (∀x, y. s x = s y → x = y) stipulating injectivity of the successor function, and so the actual
counter-example to equivalence is the sequent: (0, s )-axioms⇒ 2-Hydra.
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standard validityadmissible
standard validity

Henkin validityadmissible
Henkin validity

(cut-free)
RTCωG

(cut-free)
〈RTC〉ωG

〈CRTC〉ωG CRTCωG

〈NCRTC〉ωG NCRTCωG

RTCG〈RTC〉G

〈CRTC〉ωG+A CRTCωG+A

〈RTC〉G+A RTCG+A

Thm. 16

Thm. 23

Thm. 13

Thm. 26

Thm. 26

⊆

⊆

⊆

⊆

Cor. 24Cor. 24

⊆⊆

Thm. 30Thm. 30

? ?

? ?

Thm. 33Thm. 33 (ext)

⊆ ⊆

⊆⊆

Figure 3 Diagrammatic Summary of our Results.

semantics. This is what was done in [2]. Thus, to show strict inclusion one could construct an
alternative statement that is provable in CRTCωG whilst also demonstrating a Henkin model
for TC that is not a model of the statement. However, constructing a TC Henkin model
appears to be non-trivial, due to its rich inductive power. In particular, it is not at all clear
whether the structure that underpins the LKID counter-model for 2-Hydra admits a Henkin
model for TC. Alternatively, to prove equivalence, one could show that CRTCωG is also sound
w.r.t. Henkin semantics. Here, again, proving this does not seem to be straightforward.

In our setting, there is also the question of the inclusion of CRTCωG in NCRTCωG, which
amounts to the question of whether overlapping cycles can be eliminated. Moreover, we can
ask if NCRTCωG is included in RTCG, independently of whether this also holds for CRTCωG.
Again, the semantic approach described above may prove fruitful in answering these questions.

5 Conclusions and Future Work

We developed a natural infinitary proof system for transitive closure logic which is cut-free
complete for the standard semantics and subsumes the explicit system. We further explored
its restriction to cyclic proofs which provides the basis for an effective system for automating
inductive reasoning. In particular, we syntactically identified a subset of cyclic proofs that
is Henkin-complete. A summary of the proof systems we have studied in this paper, and
their interrelationships, is shown in Figure 3. Where an edge between systems is labelled
with an inclusion ⊆, this signifies that a proof in the source system is already a proof in the
destination system.

As mentioned in the introduction, as well as throughout the paper, this research was
motivated by other work on systems of inductive definitions, particularly the LKID framework
of [6], its infinitary counterpart LKIDω, and its cyclic subsystem CLKIDω. In terms of
the expressive power of the underlying logic, TC (assuming pairs) subsumes the inductive
machinery underlying LKID. This is because for any inductive predicate P of LKID, there
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is an LRTC formula ψ such that for every standard admissible structure M for LRTC, P has
the same interpretation as ψ under M . This is due to Thm. 3 in [1] and the fact that the
interpretation of P must necessarily be a recursively enumerable set. As for the converse
inclusion, for any positive LRTC formula there is a production of a corresponding LKID
inductive definition. However, the RTC operator can also be applied on complex formulas
(whereas LKID productions only consider atomic predicates). This indicates that TC might
be more expressive. It was noted in [6, p. 1180] that complex formulas may be handled by
stratifying the theory of LKID, similar to [21], but the issue of relative expressiveness of the
resulting theory is not addressed. While we strongly believe it is the case that TC is strictly
more expressive than the logic of LKID, proving so is left for future work. Also left for future
research is establishing the comparative status of the corresponding formal proof systems.

In addition to the open question of the (in)equivalence of RTCG and CRTCωG in the
general case, discussed in Section 4.2, several other questions and directions for further study
naturally arise from the work of this paper. An obvious one would be to implement our
cyclic proof system in order to investigate the practicalities of using TC logic to support
automated inductive reasoning. More theoretically it is already clear that TC logic, as a
framework, diverges from existing systems for inductive reasoning (e.g. LKID) in interesting,
non-trivial ways. The uniformity provided by the transitive closure operator may offer a way
to better study the relationship between implicit and explicit induction, e.g. in the form of
cuts required in each system, or the relative complexity of proofs that each system admits.
Moreover, it seems likely that coinductive reasoning can also be incorporated into the formal
system. Determining whether, and to what extent, these are indeed the case is left for future
work.
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Abstract
We extend work of Lautemann, Schwentick and Stewart [14] on characterisations of the “positive”
polynomial-time predicates (posP, also called mP by Grigni and Sipser [11]) to function classes.
Our main result is the obtention of a function algebra for the positive polynomial-time func-
tions (posFP) by imposing a simple uniformity constraint on the bounded recursion operator in
Cobham’s characterisation of FP. We show that a similar constraint on a function algebra based
on safe recursion, in the style of Bellantoni and Cook [3], yields an “implicit” characterisation of
posFP, mentioning neither explicit bounds nor explicit monotonicity constraints.
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1 Introduction

Monotone functions abound in the theory of computation, e.g. sorting a string, and detecting
cliques in graphs. They have been comprehensively studied in the setting of circuit complexity,
via ¬-free circuits (usually called “monotone circuits”), cf. [13]. Most notably, Razborov’s
seminal work [20] gave exponential lower bounds on the size of monotone circuits, and later
refinements, cf. [1, 23], separated them from non-monotone circuits altogether.

The study of uniform monotone computation is a much less developed subject. Grigni
and Sipser began a line of work studying the effect of restricting “negation” in computational
models [11, 10]. One shortfall of their work was that deterministic classes lacked a bona fide
treatment, with positive models only natively defined for nondeterminstic classes. This means
that positive versions of, say, P must rather be obtained via indirect characterisations, e.g. as
ALOGSPACE. Later work by Lautemann, Schwentick and Stewart solved this problem by
proposing a model of deterministic computation whose polynomial-time predicates coincide
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with several characterisations of P once “negative” operations are omitted [14, 15]. This
induces a robust definition of a class “posP”, the positive polynomial-time predicates [11, 10].

In this paper we extend this line of work to associated function classes (see, e.g., [5]),
which are of natural interest for logical approaches to computational complexity, e.g. [4, 7].
Noting that several of the characterisations proposed by [14] make sense for function classes
(and, indeed, coincide), we propose a function algebra for the “positive polynomial-time
functions” on binary words (posFP) based on Cobham’s bounded recursion on notation [6].
We show that this algebra indeed coincides with certain characterisations proposed in [14],
and furthermore give a function algebra based on safe recursion, in the style of Bellantoni and
Cook [3]. The latter constitutes an entirely implicit characterisation of posFP, mentioning
neither explicit bounds nor explicit monotonicity constraints. As far as we know, this is the
first implicit approach to monotone computation.

This paper is structured as follows. In Sect. 2 we present preliminaries on monotone
functions on binary strings and recall some notions of positive computation from [14, 15].
We show also that these models compute the same class of functions (Thm. 7), inducing
our definition of posFP. In Sect. 3 we recall Cobham’s function algebra for FP, based on
bounded recursion on notation, and introduce a uniform version of it, uC, which we show is
contained in posFP in Sect. 4 (Thm. 17). In Sect. 5 we prove some basic properties about uC;
we characterise the tally functions of uC, those that return unary outputs on unary inputs,
as just the unary codings of linear space functions on N, by giving an associated function
algebra (Thm. 21). We use this to recover a proof that uC is closed under a simultaneous
version of its recursion scheme (Thm. 28), tracking the length of functions rather than usual
methods relying on explicit pairing functions. In Sect. 6 we show the converse result that uC
contains posFP (Thm. 30). Finally, in Sect. 7 we give a characterisation of posFP based
on “safe” recursion (Thm. 36), and we give some concluding remarks in Sect. 8.

Throughout this work, we follow the convention of [14, 15], reserving the word “monotone”
for the semantic level, and rather using “positive” to describe restricted models of computation.

2 Monotone functions and positive computation

We consider binary strings (or “words”), i.e. elements of {0, 1}∗ =
⋃
n∈N
{0, 1}n, and for

x ∈ {0, 1}n we write x(j) for the jth bit of x, where j = 0, . . . , n − 1. We follow the usual
convention that bits are indexed from right (“least significant”) to left (“most significant”),
e.g. as in [5]; for instance the word 011 has 0th bit 1, 1st bit 1 and 2nd bit 0.

We write ε, s0, s1 for the usual generators of {0, 1}∗, i.e. ε denotes the empty string,
s0x = x0 and s1x = x1. We also write 1n for 1 concatenated with itself n times, for n ∈ N.

We consider functions of type {0, 1}∗ × · · · × {0, 1}∗ → {0, 1}∗. For n ∈ N, we define
≤n as the n-wise product order of ≤ on {0, 1}, i.e. for x, y ∈ {0, 1}n we have x ≤n y if
∀j < n. x(j) ≤ y(j). The partial order ≤ on {0, 1}∗ is the union of all ≤n, for n ∈ N. A
function f : ({0, 1}∗)k → {0, 1}∗ is monotone if x1 ≤ y1, . . . , xk ≤ yk =⇒ f(~x) ≤ f(~y).

I Example 1. A recurring example we will consider is the sorting function sort(x), which
takes a binary word input and rearranges the bits so that all 0s occur before all 1s, left-right.
Clearly sort is monotone, and can be given the following recursive definition:

sort(ε) = ε

sort(s0x) = 0sort(x)
sort(s1x) = sort(x)1

(1)



A. Das and I. Oitavem 18:3

While in the binary case it may seem rather simple, we will see that sort nonetheless
exemplifies well the difference between positive and non-positive computation.

One particular well-known feature of monotone functions, independent of any machine
model, is that they are rather oblivious: the length of the output depends only on the length
of the inputs:

I Observation 2. Let f(x1, . . . , xk) be a monotone function. Then, whenever |x1| =
|y1|, . . . , |xk| = |yk|, we also have that |f(~x)| = |f(~y)|.

Proof. Let nj = |xj | = |yj |, for 1 ≤ j ≤ k. We have both f(~x) ≤ f(1n1 , . . . , 1nk ) and
f(~y) ≤ f(1n1 , . . . , 1nk ), by monotonicity, so indeed all these outputs have the same length. J

One way to define a positive variant of FP is to consider ¬-free circuits that are in
some sense uniform. [14, 15] followed this approach too for P, showing that one of the
strongest levels of uniformity (P) and one of the weakest levels (“quantifier-free”) needed
to characterise P indeed yield the same class of languages when describing ¬-free circuits.
We show that a similar result holds for classes of functions, when allowing circuits to have
many output wires. Most of the techniques used in this section are standard, so we keep
to a high-level exposition, rather dedicating space to examples of the notions of positive
computation presented.

We consider ∆0-uniformity rather than quantifier-free uniformity in [14, 15] since it
is easier to present and suffices for our purposes. (We point out that this subsumes, say,
L-uniformity, as explained in the Remark below.) Recall that a ∆0 formula is a first-order
formula over {0, 1,+,×, <} where all quantifiers of the form ∃x < t or ∀x < t for a term t.
A ∆0-formula ϕ(n1, . . . , nk) is interpreted over N in the usual way, and naturally computes
the set {~n ∈ Nk : N � ϕ(~n)}.

I Definition 3 (Positive circuits). A family of k-argument ¬-free circuits is a set {C(~n)}~n∈Nk ,
where each C(~n) is a circuit with arbitrary fan-in

∨
and

∧
gates,3 given as a tuple

(N,D,E, I1, . . . , Ik, O), where [N ] = {n < N} is the set of gates, D ⊆ [N ] is the set of∨
gates (remaining gates are assumed to be

∧
), E ⊆ [N ]× [N ] is the set of (directed) edges

(requiring E(m,n) =⇒ m < n), Ij ⊆ [nj ]× [N ] contains just pairs (l, n) s.t. the lth bit of
the jth input is connected to the gate n, and O ⊆ [N ] is the (ordered) set of output gates.

If these sets are polynomial-time computable from inputs (1n1 , . . . , 1nk ) then we say the
circuit family is P-uniform. Similarly, we say the family is ∆0-uniform if N(~n) is a term
(i.e. a polynomial) in ~n and there are ∆0-formulae D(n,~n), E(m,n, ~n), Ij(l, n, ~n), O(n,~n)
computing the associated sets.

The specification of a circuit family above is just a variant of the usual “direct connection
language” from circuit complexity, cf. [22]. Notice that, importantly, we restrict the set O of
output gates to depend only on the length of the inputs, not their individual bit-values; this
is pertinent thanks to Prop. 2. Also, when it is convenient, we may construe Ij as a function
[nj ]→ P([N ]), by Currying.
I Remark. ∆0-sets are well known to be complete for the linear-time hierarchy [24]. However,
since we only need to manipulate “unary” inputs in the notion of ∆0-uniformity above, the
circuits generated are actually LH-uniform, where LH is the logarithmic-time hierarchy, the
uniform version of AC0 [2]. See, e.g., [5] Sect. 6.3 for related discussions on LH and, e.g.,
[7] Sect. IV.3 for some relationships between ∆0 and AC0.

3 By convention, a
∨

gate with zero inputs outputs 0, while a
∧

gate with zero inputs outputs 1.

CSL 2018
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I Example 4 (Circuits for sorting). Let us write th(j, x) for the (j − 1)th bit of sort(x), for
1 ≤ j ≤ |x|. We also set th(0, x) = 1 and th(j, x) = 0 for j > |x|. Notice that th(j, x) = 1
precisely if there are at least j 1s in x, i.e. it is a threshold function. We assume that the
input j is given in unary, for monotonicity, but as an abuse of notation write, say, j rather
than 1j throughout this example to lighten the notation. (Later, in Sect. 5, we will be more
formal when handling unary inputs.)
We have the following recurrence, for j > 0:

th(j, six) = th(j, x) ∨ (i ∧ th(j − 1, x)) (2)

Notice that this recurrence treats the i = 0 and i = 1 cases in the “same way”. This
corresponds to the notion of uniformity that we introduce in our function algebras later. We
can use this recurrence to construct polynomial-size ¬-free circuits for sorting. For an input
x of size n, write xl for the prefix x(l − 1) · · · · · x(0). Informally, we construct a circuit with
n+ 1 “layers” (numbered 0, . . . , n), where the lth layer outputs th(n, xl) · · · · · th(0, xl); the
layers are connected to each other according to the recurrence in (2), with th(0, xl) always
set to 1. Each layer will thus have 2(n+ 1) gates, with (n+ 1) disjunction gates (computing
the functions th(j, xl)), and n+ 1 intermediate conjunction gates. We assign odd numbers
to disjunction gates and even numbers to conjunction gates, so that the total number of
gates is N(n) = 2(n+ 1)2 and D(n) = {2r+ 1 : r < (n+ 1)2}. The sets E(r, s, n) and I(r, n)
can be given a routine description, and the set O(r, n) of output gates consists of just the
final layer of disjunction gates (except the rightmost), computing th(n, x) · · · · · th(1, x), i.e.
O(r, n) = {2(n+ 1)2 − 2r − 1 : r < n}. It is not hard to see that such circuits are not only
P-uniform, but also ∆0-uniform.

Now we introduce a machine model for uniform positive computation. The definition of a
multitape machine below is essentially from [19]. The monotonicity criterion is identical to
that from [14, 15], though we also allow auxiliary “work” tapes so that the model is easier
to manipulate. This also means that we do not need explicit accepting and rejecting states
with the further monotonicity requirements from [14, 15], since this is subsumed by the
monotonicity requirement on writing 0s and 1s: predicates can be computed in the usual
way by Boolean valued functions, with 0 indicating “reject” and 1 indicating “accept”.

I Definition 5 (Positive machines). A k-tape (deterministic) Turing machine (TM) is a tuple
M = (Q,Σ, δ, s, h) where:

Q is a finite set of (non-final) states.
Σ ⊇ {.,�, 0, 1} is a finite set, called the alphabet.
δ : Q× Σk → (Q ∪ {h})× (Σ× {←,−,→})k such that, whenever δ(q, σ1, . . . , σk) =
(q, τ1, d1, . . . , τk, dk), if σi = . then τi = . and di = →.
s ∈ Q is the initial state.
Q and Σ are disjoint, and neither contains the symbols h,←,−,→.

We call h the final state, . the “beginning of tape marker”, � the “blank” symbol, and
←,−,→ are the directions “left”, “stay” and “right”.

Now, write I = Q× Σk and O = (Q ∪ {h})× (Σ× {←,−,→})k, so that δ is a function
I → O. We define partial orders ≤I and ≤O on I and O resp. as follows:

(q, σ1, . . . , σk) ≤I (q′, σ′1, . . . , σ′k) if q = q′ and, for i = 1, . . . , k, either σi = σ′i, or both
σi = 0 and σ′i = 1.
(q, σ1, d1, . . . , σk, dk) ≤O (q′, σ′1, d′1, . . . , σ′k, d′k) if q = q′ and, for i = 1, . . . , k, we have
di = d′i and either σi = σ′i, or both σi = 0 and σ′i = 1.
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We say that M is positive (a PTM) if δ : I → O is monotone with respect to ≤I and ≤O,
i.e. I ≤I I ′ =⇒ δ(I) ≤O δ(I ′).

A run of input strings x1, . . . , xk ∈ {0, 1}∗ on M is defined in the usual way (see, e.g.,
[19]), beginning from the initial state s and initialising the ith tape to .xi�ω, for i = 1, . . . , k.
If M halts, i.e. reaches the state h, its output is whatever is printed on the kth tape at that
moment, up to the first � symbol.

We say that a function f : ({0, 1}∗)k → {0, 1}∗ is computable by a PTM if there is a k′-tape
PTM M , with k′ ≥ k, such that M halts on every input and, for inputs (x1, . . . , xk, ε, . . . , ε),
outputs f(x1, . . . , xk).

The monotonicity condition on the transition function above means that the value
of a Boolean read does not affect the next state or cursor movements (this reflects the
“obliviousness” of monotone functions, cf. Prop. 2). Moreover, it may only affect the Boolean
symbols printed: the machine may read 0 and print 0 but read 1 and print 1, in otherwise-
the-same situation. However, if in one situation it prints a non-Boolean σ when reading a
Boolean 0 or 1, it must also print σ when reading the other.

I Example 6 (Machines for sorting). A simple algorithm for sorting a binary string x is as
follows: do two passes of x, first copying the 0s in x onto a fresh tape, then appending the
1s.4 However, it is not hard to see that a machine directly implementing this algorithm will
not be positive. Instead, we may again use the recurrence from (2).

We give an informal description of a PTM that sorts a binary string. The machine has
four tapes; the first is read-only and stores the input, say x with |x| = n. As in Ex. 4, we
inductively compute tl = th(n, xl) · · · · · th(0, xl), for l ≤ n. The second and third tape are
used to temporarily store tl, while the fourth is used to compute the sorting of the next prefix
tl+1. At each step the cursors on the working tapes move to the next bit and the transition
function implements the recurrence from (2), calculating the next bit of tl+1 and writing it
to the fourth tape. Notice that the cursor on the third tape remains one position offset from
the cursor on the second and fourth tapes, cf. (2). Once tl+1 has been completely written on
the fourth tape the machine copies it over the contents of the second and third tapes and
erases the fourth tape before moving onto the next bit of the first tape and repeating the
process. Finally, once the first tape has been exhausted, the machine copies the contents
of the second (or third) tape, except the last bit (corresponding to th(x, 0) = 1), onto the
fourth tape and halts.

I Theorem 7. The following function classes are equivalent:
(1) Functions on {0, 1}∗ computable by ∆0-uniform families of ¬-free circuits.
(2) Functions on {0, 1}∗ computable by multi-tape PTMs that halt in polynomial time.
(3) Functions on {0, 1}∗ computable by P-uniform families of ¬-free circuits.
This result is similar to analogous ones found in [14] for positive versions of the predicate
class P. It uses standard techniques so we give only a sketch of the proof below. Notice that
the equivalence of models thus holds for any level of uniformity between ∆0 and P, e.g. for
L-uniform ¬-free circuits, cf. the Remark on p. 3.

Proof sketch of Thm. 7. We show that (1) ⊆ (2) ⊆ (3) ⊆ (1). The containments are mostly
routine, though (3) ⊆ (1) requires some subtlety due to the positivity condition on circuits.
For this we rely on an observation from [10]. Let C(~n) be a P-uniform family of ¬-free

4 Recall that, while bits are indexed from right to left, machines read from left to right.
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circuits, specified by polynomial-time programs N,D,E, I1, . . . , Ik, O. Since the circuit-
value problem is P-complete under even AC0-reductions (see, e.g., [7]), we may recover
∆0-uniform polynomial-size circuits (with negation) computing each of N,D,E, I1, . . . , Ik, O,
cf. the Remark on p. 3. However, these circuits take only unary strings of 1s as inputs,
and so all negations can be pushed to the bottom (by De Morgan laws) and eliminated,
yielding input-free ¬-free circuits for each of N,D,E, I1, . . . , Ik, O and their complements (by
dualising gates). We may use these as “subcircuits” to compute the relevant local properties
of C(~n). In particular, every internal gate n of C(~n) may be replaced by the following
configuration (progressively, beginning from the highest-numbered gate N(~n)− 1):(

D(n,~n) ∧
( ∨
m<n

(m ∧ E(m,n, ~n)) ∨
k∨
j=1

∨
l<nj

(x(l) ∧ Ij(l, n))
))

∨

(
¬D(n,~n) ∧

( ∧
m<n

(m ∨ ¬E(m,n, ~n)) ∧
k∧
j=1

∧
l<nj

(x(l) ∨ ¬Ij(l, n))
))

This entire construction can be made ∆0-uniform, upon a suitable renumbering of gates.
The proof of (2) ⊆ (3) follows a standard construction (see, e.g., [19]), observing that

the positivity criterion on PTMs entails local monotonicity and hence allows us to construct
circuits that are ¬-free. (Similar observations are made in [11, 10, 14, 15]). Suppose Q,Σ
and {←,−,→} are encoded by Boolean strings such that distinct elements are incomparable
under ≤, (except 0 ≤ 1 for 0, 1 ∈ Σ). Thus we may construe δ as a bona fide monotone
Boolean function of fixed input arities, and thus has some (constant-size) ¬-free circuit thanks
to adequacy of the basis {

∨
,
∧
}, say Cδ. Now, on a fixed input, consider “configurations”

of the form (q, x1, n1, . . . , xk, nk), where q ∈ Q, xi is the content of the ith tape (up to the
halting time bound) and ni is the associated cursor position (encoded in unary). We may use
Cδ to construct polynomial-size ¬-free circuits mapping the machine configuration at time t
to the configuration at time t+ 1. By chaining these circuits together polynomially many
times (determined by the halting time bound), we may thus obtain a circuit that returns the
output of the PTM. This entire construction remains P-uniform, as usual.

The proof of (1) ⊆ (2) is also routine, building a PTM “evaluator” for ¬-free circuits,
where ¬-freeness allows us to satisfy the positivity condition on TMs. We rely on the fact
that the ∆0-specifications may be entirely encoded in unary on a PTM, so that they are
monotone, in polynomial-time. We do not go into details here since, in particular, this
containment is subsumed by our later results, Thm. 17 and Thm. 30, which show that (1) ⊆
uC ⊆ (2), for the algebra uC we introduce in the next section. J

I Definition 8 (Positive FP). The function class posFP is defined to be the set of functions
on {0, 1}∗ computed by any of the equivalent models from Thm. 7.

I Remark. The notion of positive computation was previously studied in [11, 14, 15]. One
interesting point already noted in those works is that, for a complexity class, its positive
version is not, in general, just its monotone members. This follows from a seminal result
of Razborov [20], and later improvements [1, 23]: there are polynomial-time monotone
predicates (and hence polynomial-size circuits with negation) for which the only ¬-free
circuits are exponential in size. In particular, posFP ( {f ∈ FP : f monotone}.

3 An algebra uC for posFP

We present a function algebra for posFP by considering “uniform” versions of recursion
operators. We write [F ;O] for the function class generated by a set of initial functions F
and a set of operations O, and generally follow conventions and notations from [5].
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Let us first recall Cobham’s function algebra for the polynomial-time functions, FP. This
algebra was originally formulated over natural numbers, though we work with a version here
over binary words, essentially as in [9, 18].

Define πkj (x1, . . . , xk) := xj and x#y := 1|x||y|. We write comp for the operation of
function composition.

I Definition 9. A function f is defined by bounded recursion on notation (BRN) from
g, h0, h1, k if |f(x, ~x)| ≤ |k(x, ~x)| for all x, ~x and:

f(ε, ~x) = g(~x)
f(s0x, ~x) = h0(x, ~x, f(x, ~x))
f(s1x, ~x) = h1(x, ~x, f(x, ~x))

(3)

We write C for the function algebra [ε, s0, s1, π
k
j ,#; comp,BRN].

I Theorem 10 ([6]). C = FP.

Notice that ε, s0, s1, π
k
j ,# are monotone, and the composition of two monotone functions is

again monotone. However, non-monotone functions are definable using BRN, for instance:

cond(ε, yε, y0, y1) = yε
cond(s0x, yε, y0, y1) = y0
cond(s1x, yε, y0, y1) = y1

(4)

This “conditional” function is definable since we do not force any connection between
h0 and h1 in (3). Insisting on h0 ≤ h1 would retain monotonicity, but this condition is
external and not generally checkable. Instead, we can impose monotonicity implicitly by
somewhat “uniformising” BRN. First, we will need to recover certain monotone variants of
the conditional:

I Definition 11 (Meets and joins). We define x ∧ y = z by |z| = min(|x|, |y|) and z(j) =
min(x(j), y(j)), for j < min(|x|, |y|). We define analogously x ∨ y = z by |z| = max(|x|, |y|)
and z(j) = max(x(j), y(j)), for j < max(|x|, |y|).

Note that, in the case of x ∨ y above, if |x| < |y| and |x| ≤ j < max(|x|, |y|), then x(j) is not
defined and we set z(j) = y(j). We follow an analogous convention when |y| < |x|.

I Definition 12 (The function algebra uC). We say that a function is defined by uniform
bounded recursion on notation (uBRN) from g, h, k if |f(x, ~x)| ≤ |k(x, ~x)| for all x, ~x and:

f(ε, ~x) = g(~x)
f(s0x, ~x) = h(0, x, ~x, f(x, ~x))
f(s1x, ~x) = h(1, x, ~x, f(x, ~x))

(5)

We define uC to be the function algebra [ε, s0, s1, π
k
j ,#,∧,∨; comp, uBRN].

Notice that ∧ and ∨ are clearly FP functions, therefore they are in C. Moreover, notice
that (5) is the special case of (3) when hi(x, ~x, y) has the form h(i, x, ~x, y). So, we have that
uC ⊆ C = FP. We will implicitly use this observation later to ensure that the outputs of uC
functions have lengths which are polynomially bounded on the lengths of the inputs.

The main result of this work is that uC = posFP. The two directions of the equality are
proved in the sections that follow, in the form of Thms. 17 and 30. Before that, we make
some initial observations about uC.
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I Proposition 13. uC contains only monotone functions.

Proof. The proof is by induction on the definition of f . The relevant case is when f is
defined by uBRN. It suffices to show that f is monotone in its first input, which we do by
induction on its length. Let w ≤ x. If |w| = |x| = 0, then they are both ε and we are done.
Otherwise let w = siw′ and x = sjx′. Then f(w, ~y) = h(i, w′, ~y, f(w′, ~y)) ≤ h(j, x′, ~y, f(x′, ~y))
by the inductive hypothesis, since i ≤ j and w′ ≤ x′, and we are done. J

I Proposition 14. uC + cond = C.5

Proof. The left-right inclusion follows from the definition of cond by BRN in (4). For the
right-left inclusion, we again proceed by induction on the definition of functions in C, and the
relevant case is when f is defined by BRN, say from g, h0, h1, k. In this case, we may recover a
definition of f using uBRN by writing h(i, x, ~x, y) = cond(i, g(~x), h0(x, ~x, y), h1(x, ~x, y)). J

As expected, uC contains the usual predecessor function, least significant parts, concaten-
ation, and a form of iterated predecessor:

I Proposition 15 (Basic functions in uC). uC contains the following functions:6

p(ε) := ε

p(six) := x

lsp(ε) := ε

lsp(six) := i

x · ε := x

x · (siy) := si(x · y)
msp(|ε|, y) := y

msp(|six|, y) := p(msp(|x|, y))

Proof. All these definitions are instances of uBRN, with bounding function #(s1x, s1y). J

Notice that, in the above definition of concatenation and throughout this work, we write six
for s0x ∨ i. We also sometimes simply write xy instead of x · y.

We may also extract individual bits and test for the empty string in:

I Proposition 16 (Bits and tests). uC contains the following functions:

bit(|x|, y) := lsp(msp(|x|, y)) condε(ε, y, z) := y

condε(six, y, z) := z

4 posFP contains uC

One direction of our main result follows by standard techniques:

I Theorem 17. uC ⊆ posFP.

It is not hard to see that one can extract (uniform) ¬-free circuits from a uC program,
but we instead give a PTM for each function of uC.

Proof sketch of Thm. 17. The proof is by induction on the function definitions. We prove
that for all f ∈ uC there exists a PTM Mf computing f in polynomial time. For the initial
functions the result is straightforward, and composition is routine.

We give the important case of when f is defined by uBRN from functions g, h, k ∈ uC, as
in (5); we will assume there are no side variables ~x, for simplicity, though the general case is
similar. Let |f(x)| ≤ b(|x|) for some polynomial b(n) (since, in particular, f(x) ∈ C = FP).
By the inductive hypothesis, there are PTMs Mg (with t tapes) and Mh (with 3 + u tapes)

5 Here we write [F ;O] + f for the function algebra [F , f ;O].
6 Notice that we could have equivalently defined lsp(x) as x ∧ 1.
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computing, respectively, g and h in time bounded by pg(n) and ph(1,m, n) for inputs of
lengths n and (1,m, n), respectively, for appropriate polynomials pg, ph. We assume that
Mg and Mh halt scanning the first cell of each tape. In case of Mh we also assume that the
content of tapes 1 and 2 are not changed during the computation (i.e. are read-only), and
that the machine halts with the output in tape 3 with the other u tapes empty. We may
define an auxiliary machine, M , with 3 tapes. Whenever the recursion input x is on tape 1,
every time we run M , it writes the two first inputs of a call to h on tapes 2 and 3 and shifts
the cursor in x one bit along. This means that a bit of x will be on tape 2 and a prefix of x,
up to that bit, will be on tape 3.
Such M may be constructed so that it is a positive TM which works in time bounded by
2|x|+ 1.

Now, we describe a positive TM Mf (with 3 + u+ t tapes) computing f as follows:
1. Run Mg (over the last t tapes of Mf );
2. Enter state s, run M (over tapes 1-3), and if M reaches state H, halt;
3. Run Mh (over tapes 2,3, 3 + u+ t, and tapes 4 to u+ 3 of Mf , in this order);
4. Go to (2).
Each run of M shifts the cursor of the input tape one cell to the right, so, as expected, it
halts after |x| repetitions of the loop above, and hence operates in polynomial time. J

5 Some properties of the algebra uC

We conduct some “bootstrapping” in the algebra uC, both for self-contained interest and
also for use later on to prove the converse of Thm. 17 in Sect. 6.

5.1 An algebra for lengths: tally functions of uC and linear space
We characterise the tally functions of uC, i.e. those with unary inputs and outputs, as just
the unary codings of functions on N computable in linear space. We carry this argument out
in a recursion-theoretic setting so that the exposition is more self-contained.

To distinguish functions on N from functions on {0, 1}∗, we use variables m,n etc. to vary
over N. We will also henceforth write n for 1n, to lighten the presentation when switching
between natural numbers and binary words.

Further to Prop. 2, for functions in uC we may actually compute output lengths in a
simple function algebra over N.

I Definition 18. Let 0, 1,+,×,min,max have their usual interpretations over N. f(n,~n) is
defined by bounded recursion, written BR, from g, h, k if f(n,~n) ≤ k(n,~n) for all n,~n and:

f(0, ~n) = g(~n)
f(n+ 1, ~n) = h(n,~n, f(n,~n))

We write E2 for the function algebra [0, 1,+,×,min,max, πkj ; comp,BR] over N.

Let us write FLINSPACE for the class of functions on N computable in linear space (see,
e.g., [5]). The following result is well-known:

I Proposition 19 ([21]). E2 = FLINSPACE.

For a list of arguments ~x = (x1, . . . , xk), let us write |~x| for (|x1|, . . . , |xk|).

I Lemma 20. For f(~x) ∈ uC, there is a lf (~n) ∈ E2 such that |f(~x)| = lf (|~x|).
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Proof. We proceed by induction on the definition of f in uC. For the initial functions
we have: |ε| = 0, |s0x| = |x| + 1, |s1x| = |x| + 1, |x#y| = |x||y|, |πkj (x1, . . . , xn)| = |xj |,
|x ∧ y| = min(|x|, |y|), and |x ∨ y| = max(|x|, |y|).

If f is defined by composition, the result is immediate from composition in E2. Finally, if
f(x, ~x) is defined by uBRN from functions g, h, k ∈ uC, as in (5), then we have,

|f(ε, ~x)| = |g(~x)|
|f(six, ~x)| = |h(1, x, ~x, f(x, ~x))|

and we may define lf by BR from lg, lh and lk, by the inductive hypothesis. J

By appealing to the lengths of ε, s1, ·,#,∧,∨, uBRN, we also have a converse result to
Lemma 20 above, giving the following characterisation of the tally functions of uC:

I Theorem 21. Let f : Nk → N. Then the binary string function f(|~x|) is in uC if and only
if the natural number function f(~n) is in E2.

Proof sketch. The left-right implication follows from Lemma 20 above, and the right-left
implication follows by simulating E2-definitions with unary codings in uC. J

Thanks to this result, we will rather work in E2 when reasoning about tally functions in uC,
relying on known facts about FLINSPACE (see, e.g., [5]).

In uC, we may also use unary codings to “iterate” other functions. We write f(~n, ~y) ∈ uC
if there is f ′(~x, ~y) ∈ uC such that f ′(~n, ~y) = f(~n, ~y), for all ~n ∈ N.

I Observation 22 (Length iteration). uC is closed under the bounded length iteration
operation: we may define f(n, ~x) from g(~x), h(n, ~x, y) and k(n, ~x) as:

f(0, ~x) := g(~x)
f(n+ 1, ~x) := h(n, ~x, f(n, ~x))

as long as |f(n, ~x)| ≤ |k(n, ~x)|.

In fact, bounded length iteration is just a special case of uBRN, and we will implicitly use
this when iterating functions by length. This is crucial for deriving closure properties of uC,
as in the next subsection, and for showing that uC ⊇ posFP in Sect. 6.
I Remark (Some iterated functions). For h(x, ~x) ∈ uC, the following functions are in uC:∨

j<|x|
h(j, ~x) := h

(
|x| − 1, ~x

)
∨ · · · ∨ h (0, ~x)∧

j<|x|
h(j, ~x) := h

(
|x| − 1, ~x

)
∧ · · · ∧ h (0, ~x)

∨
x :=

∨
j<|x|

bit (j, x)

∧
x :=

∧
j<|x|

bit (j, x)

⊙
j<|x|

h(j, ~x) := h
(
|x| − 1, ~x

)
· · · · · h (0, ~x)

Notice that, as for the definitions of
∨
x and

∧
x above, we may use iterated operators with

various limit formats, implicitly assuming that these are definable in uC.

I Example 23 (A program for sorting). Notice that the recurrence in (1), while an instance
of BRN, is not an instance of uBRN, since it is not uniform. However, we may give a positive
definition by uBRN based, once again, on the recurrence (2):

sort(ε) = ε

sort(six) =
⊙
j<|x|

(bit(j + 1, s1sort(x)) ∨ (i ∧ bit(j, s1sort(x))))
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5.2 uC is closed under simultaneous uBRN
To exemplify the robustness of the algebra uC it is natural to show closure under certain
variants of recursion. While we do not explicitly use these results later, the technique should
exemplify how other textbook-style results may be obtained for uC. We also point out that
the ideas herein are implicitly used in Sect. 6 where we inline a treatment of a restricted
version of “course-of-values” recursion.

One of the difficulties in reasoning about uC is that it is not clear how to define appropriate
(monotone) (de)pairing functions, which are usually necessary for such results. Instead, we
rely on analogous results for E2, before “lifting” them to uC, thanks to Thm. 21 and Prop. 2.
We give a self-contained exposition for the benefit of the reader but, since FLINSPACE
and algebras like E2 are well known, we will proceed swiftly; see, e.g., [5] for more details.

Notice that we have the following functions in E2,

n .−m := max(n−m, 0) and cond0(x, y, z) :=
{
y if x = 0
z otherwise

thanks to Thm. 21 and the fact that msp(|x|, y) and condε are in uC. Thus we may define,

le(m,n) :=
{

0 if n .−m = 0
1 otherwise

and
⌊n

2

⌋
:=

∑
i<n

le(2i+ 1, n)

by bounded recursion. This allows us to define in E2 a simple pairing function:

I Proposition 24 (Pairing in E2). The following function is in E2:

〈n0, n1〉 :=
⌊

(n0 + n1)(n0 + n1 + 1)
2

⌋
+ n0

We now show that we have the analogous depairing functions, due to the fact that
bounded minimisation is available in FLINSPACE.

I Lemma 25 (Bounded minimisation, [12]). E2 is closed under bounded minimisation: if
f(n,~n) ∈ E2 then so is the following function:

s(µm < n).(f(m,~n) = 0) :=
{
m+ 1 m < n is least s.t. f(m,~n) = 0
0 f(m,~n) > 0 for all m < n

Proof. Appealing to BR, we have s(µm < 0).(f(m,~n) = 0) = 0 and,

s(µm < n+ 1).(f(m,~n) = 0)

=


n+ 1 if s(µm < n).(f(m,~n) = 0) = 0 , f(n,~n) = 0
0 if s(µm < n).(f(m,~n) = 0) = 0 , f(n,~n) 6= 0
s(µm < n).(f(m,~n) = 0) if s(µm < n).(f(m,~n) = 0) 6= 0

by two applications of the conditional cond0. J

I Proposition 26 (Depairing). For i ∈ {0, 1}, the function βi with βi(〈n0, n1〉) = ni is in E2.

Proof. We have β0(n) = s(µn0 < n).(s(µn1 < n).(〈n0, n1〉 = n) 6= 0) .− 1, which is definable
by bounded minimisation and appropriate conditionals.7 β1(n) is defined analogously, by
switching s(µn0 < n) and s(µn1 < n). J

7 Notice that 〈n0, n1〉 = n iff max(〈n0, n1〉 .− n, n .− 〈n0, n1〉) = 0.
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Thanks to (de)pairing, we have the following (well-known) result:

I Proposition 27. E2 is closed under simultaneous bounded recursion: we may define
f1, . . . , fp from g1, h1, k1 . . . , gp, hp, kp if fj(n,~n) ≤ kj(n,~n) for all n,~n, for 1 ≤ j ≤ p, and:

fj(0, ~n) = gj(~n)
fj(n+ 1, ~n) = hj(n,~n, f1(n,~n), · · · , fp(n,~n))

This result, along with Lemma 20, allows us to show that uC is closed under the simultaneous
form of uBRN, by using concatenation instead of pairing:

I Theorem 28. uC is closed under simultaneous uBRN: we may define f1, . . . , fp from
g1, h1, k1 . . . , gp, hp, kp if |fj(x, ~x)| ≤ |kj(x, ~x)| for all x, ~x, for 1 ≤ j ≤ p, and:

fj(ε, ~x) = gj(~x)
fj(six, ~x) = hj(i, x, ~x, f1(x, ~x), . . . , fp(x, ~x))

Proof sketch. For 1 ≤ j ≤ p, we have gj , hj , kj are in uC, therefore by Lemma 20 there
exist, in E2, functions lgj

, lhj
and lkj

computing their output lengths in terms of their input
lengths. Appealing to simultaneous bounded recursion (Prop. 27), we may define in the
natural way functions lfj

∈ E2 such that |fj(x, ~x)| = lfj
(|x|, |~x|) for all x, ~x.

Now, using concatenation, we define the following function in uC by uBRN,

F (ε, ~x) = g1(~x) · · · · · gp(~x)
F (six, ~x) = h1(i, x, ~x, ~F (x, ~x)) · · · · · hp(i, x, ~x, ~F (x, ~x)),

where ~F = (F1, . . . Fp) and each Fj(x, ~x) is F (x, ~x) without its leftmost lf1(|x|, |~x|) + · · ·+
lfj−1(|x|, |~x|) and its rightmost lfj+1(|x|, |~x|) + · · ·+ lfp

(|x|, |~x|) bits, i.e.,

Fj(x, ~x) = msp
(
lfj+1(|x|, |~x|) + · · ·+ lfp

(|x|, |~x|), F (x, ~x)
)
∧ lfj

(|x|, |~x|)

The bounding function is just the concatenation of all the kj(x, ~x), for 1 ≤ j ≤ p. Now we
may conclude by noticing that fj(x, ~x) = Fj(x, ~x), for 1 ≤ j ≤ p. J

6 uC contains posFP

We are now ready to present our proof of the converse to Thm. 17. For this we appeal to the
characterisation (1) from Thm. 7 of posFP as ∆0-uniform families of ¬-free circuits. Since
∆0 formulae compute just the predicates of the linear-time hierarchy, the following result is
not surprising, though we include it for completeness of the exposition:

I Lemma 29 (Characteristic functions of ∆0 sets). Let ϕ be a ∆0-formula with free variables
amongst ~n. There is a function fϕ(~n) ∈ E2 such that:

fϕ(~n) =
{

0 N 2 ϕ(~n)
1 N � ϕ(~n)

Proof. We already have functions for all terms (written s, t, etc.), i.e. polynomials, due to
the definition of E2. We proceed by induction on the structure of ϕ, which we assume by De
Morgan duality is written over the logical basis {¬,∧, ∀}:

For atomic formulae we use the length conditional to define appropriate functions:

fs<t(~n) :=
{

1 s .− (t+ 1) = 0
0 otherwise

fs=t(~n) :=
{

1 max(s .− t, t .− s) = 0
0 otherwise
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If ϕ is ¬ψ then we define fϕ, using the conditional, as follows:

fϕ(~n) :=
{

1 fψ(~n) = 0
0 otherwise

If ϕ is ψ ∧ χ then we define fϕ as follows:

fϕ(~n) := min(fψ(~n), fχ(~n))

If ϕ is ∀n < t.ψ(n,~n) then we define fϕ(t, ~n), by BR, as follows:

fϕ(0, ~n) := 1
fϕ(n+ 1, ~n) := min (fψ(n,~n), fϕ(n,~n)) J

Using this result, we may argue for the converse of Thm. 17.

I Theorem 30. posFP ⊆ uC.

Proof. Working with the characterisation (1) from Thm. 7 of posFP, we use Lemma 29
above to recover characteristic functions of sets specifying a ¬-free circuit family C(~n) in E2.
Writing N,D,E, I1, . . . , Ik, O for the associated characteristic functions (in E2), we define
an “evaluator” program in uC, taking advantage of Thm. 21, that progressively evaluates the
circuit as follows. Given inputs ~x of lengths ~n, we will define a function Val(n, ~x) that returns
the concatenation of the outputs of the gates < n in C(~n), by length iteration, cf. Obs. 22.

The base case of the iteration is simple, with Val(0, ~x) := ε. For the inductive step we
need to set up some intermediate functions. Suppressing the parameters ~n, we define the
function ι(n, ~x) returning the concatenation of input bits sent to the nth gate:

ι(n, ~x) :=
⊙

m<|x1|

(
I1(m,n) ∧ bit(m,x1)

)
· · · · ·

⊙
m<|xk|

(
Ik(m,n) ∧ bit(m,xk)

)
Now we define the value val(n, ~x) of the nth gate in terms of Val(n, ~x), appealing again to
the iterated operators from Rmk. 5.1, and testing for the empty string:8

val(n, ~x) :=


∧
ι(n, ~x) ∧

∧
m<n

(
(1 .− E(m,n)) ∨ bit(m,Val(~n, ~x))

)
if D(n) = 0∨

ι(n, ~x) ∨
∨
m<n

(
E(m,n) ∧ bit(m,Val(~n, ~x))

)
if D(n) = 1

Finally we may define Val (n+ 1, ~x) := val(n, ~x) ·Val(n, ~x). At this point we may define the
output C(~x) of the circuit as

⊙
m<N

(
O(m) ∧ bit(m,Val(N,~x))

)
. J

7 A characterisation based on safe recursion

In [3] Bellantoni and Cook give an implicit function algebra for FP, not mentioning any
explicit bounds, following seminal work by Leivant, [16, 17], who first gave a logical implicit
characterisation of FP. In this section we give another function algebra for posFP in the
style of Bellantoni and Cook’s, using “safe recursion”. Our argument follows closely the
structure of the original argument in [3]; it is necessary only to verify that those results
go through once an appropriate uniformity constraint is imposed. We write normal-safe
functions as usual: f(~x; ~y) where ~x are the normal inputs and ~y are the safe inputs.

8 Formally, here we follow the usual convention that
∨

ε = 0 and
∧

ε = 1.
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I Definition 31 (Function algebra uB). We say that f is defined by safe composition, written
scomp, from functions g, ~r, ~s if: f(~x; ~y) = g(~r(~x; );~s(~x; ~y)). We say that f is defined by
uniform safe recursion on notation (uSRN) from functions g and h if:

f(ε, ~x; ~y) = g(ε, ~x; ~y)
f(six, ~x; ~y) = h(x, ~x; i, ~y, f(x, ~x; ~y))

We define uB := [ε, s;1
0 , s

;1
1 , π

l;k
j ,∧;2,∨;2, p;1, cond ;3

ε ; scomp, uSRN]. Here, superscripts
indicate the arity of the function, which we often omit. We will show that the normal part
of uB computes precisely posFP, following the same argument structure as [3].

I Lemma 32 (Bounding lemma). For all f ∈ uB, there is a polynomial bf (~m,~n) (with natural
coefficients) such that, for all ~x, ~y, |f(~x; ~y)| ≤ bf (|~x|, |~y|).

Proof idea. We show by that for f ∈ uB, by induction on its definition, there exists a
polynomial qf (~n) such that, for all ~x, ~y, |f(~x; ~y)| ≤ qf (|~x|) + maxj(|yj |). (This is just a
special case of the same property for B from [3].) J

I Proposition 33. If f(~x; ~y) ∈ uB, then we have f(~x, ~y) ∈ uC.

Proof sketch. We proceed by induction on the definition of f ; the only interesting case
is when f is defined by uSRN. In this case we define f analogously to uBRN, taking the
bounding function to be bf (|~x|, |~y|), where bf is obtained from Lemma 32 above. J

Therefore we have that uB is contained in uC, and consequently in posFP. In order
to establish the other inclusion we slightly reformulate the function algebra uC. We write
uC′ := [ε, s0, s1, π

n
j ,∧,∨; comp, uBRN′], where uBRN′ is defined as uBRN but with the

bounding polynomial k ∈ [ε, s1, π
n
j , ·,#; comp]. It is clear that uC is contained in uC′; namely

the function # can easily be defined (as in, e.g., the proof of Prop. 35 later). We will prove
that uC′ is contained in uB.

I Lemma 34. For all f ∈ uC′ there is a polynomial pf (n) and some f ′(w; ~x) ∈ uB such
that, for all ~x,w, (|w| ≥ pf (|~x|)⇒ f(~x) = f ′(w; ~x)).

Proof sketch. The proof is similar to the proof of the analogous statement for FP given
in [3], with routine adaptations to deal with uniformity. We proceed by induction on the
definition of f in uC′, with the interesting case being when f is defined by uBRN′, say from
functions g, h and k. Let g′, pg, h′ and ph be the appropriate functions and polynomials
obtained by the inductive hypothesis. We would like to define f ′ ∈ uB and a polynomial
pf such that, for all w, x, ~x, whenever |w| ≥ pf (|x|, |~x|) one has f(x, ~x) = f ′(w;x, ~x). The
problem is that in uB, due to the normal-safe constraints, one cannot define f ′ directly by
recursion on x. Therefore we introduce in uB some auxiliary functions. Define,

msp(|ε|; y) := y

msp(|six|; y) := p(; msp(|x|; y))

msp(|x|, y; ) := msp(|x|; y)
X(z, w;x) := msp(|msp(|z|, w; )|;x)
I(z, w;x) := X(s1z, w;x) ∧ 1

by uSRN and by safe composition. The function X is used to “simulate” the recursion over
x, with x in a safe input position. Now, by uSRN, we define F (ε, w;x, ~x) := ε and,

F (siz, w;x, ~x)

:=
{
g′(w; ~x) if X(s1z, w;x) = ε

h′(w; I(z, w;x), X(z, w;x), ~x, F (z, w;x, ~x)) otherwise
(6)
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using a length conditional, cf. Prop. 16. From here we set f ′(w;x) := F (w,w;x, ~x) and also,

pf (|x|, |~x|) := ph(1, |x|, |~x|, bf (|x|, |~x|)) + pg(|~x|) + |x|+ 1,

where bf is a polynomial bounding the length of the outputs of f (which exists since f ∈ uC′.)
Given x, ~x, take w such that |w| ≥ pf (|x|, |~x|). We will prove, by subinduction on |u|,

that, if |w| − |x| ≤ |u| ≤ |w|, then F (u,w;x, ~x) = f(X(u,w;x), ~x). Since X(w,w;x) = x, we
thus obtain that f ′(w;x, ~x) = F (w,w;x, ~x) = f(x, ~x), as required.

Let us take an arbitrary u such that |w| − |x| ≤ |u| ≤ |w|. Note that |w| − |x| ≥ 1, and
thus we may write u = siz for some z. We have two cases:

If |siz| = |w| − |x| then X(siz, w;x) = ε, and so F (siz, w;x, ~x) = g′(w; ~x) = g(~x) =
f(ε, ~x) = f(X(siz, w;x), ~x).
If |siz| > |w| − |x| then X(siz, w;x) 6= ε and so:

F (siz, w; x, ~x) = h′(w; I(z, w; x), X(z, w; x), ~x, F (z, w; x, ~x)) by (6)
= h(I(z, w; x), X(z, w; x), ~x, F (z, w; x, ~x)) by inductive hypothesis
= h(I(z, w; x), X(z, w; x), ~x, f(X(z, w; x), ~x)) by subinductive hypothesis
= f(X(siz, w; x), ~x) by definition of f .

J

I Proposition 35. If f(~x) in uC, then we have f(~x; ) ∈ uB.

Proof. For f in uC, recalling that uC ⊆ uC′, take f ′ ∈ uB and a polynomial pf given by
Lemma 34 above. It suffices to prove that there exists r ∈ uB such that |r(~x; )| ≥ pf (|~x|),
for all ~x, whence we have f ′(r(~x; ); ~x) = f(~x) as required, cf. Lemma 34 above. For this we
simply notice that the usual definitions of polynomial growth rate functions, e.g. from [3],
can be conducted in unary, using only uniform recursion. Namely, define ⊕ and ⊗ in uB as
follows, by uSRN,

⊕(ε; y) := y

⊕(six; y) := s1(⊕(x; y))
⊗(ε, y; ) := ε

⊗(six, y; ) := ⊕(y;⊗(x; y))

so that | ⊕ (x; y)| = |x|+ |y| and | ⊗ (x, y; )| = |x| × |y|. By safe composition we may also
write ⊕(x, y; ) in uB, yielding an appropriate function r(~x; ) ∈ uB. J

As a consequence of Props. 33 and 35 in this section, and Thms. 17 and 30 earlier, we
summarise the contributions of this work in the following characterisation:

I Theorem 36. uB = uC = posFP.

8 Conclusions

In this work we observed that characterisations of “positive” polynomial-time computation
in [14] are similarly robust in the functional setting. We gave a function algebra uC for
posFP by uniformising the recursion scheme in Cobham’s characterisation for FP, and gave
a characterisation based on safe recursion too. We also observed that the tally functions of
posFP are precisely the unary encodings of FLINSPACE functions on N.

uC has a natural generalisation for arbitrary ordered alphabets, not just {0, 1}. This
is similarly the case for the circuit families and machine model we presented in Sect. 2.
We believe these, again, induce the same class of functions, and can even be embedded
monotonically into {0, 1}, thanks to appropriate variants of uBRN in uC, e.g. Thm. 28.

CSL 2018



18:16 A Recursion-Theoretic Characterisation of the Positive Polynomial-Time Functions

Unlike for non-monotone functions, there is an interesting divergence between the mono-
tone functions on binary words and those on the integers. Viewing the latter as finite
sets, characterised by their binary representaion, we see that the notion of monotonicity
induced by ⊆ is actually more restrictive than the one studied here on binary words. For
example, natural numbers of different lengths may be compared, and the bit function is no
longer monotone. In fact, a natural way to characterise such functions would be to further
uniformise recursion schemes, by also relating the base case to the inductive step, e.g.:

f(0, ~x) = h(0, 0, ~x, 0)
f(six, ~x) = h(i, x, ~x, f(x, ~x))

Adapting such recursion schemes to provide a “natural” formulation of the positive polynomial-
time predicates and functions on N is the subject of ongoing work.

Finally, this work serves as a stepping stone towards providing logical theories whose
provably recursive functions correspond to natural monotone complexity classes. Witnessing
theorems for logical theories typically compile to function algebras on the computation
side, and in particular it would be interesting to see if existing theories for monotone proof
complexity from [8] appropriately characterise positive complexity classes. We aim to explore
this direction in future work.

References
1 Noga Alon and Ravi B Boppana. The monotone circuit complexity of boolean functions.

Combinatorica, 7(1):1–22, 1987.
2 David A. Mix Barrington, Neil Immerman, and Howard Straubing. On Uniformity within

NC1. J. Comput. Syst. Sci., 41(3):274–306, 1990. doi:10.1016/0022-0000(90)90022-D.
3 Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic characterization of the

polytime functions. Computational Complexity, 2:97–110, 1992. doi:10.1007/BF01201998.
4 Samuel R. Buss. Bounded arithmetic, volume 1 of Studies in Proof Theory. Bibliopolis,

Naples, 1986.
5 Peter Clote and Evangelos Kranakis. Boolean Functions and Computation Models. Texts

in Theoretical Computer Science. An EATCS Series. Springer, 2002. doi:10.1007/
978-3-662-04943-3.

6 A. Cobham. The intrinsic computational difficulty of functions. In Proc. of the International
Congress for Logic, Methodology, and the Philosophy of Science, pages 24–30. Amsterdam,
1965.

7 Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

8 Anupam Das. From positive and intuitionistic bounded arithmetic to monotone proof
complexity. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 126–135, 2016.
doi:10.1145/2933575.2934570.

9 Fernando Ferreira. Polynomial time computable arithmetic. In Contemporary Mathematics,
volume 106, pages 137–156. AMS, 1990.

10 Michelangelo Grigni. Structure in monotone complexity. PhD thesis, Duke University, 1991.
11 Michelangelo Grigni and Michael Sipser. Monotone complexity. In London Mathematical

Society Symposium on Boolean Function Complexity, New York, NY, USA, 1992. Cam-
bridge University Press.

12 Andrzej Grzegorczyk. Some classes of recursive functions. Instytut Matematyczny Polskiej
Akademi Nauk, 1953.

13 A D Korshunov. Monotone boolean functions. Russian Mathematical Surveys, 58(5), 2003.

http://dx.doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/10.1007/BF01201998
http://dx.doi.org/10.1007/978-3-662-04943-3
http://dx.doi.org/10.1007/978-3-662-04943-3
http://dx.doi.org/10.1145/2933575.2934570


A. Das and I. Oitavem 18:17

14 Clemens Lautemann, Thomas Schwentick, and Iain A. Stewart. On positive P. In IEEE
Conference on Computational Complexity ’96, 1996.

15 Clemens Lautemann, Thomas Schwentick, and Iain A. Stewart. Positive versions of poly-
nomial time. Inf. Comput., 147(2):145–170, 1998. doi:10.1006/inco.1998.2742.

16 Daniel Leivant. A foundational delineation of computational feasiblity. In Proceedings of
the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The
Netherlands, July 15-18, 1991, pages 2–11, 1991. doi:10.1109/LICS.1991.151625.

17 Daniel Leivant. A foundational delineation of poly-time. Inf. Comput., 110(2):391–420,
1994. doi:10.1006/inco.1994.1038.

18 Isabel Oitavem. New recursive characterizations of the elementary functions and the func-
tions computable in polynomial space. Revista Matematica de la Universidad Complutense
de Madrid, 10(1):109–125, 1997.

19 Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.
20 A. A. Razborov. Lower bounds on the monotone complexity of some Boolean functions.

Doklady Akademii Nauk SSSR, 285, 1985.
21 Robert W. Ritchie. Classes of predictably computable functions. Journal of Symbolic Logic,

28(3):252–253, 1963.
22 Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365–383,

1981. doi:10.1016/0022-0000(81)90038-6.
23 E. Tardos. The gap between monotone and non-monotone circuit complexity is exponential.

Combinatorica, 8(1):141–142, 1988.
24 Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci.,

3(1):23–33, 1976. doi:10.1016/0304-3975(76)90062-1.

CSL 2018

http://dx.doi.org/10.1006/inco.1998.2742
http://dx.doi.org/10.1109/LICS.1991.151625
http://dx.doi.org/10.1006/inco.1994.1038
http://dx.doi.org/10.1016/0022-0000(81)90038-6
http://dx.doi.org/10.1016/0304-3975(76)90062-1




Non-Wellfounded Proof Theory For
(Kleene+Action)(Algebras+Lattices)
Anupam Das
University of Copenhagen, Copenhagen, Denmark
anupam.das@di.ku.dk

Damien Pous
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
damien.pous@ens-lyon.fr

Abstract
We prove cut-elimination for a sequent-style proof system which is sound and complete for the
equational theory of Kleene algebra, and where proofs are (potentially) non-wellfounded infinite
trees. We extend these results to systems with meets and residuals, capturing ‘star-continuous’
action lattices in a similar way. We recover the equational theory of all action lattices by restrict-
ing to regular proofs (with cut) – those proofs that are unfoldings of finite graphs.
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1 Introduction

The axioms of Kleene algebras are sound and complete for the theory of regular expressions
under language equivalence [24, 27, 4]. As a consequence, the equational theory of Kleene
algebras is decidable (in fact PSpace-complete). Models of these axioms of particular
interest include formal languages and binary relations. For binary relations, the Kleene star
is interpreted as reflexive transitive closure, whence the axioms of Kleene algebra make it
possible to reason abstractly about program correctness [22, 23, 3, 19, 1]. The aforementioned
decidability result moreover makes it possible to automate interactive proofs [5, 26, 30].

There are however important extensions of Kleene algebras which are not yet fully
understood. These include action algebras [31], where two ‘residual’ operations are added,
Kleene lattices, where a ‘meet’ operation is added, and action lattices [25], where all three
operations are added. Pratt introduced residuals in order to internalise the induction rules
of the Kleene star, as we explain later; they allow us to express properties of relations such
as well-foundedness in a purely algebraic way [12]. Kozen added the meet operation to
action algebra to obtain a structure closed under taking matrices. In the context of program
verification, meets are useful since they allow us to express conjunctions of local specifications.
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KA � e ≤ f

KA∗ � e ≤ f

L(e) ⊆ L(f)

LKA `ω e→ f

LKA `∞ e→ f

LKA− `∞ e→ f

Thm. 14

Thm. 15

[24, 27]

Thm. 13

Thm. 11

PSpace-c

AL � e ≤ f

AL∗ � e ≤ f

LAL `ω e→ f

LAL `∞ e→ f

Σ0
1

LAL− `∞ e→ f

Π0
1-c

Thm. 34

Thm. 33

Thm. 37

Thm. 32

Thm. 35

Figure 1 Context and contributions for Kleene algebra and action lattices.

Unfortunately, the decidability of the three corresponding equational theories is still open,
and there is no known notion of ‘free model’ for them that is analogous to the rational
languages for Kleene algebra. In this paper, we explore a proof-theoretic approach to such
questions: we provide sequent calculi that capture these theories which we show admit a
form of cut-elimination. Although this does not (yet) give us decidability, it does improve
our understanding of these theories:

we obtain a computational interpretation of proofs of inequalities in our systems as
program transformers, which could prove useful to describe free models;
we recover two conservativity results: action lattices are conservative over (star-continuous)
Kleene lattices and action algebra, thanks to the sub-formula property; (these results are
also implied by [29]).
we obtain structural properties, e.g., as Whitman did when he proved cut-elimination for
the theory of lattices, which we aim to exploit in consequent research.

We first focus on pure Kleene algebra, which is easier to handle and enables a simpler
presentation. Being a well-established theory, we are able to relate our results to existing
ones in the literature, identifying which issues become relevant when moving to extensions.

Kleene algebra

In our sequent system, called LKA, proofs are finitely branching, but possibly infinitely deep
(i.e. not wellfounded). To prevent fallacious reasoning, we give a simple validity criterion
for proofs with cut, and prove that the corresponding system admits cut-elimination. The
difficulty in the presence of infinitely deep proofs consists in proving that cut-elimination
is productive; we do so by using the natural interpretation of regular expressions as data
types for parse-trees [15], and by giving an interpretation of proofs as parse-tree transformers.
Such an idea already appears in [18] but in a simpler setting, for a finitary natural deduction
system rather than for a non-wellfounded sequent calculus.

The results we prove about LKA are summarised in Fig. 1(left). In addition to cut-
elimination (Thm. 15), we prove that the system is sound for all star-continuous Kleene
algebras (Thm. 11), and conversely, that it is complete w.r.t. the language theoretic inter-
pretation of regular expressions (Thm. 13). We actually refine this latter result by showing
that every proof from Kleene algebra axioms can be translated into a regular proof with cut
(Thm. 14), i.e., a proof with cut which is the unfolding of a finite graph. Note, however, that
regularity is not preserved by cut-elimination: the class of cut-free regular proofs in LKA is
incomplete w.r.t. Kleene algebra.
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Action algebras, Kleene lattices, and action lattices

Despite its finite quasi-equational presentation, the equational theory of Kleene algebra is not
finitely based: Redko proved that any finite set of equational axioms must be incomplete [32].
However, by adding two binary operations to the signature, Pratt showed how to obtain a
finitely based extension which is conservative over the equational theory of Kleene algebras [31].
These two operations, called left residual (\) and right residual (/), are ‘adjoint’ to sequential
composition and, as we mentioned, such structures are called action algebras. Kozen then
proposed action lattices [25], where the signature is extended further to include a binary meet
operation (∩). We call Kleene lattices the structures consisting of Kleene algebra extended
just with meets.

While both action algebras and action lattices are finitely based and conservatively
extend Kleene algebra, they bring some difficulties. By definition, their equational theories
are at most Σ0

1, so that they must differ from their star-continuous variants which are Π0
1-

complete [7, 29]. (Buszkowski proved the lower bound and Palka proved the upper bound.)
In contrast, by Kozen’s completeness result we have that Kleene algebra and star-continuous
Kleene algebra give rise to the same equational theory, which is PSpace-complete. This
matter remains open for Kleene lattices since Buszkowski’s lower bound does not apply.

Residuals and meets naturally correspond to linear implication and additive conjunc-
tion [20, 29], from (non-commutative intuitionistic) linear logic [17]. They are also essential
connectives in the Lambek-calculus and related substructural logics [28]. We extend LKA
accordingly into a system LAL and obtain the results summarised in Fig. 1 (right): LAL
is complete for star continuous action lattices (Thm. 35); it still admits cut-elimination
(Thm. 37); thus it is also sound w.r.t. star continuous action lattices (Thms. 32). Further-
more we are able to show that its regular fragment with cut is in fact sound and complete
for all action lattices (Thm. 33); this somewhat surprising result gives us a nontrivial yet
finite proof theoretic representation of the theory of action lattices. The proof of soundness
reasons inductively on the cycle structure of such regular proofs, and we crucially exploit the
availability of both residuals and meets: for action algebra and Kleene lattices, it remains
open whether the corresponding regular fragments with cut are sound.

Thms. 32, 34, and 37 are proved by extending the proofs of Thms. 11, 14, and 15 to
deal with the additional connectives. Amongst those, cut-elimination is the most delicate
extension, relying on higher types to interpret residuals, and proving that LAL proofs still
yield terminating programs in such a setting. Thm. 13 cannot be extended directly, due to
the lack of a free model analogous to the regular languages for Kleene algebra when adding
residuals or meet. This is why we instead rely on cut-elimination for completeness.

As explained above, while all notions are equivalent in the case of Kleene algebra (Fig. 1
(left)), complexity arguments make it possible to separate the lower and upper parts of Fig. 1
(right), except for Kleene lattices. Whether the upper part is decidable remains open, but
it is interesting to note that we managed to characterise action lattices in such a way that
the non-regular/regular distinction at the proof-level corresponds precisely to the difference
between the star continuous and general cases, respectively. One potentially fruitful direction
towards the decidability of action lattices is to characterise the image of regular proofs under
cut-elimination. We aim to explore this possibility in future work.

Related work

We briefly discussed the cut-free variant of the system LKA in [10] (with a simpler validity
criterion), observing that its regular fragment is incomplete (due to the absence of cut). Our
main contribution was a variant of it based on ‘hypersequents’, HKA, whose regular fragment
is sound and complete without cut, and admits a PSpace proof search procedure.

CSL 2018
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Palka proposed a sequent system for star continuous action lattices in [29], for which
she proved cut-elimination. Its non-star rules are precisely those of LKA, but the system is
wellfounded and relies on an ‘omega-rule’ for Kleene star with infinitely many premisses, in
the traditional school of infinitary proof theory, cf. [33]. Such an approach does not admit
a notion of finite proof analogous to our regular proofs, corresponding to the upper parts
of Fig. 1. Wurm also proposed a (finite, and thus wellfounded) sequent system for Kleene
algebra [34]. Unfortunately his cut-admissibility theorem does not hold – see [10].

The normalisation theory of linear logic with (least and greatest) fixed point operators has
been studied in [14] and, more comprehensively, in [13]. While the latter is a rather general
framework, its exposition still differs significantly from the current work for various reasons.
One immediate difference is that their setting is commutative while ours is non-commutative,
and so those results are not directly applicable. A more important difference is that they
do not have any atoms in their language, reasoning only on closed formulae. This is rather
significant from the point of view of normalisation, since the convergence of cut-elimination
becomes more complicated in presence of atoms. The argument we give in Sect. 4 uses
different ideas that are closely related to the language-based models of our algebras and the
natural interpretation of language inclusions as programs [18]. A game semantics approach
to cut-elimination for non-wellfounded proofs is given in [8], though in that work only finitely
many cuts in a proof are considered and so it does not seem sufficient to handle the star
rules in this work.

2 Preliminaries on Kleene algebra and extensions

Let A be a finite alphabet. Regular expressions [21] are generated as follows:

e, f ::= e · e | e+ e | e∗ | 1 | 0 | a ∈ A

Sometimes we may simply write ef instead of e · f . Each expression e generates a rational
language L(e) ⊆ A∗, defined in the usual way.

A Kleene algebra is a tuple (K, 0, 1,+, ·, ·∗) where (K, 0, 1,+, ·) is an idempotent semiring
and where the following properties hold, where x ≤ y is a shorthand for x+ y = y.

1 + xx∗ ≤ x∗ if xy ≤ y then x∗y ≤ y if yx ≤ y then yx∗ ≤ y (1)

There are several equivalent variants of this definition [9]. Intuitively we have that x∗y
(resp., yx∗) is the least fixpoint of the function z 7→ y + xz (resp., z 7→ y + zx). We write
KA � e ≤ f if the inequality e ≤ f holds universally in all Kleene algebras – or, equivalently,
if it is derivable from the axioms of Kleene algebra. Kozen [24] and Krob [27] showed that
this axiomatisation is complete for language inclusions, corresponding to the right-to-left
implication in the following characterisation (the other direction is routine).

I Theorem 1 ([24, 27]). KA � e ≤ f if and only if L(e) ≤ L(f).

A Kleene algebra is star-continuous if for all elements x, y, z, xy∗z is the least upper bound
of the sequence (xyiz)i∈N, where y0 = 1 and yi+1 = yyi. In presence of the other laws,
star-continuity is equivalent to the following condition:

∀xyzt, (∀i ∈ N, xyiz ≤ t)⇒ xy∗z ≤ t .

We write KA∗ � e = f when the equality e = f holds in all star-continuous Kleene algebras.
Formal languages form a star-continuous Kleene algebra, and so by completeness of Kleene
algebra w.r.t. rational languages, we have KA∗ � e = f iff KA � e = f ; this is the triangle
on the left in Fig. 1.
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∆→ e Γ, e,Σ→ f
cut

Γ,∆,Σ→ f
id
e→ e

0-l
Γ, 0,∆→ e

Γ,∆→ e
1-l

Γ, 1,∆→ e
1-r
→ 1

Γ, e, f,∆→ g
·-l

Γ, e · f,∆→ g

Γ, e,∆→ g Γ, f,∆→ g
+-l

Γ, e+ f,∆→ g

Γ,∆→ f Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f

Γ→ e ∆→ f
·-r

Γ,∆→ e · f
Γ→ ei

+-ri i ∈ {1, 2}
Γ→ e1 + e2

∗-r1
→ e∗

Γ→ e ∆→ e∗
∗-r2

Γ,∆→ e∗

Figure 2 The rules of LKA.

An action lattice is a Kleene algebra with three additional binary operations, left and
right residuals (\, /), and meet (∩) defined by the following equivalences:

∀xyz, y ≤ x\z ⇔ xy ≤ z ⇔ x ≤ z/y and ∀xyz, z ≤ x∩ y ⇔ z ≤ x∧ z ≤ y

An action algebra is a Kleene algebra with residuals, a Kleene lattice is a Kleene algebra with
meets. We extend regular expressions accordingly, writing AL � e ≤ f when the inequation
e ≤ f holds in all action lattices, and AL∗ � e ≤ f when it holds in all star continuous action
lattices. Note that while rational languages are closed under residuals and intersection, thus
forming an action lattice, they are not the ‘free’ one: Thm. 1 fails. The equational theories
generated by all action lattices and by the star-continuous ones actually differ, cf. [7, 29].

3 The sequent system LKA

A sequent is an expression Γ→ e, where Γ is a list of regular expressions and e is a regular
expression. For such a sequent we refer to Γ as the antecedent and e as the succedent, or
simply the ‘left’ and ‘right’ hand sides, respectively. We say that a sequent e1, . . . , en → e is
valid if KA∗ � e1 · · · · · en ≤ e. I.e., the comma is interpreted as sequential composition, and
the sequent arrow as inclusion. We may refer to expressions as ‘formulae’ when it is more
natural from a proof theoretic perspective, e.g. ‘subformula’ or ‘principal formula’.

The rules of LKA are given in Fig. 2. We call LKA− the subset of LKA where the cut
rule is omitted (which corresponds to the system called LKA in [10]). Leaving the ∗-rules
aside, these rules are those of the non-commutative variant of intuitionistic linear logic [17],
restricted to the following connectives: multiplicative conjunction (·), additive disjunction
(+) and additive falsity (0) (for which there is no right rule). The rules for Kleene star can be
understood as those arising from the characterisation of e∗ as a fixed point: e∗ = µx.(1 + ex).
In contrast, Palka [29] follows the alternative interpretation of Kleene star as an infinite
sum, e∗ = Σie

i, whence her left rule for Kleene star with infinitely many premisses, and the
infinitely many right rules she uses for this operation.

As previously mentioned, we consider infinitely deep proofs, so it is necessary to impose
a validity criterion to ensure that derivations remain sound.

I Definition 2. A (binary, possibly infinite) tree is a prefix-closed subset of {0, 1}∗, which
we view with the root, ε, at the bottom; elements of {0, 1}∗ are called nodes. A preproof
is a labelling π of a tree by sequents such that, for every node v with children v1, . . . vn

(n = 0, 1, 2), the expression
π(v1) · · · π(vn)

π(v)
is an instance of an LKA rule. Given a node v in

a preproof π, we write πv for the sub-preproof rooted at v, defined by πv(w) = π(vw). A
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preproof is regular if it has finitely many distinct subtrees, i.e. it can be expressed as the
infinite unfolding of a finite graph. A preproof is cut-free if it does not use the cut-rule.

We will use standard proof theoretic terminology about principal formulas and ancestry in
proofs, e.g. from [6]. (see [11, App. A] for further details). The notion of validity below is
similar to [13], adapted to our setting.

I Definition 3. A thread is a maximal path through the graph of (immediate) ancestry in a
preproof. By definition it must start at a conclusion formula or at a cut formula and it only
goes upwards. A thread is valid if it is principal for a ∗-l step infinitely often. A preproof
is valid if every infinite branch eventually has a valid thread. A proof is a valid preproof.
We write LKA `∞ Γ→ e if the sequent Γ→ e admits a proof, LKA `ω Γ→ e if it admits a
regular proof, and LKA− `∞ Γ→ e if it admits a cut-free proof.

Notice that every valid thread eventually follows a unique (star) formula, by the subformula
property. Let us consider some examples of (pre)proofs. In all cases, we will use the symbol
• to indicate circularities (i.e. to identify roots of the same subtree), colours to mark some of
the threads, and double lines to denote finite derivations.

I Example 4. Here is a regular and cut-free proof of (b+ c)∗ → (c+ b)∗:

∗-r1
→ (c+ b)∗

b+ c→ c+ b

...
∗-l •

(b+ c)∗ → (c+ b)∗
∗-r2

b+ c, (b+ c)∗ → (c+ b)∗
∗-l •

(b+ c)∗ → (c+ b)∗

I Example 5 (Atomicity of identity). As in many common sequent systems, initial identity
steps can be reduced to atomic form, although for this we crucially rely on access to non-
wellfounded (yet regular) proofs. As usual, we proceed by induction on the size of an identity
step, whence the crucial case is for the Kleene star,

∗-r1
→ e∗

IH

e→ e

...
∗-l •
e∗ → e∗

∗-r2
e, e∗ → e∗

∗-l •
e∗ → e∗

where the derivation marked IH is obtained by the inductive hypothesis.

Note that while LKA− satisfies the subformula property, the size and number of sequents
occurring in a cut-free proof is not a priori bounded, due to the ∗-l rule:

I Example 6 (A non-regular proof). The only cut-free proof of the sequent a, a∗ → a∗a is
the one on the left below:

a→ a∗a

a, a→ a∗a

...
∗-l
a, a, a, a∗ → a∗a

∗-l
a, a, a∗ → a∗a

∗-l
a, a∗ → a∗a

a→ a∗a

∗-l •
a, a∗ → a∗a a, a∗a→ a∗a

cut
a, a, a∗ → a∗a

∗-l •
a, a∗ → a∗a

This proof contains all sequents of the form a, . . . , a, a∗ → a∗a, whence non-regularity. A
regular proof with cuts is given on the right above; see [10] for more details on the lack of
regularity in LKA− and how to recover regularity in a cut-free setting, using ‘hypersequents’.
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I Example 7 (Two invalid preproofs). The following preproofs are not valid; they derive
invalid sequents.

1-r
→ 1

...
∗-r2 •

a→ 1∗
∗-r2 •

a→ 1∗ → b∗

id
a→ a

id
a∗ → a∗

∗-r2
a, a∗ → a∗

...
∗-l •
a∗ → b∗

cut
a, a∗ → b∗

∗-l •
a∗ → b∗

The left preproof is cut-free and infinite; since it does not contain any ∗-l-rule, it cannot be
valid. On the right the principal formula of the ∗-l-rule is the cut formula of the cut-rule so
that the only infinite thread is the one along the occurrences of b∗, and this formula is never
principal for a ∗-l step.

The notion of validity we use here actually generalises the notion of fairness we used in [10],
where we were working only with cut-free preproofs:

I Proposition 8. A cut-free preproof is valid if and only if it is fair for ∗-l, i.e. every infinite
branch contains infinitely many occurrences of ∗-l.

Proof sketch. The left-right implication is immediate. Conversely, every infinite path in a
fair cut-free preproof has infinitely many ∗-l steps, but there are only finitely many possible
principal formulae by the subformula property. One can thus extract a valid thread. J

An alternative criterion for cut-free preproofs is obtained as follows:

I Proposition 9. A cut-free preproof is valid if and only if it has no infinite branch with a
tail of only ∗-r2-steps.

Proof. Define the ‘weight’ of a sequent to be the multiset of its formulae, ordered by the
subformula relation. This measure strictly decreases when reading LKA− rules bottom-up,
except for the right premisses of rules ∗-l and ∗-r2; for the latter, it either remains unchanged
(when Γ is empty) or it strictly decreases. Thus every infinite branch of a cut-free preproof
either contains infinitely many ∗-l steps, or eventually contains only ∗-r2 steps. J

Observe that the proof on the left in Ex. 7 does not satisfy this condition.
The cut-free system LKA− is sound and complete for Kleene algebras. Thanks to the

completeness theorem for Kleene algebras, Thm. 1, it suffices to prove soundness with respect
to star-continuous Kleene algebra. We first prove the following lemma:

I Lemma 10. If LKA− `∞ Γ, e∗,∆→ f then, for each n ∈ N, LKA− `∞ Γ, en,∆→ f .

Proof. We define appropriate preproofs from by induction on n. Replace every direct ancestor
of e∗ by en, adjusting origins as follows,

Γ,∆→ f Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f
7→

Γ,∆→ f
1-l

Γ, 1,∆→ f
or

Γ, e, en−1,∆→ f
·-l

Γ, en,∆→ f

when n = 0 or n > 0, respectively. In the latter case we appeal to the inductive hypothesis.
Notice that, on branches where e∗ is never principal, this is simply a substitution of en

for e∗ everywhere along the branch. The preproof resulting from this entire construction is
fair since every infinite branch will share a tail with the proof we began with. J

We can now prove soundness w.r.t. star continuous Kleene algebra:
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I Theorem 11 (Soundness). If LKA− `∞ e1, . . . , en → e, then KA∗ � e1 · · · · · en ≤ e.

Proof. First observe that every rule of LKA is sound: if its premisses are valid then so is its
conclusion. Let π be an LKA− proof of Σ→ f . We proceed by structural induction on the
multiset of formulae in its conclusion, via case analysis on the last rule. For all but two cases,
we just use soundness of the rule and the induction hypotheses. The first remaining case is
∗-r2, where we must appeal to a sub-induction since the measure does not always strictly
decrease in the right premiss (Prop. 9). The last case is ∗-l, where Σ = Γ, e∗,∆. By Lem. 10,
π can be transformed into proofs πn of Γ, fn,∆ → f for each n ∈ N. Each πn derives a
sequent whose weight is strictly smaller than that of Σ → f , which is thus valid by the
inductive hypothesis. Finally, this means that Γ, f∗,∆→ g is valid, by star-continuity. J

For completeness of LKA−, we can get a direct proof by starting from the free model of
rational languages (Fig. 1). This strategy is no longer possible for Kleene lattices, action
algebras and action lattices, for which we will need to go through cut-elimination. We first
prove completeness for sequents whose antecedent is a word:

I Lemma 12. If a1 . . . an is a word in L(e) for some expression e, then there is a finite
proof of the sequent a1, . . . , an → e using only right logical rules.

Proof. By a straightforward induction on e. J

I Theorem 13 (Completeness). If L(e1 · · · · · en) ⊆ L(e) then LKA− `∞ e1, . . . , en → e.

Proof. This is proved like in [10] for HKA: all left rules of LKA− are invertible so that they
can be applied greedily; doing so, one obtains an infinite tree whose leaves are sequents of
the shape a1, . . . , ak → e, with k ≥ 0, where a1 . . . ak is a word in L(e1 · · · · · en) and thus in
L(e) by assumption. Those leaves can be replaced by finite derivations using by Lem. 12.
Notice, that we obtain fairness, since any infinite branch of only left rules must contain ∗-l
infinitely often. J

The previous proof builds infinite and non-regular derivations whenever the language of the
starting antecedent is infinite. For instance, it would yield the proof given on the left in
Ex. 6. By using a different technique, we show in the following theorem, that we can get
regular proofs if we allow the cut-rule.

I Theorem 14 (Regular completeness). If KA � e ≤ f then LKA `ω e→ f .

Proof. We prove the statement for equalities. Consider the relation ≡ defined by e ≡ f if
LKA `ω e → f and LKA `ω f → e. This relation is an equivalence on regular expressions
thanks to the cut rule, and it is easily shown to be preserved by all contexts (i.e. it is a
congruence). Also remark that we have e+ f ≡ f iff LKA `ω e→ f , thanks to the cut-rule
and the rules about sum. It then suffices to show that regular expressions quotiented by
≡ form a Kleene algebra. The (in)equational axioms defining KA can be proved by finite
derivations. The only difficulty is in dealing with the two implications from the definition of
Kleene algebra (1). We implement them as follows:

id
f → f

...
∗-l •
e∗, f → f

IH

e, f → f
cut

e, e∗, f → f
∗-l •

e∗, f → f

id
f → f

IH

f, e→ f

...
∗-l •
f, e∗ → f

cut
f, e, e∗ → f

∗-l •
f, e∗ → f
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where the derivations marked IH are obtained from the inductive hypothesis. The preproofs
we construct in this way are valid and regular, by inspection. In particular, the only infinite
branch not in IH in the above derivations has a valid thread on e∗, coloured in green. J

Note the asymmetry when we interpret the two implications: the premisses of the cut rule
are swapped when we move from one to the other. This asymmetry comes from the fact that
we have a single left rule for Kleene star, which unfolds the star from the left.

4 Cut-elimination for LKA

This section is devoted to proving the following cut-elimination theorem.

I Theorem 15. If LKA `∞ Γ→ e then LKA− `∞ Γ→ e.

Combined with Thm. 11, it establishes the soundness of our criterion for proofs with cuts.
This serves as a ‘warm-up’ for the analogous result for the extended system (Sect. 6), which
is obtained using the same template.

We show that proofs can be considered as certain transducers, transforming parse-trees of
input words of languages computed by terms. We design them so that a given computation
only explores a finite prefix of the proof, which we call the head. We then prove that cut-
reductions, restricted to the head of a proof, preserve these computations, always terminate,
and eventually produce some non-cut rules. We can then repeatedly apply this procedure to
remove all cuts from an infinite proof, in a productive way.

4.1 Programs from proofs
We first define programs and their reduction semantics, based on which we prove cut-
elimination, in Sect. 4.2. We fix in this section a (valid) LKA proof π and we let v range
over its nodes, which we recall are elements of {0, 1}∗, cf. Dfn. 2.

I Definition 16 (Programs). Programs are defined by the following syntax, where x ranges
over a countable set of variables, and i ranges over {1, 2}.

M,N ::= x | ? | 〈M,N〉 | iniM | [] |M :: N | v[ ~M ]

Intuitively, programs compute parse-trees for words belonging to the language of an expression.
Given a node v of π such that π(v) = Γ→ e, the last entry corresponds to the application
of the subproof πv, rooted at v, to a list ~M of programs for the antecedent (Γ); it should
eventually return a parse-tree for the succedent (e). This is formalised using the following
notion of types.

I Definition 17 (Typing environment). A typing environment, written E, is a list of pairs of
variables and expressions (written x : e), together with a finite antichain of nodes: for any two
nodes v and w in the antichain, v is not a prefix of w. We write E,F for the concatenation
of two typing environments, which is defined only when this antichain condition on nodes is
preserved.

Intuitively, typing environments keep track of which variables and proof nodes are used in
a program, to impose linearity constraints; these constraints become crucial when we add
residuals and meets, in Sect. 5.

I Definition 18 (Types). A program M has type e in an environment E, written E `M : e
if this judgement can be derived from the rules in Fig. 3.
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x : e ` x : e ` ? : 1
E `M : e F ` N : f
E, F ` 〈M,N〉 : ef

E `M : ei

E ` iniM : e1 + e2 ` [] : e∗

E `M : e E′ ` N : e∗

E,E′ `M :: N : e∗
∀i, Ei `Mi : ei π(v) = e1, . . . , en → f

v,E1, . . . , En ` v[ ~M ] : f

Figure 3 Typing rules for programs.

I Example 19. With the proof from Ex. 4, letting ε denote the root node, we have:

ε, x : b, y : c ` ε[in0x :: in1y :: []] : (c+ b)∗

ε, z : b+ c, z′ : b+ c, q : (b+ c)∗ ` ε[z :: z′ :: q] : (c+ b)∗

I Observation 20. Let x1, . . . , xn be variables. We have a1 . . . an ∈ L(e) iff there exists
a program M such that x1 : a1, . . . , xn : an ` M : e. This (unused) observation has no
counterpart when considering extensions of Kleene algebra, where there is no longer an
appropriate notion of ‘language’ for expressions that constitutes a free model.

I Definition 21 (Reduction). Reduction, written  , is the closure under all contexts of the
following rules defined by case analysis on the last step of the subproof πv rooted at v. These
rules are written concisely for lack of space; in each case, v0 and v1 are the nodes of the
premisses, when they exist. We moreover assume that the sizes of the vectors match those
that arise from the various rules. See [11, App. B] for an extensive definition.

id : v[M ] M cut : v[ ~M, ~N, ~P ] v1[ ~M, v0[ ~N ], ~P ]

1-l : v[ ~M, ?, ~N ] v0[ ~M, ~N ] 1-r : v[] ?

·-l : v[ ~M, 〈M,N〉, ~N ] v0[ ~M,M,N, ~N ] ·-r : v[ ~M, ~N ] 〈v0[ ~M ], v1[ ~N ]〉

+-l : v[ ~M, iniM, ~N ] vi[ ~M,M, ~N ] +-ri : v[ ~M ] ini(v0[ ~M ])

∗-l : v[ ~M, [], ~N ] v0[ ~M, ~N ] and ∗-r1 : v[] []

v[ ~M,M :: N, ~N ] v1[ ~M,M,N, ~N ] ∗-r2 : v[ ~M, ~N ] v0[ ~M ] :: v1[ ~N ]

When useful we write, say,  cut to indicate a reduction according to the cut rule above.

I Example 22. Continuing with the proof from Ex. 4 we have the following complete
reductions. The second program still contains calls to proofs in the end because the inputs
were under-specified.

ε[in0x :: in1y :: []]
 1[in0x, in1y :: []]
 10[in0x] :: 11[in1y :: []]
 100[x] :: 11[in1y :: []]
 in1x :: 11[in1y :: []]
 in1x :: 111[in1y, []]
 in1x :: 1110[in1y] :: 1111[[]]
 4 in1x :: in0y :: []

ε[z :: z′ :: q]
 1[z, z′ :: q]
 10[z] :: 11[z′ :: q]
 10[z] :: 111[z′, q]
 10[z] :: 1110[z′] :: 1111[q]

As one might expect, we have subject reduction. We need the following notion of extension
to state it properly.



A. Das and D. Pous 19:11

I Definition 23 (Extension). Given two typing environments E,E′, we say that E′ extends
E if E and E′ coincide after removing all nodes, and if all nodes in E′ are either already in
E, or are immediate successors of some nodes in E.

I Proposition 24 (Subject reduction). If E ` M : e and M  M ′, then E′ ` M ′ : e for
some environment E′ extending E.

For instance, along the reductions on the left in Ex. 22, the antichain part of the typing
environment evolves as follows: {ε}, {1}, {10, 11}, {100, 11}, {11}, {111}, {1110, 1111}, ∅.

Our objective now is to prove that well-typed programs terminate. For the sake of
simplicity, we work in the sequel with the ‘leftmost innermost’ strategy: a redex v[ ~M ] is fired
only when the programs in ~M are irreducible and there are no other redexes to its left.

I Definition 25 (Runs). The run of a program M is the sequence of nodes corresponding to
the redexes fired during the (potentially infinite) leftmost innermost reduction of M .

I Lemma 26. If E ` M : e then every node w appears at most once in the run of M ; in
this case we have that w = uv for some nodes u, v with u in E and, for every prefix v′ of v,
uv′ appears in the run of M before w.

Proof. These are immediate consequences of Prop. 24. J

In particular, the run of a well-typed program has finitely many connected components. We
finally obtain that well typed programs terminate, thanks to the validity criterion.

I Proposition 27. If E `M : e, then the run of M is finite.

Proof. Suppose the run of M is infinite. Then by Lem. 26 and König’s Lemma one can
extract an infinite branch of π which is contained in the run. By validity, this branch must
eventually have a thread along a star formula f∗ which is infinitely often principal. By
analysis of the reduction rules, and thanks to the innermost strategy, we may find an infinite
sequence of programs of type f∗ whose sizes are strictly decreasing, which is impossible. J

4.2 Cut reduction
Our cut-elimination argument is driven by a standard set of cut reduction rules, which
we do not have space to present in the main text. These include key and commutative
cases, as usual, and are fully presented in [11, App. D]. To produce an infinite cut-free
proof, we must show that we may produce proofs with arbitrarily large cut-free prefixes in a
continuous manner. The main difficulty is to show that such a procedure is productive, i.e.,
eventually produces non-cut steps. To this end, we use the previous notion of ‘run’ to drive
cut-reductions.

I Definition 28 (Head). Let π be a proof of Γ → e. The head of π, written hd(π), is the
run of the program ε[~x] in π, where ~x is a list of variables of the same length as Γ.

Note that the above program is well-typed in the appropriate environment. The head is a
sequence of nodes, but we shall sometimes see it as the underlying sequence of programs. Also
note that the nodes of a cut step appearing in the head correspond to program reductions
where the redex is a cut ( cut).

I Definition 29 (Weight). The weight of a proof π, written w(π), is the multiset of cut-
reductions in its head, ordered by their distance to the end of the head.
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I Lemma 30. Let π′ be obtained from a proof π by a cut-reduction. We have that:
(i) π′ is a valid proof;
(ii) |hd(π′)| ≤ |hd(π)|, where |s| is the length of a sequence s;
(iii) if the reduced cut was the last  cut step in hd(π), then w(π′) < w(π).

Proof sketch. By case analysis; key cases strictly decrease the length of the head while it is
only conserved by commutative cases. We list and discuss all cases in [11, App. D]; one of
the two ∗-key cases is the following one:

∆→ e Σ→ e∗
∗-r2

∆,Σ→ e∗
Γ,Π→ f Γ, e, e∗,Π→ f

∗-l
Γ, e∗,Π→ f

cut
Γ,∆,Σ,Π→ f

7→ ∆→ e

Σ→ e∗ Γ, e, e∗,Π→ f
cut

Γ, e,Σ,Π→ f
cut

Γ,∆,Σ,Π→ f

If the reduced cut (with conclusion at v) occurs in the head of π then the heads of the two
proofs only differ by the following subsequences, inside some evaluation context:

v[ ~M, ~N, ~O, ~P ]
 cute∗ v1[ ~M, v0[ ~N, ~O], ~P ]
 v1[ ~M, v00[ ~N ] :: v01[ ~O], ~P ]
 n v1[ ~M,N ′ :: v01[ ~O], ~P ]
 o v1[ ~M,N ′ :: O′, ~P ]
 v11[ ~M,N ′, O′, ~P ]

v[ ~M, ~N, ~O, ~P ]
 cute v1[ ~M, v0[ ~N ], ~O, ~P ]
 n v1[ ~M,N ′, ~O, ~P ]
 cute∗ v11[ ~M,N ′, v10[ ~O], ~P ]
 o v11[ ~M,N ′, O′, ~P ]

(Note that the programs ~M, ~N, ~O, ~P are irreducible due to the innermost strategy, and
that v00 in the starting proof and v0 in the resulting one both point to the same subproof:
πv00 = π′v0.) The new head is shorter by one step, and the initial cut on e∗ is replaced by
two cuts which are closer to the end of the head.

Commutative cases do not always shorten the head, but either they move the cut closer
to its end, or the head no longer visits it. For instance, when the left premiss of the reduced
cut ends with a ·-l step, the rule is:

∆, e, f,Σ→ g
·-l

∆, ef,Σ→ g Γ, g,Π→ h
cut

Γ,∆, ef,Σ,Π→ h

7→
∆, e, f,Σ→ g Γ, g,Π→ h

cut
Γ,∆, e, f,Σ,Π→ h

·-l
Γ,∆, ef,Σ,Π→ h

If the head of π goes through the step v[ ~M, ~N,O, ~P , ~Q] cutef
v1[ ~M, v0[ ~N,O, ~P ], ~Q], then

there are two cases to consider:
either O = 〈O1, O2〉 and the sequence continues with v1[ ~M, v00[ ~N,O1, O2, ~P ], ~Q]; then in
π′ we get v[ ~M, ~N,O, ~P , ~Q] v0[ ~M, ~N,O1, O2, ~P , ~Q] cutef

v01[ ~M, v00[ ~N,O1, O2, ~P ], ~Q];
the length is preserved and the cut has been pushed towards the end;
or not, and the head of π′ stops earlier, without visiting the cut on ef anymore, thus
decreasing the weight.

For (iii), the assumption that the cut-reduction took place on the last cut of the head is used
in some of the cases to ensure that the weights of the other cuts in the head do not increase
(e.g., in some of the right ·-r and ∗-r2 cases). J

I Proposition 31 (Productive cut-reduction). For a proof π, there exists a proof π′ obtained
from π by a sequence of cut-reductions, which does not start with a cut.

Proof. By induction on the weight, reduce the last cut visited by the head until the head no
longer contains any cut. The resulting proof cannot start with a cut, by definition. J
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We can finally prove cut-elimination.

Proof of Thm. 15. Focus on a lowest cut, at node v, and apply Prop. 31 to the corresponding
subproof πv. By iterating this process, we obtain in the limit a cut-free preproof π′ with the
same conclusion as the starting one. Moreover, thanks to Lem. 30.(i), all heads of subproofs
of π′ are finite, so that π′ is valid by Prop. 9: an infinite branch of ∗-r2 steps would give rise
to a subproof with an infinite head. J

5 Action algebras, Kleene lattices, and action lattices

We now consider extensions of Kleene algebra by residuals and meets, as axiomatised in [31]
and [25]. We first extend the system LKA with the following rules, which are standard from
substructural logic [28, 16]. We write LAL for the corresponding system.

∆→ e Γ, f,Σ→ g
\-l

Γ,∆, e\f,Σ→ g

∆→ e Γ, f,Σ→ g
/-l

Γ, f/e,∆,Σ→ g

Γ, ei,∆→ f
∩-li i ∈ {1, 2}

Γ, e1 ∩ e2,∆→ f

e,Γ→ f
\-r

Γ→ e\f
Γ, e→ f

/-r
Γ→ f/e

Γ→ e Γ→ f
∩-r

Γ→ e ∩ f

We define judgements as previously. Except for Thm. 33, the results below also hold for action
algebras and Kleene lattices using the appropriate fragment of LAL. We prove soundness
w.r.t. star-continuous models exactly like for Kleene algebra (Thm. 11).

I Theorem 32 (Soundness). If LAL− `∞ e1, . . . , en → e, then AL∗ � e1 · · · · · en ≤ e.

As announced in the introduction, regular proofs are sound for all (non-necessarily star-
continuous) action lattices. We prove it using proof-theoretical arguments to translate every
regular proof into an inductive proof from the axioms of action lattices.

I Theorem 33 (Regular soundness). If LAL `ω e1, · · · , en → f then AL � e1 · · · · · en ≤ f .

Proof. We prove the statement for all regular proofs in *-normal form, where every back-
pointer points to a ‘validating’ ∗-l-step: every infinite branch of the starting proof has a valid
thread; since the proof is regular, this thread must be infinitely often principal for ∗-l-step of
some sequent of the branch; cut the infinite branch by using a backpointer the second time
this sequent appears in the branch.

We proceed by induction on the number of simple cycles in such a proof π. The interesting
case is when π ends with a ∗-l step that is the target of a backpointer. Colour red all ancestors
of its principal formula that are the same expression, say e∗. Let {Γi, e

∗,∆i → fi}i∈I be the
set of all sequents in π with e∗ principal and let {πl

i : Γi,∆i → fi}i∈I and {πr
i : Γi, e, e

∗,∆i →
fi}i∈I be the corresponding subproofs rooted at their left and right premisses, respectively.

Define expressions gi =
∏

Γi, di =
∏

∆i, hi = (gi\fi)/di, and h =
⋂

i∈I hi. For i ∈ I,
construct proofs πr

i
′ from πr

i by replacing each e∗ by h, modifying critical steps as follows:

Γj ,∆j → fj Γj , e, e∗,∆j → fj
∗-l

Γj , e∗,∆j → fj
7→

·-r
∆j → dj

·-r
Γj → gj fj → fj

\-l
Γj , gj\fj → fj

/-l
Γj , hj ,∆j → fj

∩-l
Γj , h,∆j → fj


ρj
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Note that the proofs πl
i and πr

i
′ have fewer simple cycles than π, so that by the induction

hypothesis we have that gidi ≤ fi and giehdi ≤ fi hold universally in action lattices, for all
i ∈ I. From here we deduce 1 ≤ h and eh ≤ h using the laws about residuals and conjunction.
Thus we have e∗ ≤ h by star induction (1). Finally note that following the above proof ρj

we have in action lattices that gjhdj ≤ fj and thus gje
∗dj ≤ fj . We conclude by choosing

the appropriate j such that (Γj ,∆j , fj) is (Γ,∆, f). J

Note that we crucially rely on the presence of both residuals and meet to compute invariants
for Kleene stars in the above proof, so that it does not immediately carry over to action
algebras and Kleene lattices.

Conversely, the regular fragment of LAL (with cut) is complete for action lattices.

I Theorem 34 (Regular completeness). If AL � e ≤ f then LAL `ω e→ f .

Proof. The axioms defining meet and residual immediately translate to finite derivations in
LAL, so we may simply extend the proof of Thm. 14. J

Note that the regular fragment cannot be complete for star continuous models: a regular
proof is a finite verifiable object and the equational theory of star-continuous action lattices
is Π0

1-hard [7]. The full, non-regular system is however complete for star-continuous models:

I Theorem 35 (Star-continuous completeness). If AL∗ � e ≤ f then LAL `∞ e→ f .

Proof. As for Thms. 14 and 34, consider the relation ≡′ defined by e ≡′ f if LAL `∞ e→ f

and LAL `∞ f → e. Expressions quotiented by this slightly larger relation also form an
action lattice, which we prove star-continuous using the natural simulation of an ω-rule for
Kleene star: combine proofs (πi)i∈N of the sequents (Γ, ei,∆→ f)i∈N as follows:

π0

Γ, e,∆→ f

π1

Γ, e, e,∆→ f

π2

Γ, e, e,∆→ f . .
.

∗-l
Γ, e, e, e∗,∆→ f

∗-l
Γ, e, e∗,∆→ f

∗-l
Γ, e∗,∆→ f

J

The remaining property to establish is cut-elimination: combined with Thm. 32 it gives
soundness of proofs with cut w.r.t. star-continuous models, and combined with Thm. 35 it
gives completeness of LAL− w.r.t. these models.

6 Cut-elimination in LAL

The main alteration to the proof for LKA is that we need a more sophisticated notion of
programs. We associate linear functions to residuals, and additive pairs to meets: a program
for e ∩ f waits to see whether the environment wants a value for e or a value for f – but not
both, and reacts accordingly. We thus extend the syntax of programs (Dfn. 16) to include
λ-abstractions, which will be used for residuals, and a new kind of pairs for meets.

M,N ::= x | ? | 〈M,N〉 | iniM | [] |M :: N | π[ ~M ] | λx.M | 〈〈M,N〉〉

The type system (Fig. 3) is extended by the following rules, where in the final rule, E1 and
E2 are extensions of E (cf. Dfn. 23).

x : e, E `M : f
E ` λx.M : e\f

E, x : e `M : f
E ` λx.M : f/e

E1 `M : e E2 ` N : f
E ` 〈〈M,N〉〉 : e ∩ f
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I Lemma 36 (Substitution lemma). If E ` N : e and F, x : e, F ′ ` M : f with F,E, F ′

defined, then F,E, F ′ `M{N/x} : f , where M{N/x} is M with x substituted by N .1

The following reductions are added, using the same conventions as in Dfn. 21:

∩-li : v[ ~M, 〈〈N1, N2〉〉, ~P ] v0[ ~M,Ni, ~P ] ∩-r : v[ ~M ] 〈〈v0[ ~M ], v1[ ~M ]〉〉

\-l : v[ ~M, ~N, λx.F, ~P ] v1[ ~M,F{v0[ ~N ]/x}, ~P ] \-r : v[ ~M ] λx.v0[x, ~M ]

/-l : v[ ~M, λx.F, ~N, ~P ] v1[ ~M,F{v0[ ~N ]/x}, ~P ] /-r : v[ ~M ] λx.v0[ ~M, x]

One has to be careful about what we deem to be evaluation contexts: lambda abstractions
and additive pairs are not considered evaluation contexts. This is crucial to obtain subject-
reduction: otherwise some redexes duplicated by the ∩-r rule can be active at the same
time, thus breaking the property of Lem. 26 used in our termination proof that a given node
appears at most once in the run of a program.

Despite this subtlety, Prop. 24 (subject reduction) and Prop. 27 (termination) are proved
for this extended system exactly as in the Kleene algebra case – see [11, App. C]. It thus
remains to show that the new cut reductions do not increase the length of heads, and strictly
decrease the weight (Lem. 30). The key cases are easy: they strictly decrease the length and
replace the cut by smaller ones. Amongst the commutative cases, some care is required when
a right introduction rule appears on the right of the cut. For instance, for meet:

∆→ f

Γ, f,Σ→ e1 Γ, f,Σ→ e2
∩-r

Γ, f,Σ→ e1 ∩ e2
cut

Γ,∆,Σ→ e1 ∩ e2

7→
∆→ f Γ, f,Σ→ e1

cut
Γ,∆,Σ→ e1

∆→ f Γ, f,Σ→ e2
cut

Γ,∆,Σ→ e1
∩-r

Γ,∆,Σ→ e1 ∩ e2

If the head of π contains the sequence,

v[ ~M, ~N, ~O] v1[ ~M, v0[ ~N ], ~O] n v1[ ~M,N ′, ~O] 〈〈v10[ ~M,N ′, ~O], v11[ ~M,N ′, ~O]〉〉

where v is the reduced cut-node, then in the head of π′ we just get:

v[ ~M, ~N, ~O] 〈〈v0[ ~M, ~N, ~O], v1[ ~M, ~N, ~O]〉〉

Here we see the need for 〈〈−,−〉〉 not being an evaluation context: the computations involving
~N would otherwise be duplicated, thus potentially increasing the length of the run. If the
head of π never touches the produced additive pair, then the head of π′ is strictly shorter,
and the cut on e1 ∩ e2 is not visited anymore. Otherwise, this pair can only be destroyed by
a ∩-li rule: 〈〈v10[ ~M,N ′, ~O], v11[ ~M,N ′, ~O]〉〉 v1i[ ~M,N ′, ~O], and the head of π′ can ‘catch
up’ by doing:

〈〈v0[ ~M, ~N, ~O], v1[ ~M, ~N, ~O]〉〉 vi[ ~M, ~N, ~O] vi1[ ~M, vi0[ ~N ], ~O] n vi1[ ~M,N ′, ~O]

The size of the head has not changed, but the cut is closer to the end. The analogous case for
residuals is similar since the creation of a λ-abstraction temporarily blocks reductions; other
cases can be found in [11, App. D]. Finally, by the same argument as for Thm. 15 we obtain:

I Theorem 37 (Cut elimination). If LAL `∞ Γ→ e then LAL− `∞ Γ→ e.

One useful application of this cut-elimination result is the following alternative proof of the
upper bound result of Palka for star-continuous action lattices:

1 More precisely, the occurrences of x selected by the typing derivation of M .
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I Corollary 38 (Palka [29]). AL∗ is in Π0
1.

Proof. We say that a sequent Γ → e has a d-derivation, for d ∈ N, if there is a LAL−

derivation ending in Γ→ e for which each branch has length d, or otherwise terminates at a
correct initial sequent in length < d. To avoid validity issues, we assume that the left premiss
of every ∗-r2 step has nonempty antecedent, so that all preproofs become valid without
sacrificing provability (cf. Prop. 9). We define a Π0

1 predicate Prov(Γ→ e) as ∀d ∈ N.“there
is a d-derivation of Γ → e”. Notice that this is indeed Π0

1 since the size of a d-derivation
is exponentially bounded. Furthermore, if Prov(Γ → e) then, by the infinite pigeonhole
principle, we may recover an infinite proof of Γ → e, by inductively choosing premisses
resulting in larger derivations that nonetheless prefix infinitely many d-derivations. J

7 Conclusions

We presented a simple sequent system LKA that admits non-wellfounded proofs and showed
it to be sound and complete for Kleene algebra, KA, by consideration of the free model of
rational languages. We showed that its regular fragment is already complete, in the presence
of cut, by a direct simulation of KA. We also gave a cut-elimination result for LKA, obtaining
an alternative proof of completeness of its cut-free fragment.

We were able to generalise these arguments to an extended system LAL of Kleene algebras
with residuals and meets, resulting in a sound and complete cut-free system for the equational
theory of star-continuous action lattices, AL∗. Thanks to the subformula property for cut-free
proofs, this also gives us proof-theoretical characterisations of star-continuous action algebras
and Kleene lattices. This yields alternative proofs of several results of Palka [29], namely
conservativity of AL∗ over its fragments, as well as their membership in Π0

1.
Finally, we characterised the theory of all action lattices by just the regular proofs of

LAL. Whether the equational theory of action lattices is decidable remains open. It would be
interesting to see if techniques such as interpolants for our system LAL, or a characterisation
of the image of cut-elimination on cut-free proofs, might yield decidability.

It would be natural to consider systems which are commutative and/or contain arbitrary
fixed points, bringing the subject matter closer to that of [13]. We would however not be able
to arrive at a similar subformula property once fixed point formulae are allowed to contain
meets and residuals, since this property is essentially thanks to the presence of only ‘positive’
connectives in KA, from the point of view of focusing [2].
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Abstract
Fixed-point logic with rank (FPR) is an extension of fixed-point logic with counting (FPC) with
operators for computing the rank of a matrix over a finite field. The expressive power of FPR
properly extends that of FPC and is contained in P, but it is not known if that containment is
proper. We give a circuit characterization for FPR in terms of families of symmetric circuits with
rank gates, along the lines of that for FPC given by [Anderson and Dawar 2017]. This requires
the development of a broad framework of circuits in which the individual gates compute functions
that are not symmetric (i.e., invariant under all permutations of their inputs). This framework
also necessitates the development of novel techniques to prove the equivalence of circuits and
logic. Both the framework and the techniques are of greater generality than the main result.
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1 Introduction

The study of extensions of fixed-point logics plays an important role in the field of descriptive
complexity theory. In particular, fixed-point logic with counting (FPC) has become a reference
logic in the search for a logic for polynomial-time (see [2]). In this context, Anderson and
Dawar [1] provide an interesting characterization of the expressive power of FPC in terms
of circuit complexity. They show that the properties expressible in this logic are exactly
those that can be decided by polynomially-uniform families of circuits (with threshold gates)
satisfying a natural symmetry condition. Not only does this illustrate the robustness of FPC
as a complexity class within P by giving a distinct and natural characterization of it, it
also demonstrates that the techniques for proving inexpressibility in the field of finite model
theory can be understood as lower-bound methods against a natural circuit complexity class.
This raises an obvious question (explicitly posed in the concluding section of [1]) of how
to obtain circuit characterizations of logics more expressive than FPC, such as choiceless
polynomial time (CPT) and fixed-point logic with rank (FPR). It is this last question that
we address in this paper.
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Fixed-point logic with rank extends the expressive power of FPC by means of operators
that allow us to define the rank of a matrix over a finite field. Such operators are natural
extensions of counting – counting the dimension of a definable vector space rather than just
the size of a definable set. At the same time they make the logic rich enough to express many
of the known examples that separate FPC from P. Rank logics were first introduced in [5].
The version FPR we consider here is that defined by Grädel and Pakusa [9] where the prime
characteristic is a parameter to the rank operator, and we do not have a distinct operator
for each prime number. Formal definitions of these logics are given in Section 2. We give a
circuit characterization, in terms of symmetric circuits, of FPR. One might think, at first
sight, that this is a simple matter of extending the circuit model with gates for computing
the rank of a matrix. It turns out, however, that the matter is not so simple as the symmetry
requirement interacts in surprising ways with such rank gates. It requires a new framework
for defining classes of such circuits, which yields remarkable new insights.

The word symmetry is used in more than one sense in the context of circuits (and also in
this paper). We say that a Boolean function f : {0, 1}n → {0, 1} is symmetric if the value
of the function on a string s is determined by the number of 1s in s. In other words, f
is invariant under all permutations of its input. In contrast, when we consider the input
to a Boolean function to be the adjacency matrix of an n-vertex graph, for example, and
f : {0, 1}(

n
2) → {0, 1} decides a graph property, then f is invariant under all permutations of

its input induced by permutations of the n vertices of the graph. We call such a function
graph-invariant. More generally, for a relational vocabulary τ and a standard encoding of
n-element τ -structures as strings over {0, 1}, we can say that function taking such strings
as input is τ -invariant if it is invariant under permutations induced by the n elements. A
circuit C computing such an invariant function is said to be symmetric if every permutation
of the n elements extends to an automorphism of C. It is families of symmetric circuits in
this sense that characterize FPC in [1]. The restriction to symmetric circuits arises naturally
in the study of logics and has appeared previously under the names of generic circuits in the
work of [8] and explicitly order-invariant circuits in the work of Otto [15]. In this paper, we
use the word “symmetric”, and context is used to distinguish the meaning of the word as
applied to circuits from its meaning as applied to Boolean functions.

The main result of [1] says that the properties of τ -structures definable in FPC are exactly
those that can be decided by P-uniform families of symmetric circuits using AND, OR, NOT
and majority gates. Note that each of these gates itself computes a Boolean function that is
symmetric in the strong sense identified above. On the other hand, a gate for computing a
rank threshold function, e.g. one that takes as input a n×n matrix and outputs 1 if the rank
of the matrix is greater than a threshold t, is not symmetric. In our circuit characterization
of FPR we necessarily have to consider such non-symmetric gates. Indeed, we can show
that P-uniform families of symmetric circuits using gates for any symmetric functions do
not take us beyond the power of FPC. This is a further illustration of the robustness of
FPC. In order to go beyond it, we need to introduce gates for Boolean functions that are
not symmetric. We construct a systematic framework for including functions computing
τ -invariant functions for arbitrary multi-sorted relational vocabularies τ in Section 3. We
also explore what it means for such circuits to be symmetric.

The proof of the circuit characterization of FPC relies on the support theorem proved
in [1]. This establishes that for any P-uniform family of circuits using AND, OR, NOT and
majority gates there is a constant k such that every gate has a support of size at most k.
That is to say that we can associate with every gate g in the circuit Cn (the circuit in the
family that works on n-element structures) a subset X of [n] of size at most k such that any
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permutation of [n] fixing X pointwise extends to an automorphism of Cn that fixes g. This
theorem is crucial to the translation of the family of circuits into a formula of FPC, which
is the difficult (and novel) direction of the equivalence. In attempting to do the same with
circuits that now use rank-threshold gates we are faced with the difficulty that the proof of
the support theorem in [1] relies in an essential way on the fact that the Boolean function
computed at each gate is symmetric. We are able to overcome this difficulty and prove a
support theorem for circuits with rank gates but this requires substantial, novel technical
machinery.

Another crucial ingredient in the proof of Anderson and Dawar is that we can eliminate
redundancy in the circuit Cn by making it rigid. That is, we can ensure that the only
automorphisms of Cn are those that are induced by permutations of [n]. Here we face
the difficulty that identifying the symmetries and eliminating redundancy in a circuit that
involves gates computing τ -invariant functions requires us to solve the isomorphism problem
for τ -structures. This is a hard problem (or, at least, one that we do not know how to
solve efficiently) even when the τ -structures are 0-1-matrices. We overcome this difficulty by
placing a further restriction on circuits that we call transparency. Circuits satisfying this
condition have the property that their lack of redundancy is transparent.

In the characterization of FPC, the translation from formulas into families of circuits is
easy and, indeed, standard. In our case, we have to show that formulas of FPR translate into
uniform families of circuits using rank-threshold gates that are symmetric and transparent.
This is somewhat more involved technically and presented in Section 5. Finally, with all
these tools in place, the translation of such P-uniform families of circuits into formulas of
FPR given in Section 6 completes the characterization. This still requires substantial new
techniques. The translation of circuits to formulas in [1] relies on the fact that in order to
evaluate a gate computing a symmetric Boolean function, it suffices to count the number
of inputs that evaluate to true and there is a bijection between the orbits of a gate and
tuple assignments to its support. When counting is no longer sufficient, this bijection has to
preserve more structure and demonstrating this in the case of matrices requires new insight.

Space limitations prevent us from giving details of proofs. These and much more detail
can be found in the full version of this paper [7].

2 Background

We write SymX to denote the group of all permutations of the set X. Let G be a group
and X be a set on which a group action is defined and let S ⊆ X. Let StabG(S) := {π ∈
G : ∀s ∈ S, π(s) = s}. For n ∈ N we write Symn to abbreviate Sym[n] and write Stabn(S)
to abbreviate StabSymn

(S). In the event that the group is obvious from context we omit
the subscript entirely. We let AB denote the set of injections from the set B to the set A.

2.1 Logic
A vocabulary is a finite sequence of relation symbols (R1, . . . , Rk), each of which has a fixed
arity. We let ri ∈ N denote the arity of the relation symbol Ri. A many-sorted vocabulary is
a tuple of the form (R,S, ν), where R is a relational vocabulary, S is a finite sequence of
sort symbols, and ν is a function that assigns to each Ri ∈ R a tuple ν(Ri) := (s1, . . . , sri),
where for each j ∈ [ri], sj ∈ S. We call ν(Ri) the type of Ri. A τ -structure A is a tuple
(U,RA1 , . . . , RAk ) where U = ]s∈SUs is a disjoint union of non-empty sets and is called the
universe of A, and for all i ∈ [k], RAi ⊆ Us1 × . . . × Usri , where (s1, . . . , sri) = ν(Ri). The
size of A, denoted by |A|, is the cardinality of its universe. All structures in this paper are
finite.
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We assume the reader is familiar with first-order logic (FO), inflationary fixed-point logic
(FP), fixed-point logic with counting (FPC), and first-order logic with counting quantifiers
(FOC). For details on these logics please see [10, 13].

2.2 Rank Logic
Let FPR[τ ] denote fixed-point logic with rank over the vocabulary τ . FPR extends FP with
an operator that denotes the rank of a definable matrix over a finite field, as well as other
mechanisms for reasoning about quantity. Each variable in a formula of FPR is either a
number or vertex variable, with vertex variables interpreted by elements of the universe
and number variables interpreted by natural numbers. All atomic formulas in FP[τ ] are
atomic formulas in FPR[τ ]. We say that t is a number term if t is a number variable or if t
is an application of the rank operator, i.e. t := [rk(~x, ~ν ≤ ~t, ~y, ~µ ≤ ~s, π ≤ η).φ], where φ is
a number term or formula, ~t and ~s are tuples of number terms bounding the sequences of
number variables ~µ and ~ν, and η is a number term bounding the number variable π. If t1
and t2 are number terms then t1 ≤ t2 and t1 = t2 are atomic formulas. The formulas of FPR
are formed by closing the set of atomic formulas under the usual Boolean connectives, the
first-order quantifiers, and the fixed-point operator. When quantifying over number variables
we only allow bounded quantification. Second-order variables, such as those that appear in a
fixed-point application, may have mixed-type. For more detail on the syntax and semantics
of FPR please see [9].

Let FOR[τ ] be the set of formulas in FPR[τ ] without an application of the fixed-point
operator. We define for each prime p, and natural number r, a rank quantifier rkrp, such that
rkrp~x~y.φ is interpreted as [rk(~x, ~y, π).φ] ≥ tr, where π is assigned to p and tr is a number
term that evaluates to r. Let R be the set of all such quantifiers and FO+rk[τ ] be the closure
of FO[τ ] under R. For more details on rank quantifiers see [5].

3 Generalizing Symmetric Circuits

A Boolean basis is a set of Boolean functions. We always use B to denote a basis. Let Bstd
denote the standard basis containing the Boolean functions computing AND, OR and NOT
for each arity. Let Bmaj denote the majority basis, i.e. the extension of Bstd with functions
computing majority for each arity.

A Boolean circuit C over a basis B is a directed acyclic graph in which each internal gate
g is labelled with a function fg : {0, 1}q → {0, 1} ∈ B where q is the fan-in of g. Notice that
if fg were allowed to be arbitrary then an order would need to be imposed on the children
of g to ensure unambiguous evaluation. As such, the usual notion of a circuit as a directed
acyclic graph with no structure on the children of any gate g implicitly assumes that fg is
invariant under all permutations of its inputs – i.e. fg is a symmetric function. It is easy to
see that the standard basis and majority basis contain only symmetric functions.

Anderson and Dawar [1] characterize the expressive power of FPC in terms of symmetric
circuits over the majority basis. This circuit model cannot be strengthened by extending the
basis by symmetric functions (see [7]). As our ultimate aim is a circuit characterisation of
FPR, which is strictly more expressive than than FPC, we would like to consider circuits
defined over bases containing non-symmetric Boolean functions. In particular, we are
interested in bases containing rank-threshold functions – i.e. functions that take in a matrix
and decide if the matrix understood as having entries in some prime field has rank less
than some threshold. While these functions are not symmetric in the full sense, they are
symmetric in the sense of being invariant under row-column permutations.
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To lead up to this we first develop a general framework of structured Boolean functions.
These are functions whose inputs naturally encode τ -structures, rather than just matrices or
strings, and where the output is invariant under the natural symmetries of such structures.
We therefore define symmetric circuits in a general form where gates can be labelled by
isomorphism-invariant structured functions.

3.1 Structured Functions
Let X be a finite set and F : {0, 1}X → {0, 1}. It is common to consider Boolean functions
that take strings as input, which would correspond to taking X = [n] for some n ∈ N. The
natural notion of symmetry for such functions is invariance under arbitrary permutations
of X, i.e. the usual notion of a symmetric (Boolean) function. Alternatively, we might
want to consider Boolean functions that take in more complex algebraic structures as input,
which would involve selecting an index set X such that the input to the function encodes
an appropriate structure. For example, if we are interested in functions that take directed
graphs as inputs we would let X = V 2 for some vertex set V . We notice that in this case
the natural symmetry condition would not be invariance under arbitrary permutation, but
rather invariance under the action of a permutation of V .

In this subsection we formalise this notion and define a class of functions that take in many-
sorted structures and define a natural symmetry notion for such functions. Let τ := (R,S, ν)
be a many-sorted vocabulary and let D :=

⊎
s∈S Ds = {(s, d) : d ∈ Ds}, be a disjoint union of

non-empty sets. Let str(τ,D) be the τ -structure with universe D and such that every relation
is full (i.e. contains all possible tuples). We let ind(τ,D) be the disjoint union of all the
relations in str(τ,D), i.e. ind(τ,D) =

⊎
Ri∈RR

str(τ,D)
i := {(~a,Ri) : ~a ∈ Rstr(τ,D)

i , Ri ∈ R}.
We often abbreviate (~a,Ri) ∈ ind(τ,D) by ~aRi . We call ind(τ,D) the index defined by (τ,D).

We think of ind(τ,D) as containing all those tuples that may appear in a relation in a
τ -structure or, equivalently, the collection of ground atoms in the vocabulary τ with elements
from the domain D. In this way each element of {0, 1}ind(τ,D) encodes a τ -structure with
universe D. We call a function F : {0, 1}ind(τ,D) → {0, 1} a (τ,D)-structured function, or
just a structured function, and we call τ and D the vocabulary and universe of F , and
denote them by voc(F ) and unv(F ) respectively. We call ind(τ,D) the index of F , and
denote it by ind(F ). We see that F defines a class of τ -structures with universe D. We are
especially interested in structured functions that are symmetric in some sense, and hence
decide properties of τ -structures, i.e. isomorphism-closed classes of structures.

LetH be a set. We think of a function f : ind(τ,D)→ H as defining a labelling of str(τ,D)
by H and we identify f with this labelled instance of str(τ,D). Let f : ind(τ,D) → H

and g : ind(τ,D′) → H. We say that f and g are isomorphic if there is an isomorphism
π : str(τ,D)→ str(τ,D′) such that f(~aR) = g((π~a)R) for all ~aR ∈ ind(τ,D). In other words,
f and g are isomorphic if, and only if, they are isomorphic as (labelled) structures. Notice
that if H = {0, 1} then f and g define τ -structures and f and g are isomorphic if, and only
if, the τ -structures they define are isomorphic.

We say that F : {0, 1}ind(τ,D) → {0, 1} is isomorphism-invariant if for all f, g : ind(τ,D)
→ {0, 1} whenever f and g are isomorphic then F (f) = F (g).

3.2 Symmetric Circuits
We now generalise the circuit model in [1] in order to allow for circuits to be defined over
bases that include non-symmetric (structured) functions. In this model each gate g is not
only associated with an element of the basis, but also with a labelling function. This labelling
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function maps an appropriate set of labels (i.e. the index of the structured function associated
with g) to the input gates of g. In concord with this generalisation, we also update the
circuit-related notions from [1], e.g. circuit automorphisms, symmetry, etc. Moreover, we
briefly discuss some of the important complications introduced by our generalisation, and
introduce some of the important tools we use to address these complications.

I Definition 1 (Circuits on Structures). Let B be a basis of structured functions and ρ be a
relational vocabulary, we define a (B, ρ)-circuit C of order n computing a q-ary query Q as a
structure 〈G,Ω,Σ,Λ, L〉.

G is called the set of gates of C.
Ω is an injective function from [n]q to G. The gates in the image of Ω are called the
output gates. When q = 0, Ω is a constant function mapping to a single output gate.
Σ is a function from G to B ] ρ ] {0, 1} such that |Σ−1(0)| ≤ 1 and |Σ−1(1)| ≤ 1. Those
gates mapped to ρ]{0, 1} are called input gates, with those mapped to ρ called relational
gates and those mapped to {0, 1} called constant gates. Those gates mapped to B are
called internal gates.
Λ is a sequence of injective functions (ΛRi)Ri∈R such that ΛRi maps each relational gate
g with Σ(g) = Ri to the tuple ΛRi(g) ∈ [n]ri . When no ambiguity arises we write Λ(g)
for ΛRi(g).
L associates with each internal gate g a function L(g) : ind(Σ(g))→ G such that if we
define a relation W ⊆ G2 by W (h1, h2) iff h2 is an internal gate and h1 is in the image
of L(h2), then (G,W ) is a directed acyclic graph.

The definition requires some explanation. Each gate in G computes a function of its
inputs and the relation W on G is the set of “wires”. That is, W (h, g) indicates that the
value computed at h is an input to g. However, since the functions are structured, we
need more information on the set of inputs to g and this is provided by the labelling L.
Σ(g) tells us what the function computed at g is, and thus ind(Σ(g)) tells us the structure
on the inputs and L(g) maps this to the set of gates that form the inputs to g. We let
Hg = {h ∈ G : W (h, g)} denote the set of inputs to the gate g. We let unv(g) denote the
universe of Σ(g). We call a gate g a symmetric gate if Σ(g) is a symmetric function and g a
non-symmetric gate otherwise.

Let ρ be a relational vocabulary, A be a ρ-structure with universe U of size n, and
γ ∈ [n]U . Let γA be the structure with universe [n] formed by mapping the elements of U in
accordance with γ. The evaluation of a (B, ρ)-circuit C of order n computing a q-ary query
Q proceeds by recursively evaluating the gates in the circuit. The evaluation of the gate g
for the bijection γ and input structure A is denoted by C[γA](g), and is given as follows:

if g is a constant gate then it evaluates to the bit given by Σ(g),
if g is a relational gate then g evaluates to true iff γA |= Σ(g)(Λ(g)), and
if g is an internal gate let LγA(g) : ind(g) → {0, 1} be defined by LγA(g)(x) =
C[γA](L(g)(x)), for all x ∈ ind(g). Then g evaluates to true if, and only if, Σ(g)(LγA(g))
= 1.

We say that C defines the q-ary query Q ⊆ Uq under γ where ~a ∈ Q if, and only if,
C[γA](Ω(γ~a)) = 1.

We now define a circuit automorphism for a circuit.

I Definition 2 (Automorphism). Let C = 〈G,Ω,Σ,Λ, L〉 be a (B, τ)-circuit of order n
computing a q-ary query, and where B is a basis of isomorphism-invariant structured functions.
Let σ ∈ Symn and π : G→ G be a bijection such that
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for all output tuples x ∈ [n]q, πΩ(x) = Ω(σx),
for all gates g ∈ G, Σ(g) = Σ(πg),
for each relational gate g ∈ G, σΛ(g) = Λ(πg), and
For each pair of gates g, h ∈ G, we have W (h, g) if, and only if, W (πh, πg) and for each
internal gate g we have that L(πg) and π · L(g) are isomorphic.

We call π an automorphism of C, and we say that σ extends to an automorphism π. The
group of automorphisms of C is called Aut(C).

We are particularly interested in circuits that have the property that every permutation
in Symn extends to an automorphism of the circuit.

I Definition 3 (Symmetry). A circuit C on structures of size n is called symmetric if every
σ ∈ Symn extends to an automorphism on C.

Suppose C does not contain a relational gate labelled by a relation symbol with non-zero
arity. In that case C computes a constant function. For this reason, we always assume a
circuit contains at least one relational gate with non-zero arity. Now, by assumption there
exists a relational gate in C such that some element of [n] appears in the tuple labelling
that gate. By symmetry it follows that every element of [n] appears in a tuple labelling a
relational gate in C. It follows that no two distinct elements of Symn agree on all input
gates and so we can associate with each π ∈ Aut(C) a unique h(π) ∈ Symn that it extends
and it is easily seen that h : Aut(C)→ Symn is a surjective group homomorphism. If h is
also injective then we have that each element of σ extends uniquely to an automorphism of
the circuit. In this case we say that a circuit has unique extensions.

I Definition 4. We say that a circuit C of order n has unique extensions if for every
σ ∈ Symn there is at most one πσ ∈ Aut(C) such that πσ extends σ.

Many important technical tools, e.g. the support theorem, are only applicable to circuits
with unique extensions. It is for this reason that a notion of a rigid circuit is introduced
in [1]. Such circuits have unique extensions and it is shown that a symmetric circuit over the
basis Bmaj can be converted in polynomial-time to an equivalent rigid one.

We should like to develop a property analogous to rigidity for our framework, as well
as a similar polynomial-time translation. However, in our framework the value a gate g
computes depends not just on the set of gates input to g but also on the structure of
this set. This structure must be preserved by the action of an automorphism, and so we
require that if π is an automorphism that maps g to g′ then πL(g) and L(g′) are isomorphic.
Following from this observation, it can be shown that deciding if a function on the circuit is
an automorphism, and indeed deciding almost any symmetry-related property, for circuits
with non-symmetric gates is at least as hard as the graph-isomorphism problem. As such,
constructing an argument analogous to [1], as well as establishing the numerous other crucial
results whose proofs rely on the polynomial-time decidability of various circuit properties,
would require the development of a polynomial-time algorithm for graph-isomorphism.

In order to proceed we explicitly restrict our attention to transparent circuits. We will
define this term below, but before we do we need to define a notion of ‘structural similarity’
between gates that we call syntactic-equivalence.

I Definition 5. Let C := 〈G,Ω,Σ,Λ, L〉 be a (B, ρ)-circuit of order n. We recursively define
the equivalence relation syntactic-equivalence, which we denote using the symbol ‘≡’, on G
as follows. If g and h are both input gates or both output gates then g ≡ h if, and only
if, g = h. Suppose g and h are both non-output internal gates and we have defined the

CSL 2018



20:8 Symmetric Circuits for Rank Logic

syntactic-equivalence relation for all gates of depth less than the depth of either g or h.
Then g ≡ h if, and only if, Σ(g) = Σ(h) and L(g)/≡ and L(h)/≡ are isomorphic (as labelled
structures).

The intuition is that two gates are syntactically-equivalent if the circuits underneath
these two gates are structurally equivalent. The important point is that if two gates are
mapped to one another by an automorphism that extends the trivial permutation, then these
gates are syntactically-equivalent. In fact, we prove a slightly stronger result.

I Lemma 6. Let C be a circuit of order n and σ ∈ Symn. Let π, π′ ∈ Aut(C) be auto-
morphisms extending σ. For every gate g in C we have π(g) ≡ π′(g).

In this way syntactic-equivalence constrains the automorphism group. We use syntactic-
equivalence to establish sufficient conditions for a circuit to have unique extensions and,
moreover, for various circuit-properties that reference automorphism to be polynomial-time
decidable. With these two ideas in mind we define the following classes of circuits.

I Definition 7. Let C be a circuit and g be an internal gate in C. We say g has injective
labels if L(g) is an injection. We say g has unique labels if g has injective labels and no two
gates in W (g, ·) are syntactically-equivalent. We say C has injective labels (resp. unique
labels) if every gate in C has injective labels (resp. unique labels). We say C is transparent if
every non-symmetric gate in C has unique labels.

We can translate transparent circuits into circuits with unique labels in polynomial-time.
We prove this by first showing that syntactic-equivalence can be computed for transparent
circuits in polynomial-time. This follows from a straightforward inductive on depth, starting
from the input gates and noting that the syntactic-equivalence classes of the next layer can
be computed so long as you can solve the isomorphism problem for the gates in this next
layer. This is easy to do for symmetric gates, as we can check set-equivalence easily, and in
the case the gate is non-symmetric then this gate has unique labels, and so there is at most
one candidate isomorphism, and it is easy to check if a given function is an isomorphism.

I Lemma 8. There is an algorithm that takes as input a transparent circuit C and outputs
the syntactic-equivalence relation on the gates of C. The algorithm runs in time polynomial
in the size of C.

The translation from transparent circuits to circuits with unique labels is defined as follows.
We define a circuit by collapsing the gates of the input circuit into its syntactic-equivalence
classes, i.e. taking a quotient of the circuit by syntactic-equivalence. The resultant circuit
almost has unique labels, but for the fact that certain gates computing symmetric functions
might not have injective labels. For each offending gate g and each h ∈W (·, g) that has t
wires to g we add in a sequence of t− 1 single-input AND-gates and replace t− 1 wires from
h to g with wires from each of these AND-gates to g. This construction gives the following
result.

I Lemma 9. There is an algorithm that takes as input a (B, ρ)-transparent circuit C and
outputs a (B ∪ Bstd, ρ)-circuit C ′ such that C and C ′ compute the same function, C ′ has
unique labels, and if C is symmetric then C ′ is symmetric. Moreover, this algorithm runs in
time polynomial in the size of the input circuit.

We have that transparent circuits can be transformed into circuits with unique labels.
We should like to show that circuits with unique labels are analogous to rigid circuits in that
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(i) circuits with unique labels have unique extensions and (ii) we can compute the action of
an automorphism on a circuit with unique labels in polynomial-time.

Let C be a circuit of order n with unique labels of order n and let σ ∈ Symn. We
can define π ∈ Aut(C) as follows. If g is an output or input gate then the image of g is
entirely determined by σ. Suppose g is an internal gate, and suppose we have constructed
π for all gates h of depth greater than g. We start from the input gates and inductively
construct a gate g′ that, from Lemma 6, must be syntactically-equivalent to the image of
g under π. We notice that, since C has unique-labels, there is at most one child of π(h)
syntactically-equivalent to g′. We can compute which child using Lemma 8, and we assign
π(g) to be this child. The above construction can be implemented as a polynomial-time
algorithm, with the additional requirement that we halt and output that no automorphism
exists if at any stage the construction fails. It is also important to note that at each point in
this inductive definition there is always a unique extension of the automorphism to the next
layer of gates. We thus have the following two results.

I Lemma 10. If C is a circuit with unique labels then C has unique extensions.

I Lemma 11. There is an algorithm takes as input a (B, ρ)-circuit C of order n with unique
labels and σ ∈ Symn and outputs for each gate g the image of g under the action of the
unique automorphism extending σ (if it exists). This algorithm runs in time polynomial in
the combined size of the input circuit and the encoding of the permutation.

It remains to use our framework to define a class of circuits with gates that can com-
pute rank. Let a, b, r, p ∈ N, with p prime. Let RANKrp[a, b] : {0, 1}[a]×[b] → {0, 1} be
the (isomorphism-invariant) structured function with universe [a] ] [b], and such that
RANKrp[a, b](M) = 1 if, and only if, the matrix M ∈ {0, 1}[a]×[b] has rank at least r over
Fp when the entries of M are interpreted as elements of Fp. Let RANK = {RANKrp[a, b] :
a, b, r, p ∈ N, p prime} and let the rank basis be Brk := Bmaj ∪ RANK. We call a circuit
defined over the rank basis a rank-circuit.

We are now ready to state the main theorem of this paper.

I Theorem 12 (Main Theorem). A graph property is decidable by a P-uniform family of
transparent symmetric rank-circuits if, and only if, it is definable by an FPR sentence.

4 Symmetry and Supports

In this section we introduce the definition of a support and supporting partition from [1] and
extend the results about supports to our framework.

I Definition 13. Let G ≤ Symn and let S ⊆ [n]. Then S is a support for G if Stabn(S) ≤ G.

An important generalisation of the notion of a support is a supporting partition.

I Definition 14. Let G ≤ Symn and P be a partition of [n]. Then P is a supporting
partition for G if Stabn(P) ≤ G.

Let P and P ′ be supporting partitions for G. We say that P ′ is as coarse as P , denoted
by P ′ � P, if every part in P is contained in a part in P ′. Every group G ≤ Symn has
a unique coarsest supporting partition [1]. We call this partition the canonical supporting
partition, and denote it by SP(G).

It is easy to show that if P is a supporting partition for G ≤ Symn and P is the largest
part of P then [n] \ P is a support for G. We say that G has small support if there exists
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P ∈ SP(G) such that |P | > n
2 , and if G has small support then we call sp(G) := [n] \ P the

canonical support for G.
We apply the language of supports to circuits. Let C be a symmetric circuit of order n

with unique extensions and let g be a gate in C. There is a group action of Symn on the
gates of C, given by the isomorphism from Symn to Aut(C). We say that a partition P of
[n] (resp. a set S ⊆ [n]) is a supporting partition (resp. support) for g if P is a supporting
partition for Stab(g) (resp. S is a support for Stab(g)). We abuse notation and write SP(g)
and sp(g) for the canonical supporting partition and canonical support for g. Let ‖SP(g)‖
denote the smallest value of |[n] \ P | for P ∈ SP(g). Let SP(C) denote the largest value of
‖SP(g)‖ for g a gate in C. We now state the support theorem and then discuss its proof.

I Theorem 15. For any ε and n such that 2
3 ≤ ε ≤ 1 and n ≥ 128

ε2 , if C is a symmetric circuit
of order n with unique labels and s := maxg∈C |Orb(g)| ≤ 2n1−ε , then SP(C) ≤ 33

ε
log s
logn .

The proof follows a strategy broadly similar to the one used in [1], and makes use of two
lemmas from there. The first lemma gives us that if the index of a group G ≤ Symn is small
then SP(G) either has very few or very many parts. The second lemma gives us that for
G ≤ Symn, if SP(G) has very few parts then it must have a single very large part (and
hence a small canonical support). These two results allow us to conclude that every gate
g in C has a small canonical support if it has a canonical supporting partition with very
few parts. We then prove by structural induction that the canonical supporting partition of
every gate has few parts. To be precise, we show that if g is the topologically first gate in
the circuit with a canonical supporting partition with too many parts then |Orb(g)| > 2n1−ε ,
i.e. the orbit is larger than the given bound.

We do this by establishing the existence of a large set H of permutations that each take
g to a different gate. To construct H we define a set of triples of the form (σ, h, h′) where
σ ∈ Symn and h, h′ ∈ Hg. Each of these triples is useful in a sense that it guarantees that σ
moves g. Moreover, the triples are pairwise independent which means that we can compose
them in arbitrary combinations to generate new permutations moving g, while guaranteeing
that each such combination gives us a different element in the orbit of g. We have the
following as an immediate consequence of the support theorem.

I Lemma 16. Let C := (Cn)n∈N be a polynomial-size family of symmetric circuits with
unique labels. There exists k ∈ N such that SP(Cn) ≤ k for all n ∈ N.

Supports of Indexes
In our analysis we not only need to consider supports for gates but also for elements of the
universe of a gate. Let C be a circuit with unique extensions and g be a gate in C. We
define an action of Stab(g) on unv(g) such that σ · a := (L(g)−1σL(g)(~aR))(~a−1

R (a)), for
σ ∈ Stab(g) and a ∈ unv(g), and where ~aR ∈ ind(g) contains the element a.

Since we have a group action of Stab(g) on unv(g), but not Symn on unv(g), we must
speak of the support of a ∈ unv(g) relative to Stab(g). In fact, we are often interested in the
action of the subgroup Stab(sp(g)). We let Stabspg(a) and Orbspg(a) denote the orbit and
stabiliser of a under the action of Stab(sp(g)). We let spsp(g)(a) and SPsp(g)(a) denote the
canonical support and canonical supporting partition of Stabsp(g)(a). In all cases when the
choice of g is obvious from context we omit the subscript. The following lemma is a direct
consequence of the support theorem and extends the support theorem to the elements of the
universe of a gate.
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I Lemma 17. Let (Cn)n∈N be a polynomial-size family of symmetric circuits with unique
labels. There exists n0, k ∈ N such that for all n > n0, g a gate Cn and a ∈ unv(g) we
have that (i) Stabsp(g)(a) and Stabn(g) have small support, (ii) if h ∈ Hg and a appears in
L(g)−1(h) then spsp(g)(a) ⊆ sp(g) ∪ sp(h), and (iii) |sp(g)| ≤ k and |spsp(g)(a)| ≤ 2k.

5 The Translation from Formulas into Circuits

The standard translation from formulas to families of symmetric circuits does not result in a
family of transparent circuits. We must thus define a novel translation. We do this in two
parts. We first define a translation from P-uniform families of bounded-width FO+rk-formulas
to equivalent P-uniform families of transparent symmetric rank-circuits. We then define a
translation from formulas of FPR to P-uniform families of bounded-width FO+rk-formulas.
The first of these translations is given by the following lemma.

I Lemma 18. There is a function that takes as input an FO+rk-formula θ(~x) and n ∈ N and
outputs a transparent symmetric rank-circuit C of order n defined over the same vocabulary
as θ(~x) and that computes the query defined by θ(~x) for structures of size n. Moreover,
this function is computable and there is a polynomial p such that for an input (θ(~x), n) the
algorithm computing this function terminates in at most p(nwidth(θ)|cl(θ)|) many steps.

Proof Sketch. The proof follows easily once one understands why the usual translation
does not produce a transparent circuit. Consider the following example. Suppose ψ(~y) is a
subformula of θ(~x) of the form rkrp ~w~z.φ and suppose that φ := φ′(w1) ∧ φ′(w2). In this case
the syntactic structure of φ is fixed by any permutation of the variables that fixes {w1, w2}
setwise. The usual translation to circuits would preserve symmetries of this form, resulting
in many of the input gates of the rank gate being syntactically-equivalent.

In order to address this we first preprocess the formula θ(~x), defining a new formula
λ(~x) that decides the same query but is not invariant (in the sense alluded to above) under
permutations of the variables. We define λ(~x) as follows. Let R be a relation symbol in
the vocabulary of θ(~x) (if the vocabulary is empty the translation is trivial). For a variable
y let no-op(y) := (R(y, y) ∨ (¬R(y, y))). For a sequence of variables ~y = (y1, . . . , ym) let
tag(~y) := (no-op(y1)∧(no-op(y2)∧(no-op(y2)∧(. . .∧(no-op(ym)) . . .)))). Let λ(~x) be the
formula constructed from θ(~x) by replacing each sub-formula ψ(~y) of the form rkrp ~w~z.φ with
the formula rkrp ~w~z.((∀u.u = u) ∧ φ) ∧ tag(~w ∪ ~z). Since we always replace a subformula φ
with a logically equivalent formula, it follows that λ(~x) and θ(~x) are equivalent. The intuition
is that tag(~w ∪ ~z) appends a tower of conjunctions of tautologies, with each tautology
referencing a unique variable from ~w ∪ ~z. When we construct the circuit, this tower of
tautologies acts to ‘tag’ each input to the rank gate with a unique gadget.

We now construct C using the usual approach. For each subformula ψ(~y) of λ(~x) and
assignment ~a ∈ [n]|~y| to ~y we include a gate gψ,~a in C. We wire the circuit such that gφ,~a is
an input gate to gψ,~b iff φ is an immediate subformula of ψ and the two assignments never
assign the same variable to two different values. For a complete proof see [7]. J

The translation from FPR to P-uniform families of bounded-width FO+rk-formulas
is a concatenation of the following two translations. First, from [5], we can translate
θ(~x) ∈ FPR[τ ] into an equivalent P-uniform family of FOR[τ ]-formulas. Second, from [14],
we can translate FOR[τ ]-formulas into equivalent P-uniform families of FO+rk[τ ]-formulas.
Both of these translations increase the width by a constant factor, and so we may apply
Lemma 18 to prove the following.
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I Theorem 19. For each FPR-formula θ(~x) there exists a P-uniform family of transparent
symmetric rank-circuits(Cn)n∈N that defines the same query as θ(~x).

6 The Translation from Circuits into Formulas

We leverage the support theorem and the various polynomial-time algorithms defined for
transparent circuits and circuits with unique labels in order to define a translation from
P-uniform families of symmetric rank-circuits to formulas of FPR. Let C = (Cn)n∈N denote
a P-uniform family of transparent symmetric (Brk, ρ)-circuits computing a q-ary query Q.

From the Immerman-Vardi theorem [12, 16] and Lemma 9, there is a t-width interpretation
Φ such that for each ρ-structure A of size n the interpretation of Φ in A defines a symmetric
rank-circuit with unique labels (in the number universe) equivalent to Cn. We aim to show
that there exists θQ ∈ FPR[ρ] that defines Q, i.e. such that A |= θQ[~a] if, and only if,
Cn[γA](Ω(γ~a)) = 1 for any bijection γ ∈ [n]U .

Let n0 and k be the constants in the statement of Lemma 17. Notice that for each n ≤ n0
there are only constantly many bijections from the universe of a structure to [n], and so we
can explicitly quantify over these constantly many bijections and evaluate the circuit. We
thus fix n > n0 and a ρ-structure A with universe U of size n and show how to evaluate Cn

It follows from Lemma 17 that each gate g has a support of size at most k and each
a ∈ unv(g) has a support of size at most 2k. We say that two injections f and g are compatible
if there is an injection on the union of their domains that agrees with both functions. If there
is such a function we denote it by (f |g). We use ∼ to denote compatibility. The following
result gives us that the evaluation of a gate g for a bijection γ ∈ [n]U depends only on those
elements γ maps to sp(g).

I Lemma 20. Let g be a gate in Cn. Let η ∈ U sp(g) and γ1, γ2 ∈ [n]U such that γ−1
1 ∼ η

and γ−1
2 ∼ η. Then Lγ1A(g) and Lγ2A(g) are isomorphic.

It follows from Lemma 20 that the evaluation of g is entirely determined by EVg := {η ∈
U sp(g) : ∃γ ∈ [n]U s.t. Cn[γA](g) = 1 and η ∼ γ−1}. Here we see how the support theorem
allows us to characterize the evaluation of a gate succinctly.

The query defined by Cn for A is Q = {~a ∈ Uq : ∃g ∈ G, η ∈ EVg s.t. Ω(η−1 ◦ ~a)) = g}.
In order to define Q it is thus sufficient to show that EVg is FPR-definable. In particular,
we show that there is an FPR-definable relation V ⊆ [nt]× Uk such that (g, ~x) ∈ V if, and
only if, the assignment that maps sp(g) to the first |sp(g)| elements of ~x is in EVg. We
do this by first describing a procedure for recursively defining EVg, i.e. defining EVg given
{EVh : h ∈ Hg}, and then arguing that this definition can be implemented in FPR. This
suffices as we may then use the fixed-point operator to complete the definition of V . The
gate g is either a symmetric gate or a rank gate. If g is a symmetric gate then we have a
FPC-definable recursive construction of EVg from [1]. As such, we assume g is a rank gate.

As an aside, we note that the recursive construction of EVg in [1] relies on the fact that
if g is symmetric then it can be evaluated by counting the number of its inputs that evaluate
to 1. Using this fact, along with a bijection between the orbit of a gate and the assignments
to the support of that gate, the problem of evaluating g reduces to a counting problem on
the assignments to the supports of the inputs to g. The results that underlie this counting
argument fail for non-symmetric gates, and so we are forced to use a very different approach
for rank gates.

We instead show that for each gate g and η ∈ U sp(g) there is an FPR-definable matrix M
that has the same rank as LγA(g) for any γ ∈ [n]U such that γ−1 ∼ η. We can then check if
η ∈ EVg by applying the rank operator to M and testing against the threshold.
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We introduce some notation. Let A×B := ind(g). For h ∈ Hg let row(h) := L(g)−1(h)(1)
and col(h) := L(g)−1(h)(2). Let Ah := {~x ∈ U sp(h) : η ∼ ~x} and for all a ∈ unv(g) let
Aa = {~x ∈ U sp(a) : η ∼ ~x}.

We first define the index sets for the matrix M . Let Rmin := {min(Orb(row(h))) : h ∈
Hg} and Cmin := {min(Orb(col(h))) : h ∈ Hg}. Let I := {(i, ~x) : i ∈ Rmin, ~x ∈ Ai} and
J := {(j, ~y) : j ∈ Cmin, ~y ∈ Aj}. We think of Rmin and Cmin as indexing the orbits of the
row and column elements under the action of Stab(sp(g)), with each orbit indexed by the
minimal element in A (or B, respectively) that appears in it. We think of I and J as indexing
the elements within an orbit instead by elements of Ai and Aj , implicitly using the bijection
between these sets and the orbits of row(h) and col(h).

We associate with each index ((i, ~x), (j, ~y)) ∈ I × J a gate h and an assignment ~w to
the support of h as follows. It can be shown there is a function that maps a given index
to a permutation σ ∈ Stab(g) such that ~yσ is compatible with both η and ~x (see [7] for
details). Let h = L(g)(i, σj) and let ~w = (~x|~yσ). We define the matrix M : I × J → {0, 1}
by M((i, ~x), (j, ~y)) := ~w ∈ EVh.

Let x be a gate in Hg or an element of the universe of g. Let f ∈ U sp(x) and γ ∈ [n]U
such that γ−1 ∼ η. Let Πγ

f ∈ Stab(sp(g)) be such that Πγ
f (a) = γ(f(a)) for all a ∈ sp(x). It

is easy to see that Πγ
f (x) is well-defined. For a fixed h ∈ Hg, the mapping ~z 7→ Πγ

~z (h), for
~z ∈ Ah, establishes a correspondence between Ah and the orbit of h. A similar correspondence
exists for a fixed a ∈ unv(g). It follows that ~z ∈ EVh if, and only if, Cn[γA](Πγ

~z (h)) = 1. [7]
We use this correspondence to define a mapping from M to LγA(g). Let αγ : I → A and

βγ : J → B be defined by αγ(i, ~x) := Πγ
~x(i) and βγ(j, ~y) := Πγ

~y(j), respectively. It is possible
to show that (αγ , βγ) is a surjective homomorphism from M to LγA(g). It can be shown
that αγ(i, ~x) = αγ(i, ~x′) if, and only if, there exists π ∈ Stabsp(g)(i) such that ~x = ~x′π – and
a similar result holds for βγ . It follows that (αγ , βγ) is not, in general, injective.

We resolve this problem by quotienting. Let s ∈ unv(g) and ~x, ~x′ ∈ As. We say that
~x ≈ ~x′ if, and only if, there exists π ∈ Stab(s) such that ~x = ~x′π. For (i, ~x), (i′, ~x′) ∈ I we
say that (i, ~x) ≈ (i′, ~x′) if, and only if, i = i′ and ~x ≈ ~x′. We similarly define ≈ on J .

It is easy to see that αγ and βγ are constant on ≈-equivalence classes. As such, the
quotient functions αγ/≈ and βγ/≈ are well-defined. We can also show that M((i, ~x, (j, ~y))) =
M((i′, ~x′), (j′, ~y′)) if (i, ~x) ≈ (i′, ~x′) and (j, ~y) ≈ (j′, ~y′). Let M≈ : I/≈ × J/≈ → {0, 1} be
defined byM≈((i, [~x])≈, (j, [~y])≈) := M((i, ~x), (j, ~y)). It follows from the previous observation
that this function is well-defined.

Since (αγ , βγ) is a surjective homomorphism, (αγ/≈, βγ/≈) is a surjective homomorphism
from M≈ to LγA(g). Moreover, it follows from the previous comment on the failure of
injectivety that (αγ/≈, βγ/≈) is an injection. We thus have the following result.

I Theorem 21. Let γ ∈ [n]U such that γ−1 ∼ η. Then LγA(g) is isomorphic to M≡.

It is not hard to show that the rowsM((i, ~x), ·) andM((i′, ~x′), ·) are equal if (i, ~x) ≈ (i′~x′),
and so rkp(M) = rkp(M≡). From this and Theorem 21 we have the following result.

I Lemma 22. Let γ ∈ Un be such that γ−1 ∼ η and let p ∈ N be prime. Then rkp(M) =
rkp(M≡) = rkp(LγA(g)).

It remains to justify our assertion that the above recursive definition of EVg can be
implemented in FPR. It is sufficient to show that there is an FPR-formula that defines M
for a rank gate g and assignment η ∈ U sp(g). We first show that the sets {(g, sp(g)) : g ∈ G},
I, and J are FPR-definable. We have the following results as a consequence of Lemma 11.
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I Lemma 23. There is an algorithm that takes in a circuit C with unique labels and outputs
if the circuit is symmetric. If it is symmetric then it outputs for each gate g and a ∈ unv(g)
the orbit Orb(g) and canonical supporting partition SP(g), as well as Orbsp(g)(a) and
SPsp(g)(a). This algorithm runs in time polynomial in the size of the circuit.

From Lemma 23 and the Immerman-Vardi theorem there are FPC-formulas that define
the canonical support and orbit for each gate g and each a ∈ unv(g). Moreover, it can be
shown that compatibility between assignments to supports is FPR-definable. It follows that
we can define Aa for each a ∈ unv(g) and Ah for each h ∈ Hg. Combining these results we
have that I and J are FPR-definable. We then define M using a relation symbol V ′ that
denotes the value of V at a given stage in the recursive construction. This completes the
FPR-definition of M and so EVg, and hence the proof of our main result.

7 Concluding Remarks and Future Work

FPR is one of the most expressive logics we know that is still contained in P and understanding
its expressive power is an important question. The main result of this paper establishes an
equivalence between the expressive power of FPR and the computational power of uniform
families of transparent symmetric rank-circuits. Not only does this establish an interesting
characterization of an important logic, it also deepens our understanding of the connection
between logic and circuit complexity and sheds new light on foundational aspects of the
circuit model.

The circuit characterisation helps emphasise certain important aspects of the logic. Given
that P-uniform families of invariant circuits (without the restriction to symmetry) express
all properties on P, we can understand the inability of FPC (and, conjecturally, FPR) to
express all such properties as essentially down to symmetry. As with other (machine) models
of computation, the translation to circuits exposes the inherent combinatorial structure of an
algorithm. In the case of logics, we find that a key property of this structure is its symmetry
and the translation to circuits provides us with the tools to study it.

Still, the most significant contribution of this paper is not in the main result but in the
techniques that are developed to establish it, and we highlight some of these now. The
conclusion of [1] says that the support theorem is “largely agnostic to the particular [. . . ]
basis”, suggesting that it could be easily adapted to include other gates. This turns out
to have been a misjudgment. Attempting to prove the support theorem for a basis that
includes rank threshold gates showed us the extent to which both the proof of the theorem
and, more broadly, the definitions of circuit classes, rest heavily on the assumption that all
functions computed by gates are symmetric. Thus, in order to define what the “symmetry”
condition might mean for circuits that include rank threshold gates, we radically generalise
the circuit framework to allow for gates that take structured inputs (rather than sets of
0s and 1s) and are invariant under isomorphisms. This leads to a refined notion of circuit
automorphism, which allows us to formulate a notion of symmetry and prove a version of
the support theorem. Again, in that proof, substantial new methods are required.

The condition of transparency makes the translation of uniform circuit families into
formulas of logic (which is the difficult direction of our characterisation) possible, but it
complicates the other direction. Indeed, the natural translation of formulas of FPR into
uniform circuit families yields circuits which are symmetric, but not transparent. This
problem is addressed by introducing gadgets in the translation – which for ease of exposition,
we did in formulas of FO+rk which are then translated into circuits in the natural way. Thus,
the restriction to transparent circuits is sufficient to get both directions of the characterisation.
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In short, we can represent the proof of our characterisation through the three equivalences
in this triangle.

FPR Uniform families of bounded-
width FO+rk formulas

Uniform families of transparent
symmetric rank-circuits

This highlights another interesting aspect of our result. The first translation, of FPR to
uniform families of FO+rk formulas was given in [5] and used there to establish arity lower
bounds. However, this was for a weaker version of the rank logic rather than the strictly
more expressive one defined by Grädel and Pakusa [9]. The fact that we can complete the
cycle of equivalences with the more powerful logic demonstrates that the definition of Grädel
and Pakusa is the “right” formulation of FPR.

Future Work
There are many directions of work suggested by the methods and results developed in this
paper. First of all, there is the question of transparency. We introduce it as a technical
device that enables our characterisation to go through. Could it be dispensed with? Or
are P-uniform families of transparent symmetric rank-circuits strictly weaker than families
without the restriction of transparency?

The framework we have developed for working with circuits with structured inputs is very
general and not specific to rank gates. It would be interesting to apply this framework to
other logics. It appears to be as general a way of extending the power of circuits as Lindström
quantifiers are in the context of logic. We would like to develop this link further, perhaps
for specific quantifiers such as FP extended by an operator that expresses the solubility of
systems of equations over rings as in [4]

At the moment, we have little by way of methods for proving inexpressibility results
for FPR, whether we look at it as a logic or in the circuit model. The logical formulation
lays emphasis on some parameters (the number of variables, the arity of the operators, etc.)
which we can treat as resources against which to prove lower bounds. On the other hand, the
circuit model brings to the fore other, more combinatorial, parameters. One such is the fan-in
of gates and a promising and novel approach is to try and prove lower bounds for symmetric
circuits with gates with bounded fan-in. We might ask if it is possible to compute AND[3]
using a symmetric circuit with gates that have fan-in two. Perhaps we could also combine
the circuit view with lower-bound methods from logic, such as pebble games. Dawar [3] has
shown how the bijection games of Hella [11] can be used directly to prove lower bounds for
symmetric circuits without reference to the logic. We also have pebble games for FPR [6],
and it would be interesting to know if we can use these on circuits and how the combinatorial
parameters of the circuit interact with the game.

Finally, we note that some of the interesting directions on the interplay between logic and
symmetric circuits raised in [1] remain relevant. Can we relax the symmetry condition to
something in between requiring invariance of the circuit under the full symmetric group (the
case of symmetric circuits) and requiring no invariance condition at all? Can such restricted
symmetries give rise to interesting logics in between FPR and P? It also remains a challenge
to find a circuit characterisation of CPTC. Could the general framework for non-symmetric
gates we have developed here help in this respect?
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Abstract
The study of polarity in computation has revealed that an “ideal” programming language com-
bines both call-by-value and call-by-name evaluation; the two calling conventions are each ideal
for half the types in a programming language. But this binary choice leaves out call-by-need
which is used in practice to implement lazy-by-default languages like Haskell. We show how the
notion of polarity can be extended beyond the value/name dichotomy to include call-by-need
by only adding a mechanism for sharing and the extra polarity shifts to connect them, which is
enough to compile a Haskell-like functional language with user-defined types.
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1 Introduction

Finding a universal intermediate language suitable for compiling and optimizing both strict
and lazy functional programs has been a long-sought holy grail for compiler writers. First
there was continuation-passing style (CPS) [19, 2], which hard-codes the evaluation strategy
into the program itself. In CPS, all the specifics of evaluation strategy can be understood
just by looking at the syntax of the program. Second there were monadic languages [13, 17],
that abstract away from the concrete continuation-passing into a general monadic sequencing
operation. Besides moving away from continuations, making them an optional rather than
mandatory part of sequencing, they make it easier to incorporate other computational effects
by picking the appropriate monad for those effects. Third there were adjunctive languages
[10, 23, 14], as seen in polarized logic and call-by-push-value λ-calculus, that mix both call-by-
name and -value evaluation inside a single program. Like the monadic approach, adjunctive
languages make evaluation order explicit within the terms and types of a program, and
can easily accommodate effects. However, adjunctive languages also enable more reasoning
principles, by keeping the advantages of inductive call-by-value data types, as seen in their
denotational semantics. For example, the denotation of a list is just a list of values, not a
list of values interspersed with computations that might diverge or cause side effects.

Each of these developments have focused only on call-by-value and -name evaluation,
but there are other evaluation strategies out there. For example, to efficiently implement
laziness, the Glasgow Haskell Compiler (GHC) uses a core intermediate language which is
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call-by-need [4] instead of call-by-name: the computation of named expressions is shared
throughout the lifetime of their result, so that they need not be re-evaluated again. This may
be seen as merely an optimization of call-by-name, but it is one that has a profound impact
on the other optimizations the compiler can do. For example, full extensionality of functions
(i.e., the η law) does not apply in general, due to issues involving divergence and evaluation
order. Furthermore, call-by-need is not just a mere optimization but a full-fledged language
choice when effects are introduced [3]: call-by-need and -name are observationally different.
This difference may not matter for pure functional programs, but even there, effects become
important during compilation. For example, it is beneficial to use join points [12], which is a
limited form of jump or goto statement, to optimize pure functional programs.

So it seems like the quest for a universal intermediate language is still ongoing. To
handle all the issues involving evaluation order in modern functional compilers, the following
questions, which have been unanswered so far, should also be addressed:

(Section 3) How do you extend polarity with sharing (i.e., call-by-need)? For example,
how do you model the Glasgow Haskell Compiler (GHC) which mixes both call-by-need
for ordinary Haskell programs and call-by-value for unboxed [18] machine primitives?
(Section 4) What does a core language need to serve as a compile target for a general
functional programming language with user-defined types? What are the shifts you need
to convert between all three calling conventions? While encoding data types is routine,
what do you need to fully encode co-data types [9]?
(Section 5) How do you compile that general functional language to the core intermediate
sub-language? And how do you know that it is robust when effects are added?

This paper answers each of these questions. The formal relationship between our intermediate
language and both polarity and call-by-push-value (Appendix A). To test the robustness
of this idea, we extend it in several directions in the appendix. We generalize to a dual
sequent calculus framework that incorporates more calling conventions (specifically, the dual
to call-by-need) and connectives not found in functional languages (Appendices B and C).

2 Polarity, data, and co-data

To begin, let’s start with a basic language which is the λ-calculus extended with sums, as
expressed by the following types and terms:

A,B,C ::= X | A→ B | A⊕B
M,N,P ::= x | λx.M |M N | ι1M | ι2M | caseM of{ι1x.N | ι2y.P}

As usual, an abstraction λx.M is a term of a function type A→ B and an injection ιiM is a
term of a sum type A⊕B. Terms of function and sum types are used via application (M N)
and case analysis, respectively. Variables x can be of any type, even an atomic type X.

To make this a programming language, we would need to explain how to run programs
(say, closed terms of a sum type) to get results. But what should the calling convention be?
We could choose to use call-by-value evaluation, wherein a function application (λx.M) N is
reduced by first evaluating N and then plugging its value in for x, or call-by-name evaluation,
wherein the same application is reduced by immediately substituting N for x without further
evaluation. We might think that this choice just impacts efficiency, trading off the cost of
evaluating an unneeded argument in call-by-value for the potential cost of re-evaluating the
same argument many times in call-by-name. However, the choice of calling convention also
impacts the properties of the language, and can affect our ability to reason about programs.
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Functions are a co-data type [7], so the extensionality law for functions, known as η,
expands function terms into trivial λ-abstractions as follows:

(η→) M : A→ B = λx.M x (x /∈ FV (M))

But once we allow for any computational effects in the language, this law only makes sense
with respect to call-by-name evaluation. For example, suppose that we have a non-terminating
term Ω (perhaps caused by general recursion) which never returns a value. Then the η→
law stipulates that Ω = λx.Ω x. This equality is fine – it does not change the observable
behavior of any program – in call-by-name, but in call-by-value, (λz.5) Ω loops forever and
(λz.5) (λx.Ω x) returns 5. So the full η→ breaks in call-by-value.

In contrast, sums are a data type, so one sensible extensionality law for sums, which
corresponds to reasoning by induction on the possible cases of a free variable, is expressed by
the following law stating that if x has type A⊕B then it does no harm to case on x first:

(η⊕) M = casexof{ι1y.M [ι1y/x] | ι2z.M [ι2z/x]} (x : A⊕B)

Unfortunately, this law only makes sense with respect to call-by-value evaluation once we have
effects. For example, consider the instance where M is ι1x. In call-by-value, variables stand
for values which are already evaluated because that is all that they might be substituted for.
So in either case, when we plug in something like ιi5 for x, we get the result ι1(ιi5) after
evaluating the right-hand side. But in call-by-name, variables range over all terms which
might induce arbitrary computation. If we substitute Ω for x, then the left-hand side results
in ι1Ω but the right-hand side forces evaluation of Ω with a case, and loops forever.

How can we resolve this conflict, where one language feature “wants” call-by-name
evaluation and the other “wants” call-by-value? We just could pick one or the other as the
default of the language, to the detriment of either functions or sums. Or instead we could
integrate the two to get the best of both worlds, and polarize the language so that functions
are evaluated according to call-by-name, and sums according to call-by-value. That way,
both of them have their best properties in the same language, even when effects come into
play. Since functions and sums are already distinguished by types, we can leverage the type
system to make the call-by-value and -name distinction for us. That is to say, a type A might
classify either a call-by-value term, denoted by A+, or a call-by-name term, denoted by A−.
Put it all together, we get the following polarized typing rules for our basic λ-calculus:

A,B,C ::= A+ | A− A−, B− ::= X− | A+ → B− A+, B+ ::= X+ | A+ ⊕B+

Γ, x : A ` x : A Var
Γ, x : A+ `M : B−

Γ ` λx.M : A+ → B−
→I

Γ `M : A+ → B− Γ ` N : A+

Γ `M N : B−
→E

Γ `M : A+

Γ ` ι1M : A+ ⊕B+
⊕I1

Γ `M : B+

Γ ` ι2M : A+ ⊕B+
⊕I2

Γ `M : A+ ⊕B+ Γ, x : A+ ` N : C Γ, y : B+ ` P : C
Γ ` caseM of{ι1x.N | ι2y.P} : C ⊕E

Note that, with this polarization, injections are treated as call-by-value, in ιiM the term M

is evaluated before the tagged value is returned. More interestingly, the function call M N

has two parts: the argument N is evaluated before the function is called as in call-by-value,
but this only happens once the result is demanded as in call-by-name.

But there’s a problem, just dividing up the language into two has severely restricted
the ways we can compose types and terms. We can no longer inject a function into a sum,
because a function is negative but a sum can only contain positive parts. Even more extreme,
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the identity function λx.x : A → A no longer makes sense: the input must be a positive
type and the output a negative type, and A cannot be both positive and negative at once.
To get around this restriction, we need the ability to shift polarity between positive and
negative. That way, we can still compose types and terms any way we want, just like before,
and have the freedom of making the choice between call-by-name or -value instead of having
the language impose one everywhere.

If we continue the data and co-data distinction that we had between sums and functions
above, there are different ways of arranging the two shifts in the literature, depending on the
viewpoint. In Levy’s call-by-push-value [10] the shift from positive to negative ⇑ (therein
called F ) can be interpreted as a data type, where the sequencing operation is subsumed
by the usual notion of a case on values of that data type, and the reverse shift ⇓ (therein
called U) can be interpreted as co-data type:1

A−, B− ::= . . . | ⇑A+

A+, B+ ::= . . . | ⇓A−

Γ `M : A+

Γ ` valM : ⇑A+
⇑I

Γ `M : ⇑A+ Γ, x : A+ ` N : C
Γ ` caseM of{val x.N} : C

⇑E

Γ `M : A−
Γ ` λenter.M : ⇓A−

⇓I
Γ `M : ⇓A−

Γ `M.enter : A−
⇓E

M.enter can be seen as sending the request enter to M , and λenter.M as waiting for that
request. In contrast, Zeilberger’s calculus of unity [22] takes the opposite view, where the
shift ↑ from positive to negative is co-data and the opposite shift ↓ is data:

A−, B− ::= . . . | ↑A+

A+, B+ ::= . . . | ↓A−

Γ `M : A+

Γ ` λeval.M : ↑A+
↑I

Γ `M : ↑A+

Γ `M.eval : A+
↑E

Γ `M : A−
Γ ` box M : ↓A−

↓I
Γ `M : ↓A− Γ, x : A− ` N : C

Γ ` caseM of{box x.N} : C
↓E

Here, we do not favor one form over the other and allow both forms to coexist. In turns out
that with only call-by-value and -name evaluation, the two pairs of shifts amount to the
same thing (more formally, we will see in Section 5 that they are isomorphic). But we will
see next in Section 3 how extending this basic language calls both styles of shifts into play.

With the polarity shifts between positive and negative types, we can express every
program that we could have in the original unpolarized language. The difference is that
now since both call-by-value and -name evaluation is denoted by different types, the types
themselves signify the calling convention. For call-by-name, this encoding is:

JXK− = X− JA→ BK− = (↓JAK−)→ JBK− JA⊕BK− = ⇑((↓JAK−)⊕ (↓JBK−))

JxK− = x

JM NK− = JMK−(box JNK−) Jλx.MK− = λy. case y of{box x.JMK−}

JιiMK− = val(ιi(box JMK−)) JcaseM of{ιixi.Ni}K− = case JMK− of{val(ιi(box xi)).JNiK−}

1 Note that this ⇑E rule is an extension of the elimination rule for F in call-by-push-value [10], which
restricts C to be only a negative type. The impact is that, unlike call-by-push-value, this language
allows for non-value terms of positive types, similar to SML. The extension is conservative, because
the interpretation of A+ values is identical to call-by-push-value, whereas the interpretation of a
non-value term of type A+ would be shifted in call-by-push-value as the computation type ⇑A+. This
interpretation also illustrates how to compile the extended calculus to the lower-level call-by-push-value
by ⇑-shifting following the standard encoding of call-by-value, where positive non-value terms have an
explicit val wherever they may return a value. More details can be found in Appendix A.
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where the nested pattern val(ιi(box xi)) is expanded in the obvious way. It converts every
type into a negative one, and amounts to boxing up the arguments of injections and function
calls. The call-by-value encoding is:

JXK+ = X+ JA→ BK+ = ⇓(JAK+ → (↑JBK+)) JA⊕BK+ = JAK+ ⊕ JBK+

JxK+ = x

JM NK+ = ((JMK+.enter) JNK+).eval Jλx.MK+ = λenter.λx.λeval.JMK+

JιiMK+ = ιiJMK+ JcaseM of{ιixi.Ni}K+ = case JMK+ of{ιixi.JNiK+}

It converts every type into a positive one. As such, sum types do not have to change (because,
like SML, we have not restricted positive types to only classifying values as in [14]). Instead,
the shifts appear in function types: to call a function, we must first enter the abstraction,
perform the call, then evaluate the result.

At a basic level, these two encodings make sense from the perspective of typability
(corresponding to provability in logic) – by inspection, all of the types line up with their
newly-assigned polarities. But programs are meant to be run, so we care about more than
just typability. At a deeper level, the encodings are sound with respect to equality of terms:
if two terms are equal, then their encodings are also equal. We have not yet formally defined
equality, so we will return to this question later in Section 5.1.

3 Polarity and sharing

So far we have considered only call-by-value and -name calculi. What about call-by-need,
which models sharing and memoization for lazy computation; what would it take to add
that, too? The shifts we have are no longer enough: to complete the picture we also require
shifts between call-by-need and the other polarities. We need to be able to shift into and
out of the positive polarity in order for call-by-need to access data like the sum type. And
we also need to be able to shift into and out of the negative polarity for call-by-need to be
able to access co-data like the function type. That is a total of four more shifts to connect
the ordinary polarized language to the call-by-need world. The question is, how do we align
the four different shifts that we saw previously? Since call-by-need only needs access to the
positive world for representing data types, we use the data forms of shifts between those two.
Dually, since call-by-need only needs access to the negative world for representing co-data
types, we use the co-data forms of shifts between those two. We will also need a mechanism
for representing sharing. The traditional representation [4] is with let-bindings, and so we
will do the same. In all, we have:
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A,B,C ::= A+ | A− | A? A−, B− ::= X− | A+ → B− | ⇑A+ | ↑A+ | ↑?A?
A?, B? ::= X? | ?⇑A+ | ?⇓A− A+, B+ ::= X+ | A+ ⊕B+ | ⇓A− | ↓A− | ↓?A?

Γ `M : A?
Γ ` λeval?.M : ↑?A?

↑I
Γ `M : ↑?A?

Γ `M.eval? : A?
↑E

Γ `M : A?
Γ ` box?M : ↓?A?

↓I
Γ `M : ↓?A? Γ, x : A? ` N : C

Γ ` caseM of{box? x.N} : C
↓E

Γ `M : A+

Γ ` val?M : ?⇑A+
⇑I

Γ `M : ?⇑A Γ, x : A+ ` N : C
Γ ` caseM of{val? x.N} : C

⇑E

Γ `M : A−
Γ ` λenter?.M : ?⇓A−

⇓I
Γ `M : ?⇓A−

Γ `M.enter? : A−
⇓E

Γ `M : A Γ, x : A ` N : C
Γ ` letx = M inN : C Let

Now, how can a call-by-need λ-calculus with functions and sums be encoded into this
polarized setting? We effectively combine both the call-by-name and -value encodings, where
a shift is used for call-by-need whenever one is used for either of the other two.

JXK? = X? JA→ BK? = ?⇓((↓?JAK?)→ (↑? JBK?)) JA⊕BK? = ?⇑((↓?JAK?)⊕ (↓?JBK?))
JxK? = x

JM NK? = ((JMK?. enter?) (box? JNK?)). eval?
Jλx.MK? = λenter?.λy. case y of{box? x.λeval?.JMK?}

JιiMK? = val?(ιi(box? JMK?))
JcaseM of{ιixi.Ni}K? = case JMK? of{val?(ιi(box? xi)).JNiK?}

The key thing to notice here is what is shared and what is not, to ensure that the encoding
correctly aligns with call-by-need evaluation. Both the shifts into ?, the data type ?⇑A+
and co-data type ?⇓A−, result in terms that can be shared by a let. But the shifts out of ?
are different: the content M of box?M : ↓?A? is still shared, like a data structure, but the
content M of λeval?.M : ↑?A? is not, like a λ-abstraction. Therefore, the encoding of an
injection JιiMK? shares the computation of JMK? throughout the lifetime of the returned
value, as for the argument of a function call:

Jcase ιiM of{ιixi.Ni}K? = letxi = JMK? in JNiK
? J(λx.M)NK? = letx = JNK? in JMK?

Whereas, the encoding of a function Jλx.MK?, being a value, re-computes JMK? every time
the function is used, which is formalized by the equational theory in Section 4.4.

4 A multi-discipline intermediate language

So far, we have only considered how sharing interacts with polarity in a small language with
functions and sums, but programming languages generally have more than just those two
types. For example, both SML and Haskell have pairs so we should include those, too, but
when do we have enough of a “representative” basis of types that serves as the core kernel
language for the general source language? To define our core intermediate language, we will
follow the standard practice (as in CPS) of first defining a more general source language,
and then identifying the core sub-language that the entire source can be translated into.
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The biggest issue is that faithfully encoding types of various disciplines into a core set of
primitives is more subtle than it may at first seem. For example, using Haskell’s algebraic
data type declaration mechanism, we can define both a binary and ternary sum:

data Either a bwhere
Left : a→ Either a b

Right : b→ Either a b

data Either3 a b cwhere
Choice1 : a→ Either3 a b c
Choice2 : b→ Either3 a b c
Choice3 : c→ Either3 a b c

But Either a (Either b c) does not faithfully represent Either3 a b c in Haskell, even though it
does in SML. The two types are convertible:

nest(Choice1x) = Leftx
nest(Choice2 y) = Right(Left y)
nest(Choice3 z) = Right(Right z)

unnest(Leftx) = Choice1x
unnest(Right(Left y)) = Choice2 y
unnest(Right(Right z)) = Choice3 z

but they do not describe the same values. Either a (Either b c) types both the observably
distinct terms Ω and Right Ω – which can be distinguished by pattern matching – but
conversion to Either3 a b c collapses them both to Ω. This is not just an issue of needing
nary tuples and sums, the same issue arises when pairs and sums are nested with each other.

To ensure that we model a general enough source language, we will consider one that is
extensible (i.e., allows for user-defined types encompassing many types found in functional
languages) and multi-discipline (i.e., allows for programs that mix call-by-value, -name, and
-need evaluation). These two features interact with one another: user-defined types can
combine parts with different calling conventions. But even though users can define many
different types, there is still a fixed core set of types, F , capable of representing them all.
For example, an extensible and multi-discipline calculus encompasses both the source and
target of the three encodings showed previously in Sections 2 and 3. We now look at the full
core intermediate language F , and how to translate general source programs into the core F .

4.1 The functional core intermediate language: F
Our language allows for user-defined data and co-data types. A data type introduces a
number of constructors for building values of the type, a co-data type introduces a number
of observers for observing or interacting with values of the type. Figure 1 presents some
important examples that define a core set of types, F . The calculus instantiated with just the
F types serves as our core intermediate language, as it contains all the needed functionality.

The data and codata declarations for ⊕ and → correspond to the polarized sum and
function types from Section 2, with a slight change of notation: we write X : + instead of
X+. The data declaration of ⊕ defines its two constructors ι1 and ι2, and dually the co-data
declaration for → defines its one observer call. The terms of the resulting sum type are
exactly as they were presented in Section 2. The function type uses a slightly more verbose
notation than the λ-calculus for the sake of regularity: instead of λx.M we have λ{callx.M}
and instead of M N we have M.callN . That is, dual to a case matching on the pattern of a
data structure, a λ-abstraction matches on the co-pattern of a co-data observation like callx.
Besides changing notation, the meaning is the same [7].

There are some points to notice about these two declarations. First, disciplines can be
mixed within a single declaration, which is used to define the polarized → function space
that accepts a call-by-value (+) input and returns a call-by-name (−) result, but other
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Simple (co-)data types
data (X:+)⊕ (Y :+) : + where

ι1 : (X:+ ` X ⊕ Y )
ι2 : (Y :+ ` X ⊕ Y )

data (X:+)⊗ (Y :+) : + where
( , ) : (X:+, Y :+ ` X ⊗ Y )

data 0 : + where

data 1 : + where () : ( ` 1)

codata (X:−) & (Y :−) : −where

π1 : ( | X & Y ` X:−)
π2 : ( | X & Y ` Y :−)

codata> : −where codata (X:+)→ (Y :−) : −where
call : (X:+ | X → Y ` Y :−)

Quantifier (co-)data types

data ∃k(X:k→+) : + where

pack : (X Y :+ `Y :k ∃kX)

codata ∀k(X:k→−) : −where

spec : ( | ∀kX `Y :kX Y :−)

Polarity shift (co-)data types

data ↓S(X:S) : + where
boxS : (X:S ` ↓SX)

data S⇑(X:+) : Swhere
valS : (X:+ ` S⇑X)

codata ↑S (X:S) : −where
evalS : ( | ↑SX ` X:S)

codata S⇓(X:−) : Swhere
enterS : ( | S⇓X ` X:−)

Figure 1 The F functional core set of (co-)data declarations.

combinations are also possible. Second, instead of the function type arrow notation to assign
a type to the constructors and observers, we use the turnstyle (`) of a typing judgement.
This avoids the issue that a function type arrow already dictates the disciplines for the
argument and result, limiting our freedom of choice.

The rest of the core F types exercise all the functionality of our declaration mechanism.
The nullary version of sums (0) has no constructors and an empty caseM of{}. We have
binary and nullary tuples (⊗, 1), which have terms of the form (M,N) and () and are used by
caseM of{(x, y).M} and caseM of{().M}, respectively. We also have binary and nullary
products (&, >), with two and zero observers, respectively. The terms of binary products
have the form λ{π1.M |π2.N} and can be observed as M.πi, and the nullary product has the
term λ{} which cannot be observed in any way. The shifts are also generalized to operate
generically over the choice of call-by-name (−), call-by-value (+), and call-by-need (?), which
we denote by S. The pair of shifts between + (↓S , S⇑) and − (↑S , S⇓) for each S has the
same form as in Section 3, where we omit the annotation S when it is clear from the context.

The last piece of functionality is the ability to introduce locally quantified types in a
constructor or observer. These quantified type variables are listed as a superscript to the
turnstyle, and allow user-defined types to perform type abstraction and polymorphism.
Two important examples of type abstraction shown in Figure 1 are the universal (∀k) and
existential (∃k) quantifiers, which apply to a type function λX:k.A. We will use the shorthand
∀X:k.A for ∀k(λX:k.A) and ∃X:k.A for ∃k(λX:k.A). The treatment of quantified types is
analogous to System Fω, where types appear in terms as parameters. For example, the
term λ{specY :k.M} : ∀Y :k.A abstracts over the type variable Y in M , and a polymorphic
M : ∀Y :k.A can be observed via specialization as M.specB : A[B/Y ]. Dually, the term
packB M : ∃Y :k.A hides the type B in the termM : A[B/Y ], and an existential M : ∃Y :k.A
can be unpacked by pattern matching as caseM of{pack (Y :k) (x:A).N}.

4.2 Syntax

The syntax of our extensible and multi-discipline λ-calculus is given in Figure 2. We refer
to each of the three kinds of types (+, − and ?) as a discipline which is denoted by the
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A,B,C ::= X | F | λX.A | A B X ::= X:k k, l ::= S | k → l R,S, T ::= + | − | ?

decl ::= data F(X:k).. : Swhere K : (A:T .. `X.. FX..)..

| codata G(X:k).. : Swhere O : (A:T .. | GX.. `X.. B:R)..
p ::= KX..y.. q ::= OX..y.. x,y, z ::= x:A

M,N ::= x | letx = M inN |M.OB..N.. | KB..M.. | λ{qi.Mi
i..} | caseM of{pi.Mi

i..}

Figure 2 Syntax of a total, pure functional calculus with (co-)data.

meta-variables R, S, and T . A data declaration has the general form

data F(X1:k1)..(Xn:kn) : Swhere K1 : (A11 : T11..A1n : T1n ` FX1..Xn)
..
Km : (Am1 : Tm1..Amn : Tmn ` FX1..Xn)

which declares a new type constructor F and value constructors K1 . . .Km. The dual co-data
declaration combines the concepts of functions and products, having the general form

codata G(X1:k1)..(Xn:kn) : Swhere O1 : (A11 : T11..A1n : T1n | GX1..Xn ` B1 : R1)
..
Om : (Am1 : Tm1..Amn : Tmn | GX1..Xn ` Bm : Rm)

Since an observer is dual to a constructor, the signature is flipped around: the signature for
O1 above can be read as “given parameters of types A11 to A1n, O1 can observe a value of
type GX1..Xn to obtain a result of type B1.”2

Notice that we can also declare types corresponding to purely call-by-value, -name, and
-need versions of sums and functions by instantiating S with +, −, and ?, respectively:

data (X:S)⊕S (Y :S) : Swhere
ιS1 : (X:S ` X ⊕ Y )
ιS2 : (Y :S ` X ⊕ Y )

codata (X:S) S→ (Y :S) : Swhere
callS: (X:S | X S→ Y ` Y :S)

So the extensible language subsumes all the languages shown in Sections 2 and 3.

4.3 Type System
The kind and type system is given in Figure 3. In the style of system Fω, the kind system
is just the simply-typed λ-calculus at the level of types – so type variables, functions,
and applications – where each connective is a constant of the kind declared in the global
environment G. It also includes the judgement (Γ `Θ

F ) ctx for checking that a typing context
is well-formed, meaning that each variable in Γ is assigned a well-kinded type with respect
to the type variables in Θ and global environment G.

The typing judgement for terms is Γ `Θ
G M : A : S, where G is a list of declarations,

Θ = X : k.. assigns kinds to type variables, and Γ = x : A : S.. assigns explicitly-kinded
types to value variables. The interesting feature of the type system is the use of the two-level

2 Both of these notions of data and co-data correspond to finitary types, since declarations allow for a
finite number of constructors or observers for all data and co-data types, respectively. We could just
as well generalize declarations with an infinite number of constructors or observers to also capture
infinitary types at the usual cost of having infinite branching in cases and λs. Since this generalization
is entirely mechanical and does not enhance the main argument, we leave it out of the presentation.
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Θ, X : k `G A : l
Θ `G λX:k.A : k → l

Θ `G A : k → l Θ `G B : k
Θ `G A B : l Θ, X : k `G X : k

(Θ `G A : T )..
(x : A : T .. `Θ

G ) ctx
(Γ `Θ

G ) ctx Θ `G A : S
Γ, x : A : S `Θ

G x : A : S
Γ `Θ
G M : A : S Γ, x : A : S `Θ

G N : C : R
Γ `Θ
G letx:A = M inN : C : R

Γ `Θ
G M : A : S A =βη B

Γ `Θ
G M : B : S

Given data F(X:k).. : Swhere Ki : (Aij : Tij j.. `Yij :lij
j.. F(X..)) i.. ∈ G, we have the rules:

Θ `G F : k → ..S

(Γ `Θ
G ) ctx Θ `G FC.. : S (Θ `G Bj : lij)j.. (Γ `Θ

G Mj : Aij [C/X.., Bj/Yij j..] : Tij)j..
Γ `Θ
G KiBj j.. Mj

j.. : FC.. : S
FIi

Θ `G C : R Γ `Θ
G M : FB.. : S (Γ, xij : Aij [B/X..] : Tij j.. `

Θ,Yij :lij j..
G Ni : C : R) i..

Γ `Θ
G caseM of{(Ki Yij :lij j.. xij :Aij j..).Ni i..} : C : R

FE

Given codata G(X:k).. : Swhere Oi : (Aij : Tij j.. | G(X..) `Yij :lij
j.. Bi : Ri) i.. ∈ G, we have the rules:

Θ `G G : k → ..S

Γ `Θ
G M : GC′.. : S (Θ `G Cj : lij)j.. (Γ `Θ

G Nj : Aij [C′/X.., Cj/Yij j..] : Tij)j..
Γ `Θ
G M.Oi Cj j.. Nj j.. : Bi : Ri

GEi

(Γ `Θ
G ) ctx Θ `G GC.. : S (Γ, xij : Aij [C/X..] : Tij j.. `

Θ,Yij :lij j..
G Ni : Bi : Ri) i..

Γ `Θ
G λ

{
(Oi Yij :lij j.. xij :Aij j..).Ni i..

}
: GC.. : S

GI

Figure 3 Type system for the pure functional calculus.

judgement M : A : S, which has the intended interpretation that “M is of type A and A is of
kind S.” The purpose of this compound statement is to ensure that the introduction rules do
not create ill-kinded types by mistake. This maintains the invariant that if Γ `Θ

G M : A : S
is derivable then so is (Γ `Θ

G ) ctx and Θ `G A : S.
For example, in the F environment from Figure 1, a type like A⊗B requires that both

A and B are of kind +, so the ⊗ introduction rule for closed pairs of closed types is:
`F M : A : + `F N : A : +
`F (M,N) : A⊗B : + ⊗I

The constraint that A : + and B : + in the premises to ⊗I ensures that A⊗B is indeed a
type of +. This idea is also extended to variables introduced by pattern matching at a specific
type by placing a two-level constraint on the variables. For example, the → introduction
rule for closed function abstractions is:

x : A : + `F M : B : −
`F λ{call(x:A).M} : A→ B : − →I

Notice how when the variable x is added to the environment, it has the type assignment
x : A : + because the declared argument type of → must be some call-by-value type. If the
premise of →I holds, then A : + and B : −, so A→ B is a well-formed type of −.

Finally, we also need to check that a global environment G is well-formed, written ` G,
which amounts to checking that each declaration is in turn like so:

(X : k.., Y : l.. `G A : T )..
G ` data F(X:k).. : Swhere K : (A : T .. `Y :l.. FX..)..

(X : k.., Y : l.. `G A : T ).. (X : k.., Y : l.. `G B : R)..
G ` codata G(X:k).. : Swhere O : (A : T .. | GX.. `Y :l.. B : R)..
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V ::= VS :A :S V+ ::= x | KB..V .. | λ{qi.Mi | i..} V− ::= M V? ::= V+

F ::= �.OB..V .. | case�of{pi.Mi
i..} | letx:A:+ = � inM | letx:A:? = � inH[E[x]]

E ::= � | F [E] U ::= letx:A:? = M in� H ::= � | U [H]
T ::= letx = M in� | caseM of{pi.� | i..}

(βlet) letx = V inM ∼M [V/x]
(βO) λ{..|(OY ..x..).M |..}.OB.. N.. ∼ letx = N.. inM [B/Y ..]
(βK) case KB..N..of{..|(KY ..x..).M |..} ∼ letx = N.. inM [B/Y ..]

(ηlet) letx:A = M inx ∼M
(ηG) λ{qi.(x.qi) | i..} ∼ x
(ηF) caseM of{pi.pi | i..} ∼M

(κF ) F [T [Mi
i..]] ∼ T [F [Mi] i..]

(χS) let y:B:S = letx:A:S = M1 inM2 inN ∼ letx:A:S = M1 in let y:B:S = M2 inN
Γ `Θ
G M : A : S M ∼M ′ Γ `Θ

G M
′ : A : S

Γ `Θ
G M = M ′ : A : S

plus compatibility, reflexivity, symmetry, transitivity

Figure 4 Equational theory for the pure functional calculus.

And we say that G′ extends G if it contains all declarations in G.

4.4 Equational Theory
The equational theory, given in Figure 4, equates two terms of the same type that behave the
same in any well-typed context.The axioms of equality are given by the relation ∼, and the
typed equality judgement is Γ `Θ

G M = N : A : S. Because of the multi-discipline nature of
terms, the main challenge is deciding when terms are substitutable, which controls when the
βlet axiom can fire. For example, letx = M inN should immediately substitute M without
further evaluation if it is a call-by-name binding, but should evaluate M to a value first
before substitution if it is call-by-value. And we need the ability to reason about program
fragments (i.e., open terms of any type) wherein a variable x acts like a value in call-by-value
only if it stands for a value, i.e., we can only substitute values and not arbitrary terms for a
call-by-value variable. Thus, we link up the static and dynamic semantics of disciplines: each
base kind S is associated with a different set of substitutable terms VS called values. The set
of values for + is the most strict (including only variables, λ-abstractions, and constructions
p[ρ] built by plugging in values for the holes in a pattern), − is the most relaxed (admitting
every term as substitutable), and ? shares the same notion of value as +. A true value, then,
is a term VS belonging to a type of kind S, i.e., VS : A : S. This way, the calling convention
is aligned in both the static realm of types are and dynamic realm of evaluation.

The generic βlet axiom relies on the fact that the left-hand side of the axiom is well-typed
and every type belongs to (at most) one kind; given letx:A = V inM , then it must be that
A : S and V is of the form VS : A : S (both in the current environment). So if x : A&B : −,
then every well-typed binding is subject to substitution via βlet , but if x : A⊗B : + then only
a value V+ in the sense of call-by-value can be substituted. The corresponding extensionality
axiom ηlet eliminates a trivial let binding.

The βK and βO axioms match against a constructor K or observer O, respectively, by
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selecting the matching response within a case or λ-abstraction and binding the parameters
via a let. Special cases of these axioms for a sum injection and function call are:

case ιiM of{ι1x1.N1 | ι2x2.N2} ∼βιiletxi = M inNi
λ{callx.N}.callM ∼βcall

letx = M inN

The corresponding extensionality axioms ηG and ηF apply to each co-data type G and data
type F to eliminate a trivial λ and case, respectively, and again rely on the fact that the
left-hand side of the axiom is well-typed to be sensible. The special cases of these axioms for
the sum (⊕) and function (→) connectives of F are:

caseM of{ι1x:A.ι1x | ι2y:B.ι2y} ∼η⊕ M λ{call y:A.(x.call y)} ∼η→ x

The κF axiom implements commutative conversions which permute a frame F of an
evaluation context (E) with a tail context T , which brings together the frame with the
return result of a block-style expression like a let or case. Frames represent the building
blocks of contexts that demand a result from their hole �. The cases for frames are an
observation parameterized by values (�.OB..V ..), case analysis (case�of{. . . }), a call-by-
value binding (letx:A:+ = � inM), or a call-by-need binding which is needed in its body
(letx:A:? = � inH[E[x]]). As per call-by-need evaluation, variable x is needed when it
appears in the eye of an evaluation context E, in the context of a heap H of other call-by-need
bindings for different variables. Tail contexts point out where results are returned from
block-style expressions, so the body of any let (letx = M in�) or the branches of any case
(caseM of{p.�..}). Since a case can have zero or more branches, a tail context can have
zero or more holes.

Finally, the χS axiom re-associates nested let bindings, so long as the discipline of their
bindings match. The restriction to matching disciplines is because not all combinations are
actually associative [14]; namely the following two ways of nesting call-by-value and -name
lets are not necessarily the same when M1 causes an effect:

(let y:B:− = (letx:A:+ = M1 inM2) inN) 6= (letx:A:+ = M1 in let y:B:− = M2 inN)

In the above, the right-hand side evaluates M1 first, but the left-hand side first substitutes
letx:A:+ = M1 inM2 for y, potentially erasing or duplicating the effect of M1. For example,
when M1 is the infinite loop Ω and N is a constant result z which does not depend on y,
then the right-hand side loops forever, but the left-hand side just returns z. But when the
disciplines match, re-association is sound. In particular, notice that the χ− instance of the
axiom is derivable from βlet , and the χ+ instance of the axiom is derivable from κF . The
only truly novel instance of re-association is for call-by-need, which generalizes the special
case of κF when the outer variable y happens to be needed.

Some of the axioms of this theory may appear to be weak, but nonetheless they let us
derive some useful equalities. For example, the λ-calculus’ full η law for functions

Γ `Θ
F M : A→ B : − x /∈ Γ

Γ `Θ
F λ{callx:A.(M.callx)} = M : A→ B : −

is derivable from η→ and βlet . Furthermore, the sum extensionality law from Section 2, and
nullary version for the void type 0

Γ, x : A1 ⊕A2 : + `Θ
F M = casexof{ιi(yi:Ai).M [ιiyi/x] i..} : C : R

Γ, x : 0 : + `Θ
F M = casexof{} : C : R
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are derived from the η⊕, η0, κF , and βlet axioms. So typed equality of this strongly-
normalizing calculus captures “strong sums” (à la [15]). Additionally, the laws of monadic
binding [13] (bind-and-return and bind reassociation) and the F functor of call-by-push-value
[10] are instances of the generic βηκ laws for the shift data type S⇑A:

Γ `Θ
F case boxS V of{boxS x.M} =β

S⇑
βlet

M [V/x] : C : R

Γ `Θ
F caseM of{boxS(x:A).boxS x} =ηp M : S⇑A : S

Γ `Θ
F case (caseM of{boxS x.N}) of{boxT y.N ′}

=κ
F

caseM of{boxS x.caseN of{boxT y.N ′}}
: C : R

Note that in the third equality, commuting conversions can reassociate S⇑A and T⇑B
bindings for any combination of S and T , including − and ?, because a case is always strict.

Note that, as usual, the equational theory collapses under certain environments and types
due to the nullary versions of some connectives: we saw above that with a free variable
x : 0 : + all terms are equal, and so too are any two terms of type > via η> (the nullary form
of product in F). Even still, there are many important cases where the equational theory is
coherent. One particular sanity check is that, in the absence of free variables, the two sum
injections ι1() and ι2() are not equal, as inherited from contextual equivalence.

I Theorem 1 (Closed coherence). For any global environment ` G extending F , the equality
`G ι1() = ι2() : 1⊕ 1 : + is not derivable.

4.5 Adding effects
So far, we have considered only a pure functional calculus. However, one of the features
of polarity is its robustness in the face of computational effects, so let’s add some. Two
particular effects we can add are general recursion, in the form of fixed points, and control in
the form of µ-abstractions from Parigot’s λµ-calculus [16]. To do so, we extend the calculus
with the following syntax:

M,N ::= . . . | νx.M | µα.J J ::= 〈M ||α〉 α,β,γ ::= α:A

Fixed-point terms νx:A.M bind x to the result of M inside M itself. Because fixed points
must be unrolled before evaluating their underlying term, their type is restricted to A : −.
Control extends the calculus with co-variables α, β, . . . that bind to evaluation contexts
instead of values, letting programs abstract over and manipulate their control flow. The
evaluation context bound to a co-variable α of any type A can be invoked (any number of
times) with a term M : A via a jump 〈M ||α〉 that never returns a result, and the co-variable
α of type A can be bound with a µ-abstraction µα:A.J .

To go along with the new syntax, we have some additional type checking rules:

Γ, x : A : − `Θ
G M : A : − | ∆

Γ `Θ
G νx:A.M : A : − | ∆

J : (Γ `Θ
G α : A : S,∆)

Γ `Θ
G µα:A.J : A : S | ∆

Γ `Θ
G M : A : S | α : A : S,∆

〈M ||α〉 : (Γ `Θ
G α : A : S,∆)

The judgements in other typing rules from Figure 3 are all generalized to Γ `Θ
G M : A : S | ∆.

There is also a typing judgement for jumps of the form J : (Γ `Θ
F ∆), where Θ, Γ, and

∆ play the same roles; the only difference is that J is not given a type for its result.
Unlike terms, jumps never return. As in the λµ-calculus, the environment ∆ is placed
on the right because co-variables represent alternative return paths. For example, a term
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21:14 Beyond Polarity

x : X : −, y : Y : + `X:−,Y :+
F M : Y : − | β : Y : + could return an X via the main path, as

in M = x, or a Y via β by aborting the main path, as in M = µα:X.〈y||β〉.
And finally, the equational theory is also extended with the following equality axioms:

(ν) νx.M ∼M [νx.M/x]

(βαµ ) 〈µα.J ||β〉 ∼ J [β/α] (βFµ ) F [µα.J ] : B ∼ µβ:B.J [〈F ||β〉/〈�||α〉]
(ηµ) µα:A.〈M ||α〉 ∼M (κµ) T [µα.〈Mi||β〉 i..] ∼ µα.〈T [Mi

i..]||β〉

The ν axiom unrolls a fixed point by one step. The two βµ axioms are standard generalizations
of the λµ-calculus: βαµ substitutes one co-variable for another, and βFµ captures a single
frame of a µ-abstraction’s evaluation context via a structural substitution that replaces one
context with another. The κµ is the commuting conversion that permutes a µ-abstraction
with a tail context T .

5 Encoding user-defined (co-)data types into F

Equipped with both the extensible source language and the fixed F target language, we
are now able to give an encoding of user-defined (co-)data types in terms of just the core
F connectives from Figure 1. Intuitively, each data type is converted to an existential ⊕-
sum-of-⊗-products and each co-data type is converted to a universal &-product-of-functions,
both annotated by the necessary shifts in and out of + and −, respectively. The encoding is
parameterized by a global environment G so that we know the overall shape of each declared
connective. Given that G contains the following data declaration of F, the encoding of F is:

Given data F(X:k).. : Swhere Ki : (Aij : Tij j.. `Yij :lij
j.. F(X..)) i.. ∈ G

JFKFG , λX:k...S⇑((∃Yij :lij . j..((↓TijAij)⊗ j..1))⊕ i..0)

Dually, given that G contains the following co-data declaration of G, the encoding of G is:

Given codata G(X:k).. : Swhere Oi : (Aij : Tij j.. | G(X..) `Yij :lij
j.. Bi : Ri) i.. ∈ G

JGKFG , λX:k...S⇓((∀Yij :lij . j..((↓TijAij)→ j..(↑Ri Bi))) & i..>)

However, the previous encodings for call-by-name, -value, and -need functions and sums
from Sections 2 and 3 are not exactly the same when we take the corresponding declarations
of functions and sums from Section 4; the call-by-name and -value encodings are missing
some of the shifts used by the generic encoding, and they all elide the terminators (0, 1, and
>). Does the difference matter? No, because the encoded types are still isomorphic.

I Definition 2 (Type Isomorphism). An isomorphism between two open types of kind k,
written Θ �G A ≈ B : k, is defined by induction on k:

Θ �G A ≈ B : k → l when Θ, X : k �G A X ≈ B X : l, and
Θ �G A ≈ B : S when, for any x and y, there are terms x : A : S `Θ

G N : B : S
and y : B : S `Θ

G M : A : S such that x:A:S `Θ
G (let y:B = N inM = x) : A : S and

y:B:S `Θ
G (letx:A = M inN = y) : B : S.

Notice that this is an open form of isomorphism: in the base case, an isomorphism between
types with free variables is witnessed uniformly by a single pair of terms. This uniformity in
the face of polymorphism is used to make type isomorphism compatible with the ∀ and ∃
quantifiers. With this notion of type isomorphism, we can formally state how some of the
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specific shift connectives are redundant. In particular, within the positive (+) and negative
(−) subset, there are only two shifts of interest since the two different shifts between − and
+ are isomorphic, and the identity shifts on + and − are isomorphic to an identity on types.

I Theorem 3. The following isomorphisms hold (under �F) for all ` A : + and ` B : −

↑+A ≈ −⇑A ↓−B ≈ +⇓B ↓+A ≈ A ≈ +⇑A ↑−B ≈ B ≈ −⇓B

But clearly the shifts involving ? are not isomorphic, since none of them even share the same
kind. Recognizing that sometimes the generic encoding uses unnecessary identity shifts, and
given the algebraic properties of polarized types [6], the hand-crafted encodings JAK+, JAK−,
and JAK? are isomorphic to JAKF .

5.1 Correctness of encoding
Type isomorphisms give us a helpful assurance that the encoding of user-defined (co-)data
types into F is actually a faithful one. In every extension of F with user-defined (co-)data
types, all types are isomorphic to their encoding.

I Theorem 4. For all ` G extending F and Θ `G A : k, Θ �G A ≈ JAKFG : k.

Note that this isomorphism is witnessed by terms in the totally pure calculus (without fixed
points or µ-abstractions); the encoding works in spite of recursion and control, not because of
it. Because of the type isomorphism, we can extract a two-way embedding between terms of
type A and terms of the encoded type JAKFG from the witnesses of the type isomorphism. By
the properties of isomorphisms, this embedding respects equalities between terms; specifically
it is a certain kind of adjunction called an equational correspondence [20].

I Theorem 5. For all isomorphic types Θ �G A ≈ B : S, the terms of type A (i.e., Γ `Θ
G M :

A : S | ∆) are in equational correspondence with terms of type B (i.e., Γ `Θ
G N : B : S | ∆).

This means is that, in the context of a larger program, a single sub-term can be encoded
into the core F connectives without the rest of the program being able to tell the difference.
This is useful in optimizing compilers for functional languages which change the interface of
particular functions to improve performance, without hampering further optimizations.

The possible application of this encoding in a compiler is as an intermediate language:
rather than encoding just one sub-term, exhaustively encoding the whole term translates
from a source language with user-defined (co-)data types into the core F connectives. The
essence of this translation is seen in the way patterns and co-patterns are transformed; given
the same generic (co-)data declarations listed in Figure 3, the encodings of (co-)patterns are:

JKi Y .. x..KFG , valS
(
ιi2 (ι1 (packY .. (boxT x, ..())))

)
JOi Y .. x..K

F
G , enterS .πi2.π1.specY ...callx...evalRi

where ιi2 denotes i applications of the ι2 constructor, and πi2 denotes i projections of the π2
observer. Using this encoding of (co-)patterns, we can encode (co-)pattern-matching as:

JcaseM of{pi.Ni i..}KFG , case JMKG of{JpiKG .JNiKG i..} Jλ{qi.Mi
i..}KFG , λ

{
JqiKG .JMiKG i..

}
as well as data structures and co-data observations:

Jp[B/Y ..,M/x..]KFG , JpKFG [JBKFG /Y .., JMKFG /x..]

JM.(q[B/Y .., N/x..])KFG , JMKFG .(JqK
F
G [JBKFG /Y .., JNKFG /x..])
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Note that in the above translation, arbitrary terms are substituted instead of just values as
usual. This encoding of terms with user-defined (co-)data types G into the core F types is
sound with respect to the equational theory (where Γ and ∆ are encoded pointwise).

I Theorem 6. If the global environment ` G extends F and Γ `Θ
G M = N : A | ∆ then

JΓKFG `Θ
F JMKFG = JNKFG : JAKFG | J∆KFG .

Since the extensible, multi-discipline language is general enough to capture call-by-value,
-name, and -need functional languages – or any combination thereof – this encoding establishes
a uniform translation from both ML-like and Haskell-like languages into a common core
intermediate language: the polarized F .

6 Conclusion

We have showed here how the idea of polarity can be extended with other calling conventions
like call-by-need, which opens up its applicability to the implementation of practical functional
languages. In particular, we would like to extend GHC’s already multi-discipline intermediate
language with the core types in F . Since it already has unboxed types [18] corresponding to
positive types, what remains are the fully extensional negative types. Crucially, we believe
that negative function types would lift the idea of call arity – the number of arguments a
function takes before “work” is done – from the level of terms to the level of types. Call
arity is used to optimize curried function calls, since passing multiple arguments at once
is more efficient that computing intermediate closures as each argument is passed one at a
time. No work is done in a negative type until receiving an eval request or unpacking a val,
so polarized types compositionally specify multi-argument calling conventions.

For example, a binary function on integers would have the type Int→ Int→ ↑ Int, which
only computes when both arguments are given, versus the type Int→ ↑? ?⇓(Int→ ↑ Int) which
specifies work is done after the first argument, breaking the call into two steps since a closure
must be evaluated and followed. This generalizes the existing treatment of function closures
in call-by-push-value to call-by-need closures. The advantage of lifting this information into
types is so that call arity can be taken advantage of in higher order functions. For example,
the zipWith function takes a binary function to combine two lists, pointwise, and has the
type ∀X:?.∀Y :?.∀Z:?.(X → Y → Z) → [X] → [Y ] → [Z] The body of zipWith does not
know the call arity of the function it’s given, but in the polarized type built with negative
functions: ∀X:?.∀Y :?.∀Z:?.⇓(↓X → ↓Y → ↑Z)→ ↓[X]→ ↓[Y ]→ ↑[Z] the interface in the
type spells out that the higher-order function uses the faster two-argument calling convention.
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A Related Work

There have been several polarized languages [10, 23, 14], each with subtly different and
incompatible restrictions on which programs are allowed to be written. The most common
such restriction corresponds to focusing in logic [1]; focusing means that the parameters to
constructors and observers must be values. Rather than impose a static focusing restriction
on the syntax of programs, we instead imply a dynamic focusing behavior – evaluate the
parameters of constructors and observers before (co-)pattern matching – during execution.
Both static and dynamic notions of focusing are two sides of the same coin [8].

Other restrictions vary between different frameworks. First, where computation can
happen? In Levy’s call-by-push-value (CBPV) [10], value types (corresponding to positive
types) only describe values and computation can only occur at computation types (corre-
sponding to negative types), but in Munch-Maccagnoni’s system L [14] computation can
occur at any type. Zeilberger’s calculus of unity (CU) [22], which is based on the classical
sequent calculus, isolates computation in a separate syntactic category of statements which
do not have a return type. But both CU and CBPV only deal with substitutable entities,
to the exclusion of named computations which may not be duplicated or deleted. Second,
what types can variables have? In CBPV variables always have positive types, but in CU
variables have negative types or positive atomic types (and dually co-variables have positive
types or negative atomic types). These restrictions explain why the two frameworks chose
their favored shifts: ⇑ introduces a positive variable and ↓ introduces a negative one, and in
the setting of the sequent calculus ⇓ introduces a negative co-variable and ↑ introduces a
positive one. They also explain CU’s pattern matching: if there cannot be positive variables,
then pattern matching must continue until it reaches something non-decomposable like a
λ-abstraction. In contrast, system L has no restrictions on the types of (co-)variables.

In both of these ways, the language presented here is spiritually closest to system L.
One reason is that call-by-need forces more generality into the system: if there is neither
computation nor variables of call-by-need types, then there is no point of sharing work.
However, the call-by-value and -name sub-language can still be reduced down to the more
restrictive style of CBPV and CU. We showed here that the two styles of positive and
negative shifts are isomorphic, so the only difference is reduction to the appropriate normal
form. Normalizing the dynamic focusing reductions – originally named ς [21] – along with
commuting conversions (κ) and let substitution (βlet) is a transformation into a focused term
of negative type (where a shift can be applied for positive terms). Negative variables x:A:−
are eliminated by substituting y.enter for x where y:⇓A:+, and the (co-)variables forbidden
in CU can be eliminated by type-directed η-expansion into nested (co-)patterns.

The data and co-data mechanism used here extends the “jumbo” connectives of Levy’s
jumbo λ-calculus [11] to include a treatment of call-by-need as well the move from mono-
discipline to multi-discipline. Our notion of (co-)data is also similar to Zeilberger’s [23]
definition of types via (co-)patterns, which is fully dual, extended with sharing.

http://dx.doi.org/10.1016/j.apal.2008.01.001
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Simple (co-)data types
data (X:+)⊕ (Y :+) : + where

ι1 : (X:+ ` X ⊕ Y )
ι2 : (Y :+ ` X ⊕ Y )

data 0 : + where

data (X:+)⊗ (Y :+) : + where
( , ) : (X:+, Y :+ ` X ⊗ Y )

data 1 : + where
() : ( ` 1)

codata (X:−) & (Y :−) : −where

π1 : ( | X & Y ` X:−)
π2 : ( | X & Y ` Y :−)

codata> : −where

codata (X:−) ` (Y :−) : −where
[ , ] : ( | X ` Y ` X : −, Y : −)

codata⊥ : −where
[] : ( | ⊥ ` )

data	(X:−) : + where
cont : ( ` 	X | X : −)

codata¬(X:+) : −where
throw : (X : + | ¬X ` )

Quantifier (co-)data types
data ∃k(X:k→+) : + where

pack : (X Y :+ `Y :k ∃kX)

codata ∀k(X:k→−) : −where

spec : ( | ∀kX `Y :kX Y :−)

Polarity shift (co-)data types
data ↓S(X:S) : + where

boxS : (X:S ` ↓SX)
data S⇑(X:+) : Swhere

valS : (X:+ ` S⇑X)

codata ↑S (X:S) : −where
evalS : ( | ↑SX ` X:S)

codata S⇓(X:−) : Swhere
enterS : ( | S⇓X ` X:−)

Figure 5 The D dual core set of (co-)data declarations.

B A dual multi-discipline sequent calculus

So far, we have seen how the extensible functional calculus enables multi-discipline pro-
gramming and can represent many user-defined types with mixed disciplines via encodings.
The advantage of this calculus is that it’s close to an ordinary core calculus for functional
programs, but the disadvantage is its incomplete symmetries. Most F types have a dual
counterpart (& and ⊕, ∀ and ∃, etc., ) but types like ⊗ and → do not. The disciplines + and
− represent opposite calling conventions, but the opposite of call-by-need (?) is missing. To
complete the picture, we now consider a fully dual calculus, which is based on the symmetric
setting of the classical sequent calculus.

B.1 The dual core intermediate language: D

In contrast with functional (co-)data declarations, dual calculus allows for symmetric data
and co-data type declarations that are properly dual to one another: they can have multiple
inputs to the left (of `) and multiple outputs to the right (of `). This dual notion of (co-)data
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A,B,C ::= X | F | λX.A | A B X,Y ,Z ::= X:k k, l ::= S | k → l R,S, T ::= + | − | ?? | ?

decl ::= data FX:k.. : Swhere K : (A : T .. `Y .. FX.. | B : R..)

| codata GX:k.. : Swhere O : (A : T .. | GX.. `Y .. B : R..)
c ::= 〈v||e〉
v ::= x | µα.c | νx.v | λ{qi.ci | i..} | KA..e..v.. p ::= KY ..α..x.. x,y, z ::= x:A

e ::= α | µ̃x.c | ν̃α.e | λ̃{pi.ci | i..} | OA..v..e.. q ::= OY ..x..α.. α,β, δ ::= α:A

Figure 6 Syntax of the dual calculus.

is strictly more expressive, and lets us declare the new connectives like so:

codata (X:−) ` (Y :−) : −where
[ , ] : ( | X ` Y ` X : −, Y : −)

codata⊥ : −where
[] : ( | ⊥ ` )

data	(X:−) : + where
cont : ( ` 	X | X : −)

codata¬(X:+) : −where
throw : (X : + | ¬X ` )

Note how these types rely on the newfound flexibility of having zero outputs (for ⊥ and ¬)
and more than one output (for ` and 	). These four types generalize F , and decompose
function types into the more primitive negative disjunction and negation types, analogous to
the encoding of functions in classical logic: A→ B ≈ (¬A) `B. The full set of dual core D
connectives is given in Figure 5.

B.2 Syntax
The syntax of the dual calculus is given in Figure 6 which is split in two: dual to terms (v)
which give an answer are co-terms (e) which ask a question. Each of the features from the
functional language are divided into one of two camps. Variables x, µ-abstractions µα.c, fixed
points νx.v, objects of co-data types λ{. . .}, and data structures like ιiv are all terms. Dually,
co-variables α, µ̃-abstractions µ̃x.c (analogous to let and dual to µ), co-fixed points ν̃α.e,
case analysis of data structures λ̃{. . .} (dual to co-data objects) and co-data observations
like πie (dual to data structures) are all co-terms. A command c is analogous to a jump, and
puts together an answer (v) with a question (e). The dual calculus can be seen as inverting
elimination forms to the other side of a jump 〈M ||α〉, expanding the role of α. By giving a
body to observations themselves, co-patterns q introduce names for all sub-components of
observations dual to patterns p: for example, the co-pattern of a projection πi[α:Ai] : A1 &A2
is perfectly symmetric to the pattern of an injection ιi(x:Ai) : A1 ⊕A2.

In types, there is a dual set of disciplines and connectives. The base kind ?? signifies
the dual to call-by-need (?); it shares delayed questions the same way call-by-need shares
delayed answers. The negative co-data type constructors ` and ⊥ of D are dual to the
positive connectives ⊗ and 1, respectively: they introduce a co-pair [e, e′] : A`B, which is a
pair of co-terms e : A and e′ : B accepting inputs of type A and B, and the co-unit [] : ⊥.
Objects of co-data types respond to observations by inverting their entire structure and then
running a command. For & this looks like λ{π1[α:A].c1 | π2[β:B].c2} : A&B and for ` like
λ{[x:A, β:B].c} : A`B. In lieu of a non-symmetric function type, we instead have two dual
negations: the data type constructor 	 : − → + and the co-data type constructor ¬ : +→ −
which introduce the (co-)patterns cont(α:A) : 	A and throw[x:A] : ¬A. These particular
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Θ, X : k `G A : l
Θ `G λX:k.A : k → l

Θ `G A : k → l Θ `G B : k
Θ `G A B : l Θ, X:k `G X : k

(Θ `G A : T ).. (Θ `G B :R)..
(x :A.. `Θ

G β :B..) ctx

Γ `Θ
D v :A | ∆ Θ ` A :S Γ | e :A `Θ

D ∆
〈v||e〉 : (Γ `Θ

D ∆)
Cut

Γ, x :A `Θ
D x :A | ∆

VR
c : (Γ `Θ

D α :A,∆)
Γ `Θ
D µα:A.c :A | ∆

AR
‘
c : (Γ, x :A `Θ

D ∆)
Γ | µ̃x:A.c :A `Θ

D ∆
AL

Γ `Θ
D α :A | α :A,∆

VL

Γ, x :A `Θ
D v :A | ∆ Θ `D A :−

Γ `Θ
D νx:A.v :A | ∆

RR
Γ | e :A `Θ

D α :A,∆ Θ `D A : +
Γ | ν̃α:A.e :A `Θ

D ∆
RL

Γ | e :A `Θ
D ∆ Θ `D A=βηB :S
Γ | e :B `Θ

D ∆
TCR

Γ `Θ
D v :A | ∆ Θ `D A=βηB :S

Γ `Θ
D v :B | ∆

TCL

Given data F(X:k).. :Swhere Ki : (Aij : Tij j.. `Yij :lij
j.. F(X..) | Bij :Rij j..) i.. ∈ G, we have the rules:

Θ `G F : k..→ S
(Θ `G Cj : lij)j.. (Γ | ej :Bij [C′/X.., Cj/Yij j..] `Θ

G ∆)j.. (Γ `Θ
G vj :Aij [C′/X.., Cj/Yij j..] | ∆)j..

Γ `Θ
G Ki Cj j.. ej j.. vj j.. : FC′.. | ∆

FRi

ci : (Γ, xij :Aij [C/X..]j.. `
Θ,Yij : lij j..
G αij :Bij [C/X..]j..,∆) i..

Γ | λ̃
{

(Ki Yij :lij j.. xij :Aij j.. xij :Aij j..).ci i..
}

: FC.. `Θ
G ∆

FL

Given codata G(X:k).. :Swhere Oi : (Aij : Tij j.. | G(X..) `Yij :lij
j.. Bij :Rij j..) i.. ∈ G, we have the rules:

Θ `G G : k..→ S
(Θ `G Cj : lij)j.. (Γ `Θ

G vj :Aij [C′/X.., Cj/Yij j..] | ∆)j.. (Γ | ej :Bij [C′/X.., Cj/Yij j..] `Θ
G ∆)j..

Γ | Oi Cj j.. vj j.. ej j.. : FC′.. `Θ
G ∆

GLi

ci : (Γ, xij :Aij [C/X..]j.. `
Θ,Yij : lij j..
G αij :Bij [C/X..]j..,∆) i..

Γ `Θ
G λ

{
[Oi Yij :lij j.. xij :Aij j.. αij :Bij j..].ci i..

}
: GC.. | ∆

GR

Figure 7 Type system for the dual calculus.

forms of negation are chosen because they are involutive up to isomorphism (as defined next
in Appendix C); their two compositions are identities on types: 	(¬A) ≈ A and ¬(	B) ≈ B

for any A : + and B : −. Function types can be faithfully represented as A→ B ≈ (¬A)`B.

B.3 Type system

The type system of D is given in Figure 7. One change from the functional calculus’ type
system is the use of the single-level typing judgement v : A instead of the two-level M : A : S.
This is possible because of the sequent calculus’ sub-formula property – Cut is the only
inference rule that introduces arbitrary new types in the premises. By just checking that
the type of a Cut makes sense in the current environment, well-formedness can be separated
from typing: if the conclusion of a derivation is well-formed (i.e., (Γ `Θ

D ∆) ctx), then
every judgement in the derivation is too. There is also a typing judgement for co-terms;
Γ | e : A `Θ

D ∆ means that e works with a term of type A in the environments Θ, Γ, ∆.
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V+ ::= x | KB..E..V .. | λ{q.c..} V?? ::= V+ | µα.H[〈V?? ||α〉] V− ::= v V? ::= V+

E− ::= α | OB..V ..E.. | λ̃{p.c..} E? ::= E− | µ̃x.H[〈x||E?〉] E+ ::= e E?? ::= E−

H ::= � | 〈v||µ̃x:A:?.H〉 | 〈µα:A:?? .H||e〉

(βµ) 〈µα.c||E〉 ∼ c[E/α] (ηµ̃) µ̃x:A.〈x||e〉 ∼ e (ν) νx.v ∼ v[νx.v/x]
(βµ̃) 〈V ||µ̃x.c〉 ∼ c[V/x] (ηµ) µα:A.〈v||α〉 ∼ v (ν̃) ν̃α.e ∼ e[να.e/α]
(βO) 〈λ{.. | [OY ..x..α..].c | ..} ||OB..v..e..〉 ∼ 〈v..||µ̃x...〈µα...c[B/Y ..]||e..〉〉

(βK) 〈OB..e..v..||λ̃{.. | (OY ..α..x..).c | ..}〉 ∼ 〈µα...〈v..||µ̃x...c[B/Y ..]〉||e..〉
(ηG) λ{qi.〈x||qi〉 i..} ∼ x (χ?) 〈µα:A:?.〈v||µ̃y:B:?.c〉||e〉 ∼ 〈v||µ̃y:B:?.〈µα:A:?.c||e〉〉

(ηF) λ̃{pi.〈pi||α〉 i..} ∼ α (χ?? ) 〈v||µ̃y:B:?? .〈µα:A:?? .c||e〉〉 ∼ 〈µα:A:?? .〈v||µ̃y:B:?? .c〉||e〉

ci : (Γ `Θ
D ∆) c1 ∼ c2

c1 = c2 : (Γ `Θ
D ∆)

Γ `Θ
D vi : A | ∆ v1 ∼ v2

Γ `Θ
D v1 = v2 : A | ∆

Γ `Θ
D ei : A | ∆ e1 ∼ e2

Γ | e1 = e2 : A `Θ
D ∆

plus compatibility, reflexivity, symmetry, transitivity

Figure 8 Equational theory for the dual calculus.

B.4 Equational theory

Lastly, we have the equational theory in Figure 8. The dualities of evaluation – between
variable and co-variable bindings, data and co-data, values (answers) and evaluation contexts
(questions) – are more readily apparent than F . In particular, the notion of substitution
discipline for S is now fully dual as in [7]: a subset of terms (values VS) and a subset
of co-terms (co-values ES) which are substitutable, giving the known dualities between
call-by-value (+) and -name (−) [5] and ? and ?? [3]. The χ axioms reassociate variable and
co-variable bindings, and the important cases are for ? (corresponding to χ? of lets) and ?? .
Also note the lack of commuting conversions κ; these follow from the µ axiom.

C Encoding fully dual (co-)data types into D

Now let’s looks at the fully dual version of the functional encoding from Section 5. Thanks
to the generic notion of shifts, the encoding of dual (co-)data into the core D connectives is
similar to the functional encoding, except that in place of the function type A→ B we use
the classical representation (	A) `B. For the generic (co-)data declarations in Figure 7, we
have the following definition:

JFKDG,λX...S⇑((∃Y ij . j..((	(↑Rij Bij))⊗ j..((↓TijAij)⊗ j..1)))⊕ i..0)

JGKDG,λX...S⇓((∀Y ij . j..((¬(↓TijAij)) ` j..((↑Rij Bij) ` j..⊥))) & i..>)

The encoding of multi-output data types places a 	-negates every additional output of
a constructor, and the encoding of multi-output co-data is now exactly dual to the data
encoding. The encodings of (co-)patterns, (co-)pattern-matching objects, and (co-)data
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structures follow the above type encoding like so:

JKi Y .. α.. x..KDG , valS
(
ιi2 (ι1 (packY .. (cont[evalRα], .. (boxT x, ..()))))

)
JOi Y .. x.. α..K

D
G , enterS

[
πi2 [π1 [specY .. [throw[boxT x], .. [evalRα, ..[]]]]]

]
Jλ{qi.ci i..}KDG , λ{JqiK

D
G .JciK

D
G
i..}

Jλ̃{pi.ci i..}KDG , λ̃{JpiK
D
G .JciK

D
G
i..}

Jp[C/Y .., e/α.., v/x..]KDG = JpKDG [JCKDG /Y .., JeK
D
G /α.., JvK

D
G /x..]

Jq[C/Y .., v/x..], e/α..KDG = JqKDG [JCKDG /Y .., JvK
D
G /x.., JeK

D
G /α..]

We also have an analogous notion of type isomorphism. The case for higher kinds is the
same, and base isomorphism Θ �G A ≈ B : S is witnessed by a pair of inverse commands
c : (x : A `Θ

G β : B) and c′ : (y : B `Θ
G α : A) such that both compositions are identities:

〈µβ:B.c||µ̃y:B.c′〉 = 〈x||α〉 : (x : A `Θ
G α : A) 〈µα:A.c′||µ̃x:A.c〉 = 〈y||β〉 : (y : B `Θ

G β : B)

Using type isomorphisms in D, the analogous local and global encodings are sound for fully
dual data and co-data types utilizing any combination of +, −, ?, and ?? evaluation.

I Theorem 7. For all ` G extending D and Θ `G A : k, Θ �G A ≈ JAKDG : k.

I Theorem 8. For all ` G extending D, (co-)terms of type A are in equational correspondence
with (co-)terms of type JAKDG , respectively.

I Theorem 9. If ` G extends D and c = c′ : (Γ `Θ
G ∆) then JcKDG = Jc′KDG : (JΓKDG `Θ

F J∆KDG ).
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Abstract
Second-order transitive-closure logic, SO(TC), is an expressive declarative language that captures
the complexity class PSPACE. Already its monadic fragment, MSO(TC), allows the expression of
various NP-hard and even PSPACE-hard problems in a natural and elegant manner. As SO(TC)
offers an attractive framework for expressing properties in terms of declaratively specified compu-
tations, it is interesting to understand the expressivity of different features of the language. This
paper focuses on the fragment MSO(TC), as well on the purely existential fragment SO(2TC)(∃);
in 2TC, the TC operator binds only tuples of relation variables. We establish that, with respect
to expressive power, SO(2TC)(∃) collapses to existential first-order logic. In addition we study
the relationship of MSO(TC) to an extension of MSO(TC) with counting features (CMSO(TC))
as well as to order-invariant MSO. We show that the expressive powers of CMSO(TC) and
MSO(TC) coincide. Moreover we establish that, over unary vocabularies, MSO(TC) strictly
subsumes order-invariant MSO.
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1 Introduction

Second-order transitive-closure logic, SO(TC), is an expressive declarative language that
captures the complexity class PSPACE [21]. It extends second-order logic with a transit-
ive closure operator over relations of relations, i.e., over super relations among relational
structures. The super relations are defined by means of second-order logic formulae with
free relation variables. Already its monadic fragment, MSO(TC), allows the expression
of NP-complete problems in a natural and elegant manner. Consider, for instance, the
well known Hamiltonian cycle query over the standard vocabulary of graphs, which is not
expressible in monadic second-order logic [13].
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I Example 1. A graph G = (V,E) has a Hamiltonian cycle if the following holds:
a. There is a relation R such that (Z, z, Z ′, z′) ∈ R iff Z ′ = Z ∪{z′}, z′ /∈ Z, and (z, z′) ∈ E.
b. The tuple ({x}, x, V, y) is in the transitive closure of R, for some x, y ∈ V s.t. (y, x) ∈ E.
In the language of MSO(TC) this can be written as follows:

∃XY xy
(
X(x) ∧ ∀z(z 6= x→ ¬X(x)) ∧ ∀z(Y (z)) ∧ E(y, x) ∧ [TCZ,z,Z′,z′ϕ](X,x, Y, y)

)
,

where ϕ := ¬Z(z′) ∧ ∀x
(
Z ′(x)↔ (Z(x) ∨ z′ = x)

)
∧ E(z, z′).

Even some well-known PSPACE-complete problems such as deciding whether a given quanti-
fied Boolean formula QBF is valid [27] can be expressed in MSO(TC) (see Section 3).

In general, SO(TC) offers an attractive framework for expressing properties in terms of
declaratively specified computations at a high level of abstraction. There are many examples
of graph computation problems that involve complex conditions such as graph colouring [4],
topological subgraph discovery [19], recognition of hypercube graphs [18], and many others
(see [9, 16, 17]). Such graph algorithms are difficult to specify, even by means of rigorous
methods such as Abstract State Machines (ASMs) [10], B [2] or Event-B [3], because the
algorithms require the definition of characterising conditions for particular subgraphs that
lead to expressions beyond first-order logic. Therefore, for the sake of easily comprehensible
and at the same time fully formal high-level specifications, it is reasonable to explore languages
such as SO(TC). Let us see an example that further supports these observations.

I Example 2. Self-similarity of complex networks [37] (aka scale invariance) has practical
applications in diverse areas such as the world-wide web [14], social networks [20], and
biological networks [32]. Given a network represented as a finite graph G, it is relevant
to determine whether G can be built starting from some graph pattern Gp by recursively
replacing nodes in the pattern by new, “smaller scale”, copies of Gb. If this holds, then we
say that G is self-similar.

Formally, a graph G is self-similar w.r.t. a graph pattern Gp of size k, if there is a
sequence of graphs G0, G1, . . . , Gn such that G0 = Gp, Gn = G and, for every pair (Gi, Gi+1)
of consecutive graphs in the sequence, there is a partition {P1, . . . , Pk} of the set of nodes of
Gi+1 which satisfies the following:
a. For every j = 1, . . . , k, the sub-graph induced by Pj in Gi+1 is isomorphic to Gi.
b. There is a graph Gt isomorphic to Gp with set of nodes Vt = {a1, . . . , ak} for some

a1 ∈ P1, . . . , ak ∈ Pk and set of edges

Et = {(ai, aj) | there is an edge (x, y) of Gi+1 such that Pi(x) and Pj(y)}.

c. For very 1 ≤ i < j ≤ k, the closed neighborhoods NGi+1 [Pi] and NGi+1 [Pj ] of Pi and Pj

in Gi+1, respectively, are isomorphic.
It is straightforward to write this definition of self-similarity in SO(TC), for we can clearly
write a second-order logic formula which defines such a super relation R on graphs and then
simply check whether the pair of graphs (G,Gp) is in the transitive closure of R.

Highly expressive query languages are gaining relevance in areas such as knowledge
representation (KR), rigorous methods and provers. There are several examples of highly
expressive query languages related to applications in KR. See for instance the monadically
defined queries in [36], the Monadic Disjunctive SNP queries in [5] or the guarded queries
in [11]. See also [33] where a query language with transitive closure for graph databases is
considered. All of them can be considered fragments of Datalog. Regarding rigorous methods,
the TLA+ language [28] is able to deal with higher-order formulations, and tools such as the
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TLA+ Proof System1 and the TLA+ Model-Checker (TLC)2 can handle them (provided a
finite universe of values for TLC). Provers such as Coq3 and Isabelle4 can already handle
some high-order expression. Moreover, the success with solvers for the Boolean satisfiability
problem (SAT) has encouraged researchers to target larger classes of problems, including
PSPACE-complete problems, such as satisfiability of Quantified Boolean formulas (QBF).
Note the competitive evaluations of QBF solvers (QBFEVAL) held in 2016 and 2017 and
recent publications on QBF solvers such as [8, 31, 22] among several others.

We thus think it is timely to study which features of highly expressive query languages
affect their expressive power. In this sense, SO(TC) provides a good theoretical base since,
apart from been a highly expressive query language (recall that it captures PSPACE), it
enables natural and precise high-level definitions of complex practical problems, mainly due to
its ability to express properties in terms of declaratively specified computations. While second-
order logic extended with the standard partial fixed-point operator, as well as first-order
logic closed under taking partial fixed-points and under an operator for non-deterministic
choice, also capture the class of PSPACE queries over arbitrary finite structure [34], relevant
computation problems such as that in Example 2 are clearly more difficult to specify in these
logics. The same applies to the extension of first-order logic with the partial fixed-point
operator, which is furthermore subsumed by SO(TC) since it captures PSPACE only on the
class of ordered finite structures [1]. Note that SO(TC) coupled with hereditary finite sets
and set terms, could be considered as a kind of declarative version of Blass, Gurevich, and
Shelah (BGS) model of abstract state machine [7], which is a powerful language in which all
computable queries to relational databases can be expressed [6].

Our results can be summarized as follows.
1. We investigate to what extent universal quantification and negation are important to the

expressive power of SO(TC). Specifically, we consider the case where TC-operators are
applied only to second-order variables. Of course, a second-order variable can simulate a
first-order variable, since we can express already in first-order logic (FO) that a set is a
singleton. This, however, requires universal quantification.
We define a “purely existential” fragment of SO(TC), SO(2TC)(∃), as the fragment
without universal quantifiers and in which TC-operators occur only positively and bind
only tuples of relation variables. We show that the expressive power of this fragment
collapses to that of existential FO.
For SO alone, this collapse is rather obvious and was already remarked by Rosen in
the introduction of his paper [35]. Our result generalizes this collapse to include TC
operators, where it is no longer obvious.

2. We investigate the expressive power of the monadic fragment, MSO(TC). On strings,
this logic is equivalent to the complexity class NLIN. Already on unordered structures,
however, we show that MSO(TC) can express counting terms and numeric predicates
in NLOGSPACE. In particular, MSO(TC) can express queries not expressible in the
fixpoint logic FO(LFP). We also discuss the fascinating open question whether the
converse holds as well.

3. We compare the expressive power of MSO(TC) to that of order-invariant MSO. Specific-
ally, we show that MSO(TC) can express queries not expressible in order-invariant MSO;
over monadic vocabularies, we show that order-invariant MSO is subsumed by MSO(TC).
Again, what happens over higher-arity relations is an interesting open question.

1 https://tla.msr-inria.inria.fr/tlaps
2 https://lamport.azurewebsites.net/tla/tlc.html
3 https://coq.inria.fr/
4 https://isabelle.in.tum.de/
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22:4 Expressivity Within Second-Order Transitive-Closure Logic

This paper is organized as follows. In Section 2 definitions and basic notions related to
SO(TC) are given. In Section 3 the complexity of model checking is studied. Section 4 is
dedicated to establishing the collapse of SO(2TC)(∃) to existential first-order logic. Sections
5 and 6 concentrate on the relationships between MSO(TC) and the counting extension
CMSO(TC) and order-invariant MSO, respectively. We conclude with a discussion of open
questions in Section 7.

2 Preliminaries

We assume that the reader is familiar with finite model theory, see e.g., [15] for a good
reference. For a tuple ~a of elements, we denote by ~a[i] the ith element of the tuple. We
recall from the literature, the syntax and semantics of first-order (FO) and second-order
(SO) logic, as well as their extensions with the transitive closure operator (TC). We assume
a sufficient supply of first-order and second-order variables. The natural number ar(R) ∈ N,
is the arity of the second-order variable X. By variable, we mean either a first-order or
second-order variable. Variables χ and χ′ have the same sort if either both χ and χ′ are
first-order variables, or both are second-order variables of the same arity. Tuples ~χ and ~χ′ of
variables have the same sort, if the lengths of ~χ and ~χ′ are the same and, for each i, the sort
of ~χ[i] is the same as the sort of ~χ[i].

I Definition 3. The formulas of SO(TC) are defined by the following grammar:

ϕ ::= x = y | X(x1, . . . , xk) | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Y ϕ | [TC ~X, ~X′ϕ](~Y , ~Y ′),

where X and Y are second-order variables, k = ar(X), x, y, x1, . . . , xk are first-order variables,
~X and ~X ′ are disjoint tuples of variables of the same sort, and ~Y and ~Y ′ are also tuples of
variables of that same sort (but not necessarily disjoint).

The set of free variables of a formula ϕ, denoted by FV(ϕ) is defined as usual. For the TC
operator, we define

FV([TC ~X, ~X′ϕ](~Y , ~Y ′)) := (FV(ϕ)− ( ~X ∪ ~X ′)) ∪ ~Y ∪ ~Y ′.

Above in the right side, in order to avoid cumbersome notation, we use ~X, ~X ′, ~Y and ~Y ′ to
denote the sets of variables occurring in the tuples.

A vocabulary is a finite set of variables. A (finite) structure A over a vocabulary τ is a pair
(A, I), where A is a finite nonempty set called the domain of A, and I is an interpretation
of τ on A. By this we mean that whenever x ∈ τ is a first-order variable, then I(x) ∈ A,
and whenever X ∈ τ is a second-order variable of arity m, then I(X) ⊆ Am. In this article,
structures are always finite. We denote I(X) also by XA. For a variable X and a suitable
value R for that variable, A[R/X] denotes the structure over τ ∪ {X} equal to A except that
X is mapped to R. We extend the notation also to tuples of variables and values, A[ ~X/~R], in
the obvious manner. We say that a vocabulary τ is appropriate for a formula ϕ if FV(ϕ) ⊆ τ .

I Definition 4. Let A be a structure over τ and ϕ an SO(TC)-formula such that τ is
appropriate for ϕ. The satisfaction of ϕ by A, denoted by A |= ϕ, is defined as follows. We
only give the cases for second-order quantifiers and transitive closure operator; the remaining
cases are defined as usual.

For second-order variable X: A |= ∃Xϕ iff A[R/X] |= ϕ, for some R ⊆ Aar(X).
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For the case of the TC-operator, consider a formula ψ of the form [TC ~X, ~X′ϕ](~Y , ~Y ′) and
let A = (A, I). Define J ~X to be the following set

{J( ~X) | J is an interpretation of ~X on A} = {J( ~X ′) | J is an interpretation of ~X ′ on A}

and consider the binary relation B on J ~X defined as follows:

B := {(~R, ~R′) ∈ J ~X × J ~X | A[~R/ ~X, ~R′/ ~X ′] |= ϕ}.

We set A |= ψ to hold if (I(~Y ), I( ~Y ′)) belongs to the transitive closure of B. Recall that,
for a binary relation B on any set J , the transitive closure of B is defined by

TC(B) :={(a, b) ∈ J × J | ∃n > 0 and e0, . . . , en ∈ J
such that a = e0, b = en, and (ei, ei+1) ∈ B for all i < n}.

By TCm we denote the variant of TC in which the quantification of n above is restricted to
natural numbers ≤ m. That is, TCm(B) consists of pairs (~a,~b) such that ~b is reachable from
~a by B in at most m steps. Moreover, by 2TC and 2TCm we denote the syntactic restrictions
of TC and TCm of the form

[TC ~X, ~X′ϕ](~Y , ~Y ′) and [TCm
~X, ~X′

ϕ](~Y , ~Y ′),

where ~X, ~X ′, ~Y , ~Y ′ are tuples of second-order variables (i.e. without first-order variables).
The logic SO(2TC) then denotes the extension of second-order logic with 2TC-operator.
Analogously, by FO(1TC), we denote the extension of first-order logic with applications of
such transitive-closure operators that bind only first-order variables.5

3 Complexity of MSO(TC)

The descriptive complexity of different logics with the transitive closure operator has been
thoroughly studied by Immerman. Let SO(arity k)(TC) denote the fragment of SO(TC) in
which second-order variables are all of arity ≤ k.

I Theorem 5 ([23, 24]).
On finite ordered structures, first-order transitive-closure logic FO(1TC) captures non-
deterministic logarithmic space NLOGSPACE.
On strings (word structures), SO(arity k)(TC) captures the complexity class NSPACE(nk).

See also the discussion in the conclusion section.
By the above theorem, MSO(TC) captures nondeterministic linear space NLIN over

strings. Deciding whether a given quantified Boolean formula is valid (QBF) is a well-known
PSPACE-complete problem [27]. Observe that there are PSPACE-complete problems already
in NLIN; in fact QBF is such a problem. Thus, we can conclude the following. The inclusion
in PSPACE is clear.

I Proposition 6. Data complexity of model checking of MSO(TC) is PSPACE-complete.

We next turn to combined complexity of model checking. By the above proposition,
this is at least PSPACE-hard. However, the straightforward algorithm for model checking
MSO(TC) clearly has polynomial-space combined complexity. We thus conclude:

5 In the literature FO(1TC) is often denoted by FO(TC).
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I Proposition 7. Combined complexity of model checking of MSO(TC) is PSPACE-complete.

For combined complexity, we can actually sharpen the PSPACE-hardness; already a very
simple fragment of MSO(TC) is PSPACE-complete.

Specifically, we give a reduction from the corridor tiling problem, which is a well-
known PSPACE-complete problem. Instance of the corridor tiling problem is a tuple
P = (T,H, V,~b,~t, n), where n ∈ N is a positive natural number, T = {1, . . . , k}, for some
k ∈ N, is a finite set of tiles, H,V ⊆ T ×T are horizontal and vertical constraints, and ~b,~t are
n-tuples of tiles from T . A corridor tiling for P is a function f : {1, . . . , n}× {1 . . . ,m} → T ,
for some m ∈ N, such that(

f(1, 1), . . . f(n, 1)
)

= ~b and
(
f(1,m), . . . f(n,m)

)
= ~t,(

f(i, j), f(i+ i, j)
)
∈ H, for i < n and j ≤ m,(

f(i, j), f(i, j + 1)
)
∈ V , for i ≤ n and j < m.

The corridor tiling problem is the following PSPACE-complete decision problem [12]:
Input: An instance P = (T,H, V,~b,~t, n) of the corridor tiling problem.
Output: Does there exist a corridor tiling for P?

Let monadic 2TC[∀FO] denote the fragment of MSO(2TC) of the form [TC ~X, ~X′ϕ](~Y , ~Y ′),
where ϕ is a formula of universal first-order logic (i.e., ϕ is of the form ∀~xψ, where ψ is a
quantifier-free formula of first-order logic).

I Theorem 8. Combined complexity of model checking for monadic 2TC[∀FO] is PSPACE-
complete.

Proof. Inclusion to PSPACE follows from the corresponding result for MSO(TC). In order
to prove hardness, we give a reduction from corridor tiling. Let P = (T,H, V,~b,~t, n) be an
instance of the corridor tiling problem and set k := |T |. Let τ = {s,X1, . . . Xk, Y1, . . . , Yk}
be a vocabulary, where s is a binary second-order variable and X1, . . . Xk, Y1, . . . , Yk are
monadic second-order variables. Let AP denote the structure over τ such that A = {1, . . . , n},
I(s) is the canonical successor relation on A, and, for each i ≤ k, I(Xi) = {j ∈ A | ~b[j] = i}
and I(Yi) = {j ∈ A | ~t[j] = i}. Define

ϕH := ∀xy
(
s(x, y)→

∨
(i,j)∈H

Z ′i(x) ∧ Z ′j(y)
)
, ϕV := ∀x

∨
(i,j)∈V

Zi(x) ∧ Z ′j(x)

ϕT := ∀x
∨
i∈T

(
Z ′i(x) ∧

∧
j∈T,i 6=j

¬Z ′j(x)
)
,

where ~Z and ~Z ′ are k-tuples of distinct monadic second-order variables not in τ . We then
define ϕP := TC~Z, ~Z′ [ϕT ∧ ϕH ∧ ϕV ]( ~X, ~Y ). We claim that AP |= ϕP if and only if there
exists a corridor tiling for P , from which the claim follows. J

4 Existential positive SO(2TC) collapses to EFO

Let SO(2TC)[∃] denote the syntactic fragment of SO(2TC) in which existential quantifiers
and the TC-operator occur only positively, that is, in scope of even number of negations. In
this section, we show that the expressive power of SO(2TC)[∃] collapses to that of existential
first-order logic ∃FO. In this section, TC-operators are applied only to tuples of second-order
variables. As already discussed in the introduction, this restriction is vital: the formula
[TCx,x′R(x, x′)∨x = x′](y, y′) expresses reachability in directed graphs, which is not definable
even in the full first-order logic.

To facilitate our proofs we start by introducing some helpful terminology.
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I Definition 9. Let #»a and #»

b be tuples of the same length and I a set of natural numbers.
The difference diff( #»a ,

#»

b ) of the tuples #»a and #»

b is defined as follows

diff( #»a ,
#»

b ) := {i | #»a [i] 6= #»

b [i]}.

The similarity sim( #»a ,
#»

b ) of tuples #»a and #»

b is defined as follows

sim( #»a ,
#»

b ) := {i | #»a [i] = #»

b [i]}.

We say that the tuples #»a and #»

b are pairwise compatible if the sets { #»a [i] | i ∈ diff( #»a ,
#»

b )}
and { #»

b [i] | i ∈ diff( #»a ,
#»

b )} are disjoint. The tuples #»a and #»

b are pairwise compatible outside
I if { #»a [i] | i ∈ diff( #»a ,

#»

b ), i /∈ I} and { #»

b [i] | i ∈ diff( #»a ,
#»

b ), i /∈ I} are disjoint. The tuples #»a

and #»

b are pairwise I-compatible if #»a and #»

b are pairwise compatible and sim( #»a ,
#»

b ) = I.

I Definition 10. Let σ ⊆ τ be vocabularies, A a τ -structure, and #»a a tuple of elements of
A. The (quantifier-free) σ-type of #»a in A is the set of those quantifier free FO(σ)-formulae
ϕ( #»x ) such that A[ #»a/ #»x ] |= ϕ.

The following lemma establishes that 2TC-operators that are applied to ∃FO-formulas
can be equivalently expressed by the finite 2TCm-operator.

I Lemma 11. Every formula ϕ of the form [TC ~X, ~X′θ](~Y , ~Y ′), where θ ∈ ∃FO and ~X, ~X ′,
~Y , ~Y ′ are tuples of second-order variables, is equivalent with the formula [TCk

~X, ~X′
θ](~Y , ~Y ′),

for some k ∈ N.

Proof. Let θ = ∃x1 . . . ∃xnψ, where ψ is quantifier-free, and let τ denote the vocabulary of
ϕ. We will show that for large enough k and for all τ -structures A

A |= [TC ~X, ~X′θ](~Y , ~Y ′) iff A |= [TCk
~X, ~X′

θ](~Y , ~Y ′).

From here on we consider τ and ϕ fixed; especially, by a constant, we mean a number that is
independent of the model A; that is, it may depend on τ and ϕ.

It suffices to show the left-to-right direction as the converse direction holds trivially for
all k. Assume that A |= [TC ~X, ~X′θ](~Y , ~Y ′). By the semantics of TC there exists a natural

number k0 and tuples of relations ~B0, . . . , ~Bk0 on A such that ~B0 = ~Y A, ~Bk0 = ~Y ′
A
, and

A[ ~Bi/ ~X, ~Bi+1/ ~X ′] |= θ, for 0 ≤ i < k0. (1)

It suffices to establish that, if k0 is large enough, then there exists two natural numbers h
and h′, 0 ≤ h ≤ h+ 3 ≤ h′ ≤ k0, and an interpretation ~H for ~X such that

A[ ~Bh/ ~X, ~H/ ~X ′] |= θ and A[ ~H/ ~X, ~Bh′/ ~X ′] |= θ.

For each i < k0, let Ai := A[ ~Bi/ ~X, ~Bi+1/ ~X ′] and let σ denote the vocabulary of Ai. By
the semantics of the existential quantifier, (1) is equivalent to saying that

Ai[ #»ai/x1, . . . , xn] |= ψ, for 0 ≤ i < k0, (2)

for some n-tuples #»a0, . . .
#         »ak0−1 from A. We will prove the following claim.

CSL 2018
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Claim. There exists an index set I and n+ 2 mutually pairwise I-compatible sequences in
#»a1, . . .

#         »ak0−1 that have a common σ-type provided that k0 is a large enough constant.

Proof of the claim. Let #»c 0 = ( #»c0
0, #»c1

0, . . . , #»ct
0) denote the longest (not necessarily consec-

utive) subsequence of #»a1, . . .
#         »ak0−1 that have a common σ-type. Since there are only finitely

many σ-types, t can be made as large as needed by making k0 a large enough constant.
We will next show that there exists n+ 2 mutually pairwise I-compatible sequences in

#»c 0 for some I (provided that t is large enough). Set SIM0 := ∅. In the construction below
we maintain the following properties for 0 ≤ i ≤ n:

For each j ∈ SIMi and for each tuple #»a and #»

b in #»c i it holds that #»a [j] = #»

b [j].
The length of #»c i is as long a constant as we want it to be.

For l < n, let #»

b l
0, . . . ,

#»

b l
tl
be a maximal collection (in length) of mutually pairwise SIMl-

compatible sequences from #»c l. If tl ≥ n+ 1 we are done. Otherwise note that, since each #»

b l
j

is an n-tuple, the number of different points that may occur in #»

b l
0, . . . ,

#»

b l
tl
is ≤ n2 + n. By

an inductive argument we may assume that the length of #»c l is as large a constant as we want,
and thus we may conclude that there exists an index i /∈ SIMl and an element dl such that
there are as many as we want tuples #»c l

j in #»c l such that #»c l
j [i] = dl. Set SIMl+1 := SIMl∪{i}

and let #»c l+1 be the sequence of exactly those #»a ∈ #»c l such that #»a [i] = dl. Notice that the
length of #»c l+1 is as large a constant as we want it to be.

Finally, the case l = n. Note that SIMn = {0, . . . , n−1} and #»c n is a sequence of n-tuples;
in fact all tuples in #»c n are identical. Thus, if the length of #»c n is at least n + 2, the first
n+ 2 sequences of #»c n constitute a mutually pairwise SIMn-compatible sequence of length
n + 2. It is now straightforward but tedious to check how large k0 has to be so that the
length of #»c n is at least n+ 2; thus the claim holds. J

Now let #»a i0 , . . . ,
#»a in+1 , 0 < i0 < · · · < in+1, be mutually pairwise I-compatible sequences

from #»a 1, . . .
#»a k0−1 with a common σ-type provided by the Claim. Let 1 ≤ j ≤ n+ 1 be an

index such that #»a i0−1 and #»a ij
are pairwise compatible outside I and sim( #»a i0−1,

#»a ij
) ⊆ I.

It is straightforward to check that such a j always exists, for if #»a i0−1 and #»a ij′ are not
pairwise compatible outside I or sim( #»a i0−1,

#»a i′
j
) 6⊆ I, there exists some indices m,m′ /∈ I

such that #»a i0−1[m] = #»a ij′ [m
′], and for each such #»a ij′ the value of the related #»a ij′ [m

′] has
to be unique as #»a i1 , . . . ,

#»a in+1 are mutually pairwise I-compatible. Now j must exist since
the length of #»a i1 , . . . ,

#»a in+1 is n+ 1 while the length of #»a i0−1 is only n.
Consider the models Ai0−1 = A[ ~Bi0−1/ ~X, ~Bi0/

~X ′] and Aij
= A[ ~Bij

/ ~X, ~Bij+i
/ ~X ′] and

recall that

Ai0−1[ #»a i0−1/x1, . . . , xn] |= ψ and Aij
[ #»a ij

/x1, . . . , xn] |= ψ.

We claim that there exists a sequence ~B of relations on A such that

A[ ~Bi0−1/ ~X, ~B/ ~X ′,
#»a i0−1/x1, . . . , xn] |= ψ and A[ ~B/ ~X, ~Bij+i

/ ~X ′, #»a ij
/x1, . . . , xn] |= ψ. (3)

and thus that A[ ~Bi0−1/ ~X, ~B/ ~X ′] |= θ and A[ ~B/ ~X, ~Bij+i
/ ~X ′] |= θ. From this the claim of

the theorem follows for k = k0.
It now suffices to show that such a ~B exists. The idea is that ~B looks exactly like ~Bi0

with respect to points in #»a i0−1 and like ~Bij with respect to points #»a ij . Formally ~B is defined
as follows. For every relation ~B[m] and tuple #»a ∈ Aar( ~B[m])

if #»a is completely included in neither #»a i0−1 nor #»a ij
then we set #»a /∈ ~B[m],

if #»a is completely included in #»a i0−1 then we set #»a ∈ ~B[m] iff #»a ∈ ~Bi0 [m],
if #»a is completely included in #»a ij

then we set #»a ∈ ~B[m] iff #»a ∈ ~Bij
[m].
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Note that if #»a = (a1, . . . , am) is completely included in both #»a i0−1 and #»a ij then there
exists indices j1, . . . jm ∈ I such that, for 1 ≤ l ≤ m, al = #»a ij

[jl] = #»a i0 [jl]. The former
equality follows, with indices in I, since #»a i0−1 and #»a ij

are pairwise compatible outside I and
sim( #»a i0−1,

#»a ij ) ⊆ I. The latter equality follows since #»a i0 and #»a ij are pairwise I-compatible.
Since #»a i0 and #»a ij

have the same σ-type #»a ∈ ~Bi0 [m] iff #»a ∈ ~Bij
[m], for all m, and thus ~B is

well-defined. It is now immediate that (3) holds. J

I Lemma 12. For every formula of vocabulary τ of the form ∃Xθ or [TC ~X, ~X′θ](~Y , ~Y ′),
where θ ∈ ∃FO and ~X, ~X ′, ~Y , ~Y ′ are tuples of relation variables, there exists an equivalent
formula ϕ ∈ ∃FO of vocabulary τ .

Proof. Consider first the formula ∃Xθ (this collapse was remarked, but not proven, by
Rosen in the introduction of his paper [35]). Define n := ar(X) and let k be the number of
occurrences of X in θ. The idea behind our translation is that the quantification of X can
be equivalently replaced by a quantification of an n-ary relation of size ≤ k; this can be then
expressed in ∃FO by quantifying k many n-tuples (content of the finite relation).

Let θ∅ denote the formula obtained from θ by replacing every occurrence of the relation
variable X of the form X(~x) in θ by the formula ∃x(x 6= x). Define

γ := ∃ #»x 1 . . . ∃ #»x k(θ∅ ∨ θ′),

where, for each i, ∃ #»x i is a shorthand for ∃x1,i . . . ∃xn,i and θ′ is the formula obtained from
θ by substituting each occurrence of the relation variable X of the form X( #»x ) in θ by∨

1≤i≤k( #»x = #»x i). It is straightforward to check that γ is an ∃FO-formula of vocabulary τ
equivalent with ∃Xθ.

Consider then the formula ϕ = [TC ~X, ~X′θ](~Y , ~Y ′). In order to simplify the presentation,
we stipulate that ~X and ~X ′ are of length one, that is, variables X and X ′, respectively; the
generalisation of the proof for arbitrary tuples of second-order variables is straightforward.
By Lemma 11, we obtain k ∈ N such that ϕ and ϕ′ := [TCk

X,X′θ](Y, Y ′) are equivalent.
The following formulas are defined via substitution; by θ(A/B) we denote the formula

obtained from θ by substituting each occurrence of the symbol B by the symbol A.
θend

0 := θ(Y/X, Y ′/X ′) and θend
i := θ(Xi/X, Y

′/X ′), for 1 ≤ i < k,
θmove

1 := θ(Y/X,X1/X
′) and θmove

i := θ(Xi−1/X,Xi/X
′), for 2 ≤ i < k.

Let ψ denote the following formula of existential second-order logic

∃X1 . . . ∃Xk−1
∨

0≤n<k

(θend
n ∧

∧
1≤i≤n

θmove
i ).

It is immediate that ϕ′ and ψ are equivalent. Note that ψ is of the form ∃X1 . . . ∃Xk−1ψ
′,

where ψ′ is an ∃FO-formula. By repetitively applying the first case of this lemma to
subformulas of ψ, we eventually obtain an equivalent ∃FO-formula over τ as required. J

The following theorem now follows by applying Lemma 12 repetitively bottom up.

I Theorem 13. The expressive powers of SO(2TC)[∃] and ∃FO coincide.

5 MSO(TC) and counting

We define a counting extension of MSO(TC) and show that the extension does not add
expressive power to the logic. In this way, we demonstrate that quite a bit of queries involving
counting can be expressed already in MSO(TC).
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5.1 Syntax and semantics of CMSO(TC)
We assume a sufficient supply of counter variables or simply counters, which are a new sort
of variables. We use the Greek letters µ and ν (with subscripts) to denote counter variables.
The notion of a vocabulary is extended so that it may also contain counters. A structure
A over a vocabulary τ is defined to be a pair (A, I) as before, where I now also maps the
counters in τ to elements of {0, . . . , n}, where n is the cardinality of A.

We also assume a sufficient supply of numeric predicates. Intuitively numeric predicates are
relations over natural numbers such as the tables of multiplication and addition. Technically,
we use an approach similar to generalised quantifiers; a k-ary numeric predicate is a class
Qp ⊆ Nk+1 of k + 1-tuples of natural numbers. For a numeric predicate Qp, we use p as
a symbol referring to the predicate. For simplicity, we often call p also numeric predicate.
Note that when evaluating a k-ary numeric predicate p(µ1, . . . , µk) on a finite structure A,
we let the numeric predicate Qp access also the cardinality of the structure in question, and
thus Qp consists of k + 1-tuples and not k-tuples. This convention allows us, for example, to
regard the modular sum a+ b ≡ c (modn), where n refers to the cardinality of the structure,
as a 3-ary numeric predicate.

We consider only those numeric predicates which can be decided in NLOGSPACE. Since,
on finite ordered structures, first-order transitive closure logic captures NLOGSPACE, this
boils down to being definable in first-order transitive closure logic when the counter variables
are interpreted as points in an ordered structure representing an initial segment of natural
numbers (see Definition 16 and Proposition 17 below for precise formulations). Note that
the equality of numeric variables is also a 2-ary NLOGSPACE predicate.

I Definition 14. The syntax of CMSO(TC) extends the syntax of MSO(TC) as follows:
Let ϕ be a formula, µ a counter, and x a first-order variable. Then µ = #{x | ϕ} is also
a formula. The set of its free variables is defined to be (FV(ϕ)− {x}) ∪ {µ}.
If ϕ is a formula and µ a counter then also ∃µϕ is a formula with set of free variables
FV(ϕ)− {µ}.
Let µ1, . . . , µk be counters and let p be a k-ary numeric predicate. Then p(µ1, . . . , µk) is
a formula with the set of free variables {µ1, . . . , µk}.
The scope of the transitive-closure operator is widened to apply as well to counters.
Formally, in a formula of the form [TC ~X, ~X′ϕ](~Y , ~Y ′), the variables in ~X, ~X ′, ~Y , and ~Y ′

may also include counters. We still require that the tuples ~X, ~X ′, ~Y , and ~Y ′ have the
same sort, i.e., if a counter appears in some position in one of these tuples then a counter
must appear in that position in each of the tuples.

I Definition 15. The satisfaction relation, A |= ψ, for CMSO(TC) formulas ψ and structures
A = (A, I) over a vocabulary appropriate for ψ is defined in the same way as for MSO(TC)
with the following additional clauses.

Let ψ be of the form ∃µϕ, where µ is a counter, and let n denote the cardinality of A.
Then A |= ψ iff there exists a number i ∈ {0, . . . , n} such that A[i/µ] |= ϕ.
Let ψ be of the form µ = #{x | ϕ}. Then A |= ψ iff I(µ) equals the cardinality of the set
{a ∈ A | A[a/x] |= ϕ}.
Let ψ be of the form p(µ1, . . . , µk), where µ1, . . . , µk are counters and p is a k-ary numeric
predicate. Then A |= p(µ1, . . . , µk) iff

(
|A|, I(µ1), . . . , I(µk)

)
∈ Qp.

I Definition 16. A k-ary numeric predicate Qp is decidable in NLOGSPACE if the mem-
bership (n0, . . . , nk) ∈ Qp can be decided by a nondeterministic Turing machine that uses
logarithmic space when the numbers n0, . . . , nk are given in unary. Note that this is equivalent
to linear space when n0, . . . , nk are given in binary.
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From now on we restrict our attention to numeric predicates that are decidable in
NLOGSPACE. The following proposition follows directly from a result of Immerman (The-
orem 5) that, on ordered structures, FO(1TC) captures NLOGSPACE.

I Proposition 17. For every k-ary numeric predicate Qp decidable in NLOGSPACE there
exists a formula ϕp of FO(1TC) over {s, x1, . . . , xk}, where s is a binary second-order variable
and x1, . . . , xk are first-order variables, s.t. for all appropriate structures A for p(µ1, . . . , µk)

A |= p(µ1, . . . , µk) iff
(
|A|, I(µ1), . . . , I(µk)

)
∈ Qp iff (B, J) |= ϕp,

where B = {0, 1, . . . , |A|}, J(s) is the successor relation of B, and J(xi) = I(µi), for
1 ≤ i ≤ k.

5.2 CMSO(TC) collapses to MSO(TC)
Let τ be a vocabulary with counters. Let τ∗ denote the vocabulary without counters obtained
from τ by viewing each counter variable of τ as a set variable. Let A = (A, I) be a structure
over τ , and let B = (A, J) be a structure over τ∗ with the same domain as A. We say that B
simulates A if for every counter µ in τ , the set J(µ) has cardinality I(µ), and J(X) = I(X),
for each first-order or second-order variable X ∈ τ . Let ϕ be a CMSO(TC)-formula over τ
and ψ an MSO(TC) formula over τ∗. We say that ψ simulates ϕ if whenever B simulates A,
we have that A |= ϕ if and only if B |= ψ.

Let ϕ(x) and ψ(y) be formulae of some logic. The Härtig quantifier is defined as follows:

A |= Hxy(ϕ(x), ψ(y))⇔ the sets {a ∈ A | A[a/x] |= ϕ} and {b ∈ A | A[b/y] |= ψ}
have the same cardinality

I Proposition 18. The Härtig quantifier can be expressed in MSO(TC).

Proof. Consider a structure (A, I) and monadic second-order variables X, Y , X ′ and Y ′. Let
ψdecrement denote an FO-formula expressing that I(X ′) = I(X) \ {a} and I(Y ′) = I(Y ) \ {b},
for some a ∈ I(X) and b ∈ I(Y ). Define

ψec := ∃X∅
((
∀x¬X∅(x)

)
∧ [TCX,Y,X′,Y ′ψdecrement](Z,Z ′, X∅, X∅)

)
.

It is straightforward to check that ψec holds in (A, I) if and only if |I(Z)| = |I(Z ′)|. Therefore
Hxy(ϕ(x), ψ(y)) is equivalent with the formula

∃Z∃Z ′
(
∀x(ϕ(x)↔ Z(x)) ∧ ∀y(ψ(y)↔ Z ′(y)) ∧ ψec

)
,

assuming that Z, Z ′ are variable symbols that occur in neither ϕ nor ψ. J

I Lemma 19. Let τ = {s, x1, . . . , xn} and σ = {X1, . . . , Xn} be vocabularies, where s is a
binary second-order variable, x1, . . . , xn are first-order variables, and X1, . . . , Xn are monadic
second-order variables. For every FO(1TC)-formula ϕ over τ there exists an MSO(TC)-
formula ϕ+ over σ such that

(A, I) |= ϕ ⇔ (B, J) |= ϕ+,

for every (A, I) and (B, J) such that (A, I) is a structure over vocabulary τ , where A =
{0, . . . ,m}, for some m ∈ N, and I(s) is the canonical successor relation on A, and (B, J)
is a structure over vocabulary σ such that |B| = m and |J(Xi)| = I(xi), for 1 ≤ i ≤ n.
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Proof. We define the translation + recursively as follows. In the translation, we introduce for
each first-order variable xi a monadic second-order variable Xi by using the corresponding
capital letter with the same index. Consequently, in tuples of variables, identities between the
variables are maintained. The idea of the translation is that natural numbers i are simulated
by sets of cardinality i. Identities between first-order variables are then simulated with the
help of the Härtig quantifier, which, by Proposition 18, is definable in MSO(TC).

For ψ of the form xi = xj , define ψ+ := Hxy
(
Xi(x), Xj(y)

)
.

For ψ of the form s(xi, xj), define ψ+ := ∃z
(
¬Xi(z) ∧Hxy

(
Xi(x) ∨ x = z,Xj(y)

))
.

For ψ of the form ¬ϕ and (ϕ ∧ θ), define ψ+ as ¬ϕ+ and (ϕ+ ∧ θ+), respectively.
For ψ of the form ∃xiϕ, define ψ+ := ∃Xiϕ

+, where Xi is a monadic second-order
variable.
For ψ of the form [TC~x, ~x′ϕ](~y, ~y′), define ψ+ := [TC ~X, ~X′ϕ

+](~Y , ~Y ′), where ~X, ~X ′, ~Y ,
and ~Y ′ are tuples of monadic second-order variables that correspond to the tuples ~x, ~x′,
~y, and ~y′ of first-order variables.

The correctness of the translation follows by a simple inductive argument. J

With the help of the previous lemma, we are now ready to show how CMSO(TC)-formulas
can be simulated in MSO(TC).

I Theorem 20. Every CMSO(TC)-formula can be simulated by an MSO(TC)-formula.

Proof. Let τ be a vocabulary with counters and τ∗ the vocabulary without counters obtained
from τ by viewing each counter as a set variable. We define recursively a translation ∗ that
maps CMSO(TC)-formulas over vocabulary τ to MSO(TC)-formulas over τ∗.

For ψ of the form xi = xj , define ψ∗ := xi = xj .
For ψ of the form X(x1, . . . , xn), define ψ∗ := X(x1, . . . , xn).
For an NLOGSPACE numeric predicate Qp and ψ be of the form p(µ1, . . . , µk), define
ψ∗ as ϕ+

p (µ1/X1, . . . , µk/Xk), where + is the translation defined in Lemma 19 and ϕp

the defining formula of Qp obtained from Proposition 17.
For ψ of the form µ = #{x | ϕ}, define ψ∗ as the MSO(TC)-formula Hxy(ϕ∗, µ(y)).
For ψ of the form ¬ϕ and (ϕ ∧ θ), define ψ∗ as ¬ϕ∗ and (ϕ∗ ∧ θ∗), respectively.
For ψ of the form ∃xiϕ, ∃µiϕ, and ∃Xiϕ, define ψ∗ as ∃xiϕ

∗, ∃µiϕ
∗, and ∃Xiϕ

∗. Re-
member that, on the right, µi is treated a as a monadic second-order variable.
For ψ of the form [TC ~X, ~X′ϕ](~Y , ~Y ′), define ψ∗ := [TC ~X, ~X′ϕ

∗](~Y , ~Y ′).
We claim that, for every CMSO(TC)-formula ψ over τ , ψ∗ is an MSO(TC)-formula over τ∗
that simulates ψ. Correctness of the simulation follows by induction using Lemma 19 and
Proposition 17.

We show the case for the numeric predicates. Let A = (A, I) be a τ -structure and
A∗ a τ∗-structure that simulates A. Let Qp be a k-ary NLOGSPACE numeric predicate,
µ1, . . . , µk counters from τ , and ϕp the defining FO(1TC)-formula of Qp given by Proposition
17. Then, by Proposition 17,

A |= p(µ1, . . . , µk) iff (B, J) |= ϕp,

where B = {0, 1, . . . , |A|}, J(s) is the successor relation of B, and J(xi) = I(µi), for 1 ≤ i ≤ k.
Let + denote the translation from FO(1TC) to MSO(TC) defined in Lemma 19. Then, by
Lemma 19, it follows that (B, J) |= ϕp iff A |= ϕ+

p . J

In the next example, we introduce notation for some MSO(TC)-definable numeric predicates
that are used in the following sections.
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I Example 21. Let k be a natural number, X,Y, Z,X1, . . . , Xn monadic second-order
variables, and A = (A, I) an appropriate structure. The following numeric predicates are
clearly NLOGSPACE-definable and thus, by Theorem 20, definable in MSO(TC):

A |= size(X, k) iff |I(X)| = k,
A |= ×(X,Y, Z) iff |I(X)| × |I(Y )| = |I(Z)|,
A |= +(X1, . . . , Xn, Y ) iff |I(X1)|+ · · ·+ |I(Xn)| = |I(Y )|.

6 Order-invariant MSO

Order-invariance plays an important role in finite model theory. In descriptive complexity
theory many characterisation rely on the existence of a linear order. However the particular
order in a given stricture is often not important. Related to applications in computer science,
it is often possible to access an ordering of the structure that is not controllable and thus a
use of the ordering should be such that change in the ordering should not make a difference.
Consequently, in both cases order can be used, but in a way that the described properties
are order-invariant.

Let τ≤ := τ ∪ {≤} be a finite vocabulary, where ≤ is a binary relation symbol. A formula
ϕ ∈ MSO over τ≤ is order-invariant, if for every τ -structure A and expansions A′ and A∗

of A to the vocabulary τ≤, in which ≤A′ and ≤A∗ are linear orders of A, we have that
A′ |= ϕ if and only if A∗ |= ϕ. A class C of τ -structures is definable in order-invariant MSO
if and only if the class {(A,≤) | A ∈ C and ≤ is a linear order of A} is definable by some
order-invariant MSO-formula.

We call a vocabulary τ a unary vocabulary if it consists of only monadic second-order
variables. In this section we establish that on unary vocabularies MSO(TC) is strictly more
expressive than order-invariant MSO. The separation holds already for the empty vocabulary.

6.1 Separation on empty vocabulary

First note that over vocabulary {≤} there exists only one structure, up to isomorphism,
of size k, for each k ∈ N , in which ≤ is interpreted as a linear order of the domain.
Consequently, every MSO-formula of vocabulary {≤} is order-invariant. Also note that, in
fact, {≤}-structures interpreted as word models correspond to finite strings over some fixed
unary alphabet. Thus, via Büchi’s theorem, we obtain that, over the empty vocabulary,
order-invariant MSO captures essentially regular languages over unary alphabets. Hence,
to separate MSO(TC) from order-invariant MSO over the empty vocabulary, it suffices to
observe that not all NLOGSPACE properties of unary strings are regular (recall Theorem 5
and Lemma 19). The following example gives a concrete example of the separation.

I Example 22. Consider the class C = {A | |A| is a prime number} of ∅-structures. Clearly
the language of prime length words over some unary alphabet is not regular and thus it
follows via Büchi’s theorem that C is not definable in order-invariant MSO. However the
following formula of MSO(TC) defines C. We use MSO(TC)-definable numeric predicates
introduced in Example 21.

∃X∀Y ∀Z
(
∀x(X(x)) ∧ (size(Y, 1) ∨ size(Z, 1) ∨ ¬ × (Y,Z,X))

)
∧ ∃x∃y ¬x = y.

I Corollary 23. For any vocabulary τ , there exists a class C of τ -structures such that C is
definable in MSO(TC) but it is not definable in order-invariant MSO.
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6.2 Inclusion on unary vocabularies
We will show that every class of structures over a unary vocabulary τ that is definable in
order-invariant MSO is also definable in MSO(TC).

I Definition 24. For a finite word w of some finite alphabet Σ = {a1 . . . , ak}, a Parikh
vector p(w) of w is the k-tuple (|w|a1 , . . . .|w|ak

) where |w|ai denotes the number of ais in
w. A Parikh image P (L) of a language L is the set {p(w) | w ∈ L} of Parikh vectors of the
words in the language.

A subset S of Nk is a linear set if S = {~v0 +
∑m

i=1 ai~vi | a1, . . . , am ∈ N} for some offset
~v0 ∈ Nk and generators ~v1, . . . , ~vm ∈ Nk.

I Theorem 25 (Parikh’s theorem, [30]). For every regular language L its Parikh image P (L)
is a finite union of linear sets.

We use the following improved version of Parikh’s theorem:

I Theorem 26 ([26]). For every regular language L over alphabet of size k its Parikh image
P (L) is a finite union of linear sets with at most k generators.

I Definition 27. Let τ = {X1, . . . , Xk} be a finite unary vocabulary and let Y1, . . . , Y2k

denote the Boolean combinations of the variables in τ in some fixed order. For every structure
A = (A, I) over τ , we extend the scope of I to include also Y1, . . . , Y2k in the obvious manner.
The Parikh vector p(A) of A is the 2k-tuple

(
|I(Y1)|, . . . , |I(Y2k )|

)
. A Parikh image P (C) of

a class of τ -structures C is the set {p(A) | A ∈ C}.

I Theorem 28. Over finite unary vocabularies MSO(TC) is strictly more expressive than
order-invariant MSO.

Proof. Strictness follows directly from Corollary 23 and thus it suffices to establish inclusion.
Let τ = {X1, . . . , Xk} be a finite unary vocabulary and ϕ an order-invariant MSO-formula
of vocabulary τ≤. Let C be the class of τ structures that ϕ defines. We will show that C is
definable in MSO(TC). Set n := 2k and let Y1, . . . , Yn denote the Boolean combinations of
the variables in τ in some fixed order; we regard these combinations also as fresh monadic
second-order variables and set σ := {Y1, . . . , Yn}. For each Xi, let χi denote the disjunction
of those variables Yj in which Xi occurs positively. Let C≤ denote the class of τ≤-structures
that ϕ defines. We may view C≤ also as a language L over the alphabet σ and as the class
Lw of σ≤-structures corresponding to the word models of the language L. Let ϕ∗ denote the
order-invariant MSO-formula over σ≤ obtained from ϕ by substituting each variable Xi by
the formula χi. Since ϕ∗ clearly defines Lw, by Büchi’s Theorem, L is regular. Consequently,
by the improved version of Parikh’s Theorem (Theorem 26), the Parikh image P(L) of L is a
finite union of linear sets with at most n generators.

Observe that if two τ -structures have the same Parikh image, the structures are isomorphic.
Thus C is invariant under Parikh images. Hence C is uniquely characterised by its Parikh
image P(C), which, since P(L) = P(C), is a finite union of linear sets with at most n
generators.

Claim. For every linear set A ⊆ Nn, where n = 2k, there exists a formula ϕA of MSO(TC)
of vocabulary τ = {X1, . . . Xk} such that ϕA defines the class of τ -structures that have A as
their Parikh image.

With the help of the above claim, the theorem follows in a straightforward manner.
Let A1, . . . , Am be a finite collection of linear sets such that P(C) = A1 ∪ · · · ∪ Am and
let ϕA1 , . . . , ϕAm

be the related MSO(TC)-formulas of vocabulary τ provided by the claim.
Clearly ψ := ϕA1 ∨ · · · ∨ ϕAm defines C.
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Proof of the Claim. Let A ⊆ Nn be a linear set with n generators, i.e.,

A = {~v0 +
n∑

j=1
aj~vj | a1, . . . , an ∈ N}, for some ~v0, ~v1, . . . , ~vn ∈ Nn.

For each tuple ~v ∈ Nn and n-tuple of monadic second-order variables ~Z, let size(~Z,~v) denote
the FO-formula stating that, for each i, the size of the extension of ~Z[i] is ~v[i]. For 0 ≤ i ≤ n,
we introduce fresh distinct n-tuples of monadic variable symbols ~Zi and define

ϕgen :=
∧

0≤i≤n

size(~Zi, ~vi).

Let ~R1, . . . ~Rn be fresh distinct n-tuples of monadic second-order variables and let S1, . . . , Sn

be fresh distinct monadic second-order variables. Define

ϕ∗A := ∃~Z0 . . . ~Zn
~R1 . . . ~RnS1 . . . Sn ϕgen∧∧

1≤i,j≤n

×(~Zi[j], Si, ~Ri[j]) ∧
∧

1≤i≤n

+(~Z0[i], ~R1[i], . . . , ~Rn[i], Yi), (4)

where × and + refer to the MSO(TC)-formulas defined in Example 21. Finally define
ϕA := ∃Y1 . . . Yn ϕBC ∧ ϕ∗A, where ϕBC is an FO-formula stating that, for each i, the
extension of Yi is the extension of the Boolean combination of the variables in τ that Yi

represents. A τ -structure B satisfies ϕA if and only if the Parikh image of B is A. J

J

7 Conclusion

There are quite a number of interesting challenging questions regarding the expressive power
within second-order transitive-closure logic.
1. We have shown that MSO(TC) can do counting, and thus can certainly express some

queries not expressible in fixpoint logic FO(LFP). A natural question is whether MSO(TC)
can also be separated from the counting extension of FO(LFP). Note that MSO(TC) can
express numerical predicates in NLOGSPACE, while counting fixpoint logic can express
numerical predicates in PTIME. Thus, over the empty vocabulary, the question seems
related to a famous open problem from complexity theory. Note however, that it is not
even clear that MSO(TC) can only express numerical predicates in NLOGSPACE. Over
graphs, the answer is probably affirmative as the CFI query can probably be expressed in
MSO(TC).

2. The converse question, whether there is a fixpoint logic query not expressible in MSO(TC),
is fascinating. On ordered structures, this would show that there are problems in PTIME
that are not in NLIN, which is open (we only know that the two classes are different
[29]). On unordered structures, however, we actually conjecture that the query about a
binary relation (transition system) R and two nodes a and b, that asks whether a and b
are bisimilar w.r.t. R, is not expressible in MSO(TC).

3. In stating Theorem 5 we recalled that SO(arity k)(TC) captures the complexity class
NSPACE(nk), on strings. What about ordered structures in general? Using the standard
adjacency matrix encoding of a relational structure as a string [25], it follows that on
ordered structures over vocabularies with maximal arity a, SO(arity k · a)(TC) can express

CSL 2018



22:16 Expressivity Within Second-Order Transitive-Closure Logic

all queries in NSPACE(nk). Can we show that this blowup in arity is necessary? For
example, can we show that MSO(TC) does not capture NLIN over ordered graphs (binary
relations)?

4. In the previous section we have clarified the relationship between MSO(TC) and order-
invariant MSO, over unary vocabularies. What about higher arities?
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Abstract
Program synthesis constructs programs from specifications in an automated way. Strategy Logic
(SL) is a powerful and versatile specification language whose goal is to give theoretical foundations
for program synthesis in a multi-agent setting. One limitation of Strategy Logic is that it is purely
qualitative. For instance it cannot specify quantitative properties of executions such as “every
request is quickly granted”, or quantitative properties of trees such as “most executions of the
system terminate”. In this work, we extend Strategy Logic to include quantitative aspects in a way
that can express bounds on “how quickly” and “how many”. We define Prompt Strategy Logic,
which encompasses Prompt LTL (itself an extension of LTL with a prompt eventuality temporal
operator), and we define Bounded-Outcome Strategy Logic which has a bounded quantifier on
paths. We supply a general technique, based on the study of automata with counters, that solves
the model-checking problems for both these logics.
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1 Introduction

In order to reason about strategic aspects in distributed systems, temporal logics of programs
(such as LTL [38], CTL [5] and CTL∗ [19]) have been extended with operators expressing the
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ensure some temporal properties against all possible behaviours of the remaining components.
Moreover, if such strategies exist, one can also obtain witnessing finite-state strategies. As a
result, synthesizing reactive systems from temporal specifications [39, 30, 31] can be reduced
to model checking such strategic logics.

Although quite expressive, for instance Strategy Logic can express important game-
theoretic concepts such as the existence of Nash equilibria, such logics can only express
qualitative properties. On the other hand important properties of distributed systems, such
as bounding the maximal number of steps between an event and its reaction, are quantitative.
Parametric extensions of temporal logics have been introduced to capture such properties.

A simple way to extend temporal operators is to annotate them with constant bounds,
e.g., F≤kϕ says that ϕ holds within k steps where k ∈ N is a constant. However, one may
not know such bounds or care for their exact value when writing the specification (or it may
not be practical to compute the bound). Instead, one may replace the constants by variables
N and ask about the possible valuations of the variables that make the formula true. For
instance, Prompt-LTL [2, 32] is an extension of LTL with the operator F≤N where N is a
(unique) variable. The model-checking problem asks if there exists a valuation of the variable
N such that the formula holds. In order to reason about and synthesize strategies that ensure
such parametric properties, we introduce “Prompt Strategy Logic”, an extension of SL with
the F≤N operator. For instance, the formula ∃s1(a1, s1)∀s2(a2, s2)∃NAGF≤Np expresses
that there exists a strategy for agent a1 such that for all strategies of agent a2 there is a
bound N (that can depend on the strategy for a2) such that in all outcomes (generated by
the remaining agents) the atom p holds at least once every N steps.

Another way to parameterise temporal logics is to bound the path quantifiers, expressing,
for instance, that at least k different paths satisfy ψ, or all but k paths satisfy ψ [8]. Such
operators can bound, for instance, how well a linear-time temporal property holds, thus giving
a measure of “coverage”. We introduce “Bounding-Outcome Strategy Logic” which extends
Strategy Logic with a bounded outcome quantifier A≤N which allows one to express that
all but N outcomes satisfy some property. For instance, the formula ∃s(a, s)∃NA≤NGFp
expresses that there exists a strategy for agent a such that for all but finitely many outcomes,
the atom p holds infinitely often. The algorithmic contribution of this paper is a solution
to the model-checking problem for both these logics (and their combination). We do this
by applying the theory of regular cost functions. A cost function is an equivalence class of
mappings from the domain (e.g., infinite words) to N ∪ {∞} with an equivalence relation
that, intuitively speaking, forgets the precise values and focuses on boundedness [14, 16].

Our results allow us to solve a problem left open in [10] that considers games with two
players and a third player called “nature” (indicating that it is uncontrollable), and asks
whether there is a strategy for player 1 (having very general linear-time objectives) such
that for all strategies of player 2, in the resulting tree (i.e., where nature’s strategy is not
fixed), the number of plays in which player 1 does not achieve her objective is “small”. In
particular, in case the linear-time objective is the LTL formula ψ and “small” is instantiated
to mean “finite”, our main result allows one to solve this problem by reducing to model
checking Bounding-outcome Strategy Logic formula ∃s1(a1, s1)∀s2(a2, s2)∃NA≤N¬ψ. In
fact our automata construction can be adapted to deal with all omega-regular objectives.

Related work. Parametric-LTL [2] extends LTL with operators of the form F≤x and G≤x,
where x is a variable. The interpretation of F≤xψ is that ψ holds within x steps, and the
interpretation of G≤x is that ψ holds for at least the next x steps. That paper studies
variations on the classic decision problems, e.g., model checking asks to decide if there is a



N. Fijalkow, B. Maubert, N. Murano, and S. Rubin 23:3

valuation of the variables x1, · · · , xk such that the formula ϕ(x1, · · · , xk) holds in the given
structure. Note that for this problem, the formula is equivalent to one in which all variables
are replaced by a single variable. The complexity of these problems is no worse than for
ordinary LTL, i.e., PSPACE. The technique used in this paper to prove these upper-bounds
is a pumping lemma that allows one to reduce/enlarge the parameters.

Parametric-LTL has been studied in the context of open systems and games. For in-
stance, [41] studies the problem of synthesizing a strategy for an agent with a parametric-LTL
objective in a turn-based graph-game against an adversarial environment. A number of
variations are studied, e.g., decide whether there exists a valuation (resp. for all valuations) of
the variables such that there exists a strategy for the agent that enforces the given parametric-
LTL formula. The complexity of these problems is, again, no worse than that of solving
ordinary LTL games, i.e., 2EXPTIME. The technique used to prove these upper bounds is
the alternating-colour technique of [32] that allows one to replace a prompt formula by an
LTL formula, and was originally introduced to reason about Prompt-LTL, the fragment of
parametric-LTL without G≤x. We remark that Church’s synthesis for Prompt-LTL formulas
was shown in [32] to have complexity no worse than that of LTL, i.e., 2EXPTIME.

Promptness was first studied in the context of multi-agent systems in [4]. They study
the model-checking problem for the logic Prompt-ATL∗ and its fragments, for memoryless
and memoryful strategies. Again, one finds that the complexity of model checking prompt
variations is no worse than the non-prompt ones. That paper also studies the case of systems
with imperfect information. We remark that the formula of Prompt Strategy Logic mentioned
above is not a formula of Prompt-ATL∗ because the bound N can depend on the strategy
of agent a2, which is not possible in Prompt-ATL∗.

Promptness has also been studied in relation with classic infinitary winning conditions
in games on graphs. In bounded parity games, the even colors represent requests and odd
colors represent grants, and the objective of the player is to ensure that every request is
promptly followed by a larger grant [12, 37]. We discuss this in Example 6. Such winning
conditions have been generalised to games with costs in [21, 22], leading to the construction
of efficient algorithms for synthesizing controllers with prompt specifications.

Promptness in automata can be studied using various notions of automata with counters
that only affect the acceptance condition. For instance, a run in a prompt Büchi-automaton
is successful if there is a bound on the time between visits to the Büchi set. The expressive
power, the cost of translating between such automata, and complexity of decision problems
(such as containment) have been studied in [1, 12].

The theory of regular cost functions [14, 16] defines automata and logics able to express
boundedness properties in various settings. For instance, the logics Prompt-LTL, PLTL and
kTL are in some precise sense subsumed by the LTL≤ logic from [27], which extends LTL with
a bounded until ϕU≤Nϕ′ allowing ϕ not to hold in at most N (possibly non-consecutive)
places before ϕ′ holds. A decision procedure for this logic has been given through the
compilation into cost automata on words. In this paper, we rely on several results from
the theory of regular cost functions, and develop some new ones for the study of Prompt
Strategy Logic and Bounding-outcome Strategy Logic. A major open problem in the theory
of regular cost functions over infinite trees is the equivalence between general cost automata.
To handle the bounded until operator in branching-time logics one would need to first prove
this equivalence, which has been proved to be beyond our reach today [20]. In this work we
rely on a weaker version of this equivalence for distance automata.

To the best of our knowledge, the only previous works on quantitative extensions of
Strategy Logic consider games with counters and allow for the expression of constraints on
their values in formulas. The model-checking problem for these logics is undecidable, even
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when restricted to the case of energy constraints, which can only state that the counters
remain above certain thresholds [24]. For the Boolean Goal fragment of Strategy Logic in
the case of one counter, the problem is still open [9, 24]. The present work thus provides the
first decidable quantitative extension of Strategy Logic.

Plan. In Section 2 we recall Branching-time Strategy Logic. We introduce and motivate our
two quantitative extensions, Prompt-SL and BOSL, in Section 3 and Section 4 respectively.
In Section 5 we solve their model-checking problem by introducing the intermediary logic
Bound-QCTL∗ and developing an automata construction based on automata with counters.

2 Branching-time Strategy Logic

In this section we recall Branching-time Strategy Logic [26], a variant of Strategy Logic [36].
For the rest of the paper we fix a number of parameters: AP is a finite set of atomic

propositions, Ag is a finite set of agents or players, Act is a finite set of actions, and Var is a
finite set of strategy variables. The alphabet is Σ = 2AP.

Notations. A finite (resp. infinite) word over Σ is an element of Σ∗ (resp. Σω). The length
of a finite word w = w0w1 . . . wn is |w| = n+ 1, and last(w) = wn is its last letter. Given a
finite (resp. infinite) word w and 0 ≤ i < |w| (resp. i ∈ N), we let wi be the letter at position
i in w, w≤i is the prefix of w that ends at position i and w≥i is the suffix of w that starts at
position i. We write w 4 w′ if w is a prefix of w′. The cardinal of a set S is written Card(S).

2.1 Games

We start with classic notions related to concurrent games on graphs.

I Definition 1 (Game). A concurrent game structure (or game for short) is a structure
G = (V, v0,∆, `) where V is the set of vertices, v0 ∈ V is the initial vertex, ∆ : V ×ActAg → V

is the transition function, and ` : V → Σ is the labelling function.

Joint actions. In a vertex v ∈ V , each player a ∈ Ag chooses an action c(a) ∈ Act, and the
game proceeds to the vertex ∆(v, c), where c ∈ ActAg stands for the joint action (c(a))a∈Ag.
Given a joint action c = (c(a))a∈Ag and a ∈ Ag, we let c(a) denote c(a).

Plays and strategies. A finite (resp. infinite) play is a finite (resp. infinite) word ρ =
v0 . . . vn (resp. π = v0v1 . . .) such that for every i such that 0 ≤ i < |ρ| − 1 (resp. i ≥ 0),
there exists a joint action c such that ∆(vi, c) = vi+1. A strategy is a partial function
σ : V + ⇀ Act mapping each finite play to an action, and Strat is the set of all strategies.

Assignments. An assignment is a partial function χ : Ag ∪Var⇀ Strat, assigning to each
player and variable in its domain a strategy. For an assignment χ, a player a and a strategy
σ, χ[a 7→ σ] is the assignment of domain dom(χ)∪{a} that maps a to σ and is equal to χ on
the rest of its domain, and χ[s 7→ σ] is defined similarly, where s is a variable; also, χ[a 7→?]
is the assignment of domain dom(χ) \ {a}, on which it is equal to χ.
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Outcomes. For assignment χ and finite play ρ, Out(χ, ρ) is the set of infinite plays that
start with ρ and are then extended by letting players follow the strategies assigned by χ.
Formally, Out(χ, ρ) is the set of plays ρ · v1v2 . . . such that for all i ≥ 0, there exists c such
that for all a ∈ dom(χ) ∩Ag, ca ∈ χ(a)(ρ · v1 . . . vi) and vi+1 = ∆(vi, c), with v0 = last(ρ).

2.2 BSL syntax
The core of Branching-time Strategy Logic, on which we build Prompt Strategy Logic and
Bounding-outcome Strategy Logic, is the full branching-time temporal logic CTL∗. This
differs from usual variants of Strategy Logic which are based on the linear-time temporal
logic LTL. The main difference is the introduction of an outcome quantifier which quantifies
on outcomes of the currently fixed strategies. While in SL temporal operators could only be
evaluated in contexts where all agents were assigned a strategy, this outcome quantifier allows
for evaluation of (branching-time) temporal properties on partial assignments of strategies to
agents. We recall Branching-time Strategy Logic, introduced in [26], which has the same
expressive power as SL but allows to express branching-time properties without resorting to
computationally expensive strategy quantifications.

At the syntax level, in addition to usual boolean connectives and temporal operators, we
have four constructs:

strategy quantification: ∃sϕ, which means “there exists a strategy s such that ϕ holds”,
assigning a strategy to a player: (a, s)ϕ, which is interpreted as “when the agent a plays
according to s, ϕ holds”,
unbinding a player: (a, ?)ϕ, which is interpreted as “ϕ holds after agent a has been
unbound from her strategy, if any”, and
quantifying over outcomes: Aψ, which reads as “ψ holds in all outcomes of the strategies
currently assigned to agents”.

The difference between BSL and SL lies in the last two constructs. Note that unbinding
agents was irrelevant in linear-time SL, where assignments need to be total to evaluate
temporal properties.

I Definition 2 (BSL syntax). The set of BSL formulas is the set of state formulas given by
the following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ∃sϕ | (a, s)ϕ | (a, ?)ϕ | Aψ
Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ∈ AP, a ∈ Ag and s ∈ Var.

We use classic abbreviations > = p ∨ ¬p, Fψ = >Uψ, Gψ = ¬F¬ψ and ∀sϕ = ¬∃s¬ϕ.
A variable s appears free in a formula ϕ if it appears in a binding operator (a, s) that is

not in the scope of any strategy quantifier 〈〈s〉〉.

2.3 BSL semantics
Given a formula ϕ ∈ BSL, an assignment is variable-complete for ϕ if its domain contains all
free strategy variables of ϕ.

I Definition 3 (BSL semantics). The semantics of a state formula is defined on a game G,
an assignment χ that is variable-complete for ϕ, and a finite play ρ. For a path formula
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ψ, the finite play is replaced with an infinite play π and an index i ∈ N. The definition by
mutual induction is as follows:
G, χ, ρ |= p if p ∈ `(last(ρ))
G, χ, ρ |= ¬ϕ if G, χ, ρ 6|= ϕ

G, χ, ρ |= ϕ ∨ ϕ′ if G, χ, ρ |= ϕ or G, χ, ρ |= ϕ′

G, χ, ρ |= ∃sϕ if there exists σ ∈ Strat s.t. G, χ[s 7→ σ], ρ |= ϕ

G, χ, ρ |= (a, s)ϕ if G, χ[a 7→ χ(s)], ρ |= ϕ

G, χ, ρ |= (a, ?)ϕ if G, χ[a 7→?], ρ |= ϕ

G, χ, ρ |= Aψ if for all π ∈ Out(χ, ρ), G, χ, π, |ρ| − 1 |= ψ

G, χ, π, i |= ϕ if G, χ, π≤i |= ϕ

G, χ, π, i |= ¬ψ if G, χ, π, i 6|= ψ

G, χ, π, i |= ψ ∨ ψ′ if G, χ, π, i |= ψ or G, χ, π, i |= ψ′

G, χ, π, i |= Xψ if G, χ, π, i+ 1 |= ψ

G, χ, π, i |= ψUψ′ if ∃ j ≥ i s.t. G, χ, π, j |= ψ′ and ∀ k s.t. i ≤ k < j, G, χ, π, k |= ψ

BSL has the same expressivity as SL, and there are linear translations in both directions [26].
More precisely, the translation from BSL to SL is linear in the size of the formula times
the number of players; indeed, the outcome quantifier is simulated in SL by a strategy
quantification and a binding for each player who is not currently bound to a strategy. This
translation may thus increase the nesting and alternation depth of strategy quantifiers in the
formula, which is known to increase the complexity of the model-checking problem [13, 36].

3 Prompt Strategy Logic

In this section we introduce Prompt-SL, an extension of both BSL and Prompt-LTL.

3.1 Prompt-SL syntax
The syntax of Prompt-SL extends that of branching-time strategy logic BSL with two
additional constructs, where N is a variable over natural numbers:

a bounded version of the classical “eventually” operator written F≤N , and
an existential quantification on the values of variable N , written ∃N .

As in Prompt-LTL, the formula F≤Nψ states that ψ will hold at the latest within N
steps from the present. For a formula ϕ of Prompt-SL there is a unique bound variable
N : indeed, in the spirit of Prompt-LTL where a unique bound must exist for all prompt-
eventualities, formulas of our logic cannot use more than one bound variable. However, in
Prompt-SL, existential quantification on N is part of the syntax, which allows to freely
combine quantification on the (unique) bound variable N with other operators of the logic. In
particular one can express the existence of a unique bound that should work for all strategies,
or instead that the bound may depend on the strategy (see Example 6).

I Definition 4 (Prompt-SL syntax). The syntax of Prompt-SL formulas is defined by the
following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ∃sϕ | (a, s)ϕ | (a, ?)ϕ | Aψ | ∃Nϕ
Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | F≤Nψ

where p ∈ AP, s ∈ Var, a ∈ Ag and N is a fixed bounding variable. A Prompt-SL sentence
is a state formula with no free strategy variable, in which every F≤N is in the scope of some
∃N , and F≤N and ∃N always appear positively, i.e. under an even number of negations.
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3.2 Prompt-SL semantics
We now define the semantics of Prompt-SL.

I Definition 5 (Prompt-SL semantics). The semantics is defined inductively as follows,
where ϕ (resp. ψ) is a cost-SL state (resp. path) formula, G is a game, χ is an assignment
variable-complete for ϕ (resp. ψ), ρ is a finite play, π an infinite one, i ∈ N is a point in time
and n ∈ N is a bound.

G, χ, ρ, n |= p if p ∈ `(last(ρ))
G, χ, ρ, n |= ¬ϕ if G, χ, ρ, n 6|= ϕ

G, χ, ρ, n |= ϕ ∨ ϕ′ if G, χ, ρ, n |= ϕ or G, χ, ρ, n |= ϕ′

G, χ, ρ, n |= ∃sϕ if there exists σ ∈ Strat s.t. G, χ[s 7→ σ], ρ, n |= ϕ

G, χ, ρ, n |= (a, s)ϕ if G, χ[a 7→ χ(s)], ρ, n |= ϕ

G, χ, ρ, n |= (a, ?)ϕ if G, χ[a 7→?], ρ, n |= ϕ

G, χ, ρ, n |= Aψ if for all π ∈ Out(χ, ρ), G, χ, π, |ρ| − 1, n |= ϕ

G, χ, ρ, n |= ∃Nϕ if there exists n′ ∈ N such that G, χ, ρ, n′ |= ϕ

G, χ, π, i, n |= ϕ if G, χ, π≤i, n |= ϕ

G, χ, π, i, n |= ¬ψ if G, χ, π, i, n 6|= ψ

G, χ, π, i, n |= ψ ∨ ψ′ if G, χ, π, i, n |= ψ or G, χ, π, i, n |= ψ′

G, χ, π, i, n |= Xψ if G, χ, π, i+ 1, n |= ψ

G, χ, π, i, n |= ψUψ′ if ∃ j ≥ i s.t. G, χ, π, j, n |= ψ′

and ∀ k s.t. i ≤ k < j, G, χ, π, k, n |= ψ

G, χ, π, i, n |= F≤Nψ if there exists j ∈ [i, n] such that G, χ, π, j, n |= ψ.

The semantics of a sentence Φ does not depend on the bound n, and we may write
G, χ, ρ |= Φ if G, χ, ρ, n |= Φ for some n. In addition a sentence does not require an
assignment for its evaluation. Given a game G with initial vertex v0 and a sentence Φ, we
write G |= Φ if G, ∅, v0 |= Φ, where ∅ is the empty assignment.

I Example 6. In bounded parity games [12, 37] the odd colours represent requests and even
colours represent grants, and the objective of the player a1 is to ensure against player a2
that every request is promptly followed by a larger grant. Solving such games can be cast as
a model-checking problem of the Prompt-SL formula

∃s1(a1, s1)∀s2(a2, s2)∃NAG
[ ∧
c odd

c→ F≤N
∨

d>c even
d

]

on the structure in which every vertex is labelled by its color. The finitary parity condition
relaxes the constraint by only requiring requests that appear infinitely often to be promptly
granted, and solving such games can be reduced to model checking the Prompt-SL formula

∃s1(a1, s1)∀s2(a2, s2)∃NAG
[ ∧
c odd

(c ∧GFc)→ F≤N
∨

d>c even
d

]
.

Observe that in both these definitions, the bound on the delay between requests and grants
can depend on the outcome, i.e. on the opponent’s strategy. We can also express uniform
variants of these objectives by moving the quantification on the bound ∃N before the
quantification on opponent’s strategies ∀s2. Such games are studied in the context of the
theory of regular cost functions [14, 16, 15], and their relationship to the non-uniform variants
has been investigated in [11]. The solution to the model-checking problem for Prompt-SL
that we present here allows us to solve both types of games, uniform and non-uniform.
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4 Bounding-outcomes Strategy Logic

We now define our second quantitative extension of Strategy Logic, which we call Bounding-
outcomes Strategy Logic, or BOSL.

4.1 BOSL syntax
The syntax of BOSL extends that of strategy logic BSL with two additional constructs:

a bounded version of the outcome quantifier written A≤N ,
an existential quantification on the values of variable N , written ∃N .

BOSL can also be seen as Prompt-SL without the bounded eventually F≤N but with
the novel bounded outcome quantifier A≤N . While formula Aψ states that ψ holds in all
outcomes of the current assignment, A≤Nψ states that ψ holds in all of these outcomes
except for at most N of them.

I Definition 7 (BOSL syntax). The syntax of BOSL formulas is given by the following
grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ∃sϕ | (a, s)ϕ | (a, ?)ϕ | Aψ | A≤Nψ | ∃Nϕ
Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP, s ∈ Var, a ∈ Ag and N is a fixed bounding variable. A BOSL sentence is a
state formula with no free strategy variable, in which every A≤N is in the scope of some ∃N ,
and where A≤N and ∃N always appear positively, i.e. under an even number of negations.

4.2 BOSL semantics
I Definition 8 (BOSL semantics). We only give the definition for the new operator A≤N ,
the others are as in Definition 5.

G, χ, ρ, n |= A≤Nψ if Card({π ∈ Out(ρ, χ) : G, χ, π, |ρ| − 1, n 6|= ψ}) ≤ n

The full semantics can be found in Appendix A.1. Once again, for a sentence Φ we write
G |= Φ if G, ∅, v0, n |= Φ for some n ∈ N, where ∅ is the empty assignment.

I Example 9. As an example we consider the framework of Carayol and Serre [10] that
considers games with two players and a third player called “nature”. The usual semantics is
for nature to be a random player, in which case we are interested in whether player 1 has a
strategy ensuring to win almost all paths. The paper [10] suggests other formalisations for
the third player, of topological, measure-theoretic, and combinatorial nature, and provides
general reductions. For instance, one may fix a constant N and write the following formula
∃s1(a1, s1)∀s2(a2, s2)A≤Nψ, stating that player a1 has a strategy ensuring to win all but N
paths. If N is a constant the above question is solved in [10]. However the latter work leaves
open the question of ensuring that player a1 wins all but a bounded number of paths, which is
expressible by the Bounding-outcome Strategy Logic formula ∃N∃s1(a1, s1)∀s2(a2, s2)A≤Nψ.
One could also consider the variant where the bound can depend on the opponent’s strategy,
which can be expressed by the formula ∃s1(a1, s1)∀s2∃N(a2, s2)A≤Nψ. In this paper we
show that the model-checking problem for Bounding-outcome Strategy Logic is decidable,
thereby giving a solution to both variants of this question.
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5 Model checking

In this section we solve the model-checking problem for both Prompt-SL and BOSL with a
uniform approach which, in fact, works also for the combination of the two logics. As done
in [35] for ATL with strategy context, in [6] for an extension of it with imperfect information
and in [7] for Strategy Logic with imperfect information, we go through an adequate extension
of QCTL∗, which itself extends CTL∗ with second-order quantification. This approach makes
automata constructions and their proof of correctness easier and clearer. In our case we define
an extension of QCTL∗ called Bound-QCTL∗, which contains the bounded eventually F≤N
from Prompt-LTL and Prompt-SL, a bounded path quantifier A≤N similar to the bounded
outcome quantifier from BOSL, and the quantifier on bounds ∃N present in both Prompt-SL
and BOSL. We then recall definitions and results about cost automata, that we use to solve
the model-checking problem for Bound-QCTL∗. We finally solve the model-checking problem
for both Prompt-SL and BOSL by reducing them to model checking Bound-QCTL∗.

5.1 Bound Quantified CTL*
In this section we define Bound Quantified CTL∗, or Bound-QCTL∗, which extends Prompt-
LTL to the branching-time setting and adds quantification on atomic propositions. One can
also see it as an extension of Quantified CTL∗ [40, 29, 30, 23, 34] with the bounded eventually
operator and a bounded version of the universal path quantifier. Unlike Prompt-LTL, but
similarly to our Prompt-SL and BOSL, an existential quantification on the bound for the
bounded eventually and bounded outcome quantifier is also part of the syntax.

5.1.1 Bound-QCTL* syntax
I Definition 10. The syntax of Bound-QCTL∗ is defined by the following grammar:

ϕ = p | ¬ϕ | ϕ ∨ ϕ | Aψ | A≤Nψ | ∃pϕ | ∃Nϕ
ψ = ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | F≤Nψ

where p ∈ AP, and N is a fixed bounding variable.

As usual, formulas of type ϕ are called state formulas, those of type ψ are called
path formulas, and QCTL∗ consists of all the state formulas defined by the grammar. We
further distinguish between positive formulas, in which operators F≤N , A≤N and ∃N appear
only positively (under an even number of negations), and negative formulas, in which
operators F≤N , A≤N and ∃N appear only negatively (under an odd number of negations).
A Bound-QCTL∗ sentence is a positive formula such that all operators F≤N and A≤N in
the formula are in the scope of some ∃N . Note that we will be interested in model checking
sentences, and every subformula of a sentence is either positive or negative.

5.1.2 Bound-QCTL* semantics
Bound-QCTL∗ formulas are evaluated on (unfoldings of) Kripke structures.

I Definition 11. A (finite) Kripke structure is a tuple S = (S, s0, R, `), where S is a finite
set of states, s0 ∈ S is an initial state, R ⊆ S × S is a left-total transition relation3, and
` : S → Σ is a labelling function.

3 i.e., for all s ∈ S, there exists s′ such that (s, s′) ∈ R.
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A path in S is a finite word λ over S such that for all i, (λi, λi+1) ∈ R. For s ∈ S, we let
Paths(s) ⊆ S+ be the set of all paths that start in s.

Trees. Let S be a finite set of directions and Σ a set of labels. A (Σ, S)-tree (or simply tree)
is a pair t = (τ, `) where ` : τ → Σ is a labelling and τ ⊆ S+ is the domain such that:

there exists r ∈ S+, called the root of τ , such that each u ∈ τ starts with r, i.e. r 4 u,
if u · s ∈ τ and u · s 6= r, then u ∈ τ ,
if u ∈ τ then there exists s ∈ S such that u · s ∈ τ .

The elements of τ are called nodes. If u · s ∈ τ , we say that u · s is a child of u. A branch λ
in t is an infinite sequence of nodes such that λ0 ∈ τ and for all i, λi+1 is a child of λi, and
Branches(t, u) is the set of branches that start in node u. We let Branches(t) denote the set
of branches that start in the root. If S is a singleton, a tree becomes an infinite word.

I Definition 12. The tree unfolding of a Kripke structure S from state s is the tree tS(s) =
(Paths(s), `′), where for every u ∈ Paths(s), we have `′(u) = `(last(u)). We may write tS for
tS(s0), the unfolding from the initial state.

Projection and subtrees. Given two trees t, t′ and a proposition p, we write t ≡p t′ if they
have same domain τ and for all p′ in AP such that p′ 6= p, for all u in τ , we have p′ ∈ `(u) if,
and only if, p′ ∈ `′(u). Given a tree t = (τ, `) and a node u ∈ τ , we define the subtree of t
rooted in u as the tree tu = (τu, `′) where τu = {v ∈ S+ : u 4 v} and `′ is ` restricted to τu.

I Definition 13. The semantics t, u, n |= ϕ and t, λ, n |= ψ are defined inductively, where ϕ
is a Bound-QCTL∗ state formula, ψ is a Bound-QCTL∗ path formula, t = (τ, `) is a tree,
u is a node, λ is a branch in t, and n in N a bound (the inductive cases for classic CTL∗

operators can be found in Appendix A.2):

t, u, n |= A≤Nψ if Card({λ ∈ Branches(t, u) : t, λ, n 6|= ψ}) ≤ n
t, u, n |= ∃pϕ if ∃ t′ ≡p t such that t′, u, n |= ϕ

t, u, n |= ∃Nϕ if ∃n′ ∈ N such that t, u, n′ |= ϕ,

t, λ, n |= F≤Nψ if ∃ j such that 0 ≤ j ≤ n and t, λ≥j , n |= ψ

The value JϕKinf(t) (resp. JϕKsup(t)) of a positive (resp. negative) state formula ϕ on a tree
t with root r is defined as

JϕKinf(t) = inf {n ∈ N : t, r, n |= ϕ} and JϕKsup(t) = sup {n ∈ N : t, r, n |= ϕ} ,

with the usual convention that inf ∅ =∞ and sup ∅ = 0. In case it is not a positive or negative
formula, its value is undefined. We remark that {n ∈ N : t, r, n |= ϕ} is downward (resp.
upward) closed if ϕ is negative (resp. positive). The value of a sentence Φ is always either 0
or ∞ (recall that sentences are necessarily positive formulas and N is always quantified),
and given a Kripke structure S, we write S |= Φ if JΦKinf(tS) = 0.

5.2 Regular cost functions
In this section we develop the theory of regular cost functions over trees for distance automata.
To this end we define and study the two dual models of distance and distance-automata
for recognising cost functions [14], referred to as cost automata.

Let E be a set of structures (such as infinite words or trees). We define an equivalence
relation ≈ on functions E → N ∪ {∞} by f ≈ g if for all X ⊆ E, f(X) is bounded if, and
only if, g(X) is bounded. A cost function over E is an equivalence class of the relation ≈.
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In Section 5.2.1 we define cost games whose objectives may refer to a single counter that,
in each step, can be incremented or left unchanged. In Section 5.2.2 we define automata
whose semantics are given using cost games. We introduce distance-automata and their
duals distance-automata that compute functions E → N ∪ {∞}. In Section 5.2.3 we focus
on automata over infinite words and the notion of history-deterministic automata.

The novel technical contribution of this section is an extension of the classical property
of history-deterministic automata: the original result says that given a history-deterministic
automaton over infinite words, one can simulate it along every branch of a tree. This is
the key argument to handle the A operator in Prompt-SL. In Section 5.2.4 we extend this
result by allowing the automaton to skip a bounded number of paths, which will allow us to
capture the bounded-outcome operator A≤N in BOSL.

5.2.1 Cost games
The semantics of cost automata are given by turn-based two-player games, which are
essentially a special case of the general notion of games given in Section 3.2. We give here a
slightly modified definition better fitting the technical developments.

I Definition 14. A game is given by G = (V, VE , VA, v0, E, c), where V = VE ] VA is a set
of vertices divided into the vertices VE controlled by Eve and the vertices VA controlled by
Adam, v0 ∈ V is an initial vertex, E ⊆ V × V is a left-total transition relation, c : V → Ω is
a labelling function.

A finite (resp. infinite) play is a finite (resp. infinite) word ρ = v0 . . . vn (resp. π = v0v1 . . .)
such that for every i such that 0 ≤ i < |ρ| − 1 (resp. i ≥ 0), (vi, vi+1) ∈ E. A strategy for
Eve (resp. for Adam) is a function σ : V ∗ · VE → V (resp. σ : V ∗ · VA → V ) such that for all
finite play ρ ∈ V ∗ · VE (resp. ρ ∈ V ∗ · VA), we have (last(ρ), σ(ρ)) ∈ E. Given a strategy σ
for Eve and σ′ for Adam, we let Outcome(σ, σ′) be the unique infinite play that starts in v0
and is consistent with σ and σ′.

An objective is a setW ⊆ Ωω. To make the objective explicit we speak of W -games, which
are games with objective W . A strategy σ for Eve ensures W ⊆ Ωω if for all strategy σ′ of
Adam, the infinite word obtained by applying c to each position of the play Outcome(σ, σ′)
is in W . Eve wins the W -game G if there exists a strategy for her that ensures W . The
same notions apply to Adam. We now introduce the objectives we will be using.

Given d ∈ N∗, the parity objective parity ⊆ {1, . . . , d}ω is the set of infinite words in
which the maximum label appearing infinitely many times is even.
The distance objective uses the set of labels {ε, i} acting on a counter taking values in
the natural numbers and initialised to 0. The labels ε and i are seen as actions on the
counter: the action ε leaves the counter unchanged and i increments the counter by 1.
For n ∈ N, the distance objective distance(n) ⊆ {ε, i}ω is the set of infinite words such
that the counter is bounded by n.
The regular distance objective fininc ⊆ {ε, i}ω is the set of infinite words such that the
counter is incremented finitely many times.
The co-distance objective uses set of labels {ε, i}, where ε and i have the same interpret-
ation as in distance(n). For n ∈ N, the objective distance(n) ⊆ {ε, i}ω is the set of
infinite words such that the counter eventually reaches value n.
The objectives can be combined: parity ∩ distance(n) ⊆ ({1, . . . , d} × {ε, i})ω is the
Cartesian product of the parity and the distance objective (where a pair of infinite words
is assimilated with the infinite word formed of the pairs of letters at same position).

The following result, proven in [11], relates distance and fininc in the context of games.
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I Lemma 15. Let G be a finite game. There exists n ∈ N such that Eve wins for parity ∩
distance(n) iff Eve wins for parity ∩ fininc.

5.2.2 Cost automata
We now define automata over (Σ, S)-trees.

I Definition 16. A (non-deterministic) automaton is a tuple A = (Q, q0, δ, c) where Q is a
finite set of states, q0 ∈ Q is an initial state, δ ⊆ Q× Σ×QS is a transition relation, and
c : Q→ Ω is a labelling function.

When an automaton is equipped with an objective W ⊆ Ωω we speak of an W -automaton.
To define the semantics of W -automata, we define acceptance games. Given an W -automaton
A and a (Σ, S)-tree t = (τ, `), we define the acceptance W -game GA,t as follows.

The set of vertices is (Q× τ)∪ (Q× τ ×QS). The vertices of the form Q× τ are controlled
by Eve, the others by Adam.
The initial vertex is (q0, r), where r is the root of t.
The transition relation relates the vertex (q, u) to (q, u, h) if (q, `(u), h) ∈ δ, and (q, u, h)
is related to (h(s), u · s) for every s ∈ S.
The label of a vertex (q, u) is c(q), and the other vertices are not labelled.

We say that t is accepted by A if Eve wins the acceptance W -game GA,t.
An equivalent point of view is to say that t is accepted by A if there exists a (Q,S)-tree

with same domain as t respecting the transition relation δ with respect to t, such that all
branches satisfy W .

We instantiate this definition for cost automata: the objective parity ∩ distance gives
rise to the notion of distance-automata. A distance-automaton A computes the function
JAKd over trees defined by

JAKd(t) = inf {n ∈ N : t is accepted by A with objective parity ∩ distance(n)} ,

and it recognises the ≈-equivalence class of the function JAKd.
Dually, the objective parity∩distance(n) gives rise to distance-automata. A distance-

automaton A computes the function JAKd over trees defined by

JAKd(t) = sup
{
n ∈ N : t is accepted by A with objective parity ∩ distance(n)

}
and recognises the ≈-equivalence class of the function JAKd.

If A recognises the ≈-equivalence class of the function f : E → (N ∪ {∞}) we abuse
notation and say that A recognises the function f .

To illustrate the definition of distance-automata, we now give an example that will be
useful later on to capture the bounded path quantifier A≤N .

I Lemma 17. Let p ∈ AP. There exists a distance-automaton recognising the function that
counts the number of paths with infinitely many p’s.

Proof. Let us say that a path is bad if it contains infinitely many p. The distance-automaton
A has four states:

q0,ε, whose intuitive semantics is “the tree contains one bad path”,
q0,i, meaning “the tree contains at least two bad paths”,
q1,p and q1,¬p, which mean “the tree does not contain any bad path”.
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All states are initial (note that this is an inconsequential abuse because we defined automata
with a single initial state). We use the set of labels Ω = {2, 3} × {ε, i}. The transitions are
as follows, where q0 = {q0,ε, q0,i} and q1 = {q1,p, q1,¬p}.

δ =


(q0,ε, a, h) if h contains at most one q0
(q0,i, a, h) if h contains at least two q0
(q1,¬p, a, h) if p /∈ a and h contains only q1
(q1,p, a, h) if p ∈ a and h contains only q1

The labelling function is c(q0,ε) = (2, ε), c(q0,i) = (2, i), c(q1,¬p) = (2, ε), and c(q1,p) = (3, ε).
We claim that the following two properties hold, which implies Lemma 17.

if t contains n bad paths, then JAKd(t) ≤ n− 1,
if JAKd(t) ≤ n, then t contains at most Card(S)n bad paths.

Assume that t contains n bad paths, we construct a run for A (i.e., a labelling of t with
states of A) as follows. A node u of the tree is labelled by:

q0,ε if exactly one tu·s contains a bad path for some direction s ∈ S,
q0,i if tu·s contain a bad path for at least two different directions s ∈ S,
q1,¬p if tu does not contain a bad path and p /∈ `(u),
q1,p if tu does not contain a bad path and p ∈ `(u).

This yields a valid run whose branches all satisfy the parity condition. Along a branch the
counter is incremented each time there are at least two subtrees with a bad path, which can
happen at most n− 1 times because there are n bad paths. Hence the maximal value of the
counter on a branch is n− 1, implying that JAKd(t) ≤ n− 1.

We show the second point by induction on n. If JAKd(t) = 0, then t contains at most
one bad path. If JAKd(t) = n+ 1, consider a (Q,S)-tree representing a run of value n+ 1.
Because JAKd(t) ≥ 1, there is at least one node labelled q0,i. By definition of the transition
relation, if there are two nodes on the same level labelled q0,i, then they must descend from
another node q0,i higher in the tree. Thus there is a unique node u labelled q0,i that is
closest to the root (it may be the root itself). Except for u’s ancestors, which are labelled
with q0,ε, all nodes outside of the subtree rooted in u are necessarily labelled with q1. The
subtrees rooted in u’s children have a run with value at most n. By induction hypothesis
each of these subtrees contains at most Card(S)n bad paths, so the tree rooted in u contains
at most Card(S)n+1 bad paths. Since nodes labelled by q1 cannot contain a bad path, this
means that t contains at most Card(S)n+1 bad paths. J

The objective parity gives rise to parity automata. The following lemma follows from
the observation that fininc is an ω-regular objective.

I Lemma 18. For every automaton with objective parity ∩ fininc one can construct an
equivalent parity automaton.

5.2.3 Regular cost functions over words
The definitions of cost-automata can be applied to infinite words, which is the particular
case where S is a singleton. A central notion in the theory of regular cost functions is that of
history-deterministic automata over infinite words. Informally, a non-deterministic automaton
is history-deterministic if its non-determinism can be resolved by a function considering only
the input read so far. This notion has been introduced for studying ω-automata in [25]. We
specialise it here to the case of cost functions, involving a relaxation on the values allowing
for a good interplay with the definition of equivalence for cost functions.
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To give a formal definition we introduce the notation Aσ for A a W -automaton and a
strategy σ : Σ∗ → δ, where δ is the transition relation of A: Aσ is a (potentially infinite) de-
terministicW -automaton (Q×Σ∗, (q0, ε), δσ, cσ) where ((q, w), a, (q′, wa)) ∈ δσ just if σ(w) =
(q, a, q′), and cσ(q, w) = c(q). The automaton Aσ is infinite but deterministic, as for each
situation the strategy σ chooses the transition to follow.

I Definition 19 ([14, 17]). We say that a distance-automaton A over infinite words is
history-deterministic if there exists a function α : N→ N such that for every n there exists a
strategy σ such that for all words w we have JAKd(w) ≤ n =⇒ JAσKd(w) ≤ α(n).

We now explain the usefulness of the notion of history-deterministic automata. The
situation is the following: we consider a language L over infinite words, and we want to
construct an automaton for the language of trees “all branches are in L”. Given a deterministic
automaton for L one can easily solve this problem by constructing an automaton running
the deterministic automaton on all branches.

In the quantitative setting we consider here, we have a function f : Σω → N ∪ {∞}
instead of L, and we wish to construct an automaton computing the function over trees
t 7→ sup {f(λ) : λ ∈ Branches(t)} . Unfortunately, distance-automata do not determinise,
so the previous approach needs to be refined. The construction fails for non-deterministic
automata, because two branches may have very different accepting runs even on their shared
prefix. The notion of history-deterministic automata yields a solution to this problem, as
stated in the following theorem.

I Theorem 20 ([18]). Let A be a history-deterministic distance-automaton over infinite
words. One can construct a distance-automaton recognising the function over trees

t 7→ sup {JAKd(λ) : λ ∈ Branches(t)}

We present an extension of this result where the function can remove a bounded number
of paths in the computation. The proof is in Appendix A.3.

I Theorem 21. Let A be a history-deterministic distance-automaton over infinite words.
One can construct a distance-automaton recognising the function over trees

t 7→ inf {max(Card(B), sup {JAKd(λ) : λ /∈ B}) : B ⊆ Branches(t)} .

The idea is to combine A with the automaton defined in the proof of Lemma 17.

5.2.4 Regular cost functions over trees
We introduce the notion of nested automata, which is parameterised by an objective W ⊆ Ωω.
Nested automata can be seen as a special form of alternating automata which will be
convenient to work with in the technical developments.

I Definition 22. A nested W -automaton with k slaves over (Σ, S)-trees is given by
a master automaton A, which is a W -automaton over (2k, S)-trees, and
k slave automata (Ai)i∈[k], which are W -automata over (Σ, S)-trees.

The transition relation of the master is δ ⊆ Q×2k×QS . We describe the modus operandi
of a nested automaton informally. Let t be a tree and u a node in t, labelled with state
q. To take the next transition the master automaton interrogates its slaves: the transition
(q, v, h) ∈ δ is allowed if for all i ∈ v, the subtree tu is accepted by Ai. The formal semantics
of nested W -automata can be found in Appendix A.4.

The following theorem shows the equivalence between distance and distance-automata
over trees.
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I Theorem 23 ([15]). Let f be a cost function over trees. The following statements are
effectively equivalent:

there exists a distance-automaton recognising f ,
there exists a nested distance-automaton recognising f ,
there exists a distance-automaton recognising f ,
there exists a nested distance-automaton recognising f .

5.3 Model checking Bound-QCTL*
The model-checking problem for Bound-QCTL∗ is the following decision problem: given an
instance (Φ,S) where Φ is a sentence of Bound-QCTL∗ and S is a Kripke structure, return
‘Yes’ if S |= Φ and ‘No’ otherwise. In this section we prove that this problem is decidable by
reducing it to the emptiness problem of parity automata.

We will use the following result about distance-automata over infinite words.

I Theorem 24 ([27, 28]). For every Prompt-LTL formula ψ, we can construct a history-
deterministic distance-automaton A such that JAKd ≈ JψKinf.

I Theorem 25. Let Φ be a sentence of Bound-QCTL∗. We construct a non-deterministic
parity automaton AΦ over (Σ, S)-trees such that for every Kripke structure S over the set of
states S, we have S |= Φ if, and only if, AΦ accepts the unfolding tS .

Proof. Let Φ be a sentence and S a finite set of states.
For each subformula ϕ of Φ, we construct by induction on ϕ the following automata:

1. if ϕ is positive, a distance-automaton Aϕ such that JAϕKd ≈ JϕKinf,
2. if ϕ is negative, a distance-automaton Aϕ such that JAϕKd ≈ JϕKsup.
We give the most interesting inductive cases, the remaining ones can be found in Appendix A.5.

ϕ = Aψ : The idea is similar to the automata construction for branching-time logic [33]:
intuitively, treat ψ as an LTL formula over maximal state subformulas, run a deterministic
automaton for ψ on all branches of the tree, and launch automata for the maximal state
subformulas of ψ when needed. In our case, we will construct a nested automaton to do this,
and in place of a deterministic parity automaton for ψ we will use a history-deterministic
distance-automaton. Finally, we will convert the nested distance-automaton into a
distance-automaton.
Suppose that ϕ is positive (the case that ϕ is negative is treated dually). Then also ψ is
positive. We will construct a nested distance-automaton B such that JBKd ≈ JϕKinf.
Let ϕ1, . . . , ϕk be the maximal state subformulas of the path formula ψ. We see these
formulas as atomic propositions, so that the formula ψ can be seen as a Prompt-LTL
formula on infinite words over the alphabet 2k. Apply Theorem 24 to ψ to get a history-
deterministic distance-automaton Aψ over infinite words such that JAψKd ≈ JψKinf.
Then, apply Theorem 20 to Aψ to get a distance-automaton A such that JAKd(t) =
sup {JAψKd(λ) : λ ∈ Branches(t)}. The master of B is A.
Since ψ is positive, the formulas ϕ1, . . . , ϕk are either positive or negative. By the
induction hypothesis, for every i, if ϕi is positive we construct a distance-automaton
Ai such that JAiKd ≈ JϕiKinf; and if ϕi is negative, we construct a distance-automaton
A′i such that JA′iKd ≈ JϕiKsup. In the latter case, thanks to Theorem 23 we construct a
distance-automaton Ai such that JAiKd ≈ JϕiKsup. The slaves of B are A1, . . . ,Ak.
This completes the construction of B, see Appendix A.5 for its correctness.
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ϕ = A≤Nψ : The construction is the same as for Aψ, except for the construction of the
master A, in which we replace Theorem 20 by Theorem 21 to account for the possibility
of removing a bounded number of paths.
ϕ = ∃Nϕ′ : Note that ϕ cannot be negative. Since ϕ is positive, also ϕ′ is positive. By the
induction hypothesis, there exists a distance-automaton Aϕ′ such that JAϕ′Kd ≈ Jϕ′Kinf.
Since ϕ is a positive sentence, we have JϕKinf(t) ∈ {0, ω} for every t. Now,

JϕKinf(t) = 0⇐⇒ ∃n ∈ N, Jϕ′Kinf(t) ≤ n
⇐⇒ ∃n ∈ N,Eve wins GAϕ′ ,t for the objective parity ∩ distance(n)

⇐⇒ Eve wins GAϕ′ ,t for the objective parity ∩ fininc

The third equivalence follows from Lemma 15. We can now apply Lemma 18 to the
parity ∩ fininc-automaton Aϕ′ to get an equivalent parity automaton Aϕ. Then the
last item is equivalent to Eve winning the parity game GAϕ,t, which is equivalent to
JAϕKd(t) = 0 (since JAϕKd(t) ∈ {0, ω} because Aϕ has no counter).

This completes the proof of the inductive hypothesis. Finally, since Φ is a sentence, AΦ is a
parity automaton. Indeed, in the inductive steps, the boundedness operators introduces a
counter (if there was not one already), the ∃N step removes the counter, and other operators
applied to arguments that do not have a counter produce automata with no counters. J

5.4 Model checking Prompt-SL and BOSL

The model-checking problem for Prompt-SL (resp. BOSL) is the following: given a game G
and a sentence Φ of Prompt-SL (resp. BOSL), decide whether G |= Φ.

As for ATL∗ with strategy context [35] and Strategy Logic with imperfect information [7],
the model-checking problems for both Prompt-SL and BOSL (as well as their combination)
can be easily reduced to that of Bound-QCTL∗ (see Appendix A.6). As a consequence of
these reductions and of Theorem 25, we get:

I Theorem 26. The model-checking problem is decidable for Prompt-SL and BOSL.

The model-checking procedure is nonelementary, but because Prompt-SL and BOSL
subsume SL we know from [36] that no elementary procedure exists. We leave precise
complexity analysis for future work.

6 Conclusion

We introduced two quantitative extensions of Branching-time Strategy Logic (BSL), i.e.,
Prompt-SL that extends BSL with F≤N that limits the range of the eventuality, and BOSL
that extends BSL with A≤N that limits the range of the outcome quantifier. We proved that
model checking both these logics is decidable. To the best of our knowledge these are the
first quantitative extensions of SL with decidable model-checking problem.

In order to prove our results we used notions from the theory of regular cost functions
to develop new technical insights necessary to address Prompt-SL and BOSL. Moreover,
as an intermediate formalism between cost automata and logics for strategic reasoning we
introduced Bound-QCTL∗, a quantitative extension of QCTL∗, and proved its model checking
decidable. Using this, it is easy to see that also the extension of BSL with ∃N and both
F≤N and A≤N has a decidable model-checking problem.
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A Appendix

A.1 BOSL semantics

I Definition 4. The semantics is defined inductively as follows, where ϕ (resp. ψ) is a
cost-SL state (resp. path) formula, G is a game, χ is an assignment variable-complete for ϕ
(resp. ψ), ρ is a finite play, π an infinite one, i ∈ N is a point in time and n ∈ N is a bound.

G, χ, ρ, n |= p if p ∈ `(last(ρ))
G, χ, ρ, n |= ¬ϕ if G, χ, ρ, n 6|= ϕ

G, χ, ρ, n |= ϕ ∨ ϕ′ if G, χ, ρ, n |= ϕ or G, χ, ρ, n |= ϕ′

G, χ, ρ, n |= ∃sϕ if there exists σ ∈ Strat s.t. G, χ[s 7→ σ], ρ, n |= ϕ

G, χ, ρ, n |= (a, s)ϕ if G, χ[a 7→ χ(s)], ρ, n |= ϕ

G, χ, ρ, n |= (a, ?)ϕ if G, χ[a 7→?], ρ, n |= ϕ

G, χ, ρ, n |= Aψ if for all π ∈ Out(χ, ρ), G, χ, π, |ρ| − 1, n |= ϕ

G, χ, ρ, n |= A≤Nψ if |{π ∈ Out(ρ, χ) | G, χ, π, |ρ| − 1, n 6|= ψ}| ≤ n
G, χ, ρ, n |= ∃Nϕ if there exists n′ ∈ N such that G, χ, ρ, n′ |= ϕ

G, χ, π, i, n |= ϕ if G, χ, π≤i, n |= ϕ

G, χ, π, i, n |= ¬ψ if G, χ, π, i, n 6|= ψ

G, χ, π, i, n |= ψ ∨ ψ′ if G, χ, π, i, n |= ψ or G, χ, π, i, n |= ψ′

G, χ, π, i, n |= Xψ if G, χ, π, i+ 1, n |= ψ

G, χ, π, i, n |= ψUψ′ if ∃ j ≥ i s.t. G, χ, π, j, n |= ψ′

and ∀ k s.t. i ≤ k < j, G, χ, π, k, n |= ψ

A.2 Bound-QCTL* semantics

Given two trees t, t′ and an atomic proposition p, we write t ≡p t′ if they have the same
domain τ and for all p′ in AP such that p′ 6= p, for all u in τ , we have p′ ∈ `(u) iff p′ ∈ `′(u);

I Definition 7. The semantics t, u, n |= ϕ and t, λ, n |= ψ are defined inductively, where ϕ
is a Bound-QCTL∗ state formula, ψ is a Bound-QCTL∗ path formula, t = (τ, `) is a tree, u
is a node, λ is a branch in t, and n in N a bound:

t, u, n |= p if p ∈ `(u)
t, u, n |= ¬ϕ if t, u, n 6|= ϕ

t, u, n |= ϕ ∨ ϕ′ if t, u, n |= ϕ or t, u, n |= ϕ′

t, u, n |= Aψ if ∀λ ∈ Branches(t, u) we have t, λ, n |= ψ

t, u, n |= A≤Nψ if Card({λ ∈ Branches(t, u) : t, λ, n 6|= ψ}) ≤ n
t, u, n |= ∃pϕ if ∃ t′ ≡p t such that t′, u, n |= ϕ

t, u, n |= ∃Nϕ if ∃n′ ∈ N such that t, u, n′ |= ϕ,

t, λ, n |= ϕ if t, λ0, n |= ϕ

t, λ, n |= ¬ψ if t, λ, n 6|= ψ

t, λ, n |= ψ ∨ ψ′ if t, λ, n |= ψ or t, λ, n |= ψ′

t, λ, n |= Xψ if t, λ≥1, n |= ψ

t, λ, n |= ψUψ′ if ∃ j ≥ 0 such that t, λ≥j , n |= ψ′

and ∀k such that 0 ≤ k < j, t, λ≥k, n |= ψ

t, λ, n |= F≤Nψ if ∃ j such that 0 ≤ j ≤ n and t, λ≥j , n |= ψ
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A.3 Proof of Theorem 21
I Theorem 21. Let A be a history-deterministic distance-automaton over infinite words.
One can construct a distance-automaton recognising the function over trees

f : t 7→ inf {max(n, sup {JAKd(λ) : λ /∈ B}) : n ∈ N, B ⊆ Branches(t),Card(B) ≤ n} .

To prove Theorem 21 we combine A with the automaton defined in the proof of Lemma 17.

Proof. We write A = (Q, q0, δ, c) for the history-deterministic distance-automaton over
infinite words, and let us say that the set of labels is {1, . . . , d} × {ε, i} with d even.

We construct a distance-automaton B for f as follows. The set of states is Q ×
{p0,ε, p0,i, p1}, where the semantics of p0,ε and p0,i is “some path will be skipped” and p1
means “no path will be skipped”. The initial state is (q0, p0,ε). The first component simulates
the automaton A on all branches, while the second acts as follows, with p0 = {p0,ε, p0,i}.

δ =


(p0,ε, a, h) if h contains at most one p0
(p0,i, a, h) if h contains at least two p0
(p1, a, h) if h contains only p1

The labelling function c′ is

c′(q, p0,ε) = (d, a) where c(q) = (o, a)
c′(q, p0,i) = (d, i) where c(q) = (o, a)
c′(q, p1) = c(q)

The proof of correctness is the same as for Lemma 17, substantiating the following claims:
if f(t) ≤ n, then JBKd(t) ≤ n,
if JBKd(t) ≤ n, then f(t) ≤ Card(S)n. J

A.4 Semantics of nested W -automata
I Definition 22. A nested W -automaton with k slaves over (Σ, S)-trees is given by

a master automaton A, which is a W -automaton over (2k, S)-trees, and
k slave automata (Ai)i∈[k], which are W -automata over (Σ, S)-trees.

The transition relation of the master is δ ⊆ Q×2k×QS . We describe the modus operandi
of a nested automaton informally. Let t be a tree and u a node in t, labelled with state
q. To take the next transition the master automaton interrogates its slaves: the transition
(q, v, h) ∈ δ is allowed if for all i ∈ v, the subtree tu is accepted by Ai.

To define the semantics of nested W -automata, we define the corresponding acceptance
games. Given a nestedW -automaton B = (A, (Ai)i∈[k]) and a tree t, we define the acceptance
W -game GB,t as follows. Let A = (Q, q0, δ, c).

The set of vertices is (Q× t)∪ (Q× t×QS). The vertices of the form (q, u) are controlled
by Eve, those of the form (q, u, h) by Adam.
The initial vertex is (q0, r), where r is the root of t.
The transition relation E is defined as follows{

(q, u) E (q, u, h) if (q, `(u), h) ∈ δ and ∀i ∈ v, tu is accepted by Ai,
(q, u, h) E (h(s), u · s).

.

The labelling function maps (q, u) to c(q), the other vertices are not labelled.
We say that t is accepted by B if Eve wins the acceptance W -game GB,t.
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A.5 Proof of Theorem 25
I Theorem 25. Let Φ be a sentence of Bound-QCTL∗. We construct a non-deterministic
parity automaton AΦ over (Σ, S)-trees such that for every Kripke structure S over the set of
states S, we have S |= Φ if, and only if, AΦ accepts the unfolding tS .

Proof. Let Φ be a sentence and S a finite set of states. Throughout this proof, by trees we
mean regular trees, so in particular ≈ is understood over such trees.

For each subformula ϕ of Φ, we construct by induction on ϕ the following automata:
1. if ϕ is positive, a distance-automaton Aϕ such that JAϕKd ≈ JϕKinf,
2. if ϕ is negative, a distance-automaton Aϕ such that JAϕKd ≈ JϕKsup.
Here are the constructions or proofs of correctness not present in the body of the paper.

ϕ = p :
The formula ϕ is both positive and negative. Seeing it a positive formula, we define a
distance-automaton Ap with one state q0 and transition function defined as follows:

δ(q0, a) =
{
> if p ∈ a
⊥ otherwise.

Seeing ϕ as a negative formula, we define a distance-automaton Ap in exactly the same
way.
ϕ = ¬ϕ′ :
If ϕ is negative, then ϕ′ is positive. By definition,

JϕKsup(t) = sup {n ∈ N : t, r, n |= ϕ} = inf {n ∈ N : t, r, n |= ϕ′} − 1 = Jϕ′Kinf(t)− 1.

In particular, JϕKsup ≈ Jϕ′Kinf. By induction hypothesis, there exists a distance-
automaton Aϕ′ such that JAϕ′Kd ≈ Jϕ′Kinf. Thanks to Theorem 23, there exists a
distance-automaton Aϕ such that JAϕKd ≈ JAϕ′Kd. It follows that JAϕKd ≈ JϕKsup.
If ϕ is positive, then ϕ′ is negative, and a similar reasoning applies, using Theorem 23 to
turn a distance-automaton into an equivalent distance-automaton.
ϕ = ϕ1 ∨ ϕ2 :
If ϕ is positive, then both ϕ1 and ϕ2 are positive. By induction hypothesis, there exist
two distance-automata Aϕ1 and Aϕ2 such that JAϕ1Kd ≈ Jϕ1Kinf and JAϕ2Kd ≈ Jϕ2Kinf.
We construct Aϕ by taking the disjoint union of Aϕ1 and Aϕ2 and adding a new initial
state that nondeterministically chooses which of Aϕ1 or Aϕ2 to execute on the input tree,
so that JAϕKd = min {JAϕ1Kd, JAϕ2Kd} ≈ min {Jϕ1Kinf, Jϕ2Kinf} = JϕKinf.
If ϕ is negative, both ϕ1 and ϕ2 are negative. The same construction yields an automaton
Aϕ such that JAϕKd = max

{
JAϕ1Kd, JAϕ2Kd

}
≈ max {Jϕ1Ksup, Jϕ2Ksup} = JϕKsup.

ϕ = Aψ : The idea is similar to the automata construction for branching-time logic [33]:
intuitively, treat ψ as an LTL formula over maximal state subformulas, run a deterministic
automaton for ψ on all branches of the tree, and launch automata for the maximal state
subformulas of ψ when needed. In our case, we will construct a nested automaton to do this,
and in place of a deterministic parity automaton for ψ we will use a history-deterministic
distance-automaton. Finally, we will convert the nested distance-automaton into a
distance-automaton.

So, suppose that ϕ is positive (the case that ϕ is negative is treated dually). Then also ψ
is positive. We will construct a nested distance-automaton B such that JBKd ≈ JϕKinf.
Let ϕ1, . . . , ϕk be the maximal state subformulas of the path formula ψ. We see these
formulas as atomic propositions, so that the formula ψ can be seen as a Prompt-LTL
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formula on infinite words over the alphabet 2k. Apply Theorem 24 to ψ to get a history-
deterministic distance-automaton Aψ over infinite words such that JAψKd ≈ JψKinf.
Then, apply Theorem 20 to Aψ to get a distance-automaton A such that JAKd(t) =
sup {JAψKd(λ) : λ ∈ Branches(t)}. The master of B is A.
Since ψ is positive, the formulas ϕ1, . . . , ϕk are either positive or negative. By the
induction hypothesis, for every i, if ϕi is positive we construct a distance-automaton
Ai such that JAiKd ≈ JϕiKinf; and if ϕi is negative, we construct a distance-automaton
A′i such that JA′iKd ≈ JϕiKsup. In the latter case, thanks to Theorem 23 we construct a
distance-automaton Ai such that JAiKd ≈ JϕiKsup. The slaves of B are A1, . . . ,Ak.
This completes the construction of B. We now prove that JBKd ≈ JϕKinf. For the sake of
simplicity, we assume that JAψKd = JψKd and JAiKd = JϕiK for every i, i.e. we replace ≈
by equality. This simplification does not affect the arguments and makes the proof easier
to read.

We prove that JϕKinf ≤ JBKd. It is sufficient to show that JBKd(t) ≤ n implies
JϕKinf(t) ≤ n. A run of B on t witnessing that JBKd(t) ≤ n yields for each branch λ
a run of Aψ such that JAψKd(λ) ≤ n. The slave automata diligently check that the
atomic propositions ϕ1, . . . , ϕk have been correctly used, so indeed t, λ, n |= ψ, thus
JϕKinf(t) ≤ n.
We prove that JBKd ≤ JϕKinf. It is sufficient to show that JϕKinf(t) ≤ n implies
JBKd(t) ≤ n. By the semantics of ϕ for all branches λ of t we have t, λ, n |= ψ. This
yields a run of B on t witnessing that JBKd(t) ≤ n.

Finally, applying Theorem 23 to the nested distance-automaton B we get a distance-
automaton Aϕ such that JAϕKd ≈ JBKd.
ϕ = ∃pϕ′ :
If ϕ is positive, then ϕ′ is positive. In this case unravelling the definitions we have

JϕKinf(t) = inf {Jϕ′Kinf(t′) : t′ ≡p t} .

By the induction hypothesis, there exists a distance-automaton Aϕ′ such that JAϕ′Kd ≈
Jϕ′Kinf. We obtain a distance-automaton Aϕ by performing the usual projection oper-
ation. Everything remains the same, but the transition relation: (q, a, h) is in the new
transition relation if there exists a′ such that a′ ≡p a and (q, a′, h) is in δ, where a′ ≡p a
if for all p′ in AP such that p′ 6= p, we have p′ ∈ a′ if, and only if, p ∈ a.
If ϕ is negative, then ϕ′ is negative. The same reasoning and construction applies in this
case, with

JϕKsup(t) = sup {Jϕ′Ksup(t′) : t′ ≡p t} .

This completes the proof of the inductive hypothesis. Finally, since Φ is a sentence, AΦ is a
parity automaton. Indeed, in the inductive steps, the boundedness operators introduces a
counter (if there was not one already), the ∃N step removes the counter, and every other
operator applied to arguments that do not have a counter produces an automaton with no
counters. J

A.6 Reductions for Prompt-SL and BOSL
Models transformation. We first define for every game G a Kripke structure SG and a
bijection ρ 7→ uρ between the set of finite plays starting in the initial vertex and the set of
nodes in tSG . We consider propositions APv = {pv | v ∈ V }, that we assume to be disjoint
from AP. Define the Kripke structure SG = (S,R, s0, `

′) where
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S = {sv | v ∈ V },
R = {(sv, sv′) | ∃c ∈ ActAg s.t. ∆(v, c) = v′} ⊆ S2,
s0 = sv0 , and
`′(sv) = `(v) ∪ {pv} ⊆ AP ∪APv.

For every finite play ρ = v0 . . . vk, define the node uρ = sv0 . . . svk
in tSG (which exists, by

definition of SG and of tree unfoldings). Note that the mapping ρ 7→ uρ defines a bijection
between the set of paths from v0 and the set of nodes in tSG .

Formulas translation. Given a game G and a formula ϕ of Prompt-SL or BOSL, we define
a Bound-QCTL∗ formula (ϕ) such that G |= ϕ if and only if SG |= (ϕ) . More precisely, this
translation is parameterised with a partial function f : Ag⇀ Var which records bindings of
agents to strategy variables. Suppose that Act = {c1, . . . , cl}. We define the two functions
(·) fs and (·) fp by mutual induction on, respectively, state formulas ϕ and path formulas ψ.

Here is the definition of (·) fs for state formulas:

(p) fs = p (¬ϕ) fs = ¬(ϕ) fs
(ϕ1 ∨ ϕ2) fs = (ϕ1) fs ∨ (ϕ2) fs (∃Nϕ) fs = ∃N(ϕ) fs
((a, s)ϕ) fs = (ϕ) f [a 7→s]

s ((a, ?)ϕ) fs = (ϕ) f [a 7→?]
s

(∃sϕ) fs = ∃psc1
. . . ∃pscl

.ϕstr(s) ∧ (ϕ) fs , where ϕstr(s) = AG
∨
c∈Act

(psc ∧
∧
c′ 6=c
¬psc′)

(Aψ) fs = A(ψout(f)→ (ψ) fp ) (A≤Nψ) fs = A≤N (ψout(f)→ (ψ) fp )

where

ψout(f) = G
∧
v∈V

pv → ∨
c∈ActAg

 ∧
a∈dom(f)

pf(a)
ca
∧Xp∆(v,c)

 ,

and for path formulas:

(ϕ) fp = (ϕ) fs (¬ψ) fp = ¬(ψ) fp
(ϕ1 ∨ ϕ2) fp = (ϕ1) fp ∨ (ϕ2) fp (Xψ) fp = X(ψ) fp

(ψUψ′) fp = (ψ) fp U(ψ′) fp (F≤Nψ) fp = F≤N (ψ) fp

One can prove the following lemma, where ϕ is either a Prompt-SL or a BOSL formula.
The translation is essentially the same as in [35] and [7], and the cases for the new operators
should be clear from their semantics.

I Lemma 26. Suppose that dom(f) = dom(χ)∩Ag and for all a ∈ dom(f), f(a) = x implies
χ(a) = χ(x). Then

G, χ, ρ, n |= ϕ if and only if tSG , uρ, n |= (ϕ) f .

Applying this to a sentence Φ, any assignment χ, the initial vertex v0 of G, any bound n
and the empty function ∅, we get that

G |= ϕ if and only if tSG |= (ϕ) ∅.
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Abstract
The concept of fairness for a concurrent program means that the program must be able to
exhibit an unbounded amount of nondeterminism without diverging. Game semantics models
of nondeterminism show that this is hard to implement; for example, Harmer and McCusker’s
model only admits infinite nondeterminism if there is also the possibility of divergence. We solve
a long standing problem by giving a fully abstract game semantics for a simple stateful language
with a countably infinite nondeterminism primitive. We see that doing so requires us to keep
track of infinitary information about strategies, as well as their finite behaviours. The unbounded
nondeterminism gives rise to further problems, which can be formalized as a lack of continuity in
the language. In order to prove adequacy for our model (which usually requires continuity), we
develop a new technique in which we simulate the nondeterminism using a deterministic stateful
construction, and then use combinatorial techniques to transfer the result to the nondeterministic
language. Lastly, we prove full abstraction for the model; because of the lack of continuity, we
cannot deduce this from definability of compact elements in the usual way, and we have to use a
stronger universality result instead. We discuss how our techniques yield proofs of adequacy for
models of nondeterministic PCF, such as those given by Tsukada and Ong.
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and then prints out the current value of v and terminates the whole program. Since we
cannot predict in advance how may cycles of the loop in P will have elapsed by the time
the computation A has completed, the value that ends up printed to the screen may be
arbitrarily large. Furthermore, under the basic assumption that the task scheduler is fair ;
i.e., any pending task must eventually be executed, our program must always terminate by
printing out some value to the screen.

We have therefore built an unbounded nondeterminism machine, that can print out
arbitrarily large natural numbers but which never diverges. This is strictly more powerful
than finitary choice nondeterminism2. What we have just shown is that if we want to solve
the problem of building a fair task scheduler, then we must in particular be able to solve the
problem of building an unbounded nondeterminism machine.

This is an important observation to make about concurrent programming, because the
task of modelling unbounded nondeterminism is difficult – indeed, considerably more so than
that of modelling bounded nondeterminism. Dijkstra argues in [7, Ch. 9] that it is impossible
to implement unbounded nondeterminism, showing that the natural constructs from which we
construct imperative programs satisfy a continuity property that unbounded nondeterminism
lacks. Park [17] shows that these problems can be surmounted if we use a weaker version of
continuity (e.g., ω1- rather than ω-continuity), but the failure of composition to be continuous
is a problem in itself for semanticists, for whom continuity is often a key ingredient in proofs
of computational adequacy and full abstraction.

We shall explore some of these problems and how they may be solved, using game
semantics to give a fully abstract model of a simple stateful language – Idealized Algol –
enhanced with a countable nondeterminism primitive. We begin with a pair of examples
that will illustrate the lack of continuity, from a syntactic point of view. Let nat be our
natural number type and consider a sequence of functions <n : nat → nat, where <n k

evaluates to 0 if k < n and diverges otherwise. In that case, the least upper bound of the <n
is the function that combines all their convergent behaviours; i.e., the function λk.k; 0 that
evaluates its input and then returns 0. If ?: nat is an unbounded nondeterminism machine,
then function application to ? is not continuous; indeed, <m ? may diverge – since ? may
evaluate to m+ 1, say. But (λk.k; 0) ? always converges to 0.

Lack of continuity is a problem in denotational semantics because fixed-point combinators
are typically built using least upper bounds, and proving adequacy of the model typically
requires that these least upper bounds be preserved. In a non-continuous situation, we will
need to come up with new techniques in order to prove adequacy without using continuity.

A closely connected problem with unbounded nondeterminism is that it leads to terms
that may be distinguished only by their infinitary behaviour. A program that flashes a light
an unboundedly nondeterministic number of times cannot reliably be distinguished in finite
time from a program that flashes that light forever: however long we watch the light flash,
there is always a chance that it will stop at some point in the future. From a game semantics
point of view, this corresponds to the observation that it is not sufficient to consider sets of
finite plays in order to define strategies: we must consider infinite sequences of moves as well.

2 Using recursion, we can build a program out of finite nondeterminism that can produce arbitrarily large
natural numbers; however, this program also admits the possibility of divergence, unless we are able to
insist on fairness.
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1.1 Related Work
Our game semantics model bears closest resemblance to that of Harmer and McCusker
[8], which is a fully abstract model of Idealized Algol with finite nondeterminism. Indeed,
our work can be viewed as an extension of the Harmer-McCusker model with the extra
information on infinite plays that we need to model countable nondeterminism.

The idea of adding infinite traces into strategies in order to model unbounded non-
determinism goes back to Roscoe’s work on CSP [20], and is very similar to work by Levy
[13] on game semantics for a higher order language. In particular, we will need something
similar to Levy’s notion of a lively strategy – one that is a union of deterministic strategies –
a property that does not automatically hold when we start tracking infinite plays.

An alternative approach to the game semantics of nondeterminism can be found in
Tsukada and Ong’s sheaf model of nondeterministic PCF [21] and in the more general work
on concurrency by Winskel et al. (e.g., see [22] and [5]), in which there is a very natural
interpretation of nondeterminism. Although we are able to give a model of Idealized Algol
with countable nondeterminism in the more traditional Harmer-McCusker style, it seems
necessary to introduce this extra machinery in order to model stateless languages such as
PCF (and certainly to model concurrency). In the last section of this paper, we will show
how our methods can be applied under very general circumstances, and in particular to some
of these models of nondeterministic stateless languages.

Related work by Laird [11, 12] discusses a semantics for PCF with unbounded non-
determinism based on sequential algorithms and explores the role played by continuity;
however, this semantics is not fully abstract. Laird’s work is interesting because it shows
that we can obtain a traditional adequacy proof for a semantics with one-sided continuity:
composition is continuous with respect to functions, but not with respect to arguments.

The idea of using some constrained version of continuity to prove adequacy for countable
nondeterminism goes back to Plotkin’s work on power-domains [4]. A crucial observation
in both [4] and [11] is that this sort of proof requires a Hoare logic in which we can reason
about all the countable ordinals. We cannot use these techniques here, however, because our
composition is not continuous on either side.

1.2 Contributions
The main concepts of game semantics and the steps we take to establish full abstraction
are well-established, with a few exceptions. The idea of including infinitary information in
strategies is not new, but this particular presentation, though closely related to that of [13],
is the first example of using the technique to establish a compositional full abstraction result
for may and must testing.

Levy’s work in [13] is part of a tradition of techniques used to handle unbounded
nondeterminism operationally, normally using Labelled Transition Systems (see, for example,
[19]). The contribution of this work is to apply the basic idea of including infinitary
information to a compositional setting, where the semantics is built using the algebraic
structure of higher-order programs.

There are two points in the traditional Full Abstraction proof that depend on composition
being continuous, and we have had to come up with ways of getting round them. Firstly,
in the absence of continuity, it no longer suffices to show that we can define every compact
strategy; instead, we need a universality result allowing us to define certain infinite strategies
– specifically, the recursive ones.

CSL 2018
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For the proof of adequacy, we have had to come up with a new technique, which can
be thought of as a kind of synthesis between the two usual methods of proving adequacy –
one involving logical relations and the other using more hands-on operational techniques.
We do this by separating out the deterministic, continuous part of the strategy from the
nondeterministic, discontinuous part. Using the stateful language, we can simulate individual
evaluation paths of a nondeterministic program using a deterministic device that corresponds
to the idea of ‘mocking’ a random number generator for testing purposes. This allows us
to appeal to the adequacy result for deterministic Idealized Algol. We then rely on more
combinatorial techniques in order to factor the nondeterminism back in.

This new technique is actually very generally applicable. We shall show that it may be
used to prove adequacy for models of nondeterministic PCF under very mild assumptions.
The Tsukada-Ong model, for example, satisfies these assumptions, allowing us to obtain an
adequacy result for PCF with countable nondeterminism.

2 Idealized Algol with Countable Nondeterminism

We describe a type theory and operational semantics for Idealized Algol with countable
nondeterminism. The types of our language are defined inductively as follows:

T ::= nat | com | Var | T → T .

Meanwhile, the terms are those given in [3], together with the nondeterministic choice:

M ::= x | λx.M |M M | YT |
n | skip | suc | pred |
If0 | ; | := |
@3 | newT | mkvar | ? .

The typing rule for ? is Γ ` ?: nat. We shall use v to range over variables of type Var.
We define a small-step operational semantics for the language; this presentation is

equivalent to the big-step semantics given in [8], except with a different rule for the countable
rather than finite nondeterminism.

First, we define a Felleisen-style notion of evaluation context E inductively as follows.

E ::= − | EM | suc E | pred E | If0 E |
E; | E := | @E | mkvar E | newTE

We then give the appropriate small-step rules in Figure 1. In each rule, 〈s,M〉 is a
configuration of the language, where M is a term, and s is a store; i.e., a function from the
set of variables free in M to the set of natural numbers. If s is a store and v a variable, we
write 〈s | v 7→ n〉 for the state formed by updating the value of the variable v to n.

If 〈∅,M〉 is a configuration with empty store, we callM a closed term. Given a closed term
M of ground type com or nat, we write that M ⇓ x (where x = skip in the com case and is a
natural number in the nat case) if there is a finite sequence M −→M1 −→ · · · −→Mn = x.
If there is no infinite sequenceM −→M1 −→M2 −→ · · · , then we say thatM must converge,
and write M ⇓must. In general, we refer to a (finite or infinite) sequence M −→M1 −→ · · ·
that either terminates at an observable value or continues forever as an evaluation π of M .

3 That is, variable @ccess.
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〈s, (λx.M) N〉 −→ 〈s,M [N/x]〉 〈s,YTM〉 −→ 〈s,M(YTM)〉

〈s, suc n〉 −→ 〈s, n + 1〉 〈s, pred n〉 −→ 〈s, 0 t (n− 1)〉 〈s, If0 0MN〉 −→ 〈s,M〉

〈s, If0 (n + 1)MN〉 −→ 〈s,N〉 〈s, @(mkvar MN)〉 −→ 〈s,M〉

〈s, (mkvar MN) := L〉 −→ 〈s,N L〉 〈s, v := n〉 −→ 〈〈s | v 7→ n〉, skip〉

s(v) = n
〈s, @v〉 −→ 〈s, n〉 〈s, skip;M〉 −→ 〈s,M〉

〈s, newTλv.M〉 −→ 〈〈s | v 7→ 0〉,M〉
〈s,M〉 −→ 〈s,M ′〉

〈s, E[M ]〉 −→ 〈s, E[M ′]〉

〈s, ?〉 −→ 〈s, n〉
n ∈ N

Figure 1 Small-step operational semantics for Idealized Algol with countable nondeterminism.

Since the only case where we have any choice in which rule to use is the application of the
rule for ?, π may be completely specified by a finite or infinite sequence of natural numbers.

Let T be an Idealized Algol type, and let M,N : T be closed terms. Then we write
M vm&m N if for all contexts C[−] of ground type with a hole of type T , we have

C[M ] ⇓ V ⇒ C[N ] ⇓ V
C[M ] ⇓must⇒ C[N ] ⇓must

We write M ≡m&m N if M vm&m N and N vm&m M .

3 Game Semantics

3.1 Arenas
An arena is given by a triple A = (MA, λA, `A), where

MA is a countable set of moves,
λA : MA → {O,P}×{Q,A} designates each move as either an O-move or a P -move, and
as either a question or an answer. We define λOPA = pr1 ◦λA and λQAA = pr2 ◦λA. We
also define ¬ : {O,P} × {Q,A} → {O,P} × {Q,A} to be the function that reverses the
values of O and P while leaving {Q,A} unchanged.
`A is an enabling relation between MA + {∗} and MA satisfying the following rules:
If a `Ab, then λOPA (a) 6= λOPA (b).
If ∗ `Aa, then λA(a) = OQ and b 6`Aa for all b ∈MA.
If a `Ab and b is an answer, then a is a question.

We say that a move a ∈MA is initial in A if ∗ `Aa.

Our base arenas will be the flat arenas for the types nat and com. Given a set X, the flat
arena on X is the arena with a single O-question q and a P -answer x for each x ∈ X, where
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∗ `q and q `x for each x. The denotations of the types nat and com are the flat arenas N
and C on, respectively, the set of natural numbers and the singleton {a}.

We assume that our arenas are enumerated; i.e., that the set MA is equipped with a
partial surjection N→MA. The denotation of any IA type has a natural enumeration.

Given an arena A, a justified string in A is a sequence s of moves in A, together with
justification pointers that go from move to move in the sequence. The justification pointers
must be set up in such a way that every non-initial move m in s has exactly one justification
pointer going back to an earlier move n in s such that n `Am; we say that n justifies m. In
particular, every justified string begins with an initial move, and hence with an O-question.

A legal play s is a justified string in A that strictly alternates between O-moves and
P -moves and is such that the corresponding QA-sequence formed by applying λQAA to moves
is well-bracketed. We write LA for the set of legal plays in A.

If s is a justified string, we will write sa for an arbitrary justified string extending s by a
single move a, itself justified by some move in s.

3.2 Games and strategies
We use the approach taken by Abramsky and McCusker [3] – a middle road between the
arenas of Hyland and Ong and the games of [2] that makes the linear structure more apparent.

Let s be a legal play in some arena A. If m and n are moves in s such that there is a
chain of justification pointers leading from m back to n, we say that n hereditarily justifies
m. Given some set S of initial moves in s, we write s|S for the subsequence of s made up of
all those moves hereditarily justified by some move in S.

A game is a tuple A = (MA, λA, `A, PA), where (MA, λA, `A) is an arena and PA is
a non-empty prefix-closed set of legal plays in that arena such that if s ∈ PA and I is a
non-empty set of initial moves in s, then s|I ∈ PA.

Our base games will be the games N and C on the arenas of the same names, where
PN = {ε, q} ∪ {qn : n ∈ N} and PC = {ε, q, qa}.

3.2.1 Connectives
Let A,B be games. Then we may define games A×B, A⊗B, A( B and !A as in [3]. As
an example, we give the definition of A( B:

MA(B = MA +MB .

λA(B = [¬ ◦ λA, λB ] .
∗ `A(Bn ⇔ ∗ `Bn .

m `A(Bn ⇔
m `An or m `Bn
or (for m 6= ∗) ∗ `Bm and
∗ `An .

PA(B = {s ∈ LA(B : s|A ∈ PA and s|B ∈ PB} .

3.2.2 Modelling countable nondeterminism
As in [8], we model nondeterministic computations by relaxing the determinism constraint
on strategies – so player P may have multiple replies to any given O-move.

In addition, we have to keep track of any possible divergence in the computation so we
can distinguish terms such as If0 ? Ω 0, which may diverge, and 0, which must converge.
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N1 N2
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Figure 2 Finite plays alone are not sufficient to distinguish between terms of a language with
countable nondeterminism.

To fix this problem, we follow [8] by modelling a strategy as a pair (Tσ, Dσ), where Tσ is
a nondeterministic strategy in the usual sense and Dσ is the set of those O-positions where
there is a possibility of divergence.

We need to take some care when we compose strategies using ‘parallel composition plus
hiding’. Specifically, we need to be able to add new divergences into strategies when they
arise through ‘infinite chattering’ or livelock. For example, the denotation of the term

M = Ynat→nat(λf.λn.n; (fn))

is given by a total strategy, without divergences: namely the strategy µ with plays of the
form shown in Figure 2(a). However, when we compose this strategy with any total strategy
for N on the left, we expect the resulting strategy to contain divergences, since the term
Mn diverges for any n. Semantically, this corresponds to the fact that we have a legal
interaction q q n q n · · · with an infinite tail in N1; when we perform ‘hiding’ by restricting
the interaction to N, we have no reply to the initial move q.

The approach adopted in [8] is to check specifically for infinite chattering between
strategies σ : A ( B and τ : B ( C by checking whether there is an infinite increasing
sequence of interactions between σ and τ with an infinite tail in B. If there is such a sequence,
then it restricts to some O-position in σ; τ and we add in a divergence at that position.

Harmer and McCusker’s approach works very satisfactorily for finite nondeterminism,
but not at all for countable nondeterminism. To see why, consider the term

N = Ynat→nat→nat(λg.λmn.If0 m 0 (n; (g (pred m) n)))? .

This term first chooses a natural number m, and then reads from its input n for a total of m
times before eventually returning 0. Thus, its denotation is the strategy ν with maximal
plays of arbitrary length of the form shown in Figure 2(b). Note that this strategy strictly
contains the strategy µ that we considered before, and therefore that the denotation of
If0 ?MN has the same denotation as N , even though for any n, Mn 6⇓must, while Nn ⇓must.
Moreover, if we try to compose JNK with the strategy on N that always returns 1, then we
end up with an infinite increasing sequence of positions, which triggers the introduction of a
divergent play into the composite strategy – even though N must converge.

Aside from showing that the naive extension of the Harmer-McCusker model cannot be
sound, this example actually leads to composition not being associative (e.g., see [9, 4.4.1]).

What this illustrates is the point made by Park in [17] and [18]: namely, that we can
no longer deduce the infinitary behaviour of a strategy by looking at the limits of its finite
plays; instead, we need to keep track of infinite sequences of moves explicitly, in the style
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of [20] and [13]. When we use this technique, the denotation of M will contain an infinite
sequence, while the denotation of N will contain arbitrarily long finite sequences, but no
infinite sequences.

3.2.3 Strategies
We define an infinite justified string in an arena A in the obvious way. We say such a string
is recursive if it corresponds, via the enumeration on MA, to a pair of recursive functions
N→ N – one giving the sequence of moves and the other giving the justification relation.

We define PA to be PA together with the set of all those recursive infinite justified
sequences that have all finite prefixes in PA. Note that we deliberately ignore any non-
recursive infinitary behaviours, since these cannot be detected by computable contexts.

We shall represent a strategy using two sets: a set Tσ of traces, which takes the role of the
plays that may occur in the strategy (as in the usual definition of a deterministic strategy),
and a second set Dσ of divergences; i.e., O-positions at which the strategy may elect to
diverge. In order to model observational equivalence more closely, we shall require Dσ to
be postfix-closed, since observable contexts cannot detect divergences that occur after the
program might already have diverged: consider, for example, the terms Ωnat→nat or (λn.n)
and Ωnat→nat or (λn.(n or Ωnat)) (where we have defined M or N to be If0 ? M N).

For technical reasons we keep track of infinite plays in both Tσ and Dσ, with the rule that
any infinite play in Tσ must be contained in Dσ (since it clearly corresponds to a divergent
evaluation). We will require that every divergence arise from a trace; i.e., if every play in Dσ

must have some prefix that is contained in both Tσ and Dσ. A consequence of this is that if
d ∈ Dσ is infinite and has no finite prefixes in Dσ, then it must also be contained in Tσ. Not
too much importance should be given, however, to the presence or absence of infinite plays
in Tσ: it is quick to show that once we pass to the intrinsic quotient, any such distinction
vanishes.

Let A be a game. A strategy σ for A is a pair (Tσ, Dσ), where:
Tσ is a non-empty prefix-closed subset of PA such that if s ∈ Tσ is a P -position and
sa ∈ PA then sa ∈ Tσ.
Dσ ⊂ PA is a postfix-closed set of plays in PA that either end with an O-move or are
infinite. We require Dσ to obey the following rules:
Divergences come from traces If d ∈ Dσ then there exists s v d such that s ∈ Tσ∩Dσ.
Diverge-or-reply If s ∈ Tσ is an O-position, then either s ∈ Dσ or sa ∈ Tσ for some sa.
Infinite positions are divergent If s ∈ Tσ is infinite, then s ∈ Dσ.

3.2.4 Composition of strategies
Given games A,B,C, we define a justified string over A,B,C to be a sequence s of moves
with justification pointers from all moves except the initial moves in C. Given such a string,
we may form the restrictions s|A,B and s|B,C by removing all moves in either C or A, together
with all justification pointers pointing into these games. We define s|A,C to be the sequence
formed by removing all moves from B from s and all pointers to moves in B, unless we have
a sequence of pointers a→ b→ c, in which case we replace them with a pointer a→ c.

We call s a legal interaction if s|A,B ∈ PA(B, s|B,C ∈ PB(C and s|A,C ∈ PA(C . We
write int∞(A,B,C) for the set of (possibly infinite) legal interactions between A, B and C.

Now, given strategies σ : A( B and τ : B ( C, we define

Tσ‖Tτ = {s ∈ int∞(A,B,C) : s|A,B ∈ Tσ, s|B,C ∈ Tτ} ,

and then set Tσ;τ = {s|A,C : s ∈ Tσ‖Tτ}.
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As for divergences in σ; τ , our approach is actually simpler than that in [8]; we set

Dσ Dτ =

s ∈ int∞(A,B,C)

∣∣∣∣∣∣
either s|A,B ∈ Dσ and s|B,C ∈
Tτ
or s|A,B ∈ Tσ and s|B,C ∈ Dτ

 .

We then set Dσ;τ = poclA(C{s|A,C : s ∈ Dσ Dτ}, where poclX denotes the postfix closure
of X; i.e., the set of all O-plays in PA(C that have some prefix in X.

Note that there is no need to consider separately, as Harmer and McCusker do, divergences
that arise through ‘infinite chattering’: in our model, we will see that a case of infinite
chattering between strategies σ and τ is itself a legal interaction between the two strategies,
which is necessarily divergent (because it is infinite) and therefore gives rise to some divergence
in σ; τ .

We need to impose one more condition on strategies:

I Definition 1. Let σ be a strategy for a game A. We say that σ is complete if Tσ = Tσ;
i.e., Tσ contains an recursive infinite play s if it contains every finite prefix of s.

Any finite-nondeterminism strategy in the sense of [8] may be interpreted as a complete
strategy by enlarging it with all its infinite recursive limiting plays. However, when we
introduce countable nondeterminism, we also introduce strategies that are not complete. For
example, the strategy ν that we mentioned above has an infinite increasing sequence of plays
q0 v q0q0 v · · · , but has no infinite play corresponding to its limit. Nonetheless, we do
not want to allow arbitrary strategies: for example, the strategy µ above should include the
infinite play qq0q0 . . . ; the strategy µ◦ formed by removing this infinite play has no meaning
in our language. Indeed, if we compose µ◦ with the strategy 0 for N on the left, then the
resulting strategy does not satisfy diverge-or-reply. The difference with ν is that every play
qq0 · · · q0 ∈ Tν may be completed in ν by playing the move 0 on the right. In other words, ν
is the union of complete strategies, while µ◦ is not.

I Definition 2. Let σ be a strategy for a game A. We say that σ is locally complete if it may
be written as the union of complete strategies; i.e., there exist σi such that Tσ =

⋃
Tσi and

Dσ =
⋃
Dσi . Note that since Tσ and Dσ are countable sets (because there are countably

many recursive plays), this union may be taken to be countable.

It will be slightly more convenient to use an equivalent definition, based on unions of
deterministic strategies, which are a special case of complete strategies.

I Definition 3. We say that a strategy σ for a game A is deterministic if
it is complete;
if sa, sb are P -plays in Tσ then a = b and the justifier of a is the justifier of b;
if s ∈ Dσ then either s is infinite or there is no a such that sa ∈ Tσ.

We say that a strategy σ is lively or locally deterministic if there exists a collection of
deterministic strategies σi such that Tσ =

⋃
Tσi and Dσ =

⋃
Dσi . It is clear that a strategy

is lively if and only if it is locally complete, and that the collection of σi may again be taken
to be countable.

From now on, we will use strategy to mean lively (or locally complete) strategy. This
means that we will need to show that the composition of lively strategies is again lively.

I Lemma 4. Let A,B,C be games and let σ : A( B, τ : B ( C be deterministic strategies.
Then σ; τ is complete.
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Proof. The proof relies on a lemma from [10] that states (in our language) that if σ and τ
are deterministic strategies and s ∈ Tσ;τ then there is a unique minimal s ∈ Tσ‖Tτ such that
s|A,C = s. That means that if s1 v s2 v · · · is an infinite increasing sequence of plays in Tσ;τ ,
with limit s, then there is a corresponding infinite increasing sequence of legal interactions
s1 v s2 v · · · . Then the limit of the si is an infinite legal interaction s and we must have
s|A,B ∈ σ, s|B,C ∈ τ by completeness of σ and τ . Therefore, s = s|A,C ∈ Tσ;τ . J

It is, of course, true that the composition of deterministic strategies is deterministic, but
we do not really need this fact.

I Corollary 5. The composition of strategies σ : A ( B and τ : B ( C is a well-formed
strategy for A( C.

Proof. The only tricky point is establishing that diverge-or-reply holds for σ; τ . Again, it
is sufficient to prove this in the case that σ and τ are deterministic and complete. Then it
essentially follows from the argument used in [1] that shows that a partiality at an O-position
s ∈ Tσ;τ must arise either from a partiality in Tσ or Tτ or from ‘infinite chattering’ between
σ and τ . In the first case, the diverge-or-reply rule for σ and τ gives us a divergence at s in
σ; τ . In the second case, an infinite chattering between σ and τ corresponds to an infinite
interaction s ∈ int∞(A,B,C) (with a tail in B) such that s|A,C = s. Completeness for σ and
τ tells us that s|A,B ∈ Dσ and s|B,C ∈ Dτ and therefore that s|A,C ∈ Dσ;τ . J

3.2.5 Associativity of composition
The proof of associativity of composition is the same in our model as it is in any other
model of game semantics if we treat infinite plays the same as finite ones. However, it is
worth saying a few words about associativity, since the model obtained by naively extending
the Harmer-McCusker model to unbounded nondeterminism does not have an associative
composition. The point is that there is not really a problem with associativity itself, but
rather that this naive model gives the wrong result for the composition of strategies with
infinite nondeterminism. For example, if ν is the strategy we defined above, and 0 is the
‘constant 0’ strategy on N, then 0; ν has a divergence in the naive model, because the strategies
0 and ν appear to be engaged in infinite chattering. In our model, on the other hand, the
strategy ν contains no infinite plays, and so no divergences arise in the composition.

3.3 A symmetric monoidal closed category
Given a game A, we define a strategy idA on A( A, where TidA is given by

{s ∈ PA1(A2 : for all even-length t v s, t|A1 = t|A2} ,

where we distinguish between the two copies of A by calling them A1 and A2, and where
Dσ is the set of all infinite plays in Tσ. This is an identity for the composition we have
defined, and so we get a category GND of games and nondeterministic strategies. Moreover,
the connectives ⊗ and ( exhibit GND as a symmetric monoidal closed category.
GND has an important subcategory GD of deterministic complete strategies; this category

is isomorphic to the category considered in [3].

3.4 A Cartesian closed category
We follow the construction given in [3], using the connectives ! and × to build a Cartesian
closed category G!

ND from GND whose objects are the well-opened games in GND and where
a morphism from A to B in G!

ND is a morphism from !A to B in GND.
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This is similar to the construction of a co-Kleisli category for a linear exponential comonad,
but technical issues relating to well-openedness prevent us from presenting it in this way.

3.5 Constraining strategies
Given a non-empty justified string s, we define the P -view psq of s inductively as follows.

psmq = m, if m is initial;
psntmq = psqnm , if m is an O-move and

n justifies m;
psmq = psqm, if m is a P -move.

We say that a play sm ending in a P -move is P -visible if the justifier of m is contained in
pmq. We say that a strategy σ for a game A is visible if every P -position s ∈ Tσ is P -visible.
It can be shown that the composition of visible strategies is visible, and that we can build a
Cartesian closed category using our exponential.

After passing to the intrinsic quotient, the resulting category G!
D,vis of games and

deterministic visible strategies is a fully abstract model of Idealized Algol [3].

3.6 Recursive strategies
Most full abstraction results go via a definability result that says that all compact strategies
are definable [6]. However, deducing full abstraction from compact definability makes essential
use of continuity properties that are absent when we deal with countable nondeterminism.
We will therefore need to appeal to a stronger result – that of universality, which states that
every strategy is definable. Clearly, universality does not hold for any of our categories of
games – for example, there are many non-computable functions N→ N. However, Hyland
and Ong proved in [10] that every recursively presentable innocent strategy is PCF-definable.

If σ is a complete strategy for a game A, we say σ is recursive if Tσ ∩PA and Dσ ∩PA are
recursively enumerable subsets of ωω (under the enumeration of MA). Here, we throw away
the infinite plays in Tσ and Dσ, but we do not lose any information because σ is complete.

If σ is lively, we say that σ is recursive, and if σ is the union of complete recursive
strategies σ1, σ2, · · · , where the map i 7→ σi is a recursive function N→ (N→ N)→ 2.

Note that there are plenty of strategies that we want that are not the union of a recursive
sequence of deterministic strategies – for example, the strategy on (N→ C)→ C that calls
its natural-number argument infinitely many times is complete and has no O-branching, but
its infinite traces include every recursive sequence of natural numbers.

Using these definitions, it seems to be hard to prove that the composition of recursive
strategies is itself a recursive strategy: the tricky point is to show that the decomposition into
complete strategies may still be taken to be given by a recursive strategy. The example in the
previous paragraph shows that we cannot use the same proof as we did in the non-recursive
case, which used deterministic strategies. Fortunately, we do not need to be able to show
that the composition of recursive strategies is recursive in order to prove our full abstraction
result, so we leave this problem for future work.

In the case that σ is recursive and deterministic, we can prove the following result.

I Proposition 6 (Recursive Universality for Idealized Algol). Let S be an Idealized Algol type
and let σ : JSK be a recursive deterministic strategy. Then there exists a term M : S of
Idealized Algol such that σ = JMK.
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Proof. We use the ‘innocent factorization’ result of [3] to reduce to the innocent case and
the proceed in a manner similar to the argument used in [16]. J

Note that Proposition 6 is sharper than the result in [10], which only proves that every
recursive strategy may be defined up to observational equivalence. Idealized Algol allows
us to store variables and then use them multiple times without having to read them again,
which allows us to to define all recursive visible strategies exactly. Compare with [16], which
proves a similar result for call-by-value PCF.

3.7 Deterministic Factorization
Our definability results will hinge on a factorization theorem, showing that every non-
deterministic strategy may be written as the composition of a deterministic strategy with
the nondeterministic ‘oracle’ >N. We can then deduce universality from universality in the
model of deterministic Idealized Algol.

Note that our result is a bit simpler than in [8] because of the unbounded nondeterminism.

I Proposition 7. Let σ : I → A be a strategy for a game A in GND. Then we may write σ
as >N; Det(σ), where Det(σ) : !N→ A is a deterministic strategy and >N : N is the strategy
that contains every play in !N and has no finite divergences.

Proof. We begin by fixing an injection codeA from the set of P -moves in A into the natural
numbers. In the enumerated case, this is given to us already.

We first assume that the strategy σ is complete. Then the strategy Det(σ) is very easy
to describe. For each O-position s ∈ Tσ, we have some set B of possible replies to s, which
we order as b1, b2, · · · , where codeA(b1) < codeA(b2) < · · · . We insert a request to the oracle
for a natural number; then, depending on her answer j, we play the next move as follows:

If 0 < j ≤ codeA(b1), then play b1.
If codeA(bn) < j ≤ codeA(bn+1) then play bn+1.
If j = 0 and s ∈ Dσ, then play nothing, and put the resulting play inside DDet(σ).
Otherwise, play b1.

We close under limits to make the strategy Det(σ) complete. Det(σ) is clearly deterministic.
Checking that >N; Det(σ) = σ is easy for finite plays; for infinite plays, it follows by
completeness of σ.

Lastly, if σ is the union of complete strategies σ1, σ2, · · · , we insert an additional request
to the oracle immediately after the very first move by player O; after receiving a reply k, we
play according to σk. J

Note that Det(σ) is recursive if σ is and is visible if σ is.

4 Full abstraction

4.1 Denotational Semantics
The category in which we shall model our language is the category G!

ND,vis – the Cartesian
closed category of (enumerated) games with nondeterministic visible strategies. We have
a natural embedding G!

D,vis ↪→ G!
ND,vis, and we know that G!

D,vis is a universal and fully
abstract model of Idealized Algol.

We model the language compositionally, using denotations as in [8] for the nondeterministic
constants and modelling ? using the strategy >N : N.
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Any term M : T of Idealized Algol with countable nondeterminism may be written as
M = C[?], where C is a multi-holed context not involving the constant ?. Then the term
λn.C[n] is a term of Idealized Algol, and therefore has a denotation !N→ JT K as in [3].

I Lemma 8. The term C[?] has the same denotation as the term (λn.C[n])?.

Proof. This is a straightforward argument by structural induction on C, and the constant >N
does not really play a role. We prove inductively on T that if Γ `C[?] : T is a term-in-context,
then its denotation may be given by the following composite.

JΓK lunit;(>N×id)−−−−−−−−→ N× JΓK JΓ,n : nat `C[n] : T K−−−−−−−−−−−−−→ JT K J

4.2 Computational Adequacy
The computational adequacy result for our model can be stated as follows.

I Proposition 9 (Computational Adequacy). Let M : com be a closed term of nondeterministic
Idealized Algol. M ⇓ skip if and only if qa ∈ TJMK. M ⇓must if and only if DJMK = ∅.

Traditional proofs of computational adequacy using logical relations make essential use
of the continuity of composition with respect to a natural ordering on strategies (see, for
example, [8] and [9] for the finite nondeterminism case). In our case, since composition is not
continuous in the language itself, we cannot use this technique. In order to prove adequacy,
we use a new technique that involves using a deterministic stateful construction to model
the nondeterminism inside a deterministic world in which continuity holds. To do this, we
shall return to the concept of an evaluation π of a term as a sequence of natural numbers
encoding the nondeterministic choices that we have made.

I Lemma 10. Let M = C[?] be a term of type com, where C[−] is a multi-holed context of
(deterministic) Idealized Algol. Write σM for the denotation of the term λn.C[n].

If M ⇓ skip then there exists some total deterministic strategy σ : !N such that qa ∈ Tσ;σM .
If M 6 ⇓must then there exists some total deterministic strategy σ : !N such that Dσ;σM 6= ∅.

Proof. Let n1, . . . , nk, d be a finite sequence of natural numbers. We define an Idealized
Algol term Nn1,...,nk,d : (nat→ com)→ com to be the following.

λf.newnat(λv.f(v := (suc @v); casek+1 @v Ω n1 · · ·nkd)) .

Here, casek+1 a n0 · · · nk d is a new shorthand that evaluates to ni if a evaluates to i, and
evaluates to d if a evaluates to j > k. This term calls the function f , passing in n1 the first
time, n2 the second and so on, passing in d at every call beyond k + 1.

Now let π be a finite evaluation of 〈s, C[?]〉 that converges to skip. Encode π as a sequence
n1, . . . , nk. Let d be some arbitrary number. Then we can show that the following term also
converges to skip in the same way:

Nn1,...,nk,d(λn.C[n]) .

The idea here is similar to one used in testing; we want to test the behaviour of a non-
deterministic program, and to do so we mock the random number generator in order to
simulate a particular evaluation path using purely deterministic programs.

If instead π is a finite evaluation of 〈s, C[?]〉 that diverges (but nevertheless only involves
finitely many calls to the nondeterministic oracle), then the term Nn1,...,nk,d(λn.C[n]) will
diverge according to the same execution path.
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Digging into the construction of new within Idealized Algol, as given in [3], we see that
for any term F of type nat→ com the denotation of Nn1,...,nk,dF is given by the composite

I
cell0−−→ !Var

!Jλv.v:=(suc @v);casek+1 @v Ω n1···nkdK−−−−−−−−−−−−−−−−−−−−−−−−−→ !N JF K−−→ C .

We set σπ to be the composite of the left two arrows. Observe that σπ is the strategy with
unique maximal infinite play as follows.

q n1 · · · q nk q d q d · · ·

Setting F = λn.C[n], we see that JF K = σM . So, by adequacy for the Idealized Algol model,
qa ∈ Tσπ ;σM if and only if we have Nn1,...,nk,d(λn.C[n]) ⇓ skip, which is the case if and only
if M ⇓ skip along the evaluation π. Similarly, Dσπ ;σM 6= ∅ if and only if Nn1,...,nk,d(λn.C[n])
diverges, which is equivalent to saying that M diverges along the evaluation π.

Lastly, we need to deal with the case that there is an infinite evaluation π = n1, n2, . . .

of M that consults the nondeterministic oracle infinitely often. In this case, M must
certainly diverge along the evaluation π. For each j, we define π(j)

n to be the strategy for !N
corresponding to the term Nn1,...,nj ,Ω. So π

(j)
n has a unique finite maximal play

q n1 q n2 · · · q nj q ,

at which point the strategy has a partiality.
Evaluation of the term Nn1,...,nj ,Ω(λn.C[n]) must diverge, since it will proceed according

to the evaluation π and eventually reach the divergence (since π consults the oracle infinitely
often). This implies that D

σ
(j)
π ;σM

6= ∅ for all j.
We define σπ to be the least upper bound of the σ(j)

π (e.g., in the sense of [8]). Since
composition is continuous for deterministic (!) strategies, we deduce that Dσπ ;σM 6= ∅.

σπ has plays of the form q n1 q n2 · · · , and so it is total. J

From the proof of this result, we can establish the converse, which we will also need.

I Lemma 11. Let M = C[?] be as before. Let σ : !N be a total deterministic strategy.
If qa ∈ Tσ;σM then M ⇓ skip.
If Dσ;σM 6= ∅ then M 6⇓must.

Proof. Since σ is total and deterministic, it must have a maximal infinite play sσ of the
form q m1 q m2 · · · , where m1,m2, . . . is some infinite sequence of natural numbers. If the
strategy σM contains some play s such that s|!N = s, then σ = σπ for some infinite evaluation
π of M . Otherwise, let t be the maximal sub-play of s such that s|!N = t for some s ∈ σM .
Then, if we replace σ with the strategy σ′ that plays according to t and subsequently plays
q d q d · · · for our fixed value d, we will have σ′;σM = σ;σM . In either case, σ′ = σπ for
some evaluation π of the term M .

Now suppose that there exists σ : !N such that qa ∈ Tσ;σM . We may assume that σ = σπ
for some evaluation π of M . Therefore, qa ∈ Tσπ ;σM , which means that M ⇓ skip along π.
The corresponding statement for must convergence follows in the same way. J

Note that these last two lemmas may be cast entirely in the model of deterministic
Idealized Algol given in [3], since they only refer to the denotations of deterministic terms.
We can therefore prove a more general version of Proposition 9.

I Definition 12. Let σ : A→ B be a (deterministic) strategy. We say that σ is winning if
every play in σ may be extended to a play that ends with a P -move in B; i.e., σ is total and
contains no sequences having an infinite tail in A.
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This definition is motivated by Lemmas 10 and 11 in the following sense: if σM : N→ C
is a strategy, then there exists some σM such that Dσ;σM 6= ∅ if and only if σ is not winning.

The following is now an easy corollary of Lemmas 10 and 11.

I Corollary 13. Let C be a Cartesian closed category that admits a faithful Cartesian functor
J : G!

vis ↪→ C. Let >N : 1 → JN be a morphism in C and use it to extend the semantics of
Idealized Algol of G!

vis to a semantics of nondeterministic Idealized Algol, as in Section 4.1.
Suppose we have two predicates ⇓ skip and ⇓must defined on strategies 1 → JC in C

satisfying the following rules for all strategies σ : N→ C in G!
vis.

(>N; Jσ) ⇓ skip if and only if there is some s ∈ σ such that s|C = qa.
(>N; Jσ) ⇓must if and only if σ is winning.

Then the semantics of nondeterministic Idealized Algol inside C is adequate in the following
sense. For all terms M of nondeterministic Idealized Algol of type com:

M ⇓ skip if and only if JMK ⇓ skip.
M ⇓must if and only if JMK ⇓must.

We can then deduce Proposition 9 by verifying that the following predicates on strategies
σ : 1→ C in the category G!

ND,vis satisfy the conditions of Corollary 13.
σ ⇓ skip ⇔ qa ∈ Tσ.
σ ⇓must ⇔ Dσ = ∅.

Corollary 13 is very general, and is intended to be applied in multiple situations. In
particular, it may be applied to a game semantics in which we define a ‘nondeterministic
visible strategy’ on a game A to be a deterministic visible strategy for N → A, up to a
suitable equivalence relation. This model is an example of a much more general construction
that is the subject of ongoing research by the authors. In this sense, our main model based
on nondeterministic strategies is not necessary in order to obtain our full abstraction result.
Nevertheless, we felt it important to give a model based on nondeterministic strategies, since
these are the ‘natural’ game semantic interpretation of nondeterminism.

4.3 Intrinsic Equivalence and Soundness
We define intrinsic equivalence of strategies as follows. If σ, τ are two strategies for a game A,
we say that σ ∼ τ if for all test morphisms α : A→ C we have σ;α = τ ;α. Having defined
this equivalence, we may prove soundness in the usual way.

I Theorem 14 (Soundness). Let M,N be two closed terms of type T . If JMK ∼ JNK then
M ≡m&m N .

For full abstraction, we need to take the intrinsic quotient in order to identify, for example,
the terms λn.Ω and λn.If0 n Ω Ω: nat→ nat. These terms are observationally equivalent,
but their denotations are not equal; for example, q ∈ DJλn.ΩK, but q 6∈ DJλn.If0 n Ω ΩK.

The point here is that even though q is not explicitly a divergence in the second case, it
is nonetheless impossible to prevent the strategy from eventually reaching a divergence.

Given a nondeterministic strategy σ for a game A, we may treat σ as a game in its own
right (a sub-game of A). Moreover, for any s ∈ Tσ, we have a particular branch of that game
in which play starts at s. We say that s is unreliable if player P has a strategy for the game
starting at s that ensures that the (possibly infinite) limiting play is in Dσ.

We then say that a strategy σ is divergence-complete if every unreliable point of σ is
contained in Dσ. Every strategy σ can clearly be extended to a minimal divergence-complete
strategy dc(σ); Murawski’s explicit characterization of the intrinsic collapse [15], which may
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be applied to our model, essentially says that σ ∼ τ if and only if σ and τ have the same
complete plays and dc(σ) = dc(τ).

An important fact about intrinsic equivalence is the following Lemma, whose proof makes
use of the fact that the infinite plays in our strategies are given by recursive functions.

I Lemma 15. Let σ, τ be strategies for a game A. Suppose that σ;α = τ ;α for all recursive
strategies α : A→ C. Then σ ∼ τ .

4.4 Universality

Let S, T be Idealized Algol types and let σ : S → T be a recursive morphism in G!
ND,vis. We

want to prove that σ is the denotation of some term.
By our nondeterministic factorization result, we know that σ = >N; Det(σ), where Det(σ)

is a deterministic recursive strategy. By universality for G!
D,vis, we know that Det(σ) = JMK

for some closed term M : S → T . Then σ = >N; Det(σ) = J?K ; JMK = JM ?K.

4.5 Full abstraction

I Theorem 16 (Full abstraction). Let M,N be two closed terms of type T . If M ≡m&m N

then JMK ∼ JNK.

Proof. Let A = JT K. Suppose that JMK 6∼ JNK; so there is some strategy α : A → C such
that JMK ;α 6= JNK ;α. By Lemma 15, we can choose α to be recursively presentable; by
universality, we have α = JP K for some closed term P of type T → com. Then we have
JMK ; JP K 6= JNK ; JP K; by computational adequacy, it follows that M 6 ≡m&mN . J

5 Conclusion

We conclude by making a few remarks about the situation when our base deterministic
language is PCF rather than Idealized Algol.

The principal difficulties in modelling nondeterministic stateless languages were overcome
by Tsukada and Ong in [21], where they outlined how to define an innocent nondeterministic
strategy by retaining ‘branching time information’ in strategies. An additional benefit of the
retention of branching time information is that we no longer need to keep track of infinite
plays in order to model unbounded nondeterminism. Tsukada and Ong’s primary model was
based on sheaves over a site of plays, but they also give a more direct way of characterizing
nondeterministic innocence, based on ideas by Levy [14].

The model given in [21] is not sound for must-equivalence, but the authors make the
claim that it their model may be easily modified to yield a model that is sound for this type
of equivalence, using the same techniques from [8] that we have used.

We could use our methods to help establish this claim in the case of unbounded non-
determinism; specifically, our proof of adequacy will extend to such a model. Indeed, Corollary
13 can easily be modified to apply to PCF, even though we have used Idealized Algol terms
in the proof. Corollary 13 then reduces the proof of adequacy to a combinatorial check on
morphisms from N → C on strategies in the well-known category G!

vis, together with an
examination of what happens to those strategies when we compose them with >N.
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Abstract
Modern logics of dependence and independence are based on different variants of atomic de-
pendency statements (such as dependence, exclusion, inclusion, or independence) and on team
semantics: A formula is evaluated not with a single assignment of values to the free variables,
but with a set of such assignments, called a team.

In this paper we explore logics of dependence and independence where the atomic depend-
ency statements cannot distinguish elements up to equality, but only up to a given equivalence
relation (which may model observational indistinguishabilities, for instance between states of a
computational process or between values obtained in an experiment).

Our main goal is to analyse the power of such logics, by identifying equally expressive frag-
ments of existential second-order logic or greatest fixed-point logic, with relations that are closed
under the given equivalence. Using an adaptation of the Ehrenfeucht-Fraïssé method we fur-
ther study conditions on the given equivalences under which these logics collapse to first-order
logic, are equivalent to full existential second-order logic, or are strictly between first-order and
existential second-order logic.
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1 Introduction

Logics of dependence and independence (sometimes called logics of imperfect information)
originally go back to the work of Henkin [9], Enderton [2], Walkoe [16], Blass and Gurevich
[1], and others on Henkin quantifiers, whose semantics can be naturally described in terms of
games of imperfect information. A next step in this direction have been the independence-
friendly (IF) logics by Hintikka and Sandu [10] that incorporate explicit dependencies of
quantifiers on each other and where again, the semantics is usually given in game-theoretic
terms. For a detailed account on independence-friendly logics we refer to [13].

An important achievement towards the modern framework for logics of dependence
and independence has been the model-theoretic semantics for IF-logics, due to Hodges
[11], in terms of what he called trumps. This semantics is today called team semantics,
where a team is understood as a set of assignments s : V → A, mapping a common finite
domain of variables into the universe of a structure. The next step towards modern logics of
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dependence and independence was the proposal by Väänänen [15] to consider dependencies
as atomic properties of teams rather than stating them via annotations of quantifiers. He first
introduced dependence logic, which is first-order logic on teams together with dependence
atoms dep(x1, . . . , xm, y), saying that, in the given team, the variable y is functionally
dependent on (i.e. completely determined by) the variables x1, . . . , xm. But there are
many other atomic dependence properties that give rise to interesting logics based on team
semantics. In [8] we have discussed the notion of independence (which is a much more
delicate but also more powerful notion than dependence) and introduced independence logics,
and Galliani [5] and Engström [3] have studied several logics with team properties based on
notions originating in database dependency theory. The most important ones are inclusion
logic FO(⊆), which extends first-order logic by atomic inclusion dependencies (x̄ ⊆ ȳ), which
are true in a team X if every value for x̄ in X also occurs as a value for ȳ in X, and exclusion
logic, based on exclusion statements (x̄ | ȳ), saying that x̄ and ȳ have disjoint sets of values
in the team X. Exclusion logic has turned out to be equivalent to dependence logic [5].

Altogether this modern framework has lead to a genuinely new area in logic, with an
interdisciplinary motivation of providing logical systems for reasoning about the fundamental
notions of dependence and independence that permeate many scientific disciplines. Methods
from several areas of computer science, including finite model theory, database theory, and
the algorithmic analysis of games have turned out as highly relevant for this area. For more
information, we refer to the volume [4] and the references there.

In this paper we explore logics that are based on weaker variants of dependencies. We
consider atomic dependence statements that do not distinguish elements up to equality, but
only up to coarser equivalencies. This is motivated by the quite familiar situation in many
applications that elements, such as for instance states in a computation or values obtained
in experiments, are subject to observational indistinguishabilities, which we model here via
an equivalence relation ≈ on the set of possible values. For dependence atoms dep≈(x̄, y)
this means that we can say that whenever the values of x̄ are indistinguishable for certain
assignments in a team, then so are the values of y. Similarly an exclusion statement between
x and y, up to an equivalence relation ≈, says that no value for x in the team is equivalent
to a value of y, and an inclusion statement x ⊆≈ y means that every value for x is equivalent
to some value for y. Finally, the most powerful of such notions, independence of x and y up
to equivalence, means that additional information about the equivalence class of the value
of one variable does not help to learn anything new about the value of the other, or to put
it differently, whenever a value a for x and a value b for y occur in the team, then there
is an assignment in the team whose value for x is equivalent to a and whose value for y is
equivalent to b.

Formal definitions of these dependencies, extended to tuples of variables, will be given in
the next section.

The main goal of this paper is to understand the expressive power of the logics with
dependencies up to equivalence. In general, logical operations on teams have a second-order
nature, and indeed, dependencies and team semantics may take the power of first-order logic
FO up to existential second-order logic Σ1

1. To make this precise we recall the standard
translation, due to [15, 12], from formulae with team semantics into sentences of existential
second-order logic.

First of all, we have to keep in mind the different nature of team semantics and classical
Tarski semantics. For a formula with team semantics, we write A |=X ϕ to denote that ϕ is
true in the structure A for the team X, and for classical Tarski semantics we write A |=s ϕ

to denote that ϕ is true in A for the assignment s.
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For formulae with free variables the translation from a logic with team semantics into one
with Tarski semantics requires that we represent the team in some way. The standard way
to do this is by identifying a team X of assignments s : {x1, . . . xk} → A with the relation
{s(x1, . . . , xk) ∈ Ak : s ∈ X} ⊆ Ak which, by slight abuse of notation, we also denote by X.
One then translates formulae ϕ(x1, . . . , xk) of vocabulary τ of a logic L with team semantics
into sentences ϕ∗ in Σ1

1 of the expanded vocabulary τ ∪ {X} such that for every structure A

and every team X we have that

A |=X ϕ(x1, . . . , xk) ⇐⇒ (A, X) |= ϕ∗.

To illustrate this second-order nature we recall the meaning of disjunctions and existential
quantifications in team semantics, and their standard translation into Σ1

1. Disjunctions split
the team, i.e..

A |=X ψ ∨ ϕ :⇐⇒ X = Y ∪ Z such that A |=Y ψ and A |=Z ϕ

which leads to the translation (ψ∨ϕ)∗(X) := ∃Y ∃Z(X = Y ∪Z∧ψ∗(Y )∧ϕ∗(Z)). Existential
quantification requires the extension of the given team by providing for each of its assignments
a non-empty set of witnesses for quantified variables, i.e.,

A |=X ∃yψ :⇐⇒ there exists a function F : X → P+(A) such that A |=X[y 7→F ] ψ

where X[y 7→ F ] is the set of all assignments s[y 7→ a] that update an assignment s ∈ X by
mapping y to some value a ∈ F (s). This leads to the translation (∃yψ)∗(X) := ∃Y ∀x̄((Xx̄↔
∃yY x̄y) ∧ ψ∗(Y )).

Some remarks are in order: One may wonder why it is appropriate to provide a non-empty
set of witnesses for an existentially quantified variable rather than just a single witness as
in standard Tarski semantics for first-order logic. Indeed there are many cases where a
single witness, i.e. a function F : X → A rather than F : X → P+(A) suffices, in fact in
all cases where the logic is downwards closed, i.e. when A |=X ψ implies that also A |=Y ψ

for all subteams Y ⊆ X. Examples of downwards closed logics are dependence logic and
exclusion logic. However, for logics that are not downwards closed, such as inclusion logic and
independence logic, the so-called strict semantics requiring single witnesses of existentially
quantified variables leads to pathologies such as non-locality: the meaning of a formula might
depend on the values of variables that do not even occur in it. A second relevant remark is
that all the logics considered here have the empty team property: For all sentences ϕ and all
structures A, we have that A |=∅ ϕ. To evaluate sentences (formulae without free variables)
we therefore have to consider not the empty team, but the team {∅} consisting just of the
empty assignment. For a sentence ψ we write A |= ψ if A |={∅} ψ.

On the basis of the standard translation in Σ1
1 we can say that we understand the expressive

power of a first-order logic with dependencies, when we have identified the fragment F of
existential second-order logic which is equivalent in the sense just described. The following is
known in this context:
(1) Dependence logic and exclusion logic are equivalent to the fragment of all Σ1

1-sentences
ψ(X) in which the predicate X describing the team appears only negatively [12].

(2) Independence logic and inclusion-exclusion logic are equivalent with full Σ1
1 (and thus

can describe all NP-properties of teams) [5].
(3) The extension of FO by inclusion and exclusion atoms of single variables only (not tuples

of variables) is equivalent to monadic Σ1
1 [14].
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(4) First-order logic without any dependence atoms has the so-called flatness property:
A |=X ϕ ⇐⇒ A |=s ϕ for all s ∈ X. It thus corresponds to a very small fragment of Σ1

1,
namely FO-sentences of form ∀x̄(Xx̄→ ϕ(x̄)) where ϕ(x̄) does not contain X.

(5) Inclusion logic FO(⊆) corresponds to GFP+, the fragment of fixed-point logic that
uses only (non-negated) greatest fixed-points. Since a greatest fixed-point formula
[gfpRx̄ . ψ(R, x̄)](ȳ) readily translates into (∃R)((∀x̄(Rx̄→ ψ(R, x̄)) ∧Rȳ)), GFP+ can
be viewed as a fragment of Σ1

1. Galliani and Hella [6] established that inclusion logic is
equivalent to the set of sentences of form ∀x̄(Xx̄→ ψ(X, x̄)), where ψ(X, x̄) is a formula
in GFP+ in which X occurs only positively. A different proof for this result, based on
safety games and game interpretations, has been presented in [7].

Hence the question arises how these fragments change when the standard dependency
notions are replaced by dependencies up to equivalence. There is a natural conjecture: One
has to restrict existential second-order quantification to relations that are closed under the
given equivalence relation, i.e. to relations that can be written as unions of equivalence classes
(where equivalence is extended to tuples component-wise). We denote the resulting variant
of existential second-order logic by Σ1

1(≈).
Notice however, that to decide this conjecture is far from being trivial and, in fact, the

restriction of the standard translation to quantification over ≈-closed relations fails. Even
for simple disjunctions, the existential second-order expression given above describing the
split of the team will not work anymore once we restrict quantification to ≈-closed relations
because we cannot assume that the relevant subteams are ≈-closed. Here is a simple example,
not even involving any dependencies: Consider the formula x = y ∨ x 6= y which is trivially
true in any team X, by the split X = Y ∪ Z where Y contains the assignments s which
s(x) = s(y) and Z = X \ Y (and this is the only split that works). However if there are
elements a 6= b with a ≈ b then in general neither Y nor Z are ≈-closed, even if X is.

Nevertheless we shall prove that the conjecture is true, and that we can characterize the
expressive power of dependence logics up to equivalence by appropriate fragments of Σ1

1(≈).
This is based on a much more sophisticated translation from logics with team semantics into
existential second-order logic that adapts ideas from [14]. We shall also present a fragment
of GFP+ that has the same expressive power as inclusion logic up to equivalence.

Our next question is then how the expressive power of Σ1
1(≈), and hence logics of

dependence up to equivalence, compare to first-order logic and to full Σ1
1. Of course this

depends on the properties of the underlying equivalence relation, notably on the number and
sizes of its equivalence classes.

(1) On any class of structures on which ≈ has only a bounded number of equivalence classes,
Σ1

1(≈), and hence all logics with dependencies up to equivalence as well, collapse to FO.

(2) On any class of structures in which all equivalence classes have bounded size, and only a
bounded number of classes have more than one element, Σ1

1(≈) ≡ Σ1
1.

(3) In general, and in particular on the classes of structures where all equivalence classes have
size at most k (for k > 1), or that have only a bounded number of equivalence classes of
size >1, the expressive power of Σ1

1(≈), and all the considered logics of dependence up
to equivalence, are strictly between FO and Σ1

1.
To prove this we shall use appropriate variants of Ehrenfeucht-Fraïssé games for these logics.
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2 The Logics FO(Ω≈) and Σ1
1(≈)

Let τ be a signature containing a binary relation symbol ≈ and let (τ,≈) denote the class of
τ -structures A in which ≈ is interpreted by an equivalence relation on the universe A of A.
For every A ∈ (τ,≈) and every a, b ∈ An we write a ≈ b, if ai ≈ bi for every i ∈ {1, . . . , n}.
Given two relations R,S ⊆ Ak of the same arity we write R ⊆≈ S if for every a ∈ R, there
exists some b ∈ S with a ≈ b. We further write R ≈ S if R ⊆≈ S and S ⊆≈ R. Furthermore,
we define the ≈-closure of R as R≈ := {a : a ≈ b for some b ∈ R} and say that R is ≈-closed
if, and only if, R = R≈.

A team over A is a set X of assignments s : dom(X) → A mapping a common finite
domain of variables into the universe A of A. Given a tuple ȳ of variables from dom(X),
we denote by X(ȳ) := {s(ȳ) : s ∈ X} the set of values that ȳ takes in X. The semantics of
(in)dependence, inclusion and exclusion atoms up to ≈ is given as follows:

I Definition 1. Let X be a team over A. Then we define

A |=X dep≈(x, y) :⇐⇒ for all s, s′ ∈ X, if s(x) ≈ s′(x) then also s(y) ≈ s′(y),
A |=X x⊥≈y :⇐⇒ for all s, s′ ∈ X there exists some s′′ ∈ X such that

s′′(x) ≈ s(x) and s′′(y) ≈ s′(y),
A |=X x ⊆≈ y :⇐⇒ X(x) := {s(x) : s ∈ X} ⊆≈ X(y),
A |=X x |≈ y :⇐⇒ s(x) 6≈ s′(y) for all s, s′ ∈ X.

For Ω≈ ⊆ {dep≈,⊥≈,⊆≈, |≈} we denote by FO(Ω≈) the set of all first-order formulas in
negation normal form where we additionally allow positive occurrences of Ω≈-atoms. The
semantics of first-order literals and of the logical operators are the usual ones in (lax) team
semantics:

I Definition 2. Let ϕ1, ϕ2, ψ ∈ FO(Ω≈), ϑ be some first-order literal and X a team over A.

A |=X ϑ :⇐⇒ A |=s ϑ for every s ∈ X,
A |=X ϕ1 ∧ ϕ2 :⇐⇒ A |=X ϕ1 and A |=X ϕ2

A |=X ϕ1 ∨ ϕ2 :⇐⇒ X can be represented as X = X1 ∪X2 such that
A |=X1 ϕ1 and A |=X2 ϕ2

A |=X ∀xψ :⇐⇒ A |=X[x 7→A] ψ

A |=X ∃xψ :⇐⇒ A |=X[x 7→F ] ψ for some F : X → P(A) \ {∅}.

Here we have X[x 7→ A] := {s[x 7→ a] : s ∈ X, a ∈ A} and X[x 7→ F ] := {s[x 7→ a] : s ∈
X, a ∈ F (s)}. Sometimes we shall call a team Y an {x}-extension of X, if Y = X[x 7→ F ]
for some function F : X → P(A) \ {∅}.

Many standard results concerning the closure properties and relationships between
different logics of dependence and independence (see e.g. [5]) carry over to this new setting
with equivalences, by easy and straightforward adaptations of proofs (which are therefore
omitted here). In particular, this includes the following observations:

For all formulae in these logics the locality principle holds: A |=X ϕ if, and only if,
A |=X�free(ϕ) ϕ (where X � free(ϕ) := {s � free(ϕ) : s ∈ X} is the restriction of X to the
free variables of ϕ).
The logics FO(dep≈) and FO(|≈) are equivalent and downwards closed.
The logic FO(⊆≈) is closed under unions of teams, and incomparable with FO(dep≈)
and FO(|≈).
Independence logic with equivalences, FO(⊥≈), is equivalent to inclusion-exclusion logic
with equivalences, FO(⊆≈, |≈).
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A much more difficult problem is to understand the expressive power of these logics
in connection with existential second-order logic Σ1

1. As mentioned above, formulae of
independence logic or, equivalently, inclusion-exclusion logic (without equivalences) have
the same expressive power as existential second-order sentences, and weaker logics such
as dependence logic, exclusion logic, or inclusion logic correspond to fragments of Σ1

1. To
describe the expressive power of dependence logics with equivalences we introduce the
≈-closed fragment Σ1

1(≈) of Σ1
1 and show that it captures the expressiveness of FO(⊆≈, |≈).

I Definition 3. The logic Σ1
1(≈) consists of sentences of the form

ψ := ∃≈R1 . . . ∃≈Rkϕ(R1, . . . , Rk)

where ϕ ∈ FO(τ ∪ {R1, . . . , Rk}). The semantics of ψ is given in terms of ≈-closed relations:

A |= ψ :⇐⇒ there are ≈-closed relations R1, . . . , Rk such that (A, R1, . . . , Rk) |= ϕ.

3 The Expressive Power of FO(⊆≈, |≈)

In this section we establish that FO(⊆≈, |≈) has exactly the expressive power of Σ1
1(≈). This

means that every formula ϕ(x) ∈ FO(⊆≈, |≈) can be translated into an equivalent sentence
ϕ′ ∈ Σ1

1(≈) using an additional predicate for the team such that

A |=X ϕ(x)⇐⇒ (A, X) |= ϕ′(X).

Conversely, we are also going to show how a given sentence ψ ∈ Σ1
1(≈) can be translated

into an equivalent sentence ψ+ ∈ FO(⊆≈, |≈).

3.1 From Σ1
1(≈) to FO(⊆≈, |≈)

To capture the semantics of a sentence ∃≈R1 . . . ∃≈Rkϕ ∈ Σ1
1(≈) in FO(⊆≈, |≈) we adapt

ideas by Rönnholm [14] and use tuples of variables v1, . . . , vk of length |vi| = ar(Ri) in order
to simulate the (≈-closed) relations R1, . . . , Rk. The reason why this is possible lies in the
fact that we are using team semantics: In a given team X with {v1, . . . , vk} ⊆ dom(X) we
naturally have that X(vi) corresponds to a (not necessarily ≈-closed) relation. The most
important step is to find a formula ϕ?(v1, . . . , vk) ∈ FO(⊆≈, |≈) such that

(A, R) |= ϕ⇐⇒ A |=X ϕ?(v1, . . . , vk)

where X = {s : s(vi) ∈ Ri for every i ∈ {1, . . . , k}}. Towards this end, ϕ? is constructed
(inductively) while using inclusion/exclusion atoms to express (non)membership in R1, . . . , Rk.
For example, x ⊆≈ vi means that s(x) ∈ X(vi)≈ = Ri for every s ∈ X, while x |≈ vi expresses
that s(x) /∈ X(vi)≈ = Ri for every s ∈ X. Therefore, the semantics of Rix resp. ¬Rix is
captured by x ⊆≈ vi resp. x |≈ vi. But of course, it could be the case that ϕ is a much more
complicated formula made up of quantifiers, conjunction or disjunctions. It turns out that
quantifiers and conjunction can be handled with ease by simply setting

(Quϑ)? := Qu(ϑ?) for both quantifiers Q ∈ {∃, ∀}, and
(ϑ1 ∧ ϑ2)? := ϑ?1 ∧ ϑ?2,

because when evaluating conjunctions in team semantics, the team is not modified and
in the process of evaluating quantifiers there are just more columns added to the team
(w.l.o.g. we assume that every variable in the formula occurs either freely or is quantified
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exactly once). However, for disjunctions the situation is much more delicate because it is not
possible to define (ϑ1 ∨ ϑ2)? as ϑ?1 ∨ ϑ?2. The reason for this is that after splitting the team
X into X1, X2 with X = X1 ∪X2 and A |=Xj

ϑ?j it cannot be guaranteed that Xj(vi) still
describes the original Ri (up to equivalence). To make sure that we do not loose information
about R1, . . . , Rk, we use instead an adaptation of the value preserving disjunction that was
introduced by Rönnholm [14].

I Lemma 4. Let ψ1, ψ2 ∈ FO(⊆≈, |≈) and v1, . . . , vk be some tuples of variables. Then there
exists a formula ψ1 ∨

v1,...,vk

ψ2 ∈ FO(⊆≈, |≈) such that the following are equivalent:

(i) A |=X ψ1 ∨
v1,...,vk

ψ2

(ii) X = X1 ∪X2 for some teams X1, X2 such that for both j = 1 and j = 2:
A |=Xj

ψj, and
if Xj 6= ∅, then Xj(vi) ≈ X(vi) for all i ∈ {1, . . . , k}.

Proof. The construction of ψ1 ∨
v1,...,vk

ψ2 relies on the intuitionistic disjunction ψ1 t ψ2 with

A |=X ψ1 t ψ2 ⇐⇒ A |=X ψ1 or A |=X ψ2.

On structures A ∈ (τ,≈) with ≈A 6= A2 this is definable in FO(⊆≈, |≈) since

ψ1 t ψ2 ≡ ∃c`∃cr(dep≈(c`) ∧ dep≈(cr) ∧ [(c` ≈ cr ∧ ψ1) ∨ (¬c` ≈ cr ∧ ψ2)])

where c` and cr are some variables not occurring in ψ1 or ψ2. Note that dep≈(c) expresses
that c only assumes values from a single equivalence class. The proof of this equivalence is a
simple exercise. Now consider the following formula, which is a modification of a construction
by Rönnholm [14].

ψ1 ∨′
v1,...,vk

ψ2 := (ψ1 t ψ2) t ∃c`∃cr
(
dep≈(c`) ∧ dep≈(cr) ∧ c` 6≈ cr∧

∃y
(

[(y ≈ c` ∧ ψ1) ∨ (y ≈ cr ∧ ψ2)]∧
k∧
i=1

Θi ∧Θ′i
))
.

Θi and Θ′i are given by

Θi := ∃z1∃z2([(y ≈ c` ∧ z1 = vi ∧ z2 = c`) ∨ (y ≈ cr ∧ z1 = c` ∧ z2 = vi)]
∧ vi ⊆≈ z1 ∧ vi ⊆≈ z2)

Θ′i := ∃z1∃z2([(y ≈ c` ∧ z1 = vi ∧ z2 = cr) ∨ (y ≈ cr ∧ z1 = cr ∧ z2 = vi)]
∧ vi ⊆≈ z1 ∧ vi ⊆≈ z2).

where c` = (c`, c`, . . . , c`) and cr = (cr, cr, . . . , cr) are always tuples of the correct length.
It is not difficult to prove that this formula is almost what we want: it satisfies the

properties required by Lemma 4 under the additional condition that ≈ has at least two
different equivalence classes. To get rid of this condition, we put:

ψ1 ∨
v1,...,vk

ψ2 := [∀x∀y(x ≈ y) ∧ (ψ1 ∨ ψ2)] ∨
[
∃x∃y(x 6≈ y) ∧

(
ψ1 ∨′

v1,...,vk

ψ2

)]
. J

We can now complete the inductive definition of ϕ? by:

(ϑ1 ∨ ϑ2)? := ϑ?1 ∨
v1,...,vk

ϑ?2

By rather straighforward inductions one can establish the following two lemmata.
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I Lemma 5. For every A ∈ (τ,≈) and every team X with dom(X) = {v1, . . . , vk},

A |=X ϕ? =⇒ (A, RX1 , . . . , RXk ) |=X ϕ

where RXi := (X(vi))≈ for i = 1, . . . , k, i.e. RXi is defined as the ≈-closure of X(vi).

I Lemma 6. Let R = (R1, . . . , Rk) be a tuple of non-empty ≈-closed relations with (A, R) |=
ϕ. Then A |=Y ϕ? where Y := {(v1, . . . , vk) 7→ (a1, . . . , ak) : a1 ∈ R1, . . . , ak ∈ Rk}.

The non-emptiness requirement of R1, . . . , Rk does not create a serious problem, because
by rewriting the formula ϕ it can be assumed w.l.o.g. that ∃≈R1 . . . ∃≈Rkϕ is satisfied in
a structure A if, and only if, there are non-empty ≈-closed relations R1, . . . , Rk such that
(A, R) |= ϕ.

I Theorem 7. ψ := ∃v1 . . . ∃vkϕ? is equivalent to ∃≈R1 . . . ∃≈Rkϕ.

Proof. Assume that A |= ψ. It follows that there exists some team X with dom(X) =
{v1, . . . , vk} and A |=X ϕ?. By Lemma 5 and free(ϕ) = ∅, we obtain that (A, RX1 , . . . , RXk ) |=
ϕ. By definition, the relations RXi are ≈-closed and, hence, A |= ∃≈R1 . . . ∃≈Rkϕ.

For the converse direction, let A |= ∃≈R1 . . . ∃≈Rkϕ. So there exists some non-empty
≈-closed relations R1, . . . , Rk such that (A, R1, . . . , Rk) |= ϕ. So by Lemma 6, it follows that
A |=Y ϕ? where Y is the team given in Lemma 6. This leads to A |= ∃v1 . . . ∃vkϕ?. J

3.2 From FO(⊆≈, |≈) to Σ1
1(≈)

Up to this point we only know that Σ1
1(≈) ≤ FO(⊆≈, |≈). In this section we prove that these

two logics have in fact the same expressive power. Towards this end, we demonstrate how a
given formula ϕ ∈ FO(⊆≈, |≈) can be translated into Σ1

1(≈). There are two obstacles that
we need to overcome:
1. When viewed as relations, teams usually are not ≈-closed, so we cannot use the quantifier
∃≈ to fetch the subteams we would need to satisfy the subformulae of e.g. a disjunction.

2. Unlike in Σ1
1, where a formula of the form ∀x∃Y (. . . ) is equivalent to formula like

∃Y ′∀x(. . . ) where ar(Y ′) = ar(Y ) + 1, there seems to be no obvious way to perform a
similar syntactic manipulation in Σ1

1(≈). Thus we have to be content with the limited
quantification that Σ1

1(≈) allows us.

The main idea of the construction, which is inspired by [14], is to replace every inclusion
and exclusion atom ϑ by a seperate new relation symbol Rϑ that contains certain values
enabling us to express the semantics of ϕ in Σ1

1(≈).
First we describe how this approach deals with exclusion atoms. Let ϑ1, . . . , ϑk be an

enumeration of all occurrences of exclusion atoms ϑi = ui |≈ wi in ϕ. We assume w.l.o.g.
that the tuples u1, . . . , uk, w1, . . . , wk are pairwise different. We use new relation symbols
Rϑ1 , . . . , Rϑk

that are intended to separate the sets of possible values for vi and wi (up to
equivalence). The desired translation ϕ? of ϕ is now obtained by replacing the exclusion
atoms ϑi = ui |≈ wi by Rϑi

ui ∧¬Rϑi
wi. This construction leads to the following result. The

proof is by induction over ϕ and is given in the appendix.

I Theorem 8. For every formula ϕ(x) ∈ FO(|≈,⊆≈) with signature τ there exists a formula
ϕ?(x) ∈ FO(⊆≈) with signature τ ∪ {R}, where R is a tuple of new relation symbols, such
that for every A ∈ (τ,≈) and every team X the following are equivalent:
(i) A |=X ϕ

(ii) There are ≈-closed relations R over A such that (A, R) |=X ϕ?.
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After this elimination of the exclusion atoms we still need to cope with ⊆≈-atoms.
Towards this end, let ϕ ∈ FO(⊆≈) and ϑ1, . . . , ϑk be an enumeration of all occurrences of
inclusion atoms in ϕ, with ϑi := xi ⊆≈ yi for every i ∈ {1, . . . , k}. We shall use new relation
symbols Rϑ1 , . . . , Rϑk

with the intended semantics that Rϑi ⊆ X(yi)≈ where X is the team
that “arrives” at ϑi. This will allow us to replace the subformulae ϑi by the formula Rϑi

xi.
However, this formula alone does not verify that Rϑi ⊆ X(yi)≈ really holds. Additional
formulae ϕ(1)(z1), . . . , ϕ(k)(zk) are required for the verification that values from Rϑi

could
occur (up to equivalence) as a value for yi in the team X that arrives at the corresponding
inclusion atom. More precisely, ϕ(i) is constructed such that

(A, Rϑ1 , . . . , Rϑk
) |=s[zi 7→a] ϕ

(i)(zi)

implies that the assignment s also satisfies ϕ and, more importantly, leads to an assignment
s′ that satisfies s′(zi) ≈ a and that could be part of the team that satisfies the inclusion
atom. Formally, we are going to prove that

A |=X ϕ⇐⇒ there are ≈-closed relations Rϑ1 , . . . , Rϑk
such that (A, R) |=X ϕ? and

for every a ∈ Rϑi
there is an s ∈ X with (A, R) |=s[zi 7→a] ϕ

(i)(zi).

As already pointed out, ϕ? results from ϕ by replacing every inclusion atom ϑi = xi ⊆≈ yi
by Rϑi

xi, while ϕ(i) is defined by induction (for every i ∈ {1, . . . , k}). Let ϑ be a subformula
of ϕ. First-order literals are unchanged, i.e. ϑ? := ϑ =: ϑ(i) if ϑ is such a literal. The
inclusion atoms are translated as follows:

(xj ⊆ yj)(i) :=
{
Rϑi

xi ∧ yi ≈ zi, if i = j

Rϑjxj , if i 6= j

Conjunctions and existential quantifiers are handled by defining

(∃x ϑ̃)(i) := ∃x ϑ̃(i) and

(ϑ̃1 ∧ ϑ̃2)(i) := ϑ̃
(i)
1 ∧ ϑ̃

(i)
2 .

However, the translation of universal quantifiers or disjunctions is more complex:

(ϑ̃1 ∨ ϑ̃2)(i) :=
{
ϑ̃

(i)
j , if xi ⊆≈ yi occurs in ϑ̃j

(ϑ̃1 ∨ ϑ̃2)?, otherwise

(∀x ϑ̃)(i) := ∃x ϑ̃(i) ∧ (∀x ϑ̃)?.

By construction we have that (∀xϑ)? is implied by (∀xϑ)(i), because it is a subformula,
while ∃xϑ(i) fetches the correct extension of the current assignment such that we end up
with an assignment satisfying yi ≈ zi when arriving at the translation of xi ⊆≈ yi. The next
lemma states that this construction actually captures the intuition that we have described
above. The proof is given in the appendix.

I Lemma 9. Let A ∈ (τ,≈) and X be a team over A with free(ϕ) = dom(X). Then the
following are equivalent:
(i) A |=X ϕ

(ii) There are ≈-closed relations R = (Rϑ1 , . . . , Rϑk
) over A such that (A, R) |=X ϕ? and

for every i ∈ {1, . . . , k}, a ∈ Rϑi
there exists some s ∈ X such that (A, R) |=s[zi 7→a] ϕ

(i).

We are now ready to show how inclusion atoms are translated into Σ1
1(≈).
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I Theorem 10. For every formula ϕ(x) ∈ FO(⊆≈) there exists a sentence ϕ′(X) ∈ Σ1
1(≈)

such that A |=X ϕ(x)⇐⇒ (A, X) |= ϕ′(X) for every structure A and every team X.

Proof. Let

ϕ′ := ∃≈Rϑ1 . . . ∃≈Rϑk

(
∀x(Xx→ ϕ?(x)) ∧

k∧
i=1
∀zi(Rϑizi → ∃x(Xx ∧ ϕ(i)(x, zi)))

)
.

By construction, (A, X) |= ϕ′ if, and only if, there exist ≈-closed relations R over A

such that (A, R) |=s ϕ
? for every s ∈ X, and for every a ∈ Ri there exists some s ∈ X with

(A, R) |=s[zi 7→a] ϕ
(i). Since ϕ? is a first-order formula, A |=s ϕ

? for every s ∈ X if, and only
if, (A, R) |=X ϕ?. Hence, by Lemma 9, we can conclude that (A, X) |= ϕ′ ⇐⇒ A |=X ϕ. J

In particular, every sentence ϕ ∈ FO(⊆≈) can be translated into an equivalent sentence
ϕ′ ∈ Σ1

1(≈).

4 FO(⊆≈) vs. GFP

An important result on logics with team semantics is the tight connection between inclusion
logic and GFP+, established by Galliani and Hella [6]. In this section we prove a similar
result for FO(⊆≈) by defining a fragment of GFP+ which has the same expressive power as
FO(⊆≈).

I Definition 11 (para-GFP+
≈). The logic para-GFP+

≈ is defined as an extension of FO in
negation normal form by the following formula formation rule. Let k ≥ 1 andR = (R1, . . . , Rk)
be a tuple of unused relation symbols of arity n1, . . . , nk respectively and let (ϕi(R, xi))i=1,...,k
be a tuple of FO(τ ∪ {R1, . . . , Rk})-formulae in negation normal form where |xi| = ni and
every Ri occurs only positively in ϕ1, . . . , ϕk. Furthermore, let j ∈ {1, . . . , k} and v be a
nj-tuple of variables. Then

ϕ(v) := [para-GFP≈ (Ri, xi)i=1,...,k . (ϕi(R, xi))i=1,...,k]j(v)

is a para-GFP+
≈-formula.

On every structure A ∈ (τ,≈), the system (ϕi(R, xi))i=1,...,k defines a parallel update
operator ΓA : P(An1)× · · · × P(Ank )→ P(An1)× · · · × P(Ank ), by

Γ(R) :=
(
Γ1(R), . . . ,Γk(R)

)
where

Γi(R) := Jϕi(R)KA≈ = {a ∈ Ani : (A, R) |= ϕi(R, a)}≈

A tuple (A, s) where A ∈ (τ,≈) and s : {v} → A is called a model of ϕ (and we write
A |=s ϕ in this case) if, and only if, for the greatest fixed-point S = (S1, . . . , Sk) of ΓA we
have that s(v) ∈ Sj .

The non-parallel variant GFP+
≈, where it is only allowed to use the operator para-GFP≈

in a non-parallel way, i.e. only in the following shape

[GFP≈ Rx .ϕ(R, x)](y) := [para-GFP+
≈Rx .ϕ(R, x)]1(y),

has exactly the same expressive power as para-GFP+
≈.

The following lemma gives a characterization of the fixed-points of Γ:
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I Lemma 12 (Knaster-Tarski-Theorem for para-GFP+
≈). Let

ϕ(v) = [para-GFP≈ (Ri, xi)i=1,...,k . (ϕi(R, xi))i=1,...,k]j(v)

be a para-GFP+
≈-formula, A ∈ (τ,≈) and Γ(= ΓA) be the corresponding parallel update

operator w.r.t. ϕ1, . . . , ϕk. For two given k-tuples R,S of relations, we write R ⊆ S if, and
only if Ri ⊆ Si for every i ∈ {1, . . . , k}.

Let X := {S : S ⊆ Γ(S)}. Then
⋃
X := (Y1, . . . , Yk) where for every j ∈ {1, . . . , k},

Yj :=
⋃
S∈X Sj is the greatest fixed-point of Γ. Furthermore, these Yj are ≈-closed.

4.1 From FO(⊆≈) to GFP+
≈

I Theorem 13. For every formula ϕ(x) ∈ FO(⊆≈) there exists a sentence ϕ+ ∈ GFP+
≈ such

that A |=X ϕ ⇐⇒ (A, X) |= ϕ+ for every structure A ∈ (τ,≈) and every team X over A.

Proof. In the last section we have presented the FO-formulae ϕ?(R) and ϕ(i)(R) (for
i ∈ {1, . . . , k}) using new relation symbols R = (R1, . . . , Rk) such that for every A ∈ (τ,≈)
and every team X over A with dom(X) ⊇ free(ϕ) the following are equivalent:
(1) A |=X ϕ

(2) There are ≈-closed relations R over A such that (A, R) |=X ϕ? and for every i ∈
{1, . . . , k}, a ∈ Ri there exists some si,a ∈ X such that (A, R) |=si,a[zi 7→a] ϕ

(i).
Furthermore, the relation symbols R1, . . . , Rk occur only positively in ϕ? and ϕ(i) and the
tuple zi occurs exactly once in a subformula of the form xi ≈ zi in ϕ(i). Let ϕ̃? and the ϕ̃(i)

be the formulae that result from ϕ?, ϕ(i) by replacing every occurrence of the form Riv by
its guarded version (Ri)≈v := ∃w(v ≈ w∧Riw). This allows us to drop the requirement that
the relations R are ≈-closed.
I Claim 14. For every A and every team X over A, (1) and (2) are equivalent to:
(3) There are relations R over A such that (A, R) |=X ϕ̃? and for every i ∈ {1, . . . , k}, a ∈ Ri

there exists some si,a ∈ X such that (A, R) |=si,a[zi 7→a] ϕ̃
(i).

To prove this, one has to exploit the fact that every Rj (j ∈ {1, . . . , k}) occurs only
≈-guarded in ϕ̃?, ϕ̃(1), . . . , ϕ̃(k) and the variables zi occur (exactly once) in a subformula of
the form w ≈ zi in ϕ(i). By expressing (3) in existential second-order logic, we obtain the
following equivalent statement:
(4) (A, X) |= ∃R

(
∀x(Xx→ ϕ̃?(R, x)) ∧ ψ

)
where ψ :=

∧k
i=1 ∀zi(Rizi → ηi(R, zi)) and

ηi(R, zi) := ∃x(Xx ∧ ϕ̃(i)(R, zi, x)).

Let Γ(R) :=
(
Γ1(R), . . . ,Γk(R)

)
where

Γi(R) := Jηi(R, zi)K(A,X) = {a ∈ Aar(Ri) : (A, X(x), R) |= ηi(a)}.

Note that Jηi(R, zi)K(A,X(x)) = Jηi(R, zi)K(A,X(x))
≈ , because the free variables zi occur exactly

once in a subformula of the form w ≈ zi. This is the reason why Γ is the para-GFP+
≈-update

operator w.r.t. η1, . . . , ηk.
Furthermore, (A, X,R) |= ∀zi(Rizi → ηi(R, zi)) if, and only if, Ri ⊆ Γi(R). Consequently,

we have (A, X,R) |= ψ if, and only if, R ⊆ Γ(R).
I Claim 15. For j ≤ k, let ϑj(zj) := [para-GFP≈ (Ri, zi)i=1,...,k . (ηi(R, zi))i=1,...,k)]j(zj),
and let γ result from ϕ̃? by replacing every occurrence of Rj(w) by ϑj(w). Then, for every
A ∈ (τ,≈) and every team X, (4) is equivalent to
(5) (A, X) |= ∀x(Xx→ γ).
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Proof. (4) =⇒ (5) : Let (A, X) |= ∃R
(
∀x(Xx→ ϕ̃?(R, x)) ∧ ψ

)
. Then there are relations R

such that (A, X,R) |= ∀x(Xx→ ϕ̃?(R, x)) and (A, X,R) |= ψ. As observed above, it follows
that R ⊆ Γ(R). So, by Lemma 12, R ⊆ S where S is the greatest fixed-point of Γ. Since
we have (A, X,R) |= ∀x(Xx→ ϕ̃?(R, x)) and the relations symbols R1, . . . , Rk occur only
positively in ϕ̃?, we can conclude that (A, X, S) |= ∀x(Xx → ϕ̃?(S, x)). Because S is the
greatest fixed-point of Γ, it follows that Si = Jϑi(zi)K(A,X) and, by construction of γ, we
obtain that (A, X) |= ∀x(Xx→ γ).

(5) =⇒ (4) : Let (A, X) |= ∀x(Xx→ γ) and let S be the greatest fixed-point of Γ. Then
(A, X, S) |= ∀x(Xx→ ϕ̃?) and S = Γ(S). Therefore, we have (A, X, S) |= ∀zi(Sizi → ηi(zi))
for every i ∈ {1, . . . , k} and, hence, (A, X, S) |= ψ(S). J

By construction ∀x(Xx→ γ) ∈ para-GFP+
≈. Since para-GFP+

≈ has the same expressive
power as GFP+

≈, there also exists a sentence ϕ+ ∈ GFP+
≈ that is equivalent to ϕ(x). J

4.2 From GFP+
≈ to FO(⊆≈)

In order to translate a given sentence ϕ ∈ GFP+
≈ into a FO(⊆≈)-formula, we assume that ϕ

is in a normal form which is given by the following lemma. By using adaptations of ideas
from [6] we then show that such a sentence can be expressed in FO(⊆≈).

I Lemma 16. For every sentence ϕ ∈ para-GFP+
≈ there exists a formula ψ(R, x) ∈ FO, in

which R occurs only positively and only ≈-guarded, such that ϕ is equivalent to

∃v[GFP≈ Rx .ψ(R, x)](v).

Our next lemma shows that we can eliminate the relation symbol R in ψ by introducing
⊆≈-atoms and encoding R in a tuple x of variables.

I Lemma 17. Let R be a relation symbol of arity n, let x, y be tuples of variables where
|x| = n (whereas y is of arbitrary length and can also be empty). Furthermore, let ψ(R, x, y) ∈
FO(τ ∪ {R}) be a first-order formula in which R occurs only positively and ≈-guarded, and
with free(ψ) ⊆ {x, y} such that the variables in x are never quantified in ψ. Then there exists
a formula ψ?(x, y) ∈ FO(⊆≈) of signature τ such that for every A ∈ (τ,≈) and every team
X we have that

A |=X ψ?(x, y)⇐⇒ (A, X(x)) |=s ψ(R, x, y) for every s ∈ X.

This lemma can be shown by induction over the structure of ψ. Now we are able to express
[GFP≈ Rx .ϕ(R, x)] in FO(⊆≈).

I Theorem 18. Let ψ(R, x) ∈ FO where ar(R) = |x|, R occurs only positively and ≈-
guarded in ψ, and the variables in x are never quantified in ψ. Then there exists a formula
ψ+(x) ∈ FO(⊆≈) such that for every A ∈ (τ,≈) and every team X we have that

A |=X ψ+(x)⇐⇒ A |=s [GFP≈ Rx .ψ(R, x)](x) for every s ∈ X.

Proof. Let ψ+(x) := ∃y(x ⊆≈ y ∧ ∃z(y ≈ z ∧ ψ?(z))).
“=⇒”: First we assume that A |=X ψ+(x). Then there exists a function F : X →

P(An) \ {∅} such that A |=Y x ⊆≈ y ∧ ∃z(y ≈ z ∧ ψ?(z)) where Y := X[y 7→ F ]. So there
exists a function G : Y → P(An) \ {∅} satisfying A |=Z y ≈ z ∧ψ?(z) where Z := Y [z 7→ G].
By Lemma 17, it follows that

(A, Z(z)) |=s ψ(R, z) for every s ∈ Z.
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So we have Z(z) ⊆ Jψ(R, z)K(A,Z(z)) ⊆ Jψ(R, z)K(A,Z(z))
≈ = Γψ(Z(z)) where Γψ := ΓA

ψ is the
GFP+

≈-update operator w.r.t. ψ. It follows that Z(z) ⊆ gfp(Γψ) (by Lemma 12). Since
gfp(Γψ) is ≈-closed and X(x) ⊆≈ Y (y) ≈ Z(z), we have that X(x) ⊆ gfp(Γψ). Hence, we
obtain that A |=s [GFP≈ Rx .ψ(R, x)](x) for every s ∈ X.

“⇐=”: Now we assume that A |=s [GFP≈ Rx .ψ(R, x)](x) for every s ∈ X. If X = ∅,
then A |=X ψ+(x) follows from the empty team property. Henceforth, let X 6= ∅. Let
Γψ = ΓA

ψ be the GFP+
≈-update operator defined w.r.t. ψ(R). From our assumption follows

that X(x) ⊆ gfp(Γψ). Since X 6= ∅, it follows that gfp(Γψ) 6= ∅. Our goal is to prove that
A |=X ψ+(x). Towards this end, we define F : X → P(An) \ {∅}, F (s) := gfp(Γψ) and
Y := X[y 7→ F ] and claim that A |=Y x ⊆≈ y ∧ ∃z(y ≈ z ∧ ψ?(z)). Since Y (x) = X(x) ⊆
gfp(Γψ) = Y (y) it is clear that A |=Y x ⊆≈ y.

We still need to prove that A |=Y ∃z(y ≈ z ∧ ψ?(z)). By definition of Y , we know that
Y (y) = gfp(Γψ) = Γψ(gfp(Γψ)) = Jψ(gfp(Γψ), x)KA≈. This implies that for every s ∈ Y there
exists some a ∈ Jψ(gfp(Γψ), x)KA such that a ≈ s(y).

Let G : Y → P(An) \ {∅} be given by

G(s) := {a ∈ Jψ(gfp(Γψ), x)KA : s(y) ≈ a}

and Z := Y [z 7→ G]. Clearly it holds that Z(z) ⊆ Jψ(gfp(Γψ), x)KA. We claim that even
Z(z) = Jψ(gfp(Γψ), x)KA is true. To see this, let a ∈ Jψ(gfp(Γψ), x)KA ⊆ Jψ(gfp(Γψ), x)KA≈ =
Y (y). So there exists an s ∈ Y with s(y) ≈ a. Hence, we have that a ∈ G(s) and, consequently,
a ∈ Z(z).

It is the case that A |=Z y ≈ z, because this follows from the definition of G. Now we prove
that A |=Z ψ

?(z). By Lemma 17, we need to verify that (A, Z(z)) |=s ψ(R, z) for every s ∈ Z.
In other words, we need to verify that Z(z) ⊆ Jψ(Z(z), z)KA. Since Z(z) = Jψ(gfp(Γψ), x)KA,
we can conclude that

Jψ(Z(z), z)KA = Jψ(Jψ(gfp(Γψ), x)KA, z)KA

Due to the fact that R occurs only ≈-guarded in ψ, we can observe that

Jψ(Jψ(gfp(Γψ), x)KA, z)KA = Jψ(Jψ(gfp(Γψ), x)KA≈, z)KA

= Jψ(Γψ(gfp(Γψ)), z)KA

= Jψ(gfp(Γψ), z)KA = Z(z)

Therefore, we have Z(z) = Jψ(Z(z), z)KA which implies that Z(z) ⊆ Jψ(Z(z), z)KA. So we
have (A, Z(z)) |=s ψ(R, z) for every s ∈ Z, which concludes the proof of A |=Z ψ? and of
A |=X ψ+. J

I Corollary 19. For every GFP+
≈-sentence ϕ there is an equivalent sentence ϑ ∈ FO(⊆≈).

Proof. Let ϕ ∈ GFP+
≈. By Lemma 16, there exists a first-order formula ψ(R, x) where the

n-ary relation symbol R occurs only positively and only ≈-guarded in ψ such that

ϕ ≡ ∃v[GFP≈ Rx .ψ(R, x)](v).

W.l.o.g. we can assume that the variables in x are never quantified in ψ. So, by Theorem 18,
it follows that there exists some ψ+(x) ∈ FO(⊆≈) such that for every A ∈ (τ,≈) and every
team X over A with dom(X) ⊇ {x} holds

A |=X ψ+(x)⇐⇒ A |=s [GFP≈ Rx .ψ(R, x)](x) for every s ∈ X
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Let ϑ := ∃vψ+(v) and A ∈ (τ,≈). Our goal is to prove that A |= ϕ⇐⇒ A |= ϑ.
“⇐=”: Let A |= ϑ. Then there exists a function F : {∅} → P(A|v|) \ {∅} such that

A |=Y ψ+(v) where Y = {∅}[v 7→ F ]. Then we have A |=s [GFP≈ Rx .ψ(R, x)](v) for every
s ∈ Y and, since Y is non-empty, it follows that A |= ∃v[GFP≈ Rx .ψ(R, x)](v).

“=⇒”: Now let A |= ϕ ≡ ∃v[GFP≈ Rx .ψ(R, x)](v). Then there exists some a ∈ A such
that A |= [GFP≈ Rx .ψ(R, x)](a). Let Y = {s} be the singleton team consisting only of
s with s(v) = a. Then it follows that A |=s [GFP≈ Rx .ψ(R, x)](v) for every s ∈ Y and,
consequently, A |=Y ψ+(v), proving that A |={∅} ∃vψ+(v) = ϑ. J

5 Σ1
1(≈) on restricted classes of structures

In this section we compare Σ1
1(≈) with FO and Σ1

1 and study how restrictions imposed on
the given equivalence influence the expressive power of Σ1

1(≈). Our first result is that the
expressive power of Σ1

1(≈) ≡ FO(⊆≈, |≈) lies strictly between FO and Σ1
1. Furthermore, we

also have FO < FO(⊆≈, |≈) < Σ1
1 on the class of structures with only a bounded number of

non-trivial equivalence classes and on the class of structures where each equivalence class is
of size ≤ k (for some fixed k > 1). However, when restricting both the size of the equivalence
classes and the number of non-trivial equivalence classes, then FO(⊆≈, |≈) has the same
expressive power as Σ1

1. To prove these results, we use an adaption of the Ehrenfeucht-Fraïssé
method for FO(⊆≈, |≈), which relies on the games presented in [15].

I Definition 20. Let A,B ∈ (τ,≈), n ∈ N and Ω≈ ⊆ {dep≈,⊥≈,⊆≈, |≈}. The game
GΩ≈,n(A,B) is played by two players which are called Duplicator and Spoiler. The positions
of the game are tuples (X,Y ) of teams over A,B with dom(X) = dom(Y ). Unless stated
otherwise the game starts at position ({∅}, {∅}) and then n moves are played. In each move
Spoiler always chooses between one of the following 3 moves to continue the game:
1. Move ∨:

Spoiler represents X as a union X = X0 ∪X1.
Duplicator replies with a representation of Y as Y = Y0 ∪ Y1.
Spoiler chooses i ∈ {0, 1} and the game continues at position (Xi, Yi).

2. Move ∃:
Spoiler chooses a function F : X → P(A) \ {∅}.
Duplicator replies with a function G : Y → P(B) \ {∅}.
The game continues at position (X[v 7→ F ], Y [v 7→ G]) where v is a new variable.

3. Move ∀:
The game continues at position (X[v 7→ A], Y [v 7→ B]) where v is a new variable.

Positions (X,Y ) with A |=X ϑ but B 6|=Y ϑ for some literal ϑ ∈ FO(Ω≈) are Spoiler’s
winning position. Duplicator wins, if such positions are avoided for n moves.

The game GΩ≈(A,B) is played similarly: first Spoiler chooses a number n ∈ N and then
GΩ≈,n(A,B) is played.

These games characterize semi-equivalences of A and B (up to a certain depth). The
depth of ϕ ∈ FO(Ω≈), denoted as depth(ϕ), is defined inductively:

depth(ϑ) := 0 for every literal ϑ ∈ FO(Ω≈)
depth(∃vϕ′) := depth(ϕ′) + 1 =: depth(∀vϕ′)

depth(ϕ1 ∨ ϕ2) := max(depth(ϕ1), depth(ϕ2)) + 1
depth(ϕ1 ∧ ϕ2) := max(depth(ϕ1), depth(ϕ2))
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I Definition 21 (Semi-equivalence, [15]). Let A,B ∈ (τ,≈) and X,Y be teams over A,B

with dom(X) = dom(Y ). We write A, X VΩ≈,n B, Y (and say that A, X is semi-equivalent
to B, Y up to depth n), if A |=X ϕ implies B |=Y ϕ for every ϕ ∈ FO(Ω≈) with depth(ϕ) ≤ n.
Furthermore, we write A, X VΩ≈ B, Y , if A, X VΩ≈,n B, Y for every n ∈ N. When Ω≈ is
clear from the context, we sometimes omit it as a subscript.

In first-order logic, the concept of semi-equivalence coincides with the usual equivalence
concept between structures, but this is not the case in logics with team semantics. For
example A, X V B,∅ follows from the empty team property, but B,∅V A, X is not true
in general. We write A, X ≡n B, Y , if A, X Vn B, Y and B, Y Vn A, X. A, X ≡ B, Y is
defined analogously.

I Theorem 22. Let τ be a finite signature and A,B ∈ (τ,≈). Duplicator has a winning
strategy for GΩ≈,n(A,B) from position (X,Y ) if, and only if A, X VΩ≈,n B, Y .

Having these games at our disposal, we can prove that FO(⊆≈, |≈) is strictly less powerful
than Σ1

1. Consider the following problem:

Ceven := {A ∈ (τ,≈) : there is some a ∈ A such that |[a]≈| is even}.

I Theorem 23. Ceven is not expressible in FO(⊆≈, |≈).

We just give a short sketch of the proof: Consider Am := (Am,≈Am) and Bm :=
(Bm,≈Bm) where |Am| = 2m, |Bm| = 2m + 1, ≈Am := Am × Am and ≈Bm := Bm × Bm.
Then Am ∈ Ceven while Bm /∈ Ceven. It is not difficult to prove that Duplicator wins the
games Gm(Am,Bm) and Gm(Bm,Am) by maintaining as an invariant that the equality types
induced by the assignments in the two teams are always equal. On the other hand, it is easy
to see that FO(dep≈)(≤ FO(⊆≈, |≈)) can express that the number of equivalence classes is
even, but this is not definable in first-order logic.

I Corollary 24. FO < FO(⊆≈, |≈) < Σ1
1.

Next we study whether restrictions imposed on the given equivalence influence the
expressive power of Σ1

1. Consider the class K≤p of structures A ∈ (τ,≈) where every
equivalence class of A is of size ≤ p. On K≤1, Σ1

1(≈) has the same expressive power as Σ1
1,

because every relation over A ∈ K≤1 is ≈A-closed. However, this is not the case for p ≥ 2 as
the next theorem shows.

I Theorem 25. Let p ≥ 2. FO < FO(⊆≈, |≈) < Σ1
1 holds on the class K≤p of structures

A ∈ (τ,≈) with |[a]≈| ≤ p for every a ∈ A.

To prove this (see appendix), we are using an Ehrenfeucht-Fraïssé argument and prove
that FO(⊆≈, |≈) is unable to express non-connectivity of graphs when the equivalence classes
are allowed to contain up to 2 elements.

Restricting the number of equivalence classes is not really interesting, because it leads
to a situation where Σ1

1(≈) has the same expressive power as FO, because there are only
2(kr) many ≈-closed relations of arity r when k is the number of ≈-classes, which can be
simulated in first-order logic.

Another possible restriction is to admit only a bounded number of non-trivial equivalence
classes (which consist of more than one element). Let KNT≤p be the class of all A ∈ (τ,≈)
with at most p many non-trivial equivalence classes (for some p ≥ 1).

But then again, Ceven ∩KNT≤p is not definable in FO(⊆≈, |≈) on KNT≤p. Hence, we also
have FO < Σ1

1(≈) < Σ1
1 on KNT≤p.
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However, combining the conditions imposed on the number of non-trivial equivalence and
their size, leads to an interesting situation: Σ1

1(≈) ≡ Σ1
1 on KNT≤p1,≤p2 := KNT≤p1 ∩ K≤p2 .

The reason for this is that at most p1 · p2 many elements are located inside non-trivial
equivalence classes, while all the other elements are only equivalent to themselves. Since
Σ1

1(≈) allows us to obtain a linear order on the equivalence classes, it is possible to encode
arbitrary relations and, hence, to simulate Σ1

1.
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A Appendix

A.1 The Expressive Power of FO(⊆≈, |≈)
Proof of Theorem 8. By induction:

Case ϕ = v |≈ w: Then ϕ? := Rϕv ∧ ¬Rϕw. Let Rϕ := (X(v))≈, which is the ≈-closure
of X(v). Now we observe that

A |=X v |≈ w ⇐⇒ for every s, s′ ∈ X : s(v) 6≈ s′(w)
⇐⇒ for every s ∈ X : s(v) ∈ Rϕ and s(w) /∈ Rϕ
⇐⇒ (A, Rϕ) |=X Rϕv ∧ ¬Rϕw.

Case ϕ is some FO-literal or an ⊆≈-atom: Then we have ϕ? = ϕ and there is nothing to
prove, because the relation symbols R do not occur in ϕ?.

Case ϕ = ϕ0 ∨ ϕ1: Let ϑ(j)
1 , . . . , ϑ

(j)
kj

be the exclusion atoms that occur in ϕj .
“(i) =⇒ (ii)”: First, we assume that A |=X ϕ0 ∨ ϕ1. Then there are teams X0, X1 such

that X = X0 ∪X1 and A |=Xj
ϕj for j ∈ {0, 1}. By induction hypothesis, there exists two

tuples of ≈-closed relations Rj = (R
ϑ

(j)
1
, . . . , R

ϑ
(j)
kj

) such that (A, Rj) |=Xj ϕ
?
j (for j ∈ {0, 1}).

We define

R := (R
ϑ

(0)
1
, . . . , R

ϑ
(0)
k0
, R

ϑ
(1)
1
, . . . , R

ϑ
(1)
k1

)

and, since the relations Rj do not occur in ϕ1−j , it follows that (A, R) |=Xj
ϕ?j for j ∈ {0, 1}.

Therefore, (A, R) |=X ϕ?.
“(i) ⇐= (ii)”: For the other direction, let there be ≈-closed relations R such that

(A, R) |=X ϕ? and, hence, there are teams X0, X1 such that X = X0∪X1 and (A, R) |=Xj ϕ
?
j

for j ∈ {0, 1}. By induction hypothesis, this implies that A |=Xj
ϕj for j ∈ {0, 1}, whence it

follows that A |=X ϕ.
The case where ϕ = ϕ0 ∧ ϕ1 is similar to the previous one, and the cases where ϕ = ∀xψ

or ϕ = ∃xψ are trivial. J

Proof of Lemma 9. Let A ∈ (τ,≈) and X be some team over A with free(ϕ) ⊆ dom(X).
Recall that ϑ1, . . . , ϑk are the inclusion atoms that occur in ϕ. Our goal is now to prove that
the following statements are equivalent for every subformula ϑ of ϕ:
(1) A |=X ϑ

(2) There are ≈-closed relations R = (Rϑ1 , . . . , Rϑk
) over A such that (A, R) |=X ϑ? and for

every i ∈ {1, . . . , k}, a ∈ Rϑi
there exists some si,a ∈ X such that (A, R) |=si,a[zi 7→a] ϑ

(i).
Whenever we are proving that (2) holds, we can often use that ϑ(i) and ϑ? are equivalent, if
ϑi = xi ⊆≈ yi does not occur in ϑ. Hence, we only need to prove that A |=X ϑ? holds and
that for every i ∈ {1, . . . , k} such that ϑi occurs in ϑ and every a ∈ Rϑi there exists some
si,a ∈ X with A |=si,a[zi 7→a] ϑ

(i)(zi).
For the empty team X = ∅, there is nothing to prove, because A |=∅ ϑ follows from the

empty team property and the empty relations trivially satisfy the conditions stated in (2).
From now on we only consider non-empty teams X in this proof, which proceeds now by
induction:

Case ϑ = v ⊆≈ w: Then there exists a unique ` ∈ {1, . . . , k} such that ϑ` = ϑ and
Rϑ`

= Rϑ. Recall that we have defined ϑ? := Rϑv and

ϑ(i) :=
{
ϑ?, if i 6= `

ϑ? ∧ w ≈ zi, if i = `.
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“(1) =⇒ (2)”: Suppose A |=X v ⊆≈ w. Then X(v) ⊆≈ X(w) and, this is why, setting
Rϑ := X(w)≈ leads to (A, Rϑ) |=X Rϑv = ϑ?. Moreover, for every a ∈ Rϑ = X(w)≈ there
exists, by definition of X(w)≈, an assignment s ∈ X such that s(w) ≈ a and, hence, it holds
that (A, Rϑ) |=s[z` 7→a] w ≈ z`, which leads to (A, Rϑ) |=s[z` 7→a] ϑ

(`). Since the other relations
Rϑi

for i 6= ` occur neither in ϑ? nor ϑ(i), it does not matter what values they contain.
“(1) ⇐= (2)”: For the converse direction, we assume that there are ≈-closed relations R

such that (A, R) |=X Rϑ`
v and that for every i ∈ {1, . . . , k}, a ∈ Rϑi

there is some si,a ∈ X
such that (A, R) |=si,a[zi 7→a] ϑ

(i). In particular, for every a ∈ Rϑ`
holds

(A, R) |=s`,a[z` 7→a] ϑ
(`) = Rϑ`

v ∧ w ≈ z`.

Our goal is to prove that A |=X v ⊆≈ w. Towards this end, let s ∈ X. Because (A, R) |=X

Rϑ`
v, it follows that s(v) ∈ Rϑ`

. So for s′ := s`,s(v) ∈ X holds (A, R) |=s′[z` 7→s(v)] w ≈ z`.
Therefore, s′(w) ≈ s(v). Since s ∈ X was chosen arbitrarily, this proves that A |=X v ⊆≈ w.

Case ϑ is an FO-literal: Then we have ϑ? := ϑ =: ϑ(i). For arbitrary (not necessarily
≈-closed) relations R holds

A |=X ϑ ⇐⇒
X 6=∅

(A, R) |=s ϑ for every s ∈ X and

for every i ∈ {1, . . . , k}, a ∈ Rϑi
exists s ∈ X

such that (A, R) |=s[zi 7→a] ϑ = ϑ(i)

Case ϑ = ψ0 ∨ ψ1: Let ϑ(j)
1 , . . . , ϑ

(j)
kj

be the inclusion atoms that occur in ψj .
“(1) =⇒ (2)”: First we assume that A |=X ϑ. Then there are two teams Y0, Y1 such that

X = Y0 ∪ Y1 and A |=Yj ψj for j ∈ {0, 1}.
By induction hypothesis, there are tuples of ≈-closed relations R(j) = (R(j)

ϑ1
, . . . , R

(j)
ϑk

)
such that (A, R(j)) |=Yj ψj (for j ∈ {0, 1}) and for every i ∈ {1, . . . , k} and every a ∈ R(j)

ϑi

there exists some s ∈ Yj such that (A, R(j)) |=s[zi 7→a] ψ
(i)
j . Let R = (Rϑ1 , . . . , Rϑk

) be a
tuple of ≈-closed relations such that Rϑi = R

(j)
ϑi
⇐⇒ ϑi occurs in ψj .3

We are going to prove that (A, R) |=X ϑ? and that for every i ∈ {1, . . . , k} such that
ϑi occurs in ϑ and every a ∈ Rϑi

, there exists some s ∈ X such that (A, R) |=s[zi 7→a] ϑ
(i).

Since (A, R(j)) |=Yj
ψ?j , we also have (A, R) |=Yj

ψ?j , because whenever a relation symbol Rϑi

occurs in ψj , it must be the case that ϑi occurs in ψj and, hence, Rϑi = R
(j)
ϑi

. Additionally
we still have X = Y0 ∪ Y1 and, thus, (A, R) |=X ϑ?.

Towards proving the second part, let i ∈ {1, . . . , k} such that ϑi occurs in ϑ and a ∈ Rϑi .
There must be some (unique) j ∈ {0, 1} such that ϑi occurs in ψj and Rϑi

= R
(j)
ϑi

. We know
already that there exists some s ∈ Yj that satisfies (A, R(j)) |=s[zi 7→a] ψ

(i)
j , which implies that

(A, R) |=s[zi 7→a] ψ
(i)
j . Furthermore, we have that ϑ(i) := ψ

(i)
j and, consequently, it follows

that (A, R) |=s[zi 7→a] ϑ
(i), which is exactly what we wanted to achieve.

“(1) ⇐= (2)”: Suppose that there are ≈-closed relations R such that (A, R) |=X ϑ? and
that for every i ∈ {1, . . . , k}, a ∈ Rϑi

there exists some si,a ∈ X such that (A, R) |=si,a[zi 7→a]

ϑ(i). Then there are some teams Y0, Y1 such that Y = Y0 ∪ Y1 and (A, R) |=Yj
ψ?j for

j ∈ {0, 1}. Furthermore, by definition of ϑ(i), for every i ∈ {1, . . . , k} such that ϑi occurs in
ϑ, there exists a (unique) j(i) ∈ {0, 1} with ϑ(i) = ψ

(i)
j(i). For j ∈ {0, 1} let

Y ′j := {si,a : i ∈ {1, . . . , k}, ϑi occurs in ϑ, a ∈ Rϑi
and j(i) = j} (⊆ X).

3 Such R exists, because ϑi cannot occur in both ψ0 and ψ1.
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It follows that (A, R) |=s ψ
(i)
j for every s ∈ Y ′j , because every s ∈ Yj has the form s = si,a

and we have that (A, R) |=si,a
ϑ(i) = ψ

(i)
j(i)(= ψ

(i)
j ). Since ψ(i)

j |= ψ?j , we can conclude that
also (A, R) |=si,a[zi 7→a] ψ

?
j . This, together with the flatness property of FO, implies that

(A, R) |=Zj ψ
?
j where Zj := Yj ∪ Y ′j .

For j ∈ {0, 1} let R(j) = (R(j)
ϑ1
, . . . , R

(j)
ϑk

) be given by

R
(j)
ϑi

:=
{
Rϑi

, if ϑi is a subformula of ψj
∅, otherwise.

Because the relation symbol Rϑi occurs in ψ?j if, and only if ϑi is a subformula of ψj , we still
have (A, R(j)) |=Zj

ψ?j for j ∈ {0, 1}. Furthermore, for every j ∈ {0, 1}, every i ∈ {1, . . . , k}
and every a ∈ R(j)

ϑi
it must be the case that ϑi is a subformula of ψj (otherwise we would have

R
(j)
ϑi

= ∅, but this contradicts a ∈ R(j)
ϑi

) and, thus, it follows that ϑ(i) = ψ
(i)
j and, therefore,

(A, R(j)) |=si,a[zi 7→a] ψ
(i)
j , because we have (A, R) |=si,a[zi 7→a] ϑ

(i) and si,a ∈ Y ′j ⊆ Zj .
This is the reason, why we are allowed to use the induction hypothesis, which yields us

that A |=Zj
ψj for j ∈ {0, 1}. Consequently, it follows that A |=Z0∪Z1 ϑ.

It is easy to observe that Z0 ∪ Z1 = Y0 ∪ Y1 ∪ Y ′0 ∪ Y ′1 = X, because Y ′0 , Y ′1 ⊆ X and
X = Y0 ∪ Y1. As a result, we obtain that A |=X ϑ.

Case ϑ = ψ0 ∧ ψ1: Similar and even easier than the previous case!
Case ϑ = ∃xψ: Recall that we have defined ϑ? := ∃xψ? and ϑ(i) = ∃xψ(i) for every

i ∈ {1, . . . , k}. We only prove “(1) ⇐= (2)”, since the other direction is quite trivial.
Suppose that there are ≈-closed relations R such that (A, R) |=X ∃xψ? and for every

i ∈ {1, . . . , k}, a ∈ Rϑi there exists an si,a ∈ X such that (A, R) |=si,a[zi 7→a] ∃xψ(i). Then
there is a function F : X → P(A)\{∅} such that for Y := X[x 7→ F ] holds (A, R) |=Y ψ? and
for every i ∈ {1, . . . , k}, a ∈ Ri there exists some bi,a ∈ A such that (A, R) |=s′

i,a
[zi 7→a] ψ

(i)

where s′i,a = si,a[x 7→ bi,a]. Let Y ′ := {s′i,a : i ∈ {1, . . . , k}, a ∈ Rϑi}. Due to ψ(i) |= ψ? and
the flatness property of FO, it follows that (A, R) |=Z ψ

? for Z := Y ∪ Y ′. Furthermore, for
every i ∈ {1, . . . , k}, a ∈ Rϑi

we have s′i,a ∈ Y ′ ⊆ Z with (A, R) |=s′
i,a

[zi 7→a] ψ
(i). Thus, we

can apply the induction hypothesis with Z and ϑ̃ to obtain that A |=Z ψ. By definition
of Z we have Z � dom(X) = (Y � dom(X)) ∪ (Y ′ � dom(X)). Furthermore, it is the case
that Y � dom(X) = X[x 7→ F ] � dom(X) = X (recall that we assume that no variable is
quantified twice and that dom(X) = free(ϑ)) and Y ′ � dom(X) ⊆ X, because every s′ ∈ Y ′
has the form s′ = s′i,a = si,a[x 7→ bi,a] where si,a ∈ X. Therefore, Z � dom(X) = X and,
hence, it follows that A |=X ∃xψ = ϑ.
Case ϑ = ∀xψ: Recall that we have defined ϑ? := ∀xψ? and ϑ(i) := ∃x(ψ(i)) ∧ ∀x(ψ?).

“(1) =⇒ (2)”: Let A |=X ∀xψ. Then A |=Y ψ where Y := X[x 7→ A]. By induction
hypothesis, there are ≈-closed relations R such that (A, R) |=Y ψ? and for every i ∈
{1, . . . , k}, a ∈ Rϑi

there exists an s′i,a ∈ Y that satisfies (A, R) |=s′
i,a

[zi 7→a] ψ
(i).

Since Y = X[x 7→ A], it follows that (A, R) |=X ∀xψ? = ϑ?. We have already mentioned
above that ϑ? ∈ FO. So we can use the flatness property, which leads to (A, R) |=s ∀xψ?
for every s ∈ X. In particular, this holds for the assignments si,a := (s′i,a � dom(X)) ∈ X.
This is why, we have (A, R) |=si,a

∀xψ?. Furthermore, from (A, R) |=s′
i,a

[zi 7→a] ψ
(i) follows

that (A, R) |=si,a[zi 7→a] ∃xψ(i). Consequently, we can conclude that (A, R) |=si,a
∃x(ψ(i)) ∧

∀x(ψ?) = ϑ(i) for every i ∈ {1, . . . , k}, a ∈ Rϑi and we have that (A, R) |=X ϑ?.
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“(1) ⇐= (2)”: Suppose that there are ≈-closed relations R satisfying (A, R) |=X ∀xψ?
and for every i ∈ {1, . . . , k}, a ∈ Rϑi

there exists some si,a ∈ X such that

(A, R) |=si,a[zi 7→a] ϑ
(i) = ∃x(ψ(i)) ∧ ϑ?.

Let Y := X[x 7→ A]. Then we have (A, R) |=Y ψ? (because (A, R) |=X ∀xψ?). Further-
more, for every i ∈ {1, . . . , k}, a ∈ A there exists some bi,a ∈ A such that (A, R) |=s′

i,a
[zi 7→a]

ϑ(i) where s′i,a := si,a[x 7→ bi,a] ∈ Y (because (A, R) |=si,a[zi 7→a] ∃xψ(i)). So, by induc-
tion hypothesis, it follows that A |=Y ψ and, because of Y = X[x 7→ A], we obtain that
A |=X ∀xψ = ϑ. J

A.2 Σ1
1(≈) on restricted classes of structures

Proof of Theorem 25. It suffices to prove this for p = 2. Let τ = {E,≈}. Consider the
following problem: C := {A ∈ K≤2 : (A,EA) is not connected}. By using the method of
Ehrenfeucht-Fraïssé we will show that C is not definable in FO(⊆≈, |≈).

For every m > 3 let Am := (Am, EAm ,≈) and Bm := (Bm, EBm ,≈) where Am :=
{0, . . . ,m− 1} ∪ {0′, . . . , (m− 1)′} =: Bm and EAm := EAm

+ ∪ EAm
− with

EAm
+ := {(i, j), (i′, j′) : j = i+ 1 (mod m)}

and EAm
− := {(w, v) : (v, w) ∈ EAm

+ }. Similary, EBm := EBm
+ ∪ EBm

− where EBm
+ :=

{(0, 1), (1, 2), . . . , (m − 2,m − 1), (m − 1, 0′), (0′, 1′), . . . , ((m − 2)′, (m − 1)′), ((m − 1)′, 0)}
and EBm

− := {(w, v) : (v, w) ∈ EBm
+ }. ≈ is in both structures defined such that [i]≈ = {i, i′}

for every i ∈ {0, . . . ,m−1}. In other words, Am consists of two cycles (0, 1, . . . ,m−1, 0) and
(0′, 1′, . . . , (m−1)′, 0′) of length m, while Bm is a single cycle (0, 1, . . . ,m−1, 0′, 1′, . . . , (m−
1)′, 0) of length 2m.

For every v ∈ {0, 1, . . . ,m− 1, 0′, 1′, . . . , (m− 1)′} there are uniquely determined sAm(v)
and sBm(v) such that (v, sAm(v)) ∈ EAm

+ and (v, sBm(v)) ∈ EBm
+ . Similarly, there are exists

uniquely determined predecessors (sAm)−1(v) and (sBm)−1(v) with (v, (sAm)−1(v)) ∈ EAm
−

and (v, (sAm)−1(v)) ∈ EBm
− . We define for every v ∈ Am, every w ∈ Bm and every k ∈ Z

v +Am k := (sAm)k(v) and w +Bm k := (sBm)k(w).

We are going omit Am and Bm as a subscript, when it is clear from the context that v
belongs to Am resp. Bm.

For v, w ∈ Am we define distAm
(v, w) to be the minimal number n ∈ N such that

v + n = w or v − n = w, or ∞, if no such number n ∈ N exists. distBm
(v, w) is defined

analogously. Please note, that distAm
(v, w) = distAm

(w, v) and distBm
(v, w) = distBm

(w, v).
Furthermore, for every a ∈ {0, 1, . . . ,m− 1, 0′, 1′, . . . , (m− 1)′} and every b, c ∈ Z holds,

(a+Am
b) +Am

c = a+Am
(b+ c) and (a+Bm

b) +Bm
c = a+Bm

(b+ c).

It is easy to see that dist(v1, v3) ≤ dist(v1, v2) + dist(v2, v3) for every v1, v2, v3 from Am
or Bm. Furthermore, v ≈ w implies that sAm(v) ≈ sBm(v) and (sAm)−1(v) ≈ (sBm)−1(v).
This observation leads to the following corollary.
I Claim 26. Let v ∈ Am, w ∈ Bm with v ≈ w. Then v + k ≈ w + k for every k ∈ Z.

For every i, j, q ∈ N we write i ≈q j if, and only if i = j or i ≥ q ≤ j. Given two
assignments s : {x1, . . . , x`} → Am and t : {x1, . . . , x`} → Bm, we write s ≈q t if, and only
if s(xi) ≈ t(xi) (which is equivalent to: s(xi), t(xi) ∈ {n, n′} for some n ∈ {0, . . . ,m − 1})
and distAm

(s(xi), s(xj)) ≈q distBm
(t(xi), t(xj)) holds for every i, j ∈ {1, . . . , `}.
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I Lemma 27. Let m > 2n+2 and 0 ≤ ` ≤ k < n. Furthermore, let s : {x1, . . . , x`} → Am
and t : {x1, . . . , x`} → Bm be two assignments with s ≈2n+1−k t. Then:
(1) For every a ∈ Am there exists some b = b(s, t, a) ∈ Bm such that

s′ := s[x`+1 7→ a] ≈2n−k t[x`+1 7→ b] =: t′.

(2) For every b ∈ Bm there exists some a = a(s, t, b) ∈ Am such that

s′ := s[x`+1 7→ a] ≈2n−k t[x`+1 7→ b] =: t′.

Furthermore, for two teams X,Y over Am,Bm with dom(X) = {x1, . . . , x`} = dom(Y )
we write X ≈q Y if, and only if for every s ∈ X there exists some t ∈ Y and, conversely, for
every t ∈ Y there exists some s ∈ X such that s ≈q t.
I Claim 28. Let n,m ∈ N with m > 2n+2. Duplicator has a winning strategy in Gn(Am,Bm).

Thus we have Am Vn Bm for every m > 2n+2. Using very similar arguments, it is
possible to prove that Bm Vn Am. Furthermore, we have Am ∈ C and Bm /∈ C. This proves
that C is not definable in FO(⊆≈, |≈) (because ϕ is unable to distinguish between Am and
Bm for every m > 2depth(ϕ)+2). On the other hand, C is definable in Σ1

1 by the sentence
∃X∃x∃y(Xx∧¬Xy∧∀u∀v(Xu∧Euv → Xv)). This concludes the proof of FO(⊆≈, |≈) < Σ1

1.
FO < FO(⊆≈, |≈) follows from the fact that FO(|≈) ≡ FO(dep≈) and that the sentence

∀x∃y∀x′∃y′(dep≈(x, y) ∧ dep≈(x′, y′) ∧ x 6≈ y ∧ (x 6≈ x′ ∨ y ≈ y′) ∧ (x 6≈ y′ ∨ y ≈ x′))

expresses that a even number of equivalence classes exists. Using standard Ehrenfeucht-Fraïssé
arguments, it is not difficult to prove, that C is not FO-definable. J
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Abstract
Having a finite bisimulation is a good feature for a dynamical system, since it can lead to the
decidability of the verification of reachability properties. We investigate a new class of o-minimal
dynamical systems with very general flows, where the classical restrictions on trajectory intersec-
tions are partly lifted. We identify conditions, that we call Finite and Uniform Crossing: When
Finite Crossing holds, the time-abstract bisimulation is computable and, under the stronger
Uniform Crossing assumption, this bisimulation is finite and definable.
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1 Introduction

Hybrid automata. Hybrid systems [16] combine continuous dynamics, i.e. evolution of
variables according to flow functions (possibly described by differential equations) in control
locations, and discrete jumps between these locations, equipped with guards and variable
updates. For this very expressive class of models, where the associated transition system has
an uncountable state space, most verification questions are undecidable [19, 4], in particular
the reachability of some error states. For the last twenty-five years, a large amount of research
has been devoted to approximation methods [34, 12] and to the identification of subclasses
with decidable properties obtained by restricting the continuous dynamics and/or the discrete
behaviour of the systems [2]. Among these subclasses lie the well-known timed automata [1],
where all variables are clocks evolving with rate 1 with respect to a global time, guards are
comparisons of clocks with rational constants, and updates are resets. Decidability results

1 Supported by ERC project EQualIS.

© Béatrice Bérard, Patricia Bouyer, and Vincent Jugé;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beatrice.berard@lip6.fr
mailto:bouyer@lsv.fr
mailto:vincent.juge@u-pem.fr
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 Finite Bisimulations for Dynamical Systems with Overlapping Trajectories

were also obtained for larger classes (see [18, 14, 25, 2, 8, 15, 10, 9, 3]), usually (but not
always) by building a finite abstraction based on some bisimulation equivalence, preserving a
specific class of properties, like reachability or those expressed by temporal logic formulas.

Ingredients for decidability results. We now describe the restrictions mentioned above.
The first one consists in constraining the variable updates on discrete transitions between
locations by some “strong reinitialization”, to make the dynamics of locations independent
from each other, hence decoupling the discrete and continuous components. Considering a
single location with its dynamics is then sufficient; in the next step, the aim is to identify
subclasses of the dynamical systems governing the variables on a fixed location, for which a
finite bisimulation can be found.

With the decoupling conditions, powerful flows, like the linear flows considered in [17],
become possible. The approach in [2] handles o-minimal hybrid systems, using o-minimal
structures over the reals as time and variable domains. The first-order theory of reals
is then exploited to produce a finite bisimulation. This direction was further explored
in [25, 8, 22, 10, 9], where analytical or algebraic methods are proposed to extend the set
of flow functions as well as the underlying o-minimal structures. In [10, 9], decidability of
reachability is even obtained with the theory of reals while no finite bisimulation may exist.
The work of [15] explores how to slightly lift the hypothesis on strong reinitialization.

A few cases feature hybrid automata with no decoupling between the discrete and the
continuous parts, at the price of very simple dynamical systems: the first one is the class of
timed automata, where clocks describe the most basic flow functions, and the second one
is the (incomparable) class of Interrupt Timed Automata with polynomial constraints [3],
where the variables are stopwatches (with rate 0 or 1 depending on the location) organized
along hierarchical levels. In this latter case, classical polyhedron-based abstractions are not
sufficient and the finite bisimulation is obtained via an adaptation of the cylindrical algebraic
decomposition algorithm [13].

Contribution. We investigate a new class of o-minimal dynamical systems, where some
classical restrictions on the trajectories are lifted: overlapping trajectories are possible, as
depicted for instance in Figure 1. Our method involves a classification of intersection points,
similar to the cylindrical decomposition, producing a time-abstract bisimulation leading to a
finite abstraction under suitable hypotheses.

Outline. In Section 2, we recall the base properties of o-minimal structures used in our
developments; we then define the dynamical systems we will study; we also define the
technical tool of time-abstract bisimulation which is used to build a finite abstraction of the
dynamical systems; we end up this section with a discussion on related work. In Section 3, we
present the graph construction, which leads to abstract the original dynamical system with
some partition of the state-space, on which we are able to check time-abstract bisimulation.
In Section 4, we discuss definability and decidability issues, and show how our approach can
be used to recover the original work [25]. We end up with some perspectives.

2 Definitions

We consider linearly ordered structures M = 〈M,<, . . .〉. These structures can be dense
or discrete (or mixed), with or without endpoints (i.e. minimum or maximum). Classical
examples without endpoints are the set Z of integers or the real line R, while the sets N
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of natural numbers and R+ of the non negative real numbers have 0 as left endpoint. We
will consider the first-order theory associated with M: we say that some relation, subset
or function is definable when it is first-order definable in the structure M. Next we may
abusively identify the structureM with its first-order theory. A general reference for first-
order logic is [20]. Moreover, we will assume that the theory ofM is o-minimal and we recall
here the definition of o-minimality (references are [31, 21, 32, 33, 36]).

2.1 O-minimal structures
Recall that intervals ofM = 〈M,<, . . .〉 are convex sets with either a supremum in M or no
upper bound, and either an infimum in M or no lower bound.

I Definition 1. A linearly ordered structure M = 〈M,<, . . .〉 has an o-minimal theory if
every definable subset of M is a finite union of intervals.

In other words, the definable subsets of M are the simplest possible. This assumption
implies that definable subsets of Mn (in the sense ofM) admit very nice structure theorems
(like the cell decomposition [21, 32]). Classical o-minimal structures are: the ordered group
of rationals 〈Q, <,+, 0, 1〉, the ordered field of reals 〈R, <,+, ·, 0, 1〉, the field of reals with
exponential function, the field of reals expanded by restricted pfaffian functions and the
exponential function, and many more interesting structures (see [36, 37]). An example of non
o-minimal structure is given by 〈R, <, sin, 0〉, since the definable set {x | sin(x) = 0} is not a
finite union of intervals. However, note that the structure2 〈R,+, ·, 0, 1, <, sin|[0,2π] , cos|[0,2π]〉
is o-minimal (see [35]).

We recall here a standard base result of o-minimal structures, used to build the cell
decomposition, and which will be useful in the subsequent developments. While initially
proved for dense structures [31, Theorem 4.2], a version for discrete structures is provided
in [32, Lemmas 1.3 and 1.5], and the result holds for general mixed structures as a consequence
of [33, Proposition 2.3].

I Theorem 2. LetM = 〈M,<, . . .〉 be a linearly ordered structure with an o-minimal theory.
Let f : M 7→ M be a definable function. The set M can be partitioned into finitely many
intervals I1, . . . , Ik such that, for every interval Ij, (i) the restriction f|Ij is either constant
or one-to-one and monotonic, and (ii) the set f(Ij) is an interval of M .

The other result on o-minimal structures used in the sequel is the following, restated
from [33, Section 2], which provides a uniform bound on the partition size:

I Theorem 3. LetM = 〈M,<, . . .〉 be a linearly ordered structure with an o-minimal theory.
Let ϕ be a formula with k variables. Then there exists an integer Nϕ such that, for all
b2, . . . , bk ∈ M , the set {a ∈ M | (a, b2, . . . , bk) |= ϕ} can be partitioned into at most Nϕ

intervals.

2.2 Dynamical systems
I Definition 4. A dynamical system is a pair (M, γ) where:
M = 〈M,<, . . .〉 is a linearly ordered structure,
γ : V1 × V → V2 is a function definable inM (where V1 ⊆Mk1 , V ⊆M and V2 ⊆Mk2

are definable subsets).3

2 sin|[0,2π] and cos|[0,2π] correspond to the sine and cosine functions restricted to interval [0, 2π].
3 We use these notations in the rest of the paper.
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Figure 1 A dynamical system with three trajectories.

The function γ is called the dynamics of the system and (M, γ) is said to be o-minimal when
the theory ofM is itself o-minimal.

Classically, we see V as the time, V1 as the input space, or set of parameters, V1 × V as
the space-time and V2 as the output, or geometrical, space.

I Definition 5. For a dynamical system (M, γ), if we fix a point x ∈ V1, the set Γx =
{γ(x, t) | t ∈ V } ⊆ V2 is called the trajectory determined by x.

We define a transition system associated with the dynamical system. This definition is an
adaptation to our context of the classical continuous transition system in the case of hybrid
systems (see [25] for example).

I Definition 6. Given (M, γ) a dynamical system, the associated transition system Tγ =
(Q,→) is defined by:

its set of states Q = V2;
its transition relation →, which is defined by: y → y′ if ∃x ∈ V1, ∃t, t′ ∈ V such that
t ≤ t′ and γ(x, t) = y, γ(x, t′) = y′.

As usual, an execution is a sequence of consecutive transitions. Note that it is possible to
switch between trajectories, as illustrated below.

I Example 7. The dynamical system depicted in Figure 1 is composed of three trajectories
(with γ(x1, .) in blue, γ(x2, .) in green and γ(x3, .) in red), with set of parameters V1 =
{x1, x2, x3} and V = V2 = R. Executions take place in R, according to the trajectories.
For instance: y1 → y2 → y3 → y4 with y1 = 3 = γ(x3,−1) and y2 = 2.5 = γ(x3, 0) on
the red curve, then switching to the green curve since y2 = γ(x2, t2) for some t2 < 0,
y3 = 0.5 = γ(x2, 2), and finally jumping to the blue curve since y3 = γ(x1, 2), leading to
y4 = γ(x1, 4).

The definition of dynamical system encompasses a lot of different behaviours, examples
of which can be obtained with structures enriched by additional operations like addition,
multiplication (or the exponential function).
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2

Figure 2 Dynamical systems: timed automata in dimension 2 (left) and example from [6] (right).

I Example 8. A classical one is the continuous dynamics of timed automata [1]: In this case,
M = 〈R, <,+〉 and the dynamics γ : Rn+ × [0,+∞[→ Rn+ is defined by γ(x1, . . . , xn, t) =
(x1 + t, . . . , xn + t). The standard graphical view, displayed in Figure 2 left, represents the
dynamical system directly on the output space: y → y′ with y = (2, 1) = γ((2, 1), 0) and
y′ = (3.5, 2.5) = γ((2, 1), 1.5).

I Example 9. Another example, borrowed from [6] and illustrated in Figure 2 right, features
a dynamical system where each point of the plane has two possible behaviours: going right
or going up. The dynamics γ : R2 × {−1,+1} × R→ R2 is defined by:

γ(x1, x2, p, t) =
{

(x1 + t, x2) if p = +1
(x1, x2 + t) if p = −1

Then y1 → y2 → y3 for the three points y1 = (0, 0), y2 = (0, 1) and y3 = (1, 1), since
y1 = γ(0, 0,−1, 0), y2 = γ(0, 0,−1, 1) = γ(0, 1, 1, 0), and y3 = γ(0, 1, 1, 1).

In hybrid automata, such behaviours are combined with a finite set of discrete locations,
each one having its own dynamics with respect to a common structureM; jumps between
locations are constrained by guards and equipped with updates. As mentioned in the
introduction, basic verification problems like reachability checking are undecidable in the
general case, and solutions to recover decidability are often to impose strong reinitializations
of trajectories at jumps (we will come back to that in subsection 2.4), which amounts to
concentrating on the analysis of a single dynamical system.

2.3 Time-abstract bisimulation
Time-abstract bisimulation [18, 14, 2, 25] is a behavioural relation often used to obtain
a quotient of the original transition system. When this quotient is finite, a large class of
properties can be verified, notably reachability properties.

We associate with a dynamical system (M, γ) a finite set G of guards, which are definable
subsets of V2. For every y ∈ V2, we define the set Gy

def= {g ∈ G | y ∈ g} of guards that are
“satisfied” by y, thus producing a finite partition of V2 into subsets satisfying the same sets
of guards.

I Definition 10. Consider a dynamical system (M, γ), a finite set G of definable guards
and an integer k ≥ −1. A k-step time-abstract bisimulation is an equivalence relation
Rk ⊆ V2 × V2 such that either (i) k = −1, or (ii) k ≥ 0 and there exists a (k − 1)-step
time-abstract bisimulation Rk−1 such that, if (y1, y2) ∈ Rk, then:
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(a) Gy1 = Gy2 ;
(b) if y1 → y′1 then there exists y′2 such that y2 → y′2 and (y′1, y′2) ∈ Rk−1;
(c) if y2 → y′2 then there exists y′1 such that y1 → y′1 and (y′1, y′2) ∈ Rk−1.
We further say that an equivalence relation R ⊆ V2 × V2 is a time-abstract bisimulation if R
is a k-step time-abstract bisimulation for all k ≥ −1. We also say that y1 and y2 are (k-step)
time-abstract bisimilar whenever there is a (k-step) time-abstract bisimulation R ⊆ V2 × V2
such that (y1, y2) ∈ R.

Note that, for every k, the class of k-step time-abstract bisimulations is closed under union,
and therefore there is a largest k-step time-abstract bisimulation, which can be obtained
as the union of all such relations. In particular, the relation Rk−1 used in items (b) and
(c) when defining Rk can be taken as the largest (k − 1)-step time-abstract bisimulation.
Similarly, there is a largest time-abstract bisimulation.

2.4 Problem and existing results
We focus here on the construction of finite (time-abstract) bisimulation relations, which is a
standard and powerful tool to prove decidability of classes of hybrid systems [18].

Existence of such relations is, for instance, the key property satisfied by timed automata [1],
a well-established model for real-time systems. However, for hybrid systems with more
complex dynamics, proving that there is a finite bisimulation might be difficult and is not
possible in general. In several works willing to better understand rich continuous dynamics
in a system, the idea has been to decouple the continuous and the discrete parts of the
system by assuming (possibly non-deterministic) reinitializations of the trajectories when a
jump between locations is performed, see e.g. [14, 24, 26, 23, 25]. This leads to only focus
on bisimulation relations within a discrete location. In this work, we follow this idea, and
therefore only focus on bisimulations generated by a single dynamical system.

A standard methodology for proving that there is a finite time-abstract bisimulation is to
compute successive approximations of the bisimulation relation (see [18, 24, 26, 23, 25, 7, 5]),
and show that the procedure terminates. In (almost) all the references mentioned below,
this is the way the problem is attacked. While the methodology seems rather universal,
it is amazing to see the variety of arguments which are used to show termination of the
procedure. They range from analytical and geometrical arguments [24, 26, 25] to model
theory arguments [23], algebraic and topological arguments [14] or, more recently, arguments
based on word combinatorics [7, 5].

While the precise domains of applicability of the approaches might vary, in most mentioned
related works (except [8, 7, 5]), time-determinism is assumed, in the sense that there is a single
trajectory going through some point of the output space. In [8, 7, 5], several trajectories may
intersect or self-intersect, but rather strong assumptions need to be made. For instance, in
the suffix-determinism assumption, all trajectories starting from a given point of the output
space visit the same pieces of the initial partition in a similar way; in the loop-determinism
assumption, two trajectories cannot intersect each other, but a trajectory can intersect itself
in finitely many points.

In our work, lots of self-intersecting and overlapping trajectories are possible, but we
bound the number of trajectories one can reach by switching between them (we will formalize
this later). For example, the dynamical system of Figure 1 does not satisfy any of the above
assumptions, but typically fits our framework.

The generic symbolic approach of [5] (and in particular the 2-subword refinement pro-
cedure) is a semi-procedure for finding finite bisimulations of o-minimal dynamical systems:
it finds a finite bisimulation relation if there is one, but cannot tell that there is no finite
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bisimulation. But only the two above-mentioned assumptions (suffix-determinism and loop-
determinism) guarantee termination of the computation. For instance, even though it does
not satisfy any of the sufficient conditions above, the system of Example 9 has a finite
bisimulation, which can be computed by the refinement procedure with respect to the single
guard y = (0, 0). Since there is no bound on the intersections of trajectories, this system
does not belong to our class. On the other hand, both the present work and the approach
of [5] encompass the original result [25].

Also, while the theory of o-minimality has been developed in any linearly ordered
structure [30, 31, 21, 33], initial settings [25, 14] assume expansion of the reals. Here,
similarly to [5], our results hold in the general setting.

In this paper we provide a method which is only based on geometrical properties of
o-minimal systems. It does not assume the field of real numbers, nor dense or discrete
structures. Furthermore, we are able to deal not only with (self-)crossing trajectories but
also with partly stationary trajectories.

3 The graph construction

In this section, we fix an o-minimal dynamical system (M, γ) and a finite set G of guards as
defined above, and we build a graph representing the time-abstract behaviour of γ.

We define a relation ∼ on V1, where x ∼ x′ if and only if the trajectories Γx and
Γx′ cross each other, i.e. if there exist t, t′ ∈ V such that γ(x, t) = γ(x′, t′). We also set
V1(x) def= {x′ ∈ V1 : x ∼ x′}.

To build the graph we distinguish between points of V2 with (at most) finitely many
predecessors by γ on any trajectory and points of V2 with infinitely many predecessors on
some trajectory. We will show that those two sets are definable, and that they can be used
to provide a nice finite decomposition of the state-space, fine enough to characterize the
time-abstract bisimulation. After defining suitable notions of intervals, we independently
provide a finite decomposition result and the construction of the graph itself.

3.1 Towards a decomposition

In what follows, we need to distinguish two kinds of intervals: singletons, i.e. intervals with
one unique element, and intervals with at least two elements, which we call large intervals.

I Definition 11. An interval I ⊆ V is called x-static if either (i) I is large and |γ(x, I)| = 1,
or (ii) I is a singleton and there exist a parameter x′ ∈ V1 and a large interval J ⊆ V such
that γ(x′, J) = γ(x, I). We further say that an element t of V is x-static if t belongs to some
x-static interval, and that a state y ∈ V2 is static if there exists x ∈ V1 and t ∈ V such that t
is x-static and y = γ(x, t).

On the contrary, we say that an element t of V is x-dynamic if t is not x-static, and we
say that an interval I is x-dynamic if every element of I is x-dynamic. We further say that I
is x-suitable if (i) I is x-dynamic, (ii) the function t 7→ Gγ(x,t) is constant on I, and (iii) the
function γ(x, ·) is one-to-one on I.

This produces a classification of points in V2: static, if some trajectory stops at that
position, or dynamic. It also induces a classification of timepoints and intervals along
trajectories: a static point y of V2 generates x-static timepoints on Γx, even though the
trajectory Γx may not be responsible for making y static.
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I Example 12. We illustrate the various notions on the example of Figure 1. Value y = 0.5
is static, because of x1 and x2. In particular, interval (1, 2) is x1-static and interval (1.5, 3) is
x2-static. Time t = 4 is x3-static because γ(x3, 4) = 0.5 is static, even though γ(x3, ·) itself
crosses y = 0.5 only in one point. And thus, interval {4} is also x3-static but not large.

Note that y = y∗ is dynamic, since no trajectory of the dynamical system is constant on
a large interval on which its value is y∗.

Assuming no guard in the system (or a single guard y = 0.5), the intervals (−∞, 1) and
(2,+∞) are x1-suitable (and maximal for that condition). Similarly, the intervals (−∞, 1.5)
and (3,+∞) are x2-suitable; the intervals (−∞, 4) and (4,+∞) are x3-suitable.

Then, since we want a finite representation of important points of the dynamical system,
we need to get uniform (definable) descriptions of the above classification of points.

First, we gather all portions of trajectories corresponding to dynamic parts of the system.
Note that such trajectories, while they visit the same state-space (in V2), might follow
different directions (hence the value ε = ±1 below).

I Definition 13. Consider two parameters x, x′ ∈ V1, one x-suitable interval I ⊆ V and one
x′-suitable interval I ′ ⊆ V . We say that the pairs (x, I) and (x′, I ′) are adapted to each other
if:
(i) the sets {γ(x, t) | t ∈ I} and {γ(x′, t′) | t′ ∈ I ′} are equal to each other;
(ii) there exists ε = ±1 such that: for all t, u ∈ I with t < u, there exist t′, u′ ∈ I ′ such

that γ(x, t) = γ(x′, t′), γ(x, u) = γ(x′, u′), and t′ < u′ ⇔ ε = 1.

In general, we say that a family of pairs (xk, Ik)k∈K is strongly adapted if:
(iii) every two pairs (xk, Ik) and (x`, I`) are adapted to each other;
(iv) for all k ∈ K, {(x, t) ∈ V1 ×M | γ(x, t) ∈ γ(xk, Ik)} =

⋃
`∈K{x`} × I`.

Finally, we say that an interval I is x-adaptable if the pair (x, I) belongs to a strongly
adapted family.

I Example 14. Going back to the previous example:
the pairs (x1, (−∞, 1)) and (x2, (−∞, 1.5)) are adapted to each other (with ε = +1);
the pairs (x1, (2,+∞)) and (x2, (−∞, 1.5)) are also adapted to each other (with ε = −1);
the pairs (x2, (3,+∞)) and (x3, (4,+∞)) are adapted to each other (with ε = +1).

By extension, we get that:
the pairs (x1, (−∞, 1)), (x1, (2,+∞)), (x2, (−∞, 1.5)) and (x3, (−∞, 4)) form a strongly
adapted family;
the interval (2,+∞) is x1-adaptable, due to the strongly adapted family above;
the interval (3,+∞) is x2-adaptable, due to the family formed of (x2, (3,+∞)) and
(x3, (4,+∞));
the singleton {t∗} is both x1-adaptable and x3-adaptable, due to the family formed of
(x1, {−1}), (x2, {t◦}), (x1, {t∗}) and (x3, {t∗}).

An interval I is said maximal x-static (resp. maximal x-adaptable), whenever it is x-static
(resp. x-adaptable), and is contained in no larger x-static (resp. x-adaptable) interval.

It turns out that maximal x-static and x-adaptable intervals form a covering of the time
domain V .

I Lemma 15. Consider a parameter x ∈ V1 and a timepoint t ∈ V . There exists an interval
I ⊆ V , which contains t, and such that I is a maximal x-static interval (if t is x-static) or a
maximal x-adaptable interval (if t is x-dynamic).
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Proof. If t is x-static, then the singleton {t} is x-static. If t is x-dynamic, then the family of
pairs (x′, {t′}) such that γ(x′, t′) = γ(x, t) is strongly adapted, and therefore the singleton
{t} is x-adaptable. Moreover, both the class of x-static intervals and the class of x-adaptable
intervals are closed under increasing union: this is clear for x-static intervals, and can be
argued as follows for x-adaptable intervals.

Let (Iα)α be an increasing family of x-adaptable intervals. For every α, let Fα =
(xαk , Iαk )k∈Kα be a corresponding strongly adapted family. There is an obvious one-to-one
correspondence between elements of Fα and elements of Fα′ for any pair of indices (α, α′),
hence one can rewrite the family Fα uniformly as (xk, Iαk )k∈K . One can therefore take
F = (xk,

⋃
α I

α
k )k∈K as a strongly adapted family for (x,

⋃
α I

α). The result follows. J

3.2 Finite decomposition result
Our goal here is to prove the following decomposition, which refines Lemma 15.

I Proposition 16. Consider a parameter x ∈ V1 such that V1(x) is finite. Then, the set V
is a finite, disjoint and definable union of intervals I1, . . . , Ik such that every interval Ij is
either
1. a maximal x-static interval, or
2. a maximal x-adaptable interval.

We first focus on static (geometrical, i.e. in V2) points and show that there can only be
finitely many such points along a trajectory.

I Lemma 17. There exists an integer K such that, for every parameter x ∈ V1, there exist
at most K large maximal x-static intervals.

Proof. We first observe that, if I1 and I2 are maximal large x-static intervals, with I1 6= I2,
then I1 ∩ I2 = ∅. Otherwise, the union I1 ∪ I2 would also be x-static, contradicting the
maximality of I1 and I2. Henceforth, we denote by ≺ the linear order on maximal large
x-static intervals, defined by

I1 ≺ I2 if and only if ∀t ∈ I1, ∀t′ ∈ I2, t < t′.

If I1 ≺ I2, and if I1 and I2 have respective lower bounds `1 and `2, then t ≤ `2 for all
t ∈ I1 and therefore `1 < `2 (since I1 is large). Consequently, if `2 ∈ I1, then I1 must have a
maximal element, and `2 = max(I1).

Now, let L(x) be the set of lower bounds of maximal x-static intervals. Observe that L(x)
is definable, and therefore by Theorem 3, there exists an integer K1 such that, for all x ∈ V1,
L(x) is a disjoint union of at most K1 intervals. We claim that each of these intervals has
(strictly) less than three elements.

Assume on the contrary that there exists a sub-interval J of L(x) containing three
elements `1 < `2 < `3. For all t ∈ J , we denote by I(t) the maximal large x-static interval
with lower bound t. Since I(`1) is large, it contains some element t such that `1 < t. Up
to replacing both t and `2 by min{t, `2}, we assume that t = `2. It follows, as noted above,
that `2 = max(I(`1)). Since I(`2) is large too, consider some element u of I(`2) that is not
maximal in I(`2). Since `1 ∈ I(`1) and I(`1) ≺ I(`2), we know that `2 < u. Up to replacing
both u and `3 by min{u, `3}, we also assume that u = `3, hence that `3 ∈ I(`2). However,
since `2 < `3, our initial remark proves that u = `3 must be the maximal element of I(`2),
contradicting the definition of u. This proves our claim.
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The set L(x) is therefore of cardinality at most 2K1. Observing that at most one maximal
large x-static interval has no lower bound proves that there exist at most K large maximal
x-static intervals, where K = 2K1 + 1. J

I Lemma 18. There exists an integer L such that, for every parameter x ∈ V1, the set of
x-static elements of V is a disjoint union of at most L |V1(x)| maximal x-static intervals.

Proof. Fix x ∈ V1. Let S denote the set of static elements of γ(x, V ). With each element y of
S we can associate a pair (x′, I), where x′ ∈ V1(x) and I is a maximal large x′-static interval
such that γ(x′, I) = {y}. This association is one-to-one, and therefore |S| ≤ K |V1(x)|.

Moreover, there exists an integer L1 such that, for every y ∈ V2, the definable set
{t ∈ V | γ(x, t) = y} is a finite union of at most L1 intervals (Theorem 3). Assuming,
without loss of generality, that these intervals are pairwise disjoint, proves Lemma 18 for
L = K L1. J

We now turn to the case of dynamic elements. We start with the following combinatorial
lemma, whose proof is immediate by induction on k + `.

I Lemma 19. Let I = (I1, . . . , Ik) and J = (J1, . . . , J`) be two partitions of V into sub-
intervals. There exists a partition K = (K1, . . . ,Km) of V into sub-intervals that refines both
I and J , and such that m+ 1 ≤ k + `.

I Lemma 20. There exists an integer M such that, for every parameter x ∈ V1, every
maximal x-dynamic interval of V is a disjoint union of at most M(1 + |V1(x)|) maximal
x-adaptable intervals.

Proof. First, recall that there exists an integer L1 such that, for all x ∈ V1 and all y ∈ V2,
the definable set {t ∈ V | γ(x′, t) = y} is a disjoint union of at most L1 intervals. If y is not
static, then these intervals must be singletons, and therefore |{t ∈ V | γ(x′, t) = y}| ≤ L1.

Now, for all t ∈ V and x, x′ ∈ V1, we denote by f1(x, x′, t) < . . . < fL1(x, x′, t) the
elements of the set {t′ ∈ V | γ(x, t) = γ(x′, t′)}, where fi(x′, t) is undefined if |{t′ ∈ V |
γ(x, t) = γ(x′, t′)}| is either smaller than i or greater than L1 (in the latter case, γ(x, t) must
be static). Observe that every function fi is definable. Consequently, there exists an integer
M1 such that, for all x ∈ V1 and x′ ∈ V1(x), there exists a partition Pi(x, x′) of V into at
most M1 intervals on which the function t 7→ fi(x, x′, t) is either undefined, constant, or
continuous and strictly monotonic (Theorems 2 and 3).

Similarly, since the function (x, t) 7→ Gγ(x,t) is definable, there exists an integer M2 such
that, for all x ∈ V1, there exists a partition P ′(x) of V in at most M2 intervals on which
t 7→ Gγ(x,t) is constant.

Now, consider some x ∈ V1. By Lemma 19, there exists a partition P of V , which refines
P ′(x) and every partition Pi(x, x′), for i ≤ L1 and x′ ∈ V1(x), and which contains at most
M1 L1 |V1(x)|+ M2 intervals. By construction, every interval of the partition P is either
x-adaptable or x-static, and by choosing P to contain as few intervals as possible, these
intervals are guaranteed to be maximal x-adaptable intervals. Lemma 20 follows, by choosing
M = max{M1 L1,M2}. J

Since maximal x-adaptable intervals and maximal x-static intervals are definable, we
derive from Lemmas 18 and 20 the targeted Proposition 16.
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3.3 Construction of the graph
I Definition 21. We call bisimulation graph for the o-minimal dynamical system (M, γ)
and the set of definable guards G the (possibly infinite) labeled graph with ε-transitions
G = (N,E,Eε, L) defined as follows:

the set of nodes is

N = {(x, I) : x ∈ V1, I is a maximal x-static or x-adaptable interval };

the set of edges is

E = {((x, I), (x, J)) ∈ N ×N : ∃t ∈ I, ∃t′ ∈ J, t ≤ t′};

the set of ε-transitions is

Eε = {((x, I), (x′, I ′)) ∈ N ×N : ∃t ∈ I, ∃t′ ∈ I ′, γ(x, t) = γ(x′, t′)};

the labeling function is L : (x, I) 7→ {g : ∃t ∈ I, g ∈ Gγ(x,t)}.

Next, we write → (resp. →ε) the transition relation defined by E (resp. Eε), and we
denote by  the relation defined by: n1  n4 if there exist nodes n2 and n3 such that
n1 →ε n2 → n3 →ε n4.

I Definition 22. Consider an integer k ≥ −1. A k-step ε-bisimulation is an equivalence
relation Rk ⊆ N ×N such that either (i) k = −1, or (ii) k ≥ 0 and there exists a (k−1)-step
ε-bisimulation Rk−1 such that, if n1Rkn2, then:
(a) L(n1) = L(n2);
(b) if n1  n′1 then there exists n′2 such that n2  n′2 and n′1 Rk−1 n

′
2;

(c) if n2  n′2 then there exists n′1 such that n1  n′1 and n′1 Rk−1 n
′
2.

We further say that an equivalence relation R ⊆ N ×N is a ε-bisimulation if R is a k-step
ε-bisimulation for all k ≥ −1. We also say that two nodes n1 and n2 are (k-step) ε-bisimilar
whenever there is a (k-step) ε-bisimulation R ⊆ N ×N such that n1 R n2.

Like time-abstract bisimulation, the class of (k-step) ε-bisimulations is closed under union,
hence there is a largest (k-step) ε-bisimulation, which can be obtained as the union of all
such relations. In particular, the relation Rk−1 used in items (b) and (c) when defining Rk

can be taken as the largest (k − 1)-step ε-bisimulation.

I Lemma 23. Let n = (x, I) and n′ = (x′, I ′) be nodes of the bisimulation graph G. The
following statements are equivalent: (i) n →ε n

′, (ii) γ(x, I) ∩ γ(x′, I ′) 6= ∅, and (iii)
γ(x, I) = γ(x′, I ′).

Proof. The equivalence between (i) and (ii) follows directly from the definition of the set Eε
of ε-transitions, and the implication (iii) ⇒ (ii) is obvious.

It remains to prove (iii), under the assumption that (ii) holds. If I is x-static, then γ(x, I)
is a singleton, hence I ′ contains an x′-static element, and therefore I ′ is not x′-suitable. This
proves that I ′ is x′-static, hence that γ(x′, I ′) is a singleton too, and (iii) follows.

If I is maximal x-adaptable, then I ′ cannot be x′-static, hence I ′ is maximal x′-adaptable
too. Let I ′′ be an interval such that (x, I) and (x′, I ′′) are adapted, with I ′ ∩ I ′′ 6= ∅. Since
maximal x′-adaptable intervals are disjoint, it follows that I ′′ ⊆ I ′, whence γ(x, I) ⊆ γ(x′, I ′).
Similarly, we have γ(x′, I ′) ⊆ γ(x, I), which completes the proof. J

CSL 2018



26:12 Finite Bisimulations for Dynamical Systems with Overlapping Trajectories

I Lemma 24. Let n = (x, I) and n′ = (x′, I ′) be nodes of the bisimulation graph G. The
following statements are equivalent: (i) n n′, (ii) ∃y ∈ γ(x, I), ∃y′ ∈ γ(x′, I ′) s.t. y → y′,
and (iii) ∀y ∈ γ(x, I), ∃y′ ∈ γ(x′, I ′) s.t. y → y′.

Proof. We first prove that (i)⇒ (iii). Assume that n n′, and let n1 = (x1, I1), n2 = (x2, I2)
be nodes such that n→ε n1 → n2 →ε n

′. Let also y ∈ γ(x, I). By Lemma 23, there exists
t ∈ I1 such that y = γ(x1, t). Let us prove that there exists t′ ∈ I2 such that t ≤ t′. Indeed,
if I1 = I2, we may choose t′ = t. Otherwise, recall that I1 and I2, as maximal x1-static or
x1-adaptable intervals, must be disjoint, and that there exist t1 ∈ I1 and t2 ∈ I2 such that
t1 ≤ t2; this proves in fact that t1 < t2 for all t1 ∈ I1 and t1 ∈ I2, and therefore that every
t′ ∈ I2 is greater than t. Finally, let y′ = γ(x2, t

′). Since x1 = x2 and t ≤ t′, we know that
y → y′, and since n2 →ε n

′, Lemma 23 proves that y′ ∈ γ(x′, I ′), which proves (iii).
Second, observe that the implication (iii) ⇒ (ii) is immediate. It remains to prove that

(ii) ⇒ (i). Assume that (ii) holds. Let x1 ∈ V1 be a parameter, and t1 ≤ t2 be elements
of V such that y = γ(x1, t1) and y′ = γ(x1, t2). Let I1 and I2 be the maximal x1-static or
x1-adaptable intervals to which belong t1 and t2, and let n1 = (x1, t1) and n2 = (x1, t2). By
construction, and using Lemma 23, we have n→ε n1 → n2 →ε n

′, which proves (i). J

I Theorem 25. For all integers k ≥ −1, two elements y1 and y2 in V2 are (k-step) time-
abstract bisimilar if and only if there exist (k-step) ε-bisimilar nodes n1 = (x1, I1) and
n2 = (x2, I2) of the bisimulation graph G such that yi ∈ γ(xi, Ii).

Proof. In the following, we conveniently write γ(n) instead of γ(x, I) when n is the node
(x, I).

For every k ≥ −1, define Rk as the largest k-step time-abstract bisimulation over V2. We
define the relation Rk over N as follows:

n1Rkn2 iff ∃yi ∈ γ(ni) such that y1 Rk y2.

Let us prove, by induction on k, that Rk is a k-step ε-bisimulation relation. The case k = −1
is immediate, hence we assume that k ≥ 0 and that Rk−1 is a (k − 1)-step time-abstract
bisimulation.

Let n1 = (x1, I1) and n2 = (x2, I2) be two nodes such that n1Rkn2, and let y1 ∈ γ(n1)
and y2 ∈ γ(n2) such that y1 Rk y2. First, since I1 is either x1-static or x1-suitable, we
know that the function t 7→ Gγ(x1,t) is constant on I1. Similarly, the function t 7→ Gγ(x2,t) is
constant on I2 and therefore L(n1) = Gy = L(n2).

Then, let n′1 = (x′1, I ′1) be a node such that n1  n′1. By Lemma 24, there exists
y′1 ∈ γ(n′1) such that y1 → y′1. Since y1 Rk y2, there also exists y′2 such that y2 → y′2 and
y′1 Rk−1 y

′
2. Let n′2 = (x′2, I ′2) be a node such that y′2 ∈ γ(n′2). By construction, we have

y′1Rk−1y
′
2. Since n1 and n2 play symmetric roles, Rk is a k-step ε-bisimulation relation.

Likewise, if R is the largest time-abstract bisimulation over V2, the relation R over N
defined by n1Rn2 iff ∃yi ∈ γ(ni) such that y1 R y2 is an ε-bisimulation relation.

Consequently, if y1 and y2 are (k-step) time-abstract bisimilar, constructing the relation
(Rk or) R as above proves that there exist (k-step) ε-bisimilar nodes n1 and n2 of the
bisimulation graph G such that yi ∈ γ(ni).

Conversely, for every k ≥ −1, define Rk as the largest k-step ε-bisimulation over N . We
define the relation Rk over V2 as follows:

y1 Rk y2 iff ∃ni ∈ N such that yi ∈ γ(ni) and n1Rkn2.
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x1, (−∞, 1) x1, [1, 2]

x1, (2,+∞)

x2, (−∞, 1.5) x2, [1.5, 3] x2, (3,+∞)

x3, (−∞, 4) x3, {4} x3, (4,+∞)

Figure 3 The bisimulation graph of the previous example (→ε is obtained by reflexive and
transitive closure of dashed lines; → is represented by normal edges).

Let us prove, by induction on k, that Rk is a k-step ε-bisimulation relation. The case k = −1
is immediate, hence we assume that k ≥ 0 and that Rk−1 is a (k − 1)-step time-abstract
bisimulation.

Consider two states y1, y2 ∈ V2 such that y1 Rk y2, and let n1 = (x1, I1) and n2 = (x2, I2)
be two nodes such that yi ∈ γ(ni) and n1Rkn2. Once again, the function t 7→ Gγ(x1,t) is
constant on I1, and t 7→ Gγ(x2,t) is constant on I2, hence Gy1 = L(n1) = L(n2) = Gy2 .

Then, let y′1 be a state such that y1 → y′1, and let n′1 = (x′1, I ′1) be a node such that
y′1 ∈ γ(n′1). Lemma 24 proves that n1  n′1, and since Rk is a k-step ε-bisimulation relation
there exists a node n′2 = (x′2, I ′2) such that n2  n′2 and n′1Rk−1n

′
2. Lemma 24 proves that

y2 → y′2 for some y′2 ∈ γ(n′2), and we have y′1 Rk−1 y
′
2 by construction. Since y1 and y2 play

symmetric roles, Rk is a k-step ε-bisimulation relation.
Likewise, if R is the largest ε-bisimulation over N , the relation R over V2 defined by

y1 R y2 iff ∃ni ∈ N such that yi ∈ γ(ni) and n1Rn2 is a time-abstract bisimulation relation.
In particular, if R is an ε-bisimulation relation, then R is a time-abstract bisimulation
relation.

Consequently, if n1 and n2 are (k-step) ε-bisimilar, constructing the relation (Rk or) R
as above proves that, for all states yi ∈ γ(ni), y1 and y2 are (k-step) time-abstract bisimilar,
which completes the proof. J

I Example 26. The bisimulation graph for the dynamical system of Figure 1 is depicted on
Figure 3. We infer that:

all points of the interval (−∞, y3) = γ(x2, (3,+∞)) = γ(x3, (4,+∞)) are time-abstract
bisimilar;
the singleton {y3} = γ(x1, [1, 2]) = γ(x2, [1.5, 3]) = γ(x3, {4}) forms a class of the
time-abstract bisimulation;
all points of the interval (y3,+∞) = γ(x1, (−∞, 1)) = γ(x1, (2,+∞)) = γ(x2, (−∞, 1.5))
= γ(x3, (−∞, 4)) are time-abstract bisimilar.

CSL 2018
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4 Definability and decidability

In this section, we discuss definability and decidability issues.
We say that a theoryM = 〈M,<, . . .〉 is decidable whenever for every first-order formula

ϕ, for every t ∈M , one can decide whether t |= ϕ holds.
So far we have not assumed any decidability of the structures, and, indeed, not all

o-minimal structures are decidable. For instance, it is not known whether the o-minimal
structure 〈R, <, 0, 1,+, ·, exp〉 is decidable [27, 29]. Alternatively, if ω is a non-computable
real number, such as Chaitin’s constant [11], then the structure 〈R, <, 0, 1, ω,+〉 is o-minimal
but not decidable.

In this section, we consider the relation ∼∗, which is the (reflexive and) transitive closure
of ∼, with V ∗1 (x) def= {x′ ∈ V1 : x ∼∗ x′}. We introduce the following assumption, called
Finite Crossing: every equivalence class of the relation ∼∗ (i.e. every set V ∗1 (x)) is finite.
The stronger condition obtained when there is a uniform bound on the size of equivalence
classes is called Uniform Crossing.

I Theorem 27. Let (M, γ) be an o-minimal dynamical system. Under the Uniform Crossing
assumption, the relation of time-abstract bisimulation is definable, and it contains finitely
many equivalence classes.

Proof. Let y1, y2 be elements of V2 and let x1, x2 ∈ V1 be parameters such that yi ∈ Γxi .
Let also P be a positive integer such that |V ∗1 (x)| ≤ P for all x ∈ V1. Consider the sub-graph
G′ of the bisimulation graph G that consists in those nodes (x′, I) with x′ ∈ V ∗1 (x1)∪ V ∗1 (x2).
This sub-graph is finite, and Lemmas 18 and 20 prove that it contains at most k(L+M+M k)
nodes, where k = |V ∗1 (x1) ∪ V ∗1 (x2)|. Since k ≤ 2P, it follows that G′ contains at most
N = 2P(L + M + 2M P) nodes.

It is well-known that, on G′, the relations of ε-bisimulation and of N-step ε-bisimulation
are equal to each other. Hence, it follows from Theorem 25 that y1 and y2 are time-abstract
bisimilar if and only if they are N-step time-abstract bisimilar. In particular, the latter
relation has finitely many equivalence classes, and is definable, which proves Theorem 27. J

I Theorem 28. Let (M, γ) be a decidable o-minimal dynamical system. Under the Finite
Crossing assumption, the relation of time-abstract bisimulation is decidable: given y1, y2 ∈ V2,
one can decide whether y1 and y2 are time-abstract bisimilar.

Proof. For all k ≥ 0 and x ∈ V1, let V(k, x) = {xk ∈ V1 : ∃x1, . . . , xk ∈ V1 s.t. x ∼ x1, x1 ∼
x2, . . . , xk−1 ∼ xk}, where we recall that the relation ∼ is defined by: x ∼ x′ iff Γx ∩Γx′ 6= ∅.
By construction, the set V(k, x) is definable and is a subset of V ∗1 (x). Moreover, since V ∗1 (x)
is finite, there exists a minimal integer k ≥ 0 such that V(k, x) = V(k + 1, x), and we have
V ∗1 (x) = V(k, x). Since the equality of definable sets is decidable, the set V ∗1 (x) is therefore
computable for every parameter x ∈ V1.

Now, let y1, y2 be elements of V2 and let x1, x2 ∈ V1 be parameters such that yi ∈ Γxi .
We just showed how to compute the set V ′1 = V ∗1 (x1) ∪ V ∗1 (x2). Then, let R and R′ be
the respective time-abstract bisimulation relations in (M, γ) and of (M, γ′), where γ′ is
the restriction of γ to the set V ′1 × V . Since R′ coincides with the restriction of R to
{y ∈ V2 : ∃x ∈ V ′1 , y ∈ Γx}, it remains to compute the relation R′.

Since V ′1 is finite, we may apply Theorem 27 to (M, γ′). We thereby prove that R′
has finitely many equivalence classes, and therefore is equal to the N-step time-abstract
bisimulation in (M, γ′), for some integer N. Consequently, the standard partition refinement
procedure (see e.g. [7, p. 6]) will terminate, since there are finitely many classes, and we
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will be able to detect termination, since the theory is decidable. The partition refinement
procedure is therefore an effective algorithm which allows to compute the time-abstract
bisimulation R′, which completes the proof. J

Remark that all results still hold if we replace the conditions on the sets V ∗1 (x), x ∈ V1
by a finer semantical definition:

V ∗1 (x) = {x′ ∈ V1 : ∃y1, . . . , yk ∈ V2 s.t. y1 ∈ Γx, yk ∈ Γx′ and y1 → . . .→ yk}.

Notice, however, that the assumption on the size of V ∗1 (x) could not be relaxed, due to
the undecidability result of [4, Theorem 3.1].

Recovering the main result of [25]

The use of restricted dynamical systems also allows us to encompass the main result of [25].

I Theorem 29. LetM = 〈R, <, . . .〉 be an expansion of the ordered set of the reals with an
o-minimal theory, and let V = R and V1 = V2 = Rn for some integer n ≥ 1. Assume that
there exists a smooth, complete vector field F over Rn such that the dynamics (called flow
in [25]) γ : (x, t) → γ(x, t), which is defined by: γ(x, 0) = x and d

dtγ(x, t) = F (γ(x, t)), is
definable inM. Then, the relation of time-abstract bisimulation is definable, and it contains
finitely many equivalence classes.

Proof. By construction, if two trajectories Γx and Γx′ have a non-empty intersection, then
there exists a real number t such that x′ = γ(x, t), and we have γ(x′, u) = γ(x, t+ u) for all
u ∈ R, so that the trajectories Γx and Γx′ are equal to each other. Hence, the relation ∼ is
an equivalence relation.

Then, due to [28, Corollary 3.3.28], there exists a definable set V ′1 such that every
equivalence class of ∼ contains a unique element in V ′1 . Consider the restricted dynamical
system (M, γ′), where γ′ is the restriction of γ to the set V ′1 × V . This restricted dynamical
system satisfies the hypothesis of Theorem 27, and therefore there exists an integer N ≥ 0
such that the time-abstract bisimulation relation and the N-step time-abstract bisimulation
relation in (M, γ′) are equal to each other. Since the transition systems associated with
(M, γ) and (M, γ′) are equal to each other, the result follows. J

5 Conclusion

In this paper, we have proposed a new approach for the analysis of o-minimal dynamical
systems. Our approach allows us to treat trajectories with overlapping portions, and with
possibly rich intersections. There is however a restriction, which is that trajectory switches
should remain within a finite family of trajectories, once the initial trajectory has been
chosen. It is important to notice that, as mentioned in the end of Section 4, it would not be
possible to arbitrarily relax that assumption, since the reachability problem is undecidable
for dynamical systems allowing arbitrarily many switches, as proved in [4, Theorem 3.1].

Adding the standard decoupling hypothesis, where jumps between locations reinitialize
trajectories, we obtain a decidable class of hybrid systems.

Our future work will consist in trying to adapt the idea of interrupt timed automata
of [3], where no reinitialization is assumed, to systems with richer (o-minimal) dynamics.

CSL 2018
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Abstract
With the help of an idea of contextual modal logic, we define a logical system λrefl that in-
corporates monadic reflection, and then investigate delimited continuations through the lens of
monadic reflection. Technically, we firstly prove a certain universality of continuation monad,
making the character of monadic reflection a little more clear. Next, moving focus to delimited
continuations, we present a macro definition of shift/reset by monadic reflection. We then prove
that λrefl

2cont, a restriction of λrefl, has exactly the same provability as λs/r
pure, a system that incorpo-

rates shift/reset. Our reconstruction of monadic reflection opens up a path for investigation of
delimited continuations with familiar monadic language.
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1 Introduction

Every light is accompanied by darkness. Every term is accompanied by its continuation.
Suppose that the part indicated by the underline in the following term is being evaluated:

1 + 2× 3− 4

In this case, the continuation of 2×3 is intuitively A (1+[ ]−4), where A (M) means “compute
M and then quit”. In other words, a continuation is the rest of the computation, and is
therefore expressed as a term with just one “hole”. Some calculi[5][21] can turn a continuation
into a function and use it in terms as if it were an ordinary function. Such manipulations of
continuations are well-understood today, and indeed it is a well-known fact that these can
be characterized as classical inferences via the Curry-Howard Isomorphism[10][21]. In the
correspondence, the type of A (1 + [ ]− 4) is understood to be N→ ⊥, assuming that N is
the type of natural numbers.

Delimited continuation[4][6][11] is a variant of continuation. In operational terms, a
delimited continuation is explained as the rest of the computation up to the nearest enclosing
delimiter. For example, consider the following term:

d1 + 2× 3e − 4

where we denote the delimiter by d−e. In this case, the delimited continuation of 2× 3 is
1 + [ ]. As in the case of ordinary continuations, there are calculi that can turn a delimited
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continuation into a function[4][15]. This perhaps seemingly trivial modification is in fact
significant, enhancing the expressibility of continuations drastically. Delimited continuations
are so expressive that it can realize, for example, coroutines, non-determinisim, and statically
typed printf[2]. This expressibility essentially comes from the fact that delimited continuations
are composable as functions, whereas ordinary continuations are not since their codomains
are ⊥.

In addition to the above intriguing applications of delimited continuations, there exists
one more elegant use of it: monadic reflection[7][8]. Monadic reflections allow programmers
to write programs that involve monads as if those monads are “built-in” to the language,
or in Haskell terminology, without do-notation. A little more specifically, in a system
with monadic reflection, a monadic term M : TA can be turned into a non-monadic term
reflectTM : A without disrupting the intuitive behavior of M , easing the trouble of writing
effectful programs in a purely-functional language.

On the other hand, however, delimited continuations are logically complicated. In contrast
to the fact that ordinary continuations correspond to classical inferences, there does not seem
to exist such a simple correspondence for delimited ones. Although there exists, for example,
an interesting work that embeds a system with delimited continuations into a variant of
classical logic[1], the embedding is still not “the end of the story” in that the original system
with delimited continuations[4] does not allow classical inferences.

Thus, to sum up the plot, an elegant application is being derived from a rather opaque
starting point. In this paper, with the help of an idea of contextual modal logic, we invert
the direction of this storyline: We directly define a logical system λrefl that incorporates
monadic reflection, and then investigate delimited continuations through the lens of monadic
reflection, obtaining a better understanding of delimited continuations. Our contribution in
this paper is now summaried as follows:

A modal logical system that incorporates monadic reflection,
The universality of continuation monad with respect to monadic reflection,
Logical understanding of delimited continuations via “quasi-double negation”,
Equivalence of monadic reflection and delimited continuation in provability.

In the next section, we overview the idea of Fitch-style contextual modal logic to obtain
the foundational idea of context layering. In the section, we also briefly review ordinary
modal logic since it might be an unfamiliar concept for researchers on delimited continuations.
Readers who are familiar with modal logic can safely skip the first part of the section. Using
the idea of contextual modal logic, in Section 3, we define a system λrefl that incorporates
monadic reflection, and show the univesality of continuation monad with respect to reflection,
making the character of monadic reflection a little more clear. We also present a macro
definition of shift/reset in the section. Section 4 is dedicated to an investigation of delimited
continuations via the lens of monadic reflection. We show certain equivalence of these two
concepts with respect to provability in the section. In Section 5, we put our contribution
into perspective by comparing our work to related work. Section 6 concludes this paper with
discussion of future work.

2 Fitch-Style Contextual Modal Logic

2.1 A Quick Tour of Modal Logic
Modal logic is a logic in which we can add certain modalities, or “flavors”, to propositions.
In modal logic, one can state that a proposition is “necessarily” true, “possibly” true, or
“should be” true, etc. Let us focus on necessity and possibility here. Typically, when a
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proposition A is necessarily or possibly true under an assumption Γ, one writes Γ ` �A or
Γ ` ♦A, respectively. Using these operators, one can extend ordinary logic into modal one.

But what after all is necessity? What is possibility? The critical problem of modal logic
in its early days was the very fact that people did not share any firm consensus on these
concepts. Is a proposition �A→ ��A true? How about �(A→ B)→ (�A→ �B)? Since
people did not have any precise definitions of modalities, the answer naturally differed among
people, which resulted in a lot of different variant of modal logics.

Fortunately, around 1960, this situation was recovered by Kripke[16][17], who presented
a semantics for modal logic. He presented formal definitions of the two modalities in his
semantics which employs a concept that would excite Sci-Fi enthusiasts and even others:
possible worlds. His semantics introduces a set of possible worlds and an “accessibility
relation” between them. Under this framework, for example, the meaning of necessity is
defined as follows: �A is true in a possible world w if and only if A is true in any world w′
that is accessible from the world w. The various aspects of necessity are then characterized
by how this accessibility relation is defined. For instance, if the accessibility relation under
consideration is reflexive, the box modality validates �A→ A. If the relation if transitive,
the modality validates �A→ ��A, etc. In this way, he gave formal definitions of “necessity”
and “possibility”, or whatever they are called, in modal logic.

2.2 Fitch-Style Contextual Modal Logic

There still remains a pitfall. Modalities become tricky when they are combined with bindings.
Let us take the example by Quine[23]. The sentence �(8 > 7) is true as long as our box
modality considered here validates A→ �A. Now, we know that the number of the planets
in our solar system is 8. Let us define

N := (the number of the planets in our solar system).

Then N = 8 is true. Now, however, the statement �(N > 7) is intuitively false, since we
can consider a possible world in which we have, for instance, only 5 planets in our solar
system. This phenomenon suggests that box modality has a delicate character with respect
to bindings. Some might think that the box modality should contain information about its
argument just like universal/existential quantifiers.

And here comes contextual modal logic. Contextual modal logic[19] is an attempt to
generalize the modalities with contextual information. In this logic, the box modality is
generalized from �A to [Γ]A. The latter proposition intuitively reads as “A is necessarily true
under Γ”. [Γ]A degenerates to the ordinary box modality when Γ is empty. By generalizing
box modality in this way, one can obtain a more fine-grained modality.

Multi-level Fitch-style contextual modal logic[20] is a variant of contextual modal logic.
In the logic, the form of judgments are generalized to Γ1 ; . . . ; Γn ` A. Intuitively, this
reads as “A is true under Γn, is true under Γn−1, . . . , is true under Γ1”. In other words, this
logic extends our vocabulary in the system, allowing statements of the form not only

A is true under Γ

but also

“A is true under Γ2” is true under Γ1.
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By internalizing the meaning of this statement, we can incorporate quotation to our logic.
For example, we can consider the following inference rules

~Π ; Γ ` A
�i

~Π ` [Γ]A

~Π ` [Γ]A
�e

~Π ; Γ ` A

which internalize quotation, or the relative pronoun “that”, as the box modality. It would be
worth noting that this box modality defined above characterizes the so-called K modality.
Furthermore, by extending these rules in a certain way, we can also characterize T, K4, and
S4 modalities. Interested readers are referred to [18][20]. In this paper, however, we think
that this quick explanation is sufficient for our purpose, and therefore do not go into further
details here.

3 A Contextual Reconstruction of Monadic Reflection

3.1 A Logical System with Monadic Reflection

3.1.1 Syntax
The syntax of λrefl is defined as follows. Here, the x and t in the following definition are a
variable and a type-variable, respectively. We assume that the set of variables and that of
type-variables are distinct.

A,B ::= t | A→ A

T ::= [ ] | t | T → T

M,N,P,Q ::= x | λx.M | M@M | reflectTM | reifyTM

Γ,∆ ::= ∅ | x : A,Γ
~Π ::= · | Γ ; ~Π
~L ::= · | T ; ~L

We define T [A] to be the proposition obtained by replacing all the occurrances of [ ] in T
with A. For example, when T = [ ]→ B, T [A] is A→ B. Although the definition of T in
the rule above is somewhat restricted, we can easily generalize it if necessary. We denote
T [A] by TA. We also abbreviate Γ1 ; . . . ; Γn ; · as Γ1 ; . . . ; Γn, and T1 ; . . . ; Tn ; · as
T1 ; . . . ; Tn. Every judgment of λrefl is of the form ~L | ~Π `M : A.

3.1.2 Logic
The type system of λrefl is as follows.

var
~L ; T | ~Π ; Γ, x : A ` x : A

~L | ~Π ; Γ, x : A `M : B →i
~L | ~Π ; Γ ` λx.M : A→ B

~L | ~Π `M : A→ B ~L | ~Π ` N : A →e
~L | ~Π `M@N : B

T ; ~L | ∅ ; ~Π `M : A
reify

~L | ~Π ` reifyTM : TA

~L | ~Π `M : TA
reflect

T ; ~L | Γ ; ~Π ` reflectTM : A
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There exist two side-conditions. Firstly, the rule →i can be applied only when M does not
have any reflects that are not encapsulated by reify. This side-condition is required to define
the reduction of this system in the ordinary call-by-value way. At the same time, however,
this side-condition can seemingly be dropped by allowing reduction in abstraction, and we
will revisit this point later. Secondly, when the rules reify or reflect are applied, the following
two rules must be admissible without appealing reify and reflect:

~L | ~Π `M : A
return

~L | ~Π ` returnT M : TA

~L | ~Π ; Γ `M : TA ~L | ~Π ; Γ, x : A ` N : TB
bind

~L | ~Π ; Γ `M BT
x N : TB

where returnT M and M BT
x N are “macros” defined by terms in the system1. For example,

suppose T = [ ]. For this identity effect T , the rule return is vacuously admissible. The rule
bind is also admissible for this effect since we have the following derivation tree:

~L | ~Π ; Γ, x : A ` N : B
~L | ~Π ; Γ ` λx.N : A→ B ~L | ~Π ; Γ `M : A

~L | ~Π ; Γ ` (λx.N)@M : B

Thus, we are allowed to apply the rules reify and reflect when T = [ ]. In this case, return[ ] M

and M B[ ]
x N are understood as macros for M and (λx.N)@M , respectively.

I Definition 1. A proposition A is provable in λrefl when there exists a term N such that
[ ] | ∅ ` N : A is derivable in λrefl. Such N is said to be well-typed.

We write λrefl ` A when A is provable in λrefl. We also write λrefl ` J when J is derivable
in λrefl. We use these notations for subsystems of λrefl that we will define later, too.

3.1.3 Reduction
Values V , contexts E, and pure-contexts F are defined as follows.

V ::= x | λx.M

E ::= [ ] | V@E | E@M | reifyTE

F ::= [ ] | V@F | F@M

We define E[M ] in the same way as T [A]. The reduction of this system is defined as follows.

E[(λx.M)@V ] E[M{x := V }]
E[reifyTF [reflectTM ]] E[M BT

x reifyTF [x]]
E[reifyTV ] E[returnT V ]

Here, the second rule “factors out” a detour resulted from reify/reflect. Specifically, the rule
translates a derivation tree

1 Note that we do not impose the laws of monads here.
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(· · · )
~L | ~Π `M : TA

T ; ~L | ∅ ; ~Π ` reflectTM : A
(· · · )

T ; ~L | ∅ ; ~Π ` F [reflectTM ] : B
~L | ~Π ` reifyTF [reflectTM ] : TB

into

(· · · )
~L | ~Π `M : TA

T ; ~L | ∅ ; ~Π, x : A ` x : A
(· · · )

T ; ~L | ∅ ; ~Π, x : A ` F [x] : B
~L | ~Π, x : A ` reifyTF [x] : TB

~L | ~Π `M BT
x reifyTF [x] : TB

The following elementary properties can be shown by ordinary induction.

I Proposition 2. If a judgment ~L | ~Π ; Γ `M : A is derivable in λrefl, ~L | ~Π ; Γ, x : B `M : A
is also derivable for any fresh variable x and any type B.

I Proposition 3. If M is a well-typed term of type A, M  N implies N : A.

I Proposition 4. If ~L | ~∅ `M : A is derivable, M is one of the followings:
M = λx. P

M = E[R]
M = F [reflectTP ]

where R is one of (λx. P )@V, reifyTF [reflectTP ], reifyTV .

The last proposition implies the progress property:

I Corollary 5. Every well-typed term M is either a value, or can be uniquely written as
E[R], where R is one of (λx. P )@V, reifyTF [reflectTP ], reifyTV .

3.2 λrefl
2 , λrefl

2cont: Restrictions of λrefl

Now, let us investigate the character of continuation monad. The system λrefl
2 is defined to

be the system obtained from λrefl by restricting the form of judgments to the following two:
[ ] | Γ `M : A
T ; [ ] | ∅ ; Γ `M : A

The system λrefl
2cont is also defined to be the system obtained by restricting the form of

judgments to the following two:
[ ] | Γ `M : A
contB ; [ ] | ∅ ; Γ `M : A

where contA stands for ([ ]→ A)→ A. For this cont(−), the rule return is admissible by the
following derivation:

~L | ~Π ; Γ, k : A→ B ` k : A→ B

~L | ~Π ; Γ `M : A
~L | ~Π ; Γ, k : A→ B `M : A

~L | ~Π ; Γ, k : A→ B ` k@M : B
~L | ~Π ; Γ ` λk. k@M : contBA
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and the rule bind is also admissible as follows:

~L | ~Π ; Γ `M : contCA

~L | ~Π ; Γ, x : A ` N : contCB

~L | ~Π ; ∆ ` N : contCB ~L | ~Π ; ∆ ` w : B → C

~L | ~Π ; ∆ ` N@w : C
~L | ~Π ; Γ, w : B → C ` λx.N@w : A→ C

~L | ~Π ; Γ, w : B → C `M@(λx.N@w) : C
~L | ~Π ; Γ ` λw.M@(λx.N@w) : contCB

where ∆ is a shorthand for Γ, x : A,w : B → C. These admissibilities give us a license to
apply reify and reflect for this effect.

We will write reifyAM for reifycontAM and reflectAM for reflectcontAM .

3.3 Universality of Continuation Monad
The system λrefl

2cont is obviously a subsystem of λrefl
2 , and therefore any proposition that can

be proved in λrefl
2cont can also be proved in λrefl

2 . Here, we show that the other direction is in
fact also true.

I Theorem 6. Let J be a derivable judgment in λrefl
2 . If J is of the form [ ] | Γ ` M : A,

there exists a term N such that [ ] | Γ ` N : A is derivable in λrefl
2cont. If J is of the form

T ; [ ] | ∅ ; Γ ` M : A, for any type B, there exists a term N such that the judgment
contT B ; [ ] | ∅ ; Γ ` N : A is derivable in λrefl

2cont.

Proof. We prove the statement by induction on the derivation of J . When J is derived
from var,→i, or →e, the proofs are routine. Suppose that J is derived from reflect and of the
form T ; [ ] | ∅ ; Γ ` reflectTM : A. In this case we have [ ] | Γ `M : TA. By the induction
hypothesis, there exists a term N such that [ ] | Γ ` N : TA is derivable in λrefl

2cont. Now, we
can construct the following valid deriviation tree for any type B:

[ ] | Γ ` N : TA
[ ] | Γ, k : A→ TB ` N : TA

[ ] | ∆ ` k : A→ TB [ ] | ∆ ` x : A
[ ] | Γ, k : A→ TB, x : A ` k@x : TB

[ ] | Γ, k : A→ TB ` N BT
x k@x : TB

[ ] | Γ ` λk.N BT
x k@x : (A→ TB)→ TB

contT B ; [ ] | ∅ ; Γ ` reflectT B(λk.N BT
x k@x) : A

where the ∆ is a shorthand for Γ, k : A→ TB, x : A.
Suppose that J is derived from reify and of the form [ ] | Γ ` reifyTM : TA. In this case,

we have T ; [ ] | ∅ ; Γ `M : A. Just as in the previous case, for any type B, there exists a
term N such that contT B ; [ ] | ∅ ; Γ ` N : A. Since the B in this judgment is arbitrary, we
can take it to be A. In other words, we have contT A ; [ ] | ∅ ; Γ ` N : A. Now we just need
to construct the following derivation tree:

contT A ; [ ] | ∅ ; Γ ` N : A
[ ] | Γ ` reifyT AN : (A→ TA)→ TA

[ ] | Γ, x : A ` x : A
[ ] | Γ, x : A ` returnT x : TA

[ ] | Γ ` λx. returnT x : A→ TA

[ ] | Γ ` (reifyT AN)@(λx. returnT x) : TA
J

I Corollary 7. λrefl
2 ` A iff λrefl

2cont ` A.
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Note that we had to state the theorem only for provability, and not for term conversion.
One might wonder why we did not define, for example, a translation by

x\ = x

(λx.M)\ = λx.M \

(M@N)\ = M \@N \

(reflectTM)\ = reflectT B(λk.M \ BT
x k@x)

(reifyTM)\ = (reifyT AM \)@(λx. returnT x)

and state that M  N ⇔M \  N \. This is because the translation makes the correspon-
dence of redexes unclear. For example, in the following diagram, we cannot reduce the
upper-right term into the lower-right term because the “redex” 1 + 1 is encapsulated in the
lambda abstraction.

reflectTF [1 + 1] reflectT B(λk. F \[1 + 1]BT
x k@x)

reflectTF [2] reflectT B(λk. F \[2]BT
x k@x)

\

reduce ?

\

This fact complicates discussion on term conversion. Faced with the complexity, we had to
state the theorem only for provability, albeit we believe that our results can be strengthened
to include an account of term conversion. In Section 4, we state the equivalence of monadic
reflection and delimited continuations again “up to provability”. It is also because of this.

3.4 Deriving shift/reset from Monadic Reflection

When we instantiate the T in the rule reflect with contB , the rule behaves as if it were a rule
of double-negation:

~L | ~Π `M : (A→ B)→ B
reflect

contB ; ~L | Γ ; ~Π ` reflectBM : A

Of couse, this is not a properly classical inference since we do have a “debt” contB . Still, it
would be natural to expect that we might be able to handle continuations in some form using
this “quasi-double negation”, considering that classical inferences correspond to manipulations
of continuations via the Curry-Howard Isomorphism.

And this is in fact true. In λrefl, we can define the following macros:

dMeA = (reifyAM)@(λz. z)
SAk.M = reflectA(λk. dMeA)

These macros behave in exactly the same way as specified in the ordinary operational
semantics of shift/reset. Namely, we can easily check the followings:

dF [Sk.M ]e ∗ dM{k := λx. dF [x]e}e,
dV e ∗ V.
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Specifically, the former is justified by:

dF [Sk.M ]e
= (reify (F [reflect (λk. dMe)]))@(λz. z)
 ((λk. dMe)Bx reify (F [x]))@(λz. z)
= (λw. (λk. dMe)@(λx. (reify (F [x]))@w))@(λz. z)
 (λk. dMe)@(λx. (reify (F [x]))@(λz. z))
= (λk. dMe)@(λx. dF [x]e)
 dM{k := λx. dF [x]e}e

and the latter by:

dV e = (reify V )@(λz. z) (returnV )@(λz. z) = (λk. k@V )@(λz. z) ∗ V.

4 Investigating Delimited Continuations with Monadic Reflection

4.1 A Logical System with Delimited Continuations
Our logical system with delimited continuations, λs/r

pure, is obtained from λ
s/r
let [3], by

fixing the answer types,
restricting lambda abstractions to be pure, and
making the application of the rule exp explicit.

4.1.1 Syntax
The syntax of λs/r

pure is defined as follows.

A,B ::= t | A→ A

M,N ::= x | λx.M | M@N | SAk.M | dMeA | bMcA

Γ,∆ ::= ∅ | x : A,Γ

We often omit the type annotation in SAk.M, dMeA, and bMcA. The form of the judgments
of λs/r

pure is either Γ `M : A or B | Γ `M : A.

4.1.2 Logic
The type system of λs/r

pure is as follows.

var
Γ, x : A ` x : A

Γ, x : A `M : B →iΓ ` λx.M : A→ B

C | Γ `M : A→ B C | Γ ` N : A →e
C | Γ `M@N : B

B | Γ, k : A→ B `M : B
shift

B | Γ ` SBk.M : A
A | Γ `M : A

reset
Γ ` dMeA : A

Γ `M : A exp
B | Γ ` bMcB : A

I Definition 8. A proposition A is provable in λ
s/r
pure if there exists a term N such that

∅ ` N : A. We also say that such N is well-typed.

We define λs/r
pure ` A and λs/r

pure ` J as in λrefl.
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4.2 Translations
We will compare λs/r

pure with λrefl
2cont. Towards that end, we syntactically distinguish the

applications of λrefl
2cont at different levels. In other words, we separate the rule →e in λrefl

2cont
into the following two:

[ ] | Γ `M : A→ B [ ] | Γ ` N : A →pure
e[ ] | Γ `M �B N : B

contC ; [ ] | ∅ ; Γ `M : A→ B contC ; [ ] | ∅ ; Γ ` N : A →e
contC ; [ ] | ∅ ; Γ `M@N : B

We sometimes omit the annotation in the former application for brevity.
With the preparation above, we define two translations (−)] : λs/r

pure → λrefl
2cont and (−)[ :

λrefl
2cont → λ

s/r
pure as follows:

x[ = x x] = x

(λx.M)[ = λx.M [ (λx.M)] = λx.M ]

(M@N)[ = M [@N [ (M@N)] = M ]@N ]

(M �A N)[ = dbM [cA@bN [cAeA −

(reflectAM)[ = SAk. bM [cA@bkcA (SAk.M)] = reflectA(λk. (reifyAM ]) �A (λx. x))

(reifyAM)[ = λk. dbkcA@M [eA (dMeA)] = (reifyAM ]) �A (λx. x)

− (bMcA)] = reflectA(λk. k �A M ])

We extend these translations for λs/r
pure-judgments

(Γ `M : A)] = [ ] | Γ `M ] : A

(B | Γ `M : A)] = contB ; [ ] | ∅ ; Γ `M ] : A

and for λrefl
2cont-judgments

([ ] | Γ `M : A)[ = Γ `M [ : A

(contB ; [ ] | ∅ ; Γ `M : A)[ = B | Γ `M [ : A.

4.3 Equivalence of the Two Systems in Provability
Now, we present the equivalence of monadic reflection and delimited continuation.

I Theorem 9. λrefl
2cont and λ

s/r
pure possess exactly the same provability. Specifically,

1. λs/r
pure ` J implies λrefl

2cont ` J ]

2. λrefl
2cont ` J implies λs/r

pure ` J [

Proof. (1) We prove the statement by the induction on the derivation of J . The proofs
for var,→i,→pure

e ,→e are routine. Assume that J is derived using shift and of the form
B | Γ ` SBk.M : A. In this case, we have B | Γ, k : A → B ` M : B. Applying the
translation, we obtain a judgment contB ; [ ] | ∅ ; Γ, k : A→ B `M ] : B, which is justified
by the induction hypothesis. Now we have the following derivation tree
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contB ; [ ] | ∅ ; Γ, k : A→ B `M ] : B
[ ] | Γ, k : A→ B ` reifyBM ] : (B → B)→ B

[ ] | Γ, k : A→ B, x : B ` x : B
[ ] | Γ, k : A→ B ` λx. x : B → B

[ ] | Γ, k : A→ B ` (reifyBM ]) �B (λx. x)
[ ] | Γ ` λk. (reifyBM ]) �B (λx. x) : (A→ B)→ B

contB ; [ ] | ∅ ; Γ ` reflectB(λk. (reifyBM ]) �B (λx. x)) : A

where x is a variable which does not occur in M ],Γ. The conclustion of this deriviation tree
is equal to the result of the translation of B | Γ ` SBk.M : A.

Assume that J is derived using reset and of the form Γ ` dMeA : A. In this case, we have
A | Γ ` M : A. Translating this judgment, we obtain a valid judgment contA ; [ ] | ∅ ; Γ `
M ] : A. Now, we can construct the following tree:

contA ; [ ] | ∅ ; Γ `M ] : A
[ ] | Γ ` reifyAM ] : (A→ A)→ A

[ ] | Γ, x : A ` x : A
[ ] | Γ ` λx. x : A→ A

[ ] | Γ ` (reifyAM ]) �A (λx. x) : A

Hence we have [ ] | Γ ` (reifyAM ])�A (λx. x) : A, which is equal to the result of the translation
of Γ ` dMeA : A.

Assume that J is derived using exp and of the form B | Γ ` bMcB : A. In this case, we
have Γ `M : A, and therefore [ ] | Γ `M ] : A. Now we have the following derivation:

[ ] | Γ, k : A→ B ` k : A→ B

[ ] | Γ `M ] : A
[ ] | Γ, k : A→ B `M ] : A

[ ] | Γ, k : A→ B ` k �B M ] : B
[ ] | Γ ` λk. k �B M ] : (A→ B)→ B

contB ; [ ] | ∅ ; Γ ` reflectB(λk. k �B M ]) : A

which concludes our proof for (1).
(2) Again, we prove the statement on the derivation of J . We present proofs only for

non-trivial cases: reflect, reify, and →pure
e . Assume that J is derived from reflect and of the

form contB ; [ ] | ∅ ; Γ ` reflectBM : A. Then we have [ ] | Γ ` M : (A → B) → B, which
implies Γ ` M [ : (A → B) → B by the induction hypothesis. Now we have the following
derivation tree:

Γ `M [ : (A→ B)→ B

B | Γ ` bM [cB : (A→ B)→ B

B | Γ, k : A→ B ` bM [cB : (A→ B)→ B

Γ, k : A→ B ` k : A→ B

B | Γ, k : A→ B ` bkcB : A→ B

B | Γ, k : A→ B ` bM [cB@bkcB : B
B | Γ ` SBk. bM [cB@bkcB : A

The conclusion of this tree is equal to (contB ; [ ] | ∅ ; Γ ` reflectBM : A)[.
Assume that J is derived from reify and of the form [ ] | Γ ` reifyBM : (A → B) → B.

In this case, we have contB ; [ ] | ∅ ; Γ `M : A, which implies B | Γ `M [ : A. The tree that
we need to construct is the following one:
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Γ, k : A→ B ` k : A→ B

B | Γ, k : A→ B ` bkcB : A→ B

B | Γ `M [ : A
B | Γ, k : A→ B `M [ : A

B | Γ, k : A→ B ` bkcB@M [ : B
Γ, k : A→ B ` dbkcB@M [eB : B

Γ ` λk. dbkcB@M [eB : (A→ B)→ B

Finally, assume that J is derived from →pure
e and of the form [ ] | Γ ` M �B N : B. In

this case, we have [ ] | Γ ` M : A → B and [ ] | Γ ` N : A for some A. We can therefore
construct the following derivation tree:

Γ `M [ : A→ B

B | Γ ` bM [cB : A→ B

Γ ` N [ : A
B | Γ ` bN [cB : A

B | Γ ` bM [cB@bN [cB : B
Γ ` dbM [cB@bN [cBeB : B

which concludes our proof for (2). J

I Corollary 10. λs/r
pure ` A iff λrefl

2cont ` A.

5 Related Work

5.1 Monadic Reflection
In his seminal work, Filinski[7] introduced the idea of monadic reflection with its implemen-
tation by shift/reset. His work is one of our main motivations of this paper. It would be
worth to note that the type system of the calculus with shift/reset in his paper is different
from the original one[4], and therefore from the one that we have discussed in this paper.
Indeed, for example, the original calculus is known to be strongly normalizing, whereas his
calculus is not[14].

Forster et al.[9] compares the expressibility of effect handlers, monadic reflection, and
delimited continuations. In the paper, among others, they show that delimited continuations
and monadic reflection can express each other in untyped setting. At the same time, they
show that their translation from delimited continuations to monadic reflection preserves
types, whereas the translation of the opposite direction does not. Comparing to their work,
our reconstruction can be understood as a proposal of an answer to the question of how we
can preserve types in both directions of these translations.

Zeilberger[24] discusses delimited continuations in his somewhat non-standard calculus
which incorporates polarity. He claims in the paper that monadic reflection is essentially the
isomorphism in the Yoneda lemma. His observation might play an important role when we
construct a categorical semantics of our system.

5.2 Logical Meaning of Delmited Continuations
Ariola et al.[1] explains the logical meaning of delimited continuations by translating a system
with a dynamic variable, which can interpret shift/reset with answer-type modification, into
a logical system with subtraction. In terms of classical logic, subtraction A−B is dual to
implication A→ B. Namely, A−B = A ∧ (¬B). A virtue of their system would be the fact
that it explains the meaning of answer-type modification. At the same time, however, it
should be noted that the subtractive system allows classical inference, whereas the original
system with shift/reset does not allow double-negation.
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Kameyama [12] covers a variant of delimited continuation operators which differs a little
from shift/reset. In his work, he consider a side-condition that the operation that corresponds
to shift can be used only when the operation that corresponds to reset will appear later.
Through the lens of our reconstruction, this condition seems to be closely related to the role
of the context stack in our system.

6 Conclusion

We have reconstructed monadic reflection using the idea of contextual modal logic, and
exploited it to investigate delimited continuations, obtaining the equivalence of these two
concepts in provability.

In this paper, we have focused on delimited continuations with pure abstractions. It
might be possible to extend our work and encompass impure abstractions. Indeed, we can
extend the pure-contexts in λrefl as follows:

F ::= [ ] | V@F | F@M | λx. F

and drop the side-condition of →i that we imposed in Section 3. With some modification to
the definition of the values, we have the following reduction, for example:

E[reifyT (λx. reflectTM)] E[M BT
y reifyT (λx. y)].

Note that our layered context ensures that M does not have x as free variable. By exploiting
this fact and the macro-definition of shift/reset in λrefl, we might be able to realize impure
functions.

Another direction of future work is categorical semantics of λrefl. Ordinary contextual
modal logic already has a categorical semantics based on iterative enrichment[20]. It might
be possible to explain λrefl based on their calculus.

Decomposing the effect T into contextual modalities is also an interesting topic. In [22],
the authors decompose the modality that corresponds to T in our system into ♦�. Using
the contextual possibility, it might be possible to decompose our T and derive the rule
reify, reflect.

We have restriced the depth of the context stack of λrefl
2cont to be 2. It might also be

possible to generalize the equivalence between delimited continuation and monadic reflection
to the “iterative” one by dropping this restriction, clarifying the character of shiftn/resetn in
the CPS hierarchy[13].
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Abstract
In earlier work (LICS 2016), the authors introduced two-variable first-order logic supplemented
by a binary relation that allows one to say that a letter appears between two positions. We
found an effective algebraic criterion that is a necessary condition for definability in this logic,
and conjectured that the criterion is also sufficient, although we proved this only in the case of
two-letter alphabets. Here we prove the general conjecture. The proof is quite different from
the arguments in the earlier work, and required the development of novel techniques concerning
factorizations of words. We extend the results to binary relations specifying that a factor appears
between two positions.
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1 Introduction

In this paper we work with finite word models. The first-order definable languages – those
definable in the logic FO[<]– were shown equivalent to starfree expressions by the work
of Schützenberger [14], McNaughton and Papert [9]. The algebraic viewpoint established
decidability of the definability question, that is, whether a given regular language is first-order
definable. The first level of the quantifier alternation hierarchy was characterized by Knast
[7]. Recently Place and Zeitoun characterized some more levels of the hierarchy [12, 13].
Two-variable logic was algebraically characterized by Thérien and Wilke [20]. They also
showed decidability of its definability, and also of levels of the until hierarchy of temporal
logic LTL, which was shown equivalent to first-order logic by Kamp [6].

In our earlier paper [8] we extended two-variable logic over finite words with between
relations and studied this logic FO2[<, bet] and associated temporal logics. A between
relation a(x, y), for letters a of the finite alphabet, says that there is a position z labelled
with the letter a such that x < z < y. The monoid variety MeDA is obtained by applying
an operation Me (see Section 2) to the variety DA of two-variable logic [15]. We showed that
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∆2[<] = FO2[<]

Π2[<]

BΣ2[<] 63U2

∆3[<]3U2,63BB2

Π3[<]3BB2

FO[<]

BΣ1[<,Suc]

∆2[<,Suc] = FO2[<,Suc] 63BB2

Π2[<,Suc]3BB2

BΣ2[<,Suc] 63U2

∆3[<,Suc]3U2 FO2[<, bet] 63BB2

FO2[<, betfac]3BB2

Figure 1 Dot depth and quantifier alternation hierarchies. The language U2 over alphabet
A = {a, b, c} is (A∗ \ (A∗ac∗aA∗)) ∪ (A∗ \ (A∗bc∗bA∗))ac∗aA∗, it consists of words which have no
occurrence of bc∗b before an occurrence of ac∗a. The language BB2 over {a, b} is (a(ab)∗b)∗.

MeDA is an upper bound for FO2[<, bet], cutting across the quantifier alternation and until
nesting depth hierarchies. We conjectured that this bound is tight and were able to show
this for alphabets of size two. In this paper we establish this conjecture. Hence definability
of a regular language in FO2[<, bet] is decidable. The variety MeDA first appeared in a
paper by Weil [22]. Thus we provide a logical characterization of this variety.

The proof is somewhat intricate. We develop new techniques of factorization which are
amenable to simulation using logic. At the end we rely on some hard algebra: the theorem
on the locality of variety DA, first shown by Almeida [1, 11]. Building on these techniques
we show another main result, that the semigroup variety MeDA ∗D, obtained by applying
to MeDA semidirect products with semigroups for the definite languages, characterizes a
simple extension of our logic FO2[<, bet] to between relations 〈u〉(x, y), for words u over the
alphabet, which say that u is a factor, or substring, contained at positions between x and y.
(So there are infinitely many between relations in this extended logic FO2[<, betfac].) The
techniques we use here come from early work on providing a “delay” bound to varieties such
as DA*D [17, 21].

For the reader familiar with the lower levels of the quantifier alternation hierarchy of
first-order logic (see [4] for a survey), these are the classes on the right in Figure 1. Those
on the left are the classes of the original dot depth hierarchy of Cohen and Brzozowski [3].
The logics which we have introduced in [8] and in this paper are at top centre. They have a
nonempty intersection with every level of both the hierarchies. The two example languages
have played a prominent role in our work.
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We also gave in [8] a tight complexity of Expspace for satisfiability of FO2[<, bet]. The
techniques extend to provide the same complexity bounds for FO2[<, betfac]. This is an
exponential blowup over LTL, but as noted in our earlier paper, these logics allow succinct
binary representation of threshold constraints.

2 Setup

We denote by FO2[<,Suc] two-variable first-order logic with the successor relation Suc and
the order relation <, interpreted in finite words over a finite alphabet A. (As usual, this
stands for both the set of formulas, and the family of languages over A defined by such
formulas.) Variables in first-order formulas are interpreted as positions in a word, and for
each letter a ∈ A there is a unary relation a(x), interpreted to mean ‘the letter in position
x is a’. Thus sentences in this logic define properties of words, or, what is the same thing,
languages L ⊆ A∗. Two-variable logic over words has been extensively studied, and has many
equivalent characterizations in terms of temporal logic, regular languages, and the algebra of
finite semigroups. (See, for instance, [19] and the many references cited therein.)

In [8] we extended FO2[<,Suc] to express ‘betweenness’ with only two variables. More
precisely, predicates

a(x, y) = ∃z(a(z) ∧ x < z ∧ z < y),

which assert that there is an occurrence of the letter a strictly between x and y, were added
to form the logic FO2[<, bet]. We also showed that counting the number of occurrences of
the letter between x and y upto a threshold is definable in FO2[<, bet]. In Section 7 we
will consider a further extension of this logic where we allow specification of factors between
positions x and y.

We showed that languages defined by sentences of this logic satisfy an algebraic condition,
which we explain next. For further background on the basic algebraic notions in this section,
see Pin [10].

A semigroup is a set together with an associative multiplication. It is a monoid if it also
has a multiplicative identity 1.

All of the languages defined by sentences of FO[<] are regular languages. Our characteriz-
ation of languages in these logics is based on properties of the syntactic semigroup S(L) (resp.
syntactic monoid M(L)) of a regular language L. This is the transition semigroup (monoid)
of the minimal deterministic automaton recognizing L, and therefore finite. Equivalently,
S(L) is the smallest semigroup S that recognizes L, that is: There is a homomorphism
h : A+ → S and a subset X ⊆ S such that L = h−1(X) (and similarly for monoids).

Let S be a finite semigroup. An idempotent e ∈ S is an element satisfying e2 = e.
If S is a finite semigroup and s1, s2 ∈ S, we write s1 ≤J s2 if s1 = rs2t for some

r, t ∈ S. This is a preorder, the so-called J -ordering on S. Let E(S) denote the set of all
idempotents in S. If e ∈ E(S), then Me denotes the submonoid of M generated by the set
{s ∈ S : e ≤J s}. The operation Me appears in an unpublished memo of Schützenberger
cited by Brzozowski [2]. He uses the submonoid generated by the generators of an idempotent
element e of a semigroup. For example, if abc mapped to an idempotent element e, Me would
correspond to the language (a+ b+ c)∗.

The operation can be used at the level of semigroup and monoid classes. Thus the variety
MeDA has monoids M , all of whose submonoids of the form eMee for e ∈ E(M), are in the
variety DA. Our main result is:

I Theorem 1. Let L ⊆ A∗. L is definable in FO2[<, bet] iff M(L) ∈MeDA.

CSL 2018
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In our earlier paper [8], we proved necessity of the algebraic condition, but only proved
sufficiency in the case |A| = 2. Sections 3 to 6 are devoted to the proof of sufficiency for
general alphabets.

The logical machinery we will use is quite standard (see [18]). In our paper [8], we defined
Ehrenfeucht-Fraïssé games for the logic FO2[<, bet]. We use the games in this paper to prove
the existence of an FO2[<, bet] formula θ, by the equivalent formulation that there is an
integer k > 0 such that, if (w, i), (w′, j) are marked words in which i and j are inequivalent,
then Player 1 has a winning strategy in the k-round game for FO2[<, bet] in (w, i), (w′, j).
That is, (w, i) |= θ, (w′, j) 6|= θ, so Player 1 has a winning strategy in the k-round game,
where k is the quantifier depth of θ. Conversely, suppose Player 1 always has such a winning
strategy. Consider all marked words (w, i), and take the union of all the ≡k-classes of these
wi. This union is defined by a depth-k formula which we call θ. If there were any (w′, j) |= θ

where j is inequivalent, then we would have some (w, i) with (w, i) ≡k (w′, j), contrary to
hypothesis. So θ is satisfied by exactly the required (w, i).

Notation. If w ∈ A∗, then we write α(w) to denote the set of letters that occur in w. We
will interpret a(x, y) to be false whenever y ≤ x.

3 The factorization sequence

We are going to prove Theorem 1, that our algebraic condition from [8] indeed holds over all
alphabets. We only need to prove one direction.

I Lemma 2 (MeDA characterizes FO2[<, bet]). Suppose finite monoid M satisfies the
property e ·Me · e ∈ DA for all e ∈ E(M). Then for all m ∈M, h−1(m) ∈ FO2[<, bet].

This will be proved by induction on the alphabet size. It is trivial for a one-letter alphabet,
so assume |A| > 1 and that the theorem holds for all strictly smaller alphabets.

The bulk of the proof is combinatorics on words and finite model theory. We only use
the algebra at the end.

For now we distinguish a letter a ∈ A, and restrict our attention to a-words w with the
following three properties:

α(w) = A

a is the first letter of w
a is the last letter to appear in a right-to-left scan of w; that is, w = xay where
α(y) = A\{a}.

We describe an algorithm for constructing a sequence of factorizations for any a-word.
Each step of the algorithm is divided into two sub-steps, and we will refer to each of these
sub-steps as a factorization scheme. The factors that occur in each scheme are formed by
concatenating factors from the previous scheme. That is, at each step, we clump smaller
factors into larger ones, so the number of factors decreases (non-strictly) at each step.

We begin by putting a linear ordering < on the set of proper subalphabets of A that
contain the letter a. This will be a topological sort of the subset partial order. That is, if
B,C are two such subalphabets with B ( C, then B < C, but otherwise the ordering is
arbitrary. For example, with A = {a, b, c, d}, we can take

{a} < {a, b} < {a, c} < {a, b, c} < {a, d} < {a, b, d} < {a, c, d},
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as one of many possibilities. One way to think about our techniques is as a refinement of
Thérien and Wilke’s combinatorial characterization of DA [20] which only used the inclusion
order over an alphabet.

Here is the algorithm, which is the new development over DA:
Initially factor w as au1 · · · auk, where each α(ui) is properly contained in A.
For each proper subalphabet B of A with a ∈ B, following the linear order

For each factor u such that α(u) = B, combine all sequences of consecutive factors of
this kind into a single factor. We say that B is now collected.
For each factor u such that α(u) = B, combine each such factor with the factor
immediately to its right. We say that B is now capped.

Here is an example. We begin with an a-word and its initial factorization:

adccdcc · adc · a · a · a · addccdcccdbcdc · a · ac · abcbbd

We use the ordering in the example above. We start with B = {a} and collect B:

adccdcc · adc · aaa · addccdcccdbcdc · a · ac · abcbbd

then cap it:

adccdcc · adc · aaaaddccdcccdbcdc · aac · abcbbd

We choose B = {a, b}. There is nothing to do here, because no factor contains just a and
b. B = {a, c} is already collected, because there is no pair of consecutive factors with this
alphabet, so we cap it:

adccdcc · adc · aaaaddccdcccdbcdc · aacabcbbd

The next subalphabet in order that occurs as a factor is {a, c, d}. We collect:

adccdccadc · aaaaddccdcccdbcdc · aacabcbbd

then cap:

adccdccaddadaaaaddccdcccdbcdc · acabcbbd

Let us make a few general observations about this algorithm: Every proper subset of A
containing a that occurs as the alphabet of a factor will eventually be capped, because the
rightmost factor auk of the initial factorization contains all the letters of A. Once B has been
collected, there is no pair of consecutive factors with content B. Once B has been capped,
there are no more factors with content B nor with strictly smaller content. Thus at the end
of the process, every factor contains all the letters of A.

Note as well that immediately after a subalphabet B is collected to create a (possibly)
larger factor u, both the factor immediately to the right of u and immediately to the left of
u must contain a letter that is not in u.

CSL 2018
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4 Starts and jumps

We establish below several model-theoretic properties of the factorization schemes produced
by the above algorithm.

I Lemma 3.
(a) There is a formula start in FO2[<, bet] such that for all a-words w, (w, i) |= start(x)

if and only if i is the first position in a factor of w.
(b) Let φ1(x) be a formula in FO2[<, bet]. Then there is a formula next in FO2[<, bet] with

the following property: Let w be an a-word and let i be the first position in some factor of
w that is not the rightmost factor. Then (w, i) |= φ1(x) if and only if (w, isucc) |= next(x),
where isucc is the first position in the next factor of w. We also define the analogous
property, with ‘rightmost’ replaced by ‘leftmost’, next by previous, and isucc by ipred.

Proof. We prove these properties by induction on the construction of the sequence of
factorization schemes. That is, we prove that they hold for the initial factorization scheme,
and that they are preserved in each sub-step of the algorithm. For the induction, we will
use Ehrenfeucht-Fraïssé games for the logic FO2[<, bet] to argue for the existence of the
formula start = startτ (see Section 2).

We note that the claim in Item (b) implies the condition on games (possibly with different
parameters). If for every formula φ1 there is a corresponding ‘successor’ formula next, then
there is some constant c such that qd(next) ≤ c + qd(φ1), where qd denotes quantifier
depth. Suppose that Player 2 wins the (k + c)-round game in (w, isucc), (v, isucc). Then
(w, isucc) ≡k+c (v, jsucc). Consider the formula φ1 that defines the ≡k-class of (w, i). Then
(w, isucc) |= next, so (v, jsucc) |= next. Thus (v, j) |= φ1, so (w, i) ≡k (v, j), and Player 2
wins the k-round game in these words.

We begin with Item (a): For the initial factorization, we simply take start(x) to be a(x):
the factor starts are exactly the positions that contain a. We now assume that τ is some
factorization scheme in the sequence, and that for the preceding factorization scheme σ, the
required formula, which we denote startσ, exists.

To establish this formulation, let (w, i), (w′, j) be as described. Since, by the inductive
hypothesis, the formula startσ for the preceding scheme σ exists, we can treat this as if
it is an atomic formula, in describing our game strategy. Observe that i must also be the
start of a factor of w according to the previous factorization scheme σ. We write this as
startσ(i) rather than the more verbose (w, i) |= startσ(x). If j does not satisfy startσ(j),
then by induction we are done, and can take the number k of rounds to be the quantifier
depth of startσ. Thus j is the start of a factor with respect to the scheme σ, not with respect
to τ. This can happen in one of two ways, depending on whether the most recent sub-step
collected a subalphabet B, or capped a subalphabet B.

In the first case, we will describe a winning strategy for Player 1 in a game that lasts
just a few more rounds than the game for the previous scheme. Position j was the start of
a factor in the prior scheme σ, and has been collected into a larger factor that begins at
position to the left of j. First suppose that i is the start of a factor with content different
from B. Then this factor must contain some c /∈ B. Player 1 then wins as follows: He moves
right in (w′, j), jumping to the start j′ of the next factor (which must satisfy startσ(j′)). In
so doing, all the letters he jumps belong to B. Player 2 must also jump to the right in (w, i),
and must also land on the start of a factor in the scheme σ; otherwise, by induction, Player
1 will win the game in the next k rounds. But to do so, Player 2 will have to jump over a
position containing c, so she cannot legally make this move. Thus i must be the start of
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Figure 2 Game-based proof of definability of factor starts. The figure shows the two words
just after the step collecting the subalphabet B. We suppose i, j are factor starts for the preceding
factorization scheme σ, and that i, but not j, is a factor start for the present scheme τ. This means
that the factor with respect to σ beginning at j was joined to the previous factor as a result of
the collection. If Player 1 moves to the start j′ of the next factor of w′ with respect to σ (blue
arrow), then he jumps over precisely the letters of B. Thus for Player 2 to have a response, i must
be the start of a factor with alphabet B. But this means that the factor with respect to σ in w that
precedes i must contain a letter not in B. As a result, Player 2 cannot reply to a move by Player 1
to the start j′′ of the factor with respect to σ that precedes j (red arrow).

a factor with content B. In this case, Player 1 moves left in (w′, j) to j′′, the start of the
previous factor with respect to σ. In doing so, he jumps over letters in B. Now Player 2 must
also jump to the left in (w, i) to a position that was the start of a factor with respect to σ,
but must jump over a letter not in B to do this, so Player 1 wins again. (See Figure 2.)

In the second case, where B was capped, j was the start of a factor that immediately
followed a newly-collected factor with content B. Player 1 jumps left to j′, the start position
of this factor, and in doing so jumps over a segment with content B. Thus Player 2 must
jump to the start of a factor with respect to σ. For this to be a legal move, the segment she
jumps must have content B. However, this is impossible, for any factor with this content in
the scheme σ would have been capped by the following factor, so that i cannot be the start
of a factor for τ. (Figure 3.)

Now for Item (b). Again, we use a game argument. We claim it will be enough to
establish the following for sufficiently large values of k: Let (w, i), (v, j) be marked words,
where i, j are the starts of factors, and let (w, isucc), (v, isucc) be the same words, where the
indices isucc, jsucc mark the start of the successor factors. If Player 1 has a winning strategy
in the k-round game in (w, i), (v, j), then he has a winning strategy in the k′-round game in
(w, isucc), (v, isucc) for some k′ that depends only on k and the alphabet size, and not on v
and w. Equivalently, if Player 2 wins in (w, isucc), (v, isucc) then she wins in (w, i), (v, j). Of
course, there is the analogous formulation for previous.

So we will suppose Player 1 has a winning strategy in the k-round game in (w, i), (v, j),
where k is at least as large as the quantifier depth of startτ . We will prove the existence
of a strategy in (w, isucc), (v, jsucc) for the k′-round game, where k′ is larger than k. (By
tracing through the various cases of the proof carefully, you can figure out how large k′
needs to be.) What we will show in fact is that for each τ, Player 1 can force the starting
configuration (w, isucc), (v, jsucc) to the configuration (w, i), (v, j), and from there apply his
winning strategy in (w, i), (v, j).
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Figure 3 This shows the case just after the step that caps the subalphabet B. Again suppose i, j
are factor starts for the preceding factorization scheme σ, and that i, but not j, is a factor start
for the present scheme τ. If Player 1 moves in v from j to j′, the start of the factor preceding j
with respect to σ, then only letters in B are jumped. If Player 2 moves left from i to another factor
start with respect to σ, she will have to jump over letters that are not in B, because all factors with
alphabet B have been capped; thus Player 2 cannot respond to this move.

The base step is where τ is the initial factorization scheme. Here the factor starts are
just the positions where the letter a occurs. Player 1 begins by jumping from isucc to i. For
Player 2 to respond correctly, she must jump from jsucc to j, because she is required to move
left and land on a position containing a while jumping over a segment that does not contain
the letter a.

So now we will suppose that τ is not the initial factorization scheme. We again denote
the previous factorization scheme by σ. We assume that the property in Item (b) holds for σ.
Thanks to what we proved above, we know that the property in Item (a) holds for both τ
and σ. This means that we can treat startτ and startσ essentially as atomic formulas.

If isucc is also the successor of i (that is, the start of the next factor) with respect to the
previous factorization scheme σ, and jsucc is the successor of j, then we have the desired
result by induction. Thus we may suppose that one or both of the factor starts, either
between i and isucc or between j and jsucc, or both, were eliminated in the most recent
sub-step of the algorithm.

Let us suppose first that the most recent sub-step was a collection step, collecting the
subalphabet B. Player 1 jumps from isucc left to i. The set of jumped letters is B. Player 2
must respond by jumping to some j′ < jsucc where j′ satisfies startτ . If j′ < j, then the set
of jumped letters necessarily contains a letter not in B, so such a move is not legal. Thus
j′ = j. Player 1 now follows his winning strategy in (w, i), (v, j). The identical strategy works
for the predecessor version, because any factor following the sequence of collected factors
must contain a letter not in B.

So suppose that the most recent sub-step was a capping step, and that the subalphabet B
was capped. We may suppose that there is some i′ with i < i′ < isucc such that startσ(i′), but
not startτ (i′). Thus the interval from i to i′ − 1 has content B and constitutes a factor that
was collected during the prior sub-step, before being capped in the present one. Player 1 uses
his strategy from the previous factorization scheme to force the configuration to (w, i′), (v, j′),
where j′ is the start of the factor preceding j in the scheme σ. Observe that we must have
that j′ does not satisfy startτ because i′ does not satisfy startτ . Thus j < j′ < jsucc, so the
interval from j to j′− 1 is also a factor with content B that was collected during the previous
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substep. Player 1 now moves from i′ left to i. Player 2 must respond with a move to j′′ ≤ j
such that startτ (j′′) holds. We cannot have j′′ < j, for then the set of jumped letters would
include a letter not in B. Thus j′′ = j, and the game is now in the configuration (w, i), (v, j).

The strategy for a capped step in the predecessor game uses the same idea: We may
assume there is some i′ with iprec < i′ < i such that the interval from iprec to i′−1 has content
B and constitutes a factor that was collected during the prior sub-step, before being capped
in the present one. Thus in the previous scheme σ, i′ was the successor position of iprec.
Player 1 uses his strategy from the previous scheme to force the game to the configuration
(w, i′), (v, j′), where j′ is the successor of jprec in the scheme σ. We must have the set of
jumped letters to be B in each case, so the intervals from i′ to i− 1 and j′ to j − 1 are the
caps applied in the scheme τ, and thus i is the successor of i′, and j the successor of j′, in
the scheme σ. Player 1 now uses his strategy for the scheme σ to force the game from the
configuration (w, i′), (v, j′) to (w, i), (v, j). J

5 Simulating factorization in logic

A factorization scheme σ gives a factorization σ(w) = (w1, . . . , wk) of an a-word w. This
in turn gives a word σh(w) = m1 · · ·mk ∈ M+. We say that σ admits simulations if the
following properties hold.

For each sentence ψ ∈ FO2[<,Suc] over the alphabet M , there exists a sentence φ ∈
FO2[<, bet] over the alphabet A with the following property. Let w be an a-word.

w |= φ iff σh(w) |= ψ.

For each formula ψ(x) ∈ FO2[<,Suc] with one free variable over the alphabet M, there
exists a formula φ(x) ∈ FO2[<, bet] with one free variable over the alphabet A with the
following property. Let w be an a-word, 1 ≤ i ≤ k and let ji be the position within w of
the first letter of wi in σ(w). Then

(w, ji) |= φ(x) iff (σh(w), i) |= ψ(x).

I Lemma 4 (Simulation). Each factorization scheme in our sequence admits simulations.

It is useful to have abbreviations for commonly used subformulas of FO2[<, bet]. If B is
a subalphabet of A, we write [B](x, y) to mean the conjunction of ¬c(x, y) over all c /∈ B; in
other words, ‘every letter between x and y belongs to B’. [a](x, y) is always true if y ≤ x

because a(x, y) is false whenever y ≤ x. We denote by JBK(x, y) the conjunction of [B](x, y)
together with the conjunction of b(x, y) over all b ∈ B; in other words, B is exactly the set
of letters between x and y.

Proof. The first claim in the Theorem follows easily from the second. So we will begin with
the formula ψ(x) ∈ FO2[<,Suc] over M and and show how to produce φ(x). We prove this
by induction on the construction of formula ψ. So the base case is where ψ(x) is an atomic
formula m(x), where m ∈M. This means that for each factorization scheme σ, we have to
produce a formula φm,σ(x) such that for an a-word w, (w, i) |= φm,σ(x) if and only if the
factor starting at i maps to m under h.

We do this by induction on the sequence of factorization schemes. In the initial factoriza-
tion, every factor is of the form au, where a /∈ α(u). This factor maps to m if and only if
h(u) = m′ for some m′ ∈M satisfying h(a) ·m′ = m. Since we suppose the main theorem
holds for every alphabet strictly smaller than A, there is a sentence ρ ∈ FO2[<, bet] such that
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u |= ρ if and only if h(u) = m′ where h(a) ·m′ = m. We now relativize ρ to obtain a formula
ρ′ with one free variable that is satisfied by (w, i) if and only if the factor of w starting at i
has the form au, where u |= ρ. To do this, we do a standard relativization trick, working
from the outermost quantifier of ρ inward. We can assume that all the quantifiers at the
outermost level quantify the variable y. We replace each of these quantified formulas ∃yη(y)
by ∃y(y > x ∧ ¬a(x, y) ∧ η(y)). Similarly, as we work inward, we rewrite each occurrence of
∃z′(z′ > z ∧ η) and ∃z′(z′ < z ∧ η), where {z, z′} = {x, y}, by adding the clause ¬a(z, z′) or
¬a(z′, z). In essence, each time we jump left or right to a new position, we check that in so
doing we did not jump over any occurrence of a, and thus remain inside the factor.

We now assume that τ is not the initial factorization scheme, and that the formula
φm,σ(x) exists for the preceding factorization scheme σ. We first consider the case where τ
was produced during a step that collected a subalphabet B. Observe that we can determine
within a formula whether i is the start of a factor that was produced during this collection
step, with the criterion

∃y(x < y ∧ startτ (y) ∧ JBK(x, y)).

(This includes the case where the collection is trivial because there is only one factor to
collect.) If this condition does not hold, then we can test whether the factor maps to m with
the formula produced during the preceding step. So we suppose that i is the first position
of one of the new ‘collected’ factors. Since B ( A, there is a sentence ρ of FO2[<, bet]
satisfied by exactly the words over this smaller alphabet that map to m. Once again, we
must relativize ρ to make sure that whenever we introduce a new quantifier ∃x(y > x ∧ · · · )
or ∃x(y < x ∧ · · · ) we do not jump to a position outside the factor. To do this, we can
replace ∃x(y > x ∧ · · · ) by

∃x(y > x ∧ [B](x, y) ∧ ∃x(y < x ∧ startτ (x) ∧ [B](x, y))).

In other words, we did not jump over any letter not in {a} ∪B, and there is a factor start
farther to the right that we can reach without jumping over any letter not in B. We replace
∃x(y < x ∧ · · · ) by

∃x(y < x ∧ [B](y, x) ∧ ∃x(x ≤ y ∧ startτ (x) ∧ [B](x, y))),

using essentially the same idea.
Now suppose that τ was produced during a step that capped the subalphabet B. Again,

we can write a formula that says that i is the start of a new factor produced in this process:
it is exactly the formula that said i was the start of a factor that collected B in the preceding
scheme σ. So we only need to produce a formula that says the factor of w beginning at i
maps to m under the assumption that this is one of the new ‘capped’ factors. Our factor
has the form u1u2, where u2 is the cap and u1 is the factor in which B was collected. We
consider all pairs m1,m2 such that m1 ·m2 = m. We know that there are formulas ρ1(x)
and ρ2(x) telling us that the factors in the preceding scheme σ map to m1 and m2. We use
the same formula ρ1(x), and take its conjunction with next(x), the successor formula derived
from ρ2(x) by means of Item (b) in Lemma 3. We are using the fact that the start of u2 is
the successor of the start of u1 under the preceding scheme σ.

We are almost done (and we no longer need to induct on the sequence of factorization
schemes) because FO2[<,Suc] formulas can be reduced to a few normal forms [5]. Let us
first suppose that our formula ψ has the form ∃x(Suc(x, y)∧κ(x)). The inductive hypothesis
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is that there is a formula µ simulating κ. Let previous be the predecessor formula whose
existence is given by Item (b) of Lemma 3. We claim that previous simulates ψ. To see this,
suppose w is an a-word, and ji is the position where the ith factor of w begins.

Suppose (w, ji) |= previous. Then (w, ji+1) |= µ.
So (σh(w), i+ 1) |= κ, which gives (σh(w), i) |= ψ.
This implication also runs in reverse, so we have shown that previous simulates ψ. Using

the successor formula in place of the predecessor formula gives us the analogous result for ψ
in the form ∃x(Suc(y, x) ∧ κ(x)). J

6 Proof of the main lemma

Proof of Lemma 2. Again, we assume |A| > 1 and that the theorem holds for all strictly
smaller alphabets. Let m ∈ M , where M satisfies the MeDA property. We need to show
h−1(m) is defined by a sentence of FO2[<, bet]. As an overview, we will first, through a
series of quite elementary steps, reduce this to the problem of showing that for each a ∈ A
and s ∈ M, the set of a-words mapping to s is defined by a sentence of FO2[<, bet]. We
then use Lemma 4 on simulations, together with the identity LDA = DA ∗D [1] to find a
defining sentence for the set of a-words that map to s.

First note that h−1(m) =
⋃
B⊆A{w ∈ h−1(m) : α(w) = B}.

It thus suffices to find, for each subalphabet B, a sentence ψB of FO2[<, bet] defining
the set of words {w ∈ h−1(m) : α(w) = B}. We then obtain a sentence for h−1(m) as∨

B⊆A

(ψB ∧
∧
b∈B

∃xb(x) ∧
∧
b/∈B

¬∃xb(x)).

Since we obtain the sentences ψB for proper subalphabets B of A by the induction hypothesis,
we only need to find ψA.

For each w with α(w) = A, let last(w) be the last letter of w to appear in a right-to-left
scan of w. It will be enough to find, for each a ∈ A, a sentence φa of FO2[<, bet] defining
{w ∈ h−1(m) : last(w) = a}, since we then get ψA as

∃y(a(y) ∧ ∀x(x > y → ¬a(x)) ∧
∧
b6=a
∃x(x > y ∧ b(x))) ∧ φa.

A word w with α(w) = A and last(w) = a has a unique factorization w = uv, where
α(u) = A\{a}, and v is an a-word. We consider all factorizations m = m1m2 in M . By
the inductive hypothesis, there is a sentence µ of FO2[<, bet] defining the set of all words
over A\{a} that map to m1. Suppose that we are able to find a sentence ν defining the
set of all a-words mapping to m2. We can then use a simple relativizing trick to obtain a
sentence defining all concatenations uv such that u |= µ and v |= ν. One simply modifies
each quantified subformula ∃xζ of µ and ν, starting from the outside, changing them to

∃x(¬∃y(y ≤ x ∧ a(y))) and ∃x(∃y(y ≤ x ∧ a(y))).

The conjunction of the two modified sentences now says that µ holds in the factor preceding
the first occurrence of a, and ν holds in the factor that begins at the first occurrence of a.
Take the disjunction of these conjunctions over all factorizations m1m2 of m to obtain φa.

It remains to show how to construct a sentence that defines the set of a-words that map
to a given element s of M . Let w ∈ A∗ be an a-word. Let σ be the final factorization scheme
in our sequence, so that

σ(w) = (w1, . . . , wk), σh(w) = m1 · · ·mk ∈M+.
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Figure 4 Occurrence sequence for model w, x: (1) Region R1 starts at position y − |v1| where v1

is the longest negative requirement. This means any negative factor vi which starts in region R0

will finish before y. Similarly, any negative factor vi other than v1 starting in R2 will end before y.
On the other hand, any v1 starting after R0 will necessarily end after y. (2) Positive requirements
start in order u1 < u2 . . . < u7. Moreover, u1, u2, u3 start in R0, words u4, u5 start in R1 and u6

starts in R2. Finally, u7 starts in Rl+1.

In fact, each wi can be mapped to the subalphabet

N = {h(v) ∈M : α(v) = A, v ∈ aA∗},

so we can restrict to this subalphabet N of M .
The map n 7→ n extends to a homomorphism from N+ into the subsemigroup S of M

generated by the elements of N . Since the generators of S are images of words v with
α(v) = A, we have eSe ⊆ eMee, which is in DA for every idempotent e ∈ E(S) by definition
of MeDA. Locality of DA means that having all eSe in DA, the semigroup S is in DA*D.
Thus the set of words over N multiplying to s ∈ S is defined by a sentence ψ over N in
FO2[<, succ] [20]. We can take the conjunction of this with a sentence that says every
letter belongs to the alphabet N , and thus obtain a sentence ψ′ over M , also in FO2[<,Suc],
defining this same set of words. Thus by the Simulation Lemma 4, there is a sentence φ in
FO2[<, bet] that defines the set of a-words that map to s. This completes the proof. J

7 A logic for intermediate occurrences of factors

As an extension of the techniques we developed, we add to two-variable logic ‘betweenness’
predicates 〈u〉(x, y) for u ∈ A+. If u = a1 . . . an, then

〈u〉(x, y) = ∃z1 . . . ∃zn(x < z1 < . . . zn < y∧Suc(z1, z2)∧· · ·∧Suc(zn−1, zn)∧a1(z1)∧· · ·∧an(zn)).

We call the logic FO2[<, betfac]. Its increased expressiveness does not translate to
computational difficulty, which we will show by translation to temporal logic LTL[6]. For
convenience, for u = a1u2 . . . an, we will abbreviate by u the LTL formula a1∧X(a2∧· · ·∧Xan).

I Theorem 5. Satisfiability of FO2[<, betfac] is Expspace-complete.

Proof. In [8] we gave an Expspace lower bound for FO2[<, bet], so we only have to give an
Expspace upper bound. We give an exponential translation from an FO2[<, betfac] sentence
to temporal logic LTL, whose satisfiability is decidable in Pspace [16].



A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing 28:13

For a fixed betweenness predicate mentioning x and y in a FO2[<, betfac] sentence,
consider all such predicates within the same scope, because they refer to the same x and y
points. They may specify existence or non-existence requirements. Existence of a factor uvw
implies the existence of a factor v and conversely for non-existence, we discard such implied
requirements.

As an example of the interaction of these requirements, consider the positive requirements
a(x, y) and b(x, y) and the negative requirement ¬cacbc(x, y) on the word cccccacbc where
x = 1 and y = 9 are the first and last positions. All three requirements are satisfied, because
the factor cacbc is not present strictly between x and y. Order the negative requirements
by length, without loss of generality we have |v1| > · · · > |vl| for negative requirements
¬v1(x, y), . . . ,¬vl(x, y). All these must be satisfied at the positions from x+ 1 to y − |v1|,
all except ¬v1 at positions from there upto y − |v2|, and so on. We can express this by the
formula Neg below:

(¬v1∧· · ·∧¬vl)U
(
X|v1|−1y∧(¬v2∧· · ·∧¬vl)U|v1|−|v2|X

|v2|−1y∧ . . . ((¬vl)U|vl−1|−|vl|X
|vl|−1y) . . .

)
,

where the bounded untils are defined by pUiq = p∧X(pUi−1q) and pU0q = q. The subformulae
X|v1|−1y,X|v2|−1y, . . . ,X|vl−1|−1y in Neg are redundant since they follow from the last X|vl|−1y

and the durations of the bounded untils. We will develop this idea below.
Neg is not quite an LTL formula since y is a first-order variable. Abbreviate by N the

formula (¬v1∧· · ·∧¬vl) to the left of the first until in Neg. We can write Neg more properly
as Neg(Q(y)) = NU(Q(y)) where we will replace Q(y) later by a temporal formula.

There are also the positive requirements to satisfy. We take a disjunction over the
possible orderings of positions where they are satisfied for the first time, which we abbreviate
specifying where in three intervals (x, y − |v1|], (y − |v1|, y − |vl|], (y − |vl|, y) they are to be
placed. (The first two intervals are left-open and right-closed.) It follows from the fact that
we have no implied factors that if the starting point of a factor is before the starting point of
another, its ending point also precedes the ending point of the other.

O = u1(x, y − |v1|] < · · · < uk(x, y − |v1|] < uk+1(y − |v1|, y − |vl|] < · · · <
uk+j(y − |v1|, y − |vl|] < uk+j+1(y − |vl|, y − |uk+j+i|] < · · · < uk+j+i(y − |vl|, y − |uk+j+i|].

More precisely there are l + 1 intervals to consider, by dividing up the middle interval
(y − |v1|, y − |vl|] into l − 1 subintervals as was done in formula Neg above.

The formula

Pos0 = ¬u1U(u1 ∧ (¬u2U(u2 · · · ∧ (¬ukU(uk ∧ (trueUX|uk−1|y) . . . )))

takes care of the first block of requirements. This has to be interleaved to the left of the first
until in Neg. That is, Neg(Q(y)) = NU(Q(y)) is replaced by

Pos′0(Q(y)) = (¬u1∧N)U
(
u1∧N∧((¬u2∧N)U(u2∧N∧· · ·∧((¬uk∧N)U(uk∧(NU(Q(y))))) . . . ))

)
.

Similarly the next j requirements have to be divided and interleaved with the bounded
untils in the middle intervals in Neg, specified by formulae Pos1, . . . , Posl−1 in much the
same manner, and the last i requirements specified by formula Posl, have to be interleaved
with the last |vl|−1 nexts in Neg and updated to Pos′1(Q(y)), . . . , Pos′l−1(Q(y)), Pos′l(Q(y))
to form:

Neg′ = Pos′0(Pos′1(. . . (Pos′l−1(Pos′l(X
min(|vl|,|uk+j+i|)−1y))) . . . )).
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The outcome of this interleaving procedure is that we have a formula having a single
occurrence of the non-temporal variable y at the end. The size of this formula, for one
ordering O, is polynomial in the size of the between requirements. The number of possible
orderings O is exponential in the number of between requirements, l + k + j + i above.

The technique of Etessami, Vardi and Wilke allows replacing the point y using its
type [5], which produces an LTL formula. As argued by them, the complete LTL formula
produced is exponential in terms of the sentence we started with. The exponentially many
disjunctions produced by different orderings above compose with their procedure to give an
exponential-sized formula. J

8 Characterization of F O2[<, betfac]

The class of languages definable in the logic FO2[<, betfac] corresponds to a variety of finite
semigroups rather than monoids. An operation which can be lifted to the level of semigroup
and monoid classes is the semidirect product (which is not effective in general). We have
obtained an effective algebraic characterization of FO2[<, betfac]. Presenting the proof will
require a detour into the algebraic theory of finite categories, so we will restrict ourselves here
with the statement and the algebraic characterization, and reserve the proof of effectiveness
for the full version of the paper.

I Theorem 6 (FO2[<, betfac] characterizes MeDA ∗D). Let L ⊆ A+. L is definable in
FO2[<, betfac] if and only if S(L) ∈MeDA ∗D. Moreover, there is an effective procedure
for determining if S(L) ∈MeDA ∗D.

Since MeDA contains ∆3[<] in the quantifier alternation hierarchy [22], MeDA ∗D
contains ∆3[<,Suc], which includes the language BB2 = (a(ab)∗b)+ which we showed in [8]
was not in MeDA. On the other hand it does not contain BB3 = (a(a(ab)∗b)∗b)+. Consider
the language U3 which is a sublanguage of A∗c(a+ b)∗cA∗ such that between the marked c’s,
the factor bb does not occur before the factor aa. This is in MeDA ∗D since it is defined by
the Π2[<,Suc] sentence

∀x∀y∀z∀z′( c(x) ∧ c(y) ∧ x < z < z′ < y ∧ Suc(z, z′) ∧ b(z) ∧ b(z′)
→ ∃w∃w′(x < w < w′ < z ∧ Suc(w,w′) ∧ a(w) ∧ a(w′))).

The proof of the theorem, in both directions, depends on the characterization of V ∗D in
terms of V [17]. This can be stated in several different ways, but all depend on some scheme
for treating words of length k over A as individual letters. Here is a standard version. Let
k > 0. Let A be a finite alphabet, and let B = Ak. We treat B as a finite alphabet itself – to
distinguish the word w ∈ A∗ of length k from the same object considered as a letter of B,
we write {w} in the latter case. We will define, for a word w ∈ A+ with |w| ≥ k − 1, a new
word w′ ∈ B∗, where w′ is simply the sequence of length-k factors of w. So, for example,
with A = {a, b} and k = 3, if w = aa, then w′ = 1 ∈ B, while if w = ababba, then

w′ = {aba}{bab}{abb}{bba}.

To make sure that the lengths match up, we supplement A with a new symbol ∗ and define
B′ as (A ∪ {∗})k, and w′′ as the sequence of length-k factors of ∗k−1w. For example, with
this new definition, if k = 3 and w = ababba, then

w′′ = {∗ ∗ a}{∗ab}{aba}{bab}{abb}{bba}.
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I Theorem 7 (characterization of V ∗D [17]). Let h : A+ → S be a homomorphism onto a
finite semigroup. S ∈ V∗D if and only if there exist: an integer k > 1, and a homomorphism
h′ : B∗ → M ∈ V, where B = Ak, such that whenever v, w ∈ A+ are words that have the
same prefix of length k − 1, and the same suffix of length k − 1, and v′, w′ are the sequence
of k-length factors of v, w respectively, with h′(v′) = h′(w′), then h(v) = h(w).

In brief, you can determine h(w) by looking at the prefix and suffix of w of length k − 1,
and checking the value of w′ under a homomorphism h′ into an element of V. Note that the
statement is false if V is the trivial variety (and only in this case), but we can correct by
replacing D in the statement by LI.

In the full version of the paper we will show:

I Proposition 8 (Delay). Let φ be a sentence of FO2[<, betfac]. Then there exist k > 1
and a sentence φ′ of FO2[<, bet] interpreted over (A ∪ {∗})k, with this property: if w ∈ A+

with |w| ≥ k − 1, then w |= φ if and only if w′′ |= φ′.

I Proposition 9 (Expansion). Let φ′ be a sentence of FO2[<, bet] interpreted over (A∪{∗})k,
where k > 1. Then there is a sentence φ of FO2[<, betfac] with this property: if w ∈ A+

with |w| ≥ k − 1, then w |= φ if and only if w′′ |= φ′.

Proof of Characterization Theorem 6. Let L ⊆ A+, and suppose that L is definable by a
sentence φ of FO2[<, betfac]. Let k > 1 and φ′ in FO2[<, bet] be as given by Proposition 8.
Let L′ ⊆ ((A∪ {∗})k)∗ be the language defined by φ′. We will show that S(L) ∈MeDA ∗D.

Let h : A+ → S(L) be the syntactic morphism of L. Let h′ be the syntactic morphism
of L′ and let h′′ be the restriction of h′ to elements of (Ak)∗. Since φ′ is a sentence of
FO2[<, bet], the syntactic monoid of L′, and hence the image of h′′, belongs to MeDA. It
is therefore enough, in view of Theorem 7, to suppose that v, w ∈ A+ have the same prefix of
length k− 1 and the same suffix of length k− 1, and that h′′(v′) = h′′(w′), and then conclude
that h(v) = h(w). To show h(v) = h(w) we must show that for any x, y ∈ A∗, xvy ∈ L if
and only if xwy ∈ L. Given the symmetric nature of the statement, it is enough to show
xvy ∈ L implies xwy ∈ L. So let xvy ∈ L. Then xvy |= φ, so (xvy)′′ |= φ′. We take apart
(xvy)′′: Suppose x = a1 · · · ar, v = b1 · · · bs, y = c1 · · · ct.

The leftmost r + k − 1 letters of (xvy)′′ are

{∗k−1a1}{∗k−2a1a2} · · · {arb1 · · · bk−1}.

The rightmost t letters of (xvy)′′ are

{bs−k+2 · · · bsc1}{bs−k+3 · · · bsc1c2} · · · {ct−k+1 · · · ct}.

(The exact form of the last factor will be different if t < k− 1.) In between these two factors,
we have the s− k + 1 letters of v′. Thus h′((xvy)′′) = m1h

′′(v′)m2, where m1,m2 depend
only on x, y and the prefix and suffix of v of length at most k − 1. It follows that we likewise
have h′((xwy)′′) = m1h

′′(w′)m2, with the same m1,m2. Since h′′(v′) = h′′(w′), we conclude
h′((xvy)′′) = h′((xwy)′′), so (xwy)′′ |= φ′. Thus xwy |= φ, and so xwy ∈ L. This concludes
the proof that S(L) ∈MeDA ∗D.

Conversely, suppose L ⊆ A+ and that S(L) ∈MeDA ∗D. Let h : A+ → S(L) be the
syntactic morphism of L. Let h′ : (Ak)∗ → M ∈ MeDA be the homomorphism given by
Theorem 7. We extend h′ to ((A ∪ {∗})k)∗ by defining h′(b) = 1 for any b that contains the
new symbol ∗. Then for each m ∈ M , we have a sentence φ′m of FO2[<, bet] interpreted
over ((A ∪ {∗})k)∗ defining (h′)−1(m). Let φm be the sentence over FO2[<, betfac] given
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by Proposition 9. For each x ∈ Ak−1, let prefx be a sentence defining the set of strings over
A whose prefix of length k − 1 is x, and similarly define suffx. Observe that both of these
sentences can be chosen to be in FO2[<, betfac]. In fact, these properties are definable in
FO2[<, bet] over A. It follows that the set of words in A+ of length at least k − 1 mapping
to a given value s of S(L) is given by a disjunction of finitely many sentences of the form

prefx ∧ suffy ∧ φ′m.

We thus get the complete preimage h−1(s) by taking the disjunction with a sentence that
says the word lies in a particular finite set. So L itself is definable in FO2[<, betfac]. J
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Abstract
The “generic operational metatheory” of Johann, Simpson and Voigtländer (LiCS 2010) defines
contextual equivalence, in the presence of algebraic effects, in terms of a basic operational preorder
on ground-type effect trees. We propose three general approaches to specifying such preorders:
(i) operational (ii) denotational, and (iii) axiomatic; coinciding with the three major styles of
program semantics. We illustrate these via a nontrivial case study: the combination of probab-
ilistic choice with nondeterminism, for which we show that natural instantiations of the three
specification methods (operational in terms of Markov decision processes, denotational using a
powerdomain, and axiomatic) all determine the same canonical preorder. We do this in the case
of both angelic and demonic nondeterminism.
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1 Introduction

Contextual equivalence, in the style of Morris, is a powerful and general method for defining
program equivalence, applicable to many programming languages. Two programs are said
to be contextually equivalent if they ‘behave’ equivalently when embedded in any suitable
context that leads to ‘observable’ behaviour. More generally,1 one can define contextual
preorder in the same manner. Let P1 and P2 be comparable programs (for example, in a
typed language, P1 and P2 would have the same type in order to be comparable). Suppose
further that we have some basic preorder 4, defined on ‘observable’ computations, according
to appropriate behavioural considerations. Then the contextual preorder is defined by

P1 vctxt P2 ⇐⇒ for all observation contexts C[−], C[P1] 4 C[P2] . (1)

1 It is more general, since every equivalence relation is a preorder.
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This method of definition has important consequences. For example, the relation vctxt is
guaranteed to be a precongruence with respect to the constructors of the programming
language. However, the quantification over contexts makes the definition awkward to
work with directly. So various more manageable techniques for reasoning about contextual
preorder relations have been developed, including: (bi)simulations and their refinements
(applicative/environmental bisimulations, bisimulations up-to), denotational interpretation
in domains, game semantics, program logics, and logical relations. These techniques are all
reasonably general, in the sense that they adapt to different styles of programming languages,
and combinations of programming features. Nonetheless, they are usually studied on a
language-by-language basis.

One direction for the systematisation of a range of programming features has been
provided by Plotkin and Power through their work on algebraic effects [13, 14]. Broadly
speaking, effects are interactions between a program and its environment (including the
machine state), and include features such as error raising, global/local state, input/output,
nondeterminism and probabilistic choice. Plotkin and Power realised that the majority of
effects (including all the aforementioned ones) are algebraic, in the sense that the operations
that trigger them satisfy a certain natural behavioural constraint.2

The algebraic effects in a programming language can be supplied via an algebraic signature
Σ of effect-triggering operations, and the operational semantics of the language can then
be defined parametrically in Σ. This is achieved by effectively splitting the semantics of
the language into two steps. In the first step, operational rules specify how any program
P evaluates to an associated effect tree |P |, which documents all the effects that might
potentially occur during execution. In an effect tree, the effects themselves are uninterpreted,
in the sense that no specific execution behaviour is imposed upon them. As the second step,
an interpretation is given to effect trees, by one means or another, from which a semantics for
the whole language is extrapolated. This methodology was first followed in [13], where the
operational reduction to effect trees (there called infinitary effect values) is used as a method
for proving the computational adequacy of denotational semantics. In [6], effect trees (there
called computation trees) are used to give a uniform definition of contextual preorder, and to
characterise it as a logical relation. Effect trees also allow a general definition of applicative
(bi)similarity for effects [17] (see [1] for a related approach not based on trees).

In this paper, as in [6], our aim is to exploit the notion of effect tree for the purpose of
giving a unified theory of contextual preorders for programming languages with algebraic
effects. In [6], this was carried out in the context of a specific polymorphically-typed call-
by-name functional language with general recursion, to which algebraic effects were added.
In this paper, we build on the technical work of [6], but an important departure is that
we detach the development from any fixed choice of background programming language.
This is based on the following general considerations. In order to define contextual preorder
via (1) above, one needs to specify what constitutes an observation context, and also the
basic behavioural relation 4 on the computations such contexts induce. In the case of a
language with algebraic effects, we can observe two things about a computation. Firstly, we
can observe any discrete return value. In any sufficiently expressive language, discrete values
should be convertible to natural numbers. So it is a not unreasonable restriction to restrict
observation contexts to ground contexts whose return values (if any) are natural numbers.
Secondly, we can also potentially observe aspects of effectful behaviour of such computations,

2 In operational terms, the constraint is that the behaviour of the operation does not depend on the
content of the continuation at the time the operation is triggered.



A. Lopez and A. Simpson 29:3

with exactly what is observable very much depending on the effects in question. One general
approach to taking such effectful behaviour into account is to specify a basic operational
preorder 4 on the set of effect trees with natural-number-labelled leaves, which implements
a desired behavioural preorder on effectful computations with return values in N. We are
thus led to the following general formulation of contextual preorder. Given a chosen basic
operational preorder 4, we define the induced contextual preorder on programs by:

P1 vctxt P2 ⇐⇒ for all ground contexts C[−], |C[P1]| 4 |C[P2]| . (2)

In [6], this general approach was developed in detail for a polymorphically typed call-
by-name functional language with algebraic effects. The main result was that the resulting
contextual preorder, defined by (2), is well behaved if the basic operational preorder satisfies
two technical properties, admissibility and compositionality. In particular, it follows from
these conditions that the contextual preorder is characterisable as a logical relation (and
hence amenable to an important proof technique), and also that, on ground type programs
P1, P2, the contextual and basic operational preorders coincide (i.e., P1 vctxt P2 if and only if
|P1| 4 |P2|). Recently, we have carried out a similar programme for a call-by-value language,
similar to the language in [13], and obtained analogous results.3 It seems likely that similar
results hold for other language variants.

The notion of admissible and compositional basic operational preorder thus provides
a uniform and well-behaved definition of contextual preorder, for different languages with
algebraic effects. Furthermore, as is argued in [6, §V], it can also be given an intrinsic, more
conceptually motivated justification in terms of an explicit notion of observation. Our general
position is that the notion of admissible and compositional basic operational preorder is a
fundamental one. For any given combination of algebraic effects, one need only define a
corresponding admissible and compositional basic operational preorder. Once this has been
done, one obtains, via (2), a definition of contextual preorder that can be applied to many
programming languages containing those effects, and which will enjoy good properties.

In this paper, we describe three different approaches to defining basic operational preorders.
The first is an operational approach. One explicitly models the execution of the effects
in question, and uses this model to determine the preorder. This is the approach that
was followed in [6]. Under this approach, admissibility and compositionality do not hold
automatically, and so need to be explicitly verified. The second is a denotational approach.
One builds a suitable domain-based model of the relevant effect operations. This induces a
basic operational preorder on effect trees that is automatically admissible and compositional.
The third is axiomatic. One finds a set of (possibly infinitary) Horn-clause axioms asserting
desired properties of the intended preorder. The basic operational preorder is then taken to
be the smallest admissible preorder satisfying the axioms. In addition to being admissible by
definition, the resulting preorder is automatically compositional.

It will not have escaped the readers attention that our three approaches to defining
preorders parallel the three main styles of program semantics: operational, denotational
and axiomatic. Nonetheless, irrespective of how they are defined, we view basic operational
preorders themselves as a part of operational semantics, for their purpose is to define the
operational notion of contextual preorder.

The general identification of these three approaches is the first main contribution of the
paper. Our second contribution is more technical. We illustrate the three approaches with a
nontrivial case study: the combination of (finitary) nondeterminism with probabilistic choice,

3 Unfortunately, there is no space to include these results, which were obtained while the first author was
on an internship in Ljubljana in 2017, in this paper.
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which is a combination of effects that enjoys a certain notoriety for some of the technical
complications it incurs [11, 12, 21, 20, 2, 3, 7]. On the operational side, we consider effect trees
as Markov decision processes (MDPs), and we define a basic operational preorder based on the
comparison of values of MDPs. On the denotational side, we make use of recently developed
domain-theoretic models of combined nondeterministic and probabilistic choice [20, 3, 7].
On the axiomatic side, we give a simple axiomatisation, similar to axiomatisations in [12, 7].
Our main result is that the operationally, denotationally and axiomatically-defined basic
operational preorders all coincide with each other. In fact, we give this result in two
different versions. The first is for an angelic interpretation of nondeterminism, in which
nondeterministic choices are resolved by a cooperative scheduler. The second is for demonic
nondeterminism, where an antagonistic scheduler is assumed. In each case, our coincidence
theorem suggests the canonicity of the preorder we obtain for the form of nondeterminism in
question, with each of the three methods of definition providing a distinct perspective on it.

In Sections 2 and 3, we review the definition of effect trees and basic operational preorders,
largely following [6]. Our main contribution starts in Sections 4, 5 and 6, which discuss the
operational, denotational and axiomatic approaches to defining basic operational preorders.
The discussion is illustrated using the example of combined nondeterminism and probabilistic
choice. The main coincidence theorem, for this example, is then proved in Section 7. Finally,
in Section 8, we briefly discuss related and further work.

2 Effect trees

The general scenario this paper addresses is that of a programming language whose programs
may perform effects as they compute. In this paper, we assume that the available effects are
specified by an effect signature: a set Σ of operation symbols, each with an associated finite
arity. We call the operations in Σ effect operations. This setting is explicitly that of [13].
More general effect signatures appear in the literature, e.g., allowing parameterised operations
and infinite arities [6, 19]. The technical development in this paper can be generalised to
such more general signatures. Since, however, the main running example considered in this
paper has only binary operations, we restrict ourselves to finite arity operations for the sake
of presentational convenience.

I Example 1 (Signature for combined probabilistic and non-deterministic choice). Consider
a programming language that can perform two effects: probabilistic and nondeterministic
choice. An appropriate signature for such a language is Σpr/nd = {(pr, 2), (or, 2)} containing
two binary operations: nondeterministic choice or, and fair probabilistic choice pr. (As is well
known, in programming languages with general recursion, all computable discrete probability
distributions can be simulated using fair probabilistic choice.)

During the execution of a program with effects, three different situations can arise. Firstly,
the computation process may trigger an effect, represented by some o ∈ Σ. The execution
will then continue along one of the n possible continuation processes given as arguments
to the operation o. Secondly, the execution may terminate, in which case it may produce
a resulting value. Thirdly, the execution may continue forever without terminating and
without invoking any effects. We call this last situation silent nontermination to distinguish
it from noisy nontermination, which occurs when the computation process computes for ever
while performing an infinite sequence of effects along the way.

The global behaviour of such a program is captured by the notion of an effect tree: a
finitely branching tree, whose internal nodes represent effect operations, and whose leaves
represent either termination with a result, or silent nontermination. The branches of the tree
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Figure 1 Two effect trees.

represent potential execution sequences of the program. Trees are allowed to be infinitely deep,
with their infinite branches representing noisy nontermination. Such trees were introduced as
infinitary effect values in [13], and used extensively in [6], where they are called computation
trees. Two example trees, for computations that return natural number values, are drawn
in Figure 1 below. The left-hand tree or(pr(1, 2), 3) represents a program that first makes a
nondeterministic choice and then a potential probabilistic choice, with the choices determining
the resulting number. In the second tree pr(or(1, 3), or(2, 3)), the probabilistic choice is made
first, followed by the relevant nondeterministic choice.

I Definition 2. The set Trees(X) of effect trees with values from the set X is coinductively
defined so that every tree has one of the following forms.

The root of the tree is labelled with an operation o ∈ Σ, and the tree has the form
o(t1, . . . , tn) where n is the arity of o and t1, . . . , tn ∈ Trees(X); or
the tree is a leaf labelled with a value x ∈ X; or
the tree is a leaf labelled with ⊥.

As this is a coinductive definition, Trees(X) contains trees of both finite and infinite depth.
We define a partial order on Trees(X) by t1 v t2 if and only if t2 can be obtained

from t1 by replacing (possibly infinitely many) ⊥-leaves appearing in t1 with arbitrary
replacement trees (rooted where the leaves were located). With this ordering, Trees(X) is an
ω-complete partial order (ωCPO) with least element ⊥. Furthermore, by considering it as a
tree constructor, every operation o ∈ Σ defines a continuous (i.e., ω-continuous) function
o : Trees(X)n → Trees(X), where n is the arity of o. (For notational convenience, we use o
for both operation symbol and function. The ambiguity can be resolved from the context.)

The properties described above state that Trees(X) is a continuous Σ-algebra. In general,
a continuous Σ-algebra is a pointed (i.e., with least element) ωCPO A with associated
continuous functions oA : An → A for every o ∈ Σ of arity n. As morphisms between
continuous Σ-algebras A and B, we consider functions h : A → B that are strict (i.e.,
preserve least element) continuous homomorphisms with respect to the Σ-algebra structure.
We refer to such functions h : A→ B as continuous homomorphisms, leaving the strictness
property implicit. We write ContAlgΣ for the category of continuous Σ-algebras and
continuous homomorphisms. The characterisation of Trees(X) below is standard.

I Proposition 3. Trees(X) is the free continuous Σ-algebra over the set X.

X A

Trees(X)

f

i
f̂
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That is, for every function f : X → A, where A is a continuous Σ-algebra, there exists a
unique continuous homomorphism

f̂ : Trees(X)→ A

such that f = f̂ ◦ i, where i : X → Trees(X) is the function mapping every x ∈ X to the
leaf-tree labelled x.

We use the above proposition to define a substitution operation on trees. For any tree
t ∈ Trees(X), every function f : X → Trees(Y ) determines a tree t[f ] in Trees(Y ) defined by
substitution, viz : t[f ] := f̂(t) .

3 Basic operational preorders

As discussed in Section 1, our interest in effect trees is that they provide a uniform template
for defining contextual preorders for programming languages with algebraic effect operations
specified by signature Σ. As in [6], the crucial data is provided by a preorder 4 on Trees(N),
called the basic operational preorder. In order for the resulting contextual preorder to be well
behaved, we ask for the the basic operational preorder satisfy two properties: admissibility
and compositionality. In this section, we review the definitions of these and related notions.

I Definition 4 (Admissibility). A binary relation R on Trees(X) is admissible if, for every
ascending chain (ti)i≥0 and (t′i)i≥0, we have:

( tiR t′i for all i ) =⇒

⊔
i≥0

ti

 R

⊔
i≥0

t′i

 .

I Definition 5 (Compatibility). A binary relation R on Trees(X) is compatible if, for every
o ∈ Σ of arity n, and for all trees t1, . . . , tn and t′1, . . . , t′n, we have:

( tiR t′i for all i = 1, . . . , n ) =⇒ o(t1, . . . , tn)R o(t′1, . . . , t′n) .

If a compatible relation is a preorder then it is called a precongruence. If it is an equivalence
relation it is called a congruence.

The next two definitions make use of the substitution operation on trees defined at the
end of Section 2.

I Definition 6 (Substitutivity). A binary relation R on Trees(X) is substitutive if, for all
trees t, t′ and {tx}x∈X , we have:

tR t′ =⇒ t[x 7→ tx]R t′[x 7→ tx] .

I Definition 7 (Compositionality). A binary relation R on Trees(X) is compositional if, for
all trees t, t′, {tx}x∈X , and {t′x}x∈X , we have:

( tR t′ and tx R t′x for all x ∈ X ) =⇒ t[x 7→ tx]R t′[x 7→ t′x] .

I Proposition 8. Let 4 be a preorder on Trees(N).
1. If 4 is compositional then it is a substitutive precongruence.
2. If 4 is an admissible substitutive precongruence then it is compositional.
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Proof. We prove statement 2. Suppose 4 is admissible, substitutive and compatible. Suppose
also that t 4 t′ and tn 4 t′n, for all n ∈ N. By substitutivity, we have t[n 7→ tn] 4 t′[n 7→ tn].
We would like to use compatibility to derive that also t′[n 7→ tn] 4 t′[n 7→ t′n], however
this is only possible if t′ is finite. The solution is to use finite approximations (s′i) of
t′ satisfying

⊔
i s
′
i = t′. For each finite tree s′i we have that s′i[n 7→ tn] 4 s′i[n 7→ t′n], by

compatibility. Hence, by admissibility, t′[n 7→ tn] 4 t′[n 7→ t′n], whence t[n 7→ tn] 4 t′[n 7→ t′n]
by transitivity. J

4 Operationally-defined preorders

In this section, we consider our first approach to defining an admissible and compositional
basic operational preorder 4 on Trees(N). We call this method operational. Its characteristic
is that the preorder 4 is directly defined using a mathematical model of the way that an
effect tree in Trees(N) will be executed. There is not much to say in general about this
approach, since such execution models vary enormously from one effect to another. The main
point to emphasise is that there is no general reason for admissibility and compositionality
to hold for such operationally defined preorders. Accordingly, these properties need to be
established on a case-by-case basis.

The operational approach to defining basic preorders is illustrated for several examples of
effects in [6]. The main goal of the section is to demonstrate the approach using a different
example, the signature Σpr/nd = {pr, or} from Example 1, which is of interest because of the
interplay between probabilistic and nondeterministic effects. In this case, trees in Trees(N)
have both probabilistic and nondeterministic branching nodes, as in Figure 1.

It is natural to consider such trees as (countable state) Markov decision processes, with
the leaves representing nodes which either carry an observable value from N, or which
represent nontermination ⊥. Nondeterministic choices may be thought of as being resolved
by an external agent, the scheduler. We model the actions of the scheduler by a function
s : {l, r}∗ → {l, r}. The idea is that a word w ∈ {l, r}∗ represents a finite path of left/right
choices from the root of a tree t ∈ Trees(N). If the computation reaches a nondeterministic
choice at the node indexed by w then it takes the left/right branch according to the value
of s(w). This way of representing choices has some redundancy (in every tree that is not a
complete infinite binary tree, there will be words w that do not index nodes in the tree; if
s(ε) = l then the value of s on words beginning with r is immaterial; the value of s(w) on
words w that index probabilistic nodes in t is irrelevant, etc.), but it is simple and convenient
for future purposes. For any given t ∈ Trees(N), such a function s : {l, r}∗ → {l, r} can be
thought of as a (deterministic) strategy for the scheduler, in which the choice of direction at a
nondeterministic node can respond to the outcomes of probabilistic nodes higher up the tree.

A strategy s and a tree t in combination determine a subtree t � s, defined by removing,
at every nondeterministic node in t with index w, the child tree that is not selected by s(w).
So t � s is a tree that has binary branching at probabilistic nodes, and unary branching
at nondeterministic nodes. It is thus, in effect, a purely probabilistic tree, with leaves in
N ∪ {⊥}, and so may be viewed as a Markov chain, in which the branching nodes are fair
binary choices, determining a subprobability distribution over N. Specifically, each n ∈ N is
assigned the probability that a run of the Markov chain will end at a leaf labelled with n.
This is a subprobability distribution in general because there can be a positive probability of
nontermination (either at a ⊥ leaf, or along an infinite branch).

The angelic interpretation of nondeterminism takes into account the possibility of a
nondeterministic computation achieving a specified goal, given a cooperative scheduler. The
demonic interpretation, models the certainty with which a goal can be achieved, however
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adversarial the scheduler. This suggests the two basic operational preorders below. In each
case, we consider functions h : N→ [0,∞] assigning desirability weightings to possible results
of a run of the computation. We then define t 4 t′ if, for any h, the ‘expected’ desirability
weighting of t′ exceeds that of t. Here, ‘expected’ is in inverted commas, because we have to
take into account the actions of the scheduler, so this is not just a probabilistic expectation.
In the case of angelic nondeterminism, the scheduler will help us, whereas, under demonic
nondeterminism, it will impede us. Technically this is taken account of by considering
suprema of probabilistic expectations in the angelic case, and infima in the demonic case.

t 4op
pr/ang t

′ ⇔ ∀h : N→ [0,∞] sup
s

Et�s(h) ≤ sup
s

Et′�s(h)

t 4op
pr/dem t′ ⇔ ∀h : N→ [0,∞] inf

s
Et�s(h) ≤ inf

s
Et′�s(h)

Here Et�s(h) means the expectation of the function h under the subprobability distribution on
N induced by the Markov chain t �s. In Markov-decision-process terminology, each preorder
says that the value of the MDP t, for any weighting h, is below the value of of t′ for h. In the
angelic case the value maximises the expectation of h, in the demonic case it minimises it.

I Proposition 9. The preorders 4op
pr/ang and 4op

pr/dem are admissible and compositional.

We outline the proof of this proposition in the case of 4op
pr/dem. The proof for 4op

pr/ang
is easier, largely because the analogue of the lemma below is trivial in the case of angelic
nondeterminism.

I Lemma 10. Consider Trees(N) and [0,+∞] as ωCPOs. Then, for any h : N→ [0,∞], the
value-finding function Fh is continuous:

Fh : t 7→ inf
s

Et�s(h) : Trees(N)→ [0,+∞]

Proof. The set S = {l, r}{l,r}∗ of strategies is a countably-based compact Hausdorff space
under the product topology. (It is Cantor space.) It is easy to see that the function

Gh : (s, t) 7→ Et�s(h) : S × Trees(N)→ [0,+∞]

is continuous. Essentially, it follows that Fh is continuous because it is defined from Gh by
taking an infimum over a compact set. This can be made precise using, e.g., the general
machinery in Section 7.3 of [16]. For completeness, we give a self-contained argument.

Suppose (ti) is an ascending chain of trees. Because S is compact, there is si ∈ S with
infs Gh(s, ti) = Gh(si, ti), and we can then extract a convergent subsequence (sai

) of (si)
such that sai → s∞ in S. Then:

sup
i

inf
s
Gh(s, ti) = sup

i
Gh(si, ti) = sup

i
Gh(sai , tai) = Gh(s∞,

⊔
i

ti) ≥ inf
s
Gh(s,

⊔
i

ti) ,

where the second equality holds because Gh(si, ti) is an ascending sequence, and the third
by the continuity of Gh. We have shown that supi infs Gh(s, ti) ≥ infs Gh(s,

⊔
i ti), i.e.,

supi Fh(ti) ≥ Fh(
⊔

i ti). Therefore Fh is continuous (since it is obviously monotone). J

The admissibility of 4op
pr/dem follows easily from the lemma. Suppose ti 4op

pr/dem t′i, for
ascending chains (ti) and (t′i). Then Fh(ti) ≤ Fh(t′i), for all i and h. By the lemma,
Fh(
⊔

i ti) ≤ Fh(
⊔

i t
′
i), for all h. So indeed

⊔
i ti 4

op
pr/dem

⊔
i t
′
i.

For compositionality, by Proposition 8, it suffices to show that 4op
pr/dem is a substitutive

precongruence. The compatibility properties of a precongruence are easily shown. Sub-
stitutivity follows from the lemma below.
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I Lemma 11. Suppose t and {tn}n∈N are trees in Trees(N) then, for any weighting h,

inf
s

Et[n7→tn]�s(h) = inf
s

Et�s(ĥ) where ĥ(n) = inf
s

Etn�s(h) .

This lemma is proved first for finite trees, by induction on their height. It is then extended
to infinite trees by expressing them as suprema of finite trees, and applying Lemma 10.

We end this section by observing that a natural attempt to simplify the definitions of
4op
pr/ang and4

op
pr/dem does not work. Instead of considering arbitrary weightings h : N→ [0,∞],

one might restrict to functions h : N→ {0, 1}, which can be viewed as specifying goal subsets
H ⊆ N. Proceeding analogously to above, we compare suprema of probabilities of landing in
H in the angelic case, and infima in the demonic case. For both the angelic and demonic
versions, the desired compositionality property fails.

I Proposition 12. Neither of the formulas below defines a compositional relation t 4 t′.

∀H ⊆ N sup
s

Pt�s(H) ≤ sup
s

Pt′�s(H)

∀H ⊆ N inf
s

Pt�s(H) ≤ inf
s

Pt′�s(H)

Proof. We use the two trees in Figure 1, representing the expressions A = 3 or(1 pr 2) and
B = (3 or 1) pr(3 or 2). It is easily checked that, for every subset H ⊆ {1, 2, 3}, it holds that
sups PA�s(H) = sups PB�s(H) and infs PA�s(H) = infs PB�s(H). Thus A is equivalent to
B under both preorders.

However, one can build a family {t1, t2, t3} such that A[i 7→ ti] = t3 or(t1 pr t2) = C is
not equivalent to B[i 7→ ti] = (t3 or t1) pr(t3 or t2) = D, which contradicts substitutivity. Let
t1 = 0 pr(0 pr(0 pr(0 pr 1))), t2 = 1 and t3 = 0 pr(0 pr(0 pr 1)). The distinguishing factor will be
the probability associated with the subset {1}.

A simple calculation shows that sups PC�s({1}) = 9/16 6= 5/8 = sups PD�s({1}). Simil-
arly infs PC�s({1}) = 1/4 6= 3/16 = infs PD�s({1}). This contradicts the substitutivity and
hence also the compositionality of both preorders. J

The necessity of using quantitative properties to obtain a compositional preorder is
consistent with a general need for quantitative concepts that can be found in the literature on
probabilistic computation. For example, in [8, 9], quantitative logics are required to obtain
compositional reasoning methods. Similarly, in [10], quantitative observations are needed to
distinguish non-bisimilar processes combining probabilistic and nondeterministic choice.

5 Denotationally-defined preorders

Our second approach to defining an admissible and compositional basic denotational preorder
4 on Trees(N) is to make use of established constructions from domain theory. Under this
approach, admissibility and compositionality of the defined preorder 4 hold for general
reasons. Since this approach essentially amounts to giving a denotational semantics to effect
trees, we call it the denotational method of defining a basic operational preorder.

In order to define a basic operational preorder using the denotational method, one
needs to merely provide a continuous Σ-algebra D (see Section 2), together with a function
j : N → D. Define J·K : Trees(N) → D to be the unique continuous homomorphism that
makes the diagram below commute.

N D

Trees(N)

j

i
J·K
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The map J·K : Trees(N)→ D is used to induce the basic operational preorder 4D from the
partial order relation on the ωCPO D.

t 4D t′ ⇔ JtK v Jt′K .

I Proposition 13. The relation 4D is admissible pregongruence.

The proof is immediate: admissibility follows from the continuity of J·K, and compatibility
because J·K is a homomorphism.

In order to obtain substitutivity, hence compositionality, a further property is required.

I Definition 14 (Factorisation property). The map j : N→ D is said to have the factorisation
property if, for every function f : N→ D, there exists a continuous homomorphism hf : D → D

such that f = hf ◦ j.

N D D
j

f

hf

I Proposition 15. If j : N → D has the factorisation property then the relation 4D is
substitutive, hence it is an admissible compositional precongruence.

Proof. Suppose σ : N→ Trees(N) is any substitution. Let σ̂ : Trees(N)→ Trees(N) be the
continuous homomorphism such that σ̂ ◦ i = σ. Consider the map g := J·K ◦ σ̂ ◦ i : N→ D.
By the factorisation property, there exists hg : D → D such that g = hg ◦ j. Expanding this,
and using the definition of J·K, we have:

J·K ◦ σ̂ ◦ i = hg ◦ j = hg ◦ J·K ◦ i .

It then follows from the uniqueness property of Proposition 3 that

J·K ◦ σ̂ = hg ◦ J·K , (3)

because both maps are continuous homomorphisms.
Now, for substitutivity, suppose that t 4D t′, i.e., JtK ≤ Jt′K. Then hg(JtK) ≤ hg(Jt′K)

by monotonicity. That is Jσ̂(t)K ≤ Jσ̂(t′)K, by (3). This says that Jt[σ]K ≤ Jt′[σ]K. That is
t[σ] 4D t′[σ], as required. J

In practice, it is usually not necessary to prove the factorisation property directly. Instead
it holds as a consequence of the continuous algebra D and map j : N→ D being derived from
a suitable monad. The next result establishes general conditions under which this holds.

I Proposition 16. Let S be a category with a faithful functor U : S→ Set. Suppose also that
S has an object N such that UN = N, and every hom set S(N,X) is mapped bijectively by U to
Set(N, UX). Suppose also that (T, η, µ) is a monad on S with the following properties: there
is a continuous Σ-algebra structure on UTN ; and, for every map f : N → TN , the induced
function Uf∗, where f∗ : TN → TN is the Kleisli lifting, is a continuous homomorphism.
Then defining D to be the continuous Σ-algebra on UTN , and j to be Uη : N → UTN , it
follows that j has the factorisation property.

We omit the easy proof. Although the statement of the proposition is verbose, the result is
relatively easy to apply in practice, as the examples we consider next will illustrate.

In the remainder of the section, we return to our main example, and again define basic
operational preorders for the combination of probabilistic choice and nondeterminism (both
angelic and demonic), but this time we use the denotational method. Accordingly, we call
the defined preorders 4den

pr/ang and 4den
pr/dem
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We use the powerdomains combining probabilistic choice and nondeterminism defined
in [7, §3.4], although our setting is simpler because we only need to apply them to sets. The
basic idea of these constructions is that a computation with probabilistic and nondeterministic
choice is modelled as a set of subprobability distributions, where the set collects the possible
nondeterministic outcomes, each of which is probabilistic in nature. As is standard, the sets
relevant to angelic nondeterminism are the closed sets in the Scott topology, whereas those
relevant to demonic nondeterminism are the compact upper-closed sets, see [18]. Due to
the combination with probabilistic choice, sets are further required to be convex; see, for
example, the discussion in [7].

Let V≤1X be the ωCPO of (discrete) subprobability distributions on a set X. We write
HV≤1X for the ωCPO of nonempty Scott-closed convex subsets of V≤1X ordered by subset
inclusion ⊆. We write SV≤1X for the ωCPO of nonempty Scott-compact convex upper-closed
subsets of V≤1X ordered by reverse inclusion ⊇. The ωCPOs HV≤1X and SV≤1X are both
continuous algebras for Σpr/nd. In both cases, the operations are defined by:

or(A,B) = conv(A ∪B) pr(A,B) = {1
2a+ 1

2b | a ∈ A, b ∈ B} ,

where conv is the convex closure operation. We remark that these straightforward uniform
definitions are possible because of the simple structure of the domains HV≤1X and SV≤1X,
over a set X. For the more general lower and upper ‘Kegelspitze’ considered in [7], additional
order-theoretic and topological closure operations need to be applied.

To apply the above in the angelic case, we use the fact that HV≤1X is the free Kegelspitze
join semilattice over a set X [7, Corollary 3.15] (where the result is proved more generally
for domains). It follows that HV≤1 is a monad on Set itself satisfying the conditions of
Proposition 16. Thus defining Dpr/ang = HV≤1 N, and j(n) =↓δ(n) (where δ(n) is the Dirac
probability distribution that assigns probability 1 to n and 0 to all other numbers, and
↓x is the down-closure {y | y ≤ x}), the induced J·Kpr/ang : Trees(N) → Dpr/ang defines an
admissible and compositional preorder

t 4den
pr/ang t

′ ⇔ JtKpr/ang ≤ Jt′Kpr/ang .

Similarly, in the demonic case, we use [7, Corollary 3.16], which characterises SV≤1X

as the free Kegelspitze meet semilattice over X. Again SV≤1 is a monad on Set to which
Proposition 16 applies. In this case, we define Dpr/dem = SV≤1 N, and j(n) = {δ(n)}. Then
the induced J·Kpr/dem : Trees(N)→ Dpr/dem defines an admissible and compositional preorder

t 4den
pr/dem t′ ⇔ JtKpr/dem ≤ Jt′Kpr/dem .

6 Axiomatically-defined preorders

In this section, we look at the definition of basic operational preorders by axiomatising
properties of the operations in the effect signature Σ. Since we are defining a preorder, it
is appropriate for the axiomatisation to involve inequalities specifying desired properties
of the operational preorder. As the technical framework for this, we allow axiomatisations
involving infinitary Horn-clauses of inequalities between infinitary terms. This provides a
flexible general setting for axiomatising admissible and compositional preorders on Trees(N).

Let Vars be a set of countably many distinct variables. By an expression, we mean a tree
e ∈ Trees(Vars). The use of trees incorporates infinitary non-well-founded terms alongside
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the usual finite algebraic terms. By an inequality we mean a statement e1 ≤ e2, where e1, e2
are expressions. By an (infinitary) Horn clause we mean an implication of the form:(∧

i∈I

ei ≤ e′i

)
=⇒ e ≤ e′ , (4)

An effect theory T is a set of Horn clauses.
A precongruence 4 on Trees(X) is said to satisfy a Horn clause (4) if, for every environment

ρ : Vars→ Trees(X), the implication below holds (recall the notation for tree substitution
from Section 2).(∧

i∈I

ei[ρ] 4 e′i[ρ]
)

=⇒ e[ρ] 4 e′[ρ] .

We say that a precongruence 4 is a model of a Horn clause theory T if it satisfies every Horn
clause in T . We consider models as subsets of Trees(X) × Trees(X), partially ordered by
inclusion. Note that models are precongruences by assumption.

I Proposition 17. Every Horn clause theory T has a smallest admissible model

4T ⊆ Trees(X)× Trees(X) ,

for any set X. The model 4T is substitutive. In the case that X = N, the smallest admissible
model is thus an admissible compositional preorder.

Proof. It is easily seen that the intersection of any set of admissible models is itself an
admissible model. Thus the intersection of the set of all admissible models is the required
smallest admissible model 4T . For substitutivity, define

t 4S t
′ ⇔ ∀σ : X → Trees(X). t[σ] 4T t′[σ] . (5)

Using the substitution σ(x) = x, we see that 4S ⊆ 4T . Conversely, it is easily shown
that the relation 4S is itself an admissible model of T . Thus 4T ⊆ 4S . Since 4T and 4S

coincide, (5) asserts the substitutivity of 4T . The statement about compositionality now
follows from Proposition 8. J

Given the proposition, we can use any effect theory to define an admissible and composi-
tional basic operational preorder, namely the smallest admissible model over N. We now
apply this method to our running example of combined nondeterminism and probabilistic
choice. The axioms are given in Figure 2.

The axioms include a special axiom for ⊥, which is legitimate since ⊥ is a tree, hence an
expression. The axioms for probability include three standard equalities (each of which is given
officially as two inequalities), and one Horn approximation axiom, Appr, which is separated
out for the sake of Proposition 19 below. The axioms for nondeterminism are split into a
neutral list, followed by further axioms for angelic and demonic nondeterminism respectively.
Finally, there is a distributivity axiom that relates probabilstic and nondeterministic choice.
Our two effect theories of interest are:

Tpr/ang=Bot,Prob,Appr,Nondet,Ang,Dist

Tpr/dem=Bot,Prob,Appr,Nondet,Dem,Dist .
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Bot: ⊥ ≤ x
Prob: x prx = x, x pr y = y prx, (x pr y) pr (z prw) = (x pr z) pr (y prw)
Appr: x pr y ≤ y =⇒ x ≤ y
Nondet: x orx = x, x or y = y orx, x or (y or z) = (x or y) or z
Ang: x or y ≥ x
Dem: x or y ≤ x
Dist: x pr (y or z) = (x pr y) or (x pr z)

Figure 2 Horn theory for mixed probability and non determinism.

We then define 4ax
pr/ang as the smallest admissible model of Tpr/ang over N, and 4ax

pr/dem as
the smallest admissible model of Tpr/dem. By Proposition 17, both these basic operational
preorders are admissible and compositional.

To end the section, we observe that the Horn-clause axiom in Figure 2 can be replaced
with an equational axiom, albeit one involving an infinitary expression.

I Definition 18. Let t be a tree. For each n ∈ N∪{∞}, we define a tree (1−2−n)t inductively
by (1−2−0)t = ⊥ and (1−2−(n+1))t = t pr (1−2−n)t. The tree (1−2−∞)t is defined as⊔

n(1−2−n)t.

I Proposition 19. For any effect theory containing the Bot and Prob axioms, an admissible
model satisfies the Appr axiom if and only if it satisfies the equation (1−2−∞)x = x.

Proof. We first derive (1− 2−∞)x = x, from the axioms with Appr. It is clear that
(1−2−n)x ≤ x for every n <∞, and therefore (1−2−∞)x ≤ x by admissibility. We also have
x pr(1−2−n)x ≤ (1−2−(n+1))x, and so, again by admissibility, x pr(1−2−∞)x ≤ (1−2−∞)x.
Whence, by the Horn axiom, x ≤ (1−2−∞)x. We have thus derived (1−2−∞)x = x.

For the converse, we assume (1−2−∞)x = x and derive Appr. Suppose x pr y ≤ y. Then
also x pr (x pr y) ≤ y, and x pr (x pr (x pr y)) ≤ y, etc. So also x pr⊥ ≤ y, and x pr (x pr⊥) ≤ y,
and x pr (x pr (x pr⊥)) ≤ y, etc. That is, (1−2−n)x ≤ y, for every n <∞. By admissibility,
(1−2−∞)x ≤ y. Whence, by the assumed axiom, x ≤ y as required. J

7 The coincidence theorem

Our main theorem is that our operational, denotational and axiomatic preorders for combined
probability and nondeterminism all coincide, in both the angelic and demonic cases.

I Theorem 20 (Coincidence theorem).
1. The three preorders 4op

pr/ang, 4
den
pr/ang and 4ax

pr/ang, for mixed probability and angelic
nondeterminism, coincide.

2. Similarly, the preorders 4op
pr/dem, 4den

pr/dem and 4ax
pr/dem, for mixed probability and demonic

nondeterminism, coincide.
We outline the proof of the theorem in the demonic case, which we split into three lemmas.
The proof for the angelic case is similar.

I Lemma 21. 4ax
pr/dem ⊆ 4

op
pr/dem .

Proof. It is easily checked that 4op
pr/dem satsfies the axioms of Tpr/dem. Since 4op

pr/dem is
admissible and 4ax is the smallest admissible model, 4ax

pr/dem ⊆4
op
pr/dem . J
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We remark on the following aspect of the above result. The distributivity axiom Dist of
Figure 2 is sometimes discussed as expressing that nondeterministic choices are resolved
before probabilistic ones; see, e.g., [12, 7]. Such statements need careful interpretation.
The definition of 4op

pr/dem, which is based on implementing nondeterministic schedulers as
strategies for MDPs, explicitly allows the scheduler’s choices to take account of the outcomes
of probabilistic choices that precede it. Nevertheless, the distributivity axiom is sound.

I Lemma 22. 4op
pr/dem = 4den

pr/dem .

Proof. We make use of the functional representation of SV≤1 N from [7] (see also [3]). For
any topological space X, we write L(X) for the space of all lower semicontinuous functions
from X to [0,∞] (i.e., functions that are continuous with respect to the Scott topology on
[0,∞]), and we endow L(X) itself with the Scott topology. The space D′ = L(L(N)) carries
a continuous Σpr/nd-algebra structure

(F orG)(f) = min(F (f), G(f)) (F prG)(f) = 1
2F (f) + 1

2G(f) .

(There is another Σpr/nd-algebra structure, relevant to angelic nondeterminism, in which
min is replaced with max.) Define j′ : N→ D′ by j′(n)(f) = f(n). This induces J·K′pr/dem :
Trees(N)→ D′ satisfying J·K′pr/dem◦i = j′, as in Section 5. We show that JtK′pr/dem(h) = Fh(t),
where Fh is defined as in Lemma 10. For this, the function t 7→ (h 7→ Fh(t)) is easily shown
to be a Σpr/nd-algebra homomorphism satisfying Fh(i(n)) = j′(n). Moreover, it is continuous
by Lemma 10. Thus it indeed coincides with J·K′pr/dem. By the definition of Fh, if follows
that that t 4op

pr/dem t′ if and only if JtK′pr/dem ≤ Jt′K′pr/dem .
Corollary 4.7 of [7] provides a functional representation of SV≤1X inside L(L(X)). In

the case X = N, consider the function

Λ : A 7→
(
f 7→ inf

p∈A
Ep f

)
: SV≤1 N → D′ .

It is shown in [7] that Λ is a continuous Σpr/nd-algebra homomorphism, and also an order
embedding (i.e., Λ(A) ≤ Λ(B) implies A ⊇ B). By the uniqueness property of Proposition 3,
it thus holds that Λ ◦ J·Kpr/dem = J·K′pr/dem. We therefore have

t 4op
pr/dem t′ ⇔ JtK′pr/dem ≤ Jt′K′pr/dem ⇔ JtKpr/dem ≤ Jt′Kpr/dem ⇔ t 4den

pr/dem t′ ,

where the middle equivalence holds because Λ is an order embedding. J

I Lemma 23. 4den
pr/dem ⊆ 4

ax
pr/dem .

Proof. The proof proceeds in three steps.
1. Prove that both preorders coincide on probability trees (i.e., trees without or nodes).
2. Prove the inclusion of preorders for trees with a finite number of or nodes.
3. Use finite approximations and admissibility to conclude the general case.

We omit discussion of the first step, which is comparatively straightforward, cf. [4].
For step 2, suppose t 4den

pr/dem t′ where t, t′ are trees with finitely many or nodes. For each
of t, t′, we use the distributivity axiom to rewrite the tree as an or-combination of finitely
many (possibly infinite) probability trees. We then establish the following.
(a) If for every probability tree t′i in t′ there exists a corresponding tree ti in t such that

ti 4den
pr/dem t′i, then we have that t 4ax

pr/dem t′, using the Dem axiom, and step 1 above.
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(b) The tree t is equivalent in both preorders to t or k, where k = λ1t1 + · · ·+ λntn is any
tree representing a convex combination of the probability trees of t. The tree k is defined
using infinite combinations of pr nodes to assign the correct weight to each ti.

(c) Making direct use of the definition of SV≤1 N, it follows from t 4den
pr/dem t′ that, for

every probability tree t′i of t′, there is a convex combination ki := λ1t1 + · · ·+ λntn of
probability trees of t, such that ki 4den

pr/dem t′i.
To complete the argument for step 2, the tree t′ has the form t′1 or . . . or t′m. By (c), there
exist corresponding k1, . . . , km. By (b), t is equivalent to t or k1 or . . . or km. It now follows
from (a) that t 4ax

pr/dem t′, by the property of the kj given by (c).
For step 3, suppose t 4den

pr/dem t′, where t, t′ are arbitrary. Take approximating sequences
t =

⊔
i ti and t′ =

⊔
i t
′
i, where both ascending sequences are composed of finite trees.

We use Definition 18 to further restrict the approximations of t. Using the finiteness
of ti, we have J(1−2−n)tiKpr/dem � JtiKpr/dem in the way-below relation on SV≤1N, via the
explicit characterisation of this relation in [7]. Also, ((1−2−i)ti) is an ascending sequence of
finite trees with

⊔
i(1−2−i)ti = (1−2−∞)t

For every i, we have J(1−2−i)tiKpr/dem � JtiKpr/dem ≤ JtKpr/dem ≤ Jt′Kpr/dem. That is
J(1−2−i)tiKpr/dem � Jt′Kpr/dem. Since Jt′Kpr/dem =

⊔
Jt′iKpr/dem, it follows from the way-below

property that, for every i, J(1−2−i)tiKpr/dem ≤ Jt′ji
Kpr/dem for some ji, where the sequence

(ji) can be assumed strictly ascending. So, by step 2 above, (1−2−i)ti 4ax
pr/dem t′ji

, for every
i. Whence by admissibility,

⊔
i(1−2−i)ti 4ax

pr/dem
⊔

i t
′
ji
; i.e., (1−2−∞)t 4ax

pr/dem t′. Thus
t 4ax

pr/dem t′, by Proposition 19. J

8 Related and future work

The results in this paper concern three methods of defining basic operational preorders on
effect trees, which we claim to be a useful abstraction for defining contextual preorder for
programming languages with algebraic effects. This has been verified for simple call-by-
name [6] and call-by-value3 languages, but needs further substantiation.

The axiomatic approach to defining basic operational preorders in Section 6 is close in
spirit to the algebraic axiomatisation of effects of Plotkin and Power [14], but with a different
focus. In [14], (in)equational axiomatisations are required in order to determine a free-algebra
monad modelling denotational equality of programs. Such axiomatisations have also been
used to combine effects [5], and to induce a logic of effects [15]; but they have not hitherto
been explicated as a method for defining contextual preorder/equivalence. In this paper, we
have used infinitary Horn clause axioms between infinitary terms for this purpose, with the
notion of admissible model playing an important role.

The main coincidence theorem in Section 7 has some precursors in the literature. The
characterisations of HV≤1D and SV≤1D as free Kegelspitze in [7] can be viewed as complete-
ness theorems for inequational axiomatisations with respect to domains D. In the special
case D = N, this is implied by our results, for it can be derived from Lemma 23 that the
partial-order quotients of Trees(N) by 4ax

pr/ang and 4ax
pr/dem are isomorphic to HV≤1N and

SV≤1N . Another related completeness result is given in [12], where inequational axioms for
a simple process algebra with nondeterministic and probabilistic choice are proved complete
with respect to a domain-theoretic semantics. Translated into our setting, this process
algebra corresponds to regular trees in a signature that combines the operations or, pr with
an additional prefix operation and zero constant. In [12], the semantics uses the convex
powerdomain, rather than the upper S and lower H that we consider. In the present paper,
we have not considered convex powerdomains and the associated neutral (as opposed to
angelic or demonic) nondeterminism. However, it would be a natural extension to do so.

CSL 2018
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The main limitation we see of the present paper is the restriction throughout to admissible
basic operational preorders. The admissibility condition plays a fundamental role in almost
everything we do. It is, however, violated by some natural operational preorders; for example,
for countable demonic nondeterminism. It is an open question how to incorporate such more
general preorders into our theory.
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Abstract
We study modal team logic MTL, the team-semantical extension of classical modal logic closed
under Boolean negation. Its fragments, such as modal dependence, independence, and inclusion
logic, are well-understood. However, due to the unrestricted Boolean negation, the satisfiability
problem of full MTL has been notoriously resistant to a complexity theoretical classification.

In our approach, we adapt the notion of canonical models for team semantics. By construc-
tion of such a model, we reduce the satisfiability problem of MTL to simple model checking.
Afterwards, we show that this method is optimal in the sense that MTL-formulas can efficiently
enforce canonicity.

Furthermore, to capture these results in terms of computational complexity, we introduce a
non-elementary complexity class, TOWER(poly), and prove that the satisfiability and validity
problem of MTL are complete for it. We also show that the fragments of MTL with bounded
modal depth are complete for the levels of the elementary hierarchy (with polynomially many
alternations).
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1 Introduction

It is well-known that non-linear quantifier dependencies, such as w depending only on z

in the sentence ∀x ∃y ∀z ∃wϕ, cannot be expressed in first-order logic. To overcome this
restriction, logics of incomplete information such as independence-friendly logic [19] have
been studied. Later, Hodges [20] introduced team semantics to provide these logics with a
compositional interpretation. The fundamental idea is to not consider only plain assignments
to free variables, but instead whole sets of assignments, called teams.

In this vein, Väänänen [38] expressed non-linear quantifier dependencies by the depen-
dence atom =(x1, . . . , xn, y), which intuitively states that the values of y in the team must
depend only on those of x1, . . . , xn. Logics with numerous other non-classical atoms such
as independence ⊥ [9], inclusion ⊆ and exclusion | [7] have been studied since, and have
found manifold application in scientific areas such as statistics, database theory, physics,
cryptography and social choice theory (see also Abramsky et al. [1]).
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Table 1 Complexity landscape of propositional and modal logics of dependence (∗DL), indepen-
dence (∗IL), inclusion (∗Inc) and team logic (∗TL). Entries are completeness results unless stated
otherwise.

Logic Satisfiability Validity References

PDL NP NEXPTIME [26, 36]
MDL NEXPTIME NEXPTIME [33, 11]
PIL NP NEXPTIME-hard, in ΠE2 [13]
MIL NEXPTIME ΠE2 -hard [23, 10]
PInc EXPTIME co-NP [13]
MInc EXPTIME co-NEXPTIME-hard [16]
PTL ATIME-ALT(exp, poly) ATIME-ALT(exp, poly) [12, 14]
MTLk ATIME-ALT(expk+1, poly) ATIME-ALT(expk+1, poly) Theorem 6.1
MTL TOWER(poly) TOWER(poly) Theorem 6.1

Team semantics have also been adapted to a range of propositional [39, 12], modal [35],
and temporal logics [25]. Not only have propositional dependence logic PDL [39] and modal
dependence logic MDL [35] been extensively studied, but propositional and modal logics of
independence and inclusion as well [23, 13, 18, 11]. Here, the non-classical atoms, such as the
dependence atom, range over whole formulas. For example, the instance =(p1, . . . , pn,♦unsafe)
of a modal dependence atom may specify that the reachability of an unsafe state depends
on an “access code” p1 · · · pn (and on nothing else), but instead of exhibiting the explicit
function in question, it only stipulates the existence of such.

Most team logics lack a Boolean negation, and adding it as a connective ∼ usually increases
both the expressive power and the complexity tremendously. The respective extensions
of propositional and modal logic are called propositional team logic PTL [12, 40, 14] and
modal team logic MTL [31, 22]. By means of the negation ∼, these logics can express all
the non-classical atoms mentioned above, and in fact are expressively complete for their
respective class of models [22, 40]. For these reasons, they are both interesting and natural
logics.

The expressive power of MTL is well-understood [22], and a complete axiomatization was
presented by the author [27]. Yet the complexity of the satisfiability problem has been an open
question [31, 22, 6, 15]. Recently, certain fragments of MTL with restricted negation were
shown ATIME-ALT(exp, poly)-complete using the well-known filtration method [28]. In the
same paper, however, it was shown that no elementary upper bound for full MTL can be estab-
lished by the same approach, whereas the best known lower bound is ATIME-ALT(exp, poly)-
hardness, inherited from the fragment PTL [14]. Analogously, the best known model size
lower bound is – as for ordinary modal logic – exponential in the size of the formula.

Contribution. We show that MTL is complete for a non-elementary class we call
TOWER(poly), which contains, roughly speaking, the problems decidable in a runtime that is
a tower of nested exponentials with polynomial height. Likewise, we show that the fragments
MTLk of bounded modal depth k are complete for a class we call ATIME-ALT(expk+1, poly)
and which corresponds to (k + 1)-fold exponential runtime and polynomially many alterna-
tions. These results fill a long-standing gap in the active field of propositional and modal
team logics (see Table 1).
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In our approach, we consider canonical or universal models. Loosely speaking, a canonical
model satisfies every satisfiable formula in some of its submodels, and such models have been
long known for, e.g., many systems of modal logic [2]. In Section 3, we adapt this notion for
modal logics with team semantics, and prove that such models exist for MTL. This enables
us to reduce the satisfiability problem to simple model checking, albeit on models that are of
non-elementary size with respect to |Φ|+ k, where Φ are the available propositional variables
and k is a bound on the modal depth.

Nonetheless, this approach is essentially optimal: In Section 4 and 5, we show that MTL
can, in a certain sense, efficiently enforce canonical models, that is, with formulas that are of
size polynomial in |Φ|+k. In this vein, we then obtain the matching complexity lower bounds
in Section 6 by encoding computations of non-elementary length in such large models.

To the author’s best knowledge, the classes ATIME-ALT(expk, poly) and TOWER(poly)
have not explicitly been considered before. However, there are several candidates for other
natural complete problems. More precisely, there exist problems in TOWER(poly) that are
provably non-elementary, such as the satisfiability problem of separated first-order logic [37],
the equivalence problem for star-free expressions [34], or the first-order theory of finite
trees [4], to only name a few.

Another example is the two-variable fragment of first-order team logic, FO2(∼). It is
related to MTL in the same fashion as classical two-variable logic FO2 to ML. Due to a
reduction from MTL to FO2(∼) (see [29]), the satisfiability and validity problems of FO2(∼)
are TOWER(poly)-complete problems as a corollary of this paper, while its fragments FO2

k(∼)
of bounded quantifier rank k are ATIME-ALT(expk+1, poly)-hard.

Due to space constraints, several technical proofs (which are marked with (?)) are omitted
or only sketched. They can be found in the full version of this paper [30].

2 Preliminaries

The power set of a set X is P(X). We let |X| denote the length of the encoding of a formula
or structure X. The sets of all satisfiable resp. valid formulas of a given logic L are SAT(L)
and VAL(L), respectively.

We assume the reader to be familiar with alternating Turing machines [3]. We assume all
reductions in this paper implicitly as logspace reductions ≤log

m .
The class ATIME-ALT(exp, poly) contains the problems decidable by an alternating

Turing machine in time 2p(n) with p(n) alternations, for a polynomial p. It is a natural
class that has several complete problems [13, 21, 14]. Here, we generalize it to capture the
elementary hierarchy expk(n), defined by exp0(n) := n and expk+1(n) := 2expk(n).

I Definition 2.1. For k ≥ 0, ATIME-ALT(expk, poly) is the class of problems decided by an
alternating Turing machine with at most p(n) alternations and runtime at most expk(p(n)),
for a polynomial p.

Note that setting k = 0 or k = 1 yields the classes PSPACE and ATIME-ALT(exp, poly),
respectively [3]. If k is replaced by a polynomial instead, we obtain the following class.

I Definition 2.2. TOWER(poly) is the class of problems that are decided by a deterministic
Turing machine in time expp(n)(1) for some polynomial p.

Note that a similar class, TOWER, is defined by replacing p by an arbitrary elementary
function [32]. By contrast, to the author’s best knowledge, TOWER(poly) has not yet
been explicitly studied. The reader may verify that both ATIME-ALT(expk, poly) and
TOWER(poly) are closed under polynomial time reductions (and hence also ≤log

m ).
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Modal team logic

We fix a countably infinite set PS of propositional symbols. Modal team logic MTL, introduced
by Müller [31], extends classical modal logic ML as in the following grammar, where ϕ denotes
an MTL-formula, α an ML-formula, and p ∈ PS.

ϕ ::= ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | α
α ::= ¬α | α ∧ α | α ∨ α | �α | ♦α | p | >

The set of propositional variables occurring in ϕ ∈ MTL is denoted by Prop(ϕ).
We use the common abbreviations ⊥ := ¬>, α → β := ¬α ∨ β and α ↔ β := (α ∧

β) ∨ (¬α ∧ ¬β). For easier distinction, we have classical formulas denoted by α, β, γ, . . . and
reserve ϕ,ψ, ϑ, . . . for general team-logical formulas.

The modal depth md(θ) of an (ML or MTL) formula θ is recursively defined:

md(p) := md(>) := 0
md(∼ϕ) := md(¬ϕ) := md(ϕ)
md(ϕ ∧ ψ) := md(ϕ ∨ ψ) := max{md(ϕ),md(ψ)}
md(♦ϕ) := md(�ϕ) := md(ϕ) + 1

MLk and MTLk are the fragments of ML and MTL with modal depth ≤ k, respectively. If
the propositions are restricted to a fixed set Φ ⊆ PS as well, then the fragment is denoted
by MLΦ

k , or MTLΦ
k , respectively.

Let Φ ⊆ PS be a finite set of propositions. A Kripke structure (over Φ) is a tuple
K = (W,R, V ), where W is a set of worlds, (W,R) is a directed graph, and V : Φ→ P(W ) is
the valuation. Occasionally, by slight abuse of notation, we use the mapping V −1 : W → P(Φ)
defined by V −1(w) := {p ∈ Φ | w ∈ V (p)} instead of V , i.e., the set of propositions that are
true in a given world.

If w ∈W , then (K, w) is called pointed structure. ML is evaluated on pointed structures
in the classical Kripke semantics. By contrast, MTL is evaluated on pairs (K, T ), called
structures with teams, where T ⊆W is called team (in K).

Every team T has an image RT := {v | w ∈ T, (w, v) ∈ R} , and if w ∈ W , we simply
write Rw instead of R{w}. RiT is inductively defined as R0T := T and Ri+1T := RRiT . A
successor team of T is a team S such that S ⊆ RT and T ⊆ R−1S, where R−1 := {(v, w) |
(w, v) ∈ R}. Intuitively, S is formed by picking at least one successor of every world in T .

The semantics of MTL can now be defined as follows.1

(K, T ) � α ⇔ ∀w ∈ T : (K, w) � α if α ∈ ML, and otherwise as
(K, T ) � ∼ψ ⇔ (K, T ) 2 ψ,
(K, T ) � ψ ∧ θ ⇔ (K, T ) � ψ and (K, T ) � θ,
(K, T ) � ψ ∨ θ ⇔ ∃S,U ⊆ T such that T = S ∪ U , (K, S) � ψ, and (K, U) � θ,
(K, T ) � ♦ψ ⇔ (K, S) � ψ for some successor team S of T ,
(K, T ) � �ψ ⇔ (K, RT ) � ψ.

We often omit K and write T � ϕ or w � α.

1 Often, the “atoms” of MTL are restricted to literals p,¬p instead of ML-formulas α. However, this
implies a restriction to formulas in negation normal form, and both definitions are equivalent due to the
flatness property of ML (cf. [22, Proposition 2.2]).
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An MTL-formula ϕ is satisfiable if it is true in some structure with team over Prop(ϕ),
which is then called a model of ϕ. Analogously, ϕ is valid if it is true in every structure with
team over Prop(ϕ).

Note that the empty team is usually excluded in the above definition, since most ∼-free
logics with team semantics have the empty team property, i.e., the empty team trivially
satisfying every formula [35, 23, 18]. However, this distinction is unnecessary for MTL: ϕ is
satisfiable iff >∨ ϕ is true in some non-empty team2, and ϕ is true in some non-empty team
iff ∼⊥ ∧ ϕ is satisfiable.

The modality-free fragment MTL0 syntactically coincides with propositional team logic
PTL [12, 14, 40]. The usual interpretations of the latter, i.e., sets of Boolean assignments,
can easily be represented as teams in Kripke structures. For this reason, we identify PTL
and MTL0 in this paper.

Note that the connectives ∨, → and ¬ are not the usual truth-functional connectives
on the level of teams, i.e., Boolean disjunction, implication and negation. The exception
are singleton teams, on which team semantics and Kripke semantics coincide. Using ∧ and
∼ however, we can define Boolean disjunction ϕ1 6 ϕ2 := ∼(∼ϕ1 ∧ ∼ϕ2) and implication
ϕ1 _ ϕ2 := ∼ϕ1 6 ϕ2.

The notation �iϕ is defined via �0ϕ := ϕ and �i+1ϕ := ��iϕ, and analogously for ♦iϕ.
To state that at least one element of a team satisfies α ∈ ML, we write Eα := ∼¬α. That the
truth value of α is constant in the team is expressed by the constancy atom =(α) := α6 ¬α.

The well-known bisimulation relation 
Φ
k fundamentally defines the expressive power of

modal logic [2] and plays a key role in our results.

I Definition 2.3. Let Φ ⊆ PS and k ≥ 0. For i ∈ {1, 2}, let (Ki, wi) be a pointed
structure, where Ki = (Wi, Ri, Vi). Then (K1, w1) and (K2, w2) are (Φ, k)-bisimilar, in
symbols (K1, w1)
Φ

k (K2, w2), if
∀p ∈ Φ: w1 ∈ V1(p)⇔ w2 ∈ V2(p),
and if k > 0,
∀v1 ∈ R1w1 : ∃v2 ∈ R2w2 : (K1, v1)
Φ

k−1 (K2, v2) (forward condition),
∀v2 ∈ R2w2 : ∃v1 ∈ R1w1 : (K1, v1)
Φ

k−1 (K2, v2) (backward condition).

The notion of bisimulation was also lifted to team semantics by Hella et al. [17]:

I Definition 2.4 (cf. [17, 23, 22]). Let Φ ⊆ PS and k ≥ 0. For i ∈ {1, 2}, let (Ki, Ti)
be a structure with team. Then (K1, T1) and (K2, T2) are (Φ, k)-team-bisimilar, written
(K1, T1)
Φ

k (K2, T2), if
∀w1 ∈ T1 : ∃w2 ∈ T2 : (K1, w1)
Φ

k (K2, w2),
∀w2 ∈ T2 : ∃w1 ∈ T1 : (K1, w1)
Φ

k (K2, w2).

If no confusion can arise, we will also refer to teams T1, T2 that are (Φ, k)-team-bisimilar
simply as (Φ, k)-bisimilar. The proofs of the following propositions are straightforward and
can be found in the full version [30].

I Proposition 2.5 (?). Let Φ ⊆ PS be finite, and k ≥ 0. For i ∈ {1, 2}, let (Ki, wi) be a
pointed structure, where Ki = (Wi, Ri, Vi). Then the following statements are equivalent:
1. ∀α ∈ MLΦ

k : (K1, w1) � α⇔ (K2, w2) � α,
2. (K1, w1)
Φ

k (K2, w2),

2 In team semantics, > ∨ ϕ is not tautologically true, but rather existentially quantifies a subteam.
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3. (K1, {w1})
Φ
k (K2, {w2}).

Moreover, if k > 0, they are equivalent to:
4. (K1, w1)
Φ

0 (K2, w2) and (K1, R1w1)
Φ
k−1 (K2, R2w2).

As a result, the forward and backward condition from Definition 2.3 can be equivalently
stated in terms of team-bisimilarity of the respective images. On the level of teams, a similar
characterization holds:

I Proposition 2.6 (?). Let Φ ⊆ PS be finite, and k ≥ 0. Let (Ki, Ti) be a structure with
team for i ∈ {1, 2}. Then the following statements are equivalent:
1. ∀α ∈ MLΦ

k : (K1, T1) � α⇔ (K2, T2) � α,
2. ∀ϕ ∈ MTLΦ

k : (K1, T1) � ϕ⇔ (K2, T2) � ϕ,
3. (K1, T1)
Φ

k (K2, T2),

3 Types and canonical models

Many modal logics admit a “universal” model, also called canonical model. Given a canonical
model K, and a satisfiable formula (or set of formulas), the latter is then also true in some
point of K. See also Blackburn et al. [2, Section 4.2] for the explicit construction of such a
model for ML.

Unfortunately, a canonical model for ML is necessarily infinite, and consequently imprac-
tical for complexity theoretic considerations. Instead, we define (Φ, k)-canonical models for
finite Φ ⊆ PS and k ∈ N, which are then proved canonical for the fragment MLΦ

k . However,
by Proposition 2.5, the size of a (Φ, k)-canonical model is necessarily at least the number of
equivalence classes of 
Φ

k .
The equivalence classes of 
Φ

k are proper classes. However, speaking about teams would
require sets of such classes. For this reason, we inductively define types, which properly
reflect bisimulation, but exist as sets. We usually refer to types as τ .

I Definition 3.1. Let Φ ⊆ PS be finite. The set of (Φ, k)-types, written ∆Φ
k , is defined

inductively as ∆Φ
0 := P(Φ)× {∅} and ∆Φ

k+1 := P(Φ)×P(∆Φ
k ).

Let (K, w) = (W,R, V,w) be a pointed structure. Then its (Φ, k)-type, written JK, wKΦ
k ,

is the unique (Φ′,∆′) ∈ ∆Φ
k such that V −1(w) = Φ′ and, in case k > 0, additionally

∀τ ′ ∈ ∆Φ
k−1 : τ ′ ∈ ∆′ ⇔ ∃v ∈ Rw : JK, vKΦ

k−1 = τ ′.

Given a team T in K, the types in T are denoted by JK, T KΦ
k :=

{
JK, wKΦ

k | w ∈ T
}
.

For a type τ = (Φ′,∆′), we define shorthands Φτ := Φ′ and Rτ := ∆′.
Intuitively, the first component Φτ consists of the propositions which any model of type τ

must satisfy in its root, and Rτ is the set of types which any model of type τ must contain
in the image of its root. Roughly speaking, Φτ reflects the first condition of Definition 2.3,
propositional equivalence, while Rτ reflects the forward and backward conditions.

Every type τ ∈ ∆Φ
k is satisfiable in the sense that there is at least one pointed structure

(K, w) such that JK, wKΦ
k = τ .

The following assertions are straightforward to prove by induction, and ascertain that
types properly reflect the notion of bisimulation.

I Proposition 3.2 (?). Let Φ ⊆ PS be finite and k ≥ 0. Then (K, w) 
Φ
k (K′, w′) if and

only if JK, wKΦ
k = JK′, w′KΦ

k , and (K, T )
Φ
k (K′, T ′) if and only if JK, T KΦ

k = JK′, T ′KΦ
k .

We are now ready to state the formal definition of canonicity:
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I Definition 3.3. A structure with team (K, T ) is (Φ, k)-canonical if JK, T KΦ
k = ∆Φ

k .

In the following, we often omit Φ and K and write only JwKk or JT Kk, and simply say that T
is (Φ, k)-canonical if K is clear.

It is a standard result that for every Φ and k ≥ 0 there exists a (Φ, k)-canonical model
(cf. Blackburn et al. [2]), or in other words, that the logic MLΦ

k admits canonical models.

Canonical models in team semantics

The logic MTL is significantly more expressive than ML [22]. Nonetheless, we will show that
every satisfiable MTLΦ

k -formula can be satisfied in a (Φ, k)-canonical model. In other words,
the canonical models of MTLΦ

k and MLΦ
k actually coincide.

I Theorem 3.4. Let (K, T ) be (Φ, k)-canonical and ϕ ∈ MTLΦ
k . Then ϕ is satisfiable if and

only if (K, T ′) � ϕ for some T ′ ⊆ T .

Proof. Assume (K, T ) and ϕ are as above. As the direction from right to left is trivial,
suppose that ϕ is satisfiable, i.e., has a model (K̂, T̂ ). As a team in K that satisfies ϕ, we
define

T ′ :=
{
w ∈ T

∣∣∣ JK, wKΦ
k ∈ JK̂, T̂ KΦ

k

}
.

By Proposition 2.6 and 3.2, it suffices to prove JK̂, T̂ KΦ
k = JK, T ′KΦ

k . Moreover, the direction
“⊇” is clear by definition. As T is (Φ, k)-canonical, for every τ ∈ JK̂, T̂ KΦ

k there exists a world
w ∈ T of type τ . Consequently, JK̂, T̂ KΦ

k ⊆ JK, T ′KΦ
k . J

How large is a (Φ, k)-canonical model at least? The number of types can be written via
the function exp∗k, which is defined by

exp∗0(n) := n, exp∗k+1(n) := n · 2exp∗k(n).

Observe that this function resembles expk(n) (cf. p. 3) except for an additional factor of n in
every “level” of the nested exponents. By Definition 3.1, we immediately obtain:

I Proposition 3.5. |∆Φ
k | = exp∗k

(
2|Φ|

)
for all k ≥ 0 and finite Φ ⊆ PS.

Next, we present an algorithm that solves the satisfiability and validity problems of
MTL and its fragments MTLk by computing a canonical model. Let us first explicate this
construction in a lemma.

I Lemma 3.6. There is an algorithm that, given Φ ⊆ PS and k ≥ 0, computes a (Φ, k)-
canonical model in time polynomial in |∆Φ

k |.

Proof. Let K = (W,R, V ) be the computed structure. The idea is to construct sets L0 ∪
L1 ∪ · · · ∪ Lk =: W of worlds in stage-wise manner such that Li is (Φ, i)-canonical.

For L0, we simply add a world w for each Φ′ ∈ P(Φ) such that V −1(w) = Φ′.
For i > 0, we iterate over all L′ ∈ P(Li−1) and Φ′ ∈ P(Φ) and insert a new world w

into Li such that Rw = L′ and again V −1(w) = Φ′. An inductive argument shows that Li
is (Φ, i)-canonical for all i ∈ {0, . . . , k}. As k ≤ |∆Φ

k |, and each Li is constructed in time
polynomial in |∆Φ

i | ≤ |∆Φ
k |, the overall runtime is polynomial in |∆Φ

k |. J

The next lemma allows, roughly speaking, to replace a polynomial of exp∗k by simply
expk, with only polynomial blowup in its argument.
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I Lemma 3.7. For every polynomial p there is a polynomial q such that p(exp∗k(n)) ≤
expk(q((k + 1) · n)) for all k ≥ 0 and n ≥ 1.

Proof. For p(n) bounded by cnd, with c, d ∈ N, let q(n) := cdnd + c (cf. [30]). J

I Theorem 3.8. SAT(MTLk) and VAL(MTLk) are in ATIME-ALT(expk+1, poly).

Proof. Consider the following algorithm. Let ϕ ∈ MTLk be the input, n := |ϕ|, and
Φ := Prop(ϕ). Construct deterministically, as in Lemma 3.6, a (Φ, k)-canonical structure
(K, T ) = (W,R, V, T ) in time p(|∆Φ

k |) for a polynomial p.
By a result of Müller [31], the model checking problem of MTL is solvable by an alternating

Turing machine that has runtime polynomial in |ϕ|+ |K|, and alternations polynomial in |ϕ|.
We call this algorithm as a subroutine: by Theorem 3.4, ϕ is satisfiable (resp. valid) if and
only if for at least one team (resp. all teams) T ′ ⊆ T we have (K, T ′) � ϕ. Equivalently, this
is the case if and only if (K, T ) satisfies > ∨ ϕ (resp. ∼(> ∨∼ϕ)).

Let us turn to the overall runtime. K is constructed in time polynomial in |∆Φ
k | =

exp∗k(2|Φ|) ≤ exp∗k+1(|Φ|) ≤ exp∗k+1(n). The subsequent model checking runs in time poly-
nomial in |K|+ n, and hence polynomial in exp∗k+1(n) as well. By Lemma 3.7, we obtain a
total runtime of expk+1(q((k + 2) · n)) for a polynomial q. J

The upper bound for MTL can be proved similarly, since k := md(ϕ) is polynomial in |ϕ|.
Moreover, the alternations can be eliminated with additional exponential blowup.

I Corollary 3.9. SAT(MTL) and VAL(MTL) are in TOWER(poly).

4 Efficiently expressing bisimilarity

Kontinen et al. [22] proved that MTL is expressively complete up to bisimulation, i.e., it can
define every property of teams that is closed under 
Φ

k for some finite Φ and k. Two such
team properties are in fact (Φ, k)-bisimilarity itself – in the sense that two worlds in a team
have the same type – as well as (Φ, k)-canonicity. Consequently, these properties are defined
by MTLΦ

k -formulas. However, by a simple counting argument, formulas defining arbitrary
team properties are of non-elementary size w. r. t. Φ and k in the worst case.

From now on, we always assume some finite Φ ⊆ PS and omit it in the notation, i.e., we
write k-canonicity, k-bisimilarity, 
k, and so on.

In this section, we present an “approximation” (in a sense we clarify below) of k-bisimilarity
that can be expressed in a formula χk that is of polynomial size in Φ and k. Likewise, in
Section 5 we present a formula canonk of polynomial size that expresses k-canonicity. Finally,
in Section 6, we apply χk and canonk in order to prove the lower bound for Corollary 3.9,
i.e., TOWER(poly)-hardness of SAT(MTL) and VAL(MTL) (and an analogous result for
Theorem 3.8). Here, the idea is to enforce a sufficiently large structure with canonk and then
to encode a non-elementary computation into it. Clearly, χk and canonk being polynomial
in Φ and k is crucial for the reduction.

Scopes

To implement k-bisimilarity, we pursue a recursive approach. In the spirit of Proposition 2.5,
the (k + 1)-bisimilarity of two points w, v is expressed in terms of k-team-bisimilarity of Rw
and Rv. Conversely, to verify k-team-bisimilarity of Rw and Rv, we proceed analogously to
the forward and backward conditions of Definition 2.3 and reduce the problem to checking
k-bisimilarity of pairs of points in Rw and Rv.
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T
S

α1 α3α2

⇒
α1 α3α2

S

T α2
S

Figure 1 Example of subteam selection in the scope α2.

A clear obstacle is that MTL cannot speak about two teams Rw,Rv simultaneously, let
alone check for bisimilarity. Instead, we consider a team that is the “marked union” of Rw
and Rv.

More generally, for all formulas α ∈ ML we define the subteam Tα := { w ∈ T | w � α }.
The corresponding “decoding” operator

α ↪→ ϕ := ¬α ∨ (α ∧ ϕ)

was considered by Kontinen and Nurmi [24] and Galliani [8]. Here, α ↪→ ϕ is true in T if
and only if Tα � ϕ.

Now, instead of defining an n-ary relation on teams, a formula ϕ can define a unary
relation – a team property – parameterized by “marker formulas” α1, . . . , αn ∈ ML. We
emphasize this by writing ϕ(α1, . . . , αn).

This is the “approximation” mentioned earlier: In order to compare Rw and Rv, we
require that Rw = Tα and Rv = Tβ for some team T and distinct α, β ∈ ML. It will be
useful if the “markers” are invariant under traversing edges in the structure:

I Definition 4.1. Let K = (W,R, V ) be a Kripke structure. A formula α ∈ ML is called a
scope (in K) if (w, v) ∈ R implies w � α⇔ v � α. Two scopes α, β are called disjoint (in K)
if Wα and Wβ are disjoint.

In order to avoid interference, we always assume that scopes are formulas in MLPS\Φ0 ,
i.e., they are always purely propositional and do not contain propositions from Φ.

It is desirable to be able to speak about subteams in a specific scope. Formally, if S
is a team, let TαS := T¬α ∪ (Tα ∩ S). For singletons {w}, we simply write Tαw instead of
Tα{w}. Intuitively, TαS is obtained from T by “shrinking” the subteam Tα down to S without
impairing T \ Tα (see Figure 1 for an example).

The following observations are straightforward:

I Proposition 4.2 ([30]). Let α, β be disjoint scopes and S,U, T teams in a Kripke structure
K = (W,R, V ). Then the following laws hold:
1. Distributive laws: (T ∩ S)α = Tα ∩ S = T ∩ Sα = Tα ∩ Sα and (T ∪ S)α = Tα ∪ Sα.
2. Disjoint selection commutes:

(
TαS
)β
U

=
(
T βU
)α
S
.

3. Disjoint selection is independent:
(
(TαS )βU

)
α

= Tα ∩ S.
4. Image and scope commute: (RT )α =

(
R(Tα)

)
α

= R(Tα).
5. Selection propagates: If S ⊆ T , then R

(
TαS
)

= (RT )αRS.

Accordingly, we write RiTα instead of (RiT )α or Ri(Tα) and Tα1,α2
S1,S2

for (Tα1
S1

)α2
S2
.

Subteam quantifiers

We refer to the following abbreviations as subteam quantifiers, where α ∈ ML:

∃⊆α ϕ := α ∨ ϕ ∀⊆α ϕ := ∼∃⊆α∼ϕ
∃1
α ϕ := ∃⊆α

[
Eα ∧ ∀⊆α (Eα _ ϕ)

]
∀1
α ϕ := ∼∃1

α∼ϕ
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α

β

T

z


0 
0 
0
1? ⇒ 
0 
0 
0 ⇒

RT

z z

RT βz

Figure 2 As z violates the backward condition, χ∗
0(α, β) detects a 
0-free subteam, refuting

∃1
α∃1

βχ0(α, β).

Intuitively, they quantify over subteams S ⊆ Tα (in case of ∃⊆α /∀⊆α ) or over worlds w ∈ Tα
(for ∃1

α/∀1
α), and require that the shrunk team TαS resp. Tαw satisfies ϕ.

I Proposition 4.3 (?). ∃⊆α , ∀⊆α , ∃1
α, ∀1

α have the following semantics:

T � ∃⊆αϕ ⇔ ∃S ⊆ Tα : TαS � ϕ T � ∃1
αϕ ⇔ ∃w ∈ Tα : Tαw � ϕ

T � ∀⊆αϕ ⇔ ∀S ⊆ Tα : TαS � ϕ T � ∀1
αϕ ⇔ ∀w ∈ Tα : Tαw � ϕ

Proof sketch. Here, we sketch only the existential cases, as the universal ones work dually.
The formula ∃⊆α ϕ := α ∨ ϕ allows to split T into subteams U1 ⊆ Tα and U2, where U2 � ϕ.
As U2 must contain T¬α, clearly it is of the form TαS for some S. Conversely, every team of
the form TαS induces a splitting of T into U1, U2 as above.

The singleton quantifier, ∃1
α, states that for some non-empty U ⊆ Tα it holds that TαS � ϕ

for every non-empty S ⊆ U . This is equivalent to TαU � ϕ being true for some singleton
U ⊆ Tα. J

Implementing bisimulation

Finally, we have all ingredients to implement k-bisimulation in the following inductive manner:

χ0(α, β) := (α ∨ β) ↪→
∧
p∈Φ

=(p)

χk+1(α, β) := χ0(α, β) ∧�χ∗k(α, β)

χ∗k(α, β) := (¬α ∧ ¬β) 6
(

Eα ∧ Eβ ∧ ∼
[
(α6 β) ∨ (Eα ∧ Eβ ∧ ∼∃1

α∃1
βχk(α, β))

])
Here, ↪→ is defined as on p. 9. Let us prove that these formulas define bisimulation:

I Theorem 4.4 (?). Let k ≥ 0. For all Kripke structures K, teams T in K, disjoint scopes
α, β in K, and points w ∈ Tα and v ∈ Tβ it holds:

Tα,βw,v � χk(α, β) if and only if w 
kv,
T � χ∗k(α, β) if and only if Tα 
kTβ.

Moreover, both χk(α, β) and χ∗k(α, β) are MTLk-formulas that are constructible in space
O(log(k + |Φ|+ |α|+ |β|)).

Proof sketch. By induction on k. First, the formula χ0(α, β) expresses w 
0 v when
evaluated on a team Tα,βw,v . By the semantics of ↪→, χ0(α, β) is true if and only if {w, v} � =(p)
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Offset

Scope:

T

Figure 3 Visualization of the 3-staircase for Φ = ∅, where the subteam Tsi is i-canonical with
offset 3− i.

for all p ∈ Φ. By definition of =(·), then w � p⇔ v � p for all p ∈ Φ, i.e., w 
0 v. For χk+1,
recall that w 
k+1 v is equivalent to w 
0 v and Rw 
k Rv. Consequently, χk+1 defines
(k + 1)-bisimilarity on points under the assumption that χ∗k defines k-bisimilarity on teams.

Finally, χ∗k(α, β) checks Tα 
k Tβ as follows. If at least one of these teams is empty,
then it is easy to see that χ∗k acts correctly. For non-empty Tα and Tβ , the idea is to isolate
any single point z ∈ Tα ∪ Tβ that serves as a counter-example against JTαKk = JTβKk by, say,
JzKk ∈ JTβKk \ JTαKk. We erase Tβ \ {z} from T using the disjunction ∨, as Tβ \ {z} � α6 β.
The remaining team is exactly T βz , in which ∃1

α∃1
βχk(α, β) fails (see Figure 2). The case

JzKk ∈ JTαKk \ JTβKk is detected analogously. Moreover, the formulas can be constructed in
logspace in a straightforward manner, and md(χk) = md(χ∗k) = k. J

Let us again stress that χk implements only an approximation of 
k, as it relies on
scopes to be labeled in the structure correctly.

5 Enforcing a canonical model

As discussed before, we now aim at constructing an MTLk-formula that is satisfiable but
permits only k-canonical models. For k = 0, Hannula et al. [13] defined the PTL-formula

max(X) := ∼
∨
x∈X

=(x)

and proved that T � max(Φ) if and only if T is 0-canonical, i.e., contains all Boolean
assignment over Φ. We generalize this for all k, i.e., construct a satisfiable formula canonk
that has only k-canonical models.

Staircase models

Our approach is to express k-canonicity by inductively enforcing i-canonical sets of worlds
for i = 0, . . . , k located in different “height” inside the model. For this purpose, we employ
distinct scopes s0, . . . , sk (“stairs”), and introduce a specific class of models:

I Definition 5.1. Let k, i ≥ 0 and let (K, T ) be a Kripke structure with team, K = (W,R, V ).
A team T is k-canonical with offset i if for every τ ∈ ∆k there exists w ∈ T with JRiwKk = {τ}.

(K, T ) is called k-staircase if for all i ∈ {0, . . . , k} we have that Tsi is i-canonical with
offset k − i.
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A 3-staircase for Φ = ∅ is depicted in Figure 3, which is easily adapted for Φ 6= ∅ and
arbitrary k. In particular, it is a directed forest, which means that its underlying undirected
graph is acyclic and all its worlds are either roots (i.e., without predecessor) or have exactly
one predecessor. Moreover, it has bounded height, where the height of a directed forest is
the greatest number h such that every path traverses at most h edges.

I Proposition 5.2. For each k ≥ 0, there is a finite k-staircase (K, T ) such that s0, . . . , sk
are disjoint scopes in K, and K is a directed forest with height at most k and its set of roots
being exactly T .

Observe that a model being a k-staircase is a stronger condition than k-canonicity.

I Corollary 5.3. Every satisfiable MTLk-formula has a finite model (K, T ) such that K is a
directed forest with height at most k and its set of roots being exactly T .

Enforcing canonicity

In the rest of the section, we illustrate how a k-staircase can be enforced in MTL inductively.
For Φ = ∅, the inductive step – obtaining (k + 1)-canonicity from k-canonicity – is

captured by the formula ∀⊆α ∃1
β �χ

∗
k(α, β). It states that for every subteam T ′ ⊆ Tα there

exists a point w ∈ Tβ such that JRT ′Kk = JRwKk. Intuitively, every possible set of types is
captured as the image of some point in Tβ . As a consequence, if Tα is k-canonical with offset
1, then Tβ will be (k + 1)-canonical.

Note that the straightforward formula �kmax(Φ) expresses 0-canonicity of RkT , but not
0-canonicity of T with offset k (consider, e.g., a singleton T ). Instead, we use the formula

max-offi(β) := β ↪→
(
♦i> ∧

(
�imax(Φ)

)
∧ ∀1

β �
i
∧
p∈Φ

=(p)
)
.

It states that RiTβ is 0-canonical, but that Riw admits only one propositional assignment
for each w ∈ Tβ . In this light, k-canonicity with offset i is altogether defined as follows:

ρi0(β) := ∃⊆β max-offi(β)

ρik+1(α, β) := ∀⊆α ∃
⊆
β

(
ρi0(β) ∧�i∀1

β �χ
∗
k(α, β)

)
canonk := ρk0(s0) ∧

k∧
m=1

ρk−mm (sm−1, sm)

I Theorem 5.4 (?). Let k ≥ 0. The formula canonk is an MTLk-formula and constructible
in space O(log(|Φ|+ k)).

Moreover, if K is a Kripke structure with disjoint scopes s0, . . . , sk, then (K, T ) � canonk
if and only if (K, T ) is a k-staircase.

Proof sketch. By induction on k. We sketch the induction step.
Suppose Tα is k-canonical with offset i + 1. For each S ⊆ Tα, the formula ρik+1(α, β)

quantifies a subteam U ⊆ Tβ that is 0-canonical with offset i. Additionally, it also forces all
points in RiU (and hence at least one point of every 0-type) to mimic the k-types of Ri+1S

in all points of their image. Together, this results in (k + 1)-canonicity with offset i. J

It remains to demonstrate that the restriction of the si being scopes a priori can be
omitted, since we can, in a sense, define it in MTL as well. For this, let Ψ ⊆ PS be disjoint
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from Φ. Then the formula below ensures that Ψ is a set of disjoint scopes “up to height k”,
which is sufficient for our purposes.

scopesk(Ψ) :=
∧

x,y∈Ψ
x 6=y

¬(x ∧ y) ∧
k∧
i=1

(
(x ∧�ix) ∨ (¬x ∧�i¬x)

)
.

I Lemma 5.5. If ϕ ∈ MTLk, then ϕ is satisfiable if and only if ϕ ∧�k+1⊥ is satisfiable.

Proof. As the direction from right to left is trivial, assume that ϕ is satisfiable. By Corol-
lary 5.3, it then has a model (K, T ) that is a directed forest of height at most k. But then
(K, T ) � �k+1⊥, since Rk+1T = ∅ and (K, ∅) satisfies all ML-formulas, including ⊥. J

I Theorem 5.6. canonk ∧ scopesk({s0, . . . , sk}) ∧ �k+1⊥ is satisfiable, but has only k-
staircases as models.

Proof. By combining Proposition 5.2, Theorem 5.4 and Lemma 5.5, the formula is satisfiable.
Since in every model (K, T ) the propositions s0, . . . , sk must be disjoint scopes due to �k+1

and scopesk, we can apply Theorem 5.4. J

Let us stress that the formula canonk is again only an approximation of k-canonicity,
since the scopes s0, . . . , sk−1 are necessary for the construction as well. However, both χk
and canonk being efficiently constructible is crucial for our main result in the next section.

6 Complexity lower bounds

In this section, we provide the matching lower bounds for Theorem 3.8 and Corollary 3.9:

I Theorem 6.1. SAT(MTL) and VAL(MTL) are complete for TOWER(poly). For all k ≥ 0,
SAT(MTLk) and VAL(MTLk) are complete for ATIME-ALT(expk+1, poly).

The above complexity classes are complement-closed, and MTL and MTLk are closed
under negation. For this reason, it suffices to consider SAT(MTL) and SAT(MTLk). Moreover,
the case k = 0 is equivalent to SAT(PTL) being ATIME-ALT(exp, poly)-hard, which was
proven by Hannula et al. [14]. Their reduction works in logarithmic space.

Consequently, the result boils down to the following lemma:

I Lemma 6.2. If L ∈ TOWER(poly), then L ≤log
m SAT(MTL).

If k ≥ 1 and L ∈ ATIME-ALT(expk+1, poly), then L ≤log
m SAT(MTLk).

We devise for each L a reduction x 7→ ϕx such that ϕx is a formula that is satisfiable if and
only if x ∈ L. By assumption, there exists a single-tape alternating Turing machine M that
decides L (for L ∈ TOWER(poly), w.l.o.g. M is alternating as well). Then M = (Q,Γ, δ),
where Q is the disjoint union of Q∃ (existential states), Q∀ (universal states), Qacc (accepting
states) and Qrej (rejecting states). Also, Q contains some initial state q0. Γ is the finite tape
alphabet, [ the blank symbol, and δ the transition relation.

We design ϕx in a fashion that forces its models (K, T ) to encode an accepting computation
of M on x. Let us call any legal sequence of configurations of M (not necessarily starting
with the initial configuration) a run. Then, similarly as in Cook’s famous theorem [5], we
encode runs as square “grids” with a vertical “time” coordinate and a horizontal “space”
coordinate in the model, i.e., each row of the grid represents a configuration of M .
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W.l.o.g. M has runtime at most N and tape cells {1, . . . , N}. A run of M is then a
function C : {1, . . . , N}2 → Γ ∪ (Q× Γ). In M ’s initial configuration, for instance, we have
C(1, 1) = (q0, x1), C(i, 1) = xi for 2 ≤ i ≤ n, and C(i, 1) = [ for n < i ≤ N .

Due to the semantics of MTL, such a run must be encoded in (K, T ) very carefully. We let
T contain N2 worlds wi,j in which the respective value of C(i, j) is encoded in a propositional
assignment. However, we cannot simply pursue the standard approach of assembling a
large N ×N -grid in the edge relation R in order to compare successive configurations; by
Corollary 5.3, we cannot force the model to contain R-paths longer than |ϕx|.

Instead, to define grid neighborship, we let wi,j encode i and j in its type. More precisely,
we impose a linear order ≺k on ∆k that is defined by an MTLk-formula ζk. Then, instead
of using � and ♦, we examine the grid by letting ζk judge whether a given pair of worlds
is deemed (horizontally or vertically) adjacent. Analogously to χ∗k, we also define an order
≺∗k on teams via a formula ζ∗k . Since order is a binary relation, the formulas are once more
parameterized by two scopes:

ζ0(α, β) :=
∨
p∈Φ

[
(α ↪→ ¬p) ∧ (β ↪→ p) ∧

∧
q∈Φ
q<p

(α ∨ β) ↪→ =(q)
]

ζk+1(α, β) := ζ0(α, β) 6
(
χ0(α, β) ∧ �ζ∗k(α, β)

)
ζ∗k(α, β) := ∃1

sk

(
∃1
βχk(sk, β)

)
∧
(
∼∃1

αχk(sk, α)
)

∧
((
χ∗k(α, β) ∧ (α ∨ β)

)
∨
(
∀1
α∨β∼ζk(sk, α ∨ β)

))
We refer the reader to the full paper [30] for the proof that there exist orders ≺k and ≺∗k

on ∆k and P(∆k) that are defined by ζk and ζ∗k in the following sense:

I Theorem 6.3 (?). Let k ≥ 0, and (K, T ) be a k-staircase with disjoint scopes α, β, s0, . . . , sk.
If w ∈ Tα and v ∈ Tβ, then

Tα,βw,v � ζk(α, β) if and only if JwKk ≺k JvKk,
T � ζ∗k(α, β) if and only if JTαKk ≺∗k JTβKk.

Furthermore, both ζk(α, β) and ζ∗k(α, β) are MTLk-formulas that are constructible in space
O(log(k + |Φ|+ |α|+ |β|)).

Encoding runs in a team

Next, we discuss in more detail how runs C : {1, . . . , N}2 → Γ ∪ (Q× Γ) are encoded in a
team T . Given a world w ∈ T , we partition the image Rw with two special propositions
t /∈ Φ (“timestep”) and p /∈ Φ (“position”). Then we assign to w the pair `(w) := (i, j) such
that J(Rw)tKk−1 is the i-th element, and J(Rw)pKk−1 is the j-th element in the order ≺∗k−1.
We call the pair `(w) the location of w (in the grid).

Accordingly, we fix N := |P(∆Φ
k−1)|. For the case of fixed k, M has runtime bounded by

expk+1(g(n)) for a polynomial g. Then taking Φ := {p1, . . . , pg(n)} yields a sufficiently large
coordinate space, as

expk+1(g(n)) = expk+1(|Φ|) = 2expk−1(2|Φ|) ≤ 2exp∗k−1(2|Φ|) = 2|∆
Φ
k−1| = |P(∆Φ

k−1)|

by Proposition 3.5. Likewise, if in the second case M has runtime bounded by expg(n)(1),
we let Φ := ∅ and compute k := g(|x|) + 1, but otherwise proceed identically.
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Next, let Ξ be a constant set of propositions disjoint from Φ that encodes the range of
C via some bijection c : Ξ → Γ ∪ (Q× Γ). If a world w satisfies exactly one proposition p
of those in Ξ, then we define c(w) := c(p). Intuitively, c(w) is the content of the grid cell
represented by w.

Using ` and c, the function C can be encoded into a team T as follows. First, a team T

is called grid if every point in T satisfies exactly one proposition in Ξ, and if every location
(i, j) ∈ {1, . . . , N}2 occurs as `(w) for some point w ∈ T . Moreover, a grid T is called
pre-tableau if for every location (i, j) and every element p ∈ Ξ there is some world w ∈ T
such that `(w) = (i, j) and w � p. Finally, a grid T is a tableau if any two elements w,w′ ∈ T
with `(w) = `(w′) also agree on Ξ, i.e., c(w) = c(w′).

Let us motivate the above definitions. Clearly, the definition of a grid T means that T
captures the whole domain of C, and that c is well-defined on the level of points. If T is
additionally a tableau, then c is also well-defined on the level of locations. In other words,
every tableau T induces a function CT : {1, . . . , N}2 → Γ ∪ (Q × Γ) via CT (i, j) := c(w),
where w ∈ T is arbitrary such that `(w) = (i, j). Finally, a pre-tableau is, roughly speaking,
the “union” of all possible C. In particular, given any pre-tableau, the definition ensures
that arbitrary tableaus can be obtained from it by the means of subteam quantification ∃⊆
(cf. p. 9).

A tableau T is legal if CT is a run of M , i.e., if every row is a configuration of M , and if
every pair of two successive rows represents a valid δ-transition.

The idea of the reduction is now to capture the alternating computation of M by nesting
polynomially many quantifications (via ∃⊆ and ∀⊆) of legal tableaus, of which each one
is the continuation of the computation of the previous one. For this purpose, we devise
formulas such as ψpre-tableau(α) and ψlegal(α) that express that Tα is a pre-tableau, or a legal
tableau, respectively. These formulas rely on canonk to achieve a sufficiently large team, and
on ζk resp. ζ∗k for accessing adjacent grid cells in order to verify the transitions between
configurations.

Due to space constraints, we cannot present their implementation here. Instead, we refer
the reader to the appendix or the full version of the paper [30] for details.

7 Concluding remarks

In Theorem 6.1, we settled the open question of the complexity of MTL and established
TOWER(poly)-completeness for its satisfiability and validity problem. Likewise, the frag-
ments MTLk are proved complete for ATIME-ALT(expk+1, poly), the levels of the elementary
hierarchy with polynomially many alternations.

As our main tool, we introduced a suitable notion of canonical models for modal logics
with team semantics. We showed that such models exist for MTL and MTLk, and that some
satisfiable MTLk-formulas of polynomial size have only k-canonical models.

Our lower bounds carry over to two-variable first-order team logic FO2(∼) and its fragment
FO2

k(∼) of bounded quantifier rank k as well [29]. While the former is TOWER(poly)-
complete, the latter is ATIME-ALT(expk+1, poly)-hard. However, no matching upper bound
for the satisfiability problem of FO2

k(∼) exists.
In future research, it could be useful to further generalize the concept of canonical models

for other logics with team semantics. Do logics such as FO2
k(∼) permit a canonical model

in the spirit of k-canonical models for MTLk, and does this yield a tight upper bound on
the complexity of their satisfiability problem? How do MTLk and FO2

k(∼) differ in terms of
succinctness?

CSL 2018
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A Details of the reduction (Lemma 6.2)

In the appendix, we present our lower bound in detail:

I Lemma 6.2. If L ∈ TOWER(poly), then L ≤log
m SAT(MTL).

If k > 0 and L ∈ ATIME-ALT(expk+1, poly), then L ≤log
m SAT(MTLk).

We describe the reduction x 7→ ϕx. In what follows, let n := |x|. The correctness proof
for the reduction will be built on several claims. These claims are not hard to derive, and for
detailed proofs of all steps we refer the reader to the full version of the paper [30].

An discussed in Section 6, we choose to represent a location (i, j) in a point w as a pair
(∆′,∆′′) by stipulating that ∆′ = J(Rw)tKk−1 and ∆′′ = J(Rw)pKk−1, where t (“time”) and p

(“position”) are special propositions in PS \ Φ. To access the two components of a encoded
location independently, we introduce the operator |αq ψ := (α ∧ ¬q) ∨ ((α ↪→ q) ∧ ψ), where
q ∈ {t, p} and α ∈ ML. It is easy to check that T � |αq ψ iff TαTq

� ψ.
In order to compare the locations of grid cells, for q ∈ {t, p} we define the formulas

ψq
≺(α, β), which tests whether the location in Tα is less than the one in Tβ w. r. t. its q-

component (assuming singleton teams Tα and Tβ), and ψq
≡(α, β) which checks for equality

of the respective component:

ψq
≺(α, β) := � |αq |βqζ∗k−1(α, β) ψq

≡(α, β) := � |αq |βqχ∗k−1(α, β)

For this purpose, ψq
≺ is built upon the formula ζ∗k−1 from Theorem 6.3, while ψq

≡ checks for
equality with the help of χ∗k−1 from Theorem 4.4.

I Claim (a). Let K be a structure with a team T and disjoint scopes α and β.
Suppose w ∈ Tα and v ∈ Tβ, where `(w) = (iw, jw) and `(v) = (iv, jv). Then:

Tα,βw,v � ψ
t
≡(α, β) ⇔ iw = iv Tα,βw,v � ψ

p
≡(α, β) ⇔ jw = jv.

Moreover, if α, β, s0, . . . , sk are disjoint scopes in K and (K, T ) is a k-staircase, then:

Tα,βw,v � ψ
t
≺(α, β) ⇔ iw < iv Tα,βw,v � ψ

p
≺(α, β) ⇔ jw < jv.

Next, we construct formulas that check whether a given team is a grid, pre-tableau, or a
tableau, respectively. To check that every location (i, j) ∈ {1, . . . , N}2 of the grid occurs as
`(w) of some w ∈ T , we quantify over all pairs (∆′,∆′′) ∈ P(∆k−1)2. To cover all these sets
of types we can quantify, for instance, over the images of all points of Tsk . As we cannot

http://dx.doi.org/10.1016/j.ic.2016.07.008
http://dx.doi.org/10.1109/LICS.2017.8005094
http://dx.doi.org/10.1016/j.apal.2016.03.003
http://dx.doi.org/10.1016/j.apal.2017.01.007
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pick two subteams from the same scope at once, we enforce a k-canonical copy Ts′
k
of Tsk in

the spirit of Theorem 5.4:

canon′ := ρk0(s0) ∧
k∧

m=1
ρk−mm (sm−1, sm) ∧ ρ0

k(sk−1, s
′
k)

I Claim (b). If s0, . . . , sk, s
′
k are disjoint scopes in K, then (K, T ) � canon′ if and only if

(K, T ) is a k-staircase and Ts′
k
is k-canonical.

Moreover, canon′ ∧ scopesk({s0, . . . , sk, s
′
k})∧�k+1⊥ is satisfiable, but is only satisfied by

k-staircases (K, T ) in which both Tsk and Ts′
k
are k-canonical. Furthermore, both formulas

are constructible in space O(log(|Φ|+ k)).

The next formulas define grids resp. pre-tableaus.

ψpair(α) := �
[(
|αt χ∗k−1(sk, α)

)
∧
(
|αp χ∗k−1(s′k, α)

)]
ψgrid(α) :=

(
α ↪→

∨
e∈Ξ

e ∧
∧
e′∈Ξ
e′ 6=e

¬e′)
)
∧ ∀1

sk
∀1
s′
k
∃1
α ψpair(α)

ψpre-tableau(α) := ψgrid(α) ∧ ∀1
sk
∀1
s′
k

∧
e∈Ξ
∃1
α

(
ψpair(α) ∧ (α ↪→ e)

)
In all subsequent claims, we always assume that T is a team in a Kripke structure K

such that (K, T ) satisfies canon′ ∧�k+1⊥. Moreover, all stated scopes are always assumed
pairwise disjoint in K (as we can enforce this later in the reduction with scopesk(· · · )).

I Claim (c). T � ψgrid(α) if and only if Tα is a grid and T � ψpre-tableau(α) if and only if
Tα is a pre-tableau.

The other special case of a grid, that is, a tableau, requires a more elaborate approach to
define in MTL. The difference to a grid or pre-tableau is that we have to quantify over all
pairs (w,w′) of points in T , and check that they agree on Ξ if `(w) = `(w′). However, as
discussed before, while ∀1 can quantify over all points in a team, it cannot quantify over pairs.
As a workaround, we consider not only a tableau Tα, but also a second tableau that acts as a
copy of Tα. Formally, for grids Tα, Tβ , let Tα ≈ Tβ denote that for all pairs (w,w′) ∈ Tα×Tβ
it holds that `(w) = `(w′) implies c(w) = c(w′).

As ≈ is symmetric and transitive, Tα ≈ Tβ in fact implies both Tα ≈ Tα and Tβ ≈ Tβ , and
hence that both Tα and Tβ are tableaus such that CTα = CTβ , where CTα , CTβ : {1, . . . , N}2 →
Γ ∪ (Q× Γ) are the induced runs as discussed on p. 15.

ψtableau(α) := ψgrid(α) ∧ ∃⊆γ0
ψgrid(γ0) ∧ ψ≈(α, γ0)

ψ≈(α, β) :=∀1
α∀1

β

((
ψt
≡(α, β) ∧ ψp

≡(α, β)
)

_6
e∈Ξ

((α ∨ β) ↪→ e)
))

In the following claim (and in the subsequent ones), we use the scopes γ0, γ1, γ2, . . . as
“auxiliary pre-tableaus”. Later, we will also use them as domains to quantify extra locations
or rows from. (The index of γi is incremented whenever necessary to avoid quantifying from
the same scope twice.) For this reason, from now on we always assume, for sufficiently large
i, that Tγi is a pre-tableau. This can be later enforced in the reduction with ψpre-tableau(γi).

I Claim (d). T � ψtableau(α) if and only if Tα is a tableau.
For grids Tα, Tβ, it holds T � ψ≈(α, β) if and only if Tα ≈ Tβ.

CSL 2018
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To ascertain that a tableau contains a run of M , we have to check whether each row indeed is
a configuration of M and whether consecutive configurations adhere to the transition relation
δ of M . For the latter, in the spirit of Cook’s theorem [5], it suffices to consider all legal
windows in the grid, i.e., cells that are adjacent as follows, where e1, . . . , e6 ∈ Γ ∪ (Q× Γ):

e1 e2 e3

e4 e5 e6

If, say, (q, a, q′, a′, R) ∈ Q× Γ×Q× Γ× {L,R,N} is a transition – M switches to state
q′ from q, replacing a on the tape by a′, and moves to the right – then the windows obtained
by setting e1 = e4 = b, e2 = (q, a), e5 = a′, e3 = b′, e6 = (q′, b′) are legal for all b, b′ ∈ Γ.
Using this scheme, δ is completely represented by some constant finite set win ⊆ Ξ6 of tuples
(e1, . . . , e6) that represent the allowed windows in a run of M .

Let us next explain how adjacency of cells is expressed. Suppose that two points w ∈ Tα
and v ∈ Tβ are given. That v is the immediate (t- or p-)successor of w then means that no
element of the order exists between them. Simultaneously, w and v have to agree on the
other component of their location, which is expressed by the first conjunct below. Formally,
if q ∈ {t, p} and q ∈ {t, p} \ {q}, then we define:

ψq
succ(α, β) := ψq

≡(α, β) ∧ ψq
≺(α, β) ∧ ∼∃1

γ0

(
ψq
≺(α, γ0) ∧ ψq

≺(γ0, β)
)

I Claim (e). If w ∈ Tα and v ∈ Tβ, then:

Tα,βw,v � ψ
t
succ(α, β)⇔ ∃i, j ∈ {1, . . . , N} : `(w) = (i, j) and `(v) = (i+ 1, j)

Tα,βw,v � ψ
p
succ(α, β)⇔ ∃i, j ∈ {1, . . . , N} : `(w) = (i, j) and `(v) = (i, j + 1)

In this vein, we proceed by quantifying windows in the tableau Tα by quantifying elements
from six tableaus Tγ1 , . . . , Tγ6 that are copies of Tα. For this purpose, we abbreviate

∃≈αγi ϕ := ∃⊆γi ψgrid(γi) ∧ ψ≈(α, γi) ∧ ϕ.

Intuitively, under the premise that Tγi is a pre-tableau and Tα is a tableau, it “copies the
tableau Tα into Tγi” by shrinking Tγi accordingly. This is proven analogously to Claim (d).
The next formula states that the picked points are adjacent as shown in the picture below:

ψwindow(γ1, . . . , γ6) :=
∧

i∈{1,2,3}

ψt
succ(γi, γi+3) ∧ ψp

succ(γ1, γ2) ∧ ψp
succ(γ2, γ3)

Based on the above two, the formula defining legal tableaus follows.

ψlegal(α) := ψtableau(α) ∧ ∃≈αγ1
· · · ∃≈αγ6

ϑ1 ∧ ϑ2 ∧ ϑ3

We check that no two distinct cells in any row both contain a state of M :

ϑ1 := ∀1
γ1
∀1
γ2

(
ψt
≡(γ1, γ2) ∧ ψp

≺(γ1, γ2)
)

_∧
(q1,a1),(q2,aq)∈Q×Γ

∼
(
(γ1 ↪→ c−1(q1, a1)) ∧ (γ2 ↪→ c−1(q2, a2)

))
We also check that every row contains a state. Intuitively, ∀1

γ1
fixes some row and ∃1

γ2
ψt
≡(γ1, γ2)

searches that particular row for a state:

ϑ2 := ∀1
γ1
∃1
γ2
ψt
≡(γ1, γ2) ∧ 6

(q,a)∈Q×Γ

(γ2 ↪→ c−1(q, a))
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Finally, every window must be valid:

ϑ3 := ∀1
γ1
· · · ∀1

γ6

(
ψwindow(γ1, . . . , γ6) _ 6

(e1,...,e6)∈win

6∧
i=1

(γi ↪→ ei)
)

I Claim (f). T � ψlegal(α) iff Tα is a legal tableau, i.e., CTα exists and is a run of M .

To now encode the initial configuration on input x = x1 · · ·xn in a tableau, we access the
first n cells of the first row and assign the respective letter of x, as well as the initial state to
the first cell. Moreover, we assign [ to all other cells in that row. For each q ∈ {t, p}, we can
check whether the location of a point in Tα is minimal in its q-component:

ψq
min(α) := ∼∃1

γ0
ψq
≺(γ0, α)

This enables us to fix the first row of the configuration:

ψinput(α) := ∃≈αγ1
· · · ∃≈αγn+1

∃1
γ1
· · · ∃1

γnψ
t
min(γ1) ∧ ψp

min(γ1) ∧
(
γ1 ↪→ c−1(q0, x1)

)
n∧
i=2

ψp
succ(γi−1, γi) ∧

(
γi ↪→ c−1(xi)

)
∧ ∀1

γn+1

((
ψt
≡(γn, γn+1)) ∧ ψp

≺(γn, γn+1)
)

_
(
γn+1 ↪→ c−1([)

))
I Claim (g). Let Tα be a tableau. Then T � ψinput(α) if and only if CTα(1, 1) = (q0, x1),
CTα(1, i) = xi for 2 ≤ i ≤ n, and CTα(1, i) = [ for n < i ≤ N .

Until now, we ignored the fact that M alternates between universal and existential
branching polynomially often. To simulate this, we quantify polynomially many tableaus in
an alternating fashion, each containing a part of the computation of M .

Each of these tableaus should possess a tail configuration, which is the configuration
where M either accepts, rejects, or alternates from existential to universal branching or vice
versa. Formally, a number i ∈ {1, . . . , N} is a tail index of C if there exists j such that either
1. C(i, j) has an accepting or rejecting state,
2. or C(i, j) has an existential state and and there are i′ < i and j′ with a universal state in

C(i′, j′),
3. or C(i, j) has a universal state and there are i′ < i and j′ with an existential state in

C(i′, j′).
The least such i is called first tail index, and the corresponding configuration is the first tail
configuration.

The idea is that we can split the computation of M into multiple tableaus if any tableau
(except the initial one) contains a run that continues from the previous tableau’s first tail
configuration.

We formalize the above as follows. Assume that Tα is a tableau, and that Tβ = {w} with
`(w) = (i, j) for some i. Then the formula ψtail(α, β) is meant to be true if and only if the
i-th row of CTα is a tail configuration. Roughly speaking, with the parameters α and β we
pass to ψtail(α, β) a tableau (viz. Tα) and the index of a row (viz. i). By using the shortcut

Q′-state(β) := 6
(q,a)∈Q′×Γ

(β ↪→ c−1(q, a)),

we check if a given singleton Tβ = {w} encodes an accepting, rejecting, existential, universal,
or an arbitrary state by setting Q′ to Qacc, Qrej, Q∃, Q∀ or Q, respectively. As a result, we
can define:

ψfirst-tail(α, β) := ψtail(α, β) ∧ ∼∃1
γ1

(
ψt
≺(γ1, β) ∧ ψtail(α, γ1)

)
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ψtail(α, β) := ∃≈αγ0
∃1
α ψ

t
≡(α, β) ∧Q-state(α) ∧

[
Qacc-state(α) 6Qrej-state(α) 6

∃1
γ0

(
ψt
≺(γ0, α) ∧

(
Q∃-state(α) ∧Q∀-state(γ0)) 6 (Q∀-state(α) ∧Q∃-state(γ0)

))]
I Claim (h). Suppose that Tα is a tableau, Tβ = {w}, and `(w) = (i, j).

Then T � ψtail(α, β) if and only if i is a tail index of CTα ; and T � ψfirst-tail(α, β) if and
only if i is the first tail index of CTα .

Formally, given a run C of M that has a tail configuration, C accepts if the state q in its
first tail configuration is in Qacc, C rejects if q ∈ Qrej, and C alternates otherwise. That a
run of the form CTα accepts resp. rejects is expressed by

ψacc(α) := ∃≈αγ2
∃1
γ2
Qacc-state(γ2) ∧ ψfirst-tail(α, γ2),

ψrej(α) := ∃≈αγ2
∃1
γ2
Qrej-state(γ2) ∧ ψfirst-tail(α, γ2).

In this formula, first the tableau Tα is copied to Tγ2 to extract with ∃1
γ2

the world
carrying an accepting/rejecting state, while ψfirst-tail(α, γ2) ensures that no alternation or
rejecting/accepting state occurs at some earlier point in CTα . If the first tail configuration of
the run contains an alternation, and if the run was existentially quantified, then it should be
continued in a universally quantified tableau, and vice versa. The following formula expresses,
given two tableaus Tα, Tβ , that CTβ is a continuation of CTα , i.e., that the first configuration
of CTβ equals the first tail configuration of CTα . In other words, if i is the first tail index of
CTα , then CTα(i, j) = CTβ (1, j) for all j ∈ {1, . . . , N}.

ψcont(α, β) := ∃1
γ2
ψfirst-tail(α, γ2) ∧ ∀1

α∀1
β[(

ψt
min(β) ∧ ψt

≡(α, γ2) ∧ ψp
≡(α, β)

)
_
∧
e∈Ξ

(α ∨ β) ↪→ =(e)
]

The above formula first obtains the first tail index i of CTα and stores it in a singleton
y ∈ Tγ2 . Then for all worlds w ∈ Tα and v ∈ Tβ , where v is t-minimal (i.e., in the first row)
and w is in the same row as y, and which additionally agree on their p-component, the third
line states that w and v agree on Ξ. Altogether, the i-th row of CTα and the first row of CTβ
then have to coincide.

The number of alternations is polynomially bounded, i.e., M performs at most r(n)− 1
alternations for a polynomial r. In other words, we require at most r = r(n) tableaus, which
we call α1, . . . , αr. In the following, the formula ψrun,i describes the behaviour of the i-th
run. W.l.o.g. r is even and q0 ∈ Q∃. We may then define the final run by

ψrun,r := ∀⊆αr
[(
ψlegal(αr) ∧ ψcont(αr−1, αr)

)
_
(
∼ψrej(αr) ∧ ψacc(αr)

)]
.

For 1 < i < r and even i, let

ψrun,i := ∀⊆αi
[(
ψlegal(αi) ∧ ψcont(αi−1, αi)

)
_
(
∼ψrej(αi) ∧

(
ψacc(αi) 6 ψrun,i+1

))]
and for 1 < i < r and odd i

ψrun,i := ∃⊆αi
[
ψlegal(αi) ∧ ψcont(αi−1, αi) ∧ ∼ψrej(αi) ∧

(
ψacc(αi) 6 ψrun,i+1

)]
.

Analogously, the initial run is described by

ψrun,1 := ∃⊆α1

(
ψlegal(α1) ∧ ψinput(α1) ∧ ∼ψrej(α1) ∧

(
ψacc(α1) 6 ψrun,2

))
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Let us state the set Ψ ⊆ PS of all relevant scopes and the set Ψ′ ⊆ Ψ of scopes that
accommodate pre-tableaus:

Ψ := {si | 0 ≤ i ≤ k} ∪ {s′k} ∪ {γi | 0 ≤ i ≤ n+ 1} ∪ {αi | 1 ≤ i ≤ r}
Ψ′ := {γi | 0 ≤ i ≤ n+ 1} ∪ {αi | 1 ≤ i ≤ r}

W.l.o.g. n ≥ 5, as γ1, . . . , γ6 are always used. Then we ultimately define

ϕx := canon′ ∧ scopesk(Ψ) ∧
∧
p∈Ψ′

ψpre-tableau(p) ∧ ψrun,1,

which is an MTLk-formula since we deliberately omitted the conjunct �k+1⊥ here. However,
by Lemma 5.5, ϕx is satisfiable if and only if ϕx ∧�k+1⊥ is satisfiable. Finally, it is not hard
using the above claims to prove that ϕx ∧�k+1⊥ is satisfiable if and only if M accepts x.
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Abstract
We propose a fragment of many-sorted second order logic called EQSMT and show that checking
satisfiability of sentences in this fragment is decidable. EQSMT formulae have an ∃∗∀∗ quan-
tifier prefix (over variables, functions and relations) making EQSMT conducive for modeling
synthesis problems. Moreover, EQSMT allows reasoning using a combination of background the-
ories provided that they have a decidable satisfiability problem for the ∃∗∀∗ FO-fragment (e.g.,
linear arithmetic). Our decision procedure reduces the satisfiability of EQSMT formulae to satis-
fiability queries of ∃∗∀∗ formulae of each individual background theory, allowing us to use existing
efficient SMT solvers supporting ∃∗∀∗ reasoning for these theories; hence our procedure can be
seen as effectively quantified SMT (EQSMT ) reasoning.
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1 Introduction

The goal of program synthesis is to automatically construct a program that satisfies a given
specification. This problem has received a lot of attention from the research community in
recent years [33, 4, 14]. Several different approaches have been proposed to address this
challenge (see [4, 17] for some of these). One approach to program synthesis is to reduce
the problem to the satisfiability problem in a decidable logic by constructing a sentence
whose existentially quantified variables identify the program to be synthesized, and the inner
formula expresses the requirements that the program needs to meet.

This paper furthers this research program by identifying a decidable second-order logic
that is suitable for encoding problems in program synthesis. To get useful results, one needs
to constrain the semantics of functions and relations used in encoding the synthesis problem.
Therefore our logic has a set of background theories, where each of the background theories is
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assumed to be independently axiomatized and equipped with a solver. Finally, to leverage the
advances made by logic solvers, our aim is to develop a decision procedure for our logic that
makes black-box calls to the decision procedures (for ∃∗∀∗ satisfiability) for the background
theories.

With the above goal in mind, let us describe our logic. It is a many-sorted logic that can
be roughly described as an uninterpreted combination of theories (UCT) [20]. A UCT has a
many-sorted universe where there is a special sort σ0 that is declared to be a foreground sort,
while the other sorts (σ1, . . . σn) are declared to be background sorts. We assume that there
is some fixed signature of functions, relations, and constants over each individual background
sort that is purely over that sort. Furthermore, we assume that each background sort σi
(i > 0) comes with an associated background theory Ti; Ti can be arbitrary, even infinite,
but is constrained to formulae with functions, relations and constants that only involve
the background sort σi. Our main contribution is a decidability result for the satisfiability
problem modulo these theories for boolean combinations of sentences of the form

(∃x)(∃R)(∃F)(∀y)(∀P)(∀G)ψ, (1)

x is a set of existentially quantified first order variables. These variables can admit values
in any of the sorts (background or foreground);
R is a set of existentially quantified relational variables, whose arguments are restricted
to be over the foreground sort σ0;
F is a set of existentially quantified function variables, which take as arguments elements
from the foreground sort σ0, and return a value in any of the background sorts σi;
y is a set of universally quantified first order variables over any of the sorts;
P is a set of universally quantified relational variables, whose arguments could be of any
of the sorts; and
G is a set of universally quantified function variables, whose arguments can be from any
sort and could return values of any sort.

Thus our logic has sentences with prefix ∃∗∀∗, allowing for quantification over both first order
variables and second-order variables (relational and functional). To obtain decidability, we
have carefully restricted the sorts (or types) of second-order variables that are existentially
and universally quantified, as described above.

Our decidability result proceeds as follows. By crucially exploiting the disjointness of
the universes of background theories and through a series of transformations, we reduce
the satisfiability problem for our logic to the satisfiability of several pure ∃∗∀∗ first-order
logic formulas over the individual background theories T1, . . . Tn. Consequently, if the
background theories admit (individually) a decidable satisfiability problem for the first-order
∃∗∀∗ fragment, then satisfiability for our logic is decidable. Examples of such background
theories include Presburger arithmetic, the theory of real-closed fields, and the theory of
linear real arithmetic. Our algorithm for satisfiability makes finitely many black-box calls to
the engines for the individual background theories.

Salient aspects of our logic and our decidability result
Design for decidability. Our logic is defined to carefully avoid the undecidability that looms
in any logic of such power. We do not know of any decidable second-order logic fragment
that supports background theories such as arithmetic and uninterpreted functions. While
quantifier-free decidable logics can be combined to get decidable logics using Nelson-Oppen
combinations [23], or local theory extensions [32], combining quantified logics is notoriously
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hard, and there are only few restricted classes of first-order logic that are known to be
decidable.

Our design choice forces communication between theories using the foreground sort,
keeping the universes of the different sorts disjoint, which allows a decidable combination of
∃∗∀∗ theories. We emphasize that, unlike existing work on quantified first-order theories that
are decidable by reduction to quantifier-free SMT, our logic allows existential and universal
quantification over the background theories as well, and the decision procedure reduces
satisfiability to ∃∗∀∗ fragment of the underlying theories. Our result can hence be seen as a
decidable combination of ∃∗∀∗ theories that further supports second-order quantification.

Undecidable Extensions. We show that our logic is on the edge of the decidability barrier,
by showing that lifting some of the restrictions we have will render the logic undecidable. In
particular, we show that if we allow outer existential quantification over functions (which is
related to the condition demanding that all function variables are universally quantified in
the inner block of quantifiers), then satisfiability of the logic is undecidable. Second, if we
lift the restriction that the underlying background sorts are pairwise disjoint, then again the
logic becomes undecidable. The design choices that we have made hence seem crucial for
decidability.

Expressing Synthesis Problems. Apart from decidability, a primary motivational design
principle of our logic is to express synthesis problems. Synthesis problems typically can be
expressed in ∃∗∀∗ fragments, where we ask whether there exists an object of the kind we
wish to synthesize (using the block of existential quantifiers) such that the object satisfies
certain properties (expressed by a universally quantified formula). For instance, if we are
synthesizing a program snippet that is required to satisfy a Hoare triple (pre/post condition),
we can encode this by asking whether there is a program snippet such that for all values of
variables (modeling the input to the snippet), the verification condition corresponding to
the Hoare triple holds. In this context, the existentially quantified variables (first order and
second order) can be used to model program snippets. Furthermore, since our logic allows
second-order universal quantification over functions, we can model aspects of the program
state that require uninterpreted functions, in particular pointer fields that model the heap.

Evaluation on Synthesis Problems. We illustrate the applicability of our logic for two
classes of synthesis problems. The first class involves synthesizing recursive programs that
work over inductive data-structures. Given the precise pre/post condition for the program
to be synthesized, we show how to model recursive program synthesis by synthesizing
only a straight-line program (by having the output of recursive calls provided as inputs
to the straightline program). The verification condition of the program requires universal
quantification over both scalar variables as well as heap pointers, modeled as uninterpreted
functions. Since such verification-conditions are already very expressive (even for the purpose
of verification), we adapt a technique in the literature called natural proofs [20, 28, 25], that
soundly abstracts the verification condition to a decidable theory. This formulation still has
universal quantification over variables and functions, and combines standard background
theories such as arithmetic and theory of uninterpreted functions. We then show that synthesis
of bounded-sized programs (possibly involving integer constants that can be unbounded) can
be modeled in our logic. In this modeling, the universal quantification over functions plays a
crucial role in modeling the pointers in heaps, and modeling uninterpreted relations that
capture inductive data-structure predicates (such as lseg, bstree, etc.).
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term := c | (x + c) | ite(pred, term, term)
pred := (term < 0) | (term = 0) | (term > 0)

(a) Grammar for Mthree. ite(·, ·, ·) stands for
if-then-else.

n0

n00

n000 n001 n002

...
...

(b) Program skeleton.

Figure 1 Synthesizing Mthree using EQSMT.

The second class of synthesis involves taking a recursive definition of a function, and
synthesizing a non-recursive (and iteration free) function equivalent to it. In our modeling,
the existential quantification over the foreground sort as well as the background sort of
integers is utilized, as the synthesized function involves integers.

The crux of our contribution, therefore, is providing a decidable logic that can express
synthesis problems succinctly. Such a logic promises to provide a useful interface between
researchers working on practical synthesis applications and researchers working on engineering
efficient tools for solving them, similar to the role SMT plays in verification.

2 Motivating EQSMT for synthesis applications

In program synthesis, the goal is to search for programs, typically of bounded size, that
satisfy a given specification. The ∃-Block of an EQSMT formula can be used to express the
search for the syntactic program. The inner formula, then, must interpret the semantics of
this syntactic program, and express that it satisfies the specification. If the specification is a
universally quantified formula, then, we can encode the synthesis problem in EQSMT.

One of the salient features of the fragment EQSMT is the ability to universally quantify
over functions and relations. Often, specifications for programs, such as those that manipulate
heaps, involve a universal quantification over uninterpreted functions (that model pointers).
EQSMT aptly provides this functionality, while still remaining within the boundaries of
decidability. Further, EQSMT supports combination of background theories/sorts; existential
quantification over these sorts can thus be used to search for programs with arbitrary
elements from these background sorts. As a result, the class of target programs that can
be expressed by an EQSMT formula is infinite. Consequently, when our decision procedure
returns unsatisfiable, we are assured that no program (from an infinite class of programs)
exists, (most CEGIS solvers for program synthesis cannot provide such a guarantee.)

We now proceed to give a concrete example of a synthesis problem which will demonstrate
the power of EQSMT. Consider the specification of the following function Mthree, which is a
slight variant of the classical McCarthy’s 91 function [22], whose specification is given below.

Mthree(n) =
{
n− 30 if n > 13
Mthree(Mthree(Mthree(n+ 61))) otherwise

(2)

We are interested in synthesizing a straight line program that implements the recursive
function Mthree, and can be expressed as a term over the grammar specified in Figure 1a.

Here, we only briefly discuss how to encode this synthesis problem in EQSMT, and the
complete details can be found in Appendix A. First, let us fix the maximum height of the
term we are looking for, say to be 2. Then, the program we want to synthesize can be
represented as a tree of height at most 2 such that every node in the tree can have ≤ 3 child
nodes (because the maximum arity of any function in the above grammar is 3, corresponding
to ite). The skeleton of such an expression tree is shown in Figure 1b. Every node in the
tree is named according to its path from the root node.
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The synthesis problem can then be encoded as the following formula

φMthree ≡ (∃n0, n00, n01, . . . n022 : σ0) (∃Left,Mid,Right : σ0σ0)
(∃ADD, ITE, LTZero, EQZero, GTZero, INPUT, C1, C2, C3 : σlabel)
(∃c1, c2, c3 : N) (∃flabel : σ0, σlabel)

ϕwell-formed ∧ (∀x : N)(∀gval : σ0,N) (ϕsemantics =⇒ ϕspec)

Here, the nodes n0, n00, . . . are elements of the foreground sort σ0. The binary relations
Left,Mid,Right over the foreground sort will be used to assert that a node n is the left,middle,
right child respectively of node n′ : Left(n′, n), Mid(n′, n), Right(n′, n). The operators or
labels for nodes belong to the background sort σlabel, and can be one of ADD (+), ITE (ite),
LTZero (< 0), GTZero (> 0), (EQZero (= 0)), INPUT (denoting the input to our program), or
constants C1, C2, C3 (for which we will synthesize natural constants c1, c2, c3 in the (infinite)
background sort N). The function flabel assigns a label to every node in the program, and
the formula ϕwell-formed asserts some sanity conditions:

ϕwell-formed ≡
∧
ρ 6=ρ′

nρ 6= nρ′ ∧ Left(n0, n00) ∧
∧
ρ 6=00
¬(Left(n0, nρ))) ∧ · · ·

∧ ¬(ADD = ITE) ∧ ¬(ADD = LTZero) ∧ · · · ∧ ¬(C1 = C3) ∧ ¬(C2 = C3)

∧
∧
ρ

(flabel(nρ)=ADD) ∨ (flabel(nρ)=ITE) ∨ · · · ∨ (flabel(nρ)=C3)

The formula ϕsemantics asserts that the “meaning” of the program can be inferred from the
meaning of the components of the program. We will use the function gval, that assigns value
to nodes from N, for this purpose :

ϕsemantics ≡
∧

ρ,ρ1,ρ2



(
flabel(nρ) = ADD ∧ Left(nρ, nρ1) ∧Mid(nρ, nρ2)

)
=⇒ gval(nρ) = gval(nρ1) + gval(nρ2)

)
...

∧ flabel(nρ) = C3 =⇒ gval(nρ) = c3


Finally, the formula ϕspec expresses the specification of the program as in Equation (2).

A complete description is provided in Appendix A.
Observe that the formula φMthree has existential and universal quantification over functions

and relations, as allowed by our decidable fragment EQSMT. The existentially quantified
functions map the foreground sort σ0 to one of the background sorts, and the existentially
quantified relations span only over the foreground sort.

We encoded the above EQSMT formula in the z3 [12] SMT solver (see Section 6 for
details), which synthesized the expression fun(n) = ite(n > 13, n− 30,−16). In Section 6,
we show that we can synthesize a large class of such programs amongst others.

3 Many-sorted Second Order Logic and the EQSMT Fragment

We briefly recall the syntax and semantics of general many-sorted second order logic, and
then present the EQSMT fragment of second order logic.

Many-sorted second-order logic
A many-sorted signature is a tuple Σ = (S,F ,R,V,V fun,V rel) where, S is a nonempty
finite set of sorts, F , R, V, V fun, V rel are, respectively, sets of function symbols, relation
symbols, first order variables, function variables and relation variables. Each variable x ∈ V
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is associated with a sort σ ∈ S, represented as x : σ. Each function symbol or function
variable also has an associated type (w, σ) ∈ S∗ × S, and each relation symbol and relation
variable has a type w ∈ S+. We assume that the set of symbols in F and R are either finite
or countably infinite, and that V, V fun, and V rel are all countably infinite. Constants are
modeled using 0-ary functions. We say that Σ is unsorted if S consists of a single sort.

Terms over a many-sorted signature Σ have an associated sort and are inductively defined
by the grammar

t :σ := x :σ | f(t1 :σ1, t2 :σ2, . . . , tm :σm) | F (t1 :σ1, t2 :σ2, . . . , tn :σn)

where f : (σ1σ2 · · ·σm, σ) ∈ F , and F : (σ1σ2 · · ·σn, σ) ∈ V fun. Formulae over Σ are inductively
defined as

φ := ⊥ | φ⇒ φ | t :σ = t′ :σ | R(t1 :σ1, t2 :σ2, . . . , tm :σm) |
R(t1 :σ1, t2 :σ2, . . . , tn :σn) | (∃x :σ)φ | (∃F :w, σ)φ | (∃R′ :w)φ

where R : (σ1σ2 · · ·σm) ∈ R, R,R′ are relation variables, F is a function variable, of
appropriate types. Note that equality is allowed only for terms of same sort. A formula is
said to be first-order if it does not use any function or relation variables.

The semantics of many sorted logics are described using many-sorted structures. A
Σ-structure is a tupleM = (U , I) where U = {Mσ}σ∈S is a collection of pairwise disjoint S
indexed universes, and I is an interpretation function that maps each each variable x : σ to
an element in the universe Mσ, each function symbol and each function variable to a function
of the appropriate type on the underlying universe. Similarly, relation symbols and relation
variables are also assigned relations of the appropriate type on the underlying universe. For
an interpretation I, as is standard, we use I[cx/x] to denote the interpretation that maps
x to cx, and is otherwise identical to I. For function variable F and relation variable R,
I[fF /F ] and I[RR/R] are defined analogously.

Interpretation of terms in a model is the usual one obtained by interpreting variables,
functions, and function variables using their underlying interpretation in the model; we skip
the details. The satisfaction relationM |= φ is also defined in the usual sense, and we will
skip the details.

A first-order theory is a tuple T = (ΣT ,AT ), where AT is a set of (possibly infinite)
first-order sentences. Theory T is complete if every sentence α or its negation is entailed by
AT , i.e., either every model satisfying AT satisfies α, or every model satisfying AT satisfies
¬α. A theory AT is consistent if it is not the case that there is a sentence α such that both
α and ¬α are entailed.

The logic EQSMT
We now describe EQSMT, the fragment of many-sorted second order logic that we prove
decidable in this paper and that we show can model synthesis problems.

Let Σ = (S,F ,R,V,V fun,V rel) be a many sorted signature. Σ is a pure signature if (a)
the type of every function symbol and every relation symbol is over a single sort (however,
function variables and relation variables are allowed to mix sorts), (b) there is a special
sort σ0 (which we call the foreground sort, while other sorts σ1, . . . , σk are called background
sorts) and (c) there are no function or relation symbols involving σ0.

The fragment EQSMT is the set of sentences defined over a pure signature Σ, with
foreground sort σ0 and background sorts σ1, . . . σk, by the following grammar

φ := ϕ | ∃(x : σ)φ | (∃R : w)φ | (∃F : w, σi)φ
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where, σ ∈ S, w ∈ σ+
0 (i.e., only foreground sort), 1 ≤ i ≤ k, and ϕ is a universally quantified

formula defined by the grammar

ϕ := ψ | ∀(y : σ)ϕ | (∀R : w′)ϕ | (∀F : w′, σ)ϕ

where, σ ∈ S, w′ ∈ S+, and ψ is quantifier free over Σ.
The formulas above consist of an existential quantification block followed by a universal

quantification block. The existential block can have first-order variables of any sort, relation
variables that are over the foreground sort only, and function variables that map tuples
of the foreground sort to a background sort. The inner universal block allows all forms of
quantification – first-order variables, function variables, and relation variables of all possible
types. The inner formula is quantifier-free. We will retrict our attention to sentences in this
logic, i.e., we will assume that all variables (first-order/function/relation) are quantified. We
will denote by xi (resp. yi ), the set of existentially (resp. universally) quantified first order
variables of sort σi, for every 0 ≤ i ≤ k.

The problem

The problem we consider is that of deciding satisfiability of EQSMT sentences with background
theories for the background sorts. First we introduce some concepts.

An uninterpreted combination of theories (UCT) over a pure signature, with {σ0, σ1, . . . ,

σk} as the set of sorts, is the union of theories {Tσi}1≤i≤k, where each Tσi is a theory over
signature σi. A sentence φ is

⋃k
i=1 Tσi -satisfiable if there is a multi-sorted structureM that

satisfies φ and all the sentences in
⋃k
i=1 Tσi .

The satisfiability problem for EQSMT with background theories is the following. Given
a UCT {Tσi}1≤i≤k and a sentence φ ∈ EQSMT , determine if φ is

⋃k
i=1 Tσi-satisfiable. We

show that this is a decidable problem, and furthermore, there is a decision procedure that
uses a finite number of black-box calls to satisfiability solvers of the underlying theories to
check satisfiability of EQSMT sentences.

For the rest of this paper, for technical convenience, we will assume that the boolean
theory Tbool is one of the background theories. This means bool ∈ S and the constants
> : bool,⊥ : bool ∈ F . The set of sentences in Tbool is Abool = {> 6= ⊥, ∀(y : bool) · (y =
> ∨ y = ⊥)}. Note that checking satisfiability of a ∃∗∀∗ sentence over Tbool is decidable.

4 The Decision Procedure for EQSMT

In this section we present our decidability result for sentences over EQSMT in presence of
background theories. Let us first state the main result of this paper.

I Theorem 1. Let Σ be a pure signature with foreground sort σ0 and background sorts
σ1, . . . , σk. Let {Tσi}1≤i≤k be a UCT such that, for each i, checking Tσi-satisfiability of

∃∗∀∗ first-order sentences is decidable. Then the problem of checking
k⋃
i=1

Tσi-satisfiability of

EQSMT sentences is decidable.

We will prove the above theorem by showing that any given EQSMT sentence φ over a
UCT signature Σ can be transformed, using a sequence of satisfiability preserving transform-
ation steps, to the satisfiability of ∃∀ first-order formulae over the individual theories.

We give a brief overview of the sequence of transformations (Steps 1 through 4). In Step 1,
we replace the occurrence of every relation variable R (quantified universally or existentially)
of sort w by a function variable F of sort (w, bool). Note that doing this for the outer

CSL 2018



31:8 A Decidable Fragment of Second Order Logic With Applications to Synthesis

existentially quantified relation variables keeps us within the syntactic fragment. In Step 2,
we eliminate function variables that are existentially quantified. This crucially relies on the
small model property for the foreground universe, similar to EPR [5]. This process, however,
adds both existential first-order variables and universally quantified function variables. In
Step 3, we eliminate the universally quantified function variables using a standard Ackermann
reduction [27], which adds more universally quantified first-order variables.

The above steps result in a first-order ∃∗∀∗ sentence over the combined background
theories, and the empty theory for the foreground sort. In Step 4, we show that the
satisfiability of such a formula can be reduced to a finite number of satisfiability queries of
∃∗∀∗ sentences over individual theories.

Step 1: Eliminating relation variables
The idea here is to introduce, for every relational variable R (with type w), a function
variable fR (with type (w, σbool)) that corresponds to the characteristic function of R.

Let φ be EQSMT formula over Σ. We will transform φ to an EQSMT formula φStep-1 over
the same signature Σ. Every occurrence of an atom of the form R(t1 :σi1 , . . . , tk :σik) in φ,
is replaced by fR(t1 :σi1 , . . . , tk :σik) = > in φStep-1. Further, every quantification Q(R : w)
is replaced by Q(fR : w, bool), where Q ∈ {∀, ∃}. Thus, the resultant formula φStep-1 has no
relation variables. Further, it is a EQSMT formula, since the types of the newly introduced
existentially quantified function variables are of the form (σ+

0 , σbool). The correctness of the
above transformation is captured by the following lemma.

I Lemma 2. φ is
k⋃
i=1

Tσi-satisfiable iff φStep-1 is
k⋃
i=1

Tσi-satisfiable.

Step 2: Eliminating existentially quantified function variables
We first note a small-model property with respect to the foreground sort for EQSMT
sentences. This property crucially relies on the fact that existentially quantified function
variables do not have their ranges over the foreground sort.

I Lemma 3 (Small-model property for σ0). Let φ be an EQSMT sentence with foreground
sort σ0 and background sorts σ1, . . . σk. Let n be the number of existentially quantified
first-order variables of sort σ0 in φ. Then, φ is ∪ki=1Tσi-satisfiable iff there is a structure
M = ({Mσi}ki=0, I), such that |Mσ0 | ≤ n,M |= ∪ki=1Tσi andM |= φ.

Proof (Sketch). We present the more interesting direction here. Consider a model M =

(U , I) such that M |=
k⋃
i=1

Tσi and M |= φ. Let I∃ be the interpretation function that

extends I so that (U , I∃) |= ϕ, where ϕ is the inner universally quantified subformula of
φ. Let U = {I∃(x) ∈ Mσ0 |x ∈ x0} be the restriction of the foreground universe to the
interpretations of the variables x0. Clearly, |U | ≤ |x0|.

Let us first show that (U|U , I∃|U ) |= ϕ. For this, first see that for every extension I∃∀ of
I∃ with interpretations of all the universal FO variables, we must have have (U , I∃∀) |= ψ,
where ψ is the quantifier free part of ϕ (and thus also of φ). Now, clearly (U , I∃∀) |= ψ must
also hold for those extensions IU∃∀ which map all universal variables in y0 to the set U and
maps all universally quantified function variables of range sort σ0 to function interpretations
whose ranges are limited to the set U .

Thus, it must also be the case that when we restrict the universe Mσ0 to the set U , we
have that (U|U , I∃|U ) |= ∀ ∗ ψ. This is because every universal extension I ′ of I∃|U is also a
projection of one of these IU∃∀ interpretations. J
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The proof of the above statement shows that if there is a model that satisfies φ (in
Lemma 3), then there is a model that satisfies φ and in which the foreground universe
contains only elements that are interpretations of the first-order variables x0 over the
foreground sort (and hence bounded). Consequently, instead of existentially quantifying
over a function F (of arity r) from the foreground sort σ0 to some background sort σi, we
can instead quantify over first-order variables xF of sort σi that capture the image of these
functions for each r-ary combination of x0.

Let φStep-1 be the EQSMT sentence over Σ obtained after eliminating relation variables.
Let ψStep-1 be the quantifier free part (also known as the matrix) of φStep-1. Now, define

ψ̃ ≡ ψrestrict ∧ ψStep-1, where, ψrestrict ≡
∧
y∈y0

( ∨
x∈x0

y = x
)
.

Let φ̃ the sentence obtained by replacing the matrix ψStep-1 in φStep-1, by ψ̃. Then, the
correctness of this transformation is noted below.

I Lemma 4. φStep-1 is
k⋃
i=1

Tσi-satisfiable iff φ̃ is
k⋃
i=1

Tσi-satisfiable.

We now eliminate the existentially quantified function variables in φ̃, one by one. Let
φ̃ = (∃F :σm0 , σ)∃∗∀∗ ψ̃, where σ is a background sort. For every m-tuple t = (t[1], . . . , t[m])
over the set x0, we introduce a variable xFt of sort σ. Let xF be the set of all such nm

variables, where n = |x0| is the number of existential first order variables of sort σ0 in φ̃.
Next, we introduce a fresh function variable GF of sort σm0 , σ, and quantify it universally.
GF will be used to emulate the function F . Let us define

ψStep-2 ≡ (∀GF : σm0 , σ)
(
ψemulate =⇒ ψ̄

)
where, ψemulate ≡

∧
t∈xm0

(
GF (t[1], . . . , t[m]) = xFt

)
and ψ̄ is obtained by replacing all occur-

rences of F in ψ̃ by GF . Now define φStep-2 to be the sentence

φStep-2 ≡ (∃xF : σ)∃∗∀∗(∀GF : σm0 , σ)ψStep-2.

The following lemma states the correctness guarantee of this transformation.

I Lemma 5. φStep-2 is
k⋃
i=1

Tσi-satisfiable iff φStep-1 is
k⋃
i=1

Tσi-satisfiable.

Step 3: Eliminating universal function variables
The recipe here is to perform Ackermann reduction [2] for every universally quantified
function variable.

Let φStep-2 ≡ ∃∗∀∗(∀F : w, σ)ψStep-2, where ψStep-2 is the quantifier free part of φStep-2,
and let |w| = m. For every term t of the form F (t1, . . . , tm) in ψStep-2, we introduce a fresh
first order variable yF(t1,t2,...,tm) of sort σ, and replace every occurrence of the term t in ψStep-2

with yF(t1,t2,...,tm). Let ψ̂ be the resulting quantifier free formula. Let yF be the collection
of all the newly introduced variables. Let us now define ψStep-3 ≡

(
ψack =⇒ ψ̂

)
. Here,

ψack ≡
∧

yFt ,y
F
t′
∈yF

[
(
m∧
j=1

tj = t′j) =⇒ (yFt = yFt′ )
]
where, t = F (t1, . . . tm), t′ = F (t′1, . . . , t′m).

Then, the transformed formula φStep-3 ≡ ∃∗∀∗(∀yF :σ)ψStep-3 is correct:

I Lemma 6. φStep-2 is
k⋃
i=1

Tσi-satisfiable iff φStep-3 is
k⋃
i=1

Tσi-satisfiable.
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Step-4: Decomposition and black box calls to ∃∗∀∗ Theory solvers
The EQSMT sentence φStep-3 obtained after the sequence of steps 1 through 3 is a first order
∃∗∀∗ sentence over Σ. This sentence, however, may possibly contain occurrences of variables
of the foreground sort σ0. Intuitively, the objective of this step is to decompose φStep-3

into ∃∗∀∗ sentences, one for each sort, and then use decision procedures for the respective
theories to decide satisfiability of the decomposed (single sorted) sentences. Since such a
decomposition can result into ∃∗∀∗ sentences over the foreground sort, we must ensure that
there is indeed a decision procedure to achieve this. For this purpose, let us define Tσ0 be
the empty theory (that is Aσ = ∅). Checking satisfiability of ∃∗∀∗ sentences over Tσ0 is
decidable. Also, satisfiability is preserved in the presence of Tσ0 in the following sense.

I Lemma 7. φStep-3 is
k⋃
i=1

Tσi-satisfiable iff φStep-3 is
k⋃
i=0

Tσi-satisfiable.

We first transform the quantifier free part ψStep-3 of φStep-3 into an equivalent CNF formula
ψCNF. Let φCNF be obtained by replacing ψStep-3 by ψCNF. Let φCNF ≡ ∃∗∀∗ψCNF, where
ψCNF ≡

r∧
i=1

ψi and each ψi is a disjunction of atoms. Since φCNF is a first order formula over

a pure signature, all atoms are either of the form R(· · · ) or t = t′ (with possibly a leading
negation). Now, equality atoms are restricted to terms of the same sort. Also since Σ is pure,
the argument terms of all relation applications have the same sort. This means, for every
atom α, there is a unique associated sort σ ∈ S, which we will denote by sort(α).

For a clause ψi in ψCNF, let atoms(ψi) be the set of atoms in ψi. Let atomsσ(ψi) =
{α ∈ atoms(ψi) | sort(α) = σ}, and let ψσi ≡

∨
α∈atomsσ(ψi)

α. Then, we have the identity

ψCNF ≡
r∧
j=1

∨
σ∈S

ψσj . We now state our decomposition lemma.

I Lemma 8. φCNF is
k⋃
i=0

Tσi-satisfiable iff there is a mapping L : {1, . . . , r} → S such that

for each 0 ≤ i ≤ k , the formula φLi ≡ (∃xi : σi)(∀yi : σi)
∧

j∈L−1(σi)
ψσij is Tσi-satisfiable.

Proof (Sketch). We present the more interesting direction here. Let φSkolem be an equi-
satisfiable Skolem norm form of φCNF. That is, φSkolem = ∀∗ψSkolem, where ψSkolem is obtained
from ψCNF by replacing all existential variables x0,x1 . . . ,xk by Skolem constants. We will
use the same notation ψi for the ith clause of ψSkolem. Then, consider a structureM such

thatM |=
k⋃
i=0

Tσi andM |= φSkolem. Now, suppose, on the contrary, that there is a clause

ψj such that for every sort σi, we have M 6|= ∀(yi : σi)ψj . This means, for every sort σi,
there is a interpretation Ii (that extends I with valuations of yi), such that either Ii leads
to falsity of Tσi or the clause ψj . Let cσi1 , c

σi
2 , . . . c

σi
|yi|

be the values assigned to the universal
variables yi in Ii. Then, construct an interpretation I ′ by extending I with the variables
yi interpreted with cσi ’s . This interpretation I ′ can be shown to either violate one of the
theory axioms or the formula ψj . In either case, we have a contradiction. J

The contract L above identifies, for each clause ψj , one sort σi such that the restriction ψσij
of ψj to σi can be set to true. Thus, in order to decide satisfiability of φCNF, a straightforward
decision procedure involves enumerating all contracts, L ∈ [{1, . . . , r} → S]. For each
contract L and for each sort σi, we construct the sentence φLi , and make a black-box call to
the ∃∗∀∗ theory solver for Tσi . If there is a contract L for which each of these calls return
“SATISFIABLE”, then φCNF (and thus, the original formula φ) is satisfiable. Otherwise, φ is
unsatisfiable.
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5 Undecidability Results

The logic that we have defined was carefully chosen to avoid undecidability of the satisfiability
problem. We now show that natural generalizations or removal of restrictions in our logic
renders the satisfiability problem undecidable. We believe our results are hence not simple
to generalize any further.

One restriction that we have is that the functions that are existentially quantified
cannot have σ0 as their range sort. A related restriction is that the universal quantification
block quantifies all uninterpreted function symbols, as otherwise they must be existentially
quantified on the outside block.

Let us now consider the fragment of logic where formulas are of the form (∃x0) (∃F)(∀y0)ψ
where in fact we do not even have any background theory. Since the formula is over a single
sort, we have dropped the sort annotations on the variables. It is not hard to see that this
logic is undecidable.

I Theorem 9. Consider signature with a single sort σ0 (and no background sorts). The
satisfiability problem for sentences of the following form is undecidable.

(∃x0) (∃F)(∀y0)ψ

Proof (Sketch). We can show this as a mild modification of standard proofs of the un-
decidability of first-order logic. We can existentially quantify over a variable Zero and a
function succ, demand that for any element y, succ(y) is not Zero, and for every y, y′, if
succ(y) = succ(y′), then y = y′. This establishes an infinite model with distinct elements
succn(Zero), for every n ≥ 0. We can then proceed to encode the problem of non-halting of
a 2-counter machine using a relation R(t, q, c1, c2), which stands for the 2CM is in state q at
time t with counters c1 and c2, respectively. It is easy to see that all this can be done using
only universal quantification (the relation R can be modeled as a function easily). J

The theorem above has a simple proof, but the theorem is not new; in fact, even more
restrictive logics are known to be undecidable (see [8]).

Another important restriction that we have is that the foreground sort and the various
background sorts are pariwise disjoint. This requirement is also not negotiable if decidability
is desired, as it is easy to show the following result. Once again we have dropped sort
annotations, since we only have a single sort.

I Theorem 10. Consider a signature with a single sort σ1 and let Tσ1 be the theory of
Presburger arithmetic. The satisfiability problem is decidable for sentences of the form

(∃x1) (∃R) (∀y1)ψ

Proof (Sketch). We can use a similar proof as the theorem above, except now that we use
the successor function available in Presburger arithmetic. We can again reduce non-halting
of Turing machines (or 2-counter machines) to satisfiability of such formulas. J

Stepping further back, there are very few subclasses of first-order logic with equality that
have a decidable satisfiability problem, and the only standard class that admits ∃∗∀∗ prefixes
is the Bernays-Schönfinkel-Ramsey class (see [5]). Our results can be seen as an extension of
this class with background theories, where the background theories admit locally a decidable
satisfiability problem for the ∃∗∀∗ fragment.
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6 Applications to Synthesis

6.1 Synthesis: Validity or Satisfiability?

Though we argued in Section 2 that synthesis problems can be modeled using satisfiability
of EQSMT sentences, there is one subtlety that we would like to highlight. In synthesis
problems, we are asked to find an expression such that the expression satisfies a specification
expressed as a formula in some logic. Assuming the specification is modeled as a universally
quantified formula over background theories, we would like to know if ∀yϕ(e, y) holds for
the synthesized expression e. However, in a logical setting, we have to qualify what “holds”
means; the most natural way of phrasing this is that ∀yϕ(e, y) is valid over the underlying
background theories, i.e., holds in all models that satisfy the background theories. However,
the existential block that models the existence of an expression is clearly best seen as a
satisfiability problem, as it asks whether there is some foreground model that captures an
expression. Requiring that it holds in all foreground models (including those that might
have only one element) would be unreasonable.

To summarize, the synthesis problem is most naturally modeled as a logical problem
where we ask whether there is some foreground model (capturing a program expression) such
that all background models, that satisfy their respective background theories, also satisfy the
quantifier free formula expressing that the synthesized expression satisfies the specification.
This is, strictly speaking, neither a satisfiability problem nor a validity problem!

We resolve this by considering only complete and consistent background theories. Hence
validity of a formula under a background theory T is equivalent to T -satisfiability. Con-
sequently, synthesis problems using such theories can be seen as asking whether there is
a foreground universe (modeling the expression to be synthesized) and some background
models where the specification holds for the expression. We can hence model synthesis purely
as a satisfiability problem of EQSMT, as described in Section 2.

Many of the background theories used in verification/synthesis and SMT solvers are
complete theories (like Presburger arithmetic, FOL over reals, etc.). One incomplete theory
often used in verification is the theory of uninterpreted functions. However, in this case,
notice that since the functions over this sort are uninterpreted, validity of formulas can be
modeled using a universal quantification over functions, which is supported in EQSMT ! The
only other adjustment is to ensure that this background theory has only infinite models
(we can choose this background theory to be the theory of (N,=), which has a decidable
satisfiability problem). Various scenarios such as modeling pointers in heaps, arrays, etc.,
can be naturally formulated using uninterpreted functions over this domain.

The second issue in modeling synthesis problems as satisfiability problems for EQSMT is
that in synthesis, we need to construct the expression, rather than just know one exists.
It is easy to see that if the individual background theory solvers support finding concrete
values for the existentially quantified variables, then we can pull back these values across
our reductions to give the values of the existentially quantified first-order variables (over all
sorts), the existentially quantified function variables as well as the existentially quantified
relation variables, from which the expression to be synthesized can be constructed.

6.2 Evaluation

We illustrate the applicability of our result for solving synthesis problems.

Synthesis of recursive programs involving lists. We model the problem of synthesizing
recursive programs with lists, that will meet a pre/post contract C assuming that recursive
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calls on smaller data-structures satisfy the same contract C. Though the programs we seek
are recursive, we can model certain classes of programs using straight-line programs.

To see this, let us take the example of synthesizing a program that finds a particular key
in a linked list (list-find). We can instead ask whether there is a straight-line program which
takes an additional input which models the return value of a possible recursive call made on
the tail of the list. The straight-line program must then work on the head of the list and
this additional input (which is assumed to satisfy the contract C) to produce an output that
meets the same contract C.

For this problem, we modeled the program to be synthesized using existential quantifica-
tion (over a grammar that generates bounded length programs) as described in Section 2.
The pointer next and recursive data structures list, lseg in the verification condition
were modeled using universal quantification over function variables and relation variables,
respectively. Moreover, in order to have a tractable verification condition, we used the
technique of natural proofs [20, 25, 28] that soundly formulates the condition in a decidable
theory. We used z3 [12] to ackermanize the universally quantified functions/relations (lseg,
list and next). We encoded the resulting formula as a synthesis problem in the SyGuS
format [4] and used an off-the-shelf enumerative counter-example guided synthesis (CEGIS)
solver. A program was synthesized within 1s, which was manually verified to be correct.

We also encoded other problems involving lists : list-length (calculating the length of a
list), list-sum (computing sum of the keys in a list), list-sorted (checking if the sequence of
keys in the list is sorted) and list-count-occurrence (counting the number of occurrences of
a key in the list), using a CEGIS solver, and report the running times and the number of
programs explored in Table 1.

We are convinced that EQSMT can handle recursive program synthesis (of bounded size)
against separation logics specifications expressed using natural proofs (as in [25]).

Synthesis of straight-line programs equivalent to given recursive programs. In the second
class of examples, we turn to synthesizing straight-line programs given a recursive function as
their specification. For example, consider Knuth’s generalization of the recursive McCarthy
91 function:

M(n) =
{
n− b if n > a

M c(n+ d)) otherwise

for every integer n, and where (c − 1)b < d. For the usual McCarthy function, we have
a = 100, b = 10, c = 2, and d = 11.

Consider the problem of synthesizing an equivalent recursion-free expression. The pro-
grams we consider may have if-then-else statements of nesting depth 2, with conditionals
over linear expressions having unbounded constants. Existential quantification over the
background arithmetic sort allowed us to model synthesizing these unbounded constants. Our
specification demanded that the value of the expression for n satisfy the recursive equations
given above.

We modeled the foreground sort inside arithmetic, and converted our synthesis problem to
a first-order ∃∗∀∗ sentence over Presburger arithmetic and Booleans. We experimented with
several values for a, b, c, d (with (c− 1)b < d), and interestingly, solutions were synthesized
only when (d− (c− 1)b) = 1. Given Knuth’s result that a closed form expression involves
taking remainder modulo this expression (and since we did not have the modulo operation in
our syntax), it turns out that simple expressions do not exist otherwise. Also, whenever the
solution was found, it matched the recursion-free expression given by Knuth (see Theorem 1
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Table 1 Synthesis of list programs and recursive programs.

Program # Programs Explored Time(s)
in SyGuS

list-find ∼5k 0.5
list-length ∼40k 5
list-sum ∼160k 15
list-sorted ∼206k 45

list-count-occurrence ∼1.3 million 134
Knuth : (a = 100, b = 10, c = 2, d = 11) - 2
Knuth : (a = 15, b = 30, c = 3, d = 61) - 6
Knuth : (a = 3, b = 20, c = 4, d = 62) - 27
Knuth : (a = 9, b = 11, c = 5, d = 45) - 49
Knuth : (a = 99, b = 10, c = 6, d = 51) - 224

Takeuchi - 100

in [19]). In Table 1, we provide the running times of our implementation on various parameters.
We also compared our implementation with the popular synthesis tool Sketch [33] on these
examples. For the purpose of comparison, we used the same template for both Sketch
and our implementation. Further, since Sketch does not allow encoding integers with
unbounded size (unlike our encoding in integer arithmetic), we represented these constants,
to be synthesized, using bitvectors of size 8. Sketch does not return an answer within the
set time-limit of 10 minutes for most of these programs.

We also modeled the Tak function (by Takeuchi) given by the specification below.

t(x, y, z) =
{
y if x ≤ y
t(t(x− 1, y, z), t(y − 1, z, x), t(z − 1, x, y)) otherwise

Our implementation synthesized the program t(x, y, z)= ite(x ≤ y, y, ite(y ≤ z, z, x)) in
about 100s.

7 Related Work

There are several logics known in the literature that can express synthesis problems and are
decidable. The foremost example is the monadic second-order theory over trees, which can
express Church’s synthesis problem [10] and other reactive synthesis problems over finite data
domains, and its decidability (Rabin’s theorem [30]) is one of the most celebrated theorems
in logic that is applicable to computer science. Reactive synthesis has been well studied and
applied in computer science (see, for example, [7]). The work reported in [21] is a tad closer
to program synthesis as done today, as it synthesizes syntactically restricted programs with
recursion that work on finite domains.

Caulfield et al [11] have considered the decidability of syntax-guided synthesis (SyGuS)
problems, where the synthesized expressions are constrained to belong to a grammar (with
operators that have the usual semantics axiomatized by a standard theory such as arithmetic)
that satisfy a universally quantified constraint. They show that the problem is undecidable
in many cases, but identify a class that asks for expressions satisfying a regular grammar
with uninterpreted function theory constraints to be decidable.

The ∃∗∀∗ fragment of pure predicate logic (without function symbols) was shown to be
decidable by Bernays and Schönfinkel (without equality) and by Ramsey (with equality) [5],
and is often called Effectively Propositional Reasoning (EPR) class. It is one of the few
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fragments of first-order logic known to be decidable. The EPR class has been used in program
verification [16, 24], and efficient SMT solvers supporting EPR have been developed [26].

The work by [1] extends EPR to stratified typed logics, which has some similarity with our
restriction that the universes of the foreground and background be disjoint. However, the logic
therein does not allow background SMT theories unlike ours and restricts the communication
between universally and existentially quantified variables via equality between existential
variables and terms with universally quantified variables as arguments. In [15], EPR with
simple linear arithmetic (without addition) is shown to be decidable.

Theory extensions [32] and model theoretic and syntactic restrictions theoreof [31] have
been explored to devise decidable fragment for quantified fragments of first order logic. Here,
reasoning in local theory extensions of a base theory can be reduced to the reasoning in the
base theory (possibly with an additional quantification). Combination of theories which are
extensions of a common base theory can similarly be handled by reducing the reasoning to a
decidable base theory. Similar ideas have been employed in the context of combinations of
linear arithmetic and the theory of uninterpreted functions with applications to construct
interpolants [18] and invariants [6] for program verification. EQSMT does not require the
background theories to be extensions of a common base theory.

Verification of programs with arrays and heaps can be modeled using second order
quantification over the arrays/heaps and quantifier alternation over the elements of the
array/heaps which belong to the theory of Presburger arithmetic. While such a logic is, in
general, undecidable, careful syntactic restrictions such as limiting quantifier alternation [9]
and flatness restrictions [3]. We do not restrict the syntax of our formulae, but ensure
decidability via careful sort restrictions. A recent paper [20] develops sound and complete
reasoning for a so-called safe FO fragment of an uninterpreted combination of theories.
However, the logic is undecidable, in general, and also does not support second-order
quantification.

The SyGuS format has recently been proposed as a language to express syntax guided
synthesis problems, and there have been several synthesis engines developed for various
tracks of SyGuS [4]. However, the syntax typically allows unbounded programs, and hence
the synthesis problem is not decidable. In [13], the candidate program components are
“decorated” with annotations that represent transformers of the components in a sound
abstract domain. This reduces the synthesis problem (∃∗∀∗) to the search for a proof (∃∗∃∗)
in the abstract domain.

When expressing synthesis problems for programs that manipulate heaps, we rely on
natural-proofs style sound abstraction of the verification conditions. Natural synthesis [29]
extends this idea to an inductive synthesis procedure.

8 Conclusions and Future Work

The logic EQSMT defined herein is meant to be a decidable logic for communication between
researchers modeling program synthesis problems and researchers developing efficient logic
solvers. Such liaisons have been extremely fruitful in verification, where SMT solvers have
served this purpose. We have shown the logic to be decidable and its efficacy in modeling
synthesis problems. However, the decision procedure has several costs that should not be
paid up front in any practical synthesis tool. Ways to curb such costs are known in the
literature of building efficient synthesis tools. In particular, searching for foreground models
is similar to EPR where efficient engines have been developed [26], and the search can also
be guided by CEGIS-like approaches [4]. And the exponential blow-up caused by guessing
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contracts between solvers (in Step 4 of our procedure) is similar to arrangements agreed
upon by theories combined using the Nelson-Oppen method, again for which efficient solvers
have been developed. Our hope is that researchers working on logic engines will engineer an
efficient decision procedure for EQSMT that can solve synthesis problems.
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A Encoding Mthree in EQSMT

We are interested in synthesizing a straight line program that implements the function Mthree,
and can be expressed as a term over the grammar in Figure 1a.

Let us see how to encode this synthesis problem in EQSMT. First, let us fix the maximum
height of the term we are looking for, say to be 2. Then, the program we want to synthesize
can be represented as a tree of height at most 2 such that every node in the tree can have
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≤ 3 child nodes (because the maximum arity of any function in the above grammar is 3,
corresponding to ite). A skeleton of such a expression tree is shown in Figure 1b. Every
node in the tree is named according to its path from the root node.

The synthesis problem can then be encoded as the formula

φMthree ≡ (∃n0, n00, n01, . . . n022 : σ0) ( ∃Left,Mid,Right : σ0, σ0︸ ︷︷ ︸
Existentially quantified relations

)

(∃ADD, ITE, LTZero, EQZero, GTZero, INPUT, C1, C2, C3 : σlabel)
(∃c1, c2, c3 : N) ( ∃flabel : σ0, σlabel︸ ︷︷ ︸

Existentially quantified functions

)

ϕwell-formed

∧ (∀x : N)( ∀g0
val, g

1
val, g

2
val, g

3
val : σ0,N︸ ︷︷ ︸

Universally quantified functions

) (ϕsemantics =⇒ ϕspec) (3)

Here, the nodes are elements of the foreground sort σ0. The binary relations Left,Mid,Right
over the foreground sort will be used to assert that a node n is the left,middle, right child
respectively of node n′ : Left(n′, n), Mid(n′, n), Right(n′, n). The operators or labels for
nodes belong to the background sort σlabel, and can be one of ADD (+), ITE (ite), LTZero (< 0),
GTZero (> 0), (EQZero (= 0)), INPUT (denoting the input to our program), or constants
C1, C2, C3 (for which we will synthesize natural constants c1, c2, c3 in the (infinite) background
sort N). The function flabel assigns a label to every node in the program, and the formula
ϕwell-formed asserts some sanity conditions:

ϕwell-formed ≡
∧
ρ 6=ρ′

nρ 6= nρ′ ∧ Left(n0, n00) ∧
∧
ρ 6=00
¬(Left(n0, nρ))) ∧ · · ·

∧ ¬(ADD = ITE) ∧ ¬(ADD = LTZero) ∧ · · · ∧ ¬(C1 = C3) ∧ ¬(C2 = C3)

∧
∧
ρ

(flabel(nρ)=ADD) ∨ (flabel(nρ)=ITE) ∨ · · · ∨ (flabel(nρ)=C3) (4)

The formula ϕsemantics asserts that the “meaning” of the program can be inferred from
the meaning of the components of the program. The functions g0

val, g
1
val, g

2
val, g

3
val, will assigns

value to nodes from N, for this purpose :

ϕsemantics ≡ ϕADD ∧ ϕITE ∧ ϕLTZero ∧ ϕEQZero ∧ ϕGTZero ∧ ϕINPUT ∧ ϕC1 ∧ ϕC2 ∧ ϕC3

(5)

where each of the formulae ϕADD, · · · , ϕC3 specify the semantics of each node when labeled
with these operations:

ϕADD ≡
∧

ρ,ρ1,ρ2

(
flabel(nρ) = ADD ∧ Left(nρ, nρ1) ∧Mid(nρ, nρ2)

=⇒
∧

i=0,1,2,3
gival(nρ) = gival(nρ1) + gival(nρ2)

) (6)

ϕITE ≡
∧

ρ,ρ1,ρ2,ρ3

[
flabel(nρ) = ITE ∧ Left(nρ, nρ1) ∧Mid(nρ, nρ2) ∧ Right(nρ, nρ3)

=⇒
∧

i=0,1,2,3

(
gival(nρ1) = 1 =⇒ gival(nρ) = gival(nρ2)

∧ gival(nρ1) = 0 =⇒ gival(nρ) = gival(nρ3)
)]

(7)
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ϕLTZero ≡
∧
ρ,ρ1

[
flabel(nρ) = LTZero ∧ Left(nρ, nρ1)

=⇒
∧

i=0,1,2,3

(
gival(nρ1) < 0 =⇒ gival(nρ) = 1

∧ gival(nρ1) ≥ 0 =⇒ gival(nρ) = 0
)] (8)

ϕEQZero ≡
∧
ρ,ρ1

[
flabel(nρ) = LTZero ∧ Left(nρ, nρ1)

=⇒
∧

i=0,1,2,3

(
gival(nρ1) = 0 =⇒ gival(nρ) = 1

∧ gival(nρ1) 6= 0 =⇒ gival(nρ) = 0
)] (9)

ϕGTZero ≡
∧
ρ,ρ1

[
flabel(nρ) = LTZero ∧ Left(nρ, nρ1)

=⇒
∧

i=0,1,2,3

(
gival(nρ1) > 0 =⇒ gival(nρ) = 1

∧ gival(nρ1) ≤ 0 =⇒ gival(nρ) = 0
)] (10)

The formula ϕINPUT states that for a node labeled INPUT, the value of that node is the
input toMthree. Hence, such a node nρ evaluates to x, x+61, g1

val(n0) and g2
val(n0) respectively

under g0
val, g1

val, g2
val and g3

val:

ϕINPUT ≡
∧
ρ

[
flabel(nρ) = INPUT =⇒

g0
val(nρ) = x

∧g1
val(nρ) = x+ 61

∧g2
val(nρ) = g1

val(n0)
∧g3

val(nρ) = g2
val(n0)]

(11)

Finally we have the semantics of constant labels:

ϕC1 ≡
∧
ρ

[
flabel(nρ) = C1 =⇒

∧
i=0,1,2,3

gival(nρ) = c1

]
(12)

The formulae ϕC2 and ϕC3 are similar and thus skipped.

Last, the formula ϕspec expresses the specification of the program as in Equation (2).

ϕspec ≡
(
x > 13 =⇒ g0

val(n0) = x− 30
)

∧
(
x ≤ 13 =⇒ g0

val(n0) = g3
val(n0)

) (13)
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Abstract
Considering resource usage is a powerful insight in the analysis of many phenomena in the
sciences. Much of the current research on these resource theories focuses on the analysis of
specific resources such quantum entanglement, purity, randomness or asymmetry. However, the
mathematical foundations of resource theories are at a much earlier stage, and there has been no
satisfactory account of quantitative aspects such as costs, rates or probabilities.

We present a categorical foundation for quantitative resource theories, derived from enriched
category theory. Our approach is compositional, with rich algebraic structure facilitating calcu-
lations. The resulting theory is parameterized, both in the quantities under consideration, for
example costs or probabilities, and in the structural features of the resources such as whether
they can be freely copied or deleted. We also achieve a clear separation of concerns between
the resource conversions that are freely available, and the costly resources that are typically the
object of study. By using an abstract categorical approach, our framework is naturally open to
extension. We provide many examples throughout, emphasising the resource theoretic intuitions
for each of the mathematical objects under consideration.
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1 Introduction

The importance of analyzing phenomena from the perspective of resource conversions and
consumption is an insight that pervades many disciplines. Logicians have long understood
the significance of this point of view. For example, strong resource based intuitions underlie
linear logic [14] and the resource and differential lambda calculi [2, 6].

In the natural sciences, many aspects of physics are now investigated using what are
loosely termed resource theories. There are many different resource theories, for example, for
quantum information alone, researchers have considered a multitude of possibilities, including
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asymmetry [24], non-uniformity [15], athermality [3] and superposition [29]. Much of the
current work on resource theories focuses on specific situations. An exception is [4], where a
pleasing categorical abstraction of resource theories is proposed.

In order to facilitate discussions, we describe a very simple culinary example, which
hopefully does not require any domain specific expertise. Consider the “recipe”:

egg + egg + cream + sugar→ custard (1)

We read this as saying if we take two eggs, a standard unit of both cream and sugar, we
can produce one unit of custard. Obviously we would like to combine such conversions, for
example as a second step, we may want to combine our custard with an apple pie to form a
pleasant dessert. Therefore a model of resource conversions should be compositional.

The recipe (1) already encodes some simple quantitative data about resources - two eggs
are required as an input. In this paper we are interested not in quantifying the resources
themselves, but in adding the ability to provide quantitative data about the conversions that
can take place. For example:

There may be a cost to producing custard, in elapsed time, energy consumed, or simply
in paying a chef to do the cooking.
Producing custard is unfortunately probabilistic, the custard may split or get burnt
during cooking. We may therefore wish to quantify the success probability of a conversion
taking place.
If we are running a restaurant we may be interested in the rate of production so that we
can keep our customers happy.

One can imagine quantifying similar features for chemical and biological reactions, economic
behaviour, network communications, physical interactions and so on. Refining these ideas,
resource theories typically separate resources into “free” resources conversions that are readily
available, and “costly” processes that are often the focus of attention. An abstract model of
resources should provide a clear separation of concerns between these two classes of resources.

Although some specific quantitative elements of resource theories are touched upon
towards the end of [4], the approach is ad-hoc and no general purpose account of quantitative
aspects is provided. They also fix the structural aspects of resources once and for all, rather
than identifying this as a parameter of their theory. We provide a more general framework
that allows variation in both the quantitative and structural aspects of resource theories.

We propose a foundation for quantitative resource theories, in which quantitative data
can be attached to resource conversions. Our approach is based on two central ideas:
1. Exploiting enriched category theory allows us to incorporate quantitative data in a

categorical framework. This is a classical idea, originating in Lawvere’s seminal paper on
generalized metric spaces [22]. By varying the base of enrichment, we can then adjust
our quantities to the needs of a given application.

2. More recent theory on generalized algebraic structures [17, 23, 9] allows us to incorporate
structural aspects of resources, such as whether they can always be deleted, or copied, or
if the order in which they are provided matters. These models of generalized algebraic
structures are closely related to relational models of linear logic, and many of the structures
we exploit can intuitively be viewed as generalized binary relations.

By successfully combining these two elements, and systematically applying categorical
methods, a satisfactory mathematical theory emerges. Pleasingly, many meaningful resource
theoretic features emerge naturally as standard categorical structures such as monads,
profunctors and bimodules.
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Providing a general purpose foundation for quantitative resource theories opens up the
opportunity for the unification and transfer of ideas between many fields of mathematics and
the sciences. It also allows us to analyze such models in the abstract, letting us compare
theories and understand their essential features, uncluttered by application specific details.
At this level of abstraction, unexpected connections become apparent, for example there
is clearly a link with Pavlovic’s quantitative formal concept analysis [27] that should be
explored.

1.1 Features
We highlight the following key features of our framework:

Modularity: Our approach is parametric in two key directions. Firstly, how resource
conversions are quantified can be configured to suit application needs, for example
probabilities, rates or costs. Secondly, we can choose the structural aspects of resources,
does their order matter? Can they be copied or deleted?
Compositionality: The ability to compose and combine resources is intrinsic to our
categorical approach. As we develop the underlying mathematics a great deal of algebraic
structure emerges. This structure enables a calculational approach to reasoning about
resource theories.
Separation of concerns: We provide a clear separation between the “free” resource
conversions that are readily available to everybody, and the “costly” conversions that are
typically the main object of study.
Extensibility: A categorical framework is naturally open to further extensions. This is
a necessary feature of any realistic approach to quantifying resources. Given the breadth
of potential applications, it is unrealistic to expect to anticipate every possible model of
resources, their composition and quantification.
Practicality: Although we work with abstractions such as enriched categories, monads
and bicategories, in the special cases we deal with they have simple concrete descriptions
as special sorts of matrices. This means that calculations in particular instances of
our framework should be straightforward, and will not require advanced mathematical
techniques.

1.2 Contribution
We outline our contribution:

We provide a consistent resource theoretic interpretation of all the mathematical structure
under consideration, building upon classical ideas of Lawvere [22]. This begins with
material that will be familiar to some in the community, as we introduce mathematical
background in sections 2 and 3, and continues with the newer concepts in later sections.
In section 4 we give concrete descriptions of a hierarchy of five different free constructions
on quantale enriched categories, that can be used to model the structural aspects of
resources.
Also in section 4, we show that each of the monads corresponding to the hierarchy of free
constructions distributes over the free cocompletion monad. This allows us to extend our
notions of resource interaction with new structural features.
In section 5 we demonstrate how the resulting comonads yield “thin” variations on the
notion of multicategory or operad, suitable for quantitative reasoning.
In section 6 we show bimodules are the correct mathematical framework for incorporating
freely available conversions requiring multiple components.
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In section 7 we address practical methods for closing resource conversions under composi-
tion in various ways. We establish that these constructions are canonical, by showing
that each of them yields a free internal monad in an appropriate bicategory.

2 Quantale Enriched Categories

This section sets up standard technical background and notation. Throughout the paper,
we aim for a self contained account with respect to enriched category theory. We will
assume some basic knowledge of category theory, at the level of categories, functors, natural
transformations, and (co)monads and their (co)Kleisli categories. The ideas in this section
are well known, and the basic resource theoretic interpretations will be familiar to some in
the community.

Throughout the document, we will specialize definitions to our situation of interest,
without spelling out the details in full generality, as this will often significantly reduce the
complexity involved. This applies to notions such as enriched categories, free constructions,
bimodules and internal monads that occur in later sections. Experts will be able to recover
our definitions from the more abstract formulations.

2.1 Quantales
We will use quantales to describe the abstract mathematical structure needed to quantify
the costs of resource conversions.

I Definition 1 (Quantale). A quantale is a complete join semilattice with a monoid
structure (⊗, k) such that the following axioms hold 1:

p⊗

(∨
i

qi

)
=
∨
i

p⊗ qi and
(∨

i

pi

)
⊗ q =

∨
i

pi ⊗ q

A commutative quantale is a quantale whose underlying monoid is commutative. All
the quantales we consider in this paper will be commutative. Throughout, we shall use the
symbol Q to denote an arbitrary commutative quantale.

The structure of a commutative quantale has a clear resource theoretic interpretation, with
two key components:
1. The monoid structure allows us to combine quantities across the different steps of a

process or algorithm, for example costs, success probabilities or connection strengths.
2. The join semilattice structure is then an optimizer. Having calculated aggregate values

for various candidate procedures to achieve a desired aim, we can then quantify the
best value attainable. For example, this might be the cheapest price, highest success
probability or best connection strength achievable.

We introduce four quantales that will be used repeatedly in examples throughout the paper.

I Example 2. The Boolean quantale B has the two Boolean truth values as its underlying
set, with logical disjunction and conjunction providing the join semilattice and monoid
structure respectively.

1 Sometimes the term unital quantale is used, but we will have no interest in the case without a unit.
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I Example 3. The interval quantale I has underlying set the closed real interval [0, 1]. The
join semilattice structure is given by the usual supremum, and the binary monoid operation
takes the minimum of two elements.

I Example 4. The Lawvere quantale L has underlying set the extended positive reals [0,∞]
with the join semilattice structure given by infima and the monoid structure given by addition
of real numbers.

I Example 5. The multiplicative quantale M has underlying set the closed real inter-
val [0, 1]. The join semilattice is given by suprema, and the binary monoid is ordinary
multiplication of real numbers.

Finally, we remark that there are many more examples of commutative quantales. In
particular, every locale [18] is a commutative quantale, including all complete Boolean
algebras, finite distributive lattices and complete chains.

From a categorical perspective, a commutative quantale is a (small, thin, skeletal) complete
and cocomplete symmetric monoidal closed category. It is this structure that makes them
very pleasant to work with in enriched category theory.

2.2 Quantale Enriched Category Theory
The use of enriched category theory will be an essential tool for this paper. The standard
source for enriched category theory is [19], but as we suggested earlier, the general definitions
simplify significantly in the quantale enriched case. This is because there are many axioms
to enforce structure, such as composition being associative or functors preserving identities,
that are phrased in terms of certain diagrams commuting. As quantales are thin categories,
all these axioms become trivial. We therefore provide concrete descriptions of the various
enriched mathematical objects that we use, specialized to the simpler quantale enriched
setting. Via examples, we take the opportunity to introduce our resource theoretic perspective
on each of the various notions.

All our quantale enriched categories will be small, that is, we will require that they have
a set of objects.

I Definition 6 (Q-enriched Categories). A Q-enriched category A consists of:
A set of objects objA. We will typically denote these objects as a, b, c, ....
For each pair of objects, there is a hom object A(a, b) ∈ Q.

The hom objects are required to satisfy two axioms:
The identity axiom, for all a:

k ≤ A(a, a)

The composition axiom, for all a, b, c:

A(b, c)⊗A(a, b) ≤ A(a, c)

Enrichment over each of our example quantales has a natural resource theoretic interpretation.

I Example 7 (Boolean Quantale Enrichment). A B-enriched category is the same thing as a
preorder. We can interpret a ≤ b as meaning it is possible to convert resource a to b. The
identity axiom corresponds to reflexivity, we can always convert a resource to itself. The
composition axiom corresponds to transitivity, and captures the idea that if we can convert
resource a to b and we can convert b to c, then we can combine these conversions to convert a
to c.
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I Example 8 (Interval Quantale Enrichment). An I-enriched category A is a “fuzzy” generaliz-
ation of a preorder. From a resource perspective, we interpret A(a, b) as a connection strength
between a and b. Connection strengths are valued in a worst case manner, a composite
connection is only as good as its weakest link. Then:

The identity axiom tells us we can always connect any a to itself with maximum strength.
The composition axiom tell us that if we can connect a to b and b to c, we should be able
to connect a to c at least as strongly as going via the intermediate b.

I Example 9 (Lawvere Quantale Enrichment). For an L-enriched category A, A(a, b) can be
seen as the cost of converting a to b.

The identity axiom tells us that we can freely convert a to itself. In Lawvere’s original
metric space reading [22] the absence of the axiom A(a, b) = 0⇒ a = b is inconvenient.
However, from a resource conversion perspective it is entirely natural that two distinct
resources could be interconvertible.
The composition axiom is a triangle inequality, saying that the cost of converting from a

to c should be at least as cheap as converting via any intermediate resource b.

a

b c
≥
R

A(a, b)

A(b, c)

A(a, c)

I Example 10 (Multiplicative Quantale Enrichment). For an M-enriched category A, we
interpret A(a, b) as the probability of successfully converting a to b. Conversion probabilities
are assumed to be independent, so they multiply.

The identity axiom tells us we can always convert a resource to itself with certainty.
The composition axiom tells us that we can convert a to c with a success probability
at least as high as that achievable by chaining two conversions via any intermediate
resource b.

This concludes our examples for this section. It remains to define the enriched notions
of Q-functors and Q-natural transformations in preparation for later sections.
I Definition 11 (Q-enriched Functor). Let A and B be Q-enriched categories. A Q-enriched
functor F of type A → B consists of an object assignment function:

F : objA → objB

such that:

A(a, b) ≤ B(Fa, Fb)

Identity and composite functors are given in the obvious way, and the resulting structure
yields a category Cat(Q) of Q-categories and functors between them.
I Definition 12 (Q-enriched Natural Transformations). Let F,G : A → B be parallel Q-
enriched functors. The existence of a Q-enriched natural transformation α of type F ⇒
G simply states that the following inequalities hold for all objects of A:

k ≤ B(Fa,Ga)

That is, there can be at most one Q-natural transformation between two such functors.
We do not dwell on examples of functors and natural transformations now, as there will be
many examples later in cases of particular importance.
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3 Presheaves and Profunctors

We first introduce some constructions on quantale enriched categories.

I Definition 13. Let A and B be Q-enriched categories.
There is a unit Q-category I with a single object and the quantale unit as the unique
hom object.
The tensor category A⊗ B has set of objects objA× objB, and hom objects:

(A⊗ B)((a, b), (a′, b′)) = A(a, a′)⊗ B(b, b′)

The opposite category Aop has the same objects as A, and hom objects:

Aop(a, a′) = A(a′, a)

A quantale Q also carries a canonical structure as a Q-category, with objects the elements
of Q, and hom objects:

Q(q, q′) = q ( q′

Where q ( q′ denotes the internal hom in Q.

I Definition 14 (Presheaf). Let A be a Q-category.
A copresheaf is a functor of type A → Q. This is a function F : objA → objQ such
that:

F (a)⊗A(a, b) ≤ F (b)

A presheaf is a functor of type Aop → Q. This is a function F : objA → objQ such
that:

A(a, b)⊗ F (b) ≤ F (a)

I Definition 15 (Profunctor). For a commutative quantale Q, and Q-enriched categories A
and B, a profunctor from A to B is a functor of type:

Aop ⊗ B → Q

Concretely, this is a function R : objA× objB → objQ such that:

A(a′, a)⊗R(a, b)⊗ B(b, b′) ≤ R(a′, b′)

We write R : A −7−→ B to indicate R is a profunctor from A to B.
A profunctor can be thought of as a categorical generalization of the notion of binary
relation, taking truth values in the underlying quantale. They generalize both presheaves
and copresheaves, as they are profunctors of type A −7−→ I and I −7−→ A respectively.

I Example 16. (Co)presheaves have natural resource theoretic interpretations. For example,
if we consider L-enrichment:

A copresheaf on A is a coherent set of costs for acquiring the resources in A. The
copresheaf condition:

F (a) +A(a, b) ≥R F (b)

requires that it is always cheaper to buy a resource b directly, rather than purchase some
other resource a and then pay A(a, b) to turn it into b.
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A presheaf on A is a coherent set of costs for disposing of the resource in A. The presheaf
condition:

A(a, b) + F (b) ≥R F (a)

requires that it is always cheaper to dispose of a resource a directly, rather than pay the
cost A(a, b) to convert it to some b and then pay the cost to destroy b.

I Example 17. We consider profunctors from a resource perspective, using the multiplicative
quantale. A profunctor R : A −7−→ B satisfies:

A(a′, a)×R(a, b)× B(b, b′) ≤R R(a′, b′)

If we interpret R as describing a probabilistic device for converting A resources to B resources,
the profunctor axiom says that the device will convert a′ to b′ with a success probability
higher than the product of the probabilities of converting a′ to a in A, and then using R to
convert a to b, and then converting b to b′ in B, as shown below:

a

a’ b’

b

A(a, a′)

R(a′, b′)

B(b′, b)

Notice the probabilities here describe the chances of success of a chosen conversion, rather
than which conversion will take place, as might be seen in stochastic relations for example.
I Remark (Separation of Concerns). Profunctors are the first point at which we see that
the enriched categorical framework provides a clear separation of concerns between free
and costly resources. The domain and codomain model the resources freely available. The
transition costs encoded by the profunctor then provide additional resources conversions,
with the profunctor axiom requiring that these all these conversions are better than can be
achieved by additionally exploiting free resources.

I Definition 18. Given profunctors R : A −7−→ B and S : B −7−→ C, we can form their
composite S ◦R : A −7−→ C, defined pointwise as follows:

(S ◦R)(a, c) =
∨
b

R(a, b)⊗ S(b, c)

This composition is associative, and has identity at A given by:

1A(a, a′) = A(a, a′)

Therefore Q-profunctors form a category Prof(Q).

I Example 19. Continuing example 17, we consider the composition of two M-profunctors,
R : A −7−→ B and S : B −7−→ C. Intuitively, the value:

(S ◦R)(a, c) = sup
b
{R(a, b)× S(b, c)}

describes the best probability achievable for converting a to c via some intermediate b using
the two probabilistic devices described by R and S.
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I Remark. In general, composition of profunctors is defined using colimits in the enriching
category. Therefore we can only expect associativity and unitality of composition to hold up
to isomorphism, pointing us in the more complicated direction of bicategories. Fortunately,
the only isomorphisms in a quantale are the identities, and so composition is defined “on the
nose”, yielding a genuine category.

The tensor structure of definition 13 gives Prof (Q) the structure of a symmetric monoidal
category. In fact it is a compact closed category [20], and so has a powerful graphical calculus
that can be exploited in calculations.
As profunctors are a generalization of binary relations, and relations are closed under taking
unions, we may expect similar structure of profunctors.

I Definition 20. A complete join semilattice enriched category is an ordinary category such
that the hom sets are complete join semilattices, and the following axioms hold:(⊔

i

Si

)
◦R =

⊔
i

(Si ◦R) and S ◦

(⊔
i

Ri

)
=
⊔
i

(S ◦Ri)

Complete join semilattice enrichment also implies that hom sets have a partial order ⊆ such
that composition is monotone in both components.

The following then gives us a straightforward generalization of taking unions of ordinary
binary relations.

I Lemma 21. For a commutative quantale Q, the category Prof(Q) is complete join
semilattice enriched with:(⊔

i

Ri

)
(a, b) =

∨
i

Ri(a, b)

If we return to our resource theoretic perspective,
⊔
iRi combines the best capabilities of a

family of different resource conversion options. The induced order R ⊆ S is equivalent to
there being a Q-natural transformation R⇒ S. We require another specialized definition.

I Definition 22 (Internal Monad). An internal monad in a complete join semilattice
enriched category is an endomorphism R : A→ A such that both:

1A ⊆ R and R ◦R ⊆ R

Internal monads are an important concept. From the point of view of resources, an internal
monad captures closure under repeated application of the available conversions. We can
think of an internal monad on A as describing a “better” Q-enriched category structure on
the objects of A.

I Example 23 (Internal Monads as Better Structures). An internal monad R : A −7−→ A
in Prof (L) is a selection of resource conversion costs that is closed under composition. That
is, the cost R(a, a′) will be cheaper than the cost of any iterated conversion:

a→ b1 → ...→ bn → a′

Such a monad provides resource conversion costs that are closed under composition, and
better than those of the underlying category A.

Similarly, an internal monad P : A −7−→ A in Prof(B) is a preorder stronger than the
original order on A.

We shall encounter internal monads again in sections 5, 6 and 7 as we introduce richer
structure to our resources.
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4 A Hierarchy of Resource Structures

So far, we have considered only conversions between individual resources. In this section, we
introduce additional structure that will allow us to consider conversions that require multiple
inputs, such as the custard recipe of the introduction.

I Definition 24. A Q-category A is:
Strictly monoidal if the objects carry a monoid structure ⊗, I such that:

A(a1, b1)⊗A(a2, b2) ≤ A(a1 ⊗ a2, b1 ⊗ b2)

From here on, we will drop explicitly saying “strictly” and simply use the term monoidal Q-
category.
Symmetric monoidal if it is monoidal and for all a, b ∈ A:

k ≤ A(a⊗ b, b⊗ a)

Deleting if it is symmetric monoidal, and for all a ∈ A:

k ≤ A(a, I)

Copying if it is symmetric monoidal, and for all a ∈ A:

k ≤ A(a, a⊗ a)

Cartesian if it is both copying and deleting.
A homomorphism of each of these special sorts of Q-categories is a Q-functor that is a monoid
homomorphism with respect to the monoid structure on objects.

Each of these structures has a resource theoretic reading. A monoidal Q-category allows us to
combine ordered collections of resources. This setting is very restrictive, we are not necessarily
able to even adjust the order of the resources provided. A symmetric monoidal Q-category
allows us to cheaply interchange the order of resources. If a Q-category is deleting, we can
also delete resources we do not need, and if it is copying, we can copy available resources,
effectively making them reusable. This perspective will be most apparent in the forthcoming
free constructions, in which the objects are lists of resources.

We also introduce some additional properties of quantales that we will require, using
terminology paralleling that used for Q-categories.

I Definition 25. We say that a quantale Q is:
Deleting if the monoid unit k is the top element.
Copying if the for all q ∈ Q, q ≤ q ⊗ q.
Cartesian if it is both copying and deleting2.

In this section we describe a hierarchy of free constructions on Q-enriched categories. This
family of constructions is reminiscent of the Boom type hierarchy [26] familiar to the
functional programming community, in which varying the axioms required of a construction
of a particular shape results in a family of different datatypes. In our case, the objects of
each free construction will be lists of resources. The interesting structure is in the hom
objects, which will encode the resource conversions we wish to provide as standard. We will
therefore frequently need to work with finite lists.

2 A commutative quantale is Cartesian if and only if it is a locale.
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IDefinition 26 (List Notation). We will write [a] for the singleton list. For a list of elements A,
we will write Ai for the ith element of the list and #A for the length of the list. We will
also write i : #A to mean 1 ≤ i ≤ #A, and ⊗i:#Aτi as shorthand for the iterated tensor
product τ1⊗ ...⊗ τ#A. We will also abuse notation, and identify #A with the set {1, ...,#A}.

I Theorem 27. For a commutative quantale Q, Q-category A, and lists of A-objects A,B,
define:∨

ψ:#B→#A
⊗i:#BA(Aψi, Bi) (2)

The following categories all have objects finite lists of elements from A:
The free monoidal Q-category L(A) has hom objects L(A)(A,B) given by expression (2)
with ψ restricted to identity functions.
The free symmetric monoidal Q-category M(A) has hom objects M(A)(A,B) given by
expression (2) with ψ restricted to permutations.
If Q is deleting, the free deleting Q-category D(A) has hom objects D(A)(A,B) given by
expression (2) with ψ restricted to injective functions.
If Q is copying, the free copying Q-category C(A) has hom objects C(A)(A,B) given by
expression (2) with ψ restricted to surjective functions.
If Q is Cartesian, the free Cartesian Q-category K(A) has hom objects K(A)(A,B) given
by expression (2) with ψ ranging over all functions.

Proof. We sketch the required argument. In each case, the universal morphism is given by
the map to the singleton list, which can be verified to be a Q-functor. It follows from the
universal property of the free monoid construction on sets that there is a unique possible
fill in Q-functor. This can be confirmed by direct calculation, exploiting the additional
properties of Q in the deleting, copying and Cartesian cases. J

Given they result from a free / forgetful adjunction, each of the constructions of theorem 27
yields a monad on Cat(Q). We wish to lift this structure to profunctors. As profunctors
are analogous to binary relations, we might expect they arise as the Kleisli category of a
generalization of the powerset monad. Recall [19] that the presheaves on a Q-category form
a Q-category themselves. In fact, this is the free cocompletion, in the enriched sense. In
general this construction does not induce a monad as there are size issues, leading to the
need for more complex machinery [9]. In the case of quantale enrichment, we are fortunate
as this problem goes away, and it can be shown that Prof(Q) is the Kleisli category of the
free cocompletion monad. Lifting a monad to Prof(Q) can then be done by exhibiting an
appropriate distributive law [1].

I Theorem 28. Let Q be a commutative quantale, P the free cocompletion comonad, A
a Q-category, A a list of A-objects, and F a list of presheaves on A. Define:∨

ψ:#F→#A
⊗i:#FFiAψi (3)

There is a distributive law λL : LP ⇒ PL with λLA(F )(A) given by expression (3), with ψ
restricted to identity functions.
There is a distributive law λM : MP ⇒ PM with λMA (F )(A) give by expression (3),
with ψ restricted to permutations.
If Q is deleting, there is a distributive law λD : DP ⇒ PD with λDA(F )(A) given by
expression (3), with ψ restricted to injective functions.
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If Q is copying, there is a distributive law λC : CP ⇒ PC with λCA(F )(A) given by
expression (3), with ψ restricted to surjective functions.
If Q is Cartesian, there is a distributive law λK : KP ⇒ PK with λKA (F )(A) given by
expression (3), with ψ ranging over all functions.

Proof. We can only sketch the proof. We first confirm that the components of each law are
valid Q-functors, and naturality of their components. With this in place, we verify Beck’s
axioms [1] by direct calculation. This is a long series of calculations to cover all the cases.
Generally establishing the unit laws is routine. The naturality checks and multiplication
laws are less straightforward, particularly in the deleting, copying and Cartesian cases. In
these cases, we must carefully apply the additional quantale axioms to confirm the required
properties, effectively by “copying” and “deleting” sub-terms in calculations. J

I Corollary 29. As Prof(Q) is self-dual, each of the constructions L,M,D,C,K induces a
comonad (!, ε, δ) 3 on Prof(Q), with action on morphisms:

!R(A,B) =
∨

ψ:#B→#A
⊗i:#BR(Aψi, Bi)

Where ψ is restricted appropriately as in theorem 27. The component of the counit and
comultiplication at A are:

εA :!A −7−→ A
εA(A, a) =!A(A, [a])

δA :!A −7−→!!A
δA(A,A) =!A(A, concatA)

Here, concat denotes list concatenation.

Proof. Although this is a natural construction, it is necessary to be careful with the various
dualities involved, as some of the constructions on profunctors are necessarily oriented in
nature. J

From the point of view of resources, the quantale value εA(A, a) is the best way to convert
the list A into the single [a], using the structural features of !A. Similarly, δA(A,A) is the
best way to convert the lists A into the concatenation of the list of list A using the structural
features of !A.
I Remark. These co-Kleisli categories carry a lot of additional structure that unfortunately
we have insufficient space to exploit here. This includes further enrichment, various type
constructors, and operations induced by the Day convolution [5]. Depending on the choice of
comonad, there may also be higher order and differential structure [6]. This provides a rich
algebra for calculations involving quantitative resources, formally similar to the calculus of
generalized species presented in [7, 8].

5 Multicategories

If we examine a morphism A → B in the co-Kleisli category of one of the comonads in
section 4, concretely, this is a profunctor of the form !A −7−→ B. From a resource perspective,
we can read this as describing conversions from lists of A-resources to B-resources. So the
comonad allows us to describe many-to-one resource conversions, diagrammatically:

3 Our notation is a nod to connections with relational linear logic models.
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Depending on our choice of comonad, we can incorporate different structural aspects of the
free conversions available, for example we may be able to cheaply reorder, copy or delete
resources.

It is instructive to consider the co-Kleisli composition S •R of two such morphisms. This
is given in Prof(Q) by the composite:

!A δA−7−→!!A !R−7−→!B S−7−→ C

Intuitively, we can read the three steps as follows:
1. We first break our list of resources up into a list of lists, using the comultiplication δA.
2. We then use the resource conversions provided by R to process each of the sub-lists.
3. Finally, we process the resulting list using S, resulting in a two step multi-input conversion,

which we might depict:

Then (S • R)(A, c) gives the best two stage conversion achievable converting the list of
resources A to the resource c. The choice of comonad incorporates the structural aspects,
such as copying or deleting, that we are prepared to permit.

What if we want to consider repeated many-to-one conversions? For that we must confirm
a bit more structure is available.

I Proposition 30. Each of the comonads of corollary 29 preserves non-empty joins.

I Corollary 31. Each of the co-Kleisli categories of these comonads is a non-empty join
semilattice enriched category.

It therefore makes sense to consider internal monads in our co-Kleisli categories. These
internal monads quantify what we might call multi-conversions, in a manner that is closed
under identities and composition. That is, they are generalizations of coloured operads [25],
otherwise termed multicategories [21].

I Remark. This perspective on internal monads in such co-Kleisli bicategories is discussed
in [8, 17]. There, they restrict to internal monads on discrete categories. However, in our
setting, multicategories with non-discrete endpoints are a virtue. They describe the freely
available resource conversions. The discrete case would say that the only freely available
resource conversions are the trivial ones.

I Example 32. Even in the B-enriched case, such multicategories are interesting objects.
They are a multi-input generalization of preorders, describing the possibility of various
multi-conversions being achievable. Possible conversions can be chained together, and trivial
conversions are available. The choice of comonad introduces additional structure. For
example in the deleting case, the list of resources [a, b, c] is always convertible to [a], by
discarding the other resources.
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6 Bimodules

In section 3 we showed how single input - single output resource conversions could be modelled
as profunctors. In sections 4 and 5 we introduced additional comonadic structure that allowed
us to introduce many-to-one costly resource conversions. In this section we show that an
extra layer of abstraction allows us to model freely available many-to-one conversions with
our categorical framework. We require the notion of bimodule between monads.

I Definition 33. Let C be a preorder enriched category. For internal monads (A, RA)
and (B, RB), a bimodule of type (A, RA) ◦−→ (B, RB) is a C-morphism S : A → B such
that:

S ◦RA ⊆ S and RB ◦ S ⊆ S

As with our previous mathematical structures, it is helpful to think of bimodules as binary
relations respecting some additional structure.

I Proposition 34. In a non-empty join semilattice enriched category C, bimodules between
monads include the identity morphisms, and are closed under both composition and joins
in C. They therefore form a non-empty join semilattice enriched category Bimod(C).

Bimodules between monads can be defined more generally, but their composition becomes
more complicated, requiring a coequalizer construction not present in proposition 34. For-
tunately, the quantale enriched setting circumvents this additional complexity. Resource
theoretically, bimodules on our co-Kleisli categories have good properties:

As coKleisli(!) morphisms, they model multi-conversions between A and B resources.
These conversions are closed under precomposition with the multi-conversions described
by the monad (A, RA).
The conversions are also closed under post composition with the multi-conversions
described by the monad (B, RB).

That is, they are exactly the right categorical object for describing resource conversions
respecting freely available multi-conversions. As a corollary of proposition 34, we note that:

I Corollary 35. The category coKleisli(!) is complete join semilattice enriched for any of
the comonads introduced in section 4.

Corollary 35 tells us that we can take composites and unions of bimodules to build more
interesting structures. Also, we can consider internal monads in the categories of bimodules of
interest. These can be seen as multicategories that respect freely available multi-conversions.

7 Reflexive Transitive Closure

Given the importance of internal monads in earlier sections, we briefly consider how they
can be constructed from simpler data in complete join semilattice enriched categories. We
require a new definition.

I Definition 36. Let C be a complete join semilattice enriched category. A monad T : A → A
is free over an arbitrary endomorphism R : A → A if it is the least monad containing R.

We fall back on our intuition that each of our categories of interest can be interpreted as a
category of generalized binary relations. It is therefore natural to ask if some operations on
ordinary relations have analogues in this setting. The construction of immediate interest is a
generalization of reflexive transitive closure.
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I Proposition 37. In a non-empty join semilattice enriched category C, the free monad
induced by an endomorphism R : A→ A is given by:

F (R) =
⊔
i

Ri where R0 = 1A and Rn+1 = R ◦Rn

Recalling lemma 21, and corollaries 31 and 35, the categories Prof(Q), coKleisli(!) for any
of the hierarchy of comonads of section 4, and the categories of bimodules on these co-Kleisli
categories are all appropriately enriched. Therefore, we can conclude:

I Corollary 38. Every endomorphism in our categories of interest can be used to construct
a free internal monad using the reflexive transitive closure construction of proposition 37.

In this way we can take some basic data specifying one-to-one or many-to-one resource
conversions of interest. We can close them under composition in a canonical way.

8 Conclusion

We presented a flexible foundation for constructing compositional, quantitative models of
resources, within which:

There is a clear separation of concerns between freely available resource conversion,
encoded as objects in our categories, and the costly conversions, encoded in the morphisms.
Profunctors quantify one-to-one resource conversions, parameterized by a choice of
quantity such as costs or probabilities.
Morphisms in suitable co-Kleisli categories describe many-to-one resource conversions,
parameterized by a choice of structural features such as copying and deleting.
Bimodules model many-to-one resource conversions in which the freely available conver-
sions may also include such multi-conversions.
Throughout, internal monads capture closure under composition, yielding generalizations
of categories or multicategories suitable for the quantitative setting.
Free internal monads provide a convenient mechanism for building these (multi)categories
from simpler data.
The underlying objects can be considered as generalized relations, or just certain matrices
of truth values, meaning calculations do not require difficult mathematical machinery.

Our approach is open to extension. For example, it is natural to also consider multi-input to
multi-output conversions, in the style of polycategories [28]. These can be formulated in a
similar manner to that used in sections 4 and 5. For the ordinary categorical setting this is
technically complex, and has been developed by Garner [11, 10, 12]. Given the degeneracy
of quantale enriched categories, we anticipate a more elementary approach will be feasible,
and aim to develop this in later work.

We have focused on models. It would be interesting to develop corresponding syntactic
aspects, in the form of a suitable metalanguage. Discussions in the related work of [16]
and [8] suggest such a language will have a process algebraic feel, but we leave the details to
later work.

Finally, a more speculative suggestion. Exciting recent categorical work on compositional
game theory [13] has shown surprising applications of category theory in economic settings.
Given the intrinsic interest of economists in both resources and costs, it would be interesting
to explore applications of our approach in that setting.

CSL 2018



32:16 Quantitative Foundations for Resource Theories

References
1 Jon Beck. Distributive laws. In Seminar on triples and categorical homology theory, pages

119–140. Springer, 1969.
2 Gérard Boudol. The lambda-calculus with multiplicities. In International Conference on

Concurrency Theory, pages 1–6. Springer, 1993.
3 Fernando GSL Brandao, Michał Horodecki, Jonathan Oppenheim, Joseph M Renes, and

Robert W Spekkens. Resource theory of quantum states out of thermal equilibrium. Phys-
ical review letters, 111(25):250404, 2013.

4 Bob Coecke, Tobias Fritz, and Robert W Spekkens. A mathematical theory of resources.
Information and Computation, 250:59–86, 2016.

5 Brian Day. On closed categories of functors. In Reports of the Midwest Category Seminar
IV, pages 1–38. Springer, 1970.

6 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Com-
puter Science, 309(1-3):1–41, 2003.

7 Marcelo Fiore. Generalised species of structures: Cartesian closed and differential struc-
tures, 2004. Talk slides.

8 Marcelo Fiore. Mathematical models of computational and combinatorial structures. In
International Conference on Foundations of Software Science and Computation Structures,
pages 25–46. Springer, 2005.

9 Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. Relative pseudomon-
ads, Kleisli bicategories, and substitution monoidal structures. Selecta Mathematica, pages
1–40, 2016.

10 Richard Garner. Double clubs. Cahiers de Topologie et Géométrie Différentielle
Catégoriques, 47(4):261–317, 2006.

11 Richard Garner. Polycategories. PhD thesis, University of Cambridge, 2006.
12 Richard Garner. Polycategories via pseudo-distributive laws. Advances in Mathematics,

218(3):781–827, 2008.
13 Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, pages 472–481, 2018. doi:10.1145/3209108.
3209165.

14 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
15 Gilad Gour, Markus P Müller, Varun Narasimhachar, Robert W Spekkens, and Nicole Yun-

ger Halpern. The resource theory of informational nonequilibrium in thermodynamics.
Physics Reports, 583:1–58, 2015.

16 Martin Hyland. Some reasons for generalising domain theory. Mathematical Structures in
Computer Science, 20(2):239–265, 2010.

17 Martin Hyland. Elements of a theory of algebraic theories. Theoretical Computer Science,
546:132–144, 2014.

18 Peter T Johnstone. Stone spaces, volume 3. Cambridge University Press, 1986.
19 Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.

Available as a TAC reprint.
20 Max Kelly and Miguel L Laplaza. Coherence for compact closed categories. Journal of

Pure and Applied Algebra, 19:193–213, 1980.
21 Joachim Lambek. Deductive systems and categories II. Standard constructions and closed

categories. In Category theory, homology theory and their applications I, pages 76–122.
Springer, 1969.

22 F William Lawvere. Metric spaces, generalized logic, and closed categories. Rendiconti del
seminario matématico e fisico di Milano, 43(1):135–166, 1973.

http://dx.doi.org/10.1145/3209108.3209165
http://dx.doi.org/10.1145/3209108.3209165


D. Marsden and M. Zwart 32:17

23 Tom Leinster. Higher operads, higher categories, volume 298. Cambridge University Press,
2004.

24 Iman Marvian and Robert W Spekkens. The theory of manipulations of pure state asym-
metry: I. Basic tools, equivalence classes and single copy transformations. New Journal of
Physics, 15(3):033001, 2013.

25 J Peter May. The Geometry of Iterated Loop Spaces. Springer, 1972.
26 Lambert Meertens. Algorithmics-towards programming as a mathematical activity. Math-

ematics and Computer Science, 1, 1986. CWI Monographs (JW de Bakker, M. Hazewinkel,
JK Lenstra, eds.) North Holland, Puhl. Co, 1986.

27 Dusko Pavlovic. Quantitative concept analysis. In International Conference on Formal
Concept Analysis, pages 260–277. Springer, 2012.

28 ME Szabo. Polycategories. Communications in Algebra, 3(8):663–689, 1975.
29 Thomas Theurer, Nathan Killoran, Dario Egloff, and Martin B Plenio. Resource theory of

superposition. Physical review letters, 119(23):230401, 2017.

CSL 2018





On Compositionality of Dinatural Transformations
Guy McCusker1

University of Bath, United Kingdom
G.A.McCusker@bath.ac.uk

https://orcid.org/0000-0002-0305-6398

Alessio Santamaria2

University of Bath, United Kingdom
A.Santamaria@bath.ac.uk

https://orcid.org/0000-0001-7683-5221

Abstract
Natural transformations are ubiquitous in mathematics, logic and computer science. For op-
erations of mixed variance, such as currying and evaluation in the lambda-calculus, Eilenberg
and Kelly’s notion of extranatural transformation, and often the even more general dinatural
transformation, is required. Unfortunately dinaturals are not closed under composition except
in special circumstances. This paper presents a new sufficient condition for composability.

We propose a generalised notion of dinatural transformation in many variables, and extend
the Eilenberg-Kelly account of composition for extranaturals to these transformations. Our main
result is that a composition of dinatural transformations which creates no cyclic connections
between arguments yields a dinatural transformation.

We also extend the classical notion of horizontal composition to our generalized dinaturals
and demonstrate that it is associative and has identities.
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which may alternatively be pictured as follows:

f id

=

id f

F
( )
ϕ

G
( )

F
( )
ϕ

G
( )

In this picture, each box represents an argument of a functor, while the vertical lines instances
of the transformation. With this reading, the diagrammatic equation above is the same as
the standard naturality square. Later we will give a precise meaning to pictures of this kind
and make use of them in our proofs. For now, they will provide useful intuition.

When dealing with logic, type theory and programming languages, often we encounter
transformations between functors of mixed variance, like the evaluation map evA,B : A×(A⇒
B) → B. Eilenberg and Kelly [5] developed the notion of extranatural transformation to
account for this. The equational property of ev is explained by means of graphs:

A× (A′ ⇒ B) A′ × (A′ ⇒ B)

A× (A⇒ B′) B′

f×(id⇒g)

id ×(f⇒id) evA′,B′

evA,B

!
f id g

idA′
B′

×
(

⇒
)

=
id f id

gA

B

×
(

⇒
)

(Grey boxes indicate contravariant arguments of the functors involved.) ev = (evA,B) is said
to be extranatural in A and natural in B. Note that the connections show which arguments
of the functors involved must be set equal in order for an equational property to hold. There
is one connected component in the graph for each such collection of arguments. Eilenberg and
Kelly show that a composite of extranatural transformations is again extranatural, provided
the graph obtained by pasting the graphs together along the common interface is acyclic.

In the graphs of all the transformations we have seen so far, arguments are linked in pairs.
For transformations such as the diagonal δ = (δA : A→ A×A), this is a limitation. Though
its equational properties are adequately described using the naturality of a transformation
from the identity functor idC to the diagonal functor ∆, this account becomes clumsy if we
attempt to discuss the associativity of the diagonal operation, for example. One would prefer
to picture it as:

Kelly [13] points this out, and suggests that a more general notion of natural transformation,
in which graphs have ramifications, may be available, but does not go on to develop it.

Such ramifications have ramifications. One source of difficulty is that composing these
generalised natural and extranatural transformations quickly leads to dinatural transforma-
tions [4]. For example, working in a cartesian closed category, by composing the diagonal δ
and evaluation evB = (evBA : A× (A⇒ B)→ B)A∈C, we can construct morphisms

ψBA = δA × idA⇒B ; idA×evBA : A× (A⇒ B)→ A×B.

By pasting together the graphs of the transformations δA×idA⇒B and idA×evBA we obtain
the following depiction of the appropriate “naturality” in A for this family of morphisms.
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(From now on we drop the name of the functors involved and retain only the boxes and the
lines, an empty box being the same as a box containing an identity.)

A× (A′ ⇒ B) A′ × (A′ ⇒ B)

A× (A⇒ B) A×B A′ ×B

id ×(f⇒id)

f×(id⇒id)

ψB
A′

ψBA f×id

f

=

f

f

This is not a natural nor an extranatural transformation, but a dinatural transformation.
Dinatural transformations are families of morphisms between functors of the form Cop×C→ C
where the dinaturality condition can be drawn as follows:

f

f

=

f

f

Dinatural transformations arise often in a computer science context. For instance the
Church numerals n = (nA : (A ⇒ A) → (A ⇒ A)) and the fixed point combinator Y =
(YA : (A ⇒ A) → A) are dinatural transformations, with graphs

and

(We note Curry’s prescience in his naming of the Y combinator.) More generally, dinatural
transformations have been proposed as a suitable way to understand parametric polymorph-
ism [1] and as an interpretation of cut-free proofs, or equivalently typed lambda terms [8].
But dinatural transformations suffer from a troublesome shortcoming: they do not compose.

Our pictorial representation makes it clear that there is no reason to expect these to be
closed under composition: starting from the situation as pictured on Figure 1 below, there is
no way to reach a situation where the dinaturality of either transformation may be applied.
Under special circumstances, such as when certain squares of morphisms are pullbacks or
pushouts, the composite may turn out to be dinatural, but not as a direct consequence of
the dinaturality of the two transformations.

In contrast to Eilenberg and Kelly’s treatment of extranatural transformations, the usual
description of dinatural transformations concerns functors of one argument (strictly speaking
two arguments, of different variance, that are required to be equal). A consequence of this is
that any composition of dinaturals appears to have a cyclic dependency among arguments,
as seen in Figure 1.

In this paper we introduce a generalised notion of dinatural transformation. As in [13],
our transformations are equipped with a graph as part of their data whose composition does
not always form a cycle. These transformations enjoy a similar compositionality property to
the extranaturals: as long as no cycles are created, dinaturality is preserved by composition.

CSL 2018
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f

f

Figure 1 Cycles and impossibility to apply dinaturality.

Thus, one is freed from the burden of conducting ad hoc verification of dinaturality conditions.
For example, the dinaturality theorems of [8] can readily be proved by drawing the graphs of
the transformations interpreting cut-free proofs and observing that they are acyclic. The
proof of our result is significantly more demanding than Eilenberg and Kelly’s case, because
of the ramifications in the dependency graphs. But to a computer scientist these graphs
have a familiar appearance: they look and behave like Petri nets. Our argument proceeds
by formalising a correspondence between morphisms built from functors and dinatural
transformations and configurations of Petri nets. The desired dinaturality equation reduces
to a question of reachability of one configuration from another, which is readily settled using
the theory of Petri nets. In this way we not only discover a helpful sufficient condition
for composability of dinaturals but also turn an intuitive diagrammatic reasoning method
into a formal tool. Moreover, one can show that ours is also an “essentially necessary”
condition: if the dinaturality of a composite transformation ϕ;ψ may be derived using only
the dinaturality of ϕ and ψ, then the composite graph is acyclic (cf. [12, §1.3]). For lack of
space we do not present the proof of this fact here.

The above discussion concerns only the “vertical” composition of transformations. Natural
transformations may also be composed horizontally; this operation is needed when one wishes
to substitute functors for the arguments of other functors, and apply transformations between
them. Kelly already noticed this in his generalisation of Godement calculus for functors
and natural transformations in many variables [13]. To date we are not aware of any
generalisation of this operation to dinatural transformations. Our second contribution is to
develop a notion of horizontal composition for our dinatural transformations that extends
the well known version for natural transformations and establish that it is associative and
has identities. Unfortunately, we seem to have lost one of the fundamental properties
of horizontal composition of natural transformations: compatibility with the vertical one.
Indeed, an analogous version of interchange law for the natural case does not (cannot) hold
with dinatural transformations, even when we restrict ourselves to simple cases. The problem
stems from the “shape”, as it were, of the dinaturality condition, that prevents the vertical
composability of the two horizontal compositions. A different kind of interchange law seems
to be needed, but as yet we have not been able to find one that works, not even for Eilenberg
and Kelly’s transformations with no ramifications. We shall dedicate the near future to
investigate this matter and hopefully we shall solve this rather natural problem.

Related work. Our interest in this topic arose from a desire to understand better the algeb-
raic properties of Guglielmi and Gundersen’s atomic flows [10, 9], which are an abstraction
of information flow in classical logic proofs. The graphical structures we use extend so-called
Kelly-Mac Lane graphs [14] which originated with Eilenberg and Kelly [5] and may be seen
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as string diagrams for closed categories; the wide variety of string diagrams is surveyed in
[19]. They are closely related to proof nets encountered in the proof theory of linear logic [7].
Blute [2] studies dinatural transformations corresponding to proofs of multiplicative linear
logic and establishes a compositionality result for that case. Freyd, Robinson and Rosolini [6]
studied dinaturality in the category of PERs. The close relationship between dinaturality
and fixed point combinators was studied by Mulry [16] and Simpson [20].
I Notation. We denote by I the category with one object and one morphism. Let α ∈
List{+,−}, |α| = n. We refer to the i-th element of α as αi. We denote by α the list
obtained from α by swapping the signs. Given a category C, if n ≥ 1, then we define
Cα := Cα1 × · · · × Cαn , with C+ = C and C− = Cop, otherwise Cα := I. Composition of
morphisms f : A→ B and g : B → C will be denoted by g ◦ f , gf or also f ; g. N is the set of
natural numbers, including 0. Given n ∈ N, we ambiguously denote n for both the number n
and the set {1, . . . , n}.

2 Dinatural transformations, types and vertical composition

To make precise the graphical ideas introduced above, we employ a notion of type for our
transformations, following Kelly [13]. The type indicates how the various arguments of the
domain and codomain functors are related by naturality conditions.

The category Types. Let Types be the category of cospans [3] of finite sets and functions;
that is, Types has N as its set of objects, and a morphism f : n → m is a cospan f =(
n k mσ τ )

; different cospans counting as the same morphism if they differ only by an
automorphism, that is a permutation, of k. Given n ∈ N, the identity morphism on n is the
cospan of idn. Composition of f and g =

(
m p tσ′ τ ′ ) is the cospan gf = (n q t)

got by computing the pushout of τ against σ′ as functions:

t

m p

n k q

τ ′

τ
p

σ′

ξ

σ ζ

(1)

Transformations. Throughout this section, we fix a category C.

I Definition 1. Let α, β ∈ List{+,−}, T : Cα → C, S : Cβ → C functors. A transformation
ϕ : T → S of type f =

(
|α| k |β|σ τ )

(with k positive integer) is a family of morphisms(
ϕA1,...,Ak : T

(
Aσ1, . . . , Aσ|α|

)
→ S

(
Aτ1, . . . , Aτ |β|

))
(A1...Ak)∈Ck

.

Functions σ and τ tell us which of the |α| arguments of T and the |β| arguments of S must
be equated, and also which among A1, . . . , Ak to use in each “slot”. Notice that σ and τ
need not be surjective, so we can define transformations with “unused variables”.

I Definition 2. Let ϕ : T → S of type f be a transformation as in Definition 1, R : Cγ → C
and ψ : S → R a transformation of type g =

(
|β| p |γ|σ′ τ ′ )

, so that we have, for all
B1, . . . , Bp,

ψB1,...,Bp : S
(
Bσ′1, . . . , Bσ′|β|

)
→ R

(
Bτ ′1, . . . , Bτ ′|γ|

)
.
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The vertical composition ψ ◦ ϕ is defined as the transformation of type

gf = |α| q |γ|ζσ ξτ ′

where ζ and ξ are given by (1) and (ψ ◦ ϕ)C1,...,Cq
is the composite:

T
(
Cζσ1, . . . , Cζσ|α|

)
S
(
Cζτ1, . . . , Cζτ |β|

)
S
(
Cξσ′1, . . . , Cξσ′|β|

)
R
(
Cξτ ′1, . . . , Cξτ ′|γ|

)
ϕCζ1,...,Cζk

=

ψCξ1,...,Cξp

(Notice that by definition ϕCζ1,...,Cζk requires that the i-th variable of T be the σi-th element
of the list (Cζ1, . . . , Cζk), which is indeed Cζσi.)

I Definition 3. Consider T : Cα → C, S : Cβ → C, ϕ : T → S a transformation of type
|α| k |β|σ τ as in Definition 1. For i ∈ {1, . . . , k}, we say that ϕ is dinatural in Ai (or,
more precisely, in its i-th variable) if and only if for all A1, . . . , Ai−1, Ai+1, . . . , Ak objects of
C and for all f : A→ B in C the following diagram commutes:

· ·

· ·

· ·

ϕA1,...,Ai−1,B,Ai+1,...,Ak

S(y1,...,y|β|)T (x1,...,x|α|)

T (x′1,...,x
′
|α|) ϕA1,...,Ai−1,A,Ai+1,...,Ak

S(y′1,...,y
′
|β|)

where

xj =


f σj = i ∧ αj = +
idB σj = i ∧ αj = −
idAσj σj 6= i

yj =


idB τj = i ∧ βj = +
f τj = i ∧ βj = −
idAτj τj 6= i

x′j =


idA σj = i ∧ αj = +
f σj = i ∧ αj = −
idAσj σj 6= i

y′j =


f τj = i ∧ βj = +
idA τj = i ∧ βj = −
idAτj τj 6= i

I Remark. Definition 3 is a generalisation of the well known notion of dinatural transformation,
which we can obtain when α = β = [−,+] and k = 1. Here we are allowing multiple variables
at once and the possibility for T and S of having an arbitrary number of copies of C and
Cop in their domain, for each variable i ∈ {1, . . . , k}.

It is known that dinatural transformations generalise natural and extranatural ones. Here
we make this fact explicit by defining the latter as particular cases of dinatural transformations
where the functors and the type have a special shape: essentially, a dinatural transformation
ϕ : T → S is natural in Ai if T and S are both covariant or both contravariant in the variables
involved by Ai; ϕ is extranatural in Ai if one of the functors T and S does not involve the
variable Ai while Ai appears both covariantly and contravariantly in the other.

I Definition 4. Let ϕ : T → S be a transformation as in Definition 1. ϕ = (ϕA1,...,Ak) is
said to be natural in Ai if and only if

it is dinatural in Ai;
∀u ∈ σ−1{i}. ∀v ∈ τ−1{i}. (αu = βv = +) ∨ (αu = βv = −).



G. McCusker and A. Santamaria 33:7

ϕ is called extranatural in Ai if and only if
it is dinatural in Ai;(
σ−1{i} = ∅ ∧ ∃j1, j2 ∈ τ−1{i}. βj1 6= βj2

)
∨
(
τ−1{i} = ∅ ∧ ∃i1, i2 ∈ σ−1{i}. αi1 6= αi2

)
.

Notice that our notion of (extra)natural transformations is more general than the one
given by Eilenberg and Kelly in [5], as we allow the arguments of T and S to be equated not
just in pairs, but in an arbitrary number, according to σ and τ .

I Example 5. Suppose that C is a cartesian category, with × : C × C → C the product
functor, and consider the diagonal transformation δ = (δA : A → A × A)A∈C : idC → × of
type 1 1 2. We have that δ is natural in its only variable.

I Example 6. Suppose that C is a cartesian closed category, fix an object R in C, and
consider the functor

C× Cop C
(A,A′) (A′ ⇒ R)×A

T

The evaluation evR = (evRA : T (A,A) → R)A∈C : T → R is a transformation of type
2 1 0 which is extranatural in its only variable.

We proceed now to study the composability problem for dinatural transformations. Let
ϕ : F1 → F2 and ψ : F2 → F3 be transformations where

Fi : Cα
i → C is a functor for all i ∈ {1, 2, 3},

ϕ and ψ have type, respectively,

|α1| k1 |α2|σ1 τ1 and |α2| k2 |α3|.σ2 τ2

We shall establish conditions under which ψ ◦ϕ is dinatural in some of its variables. In order
to do so, we associate to ψ ◦ ϕ a graph which somehow reflects the signature of ϕ and ψ.

The graph of ψ ◦ϕ. We assign to ψ ◦ϕ a directed bipartite graph Γ(ψ ◦ϕ) whose vertices
are given by (distinct) finite sets P and T , while·−,−·: T → P(P ) are the input and output
functions for elements in T (that is, there is an arc from p to t if and only if p ∈·t, and there
is an arc from t to p if and only if p ∈ t·), as follows: P = |α1|+ |α2|+ |α3|, T = k1 + k2
and, indicating with ιi : |αi| → P and ρi : ki → T the canonical injections,

·(ρi(t)) = {ιi(p) | σi(p) = t, αip = +} ∪ {ιi+1(p) | τi(p) = t, αi+1
p = −}

(ρi(t))·= {ιi(p) | σi(p) = t, αip = −} ∪ {ιi+1(p) | τi(p) = t, αi+1
p = +}

In other words, the inputs of a variable t of transformation ϕ are the covariant arguments of
F1 and the contravariant arguments of F2 which are mapped by σ1 and τ1, respectively, to t;
similarly for outputs of t (swapping ‘covariant’ and ‘contravariant’) and for variables of ψ.
Graphically, we draw elements of P as white or grey boxes (if corresponding to a covariant
or contravariant argument of an Fi, respectively), and elements of T as black squares, as in
the following example.

I Example 7. Suppose that C is cartesian closed, fix an object R in C, consider functors

C× Cop C
(A,B) A× (B ⇒ R)

F C× C× Cop C
(A,B,C) A×B × (C ⇒ R)

G C C
A A×R

H

CSL 2018
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and transformations ϕ = δ × id(−)⇒R : F → G and ψ = idC×evR : G → H of types,
respectively,

2 2 3
1 1 1
2 2 2

3

σ τ

and
3 2 1
1 1 1
2 2
3

η θ

.

Then ψ ◦ ϕ has type 2 1 1 and its graph is:

I Remark. Each connected component of Γ(ψ ◦ ϕ) corresponds to a variable of ψ ◦ ϕ. This
is due to how the pushout of τ1 against σ2 is computed when we calculate the type of ψ ◦ ϕ:
if p is the result of the pushout, then p is isomorphic, in Set, to the quotient set of T modulo
the least equivalence relation ∼ such that for all ρ1(x) and ρ2(y), ρ1(x) ∼ ρ2(y) if and only if
there exists z ∈ |α2| such that τ1(z) = x and σ2(z) = y; in other words, if they are connected
in Γ(ψ ◦ ϕ) (by means of an undirected path).

Since we want to discuss the dinaturality of ψ ◦ ϕ in each of its variables separately, we
start by assuming that ψ ◦ ϕ is “connected”, that is has type |α1| 1 |α3|, and that ϕ
and ψ are dinatural in all their variables. The result we want to prove is then the following.

I Theorem 8. Let ϕ and ψ be transformations which are dinatural in all their variables and
such that ψ ◦ϕ depends on only one variable. If Γ(ψ ◦ϕ) is acyclic, then ψ ◦ϕ is a dinatural
transformation.

We shall prove this theorem by interpreting Γ(ψ ◦ ϕ) as a Petri Net [18], whose set of
places is P and of transitions is T . Places can host tokens, and recall that a marking for
Γ(ψ ◦ϕ) is a function M : P → N, that is, a distribution of tokens. A transition t is enabled in
M if M(p) > 0 for all p ∈·t; an enabled transition t can fire, and the firing of t removes one
token from each of its inputs and adds one token to each of its outputs, that is it generates a
new marking M ′ defined as follows:

M ′(p) =


M(p)− 1 p ∈·t
M(p) + 1 p ∈ t·
M(p) otherwise

Graphically, we draw tokens as black dots, see Figure 2.
The reason for which we use Petri Nets to prove Theorem 8 is that the firing of an enabled

transition in Γ(ψ ◦ϕ) corresponds to applying the dinaturality of ϕ or ψ in the corresponding
variable, thus giving rise to an equation of morphisms in C. It follows that a sequence of
firings corresponds to a chain of equations. Since we are interested in proving that two
certain morphisms, corresponding to the two legs of the hexagon that we want to show is
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t
t

fires
t

Figure 2 The firing of an enabled transition t.

commutative (to prove that ψ ◦ ϕ is dinatural), are equal, we shall individuate two markings
M0 and Md for Γ(ψ ◦ϕ) that correspond to those morphisms, and prove that Md is reachable
from M0, that is that there is a sequence of firings of enabled transitions that transforms
M0 into Md. This reduction to Petri nets not only provides an intuitive reasoning tool that
corresponds directly to the diagrams we have been drawing, but also allows us to make use of
the well-developed theory of Petri nets. Indeed our compositionality result will follow from a
theorem about reachability in acyclic Petri nets.
I Notation. We extend the input and output notation for places too, where

·p = {t ∈ T | p ∈ t·}, p·= {t ∈ T | p ∈·t}
I Remark. Since σi and τi are functions, we have that |·p|, |p·| ≤ 1 and also that |·p∪p·| ≥ 1.
With a little abuse of notation then, if·p = {t} then we shall simply write·p = t, and
similarly for p·.
Labelled markings. Not all markings for Γ(ψ ◦ ϕ) correspond to a morphism in C. In this
section we shall individuate a class of them for which it is possible to define an associated
morphism in C.

I Definition 9. Consider f : A→ B a morphism in C. A labelled marking is a triple (M,L, f)
where functions M : P → {0, 1} and L : T → {A,B} are such that for all p ∈ P

M(p) = 1 =⇒ L(·p) = A, L(p·) = B

M(p) = 0 =⇒


p·= ∅ =⇒ L(·p) = B·p = ∅ =⇒ L(p·) = A·p 6= ∅ 6= p· =⇒ L(·p) = L(p·)

For each labelled marking (M,L, f) we define a morphism in C obtained by composing the
functors Fi with appropriate components of ϕ and ψ. Each argument of Fi corresponds to a
place in the graph. For each marked place the corresponding Fi’s argument will be f ; for
unmarked places it will be id. The definition of labelled marking puts constraints on the
marking itself, ensuring that the result of this operation is a well-formed morphism in C.

I Definition 10. Let f : A→ B in C, (M,L, f) a labelled marking. We define a morphism
µ(M,L, f) in C as follows:

µ(M,L, f) = F1(x1
1, . . . , x

1
|α1|);ϕX1

1 ...X
1
k1

;F2(x2
1, . . . , x

2
|α2|);ψX2

1 ...X
2
k2

;F3(x3
1, . . . , x

3
|α3|)

where

xij =
{
f M(ιi(j)) = 1
idL(t) M(ιi(j)) = 0 ∧ t ∈·p ∪ p· Xi

j = L(ρi(j)).
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33:10 On Compositionality of Dinatural Transformations

We proceed now to show that the firing of an enabled, B-labelled transition in a labelled
marking yields an equation between the associated morphisms. Consider then (M,L, f)
a labelled marking, t in T such that L(t) = B and M(p) = 1 for all p ∈·t. Notice that
necessarily M(p) = 0 for all p ∈ t· (otherwise we would have L(t) = A by definition of
labelled marking). Define functions M ′ : P → {0, 1} and L′ : T → {A,B} as follows, for all
p ∈ P and s ∈ T :

M ′(p) =


0 p ∈·t
1 p ∈ t·
M(p) otherwise

L′(s) =
{
A s = t

L(s) otherwise

(M ′ is the marking obtained from M by firing t.) It is an immediate consequence of the
definition that (M ′, L′, f) is still a labelled marking.

I Proposition 11. In the notations above, µ(M,L, f) = µ(M ′, L′, f).

Proof. Since t ∈ T , we have t = ρu(i) for some u ∈ {1, 2} and i ∈ {1, . . . , ku}. The fact that
t is enabled ensures that, in the notations of Definition 10,

σu(j) = i ∧ αuj = + =⇒ xuj = f

σu(j) = i ∧ αuj = − =⇒ xuj = idB
τu(j) = i ∧ αu+1

j = + =⇒ xu+1
j = idB

τu(j) = i ∧ αu+1
j = − =⇒ xu+1

j = f

hence we can apply the dinaturality of ϕ or ψ (if, respectively, u = 1 or u = 2) in its i-th
variable and obtain therefore a new morphism, which a simple check can show is equal to
µ(M ′, L′, f). J

It immediately follows that a sequence of firings of B-labelled transitions gives rise to a
labelled marking whose associated morphism is still equal to the original one, as the following
Proposition states.

I Proposition 12. Let (M,L, f) be a labelled marking, Md a marking reachable from M by
firing only B-labelled transitions t1, . . . , tm, Ld : T → {A,B} defined as:

Ld(s) =
{
A s = ti for some i ∈ {1, . . . ,m}
L(s) otherwise

Then (Md, Ld, f) is a labelled marking and µ(M,L, f) = µ(Md, Ld, f).

We have now to individuate the two markings M0 and Md which correspond to the two
morphisms we want to prove to be equal to show that ψ ◦ ϕ is dinatural, when Γ(ψ ◦ ϕ) is
acyclic. Since we are assuming that ψ ◦ ϕ : F1 → F3 depends on only one variable, those
morphisms are:

δ1 = F1(x1, . . . , x|α1|); [ψ ◦ ϕ]B ;F3(y1, . . . , y|α3|)

δ2 = F1(x′1, . . . , x′|α1|); [ψ ◦ ϕ]A;F3(y′1, . . . , y′|α3|)

where

xi =
{
f α1

i = +
idB α1

i = −
yi =

{
idB α3

i = +
f α3

i = −
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x′i =
{
idB α1

i = +
f α1

i = −
y′i =

{
f α3

i = +
idB α3

i = −

Now, f appears in all the covariant arguments of F1 and the contravariant ones of F3, in δ1,
which correspond in Γ(ψ ◦ϕ) to those places which have no inputs (in Petri nets terminology,
sources), whereas f appears, in δ2, in those arguments corresponding to places with no
outputs (sinks). The two markings we are interested into are, therefore,

M0(p) =
{

1 ·p = ∅
0 otherwise

Md(p) =
{

1 p·= ∅
0 otherwise

(2)

What about the labelling? We have that [ψ ◦ ϕ]B = ϕB...B ;ψB...B , hence we shall consider
L : T → {A,B} constantly equal to B: it is easy to see that (M0, L, f) is a labelled marking.
Now all we have to show is that Md is reachable fromM0 by only firing B-labelled transitions:
it is enough to make sure that each transition is fired at most once to satisfy this condition.
(Notice that since Γ(ϕ) is acyclic, if a transition fires once than it will remain disabled for
ever, hence no transition can fire more than once anyway.) In order to do that, we recall
some general properties of Petri nets, see [17].

Every Petri Net N with n transitions and m places defines a m× n matrix of integers
A = [apt], called incidence matrix of N . In the case of a net with at most one arc between
any two vertices (like Γ(ψ ◦ ϕ)), we have

apt =


1 p ∈ t·
−1 p ∈·t
0 otherwise

It is not difficult to see that apt represents the number of tokens changed in place p when
transition t fires once. If we represent an arbitrary marking M as a m×1 vector, we can state
the following theorem [11], which gives a necessary and sufficient condition for reachability
of a marking Md from another marking M0 in case N is acyclic.

I Theorem 13. Let N be an acyclic Petri Net with m places and n transitions, A its
incidence matrix, M0, Md two markings for N . Then Md is reachable from M0 if and only
if there is a n× 1 vector x of non-negative integers such that

Md = M0 +Ax. (3)

The “only if” part is easy to show, as x can be the vector which tells how many times each
transition fires to transform M0 into Md. The interesting part is the vice versa: if we can
find a vector of non-negative integers x that solves equation (3), then the proof of Theorem
13 ensures the existence of a firing sequence that transforms M0 into Md by firing each
transition t exactly xt times. (A constructive proof for Theorem 13 can be found in [21].)

We use these considerations to prove that ψ ◦ ϕ is a dinatural transformation by finding
a vector x that solves equation (3) for N = Γ(ψ ◦ ϕ) and M0 and Md as in (2). Since we
want to move the tokens from the sources to the sinks and Γ(ψ ◦ ϕ) is connected (Remark
2), we ought to fire each transition at least once; on the other hand, as already observed,
the acyclicity of Γ(ψ ◦ ϕ) ensures that any transition cannot fire more than once. Hence
x = [1, . . . , 1] is the solution we are seeking.

Proof of Theorem 8. Consider x = [1, . . . , 1] of length |T |. A simple computation shows
that, if A is the incidence matrix of Γ(ψ ◦ ϕ) and M0 and Md are as in (2), Md = M0 +Ax:
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33:12 On Compositionality of Dinatural Transformations

it is enough to notice that A’s row corresponding to place p is made of all 0’s except for
exactly one 1 if p is a sink, exactly one −1 if p is a source, and exactly one 1 and one
−1 if p is neither of them. Hence, by Theorem 13, Md is reachable from M0, and by
Proposition 12 with M = M0 and L : T → {A,B} constantly equal to B, we obtain that
µ(M0, L, f) = µ(M0, Ld, f). By the arbitrariness of the morphism f : A→ B we have chosen,
we get the dinaturality of ψ ◦ ϕ. J

It is not difficult to generalise Theorem 8 to the case in which ψ ◦ ϕ depends on more
than one variable: it is enough to apply the same argument to one connected component of
Γ(ψ ◦ ϕ) at a time.

I Theorem 14. Let ϕ : T → S and ψ : S → R as in Definition 2, i ∈ {1, . . . , q}. If ϕ and ψ
are dinatural in all their variables in, respectively, ζ−1{i} and ξ−1{i} (with ζ and ξ given by
the pushout (1)), and if the i-th connected component of Γ(ψ ◦ ϕ) is acyclic, then ψ ◦ ϕ is
dinatural in its i-th variable.

We conclude this section with a straightforward corollary:

I Corollary 15. Let ϕ : T → S and ψ : S → R be transformations which are dinatural in all
their variables. If Γ(ψ ◦ ϕ) is acyclic, then ψ ◦ ϕ is dinatural in all its variables.

3 Horizontal composition

Horizontal composition of natural transformations [15] is a well known operation which is rich
in interesting properties: it is associative, unitary, compatible with vertical composition. Also,
it plays a crucial role in the calculus of substitution of functors and natural transformations
developed by Kelly in [13]. An appropriate generalisation of this notion for dinatural
transformations seems to be absent in the literature; here we propose a possible definition
and prove some of its properties. First, we briefly recall the definition for the natural case.

I Definition 16. Consider (classical) natural transformations

A B C

F

G

H

K

ϕ ψ

The horizontal composition ψ ∗ ϕ : HF → KG is the natural transformation whose A-th
component, for A ∈ A, is either leg of the following commutative square:

HF (A) KF (A)

HG(A) KG(A)

ψF (A)

H(ϕA) K(ϕA)
ψG(A)

(4)

Now, the commutativity of (4) is due to the naturality of ψ; the fact that ψ ∗ ϕ is in turn a
natural transformation is due to the naturality of both ϕ and ψ. However, in order to define
the family of morphisms ψ ∗ ϕ, all we have to do is to apply the naturality condition of ψ to
the components of ϕ, one by one. We apply the very same idea to dinatural transformations,
leading to the following preliminary definition for classical dinatural transformations.
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I Definition 17. Let ϕ : F → G and ψ : H → K dinatural transformations of type
2 1 2, where F,G : Aop × A → B and H,K : Bop × B → C. The horizontal com-
position ψ ∗ ϕ is the family of morphisms

([ψ ∗ ϕ]A : H(G(A,A), F (A,A))→ K(F (A,A), G(A,A)))A∈A

where the general component [ψ ∗ ϕ]A is given, for any object A ∈ A, by either leg of the
following commutative hexagon:

· ·

· ·

· ·

ψF (A,A)

K(1,ϕA)H(ϕA,1)

H(1,ϕA) ψG(A,A)
K(ϕA,1)

I Remark. If functors F , G, H and K all factor through the projection Aop × A → A or
Bop×B→ B, then ϕ and ψ are natural transformations and ψ ∗ϕ coincides with the classical
definition of horizontal composition of natural transformations.

It turns out that, as happens with classical natural transformations, the dinaturality of ϕ
and ψ implies the dinaturality of their horizontal composition.

I Theorem 18. Let ϕ and ψ be dinatural transformations as in Definition 17. Then ψ ∗ ϕ
is a dinatural transformation

ψ ∗ ϕ : H(Gop, F )→ K(F op, G)

of type 4 1 4, where H(Gop, F ),K(F op, G) : A[+,−,−,+] → C are defined on objects as

H(Gop, F )(A,B,C,D) = H(Gop(A,B), F (C,D))
K(F op, G)(A,B,C,D) = K(F op(A,B), G(C,D))

and similarly on morphisms.

Proof. The proof consists in showing that the diagram that asserts the dinaturality of ψ ∗ ϕ
commutes: this is done in Figure 3, in the Appendix. J

We can now proceed with the general definition, which involves transformations of
arbitrary type. As the idea behind Definition 17 is to apply the dinaturality of ψ on the
general component of ϕ in order to define ψ ∗ϕ, if ψ is a transformation with many variables,
then we have many dinaturality conditions we can apply to ϕ, namely one for each variable
of ψ in which ψ is dinatural. Hence, the general definition will depend on the variable of
ψ we want to use. For the sake of simplicity, we shall consider only the one-category case,
that is when all functors in the definition involve one category C, in line with our approach
in Section 2; the general case follows with no substantial complications except for a much
heavier notation. Indeed, when A = B = C, Definition 17 is a special case of the following.

I Definition 19. Let F : Cα → C, G : Cβ → C, H : Cγ → C, K : Cδ → C be functors, ϕ =
(ϕA1,...,An) : F → G be a transformation of type |α| n |β|σ τ and ψ = (ψB1,...,Bm) : H →
K of type |γ| m |δ|η θ a transformation which is dinatural in its i-th variable. Denoting
with ++ the concatenation of a family of lists, let

H(X1 . . . X|γ|) : C
|γ|
++
u=1

λu

→ C, K(Y1 . . . Y|δ|) : C
|δ|

++
v=1

µv

→ C
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33:14 On Compositionality of Dinatural Transformations

be functors, defined similarly to H(Gop, F ) and K(F op, G) in Theorem 18, where for all
u ∈ {1, . . . , |γ|}:

Xu =


F ηu = i ∧ γu = +
Gop ηu = i ∧ γu = −
idCγu ηu 6= i

λu =


α ηu = i ∧ γu = +
β3 ηu = i ∧ γu = −
[γu] ηu 6= i

au =


ιnσ ηu = i ∧ γu = +
ιnτ ηu = i ∧ γu = −
ιmη�{u} ηu 6= i

with ιn : n→ (i− 1) + n+ (m− i) and ιm : m→ (i− 1) + n+ (m− i) fixed injections, and
for all v ∈ {1, . . . , |δ|}:

Yv =


G θv = i ∧ δv = +
F op θv = i ∧ δv = −
idCδv θv 6= i

µv =


β θv = i ∧ δv = +
α θv = i ∧ δv = −
[δv] θv 6= i

bv =


ιnτ θv = i ∧ δv = +
ιnσ θv = i ∧ δv = −
ιmθ�{v} θv 6= i

The i-th horizontal composition ψ
i∗ ϕ is a transformation

ψ
i∗ ϕ : H(X1 . . . X|γ|)→ K(Y1 . . . Y|δ|)

of type

|γ|∑
u=1
|λu| (i− 1) + n+ (m− i)

|δ|∑
v=1
|µv|

[a1...a|γ|] [b1...b|δ|]

whose general component, [ψ i∗ ϕ]B1...Bi−1,A1...An,Bi+1...Bm , is either leg of the commutative
hexagon obtained by applying the dinaturality of ψ in its i-th variable to ϕA1,...,An , that is
the morphism

H(x1, . . . , x|γ|);ψB1...Bi−1,G(Aτ1...Aτ|α|),Bi+1...Bm ;K(y1, . . . , y|δ|)

where

xu =


ϕA1,...,An ηu = i ∧ γu = +
idG(Aτ1...Aτ|α|) ηu = i ∧ γu = −
idBηu ηu 6= i

yv =


idG(Aτ1...Aτ|α|) θv = i ∧ δv = +
ϕA1,...,An θv = i ∧ δv = −
idBθv θv 6= i

I Notation. For the rest of this paper we shall denote the m variables of ψ as B1, . . . , Bm
and the n variables of ϕ as A1, . . . , An, as in Definition 19. In this spirit, we shall sometimes
write ψ

Bi∗ ϕ instead of ψ i∗ ϕ.

3 Remember that for any β ∈ List{+,−} we denote β the list obtained from β by swapping the +’s with
the −’s.
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I Remark. ψ i∗ϕ depends on all the variables of ψ = (ψB1,...,Bm) where Bi has been substituted
by the variables of ϕ = (ϕA1,...,An).

As for the classical natural case, only the dinaturality of ψ in its i-th variable is needed to
define the i-th horizontal composition of ϕ and ψ. It is immediate from the definitions that
ψ

i∗ ϕ is dinatural in all the “B variables” (that is, those variables inherited from ψ) where
also ψ is. Theorem 18 generalises to the following one, which states that if ϕ is dinatural
in Aj , then ψ

i∗ ϕ is also dinatural in Aj ; in other words, ψ i∗ ϕ is dinatural in all the “A
variables” where ϕ is dinatural.

I Theorem 20. In the same notation as in Definition 19, if ϕ is dinatural in its j-th variable
and ψ in its i-th one, then ψ i∗ ϕ is dinatural in its (i− 1 + j)-th variable. In other words, if
ϕ is dinatural in Aj and ψ in Bi, then ψ

Bi∗ ϕ is dinatural in Aj.

Unitarity. It is straightforward to see that horizontal composition has a unit, namely the
identity (di)natural transformation of the identity functor.

I Theorem 21. Let T : Cα → C and S : Cβ → C be functor, ϕ : T → S be a transformation
of type |α| k |β|σ τ . Then ididC ∗ϕ = ϕ. If ϕ is dinatural in its i-th variable, then also
ϕ

i∗ ididC = ϕ.

Associativity. Throughout this section fix transformations ϕ : F → G, ψ : H → K and
χ : U → V . For sake of simplicity, denote with A1, . . . , An, B1, . . . , Bm and C1, . . . , Cl the
variables of, respectively, ϕ, ψ and χ. The theorem asserting associativity of horizontal
composition, which we aim to prove here, is the following.

I Theorem 22. Suppose ψ is dinatural in Bi and χ is dinatural in Cj. Then

χ
j∗
(
ψ

i∗ ϕ
)

=
(
χ

j∗ ψ
) j − 1 + i∗ ϕ or, in alternative notation, χ

Cj∗
(
ψ
Bi∗ ϕ

)
=
(
χ
Cj∗ ψ

) Bi∗ ϕ.
Proof. The proof that the two sides have the same signature is in the Appendix (Proposi-
tion 25). Regarding the single components, it is enough to consider the case in which ϕ, ψ
and χ are all of type 2 1 2, the general case follows as a consequence.

Fix then an object A in C. Figure 4, in the Appendix, shows how to pass from (χ ∗ψ) ∗ϕ
to χ ∗ (ψ ∗ ϕ) by pasting three commutative diagrams. In order to save space, we simply
wrote “H(G,F )” instead of the proper “H(Gop(A,A), F (A,A))” and similarly for all the
other instances of functors in the nodes of the diagram in Figure 4; we also dropped the
subscript for components of ϕ, ψ and χ when they appear as arrows, that is we simply wrote
ϕ instead of ϕA, since there is only one object involved and there is no risk of confusion. J

Incompatibility with vertical composition. It is well known that horizontal composition
is compatible with the vertical one for classical natural transformations: in the following
situation,

A B C
ϕ

ψ

ϕ′

ψ′

with ϕ,ϕ′, ψ and ψ′ natural transformations, we have:

(ψ′ ◦ ϕ′) ∗ (ψ ◦ ϕ) = (ψ′ ∗ ψ) ◦ (ϕ′ ∗ ϕ) (†)
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33:16 On Compositionality of Dinatural Transformations

It is also well known that dinatural transformations do not vertically compose, in general; on
the other hand, we have defined a notion of horizontal composition which is always possible.
Are these two operations compatible, at least when vertical composition is defined?

The answer, unfortunately, is No, at least if by “compatible” we mean “compatible as in
the natural case (†)”. Indeed, consider dinatural transformations

Aop × A B Bop × B C

F

G

H

J

K

L

ϕ

ψ

ϕ′

ψ′

such that ϕ;ψ and ϕ′;ψ′ are dinatural. Then

ϕ′ ∗ ϕ : J(G,F )→ K(F,G) ψ′ ∗ ψ : K(H,G)→ L(G,H)

which means that ϕ′ ∗ϕ and ψ′ ∗ψ are not even composable as families of morphisms, as the
codomain of the former is not the domain of the latter. The problem stems from the fact
that the codomain of the horizontal composition ϕ′ ∗ ϕ depends on the codomain of ϕ′ and
also the domain and codomain of ϕ, which are not the same as the domain and codomain
of ψ: indeed, in order to be composable, ϕ and ψ must share only one functor, and not
both. This does not happen in the natural case, and ultimately this is due to the difference
between the naturality and the dinaturality conditions for a transformation.
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A Appendix

Regarding Theorem 20

The proof of this theorem relies on the fact that we can reduce ourselves, without loss of
generality, to Theorem 18. In order to prove that, we introduce the notion of focalisation of
a transformation on one of its variables.

I Definition 23. Let φ = (φA1,...,Ak) : T → S be a transformation of type |α| k |β|σ τ

with T : Cα → C and S : Cβ → C. Fix j ∈ {1, . . . , k} and objects A1, . . . , Aj−1, Aj+1, . . . , Ak

in C. Consider functors T j , Sj : Cop × C→ C defined by

T
j(A,B) = T (C1, . . . , C|α|), S

j(A,B) = S(D1, . . . , D|β|)
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where

Cu =


B σu = j ∧ αu = +
A σu = j ∧ αu = −
Aσu σu 6= j

Dv =


B τv = j ∧ βv = +
A τv = j ∧ βv = −
Aτv τv 6= j

The focalisation of φ on its j-th variable is the transformation φ
j : T j → S

j of type
2 1 2 where

φ
j

X = ϕA1...Aj−1,X,Aj+1...Ak .

Sometimes we may write φAj : TAj → S
Aj too, when we fix as A1, . . . , Ak the name of the

variables of φ.

I Remark. φ is dinatural in its j-th variable if and only if φj is dinatural in its only variable
for all objects A1, . . . , Aj−1, Aj+1, . . . , Ak in C fixed by the focalisation of φ.

The (−)
j
construction depends on the k − 1 objects we fix, but not to make the notation

too heavy, we shall always call those (arbitrary) objects A1, . . . , Aj−1, Aj+1, . . . , An for ϕj

and B1, . . . , Bi−1, Bi+1, . . . , Bm for ψi.

I Lemma 24. Let ϕ and ψ be transformations as in Definition 19, with ψ dinatural in
its i-th variable. It is the case that ψ i∗ ϕ is dinatural in its (i − 1 + j)-th variable if and
only if ψi ∗ ϕj is dinatural in its only variable for all objects B1, . . . , Bi−1, A1, . . . , Aj−1,
Aj+1, . . . , An, Bi+1, . . . , Bm in C.

Proof. Direct check that the equations between morphisms demanded by unpacking the two
definitions are the same. J

Proof of Theorem 20. Consider transformations ϕj and ψi. By Remark A, they are both
dinatural in their only variable. Hence, by Theorem 18, ψi ∗ ϕj is dinatural and by Lemma
24 we conclude. J

Regarding the signature of χ ∗ ψ ∗ ϕ

Suppose that ϕ : F → G has type |α| n |β|σ τ , ψ : H → K has type |γ| m |δ|η θ and
χ : U → V has type |ε| l |ζ|π ω . First of all, notice how both χ

Cj∗
(
ψ
Bi∗ ϕ

)
and

(
χ
Cj∗ ψ

)Bi∗ ϕ
are families of morphisms depending on variables

C1, . . . , Cj−1, B1, . . . , Bi−1, A1, . . . , An, Bi+1, . . . , Bm, Cj+1, . . . , Cl.

Next, we compute their domain and codomain functors. We have ψ
Bi∗ ϕ : H(X1, . . . , X|γ|)→

K(Y1, . . . , Y|δ|) where we are using the same notations as in Definition 19. Hence

χ
Cj∗
(
ψ
Bi∗ ϕ

)
: U(W1, . . . ,W|ε|)→ V (Z1, . . . , Z|ζ|)

with U(W1, . . . ,W|ε|) : C
|ε|

++
u=1

νu

→ C, V (Z1, . . . , Z|ζ|) : C
|ζ|

++
u=1

ξu

→ C where

Wu =


H(X1, . . . , X|γ|) πu = j ∧ εu = +
K(Y1, . . . , Y|δ|)op πu = j ∧ εu = −
idCεu πu 6= j

νu =



|γ|
++
u=1

λu πu = j ∧ εu = +

|δ|
++
u=1

µu πu = j ∧ εu = −

[εu] πu 6= j
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and similarly are defined Zu and ξu (swapping H(X1, . . . , X|γ|) with K(Y1, . . . , Y|δ|), ω with
π, ε with ζ and so on).

On the other hand, we have

χ
Cj∗ ψ : U(L1, . . . , L|ε|)→ V (M1, . . . ,M|ζ|)

with U(L1, . . . , L|ε|) : C
|ε|

++
u=1

ρu

→ C, V (M1, . . . ,M|ζ|) : C
|ζ|

++
u=1

ϑu

→ C where

Lu =


H πu = j ∧ εu = +
Kop πu = j ∧ εu = −
idCεu πu 6= j

ρu =


γ πu = j ∧ εu = +
δ πu = j ∧ εu = −
[εu] πu 6= j

Mu =


K ωu = j ∧ ζu = +
Hop ωu = j ∧ ζu = −
idCζu ωu 6= j

ϑu =


δ ωu = j ∧ ζu = +
γ ωu = j ∧ ζu = −
[ζu] ωu 6= j

χ
Cj∗ ψ has type

|ε|∑
u=1
|ρu| (j − 1) +m+ (l − j)

|ζ|∑
u=1
|ςu|

[c1,...,c|ε|] [d1,...,d|ζ|] with

cu=


ιmη πu = j ∧ εu = +
ιmθ πu = j ∧ εu = −
ιlπ�{i} πu 6= j

du=


ιmθ ωu = j ∧ ζu = +
ιmη ωu = j ∧ ζu = −
ιlω�{i} ωu 6= j

and ιm : m→ (j − 1) +m+ (l − j), ιl : l→ (j − 1) +m+ (l − j) defined as

ιm(x) = x+ j − 1 ιl(x) =
{
x x ≤ j
x+m− 1 x > j

Therefore, the domain of
(
χ
Cj∗ ψ

) Bi∗ ϕ is U(L1, . . . , L|ε|)(P 1
1 , . . . , P

1
|ρ1|, . . . , P

|ε|
1 , . . . , P

|ε|
|ρ|ε||)

while the codomain is V (M1, . . . ,M|ζ|)(Q1
1, . . . , Q

1
|ϑ1|, . . . , Q

|ζ|
1 , . . . , Q

|ζ|
|ϑ|ζ||) where

Puv =


F cu(v) = j − 1 + i ∧ ρuv = +
Gop cu(v) = j − 1 + i ∧ ρuv = −
idCρuv cu(v) 6= j − 1 + i

and similarly Quv . Denoting the domain of
(
χ
Cj∗ ψ

) Bi∗ ϕ as U(L(P )), we have

U(L(P )) : C
|ε|

++
u=1

(
|ρu|
++
v=1

wuv

)
→ C

where

wuv =


α cu(v) = j − 1 + i ∧ ρuv = +
β cu(v) = j − 1 + i ∧ ρuv = −
[ρuv ] cu(v) 6= j − 1 + i
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I Proposition 25. Transformations χ
Cj∗
(
ψ
Bi∗ ϕ

)
and

(
χ
Cj∗ ψ

) Bi∗ ϕ have the same domain,
codomain, and type.

Proof. One can prove that
|ε|

++
u=1

( |ρu|
++
v=1

wuv

)
=
|ε|

++
u=1

νu by showing that
|ρu|
++
v=1

wuv = νu for all
u ∈ {1, . . . , |ε|}, analysing each of the three cases for ηu that define νu.

Next, we have that

U(L(P )) = U
(
L1
(
P 1

1 , . . . , P
1
|ρ1|
)
, . . . , L|ε|

(
P
|ε|
1 , . . . , P

|ε|
|ρ|ε||

))
and by showing that Wu = Lu

(
Pu1 , . . . , P

u
|ρu|
)
for all u ∈ {1, . . . , |ε|}, one proves that

χ
Cj∗
(
ψ
Bi∗ ϕ

)
and

(
χ
Cj∗ ψ

) Bi∗ ϕ have the same domain; an analogous procedure shows that
they also share the same codomain.

Finally, we briefly analyse only the left hand sides of the types of χ
Cj∗
(
ψ

Bi∗ ϕ
)
and(

χ
Cj∗ ψ

) Bi∗ ϕ; the right hand sides are handled analogously. For χ
Cj∗
(
ψ
Bi∗ ϕ

)
we have

|ε|∑
u=1
|νu| (j − 1) + [(i− 1) + k + (l − i)] + (m− j)

[r1,...,r|ε|]

with

ru =


((·) + j − 1) ◦ [a1, . . . , a|γ|] ηu = j ∧ εu = +
((·) + j − 1) ◦ [b1, . . . , b|δ|] ηu = j ∧ εu = −
ιm idCηu ηu 6= j

where function ((·)+j−1) merges (i−1)+k+(l−i) intoN = (j−1)+[(i−1)+k+(l−i)]+(m−j),
by adding j − 1 to its argument, and ιm into N . For

(
χ
Cj∗ ψ

) Bi∗ ϕ, which is the same as(
χ

j∗ ψ
) j − 1 + i∗ ϕ, we have

|ε|∑
u=1

|ρu|∑
v=1
|wuv | M

[s1
1,...,s

1
|ρ1|,...,s

|ε|
1 ,...,s

|ε|
|ρ|ε||

]

where M = (j − 1 + i− 1) + k + [(j − 1 +m+ l − j)− (j − 1 + i)] = N and

suv =


((·) + j − 1 + i− 1) ◦ σ cu(v) = j − 1 + i ∧ ρuv = +
((·) + j − 1 + i− 1) ◦ τ cu(v) = j − 1 + i ∧ ρuv = −
ιmdu�{v} cu(v) 6= j − 1 + i

Notice that here we are asserting an equality between natural numbers; in other words, we
are just writing, in two different ways, the same set. Checking that ru = [su1 , . . . , su|ρu|] and
noticing that functions [. . . ru . . . ] and [. . . suv . . . ] coincide on every elements of their domain,
we conclude. J



G. McCusker and A. Santamaria 33:21

H
(G

(A
,
A

),
F

(A
,
A

))
H

(F
(A
,
A

),
F

(A
,
A

))
K

(F
(A
,
A

),
F

(A
,
A

))
K

(F
(A
,
A

),
G

(A
,
A

))

H
(G

(A
,
A

),
F

(B
,
A

))
H

(F
(A
,
A

),
F

(B
,
A

))
K

(F
(B
,
A

),
F

(A
,
A

))
K

(F
(B
,
A

),
G

(A
,
A

))

H
(G

(A
,
B

),
F

(B
,
A

))
H

(F
(B
,
A

),
F

(B
,
A

))
K

(F
(B
,
A

),
F

(B
,
A

))
K

(F
(B
,
A

),
G

(A
,
B

))

H
(G

(B
,
B

),
F

(B
,
A

))
H

(F
(B
,
B

),
F

(B
,
A

))
K

(F
(B
,
A

),
F

(B
,
B

))
K

(F
(B
,
A

),
G

(B
,
B

))

H
(G

(B
,
B

),
F

(B
,
B

))
H

(F
(B
,
B

),
F

(B
,
B

))
K

(F
(B
,
B

),
F

(B
,
B

))
K

(F
(B
,
B

),
G

(B
,
B

))

H(G(1,f),F(f,1))

H
(ϕ
A
,

1)
ψ
F

(A
,A

)
K

(1
,
ϕ
A

)

K(F (f, 1), G(1, f))

H
(G

(1
,
f

))

H
(ϕ
A
,

1)

H
(1
,
F

(f
,

1)
)

K
(F

(f
,

1)
,

1)

K
(1
,
ϕ
A

)

K
(1
,
G

(1
,
f

))

H
(F

(f
,

1)
,

1)

ψ
F

(B
,A

)

K
(1
,
F

(f
,

1)
)

H
(G

(f
,

1)
,

1)

H
(ϕ
B
,

1)

H
(F

(1
,
f

),
1)

K
(1
,
F

(1
,
f

))

K
(1
,
ϕ
B

)

K
(1
,
G

(f
,

1)
)

H
(1
,
F

(1
,
f

))

ψ
F

(B
,B

)

K
(F

(1
,
f

),
1)

H
(ϕ
B
,

1)

H(G(f,1),F(1,f))

K(F (1, f), G(f, 1))

K
(1
,
ϕ
B

)

(ψ
∗
ϕ

) A

(ψ
∗
ϕ

) B

F u
nc

to
ria

lit
y
of
H

F u
nc

to
ria

lit
y
of
H

Fu
nc

to
ria

lit
y
of
K

Fu
nc

to
ria

lit
y
of
K

D
in
at
ur
al
ity

of
ψ

D
in
at
ur
al
it y

of
ψ

D
in
at
ur
al
ity

of
ϕ

D
in
at
ur
al
ity

of
ϕ

Fi
gu

re
3
P
ro
of

of
T
he

or
em

18
:
di
na

tu
ra
lit
y
of

ho
riz

on
ta
lc

om
po

si
tio

n
in

th
e
cl
as
si
ca
lc

as
e.

H
er
e
f

:A
→
B
.

CSL 2018



33:22 On Compositionality of Dinatural Transformations

U
(K

(F
,
G

),
H

(G
,
F

))
U

(K
(F
,
F

),
H

(F
,
F

))
U

(H
(F
,
F

),
H

(F
,
F

))

U
(K

(F
,
F

),
H

(G
,
F

))
U

(H
(F
,
F

),
H

(F
,
F

))
V

(H
(F
,
F

),
H

(F
,
F

))
V

(H
(F
,
F

),
K

(F
,
F

))
V

(H
(G
,
F

),
K

(F
,
G

))

U
(H

(F
,
F

),
H

(G
,
F

))
V

(H
(G
,
F

),
H

(F
,
F

))
V

(H
(G
,
F

),
K

(F
,
F

))

U
(H

(G
,
F

),
H

(G
,
F

))
V

(H
(G
,
F

),
H

(G
,
F

))

U
(K

(1
,
ϕ

),
H

(ϕ
,

1)
)

U
(ψ
,

1)

χ
U

(K
(1
,
ϕ

),
1)

U
(ψ
,

1)
U

(1
,
H

(ϕ
,

1)
)

χ
V

(1
,
ψ

)
V

(H
(ϕ
,

1)
,
K

(1
,
ϕ

))

V
(H

(ϕ
,

1)
,

1)

V
(1
,
ψ

)

V
(1
,
K

(1
,
ϕ

))

U
(H

(ϕ
,

1)
,

1)
χ

V
(1
,
H

(ϕ
,

1)
)

F u
nc

to
ria

lit
y
of
U

D
in
at
ur
al
ity

of
χ

Fu
nc

to
ria

lit
y
of
V

Fi
gu

re
4
A
ss
oc
ia
tiv

ity
of

ho
riz

on
ta
lc

om
po

si
tio

n
in

th
e
cl
as
si
ca
lc

as
e.

T
he

up
pe

r
le
g
is

(χ
∗
ψ

)∗
ϕ
,w

he
re
as

th
e
lo
w
er

on
e
is
χ
∗

(ψ
∗
ϕ

).
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Abstract
Recently, Dallal, Neider, and Tabuada studied a generalization of the classical game-theoretic
model used in program synthesis, which additionally accounts for unmodeled intermittent distur-
bances. In this extended framework, one is interested in computing optimally resilient strategies,
i.e., strategies that are resilient against as many disturbances as possible. Dallal, Neider, and
Tabuada showed how to compute such strategies for safety specifications.

In this work, we compute optimally resilient strategies for a much wider range of winning
conditions and show that they do not require more memory than winning strategies in the classical
model. Our algorithms only have a polynomial overhead in comparison to the ones computing
winning strategies. In particular, for parity conditions optimally resilient strategies are positional
and can be computed in quasipolynomial time.
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1 Introduction

Reactive synthesis is an exciting and promising approach to solving a crucial problem, whose
importance is ever-increasing due to ubiquitous deployment of embedded systems: obtaining
correct and verified controllers for safety-critical systems. Instead of an engineer program-
ming a controller by hand and then verifying it against a formal specification, synthesis
automatically constructs a correct-by-construction controller from the given specification (or
reports that no such controller exists).

Typically, reactive synthesis is modeled as a two-player zero-sum game on a finite
graph that is played between the system, which seeks to satisfy the specification, and its
environment, which seeks to violate it. Although this model is well understood, there are
still multiple obstacles to overcome before synthesis can be realistically applied in practice.
These obstacles include not only the high computational complexity of the problem, but
also more fundamental ones. Among the most prohibitive issues in this regard is the need
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for a complete model of the interaction between the system and its environment, including
an accurate model of the environment, the actions available to both players, as well as the
effects of these actions.

This modeling task often places an insurmountable burden on engineers as the environ-
ments in which real-life controllers are intended to operate tend to be highly complex or not
fully known at design time. Also, when a controller is deployed in the real world, a common
source of errors is a mismatch between the controller’s intended result of an action and the
actual result. Such situations arise, e.g., in the presence of disturbances, when the effect
of an action is not precisely known, or when the intended control action of the controller
cannot be executed, e.g., when an actuator malfunctions. By a slight abuse of notation from
control theory, such errors are subsumed under the generic term disturbance (cf. [10]).

To obtain controllers that can handle disturbances, one has to yield control over their
occurrence to the environment. However, due to the antagonistic setting of the two-player
zero-sum game, this would allow the environment to violate the specification by causing
disturbances at will. Overcoming this requires the engineer to develop a realistic disturbance
model, which is a highly complex task, as such disturbances are assumed to be rare events.
Also, incorporating such a model into the game leads to a severe blowup in the size of the
game, which can lead to intractability due to the high computational complexity of synthesis.

To overcome these fundamental difficulties, Dallal, Neider, and Tabuada [10] proposed a
conceptually simple, yet powerful extension of infinite games termed “games with unmodeled
intermittent disturbances”. Such games are played similarly to classical infinite games: two
players, called Player 0 and Player 1, move a token through a finite graph, whose vertices
are partitioned into vertices under the control of Player 0 and Player 1, respectively; the
winner is declared based on a condition on the resulting play. In contrast to classical games,
however, the graph is augmented with additional disturbance edges that originate in vertices
of Player 0 and may lead to any other vertex. Moreover, the mechanics of how Player 0
moves is modified: whenever she moves the token, her move might be overridden, and the
token instead moves along a disturbance edge. This change in outcome implicitly models the
occurrence of a disturbance – the intended result of the controller and the actual result differ –
but it is not considered to be antagonistic. Instead, the occurrence of a disturbance is treated
as a rare event without any assumptions on frequency, distribution, etc. This approach very
naturally models the kind of disturbances typically occurring in control engineering [10].

As a non-technical example, consider a scenario with three siblings, Alice, Bob, and
Charlie, and their father, Donald. He repeatedly asks Alice to fetch water from a well using
a jug made of clay. Alice has three ways to fulfill that task: she may get the water herself
or she may delegate it to either Bob or Charlie. In a simple model, the outcome of these
strategies is identical: Donald’s request for water is fulfilled. This is, however, unrealistic, as
this model ignores the various ways that the execution of the strategies may go wrong. By
modeling the situation as a game with disturbances, we obtain a more realistic model.

If Alice gets the jug herself, no disturbance can occur: she controls the outcome completely.
If she delegates the task to Bob, the older of her brothers, Donald may get angry with her
for not fulfilling her duties herself, which should not happen infinitely often. Finally, if she
delegates the task to her younger brother Charlie, he might drop and break the jug, which
would be disastrous for Alice.

These strategies can withstand different numbers of disturbances: the first strategy does
not offer any possibility for disturbances, while infinitely many (a single) disturbance cause
Alice to lose when using the second (the third) strategy. This model captures the intuition
about Donald’s and Charlie’s behavior: both events occur non-antagonistically and their
frequency is unknown.
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B

C

v6/1

v4/1

v5/0v3/1

v2/2v1/1

v7/0 v8/1

v9/0 v10/0

Figure 1 A (max-) parity game with disturbances. Disturbance edges are drawn as dashed arrows.
Vertices are labeled with both a name and a color. Vertices under control of Player 0 are drawn as
circles, while vertices under control of Player 1 are drawn as rectangles.

This non-antagonistic nature of disturbances is different from existing approaches in the
literature and causes many interesting phenomena that do not occur in the classical theory
of infinite graph-based games. Some of these already manifest themselves in the parity game
shown in Figure 1, in which vertices are labeled with non-negative integers, so-called colors,
and Player 0 wins if the highest color seen infinitely often is even. Consider, for instance,
vertex v2. In the classical setting without disturbances, Player 0 wins every play reaching v2
by simply looping in this vertex forever (since the highest color seen infinitely often is even).
However, this is no longer true in the presence of disturbances: a disturbance in v2 causes a
play to proceed to vertex v1, from which Player 0 can no longer win. In vertex v7, Player 0
is in a similar, yet less severe situation: she wins every play with finitely many disturbances
but loses if infinitely many disturbances occur. Finally, vertex v9 falls into a third category:
from this vertex, Player 0 wins every play even if infinitely many disturbances occur. In fact,
disturbances partition the set of vertices from which Player 0 can guarantee to win into three
disjoint regions (indicated as shaded boxes in Figure 1): (A) vertices from which she can win
if at most a fixed finite number of disturbances occur, (B) vertices from which she can win if
any finite number of disturbances occurs but not if infinitely many occur, and (C) vertices
from which she can win even if infinitely many disturbances occur.

The observation above gives rise to a question that is both theoretically interesting and
practically important: if Player 0 can tolerate different numbers of disturbances from different
vertices, how should she play to be resilient3 to as many disturbances as possible, i.e., to
tolerate as many disturbances as possible but still win? Put slightly differently, disturbances
induce an order on the space of winning strategies (“a winning strategy is better if it is more
resilient”), and the natural problem is to compute optimally resilient winning strategies,
yielding optimally resilient controllers. Note that this is in contrast to the classical theory of
infinite games, where the space of winning strategies is unstructured.

Dallal, Neider, and Tabuada [10] have solved the problem of computing optimally resilient
winning strategies for safety games. Their approach exploits the existence of maximally
permissive winning strategies in safety games [2], which allows Player 0 to avoid “harmful”
disturbance edges during a play. In games with more expressive winning conditions, however,
this is no longer possible, as witnessed by vertex v4 in the example of Figure 1: although
Player 0 can avoid a disturbance edge by looping in v4 forever, she needs to move to v2
eventually in order to see an even color (otherwise she loses), thereby risking to lose if a

3 We have deliberately chosen the term resilience so as to avoid confusion with the already highly
ambiguous notions of robustness and fault tolerance.
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disturbance occurs. In fact, the problem of constructing optimally resilient winning strategies
for games other than safety games is still open. In this work, we solve this problem for a large
class of infinite games, including parity games. In detail, our contributions are as follows.

We study the concept of resilience, which captures for each vertex how many disturbances
need to occur for Player 0 to lose. This generalizes the notion of determinacy and allows us
to derive optimally resilient winning strategies.

Our main result is an algorithm for computing the resilience of vertices and optimally
resilient winning strategies. This algorithm requires the game to have a prefix-independent
winning condition, to be determined, and all its subgames to be (classically) solvable. The
latter two conditions are necessary, as resilience generalizes determinacy and computing
optimally resilient strategies generalizes solving games. The algorithm uses solvers for the
underlying game without disturbances as a subroutine, which it invokes a linear number
of times on various subgames. For many winning conditions, the time complexity of our
algorithm thus falls into the same complexity class as solving the original game without
disturbances, e.g., we obtain a quasipolynomial algorithm for parity games with disturbances,
which matches the currently best known upper bound for classical parity games.

Stated differently, if the three assumptions above are satisfied by a winning condition,
then computing the resilience and optimally resilient strategies is not harder than determining
winning regions and winning strategies (ignoring a polynomial overhead).

Our algorithm requires the winning condition of the game to be prefix-independent. We
also show how to overcome this restriction by generalizing the classical notion of game
reductions to the setting of games with disturbances. As a consequence, via reductions our
algorithm can be applied to prefix-dependent winning conditions. Hence, we have generalized
the original result of Dallal, Neider, and Tabuada from safety games to all games which are
algorithmically solvable, in particular all ω-regular games.

Finally, we discuss further phenomena that arise in the presence of disturbances. Amongst
others, we illustrate how the additional goal of avoiding disturbances whenever possible
affects the memory requirements of strategies. Moreover, we raise the question of how
benevolent disturbances can be leveraged to recover from losing a play. However, an in-depth
investigation of these phenomena is outside the scope of this paper and left for future work.

Proofs omitted due to space restrictions are in the full version [18].

Related Work. The notion of unmodeled intermittent disturbances in infinite games has
recently been formulated by Dallal, Neider, and Tabuada [10]. In that work, the authors
also present an algorithm for computing optimally resilient strategies for safety games with
disturbances, which is an extension of the classical attractor computation [14]. Due to the
relatively simple nature of such games, however, this algorithm cannot easily be extended to
handle more expressive winning conditions, and the approach presented in this work relies
on fundamentally different ideas.

For the special case of parity games, we can also characterize vertices of finite resilience
(presented in Subsection 3.1) by a reduction to finding optimal strategies in energy parity
games [9], which yields the same complexity as our algorithm (though such a reduction would
not distinguish between vertices of type B and type C). Also, it is unclear if and how this
reduction can be extended to other winning conditions and if custom-made solutions would
be required for each new class of game. By contrast, our refinement-based approach works
for any class of infinite games that satisfies the mild assumptions discussed in Section 4.

Resilience is not a novel concept in the context of reactive systems synthesis. It appears,
for instance, in the work by Topcu et al. [21] as well as Ehlers and Topcu [12]. A notion
of resilience that is very similar to the one considered here has been proposed by Huang
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et al. [15], where the game graph is augmented with so-called “error edges”. However, this
setting differs from the one studied in this work in various aspects. Firstly, Huang et al. work
in the framework of concurrent games and model errors as being under the control of Player 1.
This contrasts to the setting considered here, in which the players play in alternation and
disturbances are seen as rare events rather than antagonistic to Player 0. Secondly, Huang
et al. restrict themselves to safety games, whereas we consider a much broader class of infinite
games. Finally, Huang et al. compute resilient strategies with respect to a fixed parameter k,
thus requiring to repeat the computation for various values of k to find optimally resilient
strategies. In contrast, our approach computes an optimal strategy in a single run. Hence,
they consider a more general model of interaction, but only a simple winning condition, while
the notion of disturbances considered here is incomparable to theirs.

Related to resilience are various notions of fault tolerance [1, 7, 11, 13] and robustness [3,
4, 5, 6, 16, 19, 20]. For instance, Brihaye et al. [7] consider quantitative games under failures,
which are a generalization of sabotage games [22]. The main difference to our setting is that
Brihaye et al. consider failures – embodied by a saboteur player – as antagonistic, whereas
we consider disturbances as a non-antagonistic events. Moreover, solving a parity game
while maintaining a cost associated with the sabotage semantics below a given threshold is
ExpTime-complete, whereas our approach computes optimally resilient controllers for parity
conditions in quasipolynomial time.

Besides fault tolerance, robustness in the area of reactive controller synthesis has also
attracted considerable interest in the recent years, typically in settings with specifications of
the form ϕ⇒ ψ stating that the controller needs to fulfill the guarantee ψ if the environment
satisfies the assumption ϕ. A prominent example of such work is that of Bloem et al. [3], in
which the authors understand robustness as the property that “if assumptions are violated
temporarily, the system is required to recover to normal operation with as few errors as
possible” and consider the synthesis of robust controllers for the GR(1) fragment of Linear
Temporal Logic [6]. Other examples include quantitative synthesis [4], where robustness
is defined in terms of payoffs, and the synthesis of robust controllers for cyber-physical
systems [16, 19]. For a more in-depth discussion of related notions of resilience and robustness
in reactive synthesis, we refer the interested reader to Dallal, Neider, and Tabuada’s section
on related work [10, Section I]. Moreover, a survey of a large body of work dealing with
robustness in reactive synthesis has been presented by Bloem et al. [5].

2 Preliminaries

For notational convenience, we employ some ordinal notation à la von Neumann: the non-
negative integers are defined inductively as 0 = ∅ and n+ 1 = n ∪ {n}. Now, the first limit
ordinal is ω = {0, 1, 2, . . .}, the set of the non-negative integers. The next two successor
ordinals are ω + 1 = ω ∪ {ω} and ω + 2 = ω + 1 ∪ {ω + 1}. These ordinals are ordered by set
inclusion, i.e., we have 0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2. For convenience of notation,
we also denote the cardinality of ω by ω.

Infinite Games with Disturbances. An arena (with unmodeled disturbances) A = (V, V0, V1,

E,D) consists of a finite directed graph (V,E), a partition {V0, V1} of V into the set of
vertices V0 of Player 0 (denoted by circles) and the set of vertices of Player 1 (denoted by
squares), and a set D ⊆ V0 × V of disturbance edges (denoted by dashed arrows). Note that
only vertices of Player 0 have outgoing disturbance edges. We require that every vertex v ∈ V
has a successor v′ with (v, v′) ∈ E to avoid finite plays.
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A play in A is an infinite sequence ρ = (v0, b0)(v1, b1)(v2, b2) · · · ∈ (V × {0, 1})ω such
that b0 = 0 and for all j > 0: bj = 0 implies (vj−1, vj) ∈ E, and bj = 1 implies
(vj−1, vj) ∈ D. Hence, the additional bits bj for j > 0 denote whether a standard or
a disturbance edge has been taken to move from vj−1 to vj . We say ρ starts in v0. A play
prefix (v0, b0) · · · (vj , bj) is defined similarly and ends in vj . The number of disturbances in a
play ρ = (v0, b0)(v1, b1)(v2, b2) · · · is #D(ρ) = |{j ∈ ω | bj = 1}|, which is either some k ∈ ω
(if there are finitely many disturbances, namely k) or it is equal to ω (if there are infinitely
many). A play ρ is disturbance-free, if #D(ρ) = 0.

A game (with unmodeled disturbances), denoted by G = (A,Win), consists of an arena A =
(V, V0, V1, E,D) and a winning condition Win ⊆ V ω. A play ρ = (v0, b0)(v1, b1)(v2, b2) · · · is
winning for Player 0, if v0v1v2 · · · ∈Win, otherwise it is winning for Player 1. Hence, winning
is oblivious to occurrences of disturbances. A winning condition Win is prefix-independent if
for all ρ ∈ V ω and all w ∈ V ∗ we have ρ ∈Win if and only if wρ ∈Win.

In examples, we often use the parity condition, the canonical ω-regular winning condition.
Let Ω: V → ω be a coloring of a set V of vertices. The (max-) parity condition Parity(Ω) =
{v0v1v2 · · · ∈ V ω | lim sup Ω(v0)Ω(v1)Ω(v2) · · · is even} requires the maximal color occurring
infinitely often during a play to be even. A game (A,Win) is a parity game, if Win = Parity(Ω)
for some coloring Ω of the vertices of A. In figures, we label a vertex v with color c by v/c.

In our proofs we make use of the safety condition Safety(U) = {v0v1v2 · · · ∈ V ω | vj /∈
U for every j ∈ ω} for a given set U ⊆ V of unsafe vertices. It requires Player 0 to only visit
safe vertices, i.e., Player 1 wins a play if it visits at least one unsafe vertex.

A strategy for Player i ∈ {0, 1} is a function σ : V ∗Vi → V such that (vj , σ(v0 · · · vj)) ∈ E
holds for every v0 · · · vj ∈ V ∗Vi. A play (v0, b0)(v1, b1)(v2, b2) · · · is consistent with σ, if
vj+1 = σ(v0 · · · vj) for every j with vj ∈ Vi and bj+1 = 0, i.e., if the next vertex is the one
prescribed by the strategy unless a disturbance edge is used. A strategy σ is positional, if
σ(v0 · · · vj) = σ(vj) for all v0 · · · vj ∈ V ∗Vi.

I Remark. Note that a strategy σ does not have access to the bits indicating whether a
disturbance occurred or not. However, this is not a restriction: let (v0, b0)(v1, b1)(v2, b2) · · ·
be a play with bj = 1 for some j > 0. We say that this disturbance is consequential (w.r.t.
σ), if vj 6= σ(v0 · · · vj−1), i.e., if the disturbance transition (vj−1, vj) traversed by the play
did not lead to the vertex the strategy prescribed. Such consequential disturbances can be
detected by comparing the actual vertex vj to σ’s output σ(v0 · · · vj−1). On the other hand,
inconsequential disturbances will just be ignored. In particular, the number of consequential
disturbances is always at most the number of disturbances.

Infinite Games without Disturbances. We characterize the classical notion of infinite
games, i.e., those without disturbances, (see, e.g., [14]) as a special case of games with
disturbances. Let G be a game with vertex set V . A strategy σ for Player i in G is a winning
strategy for her from v ∈ V , if every disturbance-free play that starts in v and that is
consistent with σ is winning for Player i.

The winning region Wi(G) of Player i in G contains those vertices v ∈ V from which
Player i has a winning strategy. Thus, the winning regions of G are independent of the
disturbance edges, i.e., we obtain the classical notion of infinite games. We say that Player i
wins G from v, if v ∈ Wi(G). Solving a game amounts to determining its winning regions.
Note that every game has disjoint winning regions. In contrast, a game is determined, if
every vertex is in either winning region.
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Resilient Strategies. Let G be a game with vertex set V and let α ∈ ω + 2. A strategy σ
for Player 0 in G is α-resilient from v ∈ V if every play ρ that starts in v, that is consistent
with σ, and with #D(ρ) < α, is winning for Player 0. Thus, a k-resilient strategy with k ∈ ω
is winning even under at most k − 1 disturbances, an ω-resilient strategy is winning even
under any finite number of disturbances, and an (ω + 1)-resilient strategy is winning even
under infinitely many disturbances. Note that every strategy is 0-resilient, as no play has
less than zero disturbances. Also, a strategy is 1-resilient from v if and only if it is winning
for Player 0 from v. We define the resilience of a vertex v of G as

rG(v) = sup{α ∈ ω + 2 | Player 0 has an α-resilient strategy for G from v}.

Note that the definition is not antagonistic, i.e., it is not defined via strategies of Player 1.
Nevertheless, due to the remarks above, resilient strategies generalize winning strategies.
I Remark. Let G be a determined game. Then, rG(v) > 0 if and only if v ∈ W0(G).

A strategy σ is optimally resilient, if it is rG(v)-resilient from every vertex v. Every such
strategy is a uniform winning strategy for Player 0, i.e., a strategy that is winning from
every vertex in her winning region. Hence, positional optimally resilient strategies can only
exist in games which have uniform positional winning strategies for Player 0. Our goal is to
determine the mapping rG and to compute an optimally resilient strategy.

3 Computing Optimally Resilient Strategies

To compute optimally resilient strategies, we first characterize the vertices of finite resilience
in Subsection 3.1. All other vertices either have resilience ω or ω + 1. To distinguish
between these possibilities, we show how to determine the vertices with resilience ω + 1 in
Subsection 3.2. In Subsection 3.3, we show how to compute optimally resilient strategies
using the results of the first two subsections.

3.1 Characterizing Vertices of Finite Resilience
Our goal in this subsection is to characterize vertices with finite resilience in a game with
prefix-independent winning condition, i.e., those vertices from which Player 0 can win even
under k − 1 disturbances, but not under k disturbances, for some k ∈ ω.

To illustrate our approach, consider the parity game in Figure 1 (on Page 3). The winning
region of Player 1 only contains the vertex v1. Thus, by Remark 2, v1 is the only vertex with
resilience zero, every other vertex has a larger resilience.

Now, consider the vertex v2, which has a disturbance edge leading into the winning region
of Player 1. Due to this edge, v2 has resilience one. The unique disturbance-free play starting
in v1 is consistent with every strategy for Player 0 and violates the winning condition. Due
to prefix-independence, prepending the disturbance edge does not change the winner and
consistency with every strategy for Player 0. Hence, this play witnesses that v2 has resilience
at most one, while v2 being in Player 0’s winning region yields the matching lower bound.
However, v2 is the only vertex to which this reasoning applies. Now, consider v3: from here,
Player 1 can force a play to visit v2 using a standard edge. Thus, v3 has resilience one as
well. Again, this is the only vertex to which this reasoning is applicable.

In particular, from v4 Player 0 can avoid reaching the vertices for which we have determined
the resilience by using the self loop. However, this comes at a steep price for her: doing so
results in a losing play, as the color of v4 is odd. Thus, if she wants to have a chance at
winning, she has to take a risk by moving to v2, from which she has a 1-resilient strategy,
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i.e., one that is winning if no more disturbances occur. For this reason, v4 has resilience one
as well. The same reasoning applies to v6: Player 1 can force the play to v4 and from there
Player 0 has to take a risk by moving to v2.

The vertices v3, v4, and v6 share the property that Player 1 can either enforce a play
violating the winning condition or reach a vertex with already determined finite resilience.
These three vertices are the only ones currently satisfying this property. They all have
resilience one since Player 1 can enforce to reach a vertex of resilience one, but he cannot
enforce reaching a vertex of resilience zero. Now, we can also determine the resilience of v5:
The disturbance edge from v5 to v3 witnesses it being two.

Afterwards, these two arguments no longer apply to new vertices: no disturbance edge
leads from a v ∈ {v7, . . . , v10} to some vertex whose resilience is already determined and
Player 0 has a winning strategy from each v that additionally avoids vertices whose resilience is
already determined. Thus, our reasoning cannot determine their resilience. This is consistent
with our goal, as all four vertices have non-finite resilience: v7 and v8 have resilience ω and
v9 and v10 have resilience ω+ 1. Our reasoning here cannot distinguish these two values. We
solve this problem in Subsection 3.2.

We now formalize the reasoning sketched above: starting from the vertices in Player 1’s
winning region having resilience zero, we use a so-called disturbance update and risk update
to determine all vertices of finite resilience. A disturbance update computes the resilience of
vertices having a disturbance edge to a vertex whose resilience is already known (such as
vertices v2 and v5 in the example of Figure 1). A risk update, on the other hand, determines
the resilience of vertices from which either Player 1 can force a visit to a vertex with known
resilience (such as vertices v3 and v6) or Player 0 needs to move to such a vertex in order to
avoid losing (e.g., vertex v4). To simplify our proofs, we describe both as monotone operators
updating partial rankings mapping vertices to ω, which might update already defined values.
We show that applying these updates in alternation eventually yields a stable ranking that
indeed characterizes the vertices of finite resilience.

Throughout this section, we fix a game G = (A,Win) withA = (V, V0, V1, E,D) and prefix-
independent Win ⊆ V ω satisfying the following condition: the game (A,Win ∩ Safety(U)) is
determined for every U ⊆ V . We discuss this requirement in Section 4.

A ranking for G is a partial mapping r : V 99K ω. The domain of r is denoted by dom(r),
its image by im(r). Let r and r′ be two rankings. We say that r′ refines r if dom(r′) ⊇ dom(r)
and if r′(v) ≤ r(v) for all v ∈ dom(r). A ranking r is sound, if we have r(v) = 0 if and only
if v ∈ W1(G) (cf. Remark 2).

Let r be a ranking for G. We define the ranking r′ as

r′(v) = min
(
{r(v)} ∪ {r(v′) + 1 | v′ ∈ dom(r) and (v, v′) ∈ D}

)
,

where {r(v)} = ∅ if v /∈ dom(r), and min ∅ is undefined (causing r′(v) to be undefined). We
call r′ the disturbance update of r.

I Lemma 1. The disturbance update r′ of a sound ranking r is sound and refines r.

Again, let r be a ranking for G. For every k ∈ im(r) let Ak =W1(A,Win ∩ Safety({v ∈
dom(r) | r(v) ≤ k})) the winning region of Player 1 in the game where he either wins
by reaching a vertex v with r(v) ≤ k or by violating the winning condition. Now, define
r′(v) = min{k | v ∈ Ak}, where min ∅ is again undefined. We call r′ the risk update of r.

I Lemma 2. The risk update r′ of a sound ranking r is sound and refines r.
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Let r0 be the unique sound ranking with domain W1(G), i.e., r0 maps exactly the vertices
in Player 1’s winning region to zero. Starting with r0, we inductively define a sequence of
rankings (rj)j∈ω such that rj for an odd (even) j > 0 is the disturbance (risk) update of
rj−1, i.e., we alternate between disturbance and risk updates.

Due to refinement, the rj eventually stabilize, i.e., there is some j0 such that rj = rj0

for all j ≥ j0. Define r∗ = rj0 . Due to r0 being sound and by Lemma 1 and Lemma 2, each
rj , and r∗ in particular, is sound. If v ∈ dom(r∗), let jv be the minimal j with v ∈ dom(rj);
otherwise, jv is undefined.

I Lemma 3. If v ∈ dom(r∗), then rjv (v) = rj(v) for all j ≥ jv.

Lemma 3 implies that an algorithm computing the rj does not need to implement the
definition of the two updates as presented above, but can be optimized by taking into account
that a rank is never updated once set. However, for the proofs below, the definition presented
above is more expedient, as it gives stronger preconditions to rely on, e.g., Lemma 1 and 2
only hold for the definition presented above.

Also, from the proof of Lemma 3, we obtain an upper bound on the maximal rank of r∗.
This in turn implies that the rj stabilize quickly, as rj = rj+1 = rj+2 implies rj = r∗.

I Corollary 4. We have im(r∗) = {0, 1, . . . , n} for some n < |V | and r∗ = r2|V |.

The main result of this section shows that r∗ characterizes the resilience of vertices of
finite resilience.

I Lemma 5. Let r∗ be defined for G as above, and let v ∈ V .
1. If v ∈ dom(r∗), then rG(v) = r∗(v).
2. If v /∈ dom(r∗), then rG(v) ∈ {ω, ω + 1}.

Combining Corollary 4 and Lemma 5, we obtain an upper bound on the resilience of
vertices with finite resilience.

I Corollary 6. We have rG(V ) ∩ ω = {0, 1, . . . , n} for some n < |V |.

3.2 Characterizing Vertices of Resilience ω + 1

Our goal in this subsection is to determine the vertices of resilience ω + 1, i.e., those from
which Player 0 can win even under an infinite number of disturbances. Intuitively, in this
setting, we give Player 1 control over the disturbance edges, as he cannot execute more than
infinitely many disturbances during a play.

In the following, we prove this intuition to be correct. To this end, we transform the
arena of the game so that at a Player 0 vertex, first Player 1 gets to chose whether he wants
to take one of the disturbance edges and, if not, gives control to Player 0, who is then able
to use a standard edge.

Given a game G = (A,Win) with A = (V, V0, V1, E,D), we define the rigged game Grig =
(A′,Win′) with A′ = (V ′, V ′0 , V ′1 , E′, D′) such that V ′ = V ′0 ∪ V ′1 with V ′0 = {v | v ∈ V0} and
V ′1 = V and D′ = ∅. The set E′ of edges is the union of the following sets:

D: Player 1 uses a disturbance edge.
{(v, v) | v ∈ V0}: Player 1 does not use a disturbance edge and yields control to Player 0.
{(v, v′) | (v, v′) ∈ E and v ∈ V0}: Player 0 has control and picks a standard edge.
{(v, v′) | (v, v′) ∈ E and v ∈ V1}: Player 1 takes a standard edge.
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Figure 2 The rigged game obtained for the game of Figure 1.

Further, Win′ = {ρ ∈ (V ′)ω | h(ρ) ∈ Win} where h is the homomorphism induced by
h(v) = v and h(v) = ε for every v ∈ V .

Figure 2 illustrates the construction of a rigged game for the example game of Figure 1
(note that the rigged game is also a parity game in this example). Note that the winning
region of Player 0 corresponds to the vertices of resilience ω + 1 in the game of Figure 1.

The following lemma formalizes the observation that W0(Grig) characterizes the vertices
of resilience ω + 1 in G. Note that we have no assumptions on G here.

I Lemma 7. Let v be a vertex of game G. Then, v ∈ W0(Grig) if and only if rG(v) = ω + 1.

Note that a slight extension of the rigged game also allows to characterize the vertices of
resilience ω. To this end, one uses the same arena as for the rigged game, but adds to the
winning condition of the rigged game all those plays during which Player 1 takes infinitely
many disturbance edges. Then, Player 0 has to satisfy the original winning condition if
only finitely many disturbance edges are taken by Player 1, but wins vacuously if Player 1
takes infinitely many disturbance edges. This is possible from exactly those vertices that
have resilience ω. However, for our purposes, we do not need to investigate this modified
rigged game. We have shown how to determine the vertices of finite resilience and those of
resilience ω + 1. Thus, all other vertices have resilience ω.

Furthermore, the proof of Lemma 7 also yields the preservation of positional strategies.

I Corollary 8. Assume Player 0 has a positional winning strategy for Grig from v. Then,
Player 0 has an (ω + 1)-resilient positional strategy from v.

3.3 Computing Optimally Resilient Strategies
This subsection is concerned with computing the resilience and optimally resilient strategies.
Here, we focus on positional and finite-state strategies, which are sufficient for the majority
of winning conditions in the literature. Nevertheless, it is easy to see that our framework is
also applicable to infinite-state strategies.

In the proof of Lemma 5, we construct strategies σf and σω such that σf is rG(v)-resilient
from every v with rG(v) ∈ ω and such that σω is ω-resilient from every v with rG(v) ≥ ω. Both
strategies are obtained by combining winning strategies for some game (A,Win∩ Safety(U)).
However, even if these winning strategies are positional, the strategies σf and σω are in
general not positional. Nonetheless, we show in the proof of Theorem 9 that such positional
winning strategies and a positional one for Grig can be combined into a single positional
optimally resilient strategy.

Recall the requirements from Subsection 3.1 for a game (A,Win): Win is prefix-
independent and the game GU is determined for every U ⊆ V , where we write GU for
the game (A,Win ∩ Safety(U)) for some U ⊆ V . To prove the results of this subsection, we
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need to impose some additional effectiveness requirements: we require that each game GU

and the rigged game Grig can be effectively solved. Also, we first assume that Player 0 has
positional winning strategies for each of these games, which have to be effectively computable
as well. We discuss the severity of these requirements in Section 4.

I Theorem 9. Let G satisfy all the above requirements. Then, the resilience of G’s vertices
and a positional optimally resilient strategy can be effectively computed.

To prove this result, we refine the following standard technique that combines positional
winning strategies for games with prefix-independent winning conditions.

Assume we have a positional strategy σv for every vertex v in some set W ⊆ V such that
σv is winning from v. Furthermore, let Rv be the set of vertices visited by plays that start in
v and are consistent with σv. Also, let m(v) = min≺{v′ ∈ V | v ∈ Rv′} for some strict total
ordering ≺ of W . Then, the positional strategy σ defined by σ(v) = σm(v)(v) is winning
from each v ∈ W , as along every play that starts in some v ∈ W and is consistent with
σ, the value of the function m only decreases. Thus, after it has stabilized, the remaining
suffix is consistent with some strategy σv′ . Hence, the suffix is winning for Player 0 and
prefix-independence implies that the whole play is winning for her as well.

Here, we have to adapt this reasoning to respect the resilience of the vertices and to
handle disturbance edges. Also, we have to pay attention to vertices of resilience ω + 1, as
plays starting in such vertices have to be winning under infinitely many disturbances.

Proof of Theorem 9. The effective computability of the resilience follows from the effective-
ness requirements on G: to compute the ranking r∗, it suffices to compute the disturbance
and risk updates. The former are trivially effective while the effectiveness of the latter ones
follows from our assumption. Lemma 5 shows that r∗ correctly determines the resilience
of all vertices with finite resilience. Finally by solving the rigged game, we also determine
the resilience of the remaining vertices (Lemma 7). Again, this game can be solved by
our assumption. Thus, it remains to show how to compute a positional optimally resilient
strategy. To this end, we compute a positional strategy σv for every v satisfying the following:

For every v ∈ V with rG(v) ∈ ω \ {0}, the strategy σv is winning for Player 0 from v for
the game (A,Win ∩ Safety({v′ ∈ V | rG(v′) < rG(v)})). The existence of such a strategy
has been shown in the proof of Item 1 of Lemma 5.
For every v ∈ V with rG(v) = ω, the strategy σv is winning for Player 0 from v for the
game (A,Win∩Safety({v′ ∈ V | rG(v′) ∈ ω})). The existence of such a strategy has been
shown in the proof of Item 2 of Lemma 5.
For every v ∈ V with rG(v) = ω + 1, the strategy σv is (ω + 1)-resilient from v. The
existence of such a strategy follows from Corollary 8, as we assume Player 0 to win Grig
with positional strategies.
For every v ∈ V with rG(v) = 0, we fix an arbitrary positional strategy σv for Player 0.

Furthermore, we fix a strict linear order ≺ on V such that v ≺ v′ implies rG(v) ≤ rG(v′),
i.e., we order the vertices by ascending resilience. For v ∈ V with rG(v) 6= ω + 1, let Rv be
the vertices reachable via disturbance-free plays that start in v and are consistent with σv.
On the other hand, for v ∈ V with rG(v) = ω + 1, let Rv be the set of vertices reachable via
plays with arbitrarily many disturbances that start in v and are consistent with σv.

We claim Rv ⊆ {v′ ∈ V | rG(v′) ≥ rG(v)} for every v ∈ V (∗). For v with rG(v) 6= ω + 1
this follows immediately from the choice of σv. Thus, let v with rG(v) = ω + 1. Assume σv

reaches a vertex v′ of resilience rG(v′) 6= ω + 1. Then, there exists a play ρ′ starting in v′
that is consistent with σv, has less than ω + 1 many disturbances and is losing for Player 0.
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Thus the play obtained by first taking the play prefix to v′ and then appending ρ′ without
its first vertex yields a play starting in v, consistent with σv, but losing for Player 0. This
play witnesses that σv is not (ω + 1)-resilient from v, which yields the desired contradiction.

Let m : V → V be given as m(v) = min≺{v′ ∈ V | v ∈ Rv′} and define the positional
strategy σ as σ(v) = σm(v)(v). By our assumptions, σ can be effectively computed. It
remains to show that it is optimally resilient.

To this end, we apply the following two properties of edges (v, v′) that may appear during
a play that is consistent with σ, i.e., we either have v ∈ V0 and σ(v) = v′ (which implies
(v, v′) ∈ E), or v ∈ V1 and (v, v′) ∈ E, or v ∈ V0 and (v, v′) ∈ D:
1. If (v, v′) ∈ E, then we have rG(v) ≤ rG(v′) and m(v) ≥ m(v′). The first property follows

from minimality of m(v) and (∗) while the second follows from the definition of Rv.
2. If (v, v′) ∈ D, then we distinguish several subcases, which all follow immediately from

the definition of resilience:
If rG(v) ∈ ω, then rG(v′) ≥ rG(v)− 1.
If rG(v) = ω, then rG(v′) = ω, and
If rG(v) = ω + 1, then rG(v′) = ω + 1 and m(v) ≥ m(v′) (here, the second property
follows from the definition of Rv for v with rG(v) = ω + 1, which takes disturbance
edges into account).

Now, consider a play ρ = (v0, b0)(v1, b1)(v2, b2) · · · that is consistent with σ. If rG(v0) = 0
then we have nothing to show, as every strategy is 0-resilient from v.

Now, assume rG(v0) ∈ ω\{0}. We have to show that if ρ has less than rG(v0) disturbances,
then it is winning for Player 0. An inductive application of the above properties shows that
in that case the last disturbance edge leads to a vertex of non-zero resilience. Furthermore,
as the values m(vj) are only decreasing afterwards, they have to stabilize at some later point.
Hence, there is some suffix of ρ that starts in some v′ with non-zero resilience and that is
consistent with the strategy σv′ . Thus, the suffix is winning for Player 0 by the choice of σv′

and prefix-independence implies that ρ is winning for her as well.
Next, assume rG(v0) = ω. We have to show that if ρ has a finite number of disturbances,

then it is winning for Player 0. Again, an inductive application of the above properties
shows that in that case the last disturbance edge leads to a vertex of resilience ω or ω + 1.
Afterwards, the values m(vj) stabilize again. Hence, there is some suffix of ρ that starts in
some v′ with non-zero resilience and that is consistent with the strategy σv′ . Thus, the suffix
is winning for Player 0 by the choice of σv′ and prefix-independence implies that ρ is winning
for her as well.

Finally, assume rG(v0) = ω + 1. Then, the above properties imply that ρ only visits
vertices with resilience ω + 1 and that the values m(vj) eventually stabilize. Hence, there
is a suffix of ρ that is consistent with some (ω + 1)-resilient strategy σv′ , where v′ is the
first vertex of the suffix. Hence, the suffix is winning for Player 0, no matter how many
disturbances occurred. This again implies that ρ is winning for her as well. J

The algorithm determining the vertices’ resilience and a positional optimally resilient
strategy first computes r∗ and the winner of the rigged game. This yields the resilience of
G’s vertices. Furthermore, the strategy is obtained by combining winning strategies for the
games GU and for the rigged game as explained above.

Next, we analyze the complexity of the algorithm sketched above in some more detail. The
inductive definition of the rj can be turned into an algorithm computing r∗ (using the results
of Lemma 3 to optimize the naive implementation), which has to solve O(|V |) many games
(and compute winning strategies for some of them) with winning condition Win ∩ Safety(U).



D. Neider, A. Weinert, and M. Zimmermann 34:13

Furthermore, the rigged game, which is of size O(|V |), has to be solved and winning strategies
have to be determined. Thus, the overall complexity is in general dominated by the complexity
of solving these tasks.

We explicitly state one complexity result for the important case of parity games, using the
fact that each of these games is then a parity game as well. Also, we use a quasipolynomial
time algorithms for solving parity games [8] to solve the games GU and Grig.

I Theorem 10. Optimally resilient strategies in parity games are positional and can be
computed in quasipolynomial time.

Using similar arguments, one can also analyze games where positional strategies do not
suffice. As above, assume G satisfies the same assumptions on determinacy and effectiveness,
but only require that Player 0 has finite-state winning strategies4 for each game with winning
condition (A,Win ∩ Safety(U)) and for the rigged game Grig. Then, one can show that she
has a finite-state optimally resilient strategy. In fact, by reusing memory states, one can
construct an optimally resilient strategy that it is not larger than any constituent strategy.

4 Discussion

In this section, we discuss the assumptions required to be able to compute positional (finite-
state) optimally resilient strategies with the algorithm presented in Section 3. To this end, fix
a game G = (A,Win) with vertex set V and recall that Grig is the corresponding rigged game
and that we defined GU = (A,Win ∩ Safety(U)) for U ⊆ V . Now, the assumptions on G
for Theorem 9 to hold are as follows: (1) Every game GU is determined. (2) Player 0 has a
positional winning strategy from every vertex in her winning regions in the GU and in the
game Grig. (3) Each GU and the game Grig can be effectively solved and positional winning
strategies can be effectively computed for each such game. (4) Win is prefix-independent.

First, consider the determinacy assumption. It is straightforward to show W0(GU ) =
W0(A\W,Win∩ (V \W )ω) with W =W1(A, Safety(U)). Thus, one can first determine and
then remove the winning region of Player 1 in the safety game and then solve the subgame
of G played in Player 0’s winning region of the safety game. Thus, all subgames of G being
determined suffices for our determinacy requirement being satisfied. The winning conditions
one typically studies, e.g., parity and in fact all Borel ones [17], satisfy this property.

The next requirement concerns the existence of positional (finite-state) winning strategies
for the games GU and Grig. For the GU , this requirement is satisfied if Player 0 has positional
(finite-state) winning strategies for all subgames of G. As every positional (finite-state)
optimally resilient strategy is also a winning strategy in a certain subgame, this condition is
necessary. Now, consider Grig, whose winning condition can be written as h−1(Win) for the
homomorphism h from Subsection 3.2. The winning conditions one typically studies, e.g., the
Borel ones, are closed w.r.t. such supersequences. If G is from a class of winning conditions
that allows for positional (finite-state) winning strategies for Player 0, then this class typically
also contains Grig. Also, the assumption on the effective solvability and computability of
positional (finite-state) strategies is obviously necessary, as we solve a more general problem
when determining optimally resilient strategies.

Finally, let us consider prefix-independence. If the winning condition is not prefix-
independent, the algorithm presented in Section 3 does not compute the resilience of vertices
correctly anymore. As an example, consider the family Gk = (A,Wink) of games shown

4 A finite state strategy is implemented by a finite automaton that processes play prefixes and outputs
vertices to move to. See the full version [18] for a formal definition.
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W0 W1W0v v′

Wink = {v0v1v2 · · · ∈ V ω |
|{j | vj = v}| ≤ k}

v0/0 v1/1

v2/1

v′
2/1

v3/0

Figure 3 Left: Counterexample to the correctness of the computation of resilience for games
with prefix-dependent winning conditions. Right: Intuitively, moving from v1 to v′

2 is preferable for
Player 0, as it allows her to possibly “recover” from a first fault with the “help” of a second one.

on the left-hand side of Figure 3. In Gk, it is Player 0’s goal to avoid more than k visits
to v. Such a visit only occurs via a disturbance or if the initial vertex is v. Hence, we
have rGk

(v) = k and rGk
(v′) = k + 1. Applying the algorithm from Section 3, however, the

initial ranking function r0 has an empty domain, since we have W1(Gk) = ∅. Thus, the
computation of the rj immediately stabilizes, yielding r∗ with empty domain. This is a
counterexample to the generalization of Lemma 5 to prefix-dependent winning conditions.

Nevertheless, one can still leverage the algorithm from Section 3 in order to compute the
resilience of a wide range of games with prefix-dependent winning conditions. To this end,
we extend the framework of game reductions to games with disturbances, in such a way that
the existence of α-resilient strategies is preserved. Using this framework shows that Player 0
has a finite-state optimally resilient strategy in every game with ω-regular winning condition.
Due to space restrictions, the details are spelled out in the full version [18]. Here, we just
state the main result.

I Theorem 11. Let a game G be reducible to a game G′ with prefix-independent winning
condition, which can be effectively computed from G, and satisfies the assumptions from
Section 3 (with finite-state strategies). Then, the resilience of G’s vertices and an optimally
resilient finite-state strategy can be effectively computed.

5 Outlook

We have developed a fine-grained view on the quality of strategies: instead of evaluating
whether or not a strategy is winning, we compute its resilience against intermittent dis-
turbances. While this measure of quality allows constructing “better” strategies than the
distinction between winning and losing strategies, there remain aspects of optimality that
are not captured in our notion of resilience. In this section we discuss these aspects and give
examples of games in which there are crucial differences between optimally resilient strategies.
In further research, we aim to synthesize optimal strategies with respect to these criteria.

As a first example, consider the parity game shown on the right-hand side of Figure 3.
Vertices v0 and v3 have resilience 1 and ω+ 1, respectively, while vertices v1, v2, and v′2 have
resilience 0. Player 0’s only choice consists of moving to v2 or to v′2 from v1. Let σ and σ′ be
strategies for Player 0 that always move to v2 and v′2 from v1, respectively. Both strategies
are optimally resilient. Hence, the algorithm from Section 3 may yield either one, depending
on the underlying parity game solver used. Intuitively, however, σ′ is preferable for Player 0,
as a play prefix ending in v′2 may proceed to her winning region if a single disturbance
occurs. All plays encountering v2 at some point, however, are losing for her. Hence, another
interesting avenue for further research is to study how to recover from losing, i.e., how
to construct strategies that leverage disturbances in order to leave Player 1’s winning region.
For safety games, this has been addressed by Dallal, Neider, and Tabuada [10].
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W0

W1

W0

v0/0

v1/0 v2/0 v3/0

v′
1/0 v′

2/0 v′
3/1 v0/1

v2/2v1/1

Figure 4 Left: Moving to v1 from v0 allows Player 0 to minimize visits to odd colors, while
moving to v′

1 allows her to minimize the occurrence of disturbances. Right: Additional memory
allows Player 0 to remain in v1 longer and longer, thus decreasing the potential for disturbances.

The previous example shows that Player 0 can still make “meaningful” choices even if
the play has moved outside her winning region. The game G shown in the left-hand side of
Figure 4 demonstrates that she can do so as well when remaining in vertices of resilience ω.
Every vertex in G has resilience ω, since every play with finitely many disturbances eventually
remains in vertices of color 0. Moreover, the only choice to be made by Player 0 is whether
to move to vertex v1 or to vertex v′1 from vertex v0. Let σ and σ′ be positional strategies
that implement the former and the latter choice, respectively.

First consider a scenario in which visiting an odd color models the occurrence of some
undesirable event, e.g., that a request has not been answered. In this case, Player 0 should
aim to prevent visits to v′3 in G, the only vertex of odd color. Hence, the strategy σ should
be more desirable for her, as it requires two disturbances in direct succession in order to visit
to v′3. When playing consistently with σ′, however, a single disturbance suffices to visit v′3.

On the other hand, consider a setting in which Player 0’s goal is to avoid the occurrence
of disturbances. In that case, σ′ is preferable over σ, as it allows for fewer situations in which
disturbances may occur, since no disturbances are possible from vertices v2 and v3.

Note that the goals of minimizing visits to vertices of odd color and minimizing the
occurrence of disturbances are not contradictory: if both events are undesirable, it may be
optimal for Player 0 to combine the strategies σ and σ′. In general, it is interesting to study
how to how to best brace for a finite number of disturbances.

Recall that, due to Theorem 10, optimally resilient strategies for parity games do not
require memory. In contrast, the game shown on the right-hand side of Figure 4 demonstrates
that additional memory can serve to further improve such strategies. Any strategy for
Player 0 that does not stay in v1 from some point onwards is optimally resilient. However,
every visit to v2 risks a disturbance occurring, which would lead the play into a losing sink for
Player 0. Hence, it is in her best interest to remain in vertex v1 for as long as possible, thus
minimizing the possibility for disturbances to occur. This behavior does, however, require
memory to implement, as Player 0 needs to count the visits to v1 in order to not remain in
that state ad infinitum. Thus, for each optimally resilient strategy σ with finite memory there
exists another optimally resilient strategy that uses more memory, but visits v2 more rarely
than σ, reducing the possibilities for disturbances to occur. Hence, it is interesting to study
how to balance avoiding disturbances with satisfying the winning condition. This
is particularly interesting if there is some cost assigned to disturbances.

Finally, another important and interesting aspect, which falls outside the scope of this
paper, is to provide general guidelines and best practices on how to model synthesis problems
by games with disturbances. We will address these problems in future research.
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6 Conclusion

We presented an algorithm for computing optimally resilient strategies in games with
disturbances to any game that satisfies some mild (and necessary) assumptions. Thereby, we
have vastly generalized the work of Dallal, Neider, and Tabuada, who only considered safety
games. Furthermore, we showed that optimally resilient strategies are typically of the same
size as classical winning strategies. Finally, we have illustrated numerous novel phenomena
that appear in the setting with disturbances but not in the classical one. Studying these
phenomena is a very promising direction of future work.
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Abstract
Circular (ie. non-wellfounded but regular) proofs have received increasing interest in recent years
with the simultaneous development of their applications and meta-theory: infinitary proof theory
is now well-established in several proof-theoretical frameworks such as Martin Löf’s inductive
predicates, linear logic with fixed points, etc. In the setting of non-wellfounded proofs, a validity
criterion is necessary to distinguish, among all infinite derivation trees (aka. pre-proofs), those
which are logically valid proofs. A standard approach is to consider a pre-proof to be valid if
every infinite branch is supported by an infinitely progressing thread.

The paper focuses on circular proofs for MALL with fixed points. Among all representations
of valid circular proofs, a new fragment is described, based on a stronger validity criterion. This
new criterion is based on a labelling of formulas and proofs, whose validity is purely local. This
allows this fragment to be easily handled, while being expressive enough to still contain all circular
embeddings of Baelde’s µMALL finite proofs with (co)inductive invariants: in particular deciding
validity and computing a certifying labelling can be done efficiently. Moreover the Brotherston-
Simpson conjecture holds for this fragment: every labelled representation of a circular proof in
the fragment is translated into a standard finitary proof. Finally we explore how to extend these
results to a bigger fragment, by relaxing the labelling discipline while retaining (i) the ability to
locally certify the validity and (ii) to some extent, the ability to finitize circular proofs.

2012 ACM Subject Classification Theory of computation → Logic, Theory of computation
→ Proof theory, Theory of computation → Linear logic, Theory of computation → Logic and
verification

Keywords and phrases sequent calculus, non-wellfounded proofs, circular proofs, induction, coin-
duction, fixed points, proof-search, linear logic, muMALL, finitization, infinite descent

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.35

Related Version Full version available at https://hal.archives-ouvertes.fr/hal-01825477.

Funding Partially funded by ANR Project RAPIDO, ANR-14-CE25-0007.

Acknowledgements We want to thank the anonymous reviewers for their very detailed com-
ments.

© Rémi Nollet, Alexis Saurin, and Christine Tasson;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 35; pp. 35:1–35:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:remi.nollet@irif.fr
mailto:alexis.saurin@irif.fr
mailto:christine.tasson@irif.fr
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.35
https://hal.archives-ouvertes.fr/hal-01825477
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


35:2 Local validity for circular µMALL

` Γ, S ` S⊥, F [S/X]
(νinv)

` Γ, νX.F

Figure 1 Coinduction rule à la Park.

...
(µ)

` µX.X
(µ)

` µX.X

...
(ν)

` νX.X,Γ
(ν)

` νX.X,Γ
(Cut)

` Γ

Figure 2

1 Introduction

Various logical settings have been introduced to reason about inductive and coinductive
statements, both at the level of the logical languages modelling (co)induction (Martin Löf’s
inductive predicates vs. fixed-point logics, that is µ-calculi) and at the level of the proof-
theoretical framework considered (finite proofs with (co)induction à la Park [22] vs. infinite
proofs with fixed-point/inductive predicate unfoldings) [8, 10, 11, 5, 2, 3]. Moreover, such
proof systems have been considered over classical logic [8, 11], intuitionistic logic [12], linear-
time or branching-time temporal logic [20, 19, 26, 27, 14, 15, 16] or linear logic [23, 17, 5, 4, 15].

In all those proof systems, the treatment of inductive and coinductive reasoning brings
some highly complex proof figures. For instance, in proof systems using (co)induction rules à
la Park, the rules allowing to derive a coinductive property (or dually to use an inductive
hypothesis) have a complex inference of the form of fig. 1 (when presented in the setting
of fixed-point logic – here we follow the one-sided sequent tradition of MALL that we will
adopt in the rest of the paper). Not only is it difficult to figure out intuitively what is the
meaning of this inference, but it is also problematic for at least two additional and more
technical reasons: (i) it is hiding a cut rule that cannot be eliminated, which is problematic
for extending the Curry-Howard correspondence to fixed-points logics, and (ii) it breaks the
subformula property, which is problematic for proof search: at each coinduction rule, one
has to guess an invariant (in the same way as one has to guess an appropriate induction
hypothesis in usual mathematical proofs) which is problematic for automation of proof search.

Infinite (non-wellfounded) proofs have been proposed as an alternative in recent years [8,
10, 11]. By replacing the coinduction rule with simple fixed-point unfoldings and allowing
for non-wellfounded branches, those proof systems address the problem of the subformula
property for the cut-free systems. The cut-elimination dynamics for inductive-coinductive
rules is also much simpler. Among those non-wellfounded proofs, circular, or cyclic proofs,
that have infinite but regular derivations trees, have attracted a lot of attention for retaining
the simplicity of the inferences of non-wellfounded proof systems but being amenable to a
simple finite representation making it possible to have an algorithmic treatment of those
proof objects.

However, in those proof systems when considering all possible infinite, non-wellfounded
derivations (a. k. a. pre-proofs), it is straightforward to derive any sequent Γ (see fig. 2). Such
pre-proofs are therefore unsound and one needs to impose a validity criterion to distinguish,
among all pre-proofs, those which are logically valid proofs from the unsound ones. This
condition will actually reflect the inductive and coinductive nature of our two fixed-point
connectives: a standard approach [8, 10, 11, 23, 4] is to consider a pre-proof to be valid if
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`F,G,H, I, J
(ν)(⊕2)

` F,G,H, I, J
(µ)(⊕1)(O)

` F,G,H, I
(µ)(⊕2)(⊥)

` F,G,H, I, J
(O)

` F OG,H, I, J
(ν)(⊕2),(⊥)

` F OG,G,H, I, J

` F,G,H, I, J
(ν),(⊕1)

` F,G,H, I, J
(ν)

` F,G,H,K, J
(µ),(⊕1),(O)

` F,G,H, J
(µ),(⊕2),(⊥)

` F,G,H, I, J
(X)

` F,H,G, I, J
(O)

` F OH,G, I, J
(ν)(⊕1),(⊥)

` F OH,G,H, I, J
(N)

` (F OG) N(F OH), G,H, I, J
(µ)

` F ,G,H, I, J

Figure 3 Proof π∞.

every infinite branch is supported by an infinitely progressing thread. However, doing so,
the logical correctness of circular proofs becomes a non-local property, much in the spirit of
proof nets correctness criteria [18, 13].

Despite the need for a validity condition, circular proofs have recently received increasing
interest with the simultaneous development of their applications and meta-theory: infinitary
proof theory is now well-established in several proof-theoretical frameworks such as Martin
Löf’s inductive predicates, linear logic with fixed-points, etc.

This paper is a contribution to two directions in the field of circular proofs:
1. the relationship between finite and circular proofs (at the level of provability and at the

level of proofs themselves) and
2. the certification of circular proofs, that is the production of fast and/or small pieces of

evidence to support validity of a circular pre-proof.

Comparing finite and infinite proofs is very natural. Informally, it amounts to considering
the relative strength of inductive reasoning versus infinite descent: while infinite descent is a
very old form of mathematical reasoning which appeared already in Euclid’s Elements and
was systematically investigated by Fermat, making precise its relationship with mathematical
induction is still an open question for many proof formalisms. Their equivalence is known
as the Brotherston–Simpson conjecture. While it is fairly straightforward to check that
infinite descent (circular proofs) prove at least as many statements as inductive reasoning,
the converse is complex and remains largely open. Last year, Simpson [24], on the one hand,
and Berardi and Tatsuta [6, 7], on the other hand, made progress on this question but only
in the framework of Martin Löf’s inductive definitions, not in the setting of µ-calculi circular
proofs in which invariant extraction is highly complex and known only for some fragments.

We conclude this introduction by considering a typical example of a circular proof with a
complex validating thread structure: while this infinite proof has a regular derivation tree, its
branches and threads have a complex geometry. The circular (pre-)proof of Figure 3 derives the
sequent ` F,G,H, I, J where F = µX.(X OG) N(X OH), G = νX.X ⊕⊥, H = νX.⊥⊕X,
I = µZ.((Z O J)⊕⊥), J = µX.(K OX)⊕⊥ and K = νY.µZ.((Z OµX.(Y OX)⊕⊥)⊕⊥).

This example of a circular derivation happens to be valid (it is a µMALLω proof) but
the description of its validating threads is quite complex. Indeed, each infinite branch β

is validated by exactly one thread (see next section for detailed definitions) going through
either G, H or K depending on the shape of the branch at the limit (infinite branches of
this derivations can be described as ω-words on A = {l, r} depending on whether the left or
right back-edge is taken):

CSL 2018



35:4 Local validity for circular µMALL

Finitary Circular Infinitary Proofs

µMALL
Fig. 1

µMALL

y

Def. 14
µMALLω

Def. 9
µMALL∞

Def. 9
Standard

µMALL

y

lab
Def. 14

L-proofs
Def. 12

Labelled

Prop. 16 ⊆
Prop. 15

Th. 28

⊆

Def. 14 d•e

Figure 4 Relations between the different systems used in the paper.

(i) if β ultimately follows always the left cycle (A? · lω), the unfolding of H validates β;
(ii) if β ultimately follows always the right cycle (A? · rω), the unfolding of G validates β;
(iii) if β endlessly switches between left and right cycles (A? · (r+ · l+)ω), K validates β.
The description of the thread validating this proof is thus complex. This is reflected in the
difficulty to provide a local way to validate this proof and in the lack of a general method for
finitizing this into a µMALL proof: to our knowledge, the usual finitization methods (working
only for fragments of µMALL circular proofs) do not apply here.

Organization and contributions of the paper. In section 2, we provide the necessary
background on infinitary and circular proof theory of multiplicative additive linear logic with
least and greatest fixed points (respectively µMALL∞ and µMALLω). Section 3 studies an
approach to circular proofs based on labellings of greatest fixed points. We first motivate in
section 3.1 such labellings as an alternative way to express the validating threads. Then, in
section 3.2 we introduce finite representations of pre-proofs and use such labellings in order
to locally certify their validity. Finally, in section 3.3, we turn to alternative characterizations
of those circular proofs which can be labelled. The fragment of labellable proofs, while quite
constrained (for instance, it does not include the example of Figure 3), is already enough to
capture the circular proofs obtained by translation of µMALL proofs. In section 4, we address
the converse: for any labelled derivation tree with back-edges, we provide a corresponding
µMALL proof by generating a (co)inductive invariant based on an inspection of the labelling
structure. Therefore, we answer the Brotherston–Simpson conjecture in a restricted fragment.
In section 5, we introduce a more permissive labelling strategy that allows to label more
proofs (in particular by allowing to loop not only on (ν) rules but on any rule) and that still
ensures validity of the labellable derivations. For this relaxed labelling, we label the example
of Figure 3 and show how to finitize it by adapting the method of section 4. Nevertheless,
there is not yet a general method applicable to the complete extended labelling fragment.
Relations between the various systems considered in the paper are summarized in Figure 4.

2 Background on circular proofs

We recall µMALL∞ and µMALLω, which are non-wellfounded and circular proof systems,
respectively, for an extension of MALL with least and greatest fixed points operators [4, 15].

I Definition 1. Given a set of fixed point operators F = {µ, ν} and an infinite set of
propositional variables V = {X,Y, . . . }, µMALL pre-formulas are inductively defined as:
A,B ::= 0 | > | A⊕B | ANB | ⊥ | 1 | AOB | A⊗B | X | σX.A with X ∈ V and σ ∈ F .
σ ∈ F binds the variable X in A. From there, bound variables, free variables and capture-
avoiding substitution are defined in a standard way. The subformula ordering is denoted ≤
and fv(•) denotes free variables. When a pre-formula is closed, we simply call it a formula.
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(1)
` 1

(Ax)
` F, F⊥

` Γ, F ` F⊥,∆
(Cut)

` Γ,∆
` Γ, F,G,∆

(X)
` Γ, G, F,∆

` Γ
(⊥)

` ⊥,Γ
` Fi,Γ

(⊕i)
` F1 ⊕ F2,Γ

` F,Γ ` G,∆
(⊗)

` F⊗G,Γ,∆
` F [µX.F/X],Γ

(µ)
` µX.F,Γ

(>)
` >,Γ

` F,Γ ` G,Γ
(N)

` F NG,Γ
` F,G,Γ

(O)
` F OG,Γ

` G[νX.G/X],Γ
(ν)

` νX.G,Γ

Figure 5 µMALL∞ inference rules.

Note that negation is not part of the syntax, so that we do not need any positivity
condition on fixed-points expressions. We define negation, (•)⊥, as a meta-operation on
pre-formulas and will use it on formulas.

I Definition 2. Negation, (•)⊥, is the involution on pre-formulas, satisfying: 0⊥ = >,
(A⊕B)⊥ = B⊥NA⊥, 1⊥ = ⊥, (A⊗B)⊥ = B⊥OA⊥, X⊥ = X, (µX.A)⊥ = νX.A⊥.

I Example 3. The previous definition yields, e. g. (µX.X)⊥ = (νX.X) and (µX.1⊕X)⊥ =
(νX.X N⊥), as expected [3]. Note that we also have (A[B/X])⊥ = A⊥[B⊥/X].

The reader may find it surprising to define X⊥ = X, but it is harmless since our proof system
only deals with formulas (i. e. closed pre-formulas) as examplified right above.

Fixed-points logics come with a notion of subformulas slightly different from usual:

I Definition 4. The Fischer-Ladner closure of a formula F , FL(F ), is the least set of
formulas such that F ∈ FL(F ) and, whenever G ∈ FL(F ), (i) G1, G2 ∈ FL(F ) if G = G1 ? G2
for any ? ∈ {⊕,N,O,⊗}; (ii) B[G/X] ∈ FL(F ) if G is µX.B or νX.B. We say that G is a
FL-subformula of F if G ∈ FL(F ).

In this work we choose to present sequents as lists of formulas together with an explicit
exchange rule. Another usual choice is to present sequents as multisets of formulas. Yet,
our approach takes the viewpoint of structural proof theory in which one is willing not to
equate too many proofs. In particular, the sequents as (multi)sets are not relevant from
the Curry-Howard perspective, e. g. it would equate the proofs denoting the two booleans.
Moreover, most proof theoretical observations actually hold when one distinguishes between
several occurrences of a formula in a sequent, giving the ability to trace the provenance of
each occurrence. In [4], formula occurrences are localized formulas and the interested reader
will check that all the following results hold also in this more explicit approach.

I Definition 5. A pre-proof of µMALL∞ is a possibly infinite tree generated from the
inference rules given in fig. 5.

Recall that µMALL [3], on the opposite, is obtained by forming only finite trees and by
taking, instead of the (ν) rule of µMALL∞, the rule with explicit invariant of fig. 1.

When writing sequent proofs, we will often omit exchange rules, using the fact that
every inference of def. 5 admits a derivable variant (preserving every correctness criterion
considered in the paper) allowing the principal formula of the inference as well as the context
(or auxiliary) formulas to be anywhere in the sequent, e. g. for the O introduction, the

derived rule is
` Γ, A,B,∆

(O)
` Γ, AOB,∆

. We will use those derived rules when it is not ambiguous

with respect to the formula occurrence relation. The following notion of threading function
is folklore generally left implicit.
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35:6 Local validity for circular µMALL

Figure 6 Threading function.

I Definition 6. Every rule r of µMALL∞ comes with a threading function t(r) (see
Figure 6) mapping each position of an subformula in a premise to a position of a subformula
in the conclusion, except for cut-formulas, by relating the subformula positions of a premise
formula F with the corresponding (subformula) positions of the conclusion F ′, F being
the FL-subformula associated to F ′ by inference r; note that in the case of the unfolding
of fixed point F ′ = νX.G into F = G[νX.G/X] every position of νX.G in F is associated
to the root position of F ′ and every position of a subformula in (a copy of) G in F is
associated to the corresponding subformula position in G in F ′. More formally, if s1
is the conclusion and s2 a premise of the same occurrence of rule r, then r induces a
partial function t(r) : Pos(s2) ⇀ Pos(s1), where Pos(A0, . . . , An−1) = {(k, p) | 0 6 k <

n and p is a position of a subformula in Ak}.
By composing these partial maps we define t(u) for any path u, mapping positions of

subformulas in the top sequent of u to positions of subformulas in its bottom sequent.

I Definition 7. Let γ = (si)i∈ω be (a suffix of) an infinite branch in a pre-proof of
µMALL∞, that is: the si are occurrences of sequents and for all i there is an occurrence of a
rule in the preproof which has si+1 as a premise and si as conclusion.

A ν-thread is the data comprising a ν-formula νX.A and a sequence ((s′i, pi))i<α, finite
(α < ω) or infinite (α = ω), such that s′i are sequent occurrences, pi is the position in s′i of a
subformula equal to νX.A and for all i, if i+ 1 < α, there is a rule occurrence ri which has
s′i and s′i+1 as, respectively, conclusion and premise, and such that pi corresponds to pi+1
via the threading function, i. e. pi = t(ri)(pi+1). If one of the pi is the main formula of the
conclusion of a ν-rule ri, then the ν-thread is progressing at i. A ν-thread is valid if it is
progressing infinitely many times. A ν-thread is in γ if (s′i) is a suffix of γ.

From now on, we may refer to à ν-thread simply as a thread.

I Definition 8 (T(u)(p)). If u is a finite path in a µMALL∞ preproof and p a position of
subformula in its top sequent then there is a unique thread in u, going from t(u)(p) up to p.
This thread is constructed by following the threading relation and is denoted as T(u)(p).

I Definition 9. A µMALL∞ proof is a pre-proof in which every infinite branch contains a
valid thread. A µMALLω proof is a circular µMALL∞ proof, i. e. a regular one, which has
a finite number of distinct subtrees.

Since circular µMALL∞ proofs are regular, they can actually be presented as finite trees
with back-edges, as exemplified in fig. 3. The main results of the paper rely on such a
representation. µMALL∞ proofs enjoy several nice properties, such as cut-elimination:

I Theorem 10 ([4]). Cut-elimination holds for µMALL∞ proofs.

Thanks to cut-elimination µMALL∞ enjoys the FL-subformula property: indeed in a
cut-free µMALL∞ proof, premises are always included in FL-closure of conclusion sequents.
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3 Labelling as validity

3.1 L-proofs
In this subsection, we briefly mention an alternative approach to ensure validity of µMALL∞

pre-proofs, aiming at motivating the tools used in the remainder of this paper (see details
in the extended version ). The idea is to witness thread progress by adding labels on some
formulas.

I Definition 11 (Labelled formulas). Let L be an infinite countable set of atoms and call
labels any finite list of atoms. Let FL be the set

{
σL | σ ∈ {µ, ν}, L ∈ list(L)

}
. Labelled

formulas, or L-formulas, are defined as µMALL formulas, by replacing F with FL in the
grammar of formulas (def. 1). Negation is lifted to labelled formulas, as (µLX.A)⊥ = νLX.A⊥.
We write σX.A for σ∅X.A and standard, unlabelled formulas can thus be seen as labelled
formulas where every label is empty. We define a label-erasing function d•e that associates
to every L-formula A the µMALL-formula dAe obtained by erasing every label and satisfying⌈
σLX.B

⌉
= σX. dBe.

The standard µMALL∞ proof system is adapted, to handle labels, by updating (Ax) and

(ν) as
A ⊥ B

(Ax′)
` A,B

` A[νL,aX.A],Γ
(νb(a))

` νLX.A,Γ where (i) A,B are said to be orthogonal,
written A ⊥ B, when dAe = dBe⊥ and (ii) in (νb(a)), a must be a fresh label name, i. e. a
does not appear free in the conclusion sequent of (νb(a)) (in particular, a /∈ L). Since we are
in a one-sided framework, only labels on ν operators are relevant. Therefore, from now on,
formulas have non-empty labels only on ν and require, for the cut inference, that all labels
of cut formulas are empty. L-pre-proofs are, as in def. 5, possibly infinite derivations using
L-formulas, and the validity condition is expressed in terms of labels:

I Definition 12 (L-proof). An L-proof is an L-pre-proof such that for every infinite branch
γ = (si)i∈ω, there exists a sequence (νLiX.Gi)i∈ω and a strictly increasing function ε on
natural numbers such that for every i ∈ ω, (i) the formula νLiX.Gi is principal in sε(i) (ii)⌈
νLiX.Gi

⌉
=
⌈
νLi+1X.Gi+1

⌉
and (iii) Li+1 = (Li, ai) for some ai ∈ L.

Note that the label-erasing function d•e is easily lifted to sequents and L-pre-proofs. And if
π is an L-proof, then dπe is a µMALL∞ proof.

3.2 Finite representations of circular L-proofs.
We now turn our attention to finite representations of (circular) L-proofs. Immediately a
difficulty occurs in comparison to non-labelled proofs: whereas an infinite non-labelled proof
may happen to be regular, a valid L-proof cannot be circular, for, along every infinite branch,
the sets of labels will grow endlessly. To form circular proofs with labels, some atoms must
be forgotten when going bottom-up.

We introduce two more rules: (

y

(a)) and (LW). The first one allows to forget one atom,
just before recreating it by means of a back-edge to an already encountered ν-rule. The
other one allows to forget any atom that will not be used to validate the proof. It is used to
synchronise the different labels in a sequent before travelling through a back-edge.

labelled back-edge:
(

y

(a))
` νL,aX.A,Γ with the constraint that it must be the source

of a back-edge to the conclusion of a
` A[νL,aX.A],Γ

(νb(a))
` νLX.A,Γ

below (

y

(a)).
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labelled weakening:
` Γ, B[νLX.A],∆

(LW)
` Γ, B[νL,aX.A],∆

I Definition 13 (µMALL

y

lab). µMALL

y

lab denotes the finite derivations of L-sequents built
from the rules in fig. 5 by replacing (ν) by (νb(a)), (

y

(a)), (LW), such that (i) the root sequent
has empty labels and (ii) in every two (νb(a)) and (νb(b)) occurring in the proofs, a 6= b.

The label-erasing function d•e lifts to a translation from µMALL
y

lab to the finite repres-

entations of µMALLω pre-proofs. Every rule of the labelled µMALL
y

lab proof is sent by d•e to
a valid rule of unlabelled µMALL∞, except for the (LW) rule, which can safely be removed:

` Γ, B[νLX.A],∆
(LW)

` Γ, B[νL,aX.A],∆
becomes useless

` dΓe , dBe
[
νX. dAe

]
, d∆e

` dΓe , dBe
[
νX. dAe

]
, d∆e

(1)

Since µMALL

y

lab proofs are finite, label-erasing and unfolding give rise to µMALLω pre-proofs:

I Definition 14 (µMALL

y

). We denote as µMALL

y

the set of circular pre-proofs that are
obtained from µMALL

y

lab by label-erasing and total unfolding.

I Proposition 15 (µMALL
y

⊆ µMALLω). Every pre-proof of µMALLω that is the image of
a proof in µMALL

y

lab by label-erasing and total unfolding satisfies thread validity.

Proof sketch (details are in appendix A, p. 19). Consider a pre-proof dπe in µMALL

y

which
is the image of an L-proof π in µMALL

y

lab. We want to prove that every infinite branch b in
dπe is contains a valid thread (see def. 7). Let b0 be the corresponding infinite L-branch in
π. Notice that there is a sequent S0 which is the lowest back-edge target crossed infinitely
often by b0. Besides, S0 is the conclusion of a (νb(a)) rule, which unfolds some νLX.A.

We decompose b0, with root r ; S0 conclusion of (νb(a)) and νLX.A at
position p0 in S0 ; for any i ≥ 1, Si conclusion of a back-edge (

y

(a))

with νL,aX.A at position p0 in Si . Then we notice that T(ui)(p0) is a
thread (S0, p0) ∗−→(Si, p0) which is progressing, as its source is the principal
conclusion of the rule (νb(a)). By gluing the T(ui)(p0) and then erasing
labels, we get a valid thread of b in dπe. J

Si
(

y

(a))

S0
(νb(a))

r

ui

u0

I Proposition 16. µMALL proofs can be translated to µMALL

y

.

Proof. The target of the usual translation [15] µMALL→ µMALLω is included in µMALL

y

.
The key case of this translation is shown in appendix A. J

Observe that a proof in µMALL

y

is not, in general, the translation of a µMALL proof.

3.3 Two alternative characterizations of µMALL

y

In the two following sections, we give two characterizations of µMALL

y

through validating
sets (def. 20) and through a threading criterion over back-edges (def. 24).

I Definition 17. Given a directed graph G = (V,E) and a set S ⊆ V , the set of vertices
from which S is accessible is denoted as S↑:= {v ∈ V s.t.∃s ∈ S, v →∗ s}. Similarly S↓ is the
set of vertices accessible from S.



R. Nollet, A. Saurin, and C. Tasson 35:9

I Definition 18 (Gπ). For a finite representation π of a µMALLω pre-proof, the graph Gπ
is s. t. (i) its vertices are all positions of ν-formulas in all occurrences of sequents in π, plus

the vertex ⊥: Vπ :=

(v, i, p) such that
(i) v position of a sequent Γ in π
(ii) i position of a formula A in Γ
(iii) p position of a ν-subformula in A

 ] {⊥};
(ii) its edges go from a position in a formula to the position that comes from it in the sequent
just below, as induced by the threading function of def. 6, or to the extra vertex ⊥ if it is a
cut formula. In case this is a conclusion formula, there is no outgoing edge.

I Definition 19 (Gr, Sr, Tr). Let π be a finite representation of a µMALLω pre-proof and (r)
an occurrence of a (ν)-rule. We define the subgraph Gr = (Vr, Er) of Gπ and Sr, Tr ⊆ Vr st:

vertices Vr are the extra vertex ⊥ plus all positions that are in the conclusion of this
rule and in all above sequents, that is all sequents from which the conclusion of (r) can
be reached, in the sense of def. 17;
edges Er are all edges of Gπ between those vertices minus the edges of Gπ that are
induced by the back-edges of π targetting the conclusion of (r), if there are some.
Sr ⊆ Vr is the set of all positions of the principal formulas of the sources sequents of the
back-edges targetting the conclusion of (r);
Tr ⊆ Vr is the set of all positions of all subformulas of the conclusion of (r) except for
the very position of its principal formula, plus the extra vertex ⊥.

I Definition 20. Let (r) be an occurrence of a (ν)-rule in a pre-proof π of µMALLω. A
validating set for (r) is a set L ⊆ Vπ such that L = L↓ and Sr ⊆ L ⊆ (Vr \ Tr).

I Proposition 21. Let (r) be an occurrence of a (ν)-rule of a pre-proof π of µMALLω. There
exists a validating set for (r) iff Tr is not accessible from Sr in Gr iff Sr↓ ⊆ Vr \ (Tr↑).

In this case, Sr↓ is the smallest validating set of (r) and Vr \ (Tr↑) is the biggest one.

Proof. It is based on the fact that the complement of a downward-closed set is upward-closed.
We then get the inclusions : Sr ⊆ Sr↓ ⊆ L↓ = L ⊆ Vr \ (Tr↑) ⊆ Vr \ Tr. J

The following proposition gives an alternative criterion for µMALL

y

(see app. A, p. 19):

I Proposition 22. A finite representation π of a µMALLω pre-proof is a representation of a
µMALL

y

lab proof iff every occurrence of a ν-rule of π has a validating set.

I Proposition 23. Checking validity of a µMALL

y

lab pre-proof is decidable. Membership in
µMALL

y

can be decided in a time quadratic in the size of the (circular) pre-proof.

Proof. The former is immediate. The latter reduces to checking accessibility in a graph for
each back-edge target, which can be done in quadratic time. J

I Definition 24. A finite representation of a µMALLω pre-proof finite representation is
strongly valid when:
(i) every back-edge targets the conclusion of a (ν) rule and

(ii) if an occurrence (r′) of
` A[νX.A],Γ

(ν)
` νX.A,Γ

is the target of a back-edge, coming from an

occurrence (r) of

y

` νX.A,Γ then every path t starting from the principal formula
νX.A of the conclusion of (r), following the thread function (potentially through several
back-edges, but never on or below the occurrence (r′) of (ν)), ends on the principal
formula νX.A of the conclusion of (r′).
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35:10 Local validity for circular µMALL

I Proposition 25. A finite representation π of a µMALLω pre-proof is strongly valid iff every
ν-rule of π has a validating set iff it is the representation of a µMALL

y

lab proof.

Proof. See proof in appendix B, p. 21. J

4 On Brotherston-Simpson’s conjecture: finitizing circular proofs

The aim of this section is to prove a converse of prop. 16: Every provable sequent of µMALL

y

is provable in µMALL.
Let us consider a µMALL

y

proof π. Up to renaming of bound variables, we can assume
that all (νb) rules are labelled by distinct labels. For every two labels a and b occurring in π,
we say that a 6 b whenever (νb(a)) is under (νb(b)). This order is well-founded because finite.

I Definition 26. For every rule
` A[νV,aX.A],Γ

(νb(a))
` νVX.A,Γ

we define Γ(a) to be Γ.

We now define (i) for each atom a a sequent Γa formed of non-labelled formulas; (ii) for
each formula A (with labels) occurring in the proof, a formula JAK without labels:

I Definition 27. We define by mutual induction: (1) Γa := JΓ(a)K.
(2) H∅[F ] := F and HV,a[F ] := ⊗Γ⊥a ⊕HV [F ]. (i. e. HV [F ] is isomorphic to

(⊕
a∈V ⊗Γ⊥a

)
⊕

F .)
(3) By induction on formula A JAK is: (i) JνVX.AK := νX.HV [JAK] (ii) it is homomorphic on
other connectives: JXK := X, J1K := 1, JµX.AK := µX.JAK, JA⊗BK := JAK⊗ JBK, etc.
(3) J·K is lifted from formulas to sequences of formulas, pointwise.

This is well-founded because since any two distinct νb rules wear distinct variables the
only Γb that are needed in the computation of Γa are those with b < a. Note that JAK = A

as soon as A has no label variable. We can now state and prove the finitization theorem:

I Theorem 28. Every provable sequent of µMALL

y

is provable in µMALL.

Proof. Let π be a µMALL

y

lab proof and replace, everywhere, each formula A by JAK. All
rules in this (almost) new derivation are now valid instances of µMALL rules, except for (νb),
(LW) and (

y

) rules. Actually, images of these rules by sequent translation J·K are derivable in
µMALL as shown in fig. 7 (a), (b) and (c) for (

y

), (LW) and (νb), respectively.
Replacing each instance of a (νb), (LW) or (

y

) rule in π by its derived version, we get a fully
valid proof of µMALL. If the conclusion of the original µMALL

y

proof was ` Γ then what
we get is a proof in µMALL of ` JΓK, i. e. the conclusion of the original µMALL

y

proof, if Γ
contains no label variable. J

5 Relaxing the labelling of proofs

In this section, we discuss a possible extension of the labelling defined in section 3, in order
to capture more proofs retaining (i) the ability to locally certify the validity and (ii) to some
extent, the ability to finitize circular proofs. In order to motivate this extension, we shall
consider a simpler example than the one in fig. 3 (π∞).

Let D be an arbitrary formula. Lists of D can be represented as proofs of L0 :=
µX.1⊕ (D ⊗X) and it is possible to encode in µMALLω the function taking two lists and
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(a)

(⊗) (Id)
` ⊗Γ⊥a ,Γa

(⊕1)
` HV,a

[
JA[νV,aX.A]K

]
,Γa

(ν)
` JνV,aX.AK,Γa

(b)

(Id)
` HV

[
JA[νVX.A]K

]
, HV

[
JA[νVX.A]K

]
(⊕2)

` HV,a

[
JA[νVX.A]K

]
, HV

[
JA[νVX.A]K

]
(µ)

` HV,a

[
JA[νVX.A]K

]
, JνVX.AK⊥

(ν0
inv)

` JνV,aX.AK, JνVX.AK⊥
[JBK]

` JB[νV,aX.A]K, JB[νVX.A]K⊥ ` JB[νVX.A]K,Γ
(Cut)

` JB[νV,aX.A]K,Γ

(c)

` JA[νV,aX.A]K,Γa
(⊕2) |V |

` HV

[
JA[νV,aX.A]K

]
,Γa

(O)
` HV

[
JA[νV,aX.A]K

]
,O Γa

(Id)
` HV

[
JA[νV,aX.A]K

]
, HV

[
JA[νV,aX.A]K

]
(N)

` HV

[
JA[νV,aX.A]K

]
, HV,a

[
JA[νV,aX.A]K

]
(µ)

` HV

[
JA[νV,aX.A]K

]
, JνV,aX.AK⊥

(⊗) (Id)
` ⊗Γ⊥a ,Γa

(⊕1)
` HV,a

[
JA[νV,aX.A]K

]
,Γa

(ν)
` JνV,aX.AK,Γa

(νinv)
` JνVX.AK,Γa

Figure 7 Derivability of (a) J(

y

)K rule; (b) J(LW)K rule and (c) J(νb)K rule.

(a)

(Id)
D ` D

(1)
(

y

)
L,L ` T

(O) (⊗)
D ⊗ L,L ` D ⊗ T

(ν)
L,L ` D ⊗ T

(Id)
D ` D

(1)
(

y

)
L,L ` T

(O) (⊗)
L,D ⊗ L ` D ⊗ T

(ν)
L,L ` D ⊗ T

(µ), (N)
L,L ` T (1) (b)

(Id)
D ` D

(1)
(

y

(a))
La+, L ` T

(O) (⊗)
D ⊗ La+, L ` D ⊗ T

(ν(a))
La−, L ` D ⊗ T

(LW(b−))
La−, Lb− ` D ⊗ T

(Id)
D ` D

(2)
(

y

(b))
La−, Lb+ ` T

(O) (⊗)
La−, D ⊗ Lb+ ` D ⊗ T

(ν(b))
La−, Lb− ` D ⊗ T

(µ) (N)
La−, Lb− ` T (2)

(Rec(b))
La−, L ` T (1)

(Rec(a))
L,L ` T

Figure 8 (a) Interleaving example; (b) Interleaving example labelled.
Corresponding sources and targets of back-edges are denoted by parenthesized numbers.

computing the tree of all their possible interleaving, as a proof with conclusion1 L0, L0 ` T0,
where T0 := µX.L0 ⊕ ((D ⊗X) N(D ⊗X)). By replacing L0 and T0 with L := µX.D ⊗X
and T := µX.(D ⊗X) N(D ⊗X), we get a example equally interesting and more readable,
which we present in fig. 8. In this interleaving function, every recursive call leaves one of
the two arguments untouched and makes the other one decrease. This guarantees that the
tree of recursive calls is well-founded. Difficulties, however, arises from the fact that it is not
necessarily always the same argument that will decrease.

More formally: every infinite branch in the preproof above has two interesting threads,
going through the L formulas. In every branch going infinitely often to the left (resp. to
the right), the thread going through the left L (resp. the right L) will be validating. That
preproof is thus a valid µMALLω proof. However, our previous labelling method cannot be
applied here for two reasons:
1. in our previous setting, labelled pre-proof have the property that one can know which

thread will validate a branch, just by knowing the lowest target of back-edge that is visited
infinitely often by the branch. This is not the case here, because the two back-edges,
while inducing different validating threads, have the same target;

2. in our previous setting, back-edges must target (ν) rules, which is not the case here.
Both difficulties have, in fact, the same origin, namely that in our previous setting the (ν)

rule has two roles: being the target of a back-edge and ensuring thread progression. Both
difficulties also have the same solution: dissociating these two roles. We therefore introduce,
in def. 29, a new rule (Rec), whose only effect is to allow its premise to be the target of a
back-edge, and to introduce a new label. Since (Rec) is disentangled from greatest fixed point

1 In the following, we write A( B for A⊥OB, and Γ ` ∆ for ` Γ⊥,∆; exchange rules are left implicit.
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35:12 Local validity for circular µMALL

unfolding, the labelling must account for the progression of a thread. That is why every
atomic label is now given in one of two modes: a passive mode (a−) and an active one (a+).
Only an unfolding by a (ν) can turn a − into a +.

Let us now turn back to our introductory example: π∞. For that example, simply
separating the introduction of back-edges and the coinductive progress is not enough. Indeed,
since targets of back-edges do not require to unfold a ν, there is a priori no reason to
require that the sequents contains some ν-formula. While this is slightly hidden in the merge
example, π∞ gives a clear example of that and suggests that the (Rec) inference should have
the ability to add labels deeply in the sequent, i. e. not only on the topmost ν fixed-points,
but also to greatest fixed points occurring under some other connectives. The same remark
applies to the back-edge rule since its conclusion sequents have the same structure as those
of (Rec).

Driven by these observations, we now define a new labelling of circular preproofs and
prove its correctness with respect to thread-validity.

I Definition 29 (Extended labelling). Labelled formulas are built on the same grammar as
previously, except that labels are lists of signed variables, that is of pairs of a variable and
a symbol in {+,−}. Derivations are built with µMALL inferences plus the following rules:
` νLX.A,Γ

(LW(a−))
` νL,a−X.A,Γ

` νL,a−,L
′
X.A,Γ

(LW(a+))
` νL,a+,L′

X.A,Γ

` A[νa1+,...,an+X.A],Γ
(ν)

` νa1−,...,an−X.A,Γ
` Γ[νL,a−X.A]

(Rec(a))
` Γ[νLX.A]

(

y

(a))
` Γ[νL,a+X.A]

and the constraints that:
a cut-formula cannot contain a non-empty label;
all (Rec) rules must wear distinct variables;
every (Rec(a)) rule must have at least one occurrence of “a−” in its premise;

each
(

y

(a))
` Γ[νL,a+X.A] rule is connected to the premise of a

` Γ[νL,a−X.A]
(Rec(a))

` B[νLX.A],Γ
via a back-edge. This implies in particular that this (

y

(a)) must be above this (Rec(a)) and
that the premise of this (Rec(a)) must be the same sequent as the conclusion of this (

y

(a))

except for the change of sign of a, at every of its occurrences in the sequent.

I Proposition 30 (Soundness of labelling). If π is an extended labelled circular representation
then dπe is a circular representation of a valid µMALLω proof.

Proof. See proof in appendix C, p. 21. J

We now label our two examples with this new system. We will show that, while it is
quite straightforward for the interleaving, it requires to unfold one back-edge of π∞.

π∞ is presented labelled according to the extended labelling of fig. 9a. We make K
apparent as a subformula of I and J respectively by decomposing:

I = I ′[K] J = J ′[K] J ′[Y ] := µX.((Y OX)⊕⊥) I ′[Y ] := µZ.((Z O J ′[Y ])⊕⊥).

Then we first did one step of unfolding on the right back-edge, and we took advantage of
the two new facilites of the extended labelling:
1. we added three (Rec) rules, corresponding to the three ways for a branch of π∞ to be valid,

as summarized in the following array.
Shape of the branch A? · lω A? · rω l? · (r+ · l+)ω

Lowest (Rec) visited ∞ly b a c

Validating ν-formula H G K

2. and so, we labelled the three formulas H, G and K at each corresponding (Rec), using for
K the ability to label several occurrences at a time, and to label deeply ν-subformulas.

This indeed forms a correct labelling of π∞ according to the extended labelling, hence
ensuring their thread-validity.
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(

y

(b))
` F,G,Hb+, I−, J−

(ν) (⊕2)
` F,G,Hb−, I−, J−

(µ) (⊕1) (O)
` F,G,Hb−, I−

(µ) (⊕2) (⊥)
` F,G,Hb−, I−, J−

(O)
` F OG,Hb−, I−, J−

(ν) (⊕2) (⊥)
` F OG,G,Hb−, I−, J−

(

y

(c))
` F,G,H, I ′[Kc+], J ′[Kc+]

(ν) (⊕2)` F,G,H, I+, J+
(µ) (⊕1) (O)

` F,G,H, I+
(µ) (⊕2) (⊥)

` F,G,H, I+, J−
(O)

` F OG,H, I+, J−
(ν) (⊕2) (⊥)

` F OG,G,H, I+, J−
(LW(a−))

` F OG,Ga−, H, I+, J−

(

y

(a))
` F,Ga+, H, I+, J−

(ν) (⊕1)
` F,Ga−, H, I+, J−

(ν)
` F,Ga−, H,Kc−, J−

(µ) (⊕1) (O)
` F,Ga−, H, J−

(µ) (⊕2) (⊥)
` F,Ga−, H, I+, J−

(X)
` F,H,Ga−, I+, J−

(O)
` F OH,Ga−, I+, J−

(ν) (⊕1) (⊥)
` F OH,Ga−, H, I+, J−

(N)
` (F OX) N(F OH), Ga−, H, I+, J−

(µ)
` F ,Ga−, H, I+, J−

(Rec(a))
` F,G,H, I+, J−

(ν) (⊕1)` F,G,H, I+, J−
(ν)

` F,G,H,Kc−, J−
(µ) (⊕1) (O)

` F,G,H, J−
(µ) (⊕2) (⊥)

` F,G,H, I−, J−
(X)

` F,H,G, I−, J−
(O)

` F OH,G, I−, J−
(ν) (⊕1) (⊥)

` F OH,G,H, I−, J−
(LW(b−))

` F OH,G,Hb−, I−, J−
(N)

` (F OX) N(F OH), G,Hb−, I−, J−
(µ)

` F ,G,Hb−, I−, J−
(Rec(b))

` F,G,H, I−, J−
(Rec(c))

` F,G,H, I ′[K], J ′[K]

(a) Labelling of π∞

(

y

(b))
` F,G,Hb+, I−, J−

(ν) (⊕2)
` F,G,Hb−, I−, J−

(µ) (⊕1) (O)
` F,G,Hb−, I−

(µ) (⊕2) (⊥)
` F,G,Hb−, I−, J−

(O)
` F OG,Hb−, I−, J−

(ν) (⊕2) (⊥)
` F OG,G,Hb−, I−, J−

(

y

(c))
` F,G,H,Lc+

(ν) (⊕2)
` F,G,H,Lc+

(µ) (⊕1)
` F,G,H, Ic+

(µ) (⊕2) (⊥)
` F,G,H, Ic+, J−

(O)
` F OG,H, Ic+, J−

(ν) (⊕2) (⊥)
` F OG,G,H, Ic+, J−

(LW(a−))
` F OG,Ga−, H, Ic+, J−

(

y

(a))
` F,Ga+, H, Ic+, J−

(ν) (⊕1)
` F,Ga−, H, Ic+, J−

(ν)
` F,Ga−, H,Kc−, J−

(µ) (⊕1) (O)
` F,Ga−, H, J−

(µ) (⊕2) (⊥)
` F,Ga−, H, Ic+, J−

(X)
` F,H,Ga−, Ic+, J−

(O)
` F OH,Ga−, Ic+, J−

(ν) (⊕1) (⊥)
` F OH,Ga−, H, Ic+, J−

(N)
` (F OX) N(F OH), Ga−, H, Ic+, J−

(µ)
` F ,Ga−, H, Ic+, J−

(Rec(a))
` F,G,H, Ic+, J−

(ν) (⊕1)
` F,G,H, Ic+, J−

(ν)
` F,G,H,Kc−, J−

(µ) (⊕1) (O)
` F,G,H, J−

(µ) (⊕2) (⊥)
` F,G,H, I−, J−

(X)
` F,H,G, I−, J−

(O)
` F OH,G, I−, J−

(ν) (⊕1) (⊥)
` F OH,G,H, I−, J−

(LW(b−))
` F OH,G,Hb−, I−, J−

(N)
` (F OX) N(F OH), G,Hb−, I−, J−

(µ)
` F ,G,Hb−, I−, J−

(Rec(b))
` F,G,H, I−, J−

(Rec(c))
` F,G,H, I ′[K], J ′[K]

(b) Finitization of π∞. Brackets J•Ke shoud be put around every formula and rule name. They were
omitted only for the sake of readability.

Figure 9 We use the following abbreviations: I− = I ′[Kc−], I+ = I ′[Kc+], J− = J ′[Kc−] and
J+ = J ′[Kc+].
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(a)
` νX.JAKe[Γ⊥ ⊕X],∆

(⊕2)
` Γ⊥ ⊕ νX.JAKe[Γ⊥ ⊕X],∆

(b) (⊕1) (⊗)?, (Id)
` JνΓ+X.AKe,Γ (c)

(µ) [JAKe] (⊕2) (Id)
` JAKe[Γ⊥ ⊕ νX.JAKe[X]], µX.JA⊥K[X] νX.JAK[X],∆

(νinv)
` νX.JAKe[Γ⊥ ⊕X],∆

(d)

(µ) (Id)
` JAKe[JνΓ+X.AKe], µX.JA⊥Ke[X NC]

(Id)
` JνΓ−X.AKe, µX.JA⊥Ke[X NC]

` JνΓ−X.AKe,Γ
(O)?

` JνΓ−X.AKe, C
(N)

` JνΓ−X.AKe, (µX.JA⊥Ke[X NC]) NC
(Cut)

` JAKe[JνΓ+X.AKe], (µX.JA⊥Ke[X NC]) NC
(⊕1) (⊗)?, (Id)

` JνΓ+X.AKe,Γ
(νinv)

` νX.JAKe,Γ

Figure 10 Derivability of a. J(LW(Γ+))Ke b. J(

y

(Γ))Ke c. J(LW(Γ−))Ke & d. J(Rec′(Γ))Ke with C = O Γ.

5.1 Extended finitization
As for the case of our previous labelling, we will rely on the labelled presentation of these
proofs in order to finitize them. Observe already that the (Rec) rule, as introduced in def. 29
is never really used in all its power because (i) in both examples above, no ν-formula wears
more than one variable and (ii) except for the labelling of K in π∞, (Rec) is used only in the

particular form
` νa−X.A,Γ

(Rec′(a))
` νX.A,Γ

in which only one occurrence of νX.A is labelled and

this occurrence is a formula of the sequent and not a strict subformula.
We show now how to finitize any labelled representation which verify those two restrictions.

As this is the case of fig. 8, it gives a finitization for fig. 8. We will then show how to extend
this method in an ad hoc way to finitize entirely π∞ (fig. 3) from the labelling of fig. 9a.

As before, it is enough, in order to turn a labelled formula into an unlabelled one, to
translate the ν connectives, leaving all other connectives untouched. For any unlabelled
context Γ, we define the following unlabelled formulas:

JνΓ−X.A[X]Ke := νX.JAKe[⊗Γ⊥ ⊕X] JνΓ+X.A[X]Ke := ⊗Γ⊥ ⊕ JνΓ−X.A[X]Ke

so the following rules are derivable: (See full derivations on fig. 10, p. 14.)

` JνX.AKe,∆ J(LW(Γ−))Ke
` JνΓ−X.AKe,∆

` JνΓ−X.AKe,∆ J(LW(Γ+))Ke
` JνΓ+X.AKe,∆

` JνΓ−X.AKe,Γ J(Rec′(Γ))Ke` JνX.AKe,Γ
J(

y

(Γ))Ke
` JνΓ+X.AKe,Γ

Remark moreover that
` JA[νΓ+X.A[X]]Ke,∆

(ν)
` JνΓ−X.A[X]Ke,∆

is the usual (ν) rule.

These allow to translate any labelled proof verifying the constraints (i) and (ii) stated at
the beginning of sec. 5.1 into a µMALL finitary proof, by choosing, for every label variable,
the context Γ corresponding to its (Rec) rule.

These works almost as well for finitizing π∞ based on the labelling of fig. 9a: it allows to
expand everything concerning the variables a and b. It cannot however be applied as it is to
expand the variable c, for which conditions (ii) is not verified. We can anyway finitize π∞,
but at the cost of a somewhat ad hoc translation:

JCKe := F OGOH JKc−Ke := νY.µ_.((C⊥ ⊕ (I ′[Y ] O J ′[Y ]))⊕⊥)

Ic+ := JI+Ke = JI ′[Kc+]Ke := µ_.((C⊥ ⊕ (I ′[JKc−Ke] O J ′[JKc−Ke]))⊕⊥)

Lc+ := JI ′[Kc+] O J ′[Kc+]Ke := C⊥ ⊕ (I ′[JKc−Ke] O J ′[JKc−Ke])
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The analysis leading to this choice of formulas is detailed in appendix D, p. 22. It allows
to make finitary the derivation of fig. 9b, by expanding every formula as explained above,
and by replacing every rule dealing with labels with an appropriate derivation, while leaving
untouched the structure of rules not dealing with labels.

6 Conclusion

Summary of the contributions. In this paper, we contributed to the theory of circular
proofs for µMALL in two directions: (i) identifying fragments of circular proofs for which
local conditions account for the validity of circular proof objects (in contrast to the global
nature of thread conditions) and (ii) designing methods for translating circular proofs to
finitary proofs (with explicit (co)induction rules). To do so, we introduced and studied
several labelling systems, for circular proofs, or, more precisely, finite representation thereof,
and made the following contributions:
(i) First, we investigated how such labellings ensure validity of a labellable proof, turning

a global and complex problem into a local and simpler one. Indeed, validity-checking is
far from trivial in circular proof-theory for fixed-point logics, the best known bound for
this problem being PSPACE. We provide two labellings, a simple and fairly restricted
labelling discipline which forces back-edges to target (ν)-inferences and a more liberal
one for which we only know that it ensures thread-validity.

(ii) Second, we provided evidence on the usability of such labellings as a helpful guide in
the generation of (co)inductive invariants which are necessary to translate a circular
proof in a finitary proof system with (co)induction rules à la Park. We provided a
full finitization method in a fairly restricted labelling system which contains at least
all the translations of µMALL proofs. However, this fragment is too constrained to
treat standard examples that we discuss in the paper, and which contain most of the
difficulties in finitizing circular proofs, namely: (i) interleaving of fixed-points and (ii)
interleaving of back-edges resulting in various choices of a valid thread to support a
branch.

Related and future works. We discuss related works as well as perspectives for pursuing
this work along the above-mentioned directions:
Labelling and local certification is the basis of our approach. The idea of labelling µ-
formulas to gather information on fixed-points unfoldings is naturally not new, already to be
found in fixed-point approximation methods (see [14] for instance). The closest work in this
direction is Stirling’s annotated proofs [25] and the application Afshari and Leigh [1] made of
such proofs in obtaining completeness for the modal µ-calculus. Our labelling system works
quite differently since only fixed-point operators are labelled while, in Stirling’s annotated
proofs, every formula is labelled and labels are transmitted to immediate subformulas with a
label extension on greatest fixed-points. Despite their difference, the relationships of those
systems should be investigated further (in particular the role of the annotation restriction
rule of Stirling’s system, def. 4 of [25]).

A less immediately connected topic is the connection between size-change termination
(SCT) [21] and thread validity in µ-calculi: connections between those fields are not yet
well understood despite early investigations by Dax et al.[14] for instance. More than a
connection, this looks like an interplay: size-change termination is originally shown decidable
by using Büchi automata and size-change graphs can be used to show validity of circular
proofs [14]. There seems to be connections with our labelling system too.
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In addition to investigating more closely those connections, we have several directions
for improving our labelled proof system. The first task is to lift the results of section 3 to
the extended labelling system. Indeed, for the more restricted fragment and given a circular
proof presented as a graph with back-edges, we provided a method to effectively check that
one can assign labels. It is therefore natural to expect extending these results to the relaxed
framework. Another point we plan to investigate is whether every circular µMALL proof can
be labelled. Even though this can look paradoxical given the complexity of checking validity
of circular proofs, one should keep in mind that it might well be the case that, in order to
label a circular proof presented as a tree with back-edges, one has to unfold some of the
back-edges, or possibly pick a different finite representation of the proof which may result in
a space blow up. Related to this question is the connection of our labelling methods with
size-change termination methods. Indeed, in designing the extended labelling, one gets closer
to the kind of constructions one finds in SCT-based approaches: this should be investigated
further since it may also be a key for our finitization objective. Note that the previous two
directions would lead to a solution to the Brotherston-Simpson conjecture.
Finitization of circular proofs has been recently a very active topic with much research
effort on solving Brotherston-Simpson’s conjecture. The following recent contributions
were made in the setting of Martin-Löf’s inductive definitions: firstly, Berardi and Tatsuta
proved [6] that, in general, the equivalence is false by providing a counter-example inspired by
the Hydra paradox. Secondly, Simpson [24] on the one hand and Berardi and Tatsuta [7] on
the other hand provided a positive answer in the restricted frameworks when the proof system
contains arithmetics. While Simpson used tools from reverse mathematics and internalized
circular proofs in ACA0, a fragment of second-order arithmetic with a comprehension axiom
on arithmetical statements, Tatsuta and Berardi proved an equivalent result by a direct proof
translation relying on an arithmetical version of the Ramsey and Podelsky-Rybalchenko
theorems. A very natural question for future work is to extend the still ad hoc finitization
method presented in the last section to the whole fragment of relaxed labelled proofs.
Circular proof search triggered interest compared to proof system with explicit inductive
invariants (lacking subformula property). This has actually been turned to practice by
Brotherston and collaborators [9]. We wish to investigate the potential use of labellings in
circular proof-search. Indeed, there are several different labellings for a given finite derivation
with back-edges where the labels are weakened. Prop. 21 characterizes least and greatest
validating sets: those extremal validating sets correspond to different strategies in placing
the labels, which have different properties with respect to the ability to form back-edges or
to validate the proof that one may exploit in proof-search.
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vertex. In particular, when v is accessed in b from another infinitely appearing vertex, it has
to be via a back-edge. J

I Lemma 32 (Follow-up of labels). If u is a path in a labelled circular representation, if
u does not cross the rule (νb(a)), and if p is a position in the target sequent of u (its top
sequent) that is labelled with a, then t(u)(p) is defined and is a position labelled with a in the
source sequent of u (its bottom sequent).

Proof. This is quite straightforward, by induction on the length of u, and by looking at the
first (or the last) rule crossed by u. We use notably the fact that, when the induced thread
T(u)(p) is followed top-down, the label a cannot be erased because we do not cross (Rec(a))
and the thread cannot reach a cut-formula because cut-formulas do not contain labels. J

I Proposition 15. Every pre-proof of µMALLω that is the image of a proof in µMALL

y

lab by
label-erasing and total unfolding satisfies thread validity.

Proof. Suppose π is a labelled circular representation.
Let dπe be its erasure. dπe is thus a circular representation of a µMALLω preproof.
Suppose b an infinite branch of dπe, that is an infinite ascending path in the tree-with-
back-edges dπe, starting from the root.
Let b0 be the corresponding infinite branch in π.
Le S0 be the occurrence of sequent in π which is the lowest back-edge target infinitely often
crossed by b0 (lemma 31). Being the target of some back-edge(s), S0 is the conclusion of
a (νb(a)) rule, which unfolds some νX.A.
This implies that b0 is of the form b0 = r

∗−→
u0

S0
∗−→
u1

S1 →
be
S0

∗−→
u2

S2 →
be
S0 · · · where r

is the root of π and where the uis do not cross S0 except at their sources.
Let p0 = (0, ε) be the position of the principal formula νX.A in S0.
Remark that, because of the existence of back-edges from every Si+1 to S0, all Sis are
identical sequents, except for the fact that a does not appear in S0 whereas it appears at
the only position p0 in Si+1.
Now remark that for i > 1: T(ui)(p0) is a ν-thread in ui, its target is p0 in Si, which is
labelled with a, in the occurrence of sequent just above S0, i. e. in the premise of νb(a),
it goes through a position labelled with a (lemma 32), hence a position of νX.A in the
unfolding A[νX.A], therefore, according to the definition of T, as described on Figure 6,
p. 6, the source of T(ui)(p0) is again the position p0 of the main formula νX.A in S0.
To sum up: T(ui)(p0) is a thread (S0, p0) ∗−→

T(u1)(p1)
(S1, p0), and it is progressing, because

its source is the principal conclusion of the rule (νb(a)).
By glueing the T(ui)(p0) together, we get an infinite thread

(S0, p0) ∗−→
T(u1)(p0)

(S1, p0)→
be

(S0, p0) ∗−→
T(u2)(p0)

(S2, p0)→
be

(S0, p0) · · ·

This thread is valid because every T(ui)(p0) is progressing. And it is indeed a thread
of b0 = r

∗→
u0

S0
∗→
u1

S1 →
be

S0
∗→
u2

S2 →
be

S0 · · · Hence b0 is valid, what was to be
demonstrated. J

I Proposition 16. µMALL proofs can be translated to µMALL

y

.

Proof. The target of the usual translation µMALL→ µMALLω is included in µMALL

y

. See
key case of the translation on figure 11. J
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` A[B], B⊥ ` B,Γ
νinv` νX.A,Γ

≡

y

(a)
` νaX.A,B⊥

[A]
` A[νaX.A], A[B]⊥ ` A[B], B⊥

cut
` A[νaX.A], B⊥

νb(a)
` νX.A,B⊥ ` B,Γ

cut
` νX.A,Γ

Figure 11 translation µMALL→ µMALL

y

lab.

I Proposition 22. A finite representation π of a µMALLω pre-proof is a representation of a
µMALL

y

lab proof iff every occurrence of a ν-rule of π has a validating set.

Proof. Let us assume that every ν rule of π has a validating set. There is a finite number of ν
rules in the representation; we choose a we label them with distinct variables a1, . . . , an, in a
way such that if the ν rule labelled by ai is below the rule labelled by aj in the representation
then i 6 j. We denote by Li a validating set for ν(ai). We then do the following for each i,
going from 1 to n: for each occurrence of ν-formula νVX.A that is at a position belonging
to Li, add the variable ai to V , that is replace this occurrence of νVX.A with νV,aiX.A.
By doing this it may happen that we break the validity of some rules of the representation:
because Li, although downward closed, is in general not upward closed, so we may end with
the following situation:
` A,C[νVX.D] ` A,C[νVX.D]

N
` ANB,C[νVX.D]

becoming
` A,C[νV,aX.D] ` B,C[νVX.D]

N
` ANB,C[νV,aX.D]

which

is not anymore a valid rule. We then patch this by adding as many (LW) rules as needed on
the premises:

` A,C[νV,aX.D]
` B,C[νVX.D]

(LW)
` B,C[νV,aX.D]

N
` ANB,C[νV,aX.D]

Similarly it may happen that the source of a back-edge get a bigger labelling than the
target of this back-edge; we patch this by adding (LW) rules under the source sequent of the
back-edge. When this operation has been done for every i, from 1 to n, we obtain a validly
labelled proof of µMALL

y

lab.

Conversely, let π0 be a µMALL

y

lab representation such that π = |π0|. Up to renaming, we
can assume that all (νb) rules of π0 are labelled with distinct variables. For every (ν) rule
occurrence in π, consider the corresponding (νb(a)) rule in π0 and let La be the set of all
occurrences of ν-formulas in π0 that carry the variable a in their labelling. The constraints
on the labelling of µMALL

y

lab proof precisely get La to be a validating set for the considered
occurrence of (νb) in π. J

B Details and proofs for section 3.3

We illustrate the construction of the edges of the graph defined in definition 18 with the
the following examples in which we have indexed the apparent ν-formulas by numbers
representing vertices of the graph:
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` ν1X.X, ν2X.X ` 1⊕ ν3X.X ⊗
` ν4X.X ⊗ (1⊕ ν5X.X), ν6X.X induces edges 1→ 4, 2→ 6, 3→ 5,
` ν1X.X, (1⊕ ν2X.X), ν3X.X O
` ν4X.X O(1⊕ ν5X.X), ν6X.X induces edges 1→ 4, 2→ 5, 3→ 6 and
` (ν4Y.(ν5X.(ν6Y.X)⊗X))⊗ ν7X.(ν8Y.X)⊗X, ν9X.X

ν
` ν1X.(ν2Y.X)⊗X, ν3X.X induces edges 4 → 2, 6 →

2, 8→ 2, 5→ 1, 7→ 1, 9→ 3. Moreover, if the conclusion of this last rule is the target of a
back-edge whose source is ` ν10X.(ν11Y.X)⊗X, ν12X.X then this back-edge also induces
edges 1→ 10, 2→ 11, 3→ 12.

In the case of a cut formula, the formula has no corresponding formula in the conclusion
sequent and in this case it induces an outgoing edge, pointing to the extra vertex ⊥:
` ν2X.X ` µX.X, ν3X.X cut

` ν1X.X induces edges 2→ ⊥, 3→ 1.

I Proposition 25. A finite representation π of a µMALLω pre-proof is strongly valid iff every
ν-rule of π has a validating set iff it is the representation of a µMALL

y

lab proof.

Proof. The second equivalence is prop. 22, so that we need to check the first one:

Let us assume that π has a validating set. Let us consider one occurrence
` A[νX.A],Γ
` νX.A,Γ

of a ν-rule in π and a path u in the subgraph above this ν-rule, going down, from the source
of a back-edge targetting this ν-rule, to the ν-rule itself, ending by this ν-rule. u has then
premise and conclusion equals to ` νX.A,Γ.

Let us denote by L a validating set of this (ν)-rule occurrence, and let us denote by
t the maximal thread going down in u starting from the main νX.A in its premise. This
occurrence of νX.A is in L, because L is a validating set. Then, because L is downward
closed, all vertices of t are in L. Therefore the lowest vertex of t, which is a position in the
` νX.A,Γ conclusion of the considered ν-rule, or ⊥, is also in L. But in this last sequent
occurrence, the only position that is in L is the one of the main νX.A, which is consequently
the end point of t.

Conversely, let us consider an occurrence of a (ν)-rule in π, whose conclusion has the
form ` νX.A,Γ, and let us assume that it has no validating set. It is, by prop. 21, equivalent
to say that there is a path t such that:

t stays above the considered occurrence of (ν)-rule;
t goes down from the source νX.A,Γ of a back-edge targetting the (ν)-rule we consider,
to the conclusion νX.A,Γ of this (ν)-rule;
t starts from the main νX.A of its premise;
t ends either on a cut-formula or on a position that is not the principal νX.A.

u therefore violates strong validity (def. 24). J

C Details and proofs for section 5

Remember that this proposition is about the extended labelling of def. 29:

I Proposition 30. If π is an extended labelled circular representation then dπe is a circular
representation of a valid µMALLω proof.

Proof. First remark that lemma 32, as it is stated on p. 19, still holds for this extended
labelling. The proof is the same as before, bearing in mind to replace every mention of (νb(a))

with (Rec(a)). As for the previous labelling, the proof of this proposition crucially rely on it.
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Suppose π is a labelled circular representation. Let dπe be its erasure. dπe is thus a
circular representation of a µMALLω preproof. Suppose b an infinite branch of dπe, that is
an infinite ascending path in the tree-with-back-edges dπe, starting from the root. Let b0 be
the corresponding infinite branch in π. Le S0 be the occurrence of sequent in π which is the
lowest back-edge target infinitely often crossed by b0. Being the target of some back-edge(s),
S0 is the premise of a (Rec(a)) rule, for some variable a.

This implies that b0 is of the form b0 = r
∗→
u0
S0

∗→
u1
S1 →

be
S0

∗→
u2
S2 →

be
S0 · · · where r is

the root of π and where the ui do not cross S0 except at their sources.
Remark that the positions labelled by a are the same in all Si, as there are back-edges

from every Si+1 to S0. The difference, however, is that these positions are labelled with a−
in S0 and with a+ in every Si+1. Let P0 be the set of those positions. P0 is finite and non
empty. Now we would like, as in the proof of prop. 15, to construct an infinite thread along
b0. However, because P0 may contain more than one element, we cannot know by advance,
for each Si, which p ∈ P0 will support an infinite thread. Thus, we will use Kőnig’s lemma
to show the existence of such a thread. Let T0 be the tree whose vertices are the pairs (i, p)
where 1 6 i < ω and p ∈ P0, whose roots are the vertices of the form (1, p) and where, for
i > 1, the father of (i, p) is2 (i− 1, t(ui)(p)). Here we have to prove that t(ui)(p) is defined
and that it belongs to P0 for every i and p ∈ P0. This is ensured by lemma 32 thanks to the
labels.

Remark that every edge in T0 induces a progressing thread. Indeed, for i > 1 and p ∈ P0:
T(ui)(p) is a ν-thread in ui,
its target is p in Si, which is labelled with a+
and its source is p in S0, which is labelled with a−.

An examination of the rules that may compose ui shows that the only way for that to be
true is that T(ui)(p) is progressing. Now T0 is an infinite tree with a finite number of roots
and an arity bounded by Card(P0), hence, by Kőnig’s lemma, it has an infinite branch
(1, p1)← (2, p2)← (3, p3) · · · .

This infinite branch induces in turn an infinite thread

(S0, p0) ∗−→
T(u1)(p1)

(S1, p1)→
be

(S0, p1) ∗−→
T(u2)(p2)

(S2, p2)→
be

(S0, p2) · · ·

This thread is valid because every T(ui)(pi) is progressing. And it is indeed a thread of
b0 = r

∗→
u0
S0

∗→
u1
S1 →

be
S0

∗→
u2
S2 →

be
S0 · · · Hence b0 is valid, what was to be demonstrated. J

D Details of finitization for π∞

To finitize π∞ we try to apply the same method as for the example (8) p. 11, by expanding
every labelled formula to a non-labelled one and expanding the rules that need it to match
these transform. This works perfectly for H and G, which appear respectively as formulas of
the premises (Rec(b)) and (Rec(a)). But the situation is more delicate for K for which we
have to face a double difficulty: in the premise of (Rec(c)), K is not a formula of the sequent
but a subformula, and it appears in two different formulas.

Let us try to transform this situation into one that would fit our method. First we would
like to have only one formula containing K instead of the two I and J . Unfortunately, none
of them can be unlabelled without breaking the labelling. Fortunately the solution to that is
easy: I, J is simply equivalent to L := I O J .

2 Recall that t(u) and T(u) are defined in defs. 6 and 8, p. 6.
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Now we would like I O J to be a ν-formula that we could label. We already made use, in
the previous example, of the isomorphism A[νX.B[A[X]]] ' νX.A[B[X]] (∗)

to turn an almost-ν-formula into a real one. Let us apply that again.
The formula L = I O J is equal to L′[K] where L′[Y ] := I ′[Y ] O J ′[Y ], that is: L =

L′[νY.I ′[Y ]]. In order to apply an isomorphism of the form (∗) we would like I ′[Y ] to be of
the formM ′[L′[Y ]] for a givenM ′. This is unfortunately not the case as I ′[Y ] is a subformula
of L′[Y ]. However, a careful examination of the flow of I, J and K along the loops of π∞
makes apparent the fact that

I ′[Y ] = µZ.((Z O J ′[Y ])⊕⊥) ' µ_.((I ′[Y ] O J ′[Y ])⊕⊥) = M ′[L′[Y ]]

where M ′[Y ] is defined to be µ_.(Y ⊕ ⊥), in which we use the notation µ_.A to denote
a µX.A with X not appearing free in A. This degenerate µ binder could be removed to
simplify the formulas involved in the finitisation, but we keep it to stay as close as possible
to the original structure of I, trying to preserve its head connective.

When we stick all that together we get L = I O J ' L′[νY.M ′[L′[Y ]]] ' νY.L′[M ′[Y ]]
which is a ν-formula that we know, when labelled, how to expand into an unlabelled formula.
If we stopped here our analysis, we would then define:

C := F OGOH Lc− := νY.L′[M ′[C⊥ ⊕ Y ]] Lc+ := C⊥ ⊕ Lc−.

However we will do yet a bit more work in order to get the structure of Lc− closer to L’s one.
Indeed the isomorphism (∗) can be used in the other direction:

νY.L′[M ′[C⊥⊕Y ]] ' L′[νY.M ′[C⊥⊕L′[Y ]]] = I ′[νY.M ′[C⊥⊕L′[Y ]]] O J ′[νY.M ′[C⊥⊕L′[Y ]]].

This, finally, leads us to define: C := F OGOH Kc− := νY.M ′[C⊥⊕L′[Y ]] which allows to
expand I ′[Kc−] and J ′[Kc−]. On the other hand, this is not sufficient to define an expansion
of Kc+, and we still need an ad hoc treatment for formulas containing it:

“I ′[Kc+]” := Ic+ := M ′[C⊥ ⊕ L′[Kc−]] “I ′[Kc+] O J ′[Kc+]” := Lc+ := C⊥ ⊕ L′[Kc−]

With these expansions of labelled formulas into unlabelled formulas, we can finitize the
derivation of fig. 9a into the very close derivation of fig. 9b, on which the rules dealing with
labelling can be expanded into µMALL derivations.
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Abstract
Quantitative extensions of parity games have recently attracted significant interest. These ex-
tensions include parity games with energy and payoff conditions as well as finitary parity games
and their generalization to parity games with costs. Finitary parity games enjoy a special status
among these extensions, as they offer a native combination of the qualitative and quantitative
aspects in infinite games: the quantitative aspect of finitary parity games is a quality measure
for the qualitative aspect, as it measures the limit superior of the time it takes to answer an odd
color by a larger even one. Finitary parity games have been extended to parity games with costs,
where each transition is labelled with a non-negative weight that reflects the costs incurred by
taking it. We lift this restriction and consider parity games with costs with arbitrary integer
weights. We show that solving such games is in NP∩co-NP, the signature complexity for games
of this type. We also show that the protagonist has finite-state winning strategies, and provide
tight exponential bounds for the memory he needs to win the game. Naturally, the antagonist
may need infinite memory to win. Finally, we present tight bounds on the quality of winning
strategies for the protagonist.
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More recently, games with a mixture of the qualitative parity condition and further
quantitative objectives have been considered, including mean payoff parity games [8] and
energy parity games [4]. Finitary parity games [7] take a special role within the class of
games with mixed parity and payoff objectives. To win a finitary parity game, Player 0
needs to enforce a play with a bound b such that almost all occurrences of an odd color are
followed by a higher even color within at most b steps.

This is interesting, because it provides a natural link between the qualitative and quant-
itative objective. One aspect that attracted attention is that, as long as one is not interested
in optimizing the bound b, these games are the only games of the lot that are known to be
tractable [7]. However, the bound b itself is also interesting: It serves as a native quality
measure, because it limits the response time [30].

This property calls for a generalization to different cost models, and a first generalization
has been made with the introduction of parity games with costs [14]. In parity games with
costs, the basic cost function of finitary parity games – where each step incurs the same
cost – is replaced with different non-negative costs for different edges. In this paper, we
generalize this further to general integer costs: We decorate the edges with integer weights.
The quantitative aspect in these parity games with weights consists of having to answer
almost all odd colors by a higher even color, such that the absolute value of the weight of the
path to this even color is bounded by a bound b.

In addition to their conceptual charm, we show that parity games with weights are PTime
equivalent to energy parity games. This indicates that these games are part of a natural
complexity class, whereas the games with a plain objective appear to form a hierarchy. We
use the reduction from parity games with weights to energy parity games to solve them.
This reduction goes through intermediate reductions to and from bounded parity games
with weights. These games have the additional restriction that the limit superior of the
absolute weight of initial sequences of unanswered requests in a play is finite. These bounded
parity games with weights are then reduced to energy parity games. The other direction
of the reduction is through simple gadgets that preserve the main elements of winning
strategies in games that are extended in two steps by very simple gadgets. As a result,
we obtain the same complexity results for parity games with weights as for energy parity
games, i.e., NP ∩ co-NP, the signature complexity for finite games of infinite duration with
parity conditions and their extensions. Thereby, we obtain an argument that these games
might be representatives of a natural complexity class, lending a further argument for the
relevance of two player games with mixed qualitative and quantitative winning conditions.
Furthermore, Daviaud et al. recently showed that parity games with weights can even be
solved in pseudo-quasi-polynomial time [10].

Naturally, parity games with weights subsume parity games (as a special case where all
weights are zero), finitary parity games (as a special case where all weights are positive), and
parity games with costs (as a special case where all weights are non-negative).

Finally, we show that the protagonist has finite-state winning strategies, and provide
tight exponential bounds for the memory he needs to win the game. We also present tight
bounds on the quality of winning strategies for the protagonist. Naturally, the antagonist
may need infinite memory to win.

2 Preliminaries

We denote the non-negative integers by N, the integers by Z, and define N∞ = N ∪ {∞}. As
usual, we have ∞ > n, −∞ < n, n+∞ =∞, and −∞− n = −∞ for all n ∈ Z.
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An arena A = (V, V0, V1, E) consists of a finite, directed graph (V,E) and a parti-
tion {V0, V1} of V into the positions of Player 0 (drawn as ellipses) and Player 1 (drawn
as rectangles). The size of A, denoted by |A|, is defined as |V |. A play in A is an infinite
path ρ = v0v1v2 · · · through (V,E). To rule out finite plays, we require every vertex to
be non-terminal. We define |ρ| = ∞. Dually, for a finite play prefix π = v0 · · · vj we
define |π| = j + 1.

A game G = (A,Win) consists of an arena A with vertex set V and a set Win ⊆ V ω of
winning plays for Player 0. The set of winning plays for Player 1 is V ω \Win. A winning
condition Win is 0-extendable if, for all ρ ∈ V ω and all w ∈ V ∗, ρ ∈Win implies wρ ∈Win.
Dually, Win is 1-extendable if, for all ρ ∈ V ω and all w ∈ V ∗, ρ /∈Win implies wρ /∈Win.

A strategy for Player i ∈ {0, 1} is a mapping σ : V ∗Vi → V such that (v, σ(wv)) ∈ E
holds true for all wv ∈ V ∗Vi. We say that σ is positional if σ(wv) = σ(v) holds true
for every wv ∈ V ∗Vi. A play v0v1v2 · · · is consistent with a strategy σ for Player i, if
vj+1 = σ(v0 · · · vj) holds true for every j with vj ∈ Vi. A strategy σ for Player i is a
winning strategy for G from v ∈ V if every play that starts in v and is consistent with
σ is won by Player i. If Player i has a winning strategy from v, then we say Player i
wins G from v. The winning region of Player i is the set of vertices, from which Player i
wins G; it is denoted by Wi(G). Solving a game amounts to determining its winning regions.
If W0(G) ∪W1(G) = V , then we say that G is determined.

Let A = (V, V0, V1, E) be an arena and let X ⊆ V . The i-attractor of X is defined
inductively as Attri(X) = Attr|V |i (X), where Attr0

i (X) = X and

Attrji (X) = Attrj−1
i (X) ∪ {v ∈ Vi | ∃v′ ∈ Attrj−1

i (X). (v, v′) ∈ E}

∪ {v ∈ V1−i | ∀(v, v′) ∈ E. v′ ∈ Attrj−1
i (X)} .

Hence, Attri(X) is the set of vertices from which Player i can force the play to enter X:
Player i has a positional strategy σX such that each play that starts in some vertex in Attri(X)
and is consistent with σX eventually encounters some vertex from X. We call σX an attractor
strategy towards X. Moreover, the i-attractor can be computed in time linear in |E| [23].
When we want to stress the arena A the attractor is computed in, we write AttrAi (X).

A set X ⊆ V is a trap for Player i, if every vertex in X ∩ Vi has only successors in X
and every vertex in X ∩ V1−i has at least one successor in X. In this case, Player 1− i has
a positional strategy τX such that every play starting in some vertex in X and consistent
with τX never leaves X. We call such a strategy a trap strategy.

I Remark 1.
1. The complement of an i-attractor is a trap for Player i.
2. If X is a trap for Player i, then Attr1−i(X) is also a trap for Player i.
3. If Win is i-extendable and (A,Win) determined, then W1−i(A,Win) is a trap for Player i.

A memory structure M = (M, init, upd) for an arena (V, V0, V1, E) consists of a
finite set M of memory states, an initialization function init : V → M , and an update
function upd: M × E → M . The update function can be extended to finite play prefixes
in the usual way: upd+(v) = init(v) and upd+(wvv′) = upd(upd+(wv), (v, v′)) for w ∈ V ∗
and (v, v′) ∈ E. A next-move function Nxt: Vi × M → V for Player i has to satisfy
(v,Nxt(v,m)) ∈ E for all v ∈ Vi and m ∈ M . It induces a strategy σ for Player i with
memoryM via σ(v0 · · · vj) = Nxt(vj , upd+(v0 · · · vj)). A strategy is called finite-state if it
can be implemented by a memory structure. We define |M| = |M |. Slightly abusively, we
say that the size of a finite-state strategy is the size of a memory structure implementing it.
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Cor(ρ, j)

Cor(ρ, j)

w

vj vj′

Figure 1 The cost-of-response of some request posed by visiting vertex vj , which is answered by
visiting vertex vj′ .

3 Parity Games with Weights

Fix an arena A = (V, V0, V1, E). A weighting for A is a function w : E → Z. We
define w(ε) = w(v) = 0 for all v ∈ V and extend w to sequences of vertices of length at least
two by summing up the weights of the traversed edges. Given a play (prefix) π = v0v1v2 · · · ,
we define the amplitude of π as Ampl(π) = supj<|π| |w(v0 · · · vj)| ∈ N∞.

A coloring of V is a function Ω: V → N. The classical parity condition requires almost
all occurrences of odd colors to be answered by a later occurrence of a larger even color.
Hence, let Ans(c) = {c′ ∈ N | c′ ≥ c and c′ is even} be the set of colors that “answer” a
“request” for color c. We denote a vertex v of color c by v/c.

Fijalkow and Zimmermann introduced a generalization of the parity condition and the
finitary parity condition [7], the parity condition with costs [14]. There, the edges of the
arena are labeled with non-negative weights and the winning condition demands that there
exists a bound b such that almost all requests are answered with weight at most b, i.e., the
weight of the infix between the request and the response has to be bounded by b.

Our aim is to extend the parity condition with costs by allowing for the full spectrum of
weights to be used, i.e., by also incorporating negative weights. In this setting, the weight of
an infix between a request and a response might be negative. Thus, the extended condition
requires the weight of the infix to be bounded from above and from below.3 To distinguish
between the parity condition with costs and the extension introduced here, we call our
extension the parity condition with weights.

Formally, let ρ = v0v1v2 · · · be a play. We define the cost-of-response at position j ∈ N
of ρ by

Cor(ρ, j) = min{Ampl(vj · · · vj′) | j′ ≥ j,Ω(vj′) ∈ Ans(Ω(vj))}

where we use min ∅ =∞. As the amplitude of an infix only increases by extending the infix,
Cor(ρ, j) is the amplitude of the shortest infix that starts at position j and ends at an answer
to the request posed at position j. We illustrate this notion in Figure 1.

We say that a request at position j is answered with cost b, if Cor(ρ, j) = b. Consequently,
a request with an even color is answered with cost zero. The cost-of-response of an unanswered
request is infinite, even if the amplitude of the remaining play is bounded. In particular,
this means that an unanswered request at position j may be “unanswered with finite cost b”
(if the amplitude of the remaining play is b ∈ N) or “unanswered with infinite cost” (if the
amplitude of the remaining play is infinite). In either case, however, we have Cor(ρ, j) =∞.

3 We discuss other possible interpretations of negative weights in Section 9.
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We define the parity condition with weights as

WeightParity(Ω, w) = {ρ ∈ V ω | lim supj→∞ Cor(ρ, j) ∈ N} .

I.e., ρ satisfies the condition if and only if there exists a bound b ∈ N such that almost all
requests are answered with cost less than b. In particular, only finitely many requests may
be unanswered, even with finite cost. Note that the bound b may depend on the play ρ.

We call a game G = (A,WeightParity(Ω, w)) a parity game with weights, and we
define |G| = |A|+ log(W ), where W is the largest absolute weight assigned by w; i.e., we as-
sume weights to be encoded in binary. If w assigns zero to every edge, then WeightParity(Ω, w)
is a classical (max-) parity condition, denoted by Parity(Ω). Similarly, if w assigns positive
weights to every edge, then WeightParity(Ω, w) is equal to the finitary parity condition over
Ω, as introduced by Chatterjee and Henzinger [6]. Finally, if w assigns only non-negative
weights, then WeightParity(Ω, w) is a parity condition with costs, as introduced by Fijalkow
and Zimmermann [14]. In these cases, we refer to G as a parity game, a finitary parity game,
or a parity game with costs, respectively. We recall the characteristics of these games in
Table 1 on Page 15.

4 Solving Parity Games with Weights

We now show how to solve parity games with weights. Our approach is inspired by the classic
work on finitary parity games [7] and parity games with costs [14]: We first define a stricter
variant of these games, which we call bounded parity games with weights, and then show
two reductions:

parity games with weights can be solved in polynomial time with oracles that solve
bounded parity games with weights (in this section); and
bounded parity games with weights can be solved in polynomial time with oracles that
solve energy parity games (Section 5).

Furthermore, in Section 8 we polynomially reduce solving energy parity games to solving
parity games with weights and thereby show that parity games with weights, bounded parity
games with weights, and energy parity games belong to the same complexity class.

The energy parity games that we reduce to are known to be efficiently solvable [4, 10]:
they are in NP ∩ co-NP and can be solved in pseudo-quasi-polynomial time.

We first introduce the bounded parity condition with weights, which is a strength-
ening of the parity condition with weights. Hence, it is also induced by a coloring and a
weighting:

BndWeightParity(Ω, w) = WeightParity(Ω, w)
∩ {ρ ∈ V ω | no request in ρ is unanswered with infinite cost} .

Note that this condition allows for a finite number of unanswered requests, as long as they
are unanswered with finite cost.

We solve parity games with weights by repeatedly solving bounded parity games with
weights. To this end, we apply the following two properties of the winning conditions:
We have BndWeightParity(Ω, w) ⊆WeightParity(Ω, w) as well as that WeightParity(Ω, w)
is 0-extendable. Hence, if Player 0 has a strategy from a vertex v such that every
consistent play has a suffix in BndWeightParity(Ω, w), then the strategy is winning for
her from v w.r.t. WeightParity(Ω, w). Thus, Attr0(W0(A,BndWeightParity(Ω, w))) ⊆
W0(A,WeightParity(Ω, w)). The algorithm that solves parity games with weights repeatedly
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Algorithm 1 A fixed-point algorithm computing W0(A,WeightParity(Ω, w)).
k = 0; W k

0 = ∅; Ak = A
repeat
k = k + 1
Xk =W0(Ak−1,BndWeightParity(Ω, w))
W k

0 = W k−1
0 ∪AttrAk−1

0 (Xk)
Ak = Ak−1 \AttrAk−1

0 (Xk)
until Xk = ∅
return W k

0

removes attractors of winning regions of the bounded parity game with weights until a fixed
point is reached. We will later formalize this sketch to show that the removed parts are a
subset of Player 0’s winning region in the parity game with weights.

To show that the obtained fixed point covers the complete winning region of Player 0, we
use the following lemma to show that the remaining vertices are a subset of Player 1’s winning
region in the parity game with weights. The proof is very similar to the corresponding one
for finitary parity games and parity games with costs.

I Lemma 2. Let G = (A,WeightParity(Ω, w)) and let G′ = (A,BndWeightParity(Ω, w)). If
W0(G′) = ∅, then W0(G) = ∅.

Lemma 2 implies that the algorithm for solving parity games with weights by repeatedly
solving bounded parity games with weights (see Algorithm 1) is correct. Note that we use
an oracle for solving bounded parity games with weights. We provide a suitable algorithm in
Section 5.

The loop terminates after at most |A| iterations (assuming the algorithm solving bounded
parity games with weights terminates), as during each iteration at least one vertex is removed
from the arena. The correctness proof relies on Lemma 2 and is similar to the one for finitary
parity games [7] and for parity games with costs [14].

I Lemma 3. Algorithm 1 returns W0(A,WeightParity(Ω, w))

The winning strategy defined in the proof of Lemma 3 can be implemented by a memory
structure of size maxk≤k∗ sk, where sk is the size of a winning strategy σk for Player 0 in
the bounded parity game with weights solved in the k-th iteration, and where k∗ is the value
of k at termination. To this end, one uses the fact that the winning regions Xk are disjoint
and are never revisited once left. Hence, we can assume the implementations of the σk to
use the same states.

5 Solving Bounded Parity Games with Weights

After having reduced the problem of solving parity games with weights to that of solving
(multiple) bounded parity games with weights, we reduce solving bounded parity games with
weights to solving (multiple) energy parity games [4].

Similarly to a parity game with weights, in an energy parity game, the vertices are colored
and the edges are equipped with weights. It is the goal of Player 0 to satisfy the parity
condition, while, at the same time, ensuring that the weight of every infix, its so-called energy
level, is bounded from below. In contrast to a parity game with weights, however, the weights
in an energy parity game are not tied to the requests and responses denoted by the coloring.
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0

+1

0

0

Figure 2 The difference between energy parity games and parity games with weights.

Consider, for example, the games shown in Figure 2. In the game on the left-hand side,
players only have a single, trivial strategy. If we interpret this game as a parity game with
weights, Player 0 wins from every vertex, as each request is answered with cost one. If
we, however, interpret that game as an energy parity game, Player 1 instead wins from
every vertex, since the energy level decreases by one with every move. In the game on the
right-hand side, the situation is mirrored: When interpreting this game as a parity game
with weights, Player 1 wins from every vertex, as she can easily unbound the costs of the
requests for color one by staying in vertex v2 for an ever-increasing number of cycles. Dually,
when interpreting this game as an energy parity game, Player 0 wins from every vertex, since
the parity condition is clearly satisfied in every play, and Player 1 is only able to increase
the energy level, while it is never decreased.

In Section 5.1, we introduce energy parity games formally and present how to solve
bounded parity games with weights via energy games in Section 5.2.

5.1 Energy Parity Games
An energy parity game G = (A,Ω, w) consists of an arena A = (V, V0, V1, E), a color-
ing Ω: V → N of V , and an edge weighting w : E → Z of E. Note that this definition is
not compatible with the framework presented in Section 2, as we have not (yet) defined the
winner of the plays. This is because they depend on an initial credit, which is existentially
quantified in the definition of winning the game G. Formally, the set of winning plays with
initial credit c0 ∈ N is defined as

EnergyParityc0
(Ω, w) = Parity(Ω) ∩ {v0v1v2 · · · ∈ V ω | ∀j ∈ N. c0 + w(v0 · · · vj) ≥ 0} .

Now, we say that Player 0 wins G from v if there exists some initial credit c0 ∈ N such that
he wins Gc0 = (A,EnergyParityc0(Ω, w)) from v (in the sense of the definitions in Section 2).
If this is not the case, i.e., if Player 1 wins Gc0 from v for every c0, then we say that Player 1
wins G from v. Note that the initial credit is uniform for all plays, unlike the bound on the
cost-of-response in the definition of the parity condition with weights, which may depend on
the play.

Unravelling these definitions shows that Player 0 wins G from v if there is an initial
credit c0 and a strategy σ, such that every play that starts in v and is consistent with
σ satisfies the parity condition and the accumulated weight over the play prefixes (the
energy level) never drops below −c0. We call such a strategy σ a winning strategy for
Player 0 in G from v. Dually, Player 1 wins G from v if, for every initial credit c0, there is
a strategy τc0 , such that every play that starts in v and is consistent with τc0 violates the
parity condition or its energy level drops below −c0 at least once. Thus, the strategy τc0

may, as the notation suggests, depend on c0. However, Chatterjee and Doyen showed that
using different strategies is not necessary: There is a uniform strategy τ that is winning from
v for every initial credit c0.
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I Proposition 4 ([4]). Let G be an energy parity game. If Player 1 wins G from v, then she
has a single positional strategy that is winning from v in Gc0 for every c0.

We call such a strategy as in Proposition 4 a winning strategy for Player 1 from v. A
play consistent with such a strategy either violates the parity condition, or the energy levels
of its prefixes diverge towards −∞.

Furthermore, Chatterjee and Doyen obtained an upper bound on the initial credit
necessary for Player 0 to win an energy parity game, as well an upper bound on the size of a
corresponding finite-state winning strategy.

I Proposition 5 ([4]). Let G be an energy parity game with n vertices, d colors, and largest
absolute weight W . The following are equivalent for a vertex v of G:
1. Player 0 wins G from v.
2. Player 0 wins G(n−1)W from v with a finite-state strategy with at most ndW states.

The previous proposition yields that finite-state strategies of bounded size suffice for
Player 0 to win.

Such strategies do not admit long expensive descents, which we show by a straightforward
pumping argument.

I Lemma 6. Let G be an energy parity game with n vertices and largest absolute weight W .
Further, let σ be a finite-state strategy of size s, and let ρ be a play that starts in some vertex,
from which σ is winning, and is consistent with σ. Every infix π of ρ satisfies w(π) > −Wns.

Moreover, Chatterjee and Doyen gave an upper bound on the complexity of solving energy
parity games, which was recently supplemented by Daviaud et al. with an algorithm solving
them in pseudo-quasi-polynomial time.

I Proposition 7 ([4, 10]). The following problem is in NP ∩ co-NP and can be solved in
pseudo-quasi-polynomial time: “Given an energy parity game G and a vertex v in G, does
Player 0 win G from v?”

5.2 From Bounded Parity Games with Weights to Energy Parity Games
Let G = (A,BndWeightParity(Ω, w)) be a bounded parity game with weights with vertex
set V . Without loss of generality, we assume Ω(v) ≥ 2 for all v ∈ V . We construct, for each
vertex v∗ of A, an energy parity game Gv∗ with the following property: Player 1 wins Gv∗
from some designated vertex induced by v∗ if and only if she is able to unbound the amplitude
for the request of the initial vertex of the play when starting from v∗. This construction is
the technical core of the fixed-point algorithm that solves bounded parity games with weights
via solving energy parity games.

The main obstacle towards this is that, in the bounded parity game with weights G,
Player 1 may win by unbounding the amplitude for a request from above or from below,
while she can only win Gv∗ by unbounding the costs from below. We model this in Gv∗ by
constructing two copies of A. In one of these copies the edge weights are copied from G,
while they are inverted in the other copy. We allow Player 1 to switch between these copies
arbitrarily. To compensate for Player 1’s power to switch, Player 0 can increase the energy
level in the resulting energy parity game during each switch.

First, we define the set of polarities P = {+,−} as well as + = − and − = +. Given a
vertex v∗ of A, define the “polarized” arena Av∗ = (V ′, V ′0 , V ′1 , E′) of A = (V, V0, V1, E) with
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V ′ = (V × P ) ∪ (E × P × {0, 1}),
V ′i = (Vi × P ) ∪ (E × P × {i}) for i ∈ {0, 1}, and
E′ contains the following edges for every edge e = (v, v′) ∈ E with Ω(v) /∈ Ans(Ω(v∗))
and every polarity p ∈ P :

((v, p), (e, p, 1)): The player whose turn it is at v picks a successor v′. The edge e =
(v, v′) is stored as well as the polarity p.
((e, p, 1), (v′, p)): Then, Player 1 can either keep the polarity p unchanged and execute
the move to v′, or
((e, p, 1), (e, p, 0)): she decides to change the polarity, and another auxiliary vertex is
reached.
((e, p, 0), (e, p, 0)): If the polarity is to be changed, then Player 0 is able to use a
self-loop to increase the energy level (see below), before
((e, p, 0), (v′, p)): he can eventually complete the polarity switch by moving to v′.

Furthermore, for every vertex v with Ω(v) ∈ Ans(Ω(v∗)) and every polarity p ∈ P , E′
contains the self-loop ((v, p), (v, p)).4

Thus, a play in Av∗ simulates a play in A, unless Player 0 stops the simulation by using
the self-loop at a vertex of the form (e, p, 0) ad infinitum, and unless an answer to Ω(v∗)
is reached. We define the coloring and the weighting for Av∗ so that Player 0 loses in the
former case and wins in the latter case. Furthermore, the coloring is defined so that all
simulating plays that are not stopped have the same color sequence as the simulated play
(save for irrelevant colors on the auxiliary vertices in E × P × {0, 1}). Hence, we define

Ωv∗(v) =


Ω(v′) if v = (v′, p) with v′ /∈ Ans(Ω(v∗)) ,

0 if v = (v′, p) with v′ ∈ Ans(Ω(v∗)) ,

1 otherwise .

As desired, due to our assumption that Ω(v) ≥ 2 for all v ∈ V , the vertices from E×P×{0, 1}
do not influence the maximal color visited infinitely often during a play, unless Player 0 opts
to remain in some (e, p, 0) ad infinitum (and thereby violating the parity condition) or an
answer to the color of v∗ is reached (and thereby satisfying the parity condition).

Moreover, recall that our aim is to allow Player 1 to choose the polarity of edges by
switching between the two copies of A occurring in Av∗ . Intuitively, Player 1 should opt for
positive polarity in order to unbound the costs incurred by the request posed by v∗ from
above, while she should opt for negative polarity in order to unbound these costs from below.
Since in an energy parity game, it is, broadly speaking, beneficial for Player 1 to move along
edges of negative weight, we negate the weights of edges in the copy of A with positive
polarity. Thus, we define

wv∗(e) =


−w(v, v′) if e = ((v,+), ((v, v′),+, 1)) ,

w(v, v′) if e = ((v,−), ((v, v′),−, 1)) ,

1 if e = ((e, p, 0), (e, p, 0)) ,

0 otherwise .

4 Note that this definition introduces some terminal vertices, i.e., those of the form ((v, v′), p, i) with
Ω(v) ∈ Ans(Ω(v∗)). However, these vertices also have no incoming edges. Hence, to simplify the
definition, we just ignore them.

CSL 2018



36:10 Parity Games with Weights

v0/5

v1/4

v2/4

v3/6

0

0

+1

0

−1

0

0

v0,+/5

v1,+/4

v2,+/4

v3,+/0

v0,−/5

v1,−/4

v2,−/4

v3,−/0

+1

+1

+1

+1

+1

+1
+1

+1

-1
+1

+1
+1

+1
+1

-1
+1

Figure 3 A bounded parity game with weights G and the associated energy parity game Gv0 .
The unnamed vertices of Player 1 (Player 0) are of the form ((v, v′), p, 1) (of the form ((v, v′), p, 0))
when between the vertices (v, p) and (v′, p′). All missing edge weights in Gv0 are 0.

This definition implies that the self-loops at vertices of the form (v, p) with Ω(v) ∈ Ans(Ω(v∗))
have weight zero. Combined with the fact that these vertices have color zero, this allows
Player 0 to win Gv∗ by reaching such a vertex. Intuitively, answering the request posed at
v∗ is beneficial for Player 0. In particular, if Ω(v∗) is even, then Player 0 wins Gv∗ trivially
from (v∗, p), as we then have Ω(v∗) ∈ Ans(Ω(v∗)).

Finally, define the energy parity game Gv∗ = (Av∗ ,Ωv∗ , wv∗). In the following, we are
only interested in plays starting in vertex (v∗,+) in Gv∗ .

I Example 8. Consider the bounded parity game with weights depicted on the left hand side
of Figure 3 and the associated energy parity game Gv0 on the right side. First, let us note
that all other Gv for v 6= v0 are trivial in that they all consist of a single vertex (reachable
from (v,+)), which has even color with a self-loop of weight zero. Hence, Player 0 wins each
of these games from (v,+).

Player 1 wins G from v0, where a request for color 5 is opened, which is then kept
unanswered with infinite cost by using the self-loop at v1 or v2 ad infinitum, depending on
which successor Player 0 picks.

We show that Player 1 wins Gv0 from (v0,+): the outgoing edges of (v0,+) correspond
to picking the successor v1 or v2 as in G. Before this is executed, however, Player 1 gets to
pick the polarity of the successor: she should pick + for v1 and − for v2. Now, Player 0
may use the self-loop at her “tiny” vertices ad infinitum. These vertices have color one, i.e.,
Player 1 wins the resulting play. Otherwise, we reach the vertex (v1,+) or (v2,−). From
both vertices, Player 1 can enforce a loop of negative weight, which allows him to win by
violating the energy condition.

Note that the winning strategy for Player 1 for G from v is very similar to that for her
for Gv0 from (v0,+). We show that one direction holds in general: A winning strategy for
Player 0 for Gv from (v,+) is “essentially” one for him in G from v.

Note that the other direction does, in general, not hold. This can be seen by adding a
vertex v−1 of color 3 with a single edge to v0. Then, vertices of the form (vi, p) with i ∈ {1, 2}
in Gv−1 are winning sinks for Player 0. Hence, he wins Gv−1 from (v−1, p) in spite of losing
the bounded parity game with weights from v−1.
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Algorithm 2 A fixed-point algorithm computing W1(A,BndWeightParity(Ω, w)).
k = 0; W k

1 = ∅; Ak = A
repeat
k = k + 1
Xk = {v∗ | Player 1 wins the energy parity game ((Ak−1)v∗ ,Ωv∗ , wv∗) from (v∗,+)}
W k

1 = W k−1
1 ∪AttrAk−1

1 (Xk)
Ak = Ak−1 \AttrAk−1

1 (Xk)
until Xk = ∅
return W k

1

Hence, the initial request the vertex v inducing Gv plays a special role in the construction:
It is the request Player 1 aims to keep unanswered with infinite cost. To overcome this and
to complete our construction, we show a statement reminiscent of Lemma 2: If Player 0 wins
Gv from (v,+) for every v, then she also wins Gx from every vertex. With this relation at
hand, one can again construct a fixed-point algorithm solving bounded parity games with
weights using an oracle for solving energy parity games that is very similar to Algorithm 1.

Formally, we have the following lemma, which forms the technical core of our algorithm
that solves bounded parity games with weights by solving energy parity games.

I Lemma 9. Let G be a bounded parity game with weights with vertex set V .
1. Let v∗ ∈ V . If Player 1 wins Gv∗ from (v∗,+), then v∗ ∈ W1(G).
2. If Player 0 wins Gv∗ from (v∗,+) for all v∗ ∈ V , then W1(G) = ∅.

This lemma is the main building block for the algorithm that solves bounded parity games
with weights by repeatedly solving energy parity games, which is very similar to Algorithm 1.
Indeed, we just swap the roles of the players: We compute 1-attractors instead of 0-attractors
and we change the definition of Xk. Hence, we obtain the following algorithm (Algorithm 2).

Algorithm 2 terminates after solving at most a quadratic number of energy parity
games. Furthermore, the proof of correctness is analogous to the one for Algorithm 1,
relying on Lemma 9. We only need two further properties: the 1-extendability of
BndWeightParity(Ω, w), and an assertion that AttrAk−1

1 (Xk) is a trap for Player 0 in Ak−1.
Both are easy to verify.

After plugging Algorithm 2 into Algorithm 1, Proposition 7 yields our main theorem,
settling the complexity of solving parity games with weights.

I Theorem 10. The following problem is in NP∩co-NP and can be solved in pseudo-quasi-
polynomial time: “Given a parity game with weights G and a vertex v in G, does Player 0
win G from v?”

6 Memory Requirements

We now discuss the upper and lower bounds on the memory required to implement winning
strategies for either player. Recall that we use binary encoding to denote weights, i.e., weights
may be exponential in the size of the game. In this section we show polynomial (in n, d,
and W ) upper and lower bounds on the necessary and sufficient memory for Player 0 to
win parity games with weights. Due to the binary encoding of weights, these bounds are
exponential in the size of the game. In contrast, Player 1 requires infinite memory.
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Figure 4 A game of size O(n) in which Player 0 only wins with strategies of size at least nW + 1.

I Theorem 11. Let G be a parity game with weights with n vertices, d colors, and largest
absolute weight W assigned to any edge in G. Moreover, let v be a vertex of G.
1. Player 0 has a winning strategy σ from W0(G) with |σ| ∈ O(nd2W ). This bound is tight.
2. There exists a parity game with weights G, such that Player 1 has a winning strategy from

each vertex v in G, but she has no finite-state winning strategy from any v in G.

The proof of the second item of Theorem 11 is straightforward, since Player 1 already
requires infinite memory to implement winning strategies in finitary parity games [7]. Since
parity games with weights subsume finitary parity games, this result carries over to our
setting. We show the game witnessing this lower bound on the right-hand side of Figure 2.

In contrast, exponential memory is sufficient, but also necessary, for Player 0. To this end,
we first prove that the winning strategy for him constructed in the proof of Lemma 9.2 suffers
at most a linear blowup in comparison to his winning strategies in the underlying energy
parity games. This is sufficient as we have argued in Section 4 that the construction of a
winning strategy for Player 0 in a parity game with weights suffers no blowup in comparison
to the underlying bounded parity games with weights.

I Lemma 12. Let G, n, d, and W be as in Theorem 11. Player 0 has a finite-state winning
strategy of size at most d(6n)(d+ 2)(W + 1) from W0(G).

Having established an upper bound on the memory required by Player 0, we now proceed
to show that this exponential bound is indeed tight, which is witnessed by the games Gn
depicted in Figure 4.

I Lemma 13. Let n,W ∈ N. There exists a parity game with weights Gn,W with n vertices
and largest absolute weight W such that Player 0 wins Gn from every vertex, but each winning
strategy for her is of size at least nW + 1.

7 Quality of Strategies

We have shown in the previous section that finite-state strategies of bounded size suffice for
Player 0 to win in parity games with weights, while Player 1 clearly requires infinite memory.
However, as we are dealing with a quantitative winning condition, we are not only interested
in the size of winning strategies, but also in their quality. More precisely, we are interested
in an upper bound on the cost of requests that Player 0 can ensure. In this section, we show
that he can guarantee an exponential upper bound on such costs. Dually, Player 1 is required
to unbound the cost of responses.

I Theorem 14. Let G be a parity game with weights with n vertices, d colors, and largest
absolute weight W .

There exists a b ∈ O((ndW )2) and a strategy σ for Player 0 such that, for all plays ρ
beginning in W0(G) and consistent with σ, we have lim supj→∞ Cor(ρ, j) ≤ b. This bound is
tight.
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v1/1 v2/0 · · · vn−1/0 vn/2
W W W W

W

Figure 5 The game Gn,W witnessing an exponential lower bound on the cost that Player 0 can
ensure.

We first show that Player 0 can indeed ensure an upper bound as stated in Theorem 14.
We obtain this bound via a straightforward pumping argument leveraging the upper bound
on the size of winning strategies obtained in Lemma 12.

I Lemma 15. Let G, n, d, and W be as in the statement of Theorem 14 and let s =
d(6n)(d+ 2)(W + 1). Player 0 has a winning strategy σ such that, for each play ρ that starts
in W0(G) and is consistent with σ, we have lim supj→∞ Cor(ρ, j) ≤ nsW .

Having thus shown that Player 0 can indeed ensure an exponential upper bound on the
incurred cost, we now proceed to show that this bound is tight. A simple example shows
that there exists a series of parity games with weights, in which Player 0 wins from every
vertex, but in which he cannot enforce a sub-exponential cost of any request.

I Lemma 16. Let n,W ∈ N. There exists a parity game with weights Gn,W with n vertices
and largest absolute weight W as well as a vertex v ∈ W0(G), such that for each winning
strategy for Player 0 from v there exists a play ρ starting in v and consistent with σ

with lim supj→∞ Cor(ρ, j) ≥ (n− 1)W .

Proof. We show the game Gn,W in Figure 5. The arena of Gn,W is a cycle with n vertices of
Player 1, where each edge has weight W . Moreover, one vertex is labeled with color two, its
directly succeeding vertex is labeled with color one. All remaining vertices have color zero.

Player 0 only has a single strategy in this game and there exist only n plays in Gn,W ,
each starting in a different vertex of Gn. In each play, each request for color one is only
answered after n− 1 steps, each contributing a cost of W . Hence, this request incurs a cost
of (n− 1)W . Moreover, as this request is posed and answered infinitely often in each play,
we obtain the desired result. J

8 From Energy Parity Games to (Bounded) Parity Games with
Weights

We have discussed in Sections 4 and 5 how to solve parity games with weights via solving
bounded parity games with weights and how to solve the latter games by solving energy
parity games, both steps with a polynomial overhead. An obvious question is whether one
can also solve energy parity games by solving (bounded) parity games with weights. In this
section, we answer this question affirmatively. We show how to transform an energy parity
game into a bounded parity game with weights so that solving the latter also solves the
former. Then, we show how to transform a bounded parity game with weights into a parity
game with weights with the same relation: Solving the latter also solves the former. Both
constructions here are gadget based and increase the size of the arenas only linearly. Hence,
all three types of games are interreducible with at most polynomial overhead.

8.1 From Energy Parity Games to Bounded Parity Games with Weights
Note that, in an energy parity game, Player 0 wins if the energy increases without a bound,
as long as there is a lower bound. However, in a bounded parity game, he has to ensure an
upper and a lower bound. Thus, we show in a first step how to modify an energy parity
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game so that Player 0 still has to ensure a lower bound on the energy, but can also throw
away unnecessary energy during each transition, thereby also ensuring an upper bound. The
most interesting part of this construction is to determine when energy becomes unnecessary
to ensure a lower bound. Here, we rely on Lemma 6.

Formally, let G = (A,Ω, w) be an energy parity game with A = (V, V0, V1, E) where we
assume w.l.o.g. that the minimal color in Ω(V ) is strictly greater than 1. Now, we define
G′ = (A′,Ω′, w′) with A = (V, V0, V1, E) where

V ′ = V ∪ E, V ′0 = V0 ∪ E, and V ′1 = V1,
E′ = {(v, e), (e, e), (e, v′) | e = (v, v′) ∈ E},
Ω′(v) = Ω(v) and Ω′(e) = 1, and
w′(v, e) = w(e), w′(e, e) = −1, and w(e, v′) = 0 for every e = (v, v′) ∈ E.

Intuitively, every edge of A is subdivided and a new vertex for Player 0 is added, where he
can decrease the energy level. The negative weight ensures that he eventually leaves this
vertex in order to satisfy an energy condition.

We say that a strategy σ for Player 0 in A′ is corridor-winning for him from some v ∈ V ,
if there is a b ∈ N such that every play ρ that starts in v and is consistent with σ satisfies
the parity condition and Ampl(ρ) ≤ b. Hence, instead of just requiring a lower bound on the
energy level as in the energy parity condition, we also require a uniform upper bound on the
energy level (where we w.l.o.g. assume these bounds to coincide).

I Lemma 17. Let G and G′ be as above and let v ∈ V . Player 0 has a winning strategy for
G from v if and only if Player 0 has a corridor-winning strategy for G′ from v.

Now, we turn G′ into a bounded parity game with weights. In such a game, the cost-of-
response of every request has to be bounded, but the overall energy level of the play may
still diverge to −∞. To rule this out, we open one unanswerable request at the beginning of
each play, which has to be unanswered with finite cost in order to satisfy the bounded parity
condition with weights. If this is the case, then the energy level of the play is always in a
bounded corridor, i.e., we obtain a corridor-winning strategy.

Formally, for every vertex v ∈ V , we add a vertex v to A′ of an odd color c∗ that is
larger than every color in Ω(V ), i.e., the request can never be answered. Furthermore, v
has a single outgoing edge to v of weight 0, i.e., it is irrelevant whose turn it is. Call
the resulting arena A′′, the resulting coloring Ω′′, and the resulting weighting w′′, and let
G′′ = (A′′,BndWeightParity(Ω′′, w′′)).

I Lemma 18. Let G′ and G′′ be as above and let v ∈ V . Player 0 has a corridor-winning
strategy for G′ from v if and only if v ∈ W0(G′′).

8.2 From Bounded Parity Games with Weights to Parity Games with
Weights

Next, we show how to turn a bounded parity game with weights into a parity game with
weights so that solving the latter also solves the former. The construction here uses the
same restarting mechanism that underlies the proof of Lemma 2: as soon as a request has
incurred a cost of b, restart the play and enforce a request of cost b+ 1, and so on. Unlike
the proof of Lemma 2, where Player 1 could restart the play at any vertex, here we always
have to return to a fixed initial vertex we are interested in. While resetting, we have to
answer all requests in order to prevent Player 1 to use the reset to prevent requests from
being answered. Assume v∗ ∈ V is the initial vertex we are interested in. Then, we subdivide
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Table 1 Characteristic properties of variants of parity games.

Complexity Mem. Pl. 0/Pl. 1 Bounds

Parity Games [3] quasi-poly. pos./pos. –
Energy Parity Games [4, 10] pseudo-quasi-poly. O(ndW )/pos. O(nW )

Finitary Parity Games [7] poly. pos./inf. O(nW )
Parity Games with Costs [14, 22] quasi-poly. pos./inf. O(nW )
Parity Games with Weights pseudo-quasi-poly. O(nd2W )/inf. O((ndW )2)

every edge in A′′ to allow Player 1 to restart the play by answering all open requests and
then moving back to v∗.

Formally, fix a bounded parity game with weights G = (A,BndWeightParity(Ω, w)) with
A = (V, V0, V1, E) and a vertex v∗ ∈ V . We define the parity game with weights Gv∗ =
(Av∗ ,WeightParity(Ωv∗ , wv∗)) with Av∗ = (V ′, V ′0 , V ′1 , E′) where

V ′ = V ∪ E ∪ {>}, V ′0 = V0, and V ′1 = V1 ∪ E ∪ {>},
E′ = {(v, e), (e,>), (e, v′) | e = (v, v′) ∈ E} ∪ {(>, v∗)},
Ωv∗(v) = Ω(v), Ωv∗(e) = 0 for every e ∈ E, and Ωv∗(>) = 2 max(Ω(V )), and
wv∗(v, e) = w(e) for (v, e) ∈ V × E and wv∗(e′) = 0 for every other edge e′ ∈ E′.

I Lemma 19. Let G and Gv∗ as above. Then, v∗ ∈ W0(G) if and only if v∗ ∈ W0(Gv∗).

9 Conclusions and Future Work

We have established that parity games with weights and bounded parity games fall into the
same complexity class as energy parity games. This is interesting, because, while solving
such games has the signature complexity class NP ∩ co-NP, they are not yet considered a
class in their own right. It is also interesting because the properties appear to be inherently
different: While they both combine the qualitative parity condition with quantified costs,
parity games with weights combine these aspects on the property level, whereas energy
parity games simply look at the combined – and totally unrelated – properties. We show
the characteristic properties of parity games and of games with combinations of a parity
condition with quantitative conditions relevant for this work in Table 1.

As future work, we are looking into the natural extensions of parity games with weights
to Streett games with weights [7, 14], and at the complexity of determining optimal bounds
and strategies that obtain them [30]. We are also looking at variations of the problem. The
two natural variations are

to use a one-sided definition (instead of the absolute value) for the amplitude of
a play, i.e., using Ampl(π) = supj<|π| w(v0 · · · vj) ∈ N∞ (instead of Ampl(π) =
supj<|π| |w(v0 · · · vj)| ∈ N∞), and
to use an arbitrary consecutive subsequence of a play, i.e., Ampl(π) =
supj≤k<|π| |w(vj · · · vk)| ∈ N∞.

There are good arguments in favor and against using these individual variations – and their
combination to Ampl(π) = supj≤k<|π| w(vj · · · vk) ∈ N∞ – but we feel that the introduction
of parity games with weights benefit from choosing one of the four combinations as the parity
games with weights.

We expect the complexity to rise when changing from maximizing over the absolute value
to maximizing over the value, as this appears to be close to pushdown boundedness games [5],
and we conjecture this problem to be PSPACE complete.
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Abstract
Buchholz’ Ω-rule is a way to give a syntactic, possibly ordinal-free proof of cut elimination for
various subsystems of second order arithmetic. Our goal is to understand it from an algebraic
point of view. Among many proofs of cut elimination for higher order logics, Maehara and
Okada’s algebraic proofs are of particular interest, since the essence of their arguments can be
algebraically described as the (Dedekind-)MacNeille completion together with Girard’s reducibil-
ity candidates. Interestingly, it turns out that the Ω-rule, formulated as a rule of logical inference,
finds its algebraic foundation in the MacNeille completion.

In this paper, we consider a family of sequent calculi LIP =
⋃
n≥−1 LIPn for the parameter-

free fragments of second order intuitionistic logic, that corresponds to the family ID<ω =⋃
n<ω IDn of arithmetical theories of inductive definitions up to ω. In this setting, we observe

a formal connection between the Ω-rule and the MacNeille completion, that leads to a way of
interpreting second order quantifiers in a first order way in Heyting-valued semantics, called the
Ω-interpretation. Based on this, we give a (partly) algebraic proof of cut elimination for LIPn,
in which quantification over reducibility candidates, that are genuinely second order, is replaced
by the Ω-interpretation, that is essentially first order. As a consequence, our proof is locally
formalizable in ID-theories.
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1 Introduction

This paper is concerned with cut elimination for subsystems of second order logics. It is of
course very well known that the full second order classical/intuitionistic logics admit cut
elimination. Then why are we interested in their subsystems? A primary reason is that
proving cut elimination for a subsystem is often very hard if one is sensitive to the metatheory
within which (s)he works. This is witnessed by the vast literature in the traditional proof
theory. In fact, proof theorists are not just interested in proving cut elimination itself, but
in identifying a characteristic principle P (e.g. ordinals, ordinal diagrams, combinatorial
principles and inductive definitions) for each system of logic, arithmetic and set theory, by
proving cut elimination within a weak metatheory (e.g. PRA, IΣ1 and RCA0) extended
by P . Our motivation is to understand those hard proofs and results from an algebraic
perspective.
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One can distinguish several types of cut elimination proofs for higher order logics/arith-
metic: (i) syntactic proofs by ordinal assignment (e.g. Gentzen’s consistency proof for PA),
(ii) syntactic but ordinal-free proofs, (iii) semantic proofs based on Schütte’s semivaluation
or its variants (e.g. [30]), (iv) algebraic proofs based on completions (the list is not intended
to be exhaustive). Historically (i) and (iii) precede (ii) and (iv), but understanding (i) takes
years just to catch up with the expanding universe of ordinal notations, while (iii) is slightly
unsatisfactory for the truly constructive logician since it involves reductio ad absurdum and
weak König’s lemma. Hence we address (ii) and (iv) in this paper.

For (ii), a very useful and versatile technique is Buchholz’ Ω-rule. Introduced in the
context of ordinal analysis of ID-theories [11] and further developed in, e.g., [14], it later
yielded an ordinal-free proof of cut elimination for fragments/extensions of Π1

1-CA0 [12, 4, 3].
However, the Ω-rule is notoriously complicated, and is hard to grasp its meaning at a glance.
Even its semantic soundness is not clear at all. While Buchholz gives an account based on
the BHK interpretation [11], we will try to give an algebraic account in this paper.

For (iv), there is a very conspicuous algebraic proof of cut elimination for higher order
logics which may be primarily ascribed to Maehara [24] and Okada [26, 28]. In contrast
to (iii), these algebraic proofs are fully constructive; no use of reductio ad absurdum or
any nondeterministic principle. More importantly, it extends to proofs of normalization
for proof nets and typed lambda calculi [27]. While their arguments can be described in
various dialects (e.g. phase semantics in linear logic), apparently most neutral and most
widely accepted would be to speak in terms of algebraic completions: the essence of their
arguments can be described as the (Dedekind-)MacNeille completion together with Girard’s
reducibility candidates, as we will explain in Section 6.

Having a syntactic technique on one hand and an algebraic methodology on the other,
it is natural to ask the relationship between them. To make things concrete, we consider,
in addition to the standard sequent calculus LI2 for second order intuitionistic logic, a
family of subcalculi LIP =

⋃
n≥−1 LIPn for the parameter-free fragments of LI2. LIP is

the intuitionistic counterpart of the classical sequent calculus studied in [32]. Although we
primarily work on intuitionistic logic, all results in this paper (except Proposition 11) carry
over to classical logic too.

As we will see, cut elimination based on the Ω-rule technique works for LIP. Moreover,
it turns out to be intimately related to the MacNeille completion in that the Ω-rule in our
setting is not sound in Heyting-valued semantics in general, but is sound when the underlying
algebra is the MacNeille completion of the Lindenbaum algebra. This observation leads to
a curious way of interpreting second order formulas in a first order way, that we call the
Ω-interpretation. The basic idea already appears in Altenkirch and Coquand [6], but ours is
better founded and accommodates the existential quantifier too.

The Ω-rule and Ω-interpretation are two sides of the same coin. Combining them
together, we obtain a (partly) algebraic proof of cut elimination for LIPn (n ≥ 0), that is
comparable with Aehlig’s result [1] for the parameter-free, negative fragments of second order
Heyting arithmetic. As with [1], our proof does not rely on (second order quantification
over) reducibility candidates, and is formalizable in theories of finitely iterated inductive
definitions.

The rest of this paper is organized as follows. In Section 2 we recall some basics of the
MacNeille completion. In Section 3 we give some background on iterated inductive definitions
and then introduce a family of sequent calculi LIP =

⋃
LIPn. In Section 4 we transform the

arithmetical Ω-rule into a logical one and explain how it works for LIP. In Section 5, we turn
to the algebraic side of the Ω-rule, establish a connection with the MacNeille completion, and
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motivate the Ω-interpretation. In Section 6, we review an algebraic proof of cut elimination
for LI2, and then gives an algebraic proof for LIPn based on the Ω-interpretation. Appendix
A fully describes the sequent calculi studied in this paper. Omitted proofs are found in the
full version of this paper available at https://arxiv.org/abs/1804.11066.

2 MacNeille completion

Let A = 〈A,∧,∨〉 be a lattice. A completion of A is an embedding e : A −→ B into a
complete lattice B = 〈B,∧,∨〉. We often assume that e is an inclusion map so that A ⊆ B.

For example, let [0, 1]Q := [0, 1] ∩Q be the chain of rational numbers in the unit interval
(seen as a lattice). Then it admits an obvious completion [0, 1]Q ⊆ [0, 1]. For another
example, let A be a Boolean algebra. Then it also admits a completion e : A −→ Aσ, where
Aσ := 〈℘(uf(A)),∩,∪,−, A, ∅〉, the powerset algebra on the set of ultrafilters of A, and
e(a) := {u ∈ uf(A) : a ∈ u}.

A completion A ⊆ B is
∨
-dense if x =

∨
{a ∈ A : a ≤ x} holds for every x ∈ B. It is∧

-dense if x =
∧
{a ∈ A : x ≤ a}. A

∨
-dense and

∧
-dense completion is called a MacNeille

completion.

I Theorem 1. Every lattice A has a MacNeille completion unique up to isomorphism [8, 29].
A MacNeille completion is regular, i.e., preserves all joins and meets that already exist in A.

Coming back to the previous examples:
[0, 1]Q ⊆ [0, 1] is MacNeille, since x = inf{a ∈ Q : x ≤ a} = sup{a ∈ Q : a ≤ x} for any
x ∈ [0, 1]. It is regular since if q = limn→∞ qn holds in Q, then it holds in R too.
e : A −→ Aσ is not regular when A is an infinite Boolean algebra. In fact, the Stone
space uf(A) is compact, so collapses any infinite union of open sets into a finite one. It is
actually a canonical extension, that has been extensively studied in ordered algebra and
modal logic [23, 21, 20].

MacNeille completions behave better than canonical extensions in preservation of existing
limits, but the price to pay is loss of generality. Let DL (HA, BA, resp.) be the variety of
distributive lattices (Heyting algebras, Boolean algebras, resp.).

I Theorem 2. DL is not closed under MacNeille completions [18].
HA and BA are closed under MacNeille completions.
HA and BA are the only nontrivial subvarieties of HA closed under MacNeille completions
[9].

As is well known, completion is a standard algebraic way to prove conservativity of
extending first order logics to higher order ones. The above result indicates that MacNeille
completions work for classical and intuitionistic logics, but not for proper intermediate logics.
See [33] for more on MacNeille completions.

Now an easy but crucial observation follows.

I Proposition 3. A completion A ⊆ B is MacNeille iff the rules below are valid:

{a ≤ y}a≤x
x ≤ y

{x ≤ a}y≤a
x ≤ y

where x, y range over B and a over A.
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The left rule has infinitely many premises indexed by the set {a ∈ A : a ≤ x}. It
states that if a ≤ x implies a ≤ y for every a ∈ A, then x ≤ y. This is valid just in case
x =

∨
{a ∈ A : a ≤ x}. Likewise, the right rule states that if y ≤ a implies x ≤ a for every

a ∈ A, then x ≤ y. This is valid just in case y =
∧
{a ∈ A : y ≤ a}.

As we will see, the above looks very similar to the Ω-rule. This provides a link between
lattice theory and proof theory.

3 Parameter-free second order intuitionistic logic

3.1 Arithmetic
We here recall theories of inductive definitions. Let IΣ1, PA and PA2 be the first order
arithmetic with Σ0

1 induction, that with full induction, and the second order arithmetic with
full induction and comprehension, respectively. Given a theory T of arithmetic, T [X] denotes
the extension of T with a single set variable X and atomic formulas of the form X(t).

A great many subsystems of PA2 are considered in the literature. For instance, the
system Π1

1-CA0 is obtained by restricting the induction and comprehension axiom schemata
to Π1

1 formulas. Even weaker are theories of iterated inductive definitions IDn with n < ω,
that are obtained as follows.

ID0 is just PA. To obtain IDn+1, consider a formula ϕ(X,x) in IDn[X] which contains
no first order free variables other than x and no negative occurrences of X. It can be seen as
a monotone map ϕN : ℘(N) −→ ℘(N) sending a set X ⊆ N to {n ∈ N : N |= ϕ(X,n)}, so it
has a least fixed point INϕ . Based on this intuition, one adds a unary predicate symbol Iϕ for
each such ϕ to the language of IDn and axioms

ϕ(Iϕ) ⊆ Iϕ, ϕ(τ) ⊆ τ → Iϕ ⊆ τ

for every abstract τ = λx.ξ(x) in the new language. Here ϕ(Iϕ) is a shorthand for the
abstract λx.ϕ(Iϕ, x) and τ1 ⊆ τ2 is for ∀x.τ1(x)→ τ2(x). The induction schema is extended
to the new language. This defines the system IDn+1. Notice that IDn+1 does not involve
any set variable. Finally, let ID<ω be the union of all IDn with n < ω.

Clearly ID<ω can be seen as a subsystem of Π1
1-CA0. In fact, any fixed point atom Iϕ(t)

can be replaced by second order formula

Iϕ(t) := ∀X.∀x(ϕ(X,x)→ X(x))→ X(t).

Given a formula ψ of ID<ω, we write ψI for the formula of PA2 obtained by repeating the
above replacement. This makes the axioms of ID<ω all provable in Π1

1-CA0.
The converse is not strictly true, but it is known that ID<ω has the same proof theoretic

strength and the same arithmetical consequences with Π1
1-CA0.

Let us point out that a typical use of inductive definition is to define a provability
predicate. Let T be a sequent calculus system, and suppose that we are given a formula
ϕ(X,x) saying that there is a rule in T with conclusion sequent x (coded by a natural
number) and premises Y ⊆ X. Then INϕ gives the set of all provable sequents in T . Notice
that the premise set Y can be infinite. It is for this reason that ID-theories are suitable
metatheories for infinitary proof systems. See [13] for more on inductive definitions.

3.2 Second order intuitionistic logic
In this subsection, we formally introduce sequent calculus LI2 for the second order intuition-
istic logic with full comprehension, that is an intuitionistic counterpart of Takeuti’s classical
calculus G1LC [31].
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Consider a language L that consists of (first order) function symbols and predicate
symbols. A typical example is the language LPA of Peano arithmetic, which contains a
predicate symbol for equality and function symbols for all primitive recursive functions. Let

Var: a countable set of term variables x, y, z, . . . ,
Tm(L): the set of first order terms t, u, v, . . . over L,
VAR: the set of set variables X,Y, Z, . . . .

The set FM(L) of second order formulas is defined by:

ϕ,ψ ::= p(~t) | X(t) | ⊥ | ϕ ? ψ | Qx.ϕ | QX.ϕ,

where p ∈ L, ? ∈ {∧,∨,→} and Q ∈ {∀, ∃}. We define > := ⊥ → ⊥. When the language L
is irrelevant, we write Tm := Tm(L) and FM := FM(L). Given ϕ, let FV(ϕ) and Fv(ϕ) be
the set of free set variables and that of free term variables in ϕ, respectively.

Typical formulas in FM(LPA) are

N(t) := ∀X.[∀x(X(x)→ X(x+ 1)) ∧X(0)→ X(t)],
E(t) := ∀X.∀x.[t = x ∧X(x)→ X(t)].

We assume the standard variable convention that α-equivalent formulas are syntactically
identical, so that substitutions can be applied without variable clash. A term substitution is
a function ◦ : Var −→ Tm. Given ϕ ∈ FM, the substitution instance ϕ◦ is defined as usual.
Likewise, a set substitution is a function • : VAR −→ ABS, where ABS := {λx.ξ : ξ ∈ FM}
is the set of abstracts. Instance ϕ• is obtained by replacing each atomic formula X(t) with
X•(t) and applying β-reduction.

Let SEQ := {Γ⇒ Π : Γ,Π ⊆fin FM, |Π| ≤ 1} be the set of sequents of LI2. We write Γ,∆
to denote Γ ∪∆. Rules of LI2 include:

Γ, ϕ⇒ ϕ
(id)

ϕ(τ),Γ⇒ Π
∀X.ϕ(X),Γ⇒ Π

(∀X left)
Γ⇒ ϕ(Y )

Γ⇒ ∀X.ϕ(X)
(∀X right)

Γ⇒ ϕ ϕ,Γ⇒ Π
Γ⇒ Π (cut)

ϕ(Y ),Γ⇒ Π
∃X.ϕ(X),Γ⇒ Π

(∃X left)
Γ⇒ ϕ(τ)

Γ⇒ ∃X.ϕ(X)
(∃X right)

where τ ∈ ABS and rules (∀X right) and (∃X left) are subject to the eigenvariable condition
Y 6∈ FV(Γ,Π). The inference rules for other connectives can be found in Appendix A. The
indicated occurrence of ∀X.ϕ(X) in (∀X left) is the main formula and ϕ(τ) is the minor
formula of rule (∀X left). The same terminology applies to other inference rules too.

A well known fact essentially due to [31] is that if a Π0
2 sentence ϕ is provable in PA2,

then ∀y.E(y),ΓN ⇒ ϕN is provable in LI2, where Γ is a finite set of true Π0
1 sentences

(equality axioms, basic axioms of Peano arithmetic and defining axioms of primitive recursive
functions), and ϕN is obtained from ϕ by relativizing each first order quantifier Qx to
Qx ∈ N . In particular if ϕ is Σ0

1, we obtain ∀y.E(y),Γ⇒ ϕ, and the assumption ∀y.E(y)
can be eliminated by another relativization with respect to E, so that we eventually obtain
Γ⇒ ϕ in LI2. A consequence is that

IΣ1 ` CE(LI2)→ 1CON(PA2),

where CE(LI2) is a Π0
2 sentence stating that LI2 admits cut elimination, and 1CON(PA2)

is that PA2 is 1-consistent, that is, all provable Σ0
1 sentences are true.

Thus 1-consistency of PA2 is reduced to cut elimination for LI2. We also have the
converse, also provably in IΣ1. The reason is that cut elimination for LI2 is “locally” provable
in PA2, that is, whenever LI2 ` Γ⇒ Π, PA2 proves a Σ0

1 statement “LI2 `cf Γ⇒ Π” (that

CSL 2018
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is, “Γ⇒ Π is cut-free provable in LI2”), and moreover, a derivation of the latter statement
(in PA2) can be primitive recursively obtained from any derivation of the former (in LI2).
Hence 1-consistency of PA2 implies cut elimination for LI2 (in IΣ1). See [7] for a concise
explanation.

The equivalence holds because PA2 and LI2 have a “matching” proof theoretic strength.
We are going to introduce subsystems of LI2 that match ID<ω =

⋃
n∈ω IDn in this sense.

3.3 Parameter-free fragments

Now let us introduce parameter-free subsystems of LI2. We first define the set FMPn ⊆ FM
of parameter-free formulas at level n for every n ≥ −1.

FMP−1 is just the set of formulas in FM without second order quantifiers. It is also
denoted by Fm. For n ≥ 0, FMPn is defined by:

ϕ,ψ ::= p(~t) | t ∈ X | ⊥ | ϕ ? ψ | Qx.ϕ | QX.ξ,

where ? ∈ {∧,∨,→}, Q ∈ {∀, ∃} and ξ is any formula in FMPn−1 such that FV(ξ) ⊆ {X}.
Thus QX.ξ is free of set parameters, though may contain first order free variables. Finally,
FMP is the union of all FMPn.

For instance, both N (t) and E(t) belong to FMP0 so that relativizations ϕN , ϕE belong
to FMP0 too, whenever ϕ is an arithmetical formula. Furthermore, each fixed point atom Iϕ
with ϕ arithmetical translates to

IN
ϕ (t) := ∀X.∀x ∈N(ϕN (X,x)→ X(x))→ X(t),

that belongs to FMP1. We write ϕIN to denote the translation of ID1-formula ϕ in FMP1.
Likewise, any formula ϕ of IDn translates to a formula ϕIN in FMPn. On the other hand,
second order definitions of positive connectives {∃,∨}:

∃X.ϕ(X) := ∀Y.∀X(ϕ(X)→ Y (∗))→ Y (∗),
ϕ ∨ ψ := ∀Y.(ϕ→ Y (∗)) ∧ (ψ → Y (∗))→ Y (∗)

with Y 6∈ FV(ϕ,ψ) and ∗ a constant, are no longer available. They do not belong to FMP,
so restricting to the negative fragment {∀,∧,→} causes a serious loss of expressivity in the
parameter-free setting.

Sequent calculus LIP (resp. LIPn) is obtained from LI2 by restricting the formulas to
FMP (resp. FMPn). Most importantly, when one applies rules (∀X left) and (∃X right) to
introduce QX.ϕ, the minor formula ϕ(τ) must belong to FMP (resp. FMPn).

LIP is an intuitionistic counterpart of the classical calculus studied in [32], and LIP−1
is just the ordinary sequent calculus for first order intuitionistic logic, that is also denoted by
LI.

As before, arithmetical systems IDn reduce to logical systems LIPn. For every Π0
2

sentence ϕ of IDn, IDn ` ϕ implies LIPn ` ∀y.E(y),ΓN ⇒ ϕIN , where Γ is a finite set of
true Π0

1 sentences. In particular, if ϕ is a Σ0
1 sentence of PA, we obtain LIPn ` Γ⇒ ϕ. As

a consequence,

IΣ1 ` CE(LIPn)→ 1CON(IDn), IΣ1 ` CE(LIP)→ 1CON(ID<ω).

The converse is obtained by proving cut elimination for LIPn locally within IDn.
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4 Ω-rule

4.1 Introduction to Ω-rule
Cut elimination in a higher order setting is tricky, since a principal reduction step

Γ⇒ ϕ(Y )
Γ⇒ ∀X.ϕ(X)

(∀X right)
ϕ(τ)⇒ Π

∀X.ϕ(X)⇒ Π
(∀X left)

Γ⇒ Π (cut) =⇒ Γ⇒ ϕ(τ) ϕ(τ)⇒ Π
Γ⇒ Π (cut)

may yield a bigger cut formula so that one cannot simply argue by induction on the
complexity of the cut formula. The Ω-rule, introduced by [11], is an alternative of rule
(∀X left) that allows us to circumvent this difficulty. Buchholz [12] includes an ordinal-free
proof of (partial) cut elimination for a parameter-free subsystem BI−1 of analysis. It was later
extended to complete cut elimination for the same system [4], and to complete cut elimination
for Π1

1-CA0 + BI (bar induction) [3]. The Ω-rule further finds applications in modal fixed
point logics [22, 25]. It is used to show strong normalization for the parameter-free fragments
of System F, provably in ID-theories [5].

As a starter, let us consider the most direct translation of the arithmetical Ω-rule [12] into
our setting1. We extend LI by enlarging the formulas to FMP0 and adding rules (∀X right)
and

{ ∆,Γ⇒ Π }∆∈|∀X.ϕ|[
∀X.ϕ,Γ⇒ Π (Ω[)

where |∀X.ϕ|[ consists of ∆ ⊆fin Fm such that LI `cf ∆⇒ ϕ(Y ) for some Y 6∈ FV(∆) (recall
that “cf” indicates cut-free provability).

Rule (Ω[) has infinitely many premises indexed by |∀X.ϕ|[. Observe a similarity with the
characteristic rules of MacNeille completion (Proposition 3). In Section 5, we will provide a
further link between them.

(Ω[) is intended to be an alternative of (∀X left). Indeed, we can prove ∀X.ϕ ⇒ ϕ(τ)
for an arbitrary abstract τ as follows. Let ∆ ∈ |∀X.ϕ|[, that is, LI `cf ∆⇒ ϕ(Y ) for some
Y 6∈ FV(∆). We then have ∆⇒ ϕ(τ) in the extended system by substituting τ for Y . Hence
rule (Ω[) yields ∀X.ϕ⇒ ϕ(τ).

Moreover, rule (Ω[) suggests a natural step of cut elimination. Consider a cut:

Γ⇒ ϕ(Y )
Γ⇒ ∀X.ϕ(X)

(∀X right)
{ ∆⇒ Π }∆∈|∀X.ϕ|[

∀X.ϕ⇒ Π (Ω[)

Γ⇒ Π (cut)

If Γ ⊆fin Fm and Γ⇒ ϕ(Y ) is cut-free provable, then Γ belongs to |∀X.ϕ|[, so the conclusion
Γ⇒ Π is just one of the infinitely many premises.

However, rule (Ω[) cannot be combined with the standard rules for first order quantifiers.

I Proposition 4. System LI + (∀X right) + (Ω[) is inconsistent.

1 Actually the original rule has assumptions indexed by derivations of ∆ ⇒ ϕ(Y ), not by ∆’s themselves.
As an advantage, one obtains a concrete operator for cut elimination and reduces the complexity of
inductive definition: the original semiformal system can be defined by inductive definition on a bounded
formula, while ours requires a Π0

1 formula. However, this point is irrelevant for the subsequent argument.

CSL 2018



37:8 MacNeille Completion and Buchholz’ Omega Rule

Proof. Consider formula ϕ := X(c)→ X(x) with c a constant. We claim that ∀X.ϕ⇒ ⊥ is
provable. Let ∆ ∈ |∀X.ϕ|[, that is, LI `cf ∆⇒ Y (c)→ Y (x) for some Y 6∈ FV(∆). Since
the sequent is first order and Y (c) → Y (x) is not provable, Craig’s interpolation theorem
yields ∆⇒ ⊥. Hence ∀X.ϕ⇒ ⊥ follows by (Ω[). Since both ∃x.∀X.ϕ⇒ ⊥ and ⇒ ∃x.∀X.ϕ
are provable, we obtain ⊥. J

The primary reason for inconsistency is that (Ω[) is not closed under term substitutions,
while the standard treatment of first order quantifiers assumes that all rules are closed under
term substitutions. Hence we have to weaken first order quantifer rules to obtain a consistent
system. A reasonable way is to replace (∀x right) and (∃x left) with Schütte’s ω-rules:

{ Γ⇒ ϕ(t)}t∈Tm

Γ⇒ ∀x.ϕ(x)
(ω right)

{ ϕ(t),Γ⇒ Π}t∈Tm

∃x.ϕ(x),Γ⇒ Π
(ω left)

This allows us to prove partial cut elimination: if a sequent Γ⇒ Π is provable, then it is
cut-free provable, provided that Γ ∪Π ⊆ Fm. To prove complete cut elimination, we need to
work with more sophisticated calculi.

4.2 Cut elimination by Ω-rule

We now introduce a family of infinitary sequent calculi and use them to prove complete cut
elimination for LIP. The proof idea is entirely due to [3].

We first prepare an isomorphic copy of each FMPn, denoted by FMPn. FMP−1 is just
FMP−1 = Fm. For n ≥ 0, FMPn is defined by:

ϑ, ϑ′ ::= p(~t) | t ∈ X | ⊥ | ϑ ? ϑ′ | Qx.ϑ | ∀X.χ | ∃X.χ,

where ? ∈ {∧,∨,→}, Q ∈ {∀, ∃} and χ is any formula in FMPn−1 such that FV(χ) ⊆ {X}.
Given ϑ ∈ FMP :=

⋃
FMPn, its level is defined by level(ϑ) := min{k : ϑ ∈ FMPk}. Given a

formula ϕ ∈ FMP, ϕ ∈ FMP is obtained by overlining all the second order quantifiers in it.
We are going to introduce a hybrid calculus LIΩn for each n ≥ −1 in which sequents are

made of formulas in FMP∪ FMPn. Those in FMPn are intended to be potential cut formulas,
i.e., ancestors of cut formulas in a derivation (called implicit in [32]), and are treated by
using Ω-rules. Those in FMP are remaining formulas, that are treated as in LIP.

Calculus LIΩ−1 is just LIP where sequents consist of formulas in FMP = FMP ∪ FMP−1
and cut formulas are restricted to Fm = FMP−1.

Suppose that LIΩk−1 has been defined for every 0 ≤ k ≤ n. For each ∀X.ϑ and ∃X.ϑ of
level k, let

|∀X.ϑ(X)| := {∆ : LIΩk−1 `cf ∆⇒ ϑ(Y ) for some Y 6∈ FV(∆)}
|∃X.ϑ(X)| := {(∆⇒ Λ) : LIΩk−1 `cf ϑ(Y ),∆⇒ Λ for some Y 6∈ FV(∆,Λ)}.

Note that ∆ ∪ Λ ⊆ FMP ∪ FMPk−1. Calculus LIΩn is defined as follows:
Sequents consist of formulas in FMP ∪ FMPn.
Cut formulas are restricted to FMPn.
First order quantifiers are treated by rules (∀x left), (∃x right), (ω right) and (ω left).
Second order quantifiers in FMP are treated by rules (∀X left), (∀X right), (∃X left) and
(∃X right) as in LIP.
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Second order quantifiers in FMPn are treated by the following rules (k = 0, . . . , n):

ϑ(Y ),Γ⇒ Π
∃X.ϑ(X),Γ⇒ Π

(∃X left)
Γ⇒ ϑ(Y )

Γ⇒ ∀X.ϑ(X)
(∀X right)

{ ∆,Γ⇒ Π }∆∈|∀X.ϑ|
∀X.ϑ,Γ⇒ Π

(Ωk left)
Γ⇒ ϑ(Y ) { ∆,Γ⇒ Π }∆∈|∀X.ϑ|

Γ⇒ Π (Ω̃k left)

{ Γ,∆⇒ Λ }(∆⇒Λ)∈|∃X.ϑ|

Γ⇒ ∃X.ϑ
(Ωk right)

{ Γ,∆⇒ Λ }(∆⇒Λ)∈|∃X.ϑ| ϑ(Y ),Γ⇒ Π
Γ⇒ Π (Ω̃k right)

where k is the level of ∀X.ϑ, ∃X.ϑ and rules (∃X left), (∀X right), (Ω̃k left) and (Ω̃k right)
are subject to the eigenvariable condition (Y 6∈ FV(Γ,Π)).
Other connectives are treated as in LIP. See Appendix A for a complete list of inference
rules.

It is admittedly complicated. First of all, notice that the rule (Ω̃k left) is derivable by
combining (∀X right), (Ωk left) and (cut). It is nevertheless included for a technical reason.
The same applies to rule (Ω̃k right).

On the other hand, rules (Ωk left) and (Ωk right) are our real concern. The former should
be read as follows: whenever LIΩk−1 `cf ∆⇒ ϑ(Y ) implies LIΩn ` ∆,Γ⇒ Π for every ∆
with Y 6∈ FV(∆), one can conclude LIΩn ` ∀X.ϑ,Γ⇒ Π.

Now let us list some key lemmas for cut elimination. The proofs are found in the full
version.

I Lemma 5 (Embedding). LIPn ` Γ⇒ Π implies LIΩn ` Γ⇒ Π.

I Lemma 6. LIΩn ` Γ⇒ Π implies LIΩn `cf Γ⇒ Π.

I Lemma 7 (Collapsing). LIΩn `cf Γ ⇒ Π implies LIΩn−1 `cf Γ ⇒ Π, provided that
Γ ∪Π ⊆ FMP ∪ FMPn−1.

Proof. By induction on the length of the cut-free derivation of Γ⇒ Π in LIΩn. If it ends
with (Ω̃n left) (see above), we have LIΩn−1 `cf Γ⇒ ϑ(Y ) by the induction hypothesis, noting
that ϑ(Y ) ∈ FMPn−1. Hence Γ ∈ |∀X.ϑ|, so Γ,Γ ⇒ Π is among the premises. Therefore
LIΩn−1 `cf Γ⇒ Π by the induction hypothesis again.

Rule (Ω̃n left) is treated similarly. When n = 0, one has to replace (ω right) and (ω left)
by (∀x right) and (∃x left) respectively, that is easy. J

I Theorem 8 (Cut elimination). LIP ` Γ⇒ Π implies LIP `cf Γ⇒ Π.

Proof. The sequent is provable in LIPn for some n < ω, so in LIΩn by Lemma 5. Noting
that Γ ∪ Π ⊆ FMP, we obtain a cut-free derivation in LIΩ−1 by Lemmas 6 and 7, that is
also a cut-free derivation in LIP. J

Of course the above argument can be restricted to a proof of cut elimination for LIPn.
From a metatheoretical point of view, the most significant part is to define provability
predicates LIΩ−1, . . . , LIΩn. LIΩ−1 is finitary, so is definable in PA = ID0. LIΩ0 is
obtained by an inductive definition relying on LIΩ−1, so is definable in ID1. By repetition,
we observe that LIΩn is definable in IDn+1. Moreover, LIΩ is definable with a uniform
inductive definition in IDω. Once a suitable provability predicate has been defined, the rest
of argument can be smoothly formalized. Hence we obtain a folklore:

IDn+1 ` CE(LIPn), IDω ` CE(LIP).
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5 Ω-rule and MacNeille completion

In this section, we establish a formal connection between the Ω-rule and the MacNeille
completion. Let us start by introducing algebraic semantics for full second order calculus
LI2.

Let L be a language. A (complete) Heyting-valued prestructure for L isM = 〈A,M,D,L〉
where A = 〈A,∧,∨,→,>,⊥〉 is a complete Heyting algebra, M is a nonempty set (term
domain), ∅ 6= D ⊆ AM (abstract domain) and L consists of a function fM : Mn −→M for
each n-ary function symbol f ∈ L and pM : Mn −→ A for each n-ary predicate symbol
p ∈ L. Thus pM is an A-valued subset of Mn.

It is not our purpose to systematically develop a model theory for intuitionistic logic. We
will use prestructures only for proving conservative extension and cut elimination. Hence we
assume M = Tm and fM(~t) = f(~t) below, that simplifies the interpretation of formulas a
lot.

A valuation on M is a function V : VAR −→ D. The interpretation of formulas V :
FM −→ A is inductively defined as follows:

V(p(~t)) := pM(~t) V(X(t)) := V(X)(t)
V(⊥) := ⊥ V(ϕ ? ψ) := V(ϕ) ? V(ψ)
V(∀x.ϕ(x)) :=

∧
t∈Tm V(ϕ(t)) V(∃x.ϕ(x)) :=

∨
t∈Tm V(ϕ(t))

V(∀X.ϕ) :=
∧
F∈D V[F/X](ϕ) V(∃X.ϕ) :=

∨
F∈D V[F/X](ϕ)

where ? ∈ {∧,∨,→} and V [F/X] is an update of V that maps X to F . V can also be extended
to a function V : ABS −→ ATm by V(λx.ϕ)(t) := V(ϕ[t/x]). M is called a Heyting-valued
structure if V(τ) ∈ D holds for every valuation V and every τ ∈ ABS. Clearly M is a
Heyting-valued structure if D = ATm. Such a structure is called full.

Given a sequent Γ⇒ Π, let V(Γ) :=
∧
{V(ϕ) : ϕ ∈ Γ} (:= > if Γ is empty). V(Π) := V(ψ)

if Π = {ψ}, and V(Π) := ⊥ if Π is empty. It is routine to verify:

I Lemma 9 (Soundness). If LI2 ` Γ ⇒ Π, then Γ ⇒ Π is valid, that is, V(Γ◦) ≤ V(Π◦)
holds for every valuation V on every Heyting structure M and every term substitution ◦.

To illustrate use of algebraic semantics, we prove an elementary fact that LI2 is a
conservative extension of LI.

Let L be the Lindenbaum algebra for LI, that is, L := 〈Fm/∼,∧,∨,→,>,⊥〉 where ϕ ∼ ψ
iff LI ` ϕ ↔ ψ. The equivalence class of ϕ with respect to ∼ is denoted by [ϕ]. L is a
Heyting algebra in which

(∗) [∀x.ϕ(x)] =
∧
t∈Tm

[ϕ(t)], [∃x.ϕ(x)] =
∨
t∈Tm

[ϕ(t)]

hold. Given a sequent Γ⇒ Π, elements [Γ] and [Π] in L are naturally defined.
Let G be a regular completion of L. ThenM(G) := 〈G,Tm,GTm,L〉 is a full Heyting

structure, where L consists of a G-valued predicate pM(G) defined by pM(G)(~t) := [p(~t)] for
each p ∈ L (in addition to interpretations of function symbols). Define a valuation I by
I(X)(t) := [X(t)]. We then have I(ϕ) = [ϕ] for every ϕ ∈ Fm by regularity (be careful here:
(∗) may fail in G if it is not regular).

Now, suppose that LI2 proves Γ⇒ Π with Γ ∪Π ⊆ Fm. Then we have I(Γ) ≤ I(Π) by
Lemma 9, so [Γ] ≤ [Π], that is, LI ` Γ⇒ Π. This proves that LI2 is a conservative extension
of LI.

Although this argument cannot be fully formalized in PA2 because of Gödel’s second
incompleteness, it does admit a local formalization in PA2. In contrast, the above argument,
when applied to LIPn, cannot be locally formalized in IDn. The reason is simply that
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IDn does not have second order quantifiers, which are needed to write down the definitions
of V(∀X.ϕ) and V(∃X.ϕ). To circumvent this, a crucial observation is that V(∀X.ϕ) and
V(∃X.ϕ) admit alternative first order definitions if the completion is MacNeille. It is here
that one finds a connection between the MacNeille completion and the Ω-rule.

I Theorem 10. Let L be the Lindenbaum algebra for LI and L ⊆ G a regular completion.
M(G) and I are defined as above. For every sentence ∀X.ϕ in FMP0, the following are
equivalent.
1. I(∀X.ϕ) =

∨
{a ∈ L : a ≤ I(∀X.ϕ)}.

2. I(∀X.ϕ) =
∨
{[∆] ∈ L : ∆ ∈ |∀X.ϕ|[}.

3. The inference below is sound for every y ∈ G:

{ I(∆) ≤ y }∆∈|∀X.ϕ|[
I(∀X.ϕ) ≤ y

If G is the MacNeille completion of F, all the above hold.

Proof. (1. ⇔ 2.) Let a = [∆]. It is sufficient to prove that a ≤ I(∀X.ϕ) iff ∆ ∈ |∀X.ϕ|[,
i.e., LI `cf ∆⇒ ϕ(Y ) for some Y 6∈ FV(∆). If a ≤ I(∀X.ϕ(X)), choose Y 6∈ FV(∆) and let
FY (t) := [Y (t)]. We then have [∆] ≤ I[FY /X](ϕ(X)) = [ϕ(Y )], that is, LI ` ∆ ⇒ ϕ(Y ).
By cut elimination for LI, we obtain LI `cf ∆ ⇒ ϕ(Y ). Conversely, suppose that LI `cf
∆⇒ ϕ(Y ) with Y 6∈ FV(∆). It implies [∆] = I(∆) = I[F/Y ](∆) ≤ I[F/Y ](ϕ(Y )) for every
F ∈ GTm by Lemma 9. Hence [∆] ≤ I(∀X.ϕ(X)).
(2.⇒ 3.) Straightforward by noting that [∆] = I(∆).
(3. ⇒ 2.) Let y :=

∨
{[∆] ∈ L : ∆ ∈ |∀X.ϕ|[}. Then I(∆) = [∆] ≤ y holds for every

∆ ∈ |∀X.ϕ|[, so I(∀X.ϕ) ≤ y by 3. Since ∆ ∈ |∀X.ϕ|[ implies [∆] ≤ I(∀X.ϕ) as proved
above, we also have y ≤ I(∀X.ϕ). J

The equivalence in Theorem 10 is quite suggestive, since 3. is an algebraic interpretation of
rule (Ω[), while 1. is a characteristic of the MacNeille completion (Proposition 3). Equation 2.
suggests a way of interpreting second order formulas without using second order quantifiers at
the meta-level. All these are true if the completion is MacNeille. It should be mentioned that
essentially the same as 2. has been already observed by Altenkirch and Coquand [6] in the
context of lambda calculus (without making any connection to the Ω-rule and the MacNeille
completion). Indeed, they consider a logic which roughly amounts to the negative fragment
of our LIP0 and employ equation 2. to give a “finitary” proof of (partial) normalization
theorem for a parameter-free fragment of System F (see also [2, 5] for extensions). However,
their argument is technically based on a downset completion, that is not MacNeille. As is
well known, such a naive completion does not work well for the positive connectives {∃,∨}.
In contrast, when G is the MacNeille completion of L, we also have

I(∃X.ϕ) =
∧
{[∆]→ [Λ] ∈ L : (∆⇒ Λ) ∈ |∃X.ϕ|[},

where (∆ ⇒ Λ) ∈ |∃X.ϕ(X)|[ iff LI `cf ϕ(Y ),∆ ⇒ Λ for some Y 6∈ FV(∆,Λ). We thus
claim that the insight by Altenkirch and Coquand is augmented and better understood in
terms of the MacNeille completion.

It is interesting to see that (second order) ∀ is interpreted by (first order)
∨

while ∃ is
by

∧
. We call this style of interpretation the Ω-interpretation, that is the algebraic side of

the Ω-rule, and that will play a key role in the next section. We conclude our discussion by
reporting a counterexample for general soundness.
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I Proposition 11. There is a Heyting-valued structure in which (Ω[) is not sound.

Proof. Let A be the three-element chain {0 < 0.5 < 1} seen as a Heyting algebra. Consider
the language that only consists of a term constant ∗. Then a full Heyting-valued structure
A := 〈A,Tm,ATm,L〉 is naturally obtained. Let ϕ := (X(∗)→ ⊥) ∨X(∗). It is easy to see
that V(∀X.ϕ) = 0.5 for every valuation V.

Now consider the following instance:

{ ∆⇒ ⊥ }∆∈|∀X.ϕ|[
∀X.ϕ⇒ ⊥ (Ω[)

We claim that it is not sound for a valuation V such that V(X(t)) = 0 for every X ∈ VAR
and t ∈ Tm. Suppose that ∆ ∈ |∀X.ϕ|[, i.e., LI `cf ∆ ⇒ ϕ(Y ) with Y 6∈ FV(∆). Then
V(∆) ≤

∧
F∈ATmV [F/X](ϕ) = 0.5 by Lemma 9. But ∆ is first order, so only takes value 0 or

1 under our assumption on V. Hence V(∆) = 0, that is, all premises are satisfied. However,
V(∀X.ϕ) = 0.5 > 0, that is, the conclusion is not satisfied. J

This invokes a natural question. Is it possible to find a Boolean-valued counterexample?
In other words, is the Ω-rule classically sound? This question is left open.

6 Algebraic cut elimination

6.1 Polarities and Heyting frames
This section is devoted to algebraic proofs of cut elimination. We begin with a very old concept
due to Birkhoff [10], that provides a uniform framework for both MacNeille completion and
cut elimination.

A polarity W = 〈W,W ′, R〉 consists of two sets W,W ′ and a binary relation R ⊆W ×W ′.
Given X ⊆W and Z ⊆W ′, let

XB := {z ∈W ′ : x R z for every x ∈ X}, ZC := {x ∈W : x R z for every z ∈ Z}.

For example, let Q := 〈Q,Q,≤〉. Then XB is the set of upper bounds of X and ZC is the set
of lower bounds of Z. Hence (XBC, XB) is a Dedekind cut for every X ⊆ Q bounded above.

The pair (B,C) forms a Galois connection:

X ⊆ ZC ⇐⇒ XB ⊇ Z

so induces a closure operator γ(X) := XBC on ℘(W ), that is, X ⊆ γ(Y ) iff γ(X) ⊆ γ(Y )
for any X,Y ⊆W . Note that X ⊆W is closed iff there is Z ⊆W ′ such that X = ZC.

In the following, we write γ(x) := γ({x}), xB := {x}B and zC := {z}C. Let

G(W) := {X ⊆W : X = γ(X)},

X ∧ Y := X ∩ Y , X ∨ Y := γ(X ∪ Y ), > := W and ⊥ := γ(∅).

I Lemma 12. If W is a polarity, then W+ := 〈G(W),∧,∨〉 is a complete lattice.

The lattice W+ is not always distributive because of the use of γ in the definition of ∨.
To ensure distributivity, we have to impose a further structure on W.

A Heyting frame is W = 〈W,W ′, R, ◦, ε,〉, where
〈W,W ′, R〉 is a polarity,
〈W, ◦, ε〉 is a monoid,
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 : W ×W ′ −→W ′ satisfies x ◦ y R z ⇐⇒ y R xz for every x, y ∈W and z ∈W ′,
the following inferences are valid:

x ◦ y R z

y ◦ x R z
(e) ε R z

x R z
(w) x ◦ x R z

x R z
(c)

Clearly x R z is an analogue of a sequent and (e), (w) and (c) correspond to exchange,
weakening and contraction rules. By removing some/all of them, one obtains residuated
frames that work for substructural logics as well [19, 16].

I Lemma 13. If W is a Heyting frame, W+ := 〈G(W),∧,∨,→,>,⊥〉 is a complete Heyting
algebra, where X → Y := {y ∈W : x ◦ y ∈ Y for every x ∈ X}.

Polarities and Heyting frames are handy devices to obtain MacNeille completions. Let
A = 〈A,∧,∨,→,>,⊥〉 be a Heyting algebra. Then WA := 〈A,A,≤,∧,>,→〉 is a Heyting
frame. Notice that the third condition above amounts to x ∧ y ≤ z iff y ≤ x→ z.

I Theorem 14. If A is a Heyting algebra, then γ : A −→W+
A is a MacNeille completion.

6.2 Algebraic cut elimination for full second order logic
We here outline an algebraic proof of cut elimination for the full second order calculus LI2
that we attribute to Maehara [24] and Okada [26, 28]. This will be useful for a comparison
with the parameter-free case LIPn+1, that is to be discussed in the next subsection.

Let ℘fin(FM) be the set of finite sets of formulas, so that 〈℘fin(FM),∪, ∅〉 is a commutative
idempotent monoid. Recall that SEQ denotes the set of sequents of LI2. There is a natural
map  : ℘fin(FM)× SEQ −→ SEQ defined by Γ(Σ⇒ Π) := (Γ,Σ⇒ Π). So

CF := 〈℘fin(FM), SEQ,⇒cf
LI2,∪, ∅,〉

is a Heyting frame, where Γ ⇒cf
LI2 (Σ ⇒ Π) iff LI2 `cf Γ,Σ ⇒ Π. In the following, we

simply write ϕ for sequent (∅ ⇒ ϕ) ∈ SEQ.
CF is a frame in which Γ ∈ ϕC holds iff Γ⇒ ϕ is cut-free provable in LI2. In particular,

ϕ ∈ ϕC always holds, so ϕ ∈ γ(ϕ) ⊆ ϕC. It should also be noted that each X ∈ G(CF) is
closed under weakening: if ∆ ∈ X and ∆ ⊆ Σ, then Σ ∈ X.

Define a Heyting prestructure CF := 〈CF+,Tm,D,L〉 by pCF (~t) := γ(p(~t)) for each
predicate symbol p and

D := {F ∈ G(CF)Tm : F matches some τ ∈ ABS},

where F matches λx.ξ(x) just in case ξ(t) ∈ F (t) ⊆ ξ(t)C holds for every t ∈ Tm. This
choice of D ⊆ G(CF)Tm is a logical analogue of Girard’s reducibility candidates as noticed by
Okada.

Given a set substitution • and a valuation V : VAR −→ D, we say that V matches • if
V(X) matches X• ∈ ABS for every X ∈ VAR. That is, X•(t) ∈ V(X)(t) ⊆ X•(t)C holds for
every X ∈ VAR and t ∈ Tm. The following is what Okada [28] calls his main lemma.

I Lemma 15. Let • : VAR −→ ABS be a substitution and V be a valuation that matches •.
Then for every ϕ ∈ FM,

ϕ• ∈ V(ϕ) ⊆ ϕ•C.
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As a consequence, V(τ) ∈ D for every τ ∈ ABS (recall that V(λx.ξ(x))(t) := V(ξ(t))).
That is, CF is a Heyting structure. For another consequence, define a valuation I by
I(X)(t) := γ(X(t)), that matches the identity substitution. Then we have ϕ ∈ I(ϕ) ⊆ ϕC.
More generally, for every sequent Γ⇒ Π we have Γ ∈ I(Γ) (by closure under weakening and
I(Γ) =

⋂
{I(ϕ) : ϕ ∈ Γ}) and I(Π) ⊆ ΠC.

I Theorem 16 (Completeness and cut elimination). For every sequent Γ⇒ Π, the following
are equivalent.
1. Γ⇒ Π is provable in LI2.
2. Γ⇒ Π is valid in all Heyting structures.
3. Γ⇒ Π is cut-free provable in LI2.

Proof. (1.⇒ 2.) holds by Lemma 9, and (2.⇒ 3.) by Γ ∈ I(Γ) ⊆ I(Π) ⊆ ΠC in CF . J

Recall that the frame CF is defined by referring to cut-free provability in LI2. But the
above theorem states that it coincides with provability. As a consequence, we have γ(ϕ) = ϕC

for every formula ϕ, so that there is exactly one closed set X such that ϕ ∈ X ⊆ ϕC. Hence
the complete algebra CF+ can be restricted to a subalgebra CF+

0 with underlying set
{γ(ϕ) : ϕ ∈ FM}. It is easy to see that CF+

0 is isomorphic to the Lindenbaum algebra for
LI2 (defined analogously to L in Section 5) and CF+ is the MacNeille completion of CF+

0 .
To sum up:

I Proposition 17. CF+ is the MacNeille completion of the Lindenbaum algebra for LI2.

Thus it turns out a fortiori that the essence of Maehara and Okada’s proof lies in
“MacNeille completion + Girard’s reducibility candidates.”

6.3 Algebraic cut elimination for LIPn+1

We now proceed to an algebraic proof of cut elimination for LIPn+1 (n ≥ −1). Although we
have already shown cut elimination for LIPn+1 in Section 3, the proof does not formalize
in IDn+1 but only in IDn+2. Our goal here is to give another proof that locally formalizes
in IDn+1. To this end, we combine the algebraic argument in the previous subsection with
the Ω-interpretation technique discussed in Section 5. To be more precise, our proof is only
partly algebraic, since we employ calculus LIΩn and presuppose Lemmas 6 and 7 for LIΩn
(but not for LIΩn+1 unlike before).

Define a Heyting frame by

CFn := 〈℘fin(FMPn+1 ∪ FMPn), SEQn,⇒cf
n ,∪, ∅,〉,

where SEQn consists of sequents Γ⇒ Π with Γ∪Π ⊆ FMPn+1 ∪ FMPn, and Γ⇒cf
n (Σ⇒ Π)

holds just in case LIΩn `cf Γ,Σ ⇒ Π. This yields a full Heyting structure CFn :=
〈CF+

n ,Tm,G(CFn)Tm,L〉, where pCFn(~t) := γ(p(~t)).
Let I : VAR −→ G(CFn)Tm be a valuation given by I(X)(t) := γ(X(t)). The interpreta-

tion I : FMPn+1 −→ G(CFn) is defined as in Section 5, except that

I(∀X.ϕ) := γ({∆ : ∆⇒cf
n ϕ(Y ) for some Y 6∈ FV(∆)}),

I(∃X.ϕ) := {(∆⇒ Λ) : ϕ(Y ),∆⇒cf
n Λ for some Y 6∈ FV(∆,Λ)}C.

This interpretation is inspired by Theorem 10. As before, it avoids use of second order
quantifiers at the meta-level, that is what we have called the Ω-interpretation in Section 5.
Notice the use of overlining. The main lemma nevertheless holds with respect to I.
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I Lemma 18. ϕ ∈ I(ϕ) ⊆ ϕC for every ϕ ∈ FMPn. ϕ ∈ I(ϕ) ⊆ ϕC for every ϕ ∈ FMPn+1.

The following lemma is the hardest part of the proof.

I Lemma 19. Suppose that F ∈ G(CFn)Tm satisfies τ(t) ∈ F (t) ⊆ τ(t)C for some τ(x) ∈
FMPn+1. Then for every ∀X.ϕ ∈ FMPn+1, we have I(∀X.ϕ) ⊆ I[F/X](ϕ) ⊆ I(∃X.ϕ).

Once the hardest lemma has been proved, the rest is an easy soundness argument.

I Lemma 20. If LIPn+1 ` Γ⇒ Π, then I(Γ◦) ⊆ I(Π◦) holds for every substitution ◦.

Proof. We assume ◦ = id for simplicity. The proof proceeds by induction on the length of
the derivation.

Suppose that it ends with (∀X left) with main formula ∀X.ϕ and minor formula ϕ(τ).
Define F ∈ G(CFn)Tm by F (t) := I(τ(t)). By Lemma 18, this F satisfies the precondition of
Lemma 19. Hence I(∀X.ϕ) ⊆ I[F/X](ϕ) = I(ϕ(τ)), where the last equation can be shown
by induction on ϕ. Soundness of (∀X left) follows immediately.

Suppose that the derivation ends with:

Γ⇒ ϕ(Y )
Γ⇒ ∀X.ϕ (∀X right)

Let ∆ ∈ I(Γ). We may assume that Y 6∈ FV(∆), since otherwise we can rename Y to a new
set variable. By the induction hypothesis and Lemma 18, we have ∆ ∈ I(ϕ(Y )) ⊆ ϕ(Y )C.
Hence ∆ ∈ I(∀X.ϕ). The other cases are similar. J

I Lemma 21. If LIPn+1 ` Γ⇒ Π, then LIΩn `cf Γ⇒ Π.

Proof. Γ ∈ I(Γ) ⊆ I(Π) ⊆ ΠC by Lemmas 20 and 18. J

Combining it with Lemma 7, we obtain:

I Theorem 22 (Cut elimination). Suppose that Γ ∪Π ⊆ FMPn+1. If Γ⇒ Π is provable in
LIPn+1, then it is cut-free provable in LIPn+1.

As before, the algebra CF+
n coincides with the MacNeille completion of the Linden-

baum algebra for LIΩn. Hence our proof can be described as “MacNeille completion +
Ω-interpretation” in contrast to Maehara and Okada’s proof.

What is the gain of an algebraic proof compared with the syntactic one in Section 4?
In order to prove Lemma 21, we have only employed provability predicate LIΩn, that is
definable in IDn+1. Thus we have saved one inductive definition. Furthermore, the above
argument can be locally formalized in IDn+1. Hence by letting m := n + 1 we obtain a
folklore:

IΣ1 ` CE(LIPm)↔ 1CON(IDm), IΣ1 ` CE(LIP)↔ 1CON(ID<ω).

To our knowledge, the idea of combining the Ω-rule with a semantic argument to save one
inductive definition is due to Aehlig [1], where Tait’s computability predicate is used instead
of the MacNeille completion. He works on the parameter-free, negative fragments of second
order Heyting arithmetic without induction, and proves a weak form of cut elimination in
the matching ID-theories. That is comparable with our result, but ours is concerned with
the full cut elimination theorem for a logical system with the full set of connectives (recall
that second order definitions of positive connectives are not available in the parameter-free
setting).
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Conclusion. In this paper we have brought the Ω-rule into the logical setting, and studied
it from an algebraic perspective. We have found an intimate connection with the MacNeille
completion (Theorem 10), that is important in two ways. First, it provides a link between
syntactic and algebraic approaches to cut elimination. Second, it leads to an algebraic form
of the Ω-rule, called the Ω-interpretation, that augments a partial observation by Altenkirch
and Coquand [6]. These considerations have led to Theorem 22, the intuitionistic analogue
of Takeuti’s fundamental cut elimination theorem [32], proved (partly) algebraically.

We prefer the algebraic approach, since it provides a uniform perspective to the com-
plicated situation in nonclassical logics. Recall that there is a limitation on MacNeille
completions: it does not work for proper intermediate logics (Theorem 2). On the other
hand:

There are infinitely many substructural logics such that the corresponding varieties of
algebras are closed under MacNeille completions. As a consequence, these logics, when
suitably formalized as sequent calculi, admit an algebraic proof of cut elimination [15, 16].
There are infinitely many intermediate logics for which hyper-MacNeille completions work.
As a consequence, these logics, when suitably formalized as hyper-sequent calculi, admit
an algebraic proof of cut elimination [15, 17].

Thus proving cut elimination amounts to finding a suitable notion of algebraic completion.
Although this paper has focused on the easiest case of parameter-free intuitionistic logics, we
hope that our approach will eventually lead to an algebraic understanding of hard results in
proof theory.

References
1 K. Aehlig. Induction and inductive definitions in fragments of second order arithmetic.

Journal of Symbolic Logic, 70:1087–1107, 2005.
2 K. Aehlig. Parameter-free polymorphic types. Annals of Pure and Applied Logic, 156:3–12,

2008.
3 R. Akiyoshi. An ordinal-free proof of the complete cut-elimination theorem for Π1

1-CA+BI
with the ω-rule. IfCoLog Journal of Logics and their Applications, 4(4):867–883, 2017.

4 R. Akiyoshi and G. Mints. An extension of the Omega-rule. Archive for Mathematical logic,
55(3):593–603, 2016.

5 R. Akiyoshi and K. Terui. Strong normalization for the parameter-free polymorphic lambda
calculus based on the Omega-rule. Proceedings of FSCD 2016, 5:1–15, 2016.

6 T. Altenkirch and T. Coquand. A finitary subsystem of the polymorphic λ-calculus. Pro-
ceedings of TLCA 2001, 22–28, 2001.

7 T. Arai. Cut-eliminability in second order logic calculi.
https://arxiv.org/abs/1701.00929v1, 2017.

8 B. Banaschewski. Hüllensysteme und Erweiterungen von Quasi-Ordnungen. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 2: 35–46, 1956.

9 J. Harding and G. Bezhanishvili. MacNeille completions of Heyting algebras. The Houston
Journal of Mathematics, 30(4):937–952, 2004.

10 G. Birkhoff. Lattice Theory. AMS, 1940.
11 W. Buchholz. The Ωµ+1-rule. In [13], pages 188–233, 1981.
12 W. Buchholz. Explaining the Gentzen-Takeuti reduction steps. Archive for Mathematical

Logic, 40:255–272, 2001.
13 W. Buchholz, S. Feferman, W. Pohlers and W. Sieg. Iterated Inductive Definitions and

Subsystems of Analysis: Recent Proof-Theoretical Studies, LNM 897, Springer, 1981.



K. Terui 37:17

14 W. Buchholz and K. Schütte. Proof Theory of Impredicative Subsystems of Analysis, Bib-
liopolis, 1988.

15 A. Ciabattoni, N. Galatos and K. Terui. From axioms to analytic rules in nonclassical logics.
Proceedings of LICS 2008, pp. 229–240, 2008.

16 A. Ciabattoni, N. Galatos and K. Terui. Algebraic proof theory for substructural logics:
cut-elimination and completions. Annals of Pure and Applied Logic, 163(3):266-290, 2012.

17 A. Ciabattoni, N. Galatos and K. Terui. Algebraic proof theory: Hypersequents and hyper-
completions. Annals of Pure and Applied Logic, 168(3): 693–737, 2017.

18 N. Funayama. On the completion by cuts of distributive lattices. Proceedings of the Imperial
Academy, Tokyo, 20:1–2, 1944.

19 N. Galatos and P. Jipsen. Residuated frames with applications to decidability. Transactions
of the AMS, 365(3):1219–1249, 2013.

20 M. Gehrke and J. Harding. Bounded lattice expansions. Journal of Algebra, 238(1):345–371,
2001.

21 M. Gehrke and B. Jónsson. Bounded distributive lattice expansions. Mathematica Scandi-
navica, 94(1):13–45, 2004.

22 G. Jäger and T. Studer. A Buchholz rule for modal fixed point logics. Logica Universalis
5(1):1–19, 2011.

23 B. Jónsson and A. Tarski. Boolean algebras with operators I. American Journal of Mathe-
matics, 73: 891–939, 1951.

24 S. Maehara. Lattice-valued representation of the cut-elimination theorem. Tsukuba Journal
of Mathematics, 15(9):509–521, 1991.

25 G. Mints and T. Studer. Cut-elimination for the mu-calculus with one variable. Fixed Points
in Computer Science, 77: 47–54, 2012.

26 M. Okada. Phase semantics for higher order completeness, cut-elimination and normaliza-
tion proofs (extended abstract). Electric Notes in Theoretical Computer Science, 3: 154,
1996.

27 M. Okada. Phase semantic cut-elimination and normalization proofs of first- and higher-
order linear logic. Theoretical Computer Science, 227:333–396, 1999.

28 M. Okada. A uniform semantic proof for cut-elimination and completeness of various first
and higher order logics. Theoretical Computer Science, 281(1-2): 471–498, 2002.

29 J. Schmidt. Zur Kennzeichnung der Dedekind-MacNeilleschen Hulle einer geordneten
Menge. Archiv der Mathematik, 7:241–249, 1956.

30 W. Tait. A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic.
Bulletin of American Mathematical Society, 72:980–983, 1966.

31 G. Takeuti. On the generalized logic calculus. Japanese Journal of Mathematics, 23:39–96,
1953.

32 G. Takeuti. On the fundamental conjecture of GLC V. Journal of the Mathematical Society
of Japan, 10(2):121–134, 1958.

33 M. Theunissen and Y. Venema. MacNeille completions of lattice expansions. Algebra Uni-
versalis, 57:143–193, 2007.

CSL 2018



37:18 MacNeille Completion and Buchholz’ Omega Rule

A Definitions of sequent calculi

A.1 Sequent calculi LI2, LIP and LIPn

Sequents of LI2 consist of formulas in FM. Inference rules are as follows:

Γ, ϕ⇒ ϕ
(id) Γ⇒ ϕ ϕ,Γ⇒ Π

Γ⇒ Π (cut)

⊥,Γ⇒ Π (⊥ left) Γ⇒
Γ⇒ ⊥ (⊥ right)

ϕi,Γ⇒ Π
ϕ1 ∧ ϕ2,Γ⇒ Π (∧ left) Γ⇒ ϕ1 Γ⇒ ϕ2

Γ⇒ ϕ1 ∧ ϕ2
(∧ right)

ϕ1,Γ⇒ Π ϕ2,Γ⇒ Π
ϕ1 ∨ ϕ2,Γ⇒ Π (∨ left) Γ⇒ ϕi

Γ⇒ ϕ1 ∨ ϕ2
(∨ right)

Γ⇒ ϕ1 ϕ2,Γ⇒ Π
ϕ1 → ϕ2,Γ⇒ Π (→ left) ϕ1,Γ⇒ ϕ2

Γ⇒ ϕ1 → ϕ2
(→ right)

ϕ(t),Γ⇒ Π
∀x.ϕ(x),Γ⇒ Π

(∀x left)
Γ⇒ ϕ(y) y 6∈ Fv(Γ)

Γ⇒ ∀x.ϕ(x)
(∀x right)

ϕ(y),Γ⇒ Π y 6∈ Fv(Γ,Π)
∃x.ϕ(x),Γ⇒ Π

(∃x left)
Γ⇒ ϕ(t)

Γ⇒ ∃x.ϕ(x)
(∃x right)

ϕ(τ),Γ⇒ Π
∀X.ϕ(X),Γ⇒ Π

(∀X left)
Γ⇒ ϕ(Y ) Y 6∈ FV(Γ)

Γ⇒ ∀X.ϕ(X)
(∀X right)

ϕ(Y ),Γ⇒ Π Y 6∈ FV(Γ,Π)
∃X.ϕ(X),Γ⇒ Π

(∃X left)
Γ⇒ ϕ(τ)

Γ⇒ ∃X.ϕ(X)
(∃X right)

LIP (resp. LIPn with n ≥ −1) is obtained by restricting the formulas to FMP (resp.
FMPn).

A.2 Sequent calculi LIΩn

LIΩ−1 is just LIP where cut formulas are restricted to Fm.

For n ≥ 0, sequents of LIΩn consist of formulas in FMP ∪ FMPn Inference rules are
(id), (cut), those for propositional connectives and the following rules (where ϑ stands for a
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formula in FMPn−1):

ϕ(t),Γ⇒ Π
∀x.ϕ(x),Γ⇒ Π

(∀x left)
{ Γ⇒ ϕ(t) }t∈Tm

Γ⇒ ∀x.ϕ(x)
(ω right)

{ ϕ(t),Γ⇒ Π }t∈Tm

∃x.ϕ(x),Γ⇒ Π
(ω left)

Γ⇒ ϕ(t)
Γ⇒ ∃x.ϕ(x)

(∃x right)

ϕ(τ),Γ⇒ Π
∀X.ϕ(X),Γ⇒ Π

(∀X left)
Γ⇒ ϕ(Y ) Y 6∈ FV(Γ)

Γ⇒ ∀X.ϕ(X)
(∀X right)

ϕ(Y ),Γ⇒ Π Y 6∈ FV(Γ,Π)
∃X.ϕ(X),Γ⇒ Π

(∃X left)
Γ⇒ ϕ(τ)

Γ⇒ ∃X.ϕ(X)
(∃X right)

ϑ(Y ),Γ⇒ Π Y 6∈ FV(Γ,Π)
∃X.ϑ(X),Γ⇒ Π

(∃X left)
Γ⇒ ϑ(Y ) Y 6∈ FV(Γ)

Γ⇒ ∀X.ϑ(X)
(∀X right)

{ ∆,Γ⇒ Π }∆∈|∀X.ϑ|
∀X.ϑ,Γ⇒ Π

(Ωk left)
Γ⇒ ϑ(Y ) { ∆,Γ⇒ Π }∆∈|∀X.ϑ|

Γ⇒ Π (Ω̃k left)

{ Γ,∆⇒ Λ }(∆⇒Λ)∈|∃X.ϑ|

Γ⇒ ∃X.ϑ
(Ωk right)

{ Γ,∆⇒ Λ }(∆⇒Λ)∈|∃X.ϑ| ϑ(Y ),Γ⇒ Π
Γ⇒ Π (Ω̃k right)

where k = 0, . . . , n, which is determined by the level of the main formula QX.ϑ. Rules
(Ω̃k left) and (Ω̃k right) are subject to the eigenvariable condition (Y 6∈ FV(Γ,Π)). Index sets
are defined by:

|∀X.ϑ(X)| := {∆ : LIΩk−1 `cf ∆⇒ ϑ(Y ) for some Y 6∈ FV(∆)}
|∃X.ϑ(X)| := {(∆⇒ Λ) : LIΩk−1 `cf ϑ(Y ),∆⇒ Λ for some Y 6∈ FV(∆,Λ)}.
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