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Chapter 1

Introduction

Control theory is a broad research topic which has been investigated in theo-
retical form for a considerable time. The main focus in this thesis is on discrete
event supervisory control theory, as first coherently formulated by Ramadge
and Wonham [76]. Although this thesis partially diverts from the approach
in [76], many concepts are inherited. Supervisory control theory studies how
a hardware device, manufacturing process or other kind of operational facil-
ity may be steered to operate as intended, thereby taking into account sig-
nals or measurements obtained from the device under control. In this sense,
the word control requires disambiguation, since absolute control is often not
achievable due to the fact that any realistic device or process is at least par-
tially influenced by the input of uncontrollable sensor readings or environ-
ment conditions which may not be influenced. In this regard, the word con-
trol is semantically closer to how it is used in, for instance, air traffic control.
An air traffic controller certainly does not control the operation of any indi-
vidual aircraft in the airspace he oversees, but may guide the pilots in such a
way that the operation of all aircraft around an airport functions flawlessly.
Note how this example also takes into account how uncontrollable behav-
ior may influence the controlled operation around an airfield. While the air
traffic controller cannot prevent a sudden thunderstorm or the occurrence of
strong crosswinds, he may guide pilots around such adverse weather effects.
This is a first step towards an abstract understanding of supervisory control
in a context where uncontrollable behavior appears: how to steer the control-
lable part of behavior such that overall desired behavior occurs. Figure 1.1
illustrates the most common application context for supervisory control: an
(often larger) hardware device or manufacturing process is steered by con-

1



2 Chapter 1. Introduction

Figure 1.1: The application context for supervisory control. A large hardware device
or manufacturing process is controlled by control software, which steers its operation
in such a way that desired behavior occurs.

trol software to operate as desired. This thesis describes new well-founded
methodologies for the automated generation of models of controlled behav-
ior for such applications.

To further develop the treatment of supervisory control, abstractions and
limitations to obtain a useful interpretation of control have to be made. In
the sequel, the term plant is used to refer to the device or operational pro-
cess under control, since this is the term most often used for this purpose in
preceding works. Supervisory control is based on an abstract model of the
behavior of the plant for the purpose of generalization and because in most
situations the plant is far too complex to study directly. A further limitation
at the core of this thesis is to limit plant models to discrete event models. A
discrete event model consists of states and transitions between these states,
which are labeled by events. It models the behavior of a system, or in most
cases, an abstraction thereof. These models adhere to the often reasonable
assumption that the system is at each point in time in a certain state and that
any change between states may be described by an event taking place instan-
taneously. Systems which exhibit continuously evolving behavior do not fall
within the realm of this description. From both a mathematical and illus-
trative point of view, a formalization of a discrete event model as a labeled
graph is often helpful. An elaborate treatment of discrete event systems may
be found in [21]. The examples in Figure 1.3 show such discrete event mod-
els. In many cases, a relatively complete system description is obtained by
not only labeling transitions by events but also by adding more information
to states by means of labels. Kripke-structures [20] with labeled transitions
will be employed in this thesis to achieve this.

A discrete interpretation of behavior as described here is often a useful ab-
straction since it directly models which events should be controlled. It is also
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a useful abstraction from a practical point of view since the digitization of
sensors and actuators often directly leads to such a discrete interpretation.
The study of supervisory control is further limited to those plant models
which are assumed to be immutable. A strict distinction is made between
controllable and uncontrollable events. A controllable event represents be-
havior which may be disabled. For instance, switching an electric motor off
is a typical example of a controllable event. On the other hand, uncontrol-
lable events represent behavior which may not be influenced. For example,
the outcome of a temperature sensor is something that control cannot directly
influence. In supervisory control, the controllability aspect of an event does
not change. That is, an event does not suddenly change from being control-
lable to uncontrollable, or the other way around. In addition, an assumption
is made in this thesis that all events are observable to the outside world, while
control under partial observation is the subject of various other works (see,
for instance, [5] and [16]).

Actual control in terms of affecting behavior still needs to be made more
concrete. Control is limited to disabling (controllable) events for various rea-
sons. First and foremost, since the plant model is assumed to be immutable,
new behavior cannot be introduced. The objective that control should be
achieved by means of disabling events is also justified by practical reasons.
A state is an abstraction which represents a situation in the actual plant. For
instance, the fact that a mechanical beam is oriented in a certain way may
be represented by a state in a discrete event model. Effectuating control by
removing states would therefore effectively remove or deny the existence of
a practical situation inside the plant, which would contradict the earlier as-
sumption that the plant model is immutable. On the other hand, suppose
that the aforementioned mechanical beam is positioned by an electric motor,
and suppose that the operation of this motor is steered by control software. It
is then is far more realistic to prevent an undesired orientation by disabling
the corresponding electric motor events. In other words, if an undesired state
were to be prevented from being accessed, control in a discrete event context
comes down to disabling events which provide access to this state.

The control loop in Figure 1.2 is a more concrete interpretation of discrete
event control. First, the control loop as it is applied in traditional supervisory
control theory [76], as depicted in Figure 1.2a, is considered. A distinction is
made between two separate entities, the plant and the supervisor, which oper-
ate in conjunction with each other. The plant, being in a certain state, requires
confirmation from the supervisor to execute each controllable event. In doing
so, the supervisor ensures that the plant conforms to the desired operation of
the system. Both plant and supervisor may have a different physical realiza-
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Plant Supervisor

Event signalling

Event affirmation

Controlled System

Event signalling

Event affirmation

Figure 1.2: The traditional control loop for supervisory control is depicted in Figure
1.2a as a feedback model. Systems which do not allow a strictly separated supervisor
are assumed to have an internal control loop, as shown in Figure 1.2b.

tion. For instance, a concrete machine may function as the plant, and an em-
bedded software program may function as the supervisor. Furthermore, and
also of importance with regard to this thesis, plant and supervisor are mainly
considered in their conjunctive operation. It may therefore be required to in-
terpret the entire system as having an internal control loop, as illustrated in
Figure 1.2b. In order to realize such a controlled system, a given plant model
is taken and the application of control synthesis results in a modified model
which represents the behavior of the plant as if it were under control. Synthe-
sis from a controlled systems perspective, as opposed to the construction of a
strictly separate supervisor, results from the presence of non-determinism, as
discussed in Section 1.2 and later on in this thesis.

The title of this thesis may now be explained by means of the preceding
exhibition of control-theoretic notions. The formulation control synthesis in
the title refers to the automatic derivation of the behavioral restriction of a
plant model, based upon the specification of desired behavior in modal logic,
which is the main topic of this thesis. The partial bisimilarity part refers to the
approach taken in this thesis where the relationship between original plant
model and controlled behavioral model is specified by means of the coinduc-
tive notion of partial bisimilarity. The subtitle, a treatise supported by computer
verified proofs, refers to the thorough treatment which is applied to ascertain
the correctness of the control synthesis methods described in this thesis. Most
definitions and proofs have been formalized using the Coq proof assistant,
which provides more certainty regarding the obtained results and turned out
to be very helpful during the construction of the various theories for control
synthesis in this thesis.

The remaining part of the setup for control is considered further in this
introductory chapter. Section 1.1 provides a quick overview of the approach
to control synthesis in this thesis by means of an example. Non-deterministic
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models of plant behavior are allowed for the purpose of better abstraction in
creating plant models. This has various implications upon the precise con-
trol framework which is applied, as explained in more detail in Section 1.2.
Besides the aforementioned control objective of only limiting existing behav-
ior, it is also required that this limitation of behavior is minimally restrictive.
Section 1.3 treats this subject in more detail. In the preceding explanatory in-
troduction to control theory, desired behavior was mentioned numerous times.
Section 1.4 describes modal logic, which is applied as a formalism for the
specification of desired behavior in this thesis. A comprehensive review of
related works can be found in Section 1.5, which also compares several of
these works to the main approach for controlled system synthesis in this the-
sis. Computer verified proofs are used to rigorously verify the correctness
of the various theories involved. A short introduction into the application of
such computer verified proofs is provided in Section 1.6. An overview of the
remainder of this thesis, including an enumeration of the underlying scien-
tific publications, can be found in Section 1.7.

1.1 Approach

This thesis concerns the controlled system synthesis on non-deterministic au-
tomata for specifications in modal logic, and thereby builds upon and ex-
tends earlier research in supervisory control theory [76]. This section con-
cerns a short introduction to the specific type of controlled system synthesis
in this thesis. The controlled systems perspective concerns a system under
control — the plant — and a system component which restricts the plant be-
havior — the supervisor — which are interpreted as a single integrated entity,
as shown in Figure 1.2b. This means that a given model of all possible plant
behavior is taken, and a new model which is constrained according to a log-
ical description of desired behavior — the specification — is constructed. This
resulting model represents the controlled behavior of the plant, and is there-
fore referred to as the controlled system. The automated generation, or syn-
thesis, of such a restricted behavioral model incorporates a number of stan-
dard concepts from supervisory control theory [76], which guarantees that
the generated model is a proper controlled system with regard to the original
plant model. This includes a strict partitioning of behaviors into controllable
and uncontrollable events, such that synthesis does not disable accessible un-
controllable events, thereby achieving a property referred to as controllabil-
ity. In addition, synthesis preserves all behavior which does not invalidate
the specification, thereby inducing maximal permissiveness. The synthesis the-
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Figure 1.3: Control synthesis in a non-deterministic setting. A luggage conveyor belt,
depicted in Figure 1.3c is modeled by the state-diagram in Figure 1.3a. Controlled
operation such that a release event is not directly followed by a move event is shown
in Figure 1.3b.

ory put forward in this thesis further allows the expression of marker state
reachability and deadlock-freeness, which are often employed in supervi-
sory control [76]. In a broad sense, this thesis describes research results into
maximally permissive controlled system synthesis for non-deterministic be-
havioral models, thereby integrating existing notions from supervisory con-
trol theory. The controlled systems perspective is very similar to earlier ap-
proaches in supervisory control synthesis in the sense that the plant and su-
pervisor in their combined operation are considered. However, due to non-
determinism the approach in this thesis cannot be applied to obtain a strictly
separated supervisory controller.

Controlled system synthesis on a non-deterministic model is further illus-
trated by the example in Figure 1.3. This example provides a first intuition
into the type of models and specifications considered in this thesis, and sheds
some light on the inherent problems that have been tackled in this research.
The main purpose of this example is to transfer intuitions rather than be-
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ing an actual example of a realistic system model. It consists of a system of
conveyor belts for luggage handling at an airport, and is loosely based on
research done at Vanderlande Industries [48, 50]. The state-diagram shown
in Figure 1.3a models the uncontrolled operation of this system. If the sys-
tem is in normal operation (state NO), it repeatedly executes a move event.
However, as depicted in Figure 1.3c, a small suitcase might get stuck, halting
the system (state ST). If the suitcase causing the obstruction is pulled loose
by one of the travelers (event release), the conveyor belt resumes normal op-
eration. Also, one of the operators may release the suitcase (state OP), stop
the conveyor belt to make sure that everything is alright, and then resume its
normal operation. Note that the occurrence of a release event may be caused
by two different situations. First, the traveler who owns the suitcase may free
it from its undesirable position, and subsequently leave the airport. Second,
a different traveler, who does not own the suitcase, may pull it loose and —
in good faith — put it back on the conveyor belt. Since in the second situ-
ation the suitcase still poses a threat to the desired operation of the system,
the behavior of this system should be controlled in such a way that a release
event cannot be followed immediately by a move event, thereby forcing the
system to go through the SP state. This required behavior is formalized by
the modal expression �[release][move]false ; intuitively described as: after
every release, a move event should not be allowed. In Figure 1.3 dashed lines
are used to indicate uncontrollable events, which may not be disallowed. Fig-
ure 1.3b models the controlled operation of this system, and thereby satisfies
�[release][move]false , while only behavior that invalidates this property
has been disallowed. The adapted behavioral model incorporates a new state
NO′, modeling the new behavior of the NO state, after a release event has
happened. It thereby models the remaining behavior of the NO state, after
a behavioral restriction has been applied. One of the main theoretical con-
tributions of this thesis is a mathematically sound way to derive such new
states.

1.2 Non-Determinism

In this thesis control synthesis is considered in conjunction with non-determi-
nism. The demand for control synthesis in a non-deterministic context is
clearly present in the research field, as witnessed by several research de-
velopments (see, for instance, [28] and [57]). Non-determinism allows for a
higher level of abstraction in modeling plant components [22]. For instance,
non-determinism may be used to model lack of observability or to intro-
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duce other model-specific abstractions. Furthermore, as discussed in Section
1.5, there is at present no consistent theory regarding control synthesis for
non-deterministic systems to which everyone agrees as being a definitive ap-
proach. Therefore, finding a (partial) solution to this problem is interesting
in itself and will definitely contribute to the research field. The difficulties
surrounding supervisory control and non-determinism are illustrated by a
simple example. Suppose one creates a (very abstract) model of a printing
system which is able to print in both color and black and white. This may
be represented by two equal events print leaving a single state towards the
respective sub-systems for printing in the requested color setting. If an un-
controllable sensor signal indicates that the printer is out of blue ink, a super-
visor may disable the print event towards color printing. It is clear that strict
event-based synchronization is not able to express that only one of these two
print events should be disabled. As illustrated in Figure 1.2a, the supervi-
sor cannot make a distinction between disabling one of the two print events,
within this interpretation of control. Therefore, the research in this thesis is
restricted to the controlled system perspective, where plant and supervisor
are considered as a single integrated entity, and a new system is synthesized
which represents the plant as if it were under control, as illustrated in Figure
1.2b. This forms a natural generalization in the sense that for deterministic
models, the controlled system coincides with the supervisor [21]. However,
for non-deterministic models it is in general not possible to derive a strictly
separated supervisor.

Despite the interest in control synthesis among other researchers, one might
wonder what the essential value is of such synthesis for non-deterministic
models, for various reasons. Every non-deterministic model may be con-
verted into a deterministic one, and may be subsequently subjected to de-
terministic synthesis methodologies. However, the conversion into a deter-
ministic model does not preserve structural integrity and may therefore lead
to essential properties of the model being lost [38]. For instance, the fact that
a certain state has two outgoing transitions labeled by the same event might
indicate that an abstraction was created by the modeler for two different un-
derlying situations. If these two equal events are unified when the model
is converted from non-deterministic to deterministic, part of the semantics
of the model would have been lost. Preserving the semantics of a model in
this way is particularly important if any post-synthesis step is to be applied.
Control synthesis for non-deterministic models may also be rejected due to
the idea that such models rely on some form of inherent independence in
making a choice between identical events, whereas control would impose de-
terminism in this regard. However, the main objective of control synthesis
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is not to remove existing independence of the system but to achieve proper
control flow. Nevertheless, the research results described in this thesis should
mainly be interpreted as a proposed technique for control synthesis for non-
deterministic systems, and not as an attempt to build a very strong case for
the general usage of non-determinism in control synthesis.

1.3 Maximal Permissiveness

In the synthesis approach considered in this thesis it is required that all syn-
thesis solutions are maximally permissive. That is, the resulting controlled sys-
tem contains all original behavior which does not invalidate the specification.
Maximal permissiveness, in this thesis often shortened to maximality, is key
in achieving proper controlled behavior. A behavioral adaptation which re-
moves too much behavior is simply not an adequate solution, since it may
disable plant components which are unrelated to, or not subject to control.
If the navigation system of a car is to be controlled in such a way that it
avoids traffic jams, then disabling all of the cars functionality except for driv-
ing in and out of the garage would be, in a very strict sense, a solution which
achieves this control objective. However, it is clear that as much behavior of
the car as possible should be preserved, in order to achieve usable function-
ality under control. As a generalization, this comes down to generating the
controlled system which retains the most possible original plant behavior. In
the case that additional synthesis steps or further analysis is to be applied
after control synthesis takes place, it is also of the utmost importance that as
much original behavior as possible is preserved. Maximal permissiveness is
a standard notion in supervisory control synthesis, and can be traced back to
the first foundations [76].

Maximality is often expressed in terms of language inclusion. That is,
every sequence of events in the behavior of the plant also occurs in the con-
trolled system, provided that it is not to be disallowed. Since non-deterministic
plant models are considered here, a different approach is required. Partial
bisimilarity [77] defines the relationship between plant and controlled system
via a coinductive preorder. It is required that the synthesis result is the great-
est satisfying witness with regard to this preorder. That is, every satisfying
partial bisimulant of the plant is also a partial bisimulant of the controlled
system. This intuitively captures the notion that the synthesized controlled
system is actually the best candidate in terms of both preserving behavior and
effectuating control. More technical justification as to why partial bisimula-
tion is employed for both these purposes follows Definition 2.6. Maximal
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permissiveness influences many synthesis constructions, mostly due to side-
effects induced by non-determinism and solution uniqueness. This leads to
restrictions in the expressiveness of specifications, synthesis adaptations and
duplication of behavior, but it also leads to proof difficulties, as will be shown
in the next two chapters.

1.4 Modal Logic

In this thesis modal logic is applied to express which control objectives the
controlled system should satisfy. In particular, the main synthesis methodol-
ogy proposed in this thesis includes integral expressiveness for marker state
reachability. This results in the ability to express non-blockingness [76] via
the specification logic. Modal logic can be considered a standard formalism
in the specification of properties which are tested in verification tasks, such as
model checking. Earlier attempts have been made to define control synthesis
in various variants for modal logics. Many of these works will be considered
in Section 1.5 on related work. If modal logic is applied in a control synthesis
setting, then most often the µ-calculus [52], or a subset thereof, is used. The
logics applied in this thesis are strict subsets of a µ-calculus variant which
conforms to the following grammar defined in terms of a set of events E and
a set of basic properties P :

F ::= true | false | P | F ∧ F | F ∨ F | [E]F | <E>F | µX.F | νX.F

In this definition of F , the test for a basic state-based property P forms
an extension of the standard definition of µ-calculus [52]. The logic F further
includes the universal [e] and existential <e> look ahead from Hennessy-
Milner logic [34] and a minimal µ and maximal ν fixpoint operator. Since the
µ-calculus is too expressive to allow unique maximally permissive controlled
system synthesis on non-deterministic models, strict subsets of F need to be
taken into consideration. The most significant control synthesis contribution
in this thesis relies on the modal logic defined below, in terms of a subset
C ⊆ E of controllable events:

F ::= B | F ∧ F | B ∨ F | [E]F | <C>F | �F | ♦B | <E> | dlf

The logicF now includes a generalized set of basic formulasB, a restricted
disjunction operator, an existential look ahead which is limited to controllable
events and the invariant � and reachability ♦ modal operators from Gödel-
Löb logic [78]. The justification for many of these restrictions can be found
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in Chapter 2. In Chapter 4 the problem of generating all maximally permis-
sive synthesis solutions for Hennessy-Milner logic is considered, instead of
finding just a single unique solution. This variant of Hennessy-Milner logic
conforms to the following grammar:

F ::= true | false | P | F ∧ F | F ∨ F | [E]F | <E>F

In addition to these two logics, other logics have been studied and applied
for control synthesis in the research which underlies this thesis. The induc-
tive way in which these modal logics are defined allows for the application
of induction principles in the correctness proofs. Furthermore, modal logic
is directly related to coinductive relationships between behavioral models.
It is well-known that the µ-calculus characterizes bisimulation [31]. From a
practical point of view, modal logic allows for a more intuitive and model-
independent way to express specifications, compared to the description of
required behavior as a subset of existing behavior.

1.5 Related Work

Before more detailed research is considered, two important works are re-
ferred to as important general introductions into discrete event control [21,
54]. The foundations of supervisory control theory can be found in the orig-
inal paper by Ramadge and Wonham [76]. These results were further ex-
tended in succeeding work [88]. Important basics were established in [76],
many of which are inherited in this thesis. Notably: controllability, maximal
permissiveness and marker-state reachability. The setup in [76] defines the
necessary preconditions such that a supervisory controller can be automati-
cally derived, given a deterministic model of the plant. Section 2.1 details the
most important constructs of Ramadge-Wonham supervisory controller syn-
thesis at a formal level, but also highlights the key differences between the
setup in this thesis and the approach in [76]. The Ramadge-Wonham frame-
work has been extensively studied from an applicability perspective, and var-
ious developments regarding efficient implementation have taken place. For
instance, a BDD-based implementation is studied in [36], and an approach
based on dynamic programming is covered in [86]. The CIF toolset [17] also
provides an extensive coverage of supervisor synthesis tools and related con-
version mechanisms. As a general conclusion based on the studies into the
implementation of Ramadge-Wonham supervisory control synthesis, one can
say that partial observability makes this problem harder, if not intractable



12 Chapter 1. Introduction

from a computational point of view [59, 71]. Detailed considerations regard-
ing the implementation of Ramadge-Wonham control synthesis can be found
in [25].

Despite the fact that Ramadge-Wonham supervisory control synthesis is
already a well-established foundation for discrete event control, many re-
searchers proposed improvements, to which this thesis should also be con-
sidered a contribution. Besides many peripheral research directions, these
improvements can be classified as follows: 1) using different formalisms at
the very heart of supervisory control, compared to the standard automata-
based setup in [76], 2) allowing more expressiveness in plant models, no-
tably extensions towards non-deterministic systems and timed automata, and
3) more expressive descriptions of desired behavior, such as various tempo-
ral or modal logics. Examples of the first modification include definitions of
supervisory control synthesis in terms of Petri-nets [37, 79], Büchi-automata
[75, 85], process-algebraic perspectives [35, 63], and specialized predicate-
based models of behavior [68]. However, most instances of research into
modified frameworks for discrete event control apply a formalism which is
close to, or is in fact, automata theoretic [54]. In fact, much work has been
done to align the techniques in [76] to related prevalent techniques in com-
puter science [53]; an important example being the use of parallel composi-
tion operators to express the synchronization between plant and supervisor
[55]. The second and third way of improvement, respectively summarized
as allowance of non-determinism and specifications of desired behavior in
modal logic, are considered extensively below, since these works are very rel-
evant for the material in this thesis.

A significant amount of research is devoted to the adaptation of standard
(deterministic) supervisory control synthesis [76] to a non-deterministic set-
ting, while the control objective of a subset of marked traces in the plant stays
the same. The work in [27] forms an important contribution in the step to-
wards handling non-determinism in the sense that many techniques from
[76] are projected onto a non-deterministic setting. This also applies to max-
imally permissive solutions, as shown in [28]. Several solutions have been
proposed to handle non-determinism in such a control synthesis environ-
ment. For instance, the approach in [57] and [80] uses prioritized synchro-
nizations in combination with a trajectory model. The work in [57] and [80] is
a further development of the work on failure traces [35, 69]. Another attempt
is by handling non-determinism via forced events [32, 29], or by only allow-
ing non-determinism in the supervisor [56]. The latter mentioned works can
be considered to be relatively distanced from the approach in this thesis.

A vast amount of work is devoted to the relationship between reactive
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synthesis and supervisory control. Reactive synthesis originated from the de-
sire to automatically adapt a system model such that it conforms to a logical
specification [73, 1] without particular reference to discrete event control. Re-
active synthesis was then modified to include supervisory control synthesis,
which would allow the creation of a supervisor based on a logical description
of required behavior; an objective also sought in this thesis. Section 1.4 pro-
vides more details regarding this subject. The relationship between control
synthesis, reactive systems and various modal logics has been investigated
in [61]. Recent work re-evaluates the methodology to close the gap between
supervisory control and reactive synthesis in a deterministic context [26]. An
example of a more specific control synthesis solution using reactive synthesis
can be found in [5], where the supervisory control problem is converted into a
µ-calculus satisfiability problem using an automata-quotient strategy. While
[5] is restricted to deterministic plant models, this work is extended in [6] to
non-deterministic plants, but the treatment is non-maximal.

A very similar approach is applied in [16, 15] where, again, a quotient-
ing scheme guarantees a non-maximal solution of a control problem for a
µ-calculus specification. The key contribution in [16, 15] is in terms of a se-
mantic tableau method to resolve the relevant µ-calculus satisfiability prob-
lem. This work is closely related to other research into reactive synthesis [58].
However, in this instance branching time temporal logic (BTTL) is applied.
Again, non-maximal solutions are found by solving a realizability problem.
That is, a supervisor can be derived from an automaton which is generated
from the given BTTL formula. A number of approaches for reactive synthesis
are studied in [87], and subsequently generalized for Markov decision pro-
cesses, non-deterministic plant models and specifications in linear temporal
logic. The optimization applied in [87] relates to satisfiability testing for Rabin
automata. Solutions are still not maximally permissive, but can be applied in
a robotics setting [87].

The research into reactive synthesis for control-theoretic purposes is of-
ten approached from a game-theoretic point of view. This forms the core
of a projection of Ramadge-Wonham supervisory control [76] onto real-time
systems [62] and timed automata [72, 7]. A deviation from game-theoretic ap-
proaches for control synthesis and logical specifications of desired behavior
can be found in [49]. In this work, a small model theorem is derived for CTL∗,
which allows a proof of the existence of a supervisor by means of an empti-
ness test of a Rabin automaton. However, the treatment in [49] is limited
to deterministic plant models. A semantic tableau based methodology can
be found in [23, 24] in terms of propositional linear temporal logic. A more
general treatment of the analysis and synthesis for supervisors in a temporal
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logic framework can be found in [60].
Fluent linear temporal logic is another logical formalism applied for su-

pervisory control synthesis [45, 46]; a distinction is made between system
goals and environment assumptions, and between controlled and monitored
actions. Controller synthesis in [45, 46] relies upon a formalism referred to as
the world/machine model [47].

Several researchers worked on generalized interpretations in terms of modal
or temporal logics for supervisory control synthesis. An adaptation of µ-
calculus, known as quantified µ-calculus, quantifies atomic propositions and
is therefore able to express maximal permissiveness inside the logic [70]. Ex-
pressions for control objectives in temporal logic may be automatically de-
rived from other means of describing desired behaviors [83, 84, 85].

Several approaches do not result in a supervisory controller, but instead
generate a policy which determines how control should be enforced. An ex-
ample can be found in [74], which uses a constraint-based approach for non-
deterministic and partially observed domains, with another example in [19],
which does not only apply to the synthesis of supervisors, but can also be
applied to automatically derive planning strategies. Such planning-related
methodologies have been connected to discrete event control via AI-based
techniques [65].

Partial bisimilarity as a means to express controllability, as used exten-
sively in this thesis, was introduced in [77]. It has been applied in related form
in earlier research. The work in [81] uses an abstraction of non-deterministic
automata to effectively attack the state explosion problem in supervisor syn-
thesis. Only a single rule from the preorder in [81] differs from partial bisim-
ilarity in Definition 2.6, and this difference is discussed in Chapter 2. An
approximate simulation approach is used in [82] for real-time systems, com-
bined with MTL logic. The coinductive nature of partial bisimilarity also
relates to earlier research into control of discrete event systems and coalge-
bra [51]. Bisimulation equivalence in relation to control synthesis in a non-
deterministic context appears in [89]. The work in [18] presents a unification
of various control synthesis approaches. This generalization is also defined
in terms of an inclusion-type preorder.

A similar approach from an algorithmic point of view, compared to the
type of control synthesis in this thesis, appears in [14]. Indeed, a similar two-
phase method is applied: 1) a forward satisfiability check, 2) a backtracking
control enforcement procedure. The work in [14] is able to express safety and
liveness properties, but is not maximally permissive. The restriction upon
disjunctive formulas as applied in this thesis was observed in earlier research
[4, 3].
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1.6 Computer Verified Proofs

The majority of definitions and proofs in this thesis have been formalized and
verified using the Coq proof assistant [13]. Such a proof assistant (or theorem
prover) provides a number of features which are helpful in the development
and verification of new theories. First and foremost, a computer verified
proof ascertains that a given proof is absolutely correct, provided that the
chosen formalization of the theory is right and under the assumption that the
theory does not contain any intrinsic inconsistencies. Furthermore, it cannot
be left unmentioned that it is — of course — also required that the proof assis-
tant in itself is correct. Such an approach may be an important aid in writing
an article which has a lot of mathematical content, not in the least because the
author (and reviewers) are freed from having to worry about the correctness
of the proofs. Such a very precise analysis of a theory requires more in-depth
consideration of the theories at hand, and thereby may aid as a qualitative im-
provement. Usually, many errors are discovered when a formalized proof is
being constructed, and this certainly applies to the work done in this thesis.
Another important feature relates to the bookkeeping functionality a proof
assistant provides. In particular, when an interactive proof assistant such as
Coq is used, many proof elements are automatically stored or derived [13].
This applies to, for instance, the current state of the proof, the induction hy-
potheses and partial proof automation. If used wisely, this results in a focal
shift towards exactly the necessary proof obligations, while the proof assis-
tant takes care of other bookkeeping tasks. All this wizardry comes at a price:
significantly more time may have to be spent figuring out all details of the
theory and how to encode them in the proof assistant. Also, despite the fact
that a proof assistant may help in shifting the focus to exactly the right proof
obligations, these may still be too detailed. This may result in wrong results
since resolving details may obfuscate the bigger picture and achieving overall
correctness in encoding the right theories. Overall, the net result of studying
control theory by means of the proof assistant is positive, as far as the material
in this thesis is concerned. In particular, due to the fact that using the proof
assistant revealed so many tiny errors during the research. In particular, de-
tails regarding unfolding, solution uniqueness, maximality as well as issues
concerning general provability of the correctness of the synthesis method. An
attempt has been made to make this material accessible to an audience which
may lack the necessary background in formalized proofs, by providing de-
tails of the applied Coq-constructs and by considering a somewhat abstracted
version of the proof. This results in a formalized proof that is quite close to
the mathematical expressions from a syntactic as well as a semantic point of



16 Chapter 1. Introduction

view. Further details are provided in the latter parts of Chapter 3 and Chap-
ter 4. Coq-proofs for the main synthesis methodology are available at the
following location:

https://github.com/ahulst/deds/

1.7 Overview

This section provides an overview of the remainder of this thesis and the sci-
entific publications upon which these results are based. Chapter 2 and Chap-
ter 3 define a specific synthesis technique which addresses the main research
question in this work:

How to define controlled system synthesis for a reasonably expressive modal
logic and non-deterministic plant models such that synthesis results are
unique and maximally permissive?

A first attempt to define this specific type of controlled system synthesis using
a modal logic beyond the expressiveness of Hennessy-Milner logic appeared
in:

[42] A. van Hulst, M. Reniers, and W. Fokkink. Maximal Synthesis
for Hennessy-Milner logic with the Box-Modality. In Workshop
on Discrete Event Systems (WODES), pages 278–285, 2014.

The methodology for controlled system synthesis was then further refined
and the modal logic was made more expressive. This resulted in two publi-
cations:

[43] A. van Hulst, M. Reniers, and W. Fokkink. Maximally Permis-
sive Controlled System Synthesis for Modal Logic. In Internatio-
nal Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM), pages 230–241, 2015.

[44] A. van Hulst, M. Reniers, and W. Fokkink. Maximally Permis-
sive Controlled System Synthesis for Non-Determinism and
Modal Logic. Discrete Event Dynamic Systems, Submitted.

The work in [42] is succeeded by the research in [43] and [44]. Therefore, only
the contents of the latter two works is considered in this thesis. Chapter 2 is
mainly devoted to examples and formal definitions in order to build up the
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main synthesis method. The main focus for Chapter 3 is on verification of
the earlier defined control synthesis theory. Detailed proofs for the validity
of the proposed theories are included in this chapter, combined with proofs
created using the Coq proof assistant. Chapter 3 is concluded by two small
case studies, in order to illustrate the applicability of the synthesis method.

Multiple synthesis solutions for unrestricted Hennessy-Milner logic are
considered in Chapter 4, which is based upon a different synthesis construc-
tion compared to the main synthesis method. It addresses the following re-
search question:

How to construct all maximally permissive control synthesis solutions
for non-deterministic plants and control specifications in Hennessy-Milner
logic?

The two articles listed below propose a solution to this problem. The work
in [41] is both a more in-depth analysis of the solution in [40] as well as an
extension thereof. Therefore, Chapter 4 mainly considers the work in [41].

[40] A. van Hulst, M. Reniers, and W. Fokkink. Maximal Synthesis
for Hennessy-Milner Logic, Application of Concurrency to
System Design (ACSD), pages 1–10, 2013.

[41] A. van Hulst, M. Reniers, and W. Fokkink. Maximal Synthesis
for Hennessy-Milner Logic, ACM Transactions on Embedded
Computing Systems (TECS), pages 10:1–10:21, 2014.

In Chapter 5, a process theory is developed to express supervisory control
theory [76] for non-deterministic plant models. It is based upon two publica-
tions and provides a solution to the following research question:

How to define supervisory control synthesis, including a treatment of non-
determinism, in a process theoretic framework?

The work in [9] is specified in more detail in [10]. A case study from
Chapter 3 is again analyzed in the process theoretic framework in Chapter 5,
which allows a comparison between the two techniques.

[9] J. Baeten, B. van Beek, A. van Hulst, and J. Markovski. A
Process Algebra for Supervisory Coordination, International
Workshop on Process Algebra and Coordination (PACO),
pages 36–55, 2011.
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[10] J. Baeten, B. van Beek, A. van Hulst, and J. Markovski. A
Process Algebra for Supervisory Control, SE Report 12-01,
Eindhoven University of Technology, 2012.



Chapter 2

Synthesis and Discrete Event
Control

The overall purpose of this chapter is to formally define the main control
synthesis methodology of this thesis. These formalisms are henceforth scruti-
nized and shown to lead to a valid synthesis framework in Chapter 3. The for-
mal basics of Ramadge-Wonham supervisory control theory are introduced
here, followed by a short overview of the key differences between [76] and
the setup in this chapter. One of the key statements in this chapter is shown
in Definition 2.10, which formally states the precise control synthesis prob-
lem solved in this thesis, in terms of the formal definitions provided in this
chapter. A number of examples are given to aid in both the abstract and con-
crete understanding of the way reductions of modal formulas are assigned to
states; a key feature of the synthesis method in this thesis. Control is enforced
by means of transition removal based on a partial satisfiability test. This spe-
cific technique is illustrated by examples and afterwards specified in formal
detail. Towards the end of this chapter, the formal definitions converge to a
precise formulation of the entire synthesis construction. As a shortly phrased
reading guide to this chapter, it should be mainly interpreted as the neces-
sary precursor to the formal analysis and correctness proofs in Chapter 3.
The connection to Ramadge-Wonham supervisory control is also made in the
next chapter, as well as an applicability analysis in the form of case studies.

The succeeding sections in this chapter are organized as follows. Section
2.1 details the basics of Ramadge-Wonham supervisory control theory at a
formal level. Basic definitions in Section 2.2 treat elementary formal building

19
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blocks which allow a precise statement of the synthesis problem in Definition
2.10. The focus then shifts to an initial expansion step in Section 2.3, where
the transition relation from the plant model is projected onto a new transition
relation over the state-formula product space. This is done by means of a for-
mal reduction relation on modal expressions, which is the subject of Section
2.4. Removing transitions in order to obtain a model which satisfies the con-
trol objective depends upon a partial satisfiability test for modal expressions,
which is treated in more detail in Section 2.5, and subsequently formalized in
Section 2.6. The entire formal definition of the synthesis construction is then
considered in Section 2.7.

2.1 Supervisory Control Theory

Supervisory control theory [76] revolves around the inhibition of controllable
behavior, while at the same time leaving accessible uncontrollable behavior
unaffected. In this section some of the key features of traditional supervi-
sory control theory are formalized using parallel composition, instead of the
functional characterization of synchronization as applied in [76], since this
treatment is more intuitive.

Ramadge-Wonham supervisory control theory [76] defines a broadly em-
braced methodology for supervisory control synthesis on deterministic plant
models. It identifies a number of key characteristics in the relationship be-
tween plant and controlled system, such as controllability, marker state reach-
ability, deadlock-freeness and maximal permissiveness, which are inherited
by the synthesis theory in this paper. The limitation to deterministic plant
models in [76] allows the derivation of a strictly separated unique and maxi-
mally permissive supervisor, but does not embrace the increased abstraction
and flexibility offered by a non-deterministic plant model.

A behavioral description of the system under control — the plant — is
assumed to be given. A separate entity — the supervisor — operates in con-
junction with the plant and regulates its behavior, thereby complying to the
illustration in Figure 1.2a. The automated generation of such a supervisor
is known as supervisory control(ler) synthesis. This traditional setup for su-
pervisory control differs from the approach in this thesis in the sense that it
assumes a deterministic plant model, which allows the derivation of a strictly
separated unique supervisor1.

1In [76] the term non-deterministic is used to refer to multiple events leaving a single state.
However in [76] it is specifically stated that all events leaving a single state are assumed to be
distinct.
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A straightforward formalization of these notions starts with the assump-
tion of an event-set E where E is partitioned as E = U ∪ C. The U-set of
uncontrollable events may contain, for instance, sensor readings which occur
in the plant model, while the C-set of controllable events may consist of ac-
tuator signals. Plant and supervisor are then modeled by means of a labeled
transition system, as given in Definition 2.1.

Definition 2.1. For state-space X , transition relation −→⊆ X ×E ×X , initial
state x ∈ X and setXm ⊆ X of marked states, a labeled transition system (LTS)
is defined as a four-tuple (X,−→, x,Xm). The set of all labeled transition
systems is denoted by G.

As usual, the notation x e−→ x′ is employed to indicate that (x, e, x′) ∈−→.
The transition relation−→ is then naturally extended to its reflexive-transitive
closure −→∗⊆ X × X , which is combined with the notation x

s−→ ∗ x′, for
s ∈ E∗. That is, it holds that (x, x) ∈−→∗ and if e ∈ E , y ∈ X and s ∈ E∗ such
that x e−→ y and y

s−→∗ x′ then x
es−→∗ x′. The set Xm ⊆ X of marked states

in Definition 2.1 is used to model completed or finished tasks in the plant2. A
number of standard definitions from language theory are reiterated here:

Definition 2.2. For g = (X,−→, x,Xm) ∈ G the language L(g) ⊆ E∗ and the
marked language Lm(g) ⊆ E∗ of g are defined in the following way:

L(g) = {s ∈ E∗ | ∃x′ ∈ X : x
s−→∗ x′}

Lm(g) = {s ∈ E∗ | ∃x′ ∈ Xm : x
s−→∗ x′}

In addition, the language closure L ⊆ E∗ of a language L ⊆ E∗ is defined as
follows:

L = {s ∈ E∗ | ∃ t ∈ E∗ : st ∈ L}

Subsequently, the parallel composition operator ‖ is defined in order to
express the interaction between plant and supervisor in Definition 2.3. The
adaptation of [76] in terms of this type of parallel composition first appeared
in [55].

Definition 2.3. For g = (X,−→, x,Xm), g′ = (X ′,−→′, x′, X ′m) ∈ G the paral-
lel composition g ‖ g′ is defined in the following way:

g ‖ g′ = (X ×X ′,−→∩, (x, x′), Xm ×X ′m)

2Note the difference between marked states in supervisory control theory and final states in
regular automata theory. While the first notion is used to indicate a completed task, the latter
mainly serves the purpose of language acceptance.
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where (y, z)
e−→∩ (y′, z′) if and only if y e−→ y′ and z

e−→ z′. Clearly it
holds that L(g ‖ g′) ⊆ L(g) and L(g ‖ g′) ⊆ L(g′) (and similar for marked
languages).

Marked states have the semantic purpose of indicating a completed task
which is also present in the controlled behavior, as expressed using the par-
allel composition operator. Therefore, presence of a marked state in one of
the components is inherited in the parallel construction, as can be seen in
Definition 2.3.

In the sequel, it is assumed that every g ∈ G is limited such that each state
is accessible by−→∗ from the initial state. Furthermore, g ∈ G is defined to be
co-accessible if each string in L(g) can be completed towards a marked state,
that is: L(g) = Lm(g).

The formalization of control starts with the notion of controllability in Def-
inition 2.4.

Definition 2.4. A language K ⊆ E∗ is said to be controllable with regard to
L ⊆ E∗ if for each s ∈ K and u ∈ U such that su ∈ L it holds that su ∈ K.

Intuitively, controllability indicates potential adaptability such that acces-
sible uncontrollable behavior is preserved. In terms of the previous defini-
tions, one of the main results in supervisory control theory may now be com-
pactly stated:

Theorem 2.1. For plant model p ∈ G and language K ⊆ Lm(p) such that
K 6= ∅ and K is controllable with regard to L(p) there exists a supervisor
s ∈ G such that L(p ‖ s) ∩ Lm(p) = Lm(p) ∩ K and the following two
properties hold:

1. L(p ‖ s) is controllable with regard to L(p); and

2. p ‖ s is non-blocking, that is: L(p ‖ s) ∩ Lm(p) = L(p ‖ s)

For an essentially equivalent parallel construction between plant and su-
pervisor, a proof for Theorem 2.1 can be found in [76]. In general, a different
framework compared to [76] is applied in this thesis, which will be detailed in
the remaining sections of this chapter. This adaptation includes a coinductive
treatment of controllability, an integrated model of plant and supervisor in
their conjunctive operation (the controlled system) which does not result in a
strictly separated controller, a different attitude towards desired behavior by
means of specifications in modal logic, and a fluent handling of marker states
by means of reachability predicates in this logic.
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2.2 Basic Definitions

Part of the standard setup of supervisory control theory, as introduced in Sec-
tion 2.1, is inherited in the sense that the plant description is also assumed to
be immutable. A global-event set is assumed which is partitioned into uncon-
trollable and controllable events. In this sense, there is no difference between
the framework in this thesis and the setup in [76]. The standard notion that
the controllability-aspect of an event does not change, is adhered to. That is,
events cannot change between being controllable and uncontrollable during
the operation of the plant.

A set E of events and a set P of state-assignable basic properties is as-
sumed. The event-set E is partitioned into controllable events C and uncon-
trollable events U , such that C ∪ U = E and C ∩ U = ∅. State-based properties
are used to capture state-based information, and are assigned to states using
a labeling function. Events are used to capture system dynamics, and repre-
sent actions occurring when the system switches between states. Controllable
events may be used to model actuator actions in the plant, while an uncon-
trollable event may represent, for instance, a sensor reading or a user input.

Basic properties and events are used to model plant behavior in the form
of a Kripke-structure [20] with labeled transitions, to be abbreviated as Kripke-
LTS, as formalized in Definition 2.5. Such a model forms a useful abstraction
in the sense that it allows a definition of synthesis of overseeable complexity
which may be formally verified. On the other hand, it forms a useful and con-
crete interpretation in the sense that reasonably detailed plant models may be
constructed. Definition 2.5 allows the expression of state-based information
via state labels, and system dynamics via a transition relation. Kripke-models
were used earlier in the context of supervisory control theory in [30]. It is es-
sential for the well-definedness of the synthesis construction in this thesis that
the transition relation in this Kripke-LTS is finite. This does not exclude loops
or other kinds of infinite behavior; only finiteness of the transition relation is
assumed for as far as its definition as a set of triples is concerned.

Definition 2.5. For state-space X , labeling function L : X 7→ 2P , finite transi-
tion relation −→⊆ X ×E ×X and initial state x ∈ X , a Kripke-LTS is defined
as a four-tuple (X,L,−→, x). The set of all Kripke-LTSes is denoted by K.

As usual, the notation x e−→ x′ is used to denote that (x, e, x′) ∈−→. The
reflexive-transitive closure s−→∗ , for s ∈ E∗, over transition relation −→, is
defined in the following way: For all x ∈ X it holds that (x, x) ∈ 1−→∗ , where
1 denotes the empty string; and if there exist e ∈ E , s ∈ E∗ and y, x′ ∈ X such
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that x e−→ y and y s−→∗ x′, then x es−→∗ x′. In most cases an abstraction of this
reflexive-transitive closure is used, without reference to a particular s ∈ E∗.
That is, x −→∗ x′ if and only if there exists an s ∈ E∗ such that x s−→∗ x′.

As discussed in Section 1.2 and as formally stated in Definition 2.5, a non-
deterministic plant model is assumed. In general, this does not lead to a
strictly separated supervisor which operates in conjunction with the plant
under synchronization. Section 1.2 details a number of reasons why it is
inherently problematic to strive towards strictly separated control in a non-
deterministic context. The research effort should therefore focus on the syn-
thesis of controlled systems. A K-model of plant behavior is taken and subse-
quently a new K-model is derived which behaves as the plant under control.
Section 1.2 details why such a restriction is not too far-fetched.

A formal connection needs to be set up between the plant and the con-
trolled system, in order to define that the latter is a proper behavioral restric-
tion of the former. For this purpose, partial bisimilarity is employed. Partial
bisimilarity [77] is an adaptation of bisimilarity such that controllable events
are simulated, while uncontrollable events are bisimulated. For plant model
k ∈ K and synthesis result s ∈ K it is required that s is related to k via partial
bisimilarity. This signifies the fact that synthesis did not disallow any ac-
cessible uncontrollable event, which implies controllability in the context of
supervisory control. Research in [64] details the nature of this partial bisimi-
larity relation. If all events are controllable, then partial bisimilarity coincides
with strong similarity. On the other hand, if all events are uncontrollable,
partial bisimilarity coincides with strong bisimilarity [31]. It is formalized in
Definition 2.6.

Definition 2.6. A pair of Kripke-LTSes k′ = (X ′, L′,−→ ′, x′) ∈ K and k =
(X,L,−→, x) ∈ K are related via partial bisimulation (notation k′ � k) if
there exists a relation R ⊆ X ′ ×X such that (x′, x) ∈ R and for all (y′, y) ∈ R
the following holds:

1. L′(y′) = L(y); and

2. if y′ e−→ ′z′, for e ∈ E and z′ ∈ X ′, then there exists a z ∈ X such that
y

e−→ z and (z′, z) ∈ R; and

3. if y e−→ z, for e ∈ U and z ∈ X , then there exists a z′ ∈ X ′ such that
y′

e−→′z′ and (z′, z) ∈ R.

If the relation R ⊆ X ′ × X is of particular importance then the notation
k′ �R k is used to indicate that k′ and k are related via partial bisimulation as
witnessed by R.
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Both partial bisimulation as formalized in Definition 2.6 [77] as well as a
variant which omits the requirement (z′, z) ∈ R in the 3rd clause in Definition
2.6 [81] have been described in the literature. In this thesis, an explicit choice
is made to apply partial bisimulation as introduced in [77], due to the fact
that it establishes a stronger control relation beyond uncontrollable events.

Partial bisimulation is employed in this thesis to both express controllabil-
ity and maximal permissiveness in a coinductive way which resolves several
problems related to non-determinism, as illustrated by a number of exam-
ples in this chapter. Controllability as defined in [76] follows from Defini-
tion 2.6, although partial bisimulation is indeed a stronger property. Due
to the fact that maximal permissiveness expresses how a distinction should
be made between multiple solutions each having the controllability property,
and because of the fact that controllability is expressed here by means of par-
tial bisimilarity, it follows that maximal permissiveness should be expressed
via partial bisimilarity as well.

For the formalization of required behavior in terms of control objectives,
this thesis applies modal logic. Instead of a general existence theorem re-
garding a subset of the language of the plant, as detailed in Section 2.1, a
more precise and more expressive formal specification language is applied
here. Modal logic is an obvious choice for this purpose, since it integrates
well with any automata-like behavioral description and because it is a well-
known logical formalism in verification tasks such as model checking, as de-
tailed in Section 1.4. The work in this research is certainly not the first to
connect supervisory control theory and modal logic, but it is believed this is
the first attempt to do so for a non-deterministic, maximally permissive inter-
pretation of discrete event control, as discussed in more detail in Section 1.5.
The precise choice of the applied logical formalism F , which is specified in
Definition 2.8, depends upon the fact that non-determinism is allowed, and
the other control synthesis objectives such as maximal permissiveness, partial
bisimulation, and solution uniqueness. The precise justifications for taking
such a restricted logic, compared to for instance the µ-calculus, will become
more clear when the examples in the succeeding sections are studied.

Requirements are specified using the modal logic F given in Definition
2.8, which is built upon the set of state-based formulas B, in Definition 2.7.

Definition 2.7. The set of state-based formulas B is defined by the grammar:

B ::= true | false | P | ¬B | B ∧ B | B ∨ B

As indicated in Definition 2.7, state-based formulas are constructed from
a straightforward Boolean algebra which includes the basic expressions true
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and false , as well as a state-based property test for p ∈ P . Formulas in B are
then combined using the standard Boolean operators ¬, ∧ and ∨.

Definition 2.8. The specification logic F is defined by the grammar:

F ::= B | F ∧ F | B ∨ F | [E]F | <C>F | �F | ♦B | <E> | dlf

The elements of the specification logic F are briefly considered here. Ba-
sic expressions in B function as the building blocks in the modal logic F .
Conjunction is included in unrestricted form, while disjunctive formulas are
restricted to those having a state-based formula from B in the left-hand dis-
junct. This restriction guarantees unique synthesis solutions, since it enables
a local state-based test for retaining the appropriate transitions, as illustrated
in Figure 2.4. The formula [e]f can be used to test whether f holds after
every e-step, while the formula <e>f is used to assess whether there exists an
e-step after which f holds. These two operators thereby follow their standard
semantics from Hennessy-Milner logic [34]. The restriction for the operator
<e> to be limited to a controllable event e ∈ C relates to the specific synthe-
sis for a formula <e>f and is detailed in Figure 2.6. An invariant formula � f
tests whether f holds in every reachable state, while a reachability expression
♦ bmay be used to check whether there exists a path such that the state-based
formula b holds at some state on this path. The argument of a reachability
expression is restricted to a state-based formula b ∈ B. This is due to the fact
that an unrestricted reachability formula may be used to express a formula of
type <e>f with e ∈ U , which leads to a problem concerning controllability,
as illustrated in Figure 2.6. The two operators � and ♦ are borrowed from
Gödel-Löb logic [2], and follow the same semantics. As an addition to the
formulas <e>f , a universal existence test <e> is provided, which only tests
whether an e-step exists. The argument e for the operator <e> may be any
event e ∈ E . The deadlock-freeness expression dlf tests whether there exists
an outgoing step of the current state. Combined with the invariant operator,
the formula� dlf may be used to include absence of deadlock in the enforced
controlled behavior. Deadlock-freeness is not defined as a state-based ex-
pression in B since it requires information about the existence of outgoing
transitions, which may have been removed during synthesis. These notions
of validity are formalized in Definition 2.9.

Definition 2.9. Validity of formulas in B with respect to K (notation: k  b)
is defined by the derivation rules shown below. Assume a Kripke-LTS k =
(X,L,−→, x) ∈ K, p ∈ P and b, c ∈ B in the following derivation rules:

k  true

p ∈ L(x)

k  p
k 6 b
k  ¬b

k  b k  c
k  b ∧ c

k  b
k  b ∨ c

k  c
k  b ∨ c
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Definition 2.9 (cont.) Validity of formulas in F with respect to K (notation:
k � f ) is defined in the following way. Assume that k = (X,L,−→, x) ∈ K,
b ∈ B, e ∈ E , x′ ∈ X and f, g ∈ F in the following derivation rules:

k  b
k � b

k � f k � g
k � f ∧ g

k � b
k � b ∨ f

k � f
k � b ∨ f

∀x e−→ x′ (X,L,−→, x′) � f
(X,L,−→, x) � [e]f

x
e−→ x′ (X,L,−→, x′) � f
(X,L,−→, x) � <e>f

∀x −→∗ x′ (X,L,−→, x′) � f
(X,L,−→, x) � � f

x −→∗ x′ (X,L,−→, x′) � b
(X,L,−→, x) � ♦ b

x
e−→ x′

(X,L,−→, x) � <e>
x

e−→ x′

(X,L,−→, x) � dlf

The synthesis problem may now be concisely formulated by means of the
previous definitions. This is the key problem for which a solution is proposed
in this chapter, while the validity of this solution is acknowledged in the next
chapter.

Definition 2.10. Given plant model k ∈ K and control objective f ∈ F , find
the controlled system s ∈ K such that the following properties hold: 1) s � f ,
2) s � k, 3) For all k′ � k and k′ � f it holds that k′ � s; or determine that
such an s does not exist.

The three properties in Definition 2.10 are interpreted in the context of su-
pervisory control synthesis as follows. Property 1 (validity) states that the syn-
thesis result satisfies the synthesized specification. Property 2 (controllability)
ensures that no accessible uncontrollable behavior is disabled during synthe-
sis. Property 3 (maximality) states that synthesis removes the least possible
behavior, and thereby induces maximal permissiveness. That is, the behavior
of every alternative synthesis option (with regard to validity) is included in
the behavior of the synthesis result.

2.3 Initial Expansion

The purpose of this section is to elaborate upon a number of intuitive notions
which relate to a preceding expansion step before actual control is enforced.
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Figure 2.1: Abstraction of the synthesis process. The transition relation for the plant
model in Figure 2.1a is augmented with reductions of the control specification in Fig-
ure 2.1b, which may induce an embedded unfolding. This new transition relation is
then subjected to repeated transition removal in steps Figure 2.1c-2.1d, until a stable
point has been reached in Figure 2.1e.

The approach developed during the research which underlies this thesis is
to construct a projection of the transition relation of the plant onto the state-
formula product space. The details of this projection are concerned in this
section, and subsequently formalized in Section 2.4. This projection step is
illustrated as the step 1a)→ 1b) in Figure 2.1, and is followed by an iterative
process of transition removal as shown in Figure 2.1 in steps 1c)-1e). Due to
the fact that the precise construction of the projection is justified by the way
transitions are removed later, the transition removal phase is intentionally left
somewhat vague in some of the examples considered here. The precise def-
initions for transition removal are then considered in detail in later sections,
which will lead to an integrated synthesis approach.

Given plant model k = (X,L,−→, x) ∈ K and control objective f ∈ F , a
new transition relation−→0⊆ (X×F)×E × (X×F) is constructed such that
−→0 is the transition relation of S 0

k,f ∈ K, which has (x, f) as its initial state.
The newly createdK-model S 0

k,f will be the model from which transitions will
be removed, until either a solution has been found, or it is determined that a
solution does not exist. Therefore, the model S 0

k,f , as to be defined precisely
in this chapter, will be referred to as the synthesis starting point. Intuitively, the
transition relation −→0 will be set up in such a way that if (x, f) −→∗0 (x′, f ′),
then the model at location (x′, f ′) will in the future have to be adapted such
that f ′ is satisfied in location (x′, f ′).

The way the new transition relation −→0 needs to be constructed is jus-
tified by observations regarding the formulas in F . In fact, the validity of
those formulas directly relates to the inductive build-up of F and to event
labels. For instance, if a formula [e]f is required to hold at state x, then af-
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Figure 2.2: The model in Figure 2.2a is adapted in such a way that the control objective
[a]p becomes satisfied, as shown in Figure 2.2c. The intermediate expansion step in
Figure 2.2b ensures maximally permissive synthesis.

ter each step x
e−→ x′, f needs to hold at state x′. However, for each step

x
e′−→ x′ for e 6= e′, only true needs to hold in x′. Such observations can be

straightforwardly extended for operators such as conjunction and the invari-
ant operator.

A first simple example is considered in Figure 2.2. Suppose that the model
in Figure 2.2a needs to be adapted in such a way that the formula [a]p, for
p ∈ P , becomes satisfied. Note that this formula does not hold in the model
in Figure 2.2a since an a-step to x exists and p is not assigned as a label to x.
Observe that simply removing the a-loop at the initial state is not a maximally
permissive solution. Instead, formula reductions are applied in Figure 2.2b to
construct a new model where the original looping behavior is preserved at a
later stage. The models in Figure 2.2a and Figure 2.2b are strictly bisimilar
[31] and therefore satisfy the same formulas in F . Figure 2.2b may now be
adapted by removing all transition where p is assigned as a formula to the
target state and where p does not hold at this state. The resulting model in
Figure 2.2c now satisfies the control objective [a]p. This example, albeit very
simple, shows precisely how the plant model in Figure 2.2a, using the expan-
sion step in Figure 2.2b, may be modified to satisfy such a specification in
modal logic.

The next operator to consider is <e>f , which relates to non-determinism
in a very particular way. Due to the fact that only existing behavior may be
modified, no new e-step(s) may be added if those were not already present.
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Figure 2.3: Synthesis for the control objective <a>[b]false upon the model in Figure
2.3a, resulting in the model in Figure 2.3b, having duplicated behavior due to maximal
permissiveness.

Furthermore, the only meaningful control synthesis task with regard to a for-
mula of type <e>f is to relay synthesis to the situation after each e-step, since
no removal of a step makes such a formula more true. Another point worth
mentioning is that if a formula <e>f cannot be satisfied, due to the fact that in
case synthesis after every e-step fails, the transition towards the state where
<e>f has been assigned may be removed. The latter situation is of particular
importance to control synthesis. Also, maximal permissiveness needs to be
taken into account. If <e>f needs to be satisfied in x and a step x e−→ x′ exists
where behavior needs to be limited in order to satisfy f in x′, then maximality
may be at stake if not all original behavior is preserved in x′. This situation
is considered in more detail by the simple example in Figure 2.3. The model
in Figure 2.3a is adapted in order to satisfy the control objective <a>[b]false ,
which results in the model in Figure 2.3b. In this example, simple removal of
the b-step in Figure 2.3a is not an appropriate solution, since this would not
lead to maximal permissiveness. An adequate formula reduction for formu-
las of type <e>f therefore needs to take into account that f needs to be satis-
fied after an e-step, but also that original behavior needs to be preserved. This
is reflected by a formula reduction of <e>f to both f and true after an e-step.
This expands straightforwardly to a non-deterministic situation. Formula re-
ductions ensure that after every e-step, f is attempted to be synthesized, but
also that the behavior after each e-step is preserved. Formulas of type <e>f
are limited in such a way that e ∈ C. This relates to various proof obligations
concerning partial bisimulation, and is considered at a later stage.

The next operator to consider is the conjunction. A simple observation for
the formula [e]f ∧[e]g indicates that f ∧g needs to be true after each e-step.
An obvious generalization is that if f reduces to f ′ and if g reduces to g′, then
a new formula reduction needs to be defined where f ∧g reduces to f ′∧g′. In
fact, this is precisely the way formula reductions are defined for conjunction
in this synthesis approach. This may, however, lead to problems which are
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Figure 2.4: Synthesis for [a]p ∨ [a]q upon the model in Figure 2.4a would result in
two different maximally permissive solutions, shown in Figures 2.4b and 2.4c. Instead,
disjunctive formulas are restricted, as shown in Figure 2.4d.

not straightforwardly detectable. For instance, the formula [e]f ∧ <e>g may
not have a solution if f cannot be satisfied in the state to which f ∧ true is
assigned, due to preserving original behavior after <e>g. Whether such a
solution exists cannot be detected at the expansion phase, and is therefore
relayed to the transition removal phase. An example is considered in Figure
2.7. Formula reductions for conjunction are considered further in Figure 2.5,
where invariant formulas are considered.

The focus now shifts to disjunction. The disjunction operator in Definition
2.8 is restricted such that only the right-hand disjunct may contain a formula
of type F , while the left-hand disjunct is limited to a B-formula. The reason
for this restriction is illustrated in Figure 2.4. There does not exist a unique
maximally permissive adaptation of the model in Figure 2.4a, which satisfies
[a]p∨ [a]q, for this non-deterministic case. Preserving original behavior, or
any other solution similar to the one that was applied when defining reduc-
tions for formulas of type <e>f , does not help. Unique and maximally per-
missive solutions are therefore only obtained via a restriction upon F . The
restricted left-hand formula b ∈ B may be readily validated on a state basis.
If it holds then b ∨ f only reduces to true , thereby inducing maximal permis-
siveness. If it does not hold then the unrestricted right-hand disjunct f ∈ F
is synthesized.

The next operator to consider is the invariant modality � f . A formula
reduction is straightforwardly definable by observing that for � f to be true
at state x, it should hold that � f is true at each x′ ∈ X such that x −→∗ x′.
In addition, the formula reductions for f itself do apply, which leads to the
following reduction principle: if f reduces to f ′ then � f reduces to � f ∧ f ′.
Subsequent reductions under conjunction then lead to (� f ∧ f ′) ∧ f ′′, if f ′

reduces to f ′′. Such a reduction sequence may be infinitely expanding. For
instance, the formula �[e]p for p ∈ P first reduces to �[e]p ∧ p after an
e-step, and subsequently to (�[e]) ∧ p ∧ true after two e-steps. Therefore,
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Figure 2.5: Synthesis for the control objective � (p ∧ [a]q) upon the model in Figure
2.5a, resulting in the behavioral adaptation shown in Figure 2.5b. Note the application
of normalization to inhibit indefinite expansion. Also, true conjuncts are omitted in
this illustration for compactness.

reduction outcomes need to be normalized in such a way that double con-
juncts are removed on a purely syntactic basis. Such a normalization step
is straightforwardly computable and directly suppresses the aforementioned
infinite expansion. An example for the synthesis of invariant formulas is con-
sidered in Figure 2.5.

A number of remaining formulas are now considered at the same time.
These are the formulas ♦ b, for b ∈ B, and <e>, for e ∈ E , and dlf . It is
important to understand that no transition removal may aid in satisfying
these formulas. Their real expressiveness lies in the fact that they may be
used in other formulas. For instance, �♦marked to indicate that a marked
state should always be reachable, or � dlf to indicate that the entire synthe-
sized controlled system should be deadlock-free. The value of formulas <e>
for e ∈ E lies in the fact that formulas <e>f are restricted such that e ∈ C,
as mentioned earlier on, and as considered in more detail later on. Reduc-
tions for these formulas are defined in such a way that f reduces to true for
f ∈ {♦ b | b ∈ B} ∪ {<e> | e ∈ E} ∪ {dlf }, and more of the intricate details are
considered in Section 2.6.

2.4 Reduction Rules

A formal treatment of the formula reductions introduced in the previous sec-
tion is provided in Definition 2.12. These reductions can not be defined in
terms of modal expressions only; the original state of each transition also
needs to be taken into account, as detailed in Figure 2.4. As discussed before,
this is required to effectively implement synthesis for disjunctive formulas.
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The left-hand side of a disjunction is restricted, as shown in Definition 2.8, to
a basic formula b ∈ B. Whether such a formula holds can be tested via a state-
based evaluation only. This is used to determine which side of a disjunct will
eventually be synthesized during the build-up of−→0. As a consequence, the
initial transition relation −→0⊆ (X × F) × E × (X × F) needs to be defined
directly, and cannot be solely constructed as a composition between the orig-
inal transition relation −→⊆ X × E ×X and a possible reduction relation on
modal expressions. As shown in Figure 2.5, it is necessary to inhibit infinite
expansion of reductions of invariant expressions. For this purpose a formal
definition of sub-formulas, as given in Definition 2.11, is applied.

Definition 2.11. For k = (X,L,−→, y) and f ∈ F , the set of sub-formulas of
f in state x (notation: sub (x, f)) is derived by the rules below. Assume that
x ∈ X , f, g, h ∈ F and b ∈ B in the following definition:

f ∈ sub (x, f)

f ∈ sub (x, g)

f ∈ sub (x, g ∧ h)

f ∈ sub (x, h)

f ∈ sub (x, g ∧ h)

f ∈ sub (x, g) (X,L,−→, x) 6 b
f ∈ sub (x, b ∨ g)

f ∈ sub (x, g)

f ∈ sub (x,� g)

Definition 2.12. Given k = (X,L,−→, y) ∈ K, x, x′ ∈ X , f, f ′ ∈ F and
e ∈ E , an initial step (x, f)

e−→0 (x′, f ′) is derived as shown below. Besides
the previous instantiations, assume that g, g′ ∈ F , b ∈ B and e′ ∈ E in the
following derivation rules:

(x, f)
e−→0 (x′, f ′) (x, g)

e−→0 (x′, g′) g′ ∈ sub (x′, f ′)

(x, f ∧ g)
e−→0 (x′, f ′)

(x, f)
e−→0 (x′, f ′) (x, g)

e−→0 (x′, g′) g′ 6∈ sub (x′, f ′)

(x, f ∧ g)
e−→0 (x′, f ′ ∧ g′)

x
e−→ x′

(x, b)
e−→0 (x′, true)

(X,L,−→, x)  b x
e−→ x′

(x, b ∨ f)
e−→0 (x′, true)

(X,L,−→, x) 6 b (x, f)
e−→0 (x′, f ′)

(x, b ∨ f)
e−→0 (x′, f ′)

x
e−→ x′

(x,[e]f)
e−→0 (x′, f)
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Definition 2.12 (cont.) The definition of −→0 is continued as follows:

x
e−→ x′ e 6= e′

(x,[e′]f)
e−→0 (x′, true)

x
e−→ x′

(x,<e>f)
e−→0 (x′, f)

x
e−→ x′

(x,<e′>f)
e−→0 (x′, true)

(x, f)
e−→0 (x′, f ′) f ′ ∈ sub (x′, f)

(x,� f)
e−→0 (x′,� f)

(x, f)
e−→0 (x′, f ′) f ′ 6∈ sub (x′, f)

(x,� f)
e−→0 (x′,� f ∧ f ′)

x
e−→ x′

(x,<e′>)
e−→0 (x′, true)

x
e−→ x′

(x,♦ b)
e−→0 (x′, true)

x
e−→ x′

(x, dlf )
e−→0 (x′, true)

The derivation rules in Definition 2.12 are briefly considered here. A basic
formula b ∈ B always reduces to true . Formula reductions are combined un-
der conjunction, while the details surrounding the reductions of the left-hand
disjunct have been considered in Figure 2.4. The right-hand reduction in a
disjunctive formula is directly inherited, if the left-hand formula b ∈ B can-
not be satisfied, as shown clearly in the fifth derivation rule in Definition 2.12.
As detailed in Figure 2.2a, a formula [e]f reduces to f after an e-step, while
it reduces to true after an e′-step with e′ 6= e. The reduction for a formula
<e>f is somewhat more involved. After every e-step, an attempt is made to
satisfy this formula, as signified by the reduction towards f . However, the
original behavior after every e-step is also copied, which induces maximal
permissiveness, as shown in Figure 2.3. This is the key difference between
the synthesis for a formula [e]f and a formula <e>f , which explains why
the seventh and ninth rule are different. Synthesis for an invariant formula
� f has been considered in Figure 2.5. Both the invariant formula itself and
its underlying reduct need to be present at the next state. The combination
of reductions under conjunction then assures that appropriate modal expres-
sions appear at later stages. The formulas ♦ b, for b ∈ B, <e>, for e ∈ E , and
dlf each reduce to a true expression. Ensuring validity for these formulas
relies upon the partial satisfiability test which is applied during synthesis.

Formulas of type <e>f are synthesized in such a way that original behav-
ior is left in place. This is illustrated in Figure 2.6. Synthesis for <a>[b]false∧
<a>[c]false upon the model in Figure 2.6a would not result in a maximally
permissive solution if only the b and c steps were removed from the y-state.
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Figure 2.6: Synthesis for <a>[b]false ∧ <a>[c]false upon the model in Figure 2.6a
would not be maximally permissive if only the b-steps and c-steps were removed from
the y-state. Instead, original behavior is copied, as shown in Figure 2.6b, which is the
correct maximal synthesis result if a ∈ C. If a ∈ U , then Figure 2.6c is not a satisfying
partial bisimulant of Figure 2.6b.

Instead, original behavior is left in place as shown in Figure 2.6b, where
new non-deterministic a-steps are introduced by applying Definition 2.12,
followed by transition removal. Note that this is only a viable solution if
a ∈ C. If a ∈ U , then the model in Figure 2.6c is a satisfying partial bisimulant
of the model in Figure 2.6a, but not of the model in Figure 2.6b. Hence, if
a ∈ U then Figure 2.6b is not maximally permissive. Therefore, the restric-
tion that e ∈ C is applied in Definition 2.8, for formulas of type <e>f . The
restriction that b ∈ B for formulas of type ♦ b is founded on the same basis.
Assume that for each state x ∈ X , a state based property x is defined such
that x ∈ L(x). The formula <a>[b]false∧<a>[c]false may then be expressed
as ♦ (¬x∧ y∧¬z1∧¬z2∧[b]false)∧♦ (¬x∧ y∧¬z1∧¬z2∧[c]false) and has
the same synthesis solution (modulo state names), as shown in Figure 2.6b.
Consequently, the counterexample with regard to maximal permissiveness
shown in Figure 2.6c applies.

2.5 Partial Satisfiability

In this section the test for transition removal is considered, which is illustrated
by a number of examples, as part of the incremental process of transition
removal. An expanded transition (x, f)

e−→ (x′, f ′) is removed if it is not
possible to satisfy f ′ in (x′, f ′), by means of transition removal, from that
state onward. A number of cases for f ′ will now be considered, which leads
to a formal definition of synthesizability in Section 2.6.
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Consider the set of formulas B. It is clear from Definition 2.7 and Defini-
tion 2.9 that validity of these formulas may be readily verified on a state-only
basis. No transition removal from (x′, b), for b ∈ B, will aid in making (x′, b)

satisfy b. Therefore, (x, f)
e−→ (x′, b), needs to be removed if (x′, b) 6� b.

Assume a formula [e]f , for f ∈ F . A formula of type [e]f can always
be satisfied by transition removal by means of removing all outgoing e-steps.
Clearly, this leads to the initial observation that each step (x, g)

e−→ (x′,[e]f)
should be retained, since it always is possible to satisfy [e]f . However, if u ∈
U and a step (x′,[u]f)

u−→ (x′′, f) exists such that f cannot be synthesized
in (x′′, f), then the step (x, g)

e−→ (x′,[u]f) should be removed. The choice
made in this synthesis setup is to evaluate partial satisfiability of [e]f always
as possible, but to introduce additional testing for reachable uncontrollable
states during the process of transition removal.

The study of local partial satisfiability testing is continued by an analysis
of formulas of type <e>f . Initially, it seems appropriate to check whether a
step labeled e exists, followed by recursively evaluating whether the target
state of this e-step can be made to satisfy f . However, a caveat appears on the
path to a solution. Due to the fact that a copy of the original behavior via a
formula reduction <e>f

e−→ true was introduced, it may be the case that the
synthesizability evaluation for <e>f returns true , due to the fact that a target
(x′, true) can be made to satisfy f . However, if <e>f is combined with [e]g
as in <e>f ∧ [e]g, it might not be possible to satisfy f in (x′, g ∧ true), due
to additional transition removal induced by the synthesis of g. This essen-
tially disables direct compositionality of the partial satisfiability test under
conjunction. This possibility needs to be taken into account by requiring not
only that an e-step exists where f can be satisfied, but indeed that an e-step
exists towards an expanded state which corresponds to the <e>f e−→ f for-
mula reduction. A generalization of this notion of sub-formulas is formalized
later Definition 2.11. An example for the synthesis of a combined [e]/<e>-
formula is considered in Figure 2.7.

Due to the fact that synthesizability for f is evaluated in a combined state
(x, f), dependency may be relieved in order to define synthesizability for con-
junction. That is, formally it holds that (x, g) ↑ f1 ∧ f2 if and only if (x, g) ↑ f1
and (x, g) ↑ f2, where (x, g) ↑ f is used to denote that f is synthesizable in
state (x, g). The example in Figure 2.7 actually applies this. Synthesizability
for a restricted disjunctive formula b∨ f also needs to be defined in an appro-
priate way. Such a formula can always be satisfied if (x, g) � b. However, if
this is not the case then the definition should rely on the synthesizability for f
in (x, g). That is, in the latter case it needs to be evaluated whether (x, g) ↑ f .
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Figure 2.7: Synthesis for the control specification <a>([a]p ∧ <a>q) upon the model
shown in Figure 2.3a, resulting in Figure 2.3b. Synthesizability at each state for various
iterations in the process of transition removal is indicated using ↑i, for i ∈ {1, 2, 3}.
This synthesis property necessitates the use of sub-formulas in the synthesizability
for formulas of type <e>f , since the (y, true)-branch cannot be modified to satisfy
[a]p ∧ <a>q.

Evaluating whether a formula � f can be satisfied is significantly more
difficult. Research revealed this depends upon the integrated synthesis ap-
proach where transitions are removed until synthesizability holds for the for-
mula assigned to every reachable state. Within this context it is sufficient to
define (x, g) ↑ � f solely as (x, g) ↑ f . Intuitively, this corresponds to the no-
tion that a formula � f may be satisfied if the system can be modified in such
a way that f may be satisfied at every reachable state.

The group of formulas f ∈ {♦ b | b ∈ B} ∪ {<e> | e ∈ E} ∪ {dlf } allow a
straightforward definition for synthesizability. This type of formula is either
satisfiable or not; no transition removal may make such a formula satisfied
if it is not satisfied already. However, transition removal in the synthesis for
other formulas will possibly make such a formula unsatisfiable. Furthermore,
if a formula of the aforementioned type does not hold at a particular state,
then all in going transitions to that state need to be removed.

2.6 Transition Removal

This section formally defines the synthesizability condition (x′, f ′) ↑ f ′, for the
purpose of detecting whether a constructed step (x, f)

e−→ (x′, f ′) needs to
be removed or preserved, based on an evaluation of (x′, f ′) ↑ f ′. A short re-
flection may be appropriate to verify that no simpler solution is available. An
initial and provably sound observation is to retain a step (x, f)

e−→ (x′, f ′)
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if a satisfying partial bisimulant exists at the target state. That is, a transi-
tion (x, f)

e−→ (x′, f ′) should not be disabled if a k′ ∈ K exists such that
k′ � (X,L,−→, x′) and k′ � f ′. However, existence of such a satisfying par-
tial bisimulant is not a feasible way from a computational perspective to ex-
press whether a constructed target state (x′, f ′) should be retained after a step
(x, f)

e−→ (x′, f ′). Instead, an incremental approach is applied where itera-
tive transition relations −→0⊇−→1⊇−→2 . . . are constructed until a stable
point has been reached. The stability condition is then defined as the point
where no constructed transitions are candidates for removal. A synthesizabil-
ity test, as introduced in Section 2.5 (notation (x′, f ′) ↑n f ′), will be used to
assess whether a constructed step (x, f)

e−→ (x′, f ′) should be retained in step
n of the iterative synthesis process. Derivation rules for this test are listed in
Definition 2.13, and are discussed in detail thereafter.

When studying Definition 2.13, it might be helpful to take a glance at Def-
inition 2.14, where Definition 2.13 is applied to create succeeding iterations
S nk,f , S n+1

k,f , S n+2
k,f , . . . of the synthesis result. Therefore, synthesizability needs

to be defined in terms of a previously derived transition relation −→n. More
precisely, the transition relation−→n⊆ (X×F)×E × (X×F) used in Defini-
tion 2.13 should be interpreted syntactically, without reference to a particular
n ∈ N. Definition 2.13 relies upon a syntactical notion of sub-formulas, as pro-
vided in Definition 2.11. This definition is used to resolve the issue addressed
in Figure 2.7, which relates to copied original behavior, for the purpose of
achieving maximal permissiveness.

Definition 2.13. For k = (X,L,−→, y) ∈ K, b ∈ B, x, x′ ∈ X , f, f1, f2, g, g′ ∈
F , e ∈ E , and transition relation−→n⊆ (X×F)×E×(X×F), synthesizability
can be derived as follows:

k � b
(x, g) ↑n b

(x, g) ↑n f1 (x, g) ↑n f2
(x, g) ↑n f1 ∧ f2

k � b
(x, g) ↑n b ∨ f

(x, g) ↑n f
(x, g) ↑n b ∨ f

(x, g) ↑n [e]f
(x, g)

e−→n (x′, g′) f ∈ sub (x′, g′) (y, g′) ↑n f
(x, g) ↑n <e>f

(x, g) ↑n f
(x, g) ↑n � f

(x, g) −→∗n (x′, g′) (X,L,−→, x′) � b
(x, g) ↑n ♦ b

(x, g)
e−→n (x′, g′)

(x, g) ↑n <e>
(x, g)

e−→n (x′, g′)

(x, g) ↑n dlf
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The first derivation rule in Definition 2.13 expresses how synthesizability
for a basic formula b ∈ B in (x, g) directly depends upon the validity of this
formula at that particular state. If both conjuncts f1 and f2 can be synthesized,
then the combination f1 ∧ f2 is synthesizable in (x, g). Synthesizability for
disjunction is derived directly from its operands, as indicated by the third and
fourth rule. A formula [e]f is always synthesizable since every outgoing e-
step may be removed. However, during the transition removal phase it needs
to be taken into account that e may be uncontrollable. For <e>f such that e ∈
C, an example is considered in Figure 2.7. This example shows how multiple
iterations of transition removal are required to determine that the model in
Figure 2.7a cannot be adapted to satisfy the formula <a>([a]p ∧ <a>q). Due
to the introduction of a copy of the original behavior in the branch at the right-
hand side in Figure 2.7b, it might seem that the formula <a>([a]p ∧ <a>q) is
still satisfiable, since an outgoing a-step exists. Therefore, synthesizability
for a formula of type <e>f requires that f is a sub-formula of the formula
assigned to the relevant step, as shown in Definition 2.13.

Synthesizability for a formula� f in a combined state (x, g) requires that f
is synthesizable in (x, g). The remaining expressions ♦ b, <e> and dlf are only
synthesizable if they can be directly satisfied. As justified by the intuition that
no transition removal will make such an expression more true.

2.7 Synthesis Construction

Now, the succeeding iterations in the computational approximations −→1,
−→2, . . ., may be defined, for which−→0 has already been given in Definition
2.12. The corresponding synthesis results S 1

k,f , S 2
k,f , . . . are also detailed in

Definition 2.14.

Definition 2.14. For k = (X,L,−→, x), f ∈ F and n ∈ N, the n-th iteration
S nk,f in the computational synthesis process is defined as follows:

S nk,f = (X ×F , LXF,−→n, (x, f))

where LXF(y, g) = L(y) for all y ∈ X and g ∈ F . The transition relation −→n

is defined for y, y′ ∈ X , g, g′ ∈ F and e ∈ E as follows:

(y, g)
e−→n (y′, g′) e ∈ U

(y, g)
e−→n+1 (y′, g′)

(y, g)
e−→n (y′, g′) ∀ v ∈ U∗ : ∀ (y′, g′)

v−→∗ n(y′′, g′′) : (y′′, g′′) ↑n g′′

(y, g)
e−→n+1 (y′, g′)



40 Chapter 2. Synthesis and Discrete Event Control

The XF in LXF refers to the fact that this new labeling function is defined
upon the X × F product space. The first rule in Definition 2.14 states that
every uncontrollable step should be preserved. The second rule expresses the
actual synthesis functionality, where a transition is only preserved if synthe-
sizability holds at each state which is reachable by uncontrollable steps.

Transition removal in the succeeding iterations of the transition relation
−→0, −→1, −→2, . . . proceeds until no more target states of individual tran-
sitions are considered candidates for removal. That is, if the synthesizability
predicate holds at every reachable state. If a plant model k ∈ K has finitely
many transitions, this process is terminating. This premise for completeness
is formalized in Definition 2.15.

Definition 2.15. For k = (X,L,−→, x) ∈ K, f ∈ F and n ∈ N it holds that
S nk,f is complete if for all (x, f) −→∗n (x′, f ′) it holds that (x′, f ′) ↑n f ′.

If the condition of completeness as stated in Definition 2.15 cannot be
reached, a solution to the synthesis problem in Definition 2.10 does not ex-
ist.

2.8 Closing Remarks

The synthesis setup formally defined in this chapter is intended to be sup-
ported by the examples to such an extent that the main intuitions are clear.
The projection of the original transition relation onto a new relation over
the state-formula product space clearly establishes a correspondence that ex-
presses which formulas should hold at which states. Formula reductions pro-
vide a neat way to define this projection and contribute to the soundness of
synthesis due to the inductive way in which they are defined. The framework
of transition removal by means of a synthesizability test at the target states of
transitions allows for a computationally feasible way to achieve control in a
way that is directly related to maximal permissiveness and synthesis correct-
ness, as shown in the next chapter. This fixpoint approach clearly defines
at which point a satisfying solution is obtained, and furthermore eliminates
a post-synthesis test as to whether a successful solution has been achieved.
The restrictions imposed upon F , which directly relate to synthesis correct-
ness, are assumed to be sufficiently clear to the reader now. Regarding further
developmenst, it certainly needs to be taken into account that some of these
restrictions may be lifted once new insights are obtained in future research.



Chapter 3

Correctness and Computation

Since formal definitions of the synthesis setup have all been provided in
Chapter 2, the main objective now becomes the assessment of the validity of
the proposed theory. In this chapter, this will be interpreted in a broad sense.
First of all, it will be ensured that the technical formalities are satisfied. This
means that synthesis solutions are shown to guarantee the control objective,
given as an F-expression. In addition, controllability and maximal permis-
siveness are shown to hold for synthesis outcomes. These aforementioned
validity aspects may be summarized as the soundness of the synthesis theory.
Furthermore, it is shown that if a solution exists, it will eventually be found,
thereby covering the completeness aspect. An algorithmic representation of the
synthesis method follows at a later stage in this chapter. This part bridges the
gap between the mathematical formalization and an actual implementation.
Subsequently, it is shown how Ramadge-Wonham supervisory control theory
[76] can be expressed using this synthesis theory. The broad interpretation of
correctness also justifies the inclusion of case studies in this chapter.

Considered in somewhat more detail, this chapter is set up as follows:
mathematical proofs can be found in Section 3.1, while the computer verified
proofs are included in Section 3.4. Besides these two proof-related sections,
the remainder of this chapter is organized as follows. The synthesis con-
struction is represented in algorithmic form, including an analysis of its com-
putational complexity, in Section 3.2. The connection to Ramadge-Wonham
supervisory control is made in Section 3.3. It is detailed how a traditional
Ramadge-Wonham control synthesis problem may be expressed using the
theories proposed in the previous chapter. Application of synthesis is consid-
ered in Section 3.5 and Section 3.6 by means of two case studies.

41
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Figure 3.1: A graphical illustration of the dependencies between the most important
lemmas and theorems within Section 3.1. In-going arrows represent a dependency
upon the proof entity from which the arrow originates.

3.1 Correctness Proofs

This section mainly contains proofs, which are henceforth considered in terms
of formal mathematics in in Section 3.4. Theorem 3.1 shows that the synthe-
sis construction in Definition 2.14 is terminating; that is: it leads to the re-
quired synthesis result after the application of a finite number of derivation
steps. The strategy applied in Theorem 3.1 is to define a finite overapproxi-
mation of the number of transitions in −→0. This leads to the conclusion that
only finitely many transition removal steps will eventually take place. Sub-
sequently it is shown that the synthesis construction satisfies the three main
results from Definition 2.10: validity (Theorem 3.2), controllability (Theorem
3.3) and maximal permissiveness (Theorem 3.4). The final key result in this
section is Theorem 3.5, where it is shown that if a solution exists, it will even-
tually be found. Figure 3.1 details the dependencies between several lemmas
and theorems which can be found in this section. The reader who is familiar
with computer verified proofs may wish to study the mathematical proofs
and the formalized proofs in parallel. The latter proofs can be found at the
following location3 and are considered in more detail in Section 3.4.

https://github.com/ahulst/deds

3The author will strive to maintain this facility in the foreseeable future. If the Coq-proofs
are not available anymore at this location, the reader is kindly requested to contact the author
directly in order to obtain these.
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A number of technical results for sub-formulas are developed first:

Lemma 3.1. For k = (X,L,−→, x) ∈ K the following results hold regarding
sub-formulas:

(a) For f ∈ sub (x, g) and k � g it holds that k � f ;

(b) For f ∧ g ∈ sub (x, h) it holds that f ∈ sub (x, h) and g ∈ sub (x, h);

(c) For [e]f ∈ sub (x, g) and (x, g)
e−→0 (x′, g′) it holds that f ∈ sub (y, g′),

for all x′ ∈ X ;

(d) For b ∨ f ∈ sub (x, g) and k 6 b it holds that f ∈ sub (x, g);

(e) For � f ∈ sub (x, g) it holds that f ∈ sub (x, g);

(f) For � f ∈ sub (x, g) and (x, g)
e−→0 (x′, g′) it holds that � f ∈ sub (x′, g′),

for all x′ ∈ X ; and

(g) For (x, h) ↑n g and f ∈ sub (x, g) it holds that (x, h) ↑n f , for all n ∈ N;
and

(h) For f ∈ sub (x, g) and g ∈ sub (x, h) it holds that f ∈ sub (x, h).

Proof. These results can be obtained by induction towards the derivation depth
in Definition 2.11.

Theorem 3.1. The synthesis construction in Definition 2.14 is terminating.

Proof. The following result is shown: if k = (X,L,−→, x) ∈ K, for finite −→,
then S 0

k,f has finitely many transitions. It therefore needs to be shown that the
number of transitions in −→0 is finite. Every succeeding synthesis iteration
removes steps until a stable point has been reached. Finiteness of −→0 is
therefore sufficient to prove termination. Given that −→ is finite, it needs to
be shown that the following set is finite:

{(x′, f ′) ∈ X ×F | (x, f) −→∗0 (x′, f ′)}

This result is proven directly by induction towards the structure of f . For
the cases where f ≡ b or f ≡ ♦ b, for b ∈ B, or f ≡ <e> or f ≡ dlf , the set
{(x, f)}∪(X×{true}) includes all newly constructed states reachable by−→∗0.
Note that this is an overapproximation but still a finite set, if X is restricted
to the states reachable by −→∗.

If f ≡ f1 ∧ f2, then by induction the following sets are derived:
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C1 = {(x′, f ′) ∈ X ×F | (x, f1) −→∗0 (x′, f ′)}
C2 = {(x′, f ′) ∈ X ×F | (x, f2) −→∗0 (x′, f ′)}

Subsequently, it needs to be shown that the set C1 ∪ {(y, g ∧ h) | (y, g) ∈
C1, (y, h) ∈ C2} is finite. By induction towards the length of (x, f1 ∧ f2) −→∗0
(y, f ′), it can be shown that either (y, f ′) ∈ C1, if the fourth rule in Definition
2.12 was applied, or f ′ ≡ g ∧ h and (y, g) ∈ C1 and (y, h) ∈ C2. The next
case to consider in the induction proof is when f ≡ b ∨ g, for b ∈ B. As an
intermediate step, the following set is defined:

C = {(x′, f ′) ∈ X ×F | (x, g) −→∗0 (x′, g′)}

which is finite by induction. Hence, the set {(x, b ∨ g)} ∪ C ∪ (X × {true}) is
also finite. The inductive cases for f ≡ [e]f ′ and f ≡ <e>f ′ are considered
in parallel. By induction, for each step (x,[e]f ′)

e−→0 (y, f ′) and for each
step (x,<e>f ′)

e−→0 (y, f ′) a finite set Cy can be derived by induction. These
sets Cy may then be combined under union and combined with X × {true}
to finitely define the set of states reachable under −→0.

The final case for the inductive proof is where f ≡ � f ′, which requires an
additional helper function D defined below. Assume that f ∈ F , C ⊆ X × F
and n ∈ N in the following inductive definition:

D(f, C, 0) = X × {� f}
D(f, C, n+ 1) = D(f, C, n) ∪ {(x, g ∧ h) | (x, g) ∈ D(f, C, n), h ∈ C}

If C = {(x′, f ′) ∈ X × F | (x, f) −→∗0 (x′, f ′)} then the finite overapproxima-
tion D(f, C, |C|), where |C| indicates the number of elements in C, contains
all states reachable from (x,� f) over −→∗0.

It is first shown that for all (x,� f) −→∗0 (x′, g) there exists an n ∈ N such
that g ∈ D(f, C, n). If induction is applied to the structure of g, there are two
relevant cases: 1) if g ≡ � f then (x, g) ∈ D(f, C, 0) and, 2) if g ≡ g1 ∧ g2 then
there exists an n ∈ N such that (x′, g1) ∈ D(f, C, n) and since (x′, g2) ∈ C, it
holds that (x′, g1 ∧ g2) ∈ D(f, C, n+ 1).

Subsequently, the following is shown: if (x,� f) −→∗0 (x′, g) then (x′, g) ∈
D(f, C, |C|). Clearly, as was just shown, there exists an n ∈ N such that
(x′, g) ∈ D(f, C, n). However, if (x′, g) ∈ D(f, C, n) and n > |C| then the
derivation rules in Definition 2.12 show that g ≡ g1 ∧ g2 and g2 6∈ sub (x′, g1),
if (x′, g) 6∈ D(f, C,m) for all m < n. However, for all (x, f) −→∗0 (x′, f ′) it
holds that (x′, f ′) ∈ C. If (x′, g) 6∈ D(f, C,m) for all m < n then g has n
different conjuncts and since n > |C| it holds that g2 ∈ sub (x′, g1).
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If the synthesis result satisfies the completeness premise, and thus when
the synthesizability predicate holds at every reachable state, then the synthe-
sis result satisfies the specification for desired behavior, as shown in Theorem
3.2.

Theorem 3.2. If k = (X,L,−→, x) ∈ K and f ∈ F and n ∈ N such that S nk,f is
complete, then S nk,f � f .

Proof. The following theorem will be proven: if g ∈ F such that f ∈ sub (x, g)
and S nk,g is complete, then S nk,g � f . This is sufficient, since f ∈ sub (x, f).
Induction is applied towards the structure of f ∈ F , thereby generalizing
over g and x. For each inductive case it holds that (x, g) ↑n g ⇒ (x, g) ↑n f ,
by Lemma 3.1(g).

If f ≡ b, for b ∈ B, then (x, g) ↑n b and thus k � b, which implies S nk,g � b.
If f ≡ f1 ∧ f2 then f1 ∈ sub (x, g) and f2 ∈ sub (x, g), which leads to S nk,g � f1
and S nk,g � f1 by induction. If f ≡ b ∨ f ′ then a distinction is made between
two cases: 1) if k � b then S nk,g � b, 2) if k 6� b then by Lemma 3.1(d) it holds
that f ′ ∈ sub (x, g), which by induction leads to S nk,g � f

′.
If f ≡ [e]f , then assume there exists a step (x, g)

e−→n (x′, g′), and de-
fine k′ = (X,L,−→, x′). Since (x, g)

e−→0 (x′, g′), by Definition 2.14, it holds
that f ∈ sub (x′, g′), by Lemma 3.1(c). By the induction hypothesis for f ′,
it can now be derived that S nk′,g′ � f

′. Note that the induction premise for
completeness for S nk′,g′ follows from the assumption (x, g)

e−→n (x′, g′) and
Definition 2.15. If f ≡ <e>f ′, then by Definition 2.13 there exists a step
(x, g)

e−→n (x′, g′) such that f ′ ∈ sub (x′, g′) and (X,L,−→, x′) � g′, using
the abbreviation k′ = (X,L,−→, x′). Since S nk′,g′ is complete, induction can
be applied to derive S nk′,g′ � f

′.
If f ≡ � f ′, then there exists a sequence of steps (x, g) −→∗n (x′, g′) such

that f ′ ∈ sub (x′, g′) by Lemmas 3.1(e) and 3.1(f). Set k′ = (X,L,−→, x′). Due
to the fact that (x, g) −→∗n (x′, g′), S nk′,g′ is complete, it follows that S nk′,g′ � f

′,
by induction. For the cases f ≡ ♦ b, for b ∈ B, or f ≡ <e> or f ≡ dlf , the
result S nk,g � f follows directly from (x, g) ↑n f .

Lemma 3.2. For each f ∈ F , e ∈ E and x
e−→ x′ there exists an f ′ ∈ F such

that (x, f)
e−→0 (x′, f ′).

Proof. By induction towards the structure of f .
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Controllability then follows directly from Lemma 3.2 and the construction
in Definition 2.14, as shown in Theorem 3.3.

Theorem 3.3. For k = (X,L,−→, x) ∈ K, f ∈ F and n ∈ N it holds that
S nk,f � k.

Proof. It will be shown that S nk,f �R k by defining R as follows:

R = {((y, g), y) | (x, f) −→∗n (y, g)}

Clearly ((x, f), x) ∈ R. Assume that ((y, g), y) ∈ R. If (y, g)
e−→n (z, g′) then

y
e−→ z by Definitions 2.14 and 2.12, such that ((z, g), z) ∈ R.
If y e−→ z, for e ∈ U , then by Lemma 3.2 there exists a formula-reduct

(y, g)
e−→0 (z, g′). Since e ∈ U , it follows from the construction of −→n in

Definition 2.14 that (y, g) −→n (y′, g′).

Partial bisimilarity is related to Definition 2.12 and Definition 2.11, but
also implies validity for formulas in B. These results are listed in Lemma 3.3.

Lemma 3.3. For k′ = (X ′, L′,−→′, x′) ∈ K and k = (X,L,−→, x) ∈ K, such
that k′ � k, the following results hold:

(a) For all b ∈ B it holds that k′ � b if and only if k � b;

(b) For all f, g ∈ F it holds that f ∈ sub (x′, g) if and only if f ∈ sub (x, g);
and

(c) For all f, f ′ ∈ F , e ∈ E and x′
e−→ y′ and x

e−→ y and (X ′, L′,−→′, y′) �
(X,L,−→, y) it holds that (x′, f)

e−→ ′0(y′, f ′) if and only if (x, f)
e−→0

(y, f ′).

Proof. Result (a) is obtained by induction towards the structure of b ∈ B in
Definition 2.7, result (b) is derived by induction towards the derivation depth
in Definition 2.11, and result (c) is shown by induction towards the derivation
depth in Definition 2.12.
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Lemmas 3.4 and 3.5 detail how existence of a formula-reduct relates to va-
lidity. Lemma 3.5 can be considered a specific instance of Lemma 3.4, where
the sub-formula property is required.

Lemma 3.4. For each k = (X,L,−→, x) ∈ K, f ∈ F , e ∈ E and x′ ∈ X such
that k � f and x

e−→ x′, there exists an f ′ ∈ F such that (x, f)
e−→0 (x′, f ′)

and (X,L,−→, x′) � f ′.

Proof. By induction towards the structure of f ∈ F .

Lemma 3.5. For each k = (X,L,−→, x) ∈ K, e ∈ E and f, g ∈ F such that
<e>f ∈ sub (x, g) and k � g, there exist x′ ∈ X and g′ ∈ F such that (x, g)

e−→0

(x′, g′) and f ∈ sub (x′, g′) and (X,L,−→, x′) � g′.

Proof. By induction towards the derivation depth of <e>f ∈ sub (x, g) in Def-
inition 2.11, using Lemma 3.4 for both cases for conjunction to cover the op-
posite conjunct (i.e. the case not covered by induction).

If (x, f)
e−→0 (x′, g) and (x, f)

e−→0 (x′, h) such that e ∈ U , then g ≡ h.
This determinism property gives rise to a specific result between formula-
reducts and validity, as shown in Lemma 3.6.

Lemma 3.6. For k = (X,L,−→, x) ∈ K and x
e−→ x′ for some e ∈ U and

x′ ∈ X , then for each f, f ′ ∈ F such that (x, f)
e−→0 (x′, f ′) and k � f , it

holds that (X,L,−→, x′) � f ′.

Proof. By induction towards the derivation depth of (x, f)
e−→0 (x′, f ′).

Lemma 3.7. If (x, f)
e−→0 (x′, f ′) and for any n ∈ N it holds that (x, f)

e−→n

(x′, f ′) if for all m < n and for all v ∈ U∗ and (x′, f ′)
v−→∗ m(x′′, f ′′) it holds

that (x′′, f ′′) ↑m f ′′.

Proof. This result follows from the construction in Definition 2.14 and by
strong induction towards n.

Lemma 3.8. If k = (X,L,−→, x) ∈ K and k′ = (X ′, L′,−→′, x′) ∈ K such that
k′ � k and if f, f ′ ∈ F and n ∈ N and v ∈ U∗ such that (x, f)

v−→∗ n(y, f ′) and
(X ′, L′,−→′, x′) � f , then there exists an y′ ∈ X ′ such that x′{−→′}∗y′ and
(X ′, L′,−→′, y′) � (X,L,−→, y) and (X ′, L′,−→′, y′) � f ′.

Proof. This result follows from Definition 2.6, Lemma 3.6 and induction to-
wards the length of v.
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Lemma 3.9 details an important result between the semantic notion of syn-
thesizability (i.e. existence of a satisfying partial bisimulant) and the syntactic
notion as given in Definition 2.13.

Lemma 3.9. For k = (X,L,−→, x) ∈ K, k′ ∈ K and for f, g ∈ F such that
f ∈ sub (x, g) and k′ � g, it holds that (x, g) ↑n f .

Proof. The proof is somewhat involved. Strong induction is applied towards
n, thereby generalizing over all other variables, and thereafter a nested in-
duction towards the structure of f , thereby generalizing over g, x and k′. A
number of cases for f can be resolved directly using the induction hypothesis
for f , and do not depend upon the induction towards n. These are the cases
for f ≡ b ∈ B, f ≡ f1 ∧ f2, f ≡ b ∨ f ′, f ≡ [e]f ′ and f ≡ � f ′. Lemma 3.1 is
required to resolve these cases.

Now the other inductive cases for f are considered, where the key dif-
ferences for the cases under the inductions n ≡ 0 and n + 1 are highlighted.
Assume that k′ = (X ′, L′,−→′, x′) and R ⊆ X ′ ×X such that k′ �R k.

If f ≡ <e>f ′, with e ∈ C, then by Lemma 3.1(a) it holds that k′ � <e>f ′. By
Lemma 3.5 there exists a step x′

e−→ y′ and a formula-reduction (x′, g)
e−→0

(y′, g′) such that (X ′, L′,−→′, y′) � g′ and f ′ ∈ sub (y′, g′). By partial bisim-
ulation there exists a step x

e−→ y such that (y′, y) ∈ R. Definition 2.12 then
allows the construction of a step (x, g)

e−→0 (y, g′). By the induction hypoth-
esis for f ′, it holds that (y, g′) ↑n f ′. For the case n ≡ 0, this is sufficient to
derive that (x, g) ↑n <e>f ′. For the inductive case for n, Lemma 3.7 needs
to be applied to construct a step (x, g)

e−→n (y, g′). This requires that for all
m < n and v ∈ U∗ such that (y, g′)

v−→∗ m(z, g′′) it holds that (z, g′′) ↑m g′′.
This can be resolved by Lemma 3.8 and the induction hypothesis for n.

The case for f ≡ ♦ b, with b ∈ B is essentially a generalization for the case
for f ≡ <e>f ′. If k′ � ♦ b, then there exists a x′{−→′}∗y′ such that (X ′, L′,−→′
, y′) � b, and by Lemma 3.4 there exists a g′ ∈ F such that (X ′, L′,−→′, y′) �
g′. This allows the construction of (x, g) −→∗0 (y, g′) by Definition 2.12, such
that (X,L,−→, y) � b. For the inductive case for n it holds that (x, g) −→∗n
(y, g′), which is sufficient to derive (x, g) ↑n ♦ b. The two remaining cases for
f ≡ <e> and f ≡ dlf are essentially instances for the case f ≡ <e>f ′.
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The main result required for the maximality theorem has been established
in Lemma 3.9. Maximal permissiveness is then straightforwardly derivable.

Theorem 3.4. For k′, k ∈ K such that k′ � k and k′ � f and for all n ∈ N it
holds that k′ � S nk,f .

Proof. Assume k = (X,L,−→, x) and k′ = (X ′, L′,−→, x′) and further as-
sume that R ⊆ X ′ × X such that k′ �R k. It will be shown that k′ �R′ S nk,f
where R′ is defined as:

R′ = {(y′, (y, g)) | (y′, y) ∈ R ∧ (X ′, L′,−→′, y′) � g}

Clearly (x′, (x, f)) ∈ R′ and for all (y′, (y, g)) ∈ R′ it holds that L′(y′) =

LXF(y, g). If y′ e−→′z′ then by Lemma 3.4 there exists a step (y, g)
e−→0 (z, g′)

such that (X ′, L′,−→′, z′) � g′. By partial bisimulation, there exists a step
y

e−→ z such that (z′, z) ∈ R. Subsequently, Lemma 3.7 may be applied,
to construct the appropriate step. This requires that for all m < n and for
all v ∈ U∗ such that (z, g′)

v−→ ∗ m(w, g′′) it holds that (w, g′′) ↑m g′′. This
follows by application of Lemma 3.8 and Lemma 3.9. It then follows that
(z′, (z, g′)) ∈ R′.

For the right-to-left case, assume (y, g)
e−→n (z, g′) for some e ∈ U . Since

y
e−→ z, there exists a step y′

e−→ ′z′ such that (z′, z) ∈ R. By Lemma 3.6, it
holds that (X ′, L′,−→′, z′) � g′, and therefore (z′, (z, g′)) ∈ R′.

Theorem 3.5 shows that if a solution exists, it will eventually be found by
the synthesis construction introduced before.

Theorem 3.5. If k′, k ∈ K and f ∈ F such that k′ � k and k′ � f , then there
exists an n ∈ N such that S nk,f is complete.

Proof. Assume that k = (X,L,−→, x) and k′ = (X ′, L′,−→′, x′). By Theorem
3.1 there exists an n ∈ N such that S nk,f is stable. Due to the construction
in Definition 2.14, for all (x, f) −→∗n (y, f ′) at least one of the following two
observations holds:

1. There exist v, w ∈ U∗ and s ∈ C∗ such that (x, f)
vsw−→∗ n(y, f ′); or

2. There exists u ∈ U∗ such that (x, f)
u−→∗ (y, f ′).

In the first case, by Definition 2.14 it holds that (y, f ′) ↑n f ′. For the second
case, Lemma 3.8 can be applied to obtain an y′ ∈ X ′ such that x′{−→′}∗y′ and
(X ′, L′,−→′, y′) � f ′ and (X ′, L′,−→′, y′) � (X,L,−→, y). By Lemma 3.9 it
then holds that (y, f ′) ↑n f ′. It follows that S nk,f is complete.
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3.2 Algorithm

The algorithm in Figure 3.2 is proposed as a direct implementation of the the-
oretical synthesis construction introduced in Chapter 2, for which termination
and correctness have already been shown in Section 3.1. What remains to be
analyzed is the computational complexity of the proposed algorithm, which
is detailed in Theorem 3.6. The key parts of this algorithm will be analyzed
first.

For the first part of this algorithm, shown in lines 1-11 in Figure 3.2, a
somewhat different approach compared to the theoretical setup in Definition
2.12 is applied, since these derivation rules cannot be directly projected onto
pseudo-code. Instead of a direct transformation of each original transition
x

e−→ x′ into a combined transition (x, f)
e−→0 (x′, f ′), a recursive procedure

zero is used where finiteness of formula expansion, as shown in Theorem 3.1,
is applied in order to obtain a finite set of connected transitions which form
−→0. This means that once every outgoing transition of a certain state (x, f)
has been computed, these transitions, and successive transitions thereof, do
not have to be computed again. The test in line 5 in Figure 3.2, determines
whether the state (x, f) has been inspected before.

The second part of the algorithm, shown in lines 13-34 in Figure 3.2, ap-
plies the synthesizability test repeatedly and removes the transitions to states
for which this test fails. This is done until a stable point is reached, as can be
observed in line 21 in Figure 3.2. The completeness test in line 30 in Figure
3.2 then determines whether synthesis has been successful.

What follows is a sketch of a proof for the computational complexity for
the algorithm shown in Figure 3.2. This requires an appropriate metric for
the formula size since the number of transitions in S 0

k,f depends upon the
size of the formula. Such a metric is given in Definition 3.1, followed by the
algorithm and the actual computational complexity proof.

Definition 3.1. The function size : F 7→ N is defined as a metric for the size
of the formulas in F . Assume that f, g ∈ F , b ∈ B and e ∈ E in the following
definition:

size (f) = 1 for f ∈ {b,♦ b,<e>, dlf }
size (f ∧ g) = size (f) + size (g)
size (b ∨ f) = 1 + size (f)
size ([e]f) = 1 + size (f)
size (<e>f) = 1 + size (f)
size (� f) = 1 + size (f)
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1 procedure zero (−→⊆ X × E ×X, (x, f) ∈ X ×F , H ⊆ X ×F )
2 returns −→0⊆ (X ×F)× E × (X ×F)
3 begin
4 set −→0 := ∅
5 if (x, f) ∈ H
6 return ∅
7 for each (x, f)

e−→0 (x′, f ′) as in Definition 2.12
8 set −→0 := −→0

⋃
{((x, f), e, (x′, f ′))}

9 set −→0 := −→0

⋃
zero (−→, (x′, f ′), H

⋃
{(x, f)})

10 return −→0

11 end
12

13 procedure synthesis (k ∈ K, f ∈ F )
14 returnsS nk,f ∈ K or false
15 begin
16 let k = (X,L,−→, x)
17 set −→0 := zero (−→, (x, f), ∅)
18 for each n = −1 or n > 0
19 set −→n := ∅
20 set n := 0
21 repeat until −→n−1 = −→n

22 for each (y, g)
e−→n (y′, g′)

23 if e ∈ U
24 set −→n+1 := −→n+1

⋃
{(y, g)

e−→n (y′, g′)}
25 else if (y′′, g′′) ↑n g′′ for each v ∈ U∗ and
26 (y′, g′)

v−→∗ n(y′′, g′′) as in Definition 2.13
27 set −→n+1 := −→n+1

⋃
{(y, g)

e−→n (y′, g′)}
28 set n := n+ 1
29 set S nk,f := (X ×F , LXF,−→n, (x, f))

30 if (x′, f ′) ↑n f ′ for each (x, f) −→∗n (x′, f ′)
31 return S nk,f
32 else
33 return false
34 end

Figure 3.2: Algorithm for synthesis of a formula f ∈ F , applied to the Kripke-LTS
k ∈ K. Note the usage of a distinct procedure zero to construct the synthesis starting
point −→0, since Definition 2.12 cannot be expressed directly in pseudo-code.
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Theorem 3.6. The algorithmic generation of S nk,f terminates in O (m4) steps,
if m = size (f)× l and k has l transitions.

Proof. Let k = (X,L,−→, x) and f ∈ F . Assume that l is the number of
transitions in −→. The starting point of synthesis −→0, as generated by the
procedure zero, has O (size (f) × l) transitions, since it is expanded by a
factor which depends upon the size of f . The procedure zero is invoked
only once within the procedure synthesis, and returns the transition re-
lation −→0, having O (m) transitions. Since the succeeding iteration in the
synthesis procedure operates multiple times upon this transition relation,
it can be safely assumed that this part of the procedure outgrows other parts
in the computational complexity. A distinction is made between four nested
operations which may each take O (m) steps:

1. The outer loop starting in line 21, which runs until a stable transition re-
lation has been reached, which may involve as many iterations as there
are transitions in −→0.

2. The inner loop starting in line 22, which considers for each transition
whether it should be removed.

3. The applied synthesizability test in lines 25-26 can be subdivided into
two nested parts:

(a) Synthesizability is evaluated at every state reachable by uncontrol-
lable events, which may involve a search over O (m) transitions.

(b) The synthesizability test itself has complexity O (m) as shown in
Definition 2.13, due to formulas of type ♦ b.

This leads to the observation that the two nested loops in the synthesis
procedure give rise to a computational complexity in the order ofO (m4). The
succeeding invocation of the completeness test only computes the synthesiz-
ability for every remaining reachable state, and does not remove any more
transitions. Its complexity is therefore superseded by the aforementioned two
nested loops.

The algorithm in Figure 3.2 is presented as a direct implementation of the
synthesis construction as presented in this thesis and not as the most efficient
or optimized implementation, since this would obscure the insight into such
an algorithm. Nevertheless, the second case study in Section 3.6 analyzes the
scalability of the algorithm presented in Figure 3.2.
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3.3 Ramadge-Wonham Supervisory Control

In this section it is explained how a Ramadge-Wonham (RW) control synthe-
sis problem [76] may be expressed using the theory proposed in this thesis.
Among other adaptations, a relation between the language-based constructs
in RW-synthesis and the behavioral preorder of partial bisimilarity needs to
be established. RW-synthesis is limited to deterministic models of both plant
and supervisor [76] and this restriction is applied in this section as well.

Recall from Section 2.1 that RW-synthesis explicitly stipulates a subset
Xm ⊆ X of states as being marked, modeling completed or notified tasks in
the physical process the plant represents [76]. To cope with marked states,
the plant model needs to be adapted as stated in Definition 3.2.

Definition 3.2. For plant model k = (X,L,−→, x) ∈ K and set Xm ⊆ X of
marked states a new label marked will be added such that marked ∈ L(y) for
each y ∈ Xm, and marked 6∈ L(y) for each y 6∈ Xm.

For the remainder of this section it is assumed that each k ∈ K is adapted
as described in Definition 3.2. Two language-based notions are now intro-
duced in Definition 3.3 and language-based controllability in Definition 3.4.
These are definitions that are adapted from Section 2.1 for K-structures.

Definition 3.3. The language L (k) and marked language Lm(k) of a Kripke-
LTS k = (X,L,−→, x) ∈ K are defined as follows:

L (k) = {s ∈ E∗ | ∃x′ ∈ X : x
s−→∗ x′}

Lm(k) = {s ∈ E∗ | ∃x′ ∈ X : x
s−→∗ x′ ∧marked ∈ L (x′)}

In addition the language closure L of L ⊆ E∗ is defined as:

L = {s ∈ L | ∃ t ∈ E∗ : st ∈ L}.

Definition 3.4. For languages L ⊆ E∗ and K ⊆ E∗ it is defined that K is
controllable with regard to L if for each s ∈ K and su ∈ L, for u ∈ U , it holds
that su ∈ K.

Parallel composition is given in Definition 3.5. This type of parallel com-
position is borrowed from process theory [8] and may be used to define the
construction between plant and supervisor in supervisory control. Definition
3.5 is essentially an adaptation of Definition 2.3 which accommodates state
labels and handles marked states via these aforementioned labels.
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Definition 3.5. For k = (X,L,−→, x) ∈ K and k′ = (X ′, L′,−→′, x′) ∈ K, the
parallel composition k′ ‖ k is defined as follows:

k′ ‖ k = (X ′ ×X,L′′,−→′′, (x′, x))

whereL′′(y′, y) = L′(y′)∩L(y), for each y′ ∈ X ′ and y ∈ X , and (y′, y)
e−→′′(z′, z)

if and only if y′ e−→′z′ and y e−→ z. Clearly L (k′ ‖ k) ⊆ L (k) and L (k′ ‖ k) ⊆
L (k′).

To express an RW-synthesis problem, a deterministic plant model p ∈ K is
assumed. Subsequently, a supervisor s ∈ K needs to be constructed such that
the following properties hold: 1) L (p ‖ s) is controllable with regard to L(p);
and 2) p ‖ s is non-blocking; that is: L (p ‖ s) ∩ Lm(p) = L (p ‖ s). In Theorem
3.7 it is shown that if S 1

p,�♦marked is chosen for s these two conditions are sat-
isfied. Observe that also S 1

p,�♦marked is deterministic, since every step x e−→
x′ gives rise to at most one step which is of the form (x,�♦marked)

e−→1

(x′,�♦marked), due to normalization, Definition 2.12 and Definition 2.14.

Lemma 3.10. If k′, k ∈ K such that k′ � k, then L (k′) is controllable with
regard to L (k).

Proof. Let k′ = (X ′, L′,−→′, x′) and k = (X,L,−→, x) and assume R ⊆ X ′ ×
X exists such that k′ �R k. Definition 3.4 may now be followed. Assume
that s ∈ L (k′) and su ∈ L (k), for some u ∈ U . Then clearly there exists
y′ ∈ X ′ such that x′{ s−→′}∗y′ and y ∈ X such that x s−→∗ y and (y′, y) ∈ R,
by Definition 2.6. Since y u−→ z exists, again by Definition 2.6 there exists a
step y′

u−→′z′ and thus su ∈ L (k′). This result is a direct consequence of the
assumption that both k′ and k are deterministic.

For the remainder of this section, only those plant models p ∈ K for which
a non-empty solution exists are considered.

Lemma 3.11. For each k = (X,L,−→, x) ∈ K it holds that S 1
k,�♦marked is

complete.

Proof. For each (x,�♦marked) −→∗0 (y,�♦marked) and (y,�♦marked)
e−→0

(z,�♦marked) it holds that (y,�♦marked)
e−→1 (z,�♦marked) if and only

if (z′,�♦marked) ↑0 ♦marked , for all u ∈ U∗ and (z,�♦marked)
u−→∗0

(z′,�♦marked), as follows from Definition 2.14. Due to the assumption that
for each u ∈ U∗ and (x,�♦marked)

u−→∗0(y,�♦marked) it holds that
(y,�♦marked) ↑0 ♦marked , it may be concluded that S 1

k,�♦marked is com-
plete.
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Theorem 3.7. For each p ∈ K it holds that L (p ‖ S 1
p,�♦marked) is controllable

with regard to L (p), and in addition p ‖ S 1
p,�♦marked is non-blocking.

Proof. By Lemma 3.11, S 1
p,�♦marked is complete. Then by Lemma 3.10 and

Theorem 3.3 it holds that L (p ‖ S 1
p,�♦marked) is controllable with regard to

L (p). Now non-blockingness needs to be considered. Observe that:

L (p ‖ S 1
p,�♦marked) ∩ Lm(p) ⊆ L (p ‖ S 1

p,�♦marked)

already holds, so therefore:

L (p ‖ S 1
p,�♦marked) ⊆ L (p ‖ S 1

p,�♦marked) ∩ Lm(p)

is what remains to be shown. Assume that p = (X,L,−→, x) and t ∈ L (p ‖
S 1
p,�♦marked), then (x,�♦marked)

t−→∗1(y,�♦marked). Since (y,�♦marked)

↑0 ♦marked there exists v ∈ E∗ such that (y,�♦marked)
v−→∗1(z,�♦marked)

and marked ∈ L (z). Then by Definition 2.12 it holds that x tv−→∗ z, and there-
fore tv ∈ Lm(p).

3.4 Computer Verified Proofs

In this section computer verified proofs are detailed which have been used to
support the main synthesis construction as introduced in the previous chap-
ters. The complete file containing all computer verified proofs is available
online at the following location:

https://github.com/ahulst/deds

In conjunction with explaining the computer verified proofs in detail, in-
formation about the specific Coq constructions which are applied will be pro-
vided. The reader is only expected to have initial knowledge regarding com-
puter verified proofs or the syntax of specific Coq constructions. Therefore,
it is the intention to provide detailed explanations in this chapter. Useful
resources for more in-depth knowledge regarding proof assistants and Coq
may be found in [13] and [39]. The quick hands-on guide Coq in a Hurry4

written by Yves Bertot may also be very useful in acquiring or updating
knowledge regarding the Coq proof assistant.

An important requirement for each computer verified proof (and for each
formal model, for that matter) is that it should be as close as possible to the

4Available at: https://cel.archives-ouvertes.fr/inria-00001173v5/document
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actual subject it is intended to model. In the case of formal proofs, this comes
down to encoding the applied constructions in such a way that they closely
mimic their counterparts in the mathematical content of the proof. For parts
of the correctness construction in the previous chapter, this was found to be
not possible. It would certainly have been possible to encode proofs of the
entire correctness construction in Coq. However, such an encoding would in-
volve different formalizations and close resemblance between the mathemat-
ical proofs, and the formal encoding would be lost. Therefore, a particular
formalization was chosen which stays closer to the mathematical content in
the previous chapter but does not allow the encoding of the proofs for ter-
mination and solution existence. This is explained in more detail when the
relevant parts of the proof are considered.

An important note relevant for this proof regards the specifics for decid-
ability as materialized in Coq. The first line of the proof specifies the fol-
lowing: Axiom classic : forall (P : Prop), P \/ ˜P. This indicates
that for each proposition a distinction may be made between the case where
it is true and the case where it is false; the usual interpretation of classical
logic. Since Coq is based on constructive logic, this axiom needs to be spec-
ified explicitly. It would have been possible to write the formalized proof in
a constructive way in its entirety, since classical logic is only applied when
considering labels and state-based properties. However, then each labeling
function would have to be explicitly specified as being computable and each
Kripke-LTS would have to be extended in such a way that equality on states
is decidable. This would further obfuscate the proof and for reasons men-
tioned earlier, regarding resemblance between formalized and original proof,
this solution was not chosen.

Starting point of the actual proof consists of the enumeration of three pa-
rameters to the theory by means of the Coq code below. The first line specifies
that the theory is based on the assumption of the existence of two sets E and P
for events and propositions respectively. In addition, the characteristic func-
tion for the subset of uncontrollable events is specified as another parameter
of the theory.

Parameter E P : Set.
Parameter U : E -> Prop.

The next step is to specify the Kripke-LTS by means of an inductive structure.
Several options exist to encode this construct in Coq. The most straightfor-
ward option would be to stay close to the mathematical definition and use a
four-tuple (X,L,−→, x). However, the type of the three latter parameters L,
−→ and x depends upon the type X , and hence it is not possible to encode
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K directly as a four-tuple. Therefore, K is defined as an inductive type, as
shown in the Coq listing below, where klts is a constructor which is used to
construct a new instance of the specified type.

Inductive K : Type := klts : forall (X : Set),
(X -> P -> Prop) -> (X -> E -> X -> Prop) -> X -> K.

This definition is followed directly by another inductive definition where the
reflexive-transitive closure of a transition relation is defined. Note that the
keyword Inductive is applied here to define an inductive predicate, hav-
ing the two parameters X and −→. Since such inductive predicates will be
applied later on in the proofs as well, they need to be considered in somewhat
more detail. First note that Coq makes a distinction between recursive defini-
tions and inductive definitions, as illustrated as follows. In Coq, a recursive
function is a total function parameterized by an inductive type which may
only invoke itself if applied using a smaller case in the construction of this
parameter. For example, by following the standard constructive definition
of natural numbers using zero and successor, a recursive function f which is
called using parameter n+1 is only well-defined in Coq if f is applied to n or
0. On the contrary, an inductive predicate specifies only the cases for which
the predicate is true, and thus the definition of an inductive predicate in Coq
need not be total. From a mathematical point of view, inductive predicates
are therefore better suited to capture derivation rules, compared to recursive
functions, since derivation rules are often only applied to define the positive
cases of a predicate. The restrictions applied to inductive predicates in Coq
are more strict: a function is not allowed to be applied to an invocation of the
predicate itself during its definition. This restriction is generally referred to as
strict positivity. Derivation rules, for instance when they are applied to define
an operational semantics, offer a less strict regime and are often considered
to be well-defined under some form of stratification.5 Now, the reflexive-
transitive closure of a transition relation by means of two derivation rules is
considered first, which may then be readily compared to the Coq-based defi-
nition below.

x −→∗ x
x

e−→ y y −→∗ x′

x −→∗ x′

Now compare these two derivation rules to their two respective counterparts
within the inductive predicate defined below. This definition relies upon two

5At present there exists no Coq library which provides a generalized implementation of strat-
ification from a derivation rule perspective. This would be a very interesting future project.
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constructors which each correspond to one of the derivation rules. These two
constructors define precisely under which conditions the predicate which is
built by these derivation rules holds. Due to the fact that only the cases for
which this predicate holds are stated, this definition is a typical example of a
non-total definition:

Inductive trans (X : Set) (step : X -> E -> X -> Prop) :
X -> X -> Prop :=

| trans_refl : forall (x : X), trans X step x x
| trans_closed : forall (x y x’ : X) (e : E),
step x e y -> trans X step y x’ -> trans X step x x’.

Partial bisimilarity can now be defined in Coq, as shown in the listing below.
The relation R is defined as a two-parameter characteristic function, while a
more intuitive definition would have been to use a characteristic function on
pairs. However, the latter option results in less clarity in proofs, since these
pairs need to be broken down in their parts all the time if one part of a pair is
considered in a proof. The definition of partial bisimilarity in Coq, as shown
below, is further considered to be self-explanatory.

Definition pbis (k’ k : K) : Prop :=
match (k’, k) with
| (klts X’ L’ step’ x’, klts X L step x) =>

exists R : X’ -> X -> Prop, R x’ x /\
forall (y’ : X’) (y : X), R y’ y ->
(forall (p : P), L’ y’ p <-> L y p) /\
(forall (e : E) (z’ : X’), step’ y’ e z’ ->
exists z : X, step y e z /\ R z’ z) /\

(forall (e : E) (z : X), U e -> step y e z ->
exists z’ : X’, step’ y’ e z’ /\ R z’ z)

end.

The treatment of the initial definitions is continued by specifying the two sets
of formulas B and F as inductive types. The translation into Coq code of
Definition 2.8 is shown below. Such inductive definitions of sets quite closely
mimic their corresponding definitions as grammars in BNF form. However,
Definition 2.8 only defines formulas <e>f for e ∈ C. Since controllability is
defined by a characteristic function on events, and due to the fact that propo-
sitional tests are not allowed in the construction of inductive types, an addi-
tional well-formedness test for formulas in F needs to be specified. This is
done by defining the recursive predicate wf as shown in the Coq listing be-
low. This predicate is only used as a premise in lemmas and theorems when
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the restriction that e ∈ C in a formula <e>f is actually relevant. When encod-
ing a fixpoint definition in Coq syntax, the placeholder notation ( ) is applied
to match all cases not covered previously.

Inductive F : Set :=
| basic : B -> F
| conj : F -> F -> F
| disj : B -> F -> F
| all : E -> F -> F
| ex : E -> F -> F
| box : F -> F
| diam : B -> F
| can : E -> F
| dlf : F.

Fixpoint wf (f : F) : Prop :=
match f with
| conj f g => wf f /\ wf g
| disj b f => wf f
| all e f => wf f
| ex e f => ˜U e /\ wf f
| box f => wf f
| _ => True
end.

The next step is to define validity of formulas in B and F with regard to a
Kripke-LTS in Coq. An implementation of F-validity in Coq is shown below:

Fixpoint val (k : K) (f : F) : Prop :=
match (k, f) with
| (klts X L step x, basic b) => bval X L x b
| (_, conj f g) => val k f /\ val k g
| (klts X L step x, disj b f) => bval X L x b \/ val k f
| (klts X L step x, all e f) => forall (x’ : X),

step x e x’ -> val (klts X L step x’) f
| (klts X L step x, ex e f) => exists x’ : X,

step x e x’ /\ val (klts X L step x’) f
| (klts X L step x, box f) => forall (x’ : X),
trans X step x x’ -> val (klts X L step x’) f

...
(some lines of Coq code omitted)

...
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The next step is to define the reduction relation on modal expressions in Coq.
For reasons mentioned earlier, an inductive predicate is applied to encode the
corresponding derivation rules. This definition directly follows the deriva-
tion rules in Definition 2.12.

Inductive red (X : Set) (L : X -> P -> Prop) (x : X) :
F -> E -> F -> Prop :=

| red_basic : forall (b : B) (e : E),
red X L x (basic b) e (basic true)

| red_and : forall (f g f’ g’ : F) (e : E),
red X L x f e f’ -> red X L x g e g’ ->
red X L x (conj f g) e (conj f’ g’)

| red_or_left : forall (f : F) (b : B) (e : E),
bval X L x b -> red X L x (disj b f) e (basic true)

| red_or_right : forall (f f’ : F) (b : B) (e : E),
˜ bval X L x b -> red X L x f e f’ ->
red X L x (disj b f) e f’

| red_all_pos : forall (f : F) (e : E),
red X L x (all e f) e f

| red_all_neg : forall (f : F) (e e’ : E), e <> e’ ->
red X L x (all e f) e’ (basic true)

| red_ex_pos : forall (f : F) (e : E),
red X L x (ex e f) e f

| red_ex_neg : forall (f : F) (e e’ : E),
red X L x (ex e f) e’ (basic true)

| red_box : forall (f f’ : F) (e : E),
red X L x f e f’ ->
red X L x (box f) e (conj (box f) f’)

| red_diam : forall (b : B) (e : E),
red X L x (diam b) e (basic true)

| red_can : forall (e e’ : E),
red X L x (can e) e’ (basic true)

| red_dlf : forall (e : E),
red X L x dlf e (basic true).

Next comes the definition of sub-formulas and the definition of the synthe-
sizability predicate in Coq. Sub-formulas as shown in Definition 2.11 are an
example of a recursive predicate which may be encoded recursively as well
as inductively in Coq (the latter option was used due to similarity with its
definition via derivation rules). For instance, the reflexive-transitive closure
of a transition relation is far simpler to encode inductively. Since a recursive
definition depends upon the presence of a parameter of an inductive type, an
extra parameter would have to be added. For instance, the application depth
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as a natural number. On the other hand, a function such as bval is, as men-
tioned earlier, impossible to encode inductively, since it negates the result of
a recursive invocation. Since negation is a function in Coq, this would not be
allowed under the strict positivity restriction. Sub-formulas are encoded in
Coq as follows:

Inductive sub (X : Set) (L : X -> P -> Prop) (x : X) :
F -> F -> Prop :=

| sub_refl : forall (f : F), sub X L x f f
| sub_and_left : forall (f g h : F), sub X L x f g ->
sub X L x f (conj g h)

| sub_and_right : forall (f g h : F), sub X L x f h ->
sub X L x f (conj g h)

| sub_or : forall (f g : F) (b : B), ˜ bval X L x b ->
sub X L x f g -> sub X L x f (disj b g)

| sub_box : forall (f g : F), sub X L x f g ->
sub X L x f (box g).

The next definition to be detailed is that of synthesizability, which is shown
in the Coq listing below. This formalized definition is somewhat complicated
and therefore requires some explanation. Again, an inductive predicate was
applied to achieve close resemblance to the derivation rules in Definition 2.13.
This has as an additional advantage that no existential variables need to be
explicitly specified using existential quantifiers, which may lead to more com-
plicated proofs. Due to the fact that the transformation into Coq code of Def-
inition 2.13 results in a quite lengthy code fragment, the listing below is split
into two parts:

Inductive syn (X : Set) (L : X -> P -> Prop)
(step : X * F -> E -> X * F -> Prop) :
X * F -> F -> Prop :=

| syn_basic : forall (x : X) (b : B) (g : F),
bval X L x b -> syn X L step (x, g) (basic b)

| syn_and : forall (x : X) (f1 f2 g : F),
syn X L step (x, g) f1 -> syn X L step (x, g) f2 ->
syn X L step (x, g) (conj f1 f2)

| syn_or_left : forall (x : X) (b : B) (f g : F),
bval X L x b -> syn X L step (x, g) (disj b f)

| syn_or_right : forall (x : X) (b : B) (f g : F),
syn X L step (x, g) f ->
syn X L step (x, g) (disj b f)

| syn_all : forall (x : X) (f g : F) (e : E),
syn X L step (x, g) (all e f)
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The definition of synthesizability in Coq continues below. Note the cases for
� f which is recursively defined in a relatively simple way, and the case for
♦ b, for b ∈ B, which tests for the existence of a reachable state-formula pair
where b holds.

| syn_ex : forall (x x’ : X) (f g g’ : F) (e : E),
step (x, g) e (x’, g’) -> sub X L x’ f g’ ->
syn X L step (x’, g’) f ->
syn X L step (x, g) (ex e f)

| syn_box : forall (x : X) (f g : F),
syn X L step (x, g) f ->
syn X L step (x, g) (box f)

| syn_diam : forall (x x’ : X) (b : B) (g g’ : F),
trans (X * F) step (x, g) (x’, g’) ->
bval X L x’ b -> syn X L step (x, g) (diam b)

| syn_can : forall (x x’ : X) (g g’ : F) (e : E),
step (x, g) e (x’, g’) -> syn X L step (x, g) (can e)

| syn_dlf : forall (x x’ : X) (g g’ : F) (e : E),
step (x, g) e (x’, g’) -> syn X L step (x, g) dlf.

The treatment of the synthesis construction is continued by detailing how the
main parts are set up, as detailed in the Coq listing below. A helper predicate
unctrl is defined first, which may be used to restrict a transition relation
to uncontrollable steps. The succeeding steps in the process of transition re-
moval are then formalized using the fixpoint rel. An ambiguity in this for-
malization needs to be clarified. The expression S n is used to refer to the
successor of n and not to the actual synthesis construction, which is defined
thereafter.

Definition unctrl (X : Set) (step : X -> E -> X -> Prop)
(x : X) (e : E) (x’ : X) : Prop := step x e x’ /\ U e.

Fixpoint rel (n : nat) (X : Set) (L : X -> P -> Prop)
(step : X -> E -> X -> Prop) (xf : X * F) (e : E)
(xf’ : X * F) : Prop :=
match n with
| 0 => step (fst xf) e (fst xf’) /\

red X L (fst xf) (snd xf) e (snd xf’)
| S n => rel n X L step xf e xf’ /\ (U e \/

forall (xf’’ : X * F), trans (X * F)
(unctrl (X * F) (rel n X L step)) xf’ xf’’ ->

syn X L (rel n X L step) xf’’ (snd xf’’))
end.



3.4. Computer Verified Proofs 63

The synthesis construction itself is then defined in terms of the projection of
the labeling function onto the state-formula product space and the fixpoint
rel defined one step earlier. This definition thereby overloads the build-in
Coq function of successor.

Definition S (k : K) (f : F) (n : nat) : K :=
match k with
| klts X L step x =>

klts (X * F) (fun xf => L (fst xf))
(rel n X L step) (x, f)

end.

One remaining definition in Coq is that of completeness of the synthesis con-
struction, which signifies that no more transition removal is required. This
may be straightforwardly encoded in Coq using the following definition:

Definition complete (n : nat) (X : Set)
(L : X -> P -> Prop) (step : X -> E -> X -> Prop)

(x : X) (f : F) : Prop :=
forall (x’ : X) (f’ : F), trans (X * F)
(rel n X L step) (x, f) (x’, f’) ->

syn X L (rel n X L step) (x’, f’) f’.

Since definitions are now encoded in Coq, the next phase of formalization is
the encoding of the actual proofs. A number of smaller lemmas are first re-
quired in order to prove the major theorems. A relatively simple lemma is
discussed in somewhat more detail to consider the basic foundations of how
Coq proofs are built, by illustrating how the proof for k � b ⇐⇒ Snk,f � b
is set up. This is detailed in the Coq listing below. The function bval does
not depend upon the transition relation, as mentioned earlier, and is therefore
only defined in terms of the parameters of the state space, labeling functions
and initial state. When studying this proof, one should note that the applica-
tion of a single tactic (a step in the proof) may result in multiple other goals
having to be proven. One particularly important remark is that if a tactic is
closed by a semi-colon, all consequential proof statements are subjected to
the tactics after the semi-colon. The proof steps in bval expand are now
considered in somewhat more detail. First, the intros tactic is applied to
assume a number of variables. Then the induction tactic is applied to sig-
nify induction towards the structure of a variable b ∈ B. This tactic is then
followed by the application of split, which splits a conjunction into a proof
obligation for its two conjuncts. Application of this tactic is required here
since Coq encodes an if-and-only-if statement P <-> Q for propositions P
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and Q as (P -> Q) /\ (Q -> P). This also explains the intro H tactic af-
ter the application of split. The next step is to apply simplification in the
proof obligation and all hypotheses by simpl in *, which applies β and ι
reductions [13]. All proof obligations are then resolved by application of the
tauto tactic. This tactic resolves first-order propositional expressions, which
are clearly decidable.

Lemma bval_expand : forall (X : Set) (L : X -> P -> Prop)
(x : X) (g : F) (b : B), bval X L x b <->
bval (X * F) (fun xf => L (fst xf)) (x, g) b.

Proof.
intros X L x g b ; induction b ; split ; intro H ;

simpl in * ; tauto.
Qed.

Before the Coq encoding of the major proofs is considered, one more lemma
has to be considered in somewhat more detail, since it applies a variant of the
induction applied in many other proofs. Therefore, the following lemma will
be discussed: if f ∈ sub (x, g) and (X,L,−→, x) � g, then (X,L,−→, x) � f .
One option might be to apply induction towards the structure of f . However,
there exists a more compact strategy to resolve this proof. Therefore, sub X
L x f g will be introduced as the premise Hsub, followed by applying the
tactic induction Hsub. This results in Coq applying induction towards the
construction of sub X L x f g. In essence, this is equivalent to induction
towards the derivation depth of f ∈ sub (x, g) and thereafter a case distinction
between the various cases for f ∈ sub (x, g). Application of the induction
hypothesis is performed automatically in most cases by means of the auto
tactic, except for the case for sub-formulas of invariant formulas.

Lemma sub_val : forall (f g : F) (X : Set)
(L : X -> P -> Prop) (step : X -> E -> X -> Prop)
(x : X), sub X L x f g -> val (klts X L step x) g ->
val (klts X L step x) f.

Proof.
intros f g X L step x Hsub Hval ; induction Hsub ; auto.
simpl in Hval ; destruct Hval ; auto.
simpl in Hval ; destruct Hval ; auto.
simpl in Hval ; destruct Hval ; contradiction || auto.
apply IHHsub ; apply Hval ; apply trans_refl.

Qed.

Now the first theorem is considered where it needs to be shown that the
synthesis result satisfies the synthesized formula, as shown in the Coq list-
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ing below. The proof of this theorem is not contained in its entirety due to
its vast length. However, at the start of this proof a number of interesting
steps are applied which require some more explanation. After introduction
of the generalized variables X to n, it can be easily proven that f ∈ sub (x, f),
which holds trivially. Then, this fact is again introduced as a premise for the
proof obligation using the revert tactic, followed by application of the same
revert tactic for the initial state x. Then f is renamed into g in the proof obli-
gation, but only at four specific instances. This allows induction towards the
structure of f , while at the same time generalizing over the variable g, at the
appropriate positions. The included code shows the validity-proof up until
the inductive case for the [e]f operator.

Theorem validity : forall (X : Set) (L : X -> P -> Prop)
(step : X -> E -> X -> Prop) (x : X) (f : F) (n : nat),
complete n X L step x f ->
val (S (klts X L step x) f n) f.

Proof.
intros X L step x f n ;
assert (sub X L x f f) as Hsub by apply sub_refl.
revert Hsub ; revert x ; generalize f at 2 3 4 as g.
induction f ; intros g x Hsub Hcomplete.
apply complete_impl_syn in Hcomplete.
apply sub_syn with (f := basic b) in Hcomplete ; auto.
inversion Hcomplete ; simpl ; apply bval_expand ; auto.
apply sub_and in Hsub ; destruct Hsub ; split ; auto.
destruct (classic (bval X L x b)) as [ H | H ].
simpl ; left ; apply bval_expand ; auto.
simpl ; right ; apply sub_not_or in Hsub ;
apply IHf || auto ; auto.

simpl ; intros xg’ Hstep ; destruct xg’ as [ x’ g’ ] ;
apply IHf ; auto.

apply rel_impl_step_red in Hstep ;
destruct Hstep as [ _ Hred ].

apply sub_all with (x’ := x’) (g’ := g’) (f := f) in Hred ;
auto.

...
(some lines of Coq code omitted)

...
Qed.
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Two lemmas are then required for the controllability proof, which itself fol-
lows straightforwardly from these lemmas. The witness relation for the par-
tial bisimulation needs to be specified as a predicate to express which states
are contained in the setR, by means of the statement fun yg y => fst yg = y.
Note that the fst function extracts the first element of a pair.

Theorem controllability : forall (X : Set)
(L : X -> P -> Prop) (step : X -> E -> X -> Prop)
(x : X) (f : F) (n : nat),
pbis (S (klts X L step x) f n) (klts X L step x).

Proof.
intros X L step x f n.
exists (fun yg y => fst yg = y) ; split ; auto.
intros yg y’ H ; destruct yg as [ y g ] ; simpl in H.
rewrite <- H in * ; split ;
[ simpl ; tauto | split ] ; clear H y’.

intros e yg’ Hrel ; destruct yg’ as [ y’ g’ ].
apply rel_impl_step_red in Hrel ;
destruct Hrel as [ Hstep _ ].

exists y’ ; repeat split ; simpl ; auto.
intros e y’ HU Hstep ;
destruct (red_ex X L y g e) as [ g’ Hred ].

exists (y’, g’) ; repeat split ; auto.
apply unctrl_ex ; auto.

Qed.

The next step is to prove a number of lemmas which are required to complete
the maximality proofs. It is assumed that the reader is able to understand
the applied Coq constructs of these lemmas, given the previous explanations.
The key lemma which is required for the maximality proof is listed in the Coq
code shown below. Nested induction is applied as well as generalization over
the other variables. Another key element is the application of the solve tactic,
which is combined with the proof-theoretic operand ||. Once a tactic on the
left-hand side does not succeed, the tactic on the right-hand side is applied.
Also, note the important difference between the proof-theoretic constructs ||
and |. While the first one is applied to try several tactics until one succeeds,
the second one is used to apply different tactics to different proof obligations.
Another important element of the Coq listing below also needs to be taken
into consideration. First, the natural number n is assumed via the intro n

tactic. Thereafter, induction is applied towards n. Since the introduction of
other variables is postponed to after the intro tactic, induction automatically
generalizes over all other variables. The same strategy is applied for the vari-
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able f. Induction towards the structure of f does not generalize over n, but
does in fact generalize over all subsequently introduced variables.

Lemma pbis_impl_syn : forall (n : nat) (f g : F)
(X : Set) (L : X -> P -> Prop)
(step : X -> E -> X -> Prop) (x : X)
(k’ : K), sub X L x f g -> wf g ->
pbis k’ (klts X L step x) -> val k’ g ->
syn X L (rel n X L step) (x, g) f.

Proof.
intro n ; induction n using strong_ind ; intro f ;
induction f ;
intros g X L step x k’ Hsub Hwf Hpbis Hval ;
solve [ apply syn_all ] ||
solve [ apply sub_and in Hsub ;
destruct Hsub as [ Hf1 Hf2 ] ;
apply syn_and ; [ apply IHf1 with k’ |
apply IHf2 with k’ ] ; auto ] || auto.

...
(some lines of Coq code omitted)

...
Qed.

The remaining theorem concerns the maximality proof, which requires the wf
premise. The previous lemma is the most complex one, and forms essentially
the major part of the construction used to establish maximal permissiveness.
The contents of the maximality theorem follows a similar construction as the
controllability theorem, where the witness relation is specified using a char-
acteristic function.

Theorem maximality : forall (k’ k : K) (f : F) (n : nat),
wf f -> pbis k’ k -> val k’ f -> pbis k’ (S k f n).

Proof.
intros k’ k f n Hwf Hpbis Hval.

...
(some lines of Coq code omitted)

...
Qed.
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3.5 Case Study

Controlled system synthesis as achieved by the proposed theories in this the-
sis can be employed in an actual application setting, as detailed in Chapter
3 and Chapter 5, where the coordination of maintenance procedures in the
printing process of a high-end industrial printer is modeled [63]. Since the
same case study is used in two different instances in this thesis, this case is
introduced in general terms in this section. An implementation of the syn-
thesis algorithm was constructed using the C programming language. This
implementation may be found at the following location:

https://github.com/ahulst/deds

Several distributed independent components make up the printing pro-
cess of an industrial printer, as shown in Figure 3.3. The main task of the
printing process is to apply the toner image onto the toner transfuse belt, fol-
lowed by the actual printing task where it is fused onto the paper sheet. Pre-
serving printing quality over numerous print jobs involves several mainte-
nance operations. For instance, the toner transfuse belt is jittered periodically
to ensure an even spread of the wear induced by sharp paper edges, occa-
sional printing of completely black pages takes place to remove paper dust,
and various techniques are applied to remove coarse toner particles. Main-
tenance scheduling is mainly based upon the number of prints which have
taken place, and maintenance scheduling is therefore related to various strict
and postponable thresholds. If a maintenance operation has to be performed,
the printing process has to switch its power mode from Run to Standby.
However, such a power mode switch may actually trigger the activation of
other queued maintenance operations, which may lead to users of the printer
having to wait unnecessarily long before the printer becomes usable again.

In Figure 3.3g, the occurrence of a non-delayable maintenance operation
A suspends the current print task, followed by a power mode transition to
Standby. However, the power mode change triggers the execution of an-
other maintenance operation B, having a longer duration than operation A.
A realistic example of a practical situation where this occurs is when a black
image is printed (A), taking the exact time required to print a single page,
while the significantly longer transfuse belt jittering (B) is initiated due to the
power mode switch. This combined behavior gives rise to a prolonged user
wait time between print jobs, as shown in Figure 3.3g.

In this case, the control objective is to enforce this uncontrolled system to
behave in such a way that undesired emergent behaviors does not occur. In
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Figure 3.3: Five automata shown in Figure 3.3a-3.3e constitute the main components
of maintenance coordination inside an industrial printer. An abstraction of the print-
ing setup is shown in Figure 3.3f, while an example of coordination procedures is
illustrated in Figure 3.3g. Figures 3.3f and 3.3g were previously used in [63].

addition, all other behavior of the otherwise correctly functioning distributed
components which make up the printing process should be left in place. That
is, the controlled system affected by the imposed restrictions due to more
stringent maintenance coordination should be maximally permissive. The
various distributed components which model the uncontrolled part of the
printing process are shown in Figure 3.3a-3.3e.

The functionality of the various components depicted in Figure 3.3 is now
briefly discussed at an informal level. Dashed lines are again used in Fig-
ure 3.3 to indicate uncontrollable events. These system models comprise
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a natural abstraction in the sense that the scheduling of only one mainte-
nance operation is considered and timing issues are not taken into account.
The components Target Power Mode and Maintenance Scheduling execute
scheduling tasks. The Current Power Mode, Maintenance Operation and
Page Counter components are responsible for handling maintenance tasks
and actuating underlying hardware control. The Current Power Mode sets
the power mode to Run or Standby, in reaction to the enabling signals
Stb2Run and Run2Stb respectively. A confirmation is replied by means of
InStb and InRun . The Maintenance Operation component switches between
carrying out maintenance, triggered by OperStart , or being idle, as confirmed
by the OperFinished signal. The component Page Counter is responsible for
counting the number of printed pages since maintenance has taken place. It
sends the signals ToSoftDln and ToHardDln when soft and hard deadlines
are reached. Once the maintenance has finished, the page counter module is
reset by receiving the OperFinished signal from the Maintenance Operation
component. The controlling unit Target Power Mode defines which mode is
requested by the manager by sending the control signals TargetStandbyEvt
and TargetRunEvt respectively. The Maintenance Scheduling receives a re-
quest for maintenance via the signal SchedOper , which is forwarded to the
manager. Confirmation is sent by the manager using the ExecOperNow event.
In addition, it receives feedback from Maintenance Operation to confirm that
maintenance has finished in order to reset the scheduling.

The case study previously introduced in general terms is now subjected to
for a number of control objectives. As the starting point for synthesis, the par-
allel composition of the five components in Figure 3.3 is constructed, where it
is assumed that all components share the same event alphabet. Upon this in-
termediate result, synthesis for six separate control specifications, which are
partly based on earlier research done in [63], will be synthesized. Informal
and formal interpretations for these control specifications are listed below.
The expression p ⇒ q is used as an abbreviation for ¬p ∨ q and bold face
is used in the formal specifications to indicate state name propositions. For
specifications 2-4, ¬<e> is expressed as [e]false .

1. Maintenance operations can be performed only when the printing pro-
cess is in standby, formalized as:

� (OperInProg⇒ Standby)



3.5. Case Study 71

2. Maintenance operations can be scheduled only when a soft deadline
has been reached and there are no print jobs in progress, or when a
hard deadline has passed, formalized as:

� (<SchedOper>⇒
((SoftDeadline ∧ ¬TargetRun) ∨HardDeadline))

3. Maintenance operations can be started only after being scheduled, for-
malized as:

� (<OperStart>⇒ ExecuteNow)

4. The power mode of the printing process must follow the power mode
dictated by the managers, unless overridden by any pending mainte-
nance operation, formalized using two specifications as:

� (<Stb2Run>⇒ (TargetRun ∧ ¬ExecuteNow))
� (<Run2Stb>⇒ (TargetStandby ∨ExecuteNow))

5. After a maintenance operation has finished, the system should be in the
TargetStandby state, formalized as:

�[OperFinished]TargetStandby

6. Once a maintenance operation has started, it should be completed im-
mediately, such that no new maintenance operation is scheduled and
the system is not in the Standby state, formalized as:

�[OperStart][OperFinished](NotScheduled ∧ ¬Standby)

A controlled system conforming to control specifications 1-4 may be syn-
thesized using the traditional event-based supervisory control framework
[76] (including synthesis for marker state reachability), but also using the
theories proposed in this thesis. Both synthesis techniques result in the ex-
act same model consisting of 60 states and 172 transitions. Requirements 5-6
are used to illustrate the extended expressibility for control specifications the
theories in this thesis provide. Synthesis for specifications 1-6 results in a fur-
ther restricted controlled system consisting of 56 states and 158 transitions.
This case study, albeit small, reflects that the synthesis theory put forward
in this thesis is able to solve synthesis problems which were considered in
earlier research.
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Mixing Station Single AGV model

Figure 3.4: Components in a chemical production plant for which a guiding control
strategy is derived. A single mixing station (Figure 3.4a) is combined with multiple
instances of the AGV model (Figure 3.4b). Models are combined under parallel com-
position, such that a connect event between the mixing station and precisely one AGV
is the only synchronizing event.

3.6 Scalability Analysis

The purpose of this section is to analyze the scalability of the algorithm in-
troduced in Section 3.2 by means of an extensible case study, which is loosely
based on the work in [67]. A control coordination strategy for a variable num-
ber of automated guided vehicles (AGVs) and a mixing station within a chem-
ical production plant will be computed. Since this model can be instantiated
at variable plant sizes and due to the fact that each new AGV introduces sep-
arate control objectives, this case is well-suited to analyze the scalability of
the type of synthesis presented in this thesis.

The case study at hand, as illustrated in Figure 3.4, will now be intro-
duced. A single mixing station (Figure 3.4a) in a chemical production plant is
combined with several AGVs. A single instance of the AGV model is shown
in Figure 3.4b. As shown in Figure 3.4b, for each 1 ≤ n ≤ N , the label agvn
is added to the connected state in AGV n, if there are N AGVs in the en-
tire model. Synchronization takes place under parallel composition in such
a way that the mixing station synchronizes with precisely one AGV over the
connect event. This is the only point of synchronization in the constructed
parallel model. The connect event represents the AGV connecting to the sta-
tion where it delivers a chemical component. The AGV may then disconnect
after which it can be ordered to charge its batteries. If the mixing station
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has received a chemical component from the AGV, it performs quality checks
after which the chemical may be either accepted or denied for mixing. The
completed event represents the situation where the station has completed its
task of mixing, after which its mixing tank is supposed to be immediately
cleaned. For this purpose, a cleaning agent is again delivered by an AGV.

It is intended to synthesize a controlled system for the behavior of both
the AGVs and the mixing station, which needs to adhere to several control
specifications, as listed below:

1. If there are N AGVs, then after N direct subsequential quality checks
at least one AGV should have been disconnected. This specification
ensures that the system does not solely perform quality checks while
not sending the AGVs back. This control objective may be formalized
as follows:

�

(
([qc])N

( ∨
1≤n≤N

¬agvn

))

2. If the mixing process is finished, as signalled by the completed event,
cleaning should happen immediately. In this case, AGV1 should either
be already connected or immediately available for connecting, since this
is the only AGV which is allowed to deliver the cleaning agent:

�[completed] (agv1 ∨ <connect>agv1)

3. If no AGV is connected and if the mixing station is not receiving, then
at least one AGV should be immediately available for connecting. This
may be expressed in terms of the agvn labels:

�

((
recv ∨

∨
1≤n≤N

agvn

)
∨ <connect>

)

The table below shows the computation results for increasing numbers
of AGVs in terms of original plant size (as a single K-model, integrated un-
der the aforementioned form of parallel composition), the size of S 0

k,f and
the size of the final resulting models. All data for model sizes is expressed
as S/T , where S refers to the number of states and T refers to the number of
transitions. In addition, maximal memory consumption and the number of it-
erations required to achieve the final synthesis result are mentioned. Memory
consumption here refers to the maximal number of bytes allocated at some
point during the execution of the program.
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#AGVs plant (k) size S 0
k,f size S nk,f size memory iterations

2 18/78 51/236 23/93 2Mb 3
3 54/297 182/1060 105/558 17Mb 3
4 162/1080 633/4406 487/2956 87Mb 3

The obtained results are briefly characterized here in terms of related re-
search. In [87], the synthesis for a comparable formula consisting of a con-
junction of invariants of reachability expressions is considered. An interest-
ing similarity to the research described in this thesis occurs when synthesis
for variable-size plant models in the orders of tens of states results in large
(up to several gigabytes) state models which remain computable in minutes.
Work in [26] also shows exponential growth of the controller in terms of the
size of the synthesized formula. Many comparable works indicate exponen-
tial growth of both the resulting model and running time once either the plant
model or the synthesized formula expands linearly [5, 58, 28]. Different re-
sults were obtained as well. [45] and [74] do not observe such strong increases
in memory consumption, although in the first case this might be partly due
to the specific approach applied in [45]. An offset in results for synthesis
for formulas in temporal logic may be noticed based on work in [81], where
abstractions due to non-determinism result in effective plant models having
significantly smaller state spaces. Based on these observations, the hypothesis
arises that if a state space reduction via abstraction through the introduction
of non-determinism precedes a memory demanding computation, the net re-
sult may be more efficient compared to observations of the synthesis problem
in itself.

3.7 Closing Remarks

The final stage of two chapters has now been reached which present a novel
approach to controlled system synthesis for modal logic on non-deterministic
plant models. The behavior of a Kripke-structure with labeled transitions is
adapted such that it satisfies the synthesized controlled behavior, expressed
as a formula in modal logic. The relationship between the synthesis result
and the original plant model adheres to important notions in control syn-
thesis: controllability and maximal permissiveness. The controlled behavior
specification logic also comprises deadlock-freeness and marker state reach-
ability. The synthesis approach, via a reduction on modal expressions com-
bined with an iteratively applied synthesizability test for formulas assigned
to target states of transitions, results in an effective synthesis procedure which
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may be implemented in a straightforward fashion. The synthesis theory pre-
sented in this thesis allows the full expressibility of Ramadge-Wonham con-
trol synthesis on deterministic plant models. An implementation of the syn-
thesis technique has been developed in the C programming language. This
will allow an assessment of various parameters regarding tractability and ef-
ficiency of this algorithm in further case studies. In particular, the synthe-
sizability of reachability formulas may be modified such that recomputations
can be avoided using dynamic programming or similar techniques. To enable
a clear focus on the theoretical results and proofs presented in this chapter, an
embedding of such optimizations was not included. Partial bisimilarity as a
means to express controllability, as well as other behavioral preorders for this
purpose, will also have to be studied further.





Chapter 4

Control Synthesis and
Multiple Solutions

This chapter applies a different synthesis approach compared to the previ-
ous two chapters. Whereas in the main synthesis methodology defined in
Chapter 2 a unique solution is derived, research in this chapter involves mul-
tiple solutions. Since this research aim is more challenging due to obtaining
more than one solution, control objectives are limited to Hennessy-Milner
logic [34]. Furthermore, part of the research framework applied in the pre-
vious chapters is inherited here. Again, plant models are allowed to be non-
deterministic and synthesis results are required to be maximally permissive.
An important difference between this chapter and the previously described
work is due to an abstraction with regard to controllability of individual
events: all events are assumed to be controllable in this chapter. Figure 4.1
depicts a global overview of the applied synthesis method in this chapter.
More formally, synthesis is defined in such a way that a set of results is ob-
tained, since multiple solutions are induced by having an unrestricted dis-
junction operator. Each result in the synthesized set satisfies the given HML
formula, and is related to the original structure via simulation. This result set
contains at least one outcome which is maximal with regard to the simulation
preorder.

The remainder of this chapter is organized as follows. Section 4.1 con-
tains a number of preliminary definitions. Note that a number of definitions
in Section 4.1 are adaptations of earlier definitions in slightly modified form.
Section 4.2 discusses the specific synthesis approach considered in this chap-
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Figure 4.1: Illustrating key parts of the synthesis process. The first step consists of
unfolding the LTS up to the depth of synthesized formula in the form of a partial tree
representation of behavior. After the actual synthesis itself is applied, each obtained
result is again converted back into an LTS

ter. Section 4.3 then details a partial tree-representation of the plant model
which is used as a preceding step for this specific type of synthesis. Section
4.4 contains an operational definition of the synthesis construction, which is
subsequently shown to be correct in Section 4.6 and Section 4.7. An algorith-
mic representation of this specific synthesis construction is the subject of Sec-
tion 4.5. Computer verified proofs for the theories introduced in this chapter
are contained in Section 4.8.

4.1 Definitions

Just as in Section 2.2, existence of a set of events E and a set of atomic proposi-
tions P is assumed. A difference with regard to the previous chapters is that
the set of basic states X is assumed at a global level. The atomic propositions
are interpreted with regard to a labeling function L : X 7→ 2P relating states
to properties. These are used to capture the state-based information of a sys-
tem. An atomic proposition p ∈ P holds in state x ∈ X if and only if p ∈ L(x).
Assuming these definitions at a global level brings clarity to the definition of
synthesis later on, while not limiting the scope of this definition. Since labels
are not added or removed from states during synthesis, the global definition
of P does not affect the synthesis semantics. In this chapter, two types of
structures are used to express structural behavior. The first is the standard
labeled transition system (LTS). The second is a partial tree representation
upon which synthesis is defined. This will be the topic of Section 4.3. Both
behavioral models capture process dynamics via labeled transitions between
states. It is assumed that they are finitely branching, which means that each
state has finitely many outgoing transitions. The definition of an LTS differs
from Definition 2.1, since state-labeling is defined at a global level.
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Definition 4.1. Given a state space X ⊆ X , transition relation −→⊆ X × E ×
X , and initial state x, an LTS is defined as the tuple (X,−→, x).

The notation G will be used to denote the universe of LTSes. For transi-
tion relation −→⊆ X × E ×X , the notation x e−→ x′ is used to indicate that
(x, e, x′) ∈−→. The standard simulation preorder and bisimulation equiva-
lence [31] are used to relate elements in G, according to the definitions shown
below. Note that unlabeled transition systems are used in [31], but results can
be adapted and applied straightforwardly.

Definition 4.2. The LTSes g′ = (X ′,−→′, x′) and g = (X,−→, x) ∈ G are
related via simulation (notation: g′ � g) if there exists a relation R ⊆ X ′ ×X
such that (x′, x) ∈ R and for all (y′, y) ∈ R it holds that:

1. L′(y′) = L(y); and

2. For all e ∈ E and z′ ∈ X ′ such that y′ e−→′z′, there exists a z ∈ X such
that y e−→ z and (z′, z) ∈ R.

The notation g′ �R g will be used to indicate that g′ � g as witnessed by R.
The first clause in Definition 4.2 requires equality of the sets of satisfied ba-

sic properties. This reflects the synthesis semantics where validity is enforced
by removal of transitions, while state-based properties are not adjusted.

Definition 4.3. If g′ �R g and g′ �R−1 g according to Definition 4.2, then g′

and g are related via bisimulation (notation: g′↔R g).

Simulation is reflexive as witnessed by the identity relation on G and tran-
sitive by composition of the two underlying witness relations. Bisimilarity
is reflexive and transitive for the very same reasons, but it is symmetric by
the inverted witness relation as well, and therefore an equivalence. These are
standard results [31].

The standard definition of formulas in Hennessy-Milner Logic (HML) [34]
is extended with a test for basic properties p ∈ P , and its negation ¬p.

Definition 4.4. The set F of HML-formulas is defined as follows:

F ⇒ true | false | P | ¬P | F ∧ F | F ∨ F | [E]F | <E>F

The formulas true and false indicate truth and falsehood respectively, while
the formula p, for p ∈ P , can be used to test whether atomic proposition p
holds in a specific state. Negation ¬p is defined for state-based properties
only. The meaning of the operators for conjunction ∧ and disjunction ∨ is
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as expected. The universal modality [e]f tests whether f holds after every
e-step, while <e>f tests for the existence of an e-step after which f holds.
Negation at the level of atomic propositions is sufficient to extend the oper-
ator ¬ to the full set F , as shown in [34]. Besides being less expressive, the
main differences between Definition 4.4 and Definition 2.8 are the inclusion
of unrestricted disjunction and the fact that the operator <e>f is no longer
restricted to e ∈ C. The following measure is defined on formulas to express
the modal depth of a formula:

Definition 4.5. The function depth : F 7→ N is defined in the following way,
for p ∈ P , e ∈ E and f, f1, f2 ∈ F :

depth (true) = 0
depth (false) = 0
depth (p) = 0
depth (¬p) = 0
depth (f1 ∧ f2) = max (depth (f1), depth (f2))
depth (f1 ∨ f2) = max (depth (f1), depth (f2))
depth ([e]f) = 1 + depth (f)
depth (<e>f) = 1 + depth (f)

The validity of formulas in F is expressed with respect to the labeled tran-
sitions systems G using the valuation function �, defined in the following way:

Definition 4.6. The predicate � over G ×F is defined for g = (X,−→, x) ∈ G,
f, f1, f2 ∈ F , e ∈ E , x ∈ X and p ∈ P by the following derivation rules:

g � true

p ∈ L(x)

(X,−→, x) � p
p 6∈ L(x)

(X,−→, x) � ¬p
g � f1 g � f2
g � f1 ∧ f2

g � f1
g � f1 ∨ f2

g � f2
g � f1 ∨ f2

∀x e−→ x′ (X,−→, x′) � f
(X,−→, x) � [e]f

x
e−→ x′ (X,−→, x′) � f
(X,−→, x) � <e>f

If g � f then g satisfies the formula f . Note that validity for HML-formulas
is preserved under bisimulation [31].

4.2 Approach

This section concerns the specific synthesis approach applied in this chap-
ter, including the differences as compared to the synthesis setup in Chapter
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2. Several of the constructions involved will be illustrated, and the caveats
that were encountered during the research are noted. A formal definition of
synthesis will then follow in the later sections in terms of a partial tree repre-
sentation of the LTS.

First, a closer look is taken at synthesis for the various elements in F . It is
clear that synthesis for true should be neutral as no modification of the LTS is
required to satisfy this formula. On the other hand, synthesis of the formula
false should not yield any result because no possible modification to the orig-
inal structure exists which achieves validity for this formula. This is a subtle
difference with the approach in Chapter 2. Synthesis for false in Chapter 2
results in failure to find a solution. However, in this chapter synthesis results
in a set of solutions. Synthesis for false then results in the empty set. The
formulas p, for p ∈ P , are always evaluated and synthesized with respect to
a single state x in the state space X . If p ∈ L(x), then synthesis should be
the same as if the formula were true , where no modification of the LTS is re-
quired. On the other hand, if p 6∈ L(x), then the formula should be treated as
if it were false and the empty set of synthesized results should be returned.
Note that assigning the basic property p to x if p 6∈ L(x) is not desired, as
this would add information to the LTS, thereby invalidating the basic prin-
ciple of synthesis of not introducing additional new behavior or properties.
The inverted procedure is followed for the negation of basic properties ¬p.
If p 6∈ L(x), then no modification needs to be applied to satisfy the formula
¬p. However, if p ∈ L(x) then the formula ¬p cannot be satisfied for x and
therefore synthesis should not result in any satisfying model.

Now the other elements of F are considered, thereby first taking a look
at the formulas [e]f and <e>f , since any non-trivial example regarding the
operator ∧ and ∨ uses [e]f or <e>f . For the formulas of type [e]f , essen-
tially the same principle is applied as shown in Figure 2.2. The precise details
regarding unfolding are considered at a later stage. Assume a formula [e]f .
Then, synthesis is applied recursively for f after each e-step. If such synthesis
does not result in any solution, for instance if f ≡ false , then the correspond-
ing e-step is removed. On the other hand, if synthesis is successful, the e-step
is retained and the LTS is modified recursively after the e-step in order to sat-
isfy f . In comparison to the synthesis approach in Chapter 2, this important
difference needs to be highlighted here, since recursive application of synthe-
sis may result in multiple solutions. At this point it is important to stress that
deleting a disallowed behavior does not contradict the maximality require-
ment, since maximal permissiveness is defined with respect to all satisfying
simulants.
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Figure 4.2: Synthesis for the operator ∧ is realized via alternating applications of syn-
thesis for both conjuncts. Figure 4.2a shows the input-LTS and Figure 4.2d the final
result after synthesis for <a>[b]q ∧ [a]<b>p, via intermediate steps shown in Figure
4.2b and Figure 4.2c.

For the formulas of type <e>f , an attempt is made to synthesize f af-
ter each e-step. If none of these steps is successful, synthesis for the formula
<e>f does not result in a valid outcome. Otherwise, synthesis proceeds recur-
sively after an e-step while all other transitions are left in place unmodified.
In addition, maximal permissiveness needs to be taken into account. There-
fore, in order to give an appropriate definition for synthesis of formulas <e>f ,
the unmodified transitions after the e-step need to be preserved as well. Note
that, analogous to the synthesis for [e]f , the synthesis for <e>f might result
in multiple solutions if f can be synthesized in multiple ways after the e-step.
Also, the presence of multiple e-steps might result in multiple solutions if
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Figure 4.3: Synthesis of the formula [a]p ∨ [a](p ∧ q) upon the model in Figure 4.3a
results in a maximal solution shown in Figure 4.3b as well as a non-maximal solution
in Figure 4.3c, due to the nature of synthesis for disjunction, where each operand is
considered separately and results are combined into a set of synthesis products.

each of these e-steps allows the synthesis of the <e>f formula.
The next two operators to consider are conjunction and disjunction. With

regard to disjunction, the example in Figure 2.4 is still relevant. Since the
synthesis method in this chapter results in multiple solutions, the possibility
arises to include multiple outcomes in the set of results. This leads to compo-
sitionality of this synthesis method for disjunction. Synthesis for a formula
f ∨ g therefore results in the union of the solutions for f and g respectively.

The operator∧ introduces additional complications and therefore requires
an entirely different approach compared to the setup in Chapter 2. As shown
in Figure 4.2, multiple applications of the synthesis for each conjunct might
be required to obtain a synthesis result which satisfies both formulas. The
input-LTS, as shown in Figure 4.2a, is modified in order to satisfy the formula
<a>[b]q ∧ [a]<b>p. The end result, as shown in Figure 4.2d, is obtained via
the intermediate steps 4.2b and 4.2c. Synthesis for <a>[b]q is applied to the
original in Figure 4.2a, resulting in the model in Figure 4.2b. Consequently,
synthesis for [a]<b>p is applied in Figure 4.2b, resulting in Figure 4.2c. In
the last step, synthesis for <a>[b]q is again applied, resulting in the final
outcome in Figure 4.2d, which also satisfies the second conjunct. Observe
that now both conjuncts are satisfied and no more applications of synthesis
are required.

This definition for synthesis for conjunction is generalized later on, where
synthesis for conjunction will be defined as a fixpoint construction that alter-
natingly applies synthesis for both conjuncts. Note that two possible inter-
mediate results exist after the first synthesis step in Figure 4.2a, but only one
is shown for clarity.

Two important general aspects of synthesis need to be taken into account,
before a formal definition for this type of synthesis may be treated in detail:
unfolding and maximality, or maximal permissiveness. As stated before, syn-
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thesis outcomes are required to be maximally permissive in the sense that the
least amount of modification is applied in order to satisfy the given formula.
Maximality is reflected in two ways in the synthesis process:

1. Synthesis for a formula [e]f should only remove an e-step if f can not
be satisfied in the state reached after the e-step.

2. The set of synthesis products should contain a maximal solution, with
respect to all simulants of the original model which satisfy the synthe-
sized formula.

The first synthesis requirement is illustrated in Figure 2.2. Regarding the
second property, it should be noted that non-maximal solutions can not al-
ways be avoided. As shown in Figure 4.3, the set of synthesis results for
the formula [a]p ∨ [a](p ∧ q), contains a non-maximal solution that can not
be avoided due to the nature of the synthesis for disjunction, where each
operand is considered separately. In this regard it is again important to inter-
pret maximality with respect to all satisfying simulants. That is, if a satisfying
simulant of the input-LTS exists, then this simulant is related via simulation
to one of the synthesis outcomes.

4.3 Tree Representation

Synthesis will be defined in such a way that it only manipulates elements of
the transition system within reach of the synthesized formula. Additionally,
unfolding is required in order to obtain a maximal solution. Therefore, a par-
tial tree representation of the transition structure is introduced which allows
a clear and coherent definition of synthesis, and also contains an embedded
unfolding.

One might wonder why a new formalism is required, while it would also
seem plausible to simply rely upon the LTS formalism and unfold up to a
given depth. However, as the examples in the previous chapters have shown,
a single state may play multiple roles at various stages of synthesis. There-
fore, it is not possible to specify synthesis as defined in this chapter via in situ
changes to the transition relation. Also, the partial tree representation allows
a definition of synthesis in terms of a distinction on formula type based on
a clear definition in terms of operational rules. Compared to the approach
in Chapter 2, this partial tree representation is better able to handle multiple
solutions.
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The intuitive idea behind this construction can be stated in the following
way: For as far as the depth of the synthesized formula, the transitions be-
tween the respective states are represented in tree form. Beyond the formula
reach, behavior is modeled via the usual transition relation. This allows for
the same state being considered at different depths, if this state plays a dif-
ferent role at various stages of synthesis, for instance if it is contained in a
cycle. Furthermore, the partial tree representation allows for a clear and co-
herent operational definition of synthesis, since points of transition removal
and recursive application of synthesis are directly clear from this structure.
Formally, the universe of these structures is represented as K→, which may
be interpreted as a dependent type, with regard to the transition relation−→,
via the construction in Definition 4.7.

Definition 4.7. Given a state space X ⊆ X , state x ∈ X , and transition re-
lation −→⊆ X × E × X , the dependent type K→ is defined in the following
way:

K→ ⇒ 〈x〉→ | 〈x, T 〉→ for T ⊂ E × K→

In an attempt to bring more clarity to Definition 4.7, its two definitional
parts are considered separately.

1. The construct 〈x〉→ represents a final node of the tree. This means that
from this point on, behavior is modeled via the transition relation→.

2. The elements 〈x, T 〉→ for T ⊂ E × K→ represent the actual nodes of the
tree. These consist of a state, combined with a continuation of behavior
via underlying tree elements, and their corresponding events.

Steps between elements in K→ are created in the following way. For each
k, k′ ∈ K→, and e ∈ E , a step k e−→ k′ can be obtained if one of the following
two conditions is satisfied:

1. If k = 〈x〉→ and k′ = 〈x′〉→ and x e−→ x′, then k e−→ k′

2. If k = 〈x, T 〉→ and (e, k′) ∈ T then k e−→ k′

The construction for K→ is a non-standard and non-straightforward ex-
pression for structural behavior. This is justified by the obtained clarity in the
definition for synthesis, and the ability to capture embedded unfolding via
this structure. In Figure 4.4, an example is shown to illustrate an LTS as well
as its unfolded partial tree representation. In Figure 4.4a, an LTS is shown
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Figure 4.4: The LTS shown in a) is converted into a structure K→ illustrated in b), and
given as a formal definition in c). Unfolding is applied to depth 2, in this particular
case.

which is subsequently unfolded to depth two, and represented via the tree
shown in Figure 4.4b. Unfolding up to depth two would be applied if, for
instance, the formula <a>[b]p were to be synthesized. The resulting formal
definitions for this construction in K→ are shown in Figure 4.4c.

Since steps are now defined with respect to K→, it is possible to trans-
fer the standard behavioral relations of simulation and bisimulation to this
structure. These are shown in Definitions 4.8 and 4.9 respectively.

Definition 4.8. For k′ ∈ K , k ∈ K→, simulation is defined as the existence
of a relation R ⊆ K ×K→, such that (k′, k) ∈ R and the following holds for
all (m′,m) ∈ R:

1. If x′ and x are the respective root states in m′ and m, then L(x′) = L(x)

2. For all m′ e
 n′, there exists a n ∈ K→ such that m e−→ n and (n′, n) ∈ R

Again, k′ �R k is used to indicate that k′ � k as witnessed byR. Note that
the different transition relations and −→ are used to highlight the fact that
the respectiveK- structures are defined with respect to a different underlying
transition relation.

Definition 4.9. If k′ �R k and k′ �R−1 k, then k′ and k are related via bisim-
ulation (notation: k′↔ k).
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Validity for formulas in F can now be expressed with regard to the struc-
ture K→, via Definition 4.10.

Definition 4.10. The predicate � over K→ × F is defined for k′, k ∈ K→,
f, f1, f2 ∈ F , e ∈ E , x ∈ X , p ∈ P by the following deduction rules:

k � true

p ∈ L(x)

〈x〉→ � p
p ∈ L(x)

〈x, T 〉→ � p
p 6∈ L(x)

〈x〉→ � ¬p

p 6∈ L(x)

〈x, T 〉→ � ¬p
k � f1 k � f2
k � f1 ∧ f2

k � f1
k � f1 ∨ f2

k � f2
k � f1 ∨ f2

∀k e−→ k′ k′ � f
k � [e]f

k
e−→ k′ k′ � f
k � <e>f

It is clear that each LTS g ∈ G can be represented as an element of K→,
since the structure 〈x〉→ is isomorphic to g if g has x as its initial state and
→ as its transition relation. To convert this structure into an unfolded K-
representation, a function unfold : K × N 7→ K is given in Definition 4.11. In
addition, a test for unfoldedness is given as the predicate unf ⊆ K × N in
Definition 4.12. Lemma 4.1 then shows how the unfolded structure is indeed
bisimilar to the unmodified structure.

Definition 4.11. Let 〈x〉→ ∈ K→, then for each n ∈ N, a k ∈ K→ can be con-
structed which is unfolded to depth n, using the following function unfold :
K × N 7→ K:

unfold (k, 0) = k

unfold (〈x〉→, n) = 〈x, {(e, unfold (〈x′〉→, n− 1)) | x e−→ x′}〉→
unfold (〈x, T 〉→, n) = 〈x, {(e, unfold (k′, n− 1)) | (e, k′) ∈ T}〉→

It is presumed without proof that every result of the unfold function is
indeed unfolded up to the given depth, as can be tested by the following
predicate.

Definition 4.12. The predicate unf ⊆ K→×N is defined for x ∈ X , T ⊂ E×K→
and n ∈ N by the following definition:

unf (〈x〉→, n) ⇐⇒ n = 0
unf (〈x, T 〉→, 0) ⇐⇒ true
unf (〈x, T 〉→, n+ 1) ⇐⇒ ∀(e, k) ∈ T. unf (k, n)
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The following lemma shows that the result of the unfold function is indeed
bisimilar to its original input.

Lemma 4.1. For k ∈ K and n ∈ N, it holds that k↔ unfold (k, n).

Proof. This property can be shown by induction towards n. If n = 0 then
unfold (k, 0) = k, by Definition 4.11, and clearly k↔ k, by reflexivity of bisim-
ilarity. For the inductive case, assume that unfold (k′, n)↔ k′, for all k′ ∈ K→.
It now needs to be shown that unfold (k, n + 1)↔ k. A distinction is made
between the two forms of k, as given in Definition 4.7.

If k ≡ 〈x〉→, then for each step x ei−→ xi it holds that unfold (〈xi〉→, n)↔Ri

〈xi〉→, for someRi, by induction. Bisimilarity is then shown by choosingR′ =⋃
iRi ∪ {(unfold (k, n+ 1), k)}, in order to prove that unfold (k, n+ 1)↔R′ k.

If k ≡ 〈x, T 〉→, then for each (e, ki) ∈ T it holds that unfold (ki, n)↔Ri
ki

for some Ri, by induction. Again, this is solved by choosing R′ =
⋃
iRi ∪

{(unfold (k, n+ 1), k)}, in order to show that unfold (k, n+ 1)↔R′ k.

Since k↔ unfold (k, n), it holds that k � f if and only if unfold (k, f) � f ,
which is a standard property of bisimulation with respect to HML formulas
[31].

In the overview of the synthesis process as illustrated in Figure 4.1, the
unfolding step is the first step in the synthesis process. After synthesis has
been applied, each resulting partial tree representation k ∈ K→ is again con-
verted into an LTS g ∈ G. This is indicated as the post-synthesis step Tree2LTS
in Figure 4.1. This function is provided below in Definition 4.13.

The intuitive explanation behind Definition 4.13 is as follows. Due to the
fact that a single state-element x ∈ X which occurs in a partial tree k ∈ K→
may play different roles at various stages of synthesis, as indicated by x oc-
curring as state-element in multiple parts of k, it is not possible to directly
convert k into an LTS having a transition relation defined over X . Instead, a
transition relation over the state space X × N is defined, where the original
transition relation is directly mapped to X × {0}. If the top of the partial tree
k is unfolded to depth n and if x is the top-most state-element of k, then a
new transition relation is defined as as (x, n)

ei−→ (xi, n − 1), if each xi is the
state-element of a sub-tree of k. This process is then continued recursively, as
shown in Definition 4.13.
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Definition 4.13. Let k ∈ K→ and let n ∈ N be the greatest n such that
unf (k, n). A new LTS g ∈ G is constructed having state space X × N if X
is the state space of k. The initial state of g is then defined as (x, n) and its
transition relation −→′⊆ (X × N)× E × (X × N) is defined as:

−→′= {(x, 0)
e−→′(x′, 0) | x e−→ x′}

⋃
Tree2LTS (k, n)

where the function Tree2LTS is defined in the following way:

Tree2LTS (k, 0) = ∅
Tree2LTS (k, n) =

⋃
k

e−→k′

Tree2LTS (k′, n− 1)
⋃
{(x, n)

e−→′(x′, n′)}

In the last clause of this definition, x and x′ are the respective initial states of
k and k′. Note that in this particular situation, the labeling function L needs
to be redefined into a new labeling function L′ such that L′(x, n) = L(x) for
all x ∈ X and n ∈ N.

4.4 Operational Definition of Synthesis

The actual synthesis function C : K→ × F 7→ 2K→ is defined inductively as
a relation, expressed by means of deduction rules. Note that the function
C is defined in such a way that it expects the first argument k ∈ K→ to be
unfolded to at least depth depth (f). Since the synthesis function C does not
modify the underlying transition relation, this part of the K→ structure may
be omitted in the following definition ofC and the notations 〈x〉 and 〈x, T 〉 are
used instead of 〈x〉→ and 〈x, T 〉→. Defining C by means of a relation allows
better integration with an induction-style proof as is required to prove the
validity of this synthesis construction. It also enables close resemblance with
the corresponding definition via an inductive predicate in the Coq proofs, as
will be considered later in more detail. Note that C is defined by the smallest
relation established by these derivation rules; that is: m ∈ C(k, f) if and only
if this can be derived from Definition 4.14.
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Definition 4.14. For k ∈ K→ and f ∈ F , the set of synthesis results C(k, f) is
defined by the following deduction rules for x ∈ X , p ∈ P , T ⊂ E ×K, g ∈ F ,
k′,m ∈ K and e, e′ ∈ E . Note that the set union operator ∪ is interpreted as a
disjoint union for these rules.

k ∈ C(k, true)
[1]

p ∈ L(x)

〈x〉 ∈ C(〈x〉, p)
[2]

p ∈ L(x)

〈x, T 〉 ∈ C(〈x, T 〉, p)
[3]

p 6∈ L(x)

〈x〉 ∈ C(〈x〉,¬p)
[4]

p 6∈ L(x)

〈x, T 〉 ∈ C(〈x, T 〉,¬p)
[5]

m ∈ C(k, f) m ∈ C(k, g)

m ∈ C(k, f ∧ g)
[6]

k′ ∈ C(k, f) m ∈ C(k′, g ∧ f)

m ∈ C(k, f ∧ g)
[7]

m ∈ C(k, f)

m ∈ C(k, f ∨ g)
[8]

m ∈ C(k, g)

m ∈ C(k, f ∨ g)
[9]

〈x, ∅〉 ∈ C(〈x, ∅〉,[e]f)
[10]

〈x, T ′〉 ∈ C(〈x, T 〉,[e]f) e 6= e′

〈x, {(e′, k)} ∪ T ′〉 ∈ C(〈x, {(e′, k)} ∪ T 〉,[e]f)
[11]

〈x, T ′〉 ∈ C(〈x, T 〉,[e]f) C(k, f) = ∅
〈x, T ′〉 ∈ C(〈x, {(e, k)} ∪ T 〉,[e]f)

[12]

〈x, T ′〉 ∈ C(〈x, T 〉,[e]f) m ∈ C(k, f)

〈x, {(e,m)} ∪ T ′〉 ∈ C(〈x, {(e, k)} ∪ T 〉,[e]f)
[13]

m ∈ C(k, f)

〈x, {(e,m), (e, k)} ∪ T 〉 ∈ C(〈x, {(e, k)} ∪ T 〉,<e>f)
[14]

The deduction rules for C in Definition 4.14 are briefly discussed here.
Synthesis is neutral for true as this formula is always satisfied (rule 1). Syn-
thesis for an atomic proposition p results in the same structure if p is valid
in the initial state (i.e. p ∈ L(x)), as shown in rules 2 and 3. Synthesis for the
negated atomic proposition ¬p results in the same structure if p 6∈ L(x), as can
be observed in rules 4 and 5. The rules 6 and 7 define a fixpoint construction
for the synthesis of a conjunction. The condition for termination as described
in rule 6 applies when synthesis of both conjuncts results in the same struc-
ture. Otherwise, both conjuncts are synthesized alternatingly as shown in
rule 7. The rules 8 and 9 for disjunction are relatively straightforward: an ele-
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ment of the synthesized set is a result of the synthesis for one of the disjuncts.
The operator [e]f is covered in rules 10-13 which are defined inductively on
the set T . Rule 10 describes the basic case for this induction where no transi-
tions to underlying structures are present and no modifications are required.
Rule 11 details how an e′-transition, such that e 6= e′, is left in place for the
operator [e]f , as the presence of this transition does not influence the satis-
fiability of an [e]f formula. Rule 12 removes an e-transition for the operator
[e]f if no synthesis candidate can be found for this transition. The last rule
13 for [e]f ensures that the original structure after an e-transition is replaced
by an appropriate synthesis product, if possible. Finally, a single derivation
rule 14 for the synthesis of the formula <e>f is defined. A single witness for
a proper e-transition is added to the original structure, which is left unmodi-
fied as far as the underlying system is concerned. Consideration of synthesis
for 〈x〉→ ∈ K→ for the operators [e]f and <e>f is not required due to the un-
foldedness assumption. This means that these cases are not included in the
definition of C due to the fact that only the application of C to K-elements
which have been sufficiently unfolded needs to be taken into account.

4.5 Termination and Complexity

Three effective sequential steps are identified in the overview of the synthe-
sis process, as seen in Figure 4.1. These are the unfolding step, the actual
synthesis itself, and the Tree2LTS step. The synthesis step is illustrated here
algorithmically, and also includes an analysis of its complexity, as well as the
complexity of its preceding unfolding and succeeding Tree2LTS step. The syn-
thesis algorithm is shown in Figure 4.5, under the assumption that its input
parameter k ∈ K→ is adequately unfolded up to depth (f). The parameter
H of the procedure synthesis in Figure 4.5 is used to guarantee termination of
synthesis for conjunction.

As Figure 4.5 shows, the recursive structure of the synthesis algorithm
follows the inductive structure of the HML formulas for all cases except for
the case f ≡ f1 ∧ f2. Due to the fact that synthesis for conjunction might in-
volve multiple invocations of synthesis for the same conjunct, this part of the
algorithm is considered the dominating factor in the time-complexity of the
algorithm. This case also complicates the termination proof significantly. It is
shown that the synthesis algorithm is terminating in Theorem 4.1, followed
by the complexity result in Theorem 4.2.
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procedure synthesis (k ∈ K→, f ∈ F , set H of K→)
returns set of K→

begin
set R of K→ := ∅

1 case (f = true)
R := {k}

2-3 case (f = p and (k = 〈x〉→ or k = 〈x, T 〉→) and p ∈ L(x))
R := {k}

4-5 case (f = ¬p and (k = 〈x〉→ or k = 〈x, T 〉→) and p 6∈ L(x))
R := {k}

6-7 case (f = f1 ∧ f2)
R := synthesis (k, f1, ∅) ∩ synthesis (k, f2, ∅)
for each k′ ∈ synthesis (k, f1, ∅)\H
R := R ∪ synthesis (k′, f2 ∧ f1, H ∪R)

8-9 case (f = f1 ∨ f2)
R := synthesis (k, f1, ∅) ∪ synthesis (k, f2, ∅)

10 case (f = [e]f ′ and k = 〈x, ∅〉→)
R := {〈x, ∅〉→}

11 case (f = [e]f ′ and k = 〈x, {(e′, k′)} ∪ T 〉→ and e 6= e′)
for each 〈x, T ′〉→ ∈ synthesis (〈x, T 〉→,[e]f ′, ∅)
R := R ∪ {〈x, {(e′, k′)} ∪ T ′〉→}

12 case (f = [e]f ′ and k = 〈x, {(e, k′)} ∪ T 〉→ and
synthesis (k′, f ′, ∅) = ∅)

R := synthesis (〈x, T 〉→,[e]f ′, ∅)
13 case (f = [e]f ′ and k = 〈x, {(e, k′)} ∪ T 〉→)

for each 〈x, T ′〉→ ∈ synthesis (〈x, T 〉→,[e]f ′, ∅)
for each m ∈ synthesis (k′, f ′, ∅)
R := R ∪ {〈x, {(e,m)} ∪ T ′〉→}

14 case (f = <e>f ′ and k = 〈x, T 〉→)
for each (e, k′) ∈ T
for each m ∈ synthesis (k′, f ′, ∅)
R := R ∪ {〈x, T ∪ {(e,m)}〉→}

return R
end

Figure 4.5: Algorithmic representation of the synthesis procedure. This algorithm is a
direct translation of the synthesis rules given in Definition 4.14. Corresponding rule
numbers in Definition 4.14 are shown in the left column.
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Theorem 4.1. For each k ∈ K→ and f ∈ F , the synthesis procedure in Figure
4.5 terminates in a finite number of steps.

Proof. It is first shown that only finitely many possible synthesis results are
obtained using the procedure synthesis, by induction upon the structure of
f . As considered earlier, the partial tree k ∈ K→ is assumed to be finitely
branching. Since the synthesis algorithm in Figure 4.5 can be considered a
direct implementation of the synthesis rules in Definition 4.14, it might be
helpful to the reader to consider these rules as well. For the cases f ≡ true ,
f ≡ false , f ≡ p, and f ≡ ¬p, for p ∈ P , it is clear from Figure 4.5 that at most
one result is returned. For the cases f ≡ f1∧f2 and f ≡ f1∨f2, a finite number
of synthesis results originates from a recursive call to the function synthesis for
f1 or f2. If f ≡ [e]f ′, then the recursive finite synthesis results are combined
over a finite number of branches, resulting again in a finite number of results.
If f ≡ <e>f ′ then, again, a finite number of results originate from the recur-
sive call. Also, due to retaining existing behavior, a sub-tree may be added.
However, note that sub-trees are not duplicated, since addition of {(e, k)} to
the set T results in T if (e, k) ∈ T . Therefore, synthesis for <e>f ′ also results
in a finite number of synthesis outcomes.

It is now shown that an invocation of synthesis (k, f, ∅) terminates in a fi-
nite number of steps, via induction on the structure of f . The cases where
f ≡ true , f ≡ false , f ≡ p, and f ≡ ¬p, for p ∈ P , do not result in
any recursive calls, so the function synthesis will terminate directly for these
cases. For the cases f ≡ f1 ∨ f2, f ≡ [e]f ′, and f ≡ <e>f ′, the procedure
only invokes a finite number of terminating recursive calls, and termination
is therefore obtained via induction. Termination for the remaining case for
f ≡ f1 ∧ f2 is derived as follows. Via induction termination for the recur-
sive calls to synthesis (k, f1, ∅), synthesis (k, f2, ∅) and synthesis (m, f1, ∅) is
derived. Since, for each recursive invocation of synthesis (m, f2 ∧ f1), the set
H is extended with the set of synthesis results for f1 and f2, the recursive call
to synthesis (f2 ∧ f1) will, at some recursion depth, not be invoked, due to
finiteness of the number of possible synthesis results

The number of affected transitions during synthesis is limited by depth (f),
and may therefore be expressed as n · depth (f), where n is linear in the num-
ber of transitions. Based upon this observation, the upper bound for the num-
ber of solutions may be expressed as 2n·depth (f). This upper bound is also de-
rived as the upper bound of the computational complexity of the algorithm
in Theorem 4.2. Note that this represents a worst-case scenario. For instance,
a formula without conjunction may be synthesized in Θ (n · depth (f)) steps.



94 Chapter 4. Control Synthesis and Multiple Solutions

Theorem 4.2. For k ∈ K→ and f ∈ F , the upper bound for the computa-
tional complexity of the procedure synthesis in Figure 4.5 is determined as
Θ (2n·depth (f)), where n is linear in the number of transitions.

Proof. Induction is applied towards the structure of f . For the cases f ≡ true ,
f ≡ false , f ≡ p, and f ≡ ¬p, for p ∈ P , the computational complexity can
be stated as Θ (1) < Θ (2n·depth (f)). If f ≡ f1 ∨ f2, then synthesis invokes
two recursive calls, as observed in Figure 4.5. For this case, complexity is
therefore expressed as 2 · Θ (2n·depth (f)) ≈ Θ (2n·depth (f)). If f ≡ [e]f ′ or
f ≡ <e>f ′, then n/m for 1 < m < n recursive calls of the synthesis procedure
are invoked. The factor m is taken linear in the number of e-transitions. For
these cases, the upper bound for the computational complexity is determined
as (n/m) ·Θ (2n·depth (f)) ≈ Θ (2n·depth(f)). The final case to consider is when
f ≡ f1 ∧ f2. As the recursion depth for the synthesis invocation for f2 ∧
f1 is bounded by the number of possible synthesis results, computational
complexity for this case may be expressed as 2 · Θ (2n·depth (f)) + 2n·depth (f) ·
Θ (2n·depth (f)) ≈ Θ (2n·depth (f)).

Since the unfolding step only affects the LTS up to the depth of the syn-
thesized formula, an actual realization of the function unfold in Definition
4.11 can be implemented in time Θ (depth (f)), for f ∈ F . The Tree2LTS func-
tion, as given in Definition 4.13, only involves a single operation for every
constructed transition. Since the size of the transition structure is taken as
a linear factor, this term can effectively be ignored in determining the time-
complexity of the algorithm. Hence, it may be concluded that the computa-
tional complexity of the entire synthesis process is dominated by, and there-
fore equivalent to, the complexity of the synthesis method itself. A final re-
mark regarding the selection of the maximal candidates cannot be left un-
mentioned. As synthesis results in a set of satisfying structures, it would
seem a natural part of such an algorithm to select the maximal candidates,
among the synthesized results. Also, one might wonder why the selection of
the maximal candidate is not considered in the analysis of the computational
complexity of the algorithm. Multiple solutions arise due to a number of rea-
sons. As Figure 2.4 clearly shows, multiple maximal results may be a result of
the synthesis of a disjunctive formula. As indicated in Figure 2.4, these results
are essentially incomparable, and therefore no selection is to be made. On the
other hand, synthesis for a disjunction might result in multiple solutions of
which a single maximal solution may be preferred, as shown in Figure 2.4.
However, in the general case, it is not clear how this may be efficiently de-
termined, compared to a direct computation of the maximal candidate, based
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on the simulation preorder. Note that multiple results due to synthesis for a
formula <e>f do not pose a problem in this respect, as all original behavior
is copied when synthesizing for <e>f , thus not invalidating maximality.

4.6 Validity

Two theorems are required regarding the validity of the definition of synthe-
sis. In Theorem 4.3 it is shown that every synthesis result satisfies the synthe-
sized formula. Theorem 4.4 details how every synthesis result is related via
simulation to the original structure.

Theorem 4.3. For f ∈ F and k,m ∈ K→ it holds that m ∈ C(k, f) implies
m � f .

Proof. The proof is by induction to the construction of m ∈ C(k, f), via the
deduction rules in Definition 4.14. Ifm ∈ C(k, true), then obviouslym � true .
If m ∈ C(k, p), for some p ∈ P , then m and k have the same initial state, say
x. Since p ∈ L(x), this results in m � p. If m ∈ C(k,¬p), then again it can be
observed that m and k have the same initial state x, such that p 6∈ L(x), and
therefore m � ¬p. For rules 6-7 the following analysis holds: If m ∈ C(k, f1)
and m ∈ C(k, f2), then m � f1 ∧ f2 by induction. For k′ ∈ C(k, f1) and m ∈
C(k′, f2∧f1), by induction and commutativity of the validity of ∧,m � f1∧f2.
For rules 8-9, there are again two cases. If m ∈ C(k, f1) then m � f1 ∨ f2,
and if m ∈ C(k, f2) then m � f1 ∨ f2, both by induction. There are four
cases corresponding to the rules 10-13. Trivially, it holds that 〈x, ∅〉→ � [e]f ′.
By induction, it holds that 〈x, {(e′, k)} ∪ T ′〉→ � [e]f ′ for each e 6= e′ if
〈x, T ′〉→ � [e]f ′. Rule 12 does not alter the structure of m ∈ C(k,[e]f) and
therefore preserves validity. If 〈x, T ′〉→ � [e]f and m � f for m ∈ C(k, f),
then it holds that 〈x, {(e,m)}∪T ′〉→ � [e]f . The last case corresponds to rule
14. If there exists an m ∈ C(k, f ′) and therefore m � f ′, then by induction
〈x, {(e,m), (e, k)} ∪ T 〉→ � <e>f ′.

Theorem 4.4. For f ∈ F and k,m ∈ K→ it holds that m ∈ C(k, f) implies
m � k.

Proof. The same proof strategy as in Theorem 4.3 is applied: induction to the
construction of m ∈ C(k, f). Note that only a proof sketch is given here,
because no actual simulation witness relation is constructed. The cases for
rules 1-5 and rule 10 are solved by reflexivity of simulation, while rules 6-9
are covered by induction and transitivity of simulation. The four remaining
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cases consider the rules 11-14. For rule 11, it may be assumed that 〈x, T ′〉→ �
〈x, T 〉→ as the induction hypothesis. This directly leads to 〈x, {(e′, k)}∪T ′〉→ �
〈x, {(e′, k)} ∪ T 〉→. For rule 12 it holds that 〈x, T ′〉→ � 〈x, T 〉→ by induction
and therefore 〈x, T ′〉→ � 〈x, {(e, k)} ∪ T 〉→. For the case corresponding to
rule 13 there are two induction hypotheses: 〈x, T ′〉→ � 〈x, T 〉→ and in addi-
tion, it holds that m � k for m ∈ C(k, f). This leads to 〈x, {(e,m)} ∪ T ′〉→ �
〈x, {(e, k)} ∪ T 〉→. The proof is concluded by an analysis of the last rule 14,
for which it holds that m ∈ C(k, f) and therefore m � k via the induction
hypothesis. Clearly this leads to 〈x, {(e,m), (e, k)} ∪ T 〉→ � 〈x, {(e, k)} ∪
T 〉→.

4.7 Maximality

As indicated before, it is desirable for products of synthesis to be modified to
the least extent in order to achieve a maximal solution. This is especially re-
quired if further analysis is to be applied to the model, for instance if liveness
is investigated, or if some kind of optimization procedure is applied post-
synthesis. This maximality proof is shown in Theorem 4.5.

Lemma 4.2. For each f ∈ F , n ∈ N and k,m ∈ K→ such that m ∈ C(k, f) and
unf (k, n) it holds that unf (m,n).

Proof. Induction is applied to the construction of m ∈ C(k, f). The four
non-straightforward cases are the rules 11-14. The first case is resolved un-
der the induction hypothesis unf (〈x, T 〉→, n) ⇒ unf (〈x, T ′〉→, n). Clearly
the premise unf (〈x, {(e′, k)} ∪ T ′〉→, n) leads to unf (〈x, {(e′, k)} ∪ T, 〉→, n).
Rule 12 does not alter m ∈ C(k,[e]f) and therefore preserves unfolded-
ness, as shown by induction. For rule 13 there are two induction hypotheses:
unf (m,n) and unf (〈x, T 〉→, n)⇒ unf (〈x, T ′〉→, n). The premise unf (〈x, {(e, k)}
∪T 〉→, n) immediately leads to the conclusion that unf (〈x, {(e,m)}∪T ′〉→, n).
For rule 14 it holds that unf (〈x, T 〉→, n), unf (m,n) and therefore unf (〈x, {(e,m)}
∪T 〉→, n) by induction.

The maximality result follows in Theorem 4.5. If k′ is a simulant of k such
that k′ � f and k is unfolded up to the depth of a formula f , then synthesis
produces at least one result m such that k′ � m.

Theorem 4.5. For each f ∈ F , k′ ∈ K and k ∈ K→ with k′ � f , k′ � k and
unf (k, depth (f)), there exists an m ∈ C(k, f) such that k′ � m.
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Proof. The proof is somewhat involved and relies upon induction towards
the structure of f . For all cases, the induction premise for unfoldedness after
synthesis is satisfied by Lemma 4.2. If f ≡ true then k ∈ C(k, true) by rule 1
in Definition 4.14 and clearly k′ � k. If f ≡ false then this clearly contradicts
the assumption that k′ � f . If f ≡ p or f ≡ ¬p for p ∈ P then k � f ,
since strict equality on labels is assumed in Definition 4.8. Application of
the corresponding rule 2-5 from Definition 4.14 results in k ∈ C(k, f), while
k′ � k was already assumed.

The case for f ≡ f1∧f2 is not straightforward. Observe that the following
two induction hypotheses hold:

IHf1: For all k′ � k such that k′ � f1 and unf (k, depth (f1)) there exists an
m ∈ C(k, f1) such that k′ � m.

IHf2: For all k′ � k such that k′ � f2 and unf (k, depth (f2)) there exists an
m ∈ C(k, f2) such that k′ � m.

Using these induction hypotheses, an alternating application of synthesis for
f1 and f2 of arbitrary length may be constructed:

k1 ∈ C(k, f1), k2 ∈ C(k1, f2), k3 ∈ C(k2, f1), . . . , kn ∈ C(kn−1, f2)

This sequence is obtained in the following way. As k′ � f1, the induction
hypothesis for IHf1 may be applied to obtain k1 ∈ C(k, f1) and k′ � k1. Also,
it holds that k′ � f2 which allows the application of IHf2 on k1, resulting in
k2 ∈ C(k1, f2) such that k′ � k2. It is clear that this sequence of applications
may be applied for an arbitrary number of times.

Assume that each kn ∈ C(kn−1, fi) for i ∈ {1, 2} can be obtained using a
finite derivation tree Tn. From Theorem 4.3, it follows that kn � fi, so clearly
the formulas f1 and f2, when considered separately, are not contradictory in
themselves, since a synthesis result can be readily obtained for each of these
conjuncts.

If there exists an n ≥ 1 such that kn ∈ C(kn−1, f1) and kn ∈ C(kn−1, f2)
then kn ∈ C(kn−1, f1∧f2) can be obtained by n−1 applications of rule 6 from
Definition 4.14, followed by a single application of rule 5.

Assume the operator <e> is not contained in both f1 and f2, then each
derivation tree Tn can be constructed using the rules 1-13 from Definition
4.14. Careful study of these rules shows that each rule either does not modify
the model, or results in a synthesized product which has a strictly lower num-
ber of transitions. Therefore, in the restricted situation where only rules 1-13
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apply, it is always possible to obtain n ∈ N such that kn ∈ C(kn−1, f1∧f2), be-
cause otherwise the number of transitions would decrease below zero, which
is clearly impossible.

Application of rule 14 complicates this situation, since this rule introduces
additional transitions via copying of original behavior when synthesizing a
formula <e>f . However, if k � <e>f then k ∈ C(k,<e>f), which seems to jus-
tify the conclusion that no more than two applications of rule 14 are required
in order to obtain a stable point. Nevertheless, there is still the possibility
that following the application of rule 14, rule 12 is applied to remove the just
created witness for the formula <e>f again. An example has been considered
earlier in Figure 4.2.

However, the key observation in Figure 4.2 is the possibility to create a
witness for an <e>f -formula at multiple points, of which can only be finitely
many, in the general case. In detail, suppose that synthesis for a formula <e>f
results in 〈x, {(e,m), (e, k)∪ T}〉, via the application of rule 14. Also, suppose
that this (e,m) part of the model is subsequently removed by application of
rule 12. If, by the application of 14, (e,m) is constructed again in a later syn-
thesis step, then rule 12 was applied to synthesize a formula [e]f ′ such that
C(m, f ′) = ∅. This clearly indicates that the formulas f1∧f2 are contradictory,
which contradicts the k′ � f1 ∧ f2 assumption.

The next case to consider is when f ≡ f1∨f2. If k′ � f1 then, by induction,
there exists anm ∈ C(k, f1) such that k′ � m. This results inm ∈ C(k, f1∨f2)
by application of rule 7. The case for k′ � f2 is exactly symmetrical.

The next case for f ≡ [e]f ′ again requires some careful analysis. Observe
that the following induction hypothesis holds:

IHf1: For all k′ � k such that k′ � f ′ and unf (k, depth (f ′)) there exists an
m ∈ C(k, f ′) such that k′ � m

It is clear that k = 〈x, T 〉, since k 6= 〈x〉, because unf (k, 1 + depth (f ′)).
For each k′ e−→ k′′, it holds that k′′ � f ′ and a corresponding n ∈ K such that
(e, n) ∈ T and k′′ � n. By induction, thenm′ ∈ C(n, f ′). Repeated application
of rules 11-13, and a single application of rule 10, allows the construction of a
set U ⊂ E × K such that 〈x, U〉 ∈ C(〈x, T 〉,[e]f ′) and k′ � 〈x, U〉.

The remaining case is when f ≡ <e>f ′. As there exists a k′ e−→ k′′ such
that k′′ � f ′, there exists a corresponding (e, n) ∈ T such that k′′ � n. Appli-
cation of the induction hypothesis then results inm ∈ C(n, f ′). By application
of rule 14, 〈x, {(e,m), (e, n)}∪T 〉 ∈ C(〈x, {(e, n)}∪T,<e>f ′) can be obtained.
The simulation requirement k′ � 〈x, {(e,m), (e, n)} ∪ T 〉 is satisfied because
original behavior is retained by rule 14.
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4.8 Computer Verified Proofs

For Theorems 4.3 and 4.4, computer verified proofs have been constructed
using the Coq proof assistant [13]. A number of remarks should be made
with regard to these formal proofs. First and foremost, it is not possible to
encode the dependent type K, as given in Definition 4.7, directly in Coq. Due
to the strict positivity requirement of the inductive types in Coq, it is not pos-
sible to define the collection of underlying tree-elements as a set. Instead, a
list is used, which has some implications for the definition of equality on K
due to the occurrence of multiple equal elements. Strict positivity for induc-
tive types also implies that rule 12 cannot be encoded precisely in Coq, since
no test on emptiness of the type can be used during its definition. The im-
plication is that a broader set of synthesis results is constructed. Still, each
result satisfies the aforementioned two Theorems 4.3 and 4.4, and every syn-
thesis result as constructed by Definition 4.14 is still present. Unfortunately,
these peculiarities make it impossible to encode the full maximality proof, as
shown in Theorem 4.5, in the Coq proof assistant.

A short overview is presented here for the computer verified proofs which
support the synthesis construction in this chapter. Initial remarks about some
of the applied methodologies within the Coq proof assistant have been dis-
cussed in Chapter 3. Therefore, these computer verified proofs are considered
here in more compact form. The first part of the proof concerns parameters
to the theory defined for this synthesis construction. Note that in contrast to
the computer verified proof in the previous chapter, global assumptions for
the state space, labeling function and transition relation are applied. In this
case, this results in a significant simplification of the proof construction, while
this at the same time does not result in loss of generality. These assumptions
to the theory are possible in this case because all applied transition relations
are of the same type. These initial proof-theoretic parameters are listed in the
Coq code below.

Parameter P E X : Set.
Parameter L : X -> P -> Prop.
Parameter step : X -> E -> X -> Prop.

The next step in the Coq proof for the synthesis construction concerned
in this chapter involves the definition of the structure K and predicates for
retrieving the initial state and to test whether a transition exists. The structure
K is defined as an inductive type, but Coq is not able to automatically derive
an induction hypothesis in the tree case. This is due to the fact that the
K-structure is related indirectly via a list type. It is worth mentioning that
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this inability to automatically derive an induction hypothesis is not due to the
fact that this list type is defined over pairs of E and K. The init and trans
predicates are defined as shown in the Coq listing below.

Inductive K :=
| node : X -> K
| tree : X -> list (E * K) -> K.

Definition init (k : K) :=
match k with
| node x => x
| tree x T => x
end.

Inductive trans : K -> E -> K -> Prop :=
| trans_node : forall x e x’, trans (node x) e (node x’)
| trans_tree : forall x T e k, In (e, k) T ->

trans (tree x T) e k.

The predicates for retrieving the initial state and for testing whether a
transition exists are henceforth applied to define simulation between two
structures of type K. Note that in comparison to the definition of partial bisim-
ilarity applied in the previous chapter, simulation is defined here on entire
structures of type K. Its Coq definition is listed below:

Definition sim (k’ k : K) : Prop :=
exists R : K -> K -> Prop, R k’ k /\
forall m’ m, R m’ m ->
(forall p, L (init m’) p <-> L (init m) p) /\
(forall e n’, trans m’ e n’ ->
exists n, trans m e n /\ R n’ n).

The next two elements in the proof are the definition of the formulas for
HML and the validity of such formulas with regard to structures of type K.
These definitions are very similar to the corresponding Coq code in Section
3.4. What then follows is the key definition of the synthesis construction as
applied in this chapter. As discussed in the previous theoretical sections, the
synthesis steps only apply to the tree-like structure. This results in an induc-
tive predicate C, which is encoded in Coq as shown in the listing below. This
type of definition actually encodes the characteristic function for a relation
over K × F × K and thereby defines a function of type K × F 7→ 2K. Under
this interpretation, the Coq code is quite close to an encoding of the algorithm
in Figure 4.5 in formal mathematics. The disjoint union operator applied in
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Definition 4.14 corresponds to the pattern matching over list-elements in the
Coq code which expresses the C function, as shown below:

Inductive C : K -> F -> K -> Prop :=
| cr_true : forall k, C k true k
| cr_prop : forall k p, L (init k) p -> C k (prop p) k
| cr_not : forall k p, ˜L (init k) p -> C k (not p) k
| cr_and_base : forall k m f g, C k f m ->

C k g m -> C k (and f g) m
| cr_and_ind : forall k k’ m f g, C k f k’ ->
C k’ (and g f) m -> C k (and f g) m

| cr_or_left : forall k f g m, C k f m ->
C k (or f g) m

| cr_or_right : forall k f g m, C k g m ->
C k (or f g) m

| cr_all_nil : forall x e f,
C (tree x nil) (all e f) (tree x nil)

| cr_all_skip : forall x T T’ k e e’ f, e’ <> e ->
C (tree x T) (all e f) (tree x T’) ->
C (tree x ((e’, k) :: T)) (all e f)

(tree x ((e’, k) :: T’))
| cr_all_ind : forall x T T’ k m e f, C k f m ->
C (tree x T) (all e f) (tree x T’) ->
C (tree x ((e, k) :: T)) (all e f)

(tree x ((e, m) :: T’))
| cr_all_rem : forall x T T’ k e f,
C (tree x T) (all e f) (tree x T’) ->
C (tree x ((e, k) :: T)) (all e f) (tree x T’)

| cr_ex_skip : forall x T T’ k e e’ f,
C (tree x T) (ex e f) (tree x T’) ->
C (tree x ((e’, k) :: T)) (ex e f)

(tree x ((e’, k) :: T’))
| cr_ex_ind : forall x T k m e f, C k f m ->
C (tree x T) (ex e f) (tree x T) ->
C (tree x ((e, k) :: T)) (ex e f)

(tree x ((e, m) :: (e, k) :: T)).

The two proofs of the synthesis construction which are encoded in Coq
are then formalized as shown below. A somewhat remarkable observation
regarding this proof is that the complexity of the formalization of this synthe-
sis theory lays for the most part in the formal definitions, rather than in the
actual proofs themselves. For this reason, the Coq code for the first proof can
be included in its entirety in the first listing below. The proof is then quite eas-
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ily constructed by induction towards the structure of the f variable, followed
by an attempt to resolve most inductive cases immediately via application of
the tauto tactic.

Theorem validity : forall f k m, C k f m -> val m f.
Proof.

intros f k m H ; induction H ; simpl in * ; try tauto.
intros k’ H ; inversion H ; simpl in * ; contradiction.
intros k’ H’ ; inversion H’ ; simpl in *.
destruct H5 as [ Heq | HinT’ ] ;

[ inversion Heq ; contradiction | ].
apply IHC ; apply trans_tree ; auto.
intros k’ H’ ; inversion H’ ; simpl in *.
destruct H5 as [ Heq | HinT’ ] ; [ inversion Heq | ].
rewrite <- H6 ; auto.
apply IHC2 ; apply trans_tree ; auto.
destruct IHC as [ k’ [ Htrans Hval ] ].
exists k’ ; split ; auto.
inversion Htrans ; apply trans_tree ;
simpl in * ; auto.

exists m ; split ; auto.
apply trans_tree ; simpl ; auto.

Qed.

The simulation proof is included below and is created via the construction of
a characteristic function for the simulation relation.

Theorem simulation : forall f k m, C k f m -> sim m k.
Proof.

assert (forall x T T’ e m k, sim (tree x T’) (tree x T) ->
sim m k -> sim (tree x ((e, m) :: T’))

(tree x ((e, k) :: T))) as Hadd.
intros x T T’ e m k H H’ ;
destruct H as [ R [ HinR HrelR ] ].

destruct H’ as [ R’ [ HinR’ HrelR’ ] ].
exists (fun p q => p = (tree x ((e, m) :: T’)) /\
q = (tree x ((e, k) :: T)) \/ R p q \/ R’ p q) ;
split ; auto.

...
(some lines of Coq code omitted)

...
Qed.
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4.9 Closing Remarks

In the research presented in this chapter, the synthesis for HML on Kripke-
structures with labeled transitions is detailed. A bisimilarity preserving trans-
formation is applied to transform an LTS into an equivalent partial tree repre-
sentation, which is able to capture an embedded unfolding. Upon this struc-
ture, operational rules define the required modifications in order to satisfy
the synthesized HML formula. Results in the set of synthesized models are
shown to be valid in terms of satisfying the given HML formula, and simu-
lation of the original input LTS. A maximal solution with regard to the sim-
ulation preorder is shown to be contained in this set. A significant part of
definitions and proofs are computer verified, which contributes to the under-
standing and assessment of the validity of the proposed theory. The maxi-
mality result for all non-deterministic simulants in proves a key property of
the synthesis method: the least number of modifications is applied in order
to satisfy the synthesized formula. Note that this is an improvement in [41],
compared to the work in [40].





Chapter 5

Control Theory and Process
Algebra

In this chapter a process-theoretic concurrency model is proposed which is
then used to express control synthesis. A process-theoretic [8] expression of
plant and controller provides an adequate level of abstraction as well as for-
mal precision. Process theories as described in [8] provide a formal descrip-
tion of discrete event behavior, including termination. Furthermore, commu-
nication of state/event observations and control signals, as well as restric-
tions on behavior can all be expressed in such theories. Further information
regarding process theories with propositional signals can be found in [11].
The main purpose of this chapter, within the context of this thesis, is to ex-
plore the expression of the earlier defined partial bisimulation preorder using
a different formalism and to work towards a subsequent analysis of the first
case study considered in Section 3.5.

The process algebra TCP∗ is studied as a convenient modeling formalism
which includes parallelism, iteration and communication features and is able
to express non-determinism. The theory TCP∗ is employed in this chapter
as an alternative formalism for modeling structures which describe behavior,
compared to the transition systems defined in Chapter 2 and Chapter 4. Like
in earlier chapters, the partial bisimilarity preorder is applied to define the re-
lationship between plant and supervisor. This requires an adaptation of Def-
inition 2.6 in terms of process-algebraic notions. It is shown how the precon-
gruence property of partial bisimilarity can be derived from the format of the
deduction rules. The partial bisimilarity refinement may be used to express
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controllability in the context of process algebra as well. A case for automated
guided vehicles (AGV) is modeled using the theory TCP∗. However, a dif-
ferent approach needs to be applied to address the issue of non-deterministic
plant models. The aforementioned process theory TCP∗ is extended by con-
structs for state observation in order to express state based control in a non-
deterministic context. Process-theoretic expressions are paired with Boolean
valuations which contain information regarding the current state of the plant
as propositions. In order to model the various constructs involved in supervi-
sory theory, conditional expressions are employed to model event inhibition,
based upon the evaluation of a guarding formula within the Boolean valu-
ation that contains the state information. The industrial printer case from
Section 3.5 is then modeled using this extended theory.

5.1 The Process Theory TCP∗

In this section the process theory TCP∗ is presented, which requires some de-
tail when considering its rich syntax. Its various constructs enable it to model
a variety of problems in a clear way. Elements of this theory can be used
to model the different components in the supervisory control setup, where
communicating actions represent the information flow between components,
thereby completing the model of the control loop. Synchronizing actions are
used to model allowance or denial of plant behavior by the supervisory con-
troller.

A number of preliminary notions in language theory and process algebra
are first introduced here. These are required to lay the foundations of TCP∗.
A finite data alphabet D as well as a finite set H of communication channels
are assumed as preliminaries for this theory. For each c ∈ H, the set Ac is
defined as shown below, where c!m?nd represents a generic communication
action [8] consisting of m send actions and n receive actions.

Ac = {c!m?nd | m,n ∈ N, m+ n > 0, d ∈ D}

In addition, the following abbreviated notations are used: c?d for c!0?1d, c!d
for c!1?0d and c!?d for c!1?1d. Intuitively, these events denote respectively that
data element d is received, sent or communicated along channel c. Further-
more,

A =
⋃
c∈H
Ac
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denotes the entire set of actions. Definition 5.1 is applied to denote all actions
relying on the same communication channel:

Definition 5.1. The notation B ⊆H A is used to indicate that there exists an
H′ ⊆ H such that B = ∪c∈H′Ac

This notation will be convenient when arbitrary subsets of A need to be han-
dled which have to contain all communications sent over a number of chan-
nels. Traces of events (a0, a1, . . . , an) ∈ A∗ are formed in a standard manner,
where A∗ = {(a0, a1, . . . , an) | n ∈ N}. The notation ε is used to denote the
unique empty trace. If ta = (a0, a1, . . . , am) and tb = (b0, b1, . . . , bn), then
ta · tb = (a0, a1, . . . , am, b0, b1, . . . , bn) denotes the concatenation of traces ta
and tb. As in previous chapters, the set of events A = C ∪ U is strictly par-
titioned into controllable events C and uncontrollable events U . The founda-
tions have now been laid to properly define the actual elements of the process
theory TCP∗, as shown in Definition 5.2.

Definition 5.2. The set of terms T of the process theory TCP∗ is generated by
the grammar shown below. Assume that E ⊆ {c!m?n | c ∈ C,m, n ∈ N} in the
following definition:

T ::= 0 | 1 | A | T + T | T · T | T ∗ | T ‖ T | ∂E(T )

The various elements of T are considered briefly here. The constant process
0 denotes inaction or deadlock. The constant process 1 denotes successful
termination. For each action a ∈ A, the process corresponding to the term
a executes the action a, followed by successful termination. The expression
T + T denotes alternative composition. The process term p + q, for p, q ∈
T , expresses a non-deterministic choice for a process that can either behave
as p or as q. The sequential composition operator T · T first executes the
left-hand side process and then, upon successful termination of this operand,
executes the right-hand side process. The binary operator T ‖ T denotes a
parallel composition of two terms that is able to perform interleaving as well
as synchronous communication. The term p ‖ q, for p, q ∈ T , can behave as 1)
a unilateral step of either p or q, while the other operand remains unchanged,
or 2) a synchronous communication step in both p and q, upon which data
is communicated over a specified channel. The operator T ∗ or Kleene star is
used to express iteration. It unfolds with respect to sequential composition.
The term p∗, for p ∈ T , either terminates or behaves as p, followed by p∗.
The unary operator ∂E(T ) encapsulates a process p in such a way that all
(incomplete) communication actions (e.g. c?d and c!d) are blocked for all data,
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so that bilateral communication is enforced. An example might be illustrative
in this regard. If communication between k processes on channel c needs to
be enforced, then E needs to be chosen in the following way:

E = {c!m?n | 0 < m+ n < k, c ∈ C}

If E is chosen as indicated, it includes all generic communication actions (ex-
cluding data) in such a way that it becomes possible to communicate between
at most k process terms.

Structural operational semantics for each process term p ∈ T now needs
to be defined in order to formalize how the terms in T express behavior. This
relates to two predicates: a transition relation−→⊆ T ×A×T and a termination
property ↓⊆ T . The transition relation−→ defines possibly non-deterministic
steps between process terms, which are eventually used to model process
dynamics within the plant. Terminating process terms define process end
points, which model final or completed tasks in the plant. Operational rules
are given in Definition 5.3. Infix and postfix notation is applied, such that
p

a−→ p′ denotes that (p, a, p′) ∈−→ and p ↓ denotes that p ∈↓.

Definition 5.3. A step relation −→⊆ T × A× T and a termination predicate
↓⊆ T are defined as shown below. Assume that p, q, p′, q′ ∈ T , a ∈ A, c ∈ H
and d ∈ D in the following set of derivation rules:

1 ↓
p ↓

p+ q ↓
q ↓

p+ q ↓
p ↓ q ↓
p · q ↓ p∗ ↓

p ↓ q ↓
p ‖ q ↓

p ↓
∂E(p) ↓ a

a−→ 1

p
a−→ p′

p+ q
a−→ p′

q
a−→ q′

p+ q
a−→ q′

p
a−→ p′

p · q a−→ p′ · q

p ↓ q
a−→ q′

p · q a−→ q′
p

a−→ p′

p∗
a−→ p′ · p∗

p
a−→ p′

p ‖ q a−→ p′ ‖ q
q

a−→ q′

p ‖ q a−→ p ‖ q′

p
c!l?kd−−−−→ p′ q

c!m?nd−−−−→ q′

p ‖ q c!l+m?k+nd−−−−−−−→ p′ ‖ q′
p

a−→ p′ a 6∈ {c!m?nd | c!m?n ∈ E, d ∈ D}
∂E(p)

a−→ ∂E(p′)

The operational rules in Definition 5.3 are briefly discussed here. The first
rule states that the constant process 1 can terminate. The subsequent two
rules indicate that if one operand of an alternative composition can terminate
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then the entire expression has the termination property. In contrast, for the
termination of a sequential composition it is required that both operands are
able to terminate. Any term under iteration can terminate, which intuitively
corresponds to iterating zero times. Similar to sequential composition, for a
parallel composition to be able to terminate it is required that both operands
can terminate. Termination of an encapsulated term depends upon termina-
tion of the term itself.

The first rule for the definition of the step relation states that any action
induces an outgoing transition having the same label. The two rules for alter-
native composition enable a non-deterministic choice between the steps of-
fered by the two respective operands. The succeeding two rules semantically
define how the sequential composition behaves: 1) The left operand may be
able to terminate in which case a continuation may be provided by the right
operand, or 2) the left side may take an independent step. The Kleene star un-
folds with respect to sequential composition. It executes an underlying step
and may eventually continue executing itself again. The parallel composition
operator relies on three different rules. Two of these rules express unilateral
behavior, while the last rule for parallel composition expresses lock-step be-
havior which includes communication. The last rule in Definition 5.3 defines
behavior of an encapsulated term, which depends upon the set of encapsu-
lated actions. The work in [8] and in [11] contains more information about
the operators in T and their precise semantics.

One of the fundamental requirements of the control loop has been high-
lighted various times before in this thesis: a supervisor cannot disallow an
uncontrollable event [76]. The solution via partial bisimilarity was considered
earlier on in this thesis and formally defined in terms of transition systems in
Definition 2.6. This solution needs to be adapted in order to accommodate
a behavioral description by process terms. This adapted variant of partial
bisimulation can be found in Definition 5.4.

Definition 5.4. Let R be a relation on T . Then R is a partial bisimulation
with respect to the bisimulation action set B ⊆H A if for all p, q ∈ T such that
(p, q) ∈ R the following holds:

1. p ↓ if and only if q ↓;

2. for all p′ ∈ T and a ∈ A such that p a−→ p′, there exists a q′ ∈ T such
that q a−→ q′ and (p′, q′) ∈ R; and

3. for all q′ ∈ T and b ∈ B such that q b−→ q′, there exists a p′ ∈ T such
that p b−→ p′ and (p′, q′) ∈ R.
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Process term p is defined to be partially bisimilar to q with respect to the
bisimulation action setB (notations: p � q and p �B q), if there exists a partial
bisimulation R, in terms of B, such that (p, q) ∈ R. If the partial bisimulation
set R is of particular relevance, the notation p �BR will be applied.

It can be easily shown that partial bisimilarity is a preorder relation [77].
Also, it is not difficult to prove that mutual partial bisimilarity is an equiv-
alence relation [77]. Note that if the bisimulation set B is empty, then the
partial bisimilarity preorder coincides with the standard (strong) similarity
preorder. When B = A, the partial bisimilarity preorder becomes strong
bisimilarity [31]. Lemma 5.1 proves an important transitivity property for
dependence upon the bisimulation action set B.

Lemma 5.1. If p �B q, then p �C q for every C ⊆ B.

Proof. Let p �B q be given by R. If for an arbitrary (p, q) ∈ R it holds that
q

c−→ q′ for some c ∈ C ⊆ B and q′ ∈ T , then there exists a p′ ∈ T such that
p

c−→ p′ and (p′, q′) ∈ R. The remaining conditions for partial bisimilarity
remain unaltered and it may therefore be concluded that R is also a partial
bisimulation such that p �C q.

The remainder of this section considers a proof in which it is shown that
partial bisimilarity �B for B ⊆H A is a precongruence with respect to the
operators of TCP∗. In [66], it is shown that for operational rules in the tyft
format, congruence with respect to bisimilarity can be automatically derived.
This precongruence proof is set up in a relatively general way. The notation
C(T ) is used to denote the closed terms in T . Two definitions are adapted
from [66]:

Definition 5.5. An operational rule is in tyft format if it is of the form defined
below. In this definition, I is a set of indices, a ∈ A, f is an n-ary operator
in the process theory TCP∗, t′ ∈ T and x0, . . . , xn−1, yi are all distinct process
variables. Furthermore, for all i ∈ I , it holds that ai ∈ A and ti ∈ T in the
following definition:

{ti
ai−→ yi | i ∈ I}

f(x0, . . . , xn−1)
a−→ t′

In addition, the abbreviation Xp = {x0, . . . , xn−1} is used to denote the
set of process variables in the source of the conclusion. and Yp = {yi | y ∈ I}
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denotes the set of variables in the target of the premises. As a necessary re-
quirement, it is assumed that the sets Xp and Yp are disjoint. A set of deriva-
tion rules conforms to the tyft format if all rules adhere to the tyft format. The
formalization of the prerequisites continues with the definition of the acyclic-
ity of the variable dependency graph. These variable dependency graphs are
defined in the following way:

Definition 5.6. For every deduction rule depending on premises P1, . . . , PN
with their respective sets of process variables Si in the source of the premise i
and Ti in the target of the premise i, a variable dependency graph is defined
in the following way:

1. Every variable in ∪i(Si ∪ Ti) is a node; and

2. There exists an edge (vs, vt) if there exists an i such that vs ∈ Si and
vt ∈ Ti.

This graph is defined to be acyclic if it does not contain any cycles. The
rank (x) is defined for each process variable x as the maximum length of a
backward chain starting in x in the variable dependency graph. The rank of
a premise is the rank of its target variable.

A subsequent definition which is required is the closure of a relation under
precongruence:

Definition 5.7. Let R ⊆ C(T ) × C(T ). The relation R̃ ⊆ C(T ) × C(T ) is
defined to be the smallest reflexive precongruence on C(T ) such that the re-
lationR is contained in R̃. The relation R̃ can be formally specified as follows:

1. R̃ is reflexive;

2. R ⊆ R̃;

3. (f(p0, . . . , pn−1), f(q0, . . . , qn−1)) ∈ R̃ for every n-ary f ∈ T , and all
p0, . . . , pn−1, q0, . . . qn−1 ∈ C(T ) such that (pi, qi) ∈ R̃ for 0 ≤ i < n.

Lemma 5.2. Let R ⊆ C(T ) × C(T ) and t ∈ T . For any two process substitu-
tions σ and σ′ such that (σ(x), σ′(x)) ∈ R̃, where x is a process variable in t, it
holds that (σ(t), σ′(t)) ∈ R̃.

Proof. By induction towards the structure of the process term t. See [33].
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Lemma 5.3. Partial bisimilarity is a precongruence for each of the operators
in T .

Proof. It may be straightforwardly observed from Definition 5.3 that each of
these derivation rules adheres to the aforementioned tyft format. Therefore,
the now following adaptation of the proof in [66] for bisimilarity is sufficient.

Let f be an n-ary process function and let pi, qi be closed process terms
for 0 ≤ i < n. Suppose that B ⊆H A and pi �B qi for 0 ≤ i < n. This means
that for every 0 ≤ i < n there exists a partial bisimulation relation Ri that
witnesses these partial bisimilarities. Let R = ∪n−1i=0 Ri be the union of these
relations. It is quite obvious that R is a partial bisimulation, with respect to
B, as well. It is now sufficient to show that the relation R̃ contains the pair
(f(p0, . . . pn−1), f(q0, . . . , qn−1)) and that it adheres to the partial bisimulation
property as well. The first claim follows directly from the definition of R̃.

In [66] it is shown for (p, q) ∈ R̃ that for a ∈ A, p′ ∈ C(T ) such that
p

a−→ p′, there exists a q′ ∈ C(T ) such that q a−→ q′ and (p′, q′) ∈ R̃. This
proof is completed here for partial bisimilarity by showing that for b ∈ B

such that q b−→ q′, there exists a p′ ∈ C(T ) such that p b−→ p′ and (p′, q′) ∈ R̃.
The proof proceeds by induction towards the depth of the derivation of a

transition. The proof for the induction base is omitted because it is a direct
instance of the proof of the induction step where there are no premises.

For the induction step a distinction needs to be made between three cases,
based on the definition of R̃. In case (p, q) ∈ R̃, due to reflexivity or due
to (p, q) ∈ R ⊆ R̃, the result follows directly and no inductive reasoning is
required. For the remaining case, p = f(p0, . . . , pn−1) and q = f(q0, . . . , qn−1)

for some p0, . . . , pn−1, q0, . . . , qn−1 such that (pi, qi) ∈ R̃ for all 0 ≤ i < n,
the format of the last derivation needs to be understood. The last step in the
deduction tree for the transition of q is due to the application of a derivation
rule of the following form:

{ti
bi−→ yi | i ∈ I}

f(x0, . . . , xn−1)
b−→ t′

To prove the result for partial bisimilarity, an additional condition for ev-
ery deduction rule is required: If b ∈ B then ∀i ∈ I bi ∈ B. This means that
there exists a process substitution σ such that σ(xi) = qi for all 0 ≤ i < n
and σ′(t′) = q′. Furthermore, for each i ∈ I there exists a derivation of
σ(ti)

bi−→ σ(yi) with smaller depth. For each process variable x in the vari-
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ables of ti of each premise ti
ai−→ yi, it holds that rank(x) < rank(yi). The

process substitution σ′ can be defined as follows:

σ′(x) =

{
qi if x = xi,
σ(x) if x 6∈ Xp ∪ Yp.

Note that this process substitution remains to be defined for variables in Yp.
This definition will be extended in the remainder of this proof. For all i ∈ I
such that ri = rank(Pi) = rank(yi) of premise Pi, three essential properties are
shown here:

A. (σ(ti), σ
′(ti)) ∈ R̃; and

B. σ′(ti)
bi−→ σ′(yi); and

C. (σ(yi), σ
′(yi)) ∈ R̃.

Again, the proof of the induction base (ri = 0) is not shown here, as it is
an instance of the proof of the induction step. For the inductive part, assume

that ri ≥ 1. Let ti
bi−→ yi for some i ∈ I be a premise of rank ri. First, property

(A) is shown. Let x be a variable in ti, and distinguish between the following
cases:

1. If x ∈ Xp then x = xi for some 0 ≤ i < n. From the definition of σ′ it
holds that σ(x) = σ(xi) = qi and σ′(xi) = pi and, as (pi, qi) ∈ R̃, it holds
that (σ(x), σ′(x)) ∈ R̃.

2. If x 6∈ Xp and x 6∈ Yp then it holds that σ(x) = σ′(x). Since identity is
included in R̃, it directly follows that (σ(x), σ′(x)) ∈ R̃.

3. If x ∈ Yp then x = yj for some j ∈ I . Because in this case rank(yj) <

rank(yi), so the induction hypothesis gives rise to: (σ(yj), σ
′(yj)) ∈ R̃.

Moreover, as x = yj , it also holds that: (σ(x), σ′(x)) ∈ R̃.

Because of the fact that (σ(x), σ′(x)) ∈ R̃ for all variables x in ti, it holds
that (σ(ti), σ

′(ti)) ∈ R̃ by Lemma 5.2, which proves property (A).

Since there exists a derivation of smaller depth for σ(ti)
bi−→ σ(yi), by the

induction hypothesis, the existence of a process term p′i such that σ′(ti)
bi−→ p′i

and (σ(yi), p
′
i) ∈ R̃ may be assumed. Define σ′(yi) = p′i and observe that

this shows existence of an appropriate process term σ′(yi). This gives rise to

σ′(ti)
bi−→ σ′(yi) and (σ(yi), σ

′(yi)) ∈ R̃, which proves properties (B) and (C).
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The proof is completed using process substitution σ′ for the aforemen-
tioned deduction rule. Observe that σ′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1)
= p. In property (B) it was shown that there exist derivations for all premises
using the process substitution σ′. Then, according to the same deduction rule

and using σ′ instead of σ, it holds that σ′(f(x0, . . . , xn−1))
b−→ σ′(t). Since

σ′(f(x0, . . . , xn−1)) = f(p0, . . . , pn−1) = p, it follows that p b−→ σ′(t′).
It remains to be shown that (σ(t′), σ′(t′)) ∈ R̃. By Lemma 5.2, only the fact

that (σ(x), σ′(x)) ∈ R̃ for variables x in t′ needs to be shown. The proof may
now be completed by considering the following three cases:

1. If x ∈ Xp then x = xi for some 0 ≤ i < n. It now holds that σ(xi) = pi
and σ′(xi) = pi and that (pi, qi) ∈ R̃ and xi = x was already known.
Therefore, it holds that (σ(x), σ′(x)) ∈ R̃.

2. If x 6∈ Xp and x 6∈ Yp then (σ(x), σ′(x)) ∈ R̃, since σ(x) = σ′(x) and
identity is included in R̃.

3. If x ∈ Yp then x = yj for some j ∈ I . Furthermore, it holds that
(σ(yj), σ

′(yj))∈ R̃, by property (C). Since x = yj the inclusion (σ(x), σ′(x))

∈ R̃ also holds.

5.2 Controllability

Controllability is now defined and analyzed within the framework of pro-
cess algebra. A number of observations related to its application in a non-
deterministic context are also illustrated in this section. The previously intro-
duced language-based constructs in Section 2.1 now need to be extended to
a process-algebraic context. The reflexive transitive closure −→∗ of the step-
relation −→ is defined as follows: For p, p′ ∈ T it holds that p ε−→ ∗ p, and
if t, v ∈ A∗ with t = a · v then p

t−→ ∗ p′ if and only if there exists a q ∈ T
such that p a−→ q and q

v−→∗ p′. To each process term p ∈ T corresponds a
language L (p) which is defined as:

L(p) =
{
t ∈ A∗ | ∃ p′ ∈ T : p

t−→∗ p′
}

As stated previously, a language L ⊆ A∗ is defined to be prefix closed if L = L
where:
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L = {t ∈ A∗ | ∃ t′ ∈ A∗ : t · t′ ∈ L}

The notation L · L′ is used to denote the concatenation of the two languages
L and L′; more formally:

L · L′ = {t · t′ | t ∈ L, t′ ∈ L′}

This section now further studies models for the plant, specification and
supervisor as closed process terms. For plant p ∈ T and supervisor s ∈ T ,
the notation s/p is used to denote the supervised plant, which acts as a model of
the effective realization of the plant under supervisory control. This model is
referred to as the controlled system earlier on in this thesis. In order to ensure
that s/p does not disable accessible uncontrollable behavior, it is required that
s/p is controllable with respect to p. This is formalized in Definition 5.8 under
the re-iterated assumption that A = U ∪ C:

Definition 5.8. Let p ∈ T be a model of the plant and s/p ∈ T be a model of
the supervised plant, then p is language controllable with respect to s/p if and
only if:

L (s/p) · U ∩ L (p) ⊆ L (s/p)

Definition 5.8 requires that any trace in the supervised plant, followed by an
uncontrollable action, should be a trace in the supervised plant, if this trace
also occurs in the language of the plant itself. Note how this is a straightfor-
ward interpretation of controllability as given in Definition 2.4 for the process
algebra framework. In any realistic model of the supervised plant, additional
conditions need to be stated to relate s/p to the specification of desired be-
havior. A useful and straightforward option is to require that L (r) = L (s/p),
for some specification of desired behavior r ∈ T .

Language-based controllability according to Definition 5.8 poses a prob-
lem in the non-deterministic setting, as briefly introduced in Section 1.2 and
as further noticed while exploring the examples in previous chapters. If a
decision about event allowance can be made on a per-state basis, problems
regarding control and non-determinism can usually be avoided. The remain-
der of this section is meant to illustrate how to appropriately handle control-
lability for non-deterministic process terms.

Intuitively, state-based control can be understood in the following man-
ner: the plant communicates its current state to the supervisor, upon which
the latter decides the set of actions that can be taken in this state. To define a
state based notion of controllability, states therefore need to be taken into ac-
count. A solution is therefore proposed in terms of state communication from
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the plant to the supervisor. The approach proposed here is loosely based on
the work in [57]. State-based controllability is also investigated in the context
of non-determinism in [27]. A formalization of state-controllability is shown
in Definition 5.9:

Definition 5.9. Let p ∈ T and s/p ∈ T be process terms representing re-
spectively the plant and the supervised plant. It is then defined that p is state
controllable with respect to s/p and U if for all t ∈ L (s/p) and u ∈ U such
that tu ∈ L (p) it holds that for all s/p t−→∗ q there exists a q′ ∈ T such that
q

u−→ q′.

From this definition it is clear that state controllability implies language
controllability. However, there remains an intrinsic problem in this defini-
tion of state-controllability, due to the fact that it is not reflexive. That is, if
a strictly non-deterministic plant is equal to the supervised plant, in general
state controllability as given in Definition 5.9 does not hold, as shown in [6].
The absence of the reflexivity property implies that state-controllability can-
not be defined as a preorder. The definition of partial bisimilarity according
to Definition 5.4 may be applied to resolve this problem by expressing the
necessary conditions for the supervised plant by following Definition 5.10.

Definition 5.10. Let p ∈ T and r ∈ T be process-theoretic expressions of
respectively the plant and control specification. If A = U ∪ C, then s ∈ T is a
supervisor for p that satisfies r if:

s/p �U p and s/p �∅ r

where s/p is again the model of the supervised plant, i.e. the model of the plant
under supervisory control, also previously referred to as the controlled system.
It will be shown that setting s/p to p ‖ s will often be appropriate in the
context of process algebra, under a number of additional conditions.

From the first condition in Definition 5.10 it is clear that no accessible un-
controllable actions are disabled in the supervised plant, since U is included
in the bisimulation action set. It is therefore immediately clear that the afore-
mentioned condition of L (p ‖ s) ·U ∩L (p) ⊆ L (p ‖ s) is satisfied. The second
condition in Definition 5.10 states that the supervised plant is an actual real-
ization of the behavior as formulated in the requirements.

The following lemma states that partial bisimilarity is a less coarse notion
compared to state-controllability. It will be shown that the existence of a par-
tial bisimulation implies state-controllability, however, the inversion of this
statement is not true.
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Lemma 5.4. If p, q ∈ T such that q �U p, then p is state controllable with
respect to q.

Proof. Let p, q ∈ T such that q �U p for the partial bisimulation R ⊆ T ×T . It
needs to be shown that the following condition is satisfied: for s ∈ L (q) and
a ∈ U such that sa ∈ L (p) and for all q s−→∗ q′ there exists a q′′ ∈ T such that
q′

a−→ q′′.
Let s ∈ L (q) and q′ ∈ T such that q s−→ ∗ q′ and let a ∈ U such that

sa ∈ L (p) with p s−→∗ p′ for p′ ∈ T . It is clear that q s−→∗ q′ and (q′, p′) ∈ R
and therefore there exists a q′′ ∈ T such that q′ a−→ q′′ as follows directly from
partial bisimilarity according to Definition 5.4.

Using the process theory TCP∗ in conjunction with partial bisimilarity,
precise formulations of the elements and functionality within the control loop
can be given. In general, the plant and specification can be modeled ap-
propriately using TCP∗, as there are appropriate constructions such as non-
deterministic choice, sequentiality, iteration and communication available.
This allows even complicated plants and specifications to be modeled at the
right abstraction level. Allowance of uncontrollable behavior and prevention
of controllable events is modeled by parameterizing the partial bisimilarity
preorder with the set of uncontrollable events, as shown in Definition 5.10.
Encapsulation in conjunction with communication can be used to enforce oc-
currence of only complete communication actions. An important remark has
to be made with regard to these communication actions, as shown in the fol-
lowing example:

Consider a simple plant p in which two parallel machines m1 and m2 are
signaled by local controller g that a product is ready for further processing.
This process repeats itself indefinitely and is modeled by the following defi-
nitions. Let p,m1,m2, g ∈ T such that:

m1 ≡ (c?ready · process1)∗

m2 ≡ (c?ready · process2)∗

g ≡ (c!ready)∗

p ≡ m1 ‖ m2 ‖ g

Furthermore, it is assumed that in this example all actions are controllable.
According to the specification that first m1 and then m2 needs to be executed
repeatedly, the now following formulation is required:

r ≡ (c!?2ready · process1 · process2)∗
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Assume that a supervisor s needs to be constructed which satisfies the
condition of s/p �∅ r. As mentioned before, s/p can be set to p ‖ s. This
means that the allowed controllable traces from p ‖ s should be simulated by
r. Due to the fact that it is assumed that U = ∅, it might seem straightforward
to choose s = r. However, using the operational semantics of the parallel
composition operator in Definition 5.3, it can be observed that synchroniza-
tions are essentially ’multiplied’ in p ‖ s. For instance, if c!1?2ready occurs
in a trace of p, then c!2?4ready occurs in a trace of p ‖ s, which is clearly not
simulated by r.

To solve the issue raised in the previous example, an appropriate renaming
operator ξ : T → T is introduced which traverses the term to which it is
applied recursively. This renaming operator is introduced in Definition 5.11.
It has to be partially redefined in each instance it is used to list the exact
renamed actions.

Definition 5.11. The renaming operator ξ : T → T is defined according to
the following pattern. Let p, q ∈ T in the following definition:

ξ(0) = 0
ξ(1) = 1

ξ(p+ q) = ξ(p) + ξ(q)
ξ(p · q) = ξ(p) · ξ(q)
ξ(p∗) = ξ(p)∗

ξ(p ‖ q) = ξ(p) ‖ ξ(q)

The renaming function ξ in Definition 5.11 is applied in the example in Sec-
tion 5.3, where the process algebra TCP∗ is used to model a case study of
automated guided vehicles.

5.3 Event-Based Supervision: AGV Case

In this section, the approach to supervisory control and the model of the con-
trol loop is illustrated. A relatively simple example concerning coordination
of an automated guided vehicle (AGV) in an automated production line is
depicted in Figure 5.1. The AGV is responsible for transferring the preprod-
uct made by Workstation M to Workstation N and transferring the finished
product from Workstation N to the Delivery station. These are two phases
that need to be executed in sequence.

The workstations and the AGV are coordinated by a supervisor, which
sends the corresponding control signals. It will be shown here how to model
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AGV

Workstation M Workstation N Delivery

Supervisor

s

m n d

control signals observable product transfer signals

Plant

Figure 5.1: Illustrating the case for automated guided vehicles. The preproduct made
by workstation M is transferred to workstation N and subsequently transferred to the
delivery station. This entire process is coordinated by a supervisor.

the automated production system from Figure 5.1 using TCP∗. The process
terms M,N,A and S are used to model Workstation M , Workstation N , the
AGV and the supervisor respectively. Note that this model abstracts from the
delivery station (modeled by a single event deliver), as it does not contribute to
any relevant behavior. The same communication channel names as shown in
Figure 5.1 are used. The data elements areD = {make,move2N, preproduct, prod-
uct}. Uncontrollable events are U = {m,n, produce, process,move, deliver} and
as controllable event there is C = {s}. The following instantiations are applied
for this example:

M ≡ (s?make · produce(preproduct) ·m!preproduct)∗

N ≡ (n?preproduct · process(preproduct) · n!product·)∗
A ≡ (m?preproduct · s?move2N ·move(preproduct) · n!preproduct+

n?product · deliver(product))∗

S ≡ (s!make · s!move2N)∗

Workstation M repeatedly waits for a command from the supervisor to
make a preproduct, which is offered to the AGV once it is made. Worksta-
tion N waits for a preproduct from the AGV, which is thereafter processed
and offered back to the AGV. The AGV can either pick up a preproduct at
workstation M , after which it asks for permission to move the preproduct to
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Workstation N , or pick up a finished product at Workstation N , and deliver
it. Now, the unsupervised plant is modeled by the process term:

U ≡ ∂F (M ‖ N ‖ A), where F = {m?,m!,n?,n!}

At this point, encapsulation is applied to enforce meaningful communica-
tion within the plant. This type of encapsulation does not restrict the behavior
of the unsupervised plant, but only ensures its meaningful behavior. Follow-
ing the framework outlined above, it can be readily observed that the plant
U ∈ T follows the outlined syntax.

In this first modeling instance, it is assumed that the AGV is responsible
for delivering the final product and a supervisor is proposed as given by the
process S. Note that the supervisor S ∈ T follows the outlined syntax and
it does not make use of any observed information. Supervisor S repeatedly
gives orders to Workstation M for new products to be made, followed by
orders to the AGV to transfer the preproduct to Workstation N . Thus, the
automated production system is modeled as:

U/S ≡ ∂E(S ‖ U), where E = {s?, s!}

This enforces communication of control signals and transfer of the prod-
ucts. One can directly check that S is a valid supervisor by establishing that
the supervised plant is partially bisimulated by the original plant with re-
spect to the uncontrollable events. To this end, renaming of events must be
employed, as the original plant has open communication actions that wait
for synchronization with the supervisor. This renaming function ξ traverses
the process terms and renames all open communication actions to succeeded
communication actions. The aforementioned renaming function is applied to
the communication action names as well. When considering renaming, only
the actions which are actually renamed are mentioned. Now, in order to ver-
ify that the supervisor does not disable accessible uncontrollable events, it is
sufficient to verify that the following holds:

U/S �AU ξ(U), where ξ : s?d 7→ s!?d for d ∈ D

This can be directly verified. No restriction is imposed upon the control spec-
ification, which in this case coincide with the plant and are, therefore, trivially
satisfied.

Unfortunately, this automated production system has a deadlock. The
main reason for the deadlock is that a second preproduct can come too early,
before the first product is completely finished and delivered, which is set off
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by sending a s!make command too early, that is, before the processed product
has left Workstation N . Then, the AGV picks up the preproduct from Work-
station M , but it cannot deliver it to Workstation N , as the latter also waits
for a finished product to be picked.

Such form of blocking behavior appears often, so in many cases the su-
pervisor is additionally required to prevent situations in which blocking be-
havior such as deadlock and livelock occurs. This is a typical example of a
situation where marked states are introduced in a supervisory control setting
such as described in the previous chapters. Note that these states roughly cor-
respond to successful termination in our setting. The correspondence is not
strict, mainly due to the absence of sequential composition and the Kleene
star operator in the supervisory control literature and the role of the success-
ful termination in these contexts. Note that the marked states do not con-
tribute to the formation of the recognized language of an automaton, which
is different from its marked language.

So, besides the control specification, an additional deadlock freeness re-
quirement is imposed on the supervisor, stated formally as: there exists no

trace t ∈ A∗ such that U/S t−→
∗
u, for u ∈ T and u ↔ 0. To ensure this

additional nonblocking requirement, the supervisor needs to be modified to
accept requests for making a new preproduct only after the finished product
has been loaded on the AGV, to be transferred to the delivery station.

To this end, the supervisor should allow for a new product to be made
only after the finished product has been loaded to the AGV at WorkstationN ,
which can be achieved by observing this additional information on channel
n. To this end, the supervisor is modified as follows:

S ≡ (s!make.s!move2N.n?product)∗

At this point, note that communication on the channel n now must oc-
cur between three parties. This situation occurs between Workstation N that
sends information and the AGV and the supervisor which receives it. In or-
der to enforce this communication, communication actions are employed.
All (incomplete) communication actions in N are encapsulated, except for
n!1?2product. The definition of the deadlock-free supervised plant now be-
comes:

U/S′ ≡ ∂E′(S′ ‖ U), where E′ = {s?, s!, n?, n!?}

Again, one directly verifies that the supervisor is valid by establishing par-
tial bisimilarity between the supervised plant and the original plant model
following an appropriate definition of renaming of the incomplete communi-
cation actions, given by ξ : s?d 7→ s!?d, n!?d 7→ n!1?2d for d ∈ D.
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5.4 The Process Theory TCP∗⊥
This section proposes the theory TCP∗⊥, an extension of TCP∗, with propo-
sitional signals and guarded commands in order to support the modeling of
a control loop with state-based observations. The end purpose of this setup
is to model asymmetrically supervised plants, tailored towards the specific
needs for plants as well as supervisors. The asymmetric nature of this con-
struction becomes clear from the following intuitive explanation of the pur-
pose of plant-supervisor combinations modeled in TCP∗⊥. The plant commu-
nicates its current state to the supervisor, upon which a list of enabled signals
is sent back to the plant by the supervisor. Therefore, besides the standard
process terms as discussed before, the plant has to be able to perform out-
ward communication of its state. On the other hand, the supervisor has to
be able to receive this information and to either allow or disallow it, thereby
obviously taking into account the fact that an accessible uncontrollable events
should never be disallowed. In this section, the concurrency theory TCP∗⊥ is
defined in order to achieve this. A different grammar for terms is applied
which is designated to model plant components compared to supervisors.
However, they both rely upon the same operational semantics. Definition
5.12 outlines the grammars for the components in TCP∗⊥:

Definition 5.12. IfP is a set of propositional symbols, then a standard Boolean
algebra B is defined by the grammar below:

B ::= true | false | P | ¬B | B ∧ B | B ∨ B

The set of plant-specific process terms T is then defined in terms of B by the
grammar shown below. Assume that E ⊆ {f !m?n | f ∈ H,m, n ∈ N}, c ∈ C,
u ∈ U and k, l ∈ N in the following definition:

T ::=0 | 1 | c?d | u!l?k | T +T | T ·T | T ∗ | T ‖ T | ∂E(T ) | B :→ T | B∧NT | ⊥

Finally, the set of supervisor-specific process terms S is defined here. Assume
that c ∈ C and d ∈ D in the following definition:

S ::= 1 | c!d | S + S | S · S | B :→ S | S∗

The Boolean algebra B in Definition 5.12 includes the constants true and
false , negation, conjunction and disjunction and may also be used to express
implication. Boolean expressions b ∈ B are evaluated with respect a valuation
function v : B 7→ {true, false}. The universe of all valuations is denoted by V .
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The set of process terms T in Definition 5.12 is enriched with the inacces-
sible process, guarded commands and signal emission [8], compared to Definition
5.2. The inaccessible process, notation ⊥, specifies the process in which there
are inconsistencies between the valuation of the propositional variables and
the emitted propositional signals. A guarded command, notation φ :→ p,
specifies a formula φ ∈ B that functions as a delimiter of a process p ∈ T .
If the guard φ evaluates to true , then the process p is allowed to continue
as usual. If φ evaluates to false , then the guarded process p deadlocks. The
root signal emission operator φ∧Np emits the propositional signal φ ∈ B un-
til the process p ∈ T takes an outgoing transition. A prerequisite is that the
propositional signal is consistent with the valuation. To be able to evalu-
ate the Boolean formulas, process terms are coupled to valuations, notation:
〈p, v〉 ∈ T × V . The dynamics of the valuations, with respect to outgoing la-
beled transitions, is captured by the predefined valuation effect function. This
function has the signature effect : A × V → 2V . With respect to the valua-
tion, the successful termination predicate needs to be extended to ↓⊆ T × V
and the step relation to −→⊆ T × V ×A× T × V . An additional consistency
predicate↘∈ T × V which checks whether the state is consistent needs to be
introduced. The operational rules in Definition 5.13 give the semantics of the
new predicate and the transition relation with respect to the new operators.

Definition 5.13. An operational semantics for TCP∗⊥ is described below. As-
sume that v, v′, v′′ ∈ V , p, q, p′, q′ ∈ T , a ∈ A, c ∈ H, k, l,m, n ∈ N and
E ⊆ {f !m?n | f ∈ H,m, n ∈ N} in the set of derivation rules listed here:

〈0, v〉 ↘ 〈1, v〉 ↘ 〈1, v〉 ↓ 〈a.p, v〉 ↘
〈p, v′〉 ↘ v′ ∈ effect(a, v)

〈a.p, v〉 a−→ 〈p, v′〉

〈p, v〉 a−→ 〈p′, v′〉 〈q, v〉 ↘
〈p+ q, v〉 a−→ 〈p′, v′〉

〈p, v〉 ↘ 〈q, v〉 a−→ 〈q′, v′〉
〈p+ q, v〉 a−→ 〈q′, v′〉

〈p, v〉 ↘ 〈q, v〉 ↓
〈p+ q, v〉 ↓

〈p, v〉 ↓ 〈q, v〉 ↘
〈p+ q, v〉 ↓

〈p, v〉 ↘ 〈q, v〉 ↘
〈p+ q, v〉 ↘

〈p, v〉 ↓ 〈q, v〉 ↓
〈p · q, v〉 ↓

〈p, v〉 ↓ 〈q, v〉 a−→ 〈q′, v′〉
〈p · q, v〉 a−→ 〈q′, v′〉

〈p, v〉 a−→ 〈p′, v′〉 〈p′ · q, v′〉 ↘
〈p · q, v〉 a−→ 〈p′ · q, v′〉

〈p, v〉 ↓ 〈q, v〉 ↘
〈p · q, v〉 ↘



124 Chapter 5. Control Theory and Process Algebra

Definition 5.13 (cont.) The definition of the operational semantics for TCP∗⊥
is continued below:

〈p, v〉 ↘ 〈p, v〉 6↓
〈p · q, v〉 ↘

〈p, v〉 ↘
〈p∗, v〉 ↓

〈p, v〉 ↘
〈p∗, v〉 ↘

〈p, v〉 a−→ 〈p′, v′〉
〈p∗, v〉 a−→ 〈p′ · p∗, v′〉

〈p, v〉 ↓ 〈q, v〉 ↓
〈p ‖ q, v〉 ↓

〈p, v〉 ↘ 〈q, v〉 ↘
〈p ‖ q, v〉 ↘

〈p, v〉 a−→ 〈p′, v′〉 〈q, v〉 ↘ 〈q, v′〉 ↘
〈p ‖ q, v〉 a−→ 〈p′ ‖ q, v′〉

〈p, v〉 ↘ 〈p, v′〉 ↘ 〈q, v〉 a−→ 〈q′, v′〉
〈p ‖ q, v〉 a−→ 〈p ‖ q′, v′〉[

〈p, v〉 c!l?kd−→ 〈p′, v′〉 〈q, v〉 c!m?nd−→ 〈q′, v′′〉 〈p′ ‖ q′, v′′〉 ↘
v′ ∈ effect(c!l+m?k+nd, v)

]
〈p ‖ q, v〉 c!l+m?k+nd−→ 〈p′ ‖ q′, v′′′〉

〈p, v〉 ↓
〈∂E(p), v〉 ↓

〈p, v〉 ↘
〈∂E(p), v〉 ↘

〈p, v〉 a−→ 〈p′, v′〉 a 6∈ {c!m?nd | c!m?n ∈ E, d ∈ D}
〈∂E(p), v〉 a−→ 〈∂E(p′), v′〉

〈p, v〉 ↓ v(φ) = true

〈φ :→ p, v〉 ↓
〈p, v〉 ↘ v(φ) = true

〈φ :→ p, v〉 ↘
v(φ) = false

〈φ :→ p, v〉 ↘

〈p, v〉 a−→ 〈p′, v′〉 v(φ) = true

〈φ :→ p, v〉 a−→ 〈p′, v′〉
〈p, v〉 ↓ v(φ) = true

〈φ∧Np, v〉 ↓

〈p, v〉 ↘ v(φ) = true

〈φ∧Np, v〉 ↘
〈p, v〉 a−→ 〈p′, v′〉 v(φ) = true

〈φ∧Np, v〉 a−→ 〈p′, v′〉

Some brief comments on the rules in Definition 5.13 are given here. The
first two rules indicate that the valuations are consistent with respect to the
constant terms 0 and 1. An equivalent rule to the one in Definition 5.3 ex-
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presses how the constant 1 can always terminate. The next rule shows how
action symbols do not influence consistency. A subsequent rule determines
how any action is allowed to take a step based on the result of the effect func-
tion. Alternative composition behaves as in TCP∗, provided that consistency
is given. In addition, consistency is required for termination of alternative
composition. Consistency of both operands is transferred to consistency of a
sum, as expressed in the next rule. It is further detailed how termination of
sequential composition and a transition from the right operand behaves as in
TCP∗. In the case of a left operand transition, consistency is required for the
resulting term p′ · q. Termination of the left operand transfers consistency for
sequential composition. Consistency for the left side 〈p, v〉 only transfers to
the product 〈p · q, v〉 on the condition that the left side 〈p, v〉 does not termi-
nate. The two next rules state that termination and consistency for parallel
composition depend on both operands. Two derivation rules are required to
detail how unilateral steps in the parallel operator ‖ take place. Note that this
depends upon consistency of the term which remains constant. The compo-
sitional rule shows how a bilateral parallel step can be enabled by the effect
function, and is further similar to that of TCP∗. The three rules for encapsula-
tion show the behavior of this operator in this new setting. A true valuation is
required for termination, as well as consistency of a guarded term. The next
somewhat remarkable rule shows that a guarded term is consistent, even if
its corresponding valuation evaluates to false . A subsequent rule details the
behavior of a guarded process, enabling the underlying term only if the val-
uation φ is true . The last three rules consider the signal emission operator. A
true valuation is required for the signal emitting term to terminate and to be
consistent. The last rule details how a true valuation is required for a transi-
tion step as well.

An additional property of the effect function is required in order for it to
be well-defined [8]. Let c ∈ H, d ∈ D, and l, k,m, n ∈ N with l + k > 0 and
m+ n > 0 in the following additional requirement:

effect(c!l+m?k+nd) ⊆
effect(c!m?nd, effect(c!l?kd, v))

⋂
effect(c!l?kd, effect(c!m?nd, v))

Definition 5.4 needs to be adapted in such a way that it correctly handles
valuations. The approach is based on work in [8], where this extension is
investigated for (strict) bisimilarity.
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Definition 5.14. A relation R ⊆ T × T is defined to be a partial bisimulation
with respect to the bisimulation action set B ⊆ A if for all (p, q) ∈ R it holds
that:

1. If 〈p, v〉 ↓ for some v ∈ V then 〈q, v〉 ↓; and

2. If 〈q, v〉 ↓ for some v ∈ V then 〈p, v〉 ↓; and

3. If 〈p, v〉 a−→ 〈p′, v′〉 for some v, v′ ∈ V and a ∈ A then there exists a
q′ ∈ T such that 〈q, v〉 a−→ 〈q′, v′〉 and (p′, q′) ∈ R; and

4. If 〈q, v〉 b−→ 〈q′, v′〉 for some v, v′ ∈ V and b ∈ B then there exists a
p′ ∈ T such that 〈p, v〉 b−→ 〈p′, v′〉 and (p′, q′) ∈ R.

5.5 Case Study

The process theory TCP∗⊥ is employed to model the coordination of mainte-
nance procedures of a printing process of a high-end industrial printer [63].
This is an approach similar to that of Section 3.5. However, a short new de-
scription is required in terms of the formalisms introduced in this chapter.
The Status Procedure is responsible for coordinating the other procedures
given the input from the controllers. It will be implemented as a supervisory
coordinator. The coordination rules are given in terms of guarded process
terms below. The Current Power Mode procedure sets the power mode to
Run or Standby depending on the enabling signals from the Status Procedure
Stb2Run and Run2Stb, respectively. The confirmation is sent back via the sig-
nals InRun and InStb, respectively. Maintenance Operation either carries out
a maintenance operation or it is idle. The triggering signal is OperStart and
the confirmation is sent back by OperFinished. The Page Counter procedure
counts the printed pages since the last maintenance and sends signals when
soft and hard deadlines have been reached using ToSoftDln and ToHardDln,
respectively. The counter is reset each time the maintenance is finished, by
receiving the confirmation signal OperFinished from Maintenance Operation.
The controller Target Power Mode defines which mode is requested by the
manager by sending the control signals TargetStb and TargetRun to the Status
Procedure. Maintenance Scheduling receives a request for maintenance from
Status Procedure via the signal SchedOper, which it forwards to a manager.
The manager confirms the scheduling with the other functions and sends a
response back to the Status Procedure via the control signal ExecOperNow. It



5.5. Case Study 127

also receives feedback from Maintenance Operation that the maintenance is
finished in order to reset the scheduling.

All previously described procedures are modeled by means of processes.
The names of the control signals will be inherited, turning them into commu-
nication actions where appropriate. The controllable communicating chan-
nels are then given by C = {Run2Stb,Stb2Run,SchedOper,OperStart}, mod-
eled as receive communication actions in the plant. Note that an abstraction
is made from data elements as communication should only enforce the cor-
rect order of events. The other actions are uncontrollable, as indicated by
the underscore prefix, where only OperFinished is modeled as a communica-
tion action, as the procedure Maintenance operation must send signals and
reset Page Counter and Maintenance Scheduling. The signals emitted from
the plant uniquely identify the state of the plant. Page Counter is modeled
by the process C, where OperFinished is modeled as a receive action, to be
synchronized with Maintenance Operation. Maintenance Operation is spec-
ified by the process O, where OperFinished broadcasts that the maintenance
operation has finished. Target Power Mode is modeled by T , Current Power
Mode is given by P and Maintenance Scheduling is modeled as M in the list
of process terms shown below:

C ≡
(

in(NoDeadline)∧N(

OperFinished? +
ToSoftDln ·

(
in(SoftDeadline)∧N(

OperFinished? +

ToHardDln · in(HardDeadline)∧N OperFinished?))
))∗

O ≡
(
in(OperIdle)∧NOperStart? · in(OperInProg)∧N OperFinished !

)∗
T ≡ (in(TargetStandby)∧N TargetRun·

in(TargetRun)∧N TargetStandby)∗

P ≡ (in(Standby)∧NStb2Run · in(Starting)∧N InRun·
in(Run)∧NRun2Stb · in(Stopping)∧N InStb)∗

M ≡ (in(NotScheduled)∧NSchedOper · in(Scheduled)∧N ExecOperNow ·
in(ExecuteNow)∧N OperFinished?)∗
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_OperFinished!

OperStart?

Stb2Run?
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Figure 5.2: A graphical view of the various components in an industrial printer which
correspond to the respective process terms C, M , P , O and T . Note that uncontrollable
events are drawn by dashed lines in this illustration.

In addition, the unsupervised plant can be specified as U ∈ T , which may be
defined in the following way:

U ≡ ∂F (C ‖ O ‖ T ‖ P ‖M)

For clarity, the relevant processes are depicted in Figure 5.2, where the
signal names are given next to the states that emit them. A coordinator which
implements Status Procedure can now be constructed. The purpose of this
coordinator is to regulate the maintenance procedures with the rest of the
printing process. The following coordination requests specify the behavior of
the Status Procedure, as described both informally and formally below:

1. Maintenance operations can be performed only when the printing pro-
cess is in standby. A formalization of this specification therefore re-
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quires that the maintenance procedure is performed if the process emits
the signal OperInProg, while emitting the signal Standby as well:

R1 ≡ OperInProg⇒ Standby

2. Maintenance operations can be scheduled only if a soft deadline has
been reached and there are no print jobs in progress or a hard deadline
has passed. For the control signal SchedOper! to be sent to Maintenance
Scheduling, either one of the following must hold: (1) A soft deadline
has been passed, identified by emission of the signal SoftDeadline, and
there are no print jobs waiting, meaning that the target power mode is
not in run, identified by the signal TargetRun; or (2) A hard deadline has
been passed, indicated by the signal HardDeadline. This is captured by
the following control specification:

R2 ≡
SchedOper!−−−−−−→⇒ (SoftDeadline ∧ ¬TargetRun) ∨HardDeadline

3. Maintenance operations can be started only after being scheduled. This
means that the maintenance operation can be started by sending the
control signal OperStart! only if it has been scheduled, prompted by the
emission of the signal ExecOperNow:

R3 ≡
OperStart!−−−−−→⇒ ExecuteNow

4. The power mode of the printing process must follow the power mode
dictated by the managers, unless overridden by a pending maintenance
operation. If a switch is made from standby to run power mode, in-
dicated by sending the control signal Stb2Run!, then this has been re-
quested by the target power mode manager by emitting the signal TargetRun,
provided that there are no maintenance operations scheduled, for which
the signal ExecuteNow should be checked:

R41 ≡
Stb2Run−−−−→⇒ TargetRun ∧ ¬ExecuteNow

When switching from run to standby power mode, indicated by send-
ing the control signal Run2Stb!, the target power mode should be in
standby, given by emission of the signal TargetStandby. An exception is
made when a maintenance operation is scheduled to be executed, given
by emission of the signal ExecuteNow:
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R42 ≡
Run2Stb−−−−→⇒ TargetStandby ∨ ExecuteNow

With respect to the control specification, a deadlock-free supervisor was
synthesized [63]. The supervisor sends the control signals upon observation
of certain signal combinations, which are given in the form of guards. The
indexes of the guards correspond to the indexes of the control specifications
which concern the respective control signal:

g2 ≡ (in(SoftDeadline) ∧ in(TargetStandby)) ∨ in(HardDeadline)

g3 ≡ in(Standby) ∧ in(ExecuteNow)

g41 ≡ ¬in(ExecuteNow) ∧ in(TargetRun) ∧ ¬in(OperInProg)

g42 ≡ (¬in(ExecuteNow) ∧ in(TargetStandby)) ∨ in(ExecuteNow).

An appropriate supervisor is given by S ∈ S as:

S ≡
(
g2 :→ SchedOper! + g3 :→ OperStart! +

g41 :→ Run2Stb! + g42 :→ Stb2Run!
)∗

Now, the supervised plant U/S is given by:

U/S ≡ ∂E(S ‖ U), where E = {c!, c? | c ∈ H}

Again, it can be shown that the supervised plant is partially bisimilar to
the original plant with respect to the uncontrollable events, by showing that:

U/S �U ξ(U), where ξ : c? 7→ c!? for c ∈ H

The above form of the supervisor does not provide much information re-
garding the choices which are made. For example, it is not difficult to deduce
that due to the fact that the initial signal is Standby, the event Run2Stb is not
possible. In addition, StartOper is unavailable as the signal ExecuteNow is not
emitted. In order to better understand the control choices made by the super-
visor, an alternative supervisor is depicted in Figure 5.3. Both variants pro-
duce equivalent supervised behavior; note that the guards remain the same.
The difference is that the supervisor depicted in Figure 5.3 reveals the conse-
quences of choosing a particular controllable action. It may now be observed
that if the operation is scheduled while the printing process is in standby
power mode, then it can be directly executed, returning the supervisor to the
initial state. If the power mode is changed to run, then the operation can still
be scheduled, but the system has to switch to standby power mode for it to
be executed.
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g41 :→Run2Stb!

g2 :→SchedOper!
g42 :→Stb2Run!

g41 :→Run2Stb!
g2 :→SchedOper!

g42 :→Stb2Run!

g3 :→OperStart!

Figure 5.3: An alternative form of the supervisor S may reveal insight into its actual
operation. The main difference between the model depicted in Figure 5.3 and S is that
the consequences of choosing a particular controllable action are now clear.

5.6 Closing Remarks

The theoretical foundations that were laid out in this chapter can be viewed
as more than just a modeling aid which acts as a stepping stone between
informal specifications and the creation of an actual supervisor. Instead, it
can be argued that a process-theoretic approach to supervisory control the-
ory effectively bridges this gap. The feedback loop for supervisory control
is advantageous in the sense that it abstractly models the realistic distinction
between applicable control and uncontrollable behavior. This abstract model
is given a concrete refinement by providing a convenient formalism to model
the plant and supervisor using the process theory TCP∗, which has been de-
scribed extensively in this chapter. This framework is further streamlined by
allowing the control specifications for desired behavior to be stated using the
very same formalism.

The distinct parts of the process theory TCP∗ correspond to elementary
modeling needs in concrete situations. Parallelism allows the expression of
multiple adjoined components in the plant which operate in conjunction.
Interactions can be modeled using parallel communication functionality, as
clearly present in the theory TCP∗. Encapsulation is used to model effec-
tive restrictions on communicating processes, thereby providing flexibility in
the expression of individual components while retaining the ability to restrict
communications if processes are combined. Iteration allows the expression
of continuous plant components that have the option to terminate, while al-
lowance of non-determinism provides the ability to integrate all of the afore-
mentioned features in a model at the desired level of abstraction.

Partial bisimilarity is applied as a means to consider process theoretic
terms under a preorder modulo structural behavior. This relates to the con-
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cept of bisimulation of uncontrollable events, while enabling restrictions on
control by means of unilateral simulation. The precongruence property of
partial bisimulation was related to the format of the operational rules, thereby
allowing an easy generalization towards extensions of the theory.

Controllability was specified as avoiding disallowance of accessible un-
controllable behavior. For language based control this is realized in the defini-
tion of language based controllability, which is unsuitable for non-determinis-
tic system models. State based control can be an effective means to capture
non-determinism. This is discussed in the light of an earlier approach that
does not satisfy reflexivity in its behavioral preorder between plant and su-
pervisor. As the plant is required to be state controllable to itself, the defi-
nition of partial bisimilarity was adapted for state-based control and it was
showed that it satisfies the required properties. A renaming operator was in-
troduced to enable a parallel and communicating construction of plant and
supervisor in the control loop. This feature was used in an example case of
automated guided vehicles where TCP∗ is used to model parallel components
under language based supervisory control.

The process theory TCP∗was extended to include state-based Boolean val-
uations, guarded commands and signal emission. This enables the expression
of outward communicating plant models that adhere to state based control
signals. This setup retains the required controllability property by redefining
a suitable partial bisimilarity preorder in terms of state-based valuations. The
definition of TCP∗⊥ was followed by an extensive case study into the super-
visory control of an industrial printer where five parallel plant components
are modeled as communicating processes which operate under state-based
control.



Chapter 6

Conclusions

This concluding chapter is set up to first give a general overview of the ob-
tained results, followed by a short analysis. Subsequently, future research
questions are formulated. As a first observation, one might say that the re-
search objectives were met in the sense that a sound methodology was out-
lined which achieves maximally permissive controlled system synthesis for a
reasonably expressive modal logic upon non-deterministic behavioral mod-
els. The resulting main methodology as described in Chapter 2 and Chapter 3
was derived by first studying basic cases and then working incrementally by
expanding the synthesized logic. The formal verification by means of the Coq
proofs attributes more certainty to the validity of the proposed theories. The
resulting synthesis technique may be straightforwardly expressed in algorith-
mic form, as shown in Chapter 3. This contributes to the practical usability of
the synthesis theory.

The projection of the transition relation of the plant onto a new transi-
tion relation over the state-formula product space preserves bisimulation and
thereby creates a synthesis starting point which incorporates as much origi-
nal system structure as possible. The succeeding steps of transition removal
conform to an intuitive interpretation of behavioral restriction; behavior is
removed until the control objectives are met. It is intended that this fixpoint
characterization of control synthesis may one day contribute to a more ab-
stract, broader interpretation of control theory. In such a — perhaps — coin-
ductive model of control theory, more clarity might be obtained regarding the
applicability of partial bisimilarity, or a different similar preorder. Regarding
the latter notion, partial bisimilarity was employed in this thesis due to ear-
lier research, the fact that it implies controllability from a Ramadge-Wonham
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perspective, and its coinductive nature. However, it may not be the definitive
answer to all control-theoretic needs.

Synthesis for Hennessy-Milner logic in such a way that it results in multi-
ple solutions offers an interesting perspective on control synthesis due to the
fact that it shows how hard it is to find multiple non-deterministic maximally
permissive solutions while at the same time preserving a behavioral model
close to that of a transition relation. The approach in Chapter 4 is therefore
not easily extensible beyond HML, which resulted in the synthesis treatment
considered in earlier chapters. However, the research effort was still fruitful
in the sense that many initial discoveries for how to apply maximally permis-
sive synthesis upon non-deterministic models were made.

Control synthesis for process algebra as considered in Chapter 5 provides
an interesting perspective on how to integrate control theory with an exist-
ing formal framework. It is clear from Chapter 5 and earlier research that
control synthesis is definable in process algebra and that many useful con-
structs may be added to a process theory in order to aid in modeling a certain
problem. However, the most beneficial part of such a setup probably lays in
features already present in process algebra itself, such as abstract modeling of
communication and integral treatment of synchronization. A more extensive
comparison to the work in [35] may contribute to a better understanding of
the exact benefits process algebra can offer in the context of control synthesis.

A first point of analysis concerns the omission in this thesis to generally
concern the applicability of non-deterministic models in supervisory control
theory. The precise consequences of not being able to derive a strictly sep-
arated controller such as in [76] therefore remain unclear. Another general
remark is that the new techniques for control synthesis proposed in Chap-
ters 2-4 describe a complicated construction to derive a new transition relation,
which may be considered important from a modeling perspective. However,
a number of strong results were obtained in related research [5, 6], which
construct a completely different behavioral model. It is therefore unclear to
which extent the intrinsic value of the work in this thesis relates to the fact
that the described methodologies result in a transition relation, as opposed to
any different behavioral model.

Partial bisimilarity is applied and considered in detail at a number of in-
stances in this work. Both partial bisimilarity as given in Definition 2.6 as
well as its similar definition in [81] only imply controllability as required in
Ramadge-Wonham supervisory control theory if both operands are determin-
istic. Furthermore, it certainly does not preserve a relevant set of µ-calculus
formulas in a control synthesis context, thereby leading to various complica-
tions in the proofs in Chapter 3. Its dual application in this research for both
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expressing controllability and maximal permissiveness may be too strict, al-
though this clearly can be interpreted as a sound construction. Computa-
tional aspects of partial bisimilarity remain unclear but are probably in the
same order of complexity as strict bisimulation [31]. A broad analysis of the
way in which practical examples of non-deterministic plant models with and
without control relate to each other may reveal a better or more suitable or-
dering relationship between these, compared to partial bisimilarity.

A somewhat critical view upon the work in this thesis cannot omit the
fact that it would certainly have benefit from the inclusion of more and larger
non-deterministic examples and a more in-depth and optimized analysis of
its scalability. However, omission of the latter improvement relates to the
fact that non-optimized algorithms were presented in order to preserve close
correspondence between these and the mathematical constructs they intend
to implement. Furthermore, the applied modal logics were chosen in such a
way that soundness of the theories could be derived, rather than logics which
were tailor-made towards the expression of relevant practical problems [45,
46].

Future Work

Possible future developments which may evolve from the research in this
thesis are briefly considered here. A first and foremost research objective
concerns partial bisimulation. It would be fruitful to seek clearance to the
question whether partial bisimulation is in fact a well-founded way to coin-
ductively capture controllability in a non-deterministic setting. A number of
arguments have been given in this thesis which answer this question in the
positive, although a final decisive argument has not been found.

The synthesis construction as defined in this thesis may also be the sub-
ject of future new developments. For instance, the synthesized logic may be
extended to include basic expressions of a more complex nature. This may
be done by including expressions over discrete and/or continuous variables.
Modifications have already been added to the CIF toolset [17] as a first at-
tempt to build such an implementation.

A different possible extension may be to expand the synthesized logic it-
self, by including more complex reachability expressions or a limited class of
fixpoint expressions. There are good indications that some type of greatest
fixpoint expression would not make the synthesized logic unsound with re-
gard to obtaining unique maximally permissive solutions. The entire synthe-
sis setup may also be subject to change. For instance, a viable option may be
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to implement the synthesis construction by means of guards instead of direct
transition removal. This may possibly simplify the relationship between the
synthesis result and the synthesized logic. However, this change would not
directly bring a huge simplification, since guarded expressions would have
to be defined in terms of other guards at reachable transitions.

Partial observability relates to non-determinism due to the fact that the
latter may be applied to model the former. It might therefore be worthwhile
to compare the approach in this thesis to other approaches such as [59] and
[71] which study computational hardness caused by partial observability.

The approach to control synthesis in this thesis relies upon both the re-
moval of transitions as a means to achieve proper control flow, as well as
the evaluation of formulas in modal logic, for instance in reachability expres-
sions. Both these objectives may be optimized from a BDD-based perspec-
tive [36] or dynamic programming approaches [86]. Therefore, a study into
future improvements from a computational point of view should determine
whether it is possible to apply such techniques in order to achieve a dual
improvement.

A number of future research questions are stated below. Some of these
may constitute quite daunting tasks and the latter two mainly reflect the re-
search interest of the author:

1. Is partial bisimilarity the most appropriate way to capture controlla-
bility in a coinductive context? Clearly, a more extensive comparison
between partial bisimilarity as given in Definition 2.6 and the slightly
different variant in [81] is required to provide an answer to this ques-
tion.

2. What is the largest strict subset of the µ-calculus such that a unique
maximally permissive control synthesis solution can be found for non-
deterministic plant models and specifications of desired behavior from
this aforementioned set?

3. Is it possible to coinductively define a preorder which implies control-
lability but also preserves a subset of the µ-calculus? A solution to this
question would avoid the cumbersome task of proving solution valid-
ity via induction towards the structure of formulas, as applied in this
thesis.

4. Is it possible to modify Definition 2.14 in such a way that a reference to
synthesizability at state-formula pairs reachable over U∗ can be avoided?
The definition in its present form may still be characterized as too language-
theoretic, and a purely coinductive variant would be preferred.
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5. Is it possible to apply constructive proof theory in such a way that an
algorithm for the construction of a controller can be automatically de-
rived from the combined instances of a controllability and a maximality
proof?

6. Is it possible to prove that a complete finite set of axioms for all closed
terms over the process algebra with 0, 1 and Kleene-star exists? A solu-
tion to this question would have been helpful for the material in Chap-
ter 5. However, it seems to be a very hard problem, see [12].
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Studia Logica, 91(2):145–169, 2009.

[3] M. Antoniotti. Synthesis and Verification of Discrete Controllers for Robotics
and Manufacturing Devices with Temporal Logic and the Control-D System.
PhD thesis, New York University, 1995.

[4] M. Antoniotti and B. Mishra. Discrete event models + temporal logic =
supervisory controller: Automatic synthesis of locomotion controllers.
In Proceedings of Robotics and Automation, volume 2, pages 1441–1446.
IEEE, 1995.

[5] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of con-
trollers with partial observation. Theoretical Computer Science, 303(1):7–
34, 2003.

[6] A. Arnold and I. Walukiewicz. Nondeterministic controllers of nonde-
terministic processes. In Proceedings of Logic and Automata, volume 2 of
Texts in Logic and Games, pages 29–52. Amsterdam University Press, 2008.

[7] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for
discrete and timed systems. In Hybrid Systems II, volume 999 of LNCS,
pages 1–20.

[8] J. Baeten, T. Basten, and M. Reniers. Process Algebra: Equational Theories
of Communicating Processes. Cambridge University Press, 2010.

139



140 Bibliography

[9] J. Baeten, B. van Beek, A. van Hulst, and J. Markovski. A Process Alge-
bra for Supervisory Coordination. In Proceedings of PACO, volume 60 of
EPTCS, pages 36–55. Open Publishing Association, 2011.

[10] J. Baeten, B. van Beek, A. van Hulst, and J. Markovski. A Process Algebra
for Supervisory Control. Technical Report SE Report 12-01, Eindhoven
University of Technology, 2012.

[11] J. Baeten and J. Bergstra. Process Algebra with Propositional Signals.
Technical Report 123, Utrecht University, 2008.

[12] J. Baeten, F. Corradini, and C. Grabmayer. A characterization of regular
expressions under bisimulation. Journal of the ACM, 54(2):1–28, 2007.

[13] B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliatre, E. Gimenez,
H. Herbelin, G. Huet, C. Munoz, and C. Murthy. The Coq proof assistant
reference manual: Version 6.1. Technical report, INRIA, 1997.

[14] M. Barveau, F. Kabanza, and R. St-Denis. A method for the synthesis
of controllers to handle safety, liveness, and real-time constraints. IEEE
Transactions on Automatic Control, 43(11):1543–1559, 1998.

[15] S. Basu and R. Kumar. Quotient-based control synthesis for non-
deterministic plants with mu-calculus specifications. In Proceedings of
CDC, pages 6041–6046. IEEE, 2006.

[16] S. Basu and R. Kumar. Quotient-based control synthesis for partially
observed non-deterministic plants with mu-calculus specifications. In
Proceedings of CDC, pages 5294–5299. IEEE, 2007.

[17] D. van Beek, W. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski, J. van
de Mortel-Fronczak, and M. Reniers. CIF 3: Model-Based Engineering of
Supervisory Controllers. In Proceedings of TACAS, volume 8413 of LNCS,
pages 575–580. Springer, 2014.

[18] A. Bergeron. A unified approach to control problems in discrete event
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Summary

This thesis describes the developments within four years of research into the
automated synthesis of controlled systems. The main research question is
as follows: given a non-deterministic behavioral description of a system in
terms of states and state transitions and given a logical specification of de-
sired behavior, how is it possible to restrict system behavior such that the
system conforms to the specification. In deriving a new behavioral descrip-
tion we require that it conforms to a number of properties of supervisory con-
trol theory. For instance, it is not allowed to forbid accessible uncontrollable
behavior (controllability property) and furthermore the behavioral restriction
is required to be minimally restrictive. Such research finds applications in the
control of for example manufacturing networks or systems of conveyor belts.

The chosen approach is of a formal mathematical nature and based upon
an abstract description of the underlying system as a Kripke-model, com-
bined with a specification in modal logic of desired behavior. Part of the
performed research is for which logical specifications this research question
is solvable at all. In addition, a precise formulation of the problem to be re-
solved has been the subject of research, in particular establishing a relational
connection between the original system and the synthesis result via partial
bisimulation. A solution mechanism for a reasonably expressive logical for-
malism including invariant and reachability formulas has been investigated
extensively.

Central issue within the applied methodology are modifications to the
transition relation which expresses state transitions. Hereby states are cou-
pled to logical expressions which have to be locally valid. Following this
step, transitions may be removed based upon a validity approximation of ex-
pressions which have been assigned to target states of a transition. Based
upon the assumption that the original system is modeled by finitely many
transitions, we can prove that stabilization takes place. This approach has
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been formally verified during the research and may thereby considered to be
valid.

Special attention deserves the research approach via the Coq proof assis-
tant. Using this software it is possible to very precisely verify the validity
of mathematical definitions and the proofs based on those. This relates to
both the research results and the research path. In the end, there is more cer-
tainty about the validity of the obtained results, but significant time has to be
invested into formally establishing mathematical structures and proof steps.

The research within this thesis is closed by a chapter about process alge-
braic descriptions in relation to the synthesis problem. Using this alterna-
tive formalism, expression of the synthesis problem is well possible, as also
shown in earlier research, having the additional advantage that the process
algebra considered here provides a rich expression formalism which enables
the detailed description of existing system models.
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Samenvatting

Dit proefschrift beschrijft de ontwikkelingen binnen vier jaar onderzoek naar
de automatische synthese van controlled systems. Centraal staat de volgende
onderzoeksvraag: gegeven een non-deterministische gedragsbeschrijving van
een systeem in termen van toestanden en toestandsovergangen en gegeven
een logische specificatie van gewenst gedrag, hoe is het mogelijk om een
systeem-gedrag te beperken zodat het systeem voldoet aan de specificatie?
Bij het afleiden van een nieuwe gedragsbeschrijving is het nodig dat deze
voldoet aan een aantal eigenschappen van supervisory control theory. Zo
is het bijvoorbeeld niet toegestaan om bereikbaar oncontrolleerbaar gedrag
te verbieden (controllability-eigenschap) en bovendien dient de gedragsaan-
passing minimaal-restrictief te zijn. Dergelijk onderzoek kent toepassingen
binnen de aansturing van bijvoorbeeld fabricagesystemen of systemen van
transportbanden.

De geijkte aanpak is formeel-wiskundig van aard en gebaseerd op een ab-
stracte beschrijving van het onderliggende systeem als Kripke-model, gecom-
bineerd met een modaal-logische specificatie van gewenst gedrag. Onderdeel
van het gedane onderzoek is voor welke logische specificaties deze onder-
zoeksvraag überhaupt oplosbaar is. Bovendien is de precieze formulering
van het op te lossen probleem onderwerp van onderzoek geweest, met name
het vastleggen van een relationeel verband tussen het oorspronkelijke sys-
teem en het synthese-resultaat via partiële bisimulatie. Een oplossingsmethod-
iek voor een redelijkerwijs expressief logisch formalisme met invariant- en
bereikbaarheidsformules is uitgebreid onderzocht.

Centraal binnen de gevonden aanpak staan wijzigingen aan de transitiere-
latie die de toestandsovergangen beschrijft. Hierbij worden toestandsnamen
gekoppeld aan logische expressies die lokaal geldig dienen te zijn. Vervol-
gens kan men transities verwijderen op basis van een geldigheidsbenadering
van expressies die aan doeltoestanden van transities zijn toegewezen. Op ba-
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sis van de aanname dat het oorspronkelijke systeem wordt beschreven door
eindig veel transities is dan afleidbaar dat stabilisatie plaatsvindt. Deze aan-
pak is gedurende het onderzoek formeel geverifieerd en kan daarmee als
valide worden beschouwd.

Speciale aandacht verdient de onderzoeksaanpak via de bewijsassistent
Coq. Met behulp van deze programmatuur is het mogelijk de validiteit van
wiskundige definities en daarop gebaseerde bewijzen uiterst precies te on-
derzoeken. Dit houdt verband met zowel onderzoeksresultaat als onder-
zoeksverloop. Er is uiteindelijk meer zekerheid over de validiteit van verkre-
gen resultaten, maar er dient ook een aanzienlijke tijd te worden geı̈nvesteerd
in het formeel vastleggen van wiskundige structuren en bewijsstappen.

Het onderzoek binnen dit proefschrift wordt afgesloten met een hoofd-
stuk over procesalgebraı̈sche beschrijvingen in relatie tot het syntheseprob-
leem. Binnen dit alternatieve formalisme is uitdrukking van het syntheseprob-
leem goed mogelijk, zoals reeds aangetoond in eerder onderzoek, met als bi-
jkomend voordeel dat de procesalgebra zoals uiteengezet in dit proefschrift
een rijk formalisme kent dat kan worden ingezet voor het gedetailleerd mod-
elleren van bestaande systemen.
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