

Lecture Notes in Computer Science 2154
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Kim G. Larsen Mogens Nielsen (Eds.)

CONCUR 2001 –
Concurrency Theory

12th International Conference
Aalborg, Denmark, August 20-25, 2001
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Kim G. Larsen
BRICS, Aalborg University, Department of Computer Science
Fredrik Bajersvej 7, 9220 Aalborg, Denmark
E-mail: kgl@cs.auc.dk

Mogens Nielsen
BRICS, Aarhus University, Department of Computer Science
Ny Munkegade, Bldg. 540, 8000 Aarhus C, Denmark
E-mail: mn@brics.dk

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Concurrency theory : 12th international conference ; proceedings / CONCUR
2001, Aalborg, Denmark, August 20 - 25, 2001. Kim G. Larsen ; Mogens
Nielsen (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2154)
ISBN 3-540-42497-0

CR Subject Classification (1998): F.3, F.1, D.3, D.1, C.2

ISSN 0302-9743
ISBN 3-540-42497-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10845533 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 12th International Conference on
Concurrency Theory (CONCUR 2001) hosted by Basic Research in Computer
Science (BRICS) and the Department of Computer Science at Aalborg Univer-
sity, Denmark, August 20–25, 2001.

The purpose of the CONCUR conferences is to bring together researchers,
developers, and students in order to advance the theory of concurrency, and
promote its applications. Interest in this topic is continuously growing, as a
consequence of the importance and ubiquity of concurrent systems and their
applications, and of the scientific relevance of their foundations. The scope co-
vers all areas of semantics, logics, and verification techniques for concurrent
systems. Topics include concurrency related aspects of: models of computation
and semantic domains, process algebras, Petri nets, event structures, real-time
systems, hybrid systems, decidability, model-checking, verification techniques,
refinement techniques, term and graph rewriting, distributed programming, lo-
gic constraint programming, object-oriented programming, typing systems and
algorithms, case studies, and tools and environments for programming and ve-
rification.

The first two CONCUR conferences were held in Amsterdam (NL) in 1990
and 1991. The following ones in Stony Brook (USA), Hildesheim (D), Uppsala
(S), Philadelphia (USA), Pisa (I), Warsaw (PL), Nice (F), Eindhoven (NL),
and State College (USA). The proceedings have appeared in Springer LNCS, as
volumes 458, 527, 630, 715, 836, 962, 1119, 1243, 1466, 1664, and 1877.

Of the 78 regular papers submitted this year, 32 were accepted for presenta-
tion and are included in the present volume. The conference also included talks
by four invited speakers: Bengt Jonsson (Uppsala University, S), Robin Mil-
ner (University of Cambridge, GB), Shankar Sastry (University of California,
Berkeley, USA), and Steve Schneider (Royal Holloway, University of London,
GB). Additionally, there were two invited tutorials by Holger Hermanns and
Joost-Pieter Katoen (Twente University, NL), and John Hatcliff (Kansas State
University, USA). The conference had five satellite events:

– EXPRESS 2001 (Expressiveness in Concurrency), organized by Luca Aceto
and Prakash Panangaden, held on 20 August 2001.

– GETCO 2001 (Geometric and Topological Methods in Concurrency), orga-
nized by Martin Raussen, held on 25 August 2001.

– RT-TOOLS (Workshop of Real-Time Tools), organized by Paul Pettersson,
held on 20 August 2001.

– MTCS 2001 (Models for Time-Critical Systems), organized by Flavio Cor-
radini and Walter Vogler, held on 25 August 2001.

– FATES 2001 (Formal Approaches to Testing of Software), organized by Jan
Tretmans and Ed Brinksma, held on 25 August 2001.

VI Preface

We would like to thank all the Program Committee members and the sub-
referees who assisted in their work. Also, the Local Organization Chair, Anna
Ingólfsdóttir, and the other members of the Local Organization, Luca Aceto and
Arne Skou, and further members of BRICS deserve our gratitude for their con-
tributions throughout the preparations. Thanks to the Workshop Chair, Hans
Hüttel, and the workshop organizers. We would also like to thank the invited
speakers and invited tutorial speakers, the authors of submitted papers, and all
the participants of the conference. Special thanks to Brian Nielsen for installing
and managing the START Conference system.

We gratefully acknowledge support from Det Obelske Familiefond, Thomas
B. Thrige Foundation, Vaughan Pratt, Mindpass, the Department of Computer
Science at Aalborg University, BRICS, and the City of Aalborg.

June 2001 Kim Guldstrand Larsen and Mogens Nielsen

VII

CONCUR Steering Committee

Jos Baeten (Technische Universiteit Eindhoven, NL, Chair)
Eike Best (Carl von Ossietzky Universität Oldenburg, D)
Kim G. Larsen (Aalborg University, DK)
Ugo Montanari (Università di Pisa, I)
Scott Smolka (State University of New York at Stony Brook, USA)
Pierre Wolpert (Université de Liège, B)

Program Committee

Kim G. Larsen (Aalborg University, DK, Co-chair)
Mogens Nielsen (Aarhus University, DK, Co-chair)
Rajeev Alur (University of Pennsylvania, USA)
Frank de Boer (Utrecht University, NL)
Javier Esparza (Technische Universität München, D)
Wan Fokkink (CWI, NL)
Roberto Gorrieri (University of Bologna, I)
Petr Jancar (Technical University of Ostrava, CZ)
Orna Kupferman (Hebrew University, IL)
Marta Kwiatkowska (University of Birmingham, GB)
Oded Maler (Verimag, F)
Ugo Montanari (University of Pisa, I)
Uwe Nestmann (Ecole Polytechnique Fédérale de Lausanne, CH)
Ernst-Rüdiger Olderog (Universität Oldenburg, D)
Catuscia Palamidessi (Penn State, USA)
K.V.S. Prasad (Chalmers University, S)
Philippe Schnoebelen (ENS-Cachan, F)
Björn Victor (Uppsala University, S)
Walter Vogler (Universität Augsburg, D)
Igor Walukiewicz (Warsaw University, PL)
Alex Yakovlev (University of Newcastle, GB)

Referees

L. Aceto
T. Amnell
F. Arbab
L. de Alfaro
P. D’Argenio
E. Asarin
G. Auerbach
C. Baier
P. Baldan
R. Barbuti
G. Behrmann
M. Berger

M. Bernardo
K.J. Bernstein
E. Best
E. Bihler
S. Blom
C. Bodei
R. Bol
A. Bouajjani
M. Bozga
M. Bravetti
L. Brim
R. Bruni

G. Bruns
J. Burton
N. Busi
B. Caillaud
R. Cardell-Oliver
F. Cassez
I. Černá
H. Chockler
P. Ciancarini
B. Cook
Y. Cook
F. Corradini

VIII Organization

V. Cremet
D. Dams
P. Darondeau
A. Dawar
J. Desel
R. Devillers
H. Dierks
S. Donatelli
D. Dubhashi
M. Duflot
G. Ferrari
I. Fischer
E. Fleury
N. De Francesco
S. Gay
R. van Glabbeek
S. Gnesi
G. Goessler
U. Goltz
J. Goubault-Larrecq
O. Grumberg
T. Henzinger
Y. Hirshfeld
J. Hoenicke
K. Honda
F. Honsell
M. Huth
A. Ingólfsdóttir
R. Janicki
B. Jeannet
A. Jeffrey
H.E. Jensen
P.K. Jensen
B. Jonsson
G. Juhas
M. Jurdzinski
J. Katoen
V. Khomenko
A. Kiehn
E. Kindler
H. Klaudel
J.W. Klop
B. Koenig
M. Köhler
M. Koutny
M. Křet́ınský

A. Kučera
Y. Lakhnech
C. Laneve
I. van Langevelde
F. Laroussinie
S. Lasota
J. Leifer
K. Lodaya
G.G.I. Lopez
G. Lowe
G. Lüttgen
B. Luttik
K. McMillan
M. Mendler
M. Merro
D. Miller
O. Moeller
F. Moller
R. Morin
M. Mueller-Olm
M. Mukund
R. De Nicola
P. Niebert
D. Niwinski
G. Norman
J. Nyström
A. Omicini
V. van Oostrom
K. Ostrovsky
P. Paczkowski
P. Panangaden
J. Parrow
P. Pettersson
A. Philippou
M. Pietkiewicz-Koutny
G.M. Pinna
M. Pistore
N. Piterman
J. van de Pol
F. Pommereau
E. Posse
W. Prasetya
C. Priami
A. Rabinovich
R. Ramanujam
J. Rathke

A. Ravara
A.P. Ravn
A. Rensink
M. Ribaudo
J. Riely
C. Roeckl
W.P. de Roever
M. de Rougemont
M. Ryan
D. Sands
L. Santocanale
V. Sassone
P. Savický
I. Scagnetto
A.M. Schettini
R. Segala
N. Soerensson
P. Sobocinski
D. D’Souza
J. Srba
J. Steggles
M. Steffen
J. Stř́ıbrná
G. Sutre
M. Szreter
F. Tang
P. Tsigas
D. Turi
I. Ulidowski
Y. Usenko
F. Valencia
M. Vardi
V.T. Vasconcelos
H. Veith
E. de Vink
H. Wehrheim
M. Weichert
H. Wimmel
F. Xia
N. Yoshida
S. Yovine
H. Zantema
G. Zavattaro
J. Zwiers

Table of Contents

Invited Talks

Channel Representations in Protocol Verification (Preliminary Version) . . 1
P.A. Abdulla, B. Jonsson

Bigraphical Reactive Systems . 16
R. Milner

Control of Networks of Unmanned Vehicles . 36
S. Sastry

Process Algebra and Security . 37
S. Schneider

Invited Tutorials

Using the Bandera Tool Set to Model-Check Properties of Concurrent
Java Software . 39
J. Hatcliff, M. Dwyer

Performance Evaluation :=
(Process Algebra + Model Checking) × Markov Chains 59
H. Hermanns, J.-P. Katoen

Mobility

Typing Mobility in the Seal Calculus . 82
G. Castagna, G. Ghelli, F.Z. Nardelli

Reasoning about Security in Mobile Ambients . 102
M. Bugliesi, G. Castagna, S. Crafa

Synchronized Hyperedge Replacement with Name Mobility
(A Graphical Calculus for Mobile Systems) . 121
D. Hirsch, U. Montanari

Dynamic Input/Output Automata: A Formal Model for Dynamic
Systems . 137
P.C. Attie, N.A. Lynch

Probabilistic Systems

Probabilistic Information Flow in a Process Algebra . 152
A. Aldini

Symbolic Computation of Maximal Probabilistic Reachability 169
M. Kwiatkowska, G. Norman, J. Sproston

Randomized Non-sequential Processes (Preliminary Version) 184
H. Völzer

X Table of Contents

Model Checking

Liveness and Fairness in Process-Algebraic Verification 202
A. Puhakka, A. Valmari

Bounded Reachability Checking with Process Semantics 218
K. Heljanko

Techniques for Smaller Intermediary BDDs . 233
J. Geldenhuys, A. Valmari

An Algebraic Characterization of Data and Timed Languages 248
P. Bouyer, A. Petit, D. Thérien

Process Algebra

A Faster-than Relation for Asynchronous Processes . 262
G. Lüttgen, W. Vogler

On the Power of Labels in Transition Systems . 277
J. Srba

On Barbed Equivalences in π-Calculus . 292
D. Sangiorgi, D. Walker

CCS with Priority Guards . 305
I. Phillips

Probabilistic Systems

A Testing Theory for Generally Distributed Stochastic Processes 321
N. López, M. Núñez

An Algorithm for Quantitative Verification of Probabilistic Transition
Systems . 336
F. van Breugel, J. Worrell

Compositional Methods for Probabilistic Systems . 351
L. de Alfaro, T.A. Henzinger, R. Jhala

Unfoldings and Prefixes

Towards an Efficient Algorithm for Unfolding Petri Nets 366
V. Khomenko, M. Koutny

A Static Analysis Technique for Graph Transformation Systems 381
P. Baldan, A. Corradini, B. König

Local First Search—A New Paradigm for Partial Order Reductions 396
P. Niebert, M. Huhn, S. Zennou, D. Lugiez

Extending Memory Consistency of Finite Prefixes to Infinite
Computations . 411
M. Glusman, S. Katz

Table of Contents XI

Model Checking

Abstraction-Based Model Checking Using Modal Transition Systems 426
P. Godefroid, M. Huth, R. Jagadeesan

Efficient Multiple-Valued Model-Checking Using Lattice Representations . 441
M. Chechik, B. Devereux, S. Easterbrook, A.Y.C. Lai, V. Petrovykh

Divide and Compose: SCC Refinement for Language Emptiness 456
C. Wang, R. Bloem, G.D. Hachtel, K. Ravi, F. Somenzi

Unavoidable Configurations of Parameterized Rings of Processes 472
M. Duflot, L. Fribourg, U. Nilsson

Logic and Compositionality

Logic of Global Synchrony . 487
Y. Chen, J.W. Sanders

Compositional Modeling of Reactive Systems Using Open Nets 502
P. Baldan, A. Corradini, H. Ehrig, R. Heckel

Extended Temporal Logic Revisited . 519
O. Kupferman, N. Piterman, M.Y. Vardi

Games

Symbolic Algorithms for Infinite-State Games . 536
L. de Alfaro, T.A. Henzinger, R. Majumdar

A Game-Based Verification of Non-repudiation and Fair Exchange
Protocols . 551
S. Kremer, J.-F. Raskin

The Control of Synchronous Systems, Part II . 566
L. de Alfaro, T.A. Henzinger, F.Y.C. Mang

Author Index . 583

Channel Representations in Protocol Verification
(Preliminary Version)

Parosh Aziz Abdulla and Bengt Jonsson

Dept. of Computer Systems, P.O. Box 325, S-751 05 Uppsala, Sweden
{parosh,bengt}@docs.uu.se

Abstract. In automated verification of protocols, one source of com-
plications is that channels may have unbounded capacity, in which case
a naive model of the protocol is no longer finite state. Symbolic tech-
niques have therefore been developed for representing the contents of
unbounded channels. In this paper, we survey some of these techniques
and apply them to a simple leader election protocol. We consider proto-
cols with entities modeled as finite state machines which communicate by
sending messages from a finite alphabet over unbounded channels; this
is a framework for which many techniques have been developed. We also
consider a more general model in which messages may belong to an un-
bounded domain of values which may be compared according to a total
ordering relation: the motivation is to study protocols with timestamps
or priorities. We show how techniques from the previous setting can be
extended to this more general model, but also show that reachability
quickly becomes undecidable if channels preserve the ordering between
messages.

1 Introduction

Protocol verification has, since 25 years, been a driving application for the devel-
opment of automated verification techniques. State space exploration techniques
were developed in this context [36,33], and it is one of the important application
areas for current model checking tools such as SPIN [25] and UPPAAL [27].

Protocol verification involves the construction of a model of a protocol, which
can be subject to analysis, e.g., by a model checking tool. The model should ab-
stract from less relevant details of the protocol in order to facilitate the analysis.
Typically, a protocol model consists of a number of processes, which commu-
nicate over channels of some kind. In many cases, the channels are a signifi-
cant source of problems for the analysis. If communication channels are large
or unbounded, naive model-checking cannot be performed exhaustively. When
modeling a protocol, one must therefore be careful to model the channels in
a way which suits subsequent analysis. Many model checkers do not support
unbounded channels.

In general, unbounded channels have infinitely many states, and must there-
fore be represented symbolically in automated verification. Different represen-
tations have been proposed for different types of channels. In this paper, we

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 1–15, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 P.A. Abdulla and B. Jonsson

will survey some of these symbolic techniques and illustrate them on a simple
example.

First, we consider a model of protocols with entities modeled as finite state
machines which communicate by sending messages from a finite alphabet over
unbounded channels. If channels are unordered, this model can be represented
by Petri Nets. FIFO ordered channels has been considered rather extensively in
protocol verification [8,23,15,24,30,31,34]. Since this model can simulate Turing
machines [12], we will devote most attention to a weaker model in which the
FIFO channels can spontaneously lose messages at any time. We will illustrate
two types of symbolic representations and their use in checking whether some
states are reachable. The first type represents upward closed sets. It is useful in
backward reachability analysis, since it gives a lower bound on which messages
must be in each channel for a certain set of states to be reachable. This represen-
tation was used in [5] to decide the reachability problem, and in [5,21] to decide
the termination problem. The second type (called Simple Regular Expressions
in [3]), dually represents downward closed sets. This representation is useful in
forward reachability analysis, since it gives an upper bound on which messages
may be in the channel (we can never be sure whether a message is in the channel,
since it can be lost). Analogous symbolic representations of upward closed sets
have also been used for unordered channels and related models like Petri nets
and broadcast systems [20,4,22,19,17].

We also consider how the techniques illustrated in the first part may be ex-
tended to models with an infinite set of message values, on which a limited set
operations can be performed. We focus on the case where the domain of message
values is equipped with a total ordering, which may be used in guards. The moti-
vation is to study protocols with timestamps or priorities. We present a negative
result showing that with lossy FIFO channels one can simulate perfect FIFO
channels already if tests for equality and inequality are allowed on messages.
For unordered channels, however, the backward reachability analysis presented
in the first part of the paper can be used as a decision procedure. Using ideas
from our earlier work [6,7] we can show that the techniques carry over to handle
messages on which an ordering relation is defined.

This small survey is organized as follows. In the next section, we define
protocols with a finite message alphabet and present a simple leader election
protocol as a running example. Forward and backward reachability analysis with
associated symbolic representations are presented in Section 3. In Section 4, we
extend the model to an infinite set of messages, and present an undecidability
result for lossy FIFO channels, and an extension to messages with an ordering
relation. Section 6 contains discussion and conclusion.

2 Protocols with a Finite Set of Messages

In this section, we present our first protocol model: finite-state processes which
communicate over unbounded channels using a finite message alphabet. In this
model, a program has two parts: a control part and a channel part. The con-

Channel Representations in Protocol Verification 3

trol part represents the combined behavior of the processes that perform local
computations and communicate over the channels. It is represented by a finite
automaton, which is typically the cross-product of control parts of the finite-
state processes in the system. To each transition there may be associated the
transmission or reception of a message to or from a channel. The channel part
consists of a set of channels, each of which contains a potentially unbounded
number of messages from a finite alphabet. Each channel can be ordered or
unordered, lossy or non-lossy.

Notation. For a set M we use NM to denote the set of multisets (bags) of
elements inM, i.e., the set of mappings fromM to the natural numbers N . The
empty bag is denoted by ∅. For x, x′ ∈ NM we let x • x′ denote the multiset
union of x and x′. Define the partial order � on NM by x � x′ if x is a subbag
of x′, i.e., x(m) ≤ x′(m) for all m ∈M.

For a set M we use M∗ to denote the set of finite strings of elements in
M. The empty string is denoted by ε. For x, x′ ∈ M∗ we let x • x′ denote the
concatenation of x and x′. Define the partial order � on M∗ x � x′ if and only
if x is a (not necessarily contiguous) substring of x′.

Note that we have overloaded the notations • and� for both bags and strings.
We allow any element m ∈ M to be interpreted as the bag or string with the
only element m, and thus x •m denotes the addition of element m to the bag
or string x. Note also that the relation � closely corresponds to the notion of
losing messages: x � x′ if x can be obtained by deleting (losing) elements from
the bag or string x′.

Programs. A program consists of

– A channel part, given by a finite set C of channels, and a finite set M
of messages. Each channel is either ordered or unordered, either lossy or
nonlossy.

– A control part, defined by a finite automaton 〈S, s0, δ〉, where S is a finite
set of control states, s0 ∈ S is the initial control state, and δ is a finite set of
transitions. Each transition is a triple of the form 〈s, op, s′〉, where s, s′ ∈ S,
and op is either the empty label ε or an operation of form c!m or c?m, where
c ∈ C and m ∈M, which denotes the transmission of message m to channel
c, or reception of message m from channel c, respectively.

Semantics. A global state γ of a program is a pair 〈s, w〉, where s ∈ S, and w
is a mapping from C to bags and strings over M (depending on whether each
particular channel is ordered or unordered). The initial global state γ0 is 〈s0, w0〉,
where w0 maps each channel to the empty bag or string. The global state can
be changed by performing transitions in δ. More precisely, the global state of a
nonlossy system can change from γ to γ′, denoted γ −→ γ′, as follows.

– If 〈s, ε, s′〉 ∈ δ then 〈s, w〉 −→ 〈s′, w〉 for any w.
– If 〈s, c!m, s′〉 ∈ δ then 〈s, w〉 −→ 〈s′, w[c := w(c) •m]〉 for any w.
– If 〈s, c?m, s′〉 ∈ δ then 〈s, w[c := m • w(c)]〉 −→ 〈s′, w〉 for any w.

4 P.A. Abdulla and B. Jonsson

Here w[c := w(c) •m] denotes the mapping which maps c to w(c) •m and any
c′ �= c to w(c′). Extend � in the natural way to global states of form 〈s, w〉 by
〈s, w〉 � 〈s′, w′〉 is s = s′ and w(c) � w′(c) for c ∈ C. The global state of a lossy
system can change from γ to γ′, denoted γ −→ γ′ if the corresponding nonlossy
system can perform γ′′ −→ γ′′′ for γ′′, γ′′′ with γ′′ � γ and γ′ � γ′′′.

A set Γ of global states is upward closed (UC) if γ ∈ Γ and γ � γ′ imply
γ′ ∈ Γ . We define the notion of downward closed (DC) analogously.

The behavior of a program depends on whether the channels are ordered
or unordered and on whether they are lossy or nonlossy. In the following, we
will assume that all channels of a program are of the same kind, and use the
terms OL (ordered lossy), ON (ordered nonlossy), UL (unordered lossy), and
UN (unordered nonlossy) for the four program models.

Reachability. A global state γ′ is said to be reachable from a global state γ
if γ ∗−→ γ′. A global state γ is said to be reachable if γ is reachable from the
initial global state γ0. For a program and a set Γ of global states, the reachability
problem asks whether some state in Γ is reachable. Typically, the set Γ are
undesirable states, which should not occur when the system executes. In the
following, we will mostly consider the special problem of control state reachability
for a set T ⊆ S of control states, asking whether the set {〈s, w〉 : s ∈ T} of
global states is reachable.

The reachability problem is related to checking of safety properties. A safety
property can be described by specifying a set of finite sequences of states or
transitions that are allowed to occur when the system executes. If the set of
allowed sequences is regular, then there is a standard procedure for transform-
ing the problem of checking a safety property into the problem of checking for
reachability [35].

Example. As a running example, we use a simplification and variation of a
leader election protocol, due to LeLann [28]. Assume a set of process connected
into a ring by channels. Each process has a unique identity. In the algorithm,
each process starts the algorithm by transmitting its identity over its outgoing
channel to the next neighbor. Thereafter, the process waits to receive messages
on its incoming channel. Each arriving identity is forwarded to the outgoing
channel, except when the received identity is that of the process itself: in this
case the process terminates the algorithm without forwarding its identity again.
Each process elects as leader the process with the least identity among the ones
received (including its own identity) during the algorithm. Thus, a process need
not store all received identities during the algorithm, but only maintain the
minimum identity among its own and the ones received so far. A correctness
property of the algorithm is that all processes should elect the same leader.

In order to illustrate the algorithm for all four channel models with un-
bounded channels, we will vary the algorithm: each process will initially transmit
its identity an unbounded number of times instead of just once, and channels may
belong to any of the four channel models. With this modification, the processes
should report the same leader if all processes terminate. Note that if channels

Channel Representations in Protocol Verification 5

are lossy, then some process may not terminate, in which case it is possible for
two other terminating processes to disagree on the identity of the leader.

In this section, we specialize the protocol to two finite-state processes, with
identities 1 and 2. They communicate over the channel c1, which transfers mes-
sages from process 2 to process 1, and channel c2, which transfers messages from
process 1 to process 2. The set of messagesM is simply the set of identities {1, 2}.
Finite automata for the two processes are shown in Figure 1. In the figure, we
have slightly extended the notation and let a transition labeled by c?m/c!m de-
note two sequentially ordered transitions, the first of which is labeled c?m and
the second labeled c!m. The states of processes are labeled I (initial), W (waiting

✖✕
✗✔
I

✖✕
✗✔
W

✖✕
✗✔
T1

❄

c1?1

❅❅❘
c1?2/c2!2

��✠c1?1

❄✒

� ✏
c2!1

✏

✑✒✻
c1?2/c2!2

Process 1

✖✕
✗✔
I ✖✕

✗✔
W

✖✕
✗✔
T2 ✖✕

✗✔
T1

✲c2?1/c1!1

❄

c2?2

❄

c2?2

❄✒

� ✏
c1!2

✛

✏

✑

�
c2?1/c1!1

Process 2

Fig. 1. Leader Election Protocol for Two Processes

for messages), and Ti for i = 1, 2 (terminated with i as elected leader). Initially,
both processes are in state I, and the channels are empty. Process 1 initially
transmits its identity an unbounded number of times. When receiving message
2, it compares that message with its current identity, and concludes that identity
1 is still the leading candidate for becoming a leader. Consequently, message 2
is simply forwarded to the outgoing channel. When receiving its own identity
1, the process terminates and announces that process 1 is the leader. Process 2
initially transmits its identity an unbounded number of times. When receiving
message 1, it changes its internal state to reflect that 1 is the minimal identifier.
Each received 1 is forwarded to the outgoing channel. When receiving message
2, the process terminates. In state T2 it announces 2 as the leader, and in state
T1 it announces 1 as the leader.

According to our model, we represent control states as pairs of control states
of each process. The above correctness property is expressed by requiring that
the control state 〈T1, T2〉 is not reachable. This state represents an incorrect
termination of the algorithm in which each process elects itself as leader.

6 P.A. Abdulla and B. Jonsson

3 Reachability Analysis

In this section, we illustrate existing techniques for checking reachability, applied
to the system in Figure 1. In Section 3.1, we illustrate backward reachability
analysis for the OL model [5] from our earlier work, and thereafter for the UL
and UN models [4,22]. In Section 3.2, we illustrate forward reachability analysis
for the OL model according to [3]; there are also other approaches [21]. We
will also illustrate the approach of using standard finite automata (under the
name QDDs) for the more general ON model [9,10]. For the UN and UL models,
forward reachability analysis has a large literature (e.g., [26,20,18,38]).

3.1 Backward Symbolic Reachability Analysis

We first consider symbolic backward reachability analysis. Like standard sym-
bolic model checking [32,16,13], it is based on symbolic calculation of pre-images,
but with a specific representation of sets of states. The algorithm for checking
reachability of a set Γ of global states consists in calculating the set of global
states from which a state in Γ is reachable. For a set Γ of global states, let let
pre(Γ) denote the set {γ : ∃γ′ ∈ Γ . γ −→ γ′} of states from which a state
in Γ can be reached by performing a transition. The naive version of the back-
ward reachability algorithm for checking control state reachability of a set T of
control states consists in generating a sequence Γ0, Γ1, Γ2, . . . of sets of global
states, where Γ0 = {〈s, w〉 : s ∈ T} and Γi+1 = Γi ∪ pre(Γi), which stops when
Γi+1 = Γi. Then T is reachable if and only if γ0 ∈ Γi.

In the UL, UN, and OL models, it is useful to represent sets of states as
finite unions of atomic constraints. An atomic constraint is given by a global
state 〈s, w〉 and denotes the UC set [[〈s, w〉]] = {〈s, w′〉 : w � w′}. Programs in
the UL, UN, and OL models now satisfy the following two important properties:

– Any program is monotonic with respect to �, i.e., whenever γ −→ γ′ and
γ � γ1 there is a γ′1 such that γ1 −→ γ′1 and γ′ � γ′1. In other words, � is a
simulation relation on global states.

– � is a well quasi-ordering (wqo) on the set of global states, i.e., in each
infinite sequence γ0 γ1 γ2 γ3 · · · of global states, there are indices i < j such
that γi � γj .

Monotonicity implies that pre(Γ) is UC for any UC set Γ . Well quasi-orderedness
of � implies that any UC set is a finite union of atomic constraints, and that
any increasing sequence Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · of UC sets eventually converges so
that there is an i with Γj = Γi whenever i ≤ j. Together, this means that the
iterative calculation of pre∗(Γ0) can be carried out as above, using finite sets
of atomic constraints as symbolic representation, and that it is guaranteed to
terminate after a finite number of iterations [4,22].

Example. Let us use this technique to check whether the erroneous termi-
nal state is reachable in the OL model. We represent global states as 4-tuples

Channel Representations in Protocol Verification 7

〈s1, s2, w1, w2〉 where si is the control state of process i, and wi is the contents
of channel ci. We want to investigate whether the atomic constraint generated
by 〈T1, T2, ε, ε〉 is reachable. Let Γ0 = [[〈T1, T2, ε, ε〉]]. Then

Γ1 = Γ0 ∪ [[〈I, T2, 1, ε〉]] ∪ [[〈W,T2, 1, ε〉]] ∪ [[〈T1, I, ε, 2〉]]
Γ2 = Γ1 ∪ [[〈I, I, 1, 2〉]] ∪ [[〈I, T2, 21, ε〉]] ∪ [[〈W,T2, 21, ε〉]] ∪ [[〈W, I, 1, 2〉]]
Γ3 = Γ2 ∪ [[〈W, I, 21, ε〉]] ∪ [[〈I, I, 21, ε〉]]

Here the procedure converges, without containing the initial state 〈I, I, ε, ε〉.
Note that in set Γ2, the sets [[〈I, T2, 21, ε〉]] and [[〈W,T2, 21, ε〉]] are contained
in the the already generated sets [[〈I, T2, 1, ε〉]] and [[〈W,T2, 1, ε〉]]. They are
therefore redundant, and are discarded; they will not be used further to calculate
predecessors.

In the UN and UL models, the analysis is very similar. In atomic constraints
of form 〈s1, s2, w1, w2〉, the component wi will be a bag rather than a sequence.
The procedure looks very similar, except that constraints do not order messages
in channels.

3.2 Forward Reachability Analysis

Backward reachability analysis, using calculation of preimages, is a suitable tech-
nique for checking that a certain invariant is satisfied. In fact, it generates the
weakest inductive invariant which implies the invariant to be checked. In many
cases, however, one would like to generate invariants which are as strong as possi-
ble. For instance, we could be interested in knowing the set of possible contents
of a certain channel, or to generate a finite-state abstraction of the protocol,
which will be useful in a subsequent analysis of a program with channels. To
generate a representation of the set of reachable global states, forward reacha-
bility analysis is more appropriate. In this section, we will illustrate techniques
for doing this in the OL and ON models.

Representing Sets in the OL Model. Consider what is a suitable symbolic
representation of sets of global states in the OL model. Because of the possibility
of losing messages, the set of reachable states will always be a downward closed
(DC) set. Since any DC set is regular, the set of reachable global states of a
program in the OL model be characterized as a regular set [5,14]. On the other
hand, it follows from undecidability results by Mayr [29] that this characteri-
zation cannot be effectively constructed. Various techniques for approximating
the set of reachable states have been developed [9,10,3,11], which are based on
forward reachability analysis.

Let post(Γ) denote the set {γ : ∃γ′ ∈ Γ . γ′ −→ γ}. One immediately ob-
serves that the naive forward reachability analysis, based on successive calcula-
tions of post i(Γ0), where Γ0 is the set of initial states, will not converge whenever
the program contains a loop with retransmissions. Therefore, this technique has
been extended with acceleration techniques for calculating the effect of certain
kinds of loops. Below we will illustrate the approach of [3] for the OL model.

8 P.A. Abdulla and B. Jonsson

A Simple Regular Expressions (SRE) is a sum of products of regular expres-
sions of form (m + ε) and (m1 + · · ·+ mn)∗. In [3], it is shown that SREs can
express exactly the class of DC sets, and how to calculate the postcondition of
an arbitrary number of iterations of a simple loop with respect to an SRE. We
will illustrate this on the example.

Example. Let us apply forward reachability analysis to the example in Figure 1.
We will represent sets of states as unions of 4-tuples 〈s1, s2, r1, r2〉 where si is
the control state of process i, and ri is an SRE representing a set of contents of
channel ci. The set of initial states is the set 〈I, I, ε, ε〉. We first explore the effects
of the simple self-loops in the states I, which is obviously to add an arbitrary
sequence of messages to the corresponding channel. This means that the set of
states 〈I, I, 2∗, 1∗〉 is reachable. The transitions from this set to control state W
in each process add the sets represented by

〈W, I, 2∗, 1∗(2 + ε)〉 〈I,W, 2∗(1 + ε), 1∗〉 〈W,W, 2∗(1 + ε), 1∗(2 + ε)〉 .

The last set represents the effects of both transitions to W . Note that all these
sets account for the possibility that the transmitted message is lost, by ap-
pending, e.g., (1 + ε) instead of just 1. Now comes the interesting step: to
calculate the effects of the forwarding loops in states W . Consider the set
〈W,W, 2∗(1 + ε), 1∗(2 + ε)〉 and the self-loop of process 1 which receives mes-
sage 2 and forwards it. Since there may be an unbounded number of 2’s in
the incoming channel, this loop may consume an arbitrary long initial string
of 2’s, and then transmit them to the outgoing channel. The effect is the set
〈W,W, 2∗(1 + ε), 1∗2∗〉. We can now perform a similar argument using the for-
warding loop of Process 2, and arrive at the set 〈W,W, 2∗1∗, 1∗2∗〉. By applying
the same technique to the other sets in the previous display, we obtain the sets

〈W, I, 2∗, 1∗2∗〉 〈I,W, 2∗1∗, 1∗〉 〈W,W, 2∗1∗, 1∗2∗〉 .

Finally, we should consider the effect of transitions to final states. These transi-
tions consume only one message, if it is present, and will to the already generated
sets add the sets

〈W,T2, 2∗, 2∗〉 〈T1,W, 1∗, 1∗2∗〉 〈W,T1, 2∗1∗, 2∗〉 〈T1, T1, 1∗, 2∗〉 .

We see that the “dangerous” transition from control state 〈W,T2〉 to 〈T1, T2〉
is impossible since the incoming channel does not contain any message 1.

Abstract Transition Graph. The result of the preceding analysis can be
summarized in the symbolic abstract state transition graph, as in Figure 2,
which describes the possible transitions between different control states. To each
control state, we associate the possible channel contents. An abstract transition
graph may be used in further analysis of the protocol, e.g., as in [1] for the
Bounded Retransmission Protocol.

We note that backward reachability analysis, as in Section 3.1, is less suitable
as a basis for generating an abstraction of the program. For this particular

Channel Representations in Protocol Verification 9

〈I, I, 2∗, 1∗〉 〈I,W, 2∗1∗, 1∗〉

〈W, I, 2∗, 1∗2∗〉 〈W,W, 2∗1∗, 1∗2∗〉 〈W,T1, 2∗1∗, 2∗〉

〈T1, T1, 1∗, 2∗〉〈T1,W, 1∗, 1∗2∗〉〈W,T2, 2∗, 2∗〉

✲

❄
✲

❄
✲

❄
✲

❄❄

✑
✑

✑
✑✑

◗
◗

◗
◗◗�

Fig. 2. Abstract Transition Diagram of Leader Election Protocol for Two Processes.
All states except the bottom right have a self-loop.

example, the backward analysis gives no information about the channel contents
when Process 2 is in control states W or T1, since the analysis investigates only
the reachability of control state 〈T1, T2〉.

Representing Contents by Finite Automata. Sets of channel states can
also be represented as ordinary regular sets, using finite automata. This approach
is the basis for the Queue Decision Diagram (QDD) representation developed
by Boigelot and Godefroid [9,10]. In this work, a global state is represented as
a word, obtained by concatenation of the channel contents in a certain order.
The approach is generally applicable in the ON model; for the OL model on can
first modify the program (e.g., for each message transmission, a corresponding
null transition is added). In [9] it is described how to calculate the effect of loops
which first receive a (possibly empty) sequence from one channel and thereafter
transmit a (possibly empty) sequence to another channel. The control loops of
the processes in Figure 1 are of this form. In comparison to the techniques for
SREs described earlier, this approach is applicable to a more general model. On
the other hand, using SREs for the OL model, one can calculate the effect of a
larger class of loops; a characterization of such loops is given in [2].

When applying the technique of [9] using QDDs to the example, we obtain
essentially the same set of reachable states as that shown in Figure 2.

Forward reachability analysis in the UN and UL models can be performed
analogously to the analysis for ordered channels. Techniques for calculating the
effect of loops are well-developed (e.g., [26,20,18,38]).

4 Channels with an Unbounded Message Alphabet

In the previous section, we assumed that messages in channels are taken from
a finite set. In this section, we will consider a slightly more general model of

10 P.A. Abdulla and B. Jonsson

programs that operate on a potentially infinite set of data, which can be stored
in program variables, and transmitted as messages. We will consider program
models in which very limited operations can be performed on data. In this sec-
tion, we will consider a model where data values are equipped with a total order,
which may be used in guards of transitions. We do not allow any other arith-
metic on data values. One intended application is to consider protocols with time
stamps, which may be compared with each other. In this section, we will also
give a negative undecidability result, which holds in the more restricted model
where we allow only tests for equality and inequality between values.

Programs. We extend the program model of the preceding section as follows.
The finite setM of messages is replaced by an infinite set D of data values, which
is equipped with a total order <. The control component is extended by a finite
set x1, . . . , xm of program variables. Each transition in the control component
may be labeled either by a receive statement of form

c?v; g(v, x1, . . . , xm) −→ x1, . . . , xm := p1, . . . , pm

or a send statement of form

g(v, x1, . . . , xm) −→ c!v;x1, . . . , xm := p1, . . . , pm

where v is a temporary variable and c is a channel in C; each parameter pi is
either v or among x1, . . . , xm. The guard g(v, x1, . . . , xm) is a boolean combina-
tion of equalities (=) and comparisons (according to <) over v and x1, . . . , xm.
Intuitively, v is a free variable which may be bound to the received message in
the receive statement, and which may be bound to any value in a send state-
ment; in send statements it can represent the generation of new identifiers. We
will sometimes use the abbreviation x for x1, . . . , xm and p for p1, . . . , pm.

Semantics. A global state γ is a triple 〈s, σ, w〉, where s ∈ S, where σ is a
mapping from {x1, . . . , xm} to D, and where w maps each channel in C to a
bag or string over D. We use the notation σ |= g to denote that the boolean
expression g is satisfied by the mapping σ. The global state of a nonlossy system
can change from γ to γ′, denoted γ −→ γ′, as follows.

– For a transition from s to s′ labeled by the receive statement c?v; g(v, x) −→
x := p, we have 〈s, σ, w[c := d • w(c)]〉 −→ 〈s′, σ′, w〉 for any d ∈ D such that
σ |= g(d, x), where σ′(xi) = σ(pi) if pi is xj for some j, otherwise (if pi is v)
σ′(xi) is d.

– For a transition from s to s′ labeled by the send statement g(v, x) −→
c!v;x := p, we have 〈s, σ, w〉 −→ 〈s′, σ′, w[c := w(c) • d]〉 for any d ∈ D such
that σ |= g(d, x), where σ′(xi) is σ(pi) if pi is xj for some j, otherwise (if pi
is v) σ′(xi) is d.

Definitions of transitions of lossy channels, reachable, are as in Section 2.

Channel Representations in Protocol Verification 11

5 Reachability Analysis

We will in this section consider the control state reachability problem for pro-
grams defined in the model of Section 4. We will present two results. We first
consider the OL model, where the control state reachability problem now be-
comes undecidable. In fact, it is undecidable also if only tests for equality and
inequality between data values is allows. The undecidability result can be proven
through a reduction from the control state reachability problem for perfect chan-
nel systems with a finite set of messages. Brand and Zafiropulo [12] showed that
perfect channel systems can simulate Turing machines, and hence any nontriv-
ial problem for perfect channel systems is undecidable. On the other hand, if
guards may only test for equality (under an even number of negations) then the
problem is decidable; the model is then similar to the model of data independent
programs considered by Wolper [37].

5.1 Ordered Lossy Channels

In this section, we consider programs where guards are boolean combinations of
equalities and inequalities. We then have the following negative result concerning
decidability:

The control state reachability problem is undecidable for OL programs
where guards are boolean combinations of equalities and inequalities.

This can be shown by a reduction from the control state reachability problem
for systems with perfect FIFO channels and a finite message alphabet, i.e., a
program in the ON model of Section 2. Suppose we are given such a system
PON and a control state sf . We shall construct a program POL in the OL model
over an infinite set D of values, which “simulates” PON in the sense that sf is
reachable in the lossy channel system if and only if sf is reachable in PON .

The main idea of the construction is to let POL be identical to PON , but
to add a protocol for transmission of messages, which makes it possible for the
receiver at one channel to detect whether any message has been lost during
transmission. If a loss is detected, the operation of the protocol is immediately
aborted. Due to the availability of an infinite set of different messages, it is
possible to assign “unique identifiers” to each message. This must be done in
such a way that the receiver can detect whether some message has been lost. If
the infinite set of different messages would have been the natural numbers, then
if the PON transmits a sequence m1 m2 m3 m4 . . . over a channel, then POL
would transmit the sequence 0 m1 1 m2 2 m3 3 m4 It is easy to see that the
receiver can detect whether any message has been lost.

In the current model, however, the set D is a set of “anonymous” values which
can only be tested for equality and inequality. We therefore need a little trick
to achieve the same effect. What is needed is to find for each message a “unique
identifier” which is different from the previous identifiers, such that a receiver
can detect when some identifier is missing. We can do this by using a predicate

12 P.A. Abdulla and B. Jonsson

fresh to generate new sequence numbers, and to tag each new sequence number
with a copy of the previous sequence number. Thus, in the above example, if
the sequence of generated “fresh unique identifiers” is 0 1 2 3 . . . , then the
sequence m1 m2 m3 m4 . . . will be equipped with sequence numbers as follows
0 m1 1 0 m2 2 1 m3 3 2 m4 Also here, a receiver can easily detect whether a
message is missing, even if the sequence of identifiers is not known in advance.

The predicate fresh can be implemented by guessing an arbitrary identifier,
and thereafter checking whether it already exists in the channel (this can be
done by receiving all messages and then retransmitting them again).

The previous undecidability result illustrates a limitation of the approach of
[4,22] to deciding the reachability problem by using a preorder on global states
which is monotonic and is a well quasi-ordering, as in Section 3.1. The limitation
is that an unbounded data domain with two ordering relations usually cannot be
equipped with a useful well quasi-ordering. In the current case, the data elements
are ordered both in channels and by the equality/inequality relation. These two
orderings create sufficiently much structure that the natural ordering between
states is not a well quasi-ordering. Symbolic backward reachability analysis can
still be performed, but it is not guaranteed to terminate.

5.2 Unordered Channels

Let us now consider the control state reachability problem for unordered (lossy or
nonlossy) channels. We shall extend the symbolic backward reachability analysis
of Section 3.1 to the program model in this section, using a symbolic represen-
tation introduced in [6] and [7].

We define an ordering � on global states, so that the conditions of mono-
tonicity and well quasi-orderedness are preserved. The key property of � is that
if 〈s, σ, w〉 � 〈s′, σ′, w′〉, then all guards which are satisfied in state 〈s, σ, w〉
are also satisfied in 〈s′, σ′, w′〉. Intuitively, this means that 〈s, σ, w〉 is “isomor-
phic” to a state obtained by deleting zero or more messages from the channels
in 〈s′, σ′, w′〉. Formally, we say that 〈s, σ, w〉 � 〈s′, σ′, w′〉 if s = s′ and if there
is an injection h : D �→ D on the domain of data values which preserves the
ordering < such that σ′ = h ◦ σ and such that w(c)(d) ≤ w′(c)(h(d)) for each
channel c and data element d (i.e., if in w(c) we replace each occurrence of d
by h(d) then we obtain a subbag of w′(c)). One can prove that any program
is monotonic with respect to � and that � is a well quasi-ordering. Hence for
this class of programs, control state reachability can be decided using symbolic
backward reachability analysis.

Example. As an example of a protocol in this model, we consider again the
leader election protocol. Let us model the algorithm for N processes, numbered
in order from 0 to N − 1. There are N channels c0, . . . , cN−1, where channel
ci transmits messages from process i − 1 to process i (arithmetic modulo N).
Each process i as two local variables idi and mini, and will run the protocol in
Figure 3. Correctness of the algorithm states that if all process reach the control
state T , then mini will have the same value in all processes. By instantiating

Channel Representations in Protocol Verification 13

✚✙
✛✘
I ✚✙

✛✘
W

✚✙
✛✘
T

✲













�

✚
✚

✚
✚

✚
✚

✚
✚

✚✚❂

ci?v; v �= idi −→
mini := min(mini, v); ci+1!v

ci?v; v = idi −→
mini := min(mini, v)

ci?v; v = idi −→
mini := min(mini, v)

✚
✛ ✘ci+1!idi ✛ ✘

✙✛

ci?v; v �= idi −→
mini := min(mini, v); ci+1!v

Fig. 3. Leader Election Protocol for Any Number of Processes

the above model to any particular number N of processes, we obtain a program
in the model of this section. For each value of N , correctness can be expressed
by requiring that the set of global states where all processes are in control state
T and two processes disagree on the value of mini is unreachable. For the case
N = 4, the set can be represented symbolically as

〈T, T, T, T, φ〉
where φ is a formula stating that there are two processes that disagree on the
value of mini.

6 Conclusion

In this paper, we have surveyed some existing techniques for symbolic representa-
tion of unbounded channels in reachability analysis. We first considered the case
where channels carry messages from a finite alphabet. We also briefly considered
the case where messages are from an infinite set. It was shown that decidability
may get lost in some models, but that in other frameworks it appears possible to
incorporate this case into automated verification. More work seems necessary in
order to understand whether and how messages from “interesting” data domains
can be handled in general. Furthermore, it would be interesting to know whether
protocols, such as the one in Section 5.2, can be verified parametrically for all
values of N .

Acknowledgments. This work draws upon past and present collaboration,
in particular with Aurore Annichini, Ahmed Bouajjani, Karlis Čerāns, Elena
Fersman, Purushothaman Iyer, Mats Kindahl, Marcus Nilsson, Aletta Nylén,
Yih-Kuen Tsay, and Wang Yi. Thanks to Pritha Mahata for valuable comments
on drafts of the paper.

14 P.A. Abdulla and B. Jonsson

References

1. Parosh Aziz Abdulla, Aurore Annichini, and Ahmed Bouajjani. Algorithmic ver-
ification of lossy channel systems: An application to the bounded retransmission
protocol. In Proc. TACAS ’99, volume 1579 of LNCS, 1999.

2. Parosh Aziz Abdulla, Luc Boasson, and Ahmed Bouajjani. Effective lossy queue
languages, 2001. To appear in Proc. ICALP ’2001: 28th International Colloquium
on Automata, Lnaguages, and Programming.

3. Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of
systems with unbounded, lossy fifo channels. In Proc. 10th Int. Conf. on Computer
Aided Verification, volume 1427 of LNCS, pages 305–318, 1998.

4. Parosh Aziz Abdulla, Karlis Čerāns, Bengt Jonsson, and Tsay Yih-Kuen. General
decidability theorems for infinite-state systems. In Proc. LICS’ 96 11th IEEE Int.
Symp. on Logic in Computer Science, pages 313–321, 1996.

5. Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable chan-
nels. Information and Computation, 127(2):91–101, 1996.

6. Parosh Aziz Abdulla and Bengt Jonsson. Verifying networks of timed processes. In
Bernhard Steffen, editor, Proc. TACAS ’98, volume 1384 of LNCS, pages 298–312,
1998.

7. Parosh Aziz Abdulla and Aletta Nylén. Timed Petri nets and BQOs, 2001. To
appear in Proc. ICATPN’2001: 22nd Int. Conf. on application and theory of Petri
nets.

8. T.P. Blumer and D.P. Sidhu. Mechanical verification of communication protocols.
IEEE Trans. on Software Engineering, SE-12(8):827–843, Aug. 1986.

9. B. Boigelot and P. Godefroid. Symbolic verification of communication protocols
with infinite state spaces using QDDs. In Alur and Henzinger, editors, Proc. 8th Int.
Conf. on Computer Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 1–12. Springer Verlag, 1996.

10. B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of QDDs. In Proc.
of the Fourth International Static Analysis Symposium, LNCS. Springer Verlag,
1997.

11. A. Bouajjani and P. Habermehl. Symbolic reachability analysis of fifo-channel
systems with nonregular sets of configurations. In Proc. ICALP ’97, volume 1256
of Lecture Notes in Computer Science, 1997.

12. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 2(5):323–342, April 1983.

13. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proc. LICS’ 90, 5th IEEE Int. Symp.
on Logic in Computer Science, 1990.

14. Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels are
easier to verify than perfect channels. Information and Computation, 124(1):20–31,
10 January 1996.

15. A. Choquet and A. Finkel. Simulation of linear FIFO nets having a structured
set of terminal markings. In Proc. 8th European Workshop on Applications and
Theory of Petri Nets, 1987.

16. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specification. ACM Trans. on Program-
ming Languages and Systems, 8(2):244–263, April 1986.

17. G. Delzanno, J. Esparza, and A. Podelski. Constraint-based analysis of broadcast
protocols. In Proc. CSL’99, 1999.

Channel Representations in Protocol Verification 15

18. E.A. Emerson and K.S. Namjoshi. On model checking for non-deterministic
infinite-state systems. In Proc. LICS’ 98 13th IEEE Int. Symp. on Logic in Com-
puter Science, pages 70–80, 1998.

19. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
Proc. LICS’ 99 14th IEEE Int. Symp. on Logic in Computer Science, 1999.

20. A. Finkel. Reduction and covering of infinite reachability trees. Information and
Computation, 89:144–179, 1990.

21. A. Finkel. Decidability of the termination problem for completely specified proto-
cols. Distributed Computing, 7(3), 1994.

22. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere.
Technical Report LSV-98-4, Ecole Normale Supérieure de Cachan, April 1998.

23. M. Gouda. Closed covers: to verify progress for communicating finite state ma-
chines. IEEE Trans. on Software Engineering, SE-10(6):846–855, Nov. 1984.

24. M.G. Gouda, E.M. Gurari, T.-H. Lai, and L.E. Rosier. On deadlock detection in
systems of communicating finite state machines. Computers and Artificial Intelli-
gence, 6(3):209–228, 1987.

25. G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
SE-23(5):279–295, May 1997.

26. R.M. Karp and R.E. Miller. Parallel program schemata. Journal of Computer and
Systems Sciences, 3(2):147–195, May 1969.

27. K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools for
Technology Transfer, 1(1-2), 1997.

28. G. LeLann. Distributed systems – towards a formal approach. In B. Gilchrist,
editor, IFIP77, pages 155–160. North-Holland, 1977.

29. R. Mayr. Undecidable problems in unreliable computations. In Theoretical Infor-
matics (LATIN’2000), number 1776 in Lecture Notes in Computer Science, 2000.

30. J.K. Pachl. Protocol description and analysis based on a state transition model
with channel expressions. In Protocol Specification, Testing, and Verification VII,
May 1987.

31. W. Peng and S. Purushothaman. Data flow analysis of communicating finite state
machines. ACM Trans. on Programming Languages and Systems, 13(3):399–442,
July 1991.

32. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems
in cesar. In 5th International Symposium on Programming, Turin, volume 137 of
LNCS, pages 337–352. Springer Verlag, 1982.

33. H. Rudin, C. West, and P. Zafiropulo. Automated protocol validation - one chain
of development. In Proc. Computer Network Protocols Symposium Liege, 1978.

34. A.P. Sistla and L.D. Zuck. Automatic temporal verification of buffer systems. In
Larsen and Skou, editors, Proc. Workshop on Computer Aided Verification, volume
575 of LNCS. Springer Verlag, 1991.

35. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. LICS ’86, 1st IEEE Int. Symp. on Logic in Computer Science,
pages 332–344, June 1986.

36. C.H. West. Automated validation of a communications protocol: the ccitt x.21
recommendation. IBM Journal on Research and Development, 22(1), Jan. 1978.

37. Pierre Wolper. Expressing interesting properties of programs in propositional tem-
poral logic (extended abstract). In Proc. 13th ACM Symp. on Principles of Pro-
gramming Languages, pages 184–193, Jan. 1986.

38. Pierre Wolper and Bernard Boigelot. Verifying systems with infinite but regular
state spaces. In Proc. 10th Int. Conf. on Computer Aided Verification, volume
1427 of LNCS, pages 88–97, Vancouver, July 1998. Springer Verlag.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 16−35, 2001.
 Springer-Verlag Berlin Heidelberg 2001

17Bigraphical Reactive Systems

18 R. Milner

19Bigraphical Reactive Systems

20 R. Milner

21Bigraphical Reactive Systems

22 R. Milner

23Bigraphical Reactive Systems

24 R. Milner

25Bigraphical Reactive Systems

26 R. Milner

27Bigraphical Reactive Systems

28 R. Milner

29Bigraphical Reactive Systems

30 R. Milner

31Bigraphical Reactive Systems

32 R. Milner

33Bigraphical Reactive Systems

34 R. Milner

35Bigraphical Reactive Systems

Control of Networks of Unmanned Vehicles

Shankar Sastry

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley CA 94720

At Berkeley we have been interested in design schemes for network of complex
networks of semi-autonomous agents. These networks are characterized by in-
teraction between discrete decision making and continuous control. The control
of such systems is often frequently organized in hierarchical fashion to obtain a
logarithmic decrease in complexity associated with the design, We have used as
examples three classes of systems to motivate the design approach:

1. Intelligent Vehicle Highway Systems (IVHS)
2. Air Traffic Management Systems (ATMS)
3. Unmanned Aerial Vehicles

Over the last five years or so, a group of us have developed a set of design ap-
proaches which are aimed at designing control schemes which are live, deadlock
free, and “safe”. Our design methodology is to be considered an alternative to
the verification based approaches to hybrid control systems design, and is an
interesting blend of game theoretic ideas, planning and fault handling in a prob-
abilistic framework, mathematical and temporal logic and planning ideas from
robotics. In today’s talk, I will focus on design problems involved in coordinating
groups of Unmanned Aerial Vehicles (UAVs). Problems to be addressed include:

1. Design of embedded software for real-time control.
2. Vision based landing and navigation.
3. Pursuit Evasion problems for multi-UAV missions.

The last set of issues touches on issues of decentralized map making, compu-
tationally tractable solutions of pursuit evasion games with partial information
and probabilistic verification. The work on UAVs is joint with (in alphabeti-
cal order) Joao Hespanha, Hyoun Jin Kim, John Koo, Maria Prandini, Omid
Shakernia, David Shim, and Claire Tomlin.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, p. 36, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 37−38, 2001.
 Springer-Verlag Berlin Heidelberg 2001

38 S. Schneider

Using the Bandera Tool Set to Model-Check
Properties of Concurrent Java Software

John Hatcliff and Matthew Dwyer

SAnToS Laboratory, Department of Computing and Information Sciences
Kansas State University

234 Nichols Hall, Manhattan KS, 66506, USA.
{hatcliff,dwyer}@cis.ksu.edu

Abstract. The Bandera Tool Set is an integrated collection of program
analysis, transformation, and visualization components designed to fa-
cilitate experimentation with model-checking Java source code. Bandera
takes as input Java source code and a software requirement formalized in
Bandera’s temporal specification language, and it generates a program
model and specification in the input language of one of several existing
model-checking tools (including Spin [16], dSpin [6], SMV [3], and JPF
[2]). Both program slicing and user extensible abstract interpretation
components are applied to customize the program model to the property
being checked. When a model-checker produces an error trail, Bandera
renders the error trail at the source code level and allows the user to step
through the code along the path of the trail while displaying values of
variables and internal states of Java lock objects.
In this tutorial paper, we use a simple concurrent Java program to

illustrate the functionality of the main components of Bandera and how
to interact the tool set using its graphical user interface.

1 Introduction
Modern computing applications increasingly require concurrent/distributed soft-
ware systems that are extremely reliable. Unfortunately, current software valida-
tion techniques, such as inspections and testing, are failing to provide high levels
of assurance of correctness for these systems due to system size and complexity
as well as the fundamental difficulties of reasoning about state/event sequences
in concurrent behavior.

Model-checking techniques (now widely used for hardware verification) hold
promise for establishing crucial behavioral properties of complex software be-
cause they can automatically check to see if an abstract finite-state transition
system model of the software conforms to a given state/event sequence property.
If the model fails to satisfy the property, the model-checker gives a counterex-
ample — a path through the model’s transitions that violates the property. This
can be used to locate and correct the corresponding software defect.

Although it holds great promise, we believe that there are four problems
that are currently preventing model-checking technology from being successfully
applied to software.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 39–58, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

40 J. Hatcliff and M. Dwyer

The state explosion problem: the exponential increase in the size of a finite-
state model as the number of system components grows. A variety of methods
exist for curbing the state explosion when analyzing certain types of systems,
and these methods have proven sufficient to make analysis of many hardware
designs tractable. Unfortunately, software systems tend to have more complex
state than hardware components and thus must be more aggressively abstracted
to produce tractable models.

The model construction problem: bridging the semantic gap between the
artifacts produced by software developers and those accepted by current ver-
ification tools. Most development is done with general-purpose programming
languages (e.g., C, C++, Java, Ada), but most verification tools accept spec-
ification languages designed for the simplicity of their semantics (e.g., process
algebras, state machines). In order to use a verification tool on a real program, a
developer must extract an abstract mathematical model of the program’s salient
behavior and specify this model in the input language of the verification tool.
This process is both error-prone and time-consuming.

The requirement specification problem: the difficulty of expressing software
requirements in the temporal specification languages of existing model-checking
tools. Although model-checker property specification languages are built on the-
oretically elegant temporal logics, practitioners and even researchers find it dif-
ficult to use them to accurately express complex event-sequencing properties.
Once written, the specifications are often hard to read and debug.

Moreover, model-checker specification languages are designed to state prop-
erties of mathematical models rather than software source code. Most software
specifications include references to program features such as control-points (e.g.,
method entry/exit), local and instance variables, array access, nested object
dereferences. However, current tools provide little or no support for the intri-
cate mappings that are often required to bridge the gap between source code
features and their corresponding model realizations. This means that the user
is often forced to state the specifications in terms of the model’s representa-
tion of program features such as coded e.g., in Spin’s Promela input language,
instead of in terms of the source code itself. Thus, the user must understand
these typically highly optimized representations to accurately render the specifi-
cations. This is somewhat analogous to asking a programmer to state assertions
in terms of the compiler’s intermediate representation. Moreover, the representa-
tions may change depending on which optimizations were used when generating
the model. Even greater challenges arise when modeling the dynamism found
in typical object-oriented software: components corresponding to dynamically
created objects/threads are dynamically added to the state-space during exe-
cution. These components are anonymous in the sense that they are often not
bound directly to variables appearing in the source program. The lack of fixed
source-level component names makes it difficult to write specifications describing
dynamic component properties: such properties have to be expressed in terms
of the model’s representation of the heap.

Using the Bandera Tool Set to Model-Check Properties 41

The output interpretation problem: When a property fails when checking
large models (and software systems typically produce very large models), the
counterexample traces produced by the checker can be hundreds or even thou-
sands of steps long.1 Manually matching up these counterexamples with source
code is extremely tedious for several reasons. First, the length is quite long and it
may require hours to walk through the trace. Second, the error trace is expressed
in terms of the low-level, possibly highly optimized model representations. Thus,
one has the reverse of the “representation gap” issue mentioned in the property
specification problem: the analyst must understand the model’s representation
of complex program features in order to accurately project the model error trace
back to the source level. Typically, one “step” in the source program may cor-
respond to as many as ten steps in the low-level model representation.

1.1 Goals and Context of the Bandera Project

Bandera provides multiple forms of tool support to address the problems above.
To address the model construction problem, Bandera automatically compiles
Java programs to existing model-checking engine back-ends (e.g., Spin, SMV,
dSpin, and JPF) which can be inserted into the tool set as pluggable components.
To address the requirement specification problem, Bandera provides a temporal
specification language that allows user to express properties at the source code
level using temporal specification patterns. These specifications are then com-
piled automatically to the input language of the selected back-end model-checker.
To address the state-explosion problem, Bandera provides program slicing and
abstract interpretation components, as well as a number of static analyses similar
to what one would find in an optimizing compiler — these are used to customize
the generated models with respect to the specification to be checked. To address
the output interpretation problem, Bandera automatically maps model-checker
counterexample traces back to the source-level. A GUI provides debugger-like fa-
cilities – it allows the user to navigate a trace both forwards and backwards and
to display the contents of the program state (variable and heap values, threads
waiting or blocked on locks, etc).

Bandera is the second generation of tools that we have built for model-
checking software properties (a previous effort led by Corbett, Dwyer, and
Avrunin [7] provided a framework for checking concurrent Ada programs). Work
on Bandera began in the fall of 1998, and a number of people have partici-
pated in its development. Jay Corbett (faculty, University of Hawai’i) designed
and coded the back-end infrastructure which compiles an intermediate repre-
sentation of Java to several existing model-checkers. In addition to the authors,
a good-sized group of research associates and graduate students from Kansas
State University including Radu Iosif, Roby Joehanes, Shawn Laubach, Corina
Pasareanu, Venkatesh Ranganath, Robby, Oksana Tkachuk, and Hongjun Zheng
have contributed to design and implementation of the system.
1 For example, in a software model-checking experiment performed by researchers at
NASA Ames and Honeywell, checking properties of the DEOS real-time operating
system scheduler produced SPIN counterexamples over 2700 steps long [19].

42 J. Hatcliff and M. Dwyer

Even though a good deal of effort have been devoted to developing Bandera,
we believe that each of the previously mentioned barriers to applying model
checking to software is significant and it is unclear at present exactly which
technologies and forms of tool support will ultimately be best suited for over-
coming them. Thus, the primary aim of the Bandera project is not to provide
“silver bullet” solutions to these problems, but, instead, to provide several dif-
ferent forms of tool support along with an open infrastructure that allows for
easy experimentation with new techniques.

The project website http://www.cis.ksu.edu/santos/bandera includes a
number of papers related to the project, a collection of slides for technical talks
and tutorials, and downloadable distribution of the tools. The distribution in-
cludes a much larger tutorial and a repository of simple examples.

Outside of our own research group, the primary users of Bandera have been
researchers at NASA Ames’s Automated Software Engineering and Honeywell
Technology Center who have used Bandera in conjunction with NASA Ames’s
JPF model-checker to check properties of avionics software. It should be noted
that these users were already quite familiar with model-checking concepts. Even
though Bandera provides many forms of automated support, effective use of
it at the present time requires a basic knowledge of temporal logic, explicit
state model-checking, and abstract interpretation. Introduction of Bandera in
our graduate courses is typically preceded by 2-3 weeks of high-level background
material on model-checking and abstraction.

This work was supported in part by the US National Science Foundation un-
der grants CCR-9703094, CCR-9701418, CCR-9708184, CCR-9896354 and CCR-
9901605, by the US National Aeronautics and Space Agency (NASA) under grant
NAG-02-1209, by Sun Microsystems under grant EDUD-7824-00130-US, by US
Department of Defense Advanced Research Projects Agency (DARPA/ITO)’s
PCES program through AFRL Contract F33615-00-C-3044, by Honeywell Tech-
nology Center and NASA Langley Research Center under Formal Verification
of Integrated Modular Avionics Software Cooperative Agreement, NCC-1-399,
and by the US Army Research Office under agreement DAAD190110564.

2 Tool Architecture and Use

Figure 1 presents the internal architecture of Bandera, and below we summarize
the functionality of the components.

Java infrastructure and intermediate representation: Bandera is built on
top of the Soot Java compiler framework developed by Laurie Hendren’s Sable
group at the University of McGill [21]. In the Soot framework, Java programs
are translated to an intermediate language called Jimple. Jimple was originally
developed to be the target language of a Java decompiler (i.e., the Soot tools
provide a component for decompiling Java class files (byte code) to Jimple).
Thus, Jimple is essentially a language of control-flow graphs where (a) state-
ments appear in three-address-code form (the explicit stack manipulation inher-
ent in JVM instructions has been removed by introducing temporary variables),

Using the Bandera Tool Set to Model-Check Properties 43

Slicer Engine
Abstraction

Constr−
uctor

BIR B
I
R

SPIN Trans

SMV Trans

dSPIN Trans

...

Property
Front−end

Back−ends

(over APs)
LTL,CTL,...

Abstraction

Specifications

BASL

Compiler
BASL Abstraction

Library

Object Flow
Analysis

BOFA

BIR
Simulator

Counter

Spec
Language

Bandera

Jimple−Java
Mapper

Jimple

example

Soundness
Proofs

Java−based
verification tools

External

PVS

Prover
Theorem

(customized)

Java Front−EndJava

JJJC

Promela

Atomic Propositions

Jimple

BIR
Tracer

Trans

Java Counterexample
Trace

dPromela

...

Java
JPF

Fig. 1. Internal architecture of the Bandera Tool Set

and (b) various Java constructs such as method invocations and synchronized
statements are represented in terms of their virtual machine counterparts (such
as invokevirtual, and monitorenter, monitorexit).

Java front-end: Based on an initial prototype from the Soot group, the Ban-
dera group has developed it’s own Java front-end called JJJC (Java-to-Jimple-
to-Java Compiler) that translates from Java to Jimple. JJJC also maintains data
structures that are used by a Jimple-Java Mapper to move back and forth be-
tween Java and Jimple. For instance, JJJC can also decompile Jimple that has
been transformed by Bandera’s slicing and abstraction components back to Java.
Thus, the Bandera slicer and abstraction tools can be viewed as source-to-source
transformations. This is useful if one desires to use other verification tools that
work at the Java source level in conjunction with Bandera. The Jimple-Java
Mapper is also invoked during the process of mapping a model-checker coun-
terexample back to the Java source level.

Property specification: Source code properties to be checked are written in
the Bandera Specification Language (BSL). BSL is based on a collection of field-
tested temporal specification patterns [11] that allow users to write specifications
in a stylized English format. These patterns essentially are parameterized macros
that can be instantiated to one or more temporal logics such as LTL or CTL.
Thus, this pattern system addresses the specification problem mentioned in the
previous section by providing the user with temporal structures commonly used
in specifications.

BSL specifications are parameterized by observables (predicates on program
state) that are defined in Java source code using Javadoc comment notation.
From a foundational standpoint, BSL specifications are instantiated to assertions
and temporal logic formulas, and user-declared observables are the primitive

44 J. Hatcliff and M. Dwyer

propositions that can appear in those formulas. Examples include constraints
on program variables and heap objects, and propositions that hold true when
control is at a particular control point. The property front-end of Figure 1 calls
the Java front-end to extract all the observables declared in the given source
program, it type checks the declared observables, and it instantiates the BSL
specification to a particular temporal logic, and it translates the observables
used in the input specification to the lower-level model representation. This
last step addresses the representation gap issue of the specification problem by
automatically translating properties described in terms of source-level features
to the low-level optimized model representation.

Approach to model construction: Bandera’s approach to model construc-
tion is to generate one model for each property to be checked. This approach
is based on the observation that, given a specific property φ, many parts of the
software may not influence φ at all. This allows Bandera to employ optimiza-
tions and abstractions that remove program components irrelevant to φ and thus
generate a highly compacted model. Note that this customization approach gen-
erally is infeasible when one is generating models from programs by hand. One
might naively complain that generating one model per property incurs signifi-
cant overhead. However, it is often the case that checking a particular property
φ without customizing the model is infeasible due to the exponential cost of
model-checking. In addition, Bandera’s philosophy is to design the customiza-
tion so that cost of customization is always dominated by model-checking (i.e., in
practice, the time to customize should be shorter than the time to model-check).

Slicing: Bandera uses both program slicing and data abstraction (abstract in-
terpretation) to customize models. The Bandera program slicer takes as input
all the observables mentioned in the input property φ. These observables may
reference particular program variables and control points. The semantics of these
program features must be preserved for correctly checking φ, but all other pro-
gram components that don’t influence the semantics of the observable features
can be eliminated in the generated model. The program slicer builds a program
dependence graph representing several different forms of dependence, and it will
generate an executable residual program (the program slice) where components
that do not influence the execution of the observables in φ have been removed.
The sliced program is created at the Jimple level, but it can also be decompiled
to Java source using JJJC.

Abstract interpretation: The Bandera abstraction components provide auto-
mated support for reducing model size via data abstraction. This is useful when
a specification φ to be checked does not depend on the program’s concrete values
but instead depends only on properties of those values. For example, an appli-
cation might store a set of items in a vector, but if the property being verified
depends only on whether a particular item is in the vector, we could abstract the
large number of vector states onto a small set {ItemInVector , ItemNotInVector}.
The user guides the abstraction process by binding variables to entries from an
abstraction library. The library entries are indexed by concrete type, and each
entry implements an abstract version of its corresponding concrete type. Each

Using the Bandera Tool Set to Model-Check Properties 45

Fig. 2. Main window of the Bandera User Interface (BUI)

abstraction in the library is defined using the Bandera Abstraction Specification
Language (BASL).

Back end model generation: The Bandera back end is like a code gener-
ator, taking the sliced and abstracted program and producing verifier-specific
representations for targeted verifiers. The back end components communi-
cate through BIR, the Bandera Intermediate Representation, an intermediary
between compiler-based representations and verifier-based representations. As
shown in Figure 1, the back end has one fixed component called BIRC (Ban-
dera Intermediate Representation Constructor) that accepts a restricted form of
Jimple and produces BIR. For each supported verifier, there is also a translator
component that accepts the program represented in BIR and generates input
for that verifier. Currently, translators for SPIN, dSPIN, and SMV have been
incorporated. In addition to these BIR-based back ends, the JPF model-checker
from NASA Ames [2] has also been incorporated. JPF works directly on Java
byte code, so translation to BIR is by-passed when generating JPF input.

3 Overview of the Bandera User Interface

Figure 2 displays the main window of the BUI with some example code loaded.
The main window contains two panels: the left panel is the project panel and the
right panel is the code panel. The Project panel contains a tree that organizes
the packages, classes, fields and methods of the Java software being analyzed.
Selecting a node in the project panel brings up a detailed view of the selected
object in the code panel. For instance, in the example display in Figure 2, select-
ing the add method from the BoundedBuffer class displays the code structure
for the add method in the code panel.

46 J. Hatcliff and M. Dwyer

Below we give a brief description of each tool-bar button and menu in the
main Bandera window.

Sessions: Runs of Bandera are configured using sessions. A session is a record
holding information about the file name(s) of the source code to be checked
during the run, the property to be checked, the tool components that are to be
enabled during the run, options and settings for the selected components, the
particular back-end model-checker to be used, and other miscellaneous informa-
tion such as location of working directories into which temporary output should
be dumped.

Multiple session records are held in a session file. When performing a new run
of Bandera, the session record can be saved in a session file and loaded at a later
time. This allows the user to avoid restating all option information, etc. Session
records in a session file can also be processed in batch mode using a command line
flag. This is useful for performing regression tests on software under development.
For example, you might consider creating a session file holding all the checks that
you usually run on a piece of software, then using the batch mode facility to run
all of the model-checks specified in the session file overnight.

Component buttons: The four buttons at the right side of the upper tool-
bar (labeled JJJC, Slicer, SLABS, Checker) are used to enable/disable the four
main components of Bandera. When a component is enabled, the corresponding
button icon is presented in color with a check-mark. A non-checked black-and-
white icon indicates that a component has been disabled. Clicking on the Run
button causes the enabled components to be executed in the order in which they
are presented in the tool-bar. For example, in Figure 2, JJJC is enabled, but
the remaining components are disable. Therefore, pressing the run button only
parses the program and loads it into the BUI.

Session manager: Starting on the lower toolbar, the first button opens the Ses-
sion Manager window. The window is used for creating, modifying, and deleting
of session records within the currently selected session file.

Property specification buttons: The next four buttons on the lower tool bar
are associated with property specification. The Assertion button invokes the As-
sertion Browser which allows you to browse the assertions that you have declared
in the code specified by the current session. The Predicate button invokes the
Predicate Browser which allows you to browse the predicates (observables) that
you have declared in the code specified by the current session. The Pattern but-
ton invokes the Pattern Manager. Recall that Bandera’s temporal specification
language is based on a collection of temporal specification patterns. The Pattern
Manager allows the user to browse the patterns, and to add, modify or remove
patterns. Typically, only expert users will change the collection of patterns. The
Property button invokes the Property Manager which allows the user to specify
properties to be checked for the code specified by the current session.

The PDG Browser: The next button in the lower toolbar invokes the PDG
Browser. The PDG Browser allows the user to navigate the program dependence

Using the Bandera Tool Set to Model-Check Properties 47

/**
* @observable
* EXP Full(this): (head == tail);
* EXP TailRange(this):
* (tail >= 0 && tail < bound);
* EXP HeadRange(this):
* (head >= 0 && head < bound);
*/
class BoundedBuffer {
Object [] buffer;
int bound, head, tail;
/**
* @assert
* PRE PositiveBound: (b > 0);
*/
public BoundedBuffer(int b) {
bound = b;
buffer = new Object[bound];
head = 0;
tail = bound - 1;
}
/**
* @observable
* RETURN ReturnTrue(this):
* ($ret == true);
*/
public synchronized

boolean isEmpty() {
return
head == (tail + 1) % bound;

}

/**
* @observable
* INVOKE Call(this);
* @assert
* POST AddToEnd:
* (head == 0) ?
* buffer[bound-1] == o :
* buffer[head-1] == o;
*/
public synchronized

void add(Object o) {
while (tail == head)
try { wait(); }
catch (InterruptedException ex) {}

buffer[head] = o;
head = (head+1) % bound;
notifyAll();
}
/**
* @observable
* RETURN Return(this);
*/
public synchronized Object take() {
while (isEmpty())
try { wait(); }
catch (InterruptedException ex) {}

tail = (tail+1) % bound;
notifyAll();
return buffer[tail];
}
}

Fig. 3. Bounded Buffer Implementation with Predicate Definitions

graph – the main data structure produced by the slicer. Several facilities are
provided in the PDG Browser that aid in the selection of abstractions.
Abstract type inference: The next button in the lower toolbar invokes the
Abstraction Manager which is used to bind abstract types to source code vari-
ables. The Abstraction Manager communicates this information about abstrac-
tion selection to the abstraction engine, and this information is used to drive the
program transformation associated with abstraction.

4 Property Specification Using BSL

4.1 An Example

Figure 3 gives the implementation of a simple bounded buffer implementation
in Java that is amenable to simultaneous use by multiple threads. This code
illustrates several of the challenges encountered in specifying the behavior of

48 J. Hatcliff and M. Dwyer

// Enable PositiveBound or AddtoEnd pre-condition assertions
BoundAssertion: enable assertions { PositiveBound };
AddToEndAssertion: enable assertions { AddToEnd };

// Indices always stay in range
IndexRangeInvariant:

forall[b:BoundedBuffer].
{HeadRange(b) && TailRange(b)} is universal globally;

// Full buffers eventually become non-full
FullToNonFull:

forall[b:BoundedBuffer]. {!Full(b)} responds to {Full(b)} globally;

// Empty buffers must be added to before being taken from
NoTakeWhileEmpty:

forall[b:BoundedBuffer].
{BoundedBuffer.take.Return(b)} is absent
after {BoundedBuffer.isEmpty.ReturnTrue(b)}
until {BoundedBuffer.add.Call(b)};

Fig. 4. Bounded Buffer Properties rendered in BSL

Java programs. Each instance of the BoundedBuffer class maintains an array of
objects and two indices into that array representing the head and tail of the
active segment of the array. Calls to add objects to the buffer are guarded by a
check for a full buffer using the Java condition-wait loop idiom. Calls to take
objects from the buffer are guarded similarly by a check for an empty buffer.

We will use BSL to specify the following requirements of the buffer code.

1. Buffers are constructed with positive bounds.
2. Elements are always added in correct position.
3. Buffer indices always stay in range.
4. Full buffers eventually become non-full.
5. Empty buffers must be added to before being taken from.

Comments in the code of Figure 3 contain various BSL predicate and assertion
declarations for these properties, and Figure 4 presents the actual assertion and
temporal specifications. We will discuss these in the following sections.

4.2 Structure of BSL

The Bandera Specification Language (BSL) is a source-level, model-checker inde-
pendent language for expressing temporal properties of Java program actions and
data. BSL addresses the property specification problem outlined in the introduc-
tion and provides support for overcoming the hurdles one faces when specifying
properties of dynamically evolving software. For example, consider the bounded
buffer Requirement 4 from above stating that no buffer stays full forever. There
are several challenges in rendering this specification in a form that can be model-
checked including (a) defining the meaning of full in the implementation, (b)

Using the Bandera Tool Set to Model-Check Properties 49

quantifying over time to insure that full buffers eventually become non-full, and
(c) quantifying over all dynamically created bounded buffers instances in the
program. BSL separates these issues and treats them with special purpose sub-
languages: a predicate sublanguage for defining basic observations (i.e., propo-
sitions) about program’s state (addressing item (a)), a pattern-based temporal
property sublanguage for expressing temporal relationships between observables
(addressing item (b)), and an object-instance quantification facility (addressing
item (c)). In addition, an assertion sublanguage is provided.
Assertions: An assertion sublanguage provides a convenient way for a devel-
oper to specify a constraint on a program’s data space that should hold when
execution reaches a particular control location. In C and C++ programming, as-
sertions are typically embedded directly in source code using an assert macro,
where the location of the assertion is given by the position of the macro in-
vocation in the source program. Due to Java’s support for extracting HTML
documentation from Java source code comments via Javadoc technologies, sev-
eral popular Java assertion facilities, such as iContract, support definition of
assertions in Java method header comments. BSL also adopts this approach.

For example, Figure 3 shows the declaration of the BSL assertion PRE
PositiveBound: (b > 0). In this assertion, the data constraint is (b > 0)
and the control location is specified by the occurrence of the tag @assert PRE
in the method header documentation for BoundedBuffer constructor: the con-
straint must hold whenever control is at the first executable statement in the
constructor. Other assertion forms include post-conditions (see the AddToEnd
postcondition for add method in Figure 3), and user-specified LOCATION asser-
tions. LOCATION[<label>] <assertion-name>: <exp> is satisfied if <exp> is
true when control is at the Java statement labeled by <label> in the corre-
sponding method).2

Assertions can be selectively enabled/disabled so that one can easily identify
only a subset of assertions for checking. Bandera exploits this capability by
optimizing the generated models (using slicing and abstraction) specifically for
the selected assertions. For example, the BoundAssertion property of Figure 4
enables only the PositiveBound assertion but not the AddToEnd assertion. When
checking, PositiveBound the actual array implementing the buffer will be sliced
away because it is not need for checking PositiveBound. Note that without
selective checking, the buffer array would be included since it is required for
AddToEnd.
Predicates: A predicate sublanguage provides support for specifying observ-
able properties of common Java control points (e.g., method invocation and re-
turn) and Java data (including dynamically created threads and objects). These
predicates become the basic propositions in temporal specifications. For exam-
ple, Figure 3 shows a declaration of a location insensitive expression predicate
EXP Full(this): (head == tail) in the class BoundedBuffer header docu-
mentation. Expression predicates are often used to define class invariants or to
2 Even though Java does not include goto’s, it includes labels to indicate the targets
of break and continue statements.

50 J. Hatcliff and M. Dwyer

indicate distinguished states (e.g., a full buffer) in class or instance data. Since
expression predicates do not refer to particular control points in methods, they
can only be defined in class header documentation. Other predicate forms in-
clude invocation predicates (e.g., the Call predicate for method add in Figure 3),
return predicates (e.g., the ReturnTrue predicate for method isEmpty), and lo-
cation predicates (similar to location assertions). As an example of the semantics
of these predicates, RETURN ReturnTrue(this): ($ret == true); of method
isEmpty is true exactly when isEmpty is invoked on the instance bound to the
predicate parameter this and control is at the return statement of isEmpty
and the return value is true.
Temporal properties: The temporal specification language is based not on a
particular temporal logic, but on a collection of field-tested temporal specifica-
tion patterns developed in our earlier work [11]. This pattern language is exten-
sible and allows for libraries of domain-specific patterns to be created. There are
five basic patterns:

– universal properties require the argument to be true throughout the execu-
tion

– absence properties require that the argument is never true in the execution
– existence properties require that the argument is true at some point in the

execution
– response properties require that the occurrence of a designated state/event

is followed by another designated state/event in the execution
– precedence properties require that a designated state/event always occurs

before the first occurrence of another designated state/event

In addition several chain patterns allow for the construction of sequences of de-
pendent response and precedence relationships to be specified. A web-site [10]
presents the current set of eight patterns and their variations as well as trans-
lations into five different common temporal specification formalisms, including
LTL and CTL.

Pattern scopes define variations of the basic patterns in which checking of
the pattern is disabled during specified regions of execution. There are five basic
scopes; a pattern can hold global ly throughout the system’s execution, after the
first occurrence of a state/event, before the first occurrence of a state/event,
between a pair of designated states/events, during the interval, or after one
state/event until the next occurrence of another state/event or throughout the
rest of the execution if there is no subsequent occurrence of that state/event. For
example, the NoTakeWhileEmpty property of Figure 4 uses the absence pattern
with after/until scope.
Object Quantification: Interacting with both the predicate and pattern sup-
port is a powerful quantification facility that allows temporal specifications to be
quantified over all objects/threads from particular classes. Quantification pro-
vides a mechanism for naming potentially anonymous data, and we have found
this type of support to be crucial for expressive reasoning about dynamically
created objects.

Using the Bandera Tool Set to Model-Check Properties 51

Bandera implements object quantification through a mechanism that avoids
having to extend the functionality of any of its back-end model-checkers. This is
achieved by (a) augmenting the program/model to bind quantified variables non-
deterministically to allocated instances of the classes named in the quantification
and by (b) augmenting the property φ to be checked by embedding it in another
temporal formula that assures φ will be checked only when quantifier variables
have actually been bound to allocated objects.

Although the specification file of Figure 4 can be created directly via a text
editor, the BUI’s Property Manager provides a nice system of pull-down menus
that collect the predicates declared in the code to aid the user in constructing
specifications. See [5] for a detailed presentation of the syntax and semantics of
BSL, as well as several more examples.

When analyzing a unit of code U like the bounded buffer class, one be-
gins by creating an appropriate model of U ’s environment to close the system.
This model of the environment is analogous to a test harness. Typically, it will
non-deterministically generate calls to the interface of U to simulate demonic
behavior of the actual environment.

To model the environment for the BoundedBuffer class, we built a simple
closure (not shown here) consisting of four threads: a main thread that instan-
tiates two BoundedBuffers, loads one of the buffers until it is full, then passes
the pair of buffers to threads that read from one buffer and write to the other
such that a ring topology is established. An additional thread repeatedly polls
the state of the two BoundedBuffers to determine if they are empty. Under this
environment, each buffer will be forced through all its internal states limited by
its bound, and Bandera determines that all of the properties in Figure 4 hold.

The current release of Bandera provides no tool support for generating envi-
ronments. However, we have constructed initial prototypes based on the second
author’s previous work on filter-based refinement and assume-guarantee model-
checking [9], and we plan to incorporate fully developed versions of these in a
future Bandera release.

5 Slicing
Given a program P and some statements of interest C = {s1, . . . , sk} from
P called the slicing criterion, a program slicer will compute a reduced version
of P by removing statements of P that do not affect the computation at the
criterion statements C. When checking a program P against a BSL specification
φ, Bandera uses slicing to remove the statements of P that do not affect the
satisfaction of φ. Thus, the specification φ holds for P if and only if φ holds for
the reduced version of P (i.e., the reduction of P is sound and complete with
respect to φ) [14].

In recent work [14], we showed that the slicing transformation can driven by
generating a slicing criterion Cφ based only on the primitive propositions (i.e.,
the predicates) in φ. We noted earlier that BSL’s predicates may involve two
types of observations: observations about the values of values, and observations
about the current control location. The criterion Cφ consists of those program

52 J. Hatcliff and M. Dwyer

statements whose control locations are mentioned in φ predicates, as well as all
assignment statements to variables mentioned in φ.

As an example, consider slicing with respect to the FullToNonFull speci-
fication of Figure 4. Since Full is the only predicate in this specification and
it is not location sensitive, Bandera’s automatically generated slicing criterion
consists of all the statements that assign to the variables mentioned in Full (i.e.,
head, and tail). Using this criterion, Bandera will slice away statements that
are guaranteed not to influence the criterion statements. In this case, the buffer
array and any values flowing into or out of it can sliced away — in essence, the
FullToNonFull only concerns the control of available positions in the buffer and
not its actual contents.

Building a slicer for Java requires a significant amount of effort. Fortunately,
except for issues surrounding Java’s concurrency primitives we were able to carry
out most of the development using previously developed slicing techniques based
on program dependence graphs. In recent work, we gave a formal presentation
of slicing that includes additional notions of dependence that arise in Java’s con-
currency model [13]. These includes dependencies due to possibly infinite delays
in waiting for locks or notification via Java’s notify/notifyall, data depen-
dencies due to access/definition of shared variables, and dependencies between
program statements and the monitor delimiters that enclose them.

The effectiveness of slicing for reducing program models varies depending on
the structure of the program. In some systems that we have considered, slicing
removes entire threads and dramatically reduces the state space. In other cases,
where program components are tightly coupled or where large sections of the
program are relevant to the specification, the slicing reduction is moderate to
negligible. However, since slicing is cheap compared to the overall cost of model-
checking and since it is totally automatic, we almost always use Bandera with
the slicing option enabled. We’ve encountered numerous examples where slicing
turned an infeasible checking program into a feasible one.

For more details, we refer the reader to formalizations of the Bandera slicer’s
approach to property-driven slicing [14], and the notions of program dependence
required for slicing the concurrent features of Java [13].

6 Abstraction
The user guides the abstraction process by binding variables to entries from an
abstraction library. The library entries are indexed by concrete type, and each
entry implements an abstract version of its corresponding concrete type. Each
abstraction in the library is defined using the Bandera Abstraction Specification
Language (BASL). A BASL specification for a base type abstraction consists
of a declaration of a finite set of abstract tokens, an abstraction function that
maps each concrete Java value to an abstract token, and an abstract operation
for each operation of the concrete type. A rule-based format that incorporates
pattern matching simplifies the definition of abstract operations. For base type
abstractions, the BASL compiler allows the user to supply an abbreviated BASL
specification containing only the abstract token set and abstraction function. It

Using the Bandera Tool Set to Model-Check Properties 53

Fig. 5. Abstraction selection and abstract type inference

then uses the PVS theorem prover to automatically synthesize the abstract ver-
sions of operations such as +, -, etc. This makes it extremely easy to define new
abstractions on base types. Given a (possibly synthesized) BASL specification,
the BASL compiler generates a Java class containing methods that implement
the defined abstraction function as well as abstract versions of the relevant con-
crete operators. The Java class is held in the library, and is linked with rest
of source code during model-generation if the user has selected that particular
abstraction.

Since abstractions are incorporated on a per variable basis, two different vari-
ables of the same concrete type can have different abstract types. For example,
if I1 and I2 are both int abstractions, then variable int x may be bound to
I1 and variable int y may be bound to I2. After the user has chosen abstrac-
tions for a few key variables that are relevant to the property being checked, a
type inference phase propagates this information throughout the program and
infers abstraction types for the remaining variables and for each expression in
the program. Type inference also informs the user of an abstraction type conflict.

54 J. Hatcliff and M. Dwyer

Although abstraction is not needed to check our example buffer properties, we
illustrate the abstraction selection interface by abstracting the bound field using
a range abstraction with the abstract token set {LT0,0,1,2,3,4,GT4}. This
is reasonable since our environment only creates buffers of size three (although,
note that the abstraction does not result in a smaller state-space in this contrived
example). Intuitively, this abstraction tracks concrete values from 0 to 4, but
“summarizes” negative values and values greater than 4 using the tokens LT0
and GT4, respectively. The top of Figure 5 shows the state of the type inference
window when the user is making an abstract type selection for the bound variable
by selecting the Range04 abstraction from among those integer abstractions
currently held in the abstraction library. The bottom of Figure 5 shows the
state of the window after abstract type inference has run. In this case, the
typing information for bound has been propagated to the other integer variables
in the program.

Once abstract type inference is run, the abstraction engine will transform the
source code into a abstracted version where all concrete operations and tests on
the relevant objects (e.g., addition and equality on integers) are replaced with
abstract versions that manipulate tokens representing the abstract values. Since
information is lost in this transformation, operations and tests that relied on the
lost information can no longer be determined completely in the abstract program.
For instance, GT4 == GT4 cannot be determined because GT4 represents more
than one number. Any conditional with a test like this would be transformed
into a non-deterministic choice between the true and false branches. As with
slicing, the abstracted code is represented at the Jimple level, but JJJC can
decompile it back to Java.

For more details on Bandera’s abstraction facilities, see [8].

7 Back End

BIR is a guarded command language for describing state transition systems.
The main purpose of BIR is to provide a simple interface for writing translators
for target verifiers—to use Bandera with a new verifier, one must only write a
translator from BIR to the input language of the verifier. The guarded command
style of BIR meshes well with the input languages of existing model checkers.

BIR contains some higher-level constructs to facilitate modeling Java, such
as threads, Java-like locks (supporting wait/notify), and a bounded form of
heap allocation. Rather than choose an implementation of these constructs and
remove them from BIR (e.g., model a lock as a boolean variable), we allow the
translators to implement these constructs in whatever way is most efficient in
the verifier input language. BIR also provides other kinds of information that
can aid translators in producing more compact models. For example, a guarded
command can be labeled invisible, indicating that it can be executed atomically
with its successor. The set of local variables that are live at each control location
can be specified (dead variables can be set to a fixed value for SPIN or left
unconstrained for SMV).

Using the Bandera Tool Set to Model-Check Properties 55

Fig. 6. BUI counterexample display

BIRC translates a subset of Jimple to BIR. Java locals and instance variables
are mapped onto BIR state variables and record fields. The Jimple statement
graph is traversed to construct a set of guarded commands for each thread.
Each guarded command is marked as visible/invisible based on the kind of data
accesses (e.g., operations on locals are invisible). BIRC also accepts a set of
expressions used to define primitive propositions in the model (e.g., a thread
is at a specific statement, a variable has a given value). BIRC embeds these
proposition definitions into the BIR and insures that any program statement
that changes the value of one of these primitive propositions will cause a visible
state change in the model.

8 Counterexample Display

Since all of the specifications of Figure 4 hold for the example buffer code, we
consider an additional specification that is violated by the code. Of course, when
a program violates a specification, it could be that there is an error in the code,
or it could be that the specification is erroneous because it does not faithfully
represent the desired functionality of the system. We illustrate Bandera’s coun-
terexample display with a specification of the latter sort.

56 J. Hatcliff and M. Dwyer

In Figure 3, we specified the notion of buffer emptiness via the predicate
isEmpty.ReturnTrue. However, one can also describe an empty buffer state
directly by adding the following predicate to the other EXP predicates in the
BoundedBuffer class header.

EXP Empty: head == ((tail+1) % bound);

Now, consider the following naive specification which requires that items
cannot be taken from the buffer after it becomes empty.

NoTakeAfterEmpty: forall[b:BoundedBuffer].
{take.Return(b)} is absent after {Empty(b)};

This specification is violated by a correct implementation because it fails to
consider intervening calls to add, e.g., the valid sequence of actions is empty,
add to buffer, take from buffer violates the specification.

Bandera detects this violation (we use the Spin back-end in this case) and
brings up the counterexample display in Figure 6. The window on the lower right
is the counterexample control window. Buttons allow the user to step forward
and backward along the trace and to reset the display to the beginning of the
trace. During navigation, the current method and statement being executed by
each thread is highlighted (there is a separate display window for each thread). In
this case, an environment thread CONCURBoundedBuffer is executing the buffer
add method (the intervening call to add which leads to the violation described
above). This thread’s display window is on the lower left, and a user can display
properties of selected variables. In this case, one can see that the lock of the
selected variable this:BoundedBuffer is held by environment thread (which has
an id of 0). Finally, the top of the control panel reports that the counterexample
display is positioned at step 14 out of a total of 34 steps. It is interesting to note
that counterexample at the Spin level has over 600 steps (there are many steps
in the model for each source code step). This clearly motivates the need for this
type of tool support.

9 Related Work
There are several other significant software model-checking projects, and tech-
nical comparisons between our approach and these others can be found in our
technical papers (e.g., [4,5,8,14]). Below, we simply give a concise summary and
literature references of notable projects.

The Automated Software Engineering group at NASA Ames has developed
a flexible explicit-state model-checker Java Pathfinder (JPF) that works directly
on Java byte-code [2]. They have also produced a simple predicate abstraction
tool and a distributed version of the model-checking engine. In collaboration with
researchers at NASA Ames, JPF has been incorporated as a back-end checker
for Bandera.

The Microsoft Research SLAM Project [1] focuses on checking sequential
C code using well-engineered predicate abstraction and abstraction refinement
tools. Operating system device drivers are emphasized as an application domain.

Using the Bandera Tool Set to Model-Check Properties 57

Gerard Holzmann’s Feaver tool extracts Promela programs from annotated
C programs for checking with SPIN [15]. This tool has been used in several
substantial production telecommunications applications.

Scott Stoller [20] has developed a stateless checker for multi-threaded dis-
tributed Java programs. The basic technology used is an extension of Godefroid’s
Verisoft approach [12].

David Dill’s Hardware Verification Group at Stanford has developed a tool
that translates Java into SAL – an intermediate language designed to interface
with several model-checking and theorem-proving tools developed at Stanford
and SRI [18].

Eran Yahav has developed a tool for checking safety properties of Java pro-
grams [22] built on top of Lev-Ami and Sagiv’s three-valued logic analysis tool
(TVLA) [17].

10 Conclusion

Bandera is a rather large and diverse collection of tools, and it is impossible to
present anything more than a very high-level overview in a paper like this. How-
ever, we hope that the overall goals and direction of the project have been made
clear and that the reader receives a reasonable impression of what is involved in
using the tool set.

There are a number of limitations to the current version of the tools that we
hope to overcome in future releases: each created thread must be named by a
distinct reference variable, all methods are inlined, and user-defined exceptions
are not treated. These restrictions will be lifted by creating an extended version
of BIR. Future releases will have enhanced capabilities for BSL specifications of
Java interfaces, environment generation, abstraction of heap configurations, and
UML state-chart specifications.

Finally, we hope that researchers outside of our group may contribute com-
ponents to Bandera, e.g., back-end translators to additional model-checkers.

References

1. T. Ball and S. Rajamani. Bebop: a symbolic model-checker for boolean programs.
In K. Havelund, editor, Proceedings of Seventh International SPIN Workshop,
LNCS 1885, Springer-Verlag, 2000.

2. G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder – a second gen-
eration of a Java model-checker. In Proceedings of the Workshop on Advances in
Verification, July 2000.

3. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV : a new symbolic
model checker. International Journal on Software Tools for Technology Transfer,
2000. (to appear)

4. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and
H. Zheng. Bandera : Extracting finite-state models from Java source code. In
Proceedings of the 22nd International Conference on Software Engineering, pages
439–448, June 2000.

58 J. Hatcliff and M. Dwyer

5. J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Expressing checkable prop-
erties of dynamic systems: The Bandera Specification Language. Submitted for
publication. A shorter version of this paper appeared in the 2000 Spin Workshop.

6. C. Demartini, R. Iosif, and R. Sisto. dSPIN : A dynamic extension of SPIN. In
Theoretical and Applied Aspects of SPIN Model Checking (LNCS 1680), 1999.

7. M. B. Dwyer, J. C. Corbett, and C. S. Păsăreanu. Translating Ada programs for
model checking : A tutorial. Technical Report 98-12, Kansas State University,
Department of Computing and Information Sciences, 1998.

8. M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Păsăreanu, Robby,
W. Visser, and H. Zheng. Tool-supported abstraction for finite-state verification. In
Proceedings of the 23nd International Conference on Software Engineering, pages
177–187, May 2001.

9. M. B. Dwyer and C. S. Păsăreanu. Filter-based model checking of partial systems.
In Proceedings of the Sixth ACM SIGSOFT Symposium on Foundations of Software
Engineering, November 1998.

10. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. A System of Specification Patterns.
|http://www.cis.ksu.edu/santos/spec-patterns—, 1998.

11. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering, May 1999.

12. P. Godefroid. Model-checking for programming languages using VeriSoft.
POPL’97, pages 174–186, January 1997.

13. J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and H. Zheng. A formal
study of slicing for multi-threaded programs with JVM concurrency primitives. In
Proceedings of the 6th International Static Analysis Symposium (SAS’99).

14. J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construction.
Higher-order and Symbolic Computation, 13(4):315–254, December 2000.

15. G. Holzmann. Logic verification of ANSI-C code with SPIN. In K. Havelund,
editor, Proceedings of Seventh International SPIN Workshop, LNCS 1885, pages
131–147. Springer-Verlag, 2000.

16. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–294, May 1997.

17. T. Lev-Ami and M. Sagiv. TVLA: A framework for kleene-based static analysis.
In Proceedings of the 7th International Static Analysis Symposium (SAS’00), 2000.

18. D. Y. W. Park, U. Stern, J. U. Skakkebaek, and D. L. Dill. Java model checking.
In Proc. of the First International Workshop on Automated Program Analysis,
Testing and Verification, June 2000.

19. J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Verification of time
partitioning in the DEOS scheduler kernel. In Proceedings of the 22nd International
Conference on Software Engineering, June 2000.

20. S. Stoller. Model-checking multi-threaded distributed Java programs. In
K. Havelund, editor, Proceedings of Seventh International SPIN Workshop, LNCS
1885, pages 224–244. Springer-Verlag, 2000.

21. R .Valle-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java optimization framework. In Proceedings of CASCON’99, November 1999.

22. E. Yahav. Verifying safety properties of concurrent java programs using 3-valued
logic. POPL’01, pages 27–40, January 2001.

|

Performance Evaluation :=
(Process Algebra + Model Checking)

× Markov Chains

Holger Hermanns and Joost-Pieter Katoen

Formal Methods and Tools Group
Faculty of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. Markov chains are widely used in practice to determine sys-
tem performance and reliability characteristics. The vast majority of
applications considers continuous-time Markov chains (CTMCs). This
tutorial paper shows how successful model specification and analysis
techniques from concurrency theory can be applied to performance eval-
uation. The specification of CTMCs is supported by a stochastic pro-
cess algebra, while the quantitative analysis of these models is tackled
by means of model checking. Process algebra provides: (i) a high-level
specification formalism for describing CTMCs in a precise, modular and
constraint-oriented way, and (ii) means for the automated generation
and aggregation of CTMCs. Temporal logic model checking provides: (i)
a formalism to specify complex measures-of-interest in a lucid, compact
and flexible way, (ii) automated means to quantify these measures over
CTMCs, and (iii) automated measure-driven aggregation (lumping) of
CTMCs. Combining process algebra and model checking constitutes a
coherent framework for performance evaluation based on CTMCs.

1 Introduction

What is performance evaluation? Performance evaluation aims at analysing
quantitative system aspects that are related to its performance and dependabil-
ity – what is the frequency of anomalous behaviour?, or, is correct and timely
packet delivery guaranteed in at least 92% of all cases? Major performance
evaluation approaches are measurement-based and model-based techniques. In
measurement-based techniques, controlled experiments are performed on a con-
crete (prototypical) realisation of the system, and gathered timing information
is analysed to evaluate the measure(s) of interest such as time-to-failure, system
throughput, or number of operational components. In model-based performance
evaluation, an abstract (and most often approximate) model of the system is
constructed that is just detailed enough to evaluate the measure(s) of interest
with the required accuracy. Depending on modelling flexibility and computa-
tional requirements, either analytical, numerical or simulative techniques are
used to evaluate the required measure(s). We focus on model-based performance
evaluation and their numerical analysis.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 59–81, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

60 H. Hermanns and J.-P. Katoen

Models and measures. Continuous-time Markov chains (CTMCs) are a widely
used performance evaluation model. They can be considered as labelled tran-
sition systems, where the transition labels – rates of exponential distributions
– indicate the speed of the system evolving from one state to another. Using
specification techniques such as queueing networks [19], stochastic Petri nets [1]
or stochastic networks [42], CTMCs can be described in a quite comfortable
way. Typical performance measures of CTMCs are based on steady-state and
transient-state probabilities. Steady-state probabilities refer to the system be-
haviour on the “long run”, i.e., when the system has reached an equilibrium.
Transient-state probabilities consider the system at a fixed time instant t. State-
of-the-art numerical algorithms allow the computation of both kinds of probabil-
ities with relative ease and comfortable run times, and in a quantifiable precise
manner. Several software-tools are available to support the specification and
analysis of CTMCs.

Performance evaluation and concurrency theory: A couple? Given the success of
CTMCs and their wide industrial applications, it is stunning that these models
have received scant attention in concurrency theory for a long time: where proba-
bilistic aspects have come into play, they were mostly of a purely discrete nature.
This is even more remarkable, as model specification and analysis techniques –
key ingredients of performance evaluation methodology – are first class examples
of the success of formal methods for concurrent or reactive systems. Moreover, in
modern systems many relevant functionalities are inextricably linked to perfor-
mance aspects and the difference between functional and performance properties
has become blurred. While formal methods for concurrency have mainly been fo-
cused on functional features, we believe that these methods have finally reached
a state in which performance aspects should play a larger rôle. As a – to our
opinion – promising example of the cross-fertilisation of concurrency theory and
performance evaluation, this paper surveys a formal framework for the specifica-
tion and analysis of CTMCs. The proposed methodology is based on appropriate
extensions of process algebra for the description of CTMCs and model checking
techniques for their analysis.

Stochastic process algebra. Stochastic process algebras are extensions of process
algebras such as ACP, CCS and CSP in which actions can be delayed according
to some negative exponential distribution. A mapping from algebraic terms onto
CTMCs is obtained by a formal semantics in traditional SOS-style. The pro-
cess algebraic setting provides a specification formalism for describing CTMCs
in a precise, and modular way, resembling the hierarchical nature of most mod-
ern systems. In this setting, strong bisimulation coincides with lumpability, a
notion central to the aggregation of Markov chains. The computation of this
bisimulation equivalence can be performed using small adaptations of existing
algorithms for computing strong bisimulation without an increase of their worst-
case complexity. This provides means to minimise CTMCs (w.r.t. lumpability) in
an efficient and fully automated way – a result that was unknown in performance
evaluation. The congruence property of bisimulation allows this minimisation to

Performance Evaluation 61

be carried out in a compositional fashion, i.e., component-wise, thus avoiding an
a priori generation of the entire (and possibly huge) state space. An appropriate
choice of the basic algebraic operators supports:

– an orthogonal extension of traditional process algebra, yielding a single
framework for the description of both functional and performance aspects;

– the specification of exponential and non-exponential distributions such as
the rich class of phase-type distributions;

– the constraint-oriented specification of stochastic time constraints, i.e., with-
out modifying existing untimed specifications;

– variants of weak bisimulation congruences (and their algorithms) that com-
bine lumpability and abstraction of sequences of internal actions.

Model checking. The process algebraic specification of the performance model
can be complemented by a specification of the performance measure(s)-of-
interest in a stochastic variant of the branching-time temporal logic CTL. This
logic is formally interpreted over CTMCs and allows to express quantifiable cor-
rectness criteria such as: in 99% of the cases no deadlock will be reached within
t time units. The logic-based method provides ample means for the unambigu-
ous and lucid specification of requirements on steady-state and transient-state
probabilities. Besides, it allows for the specification of path-based properties,
measures that in performance evaluation are described informally in an ad-hoc
manner and mostly require a manual tailoring of the model. To check the va-
lidity of formulas, model checking algorithms are adapted. They are enriched
with appropriate numerical means, such as simple matrix manipulations and so-
lution techniques for linear systems of equations, to reason about probabilities.
Probabilistic timing properties over paths are reduced to computing transient-
state probabilities for CTMCs, for which dedicated and efficient methods such as
uniformisation can be employed. The use of temporal logic and model checking
supports:

– the preservation of the validity of all formulas under lumping ;
– automated means to analyse state-based and path-based measures over

CTMCs;
– automated measure-driven aggregation of CTMCs;
– hiding specialised algorithms from the performance engineer;
– a means to specify both functional and performance properties in a single

framework.

Organisation of the paper. This paper gives a flavour of the approaches men-
tioned above. A more detailed treatment of the process algebra part can be
found in [28,31,29]; the model checking part is described in full detail in [7,5].
For a broader overview and introduction into formal methods and performance
evaluation we refer to [13]. The paper is organised as follows. Sec. 2 presents
some introductory material on CTMCs. Sec. 3 surveys stochastic process alge-
bras and indicates the main issues involved, such as synchronisation, abstraction
and interleaving. Sec. 4 discusses the temporal logic approach and some of the

62 H. Hermanns and J.-P. Katoen

model checking algorithms. Sec. 5 concludes the paper and discusses some future
research directions.

2 Continuous-Time Markov Chains

This section introduces exponential distributions, continuous-time Markov
chains and their behaviour. This is done in an informal way, we refer to [29,
27] for details.

2.1 Exponential Distributions

A probability distribution (function) is a function that assigns a probability (a
real value between 0 and 1) to each element of some given set. This set is usually
called the sample space, and is often interpreted as time, of either discrete (N) or
continuous (R�0) nature. A specific continuous probability distribution function
F : R�0 �→ [0, 1] defined by F (t) = 1− e−λt is depicted below.

F (t)

0 1 2 3 4 5 6
0

1

t

Intuitively, F (t) is the probability Prob(D � t) that a duration D has finished at
time t the latest. This specific distribution is called an exponential distribution
with rate λ ∈ R�0. Evidently, a rate uniquely characterises an exponential dis-
tribution. Note that F (0) = 0 (the duration surely does not finish in zero time),
and limt→∞ F (t) = 1 (the duration eventually finishes).

The class of exponential distributions has some important properties that
explain their prominent rôle in contemporary performance evaluation. We try
to summarise them here. First, we note that the mean value of an exponential
distributed duration is the reciprocal 1/λ of its rate λ. Secondly, an exponential
distribution of rate λ is the most appropriate approximation1 of a random phe-
nomenon of which only the mean value (1/λ) is known. Furthermore, exponential
distributions possess the so-called memory-less property: If D is exponentially
distributed then Prob(D � t+t′ | D > t) = Prob(D � t′). This means that if we
observe that D is not finished at time t, and are interested in F (t+ t′) under this
condition, then this is just F (t): The distribution is invariant under the passage
of time. In this sense, it does not possess memory. In fact, the exponential distri-
bution is the only continuous probability distribution function that possesses this
property. Other relevant properties of exponential distributions for this paper
are closure properties of exponentially distributions with respect to maximum
1 In information theoretic jargon, such an approximation maximises the entropy.

Performance Evaluation 63

and minimum. If we are waiting for several durations to finish, then we are essen-
tially waiting for the maximum of these durations. Exponential distributions are
not closed under maximum; the maximum of several (pairwise stochastic inde-
pendent) exponentially distributed durations is a phase-type distribution. If, on
the other hand, we are only waiting for one out of several competing durations,
the situation is different. Awaiting the minimum of several (pairwise stochastic
independent) exponentially distributed durations Di (with rate λi, i ∈ {0..n}) is
itself exponentially distributed. Its rate parameter is the sum of the individual
rates

∑n
i=1 λi. In this case the probability that a specific Dj finishes first in the

race is given by λj/
∑n
i=1 λi.

2.2 Continuous-Time Markov Chains

For the purpose of this paper, a continuous time Markov chain can be viewed as
a finite state machine, where transitions are labelled with rates of exponential
distributions. Intuitively, such state machines evolve as follows. Whenever a state
is entered, a race starts between several exponentially distributed durations,
given by the (rate labels of) transitions leaving this state. As soon as some
durationDj finishes, the state machine moves to the target state of the transition
belonging to this Dj (labelled by λj). Clearly, a certain successor state is chosen
with probability λj/

∑n
i=1 λi, and the time until this happens is exponentially

distributed with rate
∑n
i=1 λi.

The memory-less property carries over from the distributions to the Markov
chain2: If we know that the chain has been in the current state for some time
already (or that it was in a specific state at a specific time in the past), then this
knowledge is irrelevant for its future behaviour. The chain’s behaviour is history
independent, only the identity of the state currently occupied is decisive for the
future behaviour.

Usually, a CTMC is characterised by its so-called generator matrix Q and its
initial distribution. The entries of the generator matrix Q specify the transition
rates: Q(s, s′) denotes the rate of moving from state s to state s′, where s�=s′.

Definition 1. (Generator matrix) For some finite set of states S, a square ma-
trix Q of size |S| × |S| is the (infinitesimal) generator matrix of a CTMC iff,
for all s ∈ S, Q(s, s′) � 0 (s �= s′), and Q(s, s) = −∑

s′ �=sQ(s, s′).

While the off-diagonal entries of this matrix specify individual rates of entering
a new state, the diagonal entries specify the converse, a cumulative rate of leav-
ing the current state, so to speak. Together with an initial state (or an initial
probability distribution on states) the generator matrix gives all the necessary
information to determine the transient and steady-state probabilistic behaviour
of the chain.

2 The standard definition of CTMCs proceeds in the reverse way, i.e., it defines a
memory-less discrete-state continuous-time stochastic process, and derives from this
that exponential distributions need to govern its behaviour.

64 H. Hermanns and J.-P. Katoen

Example 1. In the leftmost column of Fig. 1 we have depicted the generator
matrix of a CTMC by means of the usual state-transition representation, where
s and s′ are connected by a transition labelled λ iff Q(s, s′) = λ > 0. The
initial state is coloured black. In order to illustrate how the probability mass
spreads over states as time passes, we represent it as pie-charts of black colour.
All black colour is initially (at time 0) in state s0. From left to right the figure
depicts snapshots at different times, where the pie-charts indicate the amount of
probability πs′(s0, t) of being in state s′ at time t. The rightmost column depicts
the limits of these probabilities as t→∞.

λ

λ
2λ

λ

λ

λ
2λ

λ

λ

λ
2λ

λ

λ

λ
2λ

λ

s0

s1

s3

s2

Fig. 1. Transient and steady-state behaviour of a CTMC (from left to right: transient
probabilities π(s0, 0), π(s0, ln(4/3)/(2λ)), π(s0, ln(2)/(2λ)), and steady-state probabil-
ity π(s)).

The vector π(s, t) = (πs′(s, t))s′∈S is the transient probability vector at time
t if starting in state s at time 0. The vector π(s) = (limt→∞ πs′(s, t))s′∈S is
called the steady-state probability vector. Such a limit exists for arbitrary finite
CTMCs, and may depend on the starting state. Efficient numerical algorithms
exist to compute steady-state as well as transient probability vectors [27].

Lumpability. We conclude this section by a remark on an important concept that
allows one to aggregate states of a CTMC without affecting transient and steady-
state probabilities. This concept, called lumpability is defined as follows [40,15].

Definition 2. (Lumpability.) For S = {S1, . . . , Sn } a partitioning of the state
space S of a CTMC, the CTMC is lumpable with respect to S if and only if for
any partition Si ⊆ S and states s, s′ ∈ Si:

∀0 < k � n.
∑
s′′∈Sk

Q(s, s′′) =
∑
s′′∈Sk

Q(s′, s′′).

That is, for any two states in a given partition the cumulative rate of moving
to any other partition needs to be equal. Under this condition, the performance
measures of a CTMC and its lumped quotient are strongly related. First, the

Performance Evaluation 65

quotient stochastic process (defined on a state space S) is a CTMC as well. In
addition, the probability of the lumped CTMC being in the quotient state Si
equals the sum of the probability of being in any of the original states s ∈ Si
in the original chain. This correspondence holds for transient and steady-state
probabilities.

3 Process Algebra for CTMCs

In this section we discuss various issues one faces when designing a process
algebraic formalism for CTMCs. We only summarise the crucial considerations,
and refer to [29,12] for more elaborate discussions.

3.1 CTMC Algebra

To begin with we introduce a small, action-less process algebra to generate
CTMCs.

Syntax. Let X be drawn from a set of process variables, and I drawn from a set
of finite sets of indices. Furthermore let λi ∈ R�0 for i ∈ I. The syntax of the
algebra MC is

P ::=
∑
i∈I

(λi) . P | X | recX.P

The term recX.P defines a recursive process X by P , that possibly contains
occurrences of X. If I consists of two elements we use binary choice +, if I is
empty we write 0. The meaning of summation is as follows: For I a singleton
set, the term (λ) . P denotes a process that evolves into P within t time units
(t � 0) according to an exponential distribution of rate λ. That is, it behaves
like P after a certain delay D that is determined by Prob(D � t) = 1−e−λt for
positive t.3 In general, the term

∑
i∈I (λi) . Pi offers a timed probabilistic choice

among the processes Pi. As in a CTMC, a race is assumed among competing
delays. Intuitively, a successor state Pj is entered with probability λj/

∑
i∈I λi,

and the time until this happens is exponentially distributed with rate
∑
i∈I λi.

We restrict MC to closed expressions given by the above grammar.

Semantics. The structured operational semantics of MC is presented below. The
inference rules define a mapping of this algebra onto CTMCs (as we will see).

∑
i∈I

(λi) . Pi
λj�−→j Pj (j ∈ I) P{ recX.P/X } λ�−→i P

′

recX.P
λ�−→i P

′

3 The prefix (λ) . P can be considered as the probabilistic version of the timed prefix
(t) . P that typically occurs in timed process algebras, like in TCCS [44] or in Timed
CSP [50].

66 H. Hermanns and J.-P. Katoen

The rule for recursion is standard; we just recall that P{Q/X } denotes term P
in which all (free) occurrences of process variable X in P are replaced by Q. The
rule for choice requires some explanation. Consider

∑
i∈I (λi) . Pi. At execution,

the fastest process, that is, the process that is enabled first, is selected. This
is reflecting the race condition described above. The probability of choosing a
particular alternative, Pj say, equals λj/

∑
i∈I λi, assuming that summands with

distinct indices are distinct.
The transitions are decorated with an auxiliary label indicated as subscript of

the transition relation. It is used to distinguish between different deduction trees
of a term. In absence of such mechanism, we would, for instance, for (λ1) . P +
(λ2) . P , obtain two distinct transitions, except if λ1 = λ2. In that specific case
we would obtain two different deduction trees for the same transition labelled
λ1 (or λ2); this, however, does suggest that P can be reached with rate λ1 (or
λ2), whereas this should be rate λ1+λ2. A similar mechanism is rather standard
in probabilistic process calculi like PCCS [24].

The above operational semantics maps a term onto a transition system where
transitions are labelled by rates. It is not difficult to check that by omitting self-
loops and replacing the set of transitions from s to s′ by a single transition with
the sum of the rates of the transitions from s to s′, a CTMC is obtained.

Example 2. The leftmost CTMC in Fig. 1 is generated from the semantics of

(λ) .0+ (λ) . recX.(λ) . (2λ) . X

Lumping equivalence. Lumping equivalence is defined in the same style as
Larsen-Skou’s probabilistic bisimulation [41] and Hillston’s strong equiva-
lence [36]. Let {| . . . |} denote multi-set brackets.

Definition 3. (Lumping equivalence.) An equivalence relation S on MC is a
lumping equivalence iff for any pair (P,Q) ∈ MC×MC we have that (P,Q) ∈ S
implies for all equivalence classes C ∈ MC/S :

γ(P,C) = γ(Q,C) with γ(R,C) =
∑
i

{|λ | R λ�−→i R
′, R′ ∈ C |}.

Processes P and Q are lumping equivalent, denoted P ∼ Q, if (P,Q) ∈ S with
S a lumping equivalence.

Here, we use MC/S to denote the set of equivalence classes induced by S over MC.
Stated in words, P and Q are lumping equivalent if the total rate of moving to
equivalence class C under ∼ is identical for all such classes. As the name suggests,
this bisimulation-style definition is in close correspondence to the concept of
lumpability on CTMCs (cf. Def. 2). As first pointed out by Buchholz [16] and
Hillston [36] (in settings similar to ours) P ∼ Q if and only if their underlying
CTMCs can be partitioned into isomorphic lumpable partitionings.

Performance Evaluation 67

Example 3. The term (λ) .0+ (λ) . recX.(λ) . (2λ) . X is equivalent to the chain

(λ) .0+ (λ) . recX.

((
1
3
λ

)
. (2λ) . X +

(
2
3
λ

)
. (2λ) . (λ) . (2λ) . X

)

To illustrate this, both chains are depicted in Fig. 2. Let S be the equivalence
relation containing (exactly) those pairs of states in Fig. 2 that are shaded with
identical patterns. It is easy to check that S is a lumping equivalence, and it
equates the initial states. Thus, the latter can be lumped into the former.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

λ

λ
2λ

λ

λ

1
3λ2λ

λ

2λ

λ

2
3λ

Fig. 2. Lumping equivalence classes.

The fact that lumpability is nowadays known to have a bisimulation-style (coin-
ductive) definition is a prime example for cross-fertilisation from concurrency
theory to performance evaluation. In particular, partition refinement algorithms
for bisimulation can be adapted to carry out the best possible lumping on finite
CTMCs [35]. This improves performance evaluation of large CTMCs, where the
question of how to determine a lumpable partitioning of the state space (let
alone the best possible one) was for a long time based on modeller’s ingenuity
and experience.

Equational theory. Since it can be shown that lumpability is a congruence with
respect to the operators of MC, we may strive for a sound and complete axioma-
tisation of ∼ for MC. Such an axiomatisation facilitates the lumping of CTMCs
at a syntactic level. The axioms for sequential finite terms are listed as (B1)
through (B4) below.

(B1) P +Q = Q+ P (B2) (P +Q) +R = P + (Q+R) (B3) P + 0 = P

(B4) (λ+ µ) . P = (λ) . P + (µ) . P

The axioms (B1) through (B3) are well known from classical process calculi.
Axiom (B4) is a distinguishing law for our calculus and can be regarded as a
replacement in the Markovian setting of the traditional idempotency axiom for
choice (P + P = P). Axiom (B4) reflects that the resolution of choice is mod-
elled by the minimum of (statistically independent) exponential distributions.

68 H. Hermanns and J.-P. Katoen

Together with standard laws for handling recursion on classical process calculi
these axioms can be shown to form a sound and complete axiomatisation of MC.

Interleaving. To illustrate another feature of CTMCs from the concurrency the-
oretical perspective, we add a simple parallel composition operator to our calcu-
lus, denoted by || . Intuitively, the term P ||Q can evolve while either P evolves
or Q evolves independently from (and concurrently to) each other. Due to the
memory-less property of CTMCs, the behaviour of parallel CTMCs can be inter-
leaved. This is different from a deterministic time setting where parallel processes
typically are forced to synchronise on the advance of time, as in TCCS [44]. The
operational rules are:

P
λ�−→i P

′

P ||Q λ�−→(i,∗) P ′ ||Q
Q ||P λ�−→(∗,i) Q ||P ′.

(Notice that we create new auxiliary labels of the form (i, ∗) and (∗, i) in order to
obtain a multi-transition relation.) To understand the meaning of the memory-
less property in our context consider the process (λ) . P || (µ) . Q and suppose that
the delay of the left process finishes first (with rate λ). Due to the memory-less
property, the remaining delay of Q is determined by an exponential distribution
with (still!) rate µ, exactly the delay prior to the enabling of these delays before
the delay of the first process has been finished. Therefore, the parameters of
transitions do not need any adjustment in an interleaving semantics. One of the
consequences of this independent delaying is that an expansion law is obtained
rather straightforwardly. For P =

∑
i (λi) . Pi and Q =

∑
j (µj) . Qj we have:

P ||Q =
∑
i

(λi) . (Pi ||Q) +
∑
j

(µj) . (P ||Qj).

3.2 Interaction in CTMCs

The algebra MC is lacking any notion of action, and hence provides only a
restricted way of specifying CTMCs in a compositional way. For instance, in-
teraction between different parallel chains cannot be adequately described. Two
different approaches can be identified when it comes to the integration of actions
into CTMC algebra. One way [25,36,10] is to combine delays and actions in a
single compound prefix (a, λ) . P . The intuitive meaning of this expression is
that the process (a, λ) . P is ready to engage in action a after a delay determined
by an exponential distribution with rate λ and afterwards behaves like P . We
refer to [12] for a discussion of this approach. Here we focus on a different, or-
thogonal approach [28,11] where the action prefix a . P known from standard
process algebra is added to CTMC algebra, to complement the existing delay
prefix (λ) . P with separate means to specify actions.

Performance Evaluation 69

Syntax. We equip this new algebra, called IMC (Interactive Markov Chains)
with a TCSP-style parallel composition operator parametrised with a set A of
synchronising actions. Accordingly we have:

P ::=
∑
i∈I

ai . P +
∑
i∈I′

(λi) . P | X | recX.P | P ||A P

Semantics. The semantics is given by the rules listed for MC (where || is now un-
derstood as ||A for an arbitrary set A of actions) plus the standard rules known
from process algebra: (In mixed summations like a . P + (λ) . Q the respective
summation rules are applied elementwise.)

∑
i∈I

ai . Pi
aj−→ Pj (j ∈ I)

P{ recX.P/X } a−→ P ′

recX.P
a−→ P ′

P
a−→ P ′

P ||AQ
a−→ P ′ ||AQ

Q ||A P
a−→ Q ||A P ′

(a �∈ A)
P

a−→ P ′, Q a−→ Q′

P ||AQ
a−→ P ′ ||AQ′

(a ∈ A)

Equational theory. Since the calculus extends both standard process algebra and
CTMC algebra, it is possible to integrate bisimulation and lumping equivalence.
This can be done for strong, weak and other bisimulation equivalences [28];
we omit the operational definitions here for brevity. Instead we characterise
the resulting equational theory for weak (lumping) bisimulation congruence by
the set of axioms satisfied by finite expressions. It is given by the axioms (B1)
through (B4) listed for CTMC algebra, and the following additional laws.

(B5) a . P = a . P + a . P (P1) (λ) . P + τ .Q = τ .Q

(τ1) τ . P = P + τ . P (τ2) a . (P + τ .Q) = a . (P + τ .Q) + a .Q
(τ3) a . P = a . τ . P (τ4) (λ) . P = (λ) . τ . P

Axiom (B5) replaces the traditional idempotence axiom for choice (P +P = P)
which is not sound for delay prefixed expressions (cf. axiom (B4)). The (P1)
axiom realises maximal progress: A process that has something internal to do
will do so, without letting time pass. No time will be spent in the presence of
an internal action alternative. The axioms (τ1) through (τ3) are well known
for weak bisimulation on standard process algebra [43], and (τ4) extends (τ3)
to delay prefixed expressions. Together with additional laws to handle recursion
(and divergence [34]), this set gives rise to a sound and complete axiomatisation
for finite state IMC, illustrating that process algebra smoothly extends to this
orthogonal union of CTMC algebra and process algebra. We refer to [28] for
further discussion.

70 H. Hermanns and J.-P. Katoen

3.3 Time Constraints and Phase-Type Distributions

In this section, we illustrate two important features of IMC. We show how more
general continuous probability distributions can be embedded into the calcu-
lus, and we illustrate how such general distributions can be used to constrain
the behaviour of an IMC in a modular, constraint-oriented style. The approach
presented here is detailed out in [31].

Phase-type distributions. Phase-type distributions can be considered as matrix
generalisations of exponential distributions, and include frequently used distri-
butions such as Erlang, Cox, hyper- and hypo-exponential distributions. Intu-
itively, a phase-type distribution can be considered as a CTMC with a single
absorbing state (a state with Q(s, s′) = 0 for all s). The time until absorption
determines the phase-type distribution [45]. In terms of CTMC algebra, phase-
type distributions can be encoded by explicitly specifying the structure of the
CTMC using summation, recursion, and termination (0), as in the MC term Q̃
given by (λ) . recX.(µ) . (µ) . X + (λ) .0. The possibility of specifying phase-type
distributions is of significant interest, since phase-type distributions can approx-
imate arbitrary distributions arbitrarily close [45] (i.e., it is a dense subset of
the set of continuous distributions). In other words, MC and IMC can be used to
express arbitrary distributions, by choosing the appropriate absorbing Markov
chain, and (mechanically) encoding it in MC.

Time constraints. In IMC, phase-type distributions can govern the timing of
actions. The main idea is to intersperse action sequences (such as a . b .0) with
specific phase-type distributions (such as the above Q̃) in order to delay the
occurrences of the actions in the sequence appropriately, such as delaying the
occurrence of b after a by Q̃. This can be achieved by explicitly changing the
structure of the process into a . (λ) . recX.(µ) . (µ) . X + (λ) . b .0, but this ap-
proach will be cumbersome in general.

To enhance specification convenience, we introduce the elapse operator that
is used to impose phase-type distributed time constraints on specific occurrences
of actions. The elapse operator facilitates the description of such time constraints
in a modular way, that is, as separated processes that are constraining the be-
haviour by running in parallel with an untimed (or otherwise time-constrained)
process. To introduce this operator, we use much of the power of process alge-
bra, since the semantics of the operator is defined by means of a translation into
the basic operators of IMC. Due to the compositional properties of IMC, impor-
tant properties (congruence results, for instance) carry over to this operator in
a straightforward manner.

We shall refer to a time constraint as a delay that necessarily has to elapse
between two kinds of actions, unless some action of a third kind occurs in the
meanwhile. In order to facilitate the definition of such time constraints, the
elapse operator is an operator with four parameters, syntactically denoted by
[on S delay D by Q unless B]:

Performance Evaluation 71

– a phase-type distribution Q (represented as an MC term) that determines
the duration of the time constraint,

– a set of actions S (start) that determines when the delay (governed by Q)
starts,

– a set of actions D (delay) which have to be delayed, and
– a set of actions B (break) which may interrupt the delay.

Thus, for instance, [on {a} delay {b} by Q̃ unless ∅] imposes the delay of Q̃
between a and b. We claim that a wide range of practical timing scenarios can
be covered by this operator (in particular if non-empty intersections between the
action sets are allowed). This is illustrated in [31] where this operator is used
to impose various time constraints on an existing, untimed process algebraic
specification (of more than 1500 lines of LOTOS code) of the plain ordinary
telephone system.

Semantically, the intuition behind this operator is that it enriches the chain Q
with some synchronisation potential, that is used to initialise and reset the time
constraint in an appropriate way. The time constraint is imposed on a process
P by means of parallel composition, such as in

P ||S∪D∪B [on S delay D by Q unless B].

The elapse operator is an auxiliary operator that can be defined using sequential
composition and disrupt, LOTOS-operators that can be easily added to IMC [31].
For instance, the semantics of a . b .0 ||{a,b} [on {a} delay {b} by Q̃ unless ∅]
agrees with a . (λ) . recX.(µ) . (µ) . X + (λ) . b .0 up to weak bisimulation.

3.4 Compositional Aggregation

Interactive Markov chains can be used to specify CTMCs, but due to the pres-
ence of nondeterminism (inherited from standard process algebra), the model
underlying IMC is richer, it is the class of continuous time Markov decision
chains [49], a strict superset of CTMCs. Nondeterminism is one of the vital
ingredients of process algebra and hence of IMC, though it appears as an addi-
tional hurdle when it comes to performance evaluation, because the stochastic
behaviour may be underspecified. In order to eliminate nondeterminism – and
to aggregate the state space – we have developed a general recipe leading from
an IMC specification to a CTMC:

1. Develop a specification of the system under investigation using the operators
provided by IMC. A possible approach is to start from an existing process
algebraic specification and to enrich the specification by incorporating time
constraints. The elapse operator is convenient for this purpose.

2. Close the specification by abstracting from all actions using the standard
abstraction (encapsulation) operator of process algebra.

3. Apply weak bisimulation congruence to aggregate (lump) the state space,
to eliminate action transitions, and to remove nondeterminism. Due to the

72 H. Hermanns and J.-P. Katoen

congruence property, this aggregation step is preferably done composition-
ally, by applying it to components of the specification prior to composition.
In this way, the state space explosion problem can be diminished [31].

If the aggregated, minimal transition system does not contain action tran-
sitions, it trivially corresponds to a lumped CTMC. If, on the other hand, the
resulting transition system still contains action transitions the stochastic process
is under-specified, it is a continuous time Markov decision chain, because non-
determinism is present. The above recipe has been exercised in practice success-
fully [31]. The necessary algorithms for state space generation, and efficient ag-
gregation are implemented [30,17], and compositional aggregation is supported.

4 Model Checking CTMCs

Once a CTMC has been generated, the next step is to evaluate the measure(s)
of interest such as time to failure, system throughput or utilisation, with the
required accuracy. In this section, we use temporal logic to express constraints
(i.e., bounds) on such measures and show how model checking techniques can be
employed for the automated analysis of these constraints. We only summarise
the crucial considerations, and refer to [7,5] for more elaborate discussions.

4.1 CTMC Temporal Logic

To specify performance and dependability measures as logical formulas over
CTMCs, we assume the existence of a set AP of atomic propositions with a ∈ AP
and extend CTMCs with a labelling function L : S → 2AP which assigns to each
state s ∈ S the set L(s) of atomic propositions that are valid in s. These labelled
CTMCs can be viewed as Kripke structures with transitions labelled by rates.

Syntax. CSL (Continuous Stochastic Logic) is a branching-time temporal logic
à la CTL [23] based on [4] that is interpreted on CTMCs. Let p be a probability
(p ∈ [0, 1]) and ✂ a comparison operator, i.e., ✂ ∈ {�,� }. CSL state-formulas
are constructed according to the following syntax:

Φ ::= a | ¬Φ | Φ ∨ Φ | S✂p(Φ) | P✂p(ϕ)

The two probabilistic operators S and P refer to the steady-state and transient
behaviour, respectively, of the CTMC being studied. Whereas the steady-state
operator S refers to the probability of residing in a particular set of states (spec-
ified by a state-formula) on the long run, the transient operator P allows us
to refer to the probability of the occurrence of particular paths in the CTMC,
similar to [26]. The operator P✂p(.) replaces the usual CTL path quantifiers ∃
and ∀. In fact, for most cases (up to fairness) ∃ϕ can be written as P>0(ϕ) and
∀ϕ as P�1(ϕ). For instance, P>0(✸a) is equivalent to ∃✸a and P�1(✸a) stands
for ∀✸a given a fair interpretation of the CTL-formula ∀✸a.

Performance Evaluation 73

For I an interval on the real line (I ⊆ R�0), the syntax of CSL path-
formulas is

ϕ ::= X I Φ | Φ UI Φ.

The operators X I and UI are the timed variants of the usual next-operator and
until-operator, respectively. Similar timed variants of these operators appear in
timed CTL [2].

Semantics. State-formulas are interpreted over the states of a CTMC; for s a
state of the CTMC under consideration and Φ a state-formula, s |= Φ, if and only
if Φ is valid in s. The semantics of the Boolean operators is standard (i.e., s |= a
iff s ∈ L(s), s |= ¬Φ iff s �|= Φ, and s |= Φ1 ∨ Φ2 iff s |= Φ1 ∨ s |= Φ2.)
The state-formula S✂p(Φ) asserts that the steady-state probability for the set of
Φ-states meets the bound ✂p:

s |= S✂p(Φ) if and only if
∑
s′|= Φ

πs′(s) ✂ p

where we recall that πs′(s) equals limt→∞ πs′(s, t), where πs′(s, t) denotes the
probability to be in state s′ at time t when starting in state s. Finally, P✂p(ϕ) as-
serts that the probability measure of the paths satisfying ϕ meets the bound ✂p.
Let Prob(s, ϕ) denote the probability of all paths satisfying ϕ when the system
starts in state s. (The probability measure Prob is formally defined in [7].) Then:

s |= P✂p(ϕ) if and only if Prob(s, ϕ) ✂ p

A path σ in a CTMC is an alternating sequence of the form s0 t0 s1 t1 . . . where
ti ∈ R�0 indicates the amount of time stayed in state si.4 Let σ[i] denote the
(i+1)-state in σ and let σ@t denote the state occupied by σ at time t. The
satisfaction relation for the path-formulas is defined as follows. The path-formula
X I Φ asserts that a transition is made to a Φ-state at some time point t ∈ I:

σ |= X I Φ if and only if σ[1] |= Φ ∧ δ(σ, 0) ∈ I

where δ(σ, 0) = t0, the duration of staying in the initial state s0 of σ. The path-
formula Φ UI Ψ asserts that Ψ is satisfied at some time instant in the interval I
and that at all preceding time instants Φ holds:

σ |= Φ1 UI Φ2 if and only if ∃t ∈ I. (σ@t |= Φ2 ∧ ∀u ∈ [0, t). σ@u |= Φ1) .

The usual (untimed) next- and until-operator are obtained as X Φ = X [0,∞) Φ,
and ΦU Ψ = Φ U [0,∞) Ψ . Other Boolean connectives are derived in the usual way
(e.g. Φ ∨ Ψ = ¬(¬Φ ∧ ¬Ψ)). Temporal operators like ✸I (“eventually in I”) and
✷I (“always in I”) are derived by, for example: P✂p(✸I Φ) = P✂p(tt UI Φ) and
P�p(✷I Φ) = P�1−p(✸I ¬Φ).
4 For simplicity, we assume all paths to be infinite.

74 H. Hermanns and J.-P. Katoen

Expressiveness. Besides standard state-based performance measures such as
steady-state and transient-state probabilities, the logic-based approach allows
one to specify bounds on the occurrence probability of certain (sets of) paths.
We exemplify the type of properties that one can express using CSL by consider-
ing a simple re-configurable fault tolerant system. The system can be either Up
or Down, and it may (or may not) be in a phase of (initial or re-)configuration
(Config). Thus we consider AP = {Up,Down,Config }.
Example 4. Assume that the states of the CTMC in Fig. 1 are labelled – from
top to bottom – by {Down }, {Up,Config }, {Up }, and {Down,Config }. For
instance, L(s0) = {Up,Config }.
As an overview of some well-known performance and dependability measures [51]
and their formulation in terms of CSL we list the following CSL formulas:

(a) steady-state availability S✂p(Up)
(b) transient configuration probability at time t P✂p(✸[t,t]Config)
(c) instantaneous availability at time t P✂p(✸[t,t]Up)
(d) distribution of time to failure P✂p(Up U [0,t] Down)

Measure (a) expresses a bound on the steady-state availability of the system and
(b) expresses a bound on the transient-state probability of (re-)configuring the
system at time t. Measure (c) states (a bound on) the probability to be in a
non-failed state at time t, i.e., the instantaneous availability at time t and (d)
expresses, indirectly, the time until a failure, starting from a non-failed state.
That is, evaluating this measure for varying t, gives the distribution of the time
to failure.

The above standard transient measures are expressed using only simple in-
stances of the P-operator. However, since this operator allows an arbitrary path-
formula as argument, much more general measures can be described and nested.

Example 5. An example of an interesting non-standard measure is the probabil-
ity of reaching a certain set of states provided that all paths to these states obey
certain properties. For instance,

¬Config⇒ P�0.99(Up U [0,20] Config)

states that the probability to turn from a non-configuring state into a reconfigu-
ration in no more than 20 time units without any system down time on the way
is more than 99%. As another example, we may require that in the steady-state,
there is a chance of at most 10% that a down time is likely (that is, has more
than half of the probability) to occur within 5 and 10 time units from now.

S�0.1(P>0.5(✸[5,10]Down))

Lumpability revisited. In the same spirit as the relations between bisimulation
and CTL (and CTL∗) equivalence [14] and between Larsen-Skou’s probabilistic
bisimulation and PCTL-equivalence [3], there exists a relation between lumping
equivalence and CSL-equivalence. This is illustrated by means of a slight variant
of the earlier treated notion of lumping equivalence, cf. Def. 2.

Performance Evaluation 75

Definition 4. (F -Lumpability.) For S = {S1, . . . , Sn } a partitioning of the
state space S of a CTMC and F a set of CSL state-formulas, the CTMC is
F -lumpable with respect to S if and only if for any partition Si ⊆ S and states
s, s′ ∈ Si:

∀0 < k � n.
∑
s′′∈Sk

Q(s, s′′) =
∑
s′′∈Sk

Q(s′, s′′)

and
{Φ | s |= Φ } ∩ F = {Φ | s′ |= Φ } ∩ F.

That is, for any two states in a given partition the cumulative rate of evolving
to another partition (like before) must be equal, and the set of formulas in F
that are fulfilled must coincide. Clearly, if a CTMC is F -lumpable with respect
to some partitioning of its state space, then it is also lumpable. A CTMC and
its lumped quotient are strongly related with respect to the validity of CSL
formulae. In particular, a (state in a) CTMC and its (quotient state in the)
AP-lumped quotient – obtained by the above notion where the set F equals the
set of atomic propositions – satisfy the same CSL-formulas [5]. This result can
be exploited by aggregating the CTMC as far as possible during checking the
validity of CSL-formulas, or prior to this process by considering its quotient with
respect to the coarsest AP-lumping.

4.2 CTMC Model Checking

There are two distinguishing benefits when using CSL for specifying constraints
on measures-of-interest over CTMCs: (i) the specification is entirely formal such
that the interpretation is unambiguous, and (ii) it allows the possibility to state
performance and dependability requirements over a selective set of paths (similar
to [47]) through a model. These features are paired with the (practically most
relevant) possibility to check CSL-formulas in a completely automated manner.
This can be done by combining model checking techniques with numerical solu-
tion techniques. The basic procedure is as for model checking CTL: in order to
check whether state s satisfies the formula Φ, we recursively compute the sets
Sat(Ψ) = {s′ ∈ S | s′ |= Ψ} of all states that satisfy Ψ , for the subformulas
Ψ of Φ, and eventually check whether s ∈ Sat(Φ). For atomic propositions and
Boolean connectives this procedure is exactly the same as for CTL. Next and (un-
bounded) until-formulas can be treated in a similar way as in the discrete-time
probabilistic setting [26]. Checking steady-state properties reduces to solving a
system of linear equations combined with standard graph analysis methods [7].

Fixed-point characterisation. Most interesting (and complicated) though is the
handling of time-bounded until-formulas, as their treatment require to deal with
the interplay of timing and probabilities. For the sake of simplicity, we treat the
case I = [0, t]; the general case is a bit more involved, but can be treated in a
similar way [5]. Let ϕt = Φ U [0,t] Ψ . We have from the semantics that

s ∈ Sat(P✂p(ϕt)) if and only if Prob(s, ϕt) ✂ p

76 H. Hermanns and J.-P. Katoen

The probability Prob(s, ϕt) is the least solution of the following set of equations:

Prob(s, ϕt) =




1 if s ∈ Sat(Ψ)
0 if s �∈ Sat(Φ) ∪ Sat(Ψ)∫ t

0

∑
s′∈S

T(s, s′, x) · Prob(s′, ϕt−x) dx otherwise

where T(s, s′, x) denotes the density of moving from state s to state s′ in x
time-units and can be derived from the matrix Q. The first two cases are self-
explanatory; the last equation is explained as follows. If s satisfies Φ but not
Ψ , the probability of reaching a Ψ -state from s within t time-units equals the
probability of reaching some direct successor state s′ of s within x time-units
(x � t), multiplied by the probability to reach a Ψ -state from s′ in the remaining
time-span t−x.

This recursive integral characterisation provides the theoretical basis for
model checking time-bounded until-formulas over CTMCs in the same way as the
fixed-point characterisations for CTL provide the basis for the model checking
algorithms for usual until-formulas [18].

Algorithmic procedure. To illustrate how performance evaluation recipes can be
exploited for model checking purposes, we now sketch an efficient and numer-
ically stable strategy for model checking the time-bounded until-formulas [5].
As lumping preserves the validity of all CSL-formulas, a first step is to switch
from the original state space to the (possibly much smaller) quotient space un-
der lumping. Next, prior to computing the exact set of states that satisfy ϕt,
the states fulfilling the (fair) CTL-formula ∃(ΦU Ψ) is determined. For states
not in this set, the respective probabilistic until-formula will have probability 0.
In a similar way, the set of states satisfying ∀(ΦU Ψ) (up to fairness, cf. [8]) is
computed; these states satisfy ϕt with probability 1. As a result, the actual com-
putation of the system of Volterra integral equations needs to be done only for the
remaining states. How to do this? The basic idea is to employ a transformation
of the CTMC and the formula at hand, such that a transient analysis problem
is obtained for which well-known and efficient computation techniques do exist.
This idea is based on the observation that formulas of the form P✂p(✸[t,t]Φ)
characterise transient probability measures, and their validity (in some state
s) can be decided on the basis of the transient probability vector π(s, t). This
vector can be calculated by transient analysis techniques. For P✂p(Φ U [0,t] Ψ)
the CTMCM under consideration is transformed into another CTMCM′ such
that checking ϕt = Φ U [0,t] Ψ onM amounts to checking ϕ′t = ✸[t,t]Ψ onM′; a
transient analysis ofM′ (for time t) then suffices. The question then is, how do
we transformM inM′? Concerning a (Φ ∧ ¬Ψ)-state, two simple observations
form the basis for this transformation:

– once a Ψ -state inM has been reached (along a Φ-path) before time t, we may
conclude that ϕ holds, regardless of which states will be visited afterwards.
This justifies making all Ψ -states absorbing.

Performance Evaluation 77

– once a state has been reached that neither satisfies Φ nor Ψ , ϕ is violated
regardless of which states will be visited afterwards. This justifies making
all ¬(Φ ∧ Ψ)-states absorbing.

It then suffices to carry out a transient analysis on the resulting CTMCM′ for
time t and collect the probability mass to be in a Ψ -state (note thatM′ typically
is smaller thanM):

ProbM(s, Φ U [0,t] Ψ) = ProbM
′
(s,✸[t,t]Ψ) =

∑
s′|= Ψ

πs′(s, t).

In fact, by similar observations it turns out that also verifying the general UI -
operator can be reduced to instances of (a two-phase) transient analysis [5].

Example 6. In order to check one of the above mentioned requirements on the
CTMC of Fig. 1, one needs to check s2 |= P�0.99(Up U [0,20] Config). To decide
this, it is sufficient to compute π(s2, 20) on a CTMC where state s0 and s3 (as
well as s1) are made absorbing, and to check πs0(s2, 20) + πs3(s2, 20) � 0.99.

The transformation of the model checking problem for the time-bounded until-
operator into the transient analysis of a CTMC has several advantages: (i) it
avoids awkward numerical integration, (ii) it allows us to use efficient and nu-
merically stable transient analysis techniques, such as uniformisation [38], and
(iii) it employs a measure-driven transformation (aggregation) of the CTMC.
The fact that a dedicated and well-studied technique in performance evaluation
such as uniformisation can be employed for model checking is a prime example
for the cross-fertilisation from performance evaluation to concurrency theory.

Efficiency. The worst-case time complexity of model checking CSL is

O(|Φ|·(M ·q·tmax +N2.81))

where M is the number of non-zero entries in Q, q is the maximal diagonal entry
of Q, tmax is the maximum time bound of the time-bounded until sub-formulas
occurring in Φ, and N is the number of states. If we make the practically often
justified assumption that M < kN for a constant k then the space complexity
is linear in N using a sparse matrix data structure. The space complexity is
polynomial in the size of the CTMC. The model checking algorithms have been
implemented both using sparse matrix data structures [32] and using BDD-based
data structures [39].

5 Research Perspectives

This paper has presented how two important branches of formal methods for
reactive systems – process algebra and model checking – can be exploited for
performance and dependability modelling and analysis. The stochastic process

78 H. Hermanns and J.-P. Katoen

algebra approach is a prominent example of cross-fertilisation of formal speci-
fication techniques and performance modelling techniques, whereas the quanti-
tative model checking approach is a promising combination of computer-aided
verification technology and performance analysis techniques. We believe that the
developments in these areas mark the beginning of a new paradigm for the mod-
elling and analysis of systems in which qualitative and quantitative aspects are
studied from an integrated perspective. We hope that the further work towards
the realisation of this goal will be a growing source of inspiration and progress
for both communities. Examples of issues for future work in this direction are:

– Specification: in order to bridge the gap towards (performance) engineers,
and to obtain a better integration into the design cycle, efforts should be
made to the usage of (appropriate extensions of) specification languages
such as UML and SDL for the description of performance models. Similarly,
the usage of temporal logic by performance engineers needs to be simplified,
for instance, using dedicated specification patterns [22].

– Verification: similar to the development of model checking techniques, smart
improvements of both algorithms and data structures are needed to make
the verification approach more successful. Initial investigations show that
symbolic data structures (such as multi-terminal BDDs) and tailored vari-
ants of existing techniques (“backwards” uniformisation) yield a substantial
efficiency improvement [39]. Promising alternative techniques, such as Kro-
necker representations [21], and/or refinement techniques for probabilistic
systems as recently proposed in [20] could be beneficial in this context as
well.

– Extensions: several extensions of the process algebra and model checking
techniques are worthwhile to investigate. For instance, Markov reward mod-
els – an important extension of CTMCs with costs – are not yet satisfactorily
treated in a process algebraic or logic-based setting, although some initial
attempts have been made [6,9]. In addition, the application of model check-
ing to non-memoryless models, such as (generalised) semi-Markov processes,
remains an interesting topic for further research. Initial work in this direction
is reported in [37].

Finally, we highlight two gaps between the process algebraic and model check-
ing approach we discussed: (i) whereas the formal model specifications are
behaviour-oriented (i.e., action based), the temporal logic approach is state-
based, and (ii) the semantic model of the process algebra may contain non-
determinism, whereas the verification is based on a fully probabilistic model.
The first problem can be handled by considering an action-based variant of
CSL. Although it turns out that a transformation of this logic into CSL (à la
the relationship between CTL and its action-based variant [46]) is possible, it
is more beneficial to use direct model checking techniques – basically a tailored
version of the CSL model checking algorithms. Details are in [33]. This yields a
combination with stochastic process algebras that treat actions and stochastic
delays as a single compound entity [10,25,36]. In order to close the gap w.r.t.
our process algebra IMC that strictly distinguishes between action occurrences

Performance Evaluation 79

and time delays, we are currently investigating model checking procedures for
continuous-time Markov decision chains.

Acknowledgements. Ed Brinksma (Univ. Twente) and Ulrich Herzog (Univ.
Erlangen) have contributed to the work on stochastic process algebra reported
here. The model checking research reported in this paper has been developed
in collaboration with Christel Baier (Univ. Bonn) and Boudewijn Haverkort
(RWTH Aachen). The first author is supported by the Netherlands Organisation
of Scientific Research (NWO).

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
eling with Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104(1):2–34, 1993.

3. A. Aziz, V. Singhal, F. Balarin, R. Brayton and A. Sangiovanni-Vincentelli. It
usually works: the temporal logic of stochastic systems. In CAV’95, LNCS 939:155–
165. Springer, 1995.

4. A. Aziz, K. Sanwal, V. Singhal and R. Brayton. Model checking continuous time
Markov chains. ACM Transactions on Computational Logic, 1(1): 162–170, 2000.

5. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking continuous
time Markov chains by transient analysis. In CAV 2000, LNCS 1855:358–372.
Springer, 2000.

6. C. Baier, B.R. Haverkort, H. Hermanns, and J.-P. Katoen. On the logical char-
acterisation of performability properties. In ICALP 2000, LNCS 1853:780–792.
Springer, 2000.

7. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. In CONCUR’99, LNCS: 1664:146–162. Springer,
1999.

8. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11:125–155, 1998.

9. M. Bernardo. An algebra-based method to associate rewards with EMPA terms.
In ICALP’97, LNCS 1256:358–368. Springer, 1997.

10. M. Bernardo and R. Gorrieri. A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Sci-
ence, 202:1–54, 1998.

11. H.C. Bohnenkamp and B.R. Haverkort. Semi-numerical solution of stochastic pro-
cess algebra models. In ARTS’99, LNCS 1601:228–243. Springer, 1999.

12. E. Brinksma and H. Hermanns. Process algebra and Markov chains. In [13].
13. E. Brinksma, H. Hermanns, and J.-P. Katoen, editors. Lectures on Formal Methods

and Performance Analysis, LNCS 2090. Springer, 2001.
14. M. Brown, E. Clarke, O. Grumberg. Characterizing finite Kripke structures in

propositional temporal logic. Theoretical Computer Science, 59: 115–131, 1988.
15. P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of

Applied Probability, 31–75:59–75, 1994.
16. P. Buchholz. Markovian Process Algebra: composition and equivalence. In U. Her-

zog and M. Rettelbach, editors, Proc. of PAPM’94, Arbeitsberichte des IMMD,
Universität Erlangen-Nürnberg, 1994.

80 H. Hermanns and J.-P. Katoen

17. M. Cherif, H. Garavel, and H. Hermanns. bcg min – Minimization of normal,
probabilistic, or stochastic labeled transitions systems encoded in the BCG format.
http://www.inrialpes.fr/vasy/cadp/man/bcg min.html.

18. E. Clarke, E. Emerson and A. Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems, 8: 244–263, 1986.

19. A.E. Conway and N.D. Georganas. Queueing Networks: Exact Computational Al-
gorithms. MIT Press, 1989.

20. P.R. D’Argenio, B. Jeannet, H.E. Jensen, and K.G. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In PAPM/PROBMIV’01, LNCS.
Springer, 2001. To appear.

21. M. Davio. Kronecker Products and Shuffle Algebra. IEEE Transactions on Com-
puters, C-30(2):116–125, 1981.

22. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Property specification patterns for
finite-state verification. In Formal Methods in Software Practice. ACM Press, 1998.

23. E.A Emerson and E.M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2: 241–266, 1982.

24. R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and stratified
models of probabilistic processes. Information and Computation, 121:59–80, 1995.

25. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system
design: The integration of functional specification and performance analysis using
stochastic process algebras. In Tutorial Proc. of PERFORMANCE ’93, LNCS
729:121-146. Springer, 1993.

26. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing 6: 512–535, 1994.

27. B. Haverkort. Markovian models for performance and dependability evaluation. In
[13].

28. H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-
Nürnberg, September 1998. Arbeitsberichte des IMMD 32/7.

29. H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance eval-
uation. Theoretical Computer Science, 2001. To appear.

30. H. Hermanns, U. Herzog, U. Klehmet, M.Siegle, and V. Mertsiotakis. Composi-
tional performance modelling with the TIPPtool. Performance Evaluation, 39(1-
4):5–35, 2000.

31. H. Hermanns and J.-P. Katoen. Automated compositional Markov chain generation
for a plain-old telephony system. Science of Computer Programming, 36(1):97–127,
2000.

32. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain
model checker. In TACAS 2000, LNCS 1785:347–362, 2000.

33. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and M. Siegle. Towards model check-
ing stochastic process algebra. In IFM 2000, LNCS 1945:420–439. Springer, 2000.

34. H. Hermanns and M. Lohrey. Priority and maximal progress are completely ax-
iomatisable. In CONCUR’98, LNCS 1466:237–252. Springer, 1998.

35. H. Hermanns and M. Siegle. Bisimulation algorithms for stochastic process algebras
and their BDD-based implementation. In ARTS’99, LNCS 1601:244–264. Springer,
1999.

36. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

37. G.G. Infante-Lopez, H. Hermanns, and J.-P. Katoen. Beyond memoryless distri-
butions: model checking semi-Markov chains. In PAPM/PROBMIV’01, LNCS.
Springer, 2001. To appear.

Performance Evaluation 81

38. A. Jensen. Markov chains as an aid in the study of Markov processes. Skand.
Aktuarietidskrift, 3: 87–91, 1953.

39. J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic
CTMC model checking. In PAPM/PROBMIV’01, LNCS. Springer, 2001. To ap-
pear.

40. J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.
41. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information

and Computation, 94(1):1–28, September 1991.
42. J.F. Meyer, A. Movaghar and W.H. Sanders. Stochastic activity networks: struc-

ture, behavior and application. In Proc. Int. Workshop on Timed Petri Nets, pp.
106–115, IEEE CS Press, 1985.

43. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
44. F. Moller and C. Tofts. A temporal calculus for communicating systems. In

CONCUR’90, LNCS 458:401–415. Springer, 1990.
45. M.F. Neuts. Matrix-geometric Solutions in Stochastic Models–An Algorithmic Ap-

proach. The Johns Hopkins University Press, 1981.
46. R. De Nicola and F.W. Vaandrager. Action versus state based logics for transition

systems. In Semantics of Concurrency, LNCS 469: 407–419, 1990.
47. W.D. Obal andW.H. Sanders. State-space support for path-based reward variables.

Performance Evaluation, 35: 233–251, 1999.
48. B. Plateau and K. Atif, Stochastic automata networks for modeling parallel sys-

tems. IEEE Transactions on Software Engineering, 17(10): 1093–1108, 1991.
49. M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, 1994.
50. S. Schneider. An operational semantics for timed CSP. Information and Compu-

tation, 116:193–213, 1995.
51. R.M. Smith, K.S. Trivedi and A.V. Ramesh. Performability analysis: measures, an

algorithm and a case study. IEEE Trans. on Comp., 37(4): 406–417, 1988.

Typing Mobility in the Seal Calculus

Giuseppe Castagna1, Giorgio Ghelli2, and Francesco Zappa Nardelli1,2

1 c.n.r.s., Département d’Informatique
École Normale Supérieure, Paris, France

2 Dipartimento di Informatica
Università di Pisa, Pisa, Italy

Abstract. The issue of this work is how to type mobility, in the sense
that we tackle the problem of typing not only mobile agents but also their
movement. This yields higher-order types for agents. To that end we first
provide a new definition of the Seal Calculus that gets rid of existing
inessential features while preserving the distinctive characteristics of the
Seal model. Then we discuss the use of interfaces to type agents and
define the type system. This type system induces a new interpretation
of the types: interfaces describe interaction effects rather than, as it is
customary, provided services. We discuss at length the difference of the
two interpretations and justify our choice of the former.

1 Introduction
In concurrent languages based on communication over channels it is customary
to type both channels and messages in order to assure that only appropriate
messages will transit over channels of a given type. When these languages are
endowed with agents and locations, we also need typing information about the
agents that are moved around the locations. Hence, we have to decide what is
described by the type of an agent, and when this type is checked.

Our proposal is expressed in terms of a simplified version of the Seal Calculus.
The Seal Calculus was defined in [19] as a set of primitives for a secure language
of mobile agents to be used to develop commercial distributed applications at
the University of Geneva; these primitives constitute the core of the JavaSeal
language [18,2]. It can be considered a safety-oriented calculus. From the Ambi-
ent Calculus [6], it borrows the idea that locations are places with a “boundary”,
which can only be crossed with some effort. In the Seal Calculus, boundaries can
only be crossed when two parties, one inside the boundary and the other one
outside, agree. Moreover, this movement operation takes place over a support
layer, constituted by a set of channels. Communication takes place over channels
too, as in the π-calculus [11], and the dangerous open operation of the Ambient
Calculus is not present.

In our proposal the type of an agent is a description of the requests that it
may accept from its enclosing environment. This is similar to an object type,
in an object-oriented language; however, we will show that the subtype relation
goes “the other way round”. We will discuss this fact, which means that, while an
object type describes a subset of the services that an object offers, our interface

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 82–101, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Typing Mobility in the Seal Calculus 83

types describe a superset of the effects of an agent on its environment. We
shall be more precise about it later on, but for the time being the reader can
think of services as interactions that must eventually occur and of effects as the
interactions that may possibly occur.

Our main results are the following ones. First, we define a variant of the
Seal Calculus, which retains its essential security-oriented features but is simple
enough to be suited to foundational studies. Then, in this context, we define a
type system where we are able both to type mobile agents and to “type their
mobility”, i.e., to allow one to declare, for each location, the types of the agents
that can enter or exit it. This yields to the first, as far as we know, higher order
type system for agent mobility.

The article is structured as follows. In Section 2 we define our variant of
the Seal Calculus. In Section 3 we introduce the typed calculus and justify our
choices. In Section 4 we define the type system, a sound and complete type-
checking algorithm, and we state some relevant properties they satisfy. In Sec-
tion 5 we analyze our system and discuss the duality of effects vs. services.
Section 6 describes an example that uses the key features of our calculus, while
in Section 7 we hint at how our work can be used to provide the an Java agent
kernel with a minimal type system. A summary and directions for future work
conclude the article.

Related Work

Many works extend the basic type systems for π-calculus as described in [12,15]
giving more informative types to processes. We comment those closest to our
work.

Yoshida and Hennessy propose in [20] a type system for a higher-order π-
calculus that can be used to control the effects of migrating code on local en-
vironments. The type of a process takes the form of an interface limiting the
resources to which it has access, and the type at which they may be used. In
their type system both input and output channels can appear in the interface,
appearing strictly more expressive than the system we propose here, where input
channels are only considered. However, they do not allow active agents, but only
pieces of code, to be sent over a channel. When code is received it can be acti-
vated, possibly after parameter instantiation. Besides, their type system limits
the application of dependent types to the instantiation of parameters, resulting
in the impossibility of giving an informative type to processes in which an output
operation depends on an input one.

In [8] Hennessy and Riely define Dπ, a distributed variant of the π-calculus
where agents are “located” (i.e., “named”) threads. The main difference with
respect to our work is that locations cannot be nested (that is, locations
are not threads), and therefore mobility in [8] consist in spawning passive
code rather than migrating active agents. In [8] locations types have the form
loc{x1 : T1, . . . xn : Tn} where xi’s are channels belonging to the location (they
are located resources and as such Dπ is much closer to the Seal Calculus as
defined in [19], than to the version we introduce here: see Footnote 2). These
types are syntactically very close to those we introduce here for Seal but they

84 G. Castagna, G. Ghelli, and F.Z. Nardelli

have opposed interpretations. Location types in [8] are intended both to describe
the services provided by a location and to regulate access to them (they work
as views in databases). Thus they embrace an object-oriented perspective (lo-
cation types are subtyped as record types) without fully assuming it (services
are declared but they are not ensured to be provided1). As we broadly discuss
in the following—in particular in Section 5— our location types take the oppo-
site perspective and rather describe the effects of a possible interaction with the
location at issue.

Types for locations have been extensively studied in a series of papers [7,5,4]
on the Ambient Calculus. Seal Calculus differs from Ambient Calculus in many
aspects: seals cannot be opened (i.e. they boundaries cannot be dissolved), many
channels exist, and moves are performed objectively (i.e., agents are passively
moved by their environment) rather than subjectively (i.e., agents autonomously
decide to move to a different location) —according to the terminology of [6].
From this work’s viewpoint the prominent difference between Ambient and Seal
Calculus is that the former does not provide an explicit “physical” support for
mobility, while in the latter this support is provided by channels. In other words
while in Ambients mobility take place on some unmaterialized ætheral transport
medium, in Seal the medium is materialized by channels. Therefore the main
novelty of this work is that not only we type locations (agents or seals), but
we also type mobility (more precisely, its support). In some sense we introduce
higher-order typing: while in Ambient Calculus an agent can not discriminate
which agents can traverse its boundaries, this is possible in our type system. For
the same reason we can make a mobile location become immobile, while this
is not possible in the cited works on Ambient Calculus. Moreover, the mobility
model of Ambient Calculus had to be extended with objective moves in [4], since
the interaction of subjective moves with the open operation tends to produce
typings where every ambient is typed as mobile. We show here that the mobility
model of Seal Calculus is free from this problem.

2 Revising Untyped Seal Calculus
Seal Calculus is basically a π-calculus extended with nested named locations
(dubbed seals) and mobility primitives. In Seal, interaction consists of syn-
chronous communication of a value or of a whole seal. Both forms of interaction
take place over named channels. Thus, mobility is obtained by communicating
a seal on a channel. The existence of separate locations constraints the possible
interactions: a channel can only allow interactions either among processes in the
same seal, or among processes in two seals that are in parent-child relationship.

Two basic security principles underlay the design of the Seal Calculus: first,
each seal must be able to control all interactions of its children, both with the
outside world and one with the other; second, each seal must have total control
over its name-space and therefore must determine the names of its children.

Besides these two basic features the Seal Calculus defined in [19] included
some other features dictated by implementation issues. More precisely the cal-
1 This is to solve the type dependency problem we describe in Section 4.1.

Typing Mobility in the Seal Calculus 85

culus in [19] allowed seal duplication and destruction, and a strictly regulated
access to remote channels2.

In what follows we define a lighter version of Seal where seal creation and
destruction is not possible and the access to remote channels is replaced by the
introduction of shared channels3.

The syntax of the language (parametric on an infinite set of names, ranged
over by u, v, x, y, and z) is defined as follows:

Processes Actions Locations
P ::= 0 inactivity

 P | P composition
 !P replication
 (ν x)P restriction
 α.P action
 x [P] seal

α ::= xη(y) input
 xη(y) output
 xηy send
 xηy receive

η ::= ∗ local
 ↑ up
 z down

The first five process constructs have the same meaning as in the π-calculus,
namely: the 0 process does nothing, the composition P | Q denotes two processes
P and Q running in parallel, the replication !P unleashes an unbounded number
of copies of P , the restriction (ν x)P introduces a new name x and limits its
scope to P (the scoping is lexical), and the prefix allows one to construct complex
processes using the base actions α. A seal x [P] is the representation in the syntax
of a place named x that is delimited by boundaries and where the computation
P takes place. The bare syntax of processes is the same as Ambient Calculus.

The basic computational steps in Seal are communication and movement.
Communications (inputs/outputs on channels) are as in π-calculus with the only
difference that channel names are super-scripted by location denotations. These
are either ∗, or ↑, or z, and denote respectively the current seal (i.e. the seal
where the action occurs), the parent seal, and a child-seal named z. Thus an
action on x∗ synchronizes only with local processes, x↑ means that x is a chan-
nel shared between the current seal and the parent seal and that actions on it
will synchronize with processes in the parent, and finally the shared channel xz

admits interactions between the current seal and a child-seal named z. These
interactions are expressed by the first three rules in Figure 1.

Mobility is achieved in a similar way: seal bodies, rather than names, are
moved over channels. It should be remarked that, contrary to input, receive is
not a binding action: y is free in xηy. A seal identified by its name is sent over
a localized named channel: the seal together with its contents will disappear
from the location of the sending processes and will reappear in the location of
the receiving process. The receiving process can give a new name to the received
seal: seal names are seen as local pointers to the location, and the actual name
of a seal makes no sense outside the current location. Thus the action xηy
2 In [19] channels are considered as resources. Each channel belongs to one and only one seal.

Some syntactic constructs allow the owner of a channel to regulate remote accesses to it
and, thus, to control both remote communication and mobility.

3 A similar solution was independently proposed for a calculus without agent mobility in [17].

86 G. Castagna, G. Ghelli, and F.Z. Nardelli

x∗(u).P | x∗(v).Q ➞ P{v/u} | Q (write local)
xy(u).P | y[x↑(v).Q | R] ➞ P{v/u} | y[Q | R] (write out)
xy(v).P | y[x↑(u).Q | R] ➞ P | y[Q{v/u} | R] (write in)

x∗u.P | x∗v.Q | v [R] ➞ P | u[R] | Q (move local)
xyu.P | y[x↑v.Q | v [R] | S] ➞ P | u[R] | y[Q | S] (move out)
xyv.P | v [R] | y[x↑u.Q | S] ➞ P | y[Q | S | u[R]] (move in)

Fig. 1. Reduction rules.

sends the body of the seal named y over the channel xη, while xηy waits for a
body on xη and reactivates it as a seal named y. The precise semantics is given
by the last three rules in Figure 1.

As customary, reduction uses structural congruence ≡ that is the smallest
congruence that is a commutative monoid with operation | and unit 0, and is
closed for the following rules:

!P ≡ !P | P (ν x)0 ≡ 0 (ν x)(P | Q) ≡ P | (ν x)Q for x �∈ fn(P)
(ν x)(ν y)P ≡ (ν y)(ν x)P (ν x)y[P] ≡ y[(ν x)P] for x �= y

The reduction semantics is completed by standard rules for context and congru-
ence:

P ➞ Q ⇒ (P | R) ➞ (Q | R) P ➞ Q ⇒ (ν x)P ➞ (ν x)Q
P ➞ Q ⇒ u[P] ➞ u[Q] P ≡ P ′ ∧ P ′➞Q′ ∧ Q′ ≡ Q ⇒ P ➞Q

3 Typing Mobility

In the introduction we anticipated that our solution for typing mobility was to
type the transport media of mobility, that is, channels. We follow the standard
π-calculus solution to type channels: a channel named x has type Ch V if V is
the type of the values allowed to transit over x. We saw that in Seal channels
are used both for communication (in which case they transport messages, i.e.,
base values, or names) and mobility (in which case they transport agents, i.e.,
seal bodies).

It is easy to type base values (in this work the only base values we con-
sider are synchronization messages typed by Shh) and we just saw how to type
channel names. So to define V we still have to define the type A of agents and,
consequently, the type Id A of names denoting agents of type (more precisely,
of interface) A.

3.1 Intuition about Interfaces

Seals are named agents. The idea is to type them by describing all interactions a
seal may have with the surrounding environment. We know that such interactions
have to take place over the channels that cross the seal boundary. Thus these
channels partially specify the interaction protocol of an agent. Keeping track of
the set of upward communications (that is, communications with the parent)
that a seal may establish can be statically achieved by keeping track of the
channels that would be employed: this gives rise to a notion of interface of an

Typing Mobility in the Seal Calculus 87

agent as a set of upward channels (i.e., characterized by ↑ locations). Actually
not all the upward channels are interesting for describing the interaction protocol
of a seal. Those the seal is listening on suffice:

The interface of a seal is the set of upward channels that the process local
to the seal may be listening on, with the type expected from interactions
on them.

We will discuss this choice later on (see Sections 4.1 and 5) but, for the mo-
ment, to see why such a definition is sensible we can consider as an exam-
ple a networked machine. For the outer world the interface of such a machine
—the description of how it is possible to interact with it— is given by the
set of ports on which a dæmon is listening, together with the type of mes-
sages that will be accepted on them. So the interface of a machine can be
described as a set of pairs (port :type). For example in our system a typical
ftp and mail server would be characterized by a type of the following form
[21:ftp; 23:telnet ; 79:finger ; 110:pop3 ; 143:imap; . . .]. Similarly, if you con-
sider a seal as an object, then a process contained in it that listens on a upward
channel x↑ can be assimilated to a method associated with a message x. In
other words the sending of a message m with argument v to an object x (that
is, x.m(v) in Java syntax) can be modeled in Seal by the action mx(v), which
would be allowed, in our type system, by a pair m:M in the type of the seal x.

Hence, we consider interfaces such as [x1:Shh;x2:Ch V ;x3:A;x4:Id A] that
characterizes agents that may: 1) synchronize with an input operation on the
upward channel x1; 2) read over x2 a channel name of type Ch V (the name of
a channel that transports messages of type V); 3) receive over x3 a seal whose
interface is A; 4) read over x4 a seal name of type Id A. It is important to
stress the difference between what can be transmitted over x3 and x4, respec-
tively seals and seal names: the former requires mobility primitives, the latter
communication primitives.

3.2 Syntax

The syntax of the types is reported in the following table.

Types Annotations

V ::= M messages Z ::= � mobile
 A agents  � immobile

Message Types Interfaces

M ::= Shh silent A ::= [x1:V1; · · · ;xn:Vn] agents
 Ch V channel names
 IdZA agent names

There are four syntactic categories in the type syntax, V , M , Z, and A respec-
tively denoting types, message types, mobility annotations and agents. In the
previous section we informally described three of them, omitting annotations.
Let us see them all in more detail:

88 G. Castagna, G. Ghelli, and F.Z. Nardelli

V : Types V classify values, that is computational entities that can be sent over
a channel. While in π-calculus values are just channel names, in Seal we have
both messages (classified by message typesM) —which includes base values,
channel names and agent names— and seals (more precisely seal’s bodies,
classified by interfaces A).

M : Message types M classify messages, that is entities that can be communi-
cated (sent by an i/o operation) over channels. A message can be either a
synchronization message (without any content) of type Shh, or a name. In
the syntax there is no distinction between channel names and seal names.
This distinction is done at the type level: if x : Ch V , then x is the name of
a channel that transports values of type V ; if x : IdZA, then x is the name
of a seal with interface A and with mobility attribute Z.

Z: On the lines of [4] we use mobility attributes to specify elemental mobility
properties of seals: a � attribute characterizes a mobile seal, while a � at-
tribute characterizes an immobile one. Being able to discriminate between
mobile and immobile agents is one of the simplest properties related to mo-
bility. Contrary to what happens in [4], adding this feature does not require
any syntax modification for Seal.

A: Interfaces A classify the agents of the calculus, keeping track of their in-
terface. The notation [x1:V1; · · · ;xn:Vn] is used to record the information
about the interface of an agent. It is syntactic sugar for a set of pairs
channel name : type, that represent a functional relation. If a process has
this interface, then it can be enclosed in an agent with the same interface,
that is whose name has type IdZ[x1:V1; · · · ;xn:Vn]. This agent may listen
from the upward level only on channels x1, . . . ,xn.

The introduction of types requires a minimal modification to the syntax of the
untyped calculus of Section 2. We have to add (message) type annotations to the
two binders of the language: (ν x:M) and xη(y:M), and to redefine free names
fn as follows.

fn(x) = {x} fn((ν x:M)P) = (fn(P) \ {x}) ∪ fn(M) fn(↑) = fn(∗) = fn(Shh) = ∅
fn(xη(y:M).P) = (fn(P) \ {y}) ∪ fn(M) ∪ fn(η) ∪ {x} fn(Id A) = fn(A)
fn([x1:V1; . . . ;xn:Vn]) = {x1, . . . , xn} ∪ fn(V1) ∪ · · · ∪ fn(Vn) fn(Ch V) = fn(V)

The rule of structural congruence that swaps binders has to be changed too

(ν x:M)(ν y:M ′)P ≡ (ν y:M ′)(ν x:M)P for x �∈ fn(M ′) ∧ y �∈ fn(M) ∧ x �= y

The reduction rules as well as the other rules and definitions are unchanged.

4 The Type System

In this section we define the type system we informally described in the previous
section. However, before that, we need to add a last ingredient in order to deal
with the technical problem of type dependencies.

Typing Mobility in the Seal Calculus 89

4.1 Type Dependencies

The notion of interface introduces names of the calculus at the type level. Since
names are first order terms, type dependencies may arise. Consider for example
the following terms.

P ′ = x∗(y:Ch M).y↑(z:M) P = x∗(w) | P ′
P ′ offers upwards input on channel y. Hence, a naive syntax based analysis
would associate P ′ and P with the interface [y:M], producing the following
typing judgment:

x:Ch(Ch M) , y:Ch M , w:Ch M � P : [y:M].

However, the process P may perform an internal reduction on the channel x,
and then it would offer upwards input on channel w, hence changing its interface
type:

x∗(w) | x∗(y:Ch M).y↑(z:M)︸ ︷︷ ︸
[y:M]

➞ w↑(z:M)︸ ︷︷ ︸
[w:M]

This is the recurrent problem when trying to define non-trivial channel-based
types for processes: to solve it one may consider using dependent types and deal
explicitly with types that change during computation. Dependent types work fine
for calculi where the notion of interaction is syntactically well-determined, as in
λ-calculus. Unfortunately in process calculi, where interaction is a consequence
of parallel composition (which admits arbitrary rearrangements of sub-terms),
all the tries are somewhat unsatisfactory: they are usually restricted to a subset
of the calculus, allowing dependent types only in particular, well-determined
constructions [20].

Following a suggestion of Davide Sangiorgi, we decide to disallow input action
on names bound by an input action. In this way interfaces cannot change during
reduction: for example the process P above is not well-typed, since y is first
bound by an input on x and then used to perform an input from ↑.

To make the type system uniform, we impose this condition on all the input
operation, not only on the input operations from ↑, which are the only ones
determining the interface.

There is no harm in doing that since this restriction does not limit the ex-
pressive power of the calculus: besides being theoretically well studied (see for
example [10]), nearly all programming languages based on π-calculus impose this
constraint, while programs written in concurrent languages that do not, mostly
seem to obey to the same condition.

4.2 Typing Rules

Judgments have the form Γ �Ξ �, where � is either �, or V , or x : M , or P : A.
The pair Γ,Ξ will be referred to as typing environment and the judgments have
the following standard meaning:

Γ �Ξ � well-formed environment Γ �Ξ V well-formed type
Γ �Ξ x:M x has message type M Γ �Ξ P : A P has interface A

90 G. Castagna, G. Ghelli, and F.Z. Nardelli

Γ is a function (actually, an ordered list) that assigns types to names. At the
same time, we need some machinery to enforce the restriction on input channels
we described above, that is, that only names not bound by an input action (i.e.,
names introduced by ν) are used to perform input operations. Thus we use the
set of names Ξ to record the ν-introduced names:

Γ ::= ∅  Γ, x:M Ξ ::= ∅  Ξ, x

The typing and subtyping rules are:

(Env Empty)

∅ �∅ �

(Env Add)
Γ �Ξ M

Γ, x:M �Ξ � x /∈ dom(Γ,Ξ)

(Env Add Xi)
Γ �Ξ M

Γ, x:M �Ξ,x � x /∈ dom(Γ)

(Type Shh)
Γ �Ξ �
Γ �Ξ Shh

(Type Id)
Γ �Ξ A

Γ �Ξ IdZA

(Type Ch)
Γ �Ξ V

Γ �Ξ Ch V

(Type Interface)
Γ �Ξ � ∀i∈1..n Γ �Ξ xi:Ch Vi xi∈dom(Ξ)

Γ �Ξ [x1:V1, . . . , xn:Vn]

(Var)
Γ �Ξ �

Γ �Ξ x : Γ (x)

(Dead)
Γ �Ξ �

Γ �Ξ 0 : []

(Par)
Γ �Ξ P1 : A Γ �Ξ P2 : A

Γ �Ξ P1 | P2 : A

(Bang)
Γ �Ξ P : A
Γ �Ξ !P : A

(Res)
Γ, x:M �Ξ,x P : A
Γ �Ξ (ν x:M)P : A

x �∈ fn(A)

(Seal)
Γ �Ξ x : IdZA Γ �Ξ P : A

Γ �Ξ x [P] : []

(Output Local)
Γ �Ξ x : Ch M Γ �Ξ y :M Γ �Ξ P : A

Γ �Ξ x∗(y).P : A

(Input Local)
Γ �Ξ x : Ch M Γ, y:M �Ξ P : A

Γ �Ξ x∗(y:M).P : A
x ∈ dom(Ξ)

(Output Up)
Γ �Ξ x : Ch M Γ �Ξ y :M Γ �Ξ P : A

Γ �Ξ x↑(y).P : A

(Input Up)
Γ �Ξ x : Ch M Γ, y:M �Ξ P : A
Γ �Ξ x↑(y:M).P : (A⊕ [x:M])

x ∈ dom(Ξ)

(Output Down)
Γ �Ξ z : IdZA′ Γ � y :M Γ �Ξ P : A

Γ �Ξ xz(y).P : A
(x:M) ∈ A′

(Input Down)
Γ �Ξ z : IdZA′ Γ �Ξ x : Ch M Γ, y:M �Ξ P : A

Γ �Ξ xz(y:M).P : A
x ∈ dom(Ξ)

Typing Mobility in the Seal Calculus 91

(Rcv Local)
Γ �Ξ x : Ch A Γ �Ξ y : IdZA Γ �Ξ P : A′

Γ �Ξ x∗y.P : A′ x ∈ dom(Ξ)

(Snd Local)
Γ �Ξ x : Ch A Γ �Ξ y : Id�A Γ �Ξ P : A′

Γ �Ξ x∗y.P : A′

(Rcv Up)
Γ �Ξ x : Ch A Γ �Ξ y : IdZA Γ �Ξ P : A′

Γ �Ξ x↑y.P : (A′ ⊕ [x:A])
x ∈ dom(Ξ)

(Snd Up)
Γ �Ξ x : Ch A Γ �Ξ y : Id�A Γ �Ξ P : A′

Γ �Ξ x↑y.P : A′

(Rcv Down)

Γ �Ξ z : IdZ
′
A′ Γ �Ξ x : ChA Γ �Ξ y : IdZA Γ �Ξ P : A′′

Γ �Ξ xzy.P : A′′ x∈dom(Ξ)

(Snd Down)
Γ �Ξ z : IdZA1 Γ �Ξ y : Id�A Γ �Ξ P : A2

Γ �Ξ xzy.P : A1
(x:A) ∈ A1

(Subsumption)
Γ �Ξ P : A Γ �Ξ A′ A ≤ A′

Γ �Ξ P : A′

(Sub Interface)
A ⊆ A′

A ≤ A′

We discuss the most important rules:

(Env Add): It is possible to add names with their types to Γ , and also to
Ξ (rule (Res)), provided that they are not already in Γ . Notice that dom(Ξ) ⊆
dom(Γ) holds for well-formed environments.

(Type Interface): An interface type is well-formed if every name in it has been
previously declared with the correct type and appears in Ξ (i.e., it is not bound
by an input action). The premise Γ �Ξ � ensures the well formation of the type
environment for the case of the empty interface.

(Res): Particular attention must be paid to restrictions of channel names, as
channels may occur in the interface. A first idea could be to erase the newly
restricted name from the interface as in the
rule aside, but this rule is not sound with
respect to the structural congruence rela-
tion: if you consider the processes

(Wrong Res Ch)
Γ, x:Ch V �Ξ,x P : A

Γ �Ξ (ν x:Ch V)P : (A− [x:V])

(ν y:IdZ[])y[(ν x:Ch Shh)x↑()] and (ν y:IdZ[])(ν x:Ch Shh)y[x↑()] they are struc-
turally equivalent, but while the former would be well-typed, the latter would
not.

Therefore we rather use the (Res) rule that imposes that a restricted name
can not appear in the interface of the process (see also comments right below

92 G. Castagna, G. Ghelli, and F.Z. Nardelli

Property 1 Section 4.4). As all the names must be declared in Γ , it may seem that
this condition forces all the interfaces to be empty. But note that this restriction
applies only to process interfaces not to seal identifiers. The reader must avoid
confusion between the name a which has type IdZA (where A may be a very
complex interface) and the process a[P] which, as stated by the rule (Seal), has
type []. What is necessary is that the type of P (rather than the one of a[P]) has
interface A. That is, that the process P inside a seal a[P] respects the interface
declared for its name a. Therefore the side condition of (Res) simply demands
that the upward channels of a are not restricted inside a[P]. In other words,
a channel appearing in an interface must be already known to the enclosing
environment. This is a very desirable feature of the type system: the interface’s
names must be somewhat public.

A brief example can clarify what “somewhat” means. Consider the following
two terms in the light of the (Res) rule, and notice that they are structurally
equivalent:

1) y[(ν x:Ch Shh) x↑()] 2) (ν x:Ch Shh)y[x↑()]
Clearly, the first is not well-typed, since the process inside the seal should offer
a restricted channel in the interface, and this is forbidden by the (Res) rule.
Interestingly, the latter is not well-typed either: the type of the name y should
include the channel x in the interface, but y is defined out of the scope of x;
therefore process in the scope of the restriction could be typed only under a
context in which x is declared twice, which is impossible (see Property 1(c) in
Section 4.4). The correct term is (ν x:Ch Shh)(ν y:Id [x:Shh]) y[x↑()] in which
the channel x is declared before the seal y. Briefly, a name that is used by a seal
to read from its environment must already exist in the environment where the
seal is declared.

In terms of the examples in Section 3.1, this means that we can declare that
a machine x has interface [23 : telnet] only if the channel named 23 and the type
telnet are both already known (that is, declared) in the environment.

(Input): All the rules for typing a process of the form α.P follow a common
pattern: this is especially true if we consider input and output rules separately.

The action xη(y:M).P binds y in P . Thus y must be added to the environ-
ment of P , provided that its type matches the type of x; y is not added to Ξ
since it is bound by an input operation. Because we are doing an input, we also
have to check that x is a ν-introduced name, that is x ∈ dom(Ξ). In (Input
Local), the input operation is local and nothing more has to be done. In (Input
Down) we also check that the name of the seal from which the process wants to
read is declared in Γ . In (Input Up) the input is from ↑, therefore the channel the
process wants to read from must be added to the interface already deduced for
P . This is done by the ⊕ operator, which computes the union of two interfaces,
but is not defined when the result would contain two different pairs y:M and
y:M ′ with the same name y but different M,M ′.

(Output): In the case of local and upward output actions the rules (Output
Local) and (Output Up) check that the types of the channel and of the argument

Typing Mobility in the Seal Calculus 93

match. The rule (Output Down) furthermore checks that the channel appears in
the interface of the target seal with the right type. This enforces the interpreta-
tion of the interfaces: a process can write inside a seal only if the processes local
to the seal are possibly going to read it.

(Rcv): The typing rules for mobility actions do not differ from the re-
spective communication actions. The main point is that in a receive opera-
tion the object name is not bound, so it is not added to the names in the
scope of the continuation4. Remark that in order to send a seal on a chan-
nel, it must be declared to be mobile (attribute �). In the Seal’s model of
mobility, when a seal is received it gets a name chosen by the receiver pro-
cess. We use this feature, together with the fact that the mobility attribute is
tied to seals names, to turn a mobile seal into an immobile one. For instance,
(ν x:Ch A)(ν a:Id�A)(ν b:Id�A) x∗a | x∗b | a[P] ➞ (ν b:Id�A) b[P] turns
the mobile seal named a into an immobile seal named b (the opposite is also pos-
sible). This is achieved by imposing no constraints on the mobility attribute of
the receiving name in the receive typing rule. Neither this nor the opposite is
possible in [4].

(Subtyping) During reductions, actions can be consumed. Consider for exam-
ple the process P = x↑(y:M).z∗(y). It is ready to input a name of type M on
channel x and its type is [x:M]. Now place it in the context C[−] = xa(w) | a[−]
and consider the type of P and of its reductum:

xa(w).Q | a[x↑(y:M).z∗(y)︸ ︷︷ ︸
[x:M]

] ➞ Q | a[z∗(w)︸ ︷︷ ︸
[]

]

To satisfy the subject reduction property we introduce a subtyping relation. We
already discussed that the interface of a process should be regarded as the set
of channels on which the process may perform input operations from ↑. This
suggests that the addition of new channels in the interface of a process should
not be considered as an error, since they are channels on which interaction will
never take place. This is formalized by the subtyping notion defined in the (Sub
Interface) rule, that allows channels to be added to the interface of a process.

This possibility of extending the interface is limited to the process types, and
is not extended to seal interfaces. The interface of a seal is associated with its
name and is immutable, hence it characterizes forever the range of interactions
admitted by that seal. At the same time, subsumption allows a process with a
smaller interface to be placed inside the seal. This is essential, since the more
limited interface may be a consequence, as in the previous example, of the “con-
sumption” of some actions. In this way, actions can get consumed inside a seal,
while the seal preserves its crystallized interface.

4.3 Typing Algorithm
The type rules in the previous section just need some slight modification to be
converted into a type algorithm. As usual in type systems with subtyping, we
4 This is due to the specificity of the receive action: when a seal is received it is activated at

the same level as the process that received it. The movement actions look like interactions
in the Fusion Calculus [14].

94 G. Castagna, G. Ghelli, and F.Z. Nardelli

must eliminate the subsumption rule by embedding subtyping in the other rules.
Actually there are only two rules that need modifications. The first is the (Par)
rule: in order to type-check P1 | P2 in the environment Γ,Ξ both P1 and P2
are checked resulting respectively in the two types A1 and A2. If the process
P1 | P2 can perform an input at ↑ then either P1 or P2 must be able to perform
it, and so it has been registered in one of A1 and A2. Thus we have to merge
the type informations kept in A1 and A2, and this is achieved by means of the
⊕ operator.

The second rule we need to modify is the (Seal) rule, to take into account
that the interface of the process inside a seal may be a subtype of the interface
associated with the seal name.
(Par Algo)
Γ ✄Ξ P1 : A1 Γ ✄Ξ P2 : A2

Γ ✄Ξ P1 | P2 : A1 ⊕A2

(Seal Algo)
Γ ✄Ξ x : Id A Γ ✄Ξ P : A′

Γ ✄Ξ x [P] : []
A′ ≤ A

4.4 Properties

The typing algorithm defined above is sound and complete with respect to the
type system.

Theorem 1 (Soundness and completeness).
1. If Γ ✄Ξ P : A then Γ �Ξ P : A.
2. If Γ �Ξ P : A then ∃A′ such that A′ ≤ A and Γ ✄Ξ P : A′.

A corollary of this theorem is the minimality of the algorithmic type:

Corollary 1. Γ ✄Ξ P : min{A | Γ �Ξ P : A}, if the set is not empty.

In order to prove the subject reduction property we need a substitution lemma
that states that substituting names for names of the same type in well-typed
terms yields well-typed terms. This would fail if we allowed names that appear
in interfaces to be substituted, hence we have to add a condition x �∈ dom(Ξ) in
the theorem hypothesis. This restriction is not a problem, since, as formalized
by the management of Ξ in the (Input) rules, interactions can only substitute
names that do not appear in dom(Ξ).

Thanks to Theorem 1, the substitution lemma can be stated directly on the
type algorithm rather than on the type system.

Lemma 1. If Γ, x:M✄ΞP : A, x �∈ dom(Ξ), and Γ✄Ξy :M , then Γ✄ΞP{y/x} :
A.

This lemma is used to prove the subject reduction property for the algorithmic
system whence subject reduction for the type system can be straightforwardly
derived:

Theorem 2 (Subject Reduction). If Γ✄ΞP : A and P ➞Q then Γ✄ΞQ : A.

Besides the characteristics discussed in Section 4.2 there several subtleties hidden
in the type system that make subject reduction hold while keeping the rules

Typing Mobility in the Seal Calculus 95

relatively simple. Among these it is noteworthy to remark that the provability
of a judgment Γ �Ξ � implies the following properties5:

Property 1. If Γ �Ξ � si provable then:
a. Γ,Ξ are well formed (i.e., Γ �Ξ � is provable);
b. dom(Ξ) ⊆ dom(Γ);
c. each variable has at most one type assignment in Γ .

These three properties allowed us to omit several sensible conditions from the
typing rules since they are implicitly satisfied. So for example in the (Res) rule
it is useless to require that x �∈ dom(Ξ) since this already holds by the well-
formation of the environment. Indeed Γ, x:M �Ξ,x � implies that x �∈ dom(Γ,Ξ).
Even more, Γ, x:M �Ξ,x � implies that x does not occur in Γ , since by construc-
tion Γ is an ordered list; this rules out envirements such as y:Id[x:M ′], x:M .
Similarly, in all the rules (Input) it always holds that y does not occur in Γ .
This implies that y �∈ dom(Ξ) since otherwise Γ ��Ξ � which contradicts that
Γ �Ξ x : Ch M is provable.

5 Services vs. Effects
In the introduction we hinted at two possible interpretations of agent interfaces.
Interfaces may describe either services, that is the interactions that must even-
tually occur, or effects, that is the interactions that may possibly occur.

The former interpretation is the one that characterizes the type systems for
object-oriented languages, while the latter is the one of our system. Indeed, su-
perficially our interfaces look like the types of the objects in the “objects as
records” analogy: just an array of methods one can invoke (in fact, the analogy
between agents and objects is not a piece of news). However, there is an impor-
tant difference. In the object framework, sending a message should result in a
method being activated: the type of an object reports the set of messages the
object will answer to. We can say that the interface of an object characterizes
the services that the object offers to its environment.

According to our definition, a channel that appears in the interface of an
agent (a seal) does not guarantee that interaction on this channel is always
going to happen (indeed the channel may be guarded or already be consumed
by a previous action). A more precise intuition of our system is that an interface
limits the effects that the agent can have on the environment: if an interaction
occurs, it occurs on a channel defined in the interface and not on other channels.

There is a clear tension between the two interpretations and in this paper
we opted for the second one. The reason for such a choice resides in the fact
that π-calculus channels are essentially consumable resources. One of the clear-
est lessons we draw from this work is that there is an inherent difference between
requiring a service (such as sending a message) and writing on a channel: the
former does not affect the set of admissible interactions, while the latter does
(by consuming a channel).
5 The first property follows by straightforward induction whose base are the rules (Type Shh),

(Var), and (Dead). The other two are equally straightforward.

96 G. Castagna, G. Ghelli, and F.Z. Nardelli

This tension is manifest at the level of sub-
typing: in case of effects the “may-provide” in-
terpretation is embodied by a subtyping relation
typical of variant types while in the case of ser-
vices, we recover the classical record types rela-
tion that characterizes objects and their “must-
provide” interpretation, as expressed by the rules
on the side.

(effects) (services)
A ⊆ A′
A ≤ A′

A′ ⊆ A
A ≤ A′

Our analysis clearly shows that the two approaches are mutually exclusive,
and that either one or the other has to be adopted according to the “consuma-
bility” of the communication layer.

In our system it is possible to recover the object/services characteristics by
imposing restrictions to ensure receptiveness [16] of channels in the interface6,
which roughly corresponds to make all the external interactions of an agent un-
consumable. The intuition is that in this way we transform interface channels into
(object) methods. Receptiveness can be ensured by imposing restrictions such as
those presented in [1] or, in a coarser approach, by requiring that all receive and
input actions on upper channels are guarded by replications, that is they must
all be of the form !x↑(y).P and !x↑y.P . In the latter case some simple modifi-
cations to our type system allow us to recover the service interpretation together
with its (services) subtyping rule. It just suffices to straightforwardly modify the
typing rules (Input Up) and (Rcv Up) to account for the new syntax, and the
results of the previous section bring forth. However we decided to follow the
other approach since the presence of concurrency does not ensure that services
will be eventually satisfied. Indeed, even if the remote interactions are replicated
they may still be guarded. Therefore a complete treatment would require further
restrictions on these interactions bringing us too far from our original subject.
Nevertheless we believe that such a direction is worth exploring.

6 Example: A Web Crawler

In this section we give a simple example that uses mobility, higher-order types,
and parametric write channels. Chapter 5 of [21] contains a much more complex
example we did not include here for lack of space: in that example the toy
distributed language introduced in [4] to show the expressivity of typed ambients
is encoded in the Seal calculus version presented here.

In order to show a possible application of higher order typing and mobility
attributes, we suggest the specification of a possible web crawling protocol. Cur-
rently, most commercial web search engines periodically access all the web pages
that are reachable by some starting pages and index them in a database. Web
searches access the database and retrieve relevant entries.

This technique is a greed bandwidth consumer. It may be interesting to
define an alternative protocol where mobile agents are spawned over the web
sites, where they collect and pre-elaborate the relevant information, so that the
6 An alternative solution is to use the object framework but to give up with the “must provide”

interpretation, as it is done in [8].

Typing Mobility in the Seal Calculus 97

computational effort is distributed, and bandwidth consumption is dramatically
reduced.

The Seal specification of this protocol is depicted in Figure 2, where top level
represents the network and hosts are immobile seals that lie inside it; crawlers
are modeled by mobile seals, being able to navigate among hosts.

Fig. 2. A web crawler protocol

Home, which is a process that lives at the network level, spawns a crawler
for each root web site. The crawler will go away and come back, to tell Home
about its findings, as we will see later.

Crawler communicates on channel “cd” (“crawler destination”) the name
of the first site it wants to visit7. This information is received by NetSupport
which first renames the crawler with a fresh name c; this renaming is performed
by sending the crawler along the local channel x. Then, NetSupport sends the
crawler to the requested destination, via the port 437. Once the crawler is in
the site, it reads the information via the port “in”, and is sent out of WebSite
along channel 437. The crawler processes the information (which generates a list
of other possible destinations), then checks whether it has to visit more sites; if
it does not, it uses the channel “result” to ask Home for a secure channel k and
sends the result on it.

Home sends the secure channel name k along the resultcraw channel, reads
the collected information from k, and stores it.

A generic WebSite must have a dæmon that is ready to receive crawlers
on port 437 and, after having provided them with information on channel “in”,
sends them out via the port 473 again.

The interface that characterizes a crawler is craw = [in: info ;
result : Ch (info)]. All the crawlers in the toplevel have the name craw, of type
Id�[in : info ; result : Ch (info)]. The other relevant interface in the example is
the one of the hosts: it is a higher-order type, since it contains the interface craw,
i.e. it specifies the protocol of the agents it is willing to accept. This interface

7 repeat is syntactic sugar for ! and if then else can be easily encoded. We use italics for
types, roman font for channels, small capitals for metavariables, and boldface font for seal
names.

98 G. Castagna, G. Ghelli, and F.Z. Nardelli

has the following form: [437 : craw ;< OtherPorts >]. Since hosts are immo-
bile, they are denoted by names whose type is hostName = Id�[437 : craw ;<
OtherPorts >].

7 Practical Applications

In order to show the potential of our type system we hint at how it can be used to
provide the JavaSeal Agent Kernel [2,18] with a minimal type system. JavaSeal
is an experimental platform that provides several abstractions for constructing
mobile agent systems in Java. JavaSeal uses relatively coarse grained types; in
particular, objects exchanged during interaction are encapsulated in Capsules.
Capsules are the only entities liable to be sent over channels. The contents of
a capsule are widening to the generic type Object thus loosing all static in-
formation. Furthermore, the system does not distinguish between channel and
seal identifiers as both are denoted by objects of the class Name. In other words,
JavaSeal does little type checking and what it does is mostly performed at run
time through dynamic type casts. This means that JavaSeal agents are prone to
errors.

In particular, each object exchanged during interaction is encapsulated with
type Object into a Capsule, being capsules the only entities liable to be sent
over channels. Also there is not a clear distinction between channels and seal
identifiers since they are generically classified by the class Name. In other words
JavaSeal type checking is rather weak since it heavily relies on the use of dynamic
type casts, and as such it is quite prone to errors.

JavaSeal is based on the primitives of the original Seal calculus. Therefore
it does not provide shared channels: channels are localized and access to them
is granted via portals opening operations. More precisely this signifies that for
example a downward output operation on channel xy synchronizes only with
local input operation on x in the seal y, and that the interaction needs presence
in y of an explicit permission open↑x that authorizes the parent to use the local
channel x. That is the (write in) becomes the following three parties reduction
rule:

xy(v).P | y[x∗(u).Q | open↑x | R] ➞ P | y[Q{v/u} | R] (write in)

It is quite straightforward to adapt our interfaces types to located channels and
portals: recall that interfaces trace all the channels on which there is an infor-
mation flow from the parent to the child. Therefore the interface of a (Java)Seal
agent must contain all channels the agent may perform input on and that (a)
either are located in the parent (b) or are local and have a matching upward
portal open operations.

Our proposal is then to endow the actual JavaSeal syntax with some type
informations that will be processed by a preprocess to type-check the source, and
then will be erased yielding a standard JavaSeal program. In order to enhance
readability we write the information that are to be erased by the preprocessor
in boldface. More particularly we propose to add the following (preprocessor)
types:

Typing Mobility in the Seal Calculus 99

NameCh[T] it is used to classify channel names (it corresponds to Ch T). The
type part [T] is optional (its absence means that the content of the channel
does not need to be checked)

NameSeal̂ [A] it is used to classify seal names (it corresponds to Id�A). Both
the immobility attributeˆ and the interface part [A] are optional (the ab-
sence of ˆ corresponding to �, and the one of the interface meaning that
outputs towards the seal do not need to be checked).

In order to have backward compatibility and let the programmer decide how
fine-grained the preprocessor analysis should be, we order the newly introduced
types according to the subtyping relation described by the diagram below.

Thus the Name type that in
the current JavaSeal implementation
identifies all names, will be refined by
separating channel names from agent
names. Agent names will allow a sec-
ond refinement by specifying their in-
terfaces or its mobility attribute. A
similar specialization is possible by
specifying or not the content of the
channel.

The idea is that the programmer
is free to decide whether the prepro-

Name

NameCh

����������
NameSeal

����������

NameCh[T]

��

NameSeal̂

����������
NameSeal[A]

���������

NameSeal̂ [A]

���������

����������

cessor has just to check that, say, the name used to denote a channel is indeed a
channel name, or also match the type of its content. Similarly the programmer
may force the check of downward write operations, or just require that they are
directed to some named seal. The more the leaves of the hierarchy are used the
more the check will be complete.

Thus the Name type that in the current JavaSeal implementation identifies
all names, will be refined by separating channel names from agent names. Agent
names will allow a second refinement by specifying their interfaces or its mobility
attribute. A similar specialization is possible by specifying or not the content of
the channel.

The idea is that the programmer is free to decide whether the preprocessor
has just to check that, say, the name used to denote a channel is indeed a channel
name, or also match the type of its content. Similarly the programmer may force
the check of downward write operations, or just require that they are directed
to some named seal. The more the leaves of the hierarchy are used the more the
check will be complete.

This system is particularly interesting when it is used in conjunction with
parametric classes such as they are defined for example in Pizza [13]. So the
Capsule and Channel classes of JavaSeal could be rewritten as follows

final class Capsule<X> implements Serializable {
Capsule(X obj);
final X open();

}

100 G. Castagna, G. Ghelli, and F.Z. Nardelli

final class Channel<X> {
static void send(NameCh[X] chan, NameSeal seal, Capsule<X> caps);
static Capsule<X> receive(NameCh[X] chan, NameSeal seal);

}

It is interesting to notice that after preprocessing, by applying the Pizza homo-
geneous translation of [13] to all non-erased occurrences of the type variable, one
recovers the original interface of JavaSeal:

final class Capsule implements Serializable {
Capsule(Object obj);
final Object open();

}

final class Channel {
static void send(Name chan, Name seal, Capsule caps);
static Capsule receive(Name chan, Name seal);

}

8 Conclusion

In this work we presented a new definition of the Seal Calculus that gets rid of
existing inessential aspects while preserving the distinctive features of the Seal
model. We used it to tackle the problem of typing not only mobile agents but also
their movement, so that the latter can be controlled and regulated. The solution
we used, typed channels, is an old one —it is standard in π-calculus— but its
use for typing mobility is new, and results into a higher order type systems for
agents (as [20] is a higher order type system for processes). At the same time,
we designed our type system so that it induces an interpretation of interfaces as
effects that differs from the customary interpretation as services and we discussed
its distinctive features.

This work is just a starting point and for some aspects it is still unsatisfactory.
For example more work is needed to define a type system that captures one of
the peculiar security characteristics of the Seal Calculus, that is the name-spaces
separation: in the actual version if two agents residing in different locations have
the same name, then the type system forces them to have the same type too.

At the same time this work already constitutes an exciting platform whence
further investigation can be started. In particular we are planning to use some
form of grouping similar to those in [5,3] for a different solution to the problem
of type dependencies, as well as to investigate a distributed version of the type
system, on the lines of [3]. It would also be interesting to verify what the single
threaded types, introduced in [9] for the Ambient Calculus with co-actions, would
bring forth in the Seal Calculus, where co-actions are inherently present.

Acknowledgments. The authors want to thank Mariangiola Dezani, Jan
Vitek, and the anonymous referees for useful comments on this paper. This work
was partially supported by cnrs Program Telecommunications: “Collaborative,
distributed, and secure programming for Internet”.

Typing Mobility in the Seal Calculus 101

References
1. R. Amadio, G. Boudol, and C. Lhoussaine. The receptive distributed π-calculus. In

FST&TCS, number 1738 in Lecture Notes in Computer Science, pages 304–315, 1999.
2. C. Bryce and J. Vitek. The JavaSeal mobile agent kernel. Autonomous Agents and Multi-

Agent Systems, 2002. To appear.
3. M. Bugliesi and G. Castagna. Secure safe ambients. In Proc. of the 28th ACM Symposium

on Principles of Programming Languages, pages 222–235, London, 2001. ACM Press.
4. L. Cardelli, G. Ghelli, and A. Gordon. Mobility types for mobile ambients. In Proceed-

ings of ICALP’99, number 1644 in Lecture Notes in Computer Science, pages 230–239.
Springer, 1999.

5. L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types. In Interna-
tional Conference IFIP TCS, number 1872 in Lecture Notes in Computer Science, pages
333–347. Springer, August 2000.

6. L. Cardelli and A. Gordon. Mobile ambients. In Proceedings of POPL’98. ACM Press,
1998.

7. L. Cardelli and A. Gordon. Types for mobile ambients. In Proceedings of POPL’99, pages
79–92. ACM Press, 1999.

8. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Information
and Computation, 2000. To appear.

9. F. Levi and D. Sangiorgi. Controlling interference in Ambients. In POPL ’00, pages
352–364. ACM Press, 2000.

10. M. Merro. Locality in the π-calculus and applications to distributed objects. PhD thesis,
École de Mines de Paris, October 2000.

11. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II.
Information and Computation, 100:1–77, September 1992.

12. Robin Milner. The polyadic π-calculus: a tutorial. Technical Report ECS–LFCS–91–
180, Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, UK, October 1991. Appeared in Proceedings of the Interna-
tional Summer School on Logic and Algebra of Specification, Marktoberdorf, August 1991.
Reprinted in Logic and Algebra of Specification, ed. F. L. Bauer, W. Brauer, and H.
Schwichtenberg, Springer-Verlag, 1993.

13. M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In 24th
Ann. ACM Symp. on Principles of Programming Languages, 1997.

14. J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and symmetry in mobile
processes. In Logic in Computer Science. IEEE Computer Society Press, 1998.

15. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical
Structures in Computer Science, 6(5), 1996.

16. D. Sangiorgi. The name discipline of uniform receptiveness. Theoretical Computer Science,
221(1–2):457–493, 1999.

17. P. Sewell and J. Vitek. Secure composition of insecure components. In 12th IEEE Com-
puter Security Foundations Workshop, 1999.

18. J. Vitek, C. Bryce, and W. Binder. Designing JavaSeal: or how to make Java safe for
agents. In Dennis Tsichritzis, editor, Electronic Commerce Objects. University of Geneva,
1998.

19. J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In Internet
Programming Languages, number 1686 in Lecture Notes in Computer Science. Springer,
1999.

20. N. Yoshida and M. Hennessy. Assigning types to processes. In Proceedings, Fifteenth
Annual IEEE Symposium on Logic in Computer Science, pages 334–348, 2000.

21. F. Zappa Nardelli. Types for Seal Calculus. Master’s thesis, Università degli Studi di Pisa,
October 2000. Available at ftp : //ftp.di.ens.fr/pub/users/zappa/readings/mt.ps.gz.

Reasoning about Security in Mobile Ambients�

Michele Bugliesi1, Giuseppe Castagna2, and Silvia Crafa1,2

1 Dipartimento di Informatica
Univ. “Ca’ Foscari”, Venezia, Italy

michele@dsi.unive.it
2 Département d’Informatique

École Normale Supérieure, Paris, France

Abstract. The paper gives an assessment of security for Mobile Am-
bients, with specific focus on mandatory access control (MAC) policies
in multilevel security systems. The first part of the paper reports on
different formalization attempts for MAC policies in the Ambient Cal-
culus, and provides an in-depth analysis of the problems one encounters.
As it turns out, MAC security does not appear to have fully convincing
interpretations in the calculus. The second part proposes a solution to
this impasse, based on a variant of Mobile Ambients. A type system for
resource access control is defined, and the new calculus is discussed and
illustrated with several examples of resource management policies.

1 Introduction
Distributed computation based on mobile code is already ubiquitous and rep-
resents an essential aspect of our computing environments. Mobile computing
relies on sharing of data and software resources among computing sites dis-
tributed across wide-area open networks. This sharing is successful inasmuch as
it satisfies several criteria, including safety, e.g. execution of mobile code with-
out failure, and security, e.g. protection of sites against malicious intruders and
misuse of their computing resources.

A substantial body of the research on programming languages has recently
been directed towards the study of formal calculi providing high-level support
for mobile agents. A non exhaustive list of examples includes the Ambient Cal-
culus [CG98], the Seal Calculus [VC99,CGZ01], the Dπ-calculus [HR00b], and
the Join Calculus [FGL+96].

The initial motivation for this paper was an assessment of security in calculi
for mobility. As a preliminary step, we thought it instructive to study what
(if any) new insight and challenges mobile code languages provide for well-
established security models. For some of the calculi we just mentioned, notably
for the Dπ-calculus, an in-depth study of these aspects has already been con-
ducted in [HR00b]. Here we present a corresponding analysis for Mobile Ambi-
ents, for which, to our knowledge, no previous attempt in this direction has been
made.
� Work partially supported by MURST Project 9901403824 003, by CNRS Program Tele-

communications: “Collaborative, distributed, and secure programming for Internet”, and
by Galileo Action n. 02841UD

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 102–120, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Reasoning about Security in Mobile Ambients 103

The focus of our analysis is on mandatory access control policies (MAC) in
multilevel security systems. In particular, the emphasis is on the specific aspects
of MAC policies related to confidentiality and integrity, and their different im-
plementations as military security (no read-up, no write-down) and commercial
security (no read-up, no write-up).

The first part of the paper (§ 2) is a survey of our formalization attempts. As
it turns out, the main problem comes far ahead the point where one starts the
formalization, because the security concepts assumed as references do not appear
to have any fully convincing interpretation in the calculus. In fact, the very
meaning of basis notions such as “read access” and “write access” by subjects
on objects, or even “ownership”, is somehow difficult to grasp and characterize
when looked at from within the Ambient Calculus. As a consequence of these
difficulties, one is led to the conclusion that Ambients lack adequate primitives
to capture and characterize those security concepts. While our arguments are
only informal, the analysis we detail in the first part of the paper does provide
convincing evidence in favor our conclusion.

The second part of the paper proposes a solution to this impasse, based on
a variant of Mobile Ambients we dub Boxed Ambients. The calculus of Boxed
Ambients is introduced, formally defined and studied in a companion paper
[BCC01]. Here, instead, we keep the presentation largely informal, and put the
emphasis on the role of the new calculus for describing and expressing resource
access control policies. After a brief description of the calculus, we introduce
a type system for resource access control (§ 3). Then (§ 4) we propose several
examples that illustrate what we believe to be the merits and strengths of the
calculus. A final section (§ 5) is dedicated to related work and conclusions.

While the second part of the paper represents the main contribution of the
paper, the preliminary analysis was extremely useful to us to understand the
problems, and we hope will be equally valuable to the reader.

2 Mobile Ambients and Multilevel Security

Standard models of security for resource access control are built around subjects
performing access requests on objects by write (in some models, also append,
execute, and others) and read operations.

Multilevel security presupposes a lattice of security levels, and every subject
and object is assigned a level in this lattice. Based on these levels, access to
objects by subjects are classified as read-up (resp. read-down) when a subject
access by a read an object of higher (resp. lower) level, and similarly for write
accesses. Relying on this classification, one may distinguish two security policies:
military security, which forbids (both direct and indirect) read-up’s and write-
down’s, and commercial security that forbids read-up’s and write-up’s. These
notions cover also indirect accesses resulting from the composition of atomic
operations: thus also the fact of writing into an object of any level a piece of
information read (or just coming) from another object whose level is higher than

104 M. Bugliesi, G. Castagna, and S. Crafa

the level of the first object is considered as a write-down (classic security handles
these cases by the so-called �-property [BP76,Gol99]1).

2.1 Mobile Ambients

Ambients are processes of the form a[[P]] where a is a name and P a process.
Processes can be composed in parallel, as in P | Q, exercise a capability, as in
M.P , declare local names as in (νx)P , they can be replicated, as in !P , or simply
do nothing as in 0.

Mobility. Ambients may be nested to form a tree structure that can be dynam-
ically reconfigured as a result of mobility and ambient dissolution determined
by the capabilities in, out and open. To exemplify, consider the ambients a and b
in the configuration a[[open b.in c]] | b[[in a.in d]] . The ambient b may enter a,
by exercising the capability in a, and reduce to a[[open b.in c | b[[in d]]]] . Then
a may dissolve b by exercising open b, and reduce to a[[in c | in d]] .
Security. The ability or inability to cross boundaries, which is conferred by
the capabilities in and out, is also at the core of the security model underlying
Mobile Ambients. Permission to cross ambient boundaries is given by making
the name available to the clients willing to enter or exit. Names are thus viewed
as passwords, or alternatively as cryptokeys: when embedded in a capability, an
ambient name provides the pass that enables access to, or else the cryptokey
that discloses the contents of that ambient.

While this model of security is suggestive, and powerful for its simplicity,
it appears to not be fully adequate for modeling realistic policies for resource
access control. The problem is that it entirely depends on the ability by the
authorization mechanism to filter out undesired clients: an authorization breach
could grant malicious agents full access to all the resources located inside the
ambient boundary. Clearly, one first has to identify what “resource access” is in
the Ambient Calculus. Entering an ambient, or opening it are all good notions
of access: in addition, there is of course communication.

Communication. In the Ambient Calculus, communication is anonymous, and
happens inside ambients. The configuration (x)P | 〈M〉 represents the paral-
lel composition of two processes, the output process 〈M〉 “dropping” the mes-
sage M , and the input process (x)P reading the message M and continuing as
P{x :=M}. The open capability has a fundamental interplay with this form of
communication: opening an ambient enables synchronization between the pro-
cesses located in the opening and the opened ambients. To exemplify, synchro-
nization between the input process (x)P and the output 〈M〉 in the system
(x)P | open b | b[[〈M〉 | Q]] is enabled by exercising the capability open b to
unleash the message 〈M〉.
It is the interplay between communication and the primitives for ambient mobil-
ity which makes it difficult to reason about resource access in terms of classical
security models. To make our point, we use a simple concrete example.
1 As a matter of fact, these references do not define precisely what a write-down access is;
instead, they give a definition of no-write down policy.

Reasoning about Security in Mobile Ambients 105

2.2 A Simple Resource Access Problem

Suppose we have a system consisting of a set of resources {r1, . . . , rn} and an
agent named a that runs program P and is willing to access any of the ri’s. To
control the access requests by the agent, one would typically refer to [DoD85]
and set up a resource manager. In the Ambient Calculus the system under con-
sideration can be represented as follows:

a[[P]] | m[[r1 [[· · ·]] | · · · | rn [[· · ·]] | R]]
Here, m is the resource manager running process R. To access, say ri, the agent
needs to know the name m, to be able to move inside the resource manager.
Assuming the agent knows that name, the result of the move is the new system:

m[[a[[P]] | r1 [[· · ·]] | · · · | rn [[· · ·]] | R]]
Looking at this configuration, it is clear that the process R does not have an
active role in the system: given the primitive constructs of the Ambient Cal-
culus, there is indeed nothing R can do to enable or control the access, as the
interaction between a[[P]] and each of the ri’s may only result from autonomous
actions by either the agent or the resource2. The role of the ambient m is there-
fore reduced to the role of its name: it is simply the first password required for
the access. Rather, it is each of the ri’s that needs to include its own manager.

We can thus formulate the problem in simpler terms, and look directly at
the case of the agent a and the resource r shown below:

Initial configuration: a[[P]] | r [[R | 〈M〉]]
R is the manager for r, and M is the contents: for the purpose of the example,
we assume that the content is a value the agent is willing to read.

2.3 Overview of Possible Solutions

Having defined the problem, we now look at different ways to attack it in the
Ambient Calculus, and discuss their implications for MAC security.

2.3.1. Agent Dissolution. A first solution is based on the following protocol
proposed by [CG98]. In order for a to access r, a first enters r:

Enter: r [[R | 〈M〉 | a[[P]]]]
Now, the idea of the protocol is that the manager R should be the process
!open p, which unleashes authorized clients that entered the resource within a
transport ambient named p. In other words, the protocol requires the client to
know the name of the resource, as well the name of the “port” p used for access.
The agent would first rename itself to p to comply with the rules of the protocol,
and then enter: if the access to r is in read mode, the agent will contain a reading
process. After renaming, the new configuration would then be:

Renaming: r [[! open p | 〈M〉 | p[[(x)P]]]]
Finally, the resource manager enables the read access, by opening p:

Read Access: r [[! open p | 〈M〉 | p[[(x)P]]]] ➞ r [[! open p | 〈M〉 | (x)P]]
2 Safe Ambients [LS00] would not help here, as R would still be unable to mediate the access
to ri.

106 M. Bugliesi, G. Castagna, and S. Crafa

The protocol is elegant and robust, as the agent needs to know two passwords
(r and p). There are, however, a number of unsatisfactory aspects to it.

A first reason for being unsatisfied with the protocol is that it is hardly
realistic to assume that agents willing to read a value should be prepared to
be dissolved. A second problem is that opening p[[P]] may be upsetting to the
resource manager, or else to the resource itself, because there is no telling what
P might do once unleashed. For what we know, the contents of p could very
well be the process N.P , with N a path of in or out capabilities. Unleashing
this process inside r could result into r being carried away to possibly hostile
locations, or otherwise being made unavailable to other clients requesting access
to it.

Further problems arise when we try to classify the protocol according to
the principles of MAC security. As we noted, the action in the protocol that
eventually enables the access to the resource is taken by the resource manager,
which opens the incoming agent. In other words, it is the last step of the protocol
that effectively determines the access, and since the process enclosed in p is an
input process, it is classified as a read access (had p contained an output, it
would have been a write access). In multilevel security, it would then be possible
to further classify the access according to the security levels associated with r
and p, and use that definition to enforce either the military or the commercial
security policies.

However, while this form of classification is sensible for the protocol, it be-
comes rather artificial when applied to the primitives of the calculus. Indeed,
saying that open p | p[[P]] is a read (or write) access from P is rather counter-
intuitive, as p[[P]] undergoes the action rather than actively participating into
it. The problem is that the protocol is tightly dependent on the effects of open,
but when exercised to enable a read/write request, open exchanges the roles of
the two participants in the request, as it is the subject, rather than the object,
that is accessed, in fact, opened.

2.3.2. Resource Dissolution. The problem could be circumvented by a change
of perspective. One could devise a different protocol where the active role of
the subject is rendered by a combination of open and input/output. Thus, for
instance, the process open r.(x)P could be interpreted, in the protocol, as a read
request on r. This might work reasonably for read requests, even though the
interpretation is not too convincing given that the access has also the side-effect
of dissolving the resource. Even less convincing would be the interpretation of
open r.〈M〉 as a write access: after dissolving r the output 〈M〉 really has nothing
to do with a write on r.

2.3.3. Agents and Messengers. To avoid indiscriminate dissolution upon access,
[CG98] suggests a different approach, based on a protocol similar to the first one
we discussed, but in which agents rely on “special” ambients acting as messen-
gers. The idea is to envisage two classes of messengers:

output messenger: o[[M.〈N〉]] . M is a path to the location where deliver mes-
sage N ;

Reasoning about Security in Mobile Ambients 107

input messengers: i [[M.(x)o[[M−1.〈x〉]]]] .M is the path to the location where a
value can be read. Once read, the messenger goes back to its original location
where it delivers the value.

Thus, a read access would be encoded by a protocol based on the following initial
configuration:

a[[open o.(x)P | i [[out a.in r.(x)o[[out r.in a.〈x〉]]]]]] | r [[! open i | 〈N〉]]
The protocol still requires cooperation from the resource manager, which is ex-
pected to open the input messenger. Also, looking at the primitive reductions,
it would still be counter-intuitive to say that open i | i [[P]] is a read access.
However, if i could be identified as an input-messenger within r, then the access
classification would be more realistic.

The problem is that there is no way to syntactically tell messengers from
ambients playing the role of “pure” agents, nor is there any way to syntactically
detect “illegal” attempts to dissolve “pure” agents. Defining a notion of access,
and attempting a syntactic classification would therefore still be problematic, if
at all possible.

Types could be appealed to for more satisfactory solution. One could de-
vise a type system to complement the syntax by enforcing a typed partition
of ambients into agents (i.e. ambients that cannot be dissolved) and mes-
sengers (as above). Based on the typed ambient classification and on an as-
signment of security levels, it would then be possible to classify access re-
quests according to MAC policies. There would be only one remaining prob-
lem. Consider the protocol structure and evolution. From the initial configu-
ration: a[[P ′ | i [[M.(x)o[[M−1.〈x〉]]]]]] | r [[! open i | 〈N〉]] a sequence of reduc-
tions routes the input messenger to its, where it it is opened and consumes N . At
this stage, the structure of the system is: a[[P ′]] | r [[! open i | o[[M−1.〈N〉]]]] .
This is the encoding of a write access by r to a. In other words, a read access
by a includes a write access by r: if the former is, say, a read-up, then the latter
is a write-down. In other words, the protocol has somehow the effect of merging
read-up’s and write-down’s, and dually, write-up’s and read-down’s. Therefore,
military security could still be accounted for with this approach, while commer-
cial security could not.

2.4 Summary and Assessment

The survey of solutions we have given may still be incomplete, but we do not see
any significantly different approach to attack the problem. As to the approaches
we have presented, none of them is fully adequate to reason about security.
Some of them appear artificial, since essential intuition is lost in the encoding
of the protocol (§ 2.3.1,§ 2.3.2), while in others, intuition is partially recovered
but only at the expenses of failing to provide full account for both military and
commercial security (§ 2.3.3).

Consequently, while possibly incomplete, the analysis does provide a basis for
drawing a conclusion. Certainly, the Ambient Calculus enables resource access
control, in that it provides constructs for encoding access protocols. On the other

108 M. Bugliesi, G. Castagna, and S. Crafa

hand, the calculus does not, by itself, support these mechanisms and policies,
as it does not provide built-in facilities to make it convenient or natural to
reason about them. As we showed, the reasoning is possible at the level of access
protocols, while when we look at the access primitives, there appears to be no
general principle to which one can steadily appeal.

The conclusion we may draw, then, is that support for resource access control
with Mobile Ambients requires different, finer-grained, constructs for ambient in-
teraction and communication. The new constructs should be designed carefully,
so as to complement the existing restrictions on ambient mobility based on au-
thorization, without breaking them. In other words, access to remote resources
should still require mobility, hence authorization: local access, instead, could be
made primitive.

To see how that can be accomplished, consider once more the protocol of
§ 2.3.3, based on messengers. We can re-state it equivalently as follows:

a[[in r.open o.(x)out r.P | i [[out a.(x)o[[in a.〈x〉]]]]]] | r [[! open i | 〈M〉]]
In other words, it is now the agent that is responsible for the moves needed to
reach the resource, while the messenger just makes the in and out moves needed
for the, now local, access. After the move of a into r, and of i out of a, the struc-
ture of the system (disregarding a) is the following: r [[open i | 〈M〉 | i [[(x)P]]]] .
This is where the read access takes place. Now, instead of coding it, via open, we
can make it primitive and do without open. If we denote with (x)↑ input from
the enclosing ambient, the read access is simply: r [[〈M〉 | i [[(x)↑P]]]] . But then,
the whole protocol can be simplified: a[[in r.(x)↑.P]] | r [[〈M〉]] .

A choice of communication primitives based on this observation led us to the
design of Boxed Ambients, a calculus we formally define in [BCC01] and outline
in the next section. The new primitives provide the calculus with what we believe
to be more effective constructs for resource protection and access control, while
at the same time retaining the expressive power and most of the computational
flavor of Mobile Ambients, as well as the elegance of their formal presentation.

3 Boxed Ambients

Boxed Ambients are a variant of Cardelli and Gordon’s Mobile Ambients. From
the latter, they inherit the primitives in and out for mobility, with the exact
same semantics. Instead, Boxed Ambients rely on a completely different model
of communication, which results from dropping the open capability.

As in the Ambient Calculus, processes in the new calculus communicate via
anonymous channels, inside ambients. In addition, to compensate for the absence
of open, Boxed Ambients are equipped with primitives for communication across
ambient boundaries, between parent and children. Syntactically, this is obtained
by means of tags specifying the location where the communication has to take
place. So for example, in (x)nP the input prefix (x)n is an input from child
ambient n, while 〈M〉↑ is an output to the parent ambient.

The choice of these primitives is inspired to Castagna and Vitek’s Seal Cal-
culus [VC99], from which Boxed Ambients also inherit the two principles of

Reasoning about Security in Mobile Ambients 109

mediation and locality. Mediation implies that remote communication, e.g. be-
tween sibling ambients, is not directly possible: it either requires mobility, or
intervention by the ambients’ parent. Locality means that communication re-
sources are local to ambients, and message exchanges result from explicit read
and write requests on those resources.

As it turns out, the resulting communication model has rather interesting
payoffs when it comes to resource protection policies and security. Before entering
further details, we briefly review the syntax and the semantics of the calculus.

Syntax and Semantics. The untyped syntax of the polyadic synchronous calculus
is as follows.

Expressions M ::= a, b, . . . | x, y, . . . | in M | out M | M.M | (M1, . . . ,Mk)
Patterns x ::= x | x1, . . . ,xk
Locations η ::= M | ↑ | �
Processes P ::= 0 | M.P | (νx)P | P | P | M [[P]] | !P | (x)ηP | 〈M〉ηP

We use a number of notation conventions. We reserve a− q for ambient names,
and x, y, z for variables. As usual we omit trailing dead processes, writing M for
M.0. The superscript � denoting local communication, is also omitted.

The operational semantics is defined by reduction, with the help of an auxiliary
relation of structural congruence. All these are very standard (in fact, exactly as
in Ambient Calculus). We only give the top-level reduction rules, and refer the
reader to [BCC01] for details.

Mobility. Reduction for the in and out capabilities is exactly as for Mobile Am-
bients:

(enter) a[[in b.P | Q]] | b[[R]] ➞ b[[a[[P | Q]] | R]]
(exit) a[[b[[out a.P | Q]] | R]] ➞ b[[P | Q]] | a[[R]]

Communication. The primitives for local and parent-child communication are
governed by the following rules. Note that in all cases input-output is syn-
chronous (see § 4 for a brief digression on asynchronous communication).

(local) (x)P | 〈M〉Q ➞ P{x :=M} | Q
(input n) (x)nP | n[[〈M〉Q | R]] ➞ P{x :=M} | n[[Q | R]]
(input ↑) 〈M〉P | n[[(x)↑Q | R]] ➞ P | n[[Q{x :=M} | R]]
(output n) 〈M〉nP | n[[(x)Q | R]] ➞ P | n[[Q{x :=M} | R]]
(output ↑) (x)P | n[[〈M〉↑Q | R]] ➞ P{x :=M} | n[[Q | R]]

3.1 Resources and Access Control

Four different reductions for non-local exchange may be thought of as redun-
dant, especially because there are only two reducts. Instead, different directions
for input/output is a key design choice that has a number of interesting conse-
quences.

– First, the primitives for communication have immediate and very natural
interpretations as access requests. To exemplify, the input prefix (x)n can

110 M. Bugliesi, G. Castagna, and S. Crafa

be seen as a request to read from the channel located into child ambient n.
In fact, given the anonymous nature of channels, (x)n can equivalently be
seen as an access to the ambient n. Dually, 〈M〉↑ can be interpreted as write
request to the parent ambient (equivalently, its local channel)3.

– Secondly, full and flexible support is now available for resource protection.
An agent entering a resource needs not be opened there to enable the access:
the resource manager can mediate and keep full control over the read and
write requests made by the agent. If we take the resource access problem
of § 2.2 we now have a fairly natural and elegant solution, and we also find
back a role for the resource manager m. Consider again the configuration
m[[a[[P]] | r1 [[· · ·]] | · · · | rn [[· · ·]] | R]] where now all ambients are boxed,
and a has entered the resource manager. We need not to include a manager in
each resource, as R may act as a mediator. For instance, R could be defined
as the parallel composition R1 | · · · | Rn where each Ri is the process
! (x)〈x〉ri waiting for upward output from a and forwarding it to the ith
resource. Some of the Ri’s could be less generous with the agent, and ignore
upward input from a to request read access on a instead: ! (x)a〈x〉ri . Should
any of the ri’s be made non-accessible, one would simply define Ri = 0.

– The communication model fits nicely the security model of Mobile Ambients
which is based on authorization and predicates in/out access to ambients on
possession of appropriate passwords or cryptokeys.

– Finally, multilevel security for boxed ambients may be modeled by embed-
ding security levels in types, and using typing rules to enforce and verify
Mandatory (system-wide) Access Control (MAC) policies. We give a detailed
account of how this can be done in § 3.2 below.

The calculus has other interesting aspects to it. For a thorough discussion on
these aspects, and a detailed comparison between the communication primitives
of Boxed and Mobile Ambients the reader is referred to [BCC01]. Here, instead,
we focus our attention to security issues, and move on to multilevel security.

MAC Security. In MAC security, the behavior of system is described by a two-
dimensional Access Control Matrix M indexed over a set S of subjects and a set
O of objects, and whose values are access modes A,B ∈ {w, r, rw, shh}. M[s,o]=w
(respectively r, rw, shh) indicates that subject s has write (respectively, read,
read&write, no) access to object o.

For multilevel security, one presupposes a lattice (Σ,
) of security levels
(ranged over by ρ, σ, τ), and a function level : S ∪O→ Σ. A security policy is a
ternary boolean predicate P on subject levels, object levels, and access modes.
An access control matrix M satisfies a security policy P if for every s∈S, o∈O,
P(level(s),level(o),M[s,o]) holds true. Military (no read-up, no write-down) and
commercial (no read-up, no write-up) security can then be formally defined as

3 The possibility to associate owners to channels is the reason why we do not consider shared
channels in the style of [CGZ01], that is, we do not have reductions such as, say,

(x)nP | n[[〈M〉↑Q | R]] ➞ P{x := M} | n[[Q | R]] .

Reasoning about Security in Mobile Ambients 111

follows:
PMil(ρ, σ, r)

�
= σ
 ρ PCom(ρ, σ, r)

�
= σ
 ρ

PMil(ρ, σ,w)
�
= ρ
 σ PCom(ρ, σ,w)

�
= σ
 ρ

PMil(ρ, σ, rw)
�
= σ = ρ PCom(ρ, σ, rw)

�
= σ
 ρ

PMil(ρ, σ, shh)
�
= true PCom(ρ, σ, shh)

�
= true

Excursus. In process algebras, it is interesting to take a powerset of secu-
rity labels (2L,⊆) as lattice of security levels. Based on that, it is possible
to use standard π-calculus restrictions to dynamically define security levels:
(ν� : L)(νx : {�})P . New formalizations of Discretionary Access Control poli-
cies (DAC) are then possible if, in addition, one also allows security labels to be
communicated over channels. We discuss this possibility with a brief aperçu in
Section 4.

3.2 A Type System for MAC Multilevel Security

The type system results from a rather simple refinement of the type system
for Boxed Ambients defined in [BCC01]. As in that case, ambient and process
types are defined as two-place constructors describing the types of exchanges
that may occur locally and with the enclosing context. Interestingly, this simple
type structure is all that is needed to give a full account of ambient interaction.
This is a consequence of (i) there being no way for ambients to communicate
directly across more than one boundary, and (ii) communication being the only
means for ambient to interact.

Multilevel security is accounted for in the type system by instrumenting the
structure of types to include additional information about the security level
associated with each ambient (viewed as subject or object) and the access mode
of the ambient’s exchange types. The resulting syntax of types, as well as its
intended meaning, are defined as follows, where the metavariable A ranges over
access modes:

Expression Types W ::= σAmb[E,FA] | σCap[EA] | W1 × · · · ×Wn

Exchange Types E,F ::= shh | W
Process Types T ::= σPro[E,FA]

Ambient types σAmb[E,FA]: the type of ambients with clearance σ, enclosing
processes whose local and upward exchanges are of type E and F ; the upward
exchanges have mode A.

Capability types σCap[FA]: the type of capabilities exercised within an am-
bient of clearance σ, whose upward exchanges have type F and mode A.

Process types σPro[E,FA]: the type of processes running at clearance σ,
whose local and upward exchanges are, respectively, of type E and F . The
tag A defines the mode in which the process accesses the channel located in
its parent ambient.

In all cases, the type shh indicates no exchange, that is, absence of input and
output. The syntax allows the formation of the types Amb[E, shhA], Cap[shhA],

112 M. Bugliesi, G. Castagna, and S. Crafa

and Pro[E, shhA]. These types are convenient in stating definitions and typing
rules: to make sense of them, we stipulate that shhA = shh for any access A.

To enhance the flexibility of the type system, we introduce the following
subtype relation over exchange types.

Definition 1 (Exchange Subtyping). Let � be the smallest reflexive and tran-
sitive relation over exchange types satisfying the following axioms for every ex-
change type E and access mode A:
shh � E, shh � EA, Er � Erw, Ew � Erw ✷

Exchange subtyping is not used in conjunction with subsumption. Subtyping
may be lifted to capability and process types to allow sound uses of subsump-
tion. This enhanced form of subtyping is studied in [BCC01], but is essentially
orthogonal to the subject of our present discussion. We therefore disregard it,
and move on to illustrate the typing rules.

The typing rules are presented in Figure 1, and discussed next. The rules (In)
and (Out) define the constraints for ambient mobility. They explain why ca-
pability types are built around a single component, and motivate the subtyping
relation over exchange types. The intuition of the (In) is as follows: if Cap[F] is
the type of the capability, say in n, then in n is exercised within an ambient, say
m, with upward exchanges F . Now, for the move ofm into n to be safe, one must
ensure that the local exchanges of n also have type F . In fact, one may be more
liberal, and only require type compatibility between the upward exchanges of m
and the local exchanges of n: this explains the premise E � G. The predicate P
provides a guarantee that after moving, the ambient will still satisfy the secu-
rity policy. Dual reasoning applies to the (Out) rule: upward exchanges by the
exiting ambient must have the same (in fact, �-compatible) type as the upward
exchanges of the ambient being exited. The security policy is enforced, in this
case, directly by the subtyping relation over exchange types. It is worth noting
that upward silent ambients (that is, ambients whose upward exchanges have
type shh) can freely move across ambient boundaries. This is a consequence of
our interpretation of capabilities, and of how � is defined: capabilities exercised
within upward silent ambients have type σCap[shh] and shh � E for every E.

The rule (Amb), for typing ambients, defines the constraints that must be
satisfied by P to legally be enclosed in a: specifically, the type of the upward
exchanges performed by P , must comply with the security policy defined by
the predicate P and must be a subtype of the local exchanges of the current
ambient (that is either shh or G). As an example, if P tries to read from the
channel located in the ambient that encloses a, then, to avoid a read up operation,
the clearance of P (i.e. that of the ambient a) must be higher than that of the
accessed channel (i.e. that of the ambient enclosing a).

The other interesting rules are those for communication. Local communica-
tion, i.e. local access within an ambient, needs no security constraint. The rules
(Input M) and (Output M) govern input/output to subambients. Besides
connecting the types of the input-output processes and their continuations, the
rules also enforce the constraints that processes at clearance σ read only from

Reasoning about Security in Mobile Ambients 113

Typing of Expressions

(Project)
Γ (n) =W

Γ � n :W

(Tuple)
Γ �Mi :Wi ∀i ∈ 1..k

Γ � (M1, . . . ,Mk) :W1 × · · · ×Wk

(Path)

Γ �Mi : σCap[EA] i = 1, 2

Γ �M1.M2 : σCap[EA]

(In)

Γ �M : ρAmb[G,HB] P(σ, ρ,A) E � G

Γ � in M : σCap[EA]

(Out)

Γ �M : ρAmb[G,HB] EA � HB

Γ � out M : σCap[EA]

Typing of Processes

(Prefix)

Γ �M : σCap[FA] Γ � P : σPro[E,FA]

Γ �M.P : σPro[E,FA]

(Parallel)

Γ � Pi : σPro[E,FA] i = 1, 2

Γ � P1 | P2 : σPro[E,FA]

(Amb)

Γ � a : σAmb[E,FA] Γ � P : σPro[E,FA] P(σ, ρ,A) F � G

Γ � a[[P]] : ρPro[G,HB]

(Input �)

Γ, x :W � P : σPro[W,FA]

Γ � (x :W)P : σPro[W,FA]

(Output �)

Γ �M :W Γ � P : σPro[W,FA]

Γ � 〈M〉P : σPro[W,FA]

(Input ↑) A ∈ {r, rw}
Γ, x :W � P : σPro[E,WA]

Γ � (x :W)↑P : σPro[E,WA]

(Output ↑) A ∈ {w, rw}
Γ �M :W Γ � P : σPro[E,WA]

Γ � 〈M〉↑P : σPro[E,WA]

(Input M)

Γ, x :W � P : σPro[E,FA] Γ �M : ρAmb[W,UB] P(σ, ρ, r)
Γ � (x :W)MP : σPro[E,FA]

(Output M)

Γ � N :W Γ � P : σPro[E,FA] Γ �M : ρAmb[W,UB] P(σ, ρ,w)
Γ � 〈N〉MP : σPro[E,FA]

(dead)

Γ � 0 : σPro[E,FA]

(Replication)

Γ � P : σPro[E,FA]

Γ � !P : σPro[E,FA]

(New)

Γ, x :W � P : σPro[E,FA]

Γ � (νx :W)P : σPro[E,FA]

Fig. 1. Typing Rules

114 M. Bugliesi, G. Castagna, and S. Crafa

(resp. write only to) ambients of clearance ρ compatible with σ according to the
given security policy.

We conclude with the (Input ↑) and (Output ↑) for upward input/output
which, perhaps surprisingly, do not impose any security constraint: that is be-
cause security on upward communication is already regulated by the ambient
rule, and by the rules governing mobility.

The type system satisfies standard properties, notably, Subject Reduction:

Theorem 1. If Γ � P : σPro[E,FA] and P➞Q, then Γ � Q : σPro[E,FA].

However, the main purpose of types is to statically detect access violations. It
is a simple technical matter to show the soundness of our type system. Let level
be the function that associates the types σAmb[E,FA] and σCap[EA] to σ. We
decorate reduction with a function � that associate names to security levels. The
definition is straightforward in all cases, except for the case of restrictions:

P ➞	,(x : level(W)) Q

(νx :W)P ➞	 (νx :W)Q
Also, we instrument this form of labeled reduction with error rules.

(e-input n) m[[(x:W)nP | n[[〈M〉Q | R]] | S]] ➞	 err if ¬P(�(m), �(n), r)
(e-input ↑) m[[〈M〉P | n[[(x)↑Q | R]] | S]] ➞	 err if ¬P(�(n), �(m), r)
(e-output n) m[[〈M〉nP | n[[(x)Q | R]] | S]] ➞	 err if ¬P(�(m), �(n),w)
(e-output ↑) m[[(x)P | n[[〈M〉↑Q | R]] | S]] ➞	 err if ¬P(�(n), �(m),w)

In addition, we have structural rules that propagate errors from a process to
its enclosing terms. Finally, given a type environment Γ , we say that � is Γ -
compatible if for all x ∈ dom(Γ), one has �(x) = level(Γ (x)). If we assume
that err is a distinguished process, with no type, it is very easy to verify that
no system containing an occurrence of err can be typed in our type system.
Absence of run time errors may now be stated as follows:

Theorem 2 (Soundness). For every Γ , P and Γ -compatible �, if Γ � P : T ,
then P ➞	� err.

4 Examples

In this section we consider several examples from the literature on security and
related issues, and show how to handle them with Boxed Ambients.

Wrappers. As a solution for resource protection and access control in wide-area
networks, Sewell and Vitek [SV00] propose to use wrappers to isolate potentially
malicious programs. Their framework is based on an extension of the π-calculus,
known as the boxed π-calculus: wrappers enable a programming style in which
incoming code can be secured into a box, and its interactions with the enclos-
ing environment filtered by the wrapper that only forwards legitimate messages
between the boxed program and its enclosing environment via secured channels.

Reasoning about Security in Mobile Ambients 115

The paradigmatic example of that work can be rephrased in our syntax as
follows:

(νa, b)
(
a[P] | !(x)a〈x〉b | b[Q])

P and Q are arbitrary processes encapsulated in ambients (“named boxes”
in [SV00] terminology) with private names a and b, placed in parallel with a
forwarder process from ambient a to ambient b. The configuration above is in-
teresting when P and Q are distrusted processes since ambient boundaries forbid
them to interact directly, while the restrictions ensure that the only possible in-
teraction with the environment is with the forwarder process !(x)a〈x〉b. This is
the way for Boxed-π to enforce a security policy that prevents (i) Q from leaking
secrets to P and (ii) P and Q from corrupting the environment. This holds true
also in Boxed Ambients. Besides that, in Boxed Ambients we have the choice of
other alternatives. For example, to enforce (i) we can use military security and
ensure a more general property: if we assign to a a security level strictly greater
than the level of b, then our type system statically ensures that there cannot be
any unwanted access from Q to P . To enforce also (or only) the property (ii)
we can once more rely on military (but also commercial) security, and assign to
the environment a security level incomparable with the levels of a and b. Then
the two processes cannot access and corrupt the resources of the environment.

Asynchronous Communication. In wide-area networks it is hardly reason-
able to rely only on synchronous communication (see [Car00] for discussion, and
[BV02] for experience with implementations). In [BCC01], we show how to ac-
count for asynchronous output in Boxed Ambients and discuss the consequences
of this choice. Besides other changes, asynchronous communication results from
introducing the following new reduction rules

(asynch output n) 〈M〉nP | n[[Q]] ➞ P | n[[〈M〉 | Q]]
(asynch output ↑) n[[〈M〉↑P | Q]] ➞ 〈M〉 | n[[P | Q]]

to direct an output in the appropriate ambient. The enhanced flexibility ob-
tained using asynchronous communications is paid by lesser security since now
we loose the total mediation principle. Consider the following two examples:

a[[(x :W)bP | b[[c[[〈M〉↑ | Q]]]]]] b[[a[[(x :W)↑P]] | c[[〈M〉↑Q]]]]
they both implement a covert channel between ambients a and c, since with
asynchronous reductions, they evolve into a[[(x :W)nP | b[[〈M〉 | c[[Q]]]]]] and
b[[a[[(x :W)↑P]] | 〈M〉 | c[[Q]]]] respectively. In both cases by a further reduc-
tion step the ambient a gets hold of the message 〈M〉 without any mediation of b.

These kind of covert channels are two examples of security breaches that
cannot be prevented by the primitives of the calculus and it is where the use
of security policies comes to rescue. In both cases it just suffices to assign to
ambient a a clearance strictly lower than that of b to make the read operation
performed by a illegal in both commercial and military security (since it would
be a read-up) and, as such, statically detected.

Firewalls. We now look at the protocol for firewall crossing defined in [CG99]
and refined in [LS00], and show how it can be defined with Boxed Ambients.

116 M. Bugliesi, G. Castagna, and S. Crafa

The idea of the protocol is to let an Agent cross a Firewall by means of a shared
key k.

Firewall = (νf)f [[k [[out f.〈in f〉a]] | . . .]] Agent = a[[in k.(x)out k.x.Q]]

(νk)(Firewall | Agent) ➞∗ (νk, f)f [[. . .]] | k [[〈in f〉a | a[[(x)out k.x.Q]]]]
➞∗ (νk, f)f [[. . .]] | k [[a[[out k.in f.Q]]]]
➞∗ (νf)f [[. . . | a[[Q]]]]

The Firewall, with secret name f , sends out a pilot ambient k to guide the agent
inside. The name k is a password that the agent a must know in order to enter
(to acquire the path to) the firewall.

Besides authenticating entering agents, the firewall must in general provide
other security guarantees. For example, the firewall administrator may want to
ensure that processes inside the firewall can access the resources of an entered
agent, but not the converse. This can be enforced with commercial security,
by the following type assignments: f : φAmb[E,FA] and k : κAmb[shh, shh],
where E and FA are appropriate types, and φ and κ are security levels such
that κ ≺ φ. To illustrate the effects of this type assignments, consider a generic
agent a (whose definition may differ from that of Agent) that wants to enter the
firewall, and assume that a : αAmb[G,HB]. To cross the firewall, a must comply
with the protocol and therefore accept write requests from k. With commercial
security, this is possible only if α
 κ and this, by transitivity, implies that α ≺ φ.
Moreover, commercial security forbids low-level ambients (such as a) contained
in high-level ambients (such as f) to perform upward communications. But then,
α ≺ φ implies B = shh. In summary, the type assignment enforces for a a security
level strictly smaller than the level of f , and the policy we choose ensures that
the agents that enter the firewall f cannot directly access to local resources of
f , as expected.

The protocol we just discussed depends on the assumption that the firewall
knows the name of the entering agents. This is clearly unrealistic but, fortunately,
easily remedied, as we show next. In order to provide guarantees of commercial
security, the new protocol assumes that the agent know two passwords, k1 and
k2, to cross the firewall.

Firewall2 = (νf)f [[k1 [[out f.(y:A)k2 in f.〈N〉y〈y〉]] | (y:A)k1P{y}]]
Agent2 = a[[in k1. (k2 [[out a.〈a〉]] | (x)out k1.Q)]]

(νk, k′)(Firewall2 | Agent2)
➞∗ (νk1, k2, f)f [[...]] | k1 [[(y:A)k2 in f.〈N〉y〈y〉 | k2 [[〈a〉]] | a[[(x)out k1.Q]]]]
➞∗ (νf)f [[a[[Q]] | P{a}]]

Again, the protocol starts with the agent a entering the pilot ambient k1. The
ambient k1, in turn, reads from k2 the name of the agent, carries the agent inside
the firewall, and communicate the name a in order to let the firewall interact
with the incoming agent. The message 〈N〉y is just used for synchronization,
to ensure that the agent a exits the pilot ambient k2 only after k2 is back into
the firewall. Note that the firewall may interact only with agents whose type

Reasoning about Security in Mobile Ambients 117

is the one used for the variable y. It would be nice to add to subtyping (and
tuple?) polymorphism other forms of polymorphism (for example on the lines
of the excellent [AKPG01]) so that to extend the possible interactions with the
incoming agents.

Trojan Horses. In [BC01] a type system that can statically de-
tect Trojan horses is defined. The motivating example is the system
a[[in c.P]] | b[[in a.out a.in d.Q]] | c[[R | d [[S]]]] , where the ambient d contains
confidential data that should be made available to ambients running within c but
not to ambients that will enter c. The question is whether c should let a enter
or not. Apparently a does not attempt to access d; nevertheless the move must
be forbidden since b can use it as a Trojan Horse to enter c ad then access d.

a[[in c.P]] | b[[in a.out a.in d.Q]] | c[[R | d [[S]]]] ➞∗ c[[R | a[[P]] | d [[S | b[[Q]]]]]]

The attack is detected in [BC01] by means of a type system that traces the
behavior of a, revealing the move of b into a and hence a chance for the attack.
In [BC01] it is also shown how to perform this verification even when c runs in a
possibly untyped context. Here we can obtain the same effect by setting the clear-
ance of d to a level that is incomparable to any security level that is defined out-
side c. As we hinted in the excursus in Section 3.1 this can be obtained by using
security labels with limited scope: (ν� : L)(νd : {�}Amb[E, shh])c[[R | d [[S]]]] .
No matter how and where the name d is communicated and whether c is in a
well typed-context or not, if we impose commercial security only the processes
that are already inside the ambient c can access information contained in d.
Indeed to reproduce the initial configuration, c must communicate to b the
name d. But, unlike what happens in Mobile Ambients, revealing the name of
an ambient does not imply granting access to its resources.

5 Related Work and Conclusions

We have studied the problem of MAC security for Mobile Ambients (MA), and
argued that the calculus is not fully adequate to express security concepts. As
a solution, we have presented Boxed Ambients (BA), whose primitives provide
elegant and natural mechanisms of resource access control. We conclude with
discussion on related work on security for calculi of mobility.

The Dπ Calculus. In [HR00b] Hennessy and Riley discuss a type system for
resource protection in the Dπ-calculus, a distributed variant of π-calculus where
processes are located, and may migrate across locations. In Dπ, communication
occurs via named channels that are associated with read/write capabilities: the
type system controls that processes accessing a resource possess the appropriate
capability.

In our approach, instead, in order to classify an access as legal or illegal,
the type system checks that the security levels of subject and object satisfy the
constraints imposed by the security policy for that access. A further difference
is that in Dπ the topology of locations is completely flat, while in BA ambients

118 M. Bugliesi, G. Castagna, and S. Crafa

may be nested at will: the interplay between the dynamic nesting structure
determined by moves, and the dynamic binding of the parent location ↑ for
upward communication makes access control for BA more complex. In [HR99],
the type system for Dπ is extended to cope with partially typed networks, in
which some of the agents (and/or locations) are untyped, hence untrusted: type
safety for such networks requires a form of dynamic type checking. Plans for
future work on BA include extensions along similar lines.

The Security Pi Calculus. In [HR00a], Hennessy and Riely discuss the secu-
rity π-calculus, a variant of the π-calculus in which processes are syntactically
defined as running at a given security level, and whose type system ensures that
low-level processes never gain access to high-level resources. In BA, instead, we
assume that clearances are specified by types, and the security level associated to
an ambient type represents the clearance of resources contained in that ambient,
as well as the clearance of the agent it implements. Besides resource protection,
in [HR00a], the authors also investigate non-interference, trying to provide guar-
antees against implicit information flow from high levels to lower levels. To that
end, they check that the clearance of values are compatible with clearance of
channels along which they (the values) are exchanged. Furthermore, they show
that a notion of non-interference based on may testing equivalence is soundly
captured by the type system.

We did not study these issues in detail (but see § 4 for examples of information
flow) in this paper. In fact, in its current version, the type system only checks the
clearance of subjects against the clearance of objects, disregarding the clearance
of the values. We believe that it is possible to study BA in a similar way taking
these issues into account. We leave this and the study of information flow and
non-interference as subject of future work.

Typing of Mobility and Security for Mobile Ambients. Our type sys-
tem is clearly related to other typing systems developed for Mobile Ambients.
In [CG99] types guarantees absence of type confusion for communications. The
type systems of [CGG99] and [Zim00] provide control over ambients moves and
opening. Furthermore, the introduction of group names [CGG00] and the pos-
sibility of creating fresh group names, give flexible ways to statically prevent
unwanted propagation of names. The powerful type discipline for Safe Ambients,
presented in [LS00], adds finer control over ambient interactions and prevents
all grave interferences.

All these approaches are orthogonal to the resource access control mecha-
nisms we studied. We believe that similar typing disciplines as well as the use
of group names, can be adapted to Boxed Ambients to obtain similar strong
results. A paper more directly related to ours is [DCS00], where ambient types
are associated with security levels in ways similar to ours. The difference is that
in [DCS00], security checks are over opening and moves, while in our work we
focus on read and write operations.

A final mention goes to [BC01], [NNHJ99] and [NN00], where control and
data flow analysis, rather than typing disciplines, are used to check security
properties of Ambients.

Reasoning about Security in Mobile Ambients 119

Other Languages and Calculi. In the literature on language-based security,
several papers deal with access control techniques and information flow. Two
examples are [DNFP99] and [LR99]. In [DNFP99], authors take a similar ap-
proach to that of Hennessy and Riley, based on a variant of Linda with multiple
“tuple spaces”. In [LR99], Leroy and Rouaix focus on integrity of typed applets
via access control.

Acknowledgments. Thanks to Luca Cardelli for insightful comments and dis-
cussion, and to the anonymous referees. The second author would like to thank
Ilaria Castagna for several corrections she made on an early draft of the paper.

References

[AKPG01] T. Amtoft, A.J. Kfoury, and S.M. Pericas-Geertsen. What are
polymorphically-typed ambients? In ESOP 2001, volume 2028 of LNCS,
pages 206–220. Springer, 2001.

[BC01] M. Bugliesi and G. Castagna. Secure safe ambients. In Proc. of the 28th
ACM Symposium on Principles of Programming Languages, pages 222–
235, London, 2001. ACM Press.

[BCC01] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. Technical report,
L.I.E.N.S., 2001. Available at ftp.ens.fr/pub/dmi/users/castagna.

[BP76] D.E. Bell and L. La Padula. Secure computer system: Unified exposi-
tion and multics interpretation,. Technical Report MTR-2997, MITRE
Corporation, Bedford, MA. March 1976.

[BV02] C. Bryce and J. Vitek. The JavaSeal mobile agent kernel. Autonomous
Agents and Multi-Agent Systems, 2002. To appear.

[Car00] L. Cardelli. Global computing. In IST FET Global Computing Consulta-
tion Workshop. 2000. Slides.

[CG98] L. Cardelli and A. Gordon. Mobile ambients. In Proceedings of POPL’98.
ACM Press, 1998.

[CG99] L. Cardelli and A. Gordon. Types for mobile ambients. In Proceedings of
POPL’99, pages 79–92. ACM Press, 1999.

[CGG99] L. Cardelli, G. Ghelli, and A. Gordon. Mobility types for mobile ambi-
ents. In Proceedings of ICALP’99, number 1644 in LNCS, pages 230–239.
Springer, 1999.

[CGG00] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility
types. In International Conference IFIP TCS, number 1872 in Lecture
Notes in Computer Science, pages 333–347. Springer, August 2000.

[CGZ01] G. Castagna, G. Ghelli, and F. Zappa. Typing mobility in the seal calcu-
lus. In CONCUR 2001 (12th. International Conference on Concurrency
Theory), Lecture Notes in Computer Science, Aahrus, Danemark, 2001.
Springer. This same volume.

[DCS00] M. Dezani-Ciancaglini and I. Salvo. Security types for safe mobile ambi-
ents. In Proceedings of ASIAN’00, pages 215–236. Springer, 2000.

[DNFP99] R. De Nicola, G. Ferrari, and R. Pugliese. Types as specifications of access
policies. In Secure Internet Programming: Security Issues for Mobile and
Distributed Objects, number 1603 in LNCS. Springer, 1999.

[DoD85] US Department of Defense. Dod trusted computer system evaluation cri-
teria, (the orange book). DOD 5200.28-STD, 1985.

120 M. Bugliesi, G. Castagna, and S. Crafa

[FGL+96] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus
of mobile agents. In 7th International Conference on Concurrency Theory
(CONCUR’96), volume 1119 of Lecture Notes in Computer Science, pages
406–421. Springer, 1996.

[Gol99] D. Gollmann. Computer Security. John Wiley & Sons Ltd., 1999.
[HR00a] M. Hennessy and J. Riely. Information flow vs. resource access in the

asynchronous π-calculus (extended abstract). In Automata, Languages
and Programming, 27th International Colloquium, volume 1853 of LNCS,
pages 415–427. Springer, 2000.

[HR00b] M. Hennessy and J. Riely. Resource access control in systems of mobile
agents. Information and Computation, 2000. To appear.

[HR99] J. Riely and M. Hennessy. Trust and partial typing in open systems of
mobile agents. In Proceedings of POPL’99, pages 93–104. ACM Press,
1999.

[LR99] X. Leroy and F. Rouaix. Security properties of typed applets. In Secure
Internet Programming – Security issues for Mobile and Distributed Objects,
volume 1603 of LNCS, pages 147–182. Springer, 1999.

[LS00] F. Levi and D. Sangiorgi. Controlling interference in ambients. In POPL
’00, pages 352–364. ACM Press, 2000.

[NN00] H. R. Nielson and F. Nielson. Shape analysis for mobile ambients. In
POPL’00, pages 135–148. ACM Press, 2000.

[NNHJ99] F. Nielson, H. Riis Nielson, R. R. Hansen, and J. G. Jensen. Validating
firewalls in mobile ambients. In Proc. CONCUR’99, number 1664 in LNCS,
pages 463–477. Springer, 1999.

[SV00] P. Sewell and J. Vitek. Secure composition of untrusted code: Wrappers
and causality types. In 13th IEEE Computer Security Foundations Work-
shop, 2000.

[VC99] J. Vitek and G. Castagna. Seal: A framework for secure mobile com-
putations. In Internet Programming Languages, number 1686 in LNCS.
Springer, 1999.

[Zim00] P. Zimmer. Subtyping and typing algorithms for mobile ambients. In
Proceedins of FoSSaCS’99, volume 1784 of LNCS, pages 375–390. Springer,
2000.

Synchronized Hyperedge Replacement with
Name Mobility

A Graphical Calculus for Mobile Systems

Dan Hirsch1 � and Ugo Montanari2 ��

1 Departamento de Computación, Universidad de Buenos Aires,
dhirsch@dc.uba.ar

2 Dipartimento di Informatica, Universitá di Pisa,
ugo@di.unipi.it

Abstract. The design of software systems that include mobility or dy-
namic reconfiguration of their components is becoming more frequent.
Consequently, it is necessary to have the right tools to handle their de-
scription specially in the design phase. With this in mind and under-
standing the relevance of visual languages at the design level, we present
in this paper a graphical model using Synchronized Hyperedge Replace-
ment Systems with the addition of name mobility. This method gives
a solid foundation for graphical mobile calculi which are well-suited for
high level description of distributed and concurrent systems.

1 Introduction

The design of software systems that include mobility or dynamic reconfiguration
of their components is becoming more frequent. Consequently, it is necessary to
have the right tools to handle their description. More specifically, it is funda-
mental to be able to cope with these type of requirements in the design phase
and specially for software architectures.

With this in mind and understanding the relevance of visual languages spe-
cially at the design level, we present in this paper a graphical model using Syn-
chronized Hyperedge Replacement Systems with the addition of name mobility. In
this way we obtain the good characteristics of a graphical calculus together with
the expressive power to describe complex mobile systems. The capability of cre-
ation and sharing of ports together with multiple simultaneous synchronizations
give us a very powerful tool to specify more complex evolutions, reconfiguring
multiples components by identifying specific ports. Apart from the graphical
side, we can relate our calculus with π-calculus [6]. The difference is that π-
calculus is sequential (i.e. it allows only one synchronization at a time) while
� Partially supported by UBACyT Projects TW72 and X094.
�� Partially supported by CNR Projects Metodi per Sistemi Connessi mediante Reti ;

by MURST project Theory of Concurrency and Higher Order and Types ; by TMR
Network GETGRATS; and by Esprit Working Groups APPLIGRAPH.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 121–136, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

122 D. Hirsch and U. Montanari

synchronized rewriting allows multiple and concurrent synchronizations all over
the graph.

In this setting, hypergraphs [8] represent systems and grammars represent
system families (software architecture styles) while their dynamic evolution is
model by synchronized rewriting. Following a self-organizing approach we use
context-free grammars together with synchronized rewriting to model dynamic
reconfiguration without the need of central coordination.

Synchronized replacement with name mobility was first introduced in [3] for
modelling software architecture reconfigurations. The presentation in [3] was
only for Hoare Synchronization and only with the possibility of sharing new
nodes (i.e. new names) as in the πI-calculus [9]. Now, we allow to pass both new
names and old names in a synchronization and give a revised definition of the
synchronization transition systems. The new contributions of this paper are the
introduction of the Milner Synchronization, the introduction of bounded nodes
for a compositional presentation and to allow the synchronization of old names
with new names. These three capabilities are necessary to model the π-calculus
in section 4.2. A more detailed presentation of the ideas in this paper and the
theorem proofs can be found in [4].

In the area of graph transformation and its application to system modelling
there are interesting work (for example, [8,2]) where, in general, system trans-
formations are represented with productions where their left hand sides are non
context-free graphs (with exception of [7]). This means that they imply a cen-
tralized control that needs to know the complete map of the system, which is
not well suited for distributed systems. Also none of these techniques includes
any synchronization mechanism with mobility. On the other side, our use of con-
text free productions with synchronization and mobility is a powerful tool for
describing self organising distributed systems.

The formalism presented in this paper gives a solid foundation for graphi-
cal mobile calculi which are well-suited for high level description of distributed
and concurrent systems, reflected by our main practical goal that is, once again,
formalizing the description of software architecture styles including their recon-
figurations.

2 Hypergraphs and Syntactic Judgements

In this section we introduce the notion of hypergraphs formalizing them as well
formed syntactic judgements. For an extensive presentation on the foundations
of Hyperedge Replacement Systems we refer to [1].

A hyperedge, or simply an edge, is an atomic item with a label (from a ranked
alphabet LE = {LEn}n=0,1,...) and with as many (ordered) tentacles as the rank
of its label. A set of nodes together with a set of such edges forms a hypergraph
(or simply a graph) if each edge is connected, by its tentacles, to its attachment
nodes. A graph is equipped with a set of external nodes identified by distinct
names. In figure 1a you can see a graph with four edges of rank two and two
external nodes (x and y). External nodes can be seen as the connecting points
of a graph with its environment (i.e. the context).

Synchronized Hyperedge Replacement with Name Mobility 123

Now, we present a definition of graphs as syntactic judgements, where nodes
correspond to names, external nodes to free names and edges to basic terms of
the form L(x1, . . . , xn), where xi are arbitrary names and L ∈ LE.

Definition 1 (Graphs as Syntactic Judgements). Let N be a fixed infinite
set of names and LE a ranked alphabet of labels. A syntactic judgement (or
simply a judgement) is of the form Γ � G where,

1. Γ ⊆ N is a set of names (the external nodes of the graph).
2. G is a term generated by the grammar

G ::= L(x)
∣∣ G|G ∣∣ (νy)G

∣∣ nil where x is a vector of names, L is an
edge label with rank(L) = |x| and y is a name.

Let fn(G) denote the set of all free names of G, i.e. all names in G not bound
by a ν operator. We demand that fn(G) ⊆ Γ .

We use the notation Γ, x to denote the set obtained by adding x to Γ , as-
suming x �∈ Γ . Similarly, we will write Γ1, Γ2 to state that the resulting set of
names is the disjoint union of Γ1 and Γ2.

Definition 2 (Structural Congruence and Well-Formed Judgements).

– Structural Congruence ≡ on syntactic judgements obey axioms in Table 1.
– The well-formed judgements for constructing graphs over LE and N are
those generated by applying the rules in Table 1 up to axioms of structural
congruence.

Table 1. Well-formed judgments

Structural Axioms
(AG1) (G1|G2)|G3 ≡ G1|(G2|G3) (AG2) G1|G2 ≡ G2|G1

(AG3) G|nil ≡ G (AG4) νx.νy.G ≡ νy.νx.G

(AG5) νx.G ≡ G ifx /∈ fn(G) (AG6)
νx.G ≡ νy.G{y/x}

if y /∈ fn(G)

(AG7) νx.(G1|G2) ≡ (νx.G1)|G2 if x /∈ fn(G2)

Syntactic Rules
(RG1)

x1, . . . , xn � nil
(RG2)

L ∈ LEm yi ∈ {xj}
x1, . . . , xn � L(y1, . . . , ym)

(RG3)
Γ � G1 Γ � G2

Γ � G1|G2
(RG4)

Γ, x � G

Γ � νx.G

Axioms (AG1), (AG2) and (AG3) define the associativity, commutativity
and identity over nil for operation |, respectively. Axioms (AG4) and (AG5)
state that the nodes of a graph can be hidden only once and in any order, and
axioms (AG6) and (AG7) define alpha conversion of a graph with respect to its
bounded names and the interplay between hiding and the operator for parallel
composition, respectively.

124 D. Hirsch and U. Montanari

Rule (RG1) creates a graph with no edges and n nodes and rule (RG2) creates
a graph with n nodes and one edge labelled by L and with m tentacles (note that
there can be repetitions among nodes in y, i.e. some tentacles can be attached
to the same node). Rule (RG3) allows to put together (using |) two graphs that
share the same set of external nodes. Finally, rule (RG4) allows to hide a node
from the environment.

If necessary, thanks to axiom (AG4), we will write νX, with X =
⋃
xi,

to abbreviate νx1.νx2 . . . νxn. Note that using the axioms, for any judgement
we can always have an equivalent normal form Γ � νX.G, with G a subterm
containing only composition of edges. It is clear from the above definitions that Γ
and X can be made disjoint sets of nodes using the axioms and that nodes(G) ⊆
(Γ ∪X). We can state the following correspondence theorem.

Theorem 1 (Correspondence of Graphs and Judgements). Well-formed
syntactic judgements up to structural axioms are isomorphic to graphs up to
isomorphism.
Ring Example. We use graphs to represent systems. In this context, edges
are components and nodes are ports of communication. External nodes are con-
necting ports to the environment. Edges sharing a node mean that there is a
communication link among them. So, let us take the graph in figure 1a that rep-
resents a ring of four components with two connecting ports. Edges representing
components are drawn as boxes attached to their corresponding ports. The label
of an edge is the name of the component and the arrow indicates the order of the
attachment nodes. In this case we only have edges with two tentacles. Names
in filled nodes identify external nodes and empty circles are bound nodes. Fig-
ure 1b shows how the corresponding well-formed judgement is obtained. Note
that (RG3) needs the same set of names Γ in both premises.

a) b)

x

y

CCC

CC C
x, y, z, w C(x, w)

C(x, w) | C(w, y)x, y, z, w

C(x, w) | C(w, y) | C(y, z) | C(z, x)x, y, z, w

x, y, z, w C(z, x)
C

(RG2)

C(y, z) | C(z, x)x, y, z, w

x, y, z, w C(y, z)
C

(RG2)

w. C(x, w) | C(w, y) | C(y, z) | C(z, x)νx, y, z
(RG4)

ν z, w. C(x, w) | C(w, y) | C(y, z) | C(z, x)x, y

C
(RG2)

x, y, z, w C(w, y)
C

(RG2)

(RG3)

(RG3)

(RG4)

Fig. 1. The graph and the corresponding judgement for the ring example

3 Synchronized Hyperedge Replacement with Name
Mobility

Synchronized edge replacement is obtained using graph rewriting combined with
constraint solving. More specifically, we use context-free productions with actions
that are used to coordinate the simultaneous rewriting of various productions.

The following definitions present an extension to synchronized replacement
systems where we allow the declaration and creation of names on nodes and use

Synchronized Hyperedge Replacement with Name Mobility 125

synchronized rewriting for name mobility. In this way it is possible to specify
reconfigurations over the graphs by changing the connections between edges.

3.1 Synchronized Replacement Systems as Syntactic Judgements

A context-free edge replacement production rewrites a single edge into an arbi-
trary graph. Productions will be written as L→ R. A production p = (L→ R)
can be applied to a graph G yielding H (G ⇒p H) if there is an occurrence of
an edge labeled by L in G. A result of applying p to G is a graph H which is
obtained from G by removing an edge with label L, and embedding a fresh copy
of R in G by coalescing its external nodes with the corresponding attachment
nodes of the replaced hyperedge. This notion of edge replacement yields the basic
steps in the derivation process of an edge replacement grammar.

To model coordinated rewriting, it is necessary to add some labels to the
nodes in productions. Assuming to have an alphabet of actions Act, then we
associate actions to some of the nodes. In this way, each rewrite of an edge
must synchronize actions with (a number of) its adjacent edges and then all the
participants will have to move as well (how many depends on the synchroniza-
tion policy). It is clear that coordinated rewriting will allow the propagation of
synchronization all over the graph where productions are applied.

A synchronized edge replacement grammar, or simply a grammar, consists of
an initial graph and a set of productions. A derivation is obtained by starting
with the initial graph and applying a sequence of rewriting rules, each obtained
by synchronizing possibly several productions.

Now, for adding to productions the capability of sharing nodes we let a pro-
duction to declare new names for the nodes it creates and to share these names
and/or other existing names with the rest of the graph using the synchronization
process. This is done in a production by adding to the action in a node, a tu-
ple of names that it wants to communicate. Therefore, the synchronization of a
rewriting rule has to match not only actions, but also the tuples of names. After
the matching is obtained and the productions applied, the declared names that
were matched are used to obtain the final graph by merging the corresponding
nodes.

As is done in π-calculus, we allow to merge new nodes with other nodes
(new or old). Merging among already existing nodes is not allowed. Relaxing
this constraint, would permit fusions of nodes in the style of the fusion-calculus
[10]. Instead, if we consider a syntactic restriction in which we allow merging
new nodes only, we have the style of the πI-calculus [9]. These policies of which
nodes are shared are independent of the synchronization mechanisms applied.

To formalize synchronized rewriting we use, as in section 2, judgements and
define the notion of transitions.
Definition 3 (Transitions). Let N be a fixed infinite set of names and Act
a ranked set of actions, where each action a ∈ Act is associated with an arity
(indicating the number of nodes it can share). We define a transition as:

Γ � G
Λ−→ Γ,∆ � G′

with Λ : Γ ◦−→ (Act×N ∗) ∆ = {z | ∃x. Λ(x) = (a,y), z /∈ Γ, z ∈ set(y)}

126 D. Hirsch and U. Montanari

A transition is represented as a logical sequent which says that G is rewritten
into G′ satisfying a set of requirements Λ. The free nodes of graph G′ must include
the free nodes of G and those new nodes (∆) that are used in synchronization.
Note that ∆ is determined by the Γ and Λ of the corresponding transition.

The set of requirements Λ ⊆ Γ ×Act×N ∗ is defined as a partial function in
its first argument, i.e. if (x, a,y) ∈ Λ we write Λ(x) = (a,y) with arity(a) = |y|.
With Λ(x) ↑ we mean that the function is not defined for x, i.e. that there is
no requirement in Λ with x as first argument. Function set(y) returns the set of
names in vector y. The definition of Λ as a function means that all edges in G1
attached to node x that are participating in a synchronization, must satisfy the
conditions of the corresponding synchronization algebra. The function is partial
since not all nodes need to be loci of synchronization.

Note that to share only new nodes, it is enough to impose on Λ the condition
that names of vectors y should not be in Γ (set(y) ∩ Γ = ∅). Then, ∆ does not
depend on Γ and can be written as, ∆ =

⋃
xay ∈ Λ set(y).

Definition 4 (Productions). A synchronized production, or simply a produc-
tion, is a special transition of the form,

x1, . . . , xn � L(x1, . . . , xn)
Λ−→ x1, . . . , xn, ∆ � G

The context-free character of productions is here made clear by the fact that
the graph to be rewritten consists of a single edge with distinct nodes. Produc-
tions are defined as general schemas that are applied over different graphs, so
they will be alpha convertible with respect to the names in ∆. In this way, the
new names can be arranged to avoid name clashing and a correct synchroniza-
tion.

Definition 5 (Grammars). Let N be a fixed infinite set of names, LE a
ranked alphabet of labels and Act a ranked set of actions. A grammar consists
of an initial graph Γ0 � G0 and a set P of productions.

A derivation is a finite or infinite sequence of the form Γ0 � G0
Λ1−→ Γ1 �

G1
Λ2−→ . . .

Λn−→ Γn � Gn . . . , where Γi−1 � Gi−1
Λi−→ Γi � Gi , i = 1 . . . n

is a transition in the set T (P) of transitions generated by P. Transitions T (P)
are generated by P applying the transition rules of the chosen synchronization
mechanism, as defined in the next sections.

3.2 Hoare Synchronization

The first synchronization mechanism we present is Hoare Synchronization, where
each rewrite of an edge must share on each attachment node the same action
with all the edges connected to that node.

For example, consider n edges which share one node, such that no other
edge is attached to that node, and let us take one production for each of these
edges. Each of these productions has an action on that node (ai for i = 1 . . . n). If
ai �= aj (for some i, j), then the n edges cannot be rewritten together (using these
productions). If all ai are the same, then they can move, via the context-sensitive
rewriting rule obtained by merging the n context-free productions. The use of

Synchronized Hyperedge Replacement with Name Mobility 127

synchronized graph productions in a rewriting system implies the application
of several productions where all edges to be rewritten and sharing a node must
apply productions that satisfy the same actions.

Given that Hoare synchronization requires that all edges sharing a node
must participate in the synchronization, but since not all nodes need to be loci
of synchronization, an identity action ε is defined which is required in a node
by all the productions which do not synchronize on that node. We impose the
condition that the identity action has arity zero, so if it is imposed on a node
then no name can be shared on that node. In particular, to model edges which
do not move in a transition we need productions with identity actions on their
external nodes, where an edge with label L is rewritten to itself. This is called
the id production id(L). Then, the set P of productions must include productions
id(L) for all symbols L in LE. The corresponding judgements are as follows,

x1, . . . , xn � L(x1, . . . , xn)
{x1ε<>,... ,xnε<>}−−−−−−−→ x1, . . . , xn � L(x1, . . . , xn)

For any relation R ⊆ Γ × Act×N ∗ we define n(R) =
⋃

(x,a,y)∈R set(y) and
will call a mapping ρ : ∆ → n(R) the most general unifier1 (mgu) of R (with
∆ = n(R)∩ Γ) whenever ρ(R) is a function in its first argument and if, of all ρ′

with this property, ρ identifies the minimal number of names.
The mgu is necessary to resolve the identification of names (i.e. nodes) that

is consequence of a synchronization operation and to avoid name capture.

Definition 6 (Hoare Transition System). Let < G0,P > be a grammar. All
transitions T (P) using Hoare synchronization are obtained from the transition
rules in Table 2.

Rule (ren) is necessary to allow to apply a production to graphs with edges
that may have several tentacles attached to the same node (this is done by ξ that
is a possibly non-injective substitution), and also to adequate the free names to
the names of the graph where the production is applied. Notice that ρ(ξ(Λ)) is
still a function and requirements on nodes identified by ξ must coincide. Also,
isolated nodes are added (those in Γ) with no requirement on them. Remember
that for any transition, as presented in definition 3, ∆ is uniquely identified by
the corresponding Γ and Λ.

Rule (com) is the one that completes the synchronization process. Given that
all edges must participate, Hoare synchronization is modeled as the union of the
synchronization requirements (ρ(Λ1∪Λ2)) where ρ assures that the rule can only
be applied when the requirements on all the nodes are satisfied and the shared
nodes are actually identified. Condition ∆1 ∩∆2 = ∅ avoids name capture.

Rule (open) allows to share with the environment a node that was originally
bounded. This rule may be used for sharing a port of communication that was
1 The mapping ρ is exactly the most general unifier of the equations (a = b) ∧ (y = z)

(whenever (x, a,y), (x, b, z) ∈ R) and is unique up to injective renaming. It does not
exist if there are tuples (x, a,y), (x, b, z) ∈ R with a �= b or if the equations y = z
imply an equation v = w with v, w different old names. Thus the external nodes
(i.e., x ∈ Γ) that appear in n(R) are considered constants. In this way new names
are unified with either new or old names, but it is not possible to have a unification
among old names (two different constants cannot be unified).

128 D. Hirsch and U. Montanari

Table 2. Transition Rules for Hoare Synchronization

(ren)
x1, .., xn � L(x1, .., xn) Λ−→ x1, .., xn, ∆ � G ∈ P

ξ(x1, .., xn), Γ � ξ(L(x1, .., xn))
ρ(ξ(Λ))−→ ξ(x1, .., xn), Γ,∆′ � ρ(ξ(G))

where ρ = mgu(ξ(Λ)) and (ξ(xi) ∈ N/(∆ ∪ Γ)) ∧ (ξ(y) = y for y ∈ ∆)

(com)
Γ � G1

Λ1−→ Γ,∆1 � G′
1 Γ � G2

Λ2−→ Γ,∆2 � G′
2

Γ � G1|G2
ρ(Λ1∪Λ2)
−−−−−−→ Γ,∆ � ρ(G′

1|G′
2)

where ∆1 ∩∆2 = ∅ and ρ = mgu(Λ1, Λ2)

(open) Γ, x � G
Λ∪{(x,a,y)}
−−−−−−→ Γ, x,∆ � G′

Γ � νx.G
Λ−→ Γ,∆′ � νZ.G′

x ∈ n(Λ)

(hide) Γ, x � G
Λ∪{(x,a,y)}
−−−−−−→ Γ, x,∆ � G′

Γ � νx.G
Λ−→ Γ,∆′ � νx, Z.G′

x /∈ n(Λ)

where Z = set(y)\(∆′ ∪ Γ)

local among some components and that now they want to allow others to com-
municate with them by that port. Note as we are opening name x we still have
to keep bounded those names that are only shared by x (i.e. set Z). Notice that
{x} ∪∆ = ∆′ ∪ Z.

Also, rule (open) is used for what is called an extrusion allowing the creation
of privately shared ports. Extrusion allows to export and share bounded nodes.
But once synchronization is completed, it hides away those private names that
were synchronized meaning that the names are still bound, but their scope has
grown. Extrusion is usually (as in Milner synchronization and π-calculus) done
by using together rules (open) and (close). But in the case of Hoare synchro-
nization, where many edges have to synchronize in a shared node, a (close) rule
is not very useful because it cannot be sure when to hide the private names that
are extruded. It is more reasonable to use the (com) and at the end of the whole
operation use rule (hide) on the corresponding names.

Rule (hide) deals with hiding of names. It indicates that we do not only have
to hide the wanted name, but also all the names shared by synchronization only
on that name (i.e. set Z). Note that there is little difference with rule (open),
which is the fact that for rule (hide) the node to be hidden (x) must not be
shared by other nodes. In this case, ∆ = ∆′ ∪ Z.

Example. In this example an instance of the ring architecture style starts with
a ring configuration and at some point in its evolution is reconfigured to a star.

Figure 2a shows the grammar. The initial graph together with production
Brother construct rings. Production Star Reconfiguration is used to recon-
figure a ring into a star by creating a new node (w) and synchronizing using
action r. The new node is distributed among components to identify it as the
center of the star. Requirements (x, r,< w >) and (y, r,< w >) are represented

Synchronized Hyperedge Replacement with Name Mobility 129

graphically imposing the pair (r,< w >) on nodes x and y on the right hand side,
meaning that the rewriting step is only possible if requirements are satisfied.

Fig. 2. Ring grammar with star reconfiguration

Fig. 3. Proof of transition between graphs (4) and (5) in figure 2b

Figure 2b shows a possible derivation where a ring of four components is re-
configured (thick arrow). Components with thick border indicate the component
where rule Brother is applied. Figure 3 shows part of the proof that corresponds
to the final step of the derivation in Figure 2b. Due to space limitations we omit
the id productions and the application of rule ren for the proof.

This simple example shows how the approach can be used to specify complex
reconfigurations including the combination of different styles. In [3] another ex-
ample of reconfiguration can be found based on a real case of a Remote Medical
Care System.

3.3 Milner Synchronization

In this section we define theMilner Synchronization. This synchronization mech-
anism only allows, in a node, to synchronize actions from two of all edges sharing

130 D. Hirsch and U. Montanari

that node, and only those two edges will be rewritten as a consequence of that
synchronization.

In this case, the set of actions Act is formed by two disjoint sets of actions
and coactions (Act+ and Act−), and a special silent action (τ with arity(τ) = 0).
For each action a ∈ Act+ there is a coaction ā ∈ Act−. A requirement of the
form (x, ā,y) represents an output of names in y via port x with action a and
a requirement of the form (x, a,y) represents an input of names in y via port
x with action a. A synchronization will result of the matching of an action and
its corresponding coaction with the resulting unification of their shared names
as it was done for Hoare Synchronization. Given that after synchronizing two
requirements we are sure that the synchronization in that node is finished, the
corresponding tuples are replaced by a silent action and an empty list of names.

Note that what we are defining is a general Milner synchronization where
simultaneous synchronizations are allowed, so the π-calculus synchronization
mechanism is a special case where only one synchronization at a time is allowed.
For Milner synchronization we do not need an idle action ε.

Definition 7 (Milner Transition System). Let < G0,P > be a grammar. All
transitions T (P) using Milner synchronization are obtained from the transition
rules in Table 3 starting from the set of productions P over the initial graph G0.

Table 3. Transition Rules for Milner Synchronization

(par)
Γ1 � G1

Λ1−→ Γ1, ∆1 � G′
1 Γ2 � G2

Λ2−→ Γ2, ∆2 � G′
2

Γ1, Γ2 � G1|G2
Λ1∪Λ2−→ Γ1, Γ2, ∆1, ∆2 � G′

1|G′
2

where (Γ1, ∆1) ∩ (Γ2, ∆2) = ∅

(merge)
Γ � G

Λ−→ Γ,∆ � G′

σ(Γ) � σ(G) Λ′−→ σ(Γ), ∆′ � νZ.ρ(σ(G′))

where (σ(x) ∈ (N/∆) for x ∈ Γ) ∧ (σ(y) = y for y ∈ ∆) and
[(σx = σy, Λ(x) ↓, Λ(y) ↓, x �= y) implies

((∀v.σv = σx, v �= x, v �= y ⇒ Λ(v) ↑) , Λ(x) = (a,v), Λ(y) = (ā,w), a �= τ)]

ρ = mgu∆ {σv = σw| σx = σy, {(x, a,v), (y, b,w)} ⊆ Λ}
Λ′(z) =

{
(τ,<>) if σx = σy = z, x �= y, Λ(x) ↓, Λ(y) ↓
(ρ(σ(Λ))) (z) otherwise

Z = ρ(σ(Γ ∪∆))/(σ(Γ) ∪∆′)

(res)
Γ, x � G

Λ−→ Γ, x,∆ � G′

Γ � νx.G
Λ′−→ Γ,∆′ � νZ.G′

where (Λ(x) ↑ ∨ Λ(x) = (τ,<>)) and Λ′ = Λ/{(x, τ,<>)} and Z =
{ ∅ if x ∈ n(Λ)
{x} otherwise

Rule (par) juxtaposes two disjoint transitions without synchronization. Also,
to allow the application of a transition over a subgraph of a bigger one we

Synchronized Hyperedge Replacement with Name Mobility 131

need to include the identity transitions for any graph (i.e. transitions with no
requirements and that rewrite a graph in itself).

Rule (merge) is the responsible of identifying nodes. First, substitution σ
identifies nodes (typically after the use of rule (par)) and then, by way of the mgu
ρ, the synchronizations of the matched names are resolved. The conditions on the
rule avoid name capture ((σ(x) ∈ (N/∆) for x ∈ Γ) ∧ (σ(y) = y for y ∈ ∆))
and assure that only two edges synchronize (∀v.σv = σx, v �= x, v �= y ⇒ Λ(v) ↑
). As result of the synchronization we have the set of requirements Λ′ where the
synchronizing tuples are replaced by silent actions. Set ∆′ includes only those
new names that are still being shared by other external nodes that have not
been synchronized yet.

Rule merge takes care of two types of communication. The first one is when
an existing node is shared and identified with some new nodes (an old node is
merged with new nodes). The result of the synchronization works as a usual
(com) rule (i.e synchronization occurs but no name is restricted, see for example
rule (Com’) in section 4.1). The second type of communication is when only
new nodes are identified, which usually corresponds to what is called a (Close)
rule. In this case when the rule is used together with rule (res) they cause
an extrusion. These rules allow to export and share bounded nodes. But once
synchronization is completed, rule (merge) hides away those private names that
were synchronized (Z) meaning that the names are still bound, but their scope
has grown.

Rule (res) takes account of four cases. The first two (Λ(x) ↑ or Λ(x) = (τ,<>)
with x the name to extrude, i.e. x ∈ n(Λ)) correspond to what is usually called an
(Open) rule that works in a similar way as for Hoare synchronization. They are
used to export bounded nodes (in these cases Z = ∅). The other cases are for the
bounding operation that in Milner Synchronization is called restriction. In the
first case the rule restricts a node not participating in a synchronization (Λ(x) ↑)
and in the second one the rule is applied over nodes where a synchronization
has taken place because we are sure that it is complete (Λ(x) = (τ,<>)). A
node that can still participate in a synchronization (Λ(x) �= (τ,<>)) cannot be
bound.

4 A Translation for π-Calculus
With the goal of studying the expressive power of the approach we are presenting
in this section a translation for π-calculus using Synchronized Replacement Sys-
tems with Milner Synchronization. We first introduce the ordinary definition of
π-calculus with its usual operational semantics and then present the translation.

4.1 The π-Calculus

The π-calculus [6] is a value passing process algebra. Many different versions of
the π-calculus have appeared in the literature. The π-calculus we present here
is synchronous, monadic and with guarded recursion.

Definition 8 (π-Calculus Syntax). Let N be a countable set of names. The
syntax of π-calculus agents, ranged over by P,Q, . . . , are defined by the syntax:

132 D. Hirsch and U. Montanari

P ::= nil
∣∣ π.P

∣∣ P |P ∣∣ P+P
∣∣ νννx. P

∣∣ [x=y]P
∣∣ rec x. P

In order we have, inaction, prefix, parallel composition, non-deterministic
choice, restriction, match and recursion. Prefixes, ranged over by π, are defined
as π ::= x̄y

∣∣ x(y). They correspond to the output action and input action.
The occurrences of y in x(y).P and νννy. P are bound; free names of agent P are
defined as usual and we denote them with fn(P). Also, we denote with n(P) and
n(π) the sets of (free and bound) names of agent P and prefix π respectively.

Also, we require that any free occurrence of x in rec x. P must be in the scope
of a prefix (guarded recursion).

An agent P is sequential if its top operator is a prefix, the non-deterministic
choice or (guarded) recursion. If σ is a name substitution, we denote with Pσ
the agent P whose free names have been replaced according to substitution σ,
in a capture-free way.

Definition 9 (π-Calculus Structural Congruence). We define π-calculus
agents up to a structural congruence ≡; it is the smallest congruence that satis-
fies axioms in Table 4.

Table 4. π-Calculus Structural Axioms

(alpha) P ≡ Q if P and Q are alpha equivalent with respect to bounded names
(sum) P+nil ≡ P P+Q ≡ Q+P P+(Q+R) ≡ (P+Q)+R

(par) P |nil ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R
(res) νννx.nil ≡ nil νννx.νννy. P ≡ νννy.νννx. P νννx. (P |Q) ≡ P |νννx.Q if x �∈ fn(P)
(match) [x=x]P ≡ P [x=y]nil ≡ nil

In what follows, we will silently identify the agents that are structurally
congruent. We remark that P ≡ Q implies Pσ ≡ Qσ and fn(P) = fn(Q); so, it
is possible to define the effect of a substitution and to define the free names also
for agents up to structural equivalence.

At this point, it is necessary to comment on the differences between π-calculus
and synchronized rewriting that will affect the definition of the translation. For
π-calculus we have an interleaving operational semantics that allows only a
sequential evolution of agents. On the other side, we are using synchronized
graph rewriting which is a distributed concurrent model allowing for multiple
and simultaneous synchronizations and rewriting. In spite of the fact that the
translation function that we are defining in section 4.2 does not allows multiple
synchronization on one edge, it is still possible to have concurrent independent
transition steps.

Therefore, as we want to obtain the mapping of π-calculus to the more ex-
pressive universe of graph rewriting we have to adequate the definition of the
π-calculus operational semantics to a distributed context. For this we need to
define a transition relation that gives some more information about τ actions.
The standard operational semantics of the π-calculus is defined via labeled tran-
sitions P

α−→ P ′ with α an action, where P
τ−→ P ′ indicates that agent P goes

Synchronized Hyperedge Replacement with Name Mobility 133

to P ′ by an internal action. This is done without the need of specifying on which
port the internal action takes place and is due to the fact that as being sequential
it is the only action occurring. In a distributed concurrent context we need to
know where the τ action is taking place, as more than one action can happen at
the same time. Then, we define a new transition relation which differs from the
standard one only in the τ action. Now, we can have P

xτ�−→ P ′ indicating the
node (x) where the synchronization occurs, and the usual P τ�−→ P ′ for the cases
where the τ action is taking place under the scope of a restriction. We refer to
[6] for further explanations of the standard transition relation.

Definition 10 (π-Calculus Operational Semantics). The operational se-
mantics of the π-calculus is defined via labeled transitions P α�−→ P ′, where P is
the starting agent, P ′ is the target one and α is an action.

The actions an agent can perform are defined by the following syntax:
α ::= τ

∣∣ xτ
∣∣ x(z)

∣∣ x̄y
∣∣ x̄(z)

and are called respectively synchronization (first two actions), bound input,
free output and bound output actions; x and y are free names of α (fn(α)),
whereas z is a bound name (bn(α)); moreover n(α) = fn(α) ∪ bn(α). The tran-
sitions for the operational semantics are defined by the rules of Table 5.

Table 5. π-Calculus Operational Semantics

(Out) x̄y.P
x̄y�−→ P (Inp) x(y).P

x(y)�−→ P

(Sum) P
α�−→ P ′

P+Q
α�−→ P ′ (Par) P

α�−→ P ′

P |Q α�−→ P ′|Q if bn(α) ∩ fn(Q) = ∅

(Com’) P
x̄y�−→ P ′ Q

x(y)�−→ Q′

P |Q xτ�−→ P ′|Q′ (Close’) P
x̄(y)�−→ P ′ Q

x(y)�−→ Q′

P |Q xτ�−→ νννy. (P ′|Q′)

(Open) P
x̄y�−→ P ′

νννy. P
x̄(y)�−→ P ′

if x �= y (Rec) P [rec x. P/x] α�−→ P ′

rec x. P α�−→ P ′

(Res’) P
α�−→ P ′

νννx. P
α�−→ νννx. P ′ if x �∈ n(α) P

xτ�−→ P ′

νννx. P
τ�−→ νννx. P ′

(Match) P
α�−→ P ′

[x=x]P α�−→ P ′ (Cong) P ≡ P ′ P
α�−→ Q Q ≡ Q′

P ′ α�−→ Q′

The differences of the standard operational semantics with the rules of Table 5
are in rules (Com’), (Close’) and (Res’) for the τ action. In rule (Res’) we add
a second case to the original one for restricting a node where a synchronization
takes place. The prefix x(z) for bound input means input some name along link
named x and call it y. A free output x̄y means output the name y along the link
named x. A bound output x̄(z) corresponds to the emission of a private name of
an agent to the environment: in this way, the channel becomes public and can
be used for further communications between the agent and the environment.

134 D. Hirsch and U. Montanari

Process [x=y]P behaves like P if x and y are the same name, it behaves like
the inactive process otherwise. As we already mentioned, rule (Open’) shares a
private name with the environment and together with rule (Close’) causes an
extrusion. Rule (Rec) describes the transition for a recursive process.

4.2 Translation

Now we present a translation function of π-calculus to synchronized replacement
Systems and state the correspondence theorems. Proofs of can be found in [4].

Definition 11 (Translation Function for π-Calculus). Let N be a fixed in-
finite set of names. We define a translation function [[−]]Γ for π-calculus agents.
The translation is defined with respect to a set of names (Γ ⊂ N) in Table 6.

Table 6. Translation Function for π-calculus

1. [[nil]]Γ = Γ � nil 2. [[π.P]]Γ = Γ � Lπ.P (ord(fn(π.P))) if fn(π.P) ⊆ Γ

3.
[[P+Q]]Γ = Γ � LP+Q(ord(fn(P+Q))) if fn(P+Q) ⊆ Γ and P,Q �≡ nil
[[P+Q]]Γ = [[Q+P]]Γ = [[P]]Γ if fn(P) ⊆ Γ and Q ≡ nil

4. [[rec x. P]]Γ = Γ � Lrec x. P (ord(fn(rec x. P))) 5.
[[[x=y]P]]Γ = [[nil]]Γ if x �= y
[[[x=x]P]]Γ = [[P]]Γ

6.
[[P]]Γ = Γ � GP [[Q]]Γ = Γ � GQ

[[P |Q]]Γ = Γ � GP |GQ 7.
[[P]]Γ,x = Γ, x � G

[[νννx. P]]Γ = Γ � νx.G

Productions

8.
P

x̄y�−→ Q P sequential

[[P]]fn(P)

{(out,x,<y>)}
−−−−−−→ [[Q]]fn(P)

9.
P

xτ�−→ Q P sequential

[[P]]fn(P)

{(τ,x,<>)}
−−−−−−→ [[Q]]fn(P)

10.
P

τ�−→ Q P sequential

[[P]]fn(P)
∅−→ [[Q]]fn(P)

11.
P

x̄(y)�−→ Q P sequential

[[P]]fn(P)

{(out,x,<y>)}
−−−−−−→ [[Q]]fn(P)∪{y}

12.
P

x(y)�−→ Q P sequential

[[P]]fn(P)

{(in,x,<y>)}
−−−−−−→ [[Q]]fn(P)∪{y}

The edges that are created by the translation have labels that correspond to
the uppermost level of sequential subterms of the agent to be translated. More
specifically, each edge label represents a sequential subterm up to structural
axioms, so two labels corresponding to equivalent agents are considered the same
label. Function ord returns an ordered sequence of the agent free names that
represents the attachment nodes of the corresponding edge. A transition in the
π-calculus will be represented as a transition of the corresponding judgement
(up to alpha conversion of bounded names). Then, productions are generated
based on these sequential agents with the corresponding label as the left hand
side of the production and the target agent as the right hand side. Actions are
translated as requirements on the transitions. For π-calculus we have one action

Synchronized Hyperedge Replacement with Name Mobility 135

for inputs (in) and one coaction for outputs (out). Then, the evolution of the
agent is modeled using the Milner transition system introduced in table 3. Note
that for the cases with action τ , the translation produces a production with
τ and an empty list of names (9) or a production with no requirements (10).
Intuitively, this last case corresponds to a judgement proof where restriction
rule (res) was applied. This correspondence is formally proved in theorem 4. An
example of a sequential agent that produces a τ transition can be ᾱ|α + β.

Theorem 2. For every π-calculus agent a finite set of productions is generated
by the translation function [[−]]Γ .

Theorem 3 (Correspondence of π-Calculus Agents and Judgements).
There is a bijective correspondence of π-calculus agents (up to structural ax-
ioms) and well-formed syntactic judgements (up to structural axioms and iso-
lated nodes) with respect to the translation function [[−]]Γ .

For the next theorem we define a basic judgement transition as a transition
over a graph using exactly one production or the synchronization of two pro-
ductions. These mean that either one agent only makes a transition (without
synchronization) or only two agents make a transition by synchronization.

As we already mentioned, we are mapping π-calculus that has a sequential
operational semantics (one transition at a time) to a distributed concurrent con-
text. So it is clear that there are transitions for judgements (the concurrent ones)
that cannot be obtained in π-calculus. Then, the following theorem states that
a transition step in π-calculus is done, if and only if, there is a basic judgement
transition between the corresponding translations. Basic transitions correspond
to sequential steps of π-calculus. Note that the correspondence theorem is proved
for the standard operational semantics of π-calculus. Also, we have to say that
the theorem below is sufficient to prove the semantic correspondence given that
theorem 3 already proved the bijective correspondence of the translation from
agents to judgements (i.e. graphs). In this way, we are sure that any graph
resulting from a transition has a corresponding agent.

Definition 12 (Basic Transition). Transition Γ �G Λ−→Γ,∆ � G′ is basic if
– it is a production (Λ contains at most one requirement by definition) or
– set Λ contains one requirement and if the proof uses rule merge it must be a
synchronization or

– set Λ is empty, the proof is as before with a synchronization and there is an
application of rule (res) over the synchronizing name (it is the only rule that
can remove a τ).

Theorem 4 (Semantic Correspondence). For any π-calculus agents P and

Q, P α−→ Q, if and only if, there is a basic transition [[P]]Γ
{[[α]]Γ }−→ [[Q]]Γ , with

fn(P), fn(Q), fn(α) ⊆ Γ .

136 D. Hirsch and U. Montanari

5 Conclusions and Future Work

This paper presents a new graphical mobile calculus based on synchronized
hyperedge replacement with name mobility. We formalize the approach using
syntactic judgements and present the transition system for Hoare and Milner
synchronizations. It is worth notice that to “implement” other synchronization
algebras it is only needed to change the corresponding transition system. Also,
for studying the expressive power of the approach we present a translation for
π-calculus using synchronized replacement with Milner synchronization.

It is clear from the results that our calculus is more expressive (and general)
than π-calculus allowing us to have higher level primitives. Although, this im-
plies an increment of the complexity of the implementation which have to be
evaluated as a tradeoff of the practical problem of implementing the multiple
synchronization mechanisms and the specific applications of interest.

We can also mention that [5] presents a bisimilarity for synchronized graph
rewriting with name mobility (based on the work of [3]) proving it to be a
congruence. Also they introduce a so-called format which is a syntactic condition
on productions ensuring that bisimilarity is a congruence. This last result is
original not only for graph rewriting, but also for mobility in general.

It is our intention to continue the study of the expressive power of this model
and to generate a prototype implementing these ideas. Also we want to investi-
gate techniques to analyze system properties over the graph derivations such as,
invariant checking, reachability and static analysis, and modular reasoning.

References
1. Drewes, F., Kreowski, H-J., Hable, A.: Hyperedge Replacement Graph Grammars.

Chapter 2, In [8]. 1997.
2. Ehrig, H., Kreowski, H.-J., Montanari, U. and Rozenberg, G., Editors: Handbook

of Graph Grammars and Computing by Graph Transformation: Concurrency, Par-
allelism, and Distribution, volume 3 , World Scientific, 1999.

3. Hirsch, D., Inverardi, P., Montanari, U.: Reconfiguration of Software Architecture
Styles with Name Mobility. In Proceedings of 4th international Conference, Coor-
dination 2000, LNCS, volume 1906, 2000.

4. Hirsch, D., Montanari, U.: Synchronized Hyperedge Replacement with Name Mo-
bility. Technical Report TR-01-001, Department of Computer Science, Universidad
de Buenos Aires, 2001. http://www.dc.uba.ar/people/proyinv/tr.html

5. König, B., Montanari, U.: Observational Equivalence for Synchronized Graph
Rewriting with Mobility. Submitted for publication. 2001.

6. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, 1999.

7. Montanari, U., Pistore, M. and Rossi, F.: Modeling Concurrent, Mobile and Coor-
dinated Systems via Graph Transformations. In [2]. 1999.

8. Rozenberg, G., editor: Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations, volume I. World Scientific, 1997.

9. Sangiorgi, D.: π-calculus, Internal Mobility and Agent-passing Calculi. Theoretical
Computer Science 167(2), 1996.

10. Victor B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes.
PhD Thesis, Uppsala University, Dept. of Computer Science, June 1998.

Dynamic Input/Output Automata: A Formal
Model for Dynamic Systems

(Extended Abstract)

Paul C. Attie1,2 and Nancy A. Lynch2

1 College of Computer Science, Northeastern University, Cullinane Hall,
360 Huntington Avenue, Boston, Massachusetts 02115.

attie@ccs.neu.edu
2 MIT Laboratory for Computer Science, 545 Technology Square,

Cambridge, MA, 02139, USA.
lynch@theory.lcs.mit.edu

Abstract. We present a mathematical state-machine model, the Dy-
namic I/O Automaton (DIOA) model , for defining and analyzing dy-
namic systems of interacting components. The systems we consider are
dynamic in two senses: (1) components can be created and destroyed
as computation proceeds, and (2) the events in which the components
may participate may change. The new model admits a notion of external
system behavior , based on sets of traces. It also features a parallel com-
position operator for dynamic systems, which respects external behavior,
and a notion of simulation from one dynamic system to another, which
can be used to prove that one system implements the other.
The DIOA model was defined to support the analysis of mobile agent
systems, in a joint project with researchers at Nippon Telephone and
Telegraph. It can also be used for other forms of dynamic systems, such
as systems described by means of object-oriented programs, and systems
containing services with changing access permissions.

1 Introduction

Many modern distributed systems are dynamic: they involve changing sets of
components, which get created and destroyed as computation proceeds, and
changing capabilities for existing components. For example, programs written in
object-oriented languages such as Java involve objects that create new objects
as needed, and create new references to existing objects. Mobile agent systems
involve agents that create and destroy other agents, travel to different network
locations, and transfer communication capabilities.

To describe and analyze such distributed systems rigorously, one needs an
appropriate mathematical foundation: a state-machine-based framework that al-
lows modeling of individual components and their interactions and changes. The
framework should admit standard modeling methods such as parallel composi-
tion and levels of abstraction, and standard proof methods such as invariants

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 137–151, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

138 P.C. Attie and N.A. Lynch

and simulation relations. At the same time, the framework should be simple
enough to use as a basis for distributed algorithm analysis.

Static mathematical models like I/O automata [7] could be used for this
purpose, with the addition of some extra structure (special Boolean flags) for
modeling dynamic aspects. For example, in [8], dynamically-created transactions
were modeled as if they existed all along, but were “awakened” upon execution of
special create actions. However, dynamic behavior has by now become so preva-
lent that it deserves to be modeled directly. The main challenge is to identify a
small, simple set of constructs that can be used as a basis for describing most
interesting dynamic systems.

In this paper, we present our proposal for such a model: the Dynamic I/O Au-
tomaton (DIOA) model . Our basic idea is to extend the I/O automaton model
with special create actions, and combine such extended automata into global
configurations. The DIOA model admits a notion of external system behavior,
based on sets of traces. It also features a parallel composition operator for dy-
namic systems, which respects external behavior and satisfies standard execution
projection and pasting results, and a notion of simulation relation from one dy-
namic system X to another dynamic system Y , which can be used to prove that
X implements Y .

We defined the DIOA model initially to support the analysis of mobile agent
systems, in a joint project with researchers at Nippon Telephone and Telegraph.
Creation and destruction of agents are modeled directly within the DIOA model.
Other important agent concepts such as changing locations and capabilities are
described in terms of changing signatures, using additional structure. Our pre-
liminary work on modeling and analyzing agent systems appeared in last year’s
NASA workshop on formal methods for agent systems [1]. We are currently
considering the use of DIOA to model and analyze object-oriented programs;
here, creation of new objects is modeled directly, while addition of references is
modeled as a signature change.

Related work: Most approaches to the modeling of dynamic systems are
based on a process algebra, in particular, the π-calculus [9] or one of its variants.
Such approaches [4,5,10] model dynamic aspects by introducing channels and/or
locations as basic notions. Our model is more primitive than these approaches,
for example, it does not include channels and their transmission as basic no-
tions. Our approach is also different in that it is primarily a (set-theoretic)
mathematical model, rather than a formal language and calculus. We expect
that notions such as channel and location will be built upon the basic model
using additional layers (as we do for modeling agent mobility in terms of sig-
nature change). Also, we ignore issues (e.g., syntax) that are important when
designing a programming language (the “precondition-effect” notation in which
we present an example is informal, and is not part of our model). Another dif-
ference with process-algebraic approaches is that we use a simulation notion for
refinement, rather than bisimulation. This allows us more latitude in refinement,
as our example will demonstrate. Finally, our model has a well-defined notion
of projection onto a subsystem. This is a crucial pre-requisite for compositional
reasoning, and is usually missing from process-algebraic approaches.

Dynamic Input/Output Automata: A Formal Model for Dynamic Systems 139

The paper is organized as follows. Section 2 presents the DIOA model. Sec-
tion 3 presents execution projection and pasting results, which provide the basis
for compositional reasoning in our model. Section 4 proposes an appropriate
notion of forward simulation for DIOA. Section 5 discusses how mobility and lo-
cations can be modeled in DIOA. Section 6 presents an example: an agent whose
purpose is to traverse a set of databases in search of a satisfactory airline flight,
and to purchase such a flight if it finds it. Section 7 discusses further research and
concludes. Proofs are provided in the full version [2], which is available on-line.

2 The Dynamic I/O Automaton Model

To express dynamic aspects, DIOA augments the I/O automaton model with:

1. Variable signatures: The signature of an automaton is a function of its state,
and so can change as the automaton makes state transitions. In particular,
an automaton “dies” by changing its signature to the empty set, after which
it is incapable of performing any action. We call this new class of automata
signature I/O automata, henceforth referred to simply as “automata,” or
abbreviated as SIOA.

2. Create actions: An automaton A can “create” a new automaton B by exe-
cuting a create action

3. Two-level semantics: Due to the introduction of create actions, the semantics
of an automaton is no longer accurately given by its transition relation. The
effect of create actions must also be considered. Thus, the semantics is given
by a second class of automata, called configuration automata. Each state of a
configuration automaton consists of the collection of signature I/O automata
that are currently “awake,” together with the current local state of each one.

2.1 Signature I/O Automata

We assume the existence of a set A of unique SIOA identifiers, an underlying
universal set Auts of SIOA, and a mapping aut : A �→ Auts. aut(A) is the SIOA
with identifier A. We use “the automaton A” to mean “the SIOA with identifier
A”. We use the letters A,B, possibly subscripted or primed, for SIOA identifiers.

In our model, each automaton A has a universal signature usig(A). The
actions that A may execute (in any of its states) are drawn from usig(A). In a
particular state s, the executable actions are drawn from a fixed (but varying
with s) sub-signature of usig(A), denoted by sig(A)(s), and called the state
signature. Thus, the “current” signature of A is a function of its current state
that is always constrained to be a sub-signature of A’s universal signature.

As in the I/O atomaton model, the actions of a signature (either universal or
state) are partitioned into (sets of) input, output, and internal actions: usig(A)
= 〈uin(A), uout(A), uint(A)〉. Additionally, the output actions are partitioned
into regular outputs and create outputs: uout(A) = 〈uoutregular(A), ucreate(A)〉.
Likewise, sig(A)(s) = 〈in(A)(s), out(A)(s), int(A)(s)〉, and out(A)(s) =
〈outregular(A)(s), create(A)(s)〉.

140 P.C. Attie and N.A. Lynch

For any signature component, the ˆ operator yields the union of sets of ac-
tions within the signature, e.g., ˆout(A)(s) = outregular(A)(s) ∪ create(A)(s),
and ˆsig(A)(s) = in(A)(s) ∪ outregular(A)(s) ∪ create(A)(s) ∪ int(A)(s).

A create action a has a single attribute: target(a), the identifier of the au-
tomaton that is to be created.

Definition 1 (Signature I/O Automaton). A signature I/O automaton
aut(A) consists of the following components and constraints on those compo-
nents:

– A fixed universal signature usig(A) as discussed above.
– A set states(A) of states.
– A nonempty set start(A) ⊆ states(A) of start states.
– A mapping sig(A) : states(A) �→ 2uin(A) × {2uoutregular(A) × 2ucreate(A)} ×
2uint(A).

– A transition relation steps(A) ⊆ states(A)× usig(A)× states(A).
– The following constraints:

1. ∀(s, a, s′) ∈ steps(A) : a ∈ ˆsig(A)(s).
2. ∀s,∀a ∈ in(A)(s),∃s′ : (s, a, s′) ∈ steps(A)
3. ˆsig(A)(s) �= ∅ for any start state s.

Constraint 1 requires that any executed action be in the signature of the start
state. Constraint 2 is the input enabling requirement of I/O automata. Con-
straint 3 requires that start states have a nonempty signature, since otherwise,
the newly created automaton will be unable to execute any action. Thus, this is
no restriction in practice, and its use simplifies our definitions.

If (s, a, s′) ∈ steps(A), we also write s a−→A s
′. For sake of brevity, we write

states(A) instead of states(aut(A)), i.e., the components of an automaton are
identified by applying the appropriate selector function to the automaton iden-
tifier, rather than the automaton itself. In the sequel, we shall sometimes write a
create action as create(A,B), where A is the identifier of the automaton execut-
ing create(A,B), and B is the target automaton identifier. This is a notational
convention only, and is not part of our model.

2.2 Configuration Automata

Suppose create(A,B) is an action of A. As with any action, execution of
create(A,B) will, in general, cause a change in the state of A. However, we
also want the execution of create(A,B) to have the effect of creating the SIOA
B. To model this, we must keep track of the set of “alive” SIOA, i.e., those that
have been created but not destroyed (we consider the automata that are initially
present to be “created at time zero”). Thus, we require a transition relation over
sets of SIOA. We also need to keep track of the current global state, i.e., the
tuple of local states of every SIOA that is alive. Thus, we replace the notion
of global state with the notion of “configuration,” and use a transition relation
over configurations.

Dynamic Input/Output Automata: A Formal Model for Dynamic Systems 141

Definition 2 (Simple configuration, Compatible simple configuration).
A simple configuration is a finite set {〈A1, s1〉, . . . , 〈An, sn〉} where Ai is a sig-
nature I/O automaton identifier, si ∈ states(Ai), for 1 ≤ i ≤ n, and Ai �= Aj
for 1 ≤ i, j ≤ n, i �= j.

A simple configuration {〈A1, s1〉, . . . , 〈An, sn〉} is compatible iff, for all 1 ≤
i, j ≤ n, i �= j:
1. ˆsig(Ai)(si) ∩ int(Aj)(sj) = ∅, ˆout(Ai)(si) ∩ ˆout(Aj)(sj) = ∅, and
2. create(Ai)(si) ∩ ˆsig(Aj)(sj) = ∅.
Thus, in addition to the usual I/O automaton compatibility conditions [7], we
require that a create action of one SIOA cannot be in the signature of another.

If n = 0, then the configuration is empty. Let C = {〈A1, s1〉, . . . , 〈An, sn〉}
be a compatible simple configuration. Then we define auts(C) = {A1, . . . , An},
outregular(C) =

⋃
1≤i≤n outregular(Ai)(si), create(C) =

⋃
1≤i≤n create(Ai)(si),

in(C) =
⋃

1≤i≤n in(Ai)(si)− outregular(C), int(C) =
⋃

1≤i≤n int(Ai)(si).

Definition 3 (Transitions of a simple configuration). The transitions that
a compatible simple configuration {〈A1, s1〉, . . . , 〈An, sn〉} (n > 0) can execute
are as follows:

1. non-create action
{〈A1, s1〉, . . . , 〈An, sn〉} a−→
{〈A1, s

′
1〉, . . . , 〈An, s′n〉} − {〈Aj , s′j〉 : 1 ≤ j ≤ n and ˆsig(Aj)(sj) = ∅}

if
a ∈ ˆsig(A1)(s1) ∪ . . . ∪ ˆsig(An)(sn),
a �∈ create(A1)(s1) ∪ . . . ∪ create(An)(sn), and
for all 1 ≤ i ≤ n : if a ∈ ˆsig(Ai)(si) then si

a−→Ai s
′
i, otherwise s

′
i = si.

Transitions not arising from a create action enforce synchronization by
matching action names, as in the basic I/O automaton model. Also, all
involved automata may change their current signature, and automata whose
new signature is empty are destroyed.

2. create actions
a) create action whose target does not exist a priori
{〈A1, s1〉, . . . , 〈Ai, si〉, . . . , 〈An, sn〉} a−→
{〈A1, s1〉, . . . , 〈Ai, s′i〉, . . . , 〈An, sn〉, 〈B, t〉} − {〈Ai, s′i〉 : ˆsig(Ai)(s′i) = ∅}
if
1 ≤ i ≤ n, a ∈ create(Ai)(si), si

a−→Ai s
′
i, target(a) = B,

B �∈ {A1, . . . , An}, and t ∈ start(B).
Execution of a in a simple configuration where its target B is not present
results in the creation of B, which initially can be in any of its start
states t. 〈B, t〉 is added to the current configuration. The automaton
Ai executing a changes state and signature according to its transition
relation and signature mapping, and all other automata remain in the
same state. If Ai’s new signature is empty, then Ai is destroyed.

b) create action whose target automaton already exists
{〈A1, s1〉, . . . , 〈Ai, si〉, . . . , 〈An, sn〉} a−→
{〈A1, s1〉, . . . , 〈Ai, s′i〉, . . . , 〈An, sn〉} − {〈Ai, s′i〉 : ˆsig(Ai)(s′i) = ∅}

142 P.C. Attie and N.A. Lynch

if
1 ≤ i ≤ n, a ∈ create(Ai)(si), si

a−→Ai s
′
i, target(a) ∈ {A1, . . . , An}.

Execution of a in a simple configuration where its target is already
present results only in a state and signature change to the automaton Ai
executing a. All other automata remain in the same state. If Ai’s new
signature is empty, then Ai is destroyed.

If a simple configuration is empty, or is not compatible, then it cannot execute
any transitions.

If C and D are simple configurations and π = a1, . . . , an is a finite se-
quence of n ≥ 1 actions, then define C π−→D iff there exist simple configurations
C0, . . . , Cn such that C = C0

a1−→C1
a2−→ · · · an−1−→ Cn−1

an−→Cn = D.
In anticipation of composition, we define.

Definition 4 (Configuration).

1. A simple configuration is a configuration
2. If C1, . . . , Cn are configurations (n > 0), then so is 〈C1, . . . , Cn〉
3. The only configurations are those generated by the above two rules

We extend auts to configurations by defining auts(〈C1, . . . , Cn〉) = auts(C1) ∪
. . . ∪ auts(Cn) for a configuration 〈C1, . . . , Cn〉.

The entire behavior that a given configuration is capable of is captured by
the notion of configuration automaton.

Definition 5 (Configuration automaton). A configuration automaton X is
a state-machine with four components.

1. a nonempty set of start configurations, start(X)
2. a set of configurations, states(X) ⊇ start(X)
3. a signature mapping sig(X), where for each C ∈ states(X),

a) sig(X)(C) = 〈in(X)(C), out(X)(C), int(X)(C)〉
b) out(X)(C) = 〈outregular(X)(C), outcreate(X)(C)〉
c) int(X)(C) = 〈intregular(X)(C), intcreate(X)(C)〉
d) in(X)(C), outregular(X)(C), outcreate(X)(C), intregular(X)(C), and

intcreate(X)(C) are sets of actions.
4. a transition relation, steps(X) = {(C, a,D) | C,D ∈ states(X) and a ∈

ˆsig(X)(C)}
We usually use “configuration” rather than “state” when referring to states of
a configuration automaton. Definition 5 allows an arbitrary transition relation
between the configurations of a configuration automaton. However, these con-
figurations are finite nested tuples, with the basic elements being SIOA. The
SIOA transitions totally determine the transitions that a given configuration
can execute. Hence, we introduce proper configuration automata (rules CA1–
CA4 below), which respect the transition behavior of configurations.

Definition 6 (Mutually compatible configurations). Let X,Y be configu-
ration automata. Let C ∈ states(X), D ∈ states(Y). Then C and D are mutually
compatible iff

Dynamic Input/Output Automata: A Formal Model for Dynamic Systems 143

1. auts(C) ∩ auts(D) = ∅,
2. ˆsig(X)(C) ∩ ˆint(Y)(D) = ∅, ˆint(X)(C) ∩ ˆsig(Y)(D) = ∅,

ˆout(X)(C) ∩ ˆout(Y)(D) = ∅, and
3. outcreate(X)(C) ∩ ˆsig(Y)(D) = ∅, ˆsig(X)(C) ∩ outcreate(Y)(D) = ∅.

Definition 7 (Compatible configuration). Let C be a configuration. If C
is simple, then C is compatible (or not) according to Definition 2. If C =
〈C1, . . . , Cn〉, then C is compatible iff (1) each Ci is compatible, and (2) each
pair in {C1, . . . , Cn} are mutually compatible.

Definition 8 (Configuration transitions). The transitions that a compatible
configuration C can execute are as follows:

1. If C is simple, then the transitions are those given by Definition 3
2. If C = 〈C1, . . . , Cn〉, then 〈C1, . . . , Cn〉 a−→〈D1, . . . , Dn〉 iff

a) a ∈ ˆsig(C1) ∪ . . . ∪ ˆsig(Cn)
b) for 1 ≤ i ≤ n : if a ∈ ˆsig(Ci) then Ci

a−→Di, otherwise Ci = Di.

Definition 9 (Closure). Let C be a set of compatible configurations C. X =
closure(C) is the state-machine given by:

1. start(X) = C
2. states(X) = {D | ∃C ∈ C,∃π : C π−→D}
3. steps(X) = {(C, a,D) | C a−→D and C,D ∈ states(X)}
4. sig(X), where for each C ∈ states(X), sig(X)(C) is given by:

a) outregular(X)(C) = outregular(C)
b) outcreate(X)(C) = create(C)
c) in(X)(C) = in(C)
d) intregular(X)(C) = int(C)
e) intcreate(X)(C) = ∅

Rule CA1: LetX be as in Definition 9. If every configuration ofX is compatible,
then X is a proper configuration automaton.

config(C) is the automaton induced by all the configurations reachable from
some configuration in C, and the transitions between them.
Definition 10 (Composition of proper configuration automata). Let
X1, . . . , Xn, be proper configuration automata. Then X = X1 ‖ · · · ‖ Xn is the
state-machine given by:

1. start(X) = start(X1)× · · · × start(Xn)
2. states(X) = states(X1)× · · · × states(Xn)
3. steps(X) is the set of all (〈C1, . . . , Cn〉, a, 〈D1, . . . , Dn〉) such that

a) a ∈ ˆsig(X1)(C1) ∪ . . . ∪ ˆsig(Xn)(Cn), and
b) if a ∈ ˆsig(Xi)(Ci), then Ci

a−→Xi Di, otherwise Ci = Di

4. sig(X), where for each C = 〈C1, . . . , Cn〉 ∈ states(X), sig(X)(C) is
given by:

144 P.C. Attie and N.A. Lynch

a) outregular(X)(C) = outregular(X1)(C1) ∪ . . . ∪ outregular(Xn)(Cn)
b) outcreate(X)(C) = outcreate(X1)(C1) ∪ . . . ∪ outcreate(Xn)(Cn)
c) in(X)(C) = (in(X1)(C1) ∪ . . . ∪ in(X1)(C1))− outregular(X)(C)
d) intregular(X)(C) = intregular(X1)(C1) ∪ . . . ∪ intregular(Xn)(Cn)
e) intcreate(X)(C) = intcreate(X1)(C1) ∪ . . . ∪ intcreate(Xn)(Cn)

Rule CA2: Let X be as in Definition 10. If every configuration of X is compat-
ible, then X is a proper configuration automaton.

Definition 11 (Action hiding). Let X be a proper configuration automaton
and Σ a set of actions. Then X \Σ is the state-machine given by:

1. start(X \Σ) = start(X)
2. states(X \Σ) = states(X)
3. steps(X \Σ) = steps(X)
4. sig(X \Σ), where for each C ∈ states(X \Σ), sig(X \Σ)(C) is given by:

a) outregular(X \Σ)(C) = outregular(X)(C)−Σ
b) outcreate(X \Σ)(C) = outcreate(X)(C)−Σ
c) in(X \Σ)(C) = in(X)(C)
d) intregular(X \Σ)(X)C = intregular(X)(C) ∪ (outregular(X)(C) ∩Σ)
e) intcreate(X \Σ)(X)C = intcreate(X)(C) ∪ (outcreate(X)(C) ∩Σ)

Rule CA3: If X is a proper configuration automaton, then so is X \Σ.
The automata generated by rules CA1, CA2 are called closure automata,

composed automata, respectively.
Rule CA4: The only configuration automata are those that are generated by
rules CA1–CA3.

Definition 12 (Execution, trace). An execution fragment α of a configura-
tion automaton X is a (finite or infinite) sequence C0a1C1a2 . . . of alternating
configurations and actions such that (Ci−1, ai, Ci) ∈ steps(X) for each triple
(Ci−1, ai, Ci) occurring in α. Also, α ends in a configuration if it is finite. An
execution of X is an execution fragment of X whose first configuration is in
start(X). execs(X) denotes the set of executions of configuration automaton X.

Given an execution fragment α = C0a1C1a2 . . . , the trace of α (denoted
trace(α)) is the sequence that results from

1. replacing each Ci by its external signature ext(X)(Ci), and then
2. removing all ai such that ai �∈ ˆext(X)(Ci−1), i.e., ai is an internal action of

Ci−1, and then
3. replacing every finite, maximal sequence of identical external signatures by

a single instance.

traces(X), the set of traces of a configuration automaton X, is the set {β | ∃α ∈
execs(X) : β = trace(α)}.

We write C α−→X C
′ iff there exists an execution fragment α (with |α| ≥ 1)

of X starting in C and ending in C ′. When α contains a single action a (and so
(C, a, C ′) ∈ steps(X)) we write C a−→X C

′.

Dynamic Input/Output Automata: A Formal Model for Dynamic Systems 145

2.3 Clone-Freedom

Our semantics allows the creation of several SIOA with the same identifier,
provided they are “contained” in different closure automata (which could then
be composed); we preclude this within the same closure automaton because
the SIOA would not be distinguishable from our point of view. We also find it
desirable that SIOA in different closure automata also have different identifiers,
i.e., that identifiers are really unique (which is why we introduced them in the
first place). Thus, we make the following assumption.

Definition 13 (Clone-freedom assumption). For any proper configuration
automaton X, and any reachable configuration C of X, there is no action
a ∈ outcreate(X)(C) ∪ intcreate(X)(C) such that target(a) ∈ auts(C) and
∃C ′ : C a−→C ′.

This assumption does not preclude reasoning about situations in which an
SIOA A1 cannot be distinguished from another SIOA A2 by the other SIOA
in the system. This could occur, e.g., due to a malicious host which “replicates”
agents that visit it. We distinguish between such replicas at the level of reasoning
by assigning unique identifiers to each. These identifiers are not available to the
other SIOA in the system, which remain unable to tell A1 and A2 apart (e.g.,
in the sense of the “knowledge” [6] about A1, A2 that they possess).

3 Compositional Reasoning

To confirm that our model provides a reasonable notion of concurrent composi-
tion, which has expected properties, and to enable compositional reasoning, we
establish execution “projection” and “pasting” results for compositions.

Definition 14 (Execution projection). Let X = X1 ‖ · · · ‖ Xn be a proper
configuration automaton. Let α be a sequence C0a1C1a2C2 . . . Cj−1ajCj . . .
where ∀j ≥ 0, Cj = 〈Cj,1, . . . , Cj,n〉 ∈ states(X) and ∀j > 0, aj ∈ ˆsig(X)(Cj−1).
Then α�Xi (1 ≤ i ≤ n) is the sequence resulting from:

1. replacing each Cj by its i’th component Cj,i, and then
2. removing all ajCj,i such that aj �∈ ˆsig(Xi)(Cj−1,i).

Our execution projection results states that the projection of an execution
(of a composed configuration automaton X = X1 ‖ · · · ‖ Xn) onto a component
Xi, is an execution of Xi.

Theorem 1 (Execution projection). Let X = X1 ‖ · · · ‖ Xn be a proper
configuration automaton. If α ∈ execs(X) then α�Xi ∈ execs(Xi).

Our execution pasting result requires that a candidate execution α of a com-
posed automaton X = X1 ‖ · · · ‖ Xn must project onto an actual execution of
every component Xi, and also that every action of α not involving Xi does not
change the configuration of Xi. In this case, α will be an actual execution of X.

146 P.C. Attie and N.A. Lynch

Theorem 2 (Execution pasting). Let X = X1 ‖ · · · ‖ Xn be a proper con-
figuration automaton. Let α be a sequence C0a1C1a2C2 . . . Cj−1ajCj . . . where
∀j ≥ 0, Cj = 〈Cj,1, . . . , Cj,n〉 ∈ states(X) and ∀j > 0, aj ∈ ˆsig(X)(Cj−1).
Furthermore, suppose that

1. for all 1 ≤ i ≤ n : α�Xi ∈ execs(Xi),
2. for all j > 0 : if aj �∈ ˆsig(Xi)(Cj−1,i) then Cj−1,i = Cj,i

Then, α ∈ execs(X).

4 Simulation

Since the semantics of a system is given by its configuration automaton, we de-
fine a notion of forward simulation from one configuration automaton to another.
Our notion requires the usual matching of every transition of the implementation
by an execution fragment of the specification. It also requires that correspond-
ing configurations have the same external signature. This gives us a reasonable
notion of refinement, in that an implementation presents to its environment only
those interfaces (i.e., external signatures) that are allowed by the specification.

Definition 15 (Forward simulation). Let X and Y be configuration au-
tomata. A forward simulation from X to Y is a relation f over states(X) ×
states(Y) that satisfies:

1. if C ∈ start(X), then f [C] ∩ start(Y) �= ∅,
2. if C a−→X C

′ and D ∈ f [C], then there exists D′ ∈ f [C ′] such that
a) D α1−→Y D1

a−→Y D2
α2−→Y D

′,
b) ext(Y)(D3) = ext(X)(C) for all D3 along α1 (including D,D1),
c) ext(Y)(D4) = ext(X)(C ′) for all D4 along α2 (including D2, D

′).

We say X ≤ Y if a forward simulation from X to Y exists. Our notion of correct
implementation with respect to safety properties is given by trace inclusion, and
is implied by forward simulation.

Theorem 3. If X ≤ Y then traces(X) ⊆ traces(Y).

5 Modeling Dynamic Connection and Locations

We stated in the introduction that we model both the dynamic creation/moving
of connections, and the mobility of agents, by using dynamically changing exter-
nal interfaces. The guiding principle here is the notion that an agent should only
interact directly with either (1) another co-located agent, or (2) a channel one of
whose ends is co-located with the agent. Thus, we restrict interaction according
to the current locations of the agents.

We adopt a logical notion of location: a location is simply a value drawn from
the domain of “all locations.” To codify our guiding principle, we partition the set
of SIOA into two subsets, namely the set of agent SIOA, and the set of channel

Dynamic Input/Output Automata: A Formal Model for Dynamic Systems 147

SIOA. Agent SIOA have a single location, and represent agents, and channel
SIOA have two locations, namely their current endpoints. We assume that all
configurations are compatible, and codify the guiding principle as follows: for
any configuration, the following conditions all hold, (1) two agent SIOA have a
common external action only if they have the same location, (2) an agent SIOA
and a channel SIOA have a common external action only if one of the channel
endpoints has the same location as the agent SIOA, and (3) two channel SIOA
have no common external actions.

6 Example: A Travel Agent System

Our example is a simple flight ticket purchase system. A client requests to buy
an airline ticket. The client gives some “flight information,” f , e.g., route and
acceptable times for departure, arrival etc., and specifies a maximum price f .mp
they can pay. f contains all the client information, including mp, as well as
an identifier that is unique across all client requests. The request goes to a
static (always existing) “client agent,” who then creates a special “request agent”
dedicated to the particular request. That request agent then visits a (fixed) set
of databases where the request might be satisfied. If the request agent finds a
satisfactory flight in one of the databases, i.e., a flight that conforms to f and has
price ≤ mp, then it purchases some such flight, and returns a flight descriptor
fd giving the flight, and the price paid (fd .p) to the client agent, who returns it
to the client. The request agent then terminates.

The agents in the system are: (1) ClientAgt , who receives all requests from the
client, (2) ReqAgt(f), responsible for handling request f , and (3) DBAgtd, d ∈ D,
the agent (i.e., front-end) for database d, where D is the set of all databases in
the system. In writing automata, we shall identify automata using a “type name”
followed by some parameters. This is only a notational convenience, and is not
part of our model.

We first present a specification automaton, and then the client agent
and request agents of an implementation (the database agents provide
a straightforward query/response functionality, and are omitted for lack
of space). When writing sets of actions, we make the convention that
all free variables are universally quantified over their domains, so, e.g.,
{informd(f ,flts), confd(fd , ok?)} within action selectd(f) below really denotes
{informd(f ,flts), confd(fd , ok?) | fd ∈ F ,flts ⊆ F , ok? ∈ Bool}.

In the implementation, we enforce locality constraints by modifying the sig-
nature of ReqAgt(f) so that it can only query a database d if it is currently at
location d (we use the databse names for their locations). We allow ReqAgt(f)
to communicate with ClientAgt regardless of its location. A further refinement
would insert a suitable channel between ReqAgt(f) and ClientAgt for this com-
munication (one end of which would move along with ReqAgt(f)), or would move
ReqAgt(f) back to the location of ClientAgt .

We use “state variables” in and outreg to denote the current sets of in,
outregular and int actions in the SIOA state signature (these are the only com-
ponents of the signature that vary). For brevity, the universal signature declara-

148 P.C. Attie and N.A. Lynch

tion groups actions into input, output and internal only. The actual action types
are declared in the “precondition-effect” action descriptions.

Specification: Spec

Universal Signature
Input:

request(f), where f ∈ F
informd(f ,flts), where d ∈ D, f ∈ F , and flts ⊆ F
confd(f , fd, ok?), where d ∈ D, f , fd ∈ F , and ok? ∈ Bool
selectd(f), where d ∈ D and f ∈ F
adjustsig(f), where f ∈ F
initially: {request(f) : f ∈ F} ∪ {selectd(f) : d ∈ D, f ∈ F}

Output:
queryd(f), where d ∈ D and f ∈ F
buyd(f ,flts), where d ∈ D, f ∈ F , and flts ⊆ F
response(f , fd, ok?), where f , fd ∈ F and ok? ∈ Bool
initially: {response(f , fd, ok?) : f , fd ∈ F, ok? ∈ Bool}

Internal:
initially: ∅

State

statusf ∈ {notsubmitted, submitted, computed, replied}, status of request f , initially notsubmitted
transf ,d ∈ Bool, true iff the system is currently interacting with database d on behalf of request

f , initially false
okfltsf ,d ⊆ F , set of acceptable flights that has been found so far, initially empty
resps ⊆ F × F × Bool, responses that have been calculated but not yet sent to client, initially

empty
xf ,d ∈ N , bound on the number of times database d is queried on behalf of request f before a

negative reply is returned to the client, initially any natural number greater than zero

Actions
Input request(f)
Eff: statusf ← submitted

Input selectd(f)
Eff: in ←

(in ∪ {informd(f ,flts), confd(fd, ok?)}) −
{informd′ (f ,flts), confd′ (fd, ok?) : d′ �= d};

outreg ←
(outreg ∪ {queryd(f), buyd(f , fd)}) −
{queryd′ (f), buyd′ (f , fd) : d′ �= d}

Outregular queryd(f)
Pre: statusf = submitted ∧ xf ,d > 0
Eff: xf ,d ← xf ,d − 1;

transf ,d ← true

Input informd(f ,flts)
Eff: okfltsf ,d ← okfltsf ,d ∪

{fd : fd ∈ flts ∧ fd.p ≤ f .mp}

Outregular buyd(f ,flts)
Pre: statusf = submitted ∧

flts = okfltsf ,d �= ∅ ∧ transf ,d
Eff: skip

Input confd(f , fd, ok?)
Eff: transf ,d ← false;

if ok? then
resps ← resps ∪ {〈f , fd, true〉};
statusf ← computed

else
if ∀d : xf ,d = 0 then

resps ← resps ∪ {〈f ,⊥, false〉};
statusf ← computed

else
skip

Outregular response(f , fd, ok?)
Pre: 〈f , fd, ok?〉 ∈ resps ∧ statusf = computed
Eff: statusf ← replied

Input adjustsig(f)
Eff: in ← in−

{informd(f ,flts), confd(f , fd, ok?)};
outreg ← outreg−

{queryd(f), buyd(f , fd)}

We now give the client agent and request agents of the implementation. The
initial configuration consists solely of the client agent ClientAgt .

Dynamic Input/Output Automata: A Formal Model for Dynamic Systems 149

Client Agent: ClientAgt

Universal Signature
Input:

request(f), where f ∈ F
req-agent-response(f , fd, ok?), where f , fd ∈ F , and ok? ∈ Bool

Output:
response(f , fd, ok?), where f , fd ∈ F and ok? ∈ Bool

Internal:
create(ClientAgt,ReqAgt(f)), where f ∈ F

State
reqs ⊆ F , outstanding requests, initially empty
created ⊆ F , outstanding requests for whom a request agent has been created, but the response

has not yet been returned to the client, initially empty
resps ⊆ F × F × Bool, responses not yet returned to client, initially empty

Actions
Input request(f)
Eff: reqs ← reqs ∪ {〈f 〉}

Create create(ClientAgt,ReqAgt(f))
Pre: f ∈ reqs ∧ f �∈ created
Eff: created ← created ∪ {f }

Input req-agent-response(f , fd, ok?)
Eff: resps ← resps ∪ {〈f , fd, ok?〉};

done ← done ∪ {f }

Outregular response(f , fd, ok?)
Pre: 〈f , fd, ok?〉 ∈ resps
Eff: resps ← resps − {〈f , fd, ok?〉}

ClientAgt receives requests from a client (not portrayed), via the request
input action. ClientAgt accumulates these requests in reqs, and creates a request
agent ReqAgt(f) for each one. Upon receiving a response from the request agent,
via input action req-agent-response, the client agent adds the response to the set
resps, and subsequently communicates the response to the client via the response
output action. It also removes all record of the request at this point.

Request Agent: ReqAgt(f) where f ∈ F
Universal Signature
Input:

informd(f ,flts), where d ∈ D and flts ⊆ F
confd(f , fd, ok?), where d ∈ D, fd ∈ F , and ok? ∈ Bool
movef (c, d), where d ∈ D
movef (d, d′), where d, d′ ∈ D and d �= d′

terminate(ReqAgt(f))
initially: {movef (c, d), where d ∈ D}

Output:
queryd(f), where d ∈ D
buyd(f ,flts), where d ∈ D and flts ⊆ F
req-agent-response(f , fd, ok?), where fd ∈ F and ok? ∈ Bool
initially: ∅

Internal:
initially: ∅

State
location ∈ c ∪ D, location of the request agent, initially c, the location of ClientAgt
status ∈ {notsubmitted, submitted, computed, replied}, status of request f , initially notsubmitted
transd ∈ Bool, true iff ReqAgt(f) is currently interacting with database d (on behalf of request f),

initially false
DBagents ⊆ D, databases that have not yet been queried, initially the list of all databases D
donedb ∈ Bool, boolean flag, initially false
done ∈ Bool, boolean flag, initially false
tkt ∈ F , the flight ticket that ReqAgt(f) purchases on behalf of the client, initially ⊥
okfltsd ⊆ F , set of acceptable flights that ReqAgt(f) has found so far, initially empty

150 P.C. Attie and N.A. Lynch

Actions
Input movef (c, d)
Eff: location ← d;

donedb ← false;
in ← {informd(f ,flts), confd(f , fd, ok?)};
outreg ← {queryd(f), buyd(f , fd),

req-agent-response(f , fd, ok?)};
int ← ∅

Outregular queryd(f)
Pre: location = d ∧ d ∈ DBagents ∧ tkt = ⊥
Eff: DBagents ← DBagents − {d};

transd ← true

Input informd(f ,flts)
Eff: okfltsd ← okfltsd ∪

{fd : fd ∈ flts ∧ fd.p ≤ f .mp};
if okfltsd = ∅ then

transd ← false;
int ← {movef (d, d′) :

d′ ∈ DBagents − {d}}

Outregular buyd(f ,flts)
Pre: location = d ∧ flts = okfltsd �= ∅ ∧

tkt = ⊥ ∧ transd ∧ status = submitted
Eff: skip

Input confd(f , fd, ok?)
Eff: transd ← false;

if ok? then
tkt ← fd;
status ← computed

else
if DBagents = ∅ then

status ← computed
else

skip

Input movef (d, d′)
Eff: location ← d′;

donedb ← false;
in ← {informd′ (f ,flts), confd′ (f , fd, ok?)};
outreg ← {queryd′ (f), buyd′ (f , fd),

req-agent-response(f , fd, ok?)};
int ← ∅

Outregular req-agent-response(f , fd, ok?)
Pre: status = computed ∧

[(fd = tkt �= ⊥ ∧ ok?) ∨
(DBagents = ∅ ∧ fd = ⊥ ∧ ¬ok?)

]
Eff: status ← replied;

in ← ∅;
outreg ← ∅;
int ← ∅

ReqAgt(f) handles the single request f , and then terminates itself. ReqAgt(f)
has initial location c (the location of ClientAgt) traverses the databases in
the system, querying each database d using queryd(f). Database d returns a
set of flights that match the schedule information in f . Upon receiving this
(informd(f ,flts)), ReqAgt(f) searches for a suitably cheap flight (the ∃fd ∈
flts : fd .p ≤ f .mp condition in informd(f ,flts)). If such a flight exists, then
ReqAgt(f) attempts to buy it (buyd(f ,flts) and confd(f , fd , ok?)). If succes-
full, then ReqAgt(f) returns a positive response to ClientAgt and terminates.
ReqAgt(f) can return a negative response if it queries each database once and
fails to buy a flight.

We note that the implementation refines the specification (provided that all
actions except request(f) and response(f , fd , ok?) are hidden) even though the
implementation queries each database exactly once before returning a negative
response, whereas the specification queries each database some finite number of
times before doing so Thus, no reasonable bisimulation notion could be estab-
lished between the specification and the implementation. Hence, the use of a
simulation, rather than a bisimulation, allows us much more latitude in refining
a specification into an implementation.

7 Further Research and Conclusions

There are many avenues for further work. Our most immediate concern is
to establish trace projection and pasting results analogous to the execution
projection and pasting results given above. These will then allow us to es-
tablish substitutivity results of the form: if traces(X1) ⊆ traces(X2), then

Dynamic Input/Output Automata: A Formal Model for Dynamic Systems 151

traces(X1 ‖ Y) ⊆ traces(X2 ‖ Y). We shall also investigate ways of allowing
a target SIOA of some create action to be replaced by a more refined SIOA.
Let X[B2] be the configuration automaton resulting when some create action (of
some SIOA A in X) has target B2, and let X[B1] be the configuration automa-
ton that results when this target is changed to B1. We would like to establish:
if traces(B1) ⊆ traces(B2), then traces(X[B1]) ⊆ traces(X[B2]).

Agent systems should be able to operate in a dynamic environment, with
processor failures, unreliable channels, and timing uncertainties. Thus, we need
to extend our model to deal with fault-tolerance and timing. We shall also extend
the framework of [3] for verifying liveness properties to our model. This should
be relatively straightforward, since [3] uses only properties of forward simulation
that should also carry over to our setting.

Acknowledgments. The first author was supported in part by NSF CAREER
Grant CCR-9702616.

References

1. Tadashi Araragi, Paul Attie, Idit Keidar, Kiyoshi Kogure, Victor Luchangco,
Nancy Lynch, and Ken Mano. On formal modeling of agent computations. In
NASA Workshop on Formal Approaches to Agent-Based Systems, Apr. 2000. To
appear in Springer LNCS.

2. Paul Attie and Nancy Lynch. Dynamic input/output automata: a formal model
for dynamic systems. Technical report, Northeastern University, Boston, Mass.,
2001. Available at http://www.ccs.neu.edu/home/attie/pubs.html.

3. P.C. Attie. Liveness-preserving simulation relations. In Proceedings of the 18’th
Annual ACM Symposium on Principles of Distributed Computing, pages 63–72,
1999.

4. Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, 2000.

5. Cedric Fournet, Georges Gonthier, Jean-Jacques Levy, Luc Maranget, and Didier
Remy. A calculus of mobile agents. In Proceedings of the 7th International Confer-
ence on Concurrency Theory (CONCUR’96), Springer-Verlag, LNCS 1119, pages
406–421, Aug. 1996.

6. Joseph Y. Halpern and Yoram Moses. Knowledge and Common Knowledge in a
Distributed Environment. In Proceedings of the 3’rd Annual ACM Symposium on
Principles of Distributed Computing, pages 50–61, 1984.

7. Nancy Lynch and Mark Tuttle. An introduction to Input/Output automata. CWI-
Quarterly, 2(3):219–246, September 1989. Centrum voor Wiskunde en Informatica,
Amsterdam, The Netherlands. Also, Technical Memo MIT/LCS/TM-373, Labora-
tory for Computer Science, Massachusetts Institute of Technology.

8. Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic Transac-
tions. Morgan Kaufmann, 1994.

9. R. Milner. Communicating and mobile systems: the π-calculus. Addison-Wesley,
Reading, Mass., 1999.

10. J. Riely and M. Hennessy. A typed language for distributed mobile processes.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1998.

Probabilistic Information Flow
in a Process Algebra

Alessandro Aldini

Università di Bologna, Dipartimento di Scienze dell’Informazione,
Mura Anteo Zamboni 7, 40127 Bologna, Italy,

aldini@cs.unibo.it
http://www.cs.unibo.it/˜aldini

Abstract. We present a process algebraic approach for extending to
the probabilistic setting the classical logical information flow analysis
of computer systems. In particular, we employ a calculus for the anal-
ysis of probabilistic systems and a notion of probabilistic bisimulation
in order to define classical security properties, such as nondeterministic
noninterference (NNI) and nondeducibility on compositions (NDC), in
the probabilistic setting. We show how to (i) extend the results known
for the nondeterministic case, (ii) analyse insecure nondeterministic be-
haviors, and (ii) reveal probabilistic covert channels which may be not
observable in the nondeterministic case. Finally, we show that the expres-
siveness of the calculus we adopt makes it possible to model concurrent
systems in order to derive also performance measures.

1 Introduction

There is a lot of work in the security community which aims at proposing formal
definitions related to confidentiality in real systems. One of the main techniques
used for verifying the non-occurrence of unauthorized disclosure of information
is the analysis of the information flow among the different components of the
system (see, e.g., [33,23,18]). A well established approach used to conduct such
an analysis is based on an extentional characterization usually known as nonin-
terference [17]. In particular, the use of process algebras to formalize the idea of
noninterference has received increased attention in recent years (see, e.g., [28,12,
26,29]). Most of such process algebraic approaches address the problem of defin-
ing and analysing information flows in a nondeterministic setting. In particular,
in [12] Focardi and Gorrieri promote the classification of a set of properties cap-
turing the idea of information flow and noninterference. More precisely, they
employ an extension of CCS [25] where events are partitioned into two different
levels of confidentiality (low level and high level), thus allowing the whole flow
of information between the two different levels to be controlled. The main idea
underlying the verification of a given security property consists in deriving two
models P ′ and P ′′ from the same model of the system in such a way that their
definition depends on the particular security property we intend to check. Then

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 152–168, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Probabilistic Information Flow in a Process Algebra 153

the verification of the property simply consists in checking the semantic equiva-
lence between P ′ and P ′′. The most interesting and intuitive security properties
capturing information flows are the Non Deducibility on Compositions (NDC)
and the Nondeterministic Non Interference (NNI). For instance, the NDC prop-
erty can be described as follows: ∀Π ∈ HighUsers. E |Π ≈ E w .r .t . LowUsers,
where | stands for the parallel composition operator and ≈ is the equivalence
relation. Such formula says that a system E is NDC secure if, from the low level
user standpoint, the behavior of the system is invariant w.r.t. the composition
with every high level user Π. The above properties describe the nondeterministic
behavior of systems, and often this assumption is more than enough to reveal
insecure information flows. However, in many cases, a detailed and closer to the
implementation description of a system should include additional aspects (such
as time and probabilities) as a possibly observable behavior (e.g. in order to
check the existence of probabilistic covert channels). To this aim, in this paper
we propose a process algebraic approach for the analysis of security properties
in a probabilistic setting which extends the approach of [12]. The motivation of
this work is twofold.

On the one hand, an approach that considers the probabilistic aspect of
systems may contribute to reveal new information flows that do not arise when
considering only the nondeterministic behavior of systems. For instance, a low
level user of a system could observe in different contexts the same set of events
but with different probability distributions associated with each event. More
precisely we show that, when considering more concrete information, a system
which is secure according to the possibilistic version of NDC (NNI) can become
insecure when passing to the probabilistic version of NDC (NNI).

On the other hand, by introducing probabilities we can give a probabilistic
measure to the insecure behaviors captured in the nondeterministic setting. For
instance, a low level user may check if the probability of observing an insecure
behavior of a system is beyond a threshold for which he considers the system to
be secure “enough”. Another reason for considering probabilities is that more
concrete models allow the modeler to describe in the same specification differ-
ent aspects of the same system and, e.g., to analyse on the same model both
performance related properties and information flow security properties.

The process algebra we employ in order to apply the above ideas is quite dif-
ferent from the CCS-like calculus proposed in [12,13,14], the main reason being
that our language is particularly adequate to combine powerful mechanisms like
probabilistic internal/external choices, asynchronous execution of parallel pro-
cesses, multiway synchronization, and an asymmetric master-slave cooperation
discipline, which are very suitable to describe the behavior of real systems (see
e.g. [2]). Moreover, fully specified systems modeled with such a language give rise
to fully probabilistic systems, so that a Markov Chain can be derived and easily
analysed to get performance measures of the system. As far as the equivalence
relation we adopt is concerned, we point out that the possibilistic noninterfer-
ence like properties of [12,13] are defined with respect to different equivalences,
among which the weak bisimulation seems to be particularly appropriate to deal

154 A. Aldini

with some kind of information flows. In this paper we resort to a probabilistic
weak bisimulation, and based on this assumption, we define the probabilistic
version of Bisimulation NDC and Bisimulation Strong NNI .

The paper is organized as follows. After an overview of related work, we de-
scribe in Sect. 2 the probabilistic calculus by introducing the underlying model
(an extension of classical labeled transition systems), the syntax, and the seman-
tics of the algebra. We then present the notion of probabilistic weak bisimulation
(Sect. 3) and the bisimulation based security properties (Sect. 4). Finally, in
Sect. 5 we report some conclusion. Due to space limitations, we omit the proofs
of the results; the interested reader is referred to [1].

1.1 Related Work

A significant amount of work has been done in order to extend the relation among
potential insecure information flows and different aspects of concurrent systems
such as time and probabilities. As an example, programs which execute several
concurrent processes not only introduce nondeterminism, but also the potential
for a malicious party to observe the internal timing behaviors of programs, via
the effect that the running time of commands might have on the scheduler choice
of when various concurrent alternatives can be executed (see, e.g., [32,14,11]).
On the other hand, in [33,18] the authors claim that real systems may exhibit
probabilistic covert channels that are not ruled out by standard nondetermin-
istic security models; in particular, the author of [18] proposes a probabilistic
version of Millen’s synchronous state machine [24] on which two security prop-
erties are rephrased. On the same subject, the authors of [31] formalize the idea
of confidentiality operationally for a simple imperative language with dynamic
thread creation, by capturing the probabilistic information flow that arises from
the scheduling of concurrent threads. In the same line of the above discussion,
in [22] the author considers the notion of Probabilistic Noninterference (PNI) in
the setting of a model of probabilistic dataflow, by showing the compositionality
of PNI in such a context and that a simpler nonprobabilistic notion of nonin-
terference, called Nondeducibility on Strategies [33], is an instantiation of PNI.
Moreover, the authors of [8] resort to a possibilistic information flow analysis of
a Probabilistic Idealised Algol to check for probabilistic interference, and in [9]
a probabilistic security analysis is proposed in the framework of a declarative
programming language. Finally, in [19] the authors set out a modal logic for rea-
soning about multilevel security of probabilistic systems. However, to the best of
our knowledge, no approach has been proposed for extending with probabilities
the information flow theory in process algebras.

2 A Probabilistic Calculus

In this section we introduce a smooth extension of the probabilistic process al-
gebra proposed in [3,6] for modeling and analysing probabilistic systems. Such a

Probabilistic Information Flow in a Process Algebra 155

calculus adopts a mixture of the generative and reactive approaches [16] by con-
sidering an asymmetric form of synchronization where a process which behaves
generatively may synchronize only with processes which behave reactively. The
integration of the generative and reactive approaches has been naturally obtained
by designating some actions, called generative actions, as predominant over the
other ones, called reactive actions (denoted by a subscript ∗), and by imposing
that generative actions can synchronize with reactive actions only. We see the
reactive actions as incomplete actions which must synchronize with generative
actions of another system component in order to form a complete system. A
system is considered to be fully specified only when it gives rise to a probabilistic
transition system which is purely generative, in the sense that it does not include
reactive transitions. Fully specified systems are therefore fully probabilistic sys-
tems from which a Markov Chain can be derived (by discarding actions from
transition labels) that can be easily analysed to get performance measures.

In the following, we first describe the models generated by terms of the cal-
culus, and then we extend the basic language with the operators needed for the
description of security properties. Finally, we equip the algebra with a proba-
bilistic weak bisimulation equivalence by following the same line of [5].

2.1 The Model

Generative-reactive transition systems [3] are composed of transitions labeled
with an action, which can be either generative or reactive, and a probability.
Formally, we denote the set of action types by AType, ranged over by a, b, As
usual AType includes the special type τ denoting internal actions. We denote the
set of reactive actions by RAct = {a∗ | a ∈ AType−{τ}} and the set of generative
actions by GAct = AType. The set of actions is denoted by Act = RAct ∪
GAct , ranged over by π, π′, Transitions leaving a state are grouped in several
bundles. We have a single generative bundle composed of all the transitions
labeled with a generative action and several reactive bundles, each one referring
to a different action type a and composed of all the transitions labeled with
a∗. A bundle of transitions expresses a probabilistic choice. On the contrary the
choice among bundles is performed non-deterministically.

Definition 1. A Generative-Reactive Transition System GRTS is a quadruple
(S,AType, T, s0) with S a set of states and s0 the initial one, AType a set of
action types, T ∈M(S ×Act×]0, 1]×S) a multiset 1 of probabilistic transitions,
such that

1. ∀s ∈ S, ∀a∗ ∈ RAct .
∑{| p | ∃t ∈ S : (s, a∗, p, t) ∈ T |} ∈ {0, 1}

2. ∀s ∈ S.
∑{| p | ∃a ∈ GAct , t ∈ S : (s, a, p, t) ∈ T |} ∈ {0, 1}
�

The first requirement defines the reactive bundles and the second requirement
defines the unique generative bundle. Both requirements say that for each state
1 We use “{| ” and “ |}” as brackets for multisets andM(S) to denote the collection of
multisets over set S.

156 A. Aldini

the probabilities of the transitions composing a bundle, if there are any, sum
up to 1 (otherwise the summation over empty multisets is defined equal to 0).
Graphically, transitions of the same bundle are grouped by an arc, and the
probability of a transition is omitted when equal to 1 (see Fig. 1).

2.2 The Language

In this section we introduce an extension of the calculus proposed in [3,6], by
adding the restriction and hiding operators. Let Const be a set of constants,
ranged over by A,B, The set L of process terms is generated by the syntax:

P ::= 0 |π.P |P +p P |P ‖pS P |P [a→ b]p |P\L |P/pa |A
where S,L ⊆ AType − {τ}, a, b ∈ AType − {τ}, and p ∈]0, 1[. The set L is
ranged over by P, Q, We denote by G the set of guarded and closed terms of
L. Moreover, we denote two disjoint sets ATypeH and ATypeL of high and low
level action types which form a covering of AType − {τ}, such that a ∈ GAct
and a∗ ∈ RAct are high (low) level actions if a ∈ ATypeH (a ∈ ATypeL). Let
GH = {P ∈ G | sort(P) ⊆ ATypeH } be the set of high level terms (i.e. including
high level actions only). An informal overview of the operators is as follows.

0 represents a terminated or deadlocked term having no transitions. The pre-
fix operator π.P performs the action π with probability 1 and then behaves like
P . Constants A are used to specify recursive systems. In general, when defining
an algebraic specification, we assume a set of constants defining equations of the
form A

∆= P to be given.
The alternative composition operator P+pQ represents a probabilistic choice

between the generative actions of P and Q and between the reactive actions of
P and Q of the same type. As far as generative actions are concerned, P +p Q
executes a generative action of P with probability p and a generative action
of Q with probability 1 − p. In the case one process P or Q cannot execute
generative actions, P +pQ chooses a generative action of the other process with
probability 1 (similarly as in [4]). As far as reactive actions of a given type a are
concerned, P +pQ chooses between the reactive actions a∗ of P and Q according
to probability p, by following the same mechanism. As an example, in Fig. 1(a) we
report the GRTS s generated by the terms2 a+pb and b∗+pb∗ representing purely
probabilistic choices made according to p. On the other hand, in Fig. 1(b) terms
a +p b∗ and a∗ +p b∗ represent purely nondeterministic choices, where p is not
considered. Finally, Fig. 1(c) shows a mixed probabilistic and nondeterministic
system, corresponding to the term (a +p′

b∗) +p (b +p′′
b∗), where p′ and p′′ are

not considered.
The parallel composition operator P ‖pS Q is based on a CSP like synchroniza-

tion policy, where processes P and Q are required to synchronize over actions of
type in the set S, and locally execute all the other actions. A synchronization
between two actions of type a may occur only if either they are both reactive
actions a∗ (and the result is a reactive action a∗), or one of them is a generative
2 We abbreviate terms π.0 by omitting the final 0.

Probabilistic Information Flow in a Process Algebra 157

action a and the other one is a reactive action a∗ (and the result is a genera-
tive action a). The generative actions of P (Q) executable by P ‖pS Q are such
that either their type a is not in S, or a is in S and Q (P) can perform some
reactive action a∗. In particular, as standard when restricting actions in the gen-
erative model [16], the probabilities of executing such actions are proportionally
redistributed so that their overall probability sums up to 1. The choice among
the generative actions of P and Q executable by P ‖pS Q is made according to
probability p, by following the same probabilistic mechanism seen for alternative
composition. In the case of synchronizing generative actions a of P (Q), their
probability is further redistributed among the reactive actions a∗ executable by
Q (P), according to the probability they are chosen in Q (P). As far as reac-
tive actions of a given type a /∈ S are concerned, P ‖pS Q may perform all the
reactive actions a∗ executable by P or Q and the choice among them is made
according to probability p, by following the same probabilistic mechanism seen
for alternative composition. As far as reactive actions of a given type a ∈ S are
concerned, if both P and Q may execute some reactive action a∗, the choice of
the two actions a∗ of P and Q forming the actions a∗ executable by P ‖pS Q is
made according to the probability they are independently chosen by P and Q.

The relabeling operator P [a → b]p turns actions of type a into actions of
type b. The parameter p expresses the probability that reactive actions b∗ ob-
tained by relabeling actions a∗ of P are executed with respect to the actions
b∗ previously performable by P . As an example, consider the second GRTS of
Fig. 1(b), corresponding to the process P

∆= a∗ +q b∗, where the choice is purely
nondeterministic. If we apply the relabeling operator P [a → b]p we obtain the
process represented by the second GRTS of Fig. 1(a), where the semantics of
P [a→ b]p is a probabilistic choice between the action b∗ obtained by relabeling
the action a∗ and the other action b∗, performed according to probabilities p and
1 − p, respectively. In this way the probabilistic information p provided in the
operator P [a → b]p guarantees that the relabeling operator does not introduce
non-determinism between reactive actions of the same type. Parameter p is, in-
stead, not used when relabeling generative actions because the choice between
generative actions of type a and b in P is already probabilistic.

The restriction operator P\L prevents the execution of the actions with type
in L. In this work, we have introduced this additional operator in order to make
simple the definition of the security properties. In fact, it can be obtained by
resorting to the parallel operator, because P\L = P ‖pL 0, for each p ∈]0, 1[.

The hiding operator P/pa turns generative and reactive actions of type a into
generative actions τ . The parameter p expresses the probability that actions τ

b,pa, 1-p

(a)

a b
*

(c)

*
,b p *

,b 1-pa, p 1-pb,

(b)

*
b a

**
, 1-pb p,

*
b

Fig. 1. Some examples of GRTSs derived from alternative composition

158 A. Aldini

obtained by hiding reactive actions a∗ of P are executed with respect to the
generative actions previously enabled by P (by following the same probabilistic
mechanism seen for relabeling). As an example, let us consider the processes3

P
∆= l.P +q h.P and P ′ ∆= l.P ′ +q h∗.P ′. When hiding the high level actions of

such processes (e.g. in order to verify the noninterference property), we want to
obtain two processes equivalent to Q

∆= l.Q+q τ.Q, because both generative and
reactive high level actions are not observable by a low level user. In particular,
when hiding P ′, we have that the nondeterministic choice becomes a probabilistic
choice. Actually, we consider the effect of hiding the reactive action h∗ as the
execution of a synchronization between h∗ and an external generative action h
that gives rise to an internal generative action τ . As we will see in Sect. 4, the
process P ′ turns out to be secure if the probability distribution of the hidden
actions is not able to change the probabilistic behavior of the low level view of
the process itself, meaning that the probability of the external high level action
h (which synchronizes with h∗) is not meaningful, because it does not alter the
probabilistic behavior of the low view of the system.

The formal semantics of our calculus maps terms onto GRTS s, where each
label is composed of an action and a probability. The GRTS deriving from a
term G is defined by the operational rules in Tables 1 and 2, where in addition
to rules undersigned with l, which refer to the local moves of the lefthand process
P , we consider also the symmetrical rules taking into account the local moves of
the righthand process Q, obtained by exchanging the roles of terms P and Q in
the premises and by replacing p with 1−p in the label of the derived transitions.

We use P
π−−−→ to stand for ∃ p, P ′ : P π, p−−−→ P ′, meaning that P can execute

action π, and P
G−−−→ to stand for ∃ a ∈ G : P

a−−−→ , G ⊆ AType, meaning that
P can execute a generative action of type belonging to set G. We assume the sets
GS,P , GL ⊆ AType, with S,L ⊆ AType−{τ} and P ∈ G, to be defined as follows:

GS,P = {a ∈ AType | a �∈ S ∨ (a ∈ S ∧P
a∗−−−→)} and GL = {a ∈ AType | a �∈ L}.

GS,Q (GS,P) is the set of types of the generative transitions of P (Q) executable
by P ‖pS Q and GL is the set of types of the generative transitions of P executable
by P\L. Since we consider a restricted set of executable actions, we redistribute
the probabilities of the generative transitions of P (Q) executable by P ‖pS Q
and P\L so that their overall probability sums up to 1 [16]. To this aim in
semantics rules we employ the function νP (G) : P(AType) −→]0, 1], with P ∈ G,
defined as νP (G) =

∑{| p | ∃P ′, a ∈ G : P
a, p−−−→ P ′ |} that computes the sum

of the probabilities of the generative transitions executable by P whose type
belongs to the set G. Hence νP (GS,Q) (νQ(GS,P)) and νP (GL) compute the
overall probability of the generative transitions of P (Q) executable by P ‖pS Q
and P\L, respectively. Finally, we employ the following abbreviations to denote
the hiding of high level actions.

Definition 2. Let “P/L”, where L is a finite sequence 〈ap11 , . . . , apnn 〉 of actions
ai �= τ with an associated probability pi, stand for the expression P/p1a1

. . . /pnan ,
3 We denote with l, l′, . . . low level types and with h, h′, . . . high level types.

Probabilistic Information Flow in a Process Algebra 159

Table 1. Operational semantics for the basic calculus

(gr1) π.P
π,1−−−→ P

(r1l)
P

a∗,q−−−→ P ′ Q
a∗−−−→

P +p Q
a∗,p·q−−−→ P ′

(r2l)
P

a∗,q−−−→ P ′ Q
a∗−−−→/

P +p Q
a∗,q−−−→ P ′

(g1l)
P

a,q−−−→ P ′ Q
GAct−−−→

P +p Q
a,p·q−−−→ P ′

(g2l)
P

a,q−−−→ P ′ Q
GAct−−−→/

P +p Q
a,q−−−→ P ′

(r3l)
P

a∗,q−−−→ P ′ Q
a∗−−−→

P ‖pS Q
a∗,p·q−−−→ P ′ ‖pS Q

a �∈ S (r4l)
P

a∗,q−−−→ P ′ Q
a∗−−−→/

P ‖pS Q
a∗,q−−−→ P ′ ‖pS Q

a �∈ S

(r5)
P

a∗,q−−−→ P ′ Q
a∗,q′
−−−→Q′

P ‖pS Q
a∗,q·q′
−−−→ P ′ ‖pS Q′

a ∈ S

a �∈ S :

(g3l)
P

a,q−−−→ P ′ Q
GS,P−−−→

P ‖pS Q
a,p·q/νP (GS,Q)
−−−−−−−−−−−−−→ P ′ ‖pS Q

(g4l)
P

a,q−−−→ P ′ Q
GS,P−−−→/

P ‖pS Q
a,q/νP (GS,Q)

−−−−−−−−−−−−−→ P ′ ‖pS Q

a ∈ S :

(g5l)
P

a,q−−−→ P ′ Q
a∗,q′
−−−→Q′ Q

GS,P−−−→

P ‖pS Q
a,p·q′·q/νP (GS,Q)
−−−−−−−−−−−−−→ P ′ ‖pS Q′

(g6l)
P

a,q−−−→ P ′ Q
a∗,q′
−−−→Q′ Q

GS,P−−−→/

P ‖pS Q
a,q′·q/νP (GS,Q)
−−−−−−−−−−−−−→ P ′ ‖pS Q′

(r6)
P

a∗,q−−−→ P ′ P
b∗−−−→

P [a→ b]p
b∗,p·q−−−→ P ′[a→ b]p

(r7)
P

a∗,q−−−→ P ′ P
b∗−−−→/

P [a→ b]p
b∗,q−−−→ P ′[a→ b]p

(r8)
P

b∗,q−−−→ P ′ P
a∗−−−→

P [a→ b]p
b∗,(1−p)·q
−−−−−−−−→ P ′[a→ b]p

(r9)
P

b∗,q−−−→ P ′ P
a∗−−−→/

P [a→ b]p
b∗,q−−−→ P ′[a→ b]p

(r10)
P

c∗,q−−−→ P ′

P [a→ b]p
c∗,q−−−→ P ′[a→ b]p

c �∈ {a, b}

(g7)
P

a,q−−−→ P ′

P [a→ b]p
b,q−−−→ P ′[a→ b]p

(g8)
P

c,q−−−→ P ′

P [a→ b]p
c,q−−−→ P ′[a→ b]p

a �= c

(gr2)
P

π,q−−−→ P ′

A
π,q−−−→ P ′

if A ∆= P

160 A. Aldini

Table 2. Operational semantics for restriction and hiding

(r11)
P

a∗,q−−−→ P ′

P\L a∗,q−−−→ P ′\L
a �∈ L (g9)

P
a,q−−−→ P ′

P\L
a,q/νP (GL)
−−−−−−−−→ P ′\L

a �∈ L

(r12)
P

a∗,q−−−→ P ′ P
GAct−−−→

P/pa
τ,p·q−−−→ P ′/pa

(r13)
P

a∗,q−−−→ P ′ P
GAct−−−→/

P/pa
τ,q−−−→ P ′/pa

(r14)
P

b∗,q−−−→ P ′

P/pa
b∗,q−−−→ P ′/pa

a �= b

(g10)
P

b,q−−−→ P ′ P
a∗−−−→

P/pa
b,(1−p)·q
−−−−−−−−→ P ′/pa

a �= b (g11)
P

b,q−−−→ P ′ P
a∗−−−→/

P/pa
b,q−−−→ P ′/pa

a �= b

(g12)
P

a,q−−−→ P ′ P
a∗−−−→

P/pa
τ,(1−p)·q
−−−−−−−−→ P ′/pa

(g13)
P

a,q−−−→ P ′ P
a∗−−−→/

P/pa
τ,q−−−→ P ′/pa

hiding the actions with types a1, . . . , an. Let “P/ATypeH”, where we assume
the set of high level actions ATypeH to be the set {h1, . . . , hn}, stand for the
expression P/p1h1

. . . /pnhn , for any choice of the associated probabilities p1, . . . , pn.

Theorem 1. If P is a process of G, then the operational semantics of P (com-
posed of the terms reachable from P according to the operational rules of Tables 1
and 2) is a GRTS.

3 Equivalence

In this section we define a weak bisimulation equivalence for generative-reactive
transition systems. Let us consider the GRTS (S,AType, T, s0). We define func-
tion Pr : S × Act × S −→ [0, 1] by Pr(s, π, s′) =

∑{| p | (s, π, p, s′) ∈ T |}, and
Pr(s, π, C) =

∑
s′∈C Pr(s, π, s

′), C ⊆ S. An execution fragment is a finite se-

quence σ = s0
π1,p1−−−→ s1

π2,p2−−−→ . . . sk, such that si ∈ S, πi ∈ Act and pi > 0 for
each i ∈ 1, . . . , k. We denote Pr(σ) = Pr(s0, π1, s1) · . . . ·Pr(sk−1, πk, sk). An ex-

ecution is an infinite sequence σ′ = s0
π1,p1−−−→ s1

π2,p2−−−→ . . . where si ∈ S, πi ∈ Act
and pi > 0 for each i ∈ NI . Finally, let σ ↑ denote the set of executions σ′ such
that σ ≤prefix σ′ where prefix is the usual prefix relation on sequences. Assuming
the basic notions of probability theory (see e.g. [20]) we define the probability
space on the executions starting in a given state s ∈ S. Let Exec(s) be the set of
executions starting in s, and ExecFrag(s) the set of execution fragments start-
ing in s. Moreover, let Σ(s) be the smallest sigma field on Exec(s) such that it

Probabilistic Information Flow in a Process Algebra 161

contains the basic cylinder σ ↑ where σ ∈ ExecFrag(s). The probability measure
Prob is the unique measure on Σ(s) such that Prob(σ ↑) = Pr(σ).

In the following, â stands for a if a ∈ GAct − {τ} and for ε if a = τ , C ⊆ G,
and P ∈ G. Now let us consider Exec(τ∗â, C) the set of executions σ′ that lead
to a term in C via a sequence belonging to the set of sequences τ∗â ⊆ GAct∗. Let
Exec(P, τ∗â, C) = Exec(τ∗â, C) ∩ Exec(P), where Exec(P) is the set of execu-
tions starting from P . The probability Prob(P, τ∗â, C) = Prob(Exec(P, τ∗â, C))
is defined as follows:

Prob(P, τ∗â, C) =




1 if a = τ ∧ P ∈ C∑
Q∈G Prob(P, τ,Q) · Prob(Q, τ∗â, C) if a = τ ∧ P �∈ C∑
Q∈G Prob(P, τ,Q) · Prob(Q, τ∗â, C)

+Prob(P, â, C) otherwise

The definition of weak bisimulation for GRTS s is similar to the ideas presented
in [5], where the classical relation ≈ of [25] is replaced by the function Prob in
order to consider the probability of reaching each state. Moreover, the authors
of [5] describe an algorithm that computes weak bisimulation equivalence classes
in time O(n3) and space O(n2).

Definition 3. A relation R ⊆ G × G is a probabilistic weak bisimulation if
(P,Q) ∈ R implies for all C ∈ G/R
– Prob(P, τ∗â, C) = Prob(Q, τ∗â, C) for all a ∈ GAct
– Prob(P, a∗, C) = Prob(Q, a∗, C) for all a∗ ∈ RAct

Two terms P,Q ∈ G are weakly bisimulation equivalent, denoted P ≈PB Q, if
there exists a weak bisimulation R containing the pair (P,Q). Note that if P ∈ C
then Prob(P, τ∗, C) = 1. It is worth noting that the authors of [5] define both
weak and branching bisimulation for fully probabilistic transition systems and
show that these two relations coincide in such a probabilistic case (so that we
can use τ∗â instead of τ∗âτ∗ in Definition 3). Moreover, it is easy to see that
the definition of probabilistic weak bisimulation extends the classical notion of
weak bisimulation. This means that the properties we define in Sect. 4 capture
all the information flows which arise by analysing the nondeterministic behavior
of a system via the classical approach.

4 Security Properties

In this section we present some information flow security properties, by extend-
ing the noninterference theory proposed in [12,13] in a probabilistic framework.
In this paper we just consider the properties based on the weak bisimulation
described in the previous section. As put in evidence in [13], the reason for re-
sorting to this kind of equivalence stems from some lacks typical of other notions
of equivalence, such as the trace equivalence. In general, the notion of bisimu-
lation is finer than trace equivalence and is able to detect a higher number of

162 A. Aldini

insecure behaviors (e.g. trace equivalence is not able to detect high level dead-
locks). Moreover, as far as other notions of equivalence are concerned, in [13] the
authors show that failure/testing equivalences are not interesting for systems
with some high level loops or with τ loops.

4.1 Probabilistic Noninterference

We start by defining a probabilistic extension of the Bisimulation Strong Nonde-
terministic Noninterference (BSNNI), which says that a process P is BSNNI if
the process P\ATypeH , where no high level activity is allowed, behaves like the
process P/ATypeH , where all the high level activities are hidden [12]. We call
such an extended property Bisimulation Strong Probabilistic Noninterference
(BSPNI).

Definition 4. P ∈ BSPNI ⇔ P/ATypeH ≈PB P\ATypeH
We point out that due to Definition 2, the low behavior of a process P that

is BSPNI does not depend on a particular probability distribution of the hidden
high level actions. This condition reinforces the security property and justifies
our choice of hiding the reactive actions into τ actions, because it guarantees
that the probability of a potential synchronization between a reactive high level
action of P and a corresponding generative high level action of its environment
cannot alter the probability distribution of the low level behavior of P .

For instance, let us consider the term P
∆= l.P+ph.l.P , representing a process

which can do a low level action preceded (or not) by a high level action. The
high level does not interfere with the low level, because a low level user can just
observe the action l with no information about the high level behavior; indeed
we have P/ATypeH ≈PB (l.P +ph.l.P)/ATypeH ≈PB l.P +p τ.l.P ≈PB l.P ≈PB
P\ATypeH . The same example obtained by replacing h with h∗ is still secure,
as P/ATypeH ≈PB P\ATypeH for any choice of p. This means that in P

∆=
l.P +p h∗.l.P any potential interaction of P with its environment by means of a
synchronization via a high level action h cannot alter the probability distribution
of the event l and, as a consequence, the behavior of the system observable by a
low level user. Now we show through some examples how the probabilistic version
of noninterference can be employed in order to study the relation between the
information flow and the probabilistic behavior of the system.

4.2 Probabilistic Measure of Insecure Nondeterministic Behaviors

Modeling the probabilistic behavior of a system allows us to give a more con-
crete, closer to the implementation description of the system, that may then
reveal new aspects of the potential insecure information flows. More precisely,
by introducing probabilities we can give a probabilistic measure to the insecure
behaviors captured in the nondeterministic setting. Indeed, while in the non-
deterministic case we can just deduce that a system is insecure because of an
insecure information flow, in the probabilistic setting we can add that the system

Probabilistic Information Flow in a Process Algebra 163

reveals such an information flow with a certain probability. Hence, we can define
different levels of security depending on the probability of observing insecure
behaviors that an user of the system can tolerate.

For instance, let us consider an abstraction of an access monitor which han-
dles read and write commands on a single-bit low-level variable. The low level
read commands are represented by the reactive action r0∗ and r1∗, and the low
level write commands are represented by the generative actions w0 and w1. We
suppose that a high level user can explicitly change the value of the variable
from 0 to 1, through the action h. The access monitor is described by the sys-
tem4 P

∆= h.P ′ +q (r0∗.P + w1.P ′) with P ′ ∆= r1∗.P ′ + w0.P . The high level
user can interfere with any low level user by altering the low view of the system.
This because intuitively a low level user can observe the sequence r0∗.r1∗, i.e.
he first reads the value 0 and then the value 1, without observing a write com-
mand on the variable made by another low level user. Formally, we have that in
P/ATypeH an internal τ transition (obtained by hiding the action h) leads to P ′

with probability q, whereas such a transition is not enabled in P\ATypeH . This
situation is enough to construct a covert channel from high level to low level.
However, such a system (with q close to 0 in the definition of P) and the se-
cure version of the same system (obtained by removing the undesirable insecure
component h.P ′ from the definition of P) behave almost (up to small fluctua-
tions) the same. From the user standpoint, a negligible risk (equal to a small
ε) of observing an undesirable information flow may be tolerable, especially if
the cost of a completely secure system is significantly greater than the cost of
the system P . Formally, the notion of bisimulation can be enriched in order to
tolerate ε-fluctuations which make the security condition less restrictive. As an
example, in [7] the authors promote a pseudometric for probabilistic transition
systems which quantifies the similarity of the behavior of probabilistic systems
which are not bisimilar, and that can be easily exploited also in this context.

4.3 Capturing Probabilistic Information Flows

An important reason for extending the classical possibilistic theory of noninter-
ference is that real systems may exhibit probabilistic covert channels that are
not captured by standard nondeterministic security models. Potential insecure
behaviors may be revealed by checking the probabilistic version of security prop-
erties such as the NNI. Now we show that our approach can be used in order to
rule out such finer undesirable insecure behaviors.

An example of a probabilistic covert channel is inspired to the following in-
secure program proposed by Sabelfeld and Sands in [30,31]. They show that the
program Prog : h := hmod 100; (l := h +1/2 l := rand(99)) has no informa-
tion flow if we only consider the possible behaviors of the system, but the final
value of l will reveal information about h when considering statistical inferences
derived from the relative frequency of outcomes of repeated computations. Sim-
ilarly, let us consider the process P

∆= (l′ +p l′′) +r h.(l′ +q l′′), where a low level
4 We omit the parameter of the probabilistic choice operator if it is not meaningful.

164 A. Aldini

user can observe either an action l′ or an action l′′ (for the sake of simplicity
we just consider two observable events, namely l′ and l′′, whereas in Prog a low
level user can observe 100 different values). The component (l′ +p l′′) says that
the probability distribution of the two low level actions is guided by parameter
p (the counterpart in Prog is represented by the assignment l := rand(99)). The
component h.(l′ +q l′′) says that, given an high level event of type h, the prob-
ability distribution of the two low level actions is guided by parameter q (the
counterpart in Prog is represented by the assignment l := h). The nondetermin-
istic version of this process is BSNNI , because the high level behavior does not
alter what a low level user can observe, but in the probabilistic setting this is not
the case (see Fig. 2). In fact, the probability of observing an event l′ w.r.t. an
event l′′ changes depending on the behavior of the high level part exactly as the
value of l (in program Prog) reveals h with a certain probability. In particular,
we observe that P is BSPNI if and only if p = q, because in this case the high
level behavior does not alter the probability distribution of the two low level
events. Finally, it is worth noting that the insecure behavior of such an example
is not captured by classical security properties such as BNDC [13] (and therefore
the lazy security property of [28]), Strong BNDC [12], and Strong BSNNI [13].

A similar example is given by the system Q
∆= (l′∗.Q+p′

l′′∗.Q) ‖p′′

{l′,l′′}((l
′.Q+p

l′′.Q) ‖r0 h.(l′.Q+q l′′.Q)) where parameters p′ and p′′ are not meaningful and the
probability distribution of the low level actions depends on the behavior of the
high level user. It is worth noting that Q is fully specified, in that it does not
contain nondeterministic choices. As a consequence we can derive a Markov
Chain from the GRTS underlying Q and, e.g., we can compute the throughput
of the actions l′ and l′′ via standard techniques (see e.g. [21]).

As another example, let us consider the term P
∆= (l.0+p l.l′.0)+q l.h.l′.0 that

is BNDC and, therefore, BSNNI (see [13]). In the probabilistic framework, the
high level action h interferes with the probability of observing either a single l or
the sequence l.l′. In particular in P\ATypeH a low level user observes either the
single event l with probability p · q+(1− q) or the sequence l.l′ with probability
(1− p) · q. On the other hand, in P/ATypeH a low level user observes either the
single event l with probability p · q or the sequence l.l′ with probability 1− p · q.
As a consequence P\ATypeH �≈PB P/ATypeH and the term P turns out to be
insecure in the probabilistic setting.

S0
’S1S0 τ ?1-r

rp 1-q q 1-p pr(1-p)

l l ll l l

Fig. 2. S0 ≈B S1 ≈B S′
0, but S0 �≈PB S1 �≈PB S′

0, except for the case p = q

Probabilistic Information Flow in a Process Algebra 165

4.4 Nondeducibility on Composition

Sometimes the noninterference property is not enough to capture all the potential
insecure behaviors of a system. For this reason, other additional properties have
been suggested in order to overcome the lacks of the noninterference property.
Among the different proposals, we consider the so called Non Deducibility on
Composition (NDC), saying that the system behavior is invariant w.r.t. the
composition with every high level user. Formally, P is BNDC if and only if
∀Π ∈ High Users, (P |Π)\ATypeH ≈B P/ATypeH . Now we extend the notion
of such a property in the probabilistic setting, by defining the Probabilistic
Bisimulation NDC (for short, PBNDC).

Definition 5. P ∈ PBNDC ⇔ P/ATypeH ≈PB ((P ‖pS Π)/S)\ATypeH ,∀Π ∈
GH , p ∈]0, 1[, S ⊆ ATypeH .

It is worth noting that due to the particular parallel operator we adopt, it
is necessary (i) to hide the high level actions belonging to S which succeed in
synchronizing in P ‖pS Π and then (ii) to purge the system of the remaining high
level actions. As in the nondeterministic framework, PBNDC is at least as strong
as BSPNI .

Proposition 1. PBNDC ⊂ BSPNI

For instance, let us consider the process P
∆= l.0 +p h.h.l.0. It is simple to

see that this process is BSPNI since P/ATypeH ≈PB l.0 +p τ.τ.l.0 ≈PB l.0 and
P\ATypeH = (l.0 +p h.h.l.0)\ATypeH ≈PB l.0. But, if we consider the process
Π

∆= h∗.0 we get that (P ‖q{h}Π)/ATypeH)\ATypeH ≈PB l.0+pτ.0 �≈PB l.0 ≈PB
P/ATypeH .

The above example shows that BSPNI is not able to detect some potential
deadlock due to high level activities, exactly as put in evidence in [13]. Therefore
we resort to the PBNDC property in order to capture these finer undesirable
behaviors. It is worth noting that, as reported in [13,14], the above definition of
PBNDC is difficult to use because of the universal quantification on high level
processes. For this reason, we propose the probabilistic version of the SBSNNI
property (described in [13]), called Strong BSPNI (SBSPNI).

Definition 6. P ∈ SBSPNI ⇔ ∀P ′ ∈ Der(P) : P ′ ∈ BSPNI
The definition requires the system to be BSPNI in every derivative of P .

Also in this framework the following property is valid.

Proposition 2. SBSPNI ⊂ PBNDC
Unfortunately, differently from SBSNNI , we have that SBSPNI is not com-

positional w.r.t. parallel composition. This because different processes composed
in parallel can alter the probability distribution each other. As an example of
such a lack, let us consider the system P

∆= l′.0 ‖p∅(l′′.0 +q h.l′′.0). Both the left
component and right one are SBSPNI . However, the possible execution of h

166 A. Aldini

changes the probability of observing l′, so from the low level user point of view,
the probability distribution of the two observable sequences l′.l′′ and l′′.l′ is al-
tered by the high level user, who hence can create a probabilistic covert channel.
Obviously this would not be the case if l′ = l′′ (in such a case P ∆= l.0 ‖p∅ l.0+qh.l.0
is SBSPNI).

5 Conclusion

In this paper we have investigated the problem of extending the noninterference
theory of [12,13] to the probabilistic case. In particular, the probabilistic ver-
sion of the bisimulation noninterference and the bisimulation nondeducibility on
compositions turned out to be able to capture information flows which would not
be caught by the strongest classical nonprobabilistic notions of noninterference
(e.g. the SBNDC , that is the most restrictive property proposed in [12]).

The aim of our approach is twofold. On the one hand, if the system is
fully specified (i.e. the corresponding GRTS does not include nondeterminis-
tic choices), we can derive a Markov Chain and get performance measures of
the system. On the other hand, the same model can be analysed in order to
(i) give a probabilistic measure to the insecure nondeterministic behaviors, and
(ii) reveal potential information flows that arise only if the model captures the
probabilistic aspect of the system.

Among the possible extensions of such a work, it could be interesting (i) to
extend the calculus with a notion of time in order to analyse on the same model
the information flows deriving from both temporal and probabilistic behaviors,
and (ii) to consider other notions of equivalences, such as testing equivalence
for probabilistic processes. Moreover it may be meaningful to contrast our prob-
abilistic notion of noninterference with other approaches cited in the related
work. In particular, it would be most interesting to compare our ideas with
those works (see, e.g., [27]) where weaknesses of security properties (like the
BNDC) are pointed out. Finally, the next step of this study is the adoption of
the proposed approach in the area of network security (see, e.g., [10]) for the
analysis of cryptographic protocol properties in a probabilistic setting. In par-
ticular the aim is to extend to our setting the process algebraic approach of [15]
proposed for analysing security protocols in the nondeterministic case.

Acknowledgements. This research has been funded by Progetto MURST and
by a grant from Microsoft Research Europe.

References

1. A. Aldini, “Probabilistic Information Flow in a Process Algebra”, Tech. Rep.
UBLCS-2001-06, University of Bologna, Italy, 2001

2. A. Aldini, M. Bernardo, R. Gorrieri, M. Roccetti, “Comparing the QoS of Inter-
net Audio Mechanisms via Formal Methods”, ACM Transactions on Modelling
and Computer Simulation, ACM Press, Vol. 11, N. 1, 2001

Probabilistic Information Flow in a Process Algebra 167

3. A. Aldini, M. Bravetti, “An Asynchronous Calculus for Generative-Reactive
Probabilistic Systems”, in Proc. of 8th Int. Workshop on Process Algebra and
Performance Modeling, pp. 119-138, 2000

4. J.C.M. Baeten, J.A. Bergstra, S.A. Smolka, “Axiomatizing Probabilistic Pro-
cesses: ACP with Generative Probabilities”, in Information and Comp. 121:234-
255, 1995

5. C. Baier and H. Hermanns, “Weak Bisimulation for Fully Probabilistic Pro-
cesses”, in Proc. of CAV’97, Springer LNCS 1254, pp. 119-130, 1997

6. M. Bravetti, A. Aldini, “Discrete Time Generative-reactive Probabilistic Pro-
cesses with Different Advancing Speeds”, Tech. Rep. UBLCS-2000-03, University
of Bologna, Italy, to appear in Theoretical Computer Science, 2001

7. F. van Breugel, J. Worrell, “Towards Quantitative Verification of Probabilistic
Systems (extended abstract)”, to appear in Proc. of 28th International Collo-
quium on Automata, Languages and Programming, Springer LNCS, 2001

8. D. Clark, C. Hankin, S. Hunt, R. Nagarajan, “Possibilistic Information Flow
is safe for Probabilistic Non-Interference”, in Work. on Issues in the Theory of
Security, 2000

9. A. Di Pierro, C. Hankin, H. Wiklicky, “Probabilistic Security Analysis in a
Declarative Framework”, in Work. on Issues in the Theory of Security, 2000

10. A. Durante, R. Focardi, R. Gorrieri, “A Compiler for Analysing Cryptographic
Protocols Using Non-Interference”, in ACM TOSEM, special issue on Software
Engineering & Security, Volume 9(4), pages 489-530, 2000

11. N. Evans, S. Schneider, “Analysing Time Dependent Security Properties in CSP
Using PVS”, in Proc. Symposium on Research in Computer Security, pp. 222-
237, Springer LNCS 1895, 2000

12. R. Focardi, R. Gorrieri, “A Classification of Security Properties”, Journal of
Computer Security, 3(1):5-33, 1995

13. R. Focardi, R. Gorrieri, “The Compositional Security Checker: A Tool for the
Verification of Information Flow Security Properties”, IEEE Trans. Sof. Eng.,
27:550-571, 1997

14. R. Focardi, R. Gorrieri, F. Martinelli, “Information Flow Analysis in a Discrete-
Time Process Algebra”, in Proc. of 13th IEEE Computer Security Foundations
Work., pp. 170-184, 2000

15. R. Focardi, R. Gorrieri, F. Martinelli, “Non Interference for the Analysis of Cryp-
tographic Protocols”, in Proc. of 27th International Colloquium on Automata,
Languages and Programming, Springer LNCS 1853, pp. 354-372, 2000

16. R.J. van Glabbeek, S.A. Smolka, B. Steffen, “Reactive, Generative and Stratified
Models of Probabilistic Processes”, in Information and Comp. 121:59-80, 1995

17. J.A. Goguen, J. Meseguer, “Security Policy and Security Models”, in Proc. IEEE
Symposium on Security and Privacy, pp. 11-20, IEEE CS Press, 1982

18. J.W. Gray III, “Toward a Mathematical Foundation for Information Flow Secu-
rity”, Journal of Computer Security, 1:255-294, 1992

19. J.W. Gray III, P.F. Syverson, “A Logical Approach to Multilevel Security of
Probabilistic Systems”, in Proc. IEEE Computer Society Symposium on Research
in Security and Privacy, pp. 164-176, 1992

20. P.R. Halmos, “Measure Theory”, Springer-Verlag, 1950
21. R.A. Howard, “Dynamic Probabilistic Systems”, John Wiley & Sons, 1971
22. J. Jürjens, “Secure information flow for concurrent processes”, in Proc. of Int.

Conf. on Concurrency Theory, Springer LNCS 1877, pp. 395-409, 2000
23. J. McLean, “Security Models and Information Flow”, in Proc. of IEEE Symp.

on Research in Security and Privacy, pp. 180-187, 1990

168 A. Aldini

24. J.K. Millen, “Hookup Security for Synchronous Machines”, in Proc. of 3rd IEEE
Computer Security Foundations Work., pp. 84-90, 1990

25. R. Milner, “Communication and Concurrency”, Prentice Hall, 1989
26. A.W. Roscoe, “CSP and Determinism in Security Modelling”, in Proc. of IEEE

Symposium on Security and Privacy, pp. 114-127, 1995
27. A.W. Roscoe, G.M. Reed, R. Forster, “The successes and failures of behavioural

models”, in Millenial Perspectives in Computer Science, 2000
28. A. W. Roscoe, J.C.P. Woodcock, L. Wulf, “Noninterference through Determin-

ism”, in Proc. European Symposium on Research in Computer Security, pp.
33-53, Springer LNCS 875, 1994

29. P.Y.A. Ryan, S. Schneider, “Process Algebra and Noninterference”, in Proc. of
12th IEEE Computer Security Foundations Work., pp. 214-227, 1999

30. A. Sabelfeld, D. Sands, “A Per Model of Secure Information Flow in Sequential
Programs”, in Proc. of 8th European Symposium on Programming, Springer
LNCS 1576, pg. 40-58, 1999

31. A. Sabelfeld, D. Sands, “Probabilistic Noninterference for Multi-threaded Pro-
grams”, in Proc. of 13th IEEE Computer Security Foundations Work., 2000

32. S. Schneider, “Concurrent and Real-Time Systems: the CSP Approach”, J. Wiley
& Sons, Inc., 1999

33. J.T. Wittbold, D.M. Johnson, “Information Flow in Nondeterministic Systems”,
in Proc. of IEEE Symp. on Research in Security and Privacy, pp. 144-161, 1990

Symbolic Computation of Maximal Probabilistic
Reachability�

Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom.

{M.Z.Kwiatkowska,G.Norman,J.Sproston}@cs.bham.ac.uk

Abstract. We study the maximal reachability probability problem for
infinite-state systems featuring both nondeterministic and probabilistic
choice. The problem involves the computation of the maximal probabil-
ity of reaching a given set of states, and underlies decision procedures
for the automatic verification of probabilistic systems. We extend the
framework of symbolic transition systems, which equips an infinite-state
system with an algebra of symbolic operators on its state space, with a
symbolic encoding of probabilistic transitions to obtain a model for an
infinite-state probabilistic system called a symbolic probabilistic system.
An exact answer to the maximal reachability probability problem for
symbolic probabilistic systems is obtained algorithmically via iteration
of a refined version of the classical predecessor operation, combined with
intersection operations. As in the non-probabilistic case, our state space
exploration algorithm is semi-decidable for infinite-state systems. We il-
lustrate our approach with examples of probabilistic timed automata, for
which previous approaches to this reachability problem were either based
on unnecessarily fine subdivisions of the state space, or which obtained
only an upper bound on the exact reachability probability.

1 Introduction

Many systems, such as control, real-time, and embedded systems, give rise to
infinite-state models. For instance, embedded systems can be modelled in for-
malisms characterised by a finite number of control states (representing a digi-
tal controller) interacting with a finite set of real-valued variables (representing
an analogue environment). Motivated by the demand for automatic verification
techniques for infinite-state systems, a number of results concerning the decid-
ability of problems such as reachability, model checking and observational equiv-
alence have been presented: isolated results concerning models such as timed
automata [3], hybrid automata [2] and data independent systems [22] have been
subject to unifying theories [1,10] and, in some cases, have provided the basis of
efficient analysis tools, such as the timed automata model checker Uppaal [17].

In this paper, we consider a probabilistic model for infinite-state systems. For
examples of infinite-state systems exhibiting probabilistic behaviour, consider
� Supported in part by the EPSRC grants GR/M04617 and GR/N22960.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 169–183, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

170 M. Kwiatkowska, G. Norman, and J. Sproston

the real-time algorithm employed in the root contention protocol of IEEE1394
(FireWire) [20], probabilistic lossy channels [12] and open queueing networks [8].
Our system model also admits nondeterministic choice, which allows the mod-
elling of asynchronous systems, and permits the underspecification of aspects of
a system, including probabilistic attributes. We focus on the maximal reacha-
bility probability problem for probabilistic systems, concerning the computation
of the maximal probability with which a given set of states is reachable. In the
same way that reachability underlies the verification of temporal modalities in
the non-probabilistic context, probabilistic reachability provides the foundation
for probabilistic model checking of temporal modalities [6,5].

To reason about properties of infinite-state systems, an implicit, symbolic
means to describe infinite state sets is required. The operations required on such
state sets include boolean and predecessor operations, which together enable
model checking of reachability properties by backwards exploration through the
state space. Our first contribution concerns the extension of symbolic transition
systems [10], which are infinite-state systems equipped with an algebra of such
operations, with a (discrete) probabilistic transition relation. Observe that, in the
context of quantitative reachability properties, it is not enough to know whether
a state makes a transition to another, as encoded in the traditional predecessor
operation: the probability of the transition must also be known. Our approach,
which is specifically designed for the computation of maximal reachability prob-
abilities, is to encode the transitions of a probabilistic system into a number
of types (giving a family of typed predecessor operations), and the probabilistic
branching of the system into a set of distributions over transition types called
distribution templates. The resulting model, which consists of symbolic encodings
of both states and transitions, together with an algebra of operations including
the typed predecessor operations, is called a symbolic probabilistic system.

Our second contribution concerns the computation of the maximal reachabil-
ity probability for certain classes of symbolic probabilistic systems by reduction
to a finite-state problem. First, a state space exploration algorithm successively
iterates typed predecessor and intersection operations, starting from the target
set. The typed predecessor operations characterise the sets of states which can
make a transition of a particular type to a previously generated set of states. To
reason about the probabilistic branching structure of the system, we compute
sets of states in which transitions of multiple types are enabled through inter-
sections of state sets. If the state space exploration algorithm terminates, then
a finite set of state sets is returned. Together, the transition types available in
each of these state sets, and the distribution templates, allow us to construct a
finite-state probabilistic system with an equal maximal reachability probability
to that of the symbolic probabilistic system.

The state space analysis algorithm is closed under typed predecessor and
intersection operations, and does not take differences between state sets; there-
fore, it differs from partition refinement algorithms. Our approach keeps the
number of operations on the state space to a minimum, while retaining suffi-
cient information for the computation of the maximal reachability probability.

Symbolic Computation of Maximal Probabilistic Reachability 171

In particular, noting that many symbolic approaches describe state sets in terms
of constraints, our algorithm avoids propagating constraints arising from differ-
ence operations. To our knowledge, reasoning about reachability probabilities
using a combination of predecessor and intersection operations is novel.

Related work. Approaches to infinite-state systems with discrete probability dis-
tributions include model checking methods for probabilistic lossy channel sys-
tems [12]. Two verification methods for probabilistic timed automata are pre-
sented in [15]. The first uses the “region graph” of [3] to compute exact reacha-
bility probabilities, but suffers from the state explosion problem (in particular,
the size of the verification problem is sensitive to the magnitudes of the model’s
timing constraints, which is not true of our technique). The second uses forwards
reachability, but, in contrast to our technique, only computes an upper bound
on the actual maximal probability. Verification methodologies for infinite-state
systems with continuous distributions are given in [4,7,14].

Plan of the paper. Section 2 defines symbolic probabilistic systems, and describes
how they are used to represent probabilistic timed automata [15]. We present
the semi-decidable algorithm to generate a finite-state representation of a sym-
bolic probabilistic system in Section 3. Section 4 offers a critique of the analysis
method, and suggests directions for future research.

2 Symbolic Probabilistic Systems

2.1 Preliminaries

A discrete probability distribution (subdistribution) over a finite set Q is a func-
tion µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1 (

∑
q∈Q µ(q) ≤ 1). For a possibly

uncountable set Q′, let Dist(Q′) (SubDist(Q′)) be the set of distributions (sub-
distributions) over finite subsets of Q′.

Recall that a transition system is a pair (S, δ) comprising a set S of states
and a transition function δ : S → 2S . A state transition s→ t from a given state
s is determined by a nondeterministic choice of target state t ∈ δ(s). In contrast,
a (nondeterministic-) probabilistic system S = (S,Steps) includes a probabilistic
transition function Steps : S → 2Dist(S). A probabilistic transition s

µ→ t is made
from a state s ∈ S by first nondeterministically selecting a distribution µ from
the set Steps(s), and second by making a probabilistic choice of target state t
according to µ, such that µ(t) > 0. A path of a probabilistic system is a finite or
infinite sequence of probabilistic transitions of the form ω = s0

µ0→ s1
µ1→ s2 · · · .

For a path ω and i ∈ N, we denote by ω(i) the (i + 1)th state of ω, and if ω is
finite, last(ω) the last state of ω.

We now introduce adversaries which resolve the nondeterminism of a prob-
abilistic system [21]. Formally, an adversary of S is a function A mapping every
finite path ω to a distribution µ ∈ Dist(S) such that µ ∈ Steps(last(ω)). Let
AdvS be the set of adversaries of S. For any A ∈ AdvS, let PathAful denote the

172 M. Kwiatkowska, G. Norman, and J. Sproston

set of infinite paths associated with A. Then, in the standard way, we define the
measure ProbA over PathAful [13].

The maximal reachability probability is the maximum probability with which
a given set of states of a probabilistic system can be reached from a particular
state. Formally, for the probabilistic system S = (S,Steps), state s ∈ S, and set
U ⊆ S of target states, the maximal reachability probability ProbReach(s, U) of
reaching U from s is defined as

ProbReach(s, U) def= sup
A∈AdvS

ProbA{ω ∈ PathAful | ω(0) = s ∧ ∃i ∈ N . ω(i) ∈ U}.

The maximal reachability probability can be obtained as the solution to a linear
programming problem in the case of finite probabilistic systems [6].

Computation of the maximal reachability probability allows one to verify
properties of the form “with at least probability 0.99, it is possible to correctly
deliver a data packet”. By duality, it also applies to the validation of invariance
properties such as “with probability at most 0.01, the system aborts”. Further-
more, in the context of real–time systems, maximal reachability probability can
be used to verify time-bounded reachability properties, also known as soft dead-
lines, such as “with probability 0.975 or greater, it is possible to deliver a message
within 5 time units”. For a more detailed explanation see [15].

2.2 Symbolic Probabilistic Systems: Definition and Intuition

Symbolic transition systems were introduced in [10] as (possibly infinite-state)
transition systems equipped with symbolic state algebras, comprising a set of
symbolic states (each element of which denotes a possibly infinite set of states),
boolean, predecessor, emptiness and membership operations on symbolic states.
In [10], classes of infinite-state systems for which a finitary structure can be iden-
tified by iteration of certain operations of the symbolic state algebra are defined,
consequently highlighting the decidability of certain verification problems.

Symbolic probabilistic systems augment the framework of symbolic transi-
tion systems with (1) a probabilistic transition relation, (2) a symbolic encoding
of probabilistic transitions, and (3) a redefined symbolic state algebra. Given
the definition of probabilistic systems in the previous section, point (1) is self-
explanatory. For point (2), note that information concerning probabilities is nec-
essary for computation of maximal reachability probabilities. Let s → t be the
state transition induced by a probabilistic transition s

µ→ t by abstracting the
distribution µ from the transition. The symbolic representation consists of two
steps: first, we encode state transitions induced by the probabilistic transitions
of the system within a set of transition types. Second, we encode the proba-
bilistic branching structure of the system, which is not represented in the set of
transition types, by a set of distribution templates, which are distributions over
the set of transition types. Finally, for point (3), the predecessor operation of a
symbolic transition system is now replaced by a family of predecessor operations,
each of which is defined according to the state transitions encoded by a transi-
tion type. This allow us to identify and reason about sets of states in which state

Symbolic Computation of Maximal Probabilistic Reachability 173

transitions of different transition types are available; in Section 3, we see that
this characteristic is vital to identify a finitary structure on which the system’s
maximal reachability probability can be computed.

We now give the definition of symbolic probabilistic systems which generalise
the symbolic transition systems of [10]. The definition of symbolic states R,
extension function �·�, and symbolic operators And,Diff,Empty and Member
agree with those given for symbolic transition systems, with the only difference
being the typed predecessor operations. Conditions 1(a–c) have been added to
represent probabilistic systems in such a way as to preserve maximal reachability
probabilities, and are explained after the definition. In other contexts, different
choices of symbolic representation and operations may be appropriate.

Definition of symbolic probabilistic systems. A symbolic probabilistic sys-
tem P = (S,Steps, R, �·�, Tra,D) comprises: a probabilistic system (S,Steps); a
set of symbolic states R; an extension function �·� : R→ 2S; a set of transition
types Tra, and, associated with each a ∈ Tra, a transition function δa : S → 2S;
and a set of distribution templates D ⊆ Dist(Tra), such that the following condi-
tions are satisfied.

1. For all states s ∈ S, let Tra(s) ⊆ Tra be such that for any a ∈ Tra: a ∈ Tra(s)
if and only if δa(s) �= ∅. Then, for all t ∈ S:
a) if a ∈ Tra and t ∈ δa(s), then there exists µ ∈ Steps(s) such that µ(t) > 0;
b) if µ ∈ Steps(s), then there exists ν ∈ D and a vector of states
〈ta〉a∈Tra(s) ∈

∏
a∈Tra(s) δa(s) such that:

∑
a∈Tra(s)∧t=ta

ν(a) = µ(t);

c) if ν ∈ D and 〈ta〉a∈Tra(s) is a vector of states in
∏
a∈Tra(s) δa(s), then

there exists µ ∈ Steps(s) such that:

µ(t) ≥
∑

a∈Tra(s)∧t=ta
ν(a).

2. There exists a family of computable functions {prea}a∈Tra of the form prea :
R→ R, such that, for all a ∈ Tra and σ ∈ R:

�prea(σ)� = {s ∈ S | ∃t ∈ δa(s) . t ∈ �σ�} .
3. There is a computable function And : R × R → R such that �And(σ, τ)� =

�σ� ∩ �τ� for each pair of symbolic states σ, τ ∈ R.
4. There is a computable function Diff : R × R → R such that �Diff(σ, τ)� =

�σ� \ �τ� for each pair of symbolic states σ, τ ∈ R.
5. There is a computable function Empty : R → B such that Empty(σ) if and

only if �σ� = ∅ for each symbolic state σ ∈ R.
6. There is a computable function Member : S×R→ B such that Member(s, σ)

if and only if s ∈ �σ� for each state s ∈ S and symbolic state σ ∈ R.

174 M. Kwiatkowska, G. Norman, and J. Sproston

We proceed to describe transition types and distribution templates in greater
depth.

Transition types. Recall that a transition type encodes a set of state transitions
of a symbolic probabilistic system. Hence, for each transition type a ∈ Tra there
is a transition relation δa : S → 2S encoding all of the state transitions of type
a. This grouping is not necessarily a partition of the state transitions and a
given state transition may correspond to more than one type. It follows from
the lemma below that every probabilistic transition is represented by a state
transition encoded in some transition type, and vice versa.

Lemma 1. Let P = (S,Steps, R, �·�, Tra,D) be a symbolic probabilistic system.
For any s, t ∈ S: µ(t) > 0 for some µ ∈ Steps(s) if and only if t ∈ δa(s) for
some a ∈ Tra.

Distribution templates. Recall that we use the set of distribution templates
to encode the actual probabilities featured in the system. Point 1(b) requires
that the probabilistic branching structure of the system is represented in the
distribution templates. Conversely, condition 1(c) expresses the fact that, in all
states, for any transition encoded by a distribution template and transition type,
there exists a system transition which assigns an equal or greater probability to
all target states. This implies that there may be combinations of distribution
templates and transition types which do not correspond to actual probabilistic
transitions of the system. However, condition 1(c) together with 1(b) ensures
that our model is nevertheless sufficient for the computation of the maximal
reachability probability.

Example 1. Consider a system in which the state space takes the form of val-
uations of a single real-valued variable x. In state s ∈ R, the variable x can
be reset nondeterministically in the intervals (1,3) and (2,4), each with proba-
bility 0.5. Consider representing the system as a symbolic probabilistic system,
where the set of symbolic states is the set of integer-bounded intervals of R. The
above behaviour can then be encoded by transition types a and b, such that
δa(s) = (1, 3) and δb(s) = (2, 4), and the distribution template ν ∈ Dist({a, b})
given by ν(a) = ν(b) = 0.5. Now, for any s′ ∈ (2, 3) there exists a distribution
µs′ ∈ Steps(s) which corresponds to moving from s and resetting x to s′ with
probability 1. For any such µs′ , the corresponding vector 〈ta, tb〉, described in
point 1(b), is given by ta = tb = s′.

Finiteness of transition types and templates. Observe that the sets of tran-
sition types and distribution templates associated with a symbolic probabilistic
system may be infinite. However, in Section 3, we restrict the analysis techniques
to systems with finite sets of distribution templates and transition types. This
assumption implies that the analysis method is appropriate for classes of infinite-
state system exhibiting finite regularity in probabilistic transitions. For example,
the probabilistic lossy channels of [12] cannot be modelled using a finite set of

Symbolic Computation of Maximal Probabilistic Reachability 175

distribution templates, because the probability of message loss varies with the
quantity of data in the unbounded buffer.

2.3 Example: Probabilistic Timed Automata

In this section, we show that probabilistic timed automata [15] can be repre-
sented as symbolic probabilistic systems. We assume familiarity with the classi-
cal, non-probabilistic timed automaton model [3,11]. For an in-depth introduc-
tion to probabilistic timed automata, refer to [15].

Let X be a set of real-valued variables called clocks. Let Zones(X) be the set
of zones over X , which are conjunctions of atomic constraints of the form x ∼ c
and x − y ∼ c, for x, y ∈ X , ∼∈ {<,≤,≥, >}, and c ∈ N. A point v ∈ R

|X | is
referred to as a clock valuation. The clock valuation v satisfies the zone ζ, written
v |= ζ, if and only if ζ resolves to true after substituting each clock x ∈ X with
the corresponding clock value vx from v.

A probabilistic timed automaton is a tuple PTA = (L,X , inv , prob, 〈gl〉l∈L),
where: L is a finite set of locations; the function inv : L → Zones(X) is the
invariant condition; the function prob : L→ 2Dist(L×2X) is the probabilistic edge
relation such that prob(l) is finite for all l ∈ L; and, for each l ∈ L, the function
gl : prob(l)→ Zones(X) is the enabling condition for l. A state of a probabilistic
timed automaton PTA is a pair (l, v) where l ∈ L and v ∈ R

|X |. If the current
state is (l, v), there is a nondeterministic choice of either letting time pass while
satisfying the invariant condition inv(l), or making a discrete transition accord-
ing to any distribution in prob(l) whose enabling condition gl(p) is satisfied. If
the distribution p ∈ prob(l) is chosen, then the probability of moving to the
location l′ and resetting all of the clocks in the set X to 0 is given by p(l′, X).

Example 2. Consider the probabilistic timed automaton PTA modelling a simple
probabilistic communication protocol given in Figure 1. The nodes represent the
locations: II (sender, receiver both idle); DI (sender has data, receiver idle); SI
(sender sent data, receiver idle); and SR (sender sent data, receiver received). As
soon as data has been received by the sender, the protocol moves to the location
DI with probability 1. In DI, after between 1 and 2 time units, the protocol
makes a transition either to SR with probability 0.9 (data received), or to SI with
probability 0.1 (data lost). In SI, the protocol will attempt to resend the data
after 2 to 3 time units, which again can be lost, this time with probability 0.05.

Before we represent a probabilistic timed automaton as a symbolic probabilistic
system, we introduce the following definitions. Let v ∈ R

|X | be a clock valuation:
for any real η ≥ 0, the clock valuation v+η is obtained from v by adding η to the
values of each of the clocks; and, for any X ⊆ X , the clock valuation v[X := 0]
is obtained from v by resetting all of the clocks in X to 0. Now, for zone ζ
and η ≥ 0, let ζ + η, be the expression in which each clock x ∈ X is replaced
syntactically by x + η in ζ, and let [X := 0]ζ be the expression in which each
clock x ∈ X is replaced syntactically by 0 in ζ. The set of edges of PTA, denoted

176 M. Kwiatkowska, G. Norman, and J. Sproston

{x, y := 0}
true

true

x ≤ 2
{x, y := 0}

fx := 0}

true

x ≥ 2

x ≥ 1

{x := 0}

1

1

0.9

0.95

0.1

0.05

x ≤ 3true

DIII

SR SI

Fig. 1. A probabilistic timed automaton modelling a probabilistic protocol.

by EPTA ⊆ L2 × 2X × Zones(X), is defined such that (l, l′, X, ζ) ∈ EPTA if and
only if there exists p ∈ prob(l) such that gl(p) = ζ and p(l′, X) > 0.

A probabilistic timed automaton PTA = (L,X , inv , prob, 〈gl〉l∈L) defines a sym-
bolic probabilistic system P = (S,Steps, R, �·�, Tra,D), where:

– (S,Steps) is the infinite-state probabilistic system obtained as a semantical
model for probabilistic timed automata in the standard manner [15].

– The set R of symbolic states is given by L×Zones(X). The extension function
�·� is given by �(l, ζ)� = {(l, v) ∈ S | v |= ζ} for each (l, ζ) ∈ R.

– The set of transition types Tra is the set of edges EPTA plus the special type
time such that, for any edge (l′, l′′, X, ζ ′) ∈ EPTA, and state (l, v) ∈ S:

δtime(l, v) = {(l, v + η) | η ≥ 0 ∧ ∀ 0 ≤ η′ ≤ η . v + η′ |= inv(l)}
δ(l′,l′′,X,ζ)(l, v) =

{{(l′′, v[X := 0])} if l = l′ and v |= ζ
∅ otherwise.

– The set of distribution templates D is such that ν ∈ D if and only if either:
1. ν(time) = 1, or
2. there exists a location l ∈ L and distribution p ∈ prob(l) such that, for

all transition types a ∈ Tra:

ν(a) =
{
p(l′, X) if a = (l, l′, X, gl(p)) for some l′ ∈ L and X ⊆ X

0 otherwise.

Given (l, v) ∈ S, the set δtime(l, v) represents the set of states to which a time
passage transition can be made, whereas δ(l′,l′′,X,ζ)(l, v) represents the unique
state which is reached after crossing the edge denoted by (l′, l′′, X, ζ), provided
that it is available, and the empty symbolic state otherwise. As time passage tran-
sitions are always made with probability 1, there exists a distribution template
νtime ∈ D, such that νtime(time) = 1; each of the other distribution templates
in D is derived from a unique distribution of the probabilistic timed automaton.

Symbolic Computation of Maximal Probabilistic Reachability 177

For any symbolic state (l, ζ) ∈ R, and any edge (l′, l′′, X, ζ ′) ∈ EPTA, the typed
predecessor operations are defined by:

pretime(l, ζ) = (l, (∃η ≥ 0 . ζ + η ∧ ∀ 0 ≤ η′ ≤ η . inv(l) + η′))

pre(l′,l′′,X,ζ′)(l, ζ) =
{

(l′, (ζ ′ ∧ inv(l′) ∧ [X := 0](ζ ∧ inv(l)))) if l = l′′

(l, false) otherwise.

Observe that these operations are defined in terms of pairs of locations and
constraints on clocks. Note that by classical timed automata theory [11], for each
a ∈ Tra, the function prea is well defined and computable. Boolean operations,
membership and emptiness are also well defined and computable for R. Both of
the sets Tra and D are finite, which follows from the finiteness of L and prob(l)
for each l ∈ L.

Points 1(b) and 1(c) of the definition of symbolic probabilistic systems apply
to probabilistic timed automata for the following reasons. As explained above,
the distribution template νtime encodes time passage transitions of the proba-
bilistic system (S,Steps) and conditions 1(b) and 1(c) follow trivially. The other
transitions of PTA consist of choices of enabled distributions. Recall that edges
of the probabilistic timed automaton are transition types. First consider condi-
tion 1(b): for any l ∈ L and p ∈ prob(l), there exists a distribution template
ν ∈ D assigning the same probability to the edges induced by p. Then, a prob-
abilistic transition of (S,Steps) corresponding to p will be encoded by this ν.
For condition 1(c), recall that each ν ∈ D \ {νtime} is derived from a particular
p ∈ prob(l) for some l ∈ L. Then, for the state (l′, v) ∈ S, either l′ = l and
v |= gl(p), and condition 1(c) follows as in the case of 1(b), or ν assigns proba-
bility 0 to all types in Tra(s), and hence any distribution available in this state
will ensure the satisfaction of 1(c).

The translation method can be adapted to classes of probabilistic hybrid au-
tomata [18,19], which are hybrid automata [2] augmented with a probabilistic
edge relation similar to that featured in the definition of probabilistic timed au-
tomata, given an appropriate set of symbolic states and algebra of operations.
For example, a translation for probabilistic linear hybrid automata is immediate,
given the above translation and the translation from non-probabilistic linear
hybrid automata to symbolic transition systems of [10].

3 Maximal Reachability Probability Algorithm

We now present a semi-decidable algorithm (semi-algorithm) solving the maxi-
mal reachability probability problem for symbolic probabilistic systems. As men-
tioned in the previous section, we restrict attention to those symbolic probabilis-
tic systems with finite sets of transition types and distribution templates. Note
that, even for symbolic probabilistic systems within this class, the algorithm is
not guaranteed to terminate.

Let P = (S,Steps, R, �·�, Tra,D) be a symbolic probabilistic system such
that the sets Tra and D are finite, and let F ⊆ R be the target set of symbolic
states which for which the maximal reachability probability is to be computed.

178 M. Kwiatkowska, G. Norman, and J. Sproston

Symbolic semi-algorithm ProbReach
input: (R, Tra, {prea}a∈Tra ,And,Diff,Empty,Member)

target set F ⊆ R
T0 := F ;
E := ∅;
for i = 0, 1, 2, . . . do

Ti+1 := Ti
for all a ∈ Tra ∧ σ ∈ Ti do

Ti+1 := prea(σ) ∪ Ti+1

Ti+1 := {And(prea(σ), τ) | τ ∈ Ti+1} ∪ Ti+1 (∗)
E := {(prea(σ), a, σ)} ∪ E

end for all
until �Ti+1� ⊆ �Ti�
(T,E) := ExtendEdges(Ti, E)
return (T,E)

Procedure ExtendEdges
input: graph (T,E)
for all σ ∈ T ∧ (σ′, a, τ) ∈ E do

if �σ� ⊆ �σ′� then
E := {(σ, a, τ)} ∪ E

end if
end for all
return (T,E)

Fig. 2. Backwards exploration using predecessor and intersection operations

Our first task is to generate a finite graph (T,E), where T ⊆ R and E ⊆
T × Tra × T . The nodes of the graph (T,E) will subsequently form the states
of a finite-state probabilistic system, and the edges will be used to define the
required probabilistic transitions. The symbolic semi-algorithm ProbReach which
generates the graph (T,E) is shown in Figure 2.

The algorithm ProbReach proceeds by successive iteration of predecessor and
intersection operations. For each i ∈ N and for all currently generated symbolic
states in the set Ti, the algorithm constructs the set Ti+1 of symbolic states
by adding to Ti the typed predecessors of the symbolic states in Ti, and the
intersections of these predecessors with symbolic states in Ti. Furthermore, the
edge relation E is expanded to relate the existing symbolic states to their newly
generated typed predecessors. For any two symbolic states σ, τ ∈ R, the test
�σ� ⊆ �τ� is decided by checking whether Empty(Diff(σ, τ)) holds. Then the
termination test �Ti+1� ⊆ �Ti� denotes the test {�σ� | σ ∈ Ti+1} ⊆ {�σ� | σ ∈
Ti}, which is decided as follows: for each σ ∈ Ti+1, check that there exists τ ∈ Ti
such that both �σ� ⊆ �τ� and �τ� ⊆ �σ� [10].

If the outer for loop of the symbolic semi-algorithm ProbReach terminates,
then we call the procedure ExtendEdges on the graph (T,E). Intuitively, for a

Symbolic Computation of Maximal Probabilistic Reachability 179

particular edge (σ, a, τ) ∈ E, the procedure constructs edges with the transition
type a and target symbolic state τ for all subset symbolic states of σ in T .
Finally, observe that the set T is closed under typed predecessor and intersection
operations. However, in a practical implementation of ProbReach, symbolic states
encoding empty sets of states, and their associated edges, do not need to be added
to the sets T and E respectively.

Remark 1 (termination of ProbReach). Termination of ProbReach is reliant on
the termination of the outer for loop, because, if this terminates, T and E are
finite, and hence the procedure ExtendEdges will also terminate. Observe that
the inner for loop of the algorithm will not terminate if the set Tra is not finite.
Now let � be a binary relation on the state space S of P such that s � t implies,
for all a ∈ Tra and s′ ∈ δa(s), there exists t′ ∈ δa(t) such that s′ � t′. We call
such a relation a typed simulation. Let ≈ be an equivalence relation on the state
space S such that s ≈ t if there exists typed simulations �,�′ such that s � t
and t �′ s. We call a relation such as ≈ a typed mutual simulation, and say ≈
has finite index if there are finitely many equivalence classes of ≈.

The arguments of [10] are adapted to show that ProbReach will terminate
for any symbolic probabilistic system for which there exists a typed mutual
simulation ≈ with finite index, given that the target set F is a set of equivalence
classes of ≈. That is, we show that for all σ ∈ T , the set �σ� is a union of
equivalence classes of ≈. This is achieved by proving by induction on i ∈ N

that, for all s, t ∈ S such that s � t for some typed simulation �, if σ ∈ Ti
and s ∈ �σ�, then t ∈ �σ�. Probabilistic timed automata and probabilistic
rectangular automata with two continuous variables exhibit such a relation, as
indicated by [3] and [9] respectively.

If the semi-algorithm ProbReach terminates, the graph (T,E) is such that each
symbolic state σ ∈ T encodes a set of states of the symbolic probabilistic system
P, all of which can reach the target set F with positive probability. The following
lemma asserts that the states encoded by the source of an edge in E are encoded
by the appropriately typed predecessor of the edge’s target symbolic state.

Lemma 2. Let P = (S,Steps, R, �·�, Tra,D) be a symbolic probabilistic system
and let (T,E) be the graph constructed using the semi-algorithm ProbReach. For
any transition type a ∈ Tra, if (σ, a, τ) ∈ E, then �σ� ⊆ �prea(τ)�.

Next, we construct a finite-state probabilistic system, the states of which are
the symbolic states generated by ProbReach, and the transitions of which are in-
duced by the set of edges E and the finite set of distribution templates D. That
is, we lift the identification of state transitions encoded in E to probabilistic tran-
sitions. We achieve this by grouping edges which have the same source symbolic
state and which correspond to different transition types. Then a probabilistic
transition of Q is derived from a distribution template by using the associa-
tion between target symbolic states and the transition types of the edges in the
identified group. Formally, we define a sub-probabilistic system Q = (T,Steps

Q
),

where Steps
Q

: T → 2SubDist(T) is the sub-probabilistic transition relation Steps
Q

180 M. Kwiatkowska, G. Norman, and J. Sproston

constructed as follows. For any symbolic state σ ∈ T , let π ∈ Steps
Q
(σ) if and

only if there exists a subset of edges Eπ ⊆ E and a distribution template ν ∈ D
such that:

1. if (σ′, a, τ ′) ∈ Eπ, then σ′ = σ;
2. if (σ, a, τ), (σ, a′, τ ′) ∈ Eπ are distinct edges, then a �= a′;
3. the set Eπ is maximal;
4. for all symbolic states τ ∈ T :

π(τ) =
∑

a∈Tra∧(σ,a,τ)∈Eπ
ν(a).

For any symbolic state σ ∈ T , any π ∈ Steps
Q
(σ) may be a sub-distribution,

as it is not necessarily the case that all of the transition types assigned positive
probability by the distribution template associated with π are featured in the
edges in Eπ: some transition types may lead to states which cannot reach the
target F . Note that the finiteness of the set D of distribution templates is required
for the construction of the sub-probabilistic system Q to be feasible.

We now state the formal correctness of our algorithm (the proof can be found
in [16]); that is, for any state s ∈ S and symbolic state σ ∈ T such that s ∈ �σ�,
the maximal reachability probability of P reaching the set �F� of states from
the state s equals that of Q reaching the set F from σ.

Theorem 1. If Q = (T,Steps
Q
) is the sub-probabilistic system constructed us-

ing the algorithm ProbReach, with input given by the symbolic probabilistic system
P = (S,Steps

P
, R, �·�, Tra,D) and target set F ⊆ R, then for any state s ∈ S:

ProbReach(s, �F�) = max
σ∈T∧s∈�σ�

ProbReach(σ, F) .

Recall from Section 2.1 that the maximal reachability probability for finite prob-
abilistic systems can be computed using established methods [6].

We now describe a method which removes information from Q which is re-
dundant to the computation of the maximal reachability probability.

Remark 2 (redundant conjunction operations). The purpose of the conjunction
operation And in the algorithm ProbReach is to generate symbolic states for
which multiple transition types are available. However, taking the conjunction
of predecessors of transition types which are never both assigned positive prob-
ability by any distribution template does not add information concerning the
probabilistic branching of the symbolic probabilistic system to Q, and hence
does not affect in the computation of the maximal reachability probability. To
avoid taking such redundant conjunctions of state sets, we can replace the line
marked (∗) in the semi-algorithm ProbReach with the following:

for all ν ∈ D such that ν(a) > 0 do
Ti+1 := {And(prea(σ), σ′) | (σ′, b, τ) ∈ relevant(a, ν, E)} ∪ Ti+1
E := {(And(prea(σ), σ′), c, τ) | (σ′, b, τ) ∈ relevant(a, ν, E) ∧ c ∈ {a, b}} ∪ E

end for all

where (σ, b, τ) ∈ relevant(a, ν, E) if and only if b �= a, ν(b) > 0 and (σ, b, τ) ∈ E.

Symbolic Computation of Maximal Probabilistic Reachability 181

Example 2 (continued). Say that we want to find the maximal probability of
the probabilistic timed automaton of Figure 1 reaching the location SR, corre-
sponding to correct receipt of a message, within 4 time units of the data arriving
at the sender. Given that the target set F equals {(SR, y < 4)}, application of
ProbReach on the symbolic probabilistic system of this automaton results in the
construction of the sub-probabilistic system in Figure 3. As suggested above, we
do not consider symbolic states corresponding to empty sets of states. By clas-
sical probabilistic reachability analysis on this system, the maximal probability
of reaching SR within 4 time units of the data arriving at the sender is 0.995.

(DI, x ≤ 2 ∧ y < 4 ∧ y < x+ 3)

(DI, x ≤ 2 ∧ y < 2 ∧ y < x+ 1)

(DI, 1 ≤ x ≤ 2 ∧ y < 4)

(DI, 1 ≤ x ≤ 2 ∧ y < 2)

(SR, y < 4)

(SI, x ≤ 3 ∧ y < 4 ∧ y < x+ 2) 0.9
0.1

1

1

0.9

1
(II, true)

1

(SI, 2 ≤ x ≤ 3 ∧ y < 2)

0.95
(SI, 2 ≤ x ≤ 3 ∧ y < 4)

1

1
(SI, x ≤ 3 ∧ y ≤ 2 ∧ y < x) 0.05

0.95

Fig. 3. The probabilistic system generated by ProbReach for the PTA in Figure 1.

The symbolic states and the solid edges are generated by the main loop of
the algorithm ProbReach, while the dashed lines are added by the procedure
ExtendEdges. For example, there is a solid edge corresponding to a particular
transition type from the symbolic state (DI, 1 ≤ x ≤ 2 ∧ y < 4) to the symbolic
state (SR, y < 4). Then, as (DI, 1 ≤ x ≤ 2 ∧ y < 2) is a subset of (DI, 1 ≤
x ≤ 2 ∧ y < 4), the procedure ExtendEdges adds an extra edge from (DI, 1 ≤
x ≤ 2 ∧ y < 2) to (SR, y < 4) of the same transition type. On inspection of
Figure 1, and by the definition of the translation method for probabilistic timed
automata to symbolic probabilistic systems, there exists a distribution template
which assigns probability 0.9 and 0.1 to the transition types of the edges from
(DI, 1 ≤ x ≤ 2 ∧ y < 2) to (SR, y < 4), and to (SI, x ≤ 3 ∧ y < 4 ∧ y <
x + 2), respectively. Therefore, the distribution associated with the symbolic
state (DI, 1 ≤ x ≤ 2 ∧ y < 2) shown in Figure 3 is constructed.

4 Conclusions

Recall that the state space exploration algorithm presented in Section 3 iterates
predecessor and intersection operations; unlike a partition refinement algorithm,
it does not perform difference operations. Our motivation is that state sets of
many infinite-state systems, including timed and hybrid automata, are described
by constraints. If difference operations are used when intersecting state sets, then
constraints representing the states within the intersection, and the negation of
these constraints, are represented, rather than just the former.

182 M. Kwiatkowska, G. Norman, and J. Sproston

Note that the algorithm could be applied only to the portion of the state
space which is reachable from initial states, thereby avoiding analysis of unreach-
able states. Furthermore, the practical implementation of our approach can be
tailored to the model in question. For probabilistic timed automata, state sets
and transitions resulting from time transitions do not need to be represented;
instead, typed predecessors are redefined to reflect both time passage and edge
transitions. Observe that the state space exploration technique presented here
will only generate convex zones; non-convex zones are notoriously expensive in
terms of space.

Our method extends to enable the verification of symbolic probabilistic sys-
tems against the existential fragments of probabilistic temporal logics such as
PCTL [6,5], though at a cost of adding union and difference operations in order
to cater for disjunction and negation. However, to enable the verification of full
PCTL a solution to the minimum reachability probability problem is required.

Finally, we conjecture that the methods presented in this paper have signifi-
cance for the verification of probabilistic hybrid and parameterised systems.

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In Proc. LICS’96, pages 313–321. IEEE Computer
Society Press, 1996.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

3. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
continuous-time Markov chains by transient analysis. In Proc. CAV 2000, vol-
ume 1855 of LNCS, pages 358–372. Springer, 2000.

5. C. Baier and M. Z. Kwiatkowska. Model checking for a probabilistic branching
time logic with fairness. Distributed Computing, 11(3):125–155, 1998.

6. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proc. FSTTCS’95, volume 1026 of LNCS, pages 499–513. Springer,
1995.

7. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating
labeled Markov processes. In Proc. LICS 2000, pages 95–106. IEEE Computer
Society Press, 2000.

8. B. Haverkort. Performance of Computer Communication Systems: A Model-Based
Approach. John Wiley and Sons, 1998.

9. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations
on finite and infinite graphs. In Proc. FOCS’95, pages 453–462. IEEE Computer
Society Press, 1995.

10. T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic
transition systems, 2001. Preliminary version appeared in Proc. STACS 2000,
volume 1770 of LNCS, pages 13–34, Springer, 2000.

11. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193–244, 1994.

Symbolic Computation of Maximal Probabilistic Reachability 183

12. P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In Proc. TAP-
SOFT’97, volume 1214 of LNCS, pages 667–681. Springer, 1997.

13. J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. Grad-
uate Texts in Mathematics. Springer, 2nd edition, 1976.

14. M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative
properties of continuous probabilistic timed automata. In Proc. CONCUR 2000,
volume 1877 of LNCS, pages 123–137. Springer, 2000.

15. M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 2001. Special issue on ARTS’99. To appear.

16. M. Z. Kwiatkowska, G. Norman, and J. Sproston. Symbolic computation of max-
imal probabilistic reachability. Technical Report CSR-01-5, School of Computer
Science, University of Birmingham, 2001.

17. P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin of the European Association
for Theoretical Computer Science, 70:40–44, 2000.

18. J. Sproston. Decidable model checking of probabilistic hybrid automata. In Proc.
FTRTFT 2000, volume 1926 of LNCS, pages 31–45. Springer, 2000.

19. J. Sproston. Model Checking of Probabilistic Timed and Hybrid Systems. PhD
thesis, University of Birmingham, 2001.

20. M. I. A. Stoelinga and F. Vaandrager. Root contention in IEEE1394. In Proc.
ARTS’99, volume 1601 of LNCS, pages 53–74. Springer, 1999.

21. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In Proc. FOCS’85, pages 327–338. IEEE Computer Society Press, 1985.

22. P. Wolper. Expressing interesting properties of programs in propositional temporal
logic. In Proc. POPL’86, pages 184–193. ACM, 1986.

Randomized Non-sequential Processes
(Preliminary Version)

Hagen Völzer1,2�

1 Software Verification Research Centre, The University of Queensland, Australia
2 Humboldt-Universität zu Berlin, Germany

Abstract. A non-sequential, i.e. ”true concurrency”, semantics for ran-
domized distributed algorithms is suggested. It is based on Petri nets
and their branching processes. We introduce randomized Petri nets and
their semantics, probabilistic branching processes. As a main result, we
show that each probabilistic branching process defines a unique canonical
probability space. Finally, we show that the non-sequential semantics dif-
fers from the classical sequential semantics, modelling a new adversary,
called the distributed adversary.

1 Introduction

A randomized distributed algorithm is a distributed algorithm where agents may
flip coins during the execution of their programs. Randomized algorithms gained
more and more attention in the last twenty years since they often solve problems
simpler and more efficient than ordinary distributed algorithms. Some random-
ized algorithms solve problems which are known to be unsolvable by ordinary
algorithms. Examples for such problems are symmetry breaking [10,12], choice
coordination [20], and consensus [2]. For a survey of randomized algorithms, see
[8].

To model randomized distributed algorithms, a formalism for modelling dis-
tributed algorithms has to be equipped with a coin flip construct. Existing
formalisms include probabilistic I/O automata [24], probabilistic programs [19],
probabilistic concurrent processes [1], a formalism suggested by Rao [21] which
extends UNITY [6], and probabilistic predicate transformers [15] and its related
models. Each of these models employs a sequential semantics where concurrency
is expressed by nondeterminism, i.e. a run represents a total order of events.

A randomized distributed algorithm has three important features which must
be accomodated by a model: (1) There is randomized choice. (2) There is nonde-
terministic choice. (3) There is (usually) no assumption on timing or synchrony.
To our knowledge, there is no model based on Petri nets with all three features.
We suggest a Petri net based model for randomized distributed algorithms in
this paper which we call randomized Petri nets. This model provides a basis for
� Postal address: Hagen Voelzer, SVRC, The University of Queensland, Qld 4072,
Australia; e-mail: voelzer@svrc.uq.edu.au, Phone: +61 7 3365 1647; Fax: +61 7 3365
1533. This work was supported by DFG: Project ”Konsensalgorithmen”.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 184–201, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Randomized Non-sequential Processes 185

incorporation of randomized algorithms into existing Petri net based techniques
for distributed algorithms (eg [22,23]).

Furthermore, we present a non-sequential semantics for randomized Petri
nets where a run represents a partial order, viz the causal order, of events, thus
providing a basis for investigation of the applicability of partial order verifica-
tion methods [17] to randomized algorithms. Our semantics is directly based
on branching processes of Petri nets [16,7] which means that we do not use a
notion of global time or global state to construct the semantics. This absence of
explicit global states results in the non-sequential semantics being weaker than
the classical sequential semantics of randomized distributed algorithms: There
are algorithms that terminate with probability 1 in the non-sequential semantics
but not in the sequential semantics. As we will show, that is because, in our non-
sequential semantics, a nondeterministic choice never depends on the outcome
of a coin flip that happens concurrently which can be the case in the sequential
semantics.

We proceed as follows. After recalling some preliminaries, we introduce ran-
domized Petri nets in Sect. 3. The classical sequential semantics for randomized
distributed algorithms is defined for randomized Petri nets in Sect. 4. In Sect. 5,
we introduce the non-sequential semantics with the central notion of a probabilis-
tic branching process. As a main result, we show that each probabilistic branching
process defines a unique canonical probability space. Sect. 6 defines the prob-
abilistic validity of temporal-logical formulas. Sect. 7 provides some examples
which directly lead to a comparison of the sequential and the non-sequential
semantics in Sect. 8, where we explain why the new semantics models a new
adversary. A few remarks conclude the paper.

2 Preliminaries

This section collects some preliminaries which include Petri nets and their
branching processes and a few notions from probability theory. For a motivation
of these concepts we refer to the literature. In particular, we refer to [16] and [7]
for branching processes. The reader who is familiar with these concepts may skip
the corresponding paragraphs. The only definition deviating from the literature
is the definition of a conflict on page 186.

We denote the set of natural numbers by N and the closed interval of real
numbers between 0 and 1 by [0, 1]. Let A be a set. The set of all subsets of A
is denoted by 2A. A multiset over A is a mapping M : A → N. We write M [x]
instead ofM(x) for the multiplicity of an element x inM . A multisetM is finite if∑
x∈AM [x] is finite. Inclusion and addition of multisets are defined elementwise,

i.e. M1 ≤ M2 if ∀x ∈ A : M1[x] ≤ M2[x] and (M1 +M2)[x] = M1[x] +M2[x].
If we have M1 ≤ M2 then the difference M2 −M1 is also defined elementwise.
A set A′ ⊆ A will be treated as a multiset over A by identifying it with its
characteristic function.

Petri nets. A Petri net (or net for short) N = (P, T, F) consists of two disjoint
non-empty, countable sets P and T and a binary relation F ⊆ (P ×T)∪(T ×P).

186 H. Völzer

Elements of P , T , and F are called places, transitions, and arcs of the net
respectively. We graphically represent a place by a circle, a transition by a square,
and an arc by an arrow between the corresponding elements. We write x ∈ N
for x ∈ P ∪ T where x is also called an element of N . For each element x of
N , we define the preset of x by •x = {y ∈ N | (y, x) ∈ F} and the postset
of x by x• = {y ∈ N | (x, y) ∈ F}. The set of minimal elements of N and
the set of maximal elements of N is defined by ◦N = {x ∈ N | •x = ∅} and
N◦ = {x ∈ N | x• = ∅}, respectively. For each element x of N we define the set
of predecessors of x by ↓ x = {y ∈ N | yF+x} where F+ denotes the transitive
closure of F . We restrict our attention to nets in which for each transition t,
the preset •t and the postset t• are non-empty and finite1. Therefore, we have
◦N,N◦ ⊆ P .

A marking M of a net is a finite multiset over P . A marking is graphically
represented by black tokens in the places of the net. A marking M is safe, if
∀p ∈ P : M [p] ≤ 1. A transition t is enabled in a given marking M if •t ≤M . If
t is enabled in a marking M1 then t may occur, resulting in the follower marking
M2 = (M1 − •t) + t•. This is denoted M1

t→M2.
A pair Σ = (N,M0) of a net N and a safe marking M0 of N is called a

net system. The marking M0 is called initial marking of Σ. A set C ⊆ T of
transitions of a net such that |C| > 1 is called a conflict if

⋂
t∈C

•t
= ∅. A
conflict C is maximal if there is no conflict that contains C. A conflict C is
called free choice if ∀t ∈ C : |•t| = 1.

A

B

C

D

E

F

G

a

b

cd

e

f

Fig. 1. A net system Σ1

Fig. 1 shows a net with the safe
marking {A,B} –we write AB in the
following for short. The sets {e, c}
and {f , d} are maximal conflicts of
Σ1 where {e, c} is free choice and
{f , d} is not free choice.

A computation tree ϑ of Σ =
(N,M0) is a (possibly infinite) labelled
rooted tree where each node is labelled
with a marking of Σ and each edge
is labelled with a transition of Σ such
that (i) the root is labelled with M0

and (ii) if edge (v1, v2) is labelled with
transition t and node vi is labelled with
marking Mi for i = 1, 2 then we have
M1

t→M2. There is a natural prefix or-
der on the set of all computation trees of Σ and a maximal computation tree
with respect to this prefix order which is unique up to isomorphism. Fig. 2 shows
the maximal computation tree of Σ1 . An interleaved run (interleaving for short)
is a non-branching computation tree of Σ, i.e. a path in a computation tree of
Σ starting in the root. An interleaving τ is maximal if there is no interleaving of
1 This is a usual technical assumption to avoid some anomalies in the non-sequential
semantics. See [4] and [7] for further explanation.

Randomized Non-sequential Processes 187

which τ is a prefix, i.e. if it is either infinite or its final marking does not enable
any transition.

...

...

...

...

...

...

...

a

b

c

e

AB

CB

AE

FB

DB

CE

CE

FE

CB

DE

FE

DE

CE

G

...

...

b

a

b

d

b

e

c
d

f

Fig. 2. The maximal computation tree of Σ1

A set E of interleaved runs is called interleaving property. An interleaving
property E such that ρ ∈ E if and only if ρ satisfies some given formula Φ of a
given linear-time temporal logic is called temporal-logical interleaving property.

Branching processes of Petri nets. Let N be a net. N is acylic if for each element
x of N , we have x
∈ ↓ x and N is predecessor-finite if for each element x of N ,
the set ↓ x is finite. Let K = (B,E,<·) be an acyclic, predecessor-finite net. A
place b ∈ B is called condition and a transition e ∈ E is called event. Since K
is acyclic, the transitive closure of <·, denoted <·+, is a partial order, which we
call causal order. We write < instead of <·+ in the following. If we have x1 < x2
or x2 < x1 then we say x1 and x2 are causally dependent. If we have x1 < x2
or x1 = x2 then we write x1 ≤ x2. Two elements are in (extended) conflict,
denoted x1 # x2, if there is a conflict {e1, e2} such that ei ≤ xi for i = 1, 2. Two
different elements are concurrent, denoted x1 co x2, if they are neither causally
dependent nor in conflict.

A predecessor-finite, acyclic net K is called occurrence net, if (i) ◦K is finite,
(ii) for each condition b of K we have |•b| ≤ 1, and (iii) there is no event e of
K such that e # e. Let Σ = (N,M0) be a net system with N = (P, T, F) and
let K = (B,E,<·) be an occurrence net. Let l : B ∪ E → P ∪ T be a mapping
such that l(B) ⊆ P and l(E) ⊆ T . The pair π = (K, l) is a branching process of
Σ if (i) l(◦K) = M0 and (ii) for each event e of K we have l(•e) = •l(e) and
l(e•) = l(e)•.

188 H. Völzer

B

b

A a e e

CCC F F

DD

E

f G

c d

fG

cd

Fig. 3. The maximal branching process π of Σ1

There is also a natural prefix order � on the set of branching processes of a
net system Σ and a maximal branching process with respect to this prefix order
which is unique up to isomorphism2. Fig. 3 shows the maximal branching process
π of Σ1 . A branching process of Σ without conflicts is called non-sequential run3

(or run for short) of Σ. If a run ρ is a prefix of a branching process π then ρ
is called a run of π. By a maximal run of π we mean a run of π which is
maximal wrt to the prefix order. We denote the set of all runs of π, the set of
all finite runs of π, and the set of all maximal runs of π by R(π), Rfin(π), and
Rmax(π), respectively. Note that, in contrast to interleaved runs, a proper prefix
of a non-sequential run is not necessarily finite.

A (non-sequential) temporal property is a set of non-sequential runs. A tem-
poral property E such that ρ ∈ E if and only if ρ satisfies some given formula Φ
of a given linear-time temporal logic is called temporal-logical property.

Probability. Let Ω be a non-empty set. A family of subsets A ⊆ 2Ω with Ω ∈ A
which is closed under complementation and finite union is called a field on Ω.
If A is also closed under countable union then A is called a σ-field on Ω. The
elements of A are called measurable sets. Let A be a σ-field on Ω. A mapping
P : A → [0, 1] is a probability measure on A if P (Ω) = 1 and for each countable
pairwise disjoint family F ⊆ 2Ω we have:

P (
⋃
A∈F

A) =
∑
A∈F

P (A). ()

The triple (Ω,A, P) is called probability space if A is a σ-field on Ω and P is a
probability measure on A; σ-fields are closed under intersection. Therefore, for
a given family E ⊆ 2Ω , the smallest σ-field containing E , denoted by σ(E), is
well-defined. Then, E is called the generator of σ(E).

3 Randomized Petri Nets

This section introduces randomized Petri nets, our model for randomized dis-
tributed algorithms. We model a coin flip with two outcomes head and tail by a
2 Engelfriet shows that the prefix order constitutes a complete lattice on the isomor-
phism classes of all branching processes of a net system [7].

3 also called a process in the literature.

Randomized Non-sequential Processes 189

=

%%

=
1
2

1
2

coin

head tail

(a) Simple coin flip

=

=

%%

=

% ...

p1 p2
pn

t1 t2 tn

(b) General coin flip

Fig. 4. Modelling coin flips

free choice conflict4 as in Fig. 4(a). Every outcome has a probability of 1
2 . A tran-

sition modelling one outcome of a coin flip is called probabilistic. A probabilistic
transition is graphically distinguished by the symbol %. A general coin flip with
n outcomes is depicted in Fig. 4(b). The transitions t1, . . . , tn constitute a free
choice conflict. Every ti is equipped with a probability pi, depicted at the arc
leading to ti, such that

∑n
i=1 pi = 1.

A randomized net consists of a net where some transitions are distinguished
as probabilistic and a mapping assigning a probability to each probabilistic tran-
sition.

Definition 1 (Randomized net). Let N = (P, T, F) be a net and let Tflip ⊆ T
be a set of distinguished transitions, called probabilistic transitions. A conflict
C of N such that C ⊆ Tflip is probabilistic. Furthermore, let µ : Tflip → [0, 1]
be a mapping such that 0 < µ(t) < 1 for all t ∈ Tflip. Then, the triple Ṅ =
(N,Tflip, µ) is called randomized net if

(i) each probabilistic conflict is finite and free choice, and
(ii) for each maximal probabilistic conflict C we have

∑
t∈C

µ(t) = 1 ()

The mapping µ is called local coin measure of Ṅ . A pair Σ̇ = (Ṅ ,M0) of a
randomized net Ṅ and a safe marking M0 of Ṅ is called randomized net system.

Not every conflict of a randomized net system is probabilistic. Non-
probabilistic conflicts are solved nondeterministically. Randomized net systems
need nondeterminism to model nondeterminism of randomized distributed al-
gorithms: There, we have usually no knowledge about the order of causally
4 Guided by our intuition of coin flips, we assign probabilities to free choice conflicts
only. An extended free choice conflict can be refined to a free choice conflict by a
simple, well-known construction (eg cf. [3]). This way, we may interprete also an
extended free choice conflict as a coin flip.

190 H. Völzer

independent events and the behaviour of the environment. Moreover, nonde-
terminism also models freedom of implementation. Note that there may be a
non-probabilistic transition in conflict with a probabilistic transition. Such a
transition would model the nondeterministic removal of the coin before it is
flipped.

4 Probabilistic Computation Trees

This section presents the traditional sequential semantics of randomized dis-
tributed algorithms which we easily carry over from probabilistic programs [19]
or probabilistic concurrent processes [1] to randomized net systems.

We begin with a randomized net system without concurrency and without
nondeterminism. Fig. 5(a) shows such a system Σ2 . We expect the proposition
”eventually C is marked”, denoted ✸C , to be valid in Σ2 with probability 1.
The meaning of such a proposition is traditionally, eg in probabilistic transition
systems, defined as follows.

A

B C

D

a b

cd

%

%

1
2

1
2

(a) Σ2

A B C

D

b

c
B C

D B C

D

b

c

d

a

b

c

d

(b) ϑ

Fig. 5. A randomized net system and its unique maximal probabilistic computation
tree

Fig. 5(b) shows the maximal computation tree ϑ of Σ2 . Since Σ2 has neither
concurrency nor nondeterminism, every branching in ϑ represents a coin flip, i.e.
the local coin measure assigns a conditional probability to every branch such
that the sum of the probabilities at every branching is 1. A computation tree
where every branching represents a coin flip is probabilistic. A probability space
(Ω,A, P) is assigned to every probabilistic computation tree ϑ as follows. As a
preparation, we assign a probability p(τ) to every finite interleaving τ = M0

t1→
. . .

tn→Mn by p(τ) =
∏
i=1,... ,n µ(ti) where, for ti
∈ T flip, we set µ(ti) = 1. For

Σ2 , we have p(A a→B c→D d→B c→D) = 1
4 .

Let Ω = {τ | τ is a maximal interleaving of ϑ}. In the probability space on
Ω to be constructed, the probability p(τ) is assigned to the set K(τ) = {τ ′ ∈
Ω | τ is a prefix of τ ′}. Such a set K(τ) is called a cone. The set of all cones

Randomized Non-sequential Processes 191

E = {K(τ) | τ is a finite prefix of ϑ} constitutes the generator of the σ-field A,
i.e. A = σ(E). There is a unique probability space (Ω,A, P) such that

P (K(τ)) = p(τ) ()

holds true for each finite interleaving τ . Each temporal-logical interleaving prop-
erty E is measurable in this probability space. Then, we define E to be valid
with probability p if P (E) = p. Then, ✸C is actually valid with probability 1 in
Σ2 .

A

B

C

D

E

F

G

a

b

cd

e

f

%

%

1
2

1
2

Fig. 6. Σ3

Fig. 6 shows a randomized net
system with concurrency as well as
with nondeterminism. Therefore, the
maximal computation tree ϑ of Σ3 is
not probabilistic. However we can
choose maximal probabilistic com-
putation trees from the prefixes of
ϑ (Σ3 has infinitely many maximal
probabilistic computation trees). The
choice of a maximal probabilistic com-
putation tree and therewith of a prob-
ability space (Ωϑ,Aϑ, Pϑ) is nondeter-
ministic. Therefore, a temporal-logical
interleaving property E is defined to
be valid with at least probability p if
for each maximal probabilistic compu-

tation tree ϑ of Σ̇ we have: Pϑ(E) ≥ p. In Σ3 , ✸F is valid with at least
probability 1

2 and ✸(F ∨G) with at least probability 1, i.e. Σ3 terminates with
probability 1.

5 Probabilistic Branching Processes

In analogy to probabilistic computation trees, we introduce probabilistic branch-
ing processes in this section. A probabilistic branching process of a randomized
net system Σ̇ is a branching process of Σ̇ such that all conflicts in it are proba-
bilistic, i.e. there is no nondeterminism in a probabilistic branching process. As
a main result, we show that there is a unique canonical probability space for
each probabilistic branching process.

Definition 2 (Probabilistic branching process). Let Σ̇ = ((N,Tflip, µ),M0)
be a randomized net system and π = (K, l) be a branching process of Σ̇ with
events E. Let Eflip = {e ∈ E | l(e) ∈ Tflip} denote the set of all probabilis-
tic events of π. We carry over µ to probabilistic events: µ : Eflip → [0, 1] by
µ(e) = µ(l(e)). We call a probabilistic conflict C ⊆ Eflip of π complete if it
satisfies (), i.e. if it contains all possible outcomes of the coin flip. Then, π is
called randomized branching process of Σ̇ if all maximal probabilistic conflicts

192 H. Völzer

of π are complete5. A randomized branching process π of Σ̇ is a probabilis-
tic branching process of Σ̇ if each conflict of π is probabilistic, i.e. π does not
contain nondeterministic conflicts.

Since every coin flip has only finitely many outcomes, every probabilistic
branching process is finitely branching. Fig. 7 shows a finite, maximal proba-
bilistic branching process of Σ3 .

B

b

A a e

e

C

C

F

F

D

D

E

G

c

f

c

d

1
2

1
2

1
2

1
2

Fig. 7. A finite, maximal probabilistic branching process of Σ3

We define a probability space for each probabilistic branching process of a
randomized net system Σ̇ which is derived from the local coin measure of Σ̇.
To do this, we define for a probabilistic branching process π the probability
p(α) that a finite run α of π is realized in π. As in the sequential semantics, we
assume the stochastic independence of all coin flips and thus define p(α) to be
the product of the probabilities of all probabilistic events occurring in α: Let
Eflip be the set of probabilistic events of α and µ be defined on Eflip as in Def. 2.
We set p(α) = 1 if Eflip = ∅ and

p(α) =
∏

e∈Eflip

µ(e) ()

otherwise.

Theorem 1 (Probability space of a probabilistic branching process).
Let Σ̇ be a randomized net system and π be a probabilistic branching process of
Σ̇. Let Ω = Rmax(π) and for every finite run α of π, let K(α) = {ρ ∈ Rmax(π) |
α � ρ} be the set of maximal runs of π that have α as a prefix. Furthermore,
let E = {K(α) | α ∈ Rfin(π)}. Then, there exists a unique probability space
(Ω,A, P) = (Ωπ,Aπ, Pπ) such that A = σ(E) and for all finite runs α of π we
have:

P (K(α)) = p(α) ()

5 Then, the triple (K,Eflip, µ) is a randomized (occurrence) net.

Randomized Non-sequential Processes 193

The proof is done in [26] and is omitted here6. The theorem cannot be de-
rived from the corresponding theorem in the sequential semantics because a
probabilistic branching process has more structure than its sequential counter-
part, the probabilistic computation tree. The proof is technical and four pages
long but requires only basic measure theory. It mainly exploits the lattice prop-
erties of branching processes. The proof rests upon the fact that all conflicts in
a probabilistic branching process are free choice and finite.

We give now a proof sketch. A set K(α) for a finite run α of π is called a
cone. We have to construct a probability measure P over σ(E), which is already
defined on E , i.e. on all cones, by (). For that we have to show that P can be
extended to all complements of cones as well as to unions of cones and cone
complements. The key step in the proof is the identification of a field on Ω, that
contains E and that generates σ(E). The fieldM that we are looking for contains
exactly all finite unions of pairwise disjoint cones, i.e.

M = {
⋃
A∈F

A | F ⊆ E is finite and pairwise disjoint} ()

The mapping P can now be extended to the field M by (). To show that
this extension is well-defined requires the biggest effort in the proof. Further
extension of P from M to the σ-field σ(M) = σ(E) is an application of the
extension theorem, a standard theorem of measure theory. The uniqueness of
the probability space follows from its construction.

6 Probabilistic Validity of Temporal Properties

In this section, we define what it means that a temporal property is valid with
at least probability p in a given randomized net system. To do so, we have to
restrict our attention to measurable temporal properties. A temporal property E
is measurable in a randomized net system Σ̇ if for every probabilistic branching
process π of Σ̇, E is measurable in the probability space associated with π.

Proposition 1. Every temporal-logical property is measurable in each random-
ized net system.

As in the sequential semantics, Proposition 1 is easily shown by induction over
the structure of temporal-logical formulas. The proof is given in [26]. We define
now the probabilistic validity of measurable temporal properties.

Definition 3 (Probabilistic validity). Let Σ̇ be a randomized net system and
E be a temporal property that is measurable in Σ̇. We say that E is valid with
at least probability p if for every maximal probabilistic branching process π of
Σ̇, we have:

Pπ(E) ≥ p ()

where Pπ is the probability measure for π defined in Theorem 1.
6 The proof will also be available in an extended version of this paper.

194 H. Völzer

In Def. 3, we take maximality of non-sequential runs7 as the basic liveness
assumption of our semantics. To change to another notion of admissible runs,
call a probabilistic branching process admissible if all its runs are admissible8

and exchange ”maximal” in Def. 3 by ”admissible”.

7 Examples

In the following, we omit the graphical representation of concrete probabilities
because they do not play any role anymore. In each of the randomized net
systems Σ4 und Σ5 , depicted in Fig. 8, two free choice conflicts are solved, one
after the other. Dependent on the solution of those conflicts, exactly one of the
four transitions e, f , g , and h is then enabled.

A

B

C D E F

G

a b

c d

e f g h

% %

(a) Σ4

A

B

C D E F

G

a b

c d

e f g h

% %

(b) Σ5

Fig. 8. Two randomized net systems

In Σ4 , the conflict between c and d is probabilistic. Therefore, whether c
or d occurs does not depend on whether a or b occurred before; Σ4 terminates
with probability 1, i.e. ✸G is valid with probability 1 in Σ4 .

In Σ5 , not the conflict between c and d , but the conflict between a and b is
probabilistic. The solution of the nondeterministic conflict between c and d may
7 also called progress.
8 or alternatively, if the set of all admissible runs has probability 1; the difference
between these notions is discussed in [9].

Randomized Non-sequential Processes 195

depend on whether a or b occurred before: There is a maximal probabilistic
branching process π of Σ5 such that each occurrence of a is followed by an
occurrence of c and each occurrence of b is followed by an occurrence of d . In
this π, no run is finite, and therefore, Σ5 does not terminate with probability 1.

Σ6 und Σ7 in Fig. 9 are similar to the randomized net systems in Fig. 8.
Again, two free choice conflicts are solved but this time not sequentially but
concurrently to each other. In Σ6 , both conflicts are probabilistic; Σ6 terminates
with probability 1. This is a prominent example for randomization in distributed
algorithms: Both conflicts will eventually be solved coordinated to each other–
without synchronization. Such iterated concurrent coin flips occur in many ran-
domized distributed algorithms in the literature.

In Σ7 , only one of the two free choice conflicts is probabilistic; Σ7 terminates
with probability 1, but only in the non-sequential semantics. In contrast to Σ6 ,
Σ7 does not terminate with probability 1 in the sequential semantics, because
there is a probabilistic computation tree of Σ7 where every maximal interleav-
ing is infinite. This discrepancy between the sequential and the non-sequential
semantics is further explained in the next section.

8 Non-sequential vs. Sequential Semantics

In this section, we explain the difference between the sequential semantics and
the non-sequential semantics of randomized net systems by help of an example.
Firm results, which will be provided in an extended version of this paper9 require
a notion of correspondence between interleaving properties and non-sequential
temporal properties.

Sometimes, it is useful to adjust a semantics for randomized distributed algo-
rithms. Differences between differently adjusted semantics are usually described
by help of the notion of an adversary (sometimes also called scheduler). By
that we imagine that we have two players, a coin flipper and an adversary, who
interact to determine a run of a given randomized algorithm: For every finite
interleaving τ = M0, . . . ,Mn, the adversary chooses either a non-probabilistic
transition enabled inMn–which then occurs–or a maximal probabilistic conflict–
which is then resolved by the coin flipper by flipping a coin. Each behaviour of
the adversary generates exactly one probabilistic computation tree.

An adjustment of the sequential semantics restricts the behaviour of an adver-
sary. Usually, two kinds of restrictions are distinguished (cf.[24]): execution-based
adversaries and adversaries with partial on-line information. For an execution-
based adversary, we restrict the interleavings that are generated by the adver-
9 Those firm results were obtained after the initial submission of this paper. It turns
out that the non-sequential semantics is strictly weaker than the standard interleav-
ing semantics for those interleaving properties that disregard non-causal ordering of
events, so-called equivalence robust interleaving properties. An interleaving property
E is equivalence robust if for all non-sequential runs ρ and each pair of sequential-
izations τ1, τ2 of ρ, we have: τ1 ∈ E ⇒ τ2 ∈ E. Those interleaving properties that
we are usually interested in are equivalence robust.

196 H. Völzer

A B

C D E F

G

a b c d

e f

H

g h

%%

J

j

% %

(a) Σ6

A B

C D E F

G

a b c d

e f

H

g h

%%

J

j

(b) Σ7

Fig. 9. Coordination of concurrent decisions through randomization

Randomized Non-sequential Processes 197

sary. For example, we may postulate that the adversary is fair with respect to
the solution of nondeterministic conflicts. For an adversary with partial on-line
information, we restrict the knowledge the adversary is able to base its decisions
upon. For example, we may postulate that the adversary does not know the
entire history but only the current state. (If additionally, the adversary does not
know the outcome of prior coin flips then the randomized net system in Fig. 8(b)
terminates with probability 1 under this adversary.)

The following example suggests that the adversary associated with the non-
sequential semantics can be viewed as an adversary with partial on-line infor-
mation with respect to the adversary associated with the sequential semantics.
This adversary, we call it the distributed adversary, has in contrast to the sequen-
tial adversary, no knowledge about non-causal order of events. In particular, the
distributed adversary cannot depend the solution of a nondeterministic conflict
on the outcome of coin flips that happen concurrently to that conflict, i.e. the
distributed adversary can depend the solution of a nondeterministic conflict only
on the causal history of that conflict. To see this, we consider Fig. 10.

Fig. 10 shows the randomized net system Σ8 , its two probabilistic branching
processes π1 and π2 and its six probabilistic computation trees ϑ1 to ϑ6. From
each probabilistic branching process, we can derive a set of probabilistic compu-
tation trees by sequentialization. From π1, we derive ϑ1 and ϑ2 and from π2, we
derive ϑ3 and ϑ4. Σ8 shows that not every probabilistic computation tree can be
derived from a probabilistic branching process: ϑ5 and ϑ6 can neither be assigned
to π1 nor to π2. The computation trees ϑ5 and ϑ6 represent a behaviour of the
sequential adversary where decisions of the adversary depend on the outcome of
a concurrent coin flip. A similar behaviour of the sequential adversary prevents
the termination of the randomized net system in Fig. 9(b) when c always occurs
concurrently to b and d always occurs concurrently to a.

The characteristic property of the probability spaces of π1, π2 and of ϑ1 to
ϑ4 which distinguishes them from the probability spaces of ϑ5 and ϑ6 is the
following. Let α be a finite run of a probabilistic branching process π and let
e be an event of π that is enabled at the end of α, i.e. α can be extended to
some finite run β of π by appending e. Then, the occurrence of a concurrent
event e′ does not influence the conditional probability of e. More precisely, if e′

is another event that is enabled in α such that e and e′ are concurrent and we
denote the resulting run when e′ is appended to α by α′ then we have

P (e|α) = P (e|α′) ()

where P (e|α) denotes the conditional probability that e occurs provided that
α is realized. Equation () holds in the probability space of each probabilistic
branching process but not necessarily in the probability space of a probabilistic
computation tree. That means that the order of concurrent events influences
probability in the sequential semantics.

Note that it is easy to simulate the sequential semantics in the non-sequential
semantics by sequentializing the randomized net system, i.e. by adding an ini-
tially marked place p to the net and connecting each transition t of the net with

198 H. Völzer

A

B

C

D

E

F

a

b

d

%

%

a

b

c

%

%

G

a

b

c

d

%

%

A

B

C

D

E

F

G

A

B

C

D

E

a

b

c

d

c

d

c

c

c

d

a

b

a

b

a

b

d

a

b

d

a

b

Σ8

π1

π2

ϑ1

ϑ2

ϑ3

ϑ4

ϑ5 ϑ6

Fig. 10. Non-sequential vs. sequential semantics

p by a loop, i.e. adding (p, t) and (t, p) to F . That means that the non-sequential
semantics discriminates more systems than the sequential semantics does. This
is of course already the case for non-probabilistic systems.

9 Conclusion

Motivated by the application domain of randomized distributed algorithms, we
restricted probabilistic conflicts to be free choice conflicts. As already noted, we
could easily include probabilistic extended free choice conflicts10 as well. How-
ever, if we want to go beyond extended free choice then we have to deal with

10 A conflict C is extended free choice if for all t1, t2 ∈ C, we have •t1 = •t2.

Randomized Non-sequential Processes 199

confusion (cf. [25]) where the enabling of a conflict depends on the order of
concurrent events. We would then inevitably need a notion of time, i.e. we have
to order concurrent events, and we have to give up property () to construct
a probability space. Then we would come closer to models motivated by per-
formance analysis such as stochastic Petri nets [14] where we also find models
combining causality and probability (eg [5]).

As the distributed adversary11 is weaker than the general sequential ad-
versary, it might admit more efficient distributed algorithms to solve a given
synchronization- or coordination problem. This conjecture will be subject of fu-
ture work. To assume a distributed adversary rather than a sequential adversary
may result in a more faithful model in many cases. However, we must not intro-
duce new causality when implementing an algorithm which was proven correct
with respect to the non-sequential semantics–unless we take some measures such
as encryption to hide the knowledge to the adversary that is provided by the
new causality.

The adoption of verification techniques developed for the sequential semantics
such as extreme fairness [18], α-fairness [13], fairness for labels [1], and com-
putable fairness [11] to the non-sequential semantics is straight-forward because
these techniques do not depend on specific properties of interleavings. However,
these adoptions will reflect the discrepancy between the two semantics.

As suggested in this paper, the new approach raises further questions towards
further research such as

– Is the non-sequential semantics robust with respect to refinement of actions
as the non-sequential semantics of non-probabilistic systems is?

– Can we adopt partial order verification methods to randomized Petri nets?

Finally, since the non-sequential semantics strictly separates nondeterminism,
randomization, and concurrency, we hope to better understand the subtle inter-
action of these three components in randomized distributed algorithms which is
often blamed for the difficulty to verify these algorithms. This hope is already
substantiated as we were able to prove, with the new semantics, two new impos-
sibility results with respect to the power of randomized distributed algorithms
in [26] where one of these results was discovered during the development of the
semantics. These results will be subject of a forthcoming paper.

Acknowledgement. We thank Stefan Haar for substantial comments on earlier
versions of this material.

References

1. Christel Baier and Marta Kwiatkowska. On the verification of qualitative proper-
ties of probabilistic processes under fairness constraints. Information Processing
Letters, 66:71–79, 1998.

11 Actually, we get a class of distributed adversaries since we can further restrict the
knowledge of the distributed adversary.

200 H. Völzer

2. Michael Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols. In Proceedings of the 2nd Annual ACM Symposium on Principles
of Distributed Computing, pages 27–30. ACM, 1983.

3. Eike Best. Structure theory of Petri nets: the free choice hiatus. In W. Brauer,
W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Models and Their Prop-
erties, volume 254 of LNCS, pages 167–205. Springer, 1987.

4. Eike Best and César Fernández. Nonsequential Processes, volume 13 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

5. Ed Brinksma, Joost-Pieter Katoen, Rom Langerak, and Diego Latella. A stochastic
causality-based process algebra. The Computer Journal, 38(7):552–565, 1995.

6. K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

7. Joost Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–591,
1991.

8. Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar. On randomization in sequential
and distributed algorithms. ACM Computing Surveys, 26(1):7–86, March 1994.

9. Sergiu Hart, Micha Sharir, and Amir Pnueli. Termination of probabilistic con-
current programs. ACM Transactions on Programming Languages and Systems,
5(3):356–380, July 1983.

10. Alon Itai and Michael Rodeh. Symmetry breaking in distributive networks. In
Proc. 22nd Annual Symposium on Foundations of Computer Science, pages 150–
158. IEEE, 1981.

11. Manfred Jaeger. Fairness, computable fairness, and randomness. In Proc. 2nd
PROBMIV Int. Workshop on Probabilistic Methods in Verification. Technical Re-
port CSR-99-8 School of Computer Science, University of Birmingham, 1999.

12. Ralph E. Johnson and Fred B. Schneider. Symmetry and similarity in distributed
systems. In Proceedings of the 4th Annual ACM Symposium on Principles of Dis-
tributed Computing. ACM, 1985.

13. Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In Proc.
Workshop on Logics of Programs, volume 193 of LNCS, 1985.

14. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. Series in Parallel Computing. Wiley,
1995.

15. Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate trans-
formers. ACM Transactions on Programming Languages and Systems, 18(3):325–
353, May 1996.

16. Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event structures
and domains, part i. Theoretical Computer Science, 13:85–108, 1981.

17. Doron A. Peled, Vaughan R. Pratt, and Gerard J. Holzmann (eds). Partial Order
Methods in Verification, DIMACS Workshop, Proceedings, volume 29 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. AMS, 1996.

18. Amir Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proc.
15th Annual Symposium on Theory of Computing (STOC), pages 278–290. ACM,
1983.

19. Amir Pnueli and Lenore D. Zuck. Probabilistic verification. Information and
Computation, 103:1–29, 1993.

20. Michael O. Rabin. The choice coordination problem. Acta Informatica, 17:121–134,
1982.

21. Josyula Rao. Reasoning about probabilistic algorithms. In Proceedings of the 9th

Annual ACM Symposium on Principles of Distributed Computing, pages 247–264.
ACM, 1990.

Randomized Non-sequential Processes 201

22. Wolfgang Reisig. Elements of Distributed Algorithms: Modeling and Analysis with
Petri Nets. Springer, 1998.

23. Wolfgang Reisig, Ekkart Kindler, Tobias Vesper, Hagen Völzer, and Rolf Walter.
Distributed algorithms for networks of agents. In Lectures on Petri Nets II: Ap-
plications, volume 1492 of LNCS, pages 331–385. Springer, 1998.

24. Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. Technical report mit/lcs/tr-676, MIT, Laboratory for Computer Science,
June 1995.

25. Einar Smith. On the border of causality: contact and confusion. Theoretical Com-
puter Science, 153:245–270, 1996.

26. Hagen Völzer. Fairneß, Randomisierung und Konspiration in Verteilten Algorith-
men. PhD thesis, Humboldt-Universität zu Berlin, Institut für Informatik, Febru-
ary 2001. in German, available via
http://dochost.rz.hu-berlin.de/dissertationen/voelzer-hagen-2000-12-08.

Liveness and Fairness in Process-Algebraic
Verification

Antti Puhakka and Antti Valmari

Tampere University of Technology, Software Systems Laboratory,
PO Box 553, FIN-33101 Tampere, FINLAND,

{anpu,ava}@cs.tut.fi

Abstract. Although liveness and fairness have been used for a long time
in classical model checking, with process-algebraic methods they have
seen far less use. One reason for this is that most well-known process-
algebraic theories such as CSP and CCS have limited capability for han-
dling liveness properties. In this article we discuss the problems and pos-
sibilities of liveness and fairness in process algebra. We show that most
well-known semantic equivalences do not preserve enough fairness-related
information and that fairness properties are difficult to combine with the
bottom-up compositionality of process algebra. However, we also estab-
lish positive results for a useful subset of fairness properties. We develop
a method that does not assume new fairness-related constructs or rules
for processes, but uses the standard LTS model. We demonstrate the
method by removing livelocks from a communication protocol.

1 Introduction

In the verification of concurrent systems it is often important to show that the
system eventually performs some desired task. Such properties are called liveness
properties [1,15]. For proving liveness properties some fairness assumptions [2,
11,16,17] usually have to be added to the system, meaning that the system is
not allowed to continuously favour some choices at the expense of others.

Within classical model checking [6,24] liveness and fairness have been used
in one form or another for quite some time. However, in the context of process-
algebraic methods [19,25] they have seen relatively little use. One reason for this
is that with most well-known process-algebraic semantic models it is difficult
to express liveness properties. For example, the weak bisimilarity of CCS [19]
ignores divergences (livelocks) completely, and the CSP model [25] does not
preserve any information on a system after it has performed a divergence trace.
One problem seems to be combining liveness and fairness with bottom-up type
of compositionality. That kind of compositionality is an important advantage
offered by process-algebraic approaches for attacking the state-explosion problem
(see e.g. [27]).

A variant of CSP called CFFD (Chaos-Free Failures Divergences) [29] has
been previously developed which preserves information even after the execution
of a divergence trace, and is therefore suitable for expressing liveness properties.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 202–217, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Liveness and Fairness in Process-Algebraic Verification 203

CFFD covers the properties expressible in linear-time temporal logic [18,21]
without the nextstate-operator (where the state-based logic is interpreted in an
action-based setting), as well as deadlocks [14]. It is also well-suited for typical
process-algebraic verification methods [26].

However, it is not clear how fairness assumptions should be used within the
process-algebraic approach. [20] and [7] describe methods where certain types
of fairness assumptions can be added to processes in a CCS-like setting. In the
former, process expressions can be augmented with the ω-regular set of infinite
sequences of actions it is allowed to execute. In the latter, states of a labelled
transition system (LTS) can be marked as Büchi states, and only those infinite
executions are considered where some Büchi state is visited infinitely often.

Approaches based on some finite representation of fairness assumptions have
two levels: the ordinary operational and the additional fairness/liveness. This
creates the problem that the two levels can be in conflict with each other: the
fairness level rules out an infinite execution, while the operational level prevents
the process from stopping or choosing other actions. Furthermore, this can hap-
pen even when the process is a composition of “healthy” subprocesses that are
able to execute within their allowed sequences (see Section 3).

In this paper we use a CSP-like process algebra with LTSs as models of
processes. LTSs are a simple, well-understood and widely accepted formalism for
describing the behaviour of concurrent processes. Therefore, we take the view
here that ordinary LTSs should be sufficient for describing process behaviour,
whether that behaviour is “fair” or not. An LTS that has been formed from a
finite LTS by adding a fairness assumption is typically infinite. However, this
is often true only of an intermediate system, and when the LTS is placed in a
larger context the result is finite. The (partial) solution we will develop later
allows us to avoid the construction of the intermediate infinite system.

It should also be noted that our approach and the above-mentioned ap-
proaches based on finite representations are not mutually exclusive. In the fu-
ture we may be able to use, say, Büchi-type fair LTSs as a finite notation for
well-defined infinite ordinary LTSs. Then we could prove how the finite represen-
tations behave with respect to parallel composition etc., by using this connection.

Other works dealing with fairness and process algebra include [2,4,5,8,9,10,
12,13]. Most of these deal with global fairness assumptions, intended to capture
the idea that all processes get execution time. All these and [7,20] are discussed
in more detail in a longer version of this paper [23].

After reviewing the basic definitions in Section 2, we will in Section 3 consider
a (hypothetical) operator that is used to add fairness assumptions to systems.
We describe the properties we believe such an operator should have in order to
be meaningful in a compositional context. We then show that most well-known
semantic models are partly incompatible with these requirements, and also that
the requirements impose limitations on the allowed fairness properties and pro-
cess contexts. However, in Section 4 we are able to establish positive results
for a small but useful subclass of fairness constraints. The approach is based
on ordinary LTSs and can be carried through on the denotational level within

204 A. Puhakka and A. Valmari

the CFFD-semantic model. In Section 5 we demonstrate the approach on the
alternating bit protocol example, and in Section 6 we present some conclusions.

2 Background

The behaviour of a process consists of executing actions. There are two kinds of
actions: visible and invisible. Invisible actions are denoted with a special symbol
τ . The behaviour of a process is represented as a labelled transition system. It
is a directed graph whose edges are labelled with action names, with one state
distinguished as the initial state.

Definition 1. A labelled transition system, abbreviated LTS, is a four-tuple
(S,Σ,∆, ŝ), where

– S is the set of states,
– Σ, the alphabet, is the set of the visible actions of the process; we assume

that τ /∈ Σ,
– ∆ ⊆ S × (Σ ∪ {τ})× S is the set of transitions, and
– ŝ ∈ S is the initial state.

We use s −a→ s′ as an abbreviation for (s, a, s′) ∈ ∆, and this is extended
in the obvious way to s −σ→ s′ and s −ξ→ , where σ is a finite and ξ a finite
or infinite sequence of actions. Let restr(σ,A) denote the result of removal of
all actions from σ that are not in A. We write s=ρ⇒ s′ iff there is σ such that
s−σ→ s′ and ρ = restr(σ,Σ). s=ρ⇒ is defined similarly.

Let A∗ denote the set of finite and Aω that of infinite sequences of elements of
a set A. The empty sequence is denoted with ε. We need the following semantic
sets extracted from an LTS. A trace of an LTS is the sequence of visible actions
generated by any finite execution that starts in the initial state. An infinite
execution that starts in the initial state generates either an infinite trace or
a divergence trace, depending on whether the number of visible actions in the
execution is infinite. The stable failures describe the ability of the LTS to refuse
actions after executing a particular trace.

Definition 2. Let L = (S,Σ,∆, ŝ) be an LTS.

– Tr(L) =
{
σ ∈ Σ∗ ∣∣ ŝ=σ⇒ }

is the set of the traces of L.
– Inftr(L) =

{
ξ ∈ Σω ∣∣ ŝ=ξ⇒ }

is the set of the infinite traces of L.
– Divtr(L) =

{
σ ∈ Σ∗ ∣∣ ∃s : ŝ =σ⇒ s ∧ s −τω→ }

, where τω denotes the
infinite sequence of τ -actions, is the set of the divergence traces of L.

– Sfail(L) =
{

(σ,A) ∈ Σ∗×2Σ
∣∣ ∃s ∈ S : ŝ=σ⇒s∧∀a ∈ A∪{τ} : ¬(s−a→)

}
is the set of the stable failures of L.

The parallel composition operator defined below forces precisely those com-
ponent processes to participate in the execution of a visible action that have that
action in their alphabets. The invisible action is always executed by exactly one
component process at a time. We first define the product of LTSs as the LTS

Liveness and Fairness in Process-Algebraic Verification 205

that satisfies the above description and has the Cartesian product of component
state sets as its set of states, and then define parallel composition by picking the
part of the product that is reachable from the initial state of the product.

Definition 3. Let L1 = (S1, Σ1, ∆1, ŝ1) and L2 = (S2, Σ2, ∆2, ŝ2) be LTSs.
Their product is the LTS (S′, Σ,∆′, ŝ) such that the following hold:

– S′ = S1 × S2
– Σ = Σ1 ∪Σ2
– ((s1, s2), a, (s′1, s

′
2)) ∈ ∆′ if and only if either

• [a ∈ (Σ1 ∪ {τ})−Σ2 and (s1, a, s′1) ∈ ∆1 and s′2 = s2], or
• [a ∈ (Σ2 ∪ {τ})−Σ1 and (s2, a, s′2) ∈ ∆2 and s′1 = s1], or
• [a ∈ Σ1 ∩Σ2 and (s1, a, s′1) ∈ ∆1 and (s2, a, s′2) ∈ ∆2].

– ŝ = (ŝ1, ŝ2)

The parallel composition L1||L2 is the LTS (S,Σ,∆, ŝ) such that

– S =
{
s ∈ S′ ∣∣ ∃σ ∈ Σ∗ : ŝ=σ⇒ s

}
– ∆ = ∆′ ∩ (S × (Σ ∪ {τ})× S)

The hiding operator converts given visible actions into τ -actions and removes
them from the alphabet.

Definition 4. Let L = (S,Σ,∆, ŝ) be an LTS and A any set of action names.
Then hideA in L is the LTS (S,Σ′, ∆′, ŝ) such that the following hold:

– Σ′ = Σ −A
– (s, a, s′) ∈ ∆′ if and only if
a = τ ∧ ∃b ∈ A : (s, b, s′) ∈ ∆, or a /∈ A ∧ (s, a, s′) ∈ ∆.

An important property of an equivalence is that when a component process in
a system is replaced by an equivalent process, the system will remain equivalent
to the original one. This is formally captured by the congruence property.

Definition 5. An equivalence “�” is a congruence with respect to a process
operator op(L1, . . . , Ln) iff L1 � L′1 ∧ · · · ∧ Ln � L′n implies op(L1, . . . , Ln) �
op(L′1, . . . , L

′
n).

We now define the CFFD semantic model and equivalence, which will be our
main equivalence notion in this article.

Definition 6. Let L and L′ be LTSs with the same alphabet.

– The CFFD model of L is the 3-tuple (Sfail(L),Divtr(L), Inftr(L))
– L �CFFD L

′ ⇐⇒
[Sfail(L) = Sfail(L′) ∧Divtr(L) = Divtr(L′) ∧ Inftr(L) = Inftr(L′)]

The traces are not included in the model because they can be determined
from Sfail and Divtr (see e.g. [29]). It should be noted that when certain process-
algebraic operators are used, a component called stability must be included in
the CFFD-model. This one bit of information tells whether or not there are τ -
transitions from the initial state of the LTS. However, with hiding and parallel
composition this component is not needed, so we will not use it here.

CFFD-equivalence is a congruence with respect to parallel composition and
hiding, as shown in [29], for example.

206 A. Puhakka and A. Valmari

3 LTSs, Temporal Logic, and Fairness Operators

The desired properties of reactive and concurrent systems are often expressed by
using linear temporal logic [18,21]. We next present a straightforward adaptation
of the logic to our process-algebraic framework.

Definition 7. A formula is generated by the grammar ψ ::=
true | a |En(a) | ¬ψ |
ψ ∨ ψ |ψ U ψ, where a is an action. We also use the following derived formulae:
ψ ∧ φ ≡ ¬(¬ψ ∨ ¬φ), ψ ⇒ φ ≡ ¬ψ ∨ φ, ✸ψ ≡ true U ψ and ✷ψ ≡ ¬✸¬ψ.

Definition 8. Let L = (S,Σ,∆, ŝ) be an LTS. The set of the infinite executions
of L is infex (L) =

{
s0a1s1a2 . . .

∣∣ ŝ = s0 ∧ ∀i ≥ 1 : si−1 −ai→ si
}
.

Below we will use the following notation: if η = s0a1s1a2 . . . is an infinite
execution, then acts(η) = a1a2 . . . and ηi = siai+1si+1ai+2

Definition 9. Let L = (S,Σ,∆, ŝ) be an LTS and η = s0a1s1a2 . . . an infinite
execution of L. Then

– L, η |= true
– L, η |= a iff a1 = a
– L, η |= En(a) iff s0 −a→ (i.e., iff ∃s ∈ S : (s0, a, s) ∈ ∆)
– L, η |= ¬ψ iff not L, η |= ψ
– L, η |= ψ ∨ φ iff L, η |= ψ or L, η |= φ
– L, η |= ψ U φ iff ∃j ≥ 0 : L, ηj |= φ ∧ ∀k : 0 ≤ k < j : L, ηk |= ψ

The properties of reactive systems are usually divided into safety and live-
ness properties [1,15]. Safety properties express requirements of the form “noth-
ing bad must ever happen”. The violation of a safety property can always be
detected in a finite execution. Liveness properties express requirements of the
form “something good must eventually happen”, and the violation of a liveness
property can only be detected in an infinite execution.

Fairness properties are liveness properties which state that certain actions are
not infinitely overtaken by other actions in the choices the system makes. Two
well-known classes of fairness properties are weak fairness and strong fairness.
Weak fairness with respect to action a means that if a is from some point on
continuously enabled, then it must be eventually executed. This can be expressed
by the formula ✸✷En(a) ⇒ ✷✸a. Strong fairness means that if the action is
from some point on enabled infinitely often, then it must be eventually executed.
This can be expressed by ✷✸En(a)⇒ ✷✸a.

It is customary in the verification of liveness properties to assume that the
system satisfies some fairness constraint. A fairness constraint is a fairness prop-
erty that is assumed, rather than proved, of the system. It formalises the idea
that the underlying system is fair towards processes or choices.

Let us assume that there is some fairness constraint φ that we would like
to express within our process-algebraic framework. We would like to have a

Liveness and Fairness in Process-Algebraic Verification 207

τ τ
τ

τ

τ

τa

L’ L’’

a a

L

Fig. 1. The processes L, L′ and L′′

corresponding “fairness operator” Φφ, that given an LTS L produces a new LTS
L′ whose finite behaviour (safety properties) is like that of L, but whose infinite
executions fulfill the given fairness constraint. More precisely, we want all traces
(Tr(L)) and stable failures (Sfail(L)) to stay the same (so that deadlocks are
not affected), and exactly those infinite traces (Inftr(L)) and divergence traces
(Divtr(L)) to remain that are created by some infinite execution in compliance
with φ. These requirements are stated formally in the following.

Definition 10. An operator Φφ is a fairness operator for the formula φ iff for
every LTS L = (S,Σ,∆, ŝ) each of the following holds:

– Tr(ΦφL) = Tr(L)
– Sfail(ΦφL) = Sfail(L)
– Divtr(ΦφL) =

{
σ ∈ Σ∗ ∣∣ ∃η ∈ infex (L) : L, η |= φ ∧ restr(acts(η), Σ) = σ

}
– Inftr(ΦφL) =

{
ξ ∈ Σω ∣∣ ∃η ∈ infex (L) : L, η |= φ ∧ restr(acts(η), Σ) = ξ

}
It is important to notice that this does not yet define a fairness operator,

we have just stated desired properties of a (hypothetical) operator. An obvious
requirement is also that any equivalence we use should be a congruence with
respect to the fairness operator.

However, it turns out that the above properties are not easy to achieve.
Consider the three LTSs L, L′ and L′′ in Figure 1. These are all CFFD-equivalent;
the same holds for most process-algebraic semantic models. If we apply weak
fairness towards a, i.e. φ(a) ≡ ✸✷En(a) ⇒ ✷✸a, the divergence in the initial
state of L disappears. However, a is not continuously enabled in L′, so the fairness
assumption does not remove the divergence there. Thus, ε /∈ Divtr(Φφ(a)L),
but ε ∈ Divtr(Φφ(a)L′), and the results are not equivalent. We can try using
strong fairness instead, because this forces execution of a even in L′. However,
by comparing L and L′′ we can similarly show that strong fairness leads to
CFFD-different results. The conclusion from this counter-example is thus the
following:

Proposition 1. “�CFFD” cannot be a congruence with respect to a fairness op-
erator Φφ(a) for the formula φ(a) ≡ ✸✷En(a)⇒ ✷✸a or ✷✸En(a)⇒ ✷✸a.

This can also be formulated in terms of the CSP [25] and other similar equiv-
alences. For instance, L �CSP L

′′ �CSP Φφ(a)L
′′ �CSP CHAOS ��CSP Φφ(a)L.

Clearly the reason why most models are not congruences with respect to
the fairness operator is because they do not preserve enough information on
the enabledness of actions during infinite executions. A notable exception is

208 A. Puhakka and A. Valmari

{ a, b } { a, b }{ a }{ a } { b }

BA
ba b

C B||C||A
ba

||A B

Fig. 2. A, B, C and their parallel compositions, with alphabets shown

the strong bisimilarity of [19], but as is well known, it treats invisible events no
differently from visible events, and thus does not allow us to abstract them away.

Furthermore, we would like to make one more “soundness” requirement for
the hypothetical fairness operator. This is because the fairness operator would
typically be applied to some process L (e.g. a communication channel) which
can be placed in a larger context C[·] (e.g. a protocol system). The property of
the underlying system expressed by the fairness constraint should remain the
same in the larger context. Therefore, within some reasonable limits, it should
make no difference whether the same fairness constraint is assumed of L or
of the composition C[L].1 Thus, the fairness operator should ideally have the
following property of context-independence, which essentially means (limited)
commutativity with parallel composition and hiding.

Definition 11. Let φ be a formula expressed in terms of the actions A. A fair-
ness operator Φφ for φ is context-independent with respect to equivalence “�”,
iff “�” is a congruence with respect to Φφ, and for any LTSs L and L′

– (ΦφL) ||L′ � Φφ(L ||L′) [Note that “||” is a commutative operator.]
– if B ∩A = ∅, then hideB in ΦφL � ΦφhideB in L

However, as readers familiar with process algebra may already expect, the
property of context-independence cannot be fulfilled by an equivalence that pre-
serves liveness properties, even if it is as detailed as strong bisimulation. This
is essentially because other processes can interfere with the actions we use to
declare fairness.

As an example, if we want that process A in Figure 2 always gets a chance
to eventually execute a in the combination A||B, we can declare either weak or
strong fairness towards a. The resulting process has no executions ending in an
infinite sequence of b’s, so there are none even when this process is combined
with C. Consequently, there are no divergences after we hide b from the result:
Divtr(hide b in (Φφ(a)(A ||B) ||C)) = ∅. However, if we combine A ||B with C
before adding the fairness constraint, the result is able to execute bω because a is
not enabled in the combination A ||B ||C. This turns into a divergence when we
hide b: ε ∈ Divtr(hide b in Φφ(a)(A ||B ||C)). This shows that if an equivalence
distinguishes whether there are infinite τ -executions in a process or not, the
fairness operator Φφ(a) cannot be context-independent with respect to it.

Proposition 2. Let “�” be an equivalence such that L � L′ implies Divtr(L) =
∅ ⇔ Divtr(L′) = ∅, and let φ(a) ≡ ✸✷En(a) ⇒ ✷✸a or ✷✸En(a) ⇒ ✷✸a.
Then, no fairness operator Φφ(a) is context-independent with respect to “�”.
1 Practical application of this principle is demonstrated in Section 5.

Liveness and Fairness in Process-Algebraic Verification 209

The same example (easily translated into CCS) can be used to illustrate a
point mentioned in Section 1. Namely, if we used “infinitary restriction” as in
[20] and, say, restricted A ||B to the set (b∗a)ω, this would not cause any prob-
lems. However, the result of combining this process with C would be equivalent
to A ||B ||C restricted to the empty set of sequences, which is obviously an
“impossible” situation.

In the next section we will, however, propose a partial solution that does not
suffer from any of the above-mentioned problems. Furthermore, it is compatible
with the CFFD-semantics, and therefore allows us to use existing CFFD-based
verification tools. We achieve this by restricting our scope in two ways. Firstly,
we consider only a specific set of fairness constraints. Secondly, we restrict the
set of processes for which we apply the constraints.

4 LTSs as Fairness Operators

Similarly as in [20], we will no longer consider fairness assumptions based on
the enabledness of actions. Instead, we will consider fairness assumptions of the
following form, which seem to occur frequently in proofs involving fairness:

✷✸a1 ∨ · · · ∨✷✸am ⇒ ✷✸b1 ∨ · · · ∨✷✸bn

Here, m > 0, n ≥ 0, and the interpretation is “if one of a1, . . . , am occurs
infinitely many times then one of b1, . . . , bn also has to occur infinitely many
times”. In case n = 0 the formula reduces to ¬(✷✸a1 ∨ · · · ∨ ✷✸am), with the
interpretation “a1, . . . , am cannot occur infinitely many times”. From now on we
will denote this formula by ψ(a1, . . . , am; b1, . . . , bn).

Below we define an LTS which has all possible traces but only those infinite
traces that model the fairness property. Furthermore, it has no divergences and
the only actions it is allowed to refuse are the ai-actions after executing one of
these actions. We then define the fairness operator by using such an LTS and
parallel composition. The idea of a “fairness LTS” was used in an application-
specific way in [22] to ensure that neither side of a bidirectional communication
protocol is starved. There, the result was obtained by using a finite upper and
lower approximation of the LTS representing the property, together with some
manual reasoning. Here, we intend to provide a general theory that allows using
the above class of fairness properties in all applicable systems.

Definition 12. L = (S,Σ,∆, ŝ) is a fairness LTS for ψ(a1, . . . , am; b1, . . . , bn)
if and only if Σ = {a1, . . . , am, b1, . . . , bn}, and

– Tr(L) = Σ∗
– Divtr(L) = ∅
– Sfail(L) ⊆ Σ∗ × {∅} ∪ Σ∗{a1, . . . , am} × 2{a1,...,am}
– Inftr(L) = Σω −Σ∗{a1, . . . , am}ω

It is easy to see that the LTS Lψ defined below has the desired properties. It is
also easy to see that the operator definition given later would produce equivalent
results in terms of CFFD if we used any other LTS with these properties.

210 A. Puhakka and A. Valmari

a
a

a

a
a

a
b

b

b
b

b

b

b

Fig. 3. A fairness LTS for actions a and b

Definition 13. For a formula ψ(a1, . . . , am; b1, . . . , bn), let Lψ be the LTS
(S,Σ,∆, ŝ), where

– S = {s00} ∪
⋃∞
i=1 S

i, where Si = {si1, si2, . . . , sii} and s ij �= s i
′
j′ unless i = i′

and j = j′

– Σ = {a1, . . . , am, b1, . . . , bn}
– ∆ =

{
(s, bk, s00)

∣∣ s ∈ S ∧ 1 ≤ k ≤ n} ∪ ⋃∞
i=1∆

i, where ∆i ={
(s00, ak, s

i
1)

∣∣ 1 ≤ k ≤ m} ∪ {
(sij , ak, s

i
j+1)

∣∣ 1 ≤ j < i ∧ 1 ≤ k ≤ m}
– ŝ = s00

Proposition 3. Lψ is a fairness LTS for ψ(a1, . . . , am; b1, . . . , bn).

Figure 3 illustrates Lψ corresponding to fairness constraint ψ(a; b). It has
a-branches of length 1, 2, 3, . . . from the initial state, and from every state
(including the initial state) it is possible to return to the initial state with b.
In case m > 1 and/or n > 1, the a and b-actions are repeated for every ai, bj ,
respectively. In case n = 0, we get the fairness LTS by removing all the b-actions.

The fairness LTS has to be infinitely branching, because there does not exist
a finitely branching divergence-free LTS with all finite traces but with only the
allowed infinite traces. However, this does not cause any problems for us on
the denotational level, because CFFD-equivalence is a congruence even among
infinitely branching LTSs. We would also like to emphasise that the fairness LTS
is a theoretical tool by which we can add a fairness assumption to a system in
a consistent way without having to create a complicated special theory for this
purpose. When applying fairness to verification we will not actually construct
the infinite fairness LTS, as will be explained in the next section.

As indicated above, before we define the actual fairness operator we have to
restrict the set of LTSs to which it can be applied. Intuitively, we could require
that in these LTSs the actions ai always start at unstable states. Such a state
has already the nondeterminstic choice of taking a τ -transition instead of the ai-
transition, and stable failures are not affected by refusing ai. However, it turns
out that a related but weaker requirement suffices:

Liveness and Fairness in Process-Algebraic Verification 211

Definition 14. LTS L = (S,Σ,∆, ŝ) is compatible with
ψ(a1, . . . , am; b1, . . . , bn) iff {a1, . . . , am, b1, . . . , bn} ⊆ Σ and ∀(σ,A) ∈
Sfail(L) : (σ,A ∪ {a1, . . . , am}) ∈ Sfail(L). The set of LTSs compatible with ψ
is denoted COMPψ.

Note that the given condition can be determined from the CFFD-model of an
LTS, so its validity is preserved when a system is replaced by a CFFD-equivalent
one.

The fairness operator Ψψ can now be defined simply as follows.

Definition 15. For a formula ψ(a1, . . . , am, b1, . . . , bn), Ψψ(L) = L ||Lψ.

The following result shows that Ψψ really is a fairness operator in the sense
of Definition 10. We omit the proof which is based on Proposition 3, Definition
12, Definition 14 and the properties of “||”.

Proposition 4. When used on LTSs from COMPψ, Ψψ is a fairness operator
for ψ(a1, . . . , am; b1, . . . , bn).

As our approach is “one-level”, there obviously cannot be a similar conflict
between the operational and fairness levels that is possible with “two-level”
approaches, as discussed in Section 1. In our approach, if a process were unable to
execute within the allowed infinite execution sequences, this would present itself
as new deadlocks. Therefore, the above result is especially important, because it
shows that this will never happen. Furthermore, unlike in some other approaches,
the fact that subprocesses can stop executing (e.g. when blocked by others) does
not cause any problems in our approach.

The congruence property follows directly from the congruence property of
“�CFFD” with respect to “||”, and context-independence from the commutativity
and associativity of “||” and from a commutativity property of “||” and “hide”.

Proposition 5. “�CFFD” is a congruence with respect to Ψψ.

Proposition 6. Ψψ is context-independent with respect to “�CFFD”.

It is also easy to see that compatibility is preserved by our fairness operators
and that our fairness operators commute among themselves.

5 Verification Example

Although the above approach is consistent for the given class of fairness proper-
ties, it involves infinite LTSs. This does not mean, however, that the solution is
only a theoretical one. Often the infinite LTS produced by the operator is only
an intermediate subsystem, and the complete system, where the subsystem is
composed with other processes and actions are hidden, is finite. We can take
advantage of this by using the context-independence property.

212 A. Puhakka and A. Valmari

DataChannel

AckChannel
ReceiverSender recsend

ld

lara0, ra1 sa0, sa1

rd0, rd1sd0, sd1

Fig. 4. The alternating bit protocol

When we have constructed a finite system P and noted that it contains
divergences, we may find it reasonable to make certain fairness assumptions
about some components of the system. Including the assumptions as fairness
operators creates a modified system P ′. By the context-independence property
we can move the fairness operators and the hiding of the actions involved from
the subcomponents to the topmost level of compositional system construction.
There we can check the effect of the fairness operators/LTSs on the system
without actually having to construct the fairness LTSs. The theory automatically
guarantees that the finite behaviour (traces and stable failures) of P ′ is the same
as in P . The first thing we check is that the infinite traces of the system are
unaffected (it can be shown that the new system P ′ will be finite precisely
when this is the case). We then check that all divergences are caused by infinite
executions that are removed by the fairness operators. If this is true, we have
shown that P ′ is the same as P but without the divergences.

We illustrate this approach by applying it to the well-known alternating bit
protocol [3]. This protocol is intended for sending messages over channels that
can lose messages, but cannot reorder them. There are two one-way channels, one
for the data from the sender to the receiver and another for acknowledgements
from the receiver to the sender, as depicted in Figure 4. Acknowledgements are
needed because messages can be lost. If the acknowledgement for a message
is not received in time, the protocol attempts retransmission. In order not to
confuse new messages with retransmissions, each message and acknowledgement
contains a sequence number, which is either 0 or 1.

sd0 sd1 rd1 sa1 rec

rd0sa0rec

ldld

la la

rd1

sa1sa0

ra1
AC

DC
rd0

ra0

ra1

ra0

send

send

S
rd0

rd1

R

sd1 ra0

ra1 sd0τ

τ

τ τ

τ τra0

ra1

Fig. 5. The LTSs of the components of the alternating bit protocol

Liveness and Fairness in Process-Algebraic Verification 213

P
τ

τ

ττ

send

rec

Fig. 6. The reduced global behaviour of the alternating bit protocol

Our LTS definitions of the sender (S), data channel (DC), acknowledgement
channel (AC) and receiver (R) are shown in Figure 5. For simplicity we do not
model the data content of messages, as it does not directly affect the behaviour
of the protocol. The sender gets a sending request from the user, and then
sends a data message to the data channel with the appropriate bit value. If a
correct acknowledgement is not received in time, the sender makes a timeout by
executing the invisible τ -transition and then sends again. The sender contains
some extra transitions for consuming unexpected acknowledgements. The data
channel gets a message from the sender and then chooses either to lose it (ld)
or pass it through (τ) and give it to the receiver. The acknowledgement channel
works similarly. When the receiver gets a data message with a new bit value,
it declares it with rec and sends an acknowledgement. For repeated messages it
only sends an acknowledgement.

We hide the internal actions I = {sd0, sd1, ld, rd0, rd1, sa0, sa1, la, ra0, ra1}
from the total system and leave only the external actions {send, rec} visible.
Then the complete system P = hide I in (S ||DC ||AC ||R) is reduced with a
CFFD-preserving reduction algorithm [28]. The result is shown in Figure 6. We
note that the behaviour is otherwise acceptable, but there are two τ -loops, i.e.
divergences, in the system. We cannot know with certainty that after entering
one of these loops the system ever executes any more visible actions.

The channels can lose all messages that are given to them. We can therefore
guess that the divergences are caused by an infinite sequence of retransmissions
and losses of messages in the channels. If we assume that the channels cannot
lose an infinite number of messages, the divergences should then disappear. We
will now formally verify that this is the case by using fairness operators. Let P ′ =
hide I in (S || (Ψψ(ld)DC) || (Ψψ(la)AC) ||R), where ψ(ld) ≡ ¬✷✸ld and ψ(la) ≡
¬✷✸la. We are allowed to use these operators because the states where ld and
la start are unstable, and thus DC and AC are in COMPψ(ld) and COMPψ(la),
respectively. By the context-independence property this is equivalent to:

hide {ld, la} in Ψψ(ld)Ψψ(la)(hide I ′ in (S ||DC ||AC ||R)),

P†

τ ττ

τ

la

ld

la

ld

ld ld

la

recsend

send

Fig. 7. Like Figure 6, but now also ld and la are visible

214 A. Puhakka and A. Valmari

P’

rec

send

Fig. 8. The behaviour with the fairness assumption

where I ′ = I − {ld, la} (this shows the usefulness of context-independence).
The inside process P † = hide I ′ in (S ||DC ||AC ||R) after CFFD-reduction is
shown in Figure 7.

We can now determine the CFFD-model of P ′. By Proposition 4, Sfail(P ′) =
Sfail(P). As for Inftr , the only infinite trace of P (Figure 6) is (send rec)ω, and
from Figure 7 we see that this infinite trace is possible without any ld- or la-
actions. Therefore, it does not violate ψ(ld) or ψ(la), so Inftr(P ′) = Inftr(P). As
for Divtr , there are no divergences in Figure 7, so any divergences would have to
emerge in hiding from infinite traces ending in {ld, la}ω. However, the fairness
operators remove all such infinite traces, so Divtr(P ′) = ∅. We can conclude that
the behaviour of P ′ is as shown in Figure 8, and this is clearly acceptable.

However, we can obtain an even better result. We made the assumption
that the channels can only lose a finite number of messages, during their entire
operation. We will next try the weaker assumption that the channels can only
lose a finite number of messages between passing messages through, i.e., that
the channels cannot from some point on lose all messages. Therefore, let P ′′ =
hideA in(S ||Ψψ(ld;rd0,rd1)DC ||Ψψ(la;ra0,ra1)AC ||R). As before, ψ(ld; rd0, rd1)
means ✷✸ld ⇒ ✷✸rd0 ∨ ✷✸rd1, and so on. By following the same arguments
as above, Sfail(P ′′) = Sfail(P) and Inftr(P ′′) = Inftr(P).

Because even infinite ld- and la-executions are now possible, for Divtr we
need a larger diagram where also rd- and ra-actions are visible. We do not show
the diagram (with 34 states) here, but it is straightforward to check from it that
all infinite traces that could turn into divergences violate either ψ(ld; rd0, rd1)
or ψ(la; ra0, ra1), so Divtr(P ′′) = ∅. Thus, even with the weaker assumption,
the behaviour of the protocol is the LTS in Figure 8.

We would like to emphasise that although the part of the proof done by
investigating Figure 7 and the corresponding 34-state LTS was itself a model
checking task, this does not mean that our approach reduces to classical model
checking. Firstly, in classical model checking, the complete state space would
have to be used instead of Figure 7. In the example the complete state space
contains 268 states. Figure 7 can be constructed with any CFFD-preserving
reduced LTS construction method that avoids the construction of the full state
space, of which there are many. Secondly, the final result of our analysis was not
the answer “yes, the formula holds”, but the LTS in Figure 8. This LTS not only
allows us to verify all properties preserved by the equivalence, but it can also be
placed as a component in further compositional analysis.

Liveness and Fairness in Process-Algebraic Verification 215

6 Conclusions

In this article we have been studying the use of fairness and liveness in process
algebra. We proposed intuitively reasonable requirements for a hypothetical op-
erator that would implement fairness constraints. However, we showed that there
are incompatibilities between these requirements and most well-known semantic
models. One problem is that the models do not sufficiently preserve information
on the enabledness of actions in the infinite executions of the system. We also
demonstrated that the compositionality of process algebra imposes limitations
on the use of fairness. This is because outside processes can interfere with the
actions which we use to define a fairness constraint.

However, we presented an approach where a particular class of fairness con-
straints can be used within the ordinary LTS model and our existing composi-
tional semantics. We showed that the approach is compatible with all the stated
requirements, and we used it to remove livelocks from an example protocol. To
avoid the above inconsistency with compositionality there are two possible ap-
proaches: we can restrict the set of target processes for the fairness operator,
and/or we can restrict the set of contexts within which the property of context-
independence is guaranteed. The approach we took here was the former.

Obvious topics for further research are enhancing the automated support for
the approach and extending the results to a larger set of fairness properties. It is
also important to note that our approach does not rule out finite representations
such as Büchi automata or ω-regular languages, used in [7,20]. These could be
used as finite representations for certain well-defined infinite ordinary LTSs, so
that the behavioural properties of these finite representations would be proved,
rather than defined, by us.

Acknowledgements. The work of A. Puhakka was funded by the Academy
of Finland, project “Unifying Action-Based and State-Based Verification Tech-
niques”, and the TISE Graduate School.

References

1. Alpern, B. & Schneider, F. B.: “Defining Liveness”. Information Processing Letters,
Vol. 21 (No. 4), 1985, North-Holland.

2. Apt, K., Francez, N. & Katz, S.: “Appraising fairness in languages for distributed
programming”. Distributed Computing (1988) Vol. 2 (No. 4), Springer-Verlag, pp.
226–241.

3. Bartlett, K. A., Scantlebury, R. A. & Wilkinson, P. T.: “A Note on Reliable Full-
Duplex Transmission Over Half-Duplex Links”, Communications of the ACM 12
(5) 1969, pp. 260–261.

4. Bergstra, J. A., Klop, J. W.: “Verification of an Alternating Bit Protocol by Means
of Process Algebra”. Mathematical Methods of Specification and Synthesis of Soft-
ware Systems ’85, Lecture Notes in Computer Science 215, Springer-Verlag 1985,
pp. 9–23.

216 A. Puhakka and A. Valmari

5. Brinksma, E., Rensink, A. & Vogler, W.: “Fair Testing”. CONCUR’95, Sixth Inter-
national Conference on Concurrency Theory, Lecture Notes in Computer Science
962, Springer-Verlag 1995, pp. 313–327.

6. Clarke, E. M. & Emerson, E. A.: “Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic”. Proc. Logic in Programs: Workshop, 1981, Lec-
ture Notes in Computer Science 131, Springer-Verlag 1981, pp. 52–71.

7. Cleaveland, R. & Lüttgen, G.: “A Semantic Theory for Heterogeneous System De-
sign”. Proc. Foundations of Software Technology and Theoretical Computer Science
2000. Lecture Notes in Computer Science 1974, Springer-Verlag 2000, pp. 312–324.

8. Costa, G. & Stirling, C.: “A Fair Calculus of Communicating Systems”. Acta
Informatica 21 (1984), Springer-Verlag, pp. 417–441.

9. Costa, G. & Stirling, C.: “Weak and Strong Fairness in CCS”. Proc. Mathematical
Foundations of Computer Science 1984, Lecture Notes in Computer Science 176,
Springer-Verlag 1984, pp. 245–254.

10. Davies, J. & Schneider, S.: “Using CSP to Verify a Timed Protocol over a Fair
Medium”. Proc. CONCUR’92, Third International Conference on Concurrency
Theory, Lecture Notes in Computer Science 630, Springer-Verlag 1992, pp. 355–
369.

11. Francez, N.: “Fairness”. Springer-Verlag 1986, 295 p.
12. Hennessy, M.: “Axiomatising Finite Delay Operators”. Acta Informatica 21 (1)

1984, Springer-Verlag, pp. 61–88.
13. Hennessy, M.: “An Algebraic Theory of Fair Asynchronous Communicating pro-

cesses”. Theoretical Computer Science 49 (1987), North-Holland, pp. 121–143.
14. Kaivola, R. & Valmari, A.: “The Weakest Compositional Semantic Equivalence

Preserving Nexttime-less Linear Temporal Logic”. Proc. CONCUR ’92, Third In-
ternational Conference on Concurrency Theory, Lecture Notes in Computer Sci-
ence 630, Springer-Verlag 1992, pp. 207–221.

15. Lamport, L.: “Proving the Correctness of Multiprocess Programs”. IEEE Trans-
actions on Software Engineering, Vol. SE-3 (No. 2) 1977, IEEE Computer Society,
pp. 125–143.

16. Lamport, L.: “The Temporal Logic of Actions”. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), Vol. 16 (No. 3) 1994, pp. 872–923.

17. Lehmann, D., Pnueli, A. & Stavi, J.: “Impartiality, Justice and Fairness: The
Ethics of Concurrent Termination”. Proc. Eighth International Colloquium on Au-
tomata, Languages and Programming 1981, Lecture Notes in Computer Science
115, Springer-Verlag 1981, pp. 264–277.

18. Manna, Z. & Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems,
Volume I: Specification. Springer-Verlag 1992, 427 p.

19. Milner, R.: Communication and Concurrency. Prentice-Hall 1989, 260 p.
20. Parrow, J.: Fairness Properties in Process Algebra with Applications in Commu-

nication Protocol Verification. Ph.D. thesis, Uppsala University, Department of
Computer Systems, 1985, 176 p.

21. Pnueli, A.: “A Temporal Logic of Concurrent Programs”. Theoretical Computer
Science, 13, 1981, pp. 45–60.

22. Puhakka, A. & Valmari, A.: “Livelocks, Fairness and Protocol Verification”. Proc.
World Computer Conference 2000, Conference on Software: Theory and Practice,
International Federation for Information Processing (IFIP), pp. 471–479.

23. Puhakka, A. & Valmari, A.: “Liveness and Fairness in Process-Algebraic Verifi-
cation”. To be published as Tampere University of Technology, Software Systems
Laboratory Report 24, ISBN 952-15-0650-4.

Liveness and Fairness in Process-Algebraic Verification 217

24. Queille, J. P. & Sifakis, J.: “Specification and Verification of Concurrent Systems
in CESAR”. Proc. Fifth International Symposium on Programming, 1981.

25. Roscoe, A. W.: The Theory and Practice of Concurrency. Prentice-Hall 1998, 565 p.
26. Valmari, A.: “Failure-based Equivalences Are Faster Than Many Believe”. Proc.

Structures in Concurrency Theory 1995, Springer-Verlag “Workshops in Comput-
ing” series, 1995, pp. 326–340.

27. Valmari, A.: “Compositionality in State Space Verification Methods”. Proc. Appli-
cation and Theory of Petri Nets 1996, Lecture Notes in Computer Science 1091,
Springer-Verlag 1996, pp. 29–56.

28. Valmari, A., Kemppainen, J., Clegg, M. & Levanto, M.: “Putting Advanced Reach-
ability Analysis Techniques Together: the ’ARA’ Tool”. Proc. Formal Methods
Europe ’93, Lecture Notes in Computer Science 670, Springer-Verlag 1993, pp.
597–616.

29. Valmari, A. & Tienari, M.: “Compositional Failure-Based Semantic Models for
Basic LOTOS”. Formal Aspects of Computing (1995) 7: 440–468.

Bounded Reachability Checking with
Process Semantics�

Keijo Heljanko

Helsinki University of Technology
Laboratory for Theoretical Computer Science
P.O. Box 5400, FIN-02015 HUT, Finland

Keijo.Heljanko@hut.fi

Abstract. Bounded model checking has been recently introduced as an
efficient verification method for reactive systems. In this work we ap-
ply bounded model checking to asynchronous systems. More specifically,
we translate the bounded reachability problem for 1-safe Petri nets into
constrained Boolean circuit satisfiability. We consider three semantics:
process, step, and interleaving semantics. We show that process seman-
tics has often the best performance for bounded reachability checking.

1 Introduction

Bounded model checking [3] has been proposed as a verification method for
reactive systems. The main idea is to look for counterexamples which are shorter
than some fixed length for a given property. If a counterexample can be found,
then the property does not hold for the system. If no counterexample can be
found using this bound, usually the result is inconclusive. The decision procedure
most often used in bounded model checking is propositional satisfiability. Given
the transition relation of the reactive system to be model checked, the property,
and the bound n, the transition relation and property are “unrolled” n times to
obtain a propositional formula which is satisfiable iff there is a counterexample
with bound n. The implementation ideas are quite similar to procedures used in
AI planning [11,15].

In this work we apply bounded model checking to asynchronous systems.
More specifically, we translate the bounded reachability problem for 1-safe Petri
nets into constrained Boolean circuit satisfiability. This work can be seen as
a continuation of the work done in [9]. There we discuss using the step and
interleaving semantics for bounded reachability, while the formalism into which
the problem is translated being logic programs with stable model semantics.
The main contribution of this paper is that we show that the so called process
semantics of Petri nets [1,2] can be used to improve the efficiency of bounded
model checking. Namely, also the process semantics can be efficiently encoded
into constrained Boolean circuits.
� The financial support of the Academy of Finland (Projects 43963 and 47754), and
Tekniikan Edistämissäätiö foundation are gratefully acknowledged.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 218–232, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Bounded Reachability Checking with Process Semantics 219

As an additional contribution we report on an implementation called punroll,
which uses the BCSat constrained Boolean circuit satisfiability checker to check
whether the generated constrained circuit is satisfiable, thus solving the bounded
reachability problem.

The structure of the rest of the paper is the following. First we introduce
Petri nets and the three different semantics in Sect. 2. Then we shortly introduce
constrained Boolean circuits in Sect. 3, and in Sect. 4 show how the bounded
reachability problem can be translated into them. After that we discuss our
implementation and experiments in Sect. 5, and finish with conclusions in Sect. 6.

2 Petri Nets

We will now introduce Petri nets. A net is a triple (P, T, F), where P and T
are disjoint sets of places and transitions, respectively, and F is a function (P ×
T) ∪ (T × P) → {0, 1}. Places and transitions are generically called nodes. If
F (x, y) = 1 then we say that there is an arc from x to y. The preset of a node
x, denoted by •x, is the set {y ∈ P ∪T | F (y, x) = 1}. The postset of x, denoted
by x•, is the set {y ∈ P ∪ T | F (x, y) = 1}. In this paper we consider only finite
nets in which every transition has a nonempty preset and a nonempty postset. A
marking of a net (P, T, F) is a mapping P → IN (where IN denotes the natural
numbers including 0). We identify a marking M with the multiset containing
M(p) copies of p for every p ∈ P . For instance, if P = {p1, p2} and M(p1) = 1,
M(p2) = 2, we write M = {p1, p2, p2}. A 4-tuple Σ = (P, T, F,M0) is a net
system if (P, T, F) is a net and M0 is a marking of (P, T, F) (called the initial
marking of Σ). We will use as a running example the net system in Fig. 1.

2.1 Step Semantics

To save some space, we define the behavior of a net system through step seman-
tics. The (usual) interleaving semantics will then be defined later based on this
more general concept.

A step is a non-empty set of transitions S ⊆ T . 1 We denote a step by [S〉.
A marking M enables a step S if for all p ∈ P it holds that M(p) ≥∑

t∈S F (p, t).
If the step S is enabled at M , then it can fire or occur, and its occurrence leads
to a new marking M ′ defined as M ′(p) = M(p) +

∑
t∈S(F (t, p) − F (p, t)) for

every place p ∈ P . We denote this firing of a step by M [S〉M ′.
A (possibly empty) sequence of steps σ = [S0〉[S1〉 · · · [Sn−1〉 is a step execu-

tion of the net system Σ = (P, T, F,M0) if there exist markings M1, M2, . . . ,
Mn such that M0[S0〉M1[S1〉 · · ·Mn−1[Sn−1〉Mn. The marking reached by the
occurrence of σ is Mn. A marking M is a reachable marking if there exists a step
execution σ such M is reached by the occurrence of σ. A marking M is reachable
with bound n if there exists a step execution σ consisting of (exactly) n steps
1 We only consider a class of nets where the transitions cannot be self-concurrent.
Therefore a set suffices and multisets, i.e., bags are not needed.

220 K. Heljanko

p1 p2

p3

p4

p5

p6

t1 t2

t3

t4 t5

t6

Fig. 1. Running Example

such M is reached by the occurrence σ. Correspondingly we say that a marking
M is reachable within bound n if there exists an integer 0 ≤ i ≤ n such that M
is reachable with bound i.

In our running example the step [t1, t2〉 is enabled in the initial marking and
thus {p1, p2}[t1, t2〉{p3, p4}. The marking {p3, p6} is reachable with bound 3, as
{p1, p2}[t2〉{p1, p4}[t1, t3〉{p3, p5}[t6〉{p3, p6} is a step execution.

A marking M of a net is n-safe if M(p) ≤ n for every place p. A net system Σ
is n-safe if all its reachable markings are n-safe. In this work we restrict ourselves
to net systems which are 1-safe. They are quite an interesting class, as e.g., net
systems arising from synchronization of state machines are 1-safe. Note that for
1-safe net systems all reachable markings are reachable within bound n = (2|P |−
1). Thus the set “marking reachable within bound n” can be seen as a lower
approximation of the set of reachable markings which improves as the bound
n increases. See discussion in [3] on how to check whether a bound is sufficient
for completeness. Quite often a much smaller bound than the one discussed
above suffices for completeness. For a general discussion of the computational
complexity of verification problems for 1-safe Petri nets, see e.g., [6].

2.2 Interleaving Semantics

An interleaving execution is a step execution M0[S0〉M1[S1〉 · · ·Mn−1[Sn−1〉Mn

such that for all 0 ≤ i ≤ n− 1 it holds that |Si| = 1. A marking is reachable in
the interleaving semantics if there exists an interleaving execution σ such that

Bounded Reachability Checking with Process Semantics 221

M is reached by the occurrence of σ. The bounded versions of reachability are
defined similarly to the step case.

Again in our example the marking {p3, p6} is reachable in the interleaving se-
mantics with a bound 4, as {p1, p2}[t1〉{p2, p3}[t2〉{p3, p4}[t3〉{p3, p5}[t6〉{p3, p6}
is an interleaving execution. Notice however, that the marking {p3, p6} is not
reachable in the interleaving semantics with bound 3.

It is well known, see e.g., [1] that for the net class used here the set of
reachable markings in the step and interleaving semantics coincide. However,
in bounded model checking using step semantics might be useful, as in many
cases markings can be reached with a smaller bound than in the interleaving
semantics.

2.3 Process Semantics

However, there is a problem with steps. Namely, there can be several step execu-
tions which intuitively represent the same “concurrent behavior”. These can in
bounded model checking introduce search space which can adversely effect the
running time of the solver used. To avoid this we will use a well known semantics
from the literature called the process semantics, see [1,2].

We will now recall from the literature a construction which constructs a
process from a finite step execution. The following is a modified version (simpler
because of 1-safeness) of the Construction 4.9 in [1].

For this definition we need some additional notation. For a net N = (P, T, F)
the function Max (N) = {x ∈ P | x• = ∅}. Let L be a finite set. A labelled net is
a 4-tuple (P, T, F, l), where (P, T, F) is a net and l : P ∪ T → L is a labelling.

Definition 1. (Derivation of process from step execution.) Let Σ =
(P, T, F,M0) be a net system and let σ = [S0〉[S1〉 · · · [Sn−1〉 be a sequence
of steps such that M0[S0〉M1[S1〉 · · · [Sn−1〉Mn is a step execution of Σ. We
associate with σ a labelled net Π(σ) by creating a sequence of labelled nets
Ni = (Bi, Ei, Gi, li) with labelling li : Bi ∪ Ei → P ∪ T by induction on i,
where 0 ≤ i ≤ n.

(i = 0): E0 = ∅, G0 = ∅, and B0 contains for each p ∈ P such that M0(p) = 1
a place b with l0(b) = p.
(i = i+ 1): Suppose that Ni has been constructed.
First we require that everything in Ni is also in Ni+1. For all x, y ∈ Bi∪Ei:
x ∈ Bi ⇒ x ∈ Bi+1, x ∈ Ei ⇒ x ∈ Ei+1, (x, y) ∈ Gi ⇒ (x, y) ∈ Gi+1 and
li+1(x) = li(x).
Then for each t ∈ Si do the following:
• for each p ∈ •t find the place b(p) ∈ Max (Ni) such that li(b(p)) = p,
• add a new transition e to Ei+1 with li+1(e) = t and add (b(p), e) to Gi+1

for all p ∈ •t,
• for each p ∈ t• add a new place b′(p) to Bi+1 with li+i(b′(p)) = p and
(e, b′(p)) ∈ Gi+1.

Finally take Π(σ) = Nn = (Bn, En, Gn, ln).

222 K. Heljanko

The construction above is fully deterministic (as this version is for 1-safe nets
only) and thus the result is unique up to isomorphism. This fact is well known,
see e.g., the discussion of a similar definition, Def. 3 in [12]. For simplicity, from
now on we will identify all isomorphic processes as being equivalent.

Consider now our running example in Figure 1. It has a step execution
{p1, p2}[t2〉{p1, p4}[t1, t3〉{p3, p5}[t6〉{p3, p6}. Now given σ = [t2〉[t1, t3〉[t6〉 we
can construct the process Π(σ) given in Figure 2, where the labelling l of nodes
is given in parenthesis.

b1(p2)

b2(p1)

b3(p4)

b4(p3)

b5(p5) b6(p6)e1(t2)

e2(t1)

e3(t3) e4(t6)

Fig. 2. A process π = (B,E,G, l)

It is easy to see that for example also the sequences of steps σ′ =
[t1, t2〉[t3〉[t6〉, σ′′ = [t2〉[t3〉[t1, t6〉, and σ′′′ = [t1〉[t2〉[t3〉[t6〉 will yield the same
process, i.e., Π(σ′) = Π(σ′′) = Π(σ′′′) = Π(σ). All of these step executions
“solve the arising conflicts” in the same way and lead to the same final marking
of the process π, i.e., l(Max (π)) = {p3, p6}. Thus if we are only interested in the
final marking it should intuitively be sufficient to only generate one of them. We
will now show how this can be done in bounded reachability checking.

We present an algorithm which given a process π gives a sequence of steps
FNF (π) (for Foata normal form of π) which together with Σ fully characterizes
the process π. The Algorithm 1 computes the Foata normal form of a process. It
is the algorithm presented on page 47 of [16] (with small notational changes). We
define some notation for the algorithm. Given a set of transitions C ⊆ E of the
process π = (B,E,G, l), let G∗ be the transitive closure of the flow relation G,
and define MinE (C) = {e ∈ C | for all e′ ∈ (C \ {e}) it holds that (e′, e) �∈ G∗}.

Assume that we are given a Foata normal form FNF (π) = [S0〉[S1〉 · · · [Sn−1〉
for a process π of a 1-safe net system Σ. It is easy to prove that there are mark-
ings M1,M2, . . . ,Mn such that in the initial state M0 of Σ the step execution
M0[S0〉M1[S1〉M2 · · ·Mn−1[Sn−1〉Mn can occur.

This normal form is actually the Foata normal form from the theory of
Mazurkiewicz traces, see e.g., [5]. It is only (quite trivially) adapted to pro-
cesses of 1-safe net systems. To our knowledge it was first applied to processes of
1-safe net systems in the verification algorithm setting in [7]. (The fact that the
technique used is a Foata normal form is discussed in more detail in an extended
version [8], as well as in [16].)

Bounded Reachability Checking with Process Semantics 223

Algorithm 1 The Foata normal form of a process

input: A process π = (B,E,G, l) of a 1-safe net.
output: Foata normal form of π: A sequence of steps FNF = [S0〉[S1〉 · · · [Sn−1〉.
1 begin
2 C := E;
3 FNF := ε;
4 while C �= ∅ do
5 S := l(MinE(C));
6 FNF := FNF · [S〉;
7 C := C \MinE(C);
8 endwhile
9 return FNF ;
10 end

When run on the process π of Figure 2, we will get the result FNF (π) =
[t1, t2〉[t3〉[t6〉. This intuitively corresponds to a step execution which is “greedy”,
i.e., it always fires transitions at the earliest possible time moment, while still
respecting the structure of the process π. Thus the step execution in Foata
normal form is always among the shortest which yield the process π.

The Algorithm 1 gives an easy way of generating a Foata normal form of
a process. We will in our implementation use a different definition, which is
equivalent but more suitable for the implementation techniques we use. (We have
not found this version in the literature. However, it is just a simple adaptation
of the version for traces, see e.g., [5].)

Definition 2. The sequence of steps σ = [S0〉[S1〉 · · · [Sn−1〉 is a step execution
of a 1-safe net system Σ in Foata normal form if:

(a) σ = ε (i.e., σ is the empty step sequence), or
(b) There are markings M1,M2, . . . ,Mn such that in the initial state M0 of Σ

the step execution M0[S0〉M1[S1〉M2 · · ·Mn−1[Sn−1〉Mn can occur, and:
• For each 1 ≤ i ≤ n− 1 and for each t ∈ Si there exists a transition t′ in

Si−1 such that t′• ∩ •t �= ∅. (Each transition t in step i with i ≥ 1 has
some transition t′ in step i− 1 which generates some part of its preset.)

Now there is a bijection between processes and step executions in Foata
normal form. Given a step execution σ one can construct the corresponding
process π = Π(σ), and given the process π we can construct the step execution
σ′ = FNF (π) and in fact σ′ = σ iff σ was in Foata normal form (according to
Def. 2). Thus they both describe the same concurrent behavior. It is therefore
only a matter of taste whether one talks about processes or step executions
in Foata normal form. We have chosen to talk about processes and process
semantics, as that is the terminology most often used in Petri net literature [1,
2]. Our actual implementation is, however, based on the definition of the Foata
normal form for step executions, namely Def. 2.

We thus define the process semantics as follows. A marking M is a reach-
able in the process semantics if there exists a step execution σ in Foata normal

224 K. Heljanko

form, such that M is reached by the occurrence of σ. The bounded versions of
reachability are again defined similarly to the step case.

To rephrase our discussion, here is the (not surprising) main result used in
bounded model checking with process semantics.

Theorem 1. Let Σ be a 1-safe net system. A marking M is reachable within
bound n in Σ iff in the process semantics M is reachable within bound n in Σ. 2

3 Boolean Circuits

This section is largely based on the presentation of [10]. A Boolean circuit is
an directed acyclic graph where the nodes are called gates. The gates with no
outgoing edges are output gates and input gates are those gates which do not
have incoming edges nor an associated Boolean function. Each non-input gate
has a Boolean function associated with it and it “calculates” the output value
from the values of its children. Boolean circuits can be expressed with Boolean
expression systems. Given a finite set V of Boolean variables, a Boolean equation
system S over V is a set of equations of the form v = f(v1, . . . , vk), where
v, v1, . . . , vk ∈ V and f is an arbitrary Boolean function. Boolean circuits can
now be seen as Boolean equation systems with the following two properties. (i)
Each variable has at most one equation. (ii) The equations are not recursive. (In
the sense that the variable dependency graph [10] is acyclic.)

A truth valuation for S is a function τ : V → {true, false}. A valuation is
consistent if τ(v) = f(τ(v1), . . . , τ(vk)) for each equation in S. The constrained
satisfiability problem for Boolean circuits is the following: given that variables
c+ ⊆ V must be true and variables in c− ⊆ V must be false, is there a consistent
valuation that respects these constraints? We call such a truth assignment a sat-
isfying truth assignment. The constrained Boolean circuit satisfiability problem
is obviously an NP-complete problem under the plausible assumption that each
Boolean function in the system can be evaluated in polynomial time.

In the rest of this paper we use Boolean circuits where the following Boolean
functions are used as gates:

– � is always true.
– ⊥ is always false.
– not(v) = true iff v is not true.
– or(v1, . . . , vk) = true iff at least one of vi, 1 ≤ i ≤ k is true.
– and(v1, . . . , vk) = true iff all of vi, 1 ≤ i ≤ k are true.
– cardUL (v1, . . . , vk) = true iff for the cardinality c of the set of variables vi

which are true it holds that L ≤ c ≤ U . (Where L and U are fixed constants
0 ≤ L ≤ U .)

The function cardUL (v1, . . . , vk) is actually a family of functions. We use in this
work only the special form card10(v1, . . . , vk), which is true if less than two of the
variables in the set {v1, . . . , vk} are true. We will show that this function is quite
useful for compactly encoding which transitions can not be fired concurrently.
2 Note the use of within instead of with. A marking may be reachable with a bound n
and only reachable with bound i in the process semantics, where i < n.

Bounded Reachability Checking with Process Semantics 225

4 Translating Bounded Reachability into Boolean
Circuits

We will now present how to translate the bounded reachability problem for 1-safe
nets into constrained satisfiability problem for Boolean circuits. The Figures 3-5
give parts of the translation for our running example of Figure 1. We suggest the
reader to consult them while reading the definition of the translation. Consider
a 1-safe net system Σ = (P, T, F,M0) and a fixed bound n. We first construct
(in (a)-(b) below) a constrained Boolean circuit which captures the possible step
executions of Σ of length ≤ n, where n ≥ 0.

(a) To capture the initial marking, for each place pj ∈ P we create a gate pj(0)
and associate � as the function if M0(pj) = 1, and ⊥ otherwise.

(b) For each step 0 ≤ i ≤ n− 1 we add the following gates:
1. For each transition tj ∈ T we create an input gate tj(i). If this gate is

true, it intuitively means that the transition tj fires in step i.
2. For each place pj ∈ P we create an or gate gpj(i+ 1) with the children
{t1(i), . . . , tk(i)}, where {t1, . . . , tk} is the preset of pj . The gate gpj(i+
1) will be true if some transition in step i generates a token to the place
pj .

3. For each place pj ∈ P we create an or gate rpj(i + 1) with the children
{t1(i), . . . , tk(i)}, where {t1, . . . , tk} is the postset of pj . The gate rpj(i+
1) will be true if some transition in step i removes a token from pj .

4. For each place pj ∈ P we create a not gate nrpj(i + 1) with the child
rpj(i+ 1).

5. For each place pj ∈ P we create an and gate fpj(i+ 1) with the children
pj(i) and nrpj(i+1). The gate fpj(i+1) is true when a place pj contains
a token before step i, and no transition removing tokens from it appears
in step i.

6. For each place pj ∈ P we create an or gate pj(i + 1) with the children
gpj(i+ 1) and fpj(i+ 1). The gate pj(i+ 1) is true when after step i the
place pj contains a token. (Either a token was generated in step i or a
token residing on the place pj before step i still remains on the place pj
after the step i.)

7. For each transition tj ∈ T we create an and gate ptj(i) with the children
{p1(i), . . . , pk(i)}, where {p1, . . . , pk} is the preset of tj . The gate ptj(i)
will be true if all the preset places of transition tj in step i contain a
token.

8. For each transition tj ∈ T we create a not gate ntj(i) with the child tj(i).
9. For each transition tj ∈ T we create an or gate ttj(i) and constrain it

to be true. It has two children ntj(i) and ptj(i). The constrained gate
ttj(i) ensures that either the transition tj is not fired in step i or all of
its preset tokens are available.

10. For each place pj ∈ P such that |p•| ≥ 2 we create a card10 gate
ncpj(i) and constrain it to true. It has children {t1(i), . . . , tk(i)}, where
{t1, . . . , tk} is the postset of pj . The constrained gate ncpj(i) ensures

226 K. Heljanko

or

or

or notgp5(i+ 1)

and

p5(i)t3(i) t4(i) t5(i) t6(i)

rp5(i+ 1)

fp5(i+ 1)

nrp5(i+ 1)

p5(i+ 1)

Fig. 3. Example: Translation for the place p5

and

3 (i) p5(i)

pt4(i)

or

4 (i)

tt4(i)

�

t4(i)

Fig. 4. Example: Translation for the transition t4

t4(i) t5(i) t6(i)

card1
0ncp5(i)

�

Fig. 5. Example: Translation of the conflicts with respect to place p5

Bounded Reachability Checking with Process Semantics 227

that at most one of the transitions which have the place pj in preset can
appear in step i. We say that this set of transitions is in conflict with
respect to the place pj .

The translation (a)-(b) as given above allows for “idle steps” in which no
transition occurs. Thus the program encodes all the step executions of length n
or less. We have chosen to remove the possibility of idling steps in our imple-
mentation.3 Thus we always add the following gates to the system:

(c) For each step 0 ≤ i ≤ n− 1 add an or gate ni(i) (for non-idle) and constrain
it to true. It has the children {t1(i), . . . , tk(i)}, where {t1, . . . , tk} = T . Thus
the gate ni(i) will be true if at least one transition fires in step i.

We denote by SC (Σ,n) (for step circuit) the translation given by (a)-(c).
Given a valuation τ of the circuit SC (Σ,n), we can obtain the correspond-
ing sequence of markings and steps M0, [S0〉,M1, [S1〉, . . . ,Mn−1, [Sn−1〉,Mn by
having transition tj ∈ Si iff tj(i) is true, and pj ∈ Mi iff pj(i) is true. Because
gates of form tj(i) are the only input gates, the mapping from sequences of steps
to consistent truth valuations is in fact a bijection.

Lemma 1. The constrained Boolean circuit SC (Σ,n) has a satisfying truth as-
signment τ iff M0[S0〉M1[S1〉 · · ·Mn−1[Sn−1〉Mn is a step execution of Σ, where
M0, [S0〉,M1, [S1〉, . . . ,Mn−1, [Sn−1〉,Mn is the sequence of markings and steps
corresponding to τ .

Thus we get our main result.

Theorem 2. The constrained Boolean circuit SC (Σ,n) encodes step executions
of length n.

4.1 The Interleaving Semantics

Sometimes we would also like to consider the interleaving semantics. It is easy to
add a set of constrained gates to the circuit which disallow non-singleton steps.

(i) For each step 0 ≤ i ≤ n − 1 add an card10 gate nc(i) (for non-concurrent)
and constrain it to true. It has the children {t1(i), . . . , tk(i)}, where
{t1, . . . , tk} = T . Thus the gate nc(i) will be true if at most one transi-
tion fires in step i.

We call the translation given by (a)-(c),(i) the interleaving circuit IC (Σ,n).

Theorem 3. The constrained Boolean circuit IC (Σ,n) encodes interleaving ex-
ecutions of length n.

3 Here the semantics of the translation differs from the one presented in [9].

228 K. Heljanko

4.2 The Process Semantics

The translation for the process semantics is the main contribution of this paper.
The main idea behind it is to modify the translation for step semantics in such a
way that all step executions which are not in Foata normal form are disallowed.

If one looks at Def. 2 it is easy to see that each transition t in step Si (not
including the initial step S0) has to have at least one transition t′ in step Si−1
which generates at least one token to the preset of t. It is now straightforward
to enforce this in a local way.

We change the preset of a transition in the following way. The part (b) of the
translation is replaced by (b’), which is identical to (b) except that 7 is replaced
by the 7’ and 7” (see Figure 6 for an example):

(b’) For each step 0 ≤ i ≤ n− 1 we add the following gates (1-6,8-10 omitted):
7’. For each transition tj ∈ T we create an or gate dptj(i) (for disjunctive

preset) with the children {gp1(i), . . . , gpk(i)}, where {p1, . . . , pk} is the
preset of tj . The gate dptj(i) will be true if a token was generated to
some preset place of transition tj in step i− 1. (The previous step!)

7”. For each transition tj ∈ T we create an and gate ptj(i) with the children
{p1(i), . . . , pk(i), dptj(i)}, where {p1, . . . , pk} is the preset of tj . The
gate ptj(i) will be true if all the preset places of transition tj in step i
contain a token and the transition is locally in Foata normal form.

Note that the child gates of gates added by 7’ already existed in the step trans-
lation as they are generated by 2. The 7” is almost identical to 7 except that
the gate created in 7’ has been added to the list of children. The gate generated
by 7” now assures that both the preset of the transition is available and the
transition is locally in Foata normal form. These local constraints on transition
enabledness together imply that the step execution will as a whole be in Foata
normal form (again according to Def. 2).

or

or

pt4(i) and

notnt4(i)

tt4(i)

�

t4(i) p5(i)p3(i) gp3(i) gp5(i)

dpt4(i)

Fig. 6. Example: Process semantics translation of t4

Bounded Reachability Checking with Process Semantics 229

As in Def. 2, the initial step is special.

(p) For each place pj ∈ P we create a gate gpj(0) and associate � with it.

We call the translation given by (a),(p),(b’),(c) the process circuit PC (Σ,n).
We say that a process π has depth n if the corresponding Foata normal form
step execution FNF (π) has length n. We have the following result.

Theorem 4. The constrained Boolean circuit PC (Σ,n) encodes processes of
depth n.

4.3 Checking Reachability

We have presented three translations which encode executions with bound n
in different semantics. We can now add any Boolean constraint on the final
marking M , as given by the syntax f ::= p ∈ P | ¬f1 | f1 ∨ f2 | f1 ∧ f2. Given
a parse tree of the formula f , we convert it to a Boolean circuit FC(f, n) of
same size by replacing each atomic proposition p ∈ P by the gate p(n), and all
other formula types with the corresponding gates having the same children as
in the parse tree. Finally the top-level gate f is constrained to true.

Theorem 5. Let C (Σ,n) be one of PC (Σ,n), SC (Σ,n), IC (Σ,n). The con-
strained Boolean circuit RC(Σ, f, n) = C (Σ,n) ∪ FC (f, n) has a satisfying truth
assignment iff there exists a marking M which satisfies f and is reachable in Σ
with bound n in (process, step, interleaving) semantics.

The size of each translation RC(Σ, f, n) as the sum of number of gates and
connections between them is linear, i.e., O((n · (|P |+ |T |+ |F |)) + |f |).4

5 Experimental Results

We have implemented the reachability translations described in the previous
section in a tool called punroll (for process unroller). We have implemented the
following optimization which simplifies away places (transitions) which can never
have a token (can never fire). For each step 0 ≤ i ≤ n− 1:

(i) For each transition tj ∈ T : If for some place p ∈ •tj the gate p(i) has
function ⊥ associated with it (or alternatively in the process semantics: for
all places p ∈ •tj the gate gp(i) has function ⊥ associated with it), then
associate gate tj(i) with function ⊥.

(ii) For each place pj ∈ T : If for all transitions t ∈ •pj the gate t(i) is associated
with ⊥, then associate the gate gpj(i+ 1) with ⊥.

(iii) For each place pj ∈ T : If both gates pj(i) and gpj(i+1) are associated with
⊥, then associate pj(i+ 1) with ⊥.

4 This bound also holds if we restrict ourselves to Boolean circuits without card1
0 gates,

because in principle each card1
0 gate with k children can be simulated with (a simple

ripple-carry adder style) circuit of size O(k) which contains only and and or gates.

230 K. Heljanko

(iv) Simplify the circuits of step i by substituting ⊥ when associated by (i)-(iii).

The punroll tool can also add a constraint which requires that the marking
reached is a deadlock, as given by the property f = dead = ¬∨

t∈T
∧
p∈•t p.

As a constrained satisfiability checker for Boolean circuits we use BCSat [10]. It
operates internally on Boolean circuits, and also directly supports card10 gates.
BCSat is available from: ¡http://www.tcs.hut.fi/˜tjunttil/bcsat/¿.

We use a set of deadlock checking benchmarks collected by Corbett [4]. They
have been converted from communicating state machines to nets by Melzer and
Römer [13]. The BYZA4 2A example is an exception to this rule, it is from [14].
The models were picked by choosing the nontrivial ones which have a deadlock.

For each model and all three semantics we incremented the used bound n until
a deadlock was found. After that we stored the translation using that bound,
and report the time for BCSat 0.3 to find the first satisfying truth assignment. In
some cases a satisfying truth assignment could not be found within a reasonable
time in which case we report the time used to prove that there are no satisfying
truth assignments for the circuit with bound n.

The experimental results can be found in Fig. 7. The columns are:

– Problem: The problem name with the size of the instance in parenthesis.
– |P |: Number of places in the net.
– |T |: Number of transitions in the net.
– Pr. n: The smallest integer n such that a deadlock could be found using the

process semantics / in case of > n the largest integer n for which we could
prove that there is no deadlock with that bound using the process semantics.

– Pr. s: The time in seconds to find the first satisfying truth assignment / to
prove that there is no satisfying truth assignment. (See Pr. n above.)

– St. n and St. s: same as Pr. n and Pr. s but for the step semantics.
– Int. n and Int. s: same as Pr. n and Pr. s but for the interleaving semantics.
– States: Number of reachable states of the net system, or a lower bound > n.5

The times reported are the average of 5 runs as reported by the /usr/bin/time
command on a Linux PC with an AMD Athlon 1GHz processor, 512MB RAM.

The set of experiments we used is too small to say anything conclusive about
the performance of the method. There are, however, still some interesting ob-
servations to be made. In the experiments the process and step semantics often
allow to use a smaller bound to find a deadlock. This partly explains their better
performance when compared to the interleaving semantics. The process seman-
tics has better performance than step semantics on e.g., BYZA4 2A, KEY(2),
and MMGT(4). Several of the benchmarks (14 out of the 54 circuits used) were
solved “with preprocessing” by BCSat, for example DARTES(1) in all semantics.
The KEY(x) examples do not have a large number of reachable states, but seem
to be still hard for bounded model checking, the results also indicate the reverse
to be sometimes true, see e.g., BYZA4 2A with process semantics.

The punroll tool, the net systems, and the circuits used are available from:
http://www.tcs.hut.fi/˜kepa/experiments/Concur2001/.

5 These differ from the ones reported in [9], where there unfortunately are some errors.

Bounded Reachability Checking with Process Semantics 231

Problem |P | |T | Pr. n Pr. s St. n St. s Int. n Int. s States
BYZA4 2A 579 473 8 5.6 8 179.8 >7 6.8 >2500000
DARTES(1) 331 257 32 0.1 32 1.5 32 1.5 >1500000
DP(12) 72 48 1 0.0 1 0.0 12 1.5 531440
ELEV(1) 63 99 4 0.0 4 0.0 9 0.6 163
ELEV(2) 146 299 6 0.0 6 0.2 12 12.7 1092
ELEV(3) 327 783 8 0.4 8 2.7 15 126.5 7276
ELEV(4) 736 1939 10 5.4 10 67.7 >13 560.5 48217
HART(25) 127 77 1 0.0 1 0.0 >5 0.3 >1000000
HART(50) 252 152 1 0.0 1 0.0 >5 1.3 >1000000
HART(75) 377 227 1 0.0 1 0.0 >5 3.2 >1000000
HART(100) 502 302 1 0.0 1 0.0 >5 5.9 >1000000
KEY(2) 94 92 36 22.7 >27 76.0 >27 30.1 536
KEY(3) 129 133 >30 179.0 >27 198.6 >27 47.3 4923
KEY(4) 164 174 >27 32.9 >27 221.0 >27 58.7 44819
MMGT(2) 86 114 6 0.1 6 0.2 8 1.3 816
MMGT(3) 122 172 7 0.4 7 1.0 10 40.4 7702
MMGT(4) 158 232 8 2.9 8 253.6 >11 476.0 66308
Q(1) 163 194 9 0.1 9 0.2 >17 660.5 123596

Fig. 7. Experiments

6 Conclusions

We have presented how bounded reachability checking for 1-safe Petri nets can
be done using constrained Boolean circuits. For step and interleaving semantics
these translations can be seen as circuit versions of the logic program translations
in [9]. The process semantics translation is new and is based on the notion of
Foata normal form for step executions. We have created on an implementation
called punroll. We report on a set of benchmarks, where the BCSat tool is used to
find whether the constrained circuit is satisfiable or not. The experiments seem
to indicate that the process semantics translation is often the most competitive
one.

It should be quite straightforward to also use other forms of concurrency
than 1-safe net systems with process semantics. The crucial point is to be able
to encode the constraints needed for a step execution to be in a Foata normal
form in a local manner.

The close connection of bounded reachability checking to AI planning tech-
niques [11,15] needs to be investigated further. It might be useful to use stochastic
methods [11] in the verification setting. Also applying process semantics for AI
planning needs to be investigated. (Step semantics has been used in [15].)

There are interesting topics for further research. We would like to extend the
tool to handle bounded LTL model checking [3]. For interleaving semantics this
is quite straightforward, but there are some subtle issues with step and process
semantics which need to be solved.

Acknowledgements. The author would like to warmly thank T. A. Junttila
and I. Niemelä for creating BCSat, and for fruitful discussions.

232 K. Heljanko

References

1. E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net theory.
Theoretical Computer Science, 55(1):87–136, 1987.

2. E. Best and C. Fernández. Nonsequential Processes: A Petri Net View, volume 13
of EATCS monographs on Theoretical Computer Science. Springer-Verlag, 1988.

3. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), pages 193–207. Springer, 1999. LNCS 1579.

4. J. C. Corbett. Evaluating deadlock detection methods for concurrent software.
Technical report, Department of Information and Computer Science, University of
Hawaii at Manoa, 1995.

5. V. Diekert and Y. Métivier. Partial commutation and traces. In Handbook of
formal languages, Vol. 3, pages 457–534. Springer, Berlin, 1997.

6. J. Esparza. Decidability and complexity of Petri net problems – An introduction.
In Lectures on Petri Nets I: Basic Models, pages 374–428. Springer-Verlag, 1998.
LNCS 1491.

7. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. In Proceedings of 2nd International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’96), pages 87–106, 1996.
LNCS 1055.

8. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm, 2001. Accepted for publication in Formal Methods for System Design.

9. K. Heljanko and I. Niemelä. Answer set programming and bounded model checking.
In Proceedings of the AAAI Spring 2001 Symposium on Answer Set Programming:
Towards Efficient and Scalable Knowledge Representation and Reasoning, pages
90–96, Stanford, USA, March 2001. AAAI Press, Technical Report SS-01-01.

10. T. A. Junttila and I. Niemelä. Towards an efficient tableau method for Boolean cir-
cuit satisfiability checking. In Computational Logic – CL 2000; First International
Conference, pages 553–567, London, UK, 2000. LNCS 1861.

11. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic and
stochastic search. In Proceedings of the Thirteenth National Conference on Arti-
ficial Intelligence and the Eighth Innovative Applications of Artificial Intelligence
Conference, pages 1194–1201. AAAI Press / MIT Press, 1996.

12. H. C. M. Kleijn and M. Koutny. Process semantics of P/T-nets with inhibitor arcs.
In Proceedings of the 21st International Conference on Application and Theory of
Petri Nets, pages 261–281, 2000. LNCS 1825.

13. S. Melzer and S. Römer. Deadlock checking using net unfoldings. In Proceedings
of 9th International Conference on Computer-Aided Verification (CAV ’97), pages
352–363, 1997. LNCS 1254.

14. S. Merkel. Verification of fault tolerant algorithms using PEP. Technical Re-
port TUM-19734, SFB-Bericht Nr. 342/23/97 A, Technische Universität München,
München, Germany, 1997.

15. I. Niemelä. Logic programming with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence,
25(3,4):241–273, 1999.

16. S. Römer. Theorie und Praxis der Netzentfaltungen als Basis für die Verifikation
nebenläufiger Systeme. PhD thesis, Technische Universität München, Fakultät für
Informatik, München, Germany, 2000.

Techniques for Smaller Intermediary BDDs

Jaco Geldenhuys and Antti Valmari

Tampere University of Technology, Software Systems Laboratory
PO Box 553, FIN-33101 Tampere, FINLAND

{jaco, ava} @cs.tut.fi

Abstract. Binary decision diagrams (BDDs) have proven to be a pow-
erful technique for combating the state explosion problem. Their appli-
cation to verification is usually centered around the computation of the
transitive closure of some binary relation. The closure is usually com-
puted with a fixed point algorithm that expands some set until it stops
growing. Unfortunately, the BDDs that arise during the computation are
often much larger than the final BDD. The computation may thus fail
because of lack of memory, even if the final BDD would be small. To alle-
viate this problem, this paper proposes four variations of the fixed point
algorithm. They reduce the sizes of the intermediary BDDs by “round-
ing down” the sets they represent in such a way that the final BDD does
not change. Consequently, more iterations may be required to compute
the fixed point, but the intermediary BDDs computed during the run
are smaller. The performance of the new algorithms is illustrated with a
large number of experiments.

1 Introduction

The greatest obstacle of automated verification techniques based on state explo-
ration is the state explosion problem: the number of states grows exponentially
in the number of components. One important way of attacking this problem is
to represent sets of states as binary decision diagrams (BDDs) [5] instead of
representing each state explicitly.

The use of BDDs relies on representing the individual states of the system
under analysis as bit vectors of some fixed length N . There are altogether 2N

such vectors, but usually only a small subset of them represents states that the
system can reach. We will say that the N -bit vectors represent 2N unique syntac-
tically possible states, and the reachable states are a subset of the syntactically
possible states. Any subset of the 2N different N -bit vectors can be represented
with a BDD. The benefit of BDDs comes from the fact that a small BDD can
often represent a huge set of states, and the BDD operations that are needed in
verification are cheap as long as the BDDs are small. As a consequence, BDDs
make it possible to efficiently manipulate many state spaces with an astronomical
number of states.

Instead of the set of reachable states, BDDs can be used for representing
other sets of states that are interesting for verification. For instance, a BDD can

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 233–247, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

234 J. Geldenhuys and A. Valmari

represent the set of states from which an undesirable situation can be reached.
One can then check whether any initial state of a system is in this set. Symbolic
model checking [8] is an advanced application of this idea.

At the heart of these applications of BDDs is a fixed point algorithm that
starts from a set of states and computes the closure of the set under some relation
by computing a sequence of supersets until the set stops growing. The standard
version of this algorithm adds new states in a breadth-first manner.

Although a small BDD can often represent a huge set of states, not all big
sets of states can be represented with small BDDs. This leads to the BDD size
explosion problem. It has been observed that breadth-first computation of the
fixed point produces intermediary sets of states that often fail to have small
BDD representations, even if the final set of states does [9,17,25,26].

In this paper we present novel algorithms that compute different intermediary
sets of states than the breadth-first method, and aim at choosing those sets so
that they have small BDD representations. This is different from most, but not
all, earlier suggestions for improving the BDD computation of the fixed point.
The relationship of our contribution to earlier work is discussed in Section 2.3.

It seems that BDDs are well suited to synchronous systems such as hardware
circuits, but have been less successful when it comes to asynchronous systems
such as Petri nets or concurrent software, as some authors have pointed out [7].
Here synchronous means that the system is driven by a common clock, so that
each subsystem makes precisely one transition per clock pulse. (It may, however,
be an idling transition.) Our new techniques are at their best with asynchronous
systems. They work by “freezing” either variables or whole processes in their
initial states while exploring the state space for the rest of the system. Initially,
most of the system is frozen and only a few variables or a single process is active.
As fixed points are reached, the restricted variables or processes are gradually
unfrozen until the entire state space has been explored. Our methods require
more iterations than the standard algorithm to reach the final fixed point, but
the intermediary BDDs produced during the computation are smaller, leading
to improved memory and runtime efficiency.

In Section 2 we discuss the context of our work and relate it to similar ap-
proaches. The new methods are explained in Sections 3 and 4, and experimental
results are presented in Section 5. We offer our conclusions in Section 6.

2 Background and Related Work

A transition system is a tuple M = (S,R, I), where S is a finite set of syn-
tactically possible states, R ⊆ S × S is the transition relation, and I ⊆ S is
the set of initial states. A transition system is defined over a set of v variables
V = {x1, x2, . . . , xv}. For simplicity, we assume that each xi is a binary variable
taking its values from the set {0, 1}. (When this does not hold, each variable
must be mapped to a set of secondary variables that store the binary encoding
of the values of the primary variable.)

Techniques for Smaller Intermediary BDDs 235

x1

x2

x3

x4

0 1

0 1

0 1

0 1

T

F

F T

1 function Fixed-point(I, R)
2 S′ := I
3 repeat
4 S := S′

5 S′ := S ∪ Image(S,R)
6 until S′ = S
7 return S′

(a) (b)

Fig. 1. (a) A BDD example: (x1 ∧ x2) ∨ (x3 ∧ x4)
(b) The standard method for computing the fixed point

In some cases the set of variables is partitioned into components or processes
such that π = {V1, V2, . . . , Vn} (where V = ∪1≤i≤nVi and Vi ∩ Vj = ∅ when
i �= j). This induces a corresponding partition πR over the transition relation
such that πR = {R0, R1, R2, . . . , Rn}, where Ri for i > 0 is the set of local
transitions of process/component i. We have that for i > 0

Ri = {(s, s′) | s and s′ differ only in the values they assign to variables in Vi}

and R0 is the set of global (or synchronizing) transitions so that R0 = R− (R1∪
R2 ∪ · · · ∪Rn).

2.1 Binary Decision Diagrams

An (ordered) binary decision diagram or (O)BDD [5] is a data structure for rep-
resenting a set of bit vectors of equal length or, equivalently, a Boolean formula.
It is a directed acyclic graph in which every vertex has either zero or exactly two
successor vertices. Vertices with no output edges are labeled by “F” or “T”. Each
of the remaining vertices is labeled by a variable, and its output edges are labeled
by “0” and “1”. Exactly one vertex, the root, has no incoming edge. Figure 1(a)
shows a BDD that represents the set {0011, 0111, 1011, 1100, 1101, 1110, 1111},
or the formula (x1 ∧ x2) ∨ (x3 ∧ x4). A vector 〈x1x2x3x4〉 is in the set if and
only if the corresponding path from the root down through the BDD ends with
“T”, where the “corresponding” path is the one where the output edge from
each node is selected according to the value of xi.

The ordering in which the variables occur in a BDD is fixed. Even after fixing
the ordering a set may have several BDD representations, but among them is a
unique minimal one. The size of the minimal BDD (that is, the number of nodes
in it) may depend crucially on the ordering, and it is difficult to know in advance
whether a particular ordering would be good.

236 J. Geldenhuys and A. Valmari

Several BDDs over the same set of variables and with the same ordering of
those variables can be represented efficiently in one data structure by sharing
identical sub-BDDs. This is useful in algorithms that manipulate BDDs.

At the heart of verification with BDDs is the computation of a fixed point
according to the algorithm in Figure 1(b). It takes as inputs the set of states
I and transition relation R and produces the set of states SR ⊆ S that are
reachable from a state in I by zero or more transitions from R.

The algorithm is implemented by encoding the sets I, S and S′ and the
relation R as BDDs I, S, S ′, and R, respectively. Because R is a set of pairs
(s, s′) ∈ S × S, the BDD encoding R has two BDD variables for each variable
in V , namely an old variable that corresponds to the domain of R (the “s” of
(s, s′)), and the new variable that corresponds to the codomain of R (the “s′”
of (s, s′)). The BDDs I, S, and S ′ all use the new variables.

The fixed point algorithm uses an Image operator. The forward image of a
set of states S with respect to a transition relation R is the set of states that
can be reached from S by precisely one transition from R:

Image(S,R) =
{
s′

∣∣ ∃s ∈ S : (s, s′) ∈ R}
.

The algorithm is called “fixed point” because S keeps on growing until no
more growth is possible. It computes a sequence S0 ⊆ S1 ⊆ · · · ⊆ Sn of sets such
that S0 = I and Sn = Sn−1.

2.2 Related Work

The BDD size explosion problem has been addressed in several ways; the liter-
ature is extensive, but widely disseminated. The majority of approaches can be
classified along the following broad (not necessarily disjoint) lines:

1. Modifications to the BDD structure. A modification of the internal structure
of the BDD may lead to greater efficiency in memory and time. One class of struc-
ture modifications is the variations on traditional BDDs such as zero-suppressed
BDDs [19], algebraic decision diagrams [2], multi-valued decision diagrams [20,
29], and parity ordered BDDs [30]. These approaches enjoy varying degrees of
success, but do not solve the problem of large intermediary BDDs.

Also included in this set of techniques is the idea of variable reordering. It is
well-known that the order of variables in the BDD encoding of the state space
and transition relation can have a dramatic influence on the size of the BDD.
Rudell and others have proposed dynamic reordering of the variables [15,28].

2. Alternative representation of the transition relation. Burch et al. partition
the transition relation into a set of disjuncts (or conjuncts) [6]. This has become
a standard approach to alleviate problems with the computation of the interme-
diary BDDs, but it leaves the problem of their excessive size unresolved. It has
been developed further by Cabodi et al. [9], for instance.

3. Alternative representation of states. Narayan et al. divide the set of syntacti-
cally possible states into disjoint partitions, and then represent the intersection

Techniques for Smaller Intermediary BDDs 237

of each partition with the state space of a hardware circuit as a BDD [24]. Dif-
ferent BDD variable orderings may be used for each part, so that the part-BDDs
can be small even when no ordering can make a single-BDD representation small.
A very similar approach was proposed by Cabodi et al. in [10].

Hu, York and Dill, on the other hand, store the intermediary BDDs as im-
plicitly conjoined BDDs [18]. With each iteration of the algorithm the list of
conjuncts grows larger; this makes it necessary to trim the list from time to time
by combining conjuncts according to some heuristic.
4. Alternative implementation of the Image operator. Coudert, Berthet and
Madre suggested using Image(S1, R) instead of Image(S,R), where S1 is any
set between the S′ − S and S′ of the previous iteration [14]. This may speed
up the individual iteration steps, but produces the same, potentially very big,
intermediary BDDs as the standard algorithm.

Other researchers have looked at iterative squaring : partial closures of the
transition relation are computed beforehand, and used to compute the fixed
point in fewer iterations [7,9]. This is possible because when the ith iterative
square Ri of the relation is used, the result of Image(S,Ri) is the set of all those
states reachable via 1, 2, 3, . . . , or 2i transitions from a state in S. Usually,
however, the size and cost of computing iterative squares preclude its use.
5. Mixed breadth- and depth-first search. The fixed point algorithm in Figure 1(b)
results in a breadth-first traversal: at each iteration the set of all states reachable
via one transition is added to the current set of reachable states. The set of new
states is known as the frontier. If only a subset of the frontier set is added,
the result is a mixture of breadth-first and depth-first search, known as guided
search [27] or partial traversal [11]. The extreme case where only a single state is
added during each iteration, and the state is selected as a neighbour of the most
recently added state results in a highly inefficient version of depth-first search.

In [26] Ravi and Somenzi investigated techniques to extract a dense subset
of the frontier. The density of a BDD is defined as the ratio of the minterms it
represents to the number of nodes it uses. When the size of the frontier exceeds a
preset limit, heuristics are applied to find and replace by F those vertices whose
removal has a (hopefully) small effect on the set represented by the BDD.

An alternative to subsetting the frontier set after the image computation,
is to restrict the transitions relation that is used in the Image operation. User-
specified constraints or hints have been suggested for this purpose [4,27].

Burch et al. also suggest a modified breadth-first search that is based on
computing the fixed point componentwise [7]. What we suggest in this paper
can be thought of as a generalisation of that idea.

This list is by no means complete. For example, instead of computing the ex-
act fixed point, it is possible to compute under- and over-approximations more
cheaply [13,16]. Depending on where one draws the line between solving and
avoiding the problem, other approaches could include the combination of sym-
bolic verification and partial-order (that is, stubborn-set-like) reduction [1],
abstraction-based approaches [21], compositional verification [22], and perhaps
even using SAT-based methods to avoid the use of BDDs altogether [3].

238 J. Geldenhuys and A. Valmari

2.3 Contribution

Of the above-mentioned classes, our method falls primarily in class 5. Like [26]
our new methods are based on BDD subsetting. However, instead of heuristics
based on the structure of the BDD, two of them are guided by the initial state
of the system, and the other two by a division of the system into components.
Their operation can thus be intuitively understood at the level of the system
under analysis.

Some of the hints suggest by Ravi and Somenzi in [27] correspond almost
exactly to one of our proposed methods (V1). However, while their approach
relies on the user to supply the hints, our techniques are fully automatic. There
are also similarities at a conceptual level between our work and that of Miner
and Ciardo [23], in that both techniques exploit locality of transitions. There are
however significant differences, both in terms of the context (they use Petri Nets
and MDDs) and in the application of these ideas.

The new methods introduced here all rely on the fact that to obtain the
correct fixed point it is not necessary to compute Image(S,R) precisely. It suffices
that (1) at each iteration step the new states Snew that are added to S are a subset
of Image(S,R); (2) at each iteration step the algorithm makes progress either by
causing S to grow, or by changing the criterion for computing Snew; and (3) the
algorithm does not terminate before it is certain that no subset of Image(S,R)
introduces new states. This fact is exploited by computing intermediary sets of
states that have a (hopefully much) smaller BDD representation than the sets
produced by the standard algorithm, while still eventually yielding the correct
final set of states. Two of our methods additionally rely on partitioning the
transition relation.

Our methods thus work by “rounding down” the intermediary BDDs. As a
consequence, the number of iteration steps is increased. However, in most of our
experiments, this effect was more than compensated for by the fact that, due to
smaller intermediary BDDs, the time spent per iteration step is reduced. Thus
our methods often save both memory and time.

3 Freezing BDD Variables

In this section two of our new methods, V1 and V2, are presented. The basic idea
of these approaches is to “freeze” most BDD variables to their initial values and
to explore the states that involve changing only the unfrozen variables. When
a fixed point is reached, more variables are unfrozen and a new fixed point is
computed. This continues until all variables are unfrozen and a fixed point is
reached. The V1 and V2 methods differ only the way that the “freezing” of
variables is performed.

To explain the methods, it is necessary to first discuss the details of how the
Image operator is implemented with BDD operations. Figure 2(a) shows how it
is done. In the figure, S is the BDD encoding for S, and R is the encoding for
R. S0 is a “shifted” version of S. That is, it is otherwise the same as S, but

Techniques for Smaller Intermediary BDDs 239

S0 := shift(S) S0 := shift(S) S0 := shift(S)
T1 := S0 ∧R T1 := S0 ∧R T1 := S0 ∧R ∧Ai
S2 := ∃s : T1 S2 := (∃s : T1) ∧ Ii S2 := ∃s : T1
S ′ := S ∨ S2 S ′ := S ∨ S2 S ′ := S ∨ S2

(a) Standard algorithm (b) V1 technique (c) V2 technique

Fig. 2. The computation of S′ := S ∪ Image(S,R)

it uses the old variables. T1 is the subset of transitions that start at a state in
S. S2 is the set of target states of the transitions in T1, and it is obtained by
existentially quantifying away all the old variables. It represents Image(S,R).
S ′ is the encoding of the new, expanded set of reachable states; that is, S ∪
Image(S,R). The intermediary BDDs calculated during the computation are S0,
T1, S2 and S ′.

We now consider two variable freezing techniques named V1 and V2.

V1 Unfreezing is accomplished by computing the new set of states and then
cutting away those states where the frozen BDD variables are not in their
initial values. In Figure 2(b) this is done in the calculation of S2. The BDD
Ii denotes the initial state with all non-frozen BDD variables existentially
quantified, that is, Ii = ∃x′i+1 : ∃x′i+2 : · · · ∃x′n : I, where I represents
the set of states with which the fixed point computation is started, and
Vdf = {x′i+1, x

′
i+2, . . . , x

′
n} is the set of unfrozen BDD variables. Both Ii and

Vdf use the new BDD variables. When a fixed point is reached, one or more
frozen BDD variables are added to Vdf , until finally it contains all BDD
variables, and the algorithm terminates.

V2 This technique is otherwise similar to V1, but it implements the freezing of
variables in a slightly different way. It uses the conjunction

Ai def= (x1 = x′1) ∧ (x2 = x′2) ∧ · · · ∧ (xi = x′i)

where x1, . . . , xi are the old and x′1, . . . , x
′
i the new versions of the frozen

variables. Ai is conjoined with the set of transitions in the computation of
T1 to eliminate the frozen components (see Figure 2(c)).

Why does the freezing of variables reduce the size of intermediary BDDs?
Each BDD vertex has two children that may be other BDD vertices or the
constants F or T. If the corresponding BDD variable of a BDD vertex is frozen,
then one of the children of the vertex is F, and the BDD does not branch at that
vertex. Therefore, BDDs with many frozen variables are small.

To have an intuitive image of why the method helps also when most variables
are unfrozen, consider a program that consists of, say, ten parallel processes. In
the ordinary fixed point algorithm, after five iterations, the set of reached states
consists of those where one of the processes has taken at most five steps and the

240 J. Geldenhuys and A. Valmari

remaining have taken no steps, plus those where one process has taken at most
four steps and another one has taken one step, plus those where one has taken
at most three steps and either another one has taken two steps or two other
processes have taken one step each, plus The corresponding BDD contains
lots of dependencies between the local states of the processes: a process may have
progressed far if and only if the other processes are close to their starting point.
On the other hand, the final state space does not contain such dependencies.

Tight relationships between variables of the types “if and only if” and “ex-
clusive or” tend to yield big BDDs, unless they hold between BDD variables
that are very close to each other in the ordering of the BDD variables. Since
all processes cannot simultaneously be close neighbours of each other in the
BDD variable ordering, big intermediary BDDs seem unavoidable when process-
ing asynchronous systems with the standard fixed point algorithm. Indeed, the
measurements in [25] and Section 5, among others, confirm that the intermediary
BDDs may be much bigger than the final BDD.

The freezing and stepwise unfreezing of BDD variables correspond roughly
to keeping some of the processes at (or close to) their initial state, while letting
the others go as far as they can without getting any signals or messages from
the frozen processes. When a frozen process is finally allowed to move, its local
state is not in an “if and only if” or “exclusive or” relationship with the states
of the other processes, because those processes which were unfrozen earlier have
already reached all the states they can reach at this stage, while the others are
still frozen in their initial states. The problematic dependencies between the
values of BDD variables are thus largely avoided. Unfortunately, this beautiful
picture partially breaks down when a newly unfrozen process starts to interact
with the earlier unfrozen processes. Even so, the method gives savings in almost
every measurement of Section 5, and the savings are often significant.

4 Partially Freezing the Transition Relation

These methods make use of the partitioned transition relation. That is, the
transition relation R is represented as a disjunction R = R0 ∨ R1 ∨ · · · ∨ Rn.
In practice, Ri may, for instance, be the set of transitions that correspond to
the atomic actions of the ith process of the system, or even a single atomic
statement. We have investigated two partition freezing techniques: P1 and P2.

P1 This method cycles through the partitions trying each subset of transitions
until a fixed point is reached. The algorithm terminates when all n parti-
tions have been tried successively without any new states being added. This
algorithm is shown in Figure 3.

P2 This technique is similar to P1 except that when a partition is tried and
yields new states, all transitions are retried from the start.

5 S′ := S ∪ Image(S,Ri)
6 if S′ = S then i := i+ 1 else i := 0 endif

Techniques for Smaller Intermediary BDDs 241

1 function Fixed-point-P1 (I, R0, R1, . . . , Rn−1)
2 i := 0; j := 0; S′ := I
3 repeat
4 S := S′

5 S′ := S ∪ Image(S,Rj)
6 if S′ = S then i := i+ 1; j := (j + 1) mod (n+ 1) else i := 0 endif
7 until i > n
8 return S′

Fig. 3. The method P1 for computing the fixed point

5 Experimental Results

In Table 1 measurements for a series of experiments containing both academic
and also more practical examples are given. In general, time and memory con-
sumption is very sensitive to the implementation details of the BDD tool. To
have full control over the details we used a BDD implementation of our own.

The first column specifies system parameters, such as the number of compo-
nents. The other columns contain measurements for the standard algorithm and
each of the new techniques. Each column contains two figures: the total number
of iteration steps required for the computation of the final fixed point, and the
maximum number of BDD vertices required during the computation. The latter
number is the largest number of vertices ever needed to simultaneously repre-
sent the set of initial states, the transition relation (or partitions), and the most
recent intermediary BDD S0, T1, S2 or S ′.

In each row of each table, the best number of BDD vertices and the second
best number of iterations are shown in boldface. The best number of iterations is
always obtained with the standard method. Those cases where a new algorithm
needed more BDD vertices than the standard algorithm are shown in italics.

The following examples were used:

1. Dining philosophers: The system consists of a ring of n dining philosophers.
Each philosopher has two variables that model the states of his left and right
forks (up or down). A philosopher first picks up his left fork, then his right, then
puts down his left, and finally his right, returning to his initial state. A fork can
only be picked up if the neighbour that shares the fork is not using it.

2. m-Bit counters: An array of n counters of m bits each that have been ini-
tialised to zero. During each transition one of the counters is incremented.

3. Sort: An array with n elements containing the numbers 0, . . . , n− 1 shuffled
according to a fixed formula. Each transition consists of an exchange of any two
elements that are in the wrong order. The system terminates when the elements
are arranged in ascending order.

4. Network of communicating processors: This model is an abstraction of a set
of processors that communicate via a shared network. A processor non-deter-
ministically issues a request via the network and increments a local counter of

242 J. Geldenhuys and A. Valmari

Table 1. Iterations and maximum intermediary BDD size for various models

n Std V1 V2 P1 P2
Dining

philosophers
1 2 14 4 14 2 14 2 14 2 14
2 4 75 11 73 8 73 9 67 11 67
3 7 192 18 177 14 177 20 158 27 158
4 10 379 25 300 20 300 37 260 52 256
5 13 708 32 433 26 433 60 385 88 357
10 28 4092 67 1098 56 1098 265 1508 503 952
20 58 19432 137 2428 116 2428 1125 8206 3308 2592
50 148 133852 347 6418 296 6418 7305 101564 45523 11112
100 - - 697 13068 596 13068 - - 348548 37312
200 - - 1397 26368 1196 26368 - - - -
500 - - 3497 66268 2996 66268 - - - -
1000 - - 6997 132768 5996 132768 - - - -

n 3-bit
counters

1 8 31 10 31 8 31 8 31 8 31
2 15 176 19 89 16 89 17 80 23 80
5 36 1685 46 299 40 299 44 281 110 281
10 71 7172 91 649 80 649 89 796 395 796
20 141 29147 181 1349 160 1349 179 2501 1490 2501

n 4-bit
counters

1 16 47 18 47 16 47 16 47 16 47
2 31 395 35 129 32 129 33 114 47 114
5 76 4749 86 420 80 420 84 387 230 387
10 151 20835 171 900 160 900 169 1082 835 1082
20 301 85535 341 1860 320 1860 339 3372 3170 3372

n-Element
sort

1 1 2 3 2 1 2 1 2 1 2
2 2 43 6 43 3 43 2 43 2 43
3 3 147 9 146 5 146 5 156 5 156
4 5 1248 13 1235 8 1235 10 1590 11 1590
5 6 2133 16 2066 10 2066 13 2945 18 2945
6 8 6356 21 4842 14 4999 19 5819 29 5819
7 10 15768 25 8930 17 9143 24 10410 43 10410
8 13 98686 30 43946 21 46713 33 64220 64 65261
9 14 160977 33 61282 23 61282 36 91540 86 91540
10 16 663058 39 167817 28 202764 44 180142 114 183168

Network of
communicat.

processors

1 3 54 7 54 4 54 6 55 5 55
2 7 722 19 663 14 663 16 527 23 531
3 10 4933 37 3674 30 3674 29 2237 61 2202
4 13 32795 61 20327 52 20327 46 10289 125 10144
5 - - 91 103937 80 103937 67 46803 221 44044
6 - - 127 474640 114 474640 92 190629 355 182832

Tree arbiter 2 7 224 16 224 12 224 18 202 18 201
4 22 4188 45 3662 37 3662 93 2452 145 2127
8 61 390601 110 244966 94 244966 470 139785 1255 64412

Solitaire 5× 3 3 494 15 496 9 496 15 616 17 616
3× 5 3 545 11 545 6 545 6 611 7 611
6× 3 4 684 17 684 9 683 23 869 23 869
3× 6 4 716 12 716 7 716 7 801 9 801
4× 4 14 17810 32 15865 18 17189 59 7549 110 7159
5× 4 19 155893 52 143040 35 169904 99 64906 373 55690
4× 5 19 126707 52 112093 33 115495 75 56507 182 48557
4× 6 23 777273 65 678756 41 773689 116 383244 394 288113

outstanding requests. When a server acknowledges the request, the processor
can remove the acknowledgment from the network and decrement its counter.
Each network slot stores the address (number) of the processor that posted the
request, an empty/occupied flag, and a request/acknowledge flag.

5. Tree arbiter: The tree arbiter is a full binary tree of 2n − 1 cells. The n
leaves of the tree can asynchronously request a shared resource. The other cells
in the tree arbitrate the requests. When an arbiter cell sees that one or both of

Techniques for Smaller Intermediary BDDs 243

its children requests the resource, the cell (unless it is the root cell) requests the
resource from its parent, grants the resource to its requesting children, and then
releases the resource to its parent. If both children request the resource, it is
granted to the favourite child, and, after it releases it, to the other child. After a
child has been granted the resource, the other child becomes the favourite. Each
cell has a request flag (indicating that the cell is requesting the resource), a grant
flag (indicating that the cell has been granted the resource), and a favourite flag
(indicating which child the cell will favour next).

6. Solitaire: The solitaire game is played on a rectangular board with x × y
holes. A peg may jump over a neighbouring peg into an empty hole, after which
the neighbour is removed. Initially, all holes contain pegs, except for the hole
closest to the center. The game ends when no further jumps are possible.

In most of our measurements, the best algorithm is either V2 or P2. The
results obtained with V1 are close to those of V2, which is not surprising, because
the two are very similar. Even the second least successful algorithm needs fewer
BDD vertices than the standard algorithm in most of the experiments, and often
the advantage is significant. The results were best with the counter and dining
philosophers examples. In them, V1 and V2 reduced the maximum BDD size to
linear. Although V1 and V2 compute almost the same thing, they yield somewhat
different results. This points out that algorithms and measurements like the ones
in this paper are sensitive to seemingly small differences in computation order.
The figures in this paper are thus indicative rather than the final truth.

The performance of BDDs is sensitive also to the ordering of the BDD vari-
ables. We did not experiment much with different orderings, because the first
ordering we tried always proved better than our later attempts.

Our methods introduce yet another ordering: that in which BDD variables are
unfrozen or components of a partitioned transition relation applied. In the few
cases where we tried to modify the “unfreeze” ordering, no ordering was clearly
superior over another, with the exception of the dining philosophers system.
Reversing the unfreeze ordering of dining philosophers significantly increases
the number of iterations while keeping the number of BDD vertices the same.

Figures 4 and 5 depict the growth of the intermediary BDD sizes for the
dining philosophers example with 10 philosophers, and the tree arbiter example
with 4 leaves cells. The V1 and V2 methods are shown on the left, and the P1
and P2 methods on the right. The data for the standard method is the same in
the left- and right-hand graphs, but the scales are different. It is clear that the
size of the intermediary BDDs are drastically reduced in most cases, but it is
equally clear that the number of iterations are drastically increased.

Table 2 shows the results of a further experiment to measure the cost of
the increased number of iterations. Here we compare the V1 method to the
standard algorithm for computing the fixed point. The set of reachable states of
the dining philosophers model was computed with both algorithms for various
values of n. The number of vertices of the resulting BDD, the number of iterations
needed to reach the fixed point, the number of BDD vertex records created,
the computation time in seconds and the memory consumption in Megabytes

244 J. Geldenhuys and A. Valmari

Table 2. Standard algorithm versus V1 for n dining philosophers model

standard alg. V1

n BDD vertices iterations created time memory iterations created time memory
5 35 13 1702 1.4 1.4 31 1833 0.6 1.4

10 85 28 9437 1.3 1.8 66 9548 1.2 1.8
20 185 58 40117 4.5 3.3 136 35808 3.5 3.3
30 285 88 50608 72.8 3.9 206 36119 6.4 3.4
40 385 118 92613 288 6.0 276 40480 11.6 3.6
50 485 − 346 44016 17.3 3.6

100 985 696 45241 71.7 3.7
200 1985 1396 50675 347 3.9
500 4985 3496 79738 4790 5.1
700 6985 4896 111694 11700 6.1
f 10n− 15 3n− 2 7n− 4

Std V1V2

10 20 30 40 50 60

4092

2000

BDD nodes

V1, V2

Iterations

Std

P1 P2

100 200 300 400 500

4092

2000

P1, P2

Iterations

Fig. 4. Growth of intermediary BDDs for the 10 dining philosophers model

Std V1V2

10 20 30 40

4188

2000

BDD nodes

V1, V2

Iterations

Std

P1

P2

25 50 75 100 125

4188

2000

P1, P2

Iterations

Fig. 5. Growth of intermediary BDDs for the tree arbiter with 4 leave cells

Techniques for Smaller Intermediary BDDs 245

(106, not 220) were recorded. For some columns a formula that matches all the
experimental figures in the column is given in the bottom row. This experiment
was run on a Pentium 100 MHz processor and 16 Mbytes of memory.

The number of BDD vertex records created during the computation includes
the vertices needed to represent the initial marking and the transition relation,
and it also includes garbaged vertices. It is thus very much affected by the details
of the triggering of garbage collection. The size of the final BDD, given in the
second column, does not include any of these.

Although the time and memory consumption figures are only indicative, the
superiority of V1 over the standard algorithm in the dining philosophers system
is beyond doubt.

6 Conclusions

We suggested four modifications to the standard fixed point algorithm that uses
BDDs for computing the set of states reachable from a given set of states by
repeated applications of a given binary relation.

BDDs have been reported to not work very well with asynchronous systems,
such as communication protocols or Petri nets. We discussed a possible intuitive
reason for this, and pointed out that our new methods attack that reason. And
not entirely without success: in the biggest experiments where we were able to
complete the standard algorithm, the best maximum BDD size with our new
methods was 4.8% (philosophers), 11%, 4.6%, 2.2% (counters), 25% (sort), 31%
(network), 16% (arbiter), and 37% (solitaire) of the maximum BDD size with
the standard method. In certain academic examples, like the dining philosophers,
our best method worked like a dream, but, as is usual with enhanced verification
methods, the results with more realistic examples were less spectacular.

Because V1 and V2 operate at the level of the BDD variables, they can be
used without having any other information than the set of initial states and
transition relation. They can thus be implemented within a BDD verification
library and hidden totally from the user.

Several matters bear further investigation: the order in which variables and
processes are unfrozen, and the number of variables unfrozen in each step. On
the other hand, unfreezing BDD variables one process at a time is a natural
heuristic for reducing the number of iterations (and we used it in Section 5).
In this way extra information from the user can be useful, although it is not
mandatory. The algorithms P1 and P2 require that the transition relation has
been partitioned by the user or someone/something else, and there has been
some work done on the automatic decomposition of (synchronous) systems [12].

Because of its good performance and ease of use we believe that V2 would be
a valuable addition to BDD-based verification tools for asynchronous systems.

Acknowledgements. The work of J. Geldenhuys was funded by the Academy
of Finland, project UVER.

246 J. Geldenhuys and A. Valmari

References

1. R. Alur, R.K. Brayton, T. Henzinger, S. Qadeer, & S.K. Rajamani. Partial-
order reduction in symbolic state space exploration. In CAV’97: Proc. 9th Intl.
Conf. Computer-Aided Verification, LNCS #1254, pp. 340–351. Springer-Verlag,
Jun 1997.

2. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, &
F. Somenzi. Algebraic decision diagrams and their applications. In Proc.
ACM/IEEE Intl. Conf. Computer-Aided Design, pp. 188–191, Nov 1993.

3. A. Biere, A. Cimatti, E.M. Clarke, & Y. Zhu. Symbolic model checking without
BDDs. In Proc. 5th Intl. Conf. Tools and Algorithms for the Construction and
Analysis of Systems, LNCS #1579, pp. 193–207. Springer-Verlag, Mar 1999.

4. R. Bloem, I.-H. Moon, K. Ravi, & F. Somenzi. Approximations for fixpoint compu-
tations in symbolic model checking. In Proc. World Multiconference on Systemics,
Cybernetics and Informatics, Vol. VIII, Part II, pp. 701–706, 2000.

5. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers, C-35(8):677–691, Aug 1986.

6. J.R. Burch, E.M. Clarke, & D.E. Long. Symbolic model checking with partitioned
transition relations. In Proc. IFIP Intl. Conf. Very Large Scale Integration, pp.
49–58, Aug 1991.

7. J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, & D.L. Dill. Symbolic model
checking for sequential circuit verification. IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, 13(4):401–424, Apr 1994.

8. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, & L.J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142–170,
Jun 1992.

9. G. Cabodi, P. Camurati, L. Lavagno, & S. Quer. Disjunctive partitioning and
partial iterative squaring: An effective approach for symbolic traversal of large
circuits. In Proc. 34th ACM/IEEE Conf. Design Automation, pp. 728–733, Jun
1997.

10. G. Cabodi, P. Camurati, & S. Quer. Improved reachability analysis of large finite
state machines. In Proc. ACM/IEEE Intl. Conf. Computer-Aided Design, pp. 354–
360, Nov 1996.

11. G. Cabodi, P. Camurati, & S. Quer. Improving symbolic traversals by means of
activity profiles. In Proc. 36th ACM/IEEE Conf. Design Automation, pp. 306–311,
Jun 1999.

12. H. Cho, G.D. Hachtel, E. Macii, B. Plessier, & F. Somenzi. Automatic state space
decomposition for approximate FSM traversal based on circuit analysis. IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, 15(12):1451–
1464, Dec 1996.

13. H. Cho, G.D. Hachtel, E. Macii, B. Plessier, & F. Somenzi. Algorithms for approx-
imate FSM traversal based on state space decomposition. IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, 15(12):1465–1478, Dec 1996.

14. O. Coudert, C. Berthet, & J.C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In Proc. Intl. Workshop on Automatic
Verification Methods for Finite State Systems, LNCS #407, pp. 365–373. Springer-
Verlag, Jun 1989.

15. M. Fujita, Y. Matsunaga, & T. Kakuda. On variable ordering of binary decision
diagrams for the application of multi-level logic synthesis. In Proc. European Design
Automation Conference, pp. 50–54, 1991.

Techniques for Smaller Intermediary BDDs 247

16. S.G. Govindaraju, D.L. Dill, A.J. Hu, & M.A. Horowitz. Approximate reachability
with BDDs using overlapping projections. In Proc. 35th ACM/IEEE Conf. Design
Automation, pp. 451–456, Jun 1998.

17. A.J. Hu. Efficient Techniques for Formal Verification Using Binary Decision Di-
agrams. PhD thesis, Stanford Univ., 1995.

18. A.J. Hu, G. York, & D.L. Dill. New techniques for efficient verification with im-
plicitly conjoined BDDs. In Proc. 31th ACM/IEEE Conf. Design Automation, pp.
276–282, Jun 1994.

19. S.-i. Minato. Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In Proc. 30th ACM/IEEE Conf. Design Automation, pp. 272–277, Jun 1993.

20. T. Kam. State Minimization of Finite State Machines using Implicit Techniques.
PhD thesis, Electronics Research Laboratory, Univ. of California at Berkeley, 1995.

21. R.P. Kurshan. Computer-aided Verification of Coordinating Processes: The
Automata-theoretic Approach. Princeton University Press, 1994.

22. D.E. Long. Model Checking, Abstraction, and Compositional Verification. PhD
thesis, Carnegie-Mellon Univ., 1993.

23. A. Miner & G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. In Proc. 20th Intl. Conf. Application and Theory of Petri Nets,
LNCS #1639, pp. 6–25. Springer-Verlag, Jun 1999.

24. A. Narayan, A.J. Isles, J. Jain, R.K. Brayton, & A.L. Sangiovanni-Vincentelli.
Reachability analysis using partitioned-ROBDDs. In Proc. ACM/IEEE Intl. Conf.
Computer-Aided Design, pp. 388–393, Nov 1997.

25. E. Pastor, O. Roig, J. Cortadella, & R. Badia. Petri net analysis using boolean
manipulation. In Proc. 15th Intl. Conf. Application and Theory of Petri Nets,
LNCS #815, pp. 416–435. Springer-Verlag, 1994.

26. K. Ravi & F. Somenzi. High-density reachability analysis. In Proc. ACM/IEEE
Intl. Conf. Computer-Aided Design, pp. 154–158, Nov 1995.

27. K. Ravi & F. Somenzi. Hints to accelerate symbolic traversal. In Proc. 10th
IFIP WG 10.5 Intl. Conf. Correct Hardware Design and Verification Methods,
LNCS #1703, pp. 250–264. Springer-Verlag, Sept 1999.

28. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Proc. ACM/IEEE Intl. Conf. Computer-Aided Design, pp. 42–47, Nov 1993.

29. A. Srinivasan, T. Kam, S. Malik, & R.K. Brayton. Algorithms for discrete function
manipulation. In Proc. ACM/IEEE Intl. Conf. Computer-Aided Design, pp. 92–97,
Nov 1990.

30. S. Waack. On the descriptive and algorithmic power of parity ordered binary
decision diagrams. In Proc. 14th Annual Symposium on Theoretical Aspects of
Computer Science, LNCS #1200, pp. 201–212. Springer-Verlag, Feb 1997.

An Algebraic Characterization of Data
and Timed Languages

Patricia Bouyer1�, Antoine Petit1��, and Denis Thérien2� � �

1 LSV, CNRS UMR 8643, ENS de Cachan
61 Av. du Président Wilson
94235 Cachan Cedex, France

{bouyer, petit}@lsv.ens-cachan.fr
2 School of Computer Science, McGill University

3480 University
Montréal, QC, Canada, H3A 2A7

denis@cs.mcgill.ca

Abstract. Algebra offers an elegant and powerful approach to under-
stand regular languages and finite automata. Such framework has been
notoriously lacking for timed languages and timed automata. We in-
troduce the notion of monoid recognizability for data languages, which
include timed languages as special case, in a way that respects the spirit
of the classical situation. We study closure properties and hierarchies in
this model, and prove that emptiness is decidable under natural hypothe-
ses. Our class of recognizable languages properly includes many families
of deterministic timed languages that have been proposed until now, and
the same holds for non-deterministic versions.

1 Introduction

The class of regular languages can be characterized in various ways: finite au-
tomata, rational expressions, monadic second order logic, extended temporal
logics, finite monoids... [RS97]. All these characterizations constitute not only
one of the cornerstones of theoretical computer science but also form the funda-
mental basis for much more practical research on verification (see e.g. [CGP99]).
Among all these equivalences, the simplest is undoubtedly the purely algebraic
one claiming that a word language is regular if and only if it is monoid rec-
ognizable i.e. it is the inverse image by a morphism of some subset of a finite
monoid.

In the framework of timed languages, very useful to specify and verify real-time
systems, the situation is far from being so satisfactory. The original class of
timed automata, proposed by Alur and Dill [AD94] has a decidable emptiness
problem, but is not closed under complement. Several logical characterizations
� Research partly supported by the French project RNRT “Calife”
�� Research partly supported by the French-India project CEPIPRA no2102− 1

� � � Research supported by NSERC, FCAR, and the von Humboldt Foundation

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 248–261, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

An Algebraic Characterization of Data and Timed Languages 249

[Wil94,HRS98] or even Kleene-like theorems [ACM97,Asa98,BP99,BP01] have
been proposed for the whole class of timed automata but no purely algebraic
one. Interesting subclasses of timed automata, closed under complement, have
been proposed and often logically characterized. For instance, (recursive) event
clocks automata [AFH94] are closed under complement and can be characterized
in a nice logical way [HRS98]. But once again, even if a related notion of counter-
free timed languages has been defined, no algebraic characterization exists.

For the first time, at least to our knowledge, we propose in this paper a purely
algebraic characterization for timed languages. In fact, we deal with a more gen-
eral framework than timed languages, the so-called data languages. We consider
a finite alphabet of actions Σ and a set of data D (this set of data could be some
time domain but also anything else). A data word is thus a sequence of pairs
(a, d) where a ∈ Σ and d ∈ D.
We propose to use a finite fixed number of registers to store the data. When a
new letter (a, d) is read, the data is kept or not depending only on the letter
a and on the value of the current computation in the finite monoid M . Then
the new value of the computation is calculated from the previous value, the
current letter a and some finite and bounded information from the registers.
Hence, the precise values of the registers are never used by the monoid. Only a
finite bounded amount of information is needed to decide whether a data word
is in the language or not.

We obtain in this way, for any set of actions Σ and set of data D, a class of so-
called “monoid recognizable” data languages. This class is closed under boolean
operations. As first result, which shows the interest of our approach, the choice
of the monoid is fundamental. More precisely, we prove that, like in the formal
language case, if two monoids are such that none of them divides the other, then
the corresponding class of data languages are incomparable. We then study the
exact power of the number of registers.

We next define a notion of deterministic data automata and, as one of our two
main theorems, we prove that a data language is monoid recognizable if and
only if it is accepted by some data automaton. Note that the translation from
monoid to automaton and vice versa is simple and very close to what happens in
formal language theory, which emphasizes once more the elegance of the proposed
approach.

We then focus on the problem of deciding emptiness of languages recognized
by data automata, or equivalently, monoid recognizable. We propose a simple
and nice condition related to the registers and the data domain under which
emptiness is decidable. More precisely, under this condition, we propose our
second main result: an algorithm to transform a data automaton A into a finite
automaton recognizing the classical formal language of those words of Σ∗ that
can be obtained from a data word accepted by A by erasing the data. The idea
of this construction is similar to the region automaton construction of Alur and
Dill [AD94].

250 P. Bouyer, A. Petit, and D. Thérien

If the set of data D is a time domain, our recognizable data languages contain
all the timed languages recognized by deterministic timed automata [AD94] or
their deterministic extensions [DZ98,CG00]. But our class also contains a lot
of timed languages which cannot be recognized by any timed automata (even
non-deterministic ones).

We also briefly study two possible extensions of our model. First, we consider
non-deterministic data automata (or equivalently a non-deterministic notion of
monoid recognizability). Then we get a larger class of data languages, still closed
under union and intersection but not anymore by complementation. On the con-
trary, this new class is closed by concatenation and iteration. Once again, empti-
ness can be decided, by an algorithm similar to the one used in the deterministic
case. Second, we show that if we extend the power of the registers and allow
computations to be performed on them, then what monoid is used to recognize
the language becomes essentially irrelevant.

This paper contains only sketches of proofs. The complete proofs are available
in the technical report [BPT01].

2 Basic Definitions

If Z is any set, Z∗ denotes the set of finite sequences of elements in Z. We consider
throughout this paper a finite alphabet Σ and an unrestricted set of data D.
Among the elements of D, we distinguish a special initial value, denoted by ⊥.
A data word over Σ and D is a finite sequence (a1, d1) . . . (ap, dp) of (Σ × D)∗.
A data language is a set of data words. If k ≥ 1 is the number of registers, a
register update, or simply an update, up, is defined by a subset of {1, . . . , k}. This
update induces a function up from Dk × D into Dk mapping ((di)i=1..k, d) to
((d′i)i=1..k) where d′i = d if i ∈ up and d′i = di otherwise. In the sequel, we will
simply write ((d′i)i=1..k) = up((di)i=1..k, d). If ∼ is an equivalence defined on Dk
and if θ ∈ Dk, we denote θ the class of θ modulo ∼.

3 Monoid Recognizability

A first naive attempt to define a notion of monoid recognizability for data
languages could simply consider a morphism from the free monoid (Σ × D)∗
to some finite monoid M . But the corresponding class of languages would be
very restricted. Since the image of Σ × D would be finite, the simple language
{(a, d)(a, d′) | d �= d′} would not be monoid recognizable as soon as D is infi-
nite. Similar unsuccessful attempts have been studied in details [ABB80] in the
framework of formal languages over an infinite alphabet. We thus need to have
a finite mechanism to take into account the data. But, in order to maintain the
relevance of the monoid, this mechanism should be very simple and in particular
unable to perform any computation. We propose to use, as mechanism, a finite
fixed number of registers to store the data. These registers are used through a
notion of updates as defined in the previous section. Note that such updates

An Algebraic Characterization of Data and Timed Languages 251

decide to store or not a data independently of this data or of the values of the
registers.

Definition 1. Let L be a data language over Σ and D, let M be a finite monoid.
We say that M recognizes L if there exists a subset P of M , an integer k, for
each pair (m, a) ∈ M × Σ an update upm,a over k registers, an equivalence of
finite index ∼ on Dk, and a morphism ϕ : (Σ × Dk�∼)∗ −→ M such that: a
data word (a1, d1) . . . (an, dn) is in L if and only if the sequences (θi)i=0...n and
(mi)i=0...n defined by:

{
θ0 = ⊥k
θi+1 = upmi,ai+1(θi, di+1)

and
{

m0 = 1M
mi+1 = mi ϕ(ai+1, θi+1)

satisfy mn ∈ P .

When a new letter (ai+1, di+1) is read, the data is kept or not (as determined
by upmi,ai+1) depending thus only on the letter ai+1 and on the value mi of the
current computation in the finite monoid M . Then the new value mi+1 of the
computation is calculated from the previous value mi, the current letter ai+1
and some finite and bounded information, θi+1, from the registers. Hence, the
precise values of the registers are never used by the monoid. Only a finite bounded
amount of information is needed to decide whether a data word is in the language
or not. Note that, the sequences (θi)i=0...n and (mi)i=0...n associated with a given
data word are unique. A data language is said to be monoid recognizable if there
exists some finite monoid recognizing it.

Note that the definition proposed in [KF94], also based on registers, is much more
restrictive than ours. In particular their languages have the following property,
if (a1, d1) . . . (an, dn) is in the language then for any bijection ν from D into D,
(a1, ν(d1)) . . . (an, ν(dn)) has also to be in the language. We do not require at all
such a property.

Example 1. The data language L = {(a, d)(a, d′) | d �= ⊥, d �= d′} over {a}
and D is recognized by the finite monoid M = {1, y, y2, 0} with y3 = 0 and
0x = x0 = 0 for any x ∈ M . We use two registers and we define two classes
over D2: θ �= = {(d, d′) | d �= d′} and θ= = D2 \ θ �=. We define a morphism
ϕ : ({a} × {θ �=, θ=})∗ −→ M by ϕ(a, θ �=) = y, ϕ(a, θ=) = 0. Our updates are
up1,a = {1} and if z ∈M \{1}, upz,a = {2}. With these definitions, L is accepted
by M (with P = {y2}). As an example of computation, consider the data word
(a, d)(a, d′) with d �= ⊥ and d �= d′.

In the monoid M 1M
a−−−→
d

y
a−−−→
d′

y2

Two registers
(⊥
⊥

) (
d
⊥

) (
d
d′

)

Equivalence classes θ= θ �= θ �=

We must notice that the registers do not compute anything. For example, taking
D = Q, with only one register we could have computed the difference d′ − d

252 P. Bouyer, A. Petit, and D. Thérien

instead of putting the data d′ in a second register. But this is not allowed in our
model.

Example 2. The data language {(a, d1) . . . (a, dn)(a, d) | d �∈ {d1, . . . , dn}} over
{a} andD (whereD is infinite) is not recognized by any finite monoid. Intuitively,
an unbounded number of data should be stored, which is not allowed.

Remark 1. This definition of monoid recognizability is a quite natural extension
of the monoid recognizability in formal language theory. Namely, if D reduces to
{⊥}, then Σ and Σ × D are in bijection and a formal language is recognizable
if and only if its image is a monoid recognizable data language. It can also be
shown that if D is finite and if L ⊆ (Σ × D)∗ is a monoid recognizable data
language, then L is also a recognizable formal language.

If M is a finite monoid and k an integer, the set of data languages over Σ and D
recognized by M using k registers, is denoted by LM,k(Σ,D), or simply LM,k.
We also set LM =

⋃
k LM,k and Lk =

⋃
M LM,k. The set of recognizable data

languages has many interesting closure properties.

Proposition 1. The set LM,k is closed under complementation. If L1 ∈ LM1,k1

and L2 ∈ LM2,k2 , then L1 ∪ L2 and L1 ∩ L2 are in LM1×M2,k1+k2 .

From the algebraic point of view, the soundness of our definition is assessed by
the following result. It shows essentially that increasing the number of registers
cannot help if the monoid is not powerful enough. Hence the structure of the
monoid is really fundamental and plays a role similar to what happens in the
framework of formal languages.
If M and M ′ are monoids, recall that M divides M ′ if M is a quotient of a
submonoid of M ′ [Pin86].

Proposition 2. If M and M ′ are finite monoids such that neither M divides
M ′ nor M ′ divides M , then LM �= LM ′ .

Proof. Let L be a language on Σ and define

LD = {(a1, d1) . . . (an, dn) | a1 . . . an ∈ L and di ∈ D}

Let M be a finite monoid. Then, we will prove that

L is recognized by M ⇐⇒ LD is recognized by M

This will establish the result as the hypothesis on M and M ′ implies that the
class of formal languages they respectively recognize are incomparable.
We prove the two implications separately:
Assume that L is recognized by M . There exists a morphism ϕ : Σ∗ −→M and
some P ⊆ M such that L = ϕ−1(P). Taking k = 0, it is easy to see that M
recognizes LD.

An Algebraic Characterization of Data and Timed Languages 253

Assume that LD is recognized by M with k, ∼, ϕ as in Definition 1. In particular,
if a1 . . . an is inΣ∗, the image of the data word (a1,⊥) . . . (an,⊥) in (Σ×Dk�∼)∗ is
(a1,⊥k) . . . (an,⊥k). We define a morphism ψ : Σ∗ −→M by ψ(a) = ϕ((a,⊥k)).
Then, a1 . . . an ∈ L ⇐⇒ (a1,⊥) . . . (an,⊥) ∈ LD

⇐⇒ ϕ((a1,⊥k) . . . (an,⊥k)) ∈ P

⇐⇒ ψ(a1 . . . an) ∈ P

Thus, M recognizes the language L and the conclusion easily follows. ✷

The following statements make precise the relative role of the monoid and of
the registers. For example, each additional register strictly increases the class of
languages being recognized, as in timed automata each additional clock increases
also the power of the automata [HKWT95]. On the other hand, if the monoid
and the alphabet are fixed, then the hierarchy on registers collapse.

Proposition 3. 1. If M is a fixed finite monoid, the sequence (LM,k(Σ,D))k
collapses, more precisely, LM,2|Σ×M|−1 = LM,2|Σ×M| .

2. The sequence (Lk(Σ,D))k is strictly monotonic.
3. Let M0 be the finite monoid {1, 0, x} with x2 = x. For each integer k,

there exists a finite alphabet Σk and a language Lk over Σk such that
Lk ∈ LM0,k(Σk,D) \

⋃
k′<k Lk′ .

Proof (Sketch).

1. Updates are parameterized by a pair of M × Σ, thus, considering a data
language recognized by a finite monoid M with k registers, we define the
function

λ : {1 . . . k} −→ {upm,a | (m, a) ∈M ×Σ}
i �−→ {upm,a | (m, a) ∈M ×Σ and i ∈ upm,a}

and the equivalence i ∼= j ⇐⇒ λ(i) = λ(j). Intuitively, if i ∼= j, the registers
i and j play the same role, in that they are updated exactly at the same
steps. Thus, we can keep only one register for each class. Moreover, the class
of registers i such that λ(i) = ∅ is not useful.

2. The data language Lk = {(a, d1) . . . (a, dn) | i ≡ j mod (k − 1) =⇒ di = dj}
over {a} and D (D is supposed to be infinite) is recognized by a finite monoid
with k registers, but is recognized by no finite monoid with strictly less than
k registers.

3. We define Σk = {a0, a1, . . . , ak−1} and for each i = 1 . . . k − 1, we define a
function µi such that for each data word u ∈ (Σk ×D)∗, µi(u) is the data d
(if it exists) such that u = u′ (ai, d) u′′ where u′′ does not contain any ai. If
this data does not exists, µi(u) is ⊥. We define the data language

L′k = {u (a0, d′1) . . . (a0, d
′
n) | u ∈ ((Σk \ {a0})×D)∗

and for each j, d′j ∈ ∪k−1i=1 {µi(u)} }
The language L′k is recognized by M0 using k registers but is recognized by
no finite monoid using strictly less than k registers. ✷

254 P. Bouyer, A. Petit, and D. Thérien

4 Data Automata

In this section, we define a notion of recognizability by data automata and prove
its equivalence with monoid recognizability.

Definition 2. A data automaton over Σ and D is a tuple A = (Q, q0, F, k,∼, T)
where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of
final states, k is an integer, ∼ is an equivalence relation of finite index defined
on Dk and T ⊆ (Q × Dk�∼ × Σ × U × Dk�∼ × Q) is a finite set of transitions
(U is a set of updates) such that the following determinism hypothesis holds: for
each tuple (q, g, a) ∈ Q×Dk�∼ ×Σ, there is a (unique) update up such that any
transition (q, g, a, up′, g′, q′) ∈ T satisfies up′ = up and if (q, g, a, up, g′, q′1) and
(q, g, a, up, g′, q′2) are in T , then q′1 = q′2.

A data word (a1, d1) . . . (an, dn) is accepted by the data automaton A if there
exists a path in A

q0
g1,a1,up1,g

′
1−−−−−−−−−→

d1
q1

g2,a2,up2,g
′
2−−−−−−−−−→

d2
q2 . . .

gn,an,upn,g
′
n−−−−−−−−−−→

dn
qn

such that the sequence (θi)i=0...n defined by

θ0 = ⊥k and θi+1 = upi+1(θi, di+1)

satisfies θi−1 = gi for 1 ≤ i ≤ n, θi = g′i for 1 ≤ i ≤ n and qn ∈ F .
The set of data words that are accepted by A is denoted by L(A).

Example 3. The data language described in Example 1,

L = {(a, d)(a, d′) | d �= ⊥, d �= d′}

is recognized by the following data automaton (θ= and θ �= are defined in Exam-
ple 1):

We claim that this notion of recognizability by data automata is equivalent to
the notion of monoid recognizability in the following sense:

Theorem 1. Let L be a data language over Σ and D. Then L is recognized by
a data automaton if and only if it is recognized by a finite monoid.

We thus have a result similar to the formal language case. As it appears below,
the transformations from monoids to automata and from automata to monoids
are very close to the ones used in formal languages. We believe that this similarity
emphasizes the appropriateness of our approach.

An Algebraic Characterization of Data and Timed Languages 255

Proof (Sketch). If Implication. First, assume that L ⊆ (Σ ×D)∗ is recognized
by a finite monoid M , with the notations of Definition 1. We construct a data
automaton over Σ and D, A = (Q, q0, F, k,∼, T), as follows:
– k and ∼ comes from the monoid recognizer,
– Q = M , q0 = 1M and F = P ,
– T = {(m, g, a, upm,a, g

′,m′) | m ∈M, g, g′ ∈ Dk�∼, a ∈ Σ, m′ = mϕ(a, g′)}.
One can prove that A is a valid deterministic data automaton and that the
language accepted by A is precisely L.

Only If Implication. Now, assume that L ⊆ (Σ × D)∗ is recognized by the
data automaton A = (Q, q0, F, k,∼, T). We define M as the set of functions
from Q×Dk�∼ into itself. We claim that L is recognized by M . The morphism
ϕ : (Σ ×Dk�∼)∗ −→M is induced by the function (a, g′) �−→

[
(q, g) �→ (q′, g′)

]
where q′ is the unique state for which there exists a transition (q, g, a, up, g′, q′)
in A (the unicity of q′ comes from the determinism of A). For any m ∈ M ,
suppose m((q0, g0)) = (q, g) (g0 is the equivalence class of ⊥k). Because of
determinism again, for any a, there is a unique up such that there exists
a transition (q, g, a, up,−,−) and we define upm,a = up. We finally define
P = {m | m((q0,⊥k)) ∈ F ×Dk�∼}. It is then possible to prove that L(M) = L.
The equivalence between monoids and automata is thus proved. ✷

We can notice that the translations from monoids to automata and vice-versa
do not change neither the set of updates, nor the number of registers and the
equivalence.
We say that a data language is recognizable if it is recognized by some data
automaton (which is equivalent to being recognized by a finite monoid).

5 Decidability of the Emptiness Problem

We first note that the general class of recognizable data languages is undecidable:
we can easily simulate a two counter machine [Min67] using a data automaton.
We propose a condition that determines a class of data automata for which the
emptiness problem is decidable.

As a preliminary, given a register update up, we define a relation on Dk�∼,
denoted by

up−−−−→ , in the following way:

θ
up−−−−→ θ′ iff ∃v ∈ θ, ∃d ∈ D, up(v, d) ∈ θ′

In order to capture decidability in our model, we define the following condition:

Condition (†): θ up−−−−→ θ′ iff ∀v ∈ θ, ∃d ∈ D, up(v, d) ∈ θ′

We will prove that this simple condition ensures the decidability of the emptiness
problem. The principle of the proof of this result is very similar to the one of
region construction as defined by Alur and Dill [AD94].

256 P. Bouyer, A. Petit, and D. Thérien

Theorem 2. Let L be a recognizable data language over Σ and D. Assume L is
recognized by the finite monoid M with an equivalence and updates that satisfy
the condition (†). Then the emptiness of L is decidable in complexity Pspace.

Proof (Sketch). Let L ⊆ (Σ ×D)∗ be a recognizable data language. We assume
that M is a monoid which recognizes L and that k, ∼, ϕ and upm,a satisfy the
condition (†) and are correctly defined in order to recognize L. As in the proof
of Theorem 1, we construct a data automaton A whose transitions are

m
g, a, upm,a, g

′
−−−−−−−−−−−→ mϕ(a, g′)

Of course, L = L(A). From A, we construct a finite automaton B = (Q, I, F, T)
where Q = M ×Dk�∼, I = (1M ,⊥k), F = P ×Dk�∼ and T is defined by

((m, g), a, (m′, g′)) ∈ T ⇐⇒ m
g, a, upm,a, g

′
−−−−−−−−−−−→ m′ and g

upm,a−−−−−→ g′

We can prove that, as condition (†) holds, this finite automaton accepts

Undata(L) = {a1 . . . an | ∃d1, . . . , dn, (a1, d1) . . . (an, dn) ∈ L}
✷

It remains to study the decidability of condition (†).
We first define {

ûp(θ) = {v′ | ∃v ∈ θ, ∃d ∈ D, v′ = up(v, d)}
ûp
−1(θ′) = {v | ∃d ∈ D, up(v, d) ∈ θ′}

With these definitions, it is obvious that

Condition (†) ⇐⇒
[
ûp(θ) ∩ θ′ �= ∅ =⇒ ûp

−1(θ′) ∩ θ = θ
]

Since our updates do not compute anything, from a given equivalence class θ, the
sets ûp(θ) and ûp

−1(θ) can be obtained “easily”. Indeed, ûp has just for effect
to put in all the registers of up any value in D and ûp

−1 is just a projection on
the registers which are not updated by up. Therefore, as soon as we are able to
decide both the emptiness of ûp(θ) ∩ θ′ and the equality ûp

−1(θ′) ∩ θ = θ, the
condition (†) becomes decidable.
Note that it is in particular the case when the equivalence ∼ is given by a set of
linear inequations.

6 Extensions of the Model

6.1 Non-deterministic Models

Up to now, we only considered models that are deterministic, i.e. for each data
word, there is a unique possible execution on it. Now, we will consider a non-
deterministic version of the models. We thus define non-deterministic data au-
tomata as in Definition 2, but without the determinism condition. We also say

An Algebraic Characterization of Data and Timed Languages 257

that a finite monoid M non-deterministically recognizes a data language L when-
ever there exists, k, ∼, ϕ as in Definition 1, but for each (m, a) ∈M ×Σ, there
exists a finite set of updates Um,a (instead of a unique update upm,a) such that
the conditions in Definition 1 hold. Some properties which are true for deter-
ministic data automata are also true for non-deterministic data automata:

Proposition 4. Let L be a data language over Σ and D. Then,
– L is non-deterministically recognized by a finite monoid if and only if it is

recognized by a non-deterministic data automaton.

We say that L is nd-recognizable whenever L is accepted by some non-
deterministic data automaton.

– Condition (†) ensures the decidability of the emptiness problem, i.e. if L is
recognized by a non-deterministic data automaton that satisfies the condition
(†), then we can test for its emptiness.

– The class of nd-recognizable data languages is strictly more expressive than
the class of recognizable data languages.

Proof (Sketch for the last point). Consider the data language L accepted by the
following non-deterministic data automaton:

We have that L = {(a, d1) . . . (a, dn) | ∃1 ≤ i < j < n, di = dj �= ⊥}. Moreover,
one can prove that L is not recognized by any (deterministic) data automaton.

✷

Corollary 1. The class of recognizable data languages is not closed under con-
catenation.

Proof. Consider the previous data language L. Although it is not recognizable,
this language is the concatenation of the two following recognizable data lan-
guages:

{(a, d1) . . . (a, dp) | di ∈ D} and {(a, d0) . . . (a, dn) | ∃1 ≤ j < n, dj = d0}
which are recognized by the following data automata:

258 P. Bouyer, A. Petit, and D. Thérien

Proposition 5. The class of nd-recognizable data languages is closed under
union, intersection, concatenation and finite iteration. It is not closed under
complementation.

6.2 More General Updates

The updates used in the model are very simple, we can only “write a data in a
memory”, but we cannot perform any calculation. So, the question is: does all
what precedes generalizes to models in which updates can perform calculations.
In this section, an update is now a general function up : Dk ×D −→ Dk.
Considering the simple updates of registers, we showed that the monoid played
a very important role: “different” monoids do not recognize the same data lan-
guages. Extending the updates, the relevance of the monoid is lost.

Proposition 6. Let L be a language over the finite alphabet Σ. Assume that L
is recognized by a finite monoid M . Then the data language

LM = {(a1,m1) . . . (an,mn) | a1 . . . an ∈ L}
over Σ and M is recognized by the monoid N = {1, x, y} with zx = x and zy = y.

Proof. We assume that L ⊆ Σ∗ is recognized by M . There exists a morphism
ϕ : Σ∗ −→ M , a subset P ⊆ M such that L = ϕ−1(P). Let us now define
k = 1 (there is only one register) and D = M . Then, for each z ∈ N , for each
a ∈ Σ, we define upz,a : M ×M −→M by upz,a(m, d) = mϕ(a). We define also
a morphism ψ : (Σ ×M)∗ −→ N by:

ψ(a,m) =
{

x if m ∈ P
y if m ∈M \ P

Then, using this construction, we can prove that N recognizes the data language
LM . ✷

However, allowing more general updates like functions Dk × D −→ Dk, the
results on equivalence between monoids and automata and on decidability are
always true, because these results do not depend on the updates.

7 Comparison with Timed Automata

One of the main motivation of this work was to find an algebraic characterization
of timed languages. It is clear that if we consider as data domain D a classical
time domain, then our data languages reduce to timed languages (since we can
easily handle the monotonicity condition on time).

Proposition 7. Let A be a (deterministic) timed automata with n clocks. There
exists a (deterministic) data automaton with 2n + 2 registers which recognizes
the same language.

An Algebraic Characterization of Data and Timed Languages 259

Proof (Sketch). We assume that the definition of a (deterministic) timed au-
tomaton is known, otherwise, we refer to [AD94].
Let us consider a deterministic timed automaton A with n clocks, {x1, . . . , xn}.
Without loss of generality, we can assume that there exists an equivalence on
Dn, namely ≡, such that if g is a guard appearing in A, then g is an equivalence
class of ≡. A clock x0 is added to the set of clocks and represents the universal
time, i.e. x0 is never reset in A. We construct a (deterministic) data automaton
B with 2n+ 2 registers in the following way:
The set of states of B is Q × F where Q is the set of states of A and F is the
set of functions f : {x0, . . . , xn} −→ {0, . . . , 2n+ 1} such that for all 0 ≤ i ≤ n,
f(xi) ∈ {i, n+ 1 + i}. Intuitively, the value of the clock xi will be alternatively
kept by the two registers i and n+ 1 + i.
The equivalence ∼ in B is defined by:

(θi)0≤i≤2n+1 ∼ (θ′i)0≤i≤2n+1
⇐⇒


∀f ∈ F , (θf(x0) − θf(xi))1≤i≤n ≡ (θ′f(x0) − θ′f(xi))1≤i≤n,(

θ0 < θn+1 ⇐⇒ θ′0 < θ′n+1
)
,(

θ0 > θn+1 ⇐⇒ θ′0 > θ′n+1
)

Consider a transition in A:

For each function f in F , we construct transitions in B in the following way:

where

– θ is any equivalence class of ∼,
– α = {0, 1, . . . , 2n+ 1} \ {f(x0), . . . , f(xn)},
– f ′ ∈ F is such that

f ′(x0) =
{
0 if f(x0) = n+ 1
n+ 1 if f(x0) = 0

f ′(xi) =




f(xi) if xi �∈ C
n+ 1 + i if xi ∈ C and f(xi) = i
i if xi ∈ C and f(xi) = n+ 1 + i

– θ′ is any equivalence class of ∼ such that

(βi)0≤i≤2n+1 ∈ θ′ =⇒ (βf ′(x0) − βf(xi))1≤i≤n ∈ g and βf ′(x0) > βf(x0)

260 P. Bouyer, A. Petit, and D. Thérien

The timed automaton B that we just constructed is deterministic and recognizes
the same timed language as A. ✷

Hence any timed language accepted by some deterministic timed automaton
(as defined by [AD94]) is also recognized by a data automaton with the timed
domain as data domain.
Conversely, data automata allow to recognize a much larger class of languages.
Indeed all the languages accepted by the extension of timed automata proposed
in [CG00] are also recognized by data automata. And even, for example, the
language {(a, τ)(a, 2τ) . . . (a, nτ) | τ ∈ Q+} is recognized by a data automa-
ton whereas it is known that this language cannot be recognized by a timed
automaton, even in the extension proposed by [DZ98].
We can also define more exotic languages which are monoid recognizable as for
instance the set {(a, t1) . . . (a, tn) | ∀i, ti is a prime number}. Namely, it suffices
to consider a monoid with 2 elements, 1 register and an equivalence relation of
index 2. The first class contains all the prime numbers and the second class all
the others. Note that the condition (†) holds.

8 Conclusion

We have proposed in this paper a notion of monoid recognizability for data
languages. We also gave an automaton characterization of this notion. Hence,
the picture for data languages is rather close to the one for classical formal
languages. As an instance of our results, we can deal with timed languages.
This theory has now to be developed. For instance, a notion of aperiodic data
language can naturally be defined and has to be studied.
In the timed framework, any timed language recognized by deterministic timed
automata is monoid recognizable. But the exact relations with the numerous sets
of timed languages that have been proposed in the literature, see for instance
[HRS98], have to be investigated.
Another interesting direction will also consist in understanding the exact relation
between the power of the monoid and the power of the updates. In this paper, we
have investigated the two extreme cases. If updates on registers can only choose
to store or to skip a data, then the structure of the monoid is crucial. On the
contrary, if the updates can do heavy computations, then the monoid is nearly
useless. All cases in between have still to be studied.

References

[ABB80] Autebert, J.-M., Beauquier, J., and Boasson, L. Langages sur des
alphabets infinis. Discrete Applied Mathematics, vol. 2:1–20, 1980.

[ACM97] Asarin, E., Caspi, P., and Maler, O. A Kleene Theorem for Timed Au-
tomata. In Proc. 12th IEEE Symp. Logic in Computer Science (LICS’97),
pp. 160–171. IEEE Computer Society Press, June 1997.

[AD94] Alur, R. and Dill, D. A Theory of Timed Automata. Theoretical Com-
puter Science, vol. 126(2):183–235, 1994.

An Algebraic Characterization of Data and Timed Languages 261

[AFH94] Alur, R., Fix, L., and Henzinger, T. A. Event-Clock Automata: a De-
terminizable Class of Timed Automata. In Proc. 6th Int. Conf. Computer
Aided Verification (CAV’94), vol. 818 of Lecture Notes in Computer Sci-
ence, pp. 1–13. Springer-Verlag, June 1994.

[Asa98] Asarin, E. Equations on Timed Languages. In Hybrid Systems: Com-
putation and Control , vol. 1386 of Lecture Notes in Computer Science.
Springer-Verlag, Apr. 1998.

[BP99] Bouyer, P. and Petit, A. Decomposition and Composition of Timed
Automata. In Proc. 26th Int. Coll. Automata, Languages, and Program-
ming (ICALP’99), vol. 1644 of Lecture Notes in Computer Science, pp.
210–219. Springer-Verlag, July 1999.

[BP01] Bouyer, P. and Petit, A. A Kleene/Büchi-like Theorem for Clock Lan-
guages. Journal of Automata, Languages and Combinatorics, 2001. To
appear.

[BPT01] Bouyer, P., Petit, A., and Thérien, D. An Algebraic Characterization
of Data and Timed Languages. Research report LSV-01-1, Laboratoire
Spécification et Vérification, Ecole Normale Supérieure de Cachan, 2001.

[CG00] Choffrut, C. and Goldwurm, M. Timed Automata with Periodic
Clock Constraints. Journal of Automata, Languages and Combinatorics,
vol. 5(4):371–404, 2000.

[CGP99] Clarke, E., Grumberg, O., and Peled, D. Model Checking . The MIT
Press, Cambridge, Massachusetts, 1999.

[DZ98] Demichelis, F. and Zielonka, W. Controlled Timed Automata. In Proc.
9th Int. Conf. Concurrency Theory (CONCUR’98), vol. 1466 of Lecture
Notes in Computer Science, pp. 455–469. Springer-Verlag, Sep. 1998.

[HKWT95] Henzinger, T. A., Kopke, P. W., and Wong-Toi, H. The Expressive
Power of Clocks. In Proc. 22nd Int. Coll. Automata, Languages, and Pro-
gramming (ICALP’95), vol. 944 of Lecture Notes in Computer Science,
pp. 335–346. Springer-Verlag, July 1995.

[HRS98] Henzinger, T. A., Raskin, J.-F., and Schobbens, P.-Y. The Regular
Real-Time Languages. In Proc. 25th Int. Coll. Automata, Languages,
and Programming (ICALP’98), vol. 1443 of Lecture Notes in Computer
Science, pp. 580–591. Springer-Verlag, July 1998.

[KF94] Kaminski, M. and Francez, N. Finite-Memory Automata. Theoretical
Computer Science, vol. 134:329–363, 1994.

[Min67] Minsky, M. Computation: Finite and Infinite Machines. Prentice Hall
Int., 1967.

[Pin86] Pin, J.-E. Varieties of Formal Languages. North Oxford, London et
Plenum, New-York, 1986.

[RS97] Rozenberg, G. and Salomaa, A., eds. Handbook of Formal Languages.
Springer-Verlag, 1997.

[Wil94] Wilke, T. Specifying Timed State Sequences in Powerful Decidable Logics
and Timed Automata. In Proc. 3rd Int. Symp. Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT’94), vol. 863 of Lecture
Notes in Computer Science, pp. 694–715. Springer-Verlag, Sep. 1994.

A Faster–than Relation
for Asynchronous Processes�

Gerald Lüttgen1 and Walter Vogler2

1 Department of Computer Science, Sheffield University, 211 Portobello Street,
Sheffield S1 4DP, U.K., g.luettgen@dcs.shef.ac.uk

2 Institut für Informatik, Universität Augsburg, D–86135 Augsburg, Germany,
vogler@informatik.uni-augsburg.de

Abstract. This paper introduces a novel (bi)simulation–based faster–
than preorder which relates asynchronous processes with respect to their
worst–case timing behavior. The studies are conducted for a conservative
extension of the process algebra CCS, called TACS, which permits the
specification of maximal time bounds of actions. The most unusual con-
tribution is in showing that the proposed faster–than preorder coincides
with two other preorders, one of which considers the absolute times at
which actions occur in system runs. The paper also develops the seman-
tic theory of TACS, addressing congruence properties, equational laws,
and abstractions from internal actions.

1 Introduction

Process algebras [5] provide a widely studied framework for reasoning about the
behavior of concurrent systems. Early approaches, including Milner’s CCS [15],
focused on semantic issues of asynchronous processes, where the relative speeds
between processes running in parallel is not bounded, i.e., one process may be ar-
bitrarily slower or faster than another. This leads to a simple and mathematically
elegant semantic theory analyzing the functional behavior of systems regarding
their causal interactions with their environments. To include time as an aspect of
system behavior, timed process algebras [4] were introduced. They usually model
synchronous systems where processes running in parallel are under the regime of
a common global clock and have a fixed speed. A well–known representative of
discrete timed process algebras is Hennessy and Regan’s TPL [11] which extends
CCS by a timeout operator and a clock prefix demanding that exactly one time
unitmust pass before activating the argument process. Research papers on timed
process algebras usually do not relate processes with respect to speed; the most
notable exception is work by Moller and Tofts [17] which considers a faster–than
preorder within a CCS–based setting, where processes are attached with lower
time bounds. In practice, however, often upper time bounds are known to a sys-
tem designer, determining how long a process may delay its execution. These can

� Research support was partly provided under NASA Contract No. NAS1–97046.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 262–276, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Faster–than Relation for Asynchronous Processes 263

be used to compare the worst–case timing behavior of processes. The assump-
tion of upper time bounds for asynchronous processes is exploited in distributed
algorithms and was studied by the second author [6,13,12,20,21,22] in settings
equipped with DeNicola and Hennessy’s testing semantics [9]. We re–emphasize
that, in our context, “asynchronous” means that the relative speeds of system
components are indeterminate.

In this paper we develop a novel (bi)simulation–based approach to compare
asynchronous systems with respect to their worst–case timing behavior. To do so,
we extend CCS by a rather specific notion of clock prefixing “σ.”, where σ stands
for one time unit or a single clock tick. In contrast to TPL we interpret σ.P as
a process which may delay at most one time unit before executing P . Similar
to TPL we view the occurrence of actions as instantaneous. This results in a
new process algebra extending CCS, to which we refer as Timed Asynchronous
Communicating Systems (TACS). To make our intuition of upper bound delays
precise, consider the processes σ.a.0 and a.0, where a denotes an action as in
CCS. While the former process may delay an enabled communication on a by
one time unit, the latter must engage in the communication, i.e., a is non–
urgent in σ.a.0 but urgent in a.0. However, if a communication on a is not
enabled, then process a.0 may wait until some communication partner is ready.
To enforce a communication resulting in the internal action τ , a time step in
TACS is preempted by an urgent τ . This is similar to timed process algebras
employing the maximal progress assumption [11] where, however, in contrast
to TACS, any internal computation is considered to be urgent. For TACS we
introduce a faster–than preorder which exploits upper time bounds: a process is
faster than another if both are linked by a relation which is a strong bisimulation
for actions and a simulation for time steps.

The main contribution of this paper is the formal underpinning of our pre-
order, justifying why it is a good candidate for a faster–than relation on pro-
cesses. There are at least two very appealing alternative definitions for such a
preorder. First, one could allow the slower process to perform extra time steps
when simulating an action or time step of the faster process. Second is the ques-
tion of how exactly the faster process can match a time step and the subsequent
behavior of the slower one. For illustrating this issue, consider the runs aσσb
and σaσb which might be exhibited by some processes. One can argue that the
first run is faster than the second one since action a occurs earlier in the run and
since action b occurs at absolute time two in both runs, measured from the start
of each run. Accordingly, we define a second variant of our faster–than preorder,
where a time step of the slower process is either simulated immediately by the
faster one or might be performed later on. As a key result we prove that both
variants coincide with our faster–than preorder. Subsequently, this paper devel-
ops the preorder’s semantic theory: we characterize the coarsest precongruence
contained in it, demonstrate that TACS with this precongruence is a conserva-
tive extension of CCS with bisimulation, and axiomatize our precongruence for
finite sequential processes. We also study the corresponding weak faster–than

264 G. Lüttgen and W. Vogler

preorder which abstracts from internal computation. All proofs can be found in
a technical report [14].

2 Timed Asynchronous Communicating Systems

The novel process algebra TACS conservatively extends CCS [15] by a concept
of global, discrete time. This concept is introduced to CCS by including the clock
prefixing operator “σ.” [11] with a non–standard interpretation: a process σ.P
can at most delay one time unit before having to execute process P , provided
that P can engage in a communication with the environment or in some internal
computation. The semantics of TACS is based on a notion of transition system
that involves two kinds of transitions, action transitions and clock transitions.
Action transitions, like in CCS, are local handshake communications in which
two processes may synchronize to take a joint state change together. A clock
represents the progress of time which manifests itself in a recurrent global syn-
chronization event, the clock transition. As indicated before, action and clock
transitions are not orthogonal concepts, since time can only pass if the process
under consideration cannot engage in an urgent internal computation.

Syntax. Let Λ be a countable set of actions not including the distinguished
unobservable, internal action τ . With every a ∈ Λ we associate a complementary
action a. We define Λ =df {a | a ∈ Λ} and take A to denote the set Λ∪Λ∪ {τ}.
Complementation is lifted to Λ ∪ Λ by defining a =df a. As in CCS [15], an
action a communicates with its complement a to produce the internal action τ .
We let a, b, . . . range over Λ ∪ Λ and α, β, . . . over A and represent (potential)
clock ticks by the symbol σ. The syntax of TACS is then defined as follows:

P ::= 0 | x | α.P | σ.P | P + P | P |P | P \ L | P [f] | µx.P

where x is a variable taken from a countably infinite set V of variables, L ⊆
A\{τ} is a restriction set, and f : A → A is a finite relabeling. A finite relabeling
satisfies the properties f(τ) = τ , f(a) = f(a), and |{α | f(α) �= α}| < ∞. The
set of all terms is abbreviated by P̂, and we define L =df {a | a ∈ L}. Moreover,
we use the standard definitions for the semantic sort sort(P) ⊆ Λ ∪ Λ of some
term P , open and closed terms, and contexts (terms with a “hole”). A variable
is called guarded in a term if each occurrence of the variable is within the scope
of an action prefix. Moreover, we require for terms of the form µx.P that x is
guarded in P . We refer to closed and guarded terms as processes, with the set
of all processes written as P.
Semantics. The operational semantics of a TACS term P ∈ P̂ is given by
a labeled transition system 〈P̂,A ∪ {σ},−→, P 〉, where P̂ is the set of states,
A∪{σ} the alphabet, −→⊆ P̂ ×A∪{σ}× P̂ the transition relation, and P the
start state. Before we proceed, it is convenient to introduce sets U(P), for all
terms P ∈ P̂, which include the urgent actions in which P can initially engage,
as discussed in the introduction. These sets are inductively defined along the

A Faster–than Relation for Asynchronous Processes 265

structure of P , as shown in Table 1. Strictly speaking, U(P) does not necessarily
contain all urgent actions. For example, for P = τ.0+σ.a.0 we have U(P) = {τ},
although action a is semantically also urgent, because the clock transition of P is
preempted according to our notion of maximal progress. However, in the sequel
we need the urgent action set of P only for determining whether P can initially
perform an urgent τ . For this purpose, our syntactic definition of urgent action
sets suffices since τ ∈ U(P) if and only if τ is semantically urgent in P .

Table 1. Urgent action sets
U(σ.P) =df ∅ U(0) = U(x) =df ∅ U(P \ L) =df U(P) \ (L ∪ L)
U(α.P) =df {α} U(P +Q) =df U(P) ∪ U(Q) U(P [f]) =df {f(α) |α ∈ U(P)}
U(µx.P) =df U(P) U(P |Q) =df U(P) ∪ U(Q) ∪ {τ | U(P) ∩ U(Q)
= ∅}

Now, the operational semantics for action transitions and clock transitions
can be defined via the structural operational rules displayed in Tables 2 and 3,
respectively. For action transitions, the rules are exactly the same as for CCS,
with the exception of our new clock–prefix operator. For clock transitions, our
semantics is set up such that, if τ ∈ U(P), then a clock tick σ of P is inhibited.
For the sake of simplicity, let us write P

γ−→ P ′ instead of 〈P, γ, P ′〉 ∈−→, for
γ ∈ A ∪ {σ}, and say that P may engage in γ and thereafter behave like P ′.
Sometimes it is also convenient to write P

γ−→ for ∃P ′. P γ−→ P ′.

Table 2. Operational semantics for TACS (action transitions)

Act
−−

α.P
α−→ P

Pre
P

α−→ P ′

σ.P
α−→ P ′

Rec
P

α−→ P ′

µx.P
α−→ P ′[µx.P/x]

Sum1
P

α−→ P ′

P +Q
α−→ P ′

Sum2
Q

α−→ Q′

P +Q
α−→ Q′

Com1
P

α−→ P ′

P |Q α−→ P ′|Q
Com2

Q
α−→ Q′

P |Q α−→ P |Q′
Com3

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′

Rel
P

α−→ P ′

P [f]
f(α)−→ P ′[f]

Res
P

α−→ P ′

P \ L α−→ P ′ \ L
α /∈ L ∪ L

The action–prefix term α.P may engage in action α and then behave like P .
If α �= τ , then it may also idle, i.e., engage in a clock transition to itself, as
process 0 does. The clock–prefix term σ.P can engage in a clock transition to P
and, additionally, it can perform any action transition that P can, since σ rep-
resents a delay of at most one time unit. The summation operator + denotes
nondeterministic choice such that P +Q may behave like P or Q. Time has to

266 G. Lüttgen and W. Vogler

proceed equally on both sides of summation, whence P+Q can engage in a clock
transition and delay the nondeterministic choice if and only if both P and Q can.
Consequently, e.g., process σ.a.0 + τ.0 cannot engage in a clock transition; in
particular, a has to occur without delay if it occurs at all. The restriction opera-
tor \L prohibits the execution of actions in L∪L and, thus, permits the scoping
of actions. P [f] behaves exactly as P where actions are renamed by the relabel-
ing f . The term P |Q stands for the parallel composition of P and Q according to
an interleaving semantics with synchronized communication on complementary
actions, resulting in the internal action τ . Again, time has to proceed equally on
both sides of the operator. The side condition ensures that P |Q can only progress
on σ, if it cannot engage in an urgent τ . Finally, µx. P denotes recursion, i.e.,
µx. P behaves as a distinguished solution to the equation x = P .

Table 3. Operational semantics for TACS (clock transitions)

tNil
−−

0 σ−→ 0
tRec

P
σ−→ P ′

µx.P
σ−→ P ′[µx.P/x]

tRes
P

σ−→ P ′

P \ L σ−→ P ′ \ L

tAct
−−

a.P
σ−→ a.P

tSum
P

σ−→ P ′ Q
σ−→ Q′

P +Q
σ−→ P ′ +Q′

tRel
P

σ−→ P ′

P [f] σ−→ P ′[f]

tPre
−−

σ.P
σ−→ P

tCom
P

σ−→ P ′ Q
σ−→ Q′

P |Q σ−→ P ′|Q′
τ /∈ U(P |Q)

The operational semantics for TACS possesses several important proper-
ties [11]. First, it is time–deterministic, i.e., processes react deterministically to
clock ticks, reflecting the intuition that progress of time does not resolve choices.
Formally, P σ−→ P ′ and P σ−→ P ′′ implies P ′ = P ′′, for all P, P ′, P ′′ ∈ P̂. Sec-
ond, according to our variant of maximal progress, P σ−→ if and only if τ /∈ U(P),
for all P ∈ P̂.

3 Design Choices for Faster–than Relations

In the following we define a reference faster–than relation, called naive faster–
than preorder, which is inspired by Milner’s notions of simulation and bisimula-
tion [15]. Our main objective is to convince the reader that this simple faster–
than preorder with its concise definition is not chosen arbitrarily. This is done
by showing that it coincides with two other preorders which formalize a notion
of faster–than as well and which are possibly more intuitive.

Definition 1 (Naive faster–than preorder). A relation R ⊆ P × P is a
naive faster–than relation if, for all 〈P,Q〉 ∈ R and α ∈ A:
1. P α−→ P ′ implies ∃Q′. Q α−→ Q′ and 〈P ′, Q′〉 ∈ R.

A Faster–than Relation for Asynchronous Processes 267

2. Q α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ R.
3. P σ−→ P ′ implies ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.
We write P ❂∼nQ if 〈P,Q〉 ∈ R for some naive faster–than relation R.
Note that the behavioral relation ❂∼n, as well as all other behavioral relations
on processes defined in the sequel, can be extended to open terms by the usual
means of closed substitution [15]. It is fairly easy to see that ❂∼n is a preorder,
i.e., it is transitive and reflexive; moreover, ❂∼n is the largest naive faster–than
relation. Intuitively, P ❂∼nQ holds if P is faster than (or as fast as) Q, and if both
processes are functionally equivalent (cf. Clauses (1) and (2)). Here, “P is faster
than Q” means the following: if P may let time pass and the environment of P has
to wait, then this should also be the case if one considers the slower (or equally
fast) process Q instead (cf. Clause (3)). However, if Q lets time pass, then P is
not required to match this behavior. Observe that we use bounded delays and,
accordingly, are interested in worst–case behavior. Hence, clock transitions of
the fast process must be matched, but not those of the slow process; behavior
after an unmatched clock transition can just as well occur quickly without the
time step, whence it is catered for in Clause (2).

As the naive faster–than preorder is the basis of our approach, it is very
important that its definition is intuitively convincing. There are two immediate
questions which arise from our definition.

Question I. The first question concerns the observation that Clauses (1) and (3)
of Def. 1 require that an action or a time step of P must be matched with just
this action or time step by Q. What if we are less strict? Maybe we should allow
the slower process Q to perform some additional time steps when matching the
behavior of P . This idea is formalized in the following variant of our faster–
than preorder. Here, σ−→+

and σ−→∗ stand for the transitive and the transitive
reflexive closure of the clock transition relation σ−→, respectively.
Definition 2 (Delayed faster–than preorder). A relation R ⊆ P × P is a
delayed faster–than relation if, for all 〈P,Q〉 ∈ R and α ∈ A:
1. P α−→ P ′ implies ∃Q′. Q σ−→∗ α−→ σ−→∗ Q′ and 〈P ′, Q′〉 ∈ R.
2. Q α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ R.
3. P σ−→ P ′ implies ∃Q′. Q σ−→+

Q′ and 〈P ′, Q′〉 ∈ R.
We write P ❂∼dQ if 〈P,Q〉 ∈ R for some delayed faster–than relation R.
As usual one can derive that ❂∼d is a preorder and that it is the largest delayed
faster–than relation. In the following we will show that both preorders ❂∼n and

❂∼d
coincide; the proof of this result is based on a syntactic relation � on terms.

Definition 3. The relation � ⊆ P̂ × P̂ is defined as the smallest relation satis-
fying the following properties, for all P, P ′, Q,Q′ ∈ P̂.

Always: (1) P � P (2) P � σ.P
If P ′ � P and Q′ � Q: (3) P ′|Q′ � P |Q (4) P ′ +Q′ � P +Q

(5) P ′ \ L � P \ L (6) P ′[f] � P [f]
If P ′ � P and x guarded in P : (7) P ′[µx. P/x] � µx. P

268 G. Lüttgen and W. Vogler

Note that relation� is not transitive and that it is also defined for open terms. Its
essential properties are: (a) P σ−→ P ′ implies P ′ � P , for any terms P, P ′ ∈ P̂,
and (b) � satisfies the clauses of Def. 1, also on open terms; hence, �|P×P ⊆ ❂∼n.
Crucial for this are Clauses (2) and (7) of the above definition. For (a) we
clearly must include Clause (2). Additionally, Clause (7) covers the unwinding
of recursion; for its motivation consider, e.g., the transition µx. σ.a.σ.b.x

σ−→
a.σ.b.µx. σ.a.σ.b.x.

Theorem 4 (Coincidence I). The preorders ❂∼n and ❂∼d coincide.

Question II. We now turn to a second question which might be raised regarding
the definition of the naive faster–than preorder ❂∼n. Should one add a fourth
clause to the definition of ❂∼n that permits, but not requires, the faster process P
to match a clock transition of the slower process Q? More precisely, P might
be able to do whatever Q can do after a time step, or P might itself have to
perform a time step to match Q. Hence, a candidate for a fourth clause is

(4) Q
σ−→ Q′ implies 〈P,Q′〉 ∈ R or ∃P ′. P σ−→ P ′ and 〈P ′, Q′〉 ∈ R .

Unfortunately, this requirement is not as sensible as it might appear at first sight.
Consider the processes P =df σ

n.a.0 | a.0 | a.0 and Q =df σ
n.a.0 |σn.a.0 | a.0, for

n ≥ 1. Obviously, we expect P to be faster than Q. However, Q can engage in a
clock transition to Q′ =df σ

n−1.a.0 |σn−1.a.0 | a.0. According to Clause (4) and
since P � σ−→, we would require P to be faster than Q′. This conclusion, however,
should obviously be deemed wrong according to our intuition of “faster than.”

The point of this example is that process P , which is in some components
faster than Q, cannot mimic a clock transition of Q with a matching clock
transition. However, since P is equally fast in the other components, it cannot
simply leave out the time step. The solution to this situation is to remember
within the relation R how many clock transitions P missed out and, in addi-
tion, to allow P to perform these clock transitions later. Thus, the computation
Q

σ−→n
a.0 | a.0 | a.0 a−→ 0 | a.0 | a.0 a−→ 0 |0 | a.0 of Q, where we have no clock

transitions between the two action transitions labeled by a, can be matched by P
with the computation P a−→ σn.a.0 |0 | a.0 σ−→n

a.0 |0 | a.0 a−→ 0 |0 | a.0. This
matching is intuitively correct, since the first a occurs faster in the considered
trace of P than in the trace of Q, while the second a occurs at the same absolute
time, measured from the start of each computation.

Definition 5 (Family of faster–than preorders). A family (Ri)i∈N of rela-
tions over P, indexed by natural numbers (including 0), is a family of indexed–
faster–than relations if, for all i ∈ N, 〈P,Q〉 ∈ Ri, and α ∈ A:
1. P α−→ P ′ implies ∃Q′. Q α−→ Q′ and 〈P ′, Q′〉 ∈ Ri.
2. Q α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ Ri.
3. P σ−→ P ′ implies (a) ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ Ri, or

(b) i > 0 and 〈P ′, Q〉 ∈ Ri−1.

A Faster–than Relation for Asynchronous Processes 269

4. Q σ−→ Q′ implies (a) ∃P ′. P σ−→ P ′ and 〈P ′, Q′〉 ∈ Ri, or
(b) 〈P,Q′〉 ∈ Ri+1.

We write P ❂∼iQ if 〈P,Q〉 ∈ Ri for some family of indexed–faster–than rela-
tions (Ri)i∈N.

Intuitively, P ❂∼iQmeans that process P is faster than processQ provided that P
may delay up to i additional clock ticks which Q does not need to match. Observe
that there exists a family of largest indexed–faster–than relations, but it is not
clear that these relations are transitive. We establish, however, a stronger result
by showing that our naive faster–than preorder ❂∼n coincides with

❂∼0. The proof
of this result uses a family of purely syntactic relations �i, for i ∈ N.

Definition 6. The relations �i ⊆ P̂ × P̂, for i ∈ N, are defined as the smallest
relations such that, for all P, P ′, Q,Q′, P1, . . . , Pn ∈ P̂ and i, j ∈ N:

Always: (1) P �i P
If P1 � P2 � · · · � Pn: (2a) P1 �i σj .Pn

If P ′ �i P and Q′ �i Q: (2b) σ.P ′ �i+1 P
(3) P ′|Q′ �i P |Q (4) P ′ +Q′ �i P +Q
(5) P ′ \ L �i P \ L (6) P ′[f] �i P [f]

If P ′ �i P , x guarded in P : (7a) P ′[µx. P/x] �i µx. P
If P ′ �i P , x guarded in P ′: (7b) µx. P ′ �i P [µx. P ′/x]

Our syntactic relations satisfy the following useful properties:

1. �i⊆�i+1, for all i ∈ N.
2. �⊆�0 ; in particular, P

σ−→ P ′ implies P ′ �0 P , for any P, P ′ ∈ P̂.
3. P ′ � P (whence, P σ−→ P ′) implies P �i P ′, for all i > 0 and any P, P ′ ∈ P̂.
For the proof of the following theorem, a series of further lemmas is needed,
which show in particular that the family of relations �i satisfies the conditions
of an indexed–faster–than family.

Theorem 7 (Coincidence II). The preorders ❂∼n and ❂∼0 coincide.

4 Semantic Theory of Our Faster–than Relation

A shortcoming of the naive faster–than preorder ❂∼n, as introduced above, is
that it is not compositional. As an example, consider the processes P =df σ.a.0
and Q =df a.0, for which P ❂∼nQ holds according to Def. 1. Intuitively, however,
this should not be the case, as we expect P = σ.Q to be strictly slower than Q.
Technically, if we compose P and Q in parallel with process R =df a.0, then
P |R σ−→ a.0|a.0, but Q|R � σ−→, since any clock transition of Q|R is preempted
due to τ ∈ U(Q|R). Hence, P |R �❂∼nQ|R, i.e., ❂∼n is not a precongruence.

The reason for P and Q being equally fast according to ❂∼n lies in our oper-
ational rules: we allow Q to delay arbitrarily since this might be necessary in a
context where no communication on a is possible. As R shows, we have to take
a refined view once we fix a context. In order to find the largest precongruence
contained in ❂∼n we must take the urgent action sets of processes into account.

270 G. Lüttgen and W. Vogler

Definition 8 (Strong faster–than precongruence). A relation R ⊆ P ×P
is a strong faster–than relation if, for all 〈P,Q〉 ∈ R and α ∈ A:
1. P α−→ P ′ implies ∃Q′. Q α−→ Q′ and 〈P ′, Q′〉 ∈ R.
2. Q α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ R.
3. P σ−→ P ′ implies U(Q) ⊆ U(P) and ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.
We write P ❂∼Q if 〈P,Q〉 ∈ R for some strong faster–than relation R.
Again, it is easy to see that ❂∼ is a preorder, that it is contained in ❂∼n, and
that ❂∼ is the largest strong faster–than relation. We also have that P is strictly
faster than σ.P , for all P ∈ P, which is to be expected intuitively.
Theorem 9 (Full abstraction). The preorder ❂∼ is the largest precongruence
contained in ❂∼n.

We conclude this section by showing that TACS is a conservative extension of
CCS. As noted earlier, we can interpret any process not containing a σ–prefix as
CCS process. Moreover, for all TACS processes, we can adopt the equivalence
strong bisimulation [15], in signs ∼, which is defined just as ❂∼ when omitting the
third clause of Def. 8. Additionally, we denote the process obtained from some
process P ∈ P when deleting all σ’s by σ–strip(P).

Theorem 10 (Conservativity). Let P, Q ∈ P.

1. Always P ❂∼Q implies P ∼ Q.
2. If P and Q do not contain any σ–prefixes, then P ❂∼Q if and only if Q ❂∼P

if and only if P ∼ Q.
3. Always P ∼ σ–strip(P); furthermore, P σ−→ P ′ implies P ∼ P ′.

This shows that our strong faster–than preorder refines strong bisimulation.
Moreover, if no bounded delays occur in some processes, then these processes
run in zero–time, and our strong faster–than preorder coincides with strong
bisimulation. That the bounded delays in TACS processes do not influence any
“functional” behavior, is demonstrated in the third part of the above result.

Axiomatization. Next, we provide a sound and complete axiomatization of our
strong faster–than precongruence ❂∼ for the class of finite sequential processes.
According to standard terminology, a process is called finite sequential if it does
neither contain any recursion operator nor any parallel operator. Although this
class seems to be rather restrictive at first sight, it is simple and rich enough
to demonstrate, by studying axioms, how exactly our semantic theory for ❂∼
in TACS differs from the one for strong bisimulation in CCS [15].

The axioms for our strong faster–than precongruence are shown in Table 4,
where any axiom of the form t = u should be read as two axioms t � u and
u � t. We write � t � u if t � u can be derived from the axioms. Axioms (A1)–
(A4), (D1)–(D4), and (C1)–(C5) are exactly the ones for strong bisimulation in
CCS [15]. Hence, the semantic theory of our calculus is distinguished from the

A Faster–than Relation for Asynchronous Processes 271

one for strong bisimulation by the additional Axioms (P1)–(P5). Intuitively,
Axiom (P1) reflects our notion of maximal progress or urgency, namely that a
process, which can engage in an internal urgent action, cannot delay. Axiom (P2)
states that, if an action occurs “urgent” and “non–urgent” in a term, then it is
indeed urgent, i.e., the non–urgent occurrence of the action may be transformed
into an urgent one. Axiom (P3) is similar in spirit, but cannot be derived from
Axiom (P2) and the other axioms. Axiom (P4) is a standard axiom in timed
process algebras and testifies to the fact that time is a deterministic concept
which does not resolve choices. Finally, Axiom (P5) encodes our elementary
intuition of σ–prefixes and speed within TACS, namely that any process t is
faster than process σ.t which might delay the execution of t by one clock tick.

Table 4. Axiomatization for finite sequential processes

(A1) t+ u = u+ t (D1) 0[f] = 0
(A2) t+ (u+ v) = (t+ u) + v (D2) (α.t)[f] = f(α).(t[f])
(A3) t+ t = t (D3) (σ.t)[f] = σ.(t[f])
(A4) t+ 0 = t (D4) (t+ u)[f] = t[f] + u[f]
(P1) σ.t+ τ.u = t+ τ.u (C1) 0 \ L = 0
(P2) a.t+ σ.a.u = a.t+ a.u (C2) (α.t) \ L = 0 α ∈ L ∪ L
(P3) t+ σ.t = t (C3) (α.t) \ L = α.(t \ L) α /∈ L ∪ L
(P4) σ.(t+ u) = σ.t+ σ.u (C4) (σ.t) \ L = σ.(t \ L)
(P5) t
 σ.t (C5) (t+ u) \ L = (t \ L) + (u \ L)

The correctness of our axioms relative to ❂∼ can be established as usual [15];
note that all axioms are sound for arbitrary processes, not only for finite sequen-
tial ones. To prove the completeness of our axiomatization for finite sequential
processes, we use a fairly involved notion of normal form; see [14] for details.

Theorem 11 (Correctness & completeness). For finite sequential processes
t and u we have: � t � u if and only if t ❂∼u.

How to extend our axiomatization to cover parallel composition, too, is non–
trivial and still an open problem. The difficulty lies in the lack of a suitable ex-
pansion law: observe that σ.a.0 |σ.b.0 is strictly faster than σ.a.σ.b.0+σ.b.σ.a.0.
However, since σ is synchronized, a more sensible expansion law would try to
equate σ.a.0 |σ.b.0 with σ.(a.0 | b.0). But this law does not hold, since the latter
process can engage in an a–transition to 0 | b.0 and is therefore strictly faster.
Thus, our situation is the same as in Moller and Tofts’ paper [17] which also
considers a bisimulation–type faster–than relation for asynchronous processes,
but which deals with best–case rather than worst–case timing behavior. It turns
out that the axioms for the sequential sub–calculus given in [17] are all true in
our setting; however, we have the additional Axioms (P1) and (P2) which both
are valid since σ is just a potential delay that can occur in certain contexts. Note
that also Moller and Tofts do not treat parallel composition completely.

272 G. Lüttgen and W. Vogler

Abstracting from internal computation. The strong faster–than precon-
gruence requires that two systems have to match each others action transitions
exactly, even those labeled with the internal action τ . Instead, one would like
to abstract from τ ’s and develop a faster–than precongruence from the point of
view of an external observer, as in CCS [15].

We start off with the definition of a naive weak faster–than preorder which
requires us to introduce the following auxiliary notations. For any action α we
define α̂ =df ε, if α = τ , and α̂ =df α, otherwise. Further, we let

ε=⇒ =df
τ−→∗

and write P α=⇒ Q if there exist R and S such that P ε=⇒ R
α−→ S

ε=⇒ Q.

Definition 12 (Naive weak faster–than preorder). A relation R ⊆ P ×P
is a naive weak faster–than relation if, for all 〈P,Q〉 ∈ R and α ∈ A:
1. P α−→ P ′ implies ∃Q′. Q α̂=⇒ Q′ and 〈P ′, Q′〉 ∈ R.
2. Q α−→ Q′ implies ∃P ′. P α̂=⇒ P ′ and 〈P ′, Q′〉 ∈ R.
3. P σ−→ P ′ implies ∃Q′, Q′′, Q′′′. Q ε=⇒ Q′′ σ−→ Q′′′ ε=⇒ Q′ and 〈P ′, Q′〉 ∈ R.
We write P ❂≈nQ if 〈P,Q〉 ∈ R for some naive weak faster–than relation R.
Since no urgent action sets are considered, it is easy to see that ❂≈n is not a
precongruence (cf. Def. 8).

Definition 13 (Weak faster–than preorder). A relation R ⊆ P × P is a
weak faster–than relation if, for all 〈P,Q〉 ∈ R and α ∈ A:
1. P α−→ P ′ implies ∃Q′. Q α̂=⇒ Q′ and 〈P ′, Q′〉 ∈ R.
2. Q α−→ Q′ implies ∃P ′. P α̂=⇒ P ′ and 〈P ′, Q′〉 ∈ R.
3. P σ−→ P ′ implies ∃Q′, Q′′, Q′′′. Q ε=⇒ Q′′ σ−→ Q′′′ ε=⇒ Q′, U(Q′′) ⊆ U(P),

and 〈P ′, Q′〉 ∈ R.
We write P ❂≈Q if 〈P,Q〉 ∈ R for some weak faster–than relation R.
Hence, ❂≈ is the largest weak faster–than relation and also a preorder. However,
❂≈ is still not a precongruence for summation, but the summation fix used for
other bisimulation–based timed process algebras proves effective for TACS, too.

Definition 14 (Weak faster–than precongruence). A relation R ⊆ P ×P
is a weak faster–than precongruence relation if, for all 〈P,Q〉 ∈ R and α ∈ A:
1. P α−→ P ′ implies ∃Q′. Q α=⇒ Q′ and P ′ ❂≈Q′.
2. Q α−→ Q′ implies ∃P ′. P α=⇒ P ′ and P ′ ❂≈Q′.
3. P σ−→ P ′ implies U(Q) ⊆ U(P), and ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.
We write P ❂�Q if 〈P,Q〉 ∈ R for a weak faster–than precongruence relation R.

Theorem 15 (Full–abstraction). The relation ❂≈ is a precongruence for all
operators except summation, and it is the largest such one contained in ❂≈n.
Moreover, the relation ❂� is the largest precongruence contained in ❂≈ , and hence
the largest one contained in ❂≈n.

A Faster–than Relation for Asynchronous Processes 273

5 Example: A 2–Place Storage

We demonstrate the utility of TACS by means of a small example dealing with
two implementations of a 2–place storage in terms of an array and a buffer,
respectively. Both can be defined using some definition of a 1–place buffer, e.g.,
Be =df µx.σ.in.out.x, which can alternately engage in communications with the
environment on channels in and out [15]. Observe that we assume a communi-
cation on channel out to be urgent, while process Be may autonomously delay
a communication on channel in by one clock tick. Finally, subscript e of pro-
cess Be should indicate that the 1–place buffer is initially empty. On the basis
of Be, one may now define a 2–place array 2arr and a 2–place buffer 2buf as
follows: 2arr =df Be |Be and 2buf =df (Be[c/out] |Be[c/in])\{c}. While 2arr
is simply the parallel composition of two 1–place buffers, 2buf is constructed
by sequencing two 1–place buffers, i.e., by taking the output of the first 1–place
buffer to be the input of the second one. Intuitively, we expect the array to be-
have functionally identical to the buffer, i.e., both should alternate between in
and out actions. However, 2arr should be faster than 2buf since it can always
output some of its contents immediately. In contrast, 2buf needs to pass any
item from the first to the second buffer cell, before it can output the item [15].

e Be

Bσ BσB

B

f e Be Bf

Bf B

B

σ

σ BeBe Bσ

out

out out

out out

B

B

Bf

B

σ

Bf

out
Be Be

Bσ Be

Bf Bσ

Bσ BσBf Be

Be Bf

Bσ Bff f Bf

out

out

out

B

τ

τ

in

σ

inσ

σin

in σ

in

σ

σ σ

in σ

in in

inin

in

σ σ

σσ

in in

in in

in in

σ

σ σ

σ

Fig. 1. Semantics of the array variant (left) and the buffer variant (right).

The semantics of the 2–place array 2arr and our 2–place buffer 2buf are
depicted in Fig. 1 on the left and right, respectively. For notational convenience
we let Bσ stand for the process in.out.Be and Bf for out.Be. Moreover, we leave
out the restriction operator \{c} in the terms depicted for the buffer variant.
The highlighted τ–transition indicates an urgent internal step of the buffer.
Hence, process (Bf|Bσ) \ {c} cannot engage in a clock transition. The other τ–

274 G. Lüttgen and W. Vogler

transition depicted in Fig. 1 is non–urgent. As desired, our semantic theory for
TACS relates 2arr and 2buf. Formally, this may be witnessed by the weak
faster–than relation given in Table 5, whence 2arr ❂≈ 2buf. Moreover, since
both 2arr and 2buf do not possess any initial internal transitions, they can
also easily be proved to be weak faster–than precongruent, according to Def. 14.
Thus, 2arr ❂� 2buf, i.e., the 2–place array is faster than the 2–place buffer in
all contexts, although functionally equivalent, which matches our intuition.

Table 5. Pairs in the considered weak faster–than relation

〈 (Be |Be) , (Be |Be) \ {c}〉 〈 (Bf |Be) , (Bf |Be) \ {c}〉 〈 (Be |Bf) , (Bf |Be) \ {c}〉
〈 (Bf |Be) , (Be |Bf) \ {c}〉 〈 (Bf |Bσ) , (Bf |Bσ) \ {c}〉 〈 (Bf |Bf) , (Bf |Bf) \ {c}〉
〈 (Bf |Bσ) , (Bσ|Bf) \ {c}〉 〈 (Be |Bσ) , (Be|Be) \ {c}〉 〈 (Bσ|Be) , (Be |Be) \ {c}〉
〈 (Bσ|Bf) , (Be |Bf) \ {c}〉 〈 (Bf |Bσ) , (Be|Bf) \ {c}〉 〈 (Be |Bf) , (Be |Bf) \ {c}〉
〈 (Bf |Bσ) , (Bf |Be) \ {c}〉 〈 (Bσ|Bf) , (Bf |Be) \ {c}〉 〈 (Bσ|Be) , (Bσ|Be) \ {c}〉
〈 (Bσ|Bσ) , (Bσ|Bσ) \ {c}〉 〈 (Bσ|Bf) , (Bf |Bσ) \ {c}〉 〈 (Bσ|Bf) , (Bσ|Bf) \ {c}〉
〈 (Be |Bσ) , (Bσ|Be) \ {c}〉

6 Discussion and Related Work

The literature includes a large number of papers on timed process algebras [4].
We concentrate only on those which consider faster–than relations.

Research comparing the worst–case timing behavior of asynchronous systems
initially centered around DeNicola and Hennessy’s testing theory [9]; it was first
conducted within the setting of Petri nets [6,13,20,21] and later for a TCSP–
style [19] process algebra, called PAFAS [12,22]. The justification for adopting a
testing approach is reflected in a fundamental result stating that the considered
faster–than testing preorder based on continuous–time semantics coincides with
the analogue testing preorder based on discrete–time semantics [12]. This result
depends very much on the testing setting and is different from the sort of dis-
cretization obtained for timed automata. In PAFAS, every action has the same
integrated upper time bound, namely 1. This gives a more realistic embedding of
ordinary process terms, while a CCS–term in TACS runs in zero-time. In con-
trast, TACS allows one to specify arbitrary upper time bounds easily by nesting
σ–prefixes. Also, the equational laws established for the faster–than testing pre-
order of PAFAS are quite complicated [22], while the simple axioms presented
here provide a clear, comprehensive insight into our semantics.

Regarding other research of faster-than relations, our approach is most closely
related to work by Moller and Tofts [17] who developed a bisimulation–based
faster–than preorder within the discrete–time process algebra �TCCS [16]. In
their approach, asynchronous processes are modeled without any progress as-
sumption. Instead, processes may idle arbitrarily long and, in addition, fixed
delays may be specified. Hence, their setting is focused on best–case behavior, as
the worst–case would be that for an arbitrary long time nothing happens. Moller
and Tofts present an axiomatization of their faster–than preorder for finite se-
quential processes and discuss the problem of axiomatizing parallel composition,

A Faster–than Relation for Asynchronous Processes 275

for which only valid laws for special cases are provided. It has to be mentioned
here that the axioms and the behavioral preorder of Moller and Tofts do not
completely correspond. In fact, writing σ for what is actually written (1) in [17],
a.σ.b.0+ a.b.0 is equally fast as a.b.0, which does not seem to be derivable from
the axioms. Also, the intuition behind relating these processes is not so clear,
since a.a.σ.b.0 + a.a.b.0 is not necessarily faster than or equally fast as a.a.b.0.
Since the publication in 1991, also Moller and Tofts noticed this shortcoming of
their preorder [priv. commun.]. The problem seems to lie in the way in which a
transition P a−→ P ′ of the faster process is matched: For intuitive reasons, the
slower process must be allowed to perform time steps before engaging in a. Now
the slower process is ahead in time, whence P ′ should be allowed some additional
time steps. What might be wrong is that P ′ must perform these additional time
steps immediately. We assume that a version of our indexed faster–than relation,
which relaxes the latter requirement, would be more satisfactory. It would also
be interesting to study the resulting preorder and compare it in detail to our
faster–than precongruence.

A different idea for relating processes with respect to speed was investigated
by Corradini et al. [8] within the so–called ill–timed–but–well–caused approach [1,
10]. The key of this approach is that components attach local time stamps to
actions; however, actions occur as in an untimed algebra. Hence, in a sequence
of actions exhibited by different processes running in parallel, local time stamps
might decrease. Due to these “ill–timed” runs, the faster–than preorder of Cor-
radini et al. is difficult to relate to our approach.

Other research compares the efficiency of untimed CCS–like terms by count-
ing internal actions either within a testing framework [7,18] or a bisimulation–
based setting [2,3]. Except in [7] which does not consider parallel composition,
runs of parallel processes are seen to be the interleaved runs of their component
processes. Consequently, e.g., (τ.a.0 | τ.a.b.0) \ {a} is as efficient as τ.τ.τ.b.0,
whereas in our setting (σ.a.0 |σ.a.b.0) \ {a} is strictly faster than σ.σ.τ.b.0.

7 Conclusions and Future Work

To consider the worst–case efficiency of asynchronous processes, i.e., those pro-
cesses whose functional behavior is not influenced by timing issues, we defined
the process algebra TACS. This algebra conservatively extends CCS by a clock
prefix which represents a delay of at most one time unit, and it takes time to
be discrete. For TACS processes we then introduced a simple (bi)simulation–
based faster–than preorder and showed this to coincide with two other variants
of the preorder, both of which might be intuitively more convincing but which
are certainly more complicated. We also developed a semantic theory for our
preorder, including a coarsest precongruence result and an axiomatization for
finite sequential processes, and investigated a corresponding “weak” preorder.

Regarding future work, we intend to extend our axiomatization to larger
classes of processes and also to our weak faster–than preorder, as well as to
implement TACS in an automated verification tool.

276 G. Lüttgen and W. Vogler

Acknowledgments. We would like to thank the anonymous referees for their
valuable comments and suggestions.

References

[1] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inform.,
33(4):317–350, 1996.

[2] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta
Inform., 29(8):737–760, 1992.

[3] S. Arun-Kumar and V. Natarajan. Conformance: A precongruence close to bisim-
ilarity. In STRICT ’95, Workshops in Comp., pp. 55–68. Springer-Verlag, 1995.

[4] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing: Real Time
and Discrete Time, ch. 10. In Bergstra et al. [5], 2001.

[5] J.A. Bergstra, A. Ponse, and S.A. Smolka, eds. Handbook of Process Algebra.
Elsevier Science, 2001.

[6] E. Bihler and W. Vogler. Efficiency of token-passing MUTEX-solutions. In
ICATPN ’98, vol. 1420 of LNCS, pp. 185–204. Springer-Verlag, 1998.

[7] R. Cleaveland and A. Zwarico. A theory of testing for real time. In LICS ’91, pp.
110–119. IEEE Computer Society Press, 1991.

[8] F. Corradini, R. Gorrieri, and M. Roccetti. Performance preorder and competitive
equivalence. Acta Inform., 34(11):805–835, 1997.

[9] R. DeNicola and M.C.B. Hennessy. Testing equivalences for processes. TCS,
34:83–133, 1983.

[10] R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with dura-
tional actions. TCS, 140(1):73–94, 1995.

[11] M. Hennessy and T. Regan. A process algebra for timed systems. Inform. and
Comp., 117:221–239, 1995.

[12] L. Jenner and W. Vogler. Comparing the efficiency of asynchronous systems. In
ARTS ’99, vol. 1601 of LNCS, pp. 172–191. Springer-Verlag, 1999.

[13] L. Jenner and W. Vogler. Fast asynchronous systems in dense time. TCS, 254:379–
422, 2001.

[14] G. Lüttgen and W. Vogler. A faster-than relation for asynchronous processes.
Techn. Rep. 2001-2, ICASE, NASA Langley Research Center, USA, 2001.

[15] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[16] F. Moller and C. Tofts. A temporal calculus of communicating systems. In

CONCUR ’90, vol. 458 of LNCS, pp. 401–415. Springer-Verlag, 1990.
[17] F. Moller and C. Tofts. Relating processes with respect to speed. In CONCUR ’91,

vol. 527 of LNCS, pp. 424–438. Springer-Verlag, 1991.
[18] V. Natarajan and R. Cleaveland. An algebraic theory of process efficiency. In

LICS ’96, pp. 63–72. IEEE Computer Society Press, 1996.
[19] S. Schneider. An operational semantics for timed CSP. Inform. and Comp.,

116(2):193–213, 1995.
[20] W. Vogler. Faster asynchronous systems. In CONCUR ’95, vol. 962 of LNCS, pp.

299–312. Springer-Verlag, 1995.
[21] W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In

ICALP ’97, vol. 1256 of LNCS, pp. 538–548. Springer-Verlag, 1997.
[22] W. Vogler and L. Jenner. Axiomatizing a fragment of PAFAS. ENTCS, 39, 2000.

On the Power of Labels in Transition Systems

Jǐŕı Srba�

BRICS��

Dept. of Computer Science, University of Aarhus, Denmark
srba@brics.dk

Abstract. In this paper we discuss the role of labels in transition sys-
tems with regard to bisimilarity and model checking problems. We sug-
gest a general reduction from labelled transition systems to unlabelled
ones, preserving bisimilarity and satisfiability of µ-calculus formulas.
We apply the reduction to the class of transition systems generated
by Petri nets and pushdown automata, and obtain several decidabil-
ity/complexity corollaries for unlabelled systems. Probably the most
interesting result is undecidability of strong bisimilarity for unlabelled
Petri nets.

1 Introduction

Formal methods for verification of infinite-state systems have been an active
area of research with a number of positive decidability results. In particular,
verification techniques for concurrent systems defined by process algebras like
CCS, ACP or CSP, pushdown systems, Petri nets, process rewrite systems and
others have attracted a lot of attention. There are two central questions about
decidability (complexity) of equivalence and model checking problems:

– Equivalence checking (see [Mol96]):
Given two (infinite-state) systems, are they equal with regard to some equiv-
alence notion?

– Model checking (see [BE97]):
Given an (infinite-state) transition system and a formula φ of some suitable
logic, does the system satisfy the property described by φ?

Both these problems have an interesting and unifying aspect in common. They
can be defined independently on the computational model by means of labelled
transition systems. All the models mentioned above give rise to a certain type
of (infinite) labelled transition system and this is considered to be their desired
semantics. Equivalence and model checking problems can be defined purely in
terms of these transition systems.

In the first part of the paper we discuss the role of labels of such transition
systems. There are two aspects of the branching structure described by a labelled
� The author is supported in part by the GACR, grant No. 201/00/0400.
�� Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 277–291, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

278 J. Srba

transition system T . First, given a state of T , there can be several outgoing edges
with different labels. Second, given a state of T and a label a, there can be several
outgoing edges under the same label a. We claim that for our purposes only the
second property is the essential one. In other words, given a labelled transition
system, we can construct another transition system where all edges are labelled
by the same label, i.e., the labels are in fact completely irrelevant. We call such
systems unlabelled transition systems. What is important is the fact that our
construction preserves the answers to both the questions we are interested in
— equivalence checking (and we have chosen strong bisimilarity as the notion
of equivalence) and model checking with action-based modal µ-calculus as the
chosen logic for expressing properties of labelled transition systems.

In the second part we focus on two specific classes of infinite-state systems,
namely Petri nets and pushdown systems. Petri nets are a typical example of fully
parallel models of computation, whereas pushdown systems can model sequential
stack-like process behaviours. Both Petri nets and pushdown systems generate
(in general infinite) labelled transition systems. The question is whether the
transformed unlabelled transition systems (given by the construction mentioned
in the previous paragraph) are still definable by the chosen formalism of Petri
nets resp. pushdown automata. The answer is shown to be positive for both our
models — there are even polynomial time transformations. This implies several
decidability/complexity results about bisimilarity and model checking problems
for unlabelled Petri nets and pushdown systems.

Probably the most interesting corollary is the application of the transforma-
tion to Petri nets. We prove that strong bisimilarity for unlabelled Petri nets
(where the set of labels is a singleton set) is undecidable. This is stronger result
than undecidability of strong bisimilarity for labelled Petri nets given by Jan-
car [Jan95]. The undecidability for unlabelled Petri nets contrasts to a positive
decidability result for the subclass of Petri nets which are deterministic [Jan95,
Vog92], i.e., for any marking M and a label a there is at most one outgoing
transition from M labelled by a. This again demonstrates that the role of labels
is not important for decidability questions and what is crucial is the branching
structure induced by transitions with the same label.

Note: full and extended version of this paper appears as [Srb01].

2 Basic Definitions

Definition 1 (Labelled transition system). A labelled transition system is
a triple T = (S,Act,−→) where S is a set of states (or processes), Act is a
set of labels (or actions) such that S ∩ Act = ∅, and −→⊆ S × Act × S is a
transition relation, written α a−→ β for (α, a, β) ∈−→.

In what follows we assume that Act is a finite set. As usual we extend the
transition relation to the elements of Act∗. We also write α −→∗ β iff ∃w ∈ Act∗
such that α w−→ β. A state β is reachable from a state α, iff α −→∗ β. Moreover,
we write α
−→ for α ∈ S iff there is no β ∈ S and a ∈ Act such that α a−→ β.
We call a labelled transition system normed iff ∀s ∈ S. ∃s′ ∈ S: s −→∗ s′
−→.

On the Power of Labels in Transition Systems 279

Definition 2. Let T = (S,Act,−→) be a labelled transition system and s ∈ S.
By Ts we denote a labelled transition system restricted to states of T reachable
from s. More precisely, Ts = (Ss,Act,−→s) where Ss = {s′ ∈ S | s −→∗ s′} and
s1

a−→s s2 iff s1
a−→ s2 and s1, s2 ∈ Ss.

Now, we introduce the notion of (strong) bisimilarity.

Definition 3 (Bisimulation). Let T = (S,Act,−→) be a labelled transition
system. A binary relation R ⊆ S × S is a relation of bisimulation iff whenever
(α, β) ∈ R then for each a ∈ Act:
– if α a−→ α′ then β a−→ β′ for some β′ such that (α′, β′) ∈ R
– if β a−→ β′ then α a−→ α′ for some α′ such that (α′, β′) ∈ R.

Two states α, β ∈ S are bisimilar in T , written α ∼T β, iff there is a bisimulation
R such that (α, β) ∈ R.

Bisimilarity has also an elegant characterisation in terms of bisimulation games
[Tho93,Sti95]. A bisimulation game on a pair of states α, β ∈ S is a two-player
game of an “attacker” and a “defender”. The attacker chooses one of the states
and makes an a−→-move for some a ∈ Act. The defender must respond by making
an a−→-move from the other state under the same label a. Now the game repeats,
starting from the new processes. If one player cannot move, the other player wins.
If the game is infinite, the defender wins. States α and β are bisimilar iff the
defender has a winning strategy (and non-bisimilar iff the attacker has a winning
strategy).

Definition 4 (Unlabelled transition system). Let T = (S,Act,−→) be a
labelled transition system. We call T unlabelled transition system whenever Act
is a singleton set, i.e., |Act| = 1.

Remark 1. If it is the case that |Act| = 1 then (for our purposes) we simply write
−→ instead of a−→. We also forget about the second component in the definition
of a labelled transition system, i.e., we can denote an unlabelled transition system
by T = (S,−→) where −→⊆ S × S.
We define a powerful logic for labelled transition systems — modal µ-calculus.

Definition 5 (Syntax of modal µ-calculus). Let Var be a set of variables
and Act a set of action labels such that Var ∩ Act = ∅. The syntax of modal
µ-calculus is defined as follows:

φ ::= tt | X | φ1 ∧ φ2 | ¬φ | 〈a〉φ | µX.φ
where tt stands for “true”, X ranges over Var and a over Act. There is a stan-
dard restriction on the formulas: we consider only formulas where each occur-
rence of a variable X is within a scope of an even number of negation symbols.

Given a labelled transition system T = (S,Act,−→), we interpret a formula φ
as follows. Assume a valuation Val : Var → 2S .

280 J. Srba

[[tt]]Val,T = S
[[X]]Val,T = Val(X)

[[φ1 ∧ φ2]]Val,T = [[φ1]]Val,T ∩ [[φ2]]Val,T
[[¬φ]]Val,T = S � [[φ]]Val,T

[[〈a〉φ]]Val,T = {s | ∃s′. (s a−→ s′ ∧ s′ ∈ [[φ]]Val,T)}
[[µX.φ]]Val,T =

⋂{S′ ⊆ S | [[φ]]Val[S′/X],T ⊆ S′}

Here Val[S′/X] stands for a valuation function such that Val[S′/X](X) = S′

and Val[S′/X](Y) = Val(Y) for X
= Y . We say that a formula φ is satisfied in a
state s of T , and we write T, s |= φ, if for all valuations Val we have s ∈ [[φ]]Val,T .

Remark 2. The logic defined above without the fixed-point operator µX.φ is
called Hennessy-Milner logic [HM85].

3 From Labelled to Unlabelled Transition Systems

In this section we present a transformation from labelled transition systems to
unlabelled ones, preserving bisimilarity and satisfiability of µ-calculus formulas.

Let T = (S,Act,−→) be a labelled transition system. We define a trans-
formed unlabelled transition system T̂ = (Ŝ,−→). We reuse the relation symbol
−→ without causing confusion, since in the system T it is a ternary relation
and in T̂ it is a binary relation. W.l.o.g. assume that Act = {1, 2, . . . , n} for
some n > 0. We define the system T̂ = (Ŝ,−→) as follows:

Ŝ = S ∪ {rk(s,a,s′) | 0 ≤ k ≤ a ∧ s
a−→ s′} ∪ {dks | s ∈ S ∧ 0 ≤ k ≤ n}

−→ = {(s, r0(s,a,s′)), (r
0
(s,a,s′), s

′) | s a−→ s′} ∪
{(rk(s,a,s′), r

k+1
(s,a,s′)) | s

a−→ s′ ∧ 0 ≤ k < a} ∪
{(s, d0s) | s ∈ S} ∪ {(dks , dk+1

s) | s ∈ S ∧ 0 ≤ k < n}.
For a better understanding of the transformation take a look at Figure 1 where
a way how to transform a transition s

a−→ s′ is drawn. The idea consists in
splitting each transition s a−→ s′ labelled by a ∈ N0 with an intermediate state
(the r0(s,a,s′) state) out of which goes a newly added linear path of length a. The
ds states add a linear path of length n + 1 to each state from S and serve for
distinguishing the r-states from the original ones.

Notice that if T is a finite-state system then the size of T̂ is polynomially
bounded by the size of T . In fact, we could add only one linear path of length
n+1 with appropriate links into the path starting in the states from S and in the
r0-states. However, for technical convenience in Section 4, we use the previously
described construction.

Remark 3. It is an easy observation that T̂ is a normed transition system.

On the Power of Labels in Transition Systems 281

�� ���� ��s
a ���� ���� ��s′

���� ���� ��dns . . .�� �� ���� ��d0s
�� �� ���� ��d0

s′ �� . . . ���� ���� ��dn
s′

�� ���� ��s

��

���� ���� ��r0(s,a,s′) ��

��

�� ���� ��s′

��

�� ���� ��r1(s,a,s′) ���� ���� ��r2(s,a,s′) �� ���� ���� ��ra(s,a,s′)

Fig. 1. Transformation of a transition s a−→ s′

3.1 Bisimilarity

Let T = (S,Act,−→) be a labelled transition system and let s ∈ S. We define
a set of finite norms of s by N (s) = {|w| | ∃s′ ∈ S : s w−→ s′
−→} where |w| is
the length of w. The following proposition is a standard one.

Proposition 1. Let T = (S,Act,−→) be a labelled transition system and
s1, s2 ∈ S. Then s1 ∼T s2 implies that N (s1) = N (s2).

Our aim is to show that for a pair of states s1 and s2 of a labelled transition
system T holds that s1 ∼T s2 if and only if s1 ∼T̂ s2.
Lemma 1. Let T = (S,Act,−→) be a labelled transition system and s1, s2 ∈ S
be a pair of states. If s1 ∼T s2 then s1 ∼T̂ s2.

Proof. We can naturally define a wining strategy for the defender in T̂ under
the assumption that s1 ∼T s2. Details can be found in [Srb01]. ��
Before showing the other implication, we prove the following property.

Property 1. The attacker in T̂ has a winning strategy from any pair of states
s1, s2 ∈ Ŝ such that s1
∈ S and s2 ∈ S, or s1 ∈ S and s2
∈ S.
Proof. Assume w.l.o.g. that s1
∈ S and s2 ∈ S. The other case is symmetric.
There are three possibilities if s1
∈ S.
– Let s1 = dks for some s ∈ S and 0 ≤ k ≤ n, or s1 = rk(s,a,s′) for some
s, s′ ∈ S, a ∈ Act and 0 < k ≤ a. In both these cases n + 1
∈ N (s1) and
n + 1 ∈ N (s2). Because of Proposition 1 we get s1
∼T̂ s2 and the attacker
in T̂ has a winning strategy.

– Let s1 = r0(s,a,s′) for some s, s′ ∈ S and a ∈ Act. Now the attacker has

the following winning strategy in T̂ . He makes a move r0(s,a,s′) −→ r1(s,a,s′).

Assume a defender’s answer s2 −→ s′2 for an arbitrary s′2 ∈ Ŝ. Obviously
either n ∈ N (s′2) or n+ 2 ∈ N (s′2) and max [N (r1(s,a,s′))] < n. Again, using
Proposition 1, the attacker has a winning strategy. ��

282 J. Srba

Lemma 2. Let T = (S,Act,−→) be a labelled transition system and s1, s2 ∈ S
be a pair of states. If s1 ∼T̂ s2 then s1 ∼T s2.

Proof. Knowing that the defender has a winning strategy in T̂ from s1 and s2,
we establish a winning strategy for the defender in T from s1 and s2. Suppose
that the attacker’s move in T is si

a−→ s′i for i ∈ {1, 2}. Then it is possible to
perform a series of two moves si −→ r0(si,a,s′

i)
−→ s′i in T̂ . Because of Property 1,

the defender in T̂ has a response to this series of moves only by performing
s3−i −→ r0(s3−i,b,s′

3−i)
−→ s′3−i for some b ∈ Act and s′3−i ∈ S where

s′1 ∼T̂ s′2. (1)

Notice that a = b, otherwise the attacker has a winning strategy in T̂ from
r0(si,a,s′

i)
and r0(s3−i,b,s′

3−i)
by performing a move r0(si,a,s′

i)
−→ r1(si,a,s′

i)
. Using

Property 1, the defender must answer with r0(s3−i,b,s′
3−i)
−→ r1(s3−i,b,s′

3−i)
. How-

ever, the attacker has a winning strategy now since a − 1 ∈ N (r1(si,a,s′
i)
) and

a− 1
∈ N (r1(s3−i,b,s′
3−i)

) whenever a
= b — Proposition 1. This implies that the

defender in T can perform s3−i
a−→ s′3−i and because of (1), the defender in T

has a winning strategy from s′1 and s′2. Thus s1 ∼T s2. ��
By Lemma 1 and Lemma 2 we can conclude with the following theorem.

Theorem 1. Let T = (S,Act,−→) be a labelled transition system and s1, s2 ∈ S
be a pair of states. Let T̂ be the corresponding unlabelled transition system. Then

s1 ∼T s2 if and only if s1 ∼T̂ s2.

3.2 Model Checking

We turn our attention to the model checking problem now. We show that there
is a polynomial time transformation of any µ-calculus formula φ into φ̂ such that
T, s |= φ iff T̂ , s |= φ̂. When interpreting a µ-calculus formula on an unlabelled
transition system T̂ , we write ♦ instead of 〈a〉, since a ∈ Act is the only label
and hence it is irrelevant. We also define a dual operator � as �φ ≡ ¬♦¬φ and
ff as ff ≡ ¬tt.

Let T = (S,Act,−→) be a labelled transition system such that Act =
{1, 2, . . . , n} and let T̂ = (Ŝ,−→) be the corresponding unlabelled system. First
of all, we write a formula L(a) such that

[[L(a)]]Val′,T̂ = {r0(s,a,s′) | ∃s, s′ ∈ S : s a−→ s′} (2)

for any valuation Val′ : Var → 2Ŝ . We define L(a) ≡ ♦n+1tt ∧ ♦(�aff∧♦a−1tt)
where ♦0φ ≡ φ and ♦k+1φ ≡ ♦(♦kφ), and similarly �0φ ≡ φ and �k+1φ ≡
�(�kφ). Let T̂ , s1 |= L(a). The left subformula in L(a), namely ♦n+1tt, ensures

On the Power of Labels in Transition Systems 283

that the state s1 is not of the form rk(s,b,s′) for k > 0, nor of the form dks for
k ≥ 0. The second subformula in the conjunction says that there is a one step
transition from s1, reaching a state s′1 of the form r1(s,b,s′) — should s′1 ∈ S, or s′1
be of the form r0(s,b,s′), or s

′
1 be of the form d0s, then the formula �aff can never

be satisfied. Moreover, the formula �aff guarantees that there are at most a− 1
transitions from r1(s,b,s′) and the formula ♦a−1tt finally ensures that at least a−1
transitions can be performed from r1(s,b,s′). Hence a = b and (2) is established.

Let us now consider another formula defined by State ≡ ♦tt ∧ �♦ntt.
Obviously, [[State]]Val′,T̂ = S for any valuation Val′ : Var → 2Ŝ . We are now

ready to define φ̂ for a given µ-calculus formula φ. The definition follows:

t̂t = tt ∧ State
X̂ = X ∧ State

φ̂1 ∧ φ2 = φ̂1 ∧ φ̂2 ∧ State
¬̂φ = ¬φ̂ ∧ State

µ̂X.φ = (µX.φ̂) ∧ State
〈̂a〉φ = ♦

(L(a) ∧ ♦φ̂
) ∧ State.

Theorem 2. Let T = (S,Act,−→) be a labelled transition system and s ∈ S.
Let φ be a µ-calculus formula. Then

T, s |= φ if and only if T̂ , s |= φ̂.

Proof. By structural induction on φ it is provable that

[[φ]]Val,T = [[φ̂]]Val′,T̂

for arbitrary valuations Val : Var → 2S and Val′ : Var → 2Ŝ such that Val(X) =
Val′(X) ∩ S for all X ∈ Var. Full proof can be found in [Srb01]. ��

Remark 4. Let us consider temporal operators EFφ and EGφ defined by
EFφ ≡ µX.φ ∨ 〈−〉X and EGφ ≡ ¬µX.¬φ ∨ (¬〈−〉¬X ∧ 〈−〉tt) such that
〈−〉φ ≡ ∨

a∈Act 〈a〉φ. We define the transformed formulas ÊFφ (using only EF
operator) and ÊGφ (using only EG operator) as follows:

ÊFφ = EFφ̂ ∧ State
ÊGφ = EG

((State ∨∨
a∈Act L(a)

) ∧ State =⇒ φ̂
)
∧ State.

Note that still [[φ̂]]Val′,T̂ ⊆ S for any formula φ and any valuation Val′ : Var →
2Ŝ . Let s ∈ S. Then T, s |= EFφ iff T̂ , s |= ÊFφ. If moreover Ts satisfies
condition

∀s′ ∈ Ss. ∃s′′ ∈ Ss. ∃a ∈ Act : s′ a−→ s′′ (3)

284 J. Srba

then T, s |= EGφ iff T̂ , s |= ÊGφ. This enables to transform formulas of even
weaker logics than modal µ-calculus (such as Hennessy-Milner logic, possibly
equipped with the operator EF , respectively EG) into unlabelled formulas of
the same logic. Hennessy-Milner logic with the operators EF and EG is called
unified system of branching-time logic (UB) [BAMP83] and the fragments of UB
containing only the operator EFφ (EGφ) are referred to as EF -logic (EG-logic).

Similarly, the until operators E [φUψ] and A [φUψ] of CTL [CE81] — defined
by E [φUψ] ≡ µX.ψ∨ (φ∧〈−〉X) and A [φUψ] ≡ µX.ψ∨ (

φ∧〈−〉tt∧¬〈−〉¬X)
— can be transformed:

̂E [φUψ] = E [(State =⇒ φ̂) U ψ̂] ∧ State
̂A [φUψ] = χ̂AU where χAU = ¬

(
E [¬ψ U (¬φ ∧ ¬ψ)] ∨ EG(¬ψ)

)
.

In the case of A [φUψ] we use the equivalence A [φUψ] ⇐⇒ χAU from [CES86].
Again, for any s ∈ S it holds that T, s |= E [φUψ] iff T̂ , s |= ̂E [φUψ]. Moreover
T, s |= A [φUψ] iff T̂ , s |= ̂A [φUψ] under the assumption of condition (3). This
enables to transform also the logic CTL.

4 Applications

In this section we show how the previous results can be applied to bisimilar-
ity/model checking of infinite-state systems. We focus in particular on a typical
representative of parallel models — Petri nets (see e.g. [Pet81]) — and sequen-
tial processes — pushdown systems (see e.g. [Mol96]). We have to show that
the class of transition systems generated by these models is closed under the
transformation from labelled to unlabelled systems as presented in the previous
section.

First of all, we remind the reader of the fact that our transformation works
immediately for finite-state transition systems. In the following corollary we
consider the model checking problem with these logics: Hennessy-Milner logic,
EF -logic, EG-logic, UB, CTL and modal µ-calculus.

Corollary 1. Let T = (S,Act,−→) be a finite-state labelled transition system,
i.e., |S|, |Act| < ∞. There is a polynomial time reduction from the bisimilarity
(model) checking problem for T to the bisimilarity (model) checking problem for
T̂ , where T̂ is an unlabelled (and finite-state) transition system.

Proof. Immediately from Theorem 1, Theorem 2 and Remark 4. In the case of
EG-logic, UB and CTL we can ensure the validity of condition (3) of Remark 4
by adding a self-loop s u−→ s (u is a fresh action) to every state s ∈ S such that
s
−→. This does not influence satisfiability of EG, UB and CTL formulas. ��

4.1 Petri Nets

It is a well known fact that the bisimilarity checking problem is undecidable
for labelled Petri nets [Jan95]. The technique of the proof is based on a reduc-
tion from the counter machine of Minsky and the labelling is essential for the

On the Power of Labels in Transition Systems 285

reduction. It is also known that bisimilarity is decidable for the class of Petri
nets which are deterministic up to bisimilarity [Jan95], i.e., F-deterministic nets
of Vogler [Vog92]. Bisimilarity between a labelled Petri net and a finite-state
system is decidable [JM95,JKM98] and EXPSPACE-hard (see e.g. comments in
[May00]).

Model checking of even weak temporal logics on labelled transition systems
generated by Petri nets is quite pessimistic. The only decidable logic is (trivially)
Hennessy-Milner logic. The EF -logic is undecidable [Esp97] and model checking
with EG is also undecidable, even for BPP [EK95] — BPP is a strict subclass
of labelled Petri nets where each transition has exactly one input place.

Definition 6 (Labelled Petri net). A labelled Petri net is a tuple N =
(P, T, F, L, λ), where P is a finite set of places, T is a finite set of transitions
such that T ∩ P = ∅, F ⊆ (P × T) ∪ (T × P) is a flow relation, L is a finite set
of labels and λ : T → L is a labelling function.

A marking M of a net N is a mapping M : P → N0, i.e., each place is assigned
a nonnegative number of tokens. We define •t = {p | (p, t) ∈ F} and t• = {p |
(t, p) ∈ F} for a transition t ∈ T . We say that t ∈ T is enabled in a marking
M iff ∀p ∈ •t. M(p) > 0. If t is enabled in M then it can be fired, producing a
marking M ′ such that:

– M ′(p) =M(p) for all p ∈ (
P � (•t ∪ t•)) ∪ (•t ∩ t•)

– M ′(p) =M(p)− 1 for all p ∈ •t� t•
– M ′(p) =M(p) + 1 for all p ∈ t• �

•t.

Then we write M [t〉M ′. W.l.o.g. we assume that if M [t1〉M ′ and M [t2〉M ′, then
λ(t1)
= λ(t2) for any pair of markings M , M ′ and transitions t1, t2.

Definition 7 (Labelled transition system T (N)).
Let N = (P, T, F, L, λ) be a labelled Petri net. We define a corresponding la-
belled transition system T (N) as T (N) = ([P → N0], L,−→) where M a−→ M ′

whenever M [t〉M ′ and a = λ(t) for M,M ′ ∈ [P → N0] and t ∈ T .

Now, we define unlabelled Petri nets.

Definition 8 (Unlabelled Petri net). An unlabelled Petri net is a labelled
Petri net N = (P, T, F, L, λ) such that |L| = 1.

Remark 5. Whenever |L| = 1, let us say L = {a}, we omit L and λ from the
definition of the net N and instead of M a−→ M ′ in T (N) we simply write
M −→M ′.

Let N = (P, T, F, L, λ) be a labelled Petri net. W.l.o.g. assume that L =
{1, . . . , n} for some n > 0. We construct an unlabelled Petri netN ′ = (P ′, T ′, F ′)
and a mapping ψ : (P → N0)→ (P ′ → N0) such that ̂T (N)M1 and T (N ′)ψ(M1)
are isomorphic unlabelled transition systems for any marking M1 of N . Let us
recall that ̂T (N)M1 is the transition system restricted to markings reachable
from M1 and T (N ′)ψ(M1) is restricted to markings reachable from ψ(M1) — see
Definition 2. The net N ′ is defined as follows:

286 J. Srba

	
��
���p1

������������������������ 	
��
���q1

...
t

�����������������������

����������������������� ...

	
��
���pk1

������������������������

��

	
��
���qk2

l0 ��	
��
���d0 �� l1 �� . . . ��	
��
���dn

	
��
���p1

���������������� 	
��
���pc

		������

�������������� 	
��
���q1

... tin ��	
��
���p0t
��

��

tout

����������������

����������������

������
...

	
��
���pk1

����������������
l0t

���������������� 	
��
���qk2

	
��
���p1t
�� l1t ��	
��
���p2t

�� · · · ��	
��
���p
λ(t)
t

Fig. 2. Transformation of a transition t

P ′ = P ∪ {pkt | t ∈ T ∧ 0 ≤ k ≤ λ(t)} ∪ {pc} ∪ {dk | 0 ≤ k ≤ n}
T ′ = {tin, tout | t ∈ T} ∪ {lkt | t ∈ T ∧ 0 ≤ k < λ(t)} ∪ {lk | 0 ≤ k ≤ n}
F ′ = {(p, tin) | (p, t) ∈ F} ∪ {(tout, p) | (t, p) ∈ F} ∪

{(tin, p0t), (p0t , tout) | t ∈ T} ∪
{(pkt , lkt), (lkt , pk+1

t) | t ∈ T ∧ 0 ≤ k < λ(t)} ∪
{(pc, tin), (tout, pc) | t ∈ T} ∪
{(pc, l0)} ∪ {(lk, dk), (dk, lk+1) | 0 ≤ k < n} ∪ {(ln, dn)}.

In this construction each transition t with input places p1, . . . , pk1 and output
places q1, . . . , qk2 is transformed into a set of transitions shown in Figure 2. Now,
we give the mapping ψ. Let M ∈ (P → N0). Then ψ(M) : P ′ → N0 is defined
by

ψ(M)(p) =



1 if p = pc

M(p) if p ∈ P
0 otherwise.

Lemma 3. Let N = (P, T, F, L, λ) be a labelled Petri net and N ′ = (P ′, T ′, F ′)
the unlabelled Petri net defined above. Then ̂T (N)M1 and T (N ′)ψ(M1) are iso-
morphic unlabelled transition systems for any M1 ∈ [P → N0].

Proof. Assume that ̂T (N)M1 = (S1,−→1) and T (N ′)ψ(M1) = (S2,−→2). Recall
that S1 ⊆ [P → N0] ∪ {rk(M,λ(t),M ′) | M [t〉M ′ ∧ 0 ≤ k ≤ λ(t)} ∪ {dkM | M ∈

On the Power of Labels in Transition Systems 287

[P → N0] ∧ 0 ≤ k ≤ n} and S2 ⊆ [P ′ → N0]. We define a mapping f : S1 → S2
by

f(s1) =



ψ(s1) if s1 ∈ [P → N0]
M if s1 = rk(M,λ(t),M ′) such that M [t〉M ′
M if s1 = dkM such that M ∈ [P → N0]

where

M(p) =




M(p) if p ∈ P �
•t

M(p)− 1 if p ∈ •t
1 if p = pkt
0 otherwise

and M(p) =



M(p) if p ∈ P
1 if p = dk

0 otherwise.

Let s1 −→1 s
′
1 for some s1, s′1 ∈ S1. It can be easily seen that f(s1) −→2 f(s′1).

On the other hand, let M2 −→2 M
′
2 and M2 = f(s1) for some s1 ∈ S1 and

M2,M
′
2 ∈ S2. Then there exists s′1 ∈ S1 such that M ′2 = f(s′1) and s1 −→1 s

′
1.

This implies that f is surjective and moreover f is trivially injective. Hence,
̂T (N)M1 and T (N ′)ψ(M1) are isomorphic unlabelled transition systems. ��

Theorem 3. Let N be a labelled Petri net, and M1,M2 a pair of markings in
N and φ a µ-calculus formula. There is a polynomial time reduction producing
an unlabelled and normed Petri net N ′, a pair of markings ψ(M1), ψ(M2) in N ′

and a µ-calculus formula φ̂ such that

M1 ∼T (N) M2 if and only if ψ(M1) ∼T (N ′) ψ(M2)

and
T (N),M1 |= φ if and only if T (N ′), ψ(M1) |= φ̂.

Proof. By Lemma 3 and Theorems 1 and 2. Normedness is by Remark 3. ��
Since the bisimilarity checking problem and model checking problems with EF -
logic and EG-logic are undecidable [Jan95,Esp97,EK95] for labelled Petri nets,
we obtain the following undecidability results for unlabelled and normed Petri
nets. In the case of model checking problems we use Remark 4 and the fact
that undecidability of model checking with EG-logic can be proved by standard
“weak” simulation of a 2-counter machine and we can easily ensure the validity
of condition (3) for the Petri net simulating the 2-counter machine.

Corollary 2. Bisimilarity checking problem for unlabelled and normed Petri
nets is undecidable.

Corollary 3. Model checking problems with EF -logic and EG-logic for unla-
belled and normed Petri nets are undecidable.

Since the bisimilarity checking problem between a labelled Petri net and a finite-
state system is EXPSPACE-hard (see comments e.g. in [May00]), we get also
the following corollary.

Corollary 4. Bisimilarity checking problem between an unlabelled and normed
Petri net and a finite-state system is EXPSPACE-hard.

288 J. Srba

4.2 Pushdown Systems

It is known that the bisimilarity checking problem for pushdown processes is
decidable [Sén98] and PSPACE-hard [May00]. PSPACE-hard is also the bisim-
ilarity checking problem between a pushdown process and a finite-state system
[May00] — this problem is moreover in EXPTIME [JKM98].

Model checking pushdown processes with modal µ-calculus is decidable and
EXPTIME-complete [Wal96]. This means that the model checking problem with
EF -logic, EG-logic and CTL is also in EXPTIME. The model checking prob-
lems with these logics are PSPACE-hard — see e.g. [May98]. Moreover, model
checking with EF -logic and CTL is known ([Wal00]) to be PSPACE-complete
and EXPTIME-complete, respectively. The exact complexity of model check-
ing with EG-logic is unknown, however, it seems to be EXPTIME-complete by
modification of arguments from [Wal00].

Definition 9 (Pushdown system). A pushdown system ∆ is a tuple ∆ =
(Q,Γ,Act,−→∆) where Q is a finite set of control states, Γ is a finite stack
alphabet such that Q ∩ Γ = ∅, Act is a finite input alphabet, and −→∆⊆
Q × Γ × Act × Q × Γ ∗ is a finite (|−→∆ | < ∞) transition relation, written
pA

a−→∆ qα for (p,A, a, q, α) ∈−→∆.

Definition 10 (Labelled transition system T (∆)).
Let ∆ = (Q,Γ,Act,−→∆) be a pushdown system. We define a corresponding
labelled transition system T (∆) as T (∆) = (S,Act,−→) where S = {pβ | p ∈
Q ∧ β ∈ Γ ∗} and pβ a−→ qγ iff β = Aβ′, γ = αβ′ and pA a−→∆ qα.

Our aim is to transform ∆ into an unlabelled pushdown system such that bisim-
ilarity and model checking are preserved. For technical convenience, we assume
from now on that Γ contains a distinct “dummy” symbol Z such that pZ
−→
for any p ∈ Q. Then trivially

p1β1 ∼T (∆) p2β2 if and only if p1β1Z ∼T (∆) p2β2Z (4)

T (∆), p1β1 |= φ if and only if T (∆), p1β1Z |= φ (5)

for any p1, p2 ∈ Q, β1, β2 ∈ Γ ∗ and a µ-calculus formula φ. In particular, all
reachable states from pβZ are of the form qβ′Z where p, q ∈ Q and β, β′ ∈ Γ ∗.
Definition 11 (Unlabelled pushdown system). An unlabelled pushdown
system is a pushdown system ∆ = (Q,Γ,Act,−→∆) such that |Act| = 1.

Remark 6. Whenever |Act| = 1, let us say Act = {a}, we omit Act from the
definition of the pushdown system ∆ and instead of pA a−→∆ qα we simply write
pA −→∆′ qα where ∆′ = (Q,Γ,−→∆′) and −→∆′⊆ Q× Γ ×Q× Γ ∗.

On the Power of Labels in Transition Systems 289

pAβZ
a �� qαβZ

��
pDnAβZ pD0AβZ�� qD0αβZ �� qDnαβZ

pAβZ

��

�� pX0
(pA,a,qα)βZ

��

��

qαβZ

��

pX1
(pA,a,qα)βZ

�� pX2
(pA,a,qα)βZ

�� pXa(pA,a,qα)βZ

Fig. 3. Transformation of a transition pAβZ a−→ qαβZ

Let ∆ = (Q,Γ,Act,−→∆) be a pushdown system such that Z ∈ Γ is the
“dummy” stack symbol. W.l.o.g. assume that Act = {1, . . . , n} for some n > 0.
We construct an unlabelled pushdown system ∆′ = (Q,Γ ′,−→∆′) where Γ ⊆ Γ ′
such that ̂T (∆)p1α1Z and T (∆′)p1α1Z are isomorphic unlabelled transition sys-
tems for any p1 ∈ Q and α1 ∈ Γ ∗. Again, see Definition 2 for the notation of
transition systems restricted to reachable states from p1α1Z. The system ∆′ is
defined as follows:

Γ ′ = Γ ∪ {Xk
(pA,a,qα) | pA

a−→∆ qα ∧ 0 ≤ k ≤ a} ∪ {Dk | 0 ≤ k ≤ n}
−→∆′ = {(p,A, p,X0

(pA,a,qα)), (p,X
0
(pA,a,qα), q, α) | pA

a−→∆ qα} ∪
{(p,Xk

(pA,a,qα), p,X
k+1
(pA,a,qα)) | pA

a−→∆ qα ∧ 0 ≤ k < a} ∪
{(p,A, p,D0A) | p ∈ Q ∧ A ∈ Γ} ∪
{(p,Dk, p,Dk+1) | p ∈ Q ∧ 0 ≤ k < n}.

Notice that in particular pXa
(pA,a,qα)βZ
−→ and pDnβZ
−→ for any β ∈ Γ ′∗.

Graphical representation showing the transformation of pAβZ a−→ qαβZ where
β ∈ Γ ∗ and pA a−→∆ qα can be seen in Figure 3.

Lemma 4. Let ∆ = (Q,Γ,Act,−→∆) be a pushdown system containing Z ∈ Γ .
Let ∆′ = (Q,Γ ′,−→∆′) be the unlabelled pushdown system defined above. Then

̂T (∆)p1α1Z and T (∆′)p1α1Z are isomorphic unlabelled transition systems for any
p1 ∈ Q and α1 ∈ Γ ∗.
Proof. Immediately from the construction. Notice that it is important that any
reachable state in T (∆′)p1α1Z ends with Z. In particular, from any state of the
form pβZ where p ∈ Q and β ∈ Γ ∗ (even if β = ε) the following transition is
possible in T (∆′): pβZ −→ pD0βZ. ��

Theorem 4. Let ∆ be a pushdown system, and p1β1, p2β2 a pair of states in
T (∆) and φ a µ-calculus formula. There is a polynomial time reduction producing
an unlabelled and normed pushdown system ∆′, a pair of states ψ(p1β1), ψ(p2β2)
in T (∆′) and a µ-calculus formula φ̂ such that

p1β1 ∼T (∆) p2β2 if and only if ψ(p1β1) ∼T (∆′) ψ(p2β2)

290 J. Srba

and
T (∆), p1β1 |= φ if and only if T (∆′), ψ(p1β1) |= φ̂.

Proof. Directly from Lemma 4 together with (4) and (5) — producing the map-
ping ψ such that ψ(pβ) = pβZ for p ∈ Q and β ∈ Γ ∗ — and from Theorems 1
and 2. Normedness is because of Remark 3. ��
Since the bisimilarity checking problem between a pushdown system and a finite-
state system is PSPACE-hard [May00] (this is trivially also a lower bound for two
pushdown systems), and because the model checking problems with CTL and
Hennessy-Milner logic are EXPTIME-complete resp. PSPACE-complete [Wal00,
May98], we obtain the following corollaries. In the case of CTL we use Remark 4
and the fact that we can easily ensure the validity of condition (3) similarly as
in the proof of Corollary 1.

Corollary 5. Bisimilarity checking problem between an unlabelled and normed
pushdown system and a finite-state system (or another unlabelled and normed
pushdown system) is PSPACE-hard.

Corollary 6. Model checking problems with CTL and Hennessy-Milner logic
for unlabelled and normed pushdown systems are EXPTIME-complete and
PSPACE-complete, respectively.

The bisimilarity checking problem between a pushdown system and a finite-state
system is in EXPTIME [JKM98] and PSPACE-hard [May00]. In order to estab-
lish its containment in e.g. PSPACE, it is enough to show it for unlabelled and
normed pushdown systems.

Acknowledgements: I would like to thank Mogens Nielsen for his kind super-
vision and Daniel Polansky for his comments and suggestions.

References

[BAMP83] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching
time. Acta Informatica, 20(3):207–226, 1983.

[BE97] O. Burkart and J. Esparza. More infinite results. Bulletin of the Eu-
ropean Association for Theoretical Computer Science, 62:138–159, June
1997. Columns: Concurrency.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In Logic of Programs
Workshop, volume 131 of LNCS, pages 52–71. Springer-Verlag, 1981.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite state concurrent systems using temporal logic specifications: A prac-
tical approach. ACM Transactions on Programming Languages and Sys-
tems, 8(2):244–263, 1986.

[EK95] J. Esparza and A. Kiehn. On the model checking problem for branching
time logics and basic parallel processes. In International Conference on
Computer-Aided Verification (CAV’95), volume 939 of LNCS, pages 353–
366, 1995.

On the Power of Labels in Transition Systems 291

[Esp97] J. Esparza. Decidability of model-checking for infinite-state concurrent
systems. Acta Informatica, 34:85–107, 1997.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-
currency. Journal of the Association for Computing Machinery, 32(1):137–
161, 1985.

[Jan95] P. Jancar. Undecidability of bisimilarity for Petri nets and some related
problems. Theoretical Computer Science, 148(2):281–301, 1995.

[JKM98] P. Jancar, A. Kucera, and R. Mayr. Deciding bisimulation-like equiv-
alences with finite-state processes. In Proceedings of the Annual
International Colloquium on Automata, Languages and Programming
(ICALP’98), volume 1443 of LNCS. Springer-Verlag, 1998.

[JM95] P. Jancar and F. Moller. Checking regular properties of Petri nets. In Pro-
ceedings of CONCUR’95, volume 962 of LNCS, pages 348–362. Springer-
Verlag, 1995.

[May98] R. Mayr. Strict lower bounds for model checking BPA. In Proceedings of
the MFCS’98 Workshop on Concurrency, volume 18 of ENTCS. Springer-
Verlag, 1998.

[May00] R. Mayr. On the complexity of bisimulation problems for pushdown au-
tomata. In IFIP International Conference on Theoretical Computer Sci-
ence (IFIP TCS’2000), volume 1872 of LNCS. Springer-Verlag, 2000.

[Mol96] F. Moller. Infinite results. In Proceedings of CONCUR’96, volume 1119
of LNCS, pages 195–216. Springer-Verlag, 1996.

[Pet81] J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-
Hall, 1981.

[Sén98] G. Sénizergues. Decidability of bisimulation equivalence for equational
graphs of finite out-degree. In Proceedings of the 39th Annual Symposium
on Foundations of Computer Science(FOCS-98), pages 120–129. IEEE
Computer Society, 1998.

[Srb01] J. Srba. On the power of labels in transition systems. Technical Report
RS-01-19, BRICS Research Series, 2001.

[Sti95] C. Stirling. Local model checking games. In Proceedings of the 6th Inter-
national Conference on Concurrency Theory (CONCUR’95), volume 962
of LNCS, pages 1–11. Springer-Verlag, 1995.

[Tho93] W. Thomas. On the Ehrenfeucht-Fräıssé game in theoretical computer
science (extended abstract). In Proceedings of the 4th International Joint
Conference CAAP/FASE, Theory and Practice of Software Development
(TAPSOFT’93), volume 668 of LNCS, pages 559–568. Springer-Verlag,
1993.

[Vog92] W. Vogler. Modular construction and partial order semantics of Petri nets,
volume 625 of LNCS. Springer-Verlag, 1992.

[Wal96] I. Walukiewicz. Pushdown processes: Games and model checking. In
International Conference on Computer-Aided Verification (CAV’96), vol-
ume 1102 of LNCS, pages 62–74, 1996. To appear in Information and
Computation.

[Wal00] I. Walukiewicz. Model checking CTL properties of pushdown systems.
In Proceedings Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS’00), volume 1974 of LNCS, pages 127–138.
Springer-Verlag, 2000.

On Barbed Equivalences in π-Calculus

Davide Sangiorgi1 and David Walker2

1 INRIA Sophia-Antipolis, France davide.sangiorgi@inria.fr
2 Oxford University Computing Laboratory, U.K. walker@comlab.ox.ac.uk

Abstract. This paper presents some new results on barbed equiva-
lences for the π-calculus. The equivalences studied are barbed congru-
ence and a variant of it called open barbed bisimilarity. The difference
between the two is that in open barbed the quantification over contexts
is inside the definition of the bisimulation and is therefore recursive. It
is shown that if infinite sums are admitted to the π-calculus then it is
possible to give a simple proof that barbed congruence and early con-
gruence coincide on all processes, not just on image-finite processes. It
is also shown that on the π-calculus, and on the extension of it with in-
finite sums, open barbed bisimilarity does not correspond to any known
labelled bisimilarity. It coincides with a variant of open bisimilarity in
which names that have been extruded are treated in a special way, sim-
ilarly to how names are treated in early bisimilarity.

1 Introduction

This paper presents some new results on barbed equivalences for the π-calculus.
The equivalences studied are barbed congruence [9] and a variant of it [5] here
called open barbed bisimilarity. Both equivalences are obtained via kinds of
bisimulation that use reduction and a notion of observation, and both are con-
textual in the sense that their definitions involve quantification over contexts.
Most importantly, both relations are congruences, and therefore allow composi-
tional reasoning about processes. The difference between the two is that in open
barbed the quantification over contexts is inside the definition of the bisimula-
tion and is therefore recursive.

Equivalences whose definitions involve just notions of reduction and obser-
vation and quantification over contexts are useful because they can be applied
to a wide variety of calculi and languages. This is important because it is some-
times far from clear how to define appropriate equivalences by other means,
for instance based on the actions that processes can perform according to some
labelled transition rules. The main difficulty with definitions that involve quan-
tification over contexts is that they are often awkward to work with directly.
It is therefore important to look for more tractable characterizations of the
equivalences.

The aims of the paper are to contrast the two barbed equivalences and to
show that a simple proof of a characterization theorem for barbed congruence
can be given that with the addition of infinite sums applies to all processes.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 292–304, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

On Barbed Equivalences in π-Calculus 293

State of the art. Barbed congruence has been used on a variety of concur-
rent calculi and languages (imperative, object-oriented, functional, etc.). On
languages akin to the π-calculus, a number of results that characterize barbed
congruence in terms of early congruence have been shown; examples are [3,7,
13]. Typically, these results are for image-finite processes only. The only results
we are aware of that do not assume image-finiteness are in [11] and [4]. Their
proofs are complex, however, and they cover only specific dialects of the π-
calculus. In [11] the π-calculus is extended with infinite sums and with infinitely
many mutually recursive definitions, and moreover each recursive definition can
have an infinite number of name parameters. In [4] the calculus is a form of
asynchronous π-calculus.

Open barbed bisimilarity has been applied to several variants of the π-
calculus and to higher-order calculi; examples are [5,6,1]. The main advantage of
open barbed bisimilarity over barbed congruence is that a characterization re-
sult can often be proved, using an appropriate form of labelled bisimilarity, that
applies to all processes, not just image-finite processes. We are not aware of any
characterization result for open barbed bisimilarity on the standard π-calculus,
however. Such a result would be useful, beyond its significance for the π-calculus,
because it would shed light on the robustness of open barbed bisimilarity, and
in particular on the relationship between it and barbed congruence.

Contributions. The main contributions of this paper are as follows.

1. We show that if we admit infinite sums to the π-calculus, then we can give
a simple proof that barbed congruence and early congruence coincide on all
processes, not just on image-finite processes. (It remains an open question
whether the equivalences coincide on the π-calculus.)

2. We show that, perhaps surprisingly, on the π-calculus (and on the extension
of it with infinite sums) open barbed bisimilarity does not correspond to
any known labelled bisimilarity. It coincides with a variant of open bisimi-
larity [12] in which names that have been extruded are treated in a special
way, similarly to how names are treated in early bisimilarity.

The structure of the proof of (1) is similar to that in [13] for image-finite pro-
cesses. As a corollary of (2), open barbed bisimilarity is different from barbed
congruence on the π-calculus. Compared to [11], the result (1), besides having a
much simpler proof, does not use infinitely many mutually recursive definitions.
This is significant because infinitely many mutually recursive definitions cannot
be encoded using replication; only finitely many mutually recursive definitions,
each with a finite number of name parameters, can be so encoded; see [8].

The results in this paper do not tell us whether the new labelled bisimilarity
introduced in (2) is interesting. Its mixture of features from open bisimilarity
and early bisimilarity seems hard to justify observationally, however.

This paper treats the weak equivalences, which abstract from internal action.
Analogous results for strong equivalences are easily obtained by simplifying the
proofs. We believe that the results in the paper hold also for other dialects
of the π-calculus that have the matching operator (which is fundamental to

294 D. Sangiorgi and D. Walker

the proofs of the characterization results), for instance the Asynchronous π-
calculus. The calculus we work with in this paper has guarded sums. If we were
to admit unguarded sums, as in CCS, then the clause for τ transitions in the
characterization of open barbed bisimilarity would have to be modified along
the lines of dynamic bisimilarity [10].

Other related work. A distinctive feature of open barbed bisimilarity is that
it is both a bisimulation and a congruence. Montanari and Sassone [10] first
used relations that by definition are both bisimulations and congruences, in
CCS. These relations are defined like CCS bisimulation, but with an additional
requirement similar to closure of an open barbed bisimulation under contexts;
see Definition 2(4). On the π-calculus, the largest relation so obtained is different
from (early) bisimilarity because bisimilarity is not a congruence. Honda and
Yoshida [5] applied similar ideas in the setting of reduction-based bisimilarities,
where τ transitions, or reductions, are the only relevant transitions of processes.
The relation defined is essentially what we call open barbed bisimilarity , although
the formulation and the calculi are rather different. In particular, a significant
difference is that [5] distinguishes between names and variables, whereas this
paper is about the π-calculus where there are only names.

2 Background

In this section we briefly recall some definitions and notations for the π-calculus.
We assume a countably infinite set N of names, ranged over by lower-case

letters, x, y, z, The prefixes are given by

π ::= xy | x(z) | τ | [x= y]π .

Note that we take matches to be parts of prefixes. The processes and the sum-
mations of the π-calculus are given respectively by

P ::= M | P | P ′ | νz P | !P
M ::= 0 | π. P | M +M ′ .

We abbreviate x(z).0 to x. A context is obtained when in some P given by the
grammar above, the hole [·] replaces an occurrence of 0 that is not the left or
right term in a sum M +M ′. A non-input context is a context in which the hole
does not occur underneath an input prefix.

In each of x(z). P and νz P , the displayed occurrence of z is binding with
scope P . We write fn(E1, E2, . . .) for the set of names that occur free in at least
one of the entities E1, E2, A substitution is a function σ on the set of names
that has finite support, that is, is such that {x | xσ �= x} is finite. We write Eσ
for the application of a substitution σ to an entity E.

The actions are given by

α ::= xy | xy | x(z) | τ .

On Barbed Equivalences in π-Calculus 295

We write Act for the set of actions. We write bn(α) for the set of names bound
in α, which is {z} if α is x(z) and ∅ otherwise, and n(α) for the set of names
that occur in α. The (early) transition relations, { α−→| α ∈ Act}, are defined by
the rules in Table 1. Elided from the table are four rules: the symmetric form
Sum-r of Sum-l, which has Q+P in place of P +Q, and the symmetric forms
Par-r, Comm-r, and Close-r of Par-l, Comm-l, and Close-l, in which the
roles of the left and right components are swapped. We adopt rules Rep-act,
Rep-comm, and Rep-close so that the transition relations are image-finite.
Other rules could be used, however [8]. We write =⇒ for the reflexive and
transitive closure of τ−→, and α=⇒ for =⇒ α−→=⇒ for α ∈ Act . Further, τ̂=⇒ is =⇒,
and α̂=⇒ is α=⇒ for α �= τ . We write P ↓x if P can perform an action of the form
xy, and P ↓x if P can perform an action of the form xy or x(z). Further, for µ
a name x or a co-name x, we write P ⇓µ if there is Q such that P =⇒ Q and
Q ↓µ.

We identify processes that are α-convertible. Moreover, in any discussion, we
assume that the bound names of any processes or actions under consideration
are chosen to be different from the names free in any other entities under consid-
eration, such as processes, actions, substitutions, and sets of names. This con-

vention is subject to the limitation that in considering a transition P
x(z)−−−→ Q,

the name z that is bound in x(z) and in P can occur free in Q.

Definition 1 (Barbed bisimilarity and congruence).
A relation S is a barbed bisimulation if whenever (P,Q) ∈ S,

1. P ↓µ implies Q ⇓µ
2. P τ−→ P ′ implies Q =⇒ Q′ for some Q′ with (P ′, Q′) ∈ S
3. the variants of (1) and (2) with the roles of P and Q swapped.

P and Q are barbed bisimilar , P
.≈ Q, if (P,Q) ∈ S for some barbed bisimulation

S. P and Q are barbed congruent , P ∼=c Q, if C[P]
.≈ C[Q] for every context

C. ✷

For two processes to be barbed congruent, the systems obtained by plac-
ing them into an arbitrary context must be barbed bisimilar. In open barbed
bisimilarity, on the other hand, the context enclosing the processes being tested
can be changed at any point during the bisimulation game: an open barbed
bisimulation is required to be closed under contexts.

Definition 2 (Open barbed bisimilarity). A relation S is an open barbed
bisimulation if whenever (P,Q) ∈ S,
1. P ↓µ implies Q ⇓µ
2. P τ−→ P ′ implies Q =⇒ Q′ for some Q′ with (P ′, Q′) ∈ S
3. the variants of (1) and (2) with the roles of P and Q swapped
4. (C[P], C[Q]) ∈ S for every context C.

P and Q are open barbed bisimilar , P
.≈o Q, if (P,Q) ∈ S for some open barbed

bisimulation S. ✷

296 D. Sangiorgi and D. Walker

Table 1. The transition rules

Out
xy. P

xy−−→ P
Inp

x(z). P
xy−−→ P{y/z}

Tau
τ. P

τ−→ P
Mat

π. P
α−→ P ′

[x=x]π. P α−→ P ′

Sum-l
P

α−→ P ′

P +Q
α−→ P ′

Par-l
P

α−→ P ′

P | Q α−→ P ′ | Q
bn(α) ∩ fn(Q) = ∅

Comm-l
P

xy−−→ P ′ Q
xy−−→ Q′

P | Q τ−→ P ′ | Q′

Close-l
P

x(z)−−−→ P ′ Q
xz−−→ Q′

P | Q τ−→ νz (P ′ | Q′)
z �∈ fn(Q)

Res
P

α−→ P ′

νz P
α−→ νz P ′

z �∈ n(α) Open
P

xz−−→ P ′

νz P
x(z)−−−→ P ′

z �= x

Rep-act
P

α−→ P ′

!P α−→ P ′ | !P

Rep-comm
P

xy−−→ P ′ P
xy−−→ P ′′

!P τ−→ (P ′ | P ′′) | !P

Rep-close
P

x(z)−−−→ P ′ P
xz−−→ P ′′

!P τ−→ (νz (P ′ | P ′′)) | !P
z �∈ fn(P)

Definition 3 (Early bisimilarity and congruence).
A relation S is an early bisimulation if whenever (P,Q) ∈ S,

1. P α−→ P ′ implies Q α̂=⇒ Q′ for some Q′ with (P ′, Q′) ∈ S
2. the variant of (1) with the roles of P and Q swapped.

P and Q are early bisimilar , P ≈ Q, if (P,Q) ∈ S for some early bisimulation
S. P and Q are early congruent , P ≈c Q, if Pσ ≈ Qσ for every substitution
σ. ✷

On Barbed Equivalences in π-Calculus 297

A process P is image-finite if for each derivative Q of P and each action α,
there are n ≥ 0 and Q1, . . . , Qn such that Q α̂=⇒ Q′ implies Q′ = Qi for some i.
We recall the following result for the π-calculus; see [3,13] for proofs of closely
related results.

Theorem 1 (Characterization Theorem). Suppose that P and Q are
image-finite. Then P ∼=c Q iff P ≈c Q. ✷

3 Infinite Sums

In this section we show that if we admit sums in which the number of summands
is infinite, then Theorem 1 can be extended to all processes of the enriched
language, that is, the assumption of image-finiteness can be removed.

The only caveat for allowing infinite sums is that the possibility of α-
converting names into fresh names must be maintained. To ensure this we as-
sume that the set of names has cardinality ω1, the first uncountable cardinal,
and require sums to have only countably many summands. (Similar results can
be obtained when ω1 is replaced by an arbitrary uncountable regular cardinal κ
and sums can have only fewer than κ summands.) Accordingly, we replace the
form M +M ′ in the grammar for summations by

Σi∈IMi

where I is a countable set. We write π∞+ for the resulting calculus. The modi-
fications required to the transition rules are straightforward.

Lemma 1. The set of processes of π∞+ has cardinality ω1.

Proof This is an instance of a standard result about inductively defined sets.
See for instance Section 1.3 of [2]. ✷

Lemma 2. For any process P of π∞+ and action α, the set {P ′ | P α=⇒ P ′} is
countable.

Proof The proof uses repeatedly the fact that a countable union of countable
sets is countable. First one shows that for any P and α, {P ′ | P α−→ P ′} is
countable. Then one shows by induction that for n < ω, {P ′ | P (τ−→)n P ′} is
countable. From this it follows that {P ′ | P =⇒ P ′} is countable, and hence
that {P ′ | P α=⇒ P ′} is countable. ✷

Definition 4 (Transfinite stratification of bisimilarity).

1. ≈0 is the universal relation on π∞+.
2. For δ an ordinal, the relation ≈δ+1 is defined by: P ≈δ+1 Q if

a) P
α−→ P ′ implies Q α̂=⇒≈δ P ′

298 D. Sangiorgi and D. Walker

b) Q
α−→ Q′ implies P α̂=⇒≈δ Q′.

3. For γ a limit ordinal, P ≈γ Q if P ≈δ Q for all δ < γ. ✷

Lemma 3. On π∞+, P ≈ Q iff P ≈δ Q for every ordinal δ.

Proof First, by induction on δ we have that P ≈ Q implies P ≈δ Q for
every ordinal δ. For the converse first note that if δ < δ′ then ≈δ′ is included
in ≈δ. Since by Lemma 1 the cardinality of the set of processes of π∞+ is ω1,
the universal relation ≈0 has cardinality ω1. Hence there is δ of cardinality ω1
such that ≈δ+1 coincides with ≈δ. This is so because otherwise ≈δ+1 would
be strictly included in ≈δ for each δ < ω2 (the second uncountable cardinal),
contradicting that ≈0 has cardinality ω1. Suppose δ is the smallest ordinal such
that ≈δ+1 coincides with ≈δ. Then ≈δ is an early bisimulation, so P ≈δ P ′

implies P ≈ P ′, and ≈δ′ coincides with ≈δ for all δ′ > δ. ✷

Theorem 2 (Characterization Theorem on π∞+). Suppose P and Q are
processes of π∞+. Then P ∼=c Q iff P ≈c Q.

Proof We recall that processes P and Q are barbed equivalent , P ∼= Q, if
C[P]

.≈ C[Q] for every context C of the form [·] | R. We show that P ∼= Q
iff P ≈ Q. The conclusion P ∼=c Q iff P ≈c Q follows since ∼=c is the largest
congruence included in ∼= and ≈c is the largest congruence included in ≈.

That P ≈ Q implies P ∼= Q follows from the facts that ≈ is a barbed
bisimulation and a non-input congruence (that is, is preserved by all non-input
contexts), and that ∼= is the largest non-input congruence included in

.≈.
The main claim needed to show that P ∼= Q implies P ≈ Q is the following.

Claim. Suppose that P �≈δ Q where δ is an ordinal. Then there is a
summation M such that for any z̃ ⊆ fn(P,Q) and any fresh name s, one
of the following holds:
1. (νz̃)(P ′ | (M+s)) � .≈ (νz̃)(Q | (M+s)) for all P ′ such that P =⇒ P ′

2. (νz̃) (P | (M + s)) � .≈ (νz̃) (Q′ | (M + s)) for all Q′ such that
Q =⇒ Q′.

Proof If δ is a limit ordinal and P �≈δ Q, then P �≈γ Q for some γ < δ,
and the result follows immediately by induction.
Suppose δ = γ + 1. Then there are α and P ′ such that P

α−→ P ′ but
P ′ �≈γ Q′ for all Q′ such that Q α̂=⇒ Q′ (or vice versa, when the argument

is the same). By Lemma 2, {Q′ | Q α̂=⇒ Q′} = {Qi | i ∈ I} for some
countable set I. We prove that assertion (2) of the Claim holds (in the
case when the roles of P and Q are swapped, one would prove assertion
(1)).
Appealing to the induction hypothesis, for each i ∈ I let Mi be a sum-
mation such that either (1) or (2) of the Claim holds for P ′, Qi, and
Mi. There are four cases, one for each form that α can take. We give the
details only for the case when α is an input action. The other cases are
similar, and for them we just indicate the main point in the construction.

On Barbed Equivalences in π-Calculus 299

Case 1 Suppose that α is xy. Let si (i ∈ I) and s′ be fresh names, and
set

M
def= xy. (s′ +Σi∈I τ. (Mi + si)) .

Suppose that z̃ ⊆ fn(P,Q) and s is fresh, and let Q′ be any process such
that Q =⇒ Q′. Let A def= (νz̃)(P | (M+s)) and B

def= (νz̃)(Q′ | (M+s)),
and suppose, for a contradiction, that A

.≈ B. We have

A
τ−→ A′ def= (νz̃) (P ′ | (s′ +Σi∈I τ. (Mi + si)))

and A′ ⇓s′ but not A′ ⇓s. Since A
.≈ B there is B′ such that B =⇒

B′
.≈ A′. In particular it must be that B′ ⇓s′ but not B′ ⇓s. The only

way this is possible is if I �= ∅ and
B′ def= (νz̃) (Qj | (s′ +Σi∈I τ. (Mi + si)))

for some j ∈ I (a derivative of Q′ under α=⇒ is also a derivative of Q).
Now either (1) or (2) of the Claim holds for P ′, Qj , and Mj . Suppose
that (2) holds. We have

A′ τ−→ A′′j
def= (νz̃) (P ′ | (Mj + sj))

and A′′j ⇓sj but not A′′j ⇓s′ . Then B′ =⇒ B′′j with B′′j
.≈ A′′j , and we

must have
B′′j

def= (νz̃) (Q′j | (Mj + sj))

for some Q′j such that Qj =⇒ Q′j . But A
′′
j

.≈ B′′j contradicts that (2) of
the Claim holds for P ′, Qj , and Mj .
Dually, if (1) of the Claim holds for P ′, Qj , and Mj , then we obtain a
contradiction by considering how A′ can match the transition

B′ τ−→ B′′j
def= (νz̃) (Qj | (Mj + sj)) .

Case 2 Suppose that α is xy. Let si (i ∈ I) and s′ and w be fresh
names, and set

M
def= x(w). (s′ +Σi∈I [w= y]τ. (Mi + si)) .

Case 3 Suppose that α is x(z). Suppose that fn(P,Q) = {a1, . . . , ak}.
Let si (i ∈ I) and t and s′ and w be fresh names, and set

M
def= x(w). (s′ +Σk

h=1[w= ah]t+Σi∈I τ. (Mi + si)) .

Case 4 Suppose that α is τ . Let si (i ∈ I) be fresh names, and set

M
def= Σi∈I τ. (Mi + si) .

This completes the proof of the Claim. ✷

To complete the proof of the theorem, suppose that P �≈ Q. Then by Lemma 3,
P �≈δ Q for some δ. Then let M be as given by the Claim for P and Q, let s be
fresh, and set C def= [·] | (M + s). Then C[P] � .≈ C[Q], and so P �∼= Q. ✷

300 D. Sangiorgi and D. Walker

4 Characterization of Open Barbed Bisimilarity

In this section we show a characterization theorem for open barbed bisimilar-
ity on the full π-calculus. The theorem holds both for the π-calculus and for
its extension with infinite sums, π∞+. The labelled bisimilarity that charac-
terizes open barbed bisimilarity is similar to open bisimilarity; indeed on the
subcalculus without restriction it coincides with open bisimilarity. On the full
calculus, however, the relations treat extruded names differently. To highlight
the difference, we recall the definition of open bisimilarity.

Open bisimilarity is usually defined using the late transition relations. One
of the significant features of open bisimilarity is that when comparing two pro-
cesses, it suffices to consider only input actions and bound-output actions whose
object is a single fresh name. This can be important in reducing the amount of
work needed to determine whether processes are equivalent. Here, however, it
is convenient to cast the definition using the early transition relations.

A distinction is a finite symmetric and irreflexive relation on names. A sub-
stitution σ respects a distinction D if (x, y) ∈ D implies xσ �= yσ. Given sets of
names Y and Z, we write Y ⊗Z for the distinction that contains all pairs (y, z)
and (z, y) such that y ∈ Y , z ∈ Z, and y �= z.

Definition 5 (Open bisimilarity). An open bisimulation is a family of rela-
tions {SD | D a distinction} such that whenever (P,Q) ∈ SD,

1. if P α−→ P ′ and α is not a bound output, then Q
α̂=⇒ Q′ for some Q′ with

(P ′, Q′) ∈ SD
2. if P

x(z)−−−→ P ′ then Q
x(z)
===⇒ Q′ for some Q′ with (P ′, Q′) ∈ SD′ where

D′ = D ∪ ({z} ⊗ fn(P,Q))
3. the variants of (1) and (2) with the roles of P and Q swapped
4. (Pσ,Qσ) ∈ SDσ for every σ that respects D.

We write {≈Do | D a distinction} for the pointwise union of all open bisimula-
tions, and refer to ≈Do as open D-bisimilarity . In particular, we write ≈o for ≈∅o,
and refer to it as open bisimilarity . ✷

The definition of quasi-open bisimilarity involves a family of relations in-
dexed by finite sets of names, rather than by distinctions. We need the analogue
of the notion that a substitution respects a distinction. Suppose z̃ is a finite
set of names. A substitution σ respects z̃ if whenever z ∈ z̃ and y �= z, then
yσ �= zσ.

Definition 6 (Quasi-open bisimilarity). A quasi-open bisimulation is a
family of relations {S z̃ | z̃ ⊆ N finite} such that whenever (P,Q) ∈ S z̃,

1. if P α−→ P ′ and α is not a bound output, then Q
α̂=⇒ Q′ for some Q′ with

(P ′, Q′) ∈ S z̃
2. if P

x(z)−−−→ P ′ then Q
x(z)
===⇒ Q′ for some Q′ with (P ′, Q′) ∈ S z̃∪{z}

3. the variants of (1) and (2) with the roles of P and Q swapped

On Barbed Equivalences in π-Calculus 301

4. (Pσ,Qσ) ∈ S z̃σ for every σ that respects z̃.

We write {≈z̃q | z̃ ⊆ N finite} for the pointwise union of all quasi-open bisimula-
tions, and refer to ≈z̃q as quasi-open z̃-bisimilarity . In particular, we write ≈q

for ≈∅q, and refer to it as quasi-open bisimilarity . ✷

In open bisimilarity, when a name z is sent in a bound-output action, the
distinction is enlarged to ensure that z is never identified with any name that
is free in the processes that send it. In quasi-open bisimilarity, in contrast, at
no point after the scope of z is extruded can a substitution be applied that
identifies z with any other name. Roughly, quasi-open bisimilarity treats names
that are extruded in the same way that early bisimilarity treats all names.

Lemma 4. Quasi-open bisimilarity, ≈q, is a congruence.

Proof (Outline) The proof involves showing that ≈q is preserved by each oper-
ator of the calculus. This is done by exhibiting appropriate quasi-open bisimula-
tions. Due to the special treatment of extruded names, the case of composition
needs special care. ✷

Quasi-open bisimilarity, like open bisimilarity, is more discriminating than
early congruence: the union over z̃ of the relations ≈z̃q is an early bisimulation;
and for instance P ≈c Q but P �≈q Q where

P
def= x. x+ x+ x. [y= z]x

Q
def= x. x+ x .

The reason why P �≈q Q is that [y= z]x �≈q x and [y= z]x �≈q 0, as can be
seen by considering the effects of applying the identity substitution and the
substitution {y/z} respectively.

Moreover, quasi-open bisimilarity is strictly weaker than open bisimilarity.

Lemma 5. ≈o is strictly included in ≈q.

Proof For z̃ a finite set of names define S z̃ by setting (P,Q) ∈ S z̃ if there is a
distinction D such that P ≈Do Q and for each pair (x, y) ∈ D, either x ∈ z̃ or
y ∈ z̃. Then {S z̃ | z̃ ⊆ N finite} can be shown to be a quasi-open bisimulation.
So in particular, if P ≈o Q then (P,Q) ∈ S∅ and so P ≈q Q.

To show that the inclusion is strict we can take

P
def= νz xz. (x(w) + x(w). z + x(w). [w= z]z)

Q
def= νz xz. (x(w) + x(w). z) .

Then P
x(z)−−−→ xw−−→ P ′ def= [w= z]z and, where D = {(x, z), (z, x)}, we have

P ′ �≈Do 0 because {z/w} respects D, while P ′ �≈Do z because the identity respects
D, so P �≈o Q. On the other hand, P ′ ≈{z}q 0 because {z/w} does not respect
{z}, and so P ≈q Q. ✷

To prove the characterization result we need that open barbed bisimilarity
is preserved by arbitrary substitution.

302 D. Sangiorgi and D. Walker

Lemma 6. P
.≈o Q implies Pσ

.≈o Qσ, for all σ.

Proof Suppose σ = {y1 . . . yn/x1 . . . xn} where {x1, . . . , xn} is the support of σ.
Let a be a fresh name and set

P1
def= νa (ay1. ayn | a(x1). a(xn). P)

Q1
def= νa (ay1. ayn | a(x1). a(xn). Q) .

By clause (4) of Definition 2, P1
.≈o Q1. Using some simple properties of

.≈o, we
have

P1
.≈o τ.τ.︸ ︷︷ ︸

n

Pσ
.≈o Pσ ,

and similarly, Q1
.≈o Qσ. Hence by transitivity, Pσ

.≈o Qσ. ✷

The following result holds for the π-calculus and for its extension with infinite
sums.

Theorem 3 (Characterization Theorem for open barbed bisimilarity).

For any processes P and Q, P ≈q Q iff P
.≈o Q.

Proof The implication from left to right holds because ≈q is an open barbed
bisimulation. This follows from the definitions and the fact that ≈q is a congru-
ence, by Lemma 4.

For the other implication, we define a family of relations {Rx̃ | x̃ ⊆ N finite}
such that

.≈o is included in R∅, and show that it is a quasi-open bisimulation.
Suppose x̃ = {xi | i ∈ I}. Set (P,Q) ∈ Rx̃ if there is ã = {ai | i ∈ I} (with

ai �= aj for i �= j) such that ã ∩ fn(P,Q, x̃) = ∅ and

νx̃ (Πi∈I !aixi | P)
.≈o νx̃ (Πi∈I !aixi | Q) . (1)

We consider clauses (4), (1), and (2) in Definition 6; the argument for clause
(3) is similar to those for (1) and (2).

Suppose (P,Q) ∈ Rx̃. Let P1
def= νx̃(Πi∈I !aixi | P) andQ1

def= νx̃(Πi∈I !aixi |
Q) be as in equation (1).

Clause (4) Suppose σ respects x̃. Choose b̃ = {bi | i ∈ I} such that bi �= bj

for i �= j and b̃ ∩ fn(P,Q, x̃, Pσ,Qσ, x̃σ) = ∅. Let θ = {b̃/̃a}. Then by applying
Lemma 6 to equation (1) with the substitution θ,

νx̃ (Πi∈I !bixi | P)
.≈o νx̃ (Πi∈I !bixi | Q) . (2)

Let ρ be the substitution that agrees with σ except that biρ = bi for each i. Then
by applying Lemma 6 to equation (2) with the substitution ρ, where ỹ = x̃σ we
have

νỹ (Πi∈I !biyi | Pσ) .≈o νỹ (Πi∈I !biyi | Qσ) .
Hence (Pσ,Qσ) ∈ Rỹ, as required.

On Barbed Equivalences in π-Calculus 303

Clause (1) We give just the argument for input actions. Those for free-output
and τ actions are of a similar nature.

Suppose P x z−−→ P ′. We have to find Q′ such that Q x z==⇒ Q′ and (P ′, Q′) ∈
Rx̃. There are four cases, determined by whether or not x ∈ x̃ and whether or
not z ∈ x̃. We give just one case. The arguments for the others are variations of
it.

Suppose x ∈ x̃, say x = xi, and z �∈ x̃. Let s, s′, and u be fresh names, and
consider the context

C
def=

(
s+ ai(u).(s′ + uz)

)
| [·] .

We have
C[P1] =⇒ P2

def= 0 | νx̃ (Πi∈I !aixi | P ′)
and it holds that not P2 ⇓s and not P2 ⇓s′ . Since P1

.≈o Q1, there is Q2 such
that C[Q1] =⇒ Q2

.≈o P2, so in particular it holds that not Q2 ⇓s and not
Q2 ⇓s′ . The only possibility is that

Q2 = 0 | νx̃ (Πi∈I !aixi | Q′)

for some Q′ such that Q x z==⇒ Q′. Since P2
.≈o Q2 we have

νx̃ (Πi∈I !aixi | P ′) .≈o νx̃ (Πi∈I !aixi | Q′)
and so (P ′, Q′) ∈ Rx̃.

Clause (2) Suppose P
x(z)−−−→ P ′, where z is fresh. We have to find Q′ such that

Q
x(z)
===⇒ Q′ and (P ′, Q′) ∈ Rx̃∪{z}. There are two subcases. We give one; the

argument for the other is a variation of it.
Suppose x ∈ x̃, say x = xi. Let s, s′, t, u, and a be fresh names, and consider

the context

C
def=

(
s+ ai(u).(s′ + u(z).(!az | Πc∈fn(P,Q)[z= c]t))

)
| [·] .

We have

C[P1] =⇒ P2
def= νz

(
!az | Πc∈fn(P,Q)[z= c]t | νx̃ (Πi∈I !aixi | P ′)

)

and it holds that not P2 ⇓s and not P2 ⇓s′ and not P2 ⇓ t. Since P1
.≈o Q1,

there is Q2 such that C[Q1] =⇒ Q2
.≈o P2, so in particular it holds that not

Q2 ⇓s and not Q2 ⇓s′ and not Q2 ⇓ t. The only possibility is that

Q2 = νz
(
!az | Πc∈fn(P,Q)[z= c]t | νx̃ (Πi∈I !aixi | Q′)

)

for some Q′ such that Q
x(z)
===⇒ Q′. Since P2

.≈o Q2 we have, using axioms of
structural congruence and the property

νy ([y= b]M | R)
.≈o νy R if y �= b,

304 D. Sangiorgi and D. Walker

that
P2

.≈o νz νx̃
(
!az | Πi∈I !aixi | P ′)

)

and
Q2

.≈o νz νx̃
(
!az | Πi∈I !aixi | Q′)

)
.

Hence (P ′, Q′) ∈ Rx̃∪{z}, as required.
This completes the outline of the proof of the theorem. ✷

References

1. M. Abadi and C. Fournet. Mobile Values, New Names, and Secure Communication.
In 28th Annual Symposium on Principles of Programming Languages. ACM, 2001.

2. P. Aczel. An introduction to inductive definitions. In Handbook of Mathematical
Logic. North Holland, 1977.

3. R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science, 195(2):291–324, 1998.

4. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi.
In ICALP’98: Automata, Languages and Programming, volume 1443 of Lecture
Notes in Computer Science. Springer-Verlag, 1998.

5. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 152(2):437–486, 1995.

6. A. Jeffrey and J. Rathke. A theory of bisimulation for a fragment of Concurrent
ML with local names. In 15th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, 2000.

7. M. Merro. Locality in the π-calculus and Applications to Object-Oriented Lan-
guages. PhD thesis, Ecole des Mines de Paris, 2000.

8. R. Milner. The polyadic π-calculus: a tutorial. In Logic and Algebra of Specifica-
tion. Springer-Verlag, 1993.

9. R. Milner and D. Sangiorgi. Barbed bisimulation. In ICALP’92: Automata,
Languages and Programming, volume 623 of Lecture Notes in Computer Science.
Springer-Verlag, 1992.

10. U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation
for CCS. Fundamenta Informaticae, XVI(2):171–199, 1992.

11. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, Department of Computer Science, University of
Edinburgh, 1992.

12. D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica, 33:69–
97, 1996.

13. D. Sangiorgi. The name discipline of uniform receptiveness. Theoretical Computer
Science, 221:457–493, 1999.

CCS with Priority Guards

Iain Phillips�

Department of Computing, Imperial College, London
iccp@doc.ic.ac.uk

Abstract. It has long been recognised that standard process algebra
has difficulty dealing with actions of different priority, such as for in-
stance an interrupt action of high priority. Various solutions have been
proposed. We introduce a new approach, involving the addition of “pri-
ority guards” to Milner’s process calculus CCS. In our approach, priority
is unstratified, meaning that actions are not assigned fixed levels, so that
the same action can have different priority depending where it appears
in a program. Unlike in other unstratified accounts of priority in CCS
(such as that of Camilleri and Winskel), we treat inputs and outputs
symmetrically. We introduce the new calculus, give examples, develop
its theory (including bisimulation and equational laws), and compare it
with existing approaches. We show that priority adds expressiveness to
both CCS and the π-calculus.

1 Introduction

It has long been recognised that standard process algebra [13,9,2] has difficulty
dealing with actions of different priority, such as for instance an interrupt action
of high priority. Various authors have suggested how to add priority to process
languages such as ACP [1,10], CCS [4,3] and CSP [8,7]. We introduce a new
approach, involving the addition of “priority guards” to the summation opera-
tor of Milner’s process calculus CCS. In our approach, priority is unstratified,
meaning that actions are not assigned fixed levels, so that the same action can
have different priority depending where it appears in a program. We shall see
that existing accounts of priority in CCS are either stratified [4], or else they
impose a distinction between outputs and inputs, whereby prioritised choice is
only made on inputs [3,5]. This goes against the spirit of CCS, where inputs and
outputs are treated symmetrically, and we contend that it is unnecessary. We
introduce the new calculus, give examples, develop its theory (including bisimu-
lation and equational laws), and compare it with existing approaches. We show
that priority adds expressiveness to both CCS and the π-calculus.
We start with the idea of priority. We assume some familiarity with CCS

notation [13]. Consider the CCS process a + b. The actions a and b have equal
status. Which of them engages in communication depends on whether the en-
vironment is offering the complementary actions ā or b̄. By “environment” we
� Partially funded by EPSRC grant GR/K54663

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 305–320, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

306 I. Phillips

mean whatever processes may be placed in parallel with a + b. We would like
some means to favour a over b, say, so that if the environment offers both, then
only a can happen. This would be useful if, for instance, a was an interrupt ac-
tion. We need something more sophisticated than simply removing b altogether,
since, if a cannot communicate, it should not stop b from doing so. This brief
analysis points to two features of priority: (1) Priority removes (“preempts”)
certain possibilities that would have existed without priority. Thus if a can com-
municate then b is preempted. (2) Reasoning about priority in CCS has to be
parametrised by the environment.
We now explain the basic idea of priority guards. Let P be a process, let a

be an action, and let U be some set of actions. Then we can form a new process
U :a.P , which behaves like a.P , except that the initial action a is conditional on
the environment not offering actions in Ū , the CCS “complement” of U . We call
U a priority guard in U :a.P . All actions in U have priority over a at this point
in the computation. We call our calculus CPG (for CCS with Priority Guards).
As a simple example, if we have a CCS process a.P + b.Q and we wish to

give a priority over b in the choice, we add a priority guard to get a.P + a :b.Q
(we omit the set braces around a). Priority is specific to this choice, since the
guard affects only the initial b, and not any further occurrences of b there may
be in Q.
Let us see how this example is handled in two existing approaches to priority.

Cleaveland and Hennessy [4] add new higher priority actions to CCS. They
would write our example as a.P + b.Q (high priority actions are underlined).
In their stratified calculus, actions have fixed priority levels, and only actions
at the same priority level can communicate. In this paper we are interested in
an unstratified approach, and so our starting point of reference is Camilleri and
Winskel’s priority choice operator [3]. In their notation the example becomes
a.P+〉b.Q. They make the priority of a over b specific to the particular choice,
so that b might have priority over a elsewhere in the same program. We shall
compare our approach with these two existing ones in Sect. 2.
A striking by-product of adding priority guards to CCS is that we can encode

mixed input and output guarded summation using priority guards and restricted
parallel composition. As a simple example, a.P+b̄.Q can be encoded with priority
guards as newc(c :a.(P |c̄)|c : b̄.(Q|c̄)) (where c is a fresh action). This expresses in
a natural way the preemptive nature of +, whereby pursuing one option precludes
the others. The same effect can be achieved in Camilleri and Winskel’s calculus
(but only for input guards): a.P + b.Q can be encoded as

new c ((c+〉a.(P |c̄)|(c+〉b.(Q|c̄)))

but of course here we are exchanging one form of choice for another. We shall
return to this encoding of summation in Sect. 6.
To end this section, we give an example, involving handling of hidden actions

and the scoping of priority. We wish to program a simple interrupt. Let P be a
system which consists of two processes A, B in parallel which perform actions a,
b respectively, while communicating internally to keep in step with each other.

CCS with Priority Guards 307

P also has an interrupt process I which shuts down A and B when the interrupt
signal int is received.

P
df= newmid, intA, intB (A|B|I) A df= intA :a.mid.A+ intA

I
df= int.(intA.intB + intB .intA) B

df= intB :b.mid.B + intB

Without the priority guards in A and B, P could receive an int and yet A
and B could continue with a and b. Actions intA, intB have priority over a, b,
respectively. This only applies within the scope of the restriction. We can apply
the usual techniques of CCS (including removing τ actions) and get

P = a.P1 + b.P2 + int P1 = b.P + int P2 = a.P + int

which is what we wanted. We consider this example more precisely in Sect. 8.
Notice that in the system as a whole, once the high-priority interrupt action

is restricted, we have regained a standard CCS process without priority. Thus
priority can be encapsulated locally, which we regard as an important feature
when programming larger systems, where different priority frameworks may be
in use in different subsystems.
The rest of the paper is organised as follows: First we compare our approach

with related work (Sect. 2). Next we define the language of processes (Sect. 3).
Then we look at reactions (Sect. 4) and labelled transitions (Sect. 5). We then
look at bisimulation and equational theories for both the strong (Sect. 6) and
weak cases (Sect. 7). We then return to our interrupt example (Sect. 8), and
look at the extra expressiveness afforded by priority guards (Sect. 9). The paper
is completed with some brief conclusions.

2 Comparison with Related Work

We refer the reader to [5] for discussion of the many approaches taken by other
authors to priority. Here we restrict ourselves to comparison of our work with
that of Camilleri and Winskel [3] (referred to as CW for short) and Cleaveland,
Lüttgen and Natarajan [5] (CLN for short).

2.1 Camilleri and Winskel (CW)

As we have seen, CW’s CCS with a prioritised choice operator P+〉Q allows
priority to be decided in a way which is specific to each choice in a system.
The idea of a priority choice between processes is interesting and natural. The
authors present an operational semantics via a labelled transition relation, and
define a bisimulation-based equivalence. They also give an axiomatisation of this
equivalence which is complete for finite processes (i.e. those not using recursion).
They do not show how to hide the τ -actions resulting from communications
(though this is treated in [11]).
As we saw in the Introduction, reasoning about priority has to be

parametrised on the environment. The CW transition relation is parametrised

308 I. Phillips

on a set of output actions R. Thus �R P
α→ P ′ means that, in an environment

which is ready to perform precisely the actions R, the process P can perform an
action α to become P ′. For example, �R a+〉b a→ 0 (any R), while �R a+〉b b→ 0
provided ā �∈ R.
We have borrowed the idea of parametrisation on the environment for our

labelled transition system for CPG. For us P α→U P ′ means that, in an environ-
ment which offers no action in the set Ū , process P can perform α to become
P ′. Our most basic rule is essentially U :a.P a→U P , provided a �∈ U .

Note that the CW syntax shows the environment only in the prioritised
choice a.P+〉b.Q, and does this implicitly, in that b.Q’s “environment” is a.P ,
while a.P says nothing about the actual environment. In CPG the environment
is represented in the syntax directly.
There is a difference in expressiveness between CPG and CW’s calculus, in

that the latter cannot express cycles of priority, whereas we can in CPG. CW
consider the paradoxical example new a, b ((a+〉b̄)|(b+〉ā)). The problem is that
there is a circularity, with a having priority over b, as well as vice versa. Can the
system act? They decide to sidestep this question by breaking the symmetry in
CCS between inputs and outputs, and only allowing prioritised choice on input
actions. We feel that this complicates the syntax and operational semantics,
and should not be necessary. There seems to be no essential reason for CW not
to allow the system with circular priorities, since their environmental transition
relation should be able to handle it. In our approach the example is admitted, and
results in a deadlock, which would seem to be in keeping with CW’s approach.
We consider this example again at the end of Sect. 5.
Another reason why CW disallow priority choice on output actions is to

assist in obtaining the normal form they use for proving the completeness of
their equational laws for finite processes. However this normal form is still quite
complicated (consisting of a sum of priority sums of sums). In our calculus CPG
we have only one form of choice, and so completeness is technically simpler.

2.2 Cleaveland, Lüttgen, and Natarajan (CLN)

In CLN’s basic approach [5], which is derived from earlier work of Cleaveland
and Hennessy [4], actions have priority levels. Mostly they consider just two
levels—ordinary actions and higher priority, underlined actions. Only actions
at the same level of priority can communicate, which is really quite restrictive
when one considers that two actions which are intended to communicate may
have quite different priorities within their respective subsystems. Silent actions
resulting from communication have preemptive power over all actions of lower
priority. The authors present both strong and weak bisimulation-based equiva-
lences (drawing on [15]), and axiomatise these for finite processes.
In our unstratified calculus CPG, by contrast, actions do not have priority

levels—each priority guard operates independently, in the spirit of [3].
We referred in the Introduction to the desirability of encapsulating priorities

locally. This encapsulation is present in Camilleri and Winskel’s calculus (and in

CCS with Priority Guards 309

our own), but not in Cleaveland and Hennessy’s, since a high priority τ is treated
differently from a standard τ . However, the development in [5] goes beyond the
basic Cleaveland and Hennessy calculus to consider distributed priorities, where
preemption is decided locally rather than globally. Consideration is also given
to extending the distributed priority calculus to allow communication between
actions at different levels. The authors identify a problem with associativity of
parallel composition. Consider the system

(a+ b)|(b̄+ c)|c̄

where communication is allowed between complementary actions at different
levels. If this associates to the left, then a is preempted by b; however if it
associates to the right then b is preempted by c, and so a is not preempted. A
similar problem is encountered when extending the distributed calculus to allow
more than two levels. CLN’s proposed solution is to follow CW by only allowing
priorities to be resolved between input actions, while treating all output actions
as having equal priority. We have already mentioned our reservations about
this. Nevertheless the distinction between inputs and outputs gives a workable
“mixed-level” calculus (distributed, multi-level, with communication between
different levels). It is particularly nice that CLN show that the CW calculus can
be translated faithfully and naturally into this mixed-level calculus.
It is striking that both CW and the mixed-level calculus of CLN adopt the

same syntactic restriction on inputs and outputs, and also that only strong equiv-
alence (τ actions not hidden) is presented for the mixed-level calculus. We shall
present a weak equivalence for CPG.

3 The Language CPG

We shall denote our augmentation of CCS with priority guards by CPG (CCS
with Priority Guards). First we define the actions of CPG. In standard CCS [13,
Part I] there is a set of names N and a disjoint set of co-names N̄ , together
with a single silent action τ . To these standard names N we shall add a new
disjoint set of names U and a dual set Ū . These are the actions which can be
used in priority guards; they can also be used in the standard way. They need to
be kept separate from standard actions, since we have to be careful with them
in reasoning compositionally about processes.
To see why we take this approach, consider the law P = τ.P , which is valid

for CCS processes.1 In CPG, if a can be a priority guard then a �= τ.a since
there is a context in which the two sides behave differently. Indeed, a|ā :b cannot
perform b (since, as we shall see, b is preempted by the offer of a), whereas
τ.a|ā :b can perform b initially, as a is not offered until τ has occurred. However
if we know that a is a standard name then we do have a = τ.a. So we can retain
CCS reasoning when processes only involve standard names.
1 We are following the formulation of CCS in [13] rather than that of [12]. Processes
such as P + (Q|R) are not allowed, only guarded choices ∑

αi.Pi.

310 I. Phillips

We define Std = N ∪N̄ , Pri = U ∪Ū , Vis = Std∪Pri and Act = Vis∪{τ}. We
let u, v, . . . range over Pri, a, b, . . . over Vis and α, β, . . . over Act. Also S, T, . . .
range over finite subsets of Vis, and U, V . . . over finite subsets of Pri. If S ⊆ Vis,
let S̄ denote {ā : a ∈ S}, where if ā ∈ N̄ ∪ Ū then ¯̄a = a.

Now we define processes:

Definition 1. (cf [13, Definition 4.1]) P is the smallest set such that whenever
P, Pi are processes then P contains

1.
∑
i∈I Si : αi.Pi (guarded summation: I finite, each Si finite)

2. P1|P2 (parallel composition)
3. new a P (restriction)
4. A〈a1, .., an〉 (identifier)

P is ranged over by P,Q,R, . . . We let M,N, . . . range over (guarded) summa-
tions. We assume that each identifier A〈b1, .., bn〉 comes with a defining equation
A(a1, .., an)

df= P , where P is a process whose free names are drawn from a1, .., an.
We will tend to abbreviate a1, .., an by −→a . We write the empty guarded sum-
mation as 0 and abbreviate S : α.0 by S : α. It is assumed that the order in a
summation is immaterial. We abbreviate ∅ :α by α. Definition 1 is much as in
standard CCS except for the priority guards Si. The meaning of the priority
guard S : α is that α can only be performed if the environment does not offer
any action in S̄ ∩ Pri. Clearly, any names in S − Pri have no effect as guards,
and can be eliminated without changing the behaviour of a process. We allow
them to occur in the syntax, since otherwise we could not freely instantiate the
parameters in an identifier. We write u : α instead of {u} : α. Restriction is a
variable-binding operator, and we write fn(P) for the free names of P .
Two sublanguages of CPG are of interest:

Definition 2. Let PStd be the sublanguage of standard processes generated as
in Definition 1 except that all names are drawn from Std (i.e. we effectively take
U = ∅ and Si = ∅ in clause (1)). Let PUg be the sublanguage of unguarded
processes generated as in Definition 1 except that all priority guards are empty
(i.e. Si = ∅ in clause (1)).

Clearly PStd ⊆ PUg ⊆ P. Note that PStd is effectively standard CCS. The un-
guarded processes PUg differ from PStd in that they may contain names in Pri.
Such processes cause no problems for strong equivalence (Proposition 4), but
care is needed with weak equivalence (Sect. 7), since e.g. u and τ.u (u ∈ Pri) are
not weakly equivalent, as remarked above.

4 Offers and Reaction

Structural congruence is the most basic equivalence on processes, which facili-
tates reaction by bringing the subprocesses which are to react with each other
into juxtaposition. It is defined as for CCS:

CCS with Priority Guards 311

Definition 3. (cf [13, Definition 4.7]) Structural congruence, written ≡, is the
congruence on P generated by the following equations:

1. Change of bound names (alpha-conversion)
2. P |0 ≡ P , P |Q ≡ Q|P , P |(Q|R) ≡ (P |Q)|R
3. new a (P |Q) ≡ P |new a Q if a �∈ fn(P);
new a 0 ≡ 0, new a new b P ≡ new b new a P

4. A〈−→b 〉 ≡ {−→b /−→a }P if A(−→a) df= P

Recall that a guarded action S : a is conditional on other processes in the en-
vironment not offering actions in S̄ ∩ Pri. Before defining reaction we define for
each process P the set off(P) ⊆ Pri of “higher priority” actions “offered” by P .

Definition 4. By induction on P ∈ P:

1. off(
∑
i∈I Si :αi.Pi) = {αi : i ∈ I, αi ∈ Pri, αi �∈ Si}

2. off(P1|P2) = off(P1) ∪ off(P2)
3. off(new a P) = off(P)− {a, a}
4. off(A〈−→b 〉) = off({−→b /−→a }P) if A(−→a) df= P

In item 1 the reason that we insist αi �∈ Si is that we want to equate a process
such as u : u with 0, since u : u can never engage in a reaction. Note that if
P ∈ PStd then off(P) = ∅.
In CPG, a reaction can be conditional on offers from the environment. Con-

sider u : b|b̄. This can react by communication on b, b̄. However b is guarded
by u, and so the reaction is conditional on the environment not offering ū. We
reflect this by letting reaction be parametrised on sets of actions U ⊆ Pri. The
intended meaning of P →U P ′ is that P can react on its own, as long as the
environment does not offer ū for any u ∈ U (in our parlance, “eschews” U).

Definition 5. Let P ∈ P and let S ⊆ Act be finite. P eschews S (written
P eschewsS) iff off(P) ∩ S̄ = ∅.

Definition 6. (cf [13, Definition 4.13]) The reaction relation on P is the small-
est relation → on P × ℘(Pri)× P generated by the following rules:

S :τ.P +M →S∩Pri P

S :a.P +M eschewsT T : ā.Q+N eschewsS
(S :a.P +M)|(T : ā.Q+N)→(S∪T)∩Pri P |Q

P →U P ′ Q eschewsU
P |Q→U P ′|Q

P →U P ′

new a P →U−{a,ā} new a P ′
P →U P ′ P ≡ Q P ′ ≡ Q′

Q→U Q′

We abbreviate P →∅ P ′ by P → P ′.

312 I. Phillips

The second clause of Definition 6 is the most important. In order for an action
a to react with a complementary ā, the two sides must not preempt each other
(i.e. they must eschew each other’s guards). Furthermore the reaction remains
conditional on the environment eschewing the union of their guards. The re-
striction rule shows how this conditionality can then be removed by scoping.
Notice that if we restrict attention to the unguarded processes PUg (i.e. we let
U = ∅) we recover the usual CCS reaction relation. So the new reaction relation
is conservative over the old.

5 Labelled Transitions

As in standard CCS, we wish to define a transition relation on processes P α→ P ′

meaning that P can perform action α and become P ′. As we did with reaction,
we refine the transition relation so that it is parametrised on sets of actions
U ⊆ Pri. The intended meaning of P α→U P ′ is that P can perform α as long as
the environment eschews U . Our definition is inspired by the transition relation
in [3], which is parametrised on what set of output actions the environment is
ready to perform.

Definition 7. (cf [13, Definition 5.1]) The transition relation on P is the small-
est relation → on P ×Act× ℘(Pri)× P generated by the following rules:

(sum) M + S :α.P +N
α→S∩Pri P if α �∈ S ∩ Pri

(react)
P1

a→U1 P
′
1

P2
ā→U2 P

′
2

P1 eschewsU2 P2 eschewsU1

P1|P2
τ→U1∪U2 P

′
1
|P ′

2

(par)
P1

α→U P ′1 P2 eschewsU

P1|P2
α→U P ′1|P2

P2
α→U P ′2 P1 eschewsU

P1|P2
α→U P1|P ′2

(res)
P

α→U P ′

new a P
α→U−{a,ā} new a P ′

if α /∈ {a, ā}

(ident) {−→b /−→a }P α→UP
′

A〈−→b 〉 α→UP ′ if A(−→a) df= P

We abbreviate P α→∅ P ′ by P α→ P ′ and ∃P ′.P α→U P ′ by P α→U .

Proposition 1. If P α→U P ′ then α /∈ U and U is finite. Moreover,

{u ∈ Pri : ∃U.P u→U} ⊆ off(P) .

To see that off(P) can be unequal to {u ∈ Pri : ∃U.P u→U}, consider u :v.0|ū.0.
We see that off(u :v|ū) = {v, ū}, but u :v|ū cannot perform v.

As with reaction, note that if we restrict attention to the unguarded processes
PUg (i.e. we let U = ∅) we recover the usual CCS transition relation. So the new
transition relation is conservative over the old. In applications we envisage that

CCS with Priority Guards 313

the standard CCS transition relation can be used most of the time. The CPG
transition relation will only be needed in those subsystems which use priority.
As an illustration of the design choices embodied in our definitions, consider

the circular example of Camilleri & Winskel (Subsect. 2.1):

P
df= u.a+ u : v̄ Q

df= v.b+ v : ū R
df= new u, v (P |Q)

In P action u has priority over v̄, while in Q action v has priority over ū. We
have P u→ a, Q ū→v 0. For a u communication to happen, by rule (react) we need
v̄ /∈ off(P), but off(P) = {u, v̄}, so that the u communication cannot happen.
Similarly the v communication cannot happen, and so R is strongly equivalent
to 0 (strong offer equivalence is defined in the next section).

6 Strong Offer Bisimulation

Similarly to standard CCS, we define process equivalences based on strong and
weak bisimulation. We consider strong bisimulation in this section and weak
bisimulation (i.e. with hiding of silent actions) in the next.
The intuition behind our notion of bisimulation is that for processes to be

equivalent they must make the same offers, and for a process Q to simulate a
process P , Q must be able to do whatever P can, though possibly constrained
by fewer or smaller priority guards. For instance, we would expect the processes
a+u :a and a to be equivalent, since the priority guarded u :a is simulated by a.

Definition 8. (cf [13]) A symmetric relation S ⊆ P×P is a strong offer bisim-
ulation if S(P,Q) implies both that off(P) = off(Q) and that for all α ∈ Act,

if P α→U P ′ then for some Q′ and V ⊆ U , we have Q α→V Q′ and S(P ′, Q′)

Definition 9. Processes P and Q are strongly offer equivalent, written P
off∼ Q,

iff there is some strong offer bisimulation S such that S(P,Q).

Proposition 2. (cf [13, Prop 5.2]) ≡ is a strong offer bisimulation. Hence ≡
implies off∼. ��

Proposition 3. (cf [13, Theorem 5.6]) P τ→U≡ P ′ iff P →U P ′ ��

Theorem 1. (cf [13, Proposition 5.29]) Strong offer equivalence is a congru-
ence, i.e. if P off∼ Q then

1. S :α.P +M
off∼ S :α.Q+M

2. new a P
off∼ new a Q

3. P |R off∼ Q|R
4. R|P off∼ R|Q ��

314 I. Phillips

Note that if P,Q ∈ PUg then P
off∼ Q iff P ∼ Q, where P ∼ Q denotes that

P and Q are strongly equivalent in the usual sense of [13]. So off∼ is conservative
over ∼. In fact we can say more:

Proposition 4. Let P,Q ∈ PUg. If P ∼ Q then C[P] off∼ C[Q], for any context
C[·]. ��

So we can reuse all the known equivalences between CCS processes when working
with CPG processes.

Proposition 5. (cf [13, Proposition 5.21]) For all P ∈ P,

P
off∼

∑
{U :α.Q : P α→U Q}

Proposition 6. The following laws hold:

M + S :α.P off∼ M + (S ∩ Pri) :α.P (1)

M + U :α.P off∼ M if α ∈ U ⊆ Pri (2)

M + U :α.P + (U ∪ V) :α.P off∼ M + U :α.P (3)

(
∑

Ui :αi.Pi) | (
∑

Vj :βj .Qj)

off∼
∑
{Ui :αi.(Pi|(

∑
Vj :βj .Qj)) : ∀j.βj �∈ Ūi} (4)

+
∑
{Vj :βj .((

∑
Ui :αi.Pi)|Qj)) : ∀i.αi �∈ V̄j}

+
∑
{(Ui ∪ Vj) :τ.Pi|Qj : αi = β̄j ∈ Vis,∀i′, j′.αi′ �∈ V̄j , βj′ �∈ Ūi}

new a (
∑

Ui :αi.Pi)
off∼

∑
((Ui − {a, ā}) :αi.new a Pi : αi �= a, ā} (5)

Definition 10. Let AS be the following set of axioms: the axioms of structural
congruence ≡ (Definition 3) together with the five laws of Proposition 6.

Theorem 2. The set of axioms AS is complete for off∼ on finite CPG processes
(a CPG process is finite if it contains no identifiers). ��

As mentioned in the Introduction, we can encode mixed input and output
guarded summation using priority guards and restricted parallel composition.

CCS with Priority Guards 315

Proposition 7. Suppose that {αi : i ∈ I} are actions which cannot react with
each other, i.e. there do not exist i, j ∈ I and a ∈ Vis such that αi = a and
αj = ā. Then

∑
Si :αi.Pi

off∼ new u (
∏
(Si ∪ {u} :αi(Pi|ū)))

where u ∈ Pri is some fresh name not occurring in
∑

Si :αi.Pi and
∏

denotes
parallel composition. ��
The non-reaction condition in Proposition 7 is needed, since otherwise the right-
hand side would have extra unwanted reactions. The condition is not unduly
restrictive, since if we have a system where the same channel a is used to pass
messages both to and from a process, we can simply separate a out into two
separate channels, one for each direction.

7 Weak Offer Bisimulation

We now investigate weak bisimulation, where reactions are hidden.

Definition 11. P ⇒U P ′ iff P
id= P ′ or ∃U1, . . . , Un.P →U1 · · · →Un P ′ with

U = U1 ∪ · · · ∪ Un (n ≥ 1). We abbreviate P ⇒∅ P ′ by P ⇒ P ′.
P

α⇒U P ′ iff ∃U ′, U ′′.P ⇒U ′ P ′′ α→U ′′ P ′′′ ⇒ P ′ with U = U ′ ∪ U ′′ and
off(P ′′) ⊆ off(P).

Here P id= P ′ means that P and P ′ are identically equal. So P ⇒U P ′ al-
lows zero or more internal transitions with guards included in U . The condition
off(P ′′) ⊆ off(P) is needed to obtain a weak equivalence which is a congruence.
The reason why we allow priority guards before performing a visible action, but
not after, is as follows: For Q to simulate P a→U P ′, Q must expect an environ-
ment offering Ū up to and including performing a. After this, the environment
has changed, and might be offering anything. So Q can perform further reac-
tions to reach Q′ simulating P ′, but these reactions must not be subject to any
priority guards.

Definition 12. A symmetric relation S ⊆ P × P is a weak offer bisimulation
if S(P,Q) implies both that off(P) = off(Q) and that:

if P →U P ′ then for some Q′ and U ′ ⊆ U , we have Q⇒U ′ Q′ and S(P ′, Q′),
and for all a ∈ Vis,

if P a→U P ′ then for some Q′ and U ′ ⊆ U , we have Q a⇒U ′ Q′ and S(P ′, Q′).
On the sublanguage PStd (which corresponds to CCS) weak offer bisimulation

is the same as for CCS [13, Proposition 6.3].

Definition 13. Processes P and Q are weakly offer equivalent, written P
off≈ Q,

iff there is some weak offer bisimulation S such that S(P,Q).

316 I. Phillips

Proposition 8. For any P,Q, if P off∼ Q then P
off≈ Q. ��

Theorem 3. (cf [13, Proposition 6.17])
off≈ is a congruence. ��

So we have a congruence which conservatively extends CCS.
We now turn to the equational theory of weak offer equivalence. In CCS we

have the law P ≈ τ.P [13, Theorem 6.15]. However in CPG, u �off≈ τ.u. This is
because off(u) = {u} whereas off(τ.u) = ∅. However the usual CCS equivalence
laws will still hold for the standard processes PStd (recall that for P ∈ PStd,
off(P) = ∅).
Proposition 9. (cf [13, Theorem 6.15]) The following laws hold:

τ.P
off≈ P if off(P) = ∅ (6)

M +N + τ.N
off≈ M + τ.N if off(N) ⊆ off(M) (7)

M + α.P + α.(τ.P +N)
off≈ M + α.(τ.P +N) (8)

We stated (6), (7) and (8) because in many situations it is convenient to use
conventional CCS reasoning. The next result gives the “intrinsic” τ -laws of CPG:

Proposition 10. The following four laws hold:

M + U :τ.M
off≈ M (9)

M + U :τ.(N + V :τ.P)
off≈ M + U :τ.(N + V :τ.P) + (U ∪ V) :τ.P (10)

If off(N + V :a.P) ⊆ off(M):

M + U :τ.(N + V :a.P)
off≈ M + U :τ.(N + V :a.P) + (U ∪ V) :a.P (11)

M + U :α.P + U :α.(τ.P +N)
off≈ M + U :α.(τ.P +N) (12)

We can derive (7) from (10) and (11). Also we can derive:

τ.M
off≈ M if off(M) = ∅ (13)

from (9), (10), (11). Recall that every process is strongly equivalent to a sum-
mation (Proposition 5), and so (13) is effectively as strong as (6).

Definition 14. Let AW be the axioms AS (Definition 10) together with (9),
(10), (11) and (12).

CCS with Priority Guards 317

Theorem 4. The axioms AW are complete for
off≈ on finite processes. ��

Proposition 11. (cf [13, Theorem 6.19]) Unique solution of equations. Let −→X
be a (possibly infinite) sequence of process variables Xi. Up to

off≈, there is a
unique sequence −→P of processes which satisfy the formal equations:

Xi
off≈

∑
j

Uij :aij .Xk(ij)

(notice that τs are not allowed). ��

8 Example

We now revisit the interrupt example from Sect. 1. Recall that we had:

P
df= newmid, intA, intB (A|B|I) A df= intA :a.mid.A+ intA

I
df= int.(intA.intB + intB .intA) B

df= intB :b.mid.B + intB

We want to show P
off≈ Q, where

Q
df= a.Q1 + b.Q2 + int Q1

df= b.Q+ int Q2
df= a.Q+ int

Clearly intA, intB ∈ Pri. We take a, b,mid, int ∈ Std. This means that Q ∈ PStd.
We can use Laws (4), (5) to get:

P
off∼ a.P1 + b.P2 + int.P3

P1
off∼ b.P4 + int.τ P2

off∼ a.P4 + int.τ P3
off∼ τ.τ + τ.τ P4

off∼ τ.P + int.τ.P3

where P1, P2, P3, P4 are various states of P . We can use law (6) to get:

P1
off≈ b.P4 + int P2

off≈ a.P4 + int P3
off≈ 0 P4

off≈ τ.P + int

Then we use law (7) to get τ.P + int
off≈ τ.P . Notice that this needs off(P) = ∅,

i.e. a, b, int �∈ Pri. Finally:

P
off≈ a.P1 + b.P2 + int P1

off≈ b.P + int P2
off≈ a.P + int

By Proposition 11 we get P
off≈ Q as we wanted.

Our reasoning was presented equationally, but could equally well have been
done using bisimulation. We first unfolded the behaviour of P . Since all pri-
oritised actions were restricted, the system P had no priorities as far as the
environment was concerned. We could therefore remove silent actions and sim-
plify using standard techniques of CCS.
In the Introduction we used plain equality (=) when talking about equiva-

lence between CPG processes. This is to be interpreted as
off≈.

318 I. Phillips

9 Expressiveness

In this section we show that priorities add expressive power to both CCS and the
π-calculus [14,13]. As far as we are aware, this has not been previously shown for
any notion of priority in process algebra. We use the work of Ene and Muntian
[6], which was inspired by that of Palamidessi [16].

Definition 15. [16] An encoding [[·]] is a compositional mapping from (the pro-
cesses of) one calculus to another. It is called uniform if [[P |Q]] = [[P]]|[[Q]] and,
for any renaming σ, [[σ(P)]] = σ([[P]]). A semantics is reasonable if it distin-
guishes two processes P and Q whenever in some computation of P the actions
on certain intended channels are different from those of any computation of Q.

Definition 16. (slight modification of [16, Definition 3.1]) A process

P = P1| · · · |Pn
is an electoral system if every computation of P can be extended (if necessary)
to a computation which declares a leader i by outputting ōi, and where no com-
putation declares two different leaders.

The intuition behind the following theorem is that priorities give us something
of the power of one-many (broadcast) communication, in that a single process
can simultaneously interrupt several other processes. By contrast, π-calculus
communication is always one-one.

Theorem 5. There is no uniform encoding of CPG into the π-calculus preserv-
ing a reasonable semantics.

Proof. (Sketch) We follow the proof of Ene and Muntian’s result that the broad-
cast π-calculus cannot be encoded in the π-calculus [6]. The network of CPG
processes P1| · · · |Pn is an electoral system, where Pi df= u :a.(ū|ōi)|ā. If Pi man-
ages to communicate on a then Pi declares itself the leader. No other process
can now do this, since Pi is preventing all the other processes from performing
a by offering ū.

The rest of the proof is as in [6]. Suppose that we have an encoding [[·]] of CPG
into the π-calculus. Let σ(oi) = om+i, with σ the identity otherwise. Consider
P1| · · · |Pm+n. This is an electoral system and so the encoding [[P1| · · · |Pm+n]]
must be also. But

[[P1| · · · |Pm+n]] = [[(P1| · · · |Pm)|σ(P1| · · · |Pn)]]
= [[P1| · · · |Pm]]|[[σ(P1| · · · |Pn)]]

So we have two electoral systems of m and n processes respectively, which can be
run independently in the π-calculus to produce two winners. Contradiction. ��
Since CCS can be encoded in π-calculus, it follows that CPG has greater expres-
sive power than CCS. It also follows that we can add expressive power to the
π-calculus by adding priority guards.

CCS with Priority Guards 319

Theorem 6. There is no uniform encoding of the π-calculus into CPG preserv-
ing a reasonable semantics.

Proof. Much as in [16], where it is shown for CCS rather than CPG. ��
The results of this section apply equally to Camilleri-Winskel and Cleaveland-
Hennessy-style priority.

10 Conclusions

We have introduced priority guards into CCS to form the language CPG. We
have defined both strong and weak bisimulation equivalences and seen that they
are conservative over the CCS equivalences, and that they are congruences. We
have given complete equational laws for finite CPG in both the strong and weak
cases. Conservation over CCS has the consequence that in verifying CPG systems
we can often use standard CCS reasoning, as long as we take some care with
actions in the set of prioritised actions Pri.
CPG overcomes the asymmetry between inputs and outputs present both in

Camilleri andWinskel’s calculus and in the corresponding calculus of Cleaveland,
Lüttgen and Natarajan.
Finally, we have seen that priority guards add expressiveness to both CCS

and the π-calculus.
We wish to thank Philippa Gardner, Rajagopal Nagarajan, Catuscia Palami-

dessi, Andrew Phillips, Irek Ulidowski, Maria Grazia Vigliotti, Nobuko Yoshida
and the anonymous referees for helpful discussions and suggestions.

References

1. J.C.M. Baeten, J. Bergstra, and J.-W. Klop. Syntax and defining equations for
an interrupt mechanism in process algebra. Fundamenta Informaticae, 9:127–168,
1986.

2. J. Bergstra and J.-W. Klop. Process algebra for synchronous communication.
Information and Computation, 60:109–137, 1984.

3. J. Camilleri and G. Winskel. CCS with priority choice. Information and Compu-
tation, 116(1):26–37, 1995.

4. R. Cleaveland and M.C.B. Hennessy. Priorities in process algebra. Information
and Computation, 87(1/2):58–77, 1990.

5. R. Cleaveland, G. Lüttgen, and V. Natarajan. Priority in process algebra. In
J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra.
Elsevier, 2001.

6. C. Ene and T. Muntian. Expressiveness of point-to-point versus broadcast commu-
nications. In FCT ’99, volume 1684 of Lecture Notes in Computer Science, pages
258–268. Springer-Verlag, 1999.

7. C.J. Fidge. A formal definition of priority in CSP. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):681–705, 1993.

8. H. Hansson and F. Orava. A process calculus with incomparable priorities. In
Proceedings of the North American Process Algebra Workshop, pages 43–64, Stony
Brook, New York, 1992. Springer-Verlag Workshops in Computer Science.

320 I. Phillips

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
10. A. Jeffrey. A typed, prioritized process algebra. Technical Report 13/93, Dept. of
Computer Science, University of Sussex, 1993.

11. C.-T. Jensen. Prioritized and Independent Actions in Distributed Computer Sys-
tems. PhD thesis, Aarhus University, 1994.

12. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
13. R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100:1–77, 1992.

15. V. Natarajan, L. Christoff, I. Christoff, and R. Cleaveland. Priorities and ab-
straction in process algebra. In P. S. Thiagarajan, editor, Foundations of Software
Technology and Theoretical Computer Science, 14th Conference, volume 880 of
Lecture Notes in Computer Science, pages 217–230. Springer-Verlag, 1994.

16. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculus. In Proceedings of the 25th Annual Symposium on Principles
of Programming Languages, POPL ’97, pages 256–265. ACM, 1997.

A Testing Theory for Generally Distributed
Stochastic Processes�

(Extended Abstract)

Natalia López and Manuel Núñez

Dpt. Sistemas Informáticos y Programación
Universidad Complutense de Madrid

{natalia,mn}@sip.ucm.es

Abstract. In this paper we present a testing theory for stochastic pro-
cesses. This theory is developed to deal with processes which probabil-
ity distributions are not restricted to be exponential. In order to define
this testing semantics, we compute the probability with which a process
passes a test before an amount of time has elapsed. Two processes will
be equivalent if they return the same probabilities for any test T and
any time t. The key idea consists in joining all the random variables
associated with the computations that the composition of process and
test may perform. The combination of the values that this random vari-
able takes and the probabilities of executing the actions belonging to the
computation will give us the desired probabilities. Finally, we relate our
stochastic testing semantics with other notions of testing.

1 Introduction

Process algebras [Hoa85,Hen88,Mil89,BW90] have become an important theo-
retical formalism to analyze distributed and concurrent systems. The first pro-
posals were not powerful enough to describe some features of real systems. Due
to that fact, process algebras have been extended with information to describe
quantitative and qualitative features. Therefore, several timed (e.g. [RR88,BB93,
NS94]), probabilistic (e.g. [LS91,GSS95,NdFL95,NdF95,CDSY99]), and timed-
probabilistic (e.g. [Han91,Low95,GLNP97]) extensions of process algebras have
appeared. However, these extensions are not enough to describe faithfully some
systems. There exist systems where the probability to perform an action varies
as time passes. So, during the last years a new extension has appeared: Stochas-
tic process algebras [GHR93,ABC+94,Hil96,BG98,HS00,HHK01]. These process
algebras provide information about the probability to execute actions before an
amount of time elapses. These probabilities are given by probability distribution
functions. Except some of them ([BBG98,DKB98,HS00,BG01]), the majority
works exclusively with exponential distributions. This assumption decreases the
expressiveness of the languages. However, it simplifies several of the problems
� Work partially supported by the CICYT project TIC2000-0701-C02-01.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 321–335, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

322 N. López and M. Núñez

that appear when considering general distributions. In particular, some quanti-
ties of interest, like reachability probabilities or steady-state probabilities, can
be efficiently calculated by using well known methods on Markov chains. Nev-
ertheless, the main weakness of non-exponential models, that is the analysis of
properties, can be (partially) overcome by restricting the class of distributions.
Phase-type distributions [Neu92] are a good candidate: They are closed under
minimum, maximum, and convolution, and any other distribution over the inter-
val (0,∞) can be approximated by arbitrarily accurate phase-type distributions.
Moreover, the analysis of performance measures can be efficiently done in some
general cases (see [BKLL95,EKN99] for the study of this kind of distributions
in a stochastic process algebra).

In order to define the semantics of processes, the classical theory of test-
ing [dNH84,Hen88] uses the idea of an experimenter. The notion of testing a pro-
cess is specified by the interaction between the tested process and a set of tests.
Usually, this interaction is modeled by the parallel composition of a process and
a test. There have appeared testing semantics for probabilistic extensions (e.g.
[Chr90,YL92,NdFL95,KN98,CDSY99]), timed extensions (e.g. [HR95,LdF97]),
and probabilistic-timed extensions (e.g. [CLLS96,GLNP97]). Unfortunately, the
testing theory has not been so extensively used in the field of stochastic process
algebras. The definition of a testing semantics (fulfilling good properties) for
this kind of languages is rather difficult, because sequences of stochastic tran-
sitions must be somehow abstracted and, in general, this is not an easy task.
As far as we know, [BC00] represents the only proposal of a testing theory for
stochastic process algebras. However, their study is restricted to processes which
probability distribution functions are always exponential.

In this paper we will define a testing semantics for a stochastic process al-
gebra where probability distributions are not restricted to be exponential. In
our setting, processes may perform both standard actions (visible actions and
internal τ actions) and stochastic actions which represent (random) delays. Our
language will contain a probabilistic choice operator. In particular, this will im-
ply that the selection among alternative stochastic transitions will be made by
using a preselection policy. That is, according to the corresponding probabilities,
one of the possible stochastic actions is chosen. Then, the process will be delayed
an amount of time depending on the probability distribution associated with the
chosen action.

Regarding tests, we will suppose that they cannot perform internal tran-
sitions. We impose this restriction because probabilistic testing produces very
strange results if tests have the ability to perform internal transitions. For ex-
ample, if we consider a CCS like probabilistic process algebras with a unique
(probabilistic) choice operator1 and we allow internal actions in tests, we will
usually get that the processes τ ; a ; STOP and a ; STOP are not probabilistically
testing equivalent. In [CDSY99] a more detailed discussion on probabilistic test-

1 This is equivalent to consider (probabilistic) transitions systems where transitions
are labeled by actions and probabilities.

A Testing Theory for Generally Distributed Stochastic Processes 323

ing semantics with and without internal actions in tests is presented. So, in order
to keep a reasonable equivalence, we will not include internal actions in tests.

As usual, we will define the interaction between processes and tests as a
parallel composition synchronizing in all the visible actions. This composition
will produce a (multi)set of computations. In order to define the passing of
tests, we will extract the appropriate information from these computations. This
information will be a probability (indicating the probability of executing this
computation) together with a random variable generated from all the random
variables appearing in the sequence. So, our definition of passing tests takes into
account not only the probabilities associated with computations, but also the
time that these computations need to finish. For example, 0.3 = pass≤2(P, T)
indicates that the process P passes the test T with probability 0.3 before 2
units of time have passed. A similar mechanism is used in the testing semantics
presented in [GLNP97]. Another alternative is given in [BC00] where the average
time of the computation is used. Given the fact that we do not restrict the kind
of probability distributions, in our setting, this technique would equate processes
that present different stochastic behaviors.

In Fig. 1 we will use a graphical representation to introduce some stochastic
processes. Greek letters like ξ, ϕ, and ψ (possibly decorated with an index) denote
random variables, Latin letters represent visible actions, and τ represents an
internal action. Transitions will be labeled by one of these actions together with
a probability (we omit this value if it is equal to 1). Consider the processes P1 and
P2. In this case, the key point consists in computing the probability to perform
a before a certain amount of time has passed. If the random variable ξ1 + ξ2,
that is the addition of the random variables ξ1 and ξ2, and the random variable
ξ3 are identically distributed, then we would like to equate P1 and P2. Let us
note that + denotes the addition of random variables, that is, the convolution
of them. Consider now P3, P4 and P5 in Fig. 1. These processes will be testing
equivalent. Regardless of the temporal point where the (probabilistic) choice is
taken, these processes follow the same temporal pattern (this would not be the
case if a bisimulation semantics is considered). For example, P3 will be firstly
delayed according to ψ1. Afterwards, it will be delayed either according to ψ2
(with probability p) or according to ψ3 (with probability 1 − p). If we add the
corresponding delays, we have that, with probability p, the action a (resp. b)
will be performed after a delay determined by the addition of ψ1 and ψ2 (resp.
the addition of ψ1 and ψ3). Intuitively, this is the very same situation for P4
and P5. Finally, P6 and P7 will also be testing equivalent. The reason is that
both probabilistic choices produce the same result. This point motivates our
presentation. In a stochastic process algebra where delays are separated from
usual actions (as it is our case), stochastic actions must be considered somehow
as internal actions carrying some additional information. Let us note that, in
this example, if we replace ϕ1 and ϕ2 by usual actions b and c then the new
processes are no longer testing equivalent.

The rest of the paper is structured as follows. In Sect. 2 we present our lan-
guage and its operational semantics. In Sect. 3 we present our testing semantics

324 N. López and M. Núñez

P1

ξ1

ξ2

STOP

a

P2

ξ3

STOP

a

P3

ψ1

ψ2, p

STOP

a

ψ3, (1 − p)

STOP

b

P4

ψ1 + ψ2, p

STOP

a

ψ1 + ψ3, (1 − p)

STOP

b

P5

ψ2, p

ψ1

STOP

a

ψ3, (1 − p)

ψ1

STOP

b

P6

τ, p

ϕ1

STOP

a

τ, (1 − p)

ϕ2

STOP

a

P7

ϕ1, p

STOP

a

ϕ2, (1 − p)

STOP

a

Fig. 1. Examples of stochastic processes.

by defining the set of tests, the interaction between processes and tests, and the
corresponding notion of passing a test. Besides, a set of essential tests is given. In
Sect. 4 we relate our semantics with other models of testing. Specifically, we will
consider classical testing, pure probabilistic testing, and an adaptation of [BC00]
to our framework. We will show that our testing semantics is a conservative ex-
tension of the first two. Finally, in Sect. 5 we present our conclusions and some
lines for future work.

An extended version of this paper can be found in [LN01]. There, we present
an alternative characterization of our testing equivalence. This characterization
is based on a stochastic extension of the notion of probabilistic acceptance sets
presented in [NdFL95].

2 Description of the Language

In this section we define our model of stochastic processes. First, we introduce
some concepts on random variables. We will consider that the sample space (that
is, the domain of random variables) is the set of real numbers IR and that random
variables take positive values only in IR+, that is, given a random variable ξ we
have Fξ(t) = 0 for any t < 0. The reason for this restriction is that random
variables will always be associated with time distributions.

Definition 1. Let ξ be a random variable. Its probability distribution function,
denoted by Fξ, is the function Fξ : IR→ [0, 1] such as Fξ(x) = P(ξ ≤ x), where
P(ξ ≤ x) is the probability that ξ assumes values less than or equal to x.

We consider a distinguished random variable. By unit we denote a random
variable such that Funit(x) = 1 for any x ≥ 0, that is, unit is distributed as the
Dirac distribution in 0. Let us note that if we consider the addition of random
variables, for any random variable ξ, we have that ξ + unit = ξ.

We suppose a fixed set of visible actions Act (a, a′, . . . to range over Act).
We assume the existence of a special action τ /∈ Act, which represents internal
behaviour. We denote by Actτ the set Act ∪ {τ} (α, α′, . . . to range over Actτ).
We denote by V the set of random variables (ξ, ψ, . . . to range over V); γ, γ′, . . .
will denote generic elements in Actτ∪V. Finally, IdP represents the set of process
variables.

A Testing Theory for Generally Distributed Stochastic Processes 325

Definition 2. The set of processes, denoted by P, is given by the following
BNF-expression:

P ::= STOP |X |
n∑
i=1

[pi]γi ; Pi | recX.P

where X ∈ IdP , for any 1 ≤ i ≤ n we have γi ∈ Actτ ∪ V, 0 < pi ≤ 1, and∑
pi = 1.

In the definition of processes, we will usually omit trailing occurrences of
STOP. Besides, we will use some syntactic sugar for the case of unary and binary

choices.2 For example, γ1 ;P1 stands for
1∑

i=1

[1]γi ;Pi, while γ1 ;P1�p γ2 ;P2 stands

for
2∑

i=1

[pi]γi ; Pi, where p1 = p and p2 = 1− p.
In the previous definition, STOP denotes the process that cannot execute any

action. We have included an n-ary probabilistic choice operator. Let us remark
that choices are not resolved in a pure probabilistic way. For example, consider
the process a ;STOP�p b ;STOP, and suppose that the environment offers only the
action a. In this case, a will be executed with probability 1, regardless the value of
p. This point will be clear when we define the testing semantics. For example, the
processes a;STOP�p b;STOP and τ ;a;STOP�pτ ;b;STOP are not testing equivalent.
Regarding the terms appearing in a choice, α ; P (with α ∈ Actτ) denotes a
process that performs α and after that behaves as P . Besides, a subterm ξ ; P
(with ξ ∈ V) indicates that the process P is delayed by a random amount of
time according to ξ. Specifically, P will start its execution with a probability p
before t units of time have been consumed, where p = P (ξ ≤ t). Finally, recX.P
denotes recursion in the usual way.

We will suppose that all the random variables appearing in the definition of
a process are independent. This restriction avoids side effects. In particular, this
implies that the same random variable cannot appear twice in the definition of a
process. Note that this restriction does not imply that we cannot have identically
distributed random variables (as long as they have different names). Anyway,
for the sake of convenience, we will use sometimes in graphical representations
the same random variable in different transitions. For example, two transitions
labeled by the same random variable ξ is a shorthand to indicate that these
two transitions are labeled by independent random variables ψ1 and ψ2 that are
identically distributed.

We would like to finish the presentation of our syntax by commenting on
two points. First, we have chosen an n-ary probabilistic choice only because the
operational semantics is easier to define. As we will comment, we would like
to keep urgency, that is, if a process may execute a τ action then delays are
forbidden. This implies that the probabilities previously associated with those
stochastic transitions must be redistributed among the remaining transitions.
In our current setting, we only need a simple normalization function; if we use

2 We use � to denote the binary choice operator because + denotes addition of random
variables.

326 N. López and M. Núñez

a binary choice, we need a much more complicated function (it has six cases)
that needs two additional predicates (for checking stability and deadlock of the
components of the choice). Given the fact that we do not lose expressiveness, we
have preferred to keep the operational semantics as simple as possible. We would
also like to comment on the absence of a parallel operator. The definition of the
(operational) semantics of a parallel operator is straightforward if probability
distributions are exponential (because of the memoryless property), but this is
not the case if distributions are not restricted. There are already several proposals
satisfactorily dealing with a parallel operator. Among them, [BG01] presents a
language being very close to ours. In their model, there is no probabilistic relation
between usual actions but stochastic actions are related by weights. Briefly, they
deal with the interleaving of stochastic actions by splitting them into two events:
Start and termination. This mechanism also works in our setting. Nevertheless,
in this paper we have preferred to concentrate on the definition and study of
an appropriate testing semantics, which can be adapted to other (possibly more
expressive) non-Markovian frameworks, rather than in the definition of a more
expressive process algebra. Indeed, dealing with a parallel operator means that
our ideas on stochastic testing are more difficult to transmit.

In order to define the operational semantics of processes, transitions are la-
beled either by an action belonging to Actτ or by a random variable belonging
to V. These transitions have an additional label: A probability. So, a derivation
P

γ−−→ pP
′ expresses that there exists a transition from P to P ′ labeled by the

action γ ∈ Actτ ∪ V, and this transition is performed with probability p. As in
most probabilistic models, we need to take into account the different occurrences
of the same probabilistic transition.

Example 1. Consider the process P =
n∑

i=1

[1n]a ; P ′. If we do not take care, we

have that P has only the transition P a−−→ 1
n
P ′. So, this process would not be

equivalent to Q = a ; P ′.

There are several standard methods in the literature of probabilistic processes
to deal with this problem. For example, in [GSS95] every transition of a term has
a unique index, in [YL92] equal transitions are joined (by adding probabilities),
and in [NdFL95] multisets of transitions are considered, that is, if a transition
can be derived in several ways, each derivation generates a different instance.
This last approach will be taken in this paper. For instance, in the previous
example we have that the transition P a−−→ 1

n
P ′ has multiplicity equal to n.

In the definition of the operational semantics (see Fig. 2), we use the auxil-
iary function N1(P). This function computes the total probability of a process P
to perform actions. This is a normalization function that takes care of keeping
the previously commented urgency property. So, N1(P) returns 1 if P cannot
immediately perform τ ’s; otherwise, N1(P) is equal to the addition of the prob-
abilities associated with the actions belonging to Actτ . The first rule says that
if γ ∈ Actτ is one of the first actions of a choice, this action may be performed;
the probability associated with γ will be normalized. The second rule is used for

A Testing Theory for Generally Distributed Stochastic Processes 327

γi∈Actτ
n∑

i=1
[pi]γi;Pi

γi−−→ pi
N1(

∑n
i=1[pi]γi)

Pi

γi∈V ∧ N1(
∑n
i=1[pi]γi)=1

n∑

i=1
[pi]γi;Pi

γi−−→pi
Pi

P [recX.P/X]
γ−−→pP

′

recX.P
γ−−→pP ′

N1(
n∑
i=1

[pi]γi) =
{
1 if τ /∈ {γi | 1 ≤ i ≤ n}∑ {| pi | γi ∈ Actτ |} otherwise

Fig. 2. Operational Semantics.

stochastic actions. The side condition assures that no stochastic transition will
be allowed if the process may immediately perform τ . Regarding this side con-
dition, let us note that N1 takes the value 1 only in two cases: Either there does
not exist j such that τ = γj or for any i we have γi ∈ Actτ . In the latter case,
the first condition of the second rule does not hold. The third rule is standard
for CCS-like languages.

We use the following conventions: P
γ−−→ stands for there exist P ′ ∈ P and

p ∈ (0, 1] such that P
γ−−→ pP

′; we write P
 γ−→ if there do not exist such P ′ and
p. We write P =⇒p P

′ if there exist P1, · · · , Pn−1 ∈ P and p1, · · · , pn ∈ (0, 1]
such that P τ−−→ p1P1

τ−−→ p2 · · ·Pn−1 τ−−→ pnP
′ and p =

∏
pi (if n = 0, we

have P =⇒1 P). Besides, for any γ ∈ Act ∪ V and p ∈ (0, 1], P
γ

=⇒p P ′

denotes that there exist two processes P1, P2 ∈ P and p1, p2, p3 ∈ (0, 1] such that
P =⇒p1 P1

γ−−→ p2P2 =⇒p3 P
′ and p = p1·p2·p3. Finally, given a setA ⊆ Actτ∪V

we write P A−−→ p if we have that p =
∑ {| p′ | ∃γ ∈ A,P ′ ∈ P : P

γ−−→ pP
′ |};

otherwise, we write P
 A−→p.

3 Stochastic Testing Semantics

In this section we present our stochastic testing semantics. As usual, it is based
on the interaction between tested processes and tests. First, we define our set of
tests (we consider a set of test identifiers IdT).

Definition 3. The set of tests, denoted by T , is given by the following BNF-
expression:

T ::= STOP |
n∑
i=1

[pi]αi ; Ti | recX.T

where X ∈ IdT , for any 1 ≤ i ≤ n we have αi ∈ Act ∪ {ω}, 0 < pi ≤ 1, and∑
pi = 1.

The same syntactic sugar that we gave for processes will be also used for
tests. We have added a new action ω indicating successful termination of the
testing procedure. As we commented in the introduction, we do not allow τ
actions in tests. So, a test may perform only either visible actions, belonging to

328 N. López and M. Núñez

Act, or the special action ω. We will explain the meaning of our tests by following
the black box analogy described in [Mil81], where processes are considered as
black boxes with buttons. The test a ; T corresponds to press the a-button and
if it goes down then we continue the experiment with the test T . Regarding
non-probabilistic tests, a test as a ; T � b ; T ′ can be explained as pressing two
buttons simultaneously. In our model, we do consider probabilistic tests. The
test a ;T �p b ;T ′ is explained as pressing two buttons at the same time but with
different strengths.

The operational behaviour of tests is the same as that for processes (consid-
ering ω as a usual action). Let us remark that the function N1 (used in Fig. 2
as normalization factor) will always take the value 1. The interaction between a
process and a test is modeled by the parallel composition of the tested process P
and the test T , denoted by P ‖ T . The rules describing how processes and tests
interact are given in Fig. 3. We have to make a trade-off between the classical
testing framework and the probabilistic framework. In the former, if a test may
perform the ω action then the testing procedure may finish. In particular, a test
as a ; T1 �p ω ; T2 would behave exactly as the test ω ; STOP. If we consider the
probabilistic framework given in [NdFL95], the testing procedure finishes (with
probability 1) only if the tested process is stable. So, we will consider that syn-
chronizations in visible actions can be performed only if the test cannot perform
an ω action (this is expressed in the first rule in Fig. 3). If the process may per-
form either τ or stochastic actions then they are performed (second and third
rules, respectively). Finally, if the test can perform ω then the interaction of pro-
cess and test does so. In order to avoid useless computations, we cut the testing
procedure by evolving into STOP. This transition is performed with a probabil-
ity equal to 1 minus the measure of instability of the tested process. The side
condition assures that a 0 probability transition is not generated. As usually, we
have a normalization function. The function N2(P ‖T) computes the sum of the
probabilities associated with transitions whose labels belong to Actτ ∪ V such
that P ‖ T may perform them.

In the following definition we introduce the notion of successful computation.
We will also define some concepts on successful computations which will be used
when defining the notion of passing a test.

Definition 4. Let P be a process and T be a test. A computation C is a sequence
of transitions C = P ‖T γ1−−→ p1P1 ‖T1

γ2−−→ p2P2 ‖T2
γ3−−→ p3 · · ·

γn−−→ pnPn ‖Tn · · ·.
We say that P ‖ T is the initial state of C or C is a computation from P ‖ T .

A computation C is successful if Pn ‖ Tn ω−−→ pSTOP for some n ≥ 0 and
p > 0. In this case, we say that length(C) = n. We denote by Success(P ‖T) the
multiset of successful computations from P ‖ T .

Let C ∈ Success(P ‖ T). We define the random variable associated with C,
denoted by random(C), as:

random(C) =



unit if C = P ‖ T ω−−→ pSTOP

random(C′) if C = P ‖ T γ−−→ pC
′ ∧ γ ∈ Actτ

γ + random(C′) if C = P ‖ T γ−−→ pC
′ ∧ γ ∈ V

A Testing Theory for Generally Distributed Stochastic Processes 329

P
a−−→pP ′, T

a−−→qT ′, T � ω−→
P‖T

a−−→ p·q
N2(P‖T)

P ′‖T ′
P

τ−−→pP ′

P‖T
τ−−→ p

N2(P‖T)
P ′‖T

P
ξ−−→pP ′

P‖T
ξ−−→ p

N2(P‖T)
P ′‖T

T
ω−−→ , P �

V∪{τ}−−−−→1

P‖T
ω−−→1−instab(P)STOP

instab(P) =
∑ {| p | ∃γ ∈ V ∪ {τ}, P ′ ∈ P : P γ−−→ pP

′ |}

N2(P ‖ T) =
{
1 if T ω−−→∑ {| p · q | ∃a, P ′, T ′ :P a−−→ pP

′ ∧ T a−−→ qT
′ |}+instab(P) if T � ω−→

Fig. 3. Interaction between processes and tests.

Let C ∈ Success(P ‖T). We define the probability of C, denoted by Prob(C),
as

Prob(C) =
{
p if C = P ‖ T ω−−→ p

p · Prob(C′) if C = P ‖ T γ−−→ pC
′

First, let us note that we will have a multiset of computations. The random
variable random(C) is used to compute the time that C needs to be executed,
that is, for any time t we have that P(random(C) ≤ t) gives the probability of
executing C before a time t has passed. Finally, Prob(C) cumulates the proba-
bilities of all the decisions taken to obtain that particular computation.

Example 2. Let us consider the computations depicted in Fig. 4, where the sym-
bol � represents the successful termination of the testing procedure. Consider
P1 = (ξ1 ; a) � 1

3
(a ; b) and T1 = (a ; ω) � 1

4
(a ; b). The first graph in Fig. 4

describes the multiset of computations from P1 ‖ T1.
Consider the recursive process P2 = recX.(ξ2 ;P2� 1

2
a) and the tests T2 = a;ω

and T3 = ω. In this case, the multisets of computations from P2 ‖T2 and P2 ‖T3
are both infinite (See the second and third graphs in Fig. 4).

In our model, the notion of passing tests has an additional value as parameter:
The time that the process needs to pass the test. A process P passes a test T
before a certain amount of time t with a probability p if p is equal to the addition
of all the probabilities associated with successful computations from P ‖ T that
take a time less than or equal to t to be finished.

Definition 5. Let P be a process, T be a test, p ∈ (0, 1], and t ∈ IR+. We say
that P passes T before time t with probability p, denoted by pass≤t(P, T) = p, if

∑
C ∈ Success(P ‖ T)

P(random(C) ≤ t) · Prob(C) = p

330 N. López and M. Núñez

P1 ‖ T1

ξ1,
1
3

a, 1
4

�

ω

a, 3
4

STOP ‖ STOP

b

a, 1
6

�

ω

a, 1
2

STOP ‖ STOP

b

P2 ‖ T2

a, 2
3

�

ω

ξ2,
1
3

a, 2
3

�

ω

P2 ‖ T2

ξ2,
1
3

.

.

.

P2 ‖ T3

�

ω, 2
3 ξ2,

1
3

�

ω, 2
3 ξ2,

1
3

�

ω, 2
3

P2 ‖ T3

ξ2,
1
3

.

.

.

Fig. 4. Examples of computations.

The following result gives an alternative definition of the previous notion.
The proof follows straightforward from the fact that successful computations
have finite length.

Lemma 1. Let P be a process, T be a test, and t ∈ IR+. We have that

pass≤t(P, T) = lim
n → ∞

∑
C ∈ Success(P ‖ T)

length(C) < n

P(random(C) ≤ t) · Prob(C)

Definition 6. (Testing equivalence) Let P,Q be processes, and T ′ ⊆ T a family
of tests. We say that P is stochastically testing equivalent to Q with respect
to T ′, denoted by P ∼T ′ Q, if for any T ∈ T ′ and any t ∈ IR+ we have
pass≤t(P, T) = pass≤t(Q,T). If we consider the whole family of tests T , we
write P ∼stoc Q instead of P ∼T Q, and we say that P and Q are stochastically
testing equivalent.

In the following example we present some processes that are not stochastically
testing equivalent and some tests are given to distinguish them.

Example 3. Let us consider the following processes: Q1 = τ ;a�pτ ;b, Q2 = a�pb,
and Q3 = τ ; a �p b. As it is the case for probabilistic models, they are not
equivalent in our semantics. Considering T = a ;ω, we have that for any t ∈ IR+,
pass≤t(Q1, T) = p, meanwhile pass≤t(Q2, T) = pass≤t(Q3, T) = 1. Moreover,
the test T ′ = b;ω shows that Q2 and Q3 are not stochastically testing equivalent:
For any t ∈ IR+ we have pass≤t(Q2, T

′) = 1 but pass≤t(Q3, T
′) = 1− p.

Consider the processes R1 = ξ ;a and R2 = ψ ;a. If ξ and ψ are not identically
distributed, then there exists a time t1 ∈ IR+ such that P(ξ ≤ t1)
= P(ψ ≤ t1).
So, pass≤t1(P, ω)
= pass≤t1(Q,ω).

Consider R3 = ξ ; a and R4 = a ; ξ, and suppose that ξ is not distributed as
unit . This implies that there exists t1 ∈ IR+ such that P(ξ ≤ t1) = p < 1. Then
these two processes can be distinguished by the test ω, because we have that
pass≤t1(R3, ω) = p and pass≤t1(R4, ω) = 1.

Consider the processes and tests of Example 2. Once we have computed the
corresponding set of computations the probability of passing the tests can be

A Testing Theory for Generally Distributed Stochastic Processes 331

computed. We only need to add the probabilities associated with successful com-
putations. So, we have that for any t ∈ IR+, pass≤t(P1, T1) = 1

12 · P(ξ1 ≤ t) + 1
6

and pass≤t(P2, T2) = pass≤t(P2, T3) =
∑∞
i=0(13)i · 23 · P(i · ξ2 ≤ t), where n · ξ

stands for the addition of ξ with itself n times.

We will finish this section by showing that the set of tests can be reduced.
Specifically, we will give a family of test which has the same discriminatory power
as the whole family of tests T . First, we can restrict ourselves to finite tests (i.e.
non-recursive tests). The proof is made by using an appropriate extension of
the technique given in [GN99], where a similar result is given for a probabilistic
process algebra.

Lemma 2. Let Tf ⊆ T be the set of tests without occurrences of the recursion
operator, and P,Q be processes. Then P ∼Tf Q iff P ∼stoc Q.

We will show that the set of tests can be restricted even more. In the following
definition, a set of essential tests is given.

Definition 7. The set of essential tests, denoted by Te, is given by the following
BNF-expression:

T ::=
n∑
i=1

[pi](ai ; Ti) | ω where Ti =
{
T if i = n
STOP otherwise

where {a1, . . . , an} ⊆ Act, for any 1 ≤ i ≤ n we have 0 < pi ≤ 1, and
∑
pi = 1.

An essential test is either the test ω or a generalized probabilistic choice among
a set of visible actions. In the latter case, all the continuations except one
are equal to STOP. Let us remark that similar sets of essential tests appear
in [NdFL95,CDSY99]. The proof of this result follows the same pattern as the
given in [Núñ96].

Theorem 1. Let P,Q be processes. Then P ∼Te Q iff P ∼stoc Q.

4 Relation with Other Notions of Testing

In this section we compare our stochastic testing semantics with other testing
models. Specifically, we will consider the may and must notions of testing, a
probabilistic testing semantics similar to that of [CDSY99], and the (Markovian)
testing semantics of [BC00]. First, we will define a subset of the whole set of
processes P.

Definition 8. The set of probabilistic processes, denoted by PP , is given by the
BNF-expression

P ::= STOP |X |
n∑

i=1

[pi]αi ; Pi | recX.P

where X ∈ IdP , for any 1 ≤ i ≤ n we have αi ∈ Actτ , 0 < pi ≤ 1, and
∑
pi = 1.

332 N. López and M. Núñez

Next, we will study the notions of may and must testing [dNH84,Hen88]. We
can define equivalent notions for our language PP .

Definition 9. Let P ∈ PP and T ∈ T . We write P may T if Success(P ‖T)
= ∅
and P must T if for any maximal (i.e. that it cannot be extended) computation
C we have that C ∈ Success(P ‖ T). Let P,Q ∈ PP . We write P ∼may Q if for
any T ∈ T we have P may T iff Q may T . We write P ∼must Q if for any T ∈ T
we have P must T iff Q must T .

Note that in the previous definitions we do not use the probabilistic information
contained in either the processes or the tests. We can recover these notions of
testing in our framework as the following result states (the proof is straightfor-
ward).

Lemma 3. Let P ∈ PP and T ∈ T . We have P may T iff ∃t ∈ IR+ such that
pass≤t(P, T) > 0. If P is divergence free, then P must T iff ∃t ∈ IR+ such that
pass≤t(P, T) = 1.

Note that, in the previous lemma, the values of t are irrelevant. The follow-
ing result (whose proof is trivial) states that our testing semantics is a strict
refinement of the classical notions for divergence free processes.

Corollary 1. Let P,Q ∈ PP . We have that P ∼stoc Q implies P ∼may Q.
Moreover, if P and Q are divergence free, we also have that P ∼stoc Q implies
P ∼must Q.

Let us remark that the previous result does not hold for must testing if
we consider divergent processes. For example, the (non-probabilistic) processes
recX.(a � τ ; X) and a ; STOP are not must testing equivalent. However, for
any p ∈ (0, 1) the probabilistic processes recX.(a �p τ ; X) and a ; STOP are
stochastically testing equivalent. So, for a process presenting divergent behavior,
passing a test with probability 1 is not equivalent to pass it in the must semantics.
A more extended discussion on this can be found in [NR99].

The probabilistic testing theory defined in [CDSY99] computes the proba-
bility of passing a test as the sum of the probabilities associated with all the
successful computations. First, they study a testing semantics where tests are
τ -free. Then they study the general case. We will define a (pure) probabilistic
testing semantics following the lines of [CDSY99].

Definition 10. Let P ∈ PP , T ∈ T , and p ∈ (0, 1]. We write P passp T iff
∑

C∈Success(P‖T)

Prob(C) = p.

Two processes P,Q ∈ PP are probabilistically testing equivalent, denoted by
P ∼P Q, if for any test T we have P passp T iff Q passp T .

This notion of testing can be easily included in our framework as the follow-
ing result states. The proof is trivial just taking into account that if P ∈ PP
and T is a test, then for any successful computation C from P ‖ T we have
random(C) = unit .

A Testing Theory for Generally Distributed Stochastic Processes 333

Lemma 4. Let P ∈ PP , T ∈ T , and p ∈ (0, 1]. We have P passp T iff ∀t ∈ IR+

pass≤t(P, T) = p. Moreover, for any P,Q ∈ PP we have P ∼P Q iff P ∼stoc Q.

In [BC00] a Markovian testing theory is presented. Given the fact that our
language is very different from theirs, we cannot automatically compare both
testing semantics. In the following, we will adapt their notion of testing to our
framework. The testing theory presented in [BC00] does not compute additions
of random variables. Instead, they consider the average time that computations
need to be performed. In our case, we can consider the expected value of the
random variable associated with the execution of a computation. Due to our
assumption of independence of random variables, this expected value is equal to
the addition of the expected values of the random variables performed along the
computation.

Definition 11. Let P ∈ P and T ∈ T . For any t ∈ IR+ the probability
with which P passes T in average time before time t has passed, denoted by
passrate≤t(P, T), is defined as

passrate≤t(P, T) =
∑

C ∈ Success(P ‖ T)

Prob(C) · P(E[random(C)] ≤ t)

Two processes P,Q ∈ P are testing equivalent in average time, denoted by
P ∼av Q, if for any test T and any t ∈ IR+, passrate≤t(P, T) = passrate≤t(Q,T).

The following result trivially follows from the corresponding notions of test-
ing. It is also trivial to see that the reverse implication does not hold. Consider
two processes P1 = ξ1 ; STOP and P2 = ξ2 ; STOP such that E[ξ1] = E[ξ2], but ξ1
and ξ2 not identically distributed. We have P1 ∼av P2 while P1
∼stoc P2.

Lemma 5. Let P,Q ∈ PP . We have P ∼stoc Q implies P ∼av Q.

5 Conclusions and Future Work

In this paper we have studied a testing semantics for a class of stochastic pro-
cesses with general distributions. We have given a set of essential tests. We
have also compare our framework with other notions of testing. Regarding fu-
ture work, we are interested in the study of an axiomatization of our testing
semantics. We would also like to present our semantic framework for a more
expressive language (containing a parallel operator). We have already used the
model defined in [BG01] but the presentation of our testing framework is rather
involved.

Acknowledgments. We would like to thank the anonymous referees of this
paper for the careful reading and the useful comments.

334 N. López and M. Núñez

References

[ABC+94] M. Ajmone Marsan, A. Bianco, L. Ciminiera, R. Sisto, and A. Valenzano.
A LOTOS extension for the performance analysis of distributed systems.
IEEE/ACM Transactions on Networking, 2(2):151–165, 1994.

[BB93] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects
of Computing, 3:142–188, 1993.

[BBG98] M. Bravetti, M. Bernardo, and R. Gorrieri. Towards performance evaluation
with general distributions in process algebras. In CONCUR’98, LNCS 1466,
pages 405–422. Springer, 1998.

[BC00] M. Bernardo and W.R. Cleaveland. A theory of testing for markovian pro-
cesses. In CONCUR’2000, LNCS 1877, pages 305–319. Springer, 2000.

[BG98] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent
processes with nondeterminism, priorities, probabilities and time. Theoret-
ical Computer Science, 202:1–54, 1998.

[BG01] M. Bravetti and R. Gorrieri. The theory of interactive generalized semi-
markov processes. To appear in Theoretical Computer Science, 2001.

[BKLL95] E. Brinksma, J.-P. Katoen, R. Langerak, and D. Latella. A stochastic
causality-based process algebra. The Computer Journal, 38(7):553–565,
1995.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in
Computer Science 18. Cambridge University Press, 1990.

[CDSY99] R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen. Testing preorders for
probabilistic processes. Information and Computation, 154(2):93–148, 1999.

[Chr90] I. Christoff. Testing equivalences and fully abstract models for probabilistic
processes. In CONCUR’90, LNCS 458, pages 126–140. Springer, 1990.

[CLLS96] R. Cleaveland, I. Lee, P. Lewis, and S.A. Smolka. A theory of testing for
soft real-time processes. In 8th International Conference on Software Engi-
neering and Knowledge Engineering, 1996.

[DKB98] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach
to the specification of stochastic systems. In Programming Concepts and
Methods, pages 126–147. Chapman & Hall, 1998.

[dNH84] R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes. The-
oretical Computer Science, 34:83–133, 1984.

[EKN99] A. El-Rayes, M. Kwiatkowska, and G. Norman. Solving infinite stochastic
process algebra models through matrix-geometric methods. In 7th Inter-
national Workshop on Process Algebra and Performance Modelling, pages
41–62, 1999.

[GHR93] N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed
system design: The integration of functional specification and performance
analysis using stochastic process algebras. In 16th Int. Symp. on Com-
puter Performance Modelling, Measurement and Evaluation (PERFOR-
MANCE’93), LNCS 729, pages 121–146. Springer, 1993.

[GLNP97] C. Gregorio, L. Llana, M. Núñez, and P. Palao. Testing semantics for a
probabilistic-timed process algebra. In 4th International AMAST Workshop
on Real-Time Systems, Concurrent, and Distributed Software, LNCS 1231,
pages 353–367. Springer, 1997.

[GN99] C. Gregorio and M. Núñez. Denotational semantics for probabilistic refusal
testing. In PROBMIV’98, Electronic Notes in Theoretical Computer Science
22. Elsevier, 1999.

A Testing Theory for Generally Distributed Stochastic Processes 335

[GSS95] R. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and
stratified models of probabilistic processes. Information and Computation,
121(1):59–80, 1995.

[Han91] H. Hansson. Time and Probability in Formal Design of Distributed Systems.
PhD thesis, Department of Computer Systems. Uppsala University, 1991.

[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[HHK01] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance

evaluation. To appear in Theoretical Computer Science, 2001.
[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cam-

bridge University Press, 1996.
[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[HR95] M. Hennessy and T. Regan. A process algebra for timed systems. Informa-

tion and Computation, 117(2):221–239, 1995.
[HS00] P.G. Harrison and B. Strulo. SPADES – a process algebra for discrete event

simulation. Journal of Logic Computation, 10(1):3–42, 2000.
[KN98] M. Kwiatkowska and G.J. Norman. A testing equivalence for reactive prob-

abilistic processes. In EXPRESS’98, Electronic Notes in Theoretical Com-
puter Science 16. Elsevier, 1998.

[LdF97] L. Llana and D. de Frutos. Denotational semantics for timed testing. In
4th AMAST Workshop on Real-Time Systems, Concurrent and Distributed
Software, LNCS 1231, pages 368–382, 1997.

[LN01] N. López and M. Núñez. A testing theory for generally distributed stochastic
processes. Available at:
http://dalila.sip.ucm.es/˜natalia/papers/stoctesting.ps.gz, 2001.

[Low95] G. Lowe. Probabilistic and prioritized models of timed CSP. Theoretical
Computer Science, 138:315–352, 1995.

[LS91] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Infor-
mation and Computation, 94(1):1–28, 1991.

[Mil81] R. Milner. A modal characterization of observable machine-behaviour. In
6th CAAP, LNCS 112, pages 25–34. Springer, 1981.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[NdF95] M. Núñez and D. de Frutos. Testing semantics for probabilistic LOTOS.

In Formal Description Techniques VIII, pages 365–380. Chapman & Hall,
1995.

[NdFL95] M. Núñez, D. de Frutos, and L. Llana. Acceptance trees for probabilistic
processes. In CONCUR’95, LNCS 962, pages 249–263. Springer, 1995.

[Neu92] M. Neuts. Two further closure properties of Ph-distributions. Asia-Pacific
Journal of Operational Research, 9(1):77–85, 1992.

[NR99] M. Núñez and D. Rupérez. Fair testing through probabilistic testing. In
Formal Description Techniques for Distributed Systems and Communication
Protocols (XII), and Protocol Specification, Testing, and Verification (XIX),
pages 135–150. Kluwer Academic Publishers, 1999.

[NS94] X. Nicollin and J. Sifakis. The algebra of timed process, ATP: Theory and
application. Information and Computation, 114(1):131–178, 1994.

[Núñ96] M. Núñez. Semánticas de Pruebas para Álgebras de Procesos Probabiĺısticos.
PhD thesis, Universidad Complutense de Madrid, 1996.

[RR88] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential
processes. Theoretical Computer Science, 58:249–261, 1988.

[YL92] W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic pro-
cesses. In Protocol Specification, Testing and Verification XII, pages 47–61.
North Holland, 1992.

An Algorithm for Quantitative Verification of
Probabilistic Transition Systems

Franck van Breugel1� and James Worrell2��

1 York University, Department of Computer Science
4700 Keele Street, Toronto, M3J 1P3, Canada

2 Tulane University, Department of Mathematics
6823 St Charles Avenue, New Orleans LA 70118, USA

Abstract. In an earlier paper we presented a pseudometric on the class
of reactive probabilistic transition systems, yielding a quantitative notion
of behavioural equivalence. The pseudometric is defined via the termi-
nal coalgebra of a functor based on the Hutchinson metric on probability
measures. In the present paper we give an algorithm, based on linear pro-
gramming, to calculate the distance between two states up to prescribed
degree of accuracy.

1 Introduction

It has been argued that notions of exact behavioural equivalence sit uneasily
with models of systems which feature quantitative data, like probabilities. Real
numbers are ideal entities; computers, and humans for that matter, only deal
with approximations. If we only have an approximate description of a system,
it makes no sense to ask if any two states behave exactly the same. Even if we
have a precise description of a system, we may still want express the idea that
two states exhibit almost the same behaviour.

In this paper we consider reactive probabilistic transition systems. One of the
standard equivalences for such systems is probabilistic bisimulation, introduced
by Larsen and Skou [12]. Briefly, a probabilistic bisimulation is an equivalence
relation on states such that for any two related states their probability of making
a transition to any equivalence class is equal. Two states are either bisimilar
or they are not bisimilar, and a slight change in the probabilities associated
to a system can cause bisimilar states to become non-bisimilar and vice-versa.
Consider, for example, the system depicted in the diagram below. The states s0
and s1 are only bisimilar if ε is 0. However, the states give rise to almost the
same behaviour for very small ε different from 0.

Motivated by such examples, Giacalone, Jou and Smolka [7] defined a pseu-
dometric on the states of a (restricted type of) probabilistic transition system.
This yields a smooth, quantitative notion of behavioural equivalence. A pseudo-
metric differs from an ordinary metric in that different elements, that is, states,
� Supported by Natural Sciences and Engineering Research Council of Canada.
�� Supported by the US Office of Naval Research.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 336–350, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

An Algorithm for Quantitative Verification 337

can have distance 0. The distance between states, a real number between 0 and
1, can be used to express the similarity of the behaviour of the system started
in those states. The smaller the distance, the more alike the behaviour is. In
particular, the distance between states is 0 if they are indistinguishable.

In [1], we presented a pseudometric for reactive probabilistic systems. In fact,
we introduced a family of pseudometrics, parametric in a constant cf strictly
between 0 and 1 (we will discuss the significance of this constant later). For
instance, the distance between states s0 and s1 is cf·ε. Also, 0-distance coincides
with probabilistic bisimilarity. Our pseudometric is similar to one presented by
Desharnais, Gupta, Jagadeesan and Panangaden [3]; for a detailed comparison
see Section 7 and [1].

s0
1
2−ε

����
��

��
1
2+ε

���
��

��
�

s21
��

s3 s4 1
2��

s1
1
2

�������� 1
2

��������

The main contribution of the present paper is to give an algorithm to calcu-
late distances in our pseudometric to a prescribed degree of accuracy. We have
implemented the algorithm1. As we explain below, the key ingredients of our
pseudometric and algorithm are coalgebras, the Hutchinson metric and linear
programming.

Many different kinds of transition system can be viewed as coalgebras; Rut-
ten [15] provides numerous examples. De Vink and Rutten [16] have shown
that probabilistic transition systems correspond to P ′-coalgebras, where P ′ is
an endofunctor on the category of 1-bounded complete ultrametric spaces and
nonexpansive functions. Furthermore, they have proved that the functor P ′ is
locally contractive. Hence, according to Rutten and Turi’s (ultra)metric termi-
nal coalgebra theorem [14], there exists a terminal P ′-coalgebra. By definition,
there is a unique map from an arbitrary P ′-coalgebra, that is, a probabilistic
transition system, to the terminal P ′-coalgebra. De Vink and Rutten have also
shown that the kernel of this unique map is probabilistic bisimilarity on the
states of the probabilistic transition system. That is, two states are mapped to
the same element in the terminal P ′-coalgebra by the unique map if and only if
they are probabilistic bisimilar.

In this paper, we study a variation on the endofunctor P ′. Our endofunctor
P on the category CMet1 of 1-bounded complete metric spaces and nonexpan-
sive function is based on the Hutchinson metric on probability measures. This
metric arises in very different contexts including statistics and fractal geometry,
and under different names including the Kantorovich metric and the Wasser-
stein metric. Like P ′-coalgebras, also P -coalgebras can be seen as probabilistic
transition systems, as we will show. Furthermore, we observe that the functor

1 http://www.cs.yorku.ca/˜franck

338 F. van Breugel and J. Worrell

P is locally contractive and hence has a terminal coalgebra. Since the termi-
nal P -coalgebra carries a metric, we can also consider the metric kernel of the
unique map from a P -coalgebra to the terminal P -coalgebra. This is a pseudo-
metric on the carrier of the P -coalgebra. The distance between two states of
a P -coalgebra, that is, a probabilistic transition system, is the distance in the
terminal P -coalgebra of their images under the unique map. Since our functor
is similar to the one considered by De Vink and Rutten, we still have that two
states are bisimilar if and only if they are mapped to the same element in the
terminal P -coalgebra and hence have distance 0.

As Rutten and Turi [14] have shown, the unique map from an F -coalgebra
to the terminal F -coalgebra, where F is a locally contractive endofunctor on the
category CMet1, can be defined as the unique fixed point fix (Φ) of a function Φ
from a complete metric space to itself. Since the functor F is locally contractive,
the function Φ is contractive. Hence, according to Banach’s fixed point theorem,
Φ has a unique fixed point fix (Φ). This fixed point can be approximated by a
sequence of functions (φn)n. The function φ0 is an arbitrary function from the
F -coalgebra to the terminal F -coalgebra and the other functions are defined by
φn = Φ (φn−1). Not only the metric kernel of the unique map fix (Φ) defines a
pseudometric dfix (Φ) on the carrier of the F -coalgebra. Also the metric kernels
of the approximations φn induce pseudometrics dφn . We will show that the pseu-
dometric dfix (Φ) can be approximated by the pseudometrics dφn . In particular,
to calculate the dfix (Φ)-distances to a prescribed degree of accuracy δ, we only
have to calculate the φ1, . . . , φlogcf(δ/2)-distances.

Next, we discuss how to compute the distance dφn (s, s
′), where s and s′

are elements of the carrier of the P -coalgebra, that is, states of the probabilistic
transition system. We will show that this problem can be reduced to a particular
linear programming problem: the transshipment problem. The transshipment
problem is to find the cheapest way to ship a prescribed amount of a commodity
from specified origins to specified destinations through a concrete transportation
network. This network is represented by a directed graph. There is a demand
for some commodity at some nodes and a supply (or negative demand) of some
commodity at other nodes. With each edge, we associate the cost of shipping
a unit amount along the edge. For a detailed discussion of this problem and
algorithms which can solve this problem in polynomial time we refer the reader
to, for example, Chvátal’s textbook [2].

2 A Metric Terminal Coalgebra Theorem

In this section, we introduce coalgebras and Rutten and Turi’s metric terminal
coalgebra theorem [14]. For more details about the theory of coalgebras we refer
the reader to, for example, the tutorial [9] of Jacobs and Rutten.

Definition 1. Let C be a category. Let F : C → C be a functor. An F -coalgebra
consists of an object C in C together with an arrow f : C → F (C) in C. The
object C is called the carrier. An F -homomorphism from F -coalgebra 〈C, f〉 to

An Algorithm for Quantitative Verification 339

F -coalgebra 〈D, g〉 is an arrow φ : C → D in C such that F (φ) ◦ f = g ◦ φ.

C
φ

��

f

��

D

g

��

F (C)
F (φ)

�� F (D)

The F -coalgebras and F -homomorphisms form a category. If this category has a
terminal object, then this object is called the terminal F -coalgebra.

We restrict our attention to the category CMet1 of 1-bounded complete metric
spaces and nonexpansive functions. A metric space is 1-bounded if all its dis-
tances are bounded by 1. A function is nonexpansive if it does not increase any
distances. We denote the collection of nonexpansive functions from the space X
to the space Y by X→

1
Y . This collection can be turned into a metric space by

endowing the functions with the supremum metric.
Let c be a constant between 0 and 1. A function is c-contractive if it decreases

all distances by at least a factor c.

Definition 2. A functor F : CMet1 → CMet1 is locally c-contractive if for all
1-bounded complete metric spaces X and Y , the function FX,Y : (X →

1
Y) →

(F (X)→
1
F (Y)) defined by

FX,Y (f) = F (f)

is c-contractive.

In the rest of this section, we restrict ourselves to locally c-contractive functors.
For these functors, we have

Theorem 1. There exists a terminal F -coalgebra 〈fix (F), ι〉.
Proof. See [14, Theorem 4.8]. �	

For the rest of this section, we fix 〈X,µ〉 to be an F -coalgebra. To charac-
terize the unique map from the F -coalgebra 〈X,µ〉 to the terminal F -coalgebra
〈fix (F), ι〉 we introduce the following function.
Definition 3. The function Φ : (X →

1
fix (F))→ (X →

1
fix (F)) is defined by

Φ (φ) = ι−1 ◦ F (φ) ◦ µ.

X
φ

��

µ

��

fix (F)

F (X)
F (φ)

�� F (fix (F))

ι−1

		

340 F. van Breugel and J. Worrell

Since the functor F is locally c-contractive, we have that the function Φ is c-
contractive.

Proposition 1. The function Φ is c-contractive.

Proof. See proof of [14, Theorem 4.5]. �	

Since Φ is a contractive function from a complete metric space to itself, we can
conclude from Banach’s theorem that it has a unique fixed point fix (Φ).

Proposition 2. The function fix (Φ) is the unique F -homomorphism from the
F -coalgebra 〈X,µ〉 to the terminal F -coalgebra 〈fix (F), ι〉.
Proof. See proof of [14, Theorem 4.5]. �	

We conclude this section by showing that the unique map fix (Φ) can be
approximated by the maps φn.

Definition 4. Let φ0 : X →
1
fix (F) be some constant function. For n > 0, the

function φn : X →
1
fix (F) is defined by

φn = Φ (φn−1).

Proposition 3. For all n ≥ 0,

dX→
1

fix (F) (φn,fix (Φ)) ≤ cn.

Proof. By induction on n. �	

3 Metric Kernels

Our pseudometric on the states of a probabilistic transition system will be de-
fined as the so-called metric kernel induced by the unique map from the prob-
abilistic transition system, viewed as a coalgebra, to the terminal coalgebra. In
this section, we introduce metric kernels. Furthermore, we show that the metric
kernel induced by fix (Φ) can be approximated by the metric kernels induced by
φn.

A function φ from the space X to the space fix (F) defines a distance function
dφ on X. We call this distance function the metric kernel induced by φ. The
distance between x1 and x2 in X is defined as the distance of their φ-images in
the metric space fix (F).

Definition 5. Let φ ∈ X →
1
fix (F). The distance function dφ : X ×X → [0, 1]

is defined by

dφ (x1, x2) = dfix (F) (φ (x1), φ (x2)).

An Algorithm for Quantitative Verification 341

One can easily verify that the metric kernel dφ is a pseudometric. Note that x1
and x2 have distance 0 only if they are mapped by φ to the same element in
fix (F).

The pseudometric dfix (Φ) can be approximated by the pseudometrics dφn as
is shown in

Proposition 4. For all n ≥ 0 and x1, x2 ∈ X,
|dφn (x1, x2)− dfix (Φ) (x1, x2)| ≤ 2 · cn.

Proof.

|dφn (x1, x2)− dfix (Φ) (x1, x2)|
= |dfix (F) (φn (x1), φn (x2))− dfix (F) (fix (Φ) (x1),fix (Φ) (x2))|
≤ dfix(F)(φn(x1),fix (Φ)(x1)) + dfix(F)(φn(x2),fix (Φ)(x2)) [triangle inequality]
≤ 2 · dX→

1
fix (F) (φn,fix (Φ))

≤ 2 · cn [Proposition 3]

To compute the dfix (Φ)-distances up to accuracy δ, it suffices to calculate the
dφ�logc (δ/2)� -distances.

Proposition 5. For all 0< δ < 1 and x1, x2 ∈ X,
|dφ�logc (δ/2)� (x1, x2)− dfix (Φ) (x1, x2)| ≤ δ.

Proof.

|dφ�logc (δ/2)� (x1, x2)− dfix (Φ) (x1, x2)|
≤ 2 · c�logc (δ/2)� [Proposition 4]
≤ 2 · clogc (δ/2)
= δ.

4 The Hutchinson Functor

In this section we introduce the probabilistic analogs of transition systems and
bisimulation. Then we show that probabilistic transition systems can be seen as
coalgebras of an endofunctor P on CMet1 based on the Hutchinson metric on
probability measures. Since P is locally contractive it has a terminal coalgebra
by Theorem 1. The metric kernel of the unique map to the terminal P -coalgebra
defines a pseudometric on the carrier of a P -coalgebra and hence on the states
of a probabilistic transition system. For simplicity we only consider unlabelled
transitions, though all our results generalize to the labelled case.

Definition 6. A probabilistic transition system consists of a finite set S of
states together with a transition function π : S × S → [0, 1] such that, for each
s ∈ S, ∑

s′∈S π (s, s
′) ≤ 1.

342 F. van Breugel and J. Worrell

This is the so-called reactive model of Larsen and Skou [12]. The transition
function π is a conditional sub-probability distribution determining the reaction
of the system to an action by the environment. π(s, s′) is the probability that
the system ends up in state s′ given that it was in state s before the action. We
impose the restriction

∑
s′∈S π (s, s

′) ≤ 1 instead of the more common, but also
more restrictive, condition

∑
s′∈S π (s, s

′) = 1 or 0—the latter corresponding to
refusal. We interpret 1−∑

s′∈S π (s, s
′) as the probability that the system refuses

the action in state s. To simplify our presentation we add a special state 0 for
refusal: π (s,0) = 1−∑

s′∈S π (s, s
′).

Larsen and Skou adapted bisimulation for probabilistic transition systems as
follows.

Definition 7. Let 〈S, π〉 be a probabilistic transition system. An equivalence
relation R on the set of states S is a probabilistic bisimulation if s1Rs2 implies∑
s′∈E π (s1, s

′) =
∑
s′∈E π (s2, s

′) for all R-equivalence classes E. States s1 and
s2 are probabilistic bisimilar if s1 R s2 for some probabilistic bisimulation R.

In [8], Hutchinson introduced a metric on the set of Borel probability mea-
sures on a metric space. We restrict ourselves to spaces in which the distances
are bounded by 1, since they serve our purpose. Let X be a 1-bounded metric
space. We denote the set of Borel probability measures on X by M (X). The
Hutchinson distance on M (X) is introduced in

Definition 8. The distance function dM (X) :M (X)×M (X)→ [0, 1] is defined
by

dM (X) (µ1, µ2) = sup
{ ∫

X

fdµ1 −
∫
X

fdµ2 | f ∈ X →
1
[0,∞)

}
.

For a proof that dM (X) is a 1-bounded metric, we refer the reader to, for example,
Edgar’s textbook [5, Proposition 2.5.14]. In the rest of this paper, we focus on
Borel probability measures which are completely determined by their values for
the compact subsets of the space X.

Definition 9. A Borel probability measure µ on X is tight if for all ε> 0 there
exists a compact subset Kε of X such that µ (X \Kε)< ε.
Under quite mild conditions on the space, for example, completeness and sepa-
rability, every measure is tight (see, for example, Parthasarathy’s textbook [13,
Theorem II.3.2]). In particular, all probabilistic transition systems can be rep-
resented using tight measures as we will see in Example 1. We denote the set of
tight Borel probability measures on X by Mt (X), and consider it as a metric
space with the Hutchinson distance. We are interested in tight measures because
of the following

Theorem 2. X is complete if and only if Mt (X) is complete.

Proof. See, for example, [5, Theorem 2.5.25]. �	

An Algorithm for Quantitative Verification 343

In [1] we show that Mt can be extended to a locally nonexpansive endofunctor
on the category CMet1 by defining Mt (f) : Mt (X) → M (Y) by Mt (f)(µ) =
µ ◦ f−1, where f : X → Y is nonexpansive.

Now, we are ready to present the functor P . But first we introduce the functor
T which models refusal:

T = 1+ cf · − : CMet1 → CMet1,
where 1 is the terminal object2 functor, + is the coproduct3 functor, and cf ·
is the scaling4 functor. The functor P is defined by

P =Mt ◦ T : CMet1 → CMet1.
Every probabilistic transition system can be seen as a P -coalgebra as is demon-
strated in

Example 1. Let 〈S, π〉 be a probabilistic transition system. We endow the set of
states S with the discrete metric. Consequently, every subset of the 1-bounded
complete metric space T (S) is a Borel set. For every state s, the Borel probability
measure µs is the discrete Borel probability measure determined by

µs (1) = π (s,0)
µs ({s′}) = π (s, s′)

Obviously, the measure µs is tight. Because S is endowed with the discrete
metric, the function µ mapping the state s to the measure µs is nonexpansive.
Hence, every probabilistic transition system can be viewed as a P -coalgebra.

Since the functor cf · is locally cf-contractive and the functors + and Mt

are locally nonexpansive, the functor P is locally cf-contractive. Thus, accord-
ing to Theorem 1, there exists a terminal P -coalgebra. Our pseudometric on
a probabilistic transition system is defined as the metric kernel dfix (Φ) where
fix (Φ) is the unique map from the probabilistic transition system, viewed as
a P -coalgebra, to the terminal P -coalgebra. In this pseudometric, states have
distance 0 only if they are probabilistic bisimilar.

Proposition 6. Two states s1 and s2 are probabilistic bisimilar if and only if
dfix (Φ) (s1, s2) = 0.
2 The terminal object of CMet1 is the singleton space 1 whose single element we denote
by 0.

3 The coproduct object of the objects X and Y in CMet1 is the disjoint union of the
sets underlying the spaces X and Y endowed with the metric

dX+Y (v, w) =



dX (v, w) if v ∈ X and w ∈ X
dY (v, w) if v ∈ Y and w ∈ Y
1 otherwise.

4 The scaling by cf · of an object in CMet1 leaves the set unchanged and multiplies
all distances by cf.

344 F. van Breugel and J. Worrell

More generally, the distance between states is a trade-off between the depth of
observations needed to distinguish the states and the amount each observation
differentiates the states. The relative weight given to these two factors is deter-
mined by the constant cf lying between 0 and 1: the smaller the value of cf the
greater the discount on observations made at greater depth.

For the system depicted in the introduction, the distances are given in the
table below.

s0 s1 s2 s3 s4
s0 0
s1 ε · cf 0
s2 cf · (12 + ε) 1

2 · cf 0
s3 1 1 1 0
s4

1
2 +

cf
4

1
2 +

cf
4

1
2−cf

1
2 0

5 Metric Kernels for P -Coalgebras

Our pseudometric on a probabilistic transition system is defined as the metric
kernel dfix (Φ) where fix (Φ) is the unique map from the probabilistic transition
system, viewed as a P -coalgebra, to the terminal P -coalgebra. As we have already
seen in Section 3, dfix (Φ) can be approximated by the metric kernels dφn . In this
section, we present a characterization of the pseudometrics dφn for P -coalgebras.
Furthermore, we will show that the dφn-distances are smaller than or equal to
the dfix (Φ)-distances.

To prove our characterizations, we need the following

Proposition 7. Let φ ∈ X →
1
fix (P). Then composition with T (φ) induces a

surjection between T (fix (P))→
1
[0,∞) and T 〈X, dφ〉 →

1
[0,∞).

Proof. By a slight abuse of notation, φ may be regarded as an isometric em-
bedding of the pseudometric space 〈X, dφ〉 in fix (P). Thus T (φ) is an isomet-
ric embedding of T 〈X, dφ〉 into T (fix (P)). Now [11, Corollary on page 162]
tells us that any nonexpansive map f : T 〈X, dφ〉 → [0,∞) has an extension
g : T (fix (P))→ [0,∞) in the sense that g ◦ T (φ) = f . �	
We can characterize the pseudometric dφn on the carrier of a P -coalgebra 〈X,µ〉
as follows.

Theorem 3. For all x1, x2 ∈ X,

dφ0 (x1, x2) = 0.

For all n > 0 and x1, x2 ∈ X,

dφn (x1, x2) = sup

{∫
T (X)

g dµx1 −
∫
T (X)

g dµx2 | g ∈ T 〈X, dφn−1〉 →1 [0,∞)
}
.

An Algorithm for Quantitative Verification 345

Proof. Obviously, dφ0 (x1, x2) = dfix (P) (φ0 (x1), φ0 (x2)) = 0, since φ0 is a con-
stant function. Furthermore, for all n > 0 we have

dφn (x1, x2)
= dfix (P) (φn (x1), φn (x2))
= dfix (P) (Φ (φn−1)(x1), Φ (φn−1)(x2))

= dfix (P) ((ι−1 ◦ P (φn−1) ◦ µ) (x1), (ι−1 ◦ P (φn−1) ◦ µ) (x2)) [Definition 3]
= dP (fix (P)) ((P (φn−1) ◦ µ) (x1), (P (φn−1) ◦ µ) (x2)) [ι is isometric]

= sup

{∫
T (fix (P))

f d ((P (φn−1) ◦ µ) (x1))−
∫
T (fix (P))

f d ((P (φn−1) ◦ µ) (x2)) | f ∈ T (fix (P))→
1
[0,∞)

}

= sup

{∫
T (X)

(f ◦ T (φn−1)) dµx1 −
∫
T (X)

(f ◦ T (φn−1)) dµx2 | f ∈ T (fix (P))→1 [0,∞)
}

= sup

{∫
T (X)

g dµx1 −
∫
T (X)

g dµx2 | g ∈ T 〈X, dφn−1〉 →1 [0,∞)
}

[Prop. 7]

�	
We conclude this section with a proof that the dφn-distances are smaller than
or equal to the dfix (Φ)-distances.

Proposition 8. For all n ≥ 0,
dφn ≤ dφn+1 .

Proof. By induction on n. The case n = 0 is trivial. Let n > 0. For all x1,
x2 ∈ X,
dφn (x1, x2)

= sup

{∫
T (X)

gdµx1 −
∫
T (X)

gdµx2 | g ∈ T 〈X, dφn−1〉 →1 [0,∞)
}

[Theorem 3]

≤ sup
{∫

T (X)
g dµx1 −

∫
T (X)

g dµx2 | g ∈ T 〈X, dφn〉 →1 [0,∞)
}

[by induction dφn−1 ≤ dφn , so T 〈X, dφn−1〉 →1 [0,∞) ⊆ T 〈X, dφn〉 →1 [0,∞)]
= dφn+1 (x1, x2) [Theorem 3]

�	

Corollary 1. For all n ≥ 0, dφn ≤ dfix (Φ).

346 F. van Breugel and J. Worrell

6 The Algorithm

Suppose that the P -coalgebra considered in the previous section represents a
probabilistic transition system 〈S, π〉, where S = {s0, . . . , sN−1}. We show that
the calculation of dφn(sp, sq) can be reduced to the transshipment problem. First
we introduce some notation. For 0 ≤ i, j < N we define cij = cf · dφn−1(si, sj),
ciN = 1, cNj = 1 and cNN = 0. Also we define νi = π(sp, si) and ρi = π(sq, si)
for 0 ≤ i < N . Finally, we set νN = π(sp,0) and ρN = π(sq,0).

Since integration against discrete measures reduces to summation, according
to Theorem 3 to calculate dφn(sp, sq) we need to

Maximize5
N∑
i=0

αiνi −
N∑
i=0

αiρi

subject to αi − αj ≤ cij 0 ≤ i, j ≤ N
0 ≤ αi 0 ≤ i ≤ N.

The above is a linear programming problem. In the following analysis we use
a few notions from the theory of linear programming; these are explained in
numerous texts, including Chvátal’s textbook [2].

Next, we transform the problem to one with the same optimal solution. We
add extra dimensions to the feasible region by introducing new decision variables
βi for 0 ≤ i ≤ N . The constraints in the transformed problem ensure that
βi = αi (since cii = 0) for all 0 ≤ i ≤ N . In fact, it is easy to see that the vector
(α0, . . . , αN , β0, . . . , βN)T satisfies the constraints of the transformed problem
iff (α0, . . . , αN)T satisfies the constraints of the original problem and is equal to
(β0, . . . , βN)T .

Maximize
N∑
i=0

αiνi −
N∑
i=0

βiρi

subject to αi − βj ≤ cij 0 ≤ i, j ≤ N
βi − αi ≤ 0 0 ≤ i ≤ N
0 ≤ αi, βj 0 ≤ i, j ≤ N.

Dualizing the above (primal) problem yields:

Minimize
N∑

i,j=0

cijλij (1)

subject to
∑N
i=0 λij − γj = νj 0 ≤ j ≤ N∑N
j=0 λij − γi = ρi 0 ≤ i ≤ N

0 ≤ λij , γi 0 ≤ i, j ≤ N.
5 In general one can show from compactness arguments that the supremum in the
statement of Theorem 3 is attained. The fact that the supremum is attained in this
particular instance also follows from the theory of linear programming.

An Algorithm for Quantitative Verification 347

The duality theorem of linear programming tells us that the dual problem has
an optimal solution with the same value as the optimal solution of the primal
problem. Next we show that the dual problem can be simplified to:

Minimize
N∑

i,j=0

cijλij

subject to
∑N
i=0 λij = νj 0 ≤ j ≤ N∑N
j=0 λij = ρi 0 ≤ i ≤ N

0 ≤ λij 0 ≤ i, j ≤ N.
A visualization of the above problem is to find the minimum transshipment cost
over the following network of sources (on the left) and sinks (on the right), where
each source is connected to each sink via an edge is labelled with a cost.

��������ρ0
c00 ��

c01

����������
��������−ν0

��������ρ1 c11
��

c1N

���
��

��
��

��
��

��
�

��������−ν1

...
...

��������ρN cNN
�� ��������−νN

The problem (1) entails finding the minimum transshipment cost over the net-
work above, augmented with an edge of cost zero from the node labelled νi to
the node labelled ρi for 0 ≤ i ≤ N . But the triangle inequality for dφn says that
cik ≤ cij + cjk for all i, j, k; this means that it is never more expensive to send
units directly from a given source to a given sink, rather than indirectly. It is
not difficult to see that, as a consequence, the last two minimization problems
have the same optimal value.

Finally, we are in a position to present our algorithm for calculating the
pseudometric dfix (Φ) on 〈S, π〉 up to a prescribed degree of accuracy δ. The
algorithm iteratively calculates dφn , with the value of dφn(si, sj) being stored
in distij . By Proposition 5, �logcf(δ/2)� cycles of the main loop suffice to get
within δ of dfix (Φ). Also, recall from Corollary 1 that the dφn approximate
dfix (Φ) from below.

STEP 1 (Initialization)
We initialize the distance matrix by setting distpq := 0 for 0 ≤ p, q < N . The
main body of the algorithm also uses an N + 1 by N + 1 matrix cost, and we
initialize some of the entries of this matrix thus: costpN = 1 and costNq = 1 for
0 ≤ p, q < N , and costNN = 0 (these values never change during the execution
of the algorithm).

348 F. van Breugel and J. Worrell

STEP 2 (Main loop)

For n = 0 to �logcf(δ/2)� do
For p, q = 0 to N − 1 do

costpq := cf · distpq
For p, q = 0 to N − 1 do

distpq := { minimum value of
N∑

i,j=0

costij · λij
subject to:
N∑
i=0

λij = π(xq, xj) 0 ≤ j ≤ N
N∑
j=0

λij = π(xp, xi) 0 ≤ i ≤ N

0 ≤ λij 0 ≤ i, j ≤ N }.
The presentation above is aimed at clarity. There is an obvious redundancy in
that the distance matrix is always symmetric and has 0’s along its diagonal, so
we only ever need to calculate distpq for p < q.

7 Related and Future Work

In this paper, we considered probabilistic transition systems without labels to
simplify the presentation. However, all our results can easily be generalized to a
setting with labels. The coalgebras of the functor

L→ P : CMet1 → CMet1,

where L is the finite set of labels, represent labelled probabilistic transition
systems. To compute the dφn-distance between states of a labelled system, for
each label we consider only the transitions with that label and compute the
dφn-distance between the states, and take the maximum of all the computed
distances.

We see our pseudometric as a measure of the behavioural proximity of states.
Now we very briefly outline how this view is sound with respect to the process
testing scenario considered by Larsen and Skou in [12]. There one has a class
of tests, seen as corresponding to ‘button pressing’ experiments on processes. A
remarkable feature of the testing framework is that the experimenter is allowed
to take a finite number of copies of a process and independently test each copy.
Associated to each test t there is a set of possible observations Ot, such that
a state s of a probabilistic transition system induces a probability distribution
Pt,s over Ot. For e ∈ Ot, Pt,s(e) is the probability of observing e when the test
t is performed on s. Larsen and Skou showed that two states are bisimilar just
in case they induce the same probability distribution over Ot for each test t.

An Algorithm for Quantitative Verification 349

For our part we can show that for a given test-observation pair (t, e), there
is a constant kt,e such that

|Pt,s1(e)− Pt,s2(e)| ≤ kt,e · dfix (Φ)(s1, s2)

for states s1, s2 of a probabilistic transition system.
The presence of the constant kt,e is partly due to the contraction factor cf.

Since our pseudometric discounts the future, kt,e is greater for deeper obser-
vations e. The other determinant of kt,e is how much t employs the copying
facility.

In [3], Desharnais et al. presented a pseudometric for probabilistic transition
systems. Their pseudometric is defined by means of a real-valued modal logic
where, in particular, the modal connective is interpreted by integration. Also in
their setting, states have distance 0 if and only if they are probabilistic bisim-
ilar. In [1] we showed that by adding negation6 to their logic one recovers the
pseudometric dfix (Φ). We also argued that this leads to distances which are more
intuitive.

Desharnais et al. present an algorithm to calculate distances in their metric
up to a prescribed degree of accuracy. The algorithm involves the generation
of a representative set of formulas of their logic. They only consider formulas
with a restricted number of nested occurrences of the modal connective. This
corresponds to our approximation of dfix (Φ) by dφn . Both restrict the depth at
which observations are considered. Their algorithm calculates the distances in
exponential time, whereas our algorithm computes them in polynomial time.
Furthermore, it is not clear to us whether their algorithm can be adapted (in a
straightforward manner) to the logic with negation.

Many process combinators, like parallel composition, prefixing and proba-
bilistic choice, can be shown to be nonexpansive with respect to our pseudomet-
ric. This quantitative analogue of congruence allows for compositional verifica-
tion (see also [3,7]).

In the present paper we have been concerned with discrete, indeed finite
state, probabilistic transition systems. However, as we will show elsewhere, the
terminal coalgebra of the endofunctor P also serves as a domain in which one
can interpret continuous systems, in particular the labelled Markov processes
of [4]. This paves the way for metric versions of some of the domain theoretic
results from that paper.

The transshipment network in Section 6 is very similar to one occurring in
the proof of the ‘splitting lemma’ by Jones and Plotkin in [10], except there one
has a network whose edges have capacities rather than costs. In fact, hiding in
Section 6 there is a splitting lemma for the Hutchinson metric which can be
used to characterize M(X) as a free algebra. Again, details will be presented
elsewhere. The same network also appears in the proof that the functor of De
Vink and Rutten preserves weak pullbacks, cf. [16].

6 In a draft version, but not in the final version, of [4] negation was considered.

350 F. van Breugel and J. Worrell

Acknowledgements. We would like to thank the referees for their suggestions
to improve the presentation of the final version. The first author would like to
thank Jeff Edmonds for stimulating discussions about linear programming.

References

1. F. van Breugel and J. Worrell. Towards Quantitative Verification of Probabilistic
Transition Systems. To appear in Proceedings of 28th International Colloquium
on Automata, Languages and Programming, Lecture Notes in Computer Science,
Crete, July 2001. Springer-Verlag.

2. V. Chvátal. Linear Programming. W.H. Freeman and Company, New York/San
Francisco, 1983.

3. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for Labeled
Markov Systems. In J.C.M. Baeten and S. Mauw, editors, Proceedings of the 10th
International Conference on Concurrency Theory, volume 1664 of Lecture Notes
in Computer Science, pages 258–273, Eindhoven, August 1999. Springer-Verlag.

4. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating
Labeled Markov Processes. In Proceedings of the 15th Annual IEEE Symposium
on Logic in Computer Science, pages 95–106, Santa Barbara, June 2000. IEEE.

5. G.A. Edgar. Integral, Probability, and Fractal Measures. Springer-Verlag, 1998.
6. M. Giry. A Categorical Approach to Probability Theory. In B. Banaschewski, edi-

tor, Proceedings of the International Conference on Categorical Aspects of Topology
and Analysis, volume 915 of Lecture Notes in Mathematics, pages 68–85, Ottawa,
August 1981. Springer-Verlag.

7. A. Giacalone, C.-C. Jou, and S.A. Smolka. Algebraic Reasoning for Probabilistic
Concurrent Systems. In Proceedings of the IFIP WG 2.2/2.3 Working Conference
on Programming Concepts and Methods, pages 443–458, Sea of Gallilee, April 1990.
North-Holland.

8. J.E. Hutchinson. Fractals and Self Similarity. Indiana University Mathematics
Journal, 30(5):713–747, 1981.

9. B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras and (Co)Induction. Bulletin
of the EATCS, 62, June 1997.

10. C. Jones and G.D. Plotkin. A Probabilistic Powerdomain of Evaluations. In
Proceedings of the 4th Annual IEEE Symposium on Logic in Computer Science,
pages 186–195, California, June 1989. IEEE.

11. F.W. Lawvere. Metric Spaces, Generalized Logic, and Closed Categories. Rendi-
conti del Seminario Matematico e Fisico di Milano, 43:135–166, 1973.

12. K.G. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information
and Computation, 94(1):1–28, September 1991.

13. K.R. Parthasarathy. Probability Measures on Metric Spaces. Academic Press, 1967.
14. D. Turi and J.J.M.M. Rutten. On the Foundations of Final Semantics: non-

standard sets, metric spaces, partial orders. Mathematical Structures in Computer
Science, 8(5):481-540, October 1998.

15. J.J.J.M. Rutten. Universal Coalgebra: a Theory of Systems. Theoretical Computer
Science, 249(1):3–80, October 2000.

16. E.P. de Vink and J.J.M.M. Rutten. Bisimulation for Probabilistic Transition Sys-
tems: a Coalgebraic Approach. Theoretical Computer Science, 221(1/2):271–293,
June 1999.

Compositional Methods
for Probabilistic Systems�

Luca de Alfaro, Thomas A. Henzinger, and Ranjit Jhala

Electrical Engineering and Computer Sciences, University of California, Berkeley
{dealfaro,tah,jhala}@eecs.berkeley.edu

Abstract. We present a compositional trace-based model for proba-
bilistic systems. The behavior of a system with probabilistic choice is a
stochastic process, namely, a probability distribution on traces, or “bun-
dle.” Consequently, the semantics of a system with both nondeterministic
and probabilistic choice is a set of bundles. The bundles of a composite
system can be obtained by combining the bundles of the components
in a simple mathematical way. Refinement between systems is bundle
containment. We achieve assume-guarantee compositionality for bundle
semantics by introducing two scoping mechanisms. The first mechanism,
which is standard in compositional modeling, distinguishes inputs from
outputs and hidden state. The second mechanism, which arises in prob-
abilistic systems, partitions the state into probabilistically independent
regions.

1 Introduction

A system model is compositional if the model of a composite system can be ob-
tained by composing the models of the components. Compositionality comes in
two flavors: shallow and deep. Shallow compositionality is essentially a syntactic
notion: given two components P andQ, we can construct their composition P‖Q,
but the semantics of this composition is not directly related to that of P and Q.
On the other hand, deep compositionality relates not only the syntax, but also
the semantics: not only can we combine P and Q into P‖Q, but the semantics
[[P‖Q]] of P‖Q can be obtained by combining [[P]] and [[Q]]. A simple model with
deep compositionality is that of transition systems with trace semantics [Dil89,
Lam93,Lyn96,AH99]. In the variable-based version of this model, a state is an
assignment of values to a set of variables, a trace is a sequence of states, and the
semantics [[P]] of a component P consists of the set of all traces that correspond
to behaviors of P . If the variables written by P are read by another component
Q, and vice versa, and components interact synchronously, then composition
corresponds to the intersection of trace sets: [[P‖Q]] = [[P]]∩ [[Q]]. If each compo-
nent has also private variables, which are invisible to the other component, then
� This research was supported in part by the SRC contract 99-TJ-683.003, the AFOSR
MURI grant F49620-00-1-0327, the MARCO GSRC grant 98-DT-660, the NSF
Theory grant CCR-9988172, and the DARPA SEC grant F33615-C-98-3614.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 351–365, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

352 L. de Alfaro, T.A. Henzinger, and R. Jhala

we obtain the observable traces of P‖Q via projection from the behaviors of P
and Q that agree on the mutually visible variables.

The chief advantage of deep over shallow compositionality is that deep com-
positionality enables not only the composition of systems, but also the com-
position of properties. In particular, it becomes possible to prove properties of
systems by proving properties of their components. Since each component is sim-
pler than the composite system, such a compositional approach can be markedly
more efficient. A basic application of property composition consists in proving a
refinement relation P‖Q � P ′‖Q′ between a composite implementation P‖Q and
a composite specification P ′‖Q′ by proving independently the two component
refinements P � P ′ and Q � Q′. In practice, a more powerful assume-guarantee
rule is preferred, where the proofs of each component refinement rely on the
hypothesis that the other component refinement holds, yielding the proof obli-
gations P‖Q′ � P ′‖Q′ and P ′‖Q � P ′‖Q′. Such a circular assume-guarantee
rule is available, for example, for [MC81,AL95,McM97,AH99]. In spite of the
advantages of deeply compositional models, no such model has thus far been
presented for systems with both probability and nondeterminism. The difficulty,
as we will detail in Section 2, lies in the interaction between the resolution of
nondeterministic choice, mediated by schedulers, and composition.

We introduce a deeply compositional model for systems with both probabilis-
tic and nondeterministic choice, and we show how the model leads to the first
assume-guarantee rule for checking refinement between probabilistic systems.
The model is based on a synchronous, variable-based view of systems, as in
reactive modules [AH99]. The semantics of a component is obtained by general-
izing trace semantics: instead of a trace, our basic semantical unit is a probability
distribution on traces —i.e., a stochastic process over the state space— which
we call a “bundle.” A bundle represents a single (probabilistic) behavior of a
component, once all nondeterminism has been resolved by a scheduler. Thus,
the semantics [[P]] of a component P consists of a set of bundles. This is very
similar to the semantics for the probabilistic I/O automata of [SL94,Seg95]. Un-
like the models of [SL94,Seg95], however, our models are deeply compositional.
In our models, the semantics of composition is essentially intersection, as in the
nonprobabilistic case: for two components P and Q that share the same vari-
ables, we have [[P‖Q]] = [[P]]∩ [[Q]]; this is now an intersection of bundles, rather
than traces. This relationship will be generalized also to components with private
variables.

Our deeply compositional semantics opens the way to the use of assume-
guarantee methods for probabilistic systems. In the trace-based semantics of
nondeterministic systems, refinement is defined as trace containment. In anal-
ogy, we define refinement as bundle containment: P � P ′ iff [[P]] ⊆ [[P ′]]. This
definition, together with deep compositionality, ensures that refinement can be
proven in a compositional fashion: P � P ′ and Q � Q′ imply P‖Q � P ′‖Q′.
Furthermore, we show that a circular assume-guarantee rule for refinement can
be applied: P‖Q′ � P ′‖Q′ and P ′‖Q � P ′‖Q′ imply P‖Q � P ′‖Q′. This does
not follow immediately from deep compositionality, but requires inductive rea-
soning, as in the nonprobabilistic case. Arguably, the ability of studying systems

Compositional Methods for Probabilistic Systems 353

in a compositional fashion is even more beneficial for probabilistic than for purely
nondeterministic systems, due to the greater complexity of the verification al-
gorithms and symbolic data structures [dAKN+00]. We therefore believe that
our deeply compositional semantics, together with the assume-guarantee rule
for proving refinement, represent a step forward in the analysis and verification
of complex probabilistic systems.

2 Motivational Examples

In systems with both probabilistic and nondeterministic choice, the resolution of
nondeterministic choice is mediated by schedulers, which specify how to choose
between nondeterministic alternatives [Der70,Var85,SL94,BdA95]. Once a sched-
uler is fixed, the behavior of a system is a stochastic process, namely, a bundle.
Following [SL94,Seg95], we define the semantics [[P]] of a component P as the
set of bundles that arise from all possible schedulers for P . While deterministic
schedulers resolve each choice in a deterministic manner [Var85], we opt for
randomized schedulers, which select probability distributions of outcomes [SL94,
BdA95], thus resolving nondeterminism in a randomized fashion, similarly to
Markov decision processes [Der70]. Our preference for randomized schedulers is
motivated by refinement: under randomized scheduling, if we replace probabil-
ity by nondeterminism in a component P , obtaining the component P ′, then P
refines P ′. Hence, nondeterminism can be seen as “unspecified probability,” and
it can be used to encode imprecise probability values [JL91,dA98]. To see this,
consider the following example.

Example 1 Assume that P and P ′ are two components, each writing once to
a variable x that can take the two values 0 or 1. In P , the variable x is set to 0
or 1 with probability 1

2 each; in P
′, the choice between setting x to 0 or 1 is

entirely nondeterministic. Since there is no nondeterminism in P , there is a single
scheduler for P (taking no choices), which gives rise to the behavior (bundle)
with the two one-step traces x :0 and x :1, each with probability 1

2 . There are two
deterministic schedulers for P ′: the first sets x to 0 and yields the bundle with
the single trace x :0; the second sets x to 1 and yields the bundle with the single
trace x : 1. Therefore, with deterministic scheduling, [[P]] ∩ [[P ′]] = ∅. There are
infinitely many randomized schedulers for P ′, one for each real number δ ∈ [0, 1]:
the scheduler σδ sets x to 0 with probability δ, and sets x to 1 with probability
1−δ, and thus yields the bundle with the two traces x :0 (probability δ) and x :1
(probability 1 − δ). Choosing δ = 1

2 , we see that using randomized schedulers,
[[P]] ⊆ [[P ′]], as desired.

We adopt a purely variable-based view of systems: each state is a valuation of
a set of typed variables. Following reactive modules [AH99], our components,
called probabilistic modules, have a set of private variables, visible to the module
alone, a set of interface variables, which are the outputs of the module, and a set
of external variables, which are the inputs of the module. Together, the interface

354 L. de Alfaro, T.A. Henzinger, and R. Jhala

x=0
y=0

p=1
x=1
y=1

ext y:=p ext y:=p

p=0

p=0
x=0
y=0

p=1
x=0
y=0

ctr x:=0

ctr x=0

ctr p:=0,1 with 1/2,1/2

 ext y:=0

 ext y=0

 ctr p=−1

ctr x:=p ctr x:=p

ctr x:=p
 ext y:=p

ctr x:=p
 ext y:=p

module P

x=0
y=0

x=0
y=0

ctr y:=q

q=0 q=1

ctr y:=q

x=0
y=0

x=1
y=1

ctr y:=q ctr y:=q

q=0 q=1

module Q

ext x:=q

ctr q:=0,1 with 1/2,1/2
ext x:=0
ctr y:=0

ctr y=0
 ext x=0
 ctr q=−1

 ext x:=q

 ext x:=q ext x:=q

Fig. 1. Bundle of P and Q, but not of P‖Q

and external variables are called observable, and the private and interface vari-
ables are called the controlled variables of the module. Here, we justify some of
the definitions that are necessary to achieve a deeply compositional semantics.

Example 2 The module P has private variable p, interface variable x, and
external variable y. All variables are modified repeatedly, in a sequence of discrete
steps. The initial values of p and x are −1 and 0, respectively. When p = −1, the
module P updates p to 0 or 1 with equal probability 1

2 , and updates x to 0. When
p �= −1, the module P leaves p unchanged, and updates x to p. The initial value
and updates of the external variable y are entirely nondeterministic. Let σP be
the scheduler for P that initially sets y to 0, and then updates y to 0 when
p = −1, and updates y to p when p �= −1. The module Q, and its scheduler
σQ, are defined symmetrically, with q in place of p, and x, y interchanged. The
behavior of these two modules, under their respective schedulers, is illustrated
in Figure 1. Under the scheduler σP , the observable part of the behavior of P is
a bundle b consisting of the two infinite traces (x : 0, y : 0), (0, 0), (0, 0), . . . and
(x : 0, y : 0), (0, 0), (1, 1), . . . with probability 1

2 each. The bundle b also results
from Q under the scheduler σQ. However, b is not a bundle of P‖Q, under any
scheduler. In fact, there is no nondeterminism in P‖Q: the values for p and q are
chosen independently, and the unique observable behavior of P‖Q is the bundle
that, for each i, j ∈ {0, 1}, contains the trace (x : 0, y : 0), (0, 0), (i, j), . . . with
probability 1

4 .

Thus, in order to obtain a compositional semantics, the values of the external
variables must be chosen without looking at the values of private variables. On
the other hand, the choice of values for the controlled variables should be able to
depend on the values of private variables. Hence, we need at least two schedulers
for each module: one for the external variables, which cannot look at the values
of the private variables, and one for the controlled variables, which can.

Compositional Methods for Probabilistic Systems 355

Example 3 Consider a module P with an interface variable x and an exter-
nal variable y, and a module Q with the interface variable y and the external
variable x. Both variables can have value 0 or 1, and are updated completely
nondeterministically. The behavior of P is thus determined by two schedulers:
a module scheduler πP that provides a probability distribution for the choice
between values 0 and 1 for x, and an environment scheduler ηP that provides
a probability distribution for the choice between values 0 and 1 for y. Symmet-
rically, the behavior of Q is determined by the two schedulers πQ and ηQ. In
the compositon P‖Q, the variables x and y are both controlled variables. If we
postulate that all controlled variables are controlled by the same scheduler, then
there is a module scheduler πP‖Q for P‖Q that chooses for (x, y) the values (0, 0)
with probability 1

2 , and (1, 1) with probability
1
2 . This scheduler gives rise to the

bundle that contains the one-step trace (x : 0, y : 0) with probability 1
2 , and the

one-step trace (x : 1, y : 1) with probability 1
2 . This bundle is neither a bundle of

P , nor a bundle of Q, however, because in P and Q the values for x and y are
chosen independently.

In previous models of probabilistic systems, a single scheduler is used to resolve
all nondeterminism in the choice of values for the controlled variables [Var85,
SL94,Seg95,BdA95]. The above example indicates that in order to achieve deep
compositionality, we must abandon this restriction, and allow multiple schedulers
for the resolution of the nondeterminism within a module. For each scheduler, we
must specify the set of variables that it affects, as well as the set of variables at
which it can look. To this end, we partition the controlled variables of a module
into atoms: each atom represents a set of controlled variables that are scheduled
together, by a single scheduler. Each atom has also a set of read variables, which
are the variables visible to the scheduler, on which the choice of values for the
controlled variables may depend. When we compose modules, we take the union
of their sets of atoms, thus ensuring that the scheduling dependencies between
variables remain unchanged. In the example above, P would contain an atom
for scheduling x, and Q an atom for scheduling y (there are no read variables).
The composite system P‖Q then inherits the atoms of P and Q, and has two
schedulers, one for x, the other for y. Each pair of schedulers for P‖Q corresponds
to both a scheduler of P and a scheduler of Q, yielding [[P]] ∩ [[Q]] = [[P‖Q]].

Our atoms are derived directly from the atoms of reactive modules [AH99].
However, while in [AH99] the atoms indicate which variables are updated jointly
(i.e., interdependently), and dependent on which other variables, here atoms ac-
quire additional meaning: they indicate which variables are scheduled jointly, and
dependent on which other variables. In particular, while in the nonprobabilistic
case the merging of atoms never changes the behaviors (traces) of a module, in
the probabilistic case, the merging of atoms may increase the behaviors (bun-
dles) by permitting strictly more probabilistic dependencies between variable
values, as the previous example illustrates. This is because it is the atom struc-
ture of a module that determines probabilistic dependence and, importantly,
independence between variables values.

356 L. de Alfaro, T.A. Henzinger, and R. Jhala

3 Probabilistic Modules and Composition

3.1 Definition of Probabilistic Modules

Definition 1. [States and moves] Let X be a set of typed variables. An X-
state s is a function that maps each variable in X to a value of the appropriate
type. We write Val(X) for the set of X-states. An X-move m is a probability
distribution on X-states. The move m is nonprobabilistic if the support of m is
a single state. Given two X-moves m1 and m2, and a real number δ ∈ [0, 1], we
write δ ·m1 + (1− δ) ·m2 for the X-move m such that m(s) = δ ·m1(s) + (1−
δ) ·m2(s) for all X-states s.

While a nonprobabilistic transition (s, s′) consists of a source state s and a target
state s′, a probabilistic transition (s,m) consists of a source state s and a proba-
bility distributionm of target states. A nondeterministic collection of transitions
(probabilistic or not) is called an “action.” Consider, for example, the action
F = {f1, f2} with the two transitions f1 = (s,m1) and f2 = (s,m2). Every
action is resolved by a scheduler, which, given a sequence of actions, produces
a sequence of states. Given the action F = {f1, f2} in state s, a deterministic
scheduler may choose either the transition f1, whose outcome is determined by
the probability distribution m1, or the transition f2, whose outcome is deter-
mined by the probability distribution m2. A randomized scheduler may choose
any convex combination of f1 and f2, say, f1 with probability δ and f2 with
probability 1− δ.
Definition 2. [Transitions and actions] Let X and Y be two sets of typed
variables. A probabilistic transition (s,m) from X to Y consists of an X-state
s and a Y -move m. The transition (s,m) is nonprobabilistic if the move m is
nonprobabilistic. A probabilistic action F from X to Y is a set of probabilistic
transitions from X to Y . The action F is deterministic if for every X-state s,
there is at most one Y -move m such that (s,m) ∈ F . The action F is nonproba-
bilistic if all transitions in F are nonprobabilistic. The action F is convex-closed
if for all X-states s, all Y -moves m1 and m2, and all real numbers δ ∈ [0, 1], if
(s,m1) ∈ F and (s,m2) ∈ F , then (s, δ ·m1 + (1 − δ) ·m2) ∈ F . The convex-
closure ConvexClosure(F) is the least superset of F that is a convex-closed action
from X to Y .

A system proceeds in a sequence of discrete rounds. In the first round, all system
variables are initialized in accordance with initial actions; in the subsequent
rounds, all system variables are updated in accordance with update actions.
Dependencies between variables are expressed by clustering the variables into
“atoms.” If two variables are controlled (i.e., initialized and updated) by the same
atom, then their behaviors are interdependent. Consequently, if the behaviors
of two variables are desired to be independent, then the variables must be put
into different atoms. Consider, for example, two boolean variables x and y. First,
suppose that x and y are jointly controlled by a single atom. The deterministic
initial action 1

2 (x, y := 0, 0) + 1
2 (x, y := 1, 1) with probability 1

2 initializes both
variables to 0, and with probability 1

2 initializes both variables to 1. There are

Compositional Methods for Probabilistic Systems 357

two possible initial states, (0,0) and (1,1). Second, suppose that x and y are
independently controlled by different atoms. The deterministic initial actions
1
2 (x := 0) + 1

2 (x := 1) and 1
2 (x := 0) + 1

2 (x := 1) initialize each variable with
equal probability to 0 or 1. There are four possible initial states, (0,0), (0,1), (1,0),
and (1,1). If x is controlled by one atom, and y by another atom, then x may still
depend on y, because the atom controlling x may “read” the value of y at the
beginning of each round. All such read dependencies must be declared explicitly;
the absence of read dependencies (or transitively implied read dependencies)
between different atoms means true independence, in the probabilistic sense.

Definition 3. [Atoms] Let X be a set of typed variables. A probabilistic X-
atom A consists of a set readX(A) ⊆ X of read variables, a set ctrX(A) ⊆ X of
controlled variables, a probabilistic initial action initF(A) from ∅ to ctrX(A), and
a probabilistic update action updateF(A) from readX(A) to ctrX(A). The atom
A is deterministic if both initF(A) and updateF(A) are deterministic actions.
The atom A is nonprobabilistic if both initF(A) and updateF(A) are nonproba-
bilistic.

In addition to its atoms, which provide the initial and update actions for vari-
ables, an open probabilistic system —or “module”— also provides the capability
to view variables that are not initialized and updated by the module, and the
capability to hide variables from the view of other modules. The former vari-
ables are called “external”; the latter, “private.” The variables that are neither
external nor private —i.e., the variables that are initialized and updated by the
module and can be viewed by other modules— are called “interface” variables.

Definition 4. [Modules] A probabilistic module P consists of a declaration
and a body. The module declaration is a finite set of typed variables X(P)
that is partitioned into three sets: the set extlX(P) of external variables, the
set intfX(P) of interface variables, and the set privX(P) of private variables.
The module body is a finite set Atoms(P) of probabilistic X(P)-atoms such that
(1) intfX(P) ∪ privX(P) = ⋃

A∈Atoms(P) ctrX(A), and (2) for all atoms A1 and
A2 in Atoms(P), the sets ctrX(A1) and ctrX(A2) are disjoint. The module P
is deterministic if all atoms in Atoms(P) are deterministic. The module P is
nonprobabilistic if all atoms in Atoms(P) are nonprobabilistic.

Given a module P , we call intfX(P) ∪ extlX(P) the set of observable variables
of P , and we call privX(P) ∪ intfX(P) the set of controlled variables of P . The
nonprobabilistic modules are exactly the reactive modules of [AH99] without
await dependencies. We have omitted await dependencies, which are instrumen-
tal for synchronous communication, for simplicity; they can be added without
changing the results of this paper. Modules without external variables are called
“closed.” Every closed module defines a Markov decision process; every closed
deterministic module defines a Markov chain.

358 L. de Alfaro, T.A. Henzinger, and R. Jhala

3.2 Operations on Probabilistic Modules

We define three operations on probabilistic modules: hiding, composition, and
opening. The hiding (or abstraction) operation makes some interface variables
private.

Definition 5. [Hiding] Let P be a probabilistic module, and let Y ⊆ intfX(P)
be a set of interface variables. By hiding Y in P we obtain the probabilistic
module P\Y with the set extlX(P\Y) = extlX(P) of external variables, the
set intfX(P\Y) = intfX(P)\Y of interface variables, the set privX(P\Y) =
privX(P) ∪ Y of private variables, and the set Atoms(P\Y) = Atoms(P) of
atoms.

The (parallel) composition operation puts together two modules which control
the behaviors of disjoint sets of variables. The composition operation can be ap-
plied only when the observable —i.e., external and interface— variables of two
modules coincide. This constraint is necessary for a compositional semantics in
the presence of probabilities. If a module has a private variable p and an external
variables y, then the module semantics insists on the independence between p
and y, because the environment, which controls y, cannot observe p. It is there-
fore illegal to compose a module with private p, but without external y, and an
environment that controls y, because the module, which does not know about
the existence of y, has no way of noting that p and y must be independent.
We will illustrate this in Example 4, presented below after the necessary ter-
minology has been introduced. This underlines how the scoping of variables in
the probabilistic case is considerably more delicate than in the nonprobabilistic
case, where incidental dependencies between variables cause no harm.

Definition 6. [Composition] Two probabilistic modules P1 and P2 can be
composed if (1) extlX(P1)∪ intfX(P1) = extlX(P2)∪ intfX(P2), (2) intfX(P1)∩
intfX(P2) = ∅, and (3) privX(P1) ∩ X(P2) = ∅ and X(P1) ∩ privX(P2) = ∅.
Two composition of two probabilistic modules P1 and P2 that can be composed
is the probabilistic module P1||P2 with the set extlX(P1||P2) = (extlX(P1) ∪
extlX(P2))\intfX(P1||P2) of external variables, the set intfX(P1||P2) =
intfX(P1)∪ intfX(P2) of interface variables, the set privX(P1||P2) = privX(P1)∪
privX(P2) of private variables, and the set Atoms(P1||P2) = Atoms(P1) ∪
Atoms(P2) of atoms.

The opening operation adds external variables to a module, and is unique to
probabilistic modules. It is used to ensure that two modules have the same set
of observable variables before they are composed.

Definition 7. [Opening] Let P be a probabilistic module, and let Y be a set
of typed variables disjoint from the set X(P) of module variables. By opening
P to Y we obtain the probabilistic module P � Y with the set extlX(P � Y) =
extlX(P)∪ Y of external variables, the set intfX(P � Y) = intfX(P) of interface
variables, the set privX(P � Y) = privX(P) of private variables, and the set
Atoms(P � Y) = Atoms(P) of atoms.

Compositional Methods for Probabilistic Systems 359

3.3 Trace Semantics of Probabilistic Systems

Definition of probabilistic languages. While the behavior of a determin-
istic and closed nonprobabilistic system is an infinite state sequence —called
a “trace”— the behavior of a deterministic and closed probabilistic system
(Markov chain) is a probability distribution on traces —called a “bundle.” Con-
sequently, the possible behaviors of a nondeterministic or open probabilistic sys-
tem form a set of traces, and the possible behaviors of a nondeterministic or open
probabilistic system (in the nondeterministic and closed case, a Markov decision
process) form a set of bundles. We restrict ourselves to safe systems, where it
suffices to consider finite behaviors, albeit of arbitrary length; this restriction
is particularly technically convenient in the probabilistic case, as probability
distributions on finite traces can be defined in a straightforward manner.

Definition 8. [Traces and bundles] Let X be a set of typed variables, and let
n be a nonnegative integer. An X-trace t of length n is a sequence of X-states
with n elements. We write ε for the empty sequence, and given 1 ≤ i ≤ n, we
write t(i) for the i-th element of t. We write Valn(X) for the set of X-traces of
length n. An X-bundle of length n is a probability distribution over X-traces of
length n. The unique X-bundle of length 0, which assigns the probability 1 to ε,
is called the empty bundle. The bundle b is nonprobabilistic if the support of
b is a single trace. If n > 0, then the prefix of b is the X-bundle b′ of length
n− 1 such that b′(t) = ∑

s∈Val(X) b(t · s) for all X-traces t of length n− 1. The
X-bundle b′′ of length n+ 1 is an extension of b if b is the prefix of b′′.

Each bundle records the outcome of a particular sequence of nondeterministic
or randomized choices made by a system. Such a sequence of choices is called a
“scheduler” (to be defined later). The set of bundles that result from all possible
schedulers are collected forms a probabilistic languages.

Definition 9. [Languages] Let X be a set of typed variables. A set L of X-
bundles is prefix-closed if for every bundle b in L, the prefix of b is also in L. The
set L of bundles is extension-closed if (1) the empty bundle is in L, and (2) for
every bundle b in L, some extension of b is also in L. A probabilisticX-language
L is a prefix-closed and extension-closed set of X-bundles. The language L is
deterministic if for all nonnegative integers n, there is a single bundle of length n
in L. The language L is nonprobabilistic if all bundles in L are nonprobabilistic.

The nonprobabilistic languages are precisely the prefix-closed and extension-
closed trace sets; that is, the languages generated by safe and deadlock-free
discrete systems.

Operations on probabilistic languages. We define two operations on bun-
dles and on probabilistic languages: projection and product. Properties of these
operations are needed to prove the compositionality of hiding and composition
for probabilistic systems.

Definition 10. [Projection] Let X and X ′ ⊆ X be two sets of typed variables.
The X ′-projection of an X-state s is the X ′-state s[X ′] such that (s[X ′])(x) =

360 L. de Alfaro, T.A. Henzinger, and R. Jhala

s(x) for all variables x ∈ X ′. The X ′-projection of an X-movem is the X ′-move
m[X ′] such that (m[X ′])(s′) =

∑
s∈Val(X) with s[X′]=s′ m(s) for all X ′-states s′.

The X ′-projection of an X-trace t of length n is the X ′-trace t[X ′] of length n
such that (t[X ′])(i) = (t(i))[X ′] for all 1 ≤ i ≤ n. The X ′-projection of an X-
bundle b of length n is the X ′-bundle b[X ′] of length n such that (b[X ′])(t′) =∑
t∈Valn(X) with t[X′]=t′ b(t) for all X

′-traces t of length n. The X ′-projection
of an X-language L is the X ′-language L[X ′] = {b[X ′] | b ∈ L}.

Definition 11. [Product] Let X1 and X2 be two sets of typed variables. An X1-
state (resp. move; trace; bundle) s1 and a X2-state (resp. move; trace; bundle)
s2 can be multiplied if s1[X1 ∩X2] = s2[X1 ∩X2]. The product of an X1-state
s1 and an X2-state s2 that can be multiplied is the (X1 ∪X2)-state s1 × s2 such
that (s1× s2)(x1) = s1(x1) for all variables x1 ∈ X1, and (s1× s2)(x2) = s2(x2)
for all x2 ∈ X2. The product of an X1-move m1 and an X2-move m2 that
can be multiplied is the (X1 ∪ X2)-move m1 ×m2 such that (m1 ×m2)(s) =
m1(s[X1]) ·m2(s[X2])/m1(s[X1 ∩X2]) for all (X1 ∪X2)-states s. The product
of an X1-trace t1 and an X2-trace t2 that have length n and can be multiplied
is the (X1 ∪ X2)-trace t1 × t2 of length n such that (t1 × t2)(i) = t1(i) × t2(i)
for all 1 ≤ i ≤ n. The product of an X1-bundle b1 and an X2-bundle b2
that have length n and can be multiplied is the (X1 ∪ X2)-bundle b1 × b2 of
length n such that (b1 × b2)(t) = b1(t[X1]) · b2(t[X2])/b1(t[X1 ∩ X2]) for all
(X1 ∪X2)-traces t of length n. The product of an X1-language L1 and an X2-
language L2 is the (X1 ∪X2)-language L1 × L2 = {b1 × b2 | b1 ∈ L1 and b2 ∈
L2 can be multiplied}.
The product of bundle languages is the probabilistic analogue to the intersection
of trace languages. This is captured in the following lemma.

Lemma 1. Let L1 be a probabilistic X1-language, and let L2 be a probabilistic
X2-language. Then (L1 × L2)[X1 ∩X2] = L1[X1 ∩X2] ∩ L2[X1 ∩X2].

Containment between probabilistic languages. Since the set of possible
behaviors of a probabilistic system is a set of bundles, the appropriate notion of
refinement between probabilistic systems is bundle containment: an implemen-
tation refines a specification iff every possible behavior (bundle) of the imple-
mentation is a legal behavior (bundle) of the specification.

Definition 12. [Bundle containment] Let X and X ′ ⊆ X be two sets of
typed variables. If L is a probabilistic X-language, and L′ is a probabilistic X ′-
language, then L is bundle-contained in L′ if L[X ′] ⊆ L′.

3.4 Connecting Syntax and Semantics

Bundle semantics of probabilistic modules.We associate with every proba-
bilistic module a probabilistic language, i.e., a set of bundles. The key concept for
doing this is the concept of a “scheduler,” which represents a possible sequence
of choices taken by the module. Each scheduler, then, gives rise to an infinite

Compositional Methods for Probabilistic Systems 361

bundle that can be represented by all its finite prefixes. We permit randomized
schedulers, which in each state can choose probability distributions over the en-
abled transitions. By contrast, a deterministic scheduler must choose exactly one
of the enabled transitions.

Definition 13. [Schedulers] Let X and Y be two sets of variables. A scheduler
σ from X to Y is a function that maps every X-trace to a probability distribution
on Y -states. The scheduler σ is nonprobabilistic if for all X-traces t, the support
of σ(t) is a single Y -state. If σ is a scheduler from X to X, then the 0-outcome
of σ is the empty bundle, and for all positive integers i > 0, the i-outcome of σ is
an inductively defined X-bundle bi of length i: the bundle bi is the extension of
the bundle bi−1 such that bi(t) = bi−1(t(1) · · · t(i−1)) · (σ(t(1) · · · t(i−1)))(t(i))
for all X-traces t of length i. We collect the set of i-outcomes of σ, for all i ≥ 0,
in the set Outcome(σ) of X-bundles.

Each scheduler for a module consists of a scheduler for the environment, which
chooses the initial and updated values for the external variables, together with
a scheduler for each atom, which chooses the initial and updated values for the
variables controlled by that atom.

Definition 14. [Schedulers for an atom] Consider a probabilistic X-atom A.
The set atomΣ(A) of atom schedulers for A contains all schedulers σ from
readX(A) to ctrX(A) such that (1) (·, σ(ε)) ∈ ConvexClosure(initF(A)), and
(2) (t(n), σ(t)) ∈ ConvexClosure(updateF(A)) for all nonempty readX(A)-traces
t of length n. A scheduler σ in atomΣ(A) is deterministic if (1) (·, σ(ε)) ∈
initF(A), and (2) (t(n), σ(t)) ∈ updateF(A) for all nonempty traces t of length n.
Let atomΣd(A) be the set of deterministic schedulers in atomΣ(A).

To compose the schedulers for several atoms, we define the product of schedulers.

Definition 15. [Product of schedulers] Two schedulers σ1 and σ2 are dis-
joint if σ1 is a scheduler from X1 to Y1, and σ2 is a scheduler from X2 to Y2,
and Y1 ∩ Y2 = ∅. If σ1 is a scheduler from X1 to Y1, and σ2 is a scheduler from
X2 to Y2, such that σ1 and σ2 are disjoint, then the product is the scheduler
σ1 × σ2 from X1 ∪X2 to Y1 ∪ Y2 such that (σ1 × σ2)(t) = σ1(t[X1])× σ2(t[X2])
for all (X1∪X2)-traces t. If σ1 and σ2 are two sets of schedulers such that every
scheduler in Σ1 is disjoint from every scheduler in Σ2, then Σ1×Σ2 = {σ1×σ2 |
σ1 ∈ Σ1 and σ2 ∈ Σ2}.
The environment scheduler can initialize and update the external variables in
arbitrary, interdependent ways.

Definition 16. [Schedulers for a module] Consider a probabilistic mod-
ule P . The set extlΣ(P) of environment schedulers for P contains all
schedulers from extlX(P) ∪ intfX(P) to extlX(P). Let extlΣd(P) be the
set of nonprobabilistic schedulers in extlΣ(P). The set modΣ(P) of mod-
ule schedulers for P contains the schedulers from X(P) to X(P) such that
modΣ(P) = extlΣ(P)×∏

A∈Atoms(P) atomΣ(A). Let modΣ
d(P) = extlΣd(P)×∏

A∈Atoms(P) atomΣ
d(A).

362 L. de Alfaro, T.A. Henzinger, and R. Jhala

We are finally ready to define the “trace semantics” of a probabilistic module.

Definition 17. [Semantics of a module] Given a probabilistic module P , we
define L(P) = {Outcome(σ) | σ ∈ modΣ(P)} and Ld(P) = {Outcome(σ) |
σ ∈ modΣd(P)}. The trace semantics of the probabilistic module P is [[P]] =
L(P)[extlX(P) ∪ intfX(P)]. The deterministic trace semantics of P is [[P]]d =
Ld(P)[extlX(P) ∪ intfX(P)].
It it not difficult to verify that the bundle semantics of a module is indeed
prefix-closed and extension-closed: if P is a probabilistic module, then [[P]] is
a probabilistic (extlX(P) ∪ intfX(P))-language. In general, [[P]]d ⊂ [[P]]. For
nonprobabilistic modules, the traditional trace semantics corresponds to bundle
semantics with only deterministic schedulers: according to [AH99], the trace
semantics of a reactive module P is [[P]]d.

Bundle interpretation of module operations. The hiding of variables in a
module corresponds to a projection on the bundle language of the module: it is
easy to check that for every probabilistic module P , and every set Y ⊆ intfX(P)
of interface variables, [[P\Y]] = [[P]][extlX(P)∪ intfX(P)\Y]. The composition of
two modules corresponds to a product on the respective bundle languages. This
observation, which is stated in the following proposition, will be instrumental
to the compositionality properties of probabilistic modules given in the next
section.

Theorem 1. If P1 and P2 are two probabilistic modules that can be composed,
then [[P1||P2]] = [[P1]]× [[P2]] = [[P1]] ∩ [[P2]].
Proof. By induction on the length of bundles, we show the following two obser-
vations, which rely heavily on the fact that schedulers have restricted visibility.
First, b ∈ L(P1‖P2) implies that b[X(P1)] ∈ L(P1) and b[X(P2)] ∈ L(P2).
Moreover, b = b[X(P1)]×b[X(P2)]. This in turn also means that every bundle
in [[P1‖P2]] can be “factored,” via projection, into bundles in [[P1]] and [[P2]]. Sec-
ond, for all bundles b1 ∈ L(P1) and b2 ∈ L(P2) such that b1[X(P1)∩X(P2)] =
b2[X(P1)∩X(P2)]), we have b1×b2 ∈ L(P1‖P2). These two observations com-
bine to give the first equality. The observation that X(P1) ∩X(P2) is the set of
observables of both P1 and P2, coupled with Lemma 1, gives the second equality.

The following example illustrates the need for restricting composition to modules
with identical sets of observable variables.

Example 4 Consider two modules P and Q defined as in Example 2, except
that the variables p and q are both interface variables, and thus observable. We
assume that each controlled variable of P and Q belongs to a different atom.
Under the scheduler σP , the behavior of P is a bundle bP consisting of the
two infinite traces (p : −1, x : 0, y : 0), (0, 0, 0), (0, 0, 0), . . . and (p : −1, x : 0, y :
0), (1, 0, 0), (1, 1, 1), . . . with probability 1

2 each (to be precise, there are infinitely
many bundles, each consisting of two finite traces, whose limit is bP , but in exam-
ples, we find it convenient to informally consider bundles of infinite traces). Sim-
ilarly, the behavior of Q under σQ is the bundle bQ that contains the two traces

Compositional Methods for Probabilistic Systems 363

(x : 0, y : 0, q :−1), (0, 0, 0), (0, 0, 0), . . . and (x : 0, y : 0, q :−1), (0, 0, 1), (1, 1, 1), . . .,
each with probability 1

2 (see Figure 1). The bundles bP and bQ can be multi-
plied, but their product bP×bQ is not a bundle of P‖Q. In fact, bP×bQ consists
of the two traces (p :−1, x : 0, y : 0, q :−1), (0, 0, 0, 0), (0, 0, 0, 0), . . . and (p :−1, x :
0, y : 0, q :−1), (1, 0, 0, 1), (1, 1, 1, 1), . . . On the other hand, since the values of p
and q are chosen independently, [[P‖Q]] consists of a single bundle bP‖Q, contain-
ing for each i, j ∈ {0, 1} the trace (p :−1, x :0, y :0, q :−1), (i, 0, 0, j), (i, i, j, j), . . .
with probability 1

4 . It follows that [[P]]× [[Q]] ⊃ [[P‖Q]].

4 Refinement between Probabilistic Modules

4.1 Definition of Probabilistic Refinement

The refinement relation between probabilistic modules is defined essentially as
bundle containment. Unlike in the nonprobabilistic case, however, we require an
additional constraint on the atom structure of the two modules, which ensures
that an implementation cannot exhibit more variable dependencies than a spec-
ification. In other words, all variables that are specified to be independent must
be implemented independently.

Definition 18. [Refinement between modules] Let P and P ′ be two prob-
abilistic modules. The module P structurally refines P ′, written P �S P ′, if
(1) intfX(P) ⊇ intfX(P ′) and extlX(P)∪ intfX(P) ⊇ extlX(P ′), (2) for all vari-
ables x1, x2 ∈ intfX(P ′), if there is an atom A ∈ Atoms(P) such that x1, x2 ∈
ctrX(A), then there is an atom A′ ∈ Atoms(P ′) such that x1, x2 ∈ ctrX(A′),
and (3) for all variables x ∈ intfX(P ′) and y ∈ intfX(P ′) ∪ extlX(P ′), if there
is an atom A ∈ Atoms(P) such that x ∈ ctrX(A) and y ∈ readX(A), then there
is an atom A′ ∈ Atoms(P ′) such that x ∈ ctrX(A′) and y ∈ readX(A′). The
module P (behaviorally) refines P ′, written P � P ′, if P �S P ′ and (4) [[P]] is
bundle-contained in [[P ′]].

It is easy to check that the refinement relation � it is a preorder. Further-
more, every probabilistic module refines its nonprobabilistic abstraction. The
nonprobabilistic abstraction of a probabilistic action F is the nonprobabilistic
action {(s, s′) | (s,m) ∈ F and s′ ∈ Support(m)}. The nonprobabilistic abstrac-
tion Nonprob(P) of a probabilistic module P is the nonprobabilistic module
that results from P by replacing all initial and update actions of P with their
nonprobabilistic abstractions. Then, P � Nonprob(P).

Refinement between nonprobabilistic modules, however, does not quite agree
with refinement between reactive modules, as defined in [AH99]. The reason
is that conditions (2) and (3) are absent from the definition of refinement for
reactive modules, which is purely behavioral (namely, trace containment). For
example, two atoms of a reactive module specification can be implemented by a
single atom. If atoms are viewed structurally, say, as blocks in a block diagram,
then such a refinement breaks component boundaries. This is brought to the
fore formally in the probabilistic case, where atoms carry meaning as bound-
aries between independent variables. We submit that it is the definition above,

364 L. de Alfaro, T.A. Henzinger, and R. Jhala

including the structural conditions (2) and (3), which is more sensible also in
the nonprobabilistic case of reactive modules. Once conditions (2) and (3) are
added to the refinement between reactive modules, then the probabilistic case is
a conservative extension: for nonprobabilistic modules P and P ′, we have P � P ′
iff P �S P ′ and (4d) [[P]]d is bundle-contained in [[P ′]]d.

4.2 Compositionality of Probabilistic Refinement

The following theorem summarizes the compositionality properties of the re-
finement relation between probabilistic modules. In particular, refinement is a
congruence with respect to all module operations, and the refinement between
composite modules can be decomposed using circular assume-guarantee reason-
ing.

Theorem 2. [Compositionality] The following statements are true, provided
all subexpressions are well-defined:

– P � P\Y .
– P � Y � P .
– P ||Q � P .
– If P � P ′, then P\Y � P ′\Y .
– If P � P ′, then P � Y � P ′ � Y .
– If P � P ′, then P ||Q � P ′||Q.
– If P ||Q′ � Q and Q||P ′ � Q′, then P ||P ′ � Q||Q′.
The last assertion is an assume-guarantee rule for probabilistic modules. Its
proof uses the following lemma, whose proof relies on Theorem 1. Essentially,
the lemma states that the observable part of a bundle of length i is obtained
from the observable part of its prefix of length i− 1, the environment scheduler
and the “observable” behaviour of the module scheduler, and the last may be
written as the product of the observable behaviours of the atom schedulers and
the environment scheduler. Given a scheduler σ fromX(P) to ctrX(P), anX(P)-
bundle b, and its projection b∗ = b[intfX(P) ∪ extlX(P)], define the observable
scheduler σ∗ w.r.t. b as the scheduler from intfX(P)∪extlX(P) to intfX(P) such
that for every (intfX(P) ∪ extlX(P))-trace s of length i− 1,

σ∗(s(1) · · · s(i− 1)) =
∑
t∗=s

bi−1(t(1) · · · t(i− 1))
b∗i−1(s(1) · · · s(i− 1))

· σ(t(1) · · · t(i− 1))[intfX(P)],

where t∗ = t[intfX(P) ∪ extlX(P)]. Recall that if P = P1‖P2 is defined, then
it must be that intfX(P) ∪ extlX(P) = intfX(P1) ∪ extlX(P1) = intfX(P2) ∪
extlX(P2).

Lemma 2. Let P = P1‖P2 be a probabilistic module, and let b ∈ L(P1‖P2) be
the outcome of a scheduler σ = σEnv × σP1 × σP2 with σEnv ∈ extlΣ(P) and
σPj ∈

∏
A∈Atoms(Pj) atomΣ(A) for j = 1, 2. For every (intfX(P) ∪ extlX(P))-

trace t of length i, we have b∗i (t) = b
∗
i−1(t(1) · · · t(i−1))·(σEnv×σ∗P1

×σ∗P2
)(t(i)),

where σ∗Pj is the observable scheduler w.r.t. b[X(Pj)] for j = 1, 2.

Compositional Methods for Probabilistic Systems 365

Using this lemma, the soundness of the assume-guarantee rule can be proved
in a fashion similar to that for nonprobabilistic systems like reactive modules
[AH99].

References

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in
System Design 15:7–48, 1999.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans. Pro-
gramming Languages and Systems, 17:507–534, 1995.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nonde-
terministic systems. In Foundations of Software Technology and Theoret-
ical Computer Science, volume 1026 of Lect. Notes in Comp. Sci., pages
499–513. Springer-Verlag, 1995.

[dA98] L. de Alfaro. Stochastic transition systems. In Concurrency Theory, vol-
ume 1466 of Lect. Notes in Comp. Sci., pages 423–438. Springer-Verlag,
1998.

[dAKN+00] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala.
Symbolic model checking of concurrent probabilistic processes using
MTBDDs and the Kronecker representation. In Tools and Algorithms for
the Construction and Analysis of Systems, volume 1785 of Lect. Notes in
Comp. Sci., pages 395–410. Springer-Verlag, 2000.

[Der70] C. Derman. Finite State Markovian Decision Processes. Academic Press,
1970.

[Dil89] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
independent Circuits. The MIT Press, 1989.

[JL91] B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic
processes. In Proc. Symp. Logic in Computer Science, pages 266–277.
IEEE Computer Society Press, 1991.

[Lam93] L. Lamport. Specifying concurrent program modules. ACM Trans.
Progamming Languages and Systems, 5:190–222, 1993.

[Lyn96] N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.
[MC81] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Trans.

Software Engineering, SE-7:417–426, 1981.
[McM97] K.L. McMillan. A compositional rule for hardware design refinement. In

Computer-Aided Verification, volume 1254 of Lect. Notes in Comp. Sci.,
pages 24–35. Springer-Verlag, 1997.

[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-
Time Systems. PhD thesis, MIT, 1995. Technical Report MIT/LCS/TR-
676.

[SL94] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic
processes. In Concurrency Theory, volume 836 of Lect. Notes in Comp.
Sci., pages 481–496. Springer-Verlag, 1994.

[Var85] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-
state systems. In Proc. Symp. Foundations of Computer Science, pages
327–338. IEEE Computer Society Press, 1985.

Towards an Efficient Algorithm for Unfolding
Petri Nets

Victor Khomenko and Maciej Koutny

Department of Computing Science, University of Newcastle
Newcastle upon Tyne NE1 7RU, U.K.

{Victor.Khomenko, Maciej.Koutny}@ncl.ac.uk

Abstract. Model checking based on the causal partial order semantics
of Petri nets is an approach widely applied to cope with the state
space explosion problem. One of the ways to exploit such a semantics
is to consider (finite prefixes of) net unfoldings, which contain enough
information to reason about the reachable markings of the original Petri
nets. In this paper, we propose several improvements to the existing
algorithms for generating finite complete prefixes of net unfoldings. Ex-
perimental results demonstrate that one can achieve significant speedups
when transition presets of a net being unfolded have overlapping parts.

Keywords: Model checking, Petri nets, unfolding, concurrency.

1 Introduction

A distinctive characteristic of reactive concurrent systems is that their sets of
local states have descriptions which are both short and manageable, and the
complexity of their behaviour comes from highly complicated interactions with
the external environment rather than from complicated data structures and ma-
nipulations thereon. One way of coping with this complexity problem is to use
formal methods and, especially, computer aided verification tools implementing
model checking [2] — a technique in which the verification of a system is carried
out using a finite representation of its state space. The main drawback of model
checking is that it suffers from the state space explosion problem. That is, even a
relatively small system specification can (and often does) yield a very large state
space. To help in coping with this, a number of techniques have been proposed,
which can roughly be classified as aiming at an implicit compact representation
of the full state space of a reactive concurrent system, or at an explicit genera-
tion of its reduced (though sufficient for a given verification task) representation.
Techniques aimed at reduced representation of state spaces are typically based
on the independence (commutativity) of some actions, often relying on the par-
tial order view of concurrent computation. Such a view is the basis for algorithms
employing McMillan’s (finite prefixes of) Petri net unfoldings ([7,14]), where the
entire state space of a system is represented implicitly, using an acyclic net to
represent relevant system’s actions and local states.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 366–380, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Towards an Efficient Algorithm for Unfolding Petri Nets 367

In view of the development of fast model checking algorithms employing un-
foldings ([10,11,12]), the problem of efficiently building them is becoming increas-
ingly important. Recently, [6,7,8] addressed this issue — considerably improving
the original McMillan’s technique — but we feel that the problem of generating
net unfoldings deserves further investigation. Though there are negative theoret-
ical results concerning this problem ([5,10]), in practice unfoldings can often be
built quite efficiently. [7] stated that the slowest part of their unfolding algorithm
was building possible extensions of the branching process being constructed (the
decision version of this problem is NP-complete, see [10]). To compute them, [6]
suggests to keep the concurrency relation and provides a method of maintaining
it. This approach is fast for simple systems, but soon deteriorates as the amount
of memory needed to store the concurrency relation may be quadratic in the
number of conditions in the already built part of the unfolding.
In this paper, we propose another method of computing possible extensions

and, although it is compatible with the concurrency relation approach, we de-
cided to abandon this data structure in order to be able to construct larger
prefixes. We show how to find new transition instances to be inserted in the
unfolding, not by trying the transitions one-by-one, but several at once, merging
the common parts of the work. Moreover, we provide some additional heuristics.
Experimental results demonstrate that one can achieve significant speedups if
the transitions of a safe Petri net being unfolded have overlapping parts. All
missing proofs can be found in [13].

2 Basic Notions

A net is a triple N df= (P, T, F) such that P and T are disjoint sets of respectively
places and transitions, and F ⊆ (P × T)∪ (T ×P) is a flow relation. A marking
of N is a multiset M of places, i.e. M : P → N = {0, 1, 2, . . .}. We adopt
the standard rules about drawing nets, viz. places are represented as circles,
transitions as boxes, the flow relation by arcs, and markings are shown by placing
tokens within circles. As usual, we will denote •z df= {y | (y, z) ∈ F} and z• df=
{y | (z, y) ∈ F}, for all z ∈ P ∪ T , and •Z df=

⋃
z∈Z

•z and Z• df=
⋃
z∈Z z

•, for all
Z ⊆ P ∪ T . We will assume that •t 	= ∅ 	= t•, for every t ∈ T .
A net system is a pair Σ df= (N,M0) comprising a finite net N = (P, T, F)

and an initial marking M0. A transition t ∈ T is enabled at a marking M if for
every p ∈ •t, M(p) ≥ 1. Such a transition can be executed, leading to a marking
M ′ df=M − •t+ t•. We denote this by M [t〉M ′. The set of reachable markings of
Σ is the smallest (w.r.t. set inclusion) set [M0〉 containing M0 and such that if
M ∈ [M0〉 and M [t〉M ′ (for some t ∈ T) then M ′ ∈ [M0〉. Σ is safe if for every
reachable marking M , M(P) ⊆ {0, 1}; and bounded if there is k ∈ N such that
M(P) ⊆ {0, . . . , k}, for every reachable marking M . Unless stated otherwise, we
will assume that a net system Σ to be unfolded is safe, and use PreMax to
denote the maximal size of transition preset in Σ.

Branching processes. Two nodes (places or transitions), y and y′, of a net
N = (P, T, F) are in conflict, denoted by y#y′, if there are distinct transitions

368 V. Khomenko and M. Koutny

t, t′ ∈ T such that •t∩ •t′ 	= ∅ and (t, y) and (t′, y′) are in the reflexive transitive
closure of the flow relation F , denoted by �. A node y is in self-conflict if y#y.
An occurrence net is a net ON df= (B,E,G) where B is a set of conditions

(places) and E is a set of events (transitions). It is assumed that: ON is acyclic
(i.e. � is a partial order); for every b ∈ B, |•b| ≤ 1; for every y ∈ B ∪E, ¬(y#y)
and there are finitely many y′ such that y′ ≺ y, where ≺ denotes the irreflexive
transitive closure of G. Min(ON) will denote the set of minimal elements of
B ∪ E with respect to �. The relation ≺ is the causality relation. Two nodes
are concurrent, denoted y co y′, if neither y#y′ nor y � y′ nor y′ � y. We also
denote by x co C, where C is a set of pairwise concurrent nodes, the fact that
a node x is concurrent to each node from C. Two events e and f are separated
if there is an event g such that e ≺ g ≺ f .
A homomorphism from an occurrence net ON to a net system Σ is a mapping

h : B ∪ E → P ∪ T such that: h(B) ⊆ P and h(E) ⊆ T ; for all e ∈ E, the
restriction of h to •e is a bijection between •e and •h(e); the restriction of h
to e• is a bijection between e• and h(e)•; the restriction of h to Min(ON) is
a bijection between Min(ON) and M0; and for all e, f ∈ E, if •e = •f and
h(e) = h(f) then e = f . If h(x) = y then we will often refer to x as y-labelled.
A branching process of Σ ([4]) is a quadruple π df= (B,E,G, h) such that

(B,E,G) is an occurrence net and h is a homomorphism from ON to Σ. A
branching process π′ = (B′, E′, G′, h′) of Σ is a prefix of a branching process
π = (B,E,G, h), denoted by π′ � π, if (B′, E′, G′) is a subnet of (B,E,G) such
that: if e ∈ E′ and (b, e) ∈ G or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G
then e ∈ E′; and h′ is the restriction of h to B′ ∪ E′. For each Σ there exists
a unique (up to isomorphism) maximal (w.r.t. �) branching process, called the
unfolding of Σ.
A configuration of an occurrence net ON is a set of events C such that for all

e, f ∈ C, ¬(e#f) and, for every e ∈ C, f ≺ e implies f ∈ C. The configuration
[e] df= {f | f � e} is called the local configuration of e ∈ E. A set of conditions B′
such that for all distinct b, b′ ∈ B′, b co b′, is called a co-set. A cut is a maximal
(w.r.t. set inclusion) co-set. Every marking reachable from Min(ON) is a cut.
Let C be a finite configuration of a branching process π. Then Cut(C) df=

(Min(ON) ∪ C•) \ •C is a cut; moreover, the multiset of places Mark(C) df=
h(Cut(C)) is a reachable marking of Σ. A marking M of Σ is represented in π
if the latter contains a finite configuration C such that M = Mark(C). Every
marking represented in π is reachable, and every reachable marking is repre-
sented in the unfolding of Σ.
A branching process π of Σ is complete if for every reachable marking M of

Σ: (i) M is represented in π; and (ii) for every transition t enabled by M , there
is a finite configuration C and an event e 	∈ C in π such that M = Mark(C),
h(e) = t and C ∪ {e} is a configuration. Although, in general, the unfolding of
a finite bounded net system Σ may be infinite, it is possible to truncate it and
obtain a finite complete prefix, UnfΣ . [15] proposes a technique for this, based on
choosing an appropriate set Ecut of cut-off events, beyond which the unfolding
is not generated. One can show ([7,9]) that it suffices to designate an event e
newly added during the construction of UnfΣ as a cut-off event, if the already

Towards an Efficient Algorithm for Unfolding Petri Nets 369

input : Σ = (N,M0) — a bounded net system
output : UnfΣ — a finite and complete prefix of Σ’s unfolding

UnfΣ ← the empty branching process
add instances of the places from M0 to UnfΣ
pe ← PotExt(UnfΣ)
cut off ← ∅
while pe �= ∅ do

choose e ∈ pe such that [e] ∈ min✁{[f] | f ∈ pe}
if [e] ∩ cut off = ∅
then
add e and new instances of the places from h(e)• to UnfΣ
pe ← PotExt(UnfΣ)
if e is a cut-off event of UnfΣ then cut off ← cut off ∪ {e}

else pe ← pe \ {e}

Fig. 1. The unfolding algorithm presented in [7].

built part of the prefix contains a corresponding configuration C without cut-
off events, such that Mark(C) = Mark([e]) and C ✁ [e], where ✁ is an adequate
order on the finite configurations of a branching process (see [7] for the definition
of ✁).
The unfolding algorithm presented in [7,8] is parameterised by an adequate

order ✁, and can be formulated as in figure 1. It is assumed that the function
PotExt finds the set of possible extensions of the already constructed part of
a prefix, which can be defined in the following way (see [7]).

Definition 1. Let π be a branching process of a net system Σ. A possible ex-
tension of π is a pair (t,D), where D is a co-set in π and t is a transition of Σ,
such that h(D) = •t and π contains no t-labelled event with the preset D.

For simplicity, in figure 1 and later in this paper, we do not distinguish between
a possible extension (t,D) and a (virtual) t-labelled event e with the preset D,
provided that this does not create an ambiguity.
The efficiency of the algorithm in figure 1 heavily depends on a good adequate

order ✁, allowing early detection of cut-off events. It is advantageous to choose
‘dense’ (ideally, total) orders. [7,8] propose such an order for safe net systems,
and show that if a total order is used, then the number of the non-cut-off events
in the resulting prefix will never exceed the number of reachable markings in the
original net system (though usually it is much smaller). Using a total order allows
one to simplify some parts of the unfolding algorithm in figure 1, e.g., testing
whether an event is a cut-off event can be reduced to a single look-up in a hash
table if only local corresponding configurations are allowed (using non-local ones
can be very time consuming, see [9]).

370 V. Khomenko and M. Koutny

3 Finding Possible Extensions

Almost all the steps of the unfolding algorithm in figure 1 can be implemented
quite efficiently. The only hard part is to calculate the set of possible extensions,
PotExt(UnfΣ), and we will make it the focus of our attention. As the decision
version of the problem is NP-complete in the size of the already built part of the
prefix ([10]), it is unlikely that we can achieve substantial improvements in the
worst case for a single call to the PotExt procedure. However, the following
approaches can still be attempted: (i) using heuristics to reduce the cost of a
single call; and (ii) merging the common parts of the work performed to insert
individual instances of transitions. An excellent example of a method aimed at
reducing the amount of work is the improvement, proposed in [7], where a total
order on configurations is used to reduce both the size of the constructed com-
plete prefix and the number of calls to PotExt. Another method is outlined
in [6,15], where the algorithm does not have to recompute all the possible exten-
sions in each step: it suffices to update the set of possible extensions left from
the previous call, by adding events consuming conditions from e•, where e is the
last inserted event.

Definition 2. Let π be a branching process of a net system Σ, and e be one of
its events. A possible extension (t,D) of π is a (π, e)-extension if e• ∩ D 	= ∅,
and e and (t,D) are not separated.

With this approach, the set pe in the algorithm in figure 1 can be seen as a
priority queue (with the events ordered according to the adequate order ✁ on
their local configurations) and implemented using, e.g., a binary heap. The call
to PotExt(UnfΣ) in the body of the main loop of the algorithm is replaced by
UpdatePotExt(pe,UnfΣ , e), which finds all (π, e)-extensions and inserts them
into the queue. Note that in the important special case of binary synchronisation,
when the size of transition preset is at most 2, say •t = {h(c), p} and c ∈ e•,
the problem becomes equivalent to finding the set {c′ ∈ h−1(p) | c′ co c},
which can be efficiently computed (the problem is vacuous when |•t| = 1). This
technique leads to a further simplification since now we never compute any
possible extension more then once, and so we do not have to add the cut-off
events (and their postsets) into the the prefix being built until the very end of
the algorithm. Hence, we can altogether avoid checking whether a configuration
contains a cut-off event.
We now observe that in definition 2, e and (t,D) are not separated events,

which basically suggests that any sufficient condition for being a pair of separated
events may help in reducing the computational cost involved in calculating the
set of (π, e)-extensions. In what follows, we identify two such cases.
In the pseudo-code given in [15], the conditions c ∈ e• are inserted into the

unfolding one by one, and the algorithm tries to insert new instances of transi-
tions from h(c)• with c in their presets. Such an approach can be improved as
the algorithm is sub-optimal in the case when a transition t can consume more
then one condition from e•. Indeed, t is considered for insertion after each con-
dition from e• it can consume has been added, and this may lead to a significant

Towards an Efficient Algorithm for Unfolding Petri Nets 371

overhead when the size of t’s preset is large. Therefore, it is better to insert
into the unfolding the whole post-set e• at once, and use the following simple
result, which essentially means that possible extensions being added consume as
many conditions from e• as possible (note that this results in an improvement
whenever there is a (π, e)-extension, which can consume more than one condition
produced by e).

Proposition 1. Let e and f be events in the unfolding of a safe net system such
that f ∈ (e•)• and h(e• ∩ •f) 	= h(e)• ∩ •h(f). Then e and f are separated.

Corollary 1. Let π be a branching process of a safe net system, e be an event
of π, and (t,D) be a (π, e)-extension. Then |e• ∩D| = |h(e)• ∩ •t|.

Another way of reducing the number of calls to PotExt is to ignore some
of the transitions from (u•)•, which the algorithm attempts to insert after a u-
labelled event e. For in a safe net system, if the preset •t of a transition t ∈ (u•)•
has non-empty intersection with •u \u•, then t cannot be executed immediately
after u. Therefore, in the unfolding procedure, an instance f of t cannot be
inserted immediately after a u-labelled event e (though f may actually consume
conditions produced by e, as shown in figure 2; note that in such a case e and f
are separated).

Proposition 2. Let e and f be events in the unfolding of a safe net system such
that f ∈ (e•)• and (•h(e) \ h(e)•) ∩ •h(f) 	= ∅. Then e and f are separated.

Corollary 2. Let π be a branching process of a safe net system, e be an event
of π, and (t,D) be a (π, e)-extension. Then (•h(e) \ h(e)•) ∩ •t = ∅.

In view of the above corollary, the algorithm may consider only transitions
from the set (h(e)•)• \ (•h(e)\h(e)•)• rather than (h(e)•)• as the candidates for
insertion after e.
The resulting algorithm for updating the set of possible extensions after

inserting an event e into the unfolding is fairly straightforward ([13]); moreover,
it is possible not to maintain the concurrency relation, as suggested in [6], by
rather to mark conditions which are not concurrent to a constructed part of a
transition preset as unusable, and to unmark them during the backtracking.

p u
e p

t

f

Fig. 2. A t-labelled event f cannot be inserted immediately after a u-labelled event e
if p ∈ (•u \ u•) ∩ •t �= ∅, even though it can consume a condition produced by e.

372 V. Khomenko and M. Koutny

Merging computation common to several calls. The presets of candidate
transitions for inserting after an event e often have overlapping parts besides the
places from h(e)•, and the algorithm may be looking for instances of the same
places in the unfolding several times. To avoid this, one may identify the common
parts of the presets, and treat them only once. The main idea is illustrated below.
Let e be the last event inserted into the prefix being built and h(e)• = {p}.

Moreover, let t1, t2, t3 and t4 be possible candidates for inserting after e such
that •t1 = {p, p1, p2, p3, p4}, •t2 = {p, p1, p2, p3}, •t3 = {p, p1, p2, p3, p5}, and
•t4 = {p, p2, p3, p4, p5}. The condition labelled by p in each case comes from the
postset of e. To insert ti, the algorithm has to find a co-set Ci such that e co Ci
and h(Ci) = •ti \ {p} (if there are several such co-sets, then several instances
of ti should be inserted). By gluing the common parts of the presets, one can
obtain a tree shown in figure 3(a), which can then be used to reduce the task of
finding the co-sets Ci. Formally, we proceed as follows.

Definition 3. Let u be a transition of a net system Σ and U = (u•)•\(•u\u•)•.
A preset tree of u, PTu, is a directed tree satisfying the following:

– Each vertex is labelled by a set of places, so that the root is labelled by ∅, and
the sets labelling the nodes of any directed path are pairwise disjoint.

– Each transition t ∈ U has an associated vertex v, such that the union of all
the place sets along the path from the root to v is equal to •t \ u• (different
transitions may have the same associated vertex).

– Each leaf is associated to at least one transition (unless the tree consists of
one vertex only).

The weight of PTu is defined as the sum of the weights of all the nodes, where
the weight of a node is the cardinality of the set of places labelling it.

Having built a preset tree, we can use the algorithm in figure 4 to update the
set of possible extensions, aiming at avoiding redundant work (sometimes there
are gains even when PreMax = 2 and no two transitions have the same preset,
see [13]). Note that we only need one preset tree PTu per transition u of the net
system, and it can be built during the preprocessing stage.

Building preset trees. Two problems which we now address are: (i) how to
evaluate the ‘quality’ of preset trees, and (ii) how to efficiently construct them.
If we use the ‘totally non-optimised’ preset tree shown in figure 3(b) instead of
that in figure 3(a) as an input to the algorithm in figure 4, it will work in a way
very similar to that of the standard algorithm trying the candidate transitions
one-by-one. However, gluing the common parts of the presets decreases both the
weight of the preset tree and the number of times the algorithm attempts to
find new conditions concurrent to the already constructed part of event presets.
This suggests that preset trees with small weight should be preferred. Such a
‘minimal weight’ criterion may be seen as rather rough, since it is hard to predict
during the preprocessing stage which preset tree will be better, as different ones
might be better for different instances of the same transition. Another problem

Towards an Efficient Algorithm for Unfolding Petri Nets 373

∅
{p2, p3}

t2

{p1}

t1
{p4}

t3
{p5}

t4
{p4, p5}

(a)
∅

t1
{p1..p4}

t2
{p1..p3}

t3
{p1..p3, p5}

t4
{p2..p5}

(b)

∅
{p1}

{p2..p10} {p11} {p12}
{p2..p10}

(c)
∅

{p1}

{p11} {p12}

{p2..p10}

{p1}

(d)

∅
{p2}

{p4} {p5}
{p1, p6}

{p3}

{p1} {p2}

(e)
∅

{p1}

{p3} {p6}

{p2}

{p3} {p4} {p5}

(f)

Fig. 3. An optimised (a) and non-optimised (b) preset trees of weight 7 and 15; (c) a
tree of weight 21, produced by the bottom-up algorithm with A1 = {p1, . . . , p10}, A2 =
{p2, . . . , p10}, A3 = {p1, p11}, and A4 = {p1, p12} (p1 was chosen on the first iteration of
the algorithm), and (d) a tree of weight 13, corresponding to the same sets; (e) a tree of
weight 8, produced by the top-down algorithm for the sets A1 = {p1, p3}, A2 = {p1, p6},
A3 = {p2, p3}, A4 = {p2, p4}, and A5 = {p2, p5} (the intersection {p3} = A1 ∩ A3 was
chosen on the first iteration), and (f) a tree of weight 7, corresponding to the same
sets.

procedure UpdatePotExt(pe,UnfΣ , e)
tree ← preset tree for h(e) /* pre-calculated */
C ← all conditions concurrent to e
Cover(C, tree, e, ∅)

procedure Cover(C, tree, e, preset)
for all transitions t labelling the root of tree do

pe ← pe ∪ {(t, (e• ∩ h−1(•t)) ∪ preset)}
for all sons tree ′ of tree do
R← places labelling the root of tree ′

for all co-sets CO ⊆ C such that h(CO) = R do
Cover({c ∈ C | c co CO}, tree ′, e, preset ∪ CO)

Fig. 4. An algorithm for updating the set of possible extensions.

is that the reduction of the weight of a preset tree leads to the creation of new
vertices and splitting of the sets of places among them, effectively decreasing
the weight of a single node. This may reduce the efficiency of the heuristics,
which potentially might be used for finding co-sets in the algorithm in figure 4.
But this drawback is usually more than compensated for by the speedup gained

374 V. Khomenko and M. Koutny

by merging the common parts of the work spent on finding co-sets forming the
presets of newly inserted events.
Since there may exist a whole family of minimal-weight preset trees for the

same transition, one could improve the criterion by taking into account the
remark about heuristics for resolving the non-deterministic choice, and prefer
minimal weight preset trees which also have the minimal number of nodes. Fur-
thermore, we could assign coefficients to the vertices, depending on the distance
from the root, the cardinality of the labelling sets of places, etc., and devise
more complex optimality criterion. However, this may get too complicated and
the process of building preset trees can easily become more time consuming then
the unfolding itself. And, even if a very complicated criterion is used, the time
spent on building a highly optimised preset tree can be wasted: the transition
may be dead, and the corresponding preset tree will never be used by the un-
folding algorithm. Therefore, in the actual implementation, we decided to adopt
the simple ‘minimal weight’ criterion and, in the view of the next result, it was
justifiable to implement a relatively fast greedy algorithm aiming at ‘acceptably
light’ preset trees.

Proposition 3. Building a minimal-weight preset tree is an NP-complete prob-
lem in the size of a Petri net, even if PreMax = 3.

Proof. The decision version of this problem is to determine whether there exists
a preset tree of the weight at most w, where w is given. It is in NP as the size
of a preset tree is polynomial in the size of a Petri net, and we can guess it and
check its weight in polynomial time.
The proof of NP-hardness is by reduction from the vertex cover problem.

Given an undirected graph G = (V,E), construct a Petri net as follows: take
V ∪{p} as the set of places, and for each edge {v1, v2} ∈ V take a transition with
{p, v1, v2} as its preset. Moreover, take another transition t with the postset {p}
(note that all the other transitions belong to (t•)•). There is a bijection between
minimal weight preset trees for t and minimal size vertex covers for G. Therefore,
the problem of deciding whether there is a preset tree of at most a given size is
NP-hard. ��
In figure 5, we outlined simple bottom-up and top-bottom algorithms for

constructing ‘light’ preset trees. In each case, the input is a set of sets of places
{A1, . . . , Ak} = {•t\u• | t ∈ U}∪{∅} and, as it is obvious how to assign vertices
to the transitions, we omit this part. Tree(v, {Tr1, . . . ,Tr l}) is a tree with the
root v and the sons Tr1, . . . ,Tr l, which are also trees, and ‘·’ stands for a set of
son trees if their identities are irrelevant.
The two algorithms do not necessarily give an optimal solution, but in most

cases the results are acceptable. We implemented both, to check which approach
performs better. The tests indicated that in most cases the resulting trees had
the same weight, but sometimes a bad choice on the first step(s) causes the
bottom-up approach to yield very poor results, as illustrated in figure 3(c,d).
The top-down algorithm appeared to be more stable, and only in rare cases (see
figure 3(e,f)) produced ‘heavier’ trees then the bottom-up one. Therefore, we
will focus our attention on its efficient implementation.

Towards an Efficient Algorithm for Unfolding Petri Nets 375

function BuildTree(S = {A1, ..., Ak}) / ∗ bottom− up ∗ /
root ← ⋂

A∈S A
S ← {A1 \ root , . . . , Ak \ root}
TS ← ∅
while

⋃
A∈S A �= ∅ do /* while there are non-empty sets */

choose p ∈ ⋃
A∈S A such that |{A ∈ S | p ∈ A}| is maximal

Tree(v, ts)← BuildTree({A \ {p} | A ∈ S ∧ p ∈ A})
TS ← TS ∪ {Tree(v ∪ {p}, ts)}
S ← {A ∈ S | p /∈ A}

return Tree(root ,TS)

function BuildTree({A1, ..., Ak}) / ∗ top− down ∗ /
TS ← {Tree(A1, ∅), . . . ,Tree(Ak, ∅)}
while |TS| > 1 do

choose Tree(A′, ·) ∈ TS and Tree(A′′, ·) in TS
such that A′ �= A′′ and |A′ ∩A′′| is maximal

I ← A′ ∩A′′

T⊂ ← {Tree(B \ I, ts) | Tree(B, ts) ∈ TS ∧ I ⊂ B}
T= ← ⋃{ts | Tree(I, ts) ∈ TS ∧ ts �= ∅}
TS ← TS \ {Tree(B, ·) ∈ TS | I ⊆ B}
TS ← TS ∪ {Tree(I, T⊂ ∪ T=)}

/* |TS | = 1 */
return the remaining tree Tr ∈ TS

Fig. 5. Two algorithms for building trees.

A sketch of a possible implementation of the top-down algorithm for building
preset trees is shown in figure 6. It computes all pairwise intersections of the sets
Ai before the main loop starts, and then maintain this data structure. On each
step, the algorithm chooses a set I of maximal cardinality from Intersec, and
updates the variables TS and Intersec in the following way: (i) it finds all the
supersets of I in TS , and removes them; (ii) it removes from Intersec all the
intersections corresponding to these sets; (iii) the intersections of I with the sets
remaining in TS are added into Intersec; and (iv) I is inserted into TS .

Proposition 4. The worst case time complexity of the top-down algorithm is
O(PreMax·k2· log k). It is also possible to implement it so that the average case
complexity is given by O(PreMax·k2) (see [13] for implementation details).

It is essential for the correctness of the algorithm that Intersec is a multiset,
and we have to handle duplicates in our data structure. It is better to implement
this by maintaining a counter for each set inserted into Intersec, rather then by
keeping several copies of the same set, since the multiplicity of simple sets (e.g.,
singletons or the empty set) can by very high. Moreover, if multiplicities are
calculated, we often can reduce the weights of produced trees. The idea is to
choose in figure 6 among the sets with maximal cardinality those which have
the maximal number of supersets in TS (note that this would improve the tree
in figure 3(e), forcing {p2} to be chosen on the first iteration). Such sets have

376 V. Khomenko and M. Koutny

function BuildTree({A1, ..., Ak})
TS ← {Tree(A1, ∅), . . . ,Tree(Ak, ∅)}
/* Intersec is a multiset of sets */
Intersec ← {A′ ∩A′′ | A′ �= A′′ ∧ Tree(A′, ·) ∈ TS ∧ Tree(A′′, ·) ∈ TS}
while |TS| > 1 do

choose I ∈ Intersec such that |I| is maximal
T⊂ ← {Tree(B \ I, ts) | Tree(B, ts) ∈ TS ∧ I ⊂ B}
T= ← ⋃{ts | Tree(I, ts) ∈ TS ∧ ts �= ∅}
for all Tree(A, ts) ∈ TS such that I ⊆ A do

TS ← TS \ {Tree(A, ts)}
for all Tree(B, ·) ∈ TS do

Intersec ← Intersec \ {A ∩B}
for all Tree(A, ·) ∈ TS do

Intersec ← Intersec ∪ {I ∩A}
TS ← TS ∪ {Tree(I, T⊂ ∪ T=)}

/* |TS | = 1 */
return the remaining tree Tr ∈ TS

Fig. 6. A top-down algorithm for building preset trees.

the highest multiplicity among the sets with the maximal cardinality. Indeed,
each time this choice is made by the algorithm, the values of TS and Intersec are
‘synchronised’ in the sense that Intersec contains all pairwise intersections of the
sets marking the roots of the trees from TS , with the proper multiplicities. Now,
let I ∈ Intersec be a set with the maximal cardinality, which has n supersets
in TS (note that n ≥ 2). The intersection of two sets can be equal to I only
if they both are supersets of I. Moreover, since there is no set in Intersec with
cardinality greater then |I|, the intersections of any two distinct supersets of
I from TS is exactly I. Hence the multiplicity of I is C2

n = n(n − 1)/2. This
function is strictly monotonic for all positive n, and so there is a monotonic
one-to-one correspondence between the multiplicities of sets with the maximal
cardinality from Intersec and the numbers of their supersets in TS . Thus, among
the sets of maximal cardinality, those having the maximal multiplicity have
the maximal number of supersets in TS . One can implement this improvement
without affecting the asymptotic running time given by proposition 4 ([13]).

4 Experimental Results

The results of our experiments are summarised in tables 1 and 2, where we
use time to indicate that the test had not stopped after 15 hours, and mem
to indicate that the test terminated because of memory overflow. They were
measured on a PC with PentiumTM III/500MHz processor and 128M RAM.
For comparison, the ERVunfold 4.5.1 tool, available from the Internet, was
used. The methods implemented in it are described in [6,7]; in particular, it
maintains the concurrency relation.

Towards an Efficient Algorithm for Unfolding Petri Nets 377

The meaning of the columns in the tables is as follows (from left to right):
the name of the problem; the number of places and transitions, and the aver-
age/maximal size of transition presets in the original net system; the number of
conditions, events and cut-off events in the complete prefix; the time spent by
the ERVunfold tool (in seconds); the time spent by our algorithm on building
the preset trees and unfolding the net; the ratio Wrat =Wopt/W , where Wopt is
the sum of the weights of the constructed preset trees, and W is the sum of the
weights of the ‘totally non-optimised’ preset trees as in figure 3(b). This ratio
may be used as a rough approximation of the effect of employing preset trees:
Wrat = 1 means that there is no optimisation. Note that when transition presets
are large enough, employing preset trees gives certain gains, even if this ratio is
close to 1 (see, e.g., the Dme(n) series).
We attempted (table 1) the popular set of benchmark examples, collected

by J.C. Corbett ([3]), K. McMillan, S. Melzer, S. Römer (this set was also used
in [6,9,10,12,16]), and available from K. Heljanko’s homepage.
The transitions in these examples usually have small sizes of presets (in fact,

they do not exceed 2 for most of the examples in table 1; the only example
in this set with a big maximal preset is Byz(4,1), but it in fact has only one
transition with the preset of size 30, and one transition with the the preset of
size 13; the sizes of the other transition presets in this net do not exceed 5).
Thus, the advantage of using preset trees is not substantial, and ERVunfold is
usually faster as it maintains the concurrency relation. But when the size of this
relation becomes greater then the amount of the available memory, ERVunfold
slows down because of page swapping (e.g., in Ftp(1), Gasnq(5), and Key(4)
examples). As for our algorithm, it is usually slower for these examples, but its
running time is acceptable. Moreover, sometimes it scales better (e.g., for the
Dme(n), Elev(n) and Mmgt(n) series).
In order to test the algorithms on nets with larger presets, we have built a set

of examples Rnd(m,n) in the following way. First, we createdm loops consisting
of n places and n transitions each; the first place of each loop was marked with
one token. Then 500 additional transitions were added to this skeleton, so that
each of them takes a token from a randomly chosen place in each loop and puts
it back on another randomly chosen place in the same loop (thus, the net has
m·n transitions with presets of size 1 and 500 transitions with presets of size
m). It is easy to see that the nets built in this way are safe. The experimental
results are shown in table 2.
To test a practical example with large transition presets, we looked at a

data intensive application (where processes being modelled compute functions
depending on many variables), namely the priority arbiter circuit described in [1].
We generated two series of examples: Spa(n) for n processes and linear priorities,
and Spa(m,n) for m groups and n processes in each group. The results are
summarised in table 2. Our algorithm scales better and is able to produce much
larger unfoldings. We expect that other areas, where Petri nets with large presets
are needed, will be identified (such nets may result from net transformations,
e.g. adding complementary places or converting bounded nets into safe ones, see
[8]). But even for nets with small transition presets our algorithm is quite quick,

378 V. Khomenko and M. Koutny

Table 1. Experimental results: nets with small transition presets.

Problem Net Unfolding Time, [s]
|S| |T | a/m |•t| |B| |E| |Ecut| ERV p-trees Unf Wrat

Bds(1) 53 59 1.88/2 12310 6330 3701 1.30 <0.01 3.87 0.53
Byz(1,4) 504 409 3.33/30 42276 14724 752 126 0.14 231 0.71
Ftp(1) 176 529 1.98/2 178085 89046 35197 time 0.16 2625 0.52
Q(1) 163 194 1.89/2 16123 8417 1188 8.69 0.03 39.43 0.81
Dme(7) 470 343 3.24/5 9542 2737 49 6.37 0.19 7.28 0.93
Dme(8) 537 392 3.24/5 13465 3896 64 14.12 0.09 16.08 0.92
Dme(9) 604 441 3.24/5 18316 5337 81 27.78 0.11 31.82 0.92
Dme(10) 671 490 3.24/5 24191 7090 100 51.67 0.13 58.14 0.92
Dme(11) 738 539 3.24/5 31186 9185 121 89.18 0.16 98.96 0.92
Dpd(4) 36 36 1.83/2 594 296 81 0.01 <0.01 0.02 0.71
Dpd(5) 45 45 1.82/2 1582 790 211 0.04 <0.01 0.16 0.71
Dpd(6) 54 54 1.81/2 3786 1892 499 0.22 <0.01 0.83 0.71
Dpd(7) 63 63 1.81/2 8630 4314 1129 1.16 <0.01 5.49 0.71
Dpfm(5) 27 41 1.98/2 67 31 20 0.00 0.01 <0.01 1.00
Dpfm(8) 87 321 2/2 426 209 162 0.01 0.08 0.01 1.00
Dpfm(11) 1047 5633 2/2 2433 1211 1012 0.05 89.35 0.74 1.00
Dph(5) 48 67 1.97/2 2712 1351 547 0.10 <0.01 0.36 1.00
Dph(6) 57 92 1.98/2 14590 7289 3407 2.16 <0.01 9.74 1.00
Dph(7) 66 121 1.98/2 74558 37272 19207 57.43 0.01 263 1.00
Elev(2) 146 299 1.95/2 1562 827 331 0.02 0.13 0.14 0.60
Elev(3) 327 783 1.97/2 7398 3895 1629 0.61 1.59 2.73 0.60
Elev(4) 736 1939 1.99/2 32354 16935 7337 16.15 25.57 68.43 0.61
Furn(1) 27 37 1.65/2 535 326 189 0.01 <0.01 0.02 0.50
Furn(2) 40 65 1.71/2 4573 2767 1750 0.19 <0.01 0.54 0.44
Furn(3) 53 99 1.75/2 30820 18563 12207 8.18 <0.01 29.10 0.41
Gasnq(3) 143 223 1.97/2 2409 1205 401 0.09 0.03 0.36 0.96
Gasnq(4) 258 465 1.98/2 15928 7965 2876 4.54 0.10 18.45 0.97
Gasnq(5) 428 841 1.99/2 100527 50265 18751 785 0.32 817 0.98
Gasq(2) 78 97 1.95/2 346 173 54 <0.01 <0.01 0.02 0.93
Gasq(3) 284 475 1.99/2 2593 1297 490 0.11 0.12 0.40 0.97
Gasq(4) 1428 2705 2/2 19864 9933 4060 7.93 7.91 29.70 0.99
Key(2) 94 92 1.97/2 1310 653 199 0.06 0.01 0.15 0.93
Key(3) 129 133 1.98/2 13941 6968 2911 2.51 0.03 10.48 0.94
Key(4) 164 174 1.98/2 135914 67954 32049 6247 0.06 864 0.94
Mmgt(2) 86 114 1.95/2 1280 645 260 0.03 0.03 0.08 0.64
Mmgt(3) 122 172 1.95/2 11575 5841 2529 1.75 0.07 6.09 0.64
Mmgt(4) 158 232 1.95/2 92940 46902 20957 188 0.14 504 0.64
Rw(6) 33 85 1.99/2 806 397 327 0.01 0.01 0.01 1.00
Rw(9) 48 181 1.99/2 9272 4627 4106 0.21 0.03 0.34 1.00
Rw(12) 63 313 2/2 98378 49177 45069 14.46 0.10 15.30 1.00
Sync(2) 72 88 1.89/3 3884 2091 474 0.29 <0.01 1.38 0.91
Sync(3) 106 270 2.21/4 28138 15401 5210 14.15 0.06 74.84 0.77

Towards an Efficient Algorithm for Unfolding Petri Nets 379

Table 2. Experimental results: nets with larger transition presets.

Problem Net Unfolding Time, [s]
|S| |T | a/m |•t| |B| |E| |Ecut| ERV p-trees Unf Wrat

Rnd(5,5) 25 525 4.81/5 55698 14029 11689 11.45 7.36 3.66 0.39
Rnd(5,6) 30 530 4.77/5 84451 21774 17269 31.43 8.68 12.21 0.44
Rnd(5,7) 35 535 4.74/5 144700 36019 28922 82.92 8.90 30.69 0.50
Rnd(5,8) 40 540 4.70/5 235600 56691 46559 196 8.79 62.96 0.54
Rnd(5,9) 45 545 4.67/5 304656 72895 59840 324 7.43 105 0.58
Rnd(5,10) 50 550 4.64/5 419946 98477 82279 554 9.07 160 0.60
Rnd(5,11) 55 555 4.60/5 573697 132344 112310 994 6.20 246 0.63
Rnd(5,12) 60 560 4.57/5 627303 145378 122465 1187 5.72 322 0.65
Rnd(5,13) 65 565 4.54/5 718762 166093 140147 1560 5.27 420 0.67
Rnd(5,14) 70 570 4.51/5 802907 185094 156417 1952 5.58 507 0.69
Rnd(5,15) 75 575 4.48/5 842181 195228 163722 6685 6.63 616 0.70
Rnd(5,16) 80 580 4.45/5 886158 206265 171957 time 7.10 717 0.71
Rnd(5,17) 85 585 4.42/5 987605 229284 191576 — 3.78 863 0.72
Rnd(5,18) 90 590 4.39/5 1025166 239069 198524 — 5.62 998 0.73
Rnd(10,2) 20 520 9.65/10 34884 7136 6125 12.46 7.34 1.14 0.25
Rnd(10,3) 30 530 9.49/10 1415681 153628 144548 1638 3.90 82 0.49
Rnd(10,4) 40 540 9.33/10 2344821 252320 237000 mem 3.51 207 0.59
Rnd(10,5) 50 550 9.18/10 2485903 271083 250600 — 7.90 331 0.64
Rnd(10,6) 60 560 9.04/10 2535070 280560 255010 — 11.32 485 0.67
Rnd(10,7) 70 570 8.89/10 2537646 285323 254767 — 11.91 663 0.70
Rnd(10,8) 80 580 8.76/10 2534970 289550 254000 — 14.84 872 0.72
Rnd(15,2) 30 530 14.21/15 1836868 135307 128358 mem 32.28 70.24 0.37
Rnd(15,3) 45 545 13.84/15 3750719 271074 255560 — 14.69 259 0.57
Rnd(15,4) 60 560 13.50/15 3787575 280560 257515 — 7.54 456 0.67
Rnd(15,5) 75 575 13.17/15 3795090 288075 257515 — 6.38 718 0.73
Rnd(20,2) 40 540 18.59/20 4744587 256197 245750 mem 46.71 176 0.43
Rnd(20,3) 60 560 17.96/20 5040080 280560 260020 — 16.36 427 0.61
Rnd(20,4) 80 580 17.38/20 5050100 290580 260020 — 9.03 771 0.71
Spa(4) 98 81 2.77/5 1048 421 96 0.04 0.01 0.07 0.72
Spa(5) 121 113 3.34/6 3594 1362 457 0.26 0.03 0.53 0.63
Spa(6) 144 161 4.20/7 13334 4860 2145 3.79 0.08 5.51 0.56
Spa(7) 167 241 5.38/8 52516 18712 9937 64.22 0.28 75.54 0.49
Spa(8) 190 385 6.82/9 216772 76181 45774 time 1.26 943 0.43
Spa(9) 213 657 8.35/10 920270 320582 209449 — 6.66 12571 0.38
Spa(2,1) 52 37 2.16/4 111 52 4 <0.01 <0.01 <0.01 0.87
Spa(2,2) 98 81 2.77/5 1206 476 110 0.04 0.01 0.10 0.72
Spa(2,3) 144 161 4.20/7 15690 5682 2512 5.53 0.08 8.28 0.56
Spa(2,4) 190 385 6.82/9 253219 88944 52826 time 1.29 1326 0.43
Spa(3,1) 75 57 2.40/4 324 141 19 0.01 <0.01 0.02 0.79
Spa(3,2) 144 161 4.20/7 15690 5682 2512 5.49 0.08 9.09 0.56
Spa(3,3) 213 657 8.35/10 1142214 398850 256600 time 6.67 20594 0.38
Spa(4,1) 98 81 2.77/5 1048 421 96 0.04 0.01 0.09 0.72
Spa(4,2) 190 385 6.82/9 253219 88944 52826 time 1.27 1326 0.43

380 V. Khomenko and M. Koutny

and may be used if the size of the finite prefix is expected to be large (note
that it was slower than ERVunfold for some of the examples because we did
not maintain the concurrency relation, trading speed for a possibility of building
large prefixes — in principle, maintaining concurrency relation is compatible
with all the described heuristics).

Future work. We plan to develop an effective parallel algorithm for construct-
ing large unfoldings. Another promising direction is to consider non-local corre-
spondent configurations proposed in [9].

Acknowledgements. Proposition 3 and its proof are due to P.Rossmanith.
We would like to thank A.Bystrov for his suggestion to consider dual-rail logics
circuits and help with modelling priority arbiters. We would also like to thank
J. Esparza, K.Heljanko, and the anonymous referees for helpful comments. The
first author was supported by an ORS Awards Scheme grant ORS/C20/4 and
by an EPSRC grant GR/M99293.

References

1. A.Bystrov, D. J.Kinniment and A.Yakovlev: Priority Arbiters. Proc. ASYNC
2000, IEEE Computer Society Press (2000) 128–137.

2. E.M.Clarke, E.A. Emerson and A.P. Sistla: Automatic Verification of Finite-state
Concurrent Systems Using Temporal Logic Specifications. ACM TOPLAS 8 (1986)
244–263.

3. J. C.Corbett: Evaluating Deadlock Detection Methods. Univ. of Hawaii at Manoa
(1994).

4. J. Engelfriet: Branching processes of Petri Nets. Acta Inf. 28 (1991) 575–591.
5. J. Esparza: Decidability and Complexity of Petri Net Problems — An Introduction.

Lectures on Petri Nets I: Basic Models Springer, LNCS 1491 (1998) 374–428.
6. J. Esparza and S.Römer: An Unfolding Algorithm for Synchronous Products of
Transition Systems. Proc. CONCUR’99, Springer, LNCS 1664 (1999) 2–20.

7. J. Esparza, S. Römer and W.Vogler: An Improvement of McMillan’s Unfolding
Algorithm. Proc. TACAS’96, Springer, LNCS 1055 (1996) 87–106.

8. J. Esparza, S. Römer and W.Vogler: An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design (2001) to appear.

9. K.Heljanko: Minimizing Finite Complete Prefixes. Proc. CS&P’99 (1999) 83–95.
10. K.Heljanko: Deadlock and Reachability Checking with Finite Complete Prefixes.
Report A56, Laboratory for Theoretical Computer Science, HUT, Espoo (1999).

11. K.Heljanko: Using Logic Programs with Stable Model Semantics to Solve Deadlock
and Reachability Problems for 1-Safe Petri Nets. Fund. Inf. 37 (1999) 247–268.

12. V.Khomenko and M.Koutny: Verification of Bounded Petri Nets Using Integer
Programming. CS-TR-711, Dept. of Computing Science, Univ. of Newcastle (2000).

13. V.Khomenko and M.Koutny: An Efficient Algorithm for Unfolding Petri Nets.
CS-TR-726, Dept. of Computing Science, Univ. of Newcastle (2001).

14. K. L.McMillan: Using Unfoldings to Avoid State Explosion Problem in the Verifica-
tion of Asynchronous Circuits. Proc. CAV’92, Springer, LNCS 663 (1992) 164–174.

15. K. L.McMillan: Symbolic Model Checking. PhD thesis, CMU-CS-92-131 (1992).
16. S.Melzer and S.Römer: Deadlock Checking Using Net Unfoldings. Proc. CAV’97,
Springer, LNCS 1254 (1997) 352–363.

A Static Analysis Technique
for Graph Transformation Systems�

Paolo Baldan, Andrea Corradini, and Barbara König

Dipartimento di Informatica, Università di Pisa, Italia
{baldan,andrea,koenigb}@di.unipi.it

Abstract. In this paper we introduce a static analysis technique for
graph transformation systems. We present an algorithm which, given a
graph transformation system and a start graph, produces a finite struc-
ture consisting of a hypergraph decorated with transitions (Petri graph)
which can be seen as an approximation of the Winskel style unfolding
of the graph transformation system. The fact that any reachable graph
has an homomorphic image in the Petri graph and the additional causal
information provided by transitions allow us to prove several interest-
ing properties of the original system. As an application of the proposed
technique we show how it can be used to verify the absence of deadlocks
in an infinite-state Dining Philosophers system.

1 Introduction

Graphs are very useful to describe complex structures in a direct and intuitive
way. Graph Transformation Systems (GTSs) [18] add to the static description
given by graphs a further dimension which models graph evolution via the appli-
cation of rules, usually having local effects only. GTSs have been recognized to
have fruitful applications in various fields of Computer Science [5], and specifi-
cally in the modelling and specification of concurrent and distributed systems [6].

As a high-level specification formalism for concurrent systems, GTSs are
known to be more expressive than (Place/Transition) Petri nets, which can be
seen, indeed, as GTSs acting on discrete graphs only (i.e., multisets of tokens) [3].
However, even if the theory of GTSs is nowadays well developed and a number
of tools for the support of specifications based on this formalism have been
developed, GTSs are not yet used as widely as Petri nets. One reason for this
could be the lack of analysis techniques, which have been proven to be extremely
effective for Petri nets. Verification and validation techniques play an important
role during the design of the specification of a complex system, as they offer the
designer the possibility to raise confidence in the quality of the specification, for
example by allowing the early detection of logical errors.

While several static analysis techniques have been proposed for Petri nets,
ranging from the calculus of invariants [16] to model checking based on finite
� Research partially supported by the EC TMR Network GETGRATS, by the ESPRIT

Working Group APPLIGRAPH, and by the MURST project TOSCA.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 381–395, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

382 P. Baldan, A. Corradini, and B. König

complete prefixes [13],1 the rich literature on GTSs does not contain many con-
tributions to the static analysis of such systems (see [11,12]).

In this paper we present an original analysis technique for a class of (hy-
per)graph transformation systems, which, given a system and a start hyper-
graph, extracts from them an approximated unfolding, which is a finite structure
(called Petri graph) consisting of a hypergraph and of a P/T net over it. Both
the graphical and Petri net components of the approximated unfolding can be
used to analyze the original system. For example, we will show that every hyper-
graph reachable from the start graph can be mapped homomorphically to the
(graphical component of the) approximated unfolding. Therefore, if a property
over graphs is reflected by graph morphisms, then if it holds on the approxi-
mated unfolding it also holds on all reachable graphs. Among these properties
we mention the non-existence and non-adjacency of edges with specific labels, the
absence of certain paths (for checking security properties) or cycles (for checking
deadlock-freedom). Furthermore, the transitions of the Petri net component of
the approximated unfolding can be seen as (approximated) occurrences of rules
of the original graph transformation system, and indeed every reachable graph
of the GTS corresponds (in a sense formalized later) to a reachable marking
of the net. This allows one to prove other properties directly on the Petri net
component, including upper and lower bounds on the number of times an edge
with a certain label is present in a reachable graph and certain causal dependen-
cies among rule applications. Notice that in general the net component of the
approximated unfolding is neither safe nor acyclic; roughly one can say that, at
least for certain properties, the analysis of a graph transformation system can be
reduced to the analysis of a Petri net, which is a computationally less powerful
model and for which the existing analysis techniques can be used.

The construction of the approximated unfolding of a graph transformation
system is similar in spirit to the construction of the finite complete prefix [13] of
a net, but more complex. Both are based on the unfolding construction, which
in the case of nets [15] unwinds a Petri net into a branching occurrence net (a
particularly simple Petri net satisfying suitable acyclicity and conflict freeness
requirements), behaviourally equivalent to the original net. The unfolding cannot
be used “directly” for verification purposes, since it is usually infinite. In the case
of bounded nets, McMillan has observed in [13] that it is possible to truncate the
unfolding in such a way that the resulting finite structure, the finite complete
prefix, contains as much information as the unfolding itself, and can therefore be
used for checking efficiently behavioural properties ([8,9,19]).

The unfolding construction has been generalized to graph transformation
systems [17,2,1], and the technique we propose makes use of unfolding steps for
generating the (finite) approximated unfolding, but the analogy with the finite
prefix construction of nets ends here. In fact the GTSs we consider are not finite-
state in general, hence, we must abandon the idea of finding a complete finite
part of the unfolding, where every state reachable in the considered GTS has
an isomorphic image. Even if we relax the last requirement, by asking only that

1 We use the term “static analysis” in a quite wide meaning, as for example it is used
in the community of the Static Analysis Symposia.

A Static Analysis Technique for Graph Transformation Systems 383

every reachable state has an homomorphic image in the constructed unfolding,
since the states of the systems we consider are more structured (graphs versus
multisets), it is not possible to rudely truncate the unfolding construction: at
certain stages we have to merge parts of the unfolding already constructed.
Because of this merging, the resulting structure is not acyclic (unlike the finite
complete prefixes), and part of the information on the causality and concurrency
of the system is lost. For what concerns state reachability, every state reachable
in the original system is also reachable in the approximated unfolding, but we
loose the converse implication (which instead holds for the finite complete prefix).

Technically, the algorithm that computes the approximated unfolding of a
GTS is defined through two basic transformations, called unfolding and folding
operations, which are applied as long as possible to the (Petri graph representing
the) start graph of the system. Since both folding and unfolding are applied only
if certain conditions are satisfied, the algorithm can be shown to terminate, a fact
which guarantees that the resulting Petri graph is finite. Furthermore, although
the proposed algorithm is non-deterministic, a local confluence property of the
unfolding and folding transformations ensures that the approximated unfolding
of a GTS is uniquely determined.

The paper is organized as follows. In Section 2 we introduce the class of GTSs
on which our static analysis technique will be defined, as well as Petri graphs
and some basic operations on them. The algorithm computing the approximated
unfolding of a GTS is presented in Section 3, while Section 4 collects the main
results about the algorithm, namely its termination, its confluence, and the fact
that every reachable graph can be mapped to a reachable subgraph of the ap-
proximated unfolding. Section 5 illustrates the proposed method by applying
it to the classical dining philosophers, both in a finite- and in an infinite-state
variant. Section 6 concludes and hints at possible developments of the ideas
presented in the paper.

2 Hypergraph Rewriting, Petri Nets, and Petri Graphs

In this section we first introduce the class of (hyper)graph transformation sys-
tems considered in the paper. Then, after recalling some basic notions for Petri
nets, we will define Petri graphs, the structure combining hypergraphs and Petri
nets, which will be used to approximate the behaviour of GTSs.

2.1 Graph Transformation Systems

In the following, given a set A we denote by A∗ the set of finite strings of elements
of A. Furthermore, if f : A→ B is a function then we denote by f∗ : A∗ → B∗

its extension to strings. Throughout the paper Λ denotes a fixed set of labels and
each label l ∈ Λ is associated with an arity ar(l) ∈ N.

Definition 1 (hypergraph). A (Λ-)hypergraph G is a tuple (VG, EG, cG, lG),
where VG is a finite set of nodes, EG is a finite set of edges, cG : EG → VG

∗

is a connection function and lG : EG → Λ is the labelling function for edges
satisfying ar(lG(e)) = |cG(e)| for every e ∈ EG. Nodes are not labelled.

384 P. Baldan, A. Corradini, and B. König

A node v ∈ VG is called isolated if it is not connected to any edge, i.e. if
there are no edges e ∈ EG and u,w ∈ VG

∗ such that cG(e) = uvw.
Let G,G′ be (Λ-)hypergraphs. A hypergraph morphism ϕ : G → G′ consists

of a pair of total functions 〈ϕV : VG → VG′ , ϕE : EG → EG′〉 such that for
every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and ϕV

∗(cG(e)) = cG′(ϕE(e)).

In the sequel, when dealing with hypergraph morphisms we will often omit
the subscripts V and E when referring to the components of a morphism ϕ.

Definition 2 (rewriting rule). A rewriting rule r is a triple (L,R, α), where
L and R are hypergraphs, called left-hand side and right-hand side, respectively,
and α : VL → VR is an injective mapping.

A rule r = (L,R, α) is called basic if lL is injective, i.e., different edges in
the left-hand side L have different labels, no node in L is isolated and no node
in VR − α(VL) is isolated in R.

In the following we will consider only basic rules. This restriction is not strictly
needed, but makes the presentation simpler. For example, a morphism of a left-
hand side into a hypergraph is completely determined by the image of its edges.
Furthermore, to simplify the notation we will assume, without loss of generality,
that VL ⊆ VR, EL ∩ ER = ∅ and that the mapping α is the identity.

Intuitively, a rule r = (L,R, α) specifies that an occurrence of the left-hand
side L can be “replaced” by R, according to the following definition.

Definition 3 (hypergraph rewriting). Let r = (L,R, α) be a rewriting rule.
A match of r in a hypergraph G is any morphism ϕ : L → G. In this case
we write G ⇒r,ϕ H or simply G ⇒r H, where H is defined as follows: VH =
VG � (VR − VL), EH = (EG − ϕ(EL)) � ER, and if ϕ : VR → VH is the obvious
extension of ϕ then

cH(e) =
{

cG(e) if e ∈ EG − ϕ(EL)
ϕ∗(cR(e)) if e ∈ ER

, lH(e) =
{

lG(e) if e ∈ EG − ϕ(EL)
lR(e) if e ∈ ER

Given a graph transformation system (GTS), i.e., a finite set of rules R, we
write G ⇒R H if G ⇒r H for some r ∈ R. Furthermore we will denote the
transitive closure of ⇒R by ⇒∗R. A GTS with a start graph (R, GR) is called a
graph grammar.

The application of the rule r to G at the match ϕ first removes from G the image
of the edges of L. Then the graph G is extended by adding the new nodes in R
(i.e., the nodes in VR − VL) and the edges of R. Observe that the (images of)
the nodes in L are “preserved”, i.e., not affected by the rewriting step.

The reader which is familiar with the double-pushout (DPO) approach [4] to
graph rewriting would have recognized that our rules (L,R, α) can be seen as
DPO rules (L ←↩ VL

α
↪→ R) and that our notion of rewriting is equivalent to a

DPO construction. Hence compared to general DPO rules L
ϕL← K

ϕR→ R we have
that (i) K is discrete, i.e., it contains no edges, (ii) no two edges in the left-hand
side L have the same label, (iii) the morphism ϕL is surjective on nodes, (iv) VL
and VR − ϕR(VK) do not contain isolated nodes.

A Static Analysis Technique for Graph Transformation Systems 385

2.2 Petri Nets

In this subsection we fix some basic notation for Petri nets [16,14]. Given a set A
we will denote by A⊕ the free commutative monoid over A, whose elements will
be called multisets over A. Given a function f : A → B, by f⊕ : A⊕ → B⊕ we
denote its monoidal extension. On multisets m,m′ ∈ A⊕, we use some common
relations and operations, like inclusion, defined by m ≤ m′ when there exists
m′′ ∈ A⊕ such that m⊕m′′ = m′ and difference, which, in the same situation,
is defined by m′−m = m′′. Furthermore, for m ∈ A⊕ and a ∈ A we write a ∈ m
for a ≤ m. Often we will confuse a subset X ⊆ A with the multiset

⊕
x∈X x.

Definition 4 (Petri net). Let A be a finite set of action labels. An A-labelled
Petri net is a tuple N = (S, T, •(), ()•, p) where S is a set of places, T is a set of
transitions, •(), ()• : T → S⊕ assign to each transition its pre-set and post-set
and p : T → A assigns an action label to each transition.

The Petri net is called irredundant if there are no distinct transitions with
the same label and pre-set, i.e., if for any t, t′ ∈ T

p(t) = p(t′) ∧ •t = •t′ ⇒ t = t′. (1)

A marked Petri net is pair (N,mN), where N is a Petri net and mN ∈ S⊕

is the initial marking.

The irredundancy condition (1) requires that two distinct transitions differ
for the label or for the pre-set. This condition, in the case of branching processes,
allows one to interpret each transition as an occurrence of firing of a transition
in the original net, uniquely determined by its causal history (see [7]). Similarly,
here it aims at avoiding the presence of multiple events which are indistinguish-
able for what regards the behaviour of the system. Hereafter all the considered
Petri nets will be implicitly assumed irredundant, unless stated otherwise.

Definition 5 (causality relation). Let N be a (marked) Petri net. The causal-
ity relation <N over N is the least transitive relation such that, for any t ∈ T ,
s ∈ S, we have (i) s <N t if s ∈ •t and (ii) t <N s if s ∈ t•. For any x ∈ S ∪ T
we define its sets of causes �x� = {y ∈ S ∪ T | y <N x}.
Observe that, since we want to use Petri nets to represent the causality structure
of a system only in an approximated way, no assumptions are made concerning
the acyclicity of the net.

2.3 Petri Graphs

We next introduce the structure that we intend to use to approximate graph
transformation systems, the so-called Petri graphs, which consist of an hyper-
graph and of a Petri net whose places are the edges of the graph.

Definition 6 (Petri graph). Let R be a GTS. A Petri graph (over R) is a
tuple P = (G,N, µ) where G is a hypergraph, N = (EG, TN , •(), ()•, pN) is an
R-labelled Petri net where the places are the edges of G, and µ associates to

386 P. Baldan, A. Corradini, and B. König

each transition t ∈ TN , with pN (t) = (L,R, α), a hypergraph morphism µ(t) :
L ∪R→ G such that

•t = µ(t)⊕(EL) ∧ t• = µ(t)⊕(ER) (2)

A Petri graph for a graph grammar (R, GR) is a pair (P, ι) where P = (G,N, µ)
is a Petri graph for R and ι : GR → G is a graph morphism. The multiset
ι⊕(EGR) is called the initial marking of the Petri graph. A marking m ∈ EG

⊕

will be called reachable (coverable) in (P, ι) if it is reachable (coverable) in the
underlying Petri net.

Condition (2) requires that each transition in the net can be viewed as an “occur-
rence” of a rule in R. More precisely, if pN (t) = (L,R, α) and µ(t) : L ∪R→ G
is the morphism associated to the transition, then µ(t)|L : L → G must be a
match of the rule in G such that the image of the edges of L in G coincides with
the pre-set of t. Observe that, due to the assumption on the rules (no multiple
labels and no isolated node in the left-hand side) the morphism µ(t)|L (if it ex-
ists) is completely determined by •t. Then, the result of applying the rule to
the considered match must be already in graph G, and the corresponding edges
must coincide with the post-set of t. This is formalized by the condition over the
image through µ(t) of the edges of R (note that the set ER is seen as a multiset
and µ(t) as a multiset function to take care of multiplicities).

Every hypergraph G can be considered as a Petri graph [G] = (G,N, µ) for
R, by taking N as the net with SN = EG and no transitions. Similarly, GR can
be seen as Petri graph for (R, GR) by taking as ι : GR → GR the identity.

We now introduce a merging operation on Petri graphs which constructs the
quotient of a Petri graph through an equivalence induced by a suitable relation.

Definition 7 (consistent and closed relation on a Petri graph). Let
P = (G,N, µ) be a Petri graph and let (be a relation on VG ∪ EG ∪ TN
(assume the sets VG, EG, TN to be disjoint). We say that (is consistent when
(i) if x (x′ then x, x′ ∈ X for some X ∈ {VG, EG, TN}, (ii) for all e, e′ ∈ EG
if e (e′ then lG(e) = lG(e′) and (iii) for all t, t′ ∈ TN , if t (t′ then
pN (t) = pN (t′).

A consistent relation (over P is called closed if for all t, t′ ∈ TN , e, e′ ∈ EG

pN (t) = pN (t′) = (L,R, α) ∧ (∀e ∈ EL : µ(t)(e) (µ(t′)(e)) ⇒ t (t′ (3)
t (t′ ⇒ ∀e ∈ EL ∪ ER : µ(t)(e) (µ(t′)(e) (4)
e (e′ ∧ cG(e) = v1 . . . vm ∧ cG(e′) = v′1 . . . v′m ⇒ ∀1 ≤ i ≤ m : vi (v′i (5)

To ensure that the quotient of a Petri graph with respect to a relation is
well-defined and irredundant, the relation must be closed. Hence the simple
observation below is essential for defining the merging operation.
Fact. Given any consistent relation (over a Petri graph P there exists a least
equivalence relation ≈ including (and closed.

Definition 8 (Petri graph merging). Let P = (G,N, µ) be a Petri graph and
let (be a consistent relation over P . Then the merging of P w.r.t. (, denoted

A Static Analysis Technique for Graph Transformation Systems 387

by P//�, is the Petri graph (G′, N ′, µ′) defined as follows. Let ≈ be the least
equivalence relation extending (and closed in the sense of Definition 7. Then

G′ = (VG/≈, EG/≈, cG′ , lG′),

where cG′([e]≈) = [v1]≈ . . . [vn]≈ and lG′([e]≈) = lG(e) whenever e ∈ EG and
cG(e) = v1 . . . vn. Furthermore N ′ = (EG′ , TN/≈, •(), ()•, pN ′), where •[t]≈ =⊕

e∈ •t[e]≈, [t]≈
• =

⊕
e∈t• [e]≈ and pN ′([t]≈) = pN (t) whenever t ∈ TN . For

each t ∈ TN the morphism µ′([t]≈) is defined by µ([t]≈)(x) = [µ(t)(x)]≈ for any
graph item x in the rule pN (t).

Given a graph morphism h : H → G we will denote by h//� : H → G′ the
corresponding morphism, defined by h//�(x) = [h(x)]≈ for any x ∈ VH ∪ EH .

The merging operation can be extended to sets of Petri graphs. Let Pi =
(Gi, Ni, µi), with i ∈ {1, . . . , n}, be Petri graphs and assume that the sets VGi ,
EGi , TNi are pairwise disjoint. Then the componentwise union P = P1∪ . . .∪Pn
is a Petri graph. A relation (over P1, . . . , Pn is called consistent (closed) if it is
a consistent (closed) relation over P . Given a consistent relation over P1, . . . , Pn,
we define the merging {P1, . . . , Pn}//� = P//�.

3 Algorithm Computing the Approximated Unfolding

In this section we describe an algorithm which computes the approximated un-
folding of a graph grammar. Given a graph grammar, the algorithm produces a
finite Petri graph such that every graph reachable in the grammar corresponds,
in a sense formalized later, to a marking which is reachable in the Petri graph.

Let (R, GR) be a graph grammar. Its ordinary unfolding [17,2] is constructed
inductively beginning from the start graph and then applying at each step in
all possible ways the rules, without deleting the left-hand side, and recording
each occurrence of a rule and each new graph item generated in the rewriting
process. As a result one obtains an acyclic branching graph grammar describing
the behaviour of (R, GR). In particular every reachable graph embeds in (a
concurrent subgraph of) the graph produced by the unfolding construction.

The unfolding is usually infinite, also in the case of finite-state systems. Here,
to ensure that the our algorithm produces a finite structure, we consider—besides
the unfolding rule, which extends the graph by simulating the application of
a rule without deleting its left-hand side—a folding rule, which allows us to
“merge” two occurrences of the left-hand side of a rule whenever they are, in a
sense made precise later, one causally dependent on the other.

Definition 9 (folding operation). Let P = (G,N, µ) be a Petri graph for a
GTS R. Let r = (L,R, α) ∈ R be a rule and let ϕ′, ϕ : L → G be matches of r
in G. Let (be the relation over P defined as follows: for every e ∈ EL

ϕ′(e) (ϕ(e).

The folding of P at the matches ϕ′, ϕ is the Petri graph fold(P, r, ϕ′, ϕ) = P//�.
If (P, ι) is a Petri graph for a graph grammar (R, GR), in the same situation,
we define fold((P, ι), r, ϕ′, ϕ) = (P//�, ι//�).

388 P. Baldan, A. Corradini, and B. König

To introduce the unfolding operation, we first need to fix some notation. If t
is a transition and r = (L,R, α) is a rule we will write P (t, r) to denote the Petri
graph (L ∪ R,N, µ) where N = (EL∪R, {t}, •t = EL, t• = ER, pN (t) = r) and
µ(t) = idL∪R. Whenever we can find a match of rule r in a given Petri graph, the
unfolding operation extends the Petri graph by merging P (t, r) at the match.

Definition 10 (unfolding operation). Let P = (G,N, µ) be a Petri graph for
a GTS R. Let r = (L,R, α) ∈ R be a rule and let ϕ : L→ G be a match of r in
G. Let (be the relation over {P, P (t, r)} defined as follows: for every e ∈ EL

ϕ(e) (e.

The unfolding of P with rule r at match ϕ is the Petri graph unf(P, r, ϕ) =
{P, P (t, r)}//�. If (P, ι) is a Petri graph for a graph grammar (R, GR), in the
same situation, we define unf((P, ι), r, ϕ) = ({P, P (t, r)}//�, ι//�).

We can now describe the algorithm which produces the approximated un-
folding of a given graph grammar. The algorithm generates a sequence of Petri
graphs, beginning from the start graph and applying, non-deterministically, at
each step, a folding or unfolding operation, until none of such steps is admitted.

Definition 11 (approximated unfolding). Let (R, GR) be a graph grammar.
The algorithm generates a sequence (Pi, ιi)i∈N of Petri graphs as follows.

(Step 0) Initialize (P0, ι0) = ([GR], idGR).

(Step i + 1) Let (Pi, ιi), with Pi = (Gi, Ni, µi), be the Petri graph produced at
step i. Choose non-deterministically one of the following actions

. Folding: Find a rule r = (L,R, α) in R and two matches ϕ′, ϕ : L → Gi of r
such that

– ϕ⊕(EL) is a coverable marking in Pi;
– there exists a transition t ∈ TNi such that

pNi(t) = r ∧ •t = ϕ′⊕(EL) ∧ ∀e ∈ ϕ⊕(EL) : (e ∈ •t ∨ t <Ni e). (6)

Then set (Pi+1, ιi+1) = fold((Pi, ιi), r, ϕ′, ϕ).

. Unfolding: Find a rule r = (L,R, α) in R and a match ϕ : L→ Gi such that

– ϕ⊕(EL) is a coverable marking in Pi;
– there is no transition t ∈ TNi such that •t = ϕ⊕(EL) and pNi(t) = r;
– there is no other match ϕ′ : L→ Gi satisfying condition (6).

Then set (Pi+1, ιi+1) = unf((Pi, ιi), r, ϕ).

If no folding or unfolding step can be performed, the algorithm terminates.
The resulting Petri graph (Pi, ιi) is called the approximated unfolding of (R, GR)
and denoted by U(R, GR).

A Static Analysis Technique for Graph Transformation Systems 389

Condition (6) basically states that we can fold two matches of a rule r whenever
the first one has been already unfolded producing a transition t, and the second
match depends on the first one, in the sense that any edge in the second match
is already in the first one or causally depends on t. Roughly, the idea is that
we should not unfold a left-hand side again, if we have already done the same
unfolding step in its past, since this might lead to infinitely many steps. There are
some similarities, to be further investigated, with the work in [10] where the sets
of descendants and of normal forms of term rewriting systems are approximated
by constructing an approximation automaton.

The coverability of a marking can be decided by computing the coverability
tree of the net, as described in [16]. If this gets too costly, the condition of
coverability can be relaxed or checked in an approximated way, a choice which
does not compromise the result of correctness (see Proposition 12), but only
reduces the “precision” of the algorithm: it will generate a worse approximation,
where less properties of the given GTS can be proved.

4 Correctness, Termination, and Confluence of the
Algorithm

We show that the algorithm described in the previous section is correct, namely
that every reachable graph of a grammar is represented in the approximated
unfolding produced by the algorithm. Furthermore the algorithm is terminating
and confluent. Hence, by a classical result, its result is uniquely determined.

Correctness. We first show that the computed Petri graph is an appropriate
approximation of the given graph grammar, in the sense that for any graph
reachable in the graph grammar, there is a morphism into the approximated
unfolding such that the image of its edge set corresponds to a reachable marking.

Proposition 12. Let (R, GR) be a graph grammar and assume that the al-
gorithm computing the approximated unfolding terminates producing the Petri
graph U(R, GR) = ((U,N, µ), ι).

Then for every graph G with GR ⇒∗R G there exists a morphism ϕG : G→ U
and the marking ϕG

⊕(EG) is reachable in U(R, GR). Furthermore, if G⇒R G′

then ϕG
⊕(EG)

t→ ϕG′⊕(EG′) for a suitable transition t in U(R, GR).

Termination. The basic result towards the proof of termination shows that it
is not possible to perform infinitely many unfolding steps, without having the
folding condition satisfied at some stage. This property is independent of the
graph structure and can be proved by considering only the causality structure of
a Petri graph, as expressed by the underlying Petri net. More formally, we show
that in any infinite Petri net, satisfying suitable acyclicity and well-foundedness
requirement, there exists a pair of transitions t, t′ (called a folding pair) such that
the pre-set of t′ is dependent on t in the sense of Condition (6) in Definition 11.
Let us start formalizing the notion of folding pair.

390 P. Baldan, A. Corradini, and B. König

Definition 13. Let N = (S, T, •(), ()•, p) be a Petri net. A folding pair in N
is a pair of transitions t, t′ ∈ T such that t �= t′, p(t) = p(t′) and for all s ∈ •t′
either s ∈ •t or t <N s.

The next key lemma ensures that in any infinite net obtained by applying
only unfolding steps there exists a folding pair.

Lemma 14. Let N = (S, T, •(), ()•, p) be an infinite irredundant Petri net,
labelled over a finite set A, and satisfying the following conditions:

– for any x ∈ S ∪ T the set �x� (the causes of x) is finite;
– the set Min(N) = {s | �s� = ∅} is finite, i.e., only finitely many places have

an empty set of causes;
– the relation <N is acyclic;
– the pre-set •t of each transition is a set (rather than a proper multiset);
– for t, t′ ∈ T with p(t) = p(t′) it holds that | •t| = | •t′|.

Then net N contains a folding pair.

Proof (Sketch). The core of the proof shows that if Q ⊆ T is a set of transitions
with the same action label a, then either there is a folding pair in Q or we can
remove almost all elements of Q from N in a way that the resulting net remains
infinite, i.e., there exists a set Q′ ⊆ Q such that Q−Q′ is finite and and the net
obtained from N removing Q and all its causal consequences is infinite.

Then the result can be proved by induction on the number of labels that
occur infinitely often in N . ��

The above lemma ensures that in our algorithm a folding step will be even-
tually performed. We have yet to show termination of the algorithm.

Proposition 15. The algorithm computing the approximated unfolding (see
Definition 11) terminates for every graph grammar (R, GR).

Confluence. In order to prove that the algorithm produces a uniquely deter-
mined result, independently of the order in which folding and unfolding steps are
applied, we show that the rewriting relation on Petri graphs induced by folding
and unfolding steps is locally confluent. The following proposition only holds if
we consider irredundant Petri nets.

Proposition 16. Let us write (P, ι) ��� (P ′, ι′) whenever (P, ι) can be trans-
formed into (P ′′, ι′′) by either a folding or an unfolding step applied under the
corresponding condition (see the algorithm in Definition 11) and (P ′′, ι′′) is iso-
morphic to (P ′, ι′), i.e., equal up to injective renaming of the edges, nodes and
transitions.

Let (P, ι) ��� (Pi, ιi) for i ∈ {1, 2}. Then there is a Petri graph (P ′, ι′) such
that (Pi, ιi) ���∗ (P ′, ι′).

Since for a rewriting system local confluence and termination imply conflu-
ence we conclude the following result.

Proposition 17. For any input (R, GR) the algorithm computing the approxi-
mated unfolding terminates with a result U(R, GR) unique up to isomorphism.

A Static Analysis Technique for Graph Transformation Systems 391

F

Start Graph:

F

HL HR

HL

HR

WLF ⇒

WL EL⇒

F WR
Rules⇒

F WR ⇒

F⇒ HX X ∈ {L, R}

F

ER

FEX(HungryX)

(EatR)

(WaitR)

(EatL)

(WaitL)

Fig. 1. A graph grammar modelling the dining philosophers (finite-state version).

5 The Approximated Unfolding at Work: Checking
Absence of Deadlocks for Dining Philosophers

In order to illustrate our method, in this section we show how it can be applied
to a well-known example, the dining philosophers system, which is presented in
two versions, finite- and infinite-state.

Let us start with the classical finite-state version of the problem. Assume that
sitting at the table are a left-handed philosopher and a right-handed philosopher
with two forks between them. Our method is also applicable to instances of the
problem with a greater number of philosophers. The restriction to two philoso-
phers only avoids that the involved graphs become very large and hard to draw.

A philosopher, modelled by a binary edge, cycles through statesHX (hungry),
WX (waiting for the second fork), EX (eating) where X ∈ {L,R} depending on
whether the philosopher is left- or right-handed. The thinking state is omitted.
A fork is also represented by a binary edge labelled F . The system is described
by the set of rewriting rules and by the start graph depicted in Fig. 1. A rule
(L,R, α) is drawn in the form L⇒ R, where edges are depicted by square boxes
which are connected to a source node (the first node) and a target node (the
second node). The mapping α is indicated by dashed arrows.

The algorithm in Definition 11 produces the Petri graph (a) in Fig. 2. Tran-
sitions are depicted by small rectangles and the connection to their pre-sets and
post-sets is indicated by dashed arrows.

The algorithm terminates after six unfolding steps and four folding steps.
Two unfolding steps which apply rules (WaitL) and (EatL), respectively, to
edge HL with the corresponding forks, give rise to edge EL. Then a further
unfolding step using rule (HungryL) unfolds this edge into a graph consisting of
two edges labelled F and one edge labelled HL. But this graph consists of two

392 P. Baldan, A. Corradini, and B. König

F

F

HL HREL ER

WL WR

HL

HR

WL

EL

F

ER

WR

(a) (b)

Fig. 2. Approximated unfoldings as Petri graphs: (a) dining philosophers, finite-state
version; (b) dining philosophers, infinite-state version.

left-hand sides of previously applied rules and the edges are causally dependent
on the corresponding transitions. Hence two folding steps can be applied, that
merge the three edges (F , HL and F) of the newly unfolded graph with the
original edges from which they were derived. A symmetric reasoning applies for
edge HR.

We would like to prove that no deadlocks can occur in the system. First
observe that any reachable graph is a cycle and, since an eating philosopher
can always be reduced, a deadlocked state is necessarily a cycle including only
hungry and waiting philosophers, where no forks are to the left of a left-handed
hungry or a right-handed waiting philosopher and no forks are to the right of
a right-handed hungry and a left-handed waiting philosopher. The absence of
cycles is a property reflected by graph morphisms. Thus we can try to verify the
absence of deadlocked states by analyzing cycles in the hypergraph associated to
the approximated unfolding. To this aim we consider such graph as a finite-state
automaton over the alphabet Σ = {F,HX ,WX , EX | X ∈ {L,R}}—with nodes
as states and edges as transitions—and declare one of the four nodes as the
initial and final state, thereby obtaining the languages Lnw (northwest node),
Lne (northeast node), Lsw (southwest node), Lse (southeast node). In this way
we obtain all possible cycles of forks and philosophers as a regular language.
By declaring, e.g., the northeast node as initial and final node we obtain the
following language:

Lne = (((FHL +WL)(ERHL)∗F + EL)(WRHL(ERHL)∗F)∗HR)∗.

An additional analysis of the Petri net would of course reveal that only a small
finite subset of Lne will ever occur, but here this is not needed for the analysis.

The language of all cycles allowing for the application of a rewrite rule is

Llhs = Σ∗ELΣ∗ +Σ∗ERΣ∗ +Σ∗FHLΣ∗ +HLΣ∗F +Σ∗HRFΣ∗ +

A Static Analysis Technique for Graph Transformation Systems 393

FΣ∗HR +Σ∗WLFΣ∗ + FΣ∗WL +Σ∗FWRΣ∗ +WRΣ∗F.

The language of all cycles which may occur but which do not allow the
application of any rewriting rule can be now computed as (Lnw ∪ Lne ∪ Lsw ∪
Lse) − Llhs = λ, i.e., the empty word. It is immediately clear that the circle
of philosophers will never disappear entirely and thus we can conclude that no
deadlocks will ever occur.

It is worth observing that if we forget about the graphical structure of the
Petri graph, considering only the underlying Petri net, then we obtain a clas-
sical Petri net model of the dining philosophers. Therefore, in this case, the
absence of deadlocks can be proved also by analyzing the Petri net underlying
the approximated unfolding with classical Petri net techniques.

Now, in order to make things more interesting, we extend the example to an
infinite-state system by adding a rule (RepX) which allows an eating philosopher
to reproduce, creating another hungry philosopher with an adjacent fork.

(RepX) X ∈ {L, R}EX FHX⇒EX

Observe that we can reuse the unfolding of the finite-state case and continue by
unfolding the edges ER and EL using the two new rules. A sequence of further
unfolding and folding steps causes the causes the two pairs of opposite nodes in
the square to collapse, ending up with Petri graph (b) in Fig. 2.

Again we would like to prove that no deadlocks can occur. By declaring the
left-hand node as initial and final state, we obtain the following language:

Lleft = (W ∗R((HL +HR)W ∗L(F + EL + ER))∗)∗

while using the right-hand node in the same role, we obtain the language:

Lright = (W ∗L((F + EL + ER)W ∗R(HL +HR))∗)∗.

The language of all cycles which may occur but which do not allow the applica-
tion of a rewriting rule can be now computed as (Lleft∪Lright)−Llhs = W ∗L+W ∗R.
Then, an analysis of the Petri net underlying the approximated unfolding reveals
that actually no marking which consists of tokens exclusively in WL or of tokens
exclusively in WR is reachable from the initial marking which consists of two
tokens on F and one token on HL and HR each. Hence the system will never
reach a deadlock.

Observe that in this case the analysis of the underlying Petri net by itself
is not sufficient. In fact the Petri net can deadlock: we start from the initial
marking and after the firing of two transitions we obtain a marking with one
token on WR and one token on WL, where no further firing is possible.

6 Conclusion

We have presented a static analysis technique for graph transformation systems
which produces a finite structure, called Petri graph, combining hypergraphs

394 P. Baldan, A. Corradini, and B. König

and Petri nets, which approximates the graphs which are reachable in the orig-
inal grammar. Such a structure can be used to check safety properties, like the
absence of deadlocks, in the original system.

An interesting question which has only been brushed in the paper, concerns
the techniques which should be used to extract information from a computed
Petri graph. It is certainly possible to reuse most of the well-established analysis
techniques developed for Petri nets in the literature, such as coverability trees.
However, as observed in the example, also the graphical structure underlying
a Petri graph might play an essential role when establishing a property of the
system. Since every graph reachable in the original grammar can be mapped to
the approximated unfolding through a graph morphism, all properties which are
reflected by graph morphisms can be checked on the approximated unfolding.
We are currently investigating a syntactical characterization of such a class of
properties. Other interesting issues are the use of methods from formal language
theory (as hinted at in the example) and of model checking techniques.

Another question is the following: what can we do when we fail to prove
a property? Obviously, it might still be the case that the considered property
holds of the system, but this fact cannot be derived from the approximated
unfolding where we have lost too much information by over-approximating. A
partial solution could be to refine the description of the system, by computing a
better approximation of the “complete” unfolding. This can be done by delaying
folding steps and unfolding the Petri graph a bit further, “freezing” some parts of
the approximated unfolding in order to avoid that a folding step leads to confuse
them with other parts. A sequence of subsequently better approximations should
converge to the whole, usually infinite, unfolding. In connection to this it would
be interesting to determine which kind of systems can be “approximated” in an
exact way—maybe by variations of the folding condition—one candidate being
certainly Petri nets.

It is our aim to extend the proposed analysis technique to more general forms
of graph rewriting, e.g., to the general double-pushout approach. In this case,
since also edges might be preserved by a rewriting rule, the Petri net underlying
a Petri graph cannot be simply an ordinary net, but it will be necessary to resort
to contextual nets as in [1].

Acknowledgements: We are grateful to Javier Esparza for his insightful sug-
gestions and to Alin Stefanescu and Stefan Schwoon who helped us with the
finite-automaton tool used to compute the languages in Section 5. We are also
grateful to anonymous referees for their valuable comments.

References

1. P. Baldan. Modelling concurrent computations: from contextual Petri nets to graph
grammars. PhD thesis, Department of Computer Science, University of Pisa, 2000.
Available as technical report n. TD-1/00.

2. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-
mantics for Graph Grammars. In W. Thomas, editor, Proceedings of FoSSaCS ’99,
volume 1578 of LNCS, pages 73–89. Springer Verlag, 1999.

A Static Analysis Technique for Graph Transformation Systems 395

3. A. Corradini. Concurrent Graph and Term Graph Rewriting. In U. Montanari
and V. Sassone, editors, Proceedings CONCUR’96, volume 1119 of LNCS, pages
438–464. Springer Verlag, 1996.

4. H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Proceedings of the 1st International Work-
shop on Graph-Grammars and Their Application to Computer Science and Biology,
volume 73 of LNCS, pages 1–69. Springer Verlag, 1979.

5. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages, and Tools. World Scientific, 1999.

6. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.3: Concurrency,
Parallellism, and Distribution. World Scientific, 1999.

7. J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–591,
1991.

8. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23(2–3):151–195, 1994.

9. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. In T. Margaria and B. Steffen, editors, Proc. of TACAS’96, volume
1055 of LNCS, pages 87–106. Springer-Verlag, 1966.

10. T. Genet. Decidable approximations of sets of descendants and sets of normal
forms. In T. Nipkow, editor, Proceedings 9th International Conference on Rewrit-
ing Techniques and Applications, volume 1379 of LNCS, pages 151–165. Springer
Verlag, 1998.

11. M. Koch. Integration of Graph Transformation and Temporal Logic for the Speci-
fication of Distributed Systems. PhD thesis, Technische Universität Berlin, 2000.

12. B. König. A general framework for types in graph rewriting. In Proc. of FST TCS
2000, volume 1974 of LNCS, pages 373–384. Springer-Verlag, 2000.

13. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
14. J. Meseguer and U. Montanari. Petri nets are monoids. Information and Compu-

tation, 88:105–155, 1990.
15. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoretical Computer Science, 13:85–108, 1981.
16. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer Verlag, 1985.
17. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.

PhD thesis, Technische Universität Berlin, 1996.
18. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation, Volume 1: Foundations. World Scientific, 1997.
19. W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with

read arcs. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages 501–516.
Springer-Verlag, 1998.

Local First Search –
A New Paradigm for Partial Order Reductions

Peter Niebert1, Michaela Huhn2, Sarah Zennou1, and Denis Lugiez1

1 Laboratoire d’Informatique de Marseille
Université de Provence – CMI

39, rue Joliot-Curie / F-13453 Marseille Cedex 13
{niebert,zennou,lugiez}@cmi.univ-mrs.fr

2 Institut für Software, TU Braunschweig, Gausstr. 11,
D-38023 Braunschweig, M.Huhn@tu-bs.de

Abstract. Partial order reductions are an approved heuristic method
to cope with the state explosion problem, i.e; the combinatory explosion
due to the interleaving representation of a parallel system. The partial
order reductions work by providing sufficient criteria for building only
a part of the full transition system on which the verification algorithms
still compute the correct result for verifying local properties.
In this work, we present a new reduction method with a completely
different justification and functioning: We show that under very realis-
tic assumptions, local properties can be verified considering paths only
corresponding to partial orders with very few maximal elements. Then
we use this observation to derive our local first search algorithm. Our
method can be understood as a hybrid between partial order reductions
and the McMillan unfolding approach.
Experiments justify the practicality of the method.

1 Introduction

Model checking as an automatic method for proving simple system properties
or finding witness executions of faulty systems suffers from the well known state
explosion problem [CG87]: Typically, the number of states explored by naive
algorithms is exponential in the size of the system description, so that often this
automatic approach is limited to very small systems. However, the explosion
of the number of states is typically due to a redundancy of the global state
oriented interleaving semantics that can be circumvented for certain cases by
heuristic methods, in particular: Computing with symbolic representations (e.g.
ROBDDs or timed automata); compositional and abstraction techniques; partial
order methods. The latter are aimed to reduce the state explosion which is due
to parallelism. In this class, there are two prominent approaches:

Partial order reduction techniques (see e.g. [Val89,Pel93]), which try to
exploit “diamond” properties to make savings in verification. They are based
on a notion of equivalent executions and aim to cut redundant branches (and
whole sub state spaces), where these cuts are justified by the existence of uncut

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 396–410, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Local First Search – A New Paradigm for Partial Order Reductions 397

equivalent branches. Partial order reduction techniques have been applied with
success notably to deadlock detection and model checking of certain (equivalence
robust) linear time temporal properties without next operator(LTL-X).

The difficulty about partial order reduction methods as in [Pel93] is that
for many systems it is too costly to compute optimal reductions (computing
optimal reductions is as hard as solving the reachability problem, PSPACE-
complete). Instead, sufficient criteria are used for correct reductions which in
practice sometimes lead to relatively small savings.

Unfolding based methods (see e.g. [McM92,ERV96]): Rather than par-
tially exploring an interleaving transition system, these methods directly con-
struct partial order representations of executions with sharing. Instead of com-
puting (successor) states, the unfolding approach is based on computing possible
event extensions: An event is an instance of a transition and it depends on one
or several immediate predecessor events. Using a notion of equivalence of events
(based on the state corresponding to the first possible occurrence of that event)
and an order among events, a complete finite prefix of the set of all events is
defined and can be computed.

The complete finite prefix is a uniquely defined object and often quite small
compared to the systems calculated by partial order reductions. However, the
prefix method also suffers from several problems: (1) the computation of event
extensions of the partially computed prefix is in general NP-complete in the
size of the constructed part and (2) the prefix contains no states or transitions,
just events with a precedence order, thus excluding the immediate application
of interleaving based verification algorithms.

Problem (1) can be partially circumvented for certain applications, notably
for the case of 1-safe Petri nets, where the pre-sets of transitions have small
bounds (2 or 3). The current implementations of the unfolding procedure rely
upon such restrictions.

Concerning problem (2), dedicated model checking algorithms for more in-
volved properties have been proposed, e.g. a simple fragment of CTL with oper-
ators AG and EF only [Esp94] and LTL-X [Wal98,EH00], and some event based
logics [HNW98]. Prefix based algorithms for such logics are much more involved
than their counterparts on transition systems and indeed some of the published
algorithms have turned out to contain subtle bugs or to be inefficient.

The origin of the present work was indeed an attempt to improve the effi-
ciency of some of these algorithms.

In this work, we develop a partial order verification method which can be
seen as a hybrid between classical partial order reduction methods unfolding
based methods: We propose to build indeed a reduced transition systems with
an orientation on the number of maximal events of corresponding partial order
executions, a heuristic from the unfolding approach. We base the reduction on
the two key observations of the experience with the unfolding approach: That its
success depends on relatively local communication (bounded presets, bounded
number of processes in synchronization) and that there are relatively few states
corresponding to partial order executions with just one maximal element.

Exploiting structural properties, we show that all partial order executions
with (for example) one maximal elements can be approximated adding one el-

398 P. Niebert et al.

ement after another in passing through intermediate partial order executions
with a number of maximal elements logarithmic in the number of parallel com-
ponents of the system only. It allows us to define a reduced transition system
which passes through relatively local states (with a bounded number of maximal
elements in the corresponding partial order). The proof of this structural prop-
erty is based on observations linked to the Strahler number of trees [Str52] which
are known in computer science in the context of optimal register allocation for
the evaluation of binary expressions [FRV79].

We exploit this observation in order to prune transitions violating the bound
in an extended transition system (which keeps track of additional information
about the maximal elements). The resulting systems we compute contain a su-
perset of states of the McMillan prefix, but with additional states and with a
transition relation between them. They thus allow to apply interleaving based
verification algorithms without further manipulation. Moreover, it is much eas-
ier to compute extensions in our approach and the total cost of construction is
linear in the size of the computed transition system. The price is obviously that
the computed structure can be much bigger than the prefix.

For reachability applications, instead of computing the system up to the
bound, a heuristic search method constructing states with few maximal elements
first is also proposed: Local first search. The idea behind the heuristic is that for
many real systems, the theoretical bound is never reached.

The paper is structured as follows: In Section 2 we introduce an abstract
model of parallel finite state systems in terms of Mazurkiewicz trace theory. In
particular, we formalize the notion of parallelism and bounded communication in
terms of a dependency relation of actions. In Section 3, we explore the structure
of partial order executions and prove the logarithmic bound (Theorem 1). In
Section 4, we show how the theoretical result of Section 3 can be used in model
checking (the reduction technique with heuristic improvements). In Section 5,
we report on current experimental results. Conclusions and future directions are
outlined in Section 6.

2 Parallel Finite State Systems

The reduction and search technique we propose in this paper applies to a wide
variety of system descriptions which involve parallelism. The idea is always that
the single components of the system are relatively small, but that their parallel
composition leads to a combinatoric explosion of states resulting from the prod-
uct of the local state spaces. In order to explain the concepts of our method, we
use a well known running example.

The dining philosophers. This example models processes communicating through
shared variables as follows: n philosophers sit around a table with n forks, and
each philosopher has a plate of spaghetti in front of him. Philosopher Pi either
thinks (state qti) or eats (state q

e
i). To eat, a philosopher takes the fork disposed

at his right-hand side (action ali) and the fork at his left-hand side (action ali). To
each fork i we associate a variable Fi indicating if it is free (Fi = 1) or not (Fi =

Local First Search – A New Paradigm for Partial Order Reductions 399

0). Once a philosopher has finished to eat, he puts back the right fork (action
bri) and the left fork (action bli). Left-handed (resp. right-handed) philosophers
always perform left (resp. right) actions first when ambidextrous philosophers
have no required order. We assume that fork i is the right fork for philosopher i
and fork i+1 is the left fork for philosopher i. Figure 1 describes the parallel com-
position of a ambidextrous philosopher with a right-handed philosopher. In this
system the communication is achieved by the means of the shared variables Fi.

F =1|F :=0

i
i

F =1|F :=0

i
i

F =1 | F :=0
i+1

i+1

F =1 | F :=0
i+1

i+1

a i

r

a i

r

a
i
l

a
i
l

F =0|F :=
1

i
i

b i
r F =0 | F :=1

i+1

i+1

b
i

l

F =0 | F :=1

i+1

i+1
b

i

l
F =0|F :=

1
i

i b i

r

a j
r

F =1|F :=0

i
i

b j
l

F =0 | F :=1

i+1

i+1

F =1 | F :=0

i+1

i+1

a
j

l

F =0|F :=1
i

i
b j

r

qri

qti

q
′l
i

qei

qli

q
′r
i

qtj

qrj

qej

Right-handed PhilosopherPjAmbidextrous philosopher Pi in parallel
with

‖

q
′r
j

Fig. 1. The dining philosophers

For instance an execution of the n-philosophers may give rise to the sequence
of actions al1a

r
3a
l
3a
r
1 . . . which we can describe as P1 takes its left fork, P3 takes

its right fork, P3 takes its left fork, P1 takes its right fork, . . . An equivalent
sequence corresponding to another interleaving is: ar3a

l
3a
l
1a
r
1 Both sequences

result from an execution where the first philosopher takes its forks and starts
to eat and the third one does the same concurrently. This shows that several
(many) interleaved sequences represent the same concurrent execution.

Finite transition systems.
Definition 1. Given a finite set of actions Σ, a finite state transition system
is a triple T = (S,→, s0) with S a finite set of states, s0 ∈ S the initial state,
→⊆ S ×Σ × S a transition relation.

From now on, we restrict our study to deterministic transition systems i.e.→
is a function from S×Σ to S. By introducing new action names, we can transform
a non-deterministic system into a deterministic one. This transformation doesn’t
modify the properties (mainly the reachability problem) we are interested in.

The language L(T) of execution sequences of a transition system T is the set
of words w = a1a2 . . . an of Σ∗ such that there exists states si ∈ S, i = 0, . . . , n
such that s0

a1→ s1
a1→ . . .

an→ sn.

400 P. Niebert et al.

A system of dining philosophers can be given a transition system semantics as
follows: The states are tuples of local states for each philosopher; Transitions are
the transitions of individual philosophers, just one at a time; Actions of taking
forks depend on whether the forks are available or not.

Transition systems and the dependence relation. Looking at the example of the
dining philosophers, one can see that some actions can be safely performed in
any order without compromising the reachability property: For instance if P1
performs al1 (take its left fork) then P2 performs ar2 (take its right fork) or if
they do it the reverse order by performing ar2 followed by al1, we still reach the
same state. This will be expressed by stating that al1 and ar2 are independent.

A dependence relation D on Σ is a symmetric reflexive relation on Σ. The
complement I = Σ ×Σ \D of a dependence relation is an (irreflexive and sym-
metric) relation called an independence relation. ≡I denotes the least congruence
on Σ∗ such that ab ≡D ba for all a, b ∈ Σ such that a I b (i.e. a �D b). The equiv-
alence classes [w]D of ≡D are called Mazurkiewicz traces [DR95] and the pair
(Σ,D) is called a partially commutative alphabet.

Definition 2. The (deterministic) transition system T respects the dependence
relation D iff

for every s
a→ s1

b→ s2 with a I b there exists a uniquely defined s′1 with
s

b→ s′1
a→ s2,

for every s
a→ s1 and s

b→ s′1 with a I b there exists s2 with s1
b→ s2 (and

consequently s′1
a→ s2).

For the philosophers, one can define a dependency relation as follows: All
actions belonging to one philosopher i (ali, a

r
i , a

e
i , . . .) are mutually dependent,

moreover actions concerning a fork between two philosophers (ari , a
l
i+1) are mu-

tually dependent.
Many examples of dependence relations in various modeling frameworks ex-

ist: In process algebras, dependency results from communication over shared
channels; in Petri nets, transitions sharing places in the presets or postsets may
be dependent.

In [Pel93], it is pointed out that dependency (in use for partial order re-
duction) need not have parallelism as only source. For instance, two operations
“X:=X+1” and “X:=X+2” do also satisfy the commutativity properties and
can hence be considered independent, although they touch the same variable.
In contrast, “X:=X+1” and “X:=X*2” will normally not satisfy the diamond
properties.

In the case of the ambidextrous philosopher, the two operations ali and ari
also commute.

Closure of the language of actions. Transition systems respecting a dependence
relation also satisfy a closure property under ≡D, more precisely if w ∈ L(T) and
v ≡D w then v ∈ L(T). This is the basis of model checking with representative
which reduces T = (S,→, s0) to some (simpler) T ′ = (S′,→′, s′0) such that each

Local First Search – A New Paradigm for Partial Order Reductions 401

class [w]D has a representative v in T ′. This approach relies on the preservation
of many interesting linear time and reachability properties under ≡D.
The character of a partially commutative alphabet. The following definition gives
a precise meaning to informal concepts like the degree of parallelism and of
communication in the framework of partially commutative alphabets.

Definition 3. Let D be a dependence relation on Σ,

– we say that (Σ,D) has parallel degree m if m is the maximal number of
pairwise independent elements of Σ,
(i.e. m = max{|A| | A ⊆ Σ and a, b ∈ A, a �= b =⇒ a I b})

– we say that the communication is n-bounded if n is the maximal number of
pairwise independent elements which all depend on the same element, i.e.
n = max{|B| | B ⊆ Σ and

∀b, b′ ∈ B, b �= b′ =⇒ b I b′ and
∃c ∈ Σ s.t. ∀b ∈ B, c D b}.

The pair (m,n) is called the character of (Σ,D).

The parallel degree of a system with n philosophers is n (for instance, all
actions of taking the left fork are mutually independent). Intuitively, all philoso-
phers could pick up their left fork simultaneously. The communication among the
philosophers is 2-bounded: For instance, the operations al1 and ar2 are mutually
independent, but they both depend on al2.

It is a generally observable fact that in many formalisms for concurrent sys-
tems the resulting models have a character (m,n) where n tends to be small
compared to m. For instance, many process algebras restrict communication to
pairs of dual send and receive actions, leading to a 2-bounded alphabet. The
dependency relations resulting from Petri-nets are bounded by the number of
presets and postsets of transitions, which are often very small compared to the
size of the entire net.

3 The Structure of Partial Order Executions

It is a well known fact of Mazurkiewicz trace theory [DR95] that there is a one-
to-one correspondence between equivalence classes [w]D defined by a dependence
relation D and classes of finite labeled partial-orders (E,≤, λ) such that
(1) For any e, f ∈ E with λ(e) D λ(f) we have e ≤ f or f ≤ e.
(2) ≤ is equal to the transitive closure of ≤ ∩{(e, f) | λ(e) D λ(f)}.
In principle, a word can be seen as a total order and the partial order corre-
sponding to an equivalence class [w]D has all equivalent words w′ ≡D w as
linearisations. These partial orders can thus be seen as an abstract representa-
tion of executions, where the fact that two elements are unordered means that
they could have occurred in any order (or in parallel).

In this section, we state some properties of partial order executions on the
basis of the character of the underlying partially commutative alphabet. These
properties will constitute the basis of our method for analyzing concurrent sys-
tems.

402 P. Niebert et al.

The character of a partial order. The immediate successor relation ≺ is defined
by e ≺ f iff e < f and ∀g, e ≤ g ≤ f =⇒ g = e or g = f . We say that f is an
immediate successor of e and that e is an immediate predecessor of f . We define
the character of (E,≤) in a way similar to the definition of the character of a
partially commutative alphabet.

Definition 4. Let (E,≤) be a partial finite order.
Let m be the maximal number of pairwise incomparable elements of (E,≤), i.e.
m = max{|A| | A ⊆ E∧∀e, f ∈ A . e ≤ f ⇒ e = f}. Let n denotes the maximal
number of immediate predecessors of an element of E, i.e. n = max{|A| | A ⊆
E ∧ ∃f ∈ E∀e ∈ A . e ≺ f}.
The pair (m,n) is called the character of (E,≤).

The following proposition relates execution sequences and partial orders via
their respective characters.

Proposition 1. Let (Σ,D) be a partially commutative alphabet of character
(m,n) and let (E,≤, λ) be a labeled partial order corresponding to an equivalence
class [w]D (i.e. (E,≤, λ) satisfies properties (1) and (2) from above).
Then (E,≤) has character (m′, n′) with m′ ≤ m and n′ ≤ n. Conversely,

there exists a word v ∈ Σ∗ such that the partial order corresponding to [v]D has
character (m,n).

Proof. Assume a set M ⊆ E with |M | > m. Supposing that for all e, f we
have λ(e) I λ(f) then this gives a set of |M | mutually independent letters, a
contradiction to the character of the partially commutative alphabet. Hence,
there exist e, f ∈ M , e �= f , such that λ(e) D λ(f). Hence, either e ≤ f or
f ≤ e and M is not an anti chain. Hence, the maximal anti chain in M has size
m′ ≤ m.

Assume now an element f and a set {e1, ..., en′} of distinct immediate pre-
decessors of f . Hence λ(ei) D λ(f) for all i, because e ≺ f implies λ(e) D λ(f).
The latter follows from the fact that a set of generators (via transitive closure) of
a partial order must contain the immediate predecessors (these cannot be gener-
ated) and the condition (2) onD respecting partial orders, the set of dependently
labelled ordered pairs is a set of generators.

Moreover, two immediate predecessors of some element in a partial order
cannot be ordered (hence are independently labeled). Hence, an element f and
a set of predecessors E as in Definition 4 immediately give rise to a letter a and
a set of letters B as required in Definition 3. It follows that n′ ≤ n.

For the converse direction (the existence of a word v with the partial order
corresponding to [v]D having character (m,n)) construct v = v1v2: Take v1 =
a1 . . . am for a maximally sized set of mutually independent letters {a1, . . . , am}
and v2 = b1 . . . bnc with B = {b1, . . . , bn} a maximally sized set of mutually
independent letters all depending of a letter c.

The main theorem. The character of a partial order can be used to enumerate
efficiently the partial order, as stated by the following theorem.

Local First Search – A New Paradigm for Partial Order Reductions 403

Theorem 1. Let (E,≤) be a finite, nonempty partial order of character (m,n).
Furthermore, let (E,≤) have k ≤ n maximal elements.
Then there exists an enumeration (e1, . . . , e|E|) of E = {e1, . . . , e|E|} such

that for every e, f ∈ E if e ≤ f then e occurs in the sequence before f and every
(E = {e1, . . . , ei},≤ ∩E × E) has at most 1 maximal element if n = 1, and at
most �(n− 1)logn(m) + 1� maximal elements if n > 1.

Proof. The proof is by induction on triples (|E|,m, k) in the lexicographical
order. The cases |E| = 1, m = 1 or k = 1 are obvious. As for the rest, we restrict
ourselves to the simpler case of n = 2 (and as consequence k = 2) in which the
formula simplifies to �log2(m)+ 1�, but which shows well the reasoning applied:
Let e1, e2 be the maximal elements of E and let Ei := E \ {e | ∃j �= i . e ≤ ej}.
Note that E1 and E2 are disjoint and moreover E1 ×E2 ∩ (≤ ∪ ≥) = ∅, that is,
elements of E1 and elements of E2 are mutually unordered. As a consequence,
the union of an antichain in E1 and an antichain in E2 is an antichain in E,
hence has ≤ m elements.
We can conclude that the maximal size antichains of either E1 or E2 have at
most m

2 elements. Let us say that this is the case for E2, i.e. (E2,≤ ∩Ei × Ei)
has character (m′, n′) with n′ ≤ n and m′ ≤ �m2 � and by induction we obtain
the bound �log2(m′) + 1� ≤ �log2(m) − 1 + 1� for the enumeration of E2. Also
by induction (on |E|), we obtain the bound �log2(m)+1� for the enumeration of
E \E2. If we assemble the two enumerations – first enumerating E \E2 and then
E2 – this gives us as bound the maximum for the two parts of the enumeration.
Note that while enumerating E2 we will always have e1 as additional maximal
element, leading to the bound �log2(m)− 1+ 1�+1 = �log2(m) + 1� as desired.

For the more general case of n > 2, a separation in to pairwise unordered
sets E1, . . . , En is necessary and the analysis inequations involving the logarithm
gets more complicated, whence the factor (n− 1) in the formula.

mne1 mne2 mnE2

mnE1

mnE \ E2

Fig. 2. A partial order with character (5, 2) and two maximal elements

404 P. Niebert et al.

Remark 1. There is a strong link between the reasoning bound calculated in
Theorem 1 and Strahler numbers of trees [Str52], that – while invented for the
classification of rivers – occur in many areas of computer science. For the case
of binary trees (forests), our bound corresponds to the bound of the maximal
Strahler number for any tree with less than m leaves (vertices). An application
similar to ours in reasoning concerns results on register requirements for the eval-
uation of binary (arithmetic) expressions [FRV79]: The requirement for registers
is limited by the Strahler number of the expression.

The difference in reasoning in our setting is that m is the limited maximal
size of anti chains, not the number of elements. The best way to see the link
between Theorem 1 with Strahler numbers is to consider the partitioning of E
into E \ E2 and E2 or into E \ E1 and E1 in the proof as a non-deterministic
recursive procedure of turning the partial order into a tree. The bound we search
is then a bound for the minimal Strahler number for any tree obtainable in this
way.

We remark that the bound �(n − 1) logn(m) + 1� is sharp1 by giving an
example where all enumerations require at least �(n− 1) logn(m) + 1� maximal
elements.

Example 1. Let T (n, p) be the complete n-ary tree of height p. It defines a partial
order of character (m = np, n) since the maximal anti-chain is the set of the np

leaves and each element but the leaves has n immediate successors. From now,
we say enumeration for an enumeration satisfying the conditions of Theorem 1.
Then any enumeration of this partial order requires at least (n−1)p+1 maximal
elements. The proof is by induction on p.

4 Application to Model Checking

In this section, we explain how the results of the previous section can be used
to obtain valid and efficient model checking techniques for parallel finite state
systems.

Local and distributed properties. We propose a reduction method aimed on two
applications: Reachability analysis and linear time model checking. In either
case, the method is made for local properties as introduced as follows.

Definition 5. Let T = (S,→, s0) be a deterministic transition system over Σ,
respecting a dependency relation D. For a given set P ⊆ S (called property),
the set of visible actions VP ⊆ Σ is the set of all labels a ∈ Σ such that there
exist s1, s2 ∈ S with (s1, a, s2) ∈→ and either s1 ∈ P and s2 /∈ P or s2 ∈ P and
s1 /∈ P . For a set P of properties, we define VP =

⋃{VP | P ∈ P}.
A set of properties P has parallel degree n iff (VP , D |VP×VP) has parallel

degree n. A set of properties is called local iff it has parallel degree 1.
1 this doesn’t imply that a better bound can’t be given for certain cases

Local First Search – A New Paradigm for Partial Order Reductions 405

The idea of visible actions [Pel93] is that of actions that may affect a property
of a set of properties of interest. The naming of local (sets of) properties is
due to the typical case of properties of one process in a network: These are
properties that depend only on the local state of the process in question, and this
state only changes by transitions involving this process, thus mutually dependent
transitions.
For the philosophers, typical local properties are: philosopher i is eating, the fork
between philosophers i and i+1 is free. It is easy to see that any two transitions
affecting any of these properties are mutually dependent. A typical property of
parallel degree 2 is philosopher 1 and philosopher 3 are eating. A clearly non-
local property is deadlock (the set of states without any transition), as can arise
for the philosophers all picking up the left fork simultaneously. It has parallel
degree n.

Proposition 2. For a D respecting transition system T = (S,→, s0), a property
P of parallel degree n is reachable (i.e. there exists a state s ∈ P reachable from
s0 iff there exists an execution sequence a1 . . . ak leading to a state s′ ∈ P)
such that the partial order corresponding to [a1 . . . ak]D has at most n maximal
elements, all of which are labelled with visible actions.

For the proof, consider a minimal partial order of actions leading to such a
property: It cannot contain a maximal element that is not a visible action!

Combining Proposition 2 with Theorem 1, we thus only have to construct
“all” partial order executions with a number of elements below the theoreti-
cal bound stated in the theorem. However, there infinitely many partial order
executions. In order to obtain a finite search space, we propose to take two con-
tradictory steps: First, we blow up the state space by augmenting the states
with additional (and potentially very costly) bookkeeping information, then we
apply reductions to this blown up state space. As we will show, the reduction
effect of the second step can over compensate the inflating effect of the first step
in some cases, leading on the whole to substantial reductions in comparison to
the original transition system.

Label tracking. We start with the following observation: For two execution se-
quences w1, w2 leading to the same state s and exposing the same set M ⊆ Σ of
labels of maximal elements in the corresponding partial orders, the same tran-
sitions (s, a, s′) are possible (since these only depend on s) and the sets M ′1 and
M ′2 of labels of maximal elements in the extended partial orders are the same:
h(a) is added and all elements in M ′i in dependence with h(a) are removed.
Instead of representing all of the (partial order) history of executions, it is thus
sufficient to keep track of the set of labels marking the maximal elements.

Definition 6 (maximal label tracking transition system). Let T = (S,→
, s0) be a D respecting transition system over Σ. Let furthermore (Γ,D′) be a
second partially commutative alphabet and h : Σ → Γ a homomorphism with
a D b iff h(a) D′ h(b). The maximal label tracking transition system (MLTTS)
ML(T, Γ) = (S′,→′, s′0) is a transition system defined as follows: S′ = S × 2Γ ;

406 P. Niebert et al.

s′0 = (s0, ∅); (s1,M1)
a→′ (s2,M2) iff s1

a→ s2 and M2 = {h(a)} ∪ {m ∈ M1 |
h(a) I ′ m}.
The interpretation of a property P of T on ML(T, Γ) is given by P ′ =

{(s,M) | s ∈ P}.
Often, ML(T, Γ) will have several copies of some state s of T with differ-

ent label sets M corresponding to different ways of reaching the same state
with structurally different partial order executions, thus there is a substantial
overhead in the ML(T, Γ). However, it is a practical observation that there are
typically few copies of the same state with very small sets2 M . More impor-
tantly, very often the number of states s occurring with very small sets M in the
accessible part of ML(T, Γ) is small compared to |S|, which explains the success
of McMillan’s unfolding approach.

Combining the results of the previous section with Proposition 2, we obtain:

Theorem 2. Let T = (S,→, s0) be a D respecting transition system over Σ,
ML(T, Γ) a corresponding MLTTS, and (Σ,D) having character (m,n). Let
furthermore P ⊆ S be a property of parallel degree ≤ n. Then P is reachable in
T iff its interpretation P ′ is reachable in ML(T, Γ) passing only by intermediate
states (s,M) with |M | ≤ �(n− 1)lognm+ 1�

Theorem 2 thus yields an easy to realize partial order reduction scheme, for
instance for reachability:

B := �(n− 1) lognm+ 1�;
Explore:=(s0, ∅); Visited :=∅;
repeat

choose (s,M) from Explore;
for each transition s

a→ s′

do
if s′ |= P then return(s′)
else M ′ := M \ {b | a D b} ∪ {a};

if |M ′| ≤ B and (s′,M ′) /∈Explore∪Visited
then add (s′,M ′) to Explore
fi

fi
od
remove (s,M) from Explore, add (s,M) to Visited ;

until Explore=∅

Heuristic improvement: Local first search. Theorems 1 and 2 give only theoreti-
cal bounds for the worst case. To prove that a certain property is not reachable,
the MLTTS has to be constructed up to this limit. However, if we are merely
interested in quickly finding a state satisfying the property, we can deduce a
heuristic from the bound: There exist paths with small label sets in the MLTTS
2 The use of labels in a set Γ rather than Σ also reduces the number of label sets.

Local First Search – A New Paradigm for Partial Order Reductions 407

leading to local properties. The algorithm above can be specialized to the Local
first search strategy as follows: choose (s,M) ∈ Explore with |M | minimal.
In practice, this strategy is realized in combination with a basic strategy such
as depth first search (insertion to and extraction from set Explore as stack op-
erations) or breadth first search (queue operations): For instance, a local then
depth first search strategy is obtained by organizing Explore by priority stacks,
one stack for each cardinality of label sets.

Further heuristic improvements of the algorithm are possible, for instance,
we can exploit the fact that for a pair of states (s,M1), (s,M2) such that M1 ⊆
M2 in the MLTTS, any sequence started from (s,M2) can be mimicked by a
corresponding sequence starting from (s,M1) preserving the label set inclusion.
In other words: (s,M2) need not be explored.

Beyond reachability. In principle, extensions of Proposition 2 and Theorem 2
are possible for a number of applications beyond reachability:

– Model checking for linear temporal properties without next-operator such
that the set of visible actions has a small parallel degree can be done on the
MLTTS with label sets satisfying the bound �(n− 1)lognm+2� (c.f. [Pel93,
Wal98]).

– Model checking of event based logics [Pen97,HNW98] can also be performed
on the MLTTS with bound �(n − 1)lognm + 2� (which then represents the
bound guaranteeing relative reachability among partial order executions with
one maximal element).

Due to practical problems indicated in the next section, such extensions are
currently of theoretical value only and will be explored in the future.

5 Experimentation

In order to practically evaluate the model checking approach shown in the previ-
ous section, we have built a first prototype implementation that allows to search
local properties in the MLTTS. The prototype is currently implemented in Ob-
jective CAML using mostly functional data structures (with the exception of
hash tables) and thus leaves great room for improved runtime efficiency. We
used it to measure reductions in terms of numbers of states and did not compare
execution times.

In particular, we wanted to explore whether synthetic benchmarks, on which
McMillan’s unfolding approach is known to work well, can be favorably handled
by our method: We thus consider the dining philosophers and an asynchronous
token buffer.
Both cases concern scalable examples with a parameter m (number of philoso-
phers, number of buffer cells) which is at the same time the parallel degree of
these systems and the sizes of their state spaces grow exponentially with m. Also
in both cases, the distributed alphabet is 2-bounded.

408 P. Niebert et al.

Asynchronous buffer
cells (m) 1 2 3 4 5 6 7 8 12 15 32

states with |M | = 1 0 3 6 10 15 21 28 36 78 120 528
explored states |M | ≤ 2 1 4 8 18 36 66 111 174 666 1371 14886
states without reduction 2 4 8 16 32 64 128 256 4096 32768 232

explored states |M | ≤ log2m+ 1 1 4 8 19 52 132 310 1116 35335 241906 –

Lefthanded philosophers
philosophers (m) 1 2 3 4 5 6 7 8 12 16

states with |M | = 1 1 6 21 44 75 114 161 216 516 944
explored states |M | ≤ 2 2 8 37 129 343 738 1363 2270 9758 25918
states without reduction 2 8 26 80 242 728 2186 6560 531440 316 − 1

explored states |M | ≤ log2m+ 1 2 8 37 202 1006 4195 13981 206421 – –

Fig. 3. Experimental results

The findings for these two examples can be summarized as follows:

– The number of states with one label in the MLTTS is growing moderately
(O(m2)) and corresponds approximatively to the number of events in the
McMillan unfolding.

– The number of states with two and three labels is still growing moderately
and in both cases all states with one label can be found with bound 2 instead
of log2m+ 1 (a practical finding, which we theoretically confirmed). Hence,
we have a reduction from exponential to cubic O(m3) for these synthetic
benchmarks. And the local first search heuristic is justified by finding that
the worst case bound is nowhere reached.

– With growing bound, the number of states in the MLTTS quickly explodes
and soon surpasses the number of states in the original transition system,
i.e. the overhead of label sets surpasses the reduction.
The explanation we see is that the number of reachable states with a bounded
number of labels quickly approaches the number of all states for the systems
we explored, while the overhead of incomparable label sets is rising.

It should be noted that classical partial order reductions give even better
results for the asynchronous token buffer (linear), but give much weaker reduc-
tions for the philosophers (exponential): This is due to the sensitivity of confu-
sion of partial order reductions. The asynchronous token buffer is choice free,
hence allows strong reduction, whereas for the philosophers, each operation of
one philosopher could potentially lead to a blocking of another philosopher, so
that typical heuristics for the computation of ample sets (see [Pel93]) basically
disallows reductions for pickup-operations. This leads to an exponential growth
in the set of explored states.

As an intermediate conclusion, local first search seems to be a very interesting
search strategy for local properties. However, for proving the non-reachability of
a property, which implies calculating the MLTTS up to the theoretical bound,
the method without further improvements cannot be recommended due to the
exploding overhead.

Local First Search – A New Paradigm for Partial Order Reductions 409

In the future, we will explore additional heuristics to combine with bound:
Currently, the search picks sets of concurrent transitions up to the bound in a
completely blind way and we believe that further structural insights into the
relation of partial orders and the structure of the alphabet can help for further
reduction.

6 Conclusions

We have introduced a new way of looking at partial order reductions, which is
inspired by the McMillan prefix construction. Apart of mathematical elegance
and simplicity, it has shown significant reductions for academic scalable examples
and it holds a good promise for practical applications.

The method is currently based on a logarithmic bound on the number of
maximal elements in partial order executions explored for verification. In a sense,
the idea of the reduction is to focus the search on local progress rather than
searching in all directions at once as is the case for the traditional interleaving
approach. We believe that this focusing can still be strengthened: Currently,
our method just uses the number of maximal elements as criterion based on a
bound linked to the distributed alphabet of the system. For instance, we will
explore whether further reductions can be achieved by taking the positions of
the maximal elements in dependency graph of the alphabet into account.

A drawback of our method is the need to introduce additional overhead into
the transition system first, before reductions can be applied. This can result in
systems that are bigger than the interleaved transition systems. However, there
are problem classes where it seems likely that the bookkeeping information does
not lead to multiple instances of the same state. For instance, applying local first
search to scheduling problems might add an interesting heuristic for reducing the
search space without a blowup in the inverse direction: Schedules can be modeled
as partial order executions and partial schedules as their prefixes. The idea would
be to explore partial schedules with few maximal tasks in unfinished jobs first. On
the other hand, the conflict structure of scheduling problems typically excludes
any reduction using classical partial order methods. We intend to explore the
potential of local first search in the scheduling context.

We believe that our approach also has a didactic benefit: It shows a link
between the unfolding method and interleaving systems and it gives a measure
explaining the enormous state space compression found in unfoldings.

Acknowledgements. We thank the following people for discussions on model
checking applications of McMillan’s Method, which have led to the direction we
took in this work: Frank Wallner, Javier Esparza and Rom Langeraak. The first
two authors wish to thank Volker Strehl (Univ. Erlangen) for an inspiring course
on average case complexity, where they first learned about Strahler numbers,
only to forget about them and to rediscover them at the center of their research
a decade later.

410 P. Niebert et al.

References

[CG87] E.M. Clarke and O. Grumberg, Avoiding the state explosion problem in
temporal logic model checking algorithms, Sixth Annual ACM Symposium
on Principles of Distributed Computing, 1987, pp. 294–303.

[DR95] V. Diekert and G. Rozenberg (eds.), The book of traces, World Scientific,
1995.

[EH00] J. Esparza and K. Heljanko, A new unfolding approach to LTL model check-
ing, ICALP, LNCS, vol. 1835, 2000, pp. 475–486.

[ERV96] J. Esparza, S. Römer, and W. Vogler, An improvement of McMillan’s un-
folding algorithm, TACAS (T. Margaria and B. Steffen, eds.), LNCS, vol.
1055, 1996, pp. 87–106.

[Esp94] J. Esparza, Model checking using net unfoldings, Science of Computer Pro-
gramming 23 (1994), 151–195.

[FRV79] P. Flajolet, J.C. Raoult, and J. Vuillemin, The number of registers re-
quired for evaluating arithmetic expressions, Theoretical Computer Science
9 (1979), 99–125.

[HNW98] M. Huhn, P. Niebert, and F. Wallner, Verification on local states, TACAS,
LNCS, Springer-Verlag, 1998.

[McM92] K.L. McMillan, Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits, Computer Aided Verification (CAV),
1992, pp. 164–174.

[Pel93] D. Peled, All from one, one for all: On model checking using representatives,
International Conference on Computer Aided Verification (CAV), LNCS,
vol. 697, 1993, pp. 409–423.

[Pen97] W. Penczek, Model checking for a subclass of event structures, TACAS (Ed.
Brinksma, ed.), LNCS, 1997.

[Str52] A.N. Strahler, Hypsometric (area-altitude) analysis of erosonal topology,
Bull. Geol. Soc. of America 63 (1952), 1117–1142.

[Val89] A. Valmari, Stubborn sets for reduced state space generation, 10th Interna-
tional Conference on Application and Theory of Petri Nets, vol. 2, 1989,
pp. 1–22.

[Wal98] F. Wallner,Model checkin LTL using net unfoldings, CAV, LNCS, vol. 1427,
1998, pp. 207–218.

Extending Memory Consistency of Finite
Prefixes to Infinite Computations�

Marcelo Glusman and Shmuel Katz

Department of Computer Science
The Technion, Haifa, Israel

{marce, katz}@cs.technion.ac.il

Abstract. Infinite computations are widely used to model arbitrarily
long computations of infinite-state systems. Certain properties have both
a finitary version, applying only to finite prefixes of computations, and
an infinitary version. It is tempting to verify these properties for finite
computations only, and then conclude that the infinitary version of the
property holds too. This generalization is sound for safety properties, but
to verify non-safety properties “by prefixes”, one must justify the gen-
eralization step. This paper studies how this can be done for sequential
consistency of shared memory protocols. In the related literature, this
generalization is sometimes done informally, if at all. We define, inde-
pendently of any specific shared memory algorithm, sufficient conditions
so that sequential consistency can be verified by finite prefixes. These
conditions are expected to be satisfied by any reasonable shared memory
system, regardless of the consistency model.

1 Introduction

Infinite computations are today a widely accepted formalism, which arises from
the modelling of systems that do not necessarily terminate. Non-termination of
reactive systems is not a fault, but rather a desired feature. Most real reactive
systems are expected to continue running correctly for as long as needed, and
to allow (constantly or at least frequently enough) the initiation of some sort of
orderly shutdown procedure. If we don’t concern ourselves with the shutdown
behavior, then we may choose to consider infinite computations. Certainly, if
a system can react correctly forever, it will also be able to do it for any finite
period of time.

However, we know that no reactive system will actually run forever – it will
eventually be stopped. Moreover, finite computations seem to be simpler objects
to reason about than infinite computations. We may use induction to prove prop-
erties for any finitely sized computation. We may define well-founded measures
based on the number of occurrences of certain events along a finite computation,
and use them to prove equivalence to other - possibly more convenient [5] - fi-
nite computations. Infinite computations are the limits of converging sequences
� This work was partially supported by the Fund for the Support of Research at the
Technion.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 411–425, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

412 M. Glusman and S. Katz

of finite computations. Not all properties proved for all the elements of such a
sequence will also hold for the limit. For example, if a given event occurs as the
last event of every finite computation that is part of a converging sequence, in
the limit this event might not occur at all (e.g.: the infinite sequence of finite
words {aib}, i ∈ N converges to the infinite word aω).

We may then ask ourselves - why should we specify and prove properties
about infinite computations at all? It should be enough to prove them for arbi-
trarily long finite computations. However, the conditions under which a property
verified for finite computations can be extended to infinite computations are nev-
ertheless of interest. First, the accepted abstract notion of liveness for reactive
systems is defined for infinite computations – given a liveness property, any fi-
nite computation can be extended into an infinite one satisfying it[13]. If we only
consider finite behaviors, then instead of specifying abstract liveness properties
we need to specify bounds to the time it should take the system to react. In-
stead of requiring that something should eventually happen, we should say that
it should happen within a specified bound if the system is allowed to run enough
time. Without infinite computations, the specification becomes less abstract.

Another reason to consider infinite computations is related to the significance
of proofs of non-safety properties, when the proofs are based on a property-
preserving equivalence between computations [5]. Consider a finite computation
in which an event creates a conflict with subsequent events. We may prove that
this computation is equivalent to another finite computation in which the prob-
lematic event appears at the end, where it has no subsequent events to conflict
with. Intuitively speaking, our proof would show how the system may “post-
pone” this event until the end, where it doesn’t conflict with other events. Of
course, this cannot be done in the infinite case, nor is it something that should
be done: if the system is supposed to work properly, it must be able to do so
without postponing anything until it is shut down. For the infinite computations
to be proved correct based on our proof for finite prefixes, this proof should not
rely on finiteness in such a way. The conditions we consider do not affect the
soundness of a proof that “every finite computation is correct”, but rather they
change completely the relevance of such a result.

A good example is provided by shared memory consistency conditions like
sequential consistency [11], where the equivalence to a particular computation
(e.g., one displaying a serial memory’s behavior) is the essence of the prop-
erty itself. Requiring equivalence to a serial behavior for every finite prefix of a
computation (where the local history for any processor is the same in any two
equivalent behaviors) seems natural, but is not enough. As we will show, it is
possible for a clearly faulty memory system to display an infinite behavior which
is not equivalent to any serial memory behavior, while every one of its prefixes
has an equivalent serial behavior. Therefore, in this paper we propose a set of
conditions and we prove that they are sufficient to conclude sequential consis-
tency for all infinite behaviors, if all their finite prefixes are proved sequentially
consistent. Intuitively, these conditions should hold for every memory system

Extending Memory Consistency of Finite Prefixes to Infinite Computations 413

satisfying a minimal connectedness requirement, and with a reasonable level of
independence between write/read operations done to different locations.

In Section 2 we discuss the level of abstraction appropriate for our purposes.
In Section 3 we define verification by prefixes, prove formally that Sequential
Consistency is not a safety property and describe our approach for verifying it
by prefixes. Some general modelling assumptions are presented and justified in
Section 4, and in Section 5 an abstract condition is proved sufficient for extending
sequential consistency of finite prefixes to infinite behaviors. Section 6 shows how
to prove that this abstract sufficient condition holds for a real system. Finally, in
Section 7 we show three examples and in Section 8 we consider how to apply the
same method if we relax one of our modelling assumptions (the write-before-read
assumption discussed in Subsection 3).

Related Work: Sequential Consistency for the Lazy Caching algorithm has
been verified directly for infinite computations in [6,8,10]. In works like [12,9,14,
7] only finite computations are considered, though [7] handles liveness by adding
extensive notation involving the failures-divergence model for traces. In [1,3] and
others, first finite computations are proved sequentially consistent under various
simplifying assumptions, and then the result is extended to infinite computa-
tions. This generalization is done in varying degrees of detail, completeness and
formalization, and in a way specific for the Lazy Caching algorithm. In our work,
we propose and formally prove the conditions that justify such a generalization,
independently of any specific implementation of a sequentially consistent shared
memory.

2 Shared Memory Systems and Memory Consistency

2.1 Concrete and Abstract Models of a System’s Interface

The observed events of a shared memory system are those occurring at its inter-
face with the processors. This allows a specification of memory consistency to be
independent of the details of a given algorithm. The model used to describe the
Lazy Caching algorithm [1], for example, includes the description of a handshake
between the processors and the memory, with two atomic events for every read
or write operation, namely: a request (by a processor) and a response (by the
memory). This is also the level of abstraction used in [2]. It allows us to specify
“service” liveness properties, i.e., liveness of the processor/memory handshake:
every request eventually gets a response (if not overwritten).

In a more abstract model of Lazy Caching and sequential consistency [4], the
observed behaviors include only two kinds of events:
- Wi(x, v): processor i writes value v into location x.
- Ri(x, v): processor i gets value v from location x.
Requests and responses are not distinguishable, and any handshake that may
prevent overwriting of requests is hidden. This level of abstraction (also used
in [15]) is usually preferred for the specification of the consistency model, so
we will adopt it here. However, in an implementation reads and writes might

414 M. Glusman and S. Katz

not be atomic. A refinement mapping may be involved in the proof, connecting
implementation events to abstract atomic reads and writes.

2.2 Abstract Definition of Sequential Consistency

We now define the sequential consistency property for abstract write/read be-
havior, independently of any specific shared memory system.

Let n be a fixed number of processors, Addr any address space (a set
of memory locations), and Data any set of data values. Let Σn,Addr,Data =
{R,W}×{1..n}×Addr×Data be the set of possible read/write interface events.
(We use Σ for short, when the context is clear). The set BEH = Σ∞ = Σ+∪Σω

includes all (nonempty) finite and infinite sequences of read and write interface
events.

We assume that v0 ∈ Data is the initial value of all memory locations.

Definition. A behavior b ∈ BEH is serial iff every Read has the value written
by the last Write (to the same memory location) preceding it, or v0 if the location
was not written to before the Read.

This is also known as read/write consistency. Let Ser = {b : BEH|b is serial}.
Notation: We will use sets as predicates (e.g., Ser(b) = b ∈ Ser).
Definition. Processor pi’s local history in behavior b (for i ∈ 1..n) is the pro-
jection of b to the set of events occurring at processor pi’s interface.

b � i = b � ({R,W} × {i} ×Addr×Data)

Definition. Two behaviors a, b ∈ BEH are “sc-equivalent” iff for every proces-
sor pi, pi has the same local history in a as in b.

a ≡sc b↔ ∀i : 1..n · a � i = b � i

Definition. A behavior b ∈ BEH is sequentially consistent iff b is sc-equivalent
to some serial behavior.

SC = {b : BEH | ∃s ∈ BEH : b ≡sc s ∧ Ser(s)}
This means that, from each processor’s point of view, the actual memory sys-
tem that generated behavior b could be a serial shared memory. Moreover, the
serial behavior which is consistent with the given one is the same for all the pro-
cessors. Weaker consistency conditions (like processor consistency) allow each
processor to have its own view of the serial behavior, e.g., perceive a different
write ordering.

The relation ≡sc is an equivalence relation, and it preserves the SC property:

∀a, b ∈ BEH : (a ≡sc b ∧ SC(a))→ SC(b)

2.3 Concrete Shared Memory Systems and Sequential Consistency

Let Mn,Addr,Data be a concrete shared memory system (M for short, where the
context is clear). Let Comps(M) denote the set of legal computations of M ,

Extending Memory Consistency of Finite Prefixes to Infinite Computations 415

defined by a given algorithm/protocol. Comps(M) is a prefix-closed set of finite
and infinite sequences of events: both interface events (from Σ) and internal
events. We choose to ignore internal events, so that our work can be applied to
any implementation of shared memory. Let Obs : Comps(M) → BEH be the
mapping that hides internal events:

∀c ∈ Comps(M) : Obs(c) = c � Σ

Definition. Beh(M) = range(Obs) is the set of observable behaviors of M .

Definition. (universal path quantifier A) Let Π be a property (a predicate of
possibly infinite behaviors). M � AΠ ↔ ∀b ∈ Beh(M) : Π(b)

Definition. A shared memory system M implements serial memory iff all its
behaviors are serial. (Beh(M) ⊆ Ser, or M � ASer)

Definition. A shared memory system M implements sequential consistency iff
all its behaviors are sequentially consistent. (Beh(M) ⊆ SC, or M � ASC)

3 Verification by Prefixes and Sequential Consistency

Let φ be any predicate of finite behaviors (a finitary property).

Definition (universal prefix quantifier “a”1). A (possibly infinite) behavior
b satisfies aφ iff every finite prefix of b satisfies φ.2

Given a finitary property φ such that A(aφ → Π) and any single behavior
b ∈ Beh(M), we can “verify b � Π by finite prefixes” by proving b � aφ. If we
do the same for all behaviors (i.e., prove M � Aaφ), we “verify M � AΠ by
finite prefixes”. Moreover, if we find a condition that implies Aaφ→ AΠ (which
is weaker than A(aφ → Π)), then for any system satisfying this condition we
can verify AΠ by prefixes (by proving Aaφ), even when we didn’t prove that
aφ→ Π holds for every individual behavior.

Definition. Π is a safety property iff Π = aφ for some finitary φ. [13]

Obviously, a safety property Π = aφ can be verified by prefixes, for single
behaviors or for all of them.

Is SC a safety property? In [1,3] an example is shown suggesting that SC
implies a liveness property. We now use the same example to formally prove the
following lemma:

Lemma 1 SC is not a safety property.
1 this is the same as the operator A, or Af for finite behaviors, as defined in [13]
2 For the special case that φ asserts that “at the end of the finite prefix the LTL past
formula ϕ holds”, the property aφ is the same as �ϕ, the canonical representation
of safety formulas in LTL.

416 M. Glusman and S. Katz

Proof : Consider the following infinite behavior b: (v �= v0)
Wi(x, v)Rj(x, v0)Rj(x, v0)Rj(x, v0)Rj(x, v0) · · ·

That is, a Write of v to x by processor pi is followed by infinitely many Reads
of the initial value v0 from x by processor pj . Behavior b is not sequentially
consistent. No matter how we reorder its events, there always remain infinitely
many reads that occur after the write but get the old value of x. Now consider
the finite prefixes of b. A prefix bk of b with length k has the form:

Wi(x, v)Rj(x, v0) · · ·Rj(x, v0) (k − 1 reads)
For all k, bk can be extended into an infinite behavior:

Wi(x, v)Rj(x, v0) · · ·Rj(x, v0)Rj(x, v)Rj(x, v) · · ·
which is SC since it is sc-equivalent to the infinite serial behavior:

Rj(x, v0) · · ·Rj(x, v0)Wi(x, v)Rj(x, v)Rj(x, v) · · ·
Assume now that a finitary property φ such that SC = aφ exists. Every bk is a
prefix of some SC behavior, so every bk satisfies φ. Therefore, b satisfies aφ, a
contradiction to the fact that it is not SC. ��

Can non-safety properties be verified by prefixes? If we identified a finitary prop-
erty φ and a property ∆ such that SC = ∆ ∧ aφ, then we could split the proof
of ASC into two proofs: A∆ and Aφ. Of course, to prove that SC = ∆ ∧ aφ
we have to show that ∆ doesn’t hold in all the possible “bad” scenarios (i.e.,
those satisfying aφ but not SC), which should then be precisely characterized.
In fact, there are other behaviors besides the one in the proof of Lemma 1 that
are problematic: (assume all vi are different)

Wi(x, v1)Rj(x, v0)Wi(x, v2)Rj(x, v0)Wi(x, v3)Rj(x, v0) · · ·

A property like ∆ =“every written value, if not overwritten, is eventually seen
by all the processors” would rule out the first bad scenario, but not the second
one. In this paper we do not follow this approach.

In [1] it is claimed that sequential consistency is a safety property, and the
Lazy Caching algorithm is then verified by proving that all its finite computa-
tions are SC. Nevertheless, their conclusion that all infinite computations of the
Lazy Caching algorithm are also SC is actually justified based on extra liveness
assumptions. Their justification is not complete – they show why the first prob-
lematic scenario shown above is not possible in the algorithm, but they don’t
prove that this is the only “bad” case.

In this paper we follow the alternative approach for verification of ASC that
was mentioned before: Instead of a Ψ and a φ such that AΨ → A(aφ → SC),
we will find a Ψ and φ such that AΨ → (Aaφ→ ASC).

A natural choice for φ, which corresponds to the intuitive notion of verifying
sequential consistency by prefixes, is to take SC itself, applied to finite prefixes.
For clarity, let sc denote the finitary version of SC (both have the same defi-
nition, but sc only applies to finite behaviors). As illustrated by our previous
examples, asc does not imply SC : those “bad” behaviors can be displayed by
an incorrect (e.g., completely disconnected) memory system, yet they still sat-
isfy asc. On the other hand, we will also show (in Section 3) that for certain

Extending Memory Consistency of Finite Prefixes to Infinite Computations 417

SC behaviors asc doesn’t hold: there are sequentially consistent behaviors with
prefixes which are not sc.

4 Some Modelling Assumptions

In this section we make (and justify) some assumptions about the system being
verified, which should be natural for reasonable shared memory systems. These
assumptions are common in the literature on shared memory systems.

Abstracting out from a specific address space: The algorithmic idea
behind shared memory protocols is usually not sensitive to the actual size of
the address space. We will consider verification of shared memory protocols that
are parameterized on the address space. No assumptions are made on this set of
memory locations, so the proof will be correct for any concrete address space.

Abstracting out from data value constraints: As with the set of mem-
ory locations, the idea behind concrete shared memory designs (for read/write
objects) is usually not sensitive to the actual size of a memory location. This
should enable us to verify a version of the design in which the set of possible
data values is infinite.3

Abstracting out from repeated written values: Shared memory pro-
tocols are usually data independent – the way data items are “shuffled around”
does not depend on their specific values. If we consistently rename the data val-
ues so they become unique, the result is as sequentially consistent as the original
behavior. Knowing that written values are unique makes it easier to relate a read
event with its corresponding write.

Definition. A computation is called unambiguous iff for every memory loca-
tion, all the written values are different from v0 and different among themselves.

Note that if the data domain were finite, its size would bound the number of
possible writes with different values to a single location. The previous abstraction
allows us to make the following unique writes assumption:

For every behavior b ∈ Beh(M) there is an unambiguous behavior b′ ∈
Beh(M) such that SC(b′)→ SC(b).

Thus it is sufficient to verify ASC only for unambiguous behaviors.

Value-Closed and Write-Before-Read Behaviors:

Definition. A (finite or infinite) behavior b ∈ Beh(M) is called value-closed
(VC) iff every value read by a Read event in b is either the initial value (v0), or
a value written by some Write event in b.

3 A proof based on the assumption that the data domain is infinite cannot be ”in-
stantiated” for an implementation with a finite data domain. However, any legal
behavior of an implementation with bounded data is also exhibited by the infinite
(unbounded data) version. If we prove ASC for the infinite version, we can conclude
the same for the finite one, by inclusion. This reasoning cannot be used to prove the
existence of certain behaviors in the finite version.

418 M. Glusman and S. Katz

Definition. A (finite or infinite) behavior b ∈ Beh(M) is called write-before-
read (WBR) iff every value read by a Read event in b is either v0, or a value
written by a previous Write event in b.

Lemma 2 The following implications hold for all finite or infinite behaviors:

Ser ↔ aSer → asc
↙ ↓ ↓

SC WBR↔ aWBR↔ aVC
↘ ↓

VC

Proof : We only prove aVC→ aWBR, the rest is immediate from the definitions.
Assume b doesn’t satisfy aWBR: some prefix of b has a Read event not preceded
by its correspondingWrite. The shortest such prefix is not VC, therefore b doesn’t
satisfy aVC. ��

For memory systems with atomic Write operations, it is easy to see (if they
don’t invent values or foresee the future) that every behavior satisfies the WBR
property. For example: the behavior (for v �= v0): “Rj(x, v)Wi(x, v)” is not
expected. However, when Writes are not implemented as atomic operations, a
newly written value may be returned to a Read operation before the writing
processor gets the Write’s response. The implementor might choose a refinement
mapping in which the concrete response event for the Read operation is mapped
to the abstract Rj(x, v) event, and the concrete response event for the Write
operation is mapped to the abstract Wi(x, v) event. Such an implementation
could exhibit the non-WBR behavior described above. Note that WBR is not a
necessary condition for sequential consistency: the events may still be rearranged
into a serial sequence.

Lemma 2 implies that non-WBR behaviors never satisfy asc. Even though
Aasc→ ASC holds (vacuously) for non-WBR systems, we cannot use this fact
to verify their sequential consistency by prefixes. Therefore, we now temporarily
restrict ourselves to WBR systems. In Section 8 we generalize the results to
non-WBR systems.

5 An Abstract Sufficient Condition for Aasc → ASC

For “bad scenarios” like those seen in Section 3, we can prove that any finite
prefix of a non-SC behavior is sc by “postponing” an event (and those events
that follow it locally) until after all the conflicting events from other processors
occur. At the end of this section we define a condition that will not be satisfied
by such behaviors.

Definition (FP behaviors). Behavior b is a finite-postponement (FP) behav-
ior iff for every event e in b, there is a natural number ke such that for every
c ≡sc b with a serial prefix cke of length at least ke, e appears in cke .

Extending Memory Consistency of Finite Prefixes to Infinite Computations 419

In other words, for every event e in b, the set of events that may precede e in
some sc-equivalent behavior’s serial prefix is finite.

Theorem 1 For every FP behavior, asc→ SC.

Proof : Let b be an FP behavior satisfying asc. For every natural number k,
the prefix bk of b of length k has at least one serial sc-equivalent finite behavior
sk (of the same length k). Let sb(k) denote the behavior built by replacing bk by
sk in b. For every k, sb(k) is sc-equivalent to b, and has a serial prefix of length
k. For Sb = {sb(k), k ∈ N}, build a tree with the behaviors in Sb, where shared
prefixes appear as a shared path in the tree. The branching degree of this tree
is finite, since at each node (which represents a finite prefix of a behavior), only
the next event in the local histories of finitely many processors can be added to
any behavior (because all the behaviors in Sb are sc-equivalent). We prune this
tree leaving only the serial parts of the behaviors: branches are cut at all nodes
where there is a violation of read/write consistency. Since for every k the tree
has a behavior which is serial up to k, the remaining tree is still infinite. By
Koenig’s Tree Lemma, it has an infinite path - let’s call it s. The path s is serial
since the pruned tree doesn’t include any violation of read/write consistency,
and for every k, there is a behavior in Sb that shares with s a prefix of length
k. To conclude SC(b), we must prove that s ≡sc b. First we prove they have the
same events. Clearly, every event in s is also an event of some behavior in Sb,
so it also appears in b. Let e be an event in b. Since b is FP, there is a natural
number ke such that for every behavior sc-equivalent to b with a serial prefix of
length at least ke, e appears in that prefix. As seen above, there is a behavior se
in Sb that shares with s a prefix of length ke. The event e must appear in that
serial prefix, so e appears in s. We only have left to prove that the local histories
of s and b are the same. Let e1 and e2 be any two events occurring at the same
processor’s interface. If e1 precedes e2 in s, then e1 precedes e2 in some behavior
in Sb, which is sc-equivalent to b. Therefore, the same ordering occurs in b. ��

If every behavior of a system were FP(i.e., if AFP), then this theorem means we
could prove ASC by just verifying Aasc. However, for most interesting systems
this is not the case. Non-FP behaviors arise, for example, if processors execute
completely independent programs, without sharing any memory location.

We now extend the result of Theorem 1 to systems in which every behavior
b has an FP representative: another behavior containing the local histories of b,
and additional Write/Read events that make it FP. For the FP representative
not to disturb the events from b, new (i.e., unused in b) memory locations will
be needed. This is not a problem, since we are verifying systems M(Addr) that
are parametric on the set of memory locations Addr.

Definition. For all b in Beh(M(Addr)):
Ψ(b) = ∃Addr′∃b′ ∈ Beh(M(Addr′)) : FP(b′) ∧ (SC(b′)→ SC(b))

AΨ is a sufficient condition for verification of sequential consistency by prefixes:

420 M. Glusman and S. Katz

Theorem 2 AΨ → (Aasc→ ASC)

Proof : Assume M(Addr) � AΨ . Let b ∈ Beh(M(Addr)). We have Ψ(b): there
exists an Addr ’ and FP behavior b′ in Beh(M(Addr′)) such that SC(b′)→ SC(b).
Assume M(Addr) � Aasc. Since M is parametric on Addr, no assumptions
were made about Addr when proving Aasc, so it also holds for M(Addr′). By
Theorem 1, SC(b′) holds, which in turn implies SC(b). Since b was arbitrary,
M(Addr) satisfies ASC. ��

6 Concrete Conditions Implying AΨ

The condition AΨ is too abstract; we now formulate more concrete conditions
which implyAΨ . It is expected that the new conditions are easy to verify for any
reasonable shared memory system, which will therefore satisfy Aasc→ ASC.

Liveness condition Γ (Eventual Influence): For every two processors pi, pj ,
memory location x and data value v1, if pj reads from location x repeatedly, and
pi repeatedly writes to x values different from v1, then it is not the case that pj
always gets the same value v1. In LTL:

Γ = ∀i, j ∈ 1..n, x ∈ Addr, v1 ∈ Data : ∀fv ∈ Data :
�[�♦Wi(x, v) ∧�(Wi(x, v)→ v �= v1) ∧�♦Rj(x, v)→ ♦(Rj(x, v) ∧ v �= v1)]

Here, ∀f is a temporal (flexible) quantifier – v can be different at each step.
This “eventual influence” liveness property is a natural assumption for any
reasonable shared memory system, regardless of the memory consistency
model it is supposed to implement. It provides for minimal (even not reliable)
connectivity among the processors, through shared memory locations.

Definition (should-precede). Event e1 should-precede event e2 in behavior
b iff for every behavior d sc-equivalent to b, if e2 appears in a serial prefix of d
then e1 precedes e2 in d.

Lemma 3 If e1 precedes e2 in b and both occur at the same processor’s interface,
then e1 should-precede e2 in b.

Proof : Trivial, since sc-equivalence preserves local histories. ��

Lemma 4 For a given behavior b, the relation should-precede in b is transitive.

The proof is left to the reader.

Definition. We say that pi ⇒b pj iff in behavior b, processor pi has infinitely
many events that should-precede infinitely many respective events in pj.

Extending Memory Consistency of Finite Prefixes to Infinite Computations 421

Lemma 5 For every behavior b � Γ and processors pi, pj: if pi writes infinitely
many unique values to some location x and pj reads infinitely often from x, then
pi ⇒b pj.

Proof : From the definition of Γ , pj must read infinitely many unique values
that were written by pi, so there are infinitely many Wi(x, v), Rj(x, v) pairs. For
each such pair, Wi(x, v) should-precede Rj(x, v) in b. Therefore, pi ⇒b pj . ��
Definition. A behavior b ∈ Beh(M) is a heartbeat (HB) behavior iff for every
i, j ∈ 1..n, processor pi writes infinitely many unique values to location hbi, and
processor pj performs infinitely many reads from location hbi.

Lemma 6 For every HB behavior b, if b � Γ , then for all i, j :pi ⇒b pj

Proof : In b, every pi writes infinitely many unique values to location hbi from
which every pj reads infinitely often. By Lemma 5, pi ⇒b pj . 4 ��
Theorem 3 If b is an HB behavior and b � Γ then b is FP.

Proof : Let ei be an event occurring at processor pi in b, and pj some other
processor. By Lemma 6, pi ⇒b pj . By the definition of ⇒b, for some event e′i of
pi that occurs after ei, e′i should-precede some event ej in pj . By Lemmas 3 and
4, ei should-precede ej and also any later events at pj . Therefore, only finitely
many events at pj (all of which precede ej) may precede ei in any serial prefix
of an sc-equivalent behavior. ��

pi : ei → e′i → · · ·
↘

pj : · · · → · · · → ej → · · ·
Let us add n new memory locations to the original address space. For any

given Addr, let Addrhb = Addr ∪ {hbi|i : i..n}. For any given M = M(Addr),
let Mhb = M(Addrhb). Obviously, every behavior b in Beh(M) also belongs to
Beh(Mhb).

Definition (HB Assumption). For every behavior b ∈ Beh(M) there is an
HB behavior b′ ∈ Beh(Mhb) such that b′ � Addr ≡sc b.
In other words, it should be possible to add heartbeat operations to every pro-
cessor (using the new locations hbi) without modifying the original behavior’s
local histories.

Theorem 4 If a shared memory protocol M satisfies all the modelling assump-
tions from Section 4, the HB assumption and AΓ , then M satisfies AΨ .
4 Here we proved directly that for HB behaviors satisfying Γ , the directed graph
({pi : i ∈ 1..n},⇒b) is a clique. The relation ⇒b is transitive, so this lemma will also
hold for any other definition of HB describing a strongly connected graph.

422 M. Glusman and S. Katz

Proof : Let Mhb be defined as before. The HB assumption implies that for
every behavior b ∈ Beh(M) there is an HB behavior b′ ∈ Beh(Mhb) such that
b′ � Addr ≡sc b. The AΓ assumption that was made about M also holds for
Mhb, since we didn’t assume anything about the address space. By Theorem 3,
b′ is FP. Assume now that b′ is SC : there is a serial behavior s′ ≡sc b′. The
projection of a serial behavior to part of the memory locations is also a serial
behavior, so s′ � Addr is serial. Clearly, s′ � Addr ≡sc b′ � Addr ≡sc b, so b is SC
too. We showed that for every b ∈ Beh(M(Addr)) there is an Addr ’ and an FP
behavior b′ in M(Addr′) such that SC(b′)→ SC(b), i.e., M(Addr) � AΨ . ��

7 Examples

7.1 Lazy Caching

The Lazy Caching algorithm is described in [1,4]. We will refer to the version in
[4] (summarized in Appendix A), since it has atomic Read and Write events, and
show why it satisfies all the conditions described above. First of all, its description
is parametric on the address space and the data domain. Thus, we can assume
an infinite data space and consider only its unambiguous behaviors. It is easy to
see that the algorithm has only WBR behaviors: Read data values come from
cached values, which originate from earlier Write events and propagate through
Out and In queues.

Let’s now see why the property AΓ (eventual influence) holds. Assume pro-
cessor pi writes unique values infinitely often to location x, and processor pj
reads from x infinitely often. The Out and In queues are reliable and the Mem-
ory Write (MW) and Cache Update (CU) actions, which remove items from
those queues, enjoy a fairness assumption. If the value v is written into pi’s Out
queue, it will eventually be propagated to the main memory and pj ’s cache. The
location x in the cache might be invalidated (CI) before pj reads v from x, but
we know that pj succeeds to read from x infinitely often, therefore eventually it
will read some value: v if the cache was updated from memory, or a newer value
if the cache was updated by a new Memory Write action. In any case, pj will
stop reading the value that was in x before v was written.

Now we prove that every behavior of the Lazy Caching algorithm can be
extended to an HB behavior if n new locations (hbi) are added. The queues
and caches are not bounded in size. The addition of heartbeat Write events at
some processor, however, may affect the enabledness of Read events (if its Out
queue is empty and its In queue has no “starred” entries). Read events will be
postponed until the new heartbeat value reaches the processor’s cache. By the
time this happens, the cache might have been updated by values written before
the added heartbeat, so a delayed Read operation might return a different value.
Let’s now see how this can be avoided. Recall that this is not a modification of
the algorithm: we must only show that a suitable HB behavior exists.

Let b be some behavior, and let pi be a processor that writes infinitely often
in b. We can insert a Wi(hbi, w) event just after every Wi(x, v) in the original

Extending Memory Consistency of Finite Prefixes to Infinite Computations 423

behavior (with a new value w each time), and let the (hbi, w) pair “follow” the
(x, v) pair along the data path: immediately after a MWi(x, v) there will be a
MWi(hbi, w), and so on. We also insert a Rj(hbi, z) event at every processor pj as
soon as any CUj(hbi, z) event occurs. No Read event at pi will be delayed by the
presence of the (hbi, w) item in pi’s Out queue, (or later by a (hbi, w, ∗) item in
pi’s In queue), since it ”follows” a previous (x, v) item (or (x, v, ∗), respectively).
The other processors’ local histories (projected to original events) are also not
affected. Let’s now consider a processor pi that does infinitely many Reads but
only finitely many Writes in b. Eventually, its Out queue will be empty and its
In queue will not contain “starred” items. After that, cache updates and Reads
at this processor are independent from other events, so they can be done earlier
–while preserving the ordering among them– as soon as a new item is added to
the In queue. This will not modify the local history of this processor. The moved
Reads will get the same values that appear in main memory. The addition of
heartbeat writes at this processor may cause some delay to a Read event, but it
will not affect its value.

We conclude that Lazy Caching satisfies the conditions that justify Aasc→
ASC. In [1,12,9] it was verified that it satisfies Aasc, so their results can be
extended to ASC.

7.2 Weak Lazy Caching

Let’s now consider a modified version of Lazy Caching: the Read operation’s
enabledness will only depend on the cache contents, and not on the contents of
the Out or In queues. A processor with a nonempty Out queue or with “starred”
items in its In queue is now allowed to Read values stored in the cache.

The Weak Lazy Caching algorithm satisfies all the conditions to justify
Aasc → ASC. This is easier to check here than in the original Lazy Caching
algorithm, since writes can be added to hbi locations at any moment, without
ever affecting any event from the original behavior. However, this weak algo-
rithm is not a correct implementation of sequential consistency! This shows that
the family of systems satisfying the needed conditions is not restricted to se-
quentially consistent algorithms. To belong to this family, an algorithm must
be “connected” (to satisfy the “eventual influence” liveness property AΓ) and
allow enough independence between the operations done at different locations
(to satisfy the HB assumption).

Fortunately, for the weak algorithm we simply cannot prove Aasc. This
version of the algorithm allows a behavior b where processor pi writes a value to
location x and later reads an older value from x. Assume pi is the only processor
writing to x. This local violation of write/read consistency will appear in any
sc-equivalent behavior, so a prefix of b containing this violation is not sc.

7.3 Really-Lazy Caching

We now modify the original Lazy Caching by replacing the fairness of the Mem-
ory Write operations with the following mechanism: the first item in an Out

424 M. Glusman and S. Katz

queue is dequeued (by a MW) only when a new Write is done. This means that
if there are only finitely many Writes in a behavior, then the last Write can
remain in the Out queue forever.

This algorithm can in principle display the behavior shown in the proof of
Lemma 1. We could prove asc for any finite behavior, by postponing the last
Write until after the last conflicting Read. On the other hand, this is not a
correct implementation – ASC doesn’t hold!

Again, fortunately, any attempt to superimpose a heartbeat protocol on such
a behavior would cause the last written value to be taken from the Out queue
when the next heartbeat is written. This means that the values read by the
original behavior will be affected by the addition of heartbeats. In this example,
the HB assumption does not hold.

8 Extension to Systems with Non-WBR Behaviors

Non-VC behaviors cannot be SC (see Lemma 2). Therefore, we assume that all
infinite behaviors are value-closed (VC). Every reasonable memory system lets
Read events return only values that are written at some Write event.

Definition (Condition EQ-wbr). For every infinite VC behavior b ∈ Beh(M)
and for every k ∈ N, b must be sc-equivalent to some behavior dk ∈ Beh(M)
with a wbr prefix of length k.

This condition can be verified inductively (for any behavior b of a given system
M) by taking the first Ri(x, v) that precedes its matching Wj(x, v) and show-
ing that the corresponding Write could have occurred before the Read in some
sc-equivalent behavior, while keeping the ordering of the reads – thus creating a
longer wbr prefix.

Theorem 5 Let scw = (wbr → sc). For any VC system M satisfying the
EQ-wbr condition and AΨ , Aascw → ASC.

Proof : Assume Aascw. ByAΨ , it is enough to prove that FP behaviors are SC.
Let b ∈ Beh(M) be FP. By EQ-wbr, for every k ∈ N there is a behavior dk ∈
Beh(M) sc-equivalent to b with a wbr prefix of length k. This prefix satisfies
scw, so it is sc. Therefore, the FP behavior b is sc-equivalent to behaviors with
serial prefixes of all lengths. The rest of the proof is as for Theorem 1. ��

The proof of Theorem 3 still holds: if behavior b is not WBR, heartbeat Writes
will still precede their Reads in a serial prefix of any behavior sc-equivalent to
b. The proofs of Theorems 2 and 4 also do not rely on the WBR assumption.

Acknowledgement: We thank Shaz Qadeer for the useful comments about the
modelling assumptions used in [14], some of which we adopted here.

Extending Memory Consistency of Finite Prefixes to Infinite Computations 425

References

1. Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy caching. ACM Trans-
actions on Programming Languages and Systems, 15(1):182–205, January 1993.

2. Hagit Attiya and Jennifer Welch. Distributed Computing. McGraw-Hill Publishing
Company, UK., 1998.

3. Ed Brinksma. Cache consistency by design. Distributed Computing, 12:61–74,
1999.

4. Rob Gerth. Sequential consistency and the lazy caching algorithm. Distributed
Computing, 12:57–59, 1999.

5. Marcelo Glusman and Shmuel Katz. Mechanizing proofs of computation equiva-
lence. In Proceedings of 11th International Conference on Computer-Aided Verifi-
cation, CAV’99, volume 1633 of LNCS, pages 354–367. Springer-Verlag, 1999.

6. Susanne Graf. Characterization of a sequentially consistent memory and verifica-
tion of a cache memory by abstraction. Distributed Computing, 12:75–90, 1999.

7. Wil Janssen, Mannes Poel, and Job Zwiers. The compositional approach to se-
quential consistency and lazy caching. Distributed Computing, 12:105–127, 1999.

8. Bengt Jonsson, Amir Pnueli, and Camilla Rump. Proving refinement using trans-
duction. Distributed Computing, 12:129–149, 1999.

9. Shmuel Katz. Refinement with global equivalence proofs in temporal logic. In
D. Peled, V. Pratt, and G. Holzmann, editors, Partial Order Methods in Verifi-
cation, pages 59–78. American Mathematical Society, 1997. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, vol. 29.

10. Peter Ladkin, Leslie Lamport, Bryan Olivier, and Denis Roegel. Lazy caching in
TLA. Distributed Computing, 12:151–174, 1999.

11. Leslie Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, C-28(9):690–691, 1979.

12. Gavin Lowe and Jim Davies. Using CSP to verify sequential consistency. Dis-
tributed Computing, 12:91–103, 1999.

13. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proceedings of
the 9th ACM Symposium on Principles of Distributed Computing (PODC), pages
377–408, New York, NY, 1990. ACM Press.

14. Shaz Qadeer. On the verification of memory models of shared-memory multipro-
cessors. In Workshop on Shared Memory Protocol Verification, October 2000.

15. Andrew Tanenbaum. Distributed Operating Systems. Prentice-Hall, Inc., 1995.

APPENDIX A: The Lazy Caching algorithm (adapted from [4])

X Wi(x,v)

MWi(x,v) head(OUTi)=(x,v)

For all k: INk := append(INk,

MEM[x] := v;

if k=i then (x,v,*) else (x,v))

MRi(x,v) MEM[x]=v INi := append(INi,(x,v))

CUi(x,v) head(INi) is either
(x,v) or (x,v,*)

INi := tail(INi)

CIi Ci := restrict(Ci)

Initially: MEM[x]=0 for all x
and for all i, Ci is a subset of MEM, INi={} and OUTi={}

Fairness: No MWi,MRi or CUi can be always enabled but never taken
MW: memory write MR: memory read CU: cache update CI: cache invalidate

OUTi := append(OUTi,(x,v))

and no * entry in INi
Ci(x)=v and OUTi={}Ri(x,v)X

Visible Event Enabling condition Effect

TRANSITION SYSTEM

OUT2

IN2

OUT1

IN1

C2

C1

P1

P2 MEM

OUTn

INnCn

Pn

MLazy Caching

ARCHITECTURE

Abstraction-Based Model Checking
Using Modal Transition Systems

Patrice Godefroid1, Michael Huth2, and Radha Jagadeesan�3

1 Bell Laboratories, Lucent Technologies, god@bell-labs.com
2 Computing and Information Sciences, Kansas State University, huth@cis.ksu.edu
3 Department of Computer Science, Loyola University of Chicago, radha@cs.luc.edu

Abstract. We present a framework for automatic program abstrac-
tion that can be used for model checking any formula of the modal
mu-calculus. Unlike traditional conservative abstractions which can only
prove universal properties, our framework can both prove and disprove
any formula including arbitrarily nested path quantifiers. We discuss
algorithms for automatically generating an abstract Modal Transition
System (MTS) by adapting existing predicate and cartesian abstraction
techniques. We show that model checking arbitrary formulas using ab-
stract MTSs can be done at the same computational cost as model check-
ing universal formulas using conservative abstractions.

1 Introduction

There are essentially two approaches for extending the applicability of model
checking to programs written in general-purpose programming languages such
as C or Java. The first approach consists of adapting existing model-checking
techniques into a form of systematic testing that is applicable to processes ex-
ecuting arbitrary code (e.g., [16]); although sound, this approach is inherently
incomplete for large systems. The second approach consists of automatically
extracting a model out of a program by a static analysis of its code, and of ana-
lyzing this model using existing model-checking techniques (e.g., [1,9]); although
automatic abstraction can be complete, this approach is generally unsound since
abstraction usually introduces unrealistic behaviors that may yield to spurious
errors being reported when analyzing the model.

In this paper, we study the latter approach and show how automatic ab-
straction can be performed in such a way that it yields verification results whose
completeness and soundness can be both guaranteed. We also show how au-
tomatic abstraction can be applied to check arbitrary formulas of the modal
mu-calculus [22], thus including negation and arbitrarily nested path quanti-
fiers. Maybe surprisingly, both extensions can be implemented in combination
with existing abstraction techniques without incurring any significant computa-
tional overhead. Our algorithms could be used to extend the scope of existing
tools for (conservative) automatic abstraction such as SLAM [1] and Bandera [9],
� Supported by NSF CCR-9901071.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 426–440, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Abstraction-Based Model Checking Using Modal Transition Systems 427

which currently support the verification of universal properties only [7]. Our al-
gorithms to construct abstract transition systems can also be used in the context
of the verification of arbitrary modal mu-calculus formulas with methods based
on theorem-proving [30].

Allowing the specification of arbitrary formulas with nested path quantifiers
makes it possible to express more elaborate properties of the temporal behav-
ior of a reactive program, such as “for all possible input values, there exists an
execution path of the system that allows the user to restart the service”. Unfor-
tunately, the verification of such properties necessitates the relation between the
concrete program and an abstract program to be more constraining than a sim-
ulation relation [26,25]. Although bisimulation [28,27] over Labeled Transition
Systems (LTSs) reflects all such general properties [18], it is persuasively argued
in [24,23] to be ill-suited for our context: as an equivalence relation, it confines
the choice of an abstraction to the implementation’s equivalence class, which is
too limiting to allow for compact abstractions.

For this reason, we use Modal Transition Systems (MTS) [24,23] for repre-
senting abstract systems in order to allow their specifications to be partially
defined. MTSs are LTSs with two kinds of transitions, termed may and must
transitions, satisfying the consistency condition that every must-transition is
also a may-transition. A MTS can be “refined” by preserving at least all must-
transitions (and maybe adding some) while eliminating some may-transitions.
Since this refinement preorder on MTSs preserves all properties expressible in
the modal mu-calculus, we can verify any such properties on the source (con-
crete) program by verifying these on any abstract MTS that is refined by this
concrete program; conversely, if there exists a behavior of the abstract MTS that
refutes the property, the existence of a refuting behavior of the concrete program
is also immediately guaranteed.

An alternative representation for abstract systems is the partial Kripke struc-
ture [4,5]. Partial Kripke structures are Kripke structures whose states are la-
beled with atomic propositions that can have any of three possible truth values:
true, false or unknown. Partial Kripke structures are closely related to MTSs
since the transition relation of a MTS can be viewed as a function associating
each transition with one of three possible values: must-transitions correspond
to the value true, may-transitions that are not must-transition are mapped to
unknown, and absent transitions render false. It can be shown that any par-
tial Kripke structure can be translated into an equivalent MTS, and vice versa.
This correspondence makes it possible to apply the results of [4,5] (in particu-
lar, model-checking algorithms and complexity bounds) to the context of MTSs.
Conversely, the abstraction techniques developed in this paper can be adapted
to the context of partial Kripke structures.

A crucial aspect of our model-checking framework is that it not only per-
mits the abstraction of complete programs, but also the refinement of partially
specified abstract programs by more concrete abstract programs, to adequately
accommodate the incremental process of building more detailed abstractions by
successive approximations, as used in SLAM or Bandera for instance.

428 P. Godefroid, M. Huth, and R. Jagadeesan

We develop an expressive and flexible relational calculus for the sound spec-
ification of MTSs as abstractions. This calculus adapts the definitions of [12,13]
to partially specified systems and is complete in the sense that it can specify ev-
ery refinement of MTSs. In particular, any abstract interpretation of data values
extends to a relational abstraction expressible in the calculus. In this calcu-
lus, we specify two standard abstractions of abstract interpretation [10], namely
predicate abstraction [17,14,32] and cartesian abstraction [3,1] (also known as
“independent attribute analysis”), and describe their implementations:

– When applied to may-transition relations only, the specifications and imple-
mentations we present coincide with traditional “conservative” abstraction.

– We discuss how these specifications can be implemented using standard tools
(automatic theorem proving for quantifier-free first-order logic and BDDs),
except for the use of Ternary Decision Diagrams (TDDs) [31] for carte-
sian abstraction. We show that the computational cost of constructing a
must-transition relation is the same as that of constructing a may-transition
relation.

– We show that our implementations are sound and (relatively) complete1 with
respect to their specifications in our calculus. Moreover, they conveniently
model approximations in calls to a theorem prover as under-approximations
of must-transitions and over-approximations of may-transitions.

– We prove that abstraction refinement is incremental for MTSs built using
cartesian abstraction.

Predicate abstraction [17,14,32] is based on a set of predicates, Φ def= {φ1, . . . , φn},
typically quantifier-free formulas of first-order logic (e.g. (x == y+1) || (x <
y-5)). An abstract state is induced by n-ary conjunctions, called monomials,
with each predicate φi contributing either φi or ¬φi. This abstraction identifies
concrete states that satisfy the same predicates in Φ.

Given a set of states represented by a formula of quantifier-free first-order
logic ψ, the set ψ′ of abstract may-successors states is defined as the disjunction
of all monomials η such that post(ψ)∧η is satisfiable [17,14].2 Computing ψ′ can
be done using automatic theorem proving for quantifier-free formulas, and [14]
shows how to use a representation based on BDDs [6] at a propositional level
to compactly represent the construction of ψ′ as a disjunction of conjunctions.
We can compute must-transitions by dualizing, in a logical sense, the above
construction: for ψ as above, we show that the set of must-successors is the
disjunction of all monomials η such that ψ ∧ ˜pre(¬η) is unsatisfiable.3

Unfortunately, this approach is not incremental: adding a new predicate φn+1
to Φ may not yield a refinement of the abstraction, and hence the entire abstrac-
tion may need to be recomputed. This shortcoming can be eliminated at the
expense of enlarging the abstract state space: states are now built as disjunc-
tions of abstract states from predicate abstraction. Using disjunctions can yield
1 Which are perforce relative to the completeness of the underlying theorem prover.
2 post(ψ) is the set of immediate successor states of states satisfying ψ.
3 ˜pre(¬η) is the weakest precondition of states satisfying ¬η.

Abstraction-Based Model Checking Using Modal Transition Systems 429

a must-component that is more precise than the one obtained from predicate ab-
straction, but can also be much more expensive: for n predicates, an abstraction
using disjunctions can have 22

n

states. This tradeoff between cost and precision
is discussed in [8].

This limitation motivates the next layer of approximation: cartesian abstrac-
tion, which can be used on top of predicate abstraction in order to approximate
sets of n-tuples by n-tuples of sets. We modify the work of [14] to synthesize
abstract states and abstract may-successors for this composite abstraction, re-
placing BDDs by TDDs [31]. Then we construct must-transitions by dualizing, in
the logical sense, the construction of may-transitions using cartesian abstraction.

We complete this framework with an algorithm for model checking any modal
mu-calculus formula on an abstract MTS. Following [4,5], any (three-valued)
model-checking problem on MTSs can be reduced to two traditional (two-valued)
model-checking problems on regular LTSs.

The rest of the paper is organized as follows. Section 2 discusses background
material on MTSs. Section 3 formally develops a relational calculus of abstrac-
tions and proves a basic result that permits the methods of analysis of this paper.
In Section 4, we apply these methods to predicate and cartesian abstraction and
prove that cartesian abstraction allows for incremental refinement. Section 5
discusses three-valued model-checking for MTSs, and Section 6 concludes.

2 Background: Abstract Modal Transition Systems

MTSs [24,23] are defined from labeled transition systems.

Definition 1 (Labeled transition systems). A labeled transition system
[27] (LTS) is a tuple K = (ΣK , Act,−→), where ΣK is a set of states, Act
is a set of action symbols, and −→ ⊆ ΣK × Act × ΣK is a transition rela-
tion. We call K finitely-branching if for each s ∈ ΣK , the set {s′ ∈ ΣK | ∃α ∈
Act: (s, α, s′) ∈ −→} is finite.

A strategy to reason about a complex program represented by an LTS C consists
of (i) generating from C an abstract LTS A, (ii) checking whether A satisfies a
behavioral property φ, and (iii) transferring those results to the original program
C. For (i) and (iii), standard practice [10,7] is to construct some A such that the
initial states of C and A are related by a simulation.

Definition 2 (Simulation). A relation ρ ⊆ ΣC × ΣA is a simulation [26] iff
for any c ρ a and c→α c′ there is some a′ ∈ ΣA such that a→α a′ and c′ ρ a′.

The temporal logic L∀ whose abstract syntax is

φ ::= tt | ff | Z | φ1 ∧ φ2 | φ1 ∨ φ2 | (∀α)φ | νZ.φ (1)

with α ∈ Act, variables Z ∈ Var for the greatest fixed point νZ.φ, and usual
semantics, expresses universal properties [29]. We assume here the semantics

430 P. Godefroid, M. Huth, and R. Jagadeesan

of (closed) formulas over LTSs is defined as sets of states. For instance, the
semantics of (∀α)φ is:

[| (∀α)φ |] def= {s ∈ ΣK | for all s′ ∈ ΣK , s→α s′ implies s′ ∈ [| φ |]}.
A simulation relation c ρ a ensures that a ∈ [| φ |] (read “a satisfies φ”) implies
c ∈ [| φ |]. Thus, we may verify any universal property φ ∈ L∀ (such as “For
all paths, nothing bad will happen”) at c by (i) computing an abstract model
A, (ii) establishing a simulation ρ satisfying c ρ a, and (iii) verifying φ at a.
Unfortunately, a negative check a �∈ [| φ |] does not imply anything about the
truth or falsity of c �∈ [| φ |]. At most, debugging information obtained from such
a negative check may be used to construct a more concrete version of A (a
refinement), hoping that this more precise model either renders a positive check
or that refined debugging information eventually “applies” to C as well.

In this paper, we argue that a better approach consists of using MTSs instead
of LTSs for representing abstractions of LTSs.

Definition 3 (MTS). A MTS [24] is a pair K = (Kmust,Kmay), where Kmust =
(ΣK , Act,→must) and Kmay = (ΣK , Act,→may) are LTSs such that →must ⊆
→may.

An LTS is simply a MTS K where Kmust equals Kmay. The intuition behind
the inclusion above is that transitions that are necessarily true (Kmust) are also
possibly true (Kmay). Reasoning about the existence of transitions of MTSs can
be viewed as reasoning with a three-valued logic with truth values true, false,
and unknown [4]: transitions that are necessarily true are true, transitions that
are possibly true but not necessarily true are unknown, and transitions that are
not possibly true are false.

Definition 4 (Refinement [24]). An MTS A1 is a refinement of an MTS A2
if there exists a relation ρ ⊆ ΣA1 × ΣA2 such that (i) ρ is a simulation from
Amay

1 to Amay
2 and (ii) ρ is a simulation from Amust

2 to Amust
1 . In that case, we

also say that A2 is an abstraction of A1. We write ≺ for the greatest refinement
relation between MTSs.

MTSs can be used to both verify and refute any property of the full modal
mu-calculus, which is defined as follows [22]:

φ ::= tt | Z | ¬φ | φ1 ∧ φ2 | (∃α)φ | µZ.φ (2)

where α ∈ Act, and Z ∈ Var (variable for the least fixed point µZ.φ).

Definition 5 (Semantics of modal logic [19]). For a MTS K and any modal
mu-calculus formula φ, we define a semantics [| φ |]σ ∈ P(ΣK)× P(ΣK), where
P(ΣK) is the powerset of ΣK , ordered by set inclusion, σ: Var → P(ΣK) ×
P(ΣK) is an environment, and [| φ |]necσ and [| φ |]posσ are the projection of [| φ |]σ
to its first and second component, respectively:

1. [| tt |]σ def= 〈ΣK , ΣK〉;

Abstraction-Based Model Checking Using Modal Transition Systems 431

2. [| ¬φ |]σ def= 〈ΣK \ [| φ |]posσ , ΣK \ [| φ |]necσ 〉;
3. [| φ1 ∧ φ2 |]σ def= 〈[| φ1 |]necσ ∩ [| φ2 |]necσ , [| φ1 |]posσ ∩ [| φ2 |]posσ 〉;
4. [| (∃α)φ |]σ def= 〈{s ∈ ΣK | for some s′, s→a

must s
′ and s′ ∈ [| φ |]necσ },

{s ∈ ΣK | for some s′, s→a
may s′ and s′ ∈ [| φ |]posσ }〉.

The treatment of negation is due to P. Kelb [20] and allows for verifying (s ∈
[| φ |]nec) and refuting (s ∈ [| ¬φ |]nec) property φ at state s. For brevity, we did
not present the standard least-fixed point semantics of µZ.φ (e.g., see [19]).

Theorem 1 (Soundness and consistency of semantics [19]). For any
MTSs, formulas φ, ψ of the modal mu-calculus, and environments σ:

1. [| φ |]necσ ⊆ [| φ |]posσ ;
2. [| φ ∧ ¬φ |]necσ = ∅; and [| φ ∨ ¬φ |]posσ = ΣK ; that is, the semantics is consis-

tent for [| |]nec and “complete” for [| |]pos;
3. if c≺a, then a ∈ [| φ |]necσ implies c ∈ [| φ |]necσ ; and c ∈ [| φ |]posσ implies a ∈
[| φ |]posσ ; that is, verification and refutation of φ are sound;

4. For LTSs, [| φ |]necσ = [| φ |]posσ and corresponds to the standard semantics for
labeled transition systems.

The semantics [| φ |]nec (without negation and fixed points) is the one given
by Larsen [23]; it produces a logical characterization of refinement for finitely
branching4 MTSs [23]. Since s �∈ [| φ |]pos iff s ∈ [| ¬φ |]nec, this logical characteri-
zation can be extended to the full mu-calculus (including negation). We thus ob-
tain that c≺a iff for all φ of the modal mu-calculus, [a ∈ [| φ |]nec ⇒ c ∈ [| φ |]nec].

3 A Relational Calculus for Abstract MTSs

In [12], abstract interpretation frameworks are systematically defined through
description relations ρ:ΣC ×ΣA with suitable properties. We provide a general
calculus for specifying abstract MTSs based on such relations.

Definition 6 (Relational abstraction). Let A1 = (Amust
1 , Amay

1) be an MTS.
Given a set ΣA2 of abstract states and a total relation 5 ρ:ΣA1 ×ΣA2 , we define
A2 = (ΣA2 , Act,

must−→,
may−→) as follows:

– a2 →α
must a

′
2 iff for all a1 ∈ ΣA1 with a1 ρ a2 there exists a′1 ∈ ΣA1 such that

a′1 ρ a
′
2 and a1 →α

must a
′
1;

– a2 →α
may a′2 iff there exist a1 ∈ ΣA1 and a′1 ∈ ΣA1 such that a1 ρ a2, a′1 ρ a

′
2,

and a1 →α
may a′1.

This definition is a tool to specify abstract MTSs. Its two components are sim-
ilar to the universal abstraction α∀∃ and the (dual) existential abstraction α∃∃

defined in [11], and to the relations R∀∃ and R∃∃ in [12].
4 may-components and must-components are finitely-branching.
5 That is, (∀a1 ∈ ΣA1∃a2 ∈ ΣA2 : a1 ρ a2) ∧ (∀a2 ∈ ΣA2∃a1 ∈ ΣA1 : a1 ρ a2).

432 P. Godefroid, M. Huth, and R. Jagadeesan

Lemma 1. Given A1 and A2 as above, A2 is a MTS and ρ is a refinement.

Totality is a natural condition in applications and Definition 6 can express step-
wise abstractions, products, sums, etc; moreover, it translates to other frame-
works — e.g. the one based on Galois connections [10] — in the manner described
in [12].

The specification in Definition 6 is also complete: given an MTS A1, any
abstraction A2 of A1 via a total refinement relation ≺ can be constructed using
Definition 6 by choosing ρ as ≺. The following example illustrates Definition 6.

Example 1. Let A1 be a complete MTS (Amay
1 equals Amust

1) whose infinite
state space is given by all possible valuations of three integer variables x, y,
and z. Any state c is of the form {x �→ i, y �→ j, z �→ k}, for some integers
i, j, k. Let us assume that transitions of A1 are those induced by the single
assignment statement x = z, e.g. there is a transition from state c above to
state c′ = {x �→ k, y �→ j, z �→ k}.

The predicates φ1
def= odd(x), φ2

def= (y > 0), and φ3
def= (z < 0) induce an

equivalence relation on the states of A1: two states are equivalent if they agree
on all three predicates. Let ΣA2 be the set of all sets of equivalence classes of
states of A1. Therefore, states of A2 are representable as boolean formulas built
from the φi’s. By Definition 6, there is a may-transition from a to a′ in ΣA2 iff
there are c ∈ a and c′ ∈ a′ such that c has a transition to c′ in A1. Dually, there
is a must-transition from a to a′ iff, for all c ∈ a, there exists c′ ∈ a′ such that
c has a transition to c′ in A1.

For instance, there is (i) a may-transition from the state φ1 ∧ φ2 ∧ φ3 to the
states φ1 ∧φ2 ∧φ3 and ¬φ1 ∧φ2 ∧φ3; (ii) a must-transition from φ1 ∧φ2 ∧φ3 to
the disjunction of monomials (φ1 ∧φ2 ∧φ3)∨ (¬φ1 ∧φ2 ∧φ3); but (iii) no must-
transition from φ1 ∧φ2 ∧φ3 to any monomial, e.g. φ1 ∧φ2 ∧φ3 or ¬φ1 ∧φ2 ∧φ3.

4 Implementation of Relationally Specified MTSs

In this section, we consider in turn predicate abstraction (also called “boolean
abstraction”) and cartesian abstraction. When applied to may-transition rela-
tions only, the specifications and implementations we present coincide with tra-
ditional “conservative” abstractions. We implement these specifications with
standard tools (automatic theorem-proving for quantifier-free first-order logic
and BDDs), except for the use of TDDs. We show that the computational cost
of constructing a must-transition relation is the same as that of constructing a
may-transition relation. We then show that our implementations are sound and
complete (relatively to the completeness of the underlying theorem prover) with
respect to their specifications. Moreover, they conveniently model approxima-
tions in calls to a theorem prover as under-approximations of must-transitions
and over-approximations of may-transitions. Importantly, we prove that abstrac-
tion refinement is incremental for MTSs built using cartesian abstraction.

Abstraction-Based Model Checking Using Modal Transition Systems 433

Notation. For any predicate η on a set ΣS of states, for any label α ∈ Act, the
post operator [10] and weakest precondition [15] are defined as

postα(η)
def= {s′ ∈ ΣS | ∃s ∈ ΣS : s |= η, s→α s′}

˜preα(η)
def= {s ∈ ΣS | ∀s′ ∈ ΣS : s→α s′ implies s′ |= η}.

These operators satisfy several interesting relationships [10]. Here we only use
the property that, for any predicates η, ψ on states, postα(ψ) ∧ η is satisfiable
if and only if ψ ∧ ¬ ˜preα(¬η) is satisfiable.

Methodological assumptions. We assume that an abstract program is built by
converting each program statement from a transformer operating on concrete
states to a transformer operating on abstract states, as illustrated in Example 1.
For notational convenience, we focus in what follows on the abstraction of a
single program statement, and hence consider MTSs, post, and ˜pre without ex-
plicit action labels. For a given program statement and a quantifier-free formula
η, we assume that ˜pre(η) is quantifier-free as well. This is the case for usual pro-
gramming language constructs [17] and enables the use of decision procedures
as implemented in tools such as SVC [14].

Predicate Abstraction. Predicate abstraction [17,14,32] collapses an infinite-
state LTS into a finite-state MTS defined by choosing finitely many quantifier-
free formulas of first-order logic.

Specification. The abstract states in the predicate abstraction are built out of
monomials over predicates. Each abstract state corresponds to a set of concrete
states that satisfy the same set of predicates. Formally, given a finite set of
quantifier-free formulas of first-order logic, Φ = {φ1, φ2, . . . , φn}, and a “bit-
vector” b ∈ {0, 1}n, we write 〈b, Φ〉 for a monomial whose ith conjunct is φi if
bi = 1, and ¬φi otherwise.
Definition 7 (Predicate abstraction). Given an LTS S and a finite set Φ =
{φ1, φ2, . . . , φn} of quantifier-free formulas of first-order logic, we derive a finite-
state abstract MTS BΦ following Definition 6 (A1 is S and A2 is BΦ) in such a
way that:

– ρ
def= ρΦb ⊆ ΣS × {0, 1}n, where s ρΦb b iff s |= 〈b, Φ〉; and

– ΣBΦ
def= {b ∈ {0, 1}n | s ρΦb b for some s ∈ ΣS}, which makes ρΦb total.

Implementing may-successors of a predicate abstraction. Current tool-supported
predicate-abstraction frameworks [17,14,32,9,2,1] can be viewed as constructing
an abstraction of the may-component of BΦ defined above. We now review how
to compute the set of abstract may-successors for a single program statement.

Following [14], we use BDDs over boolean variables x1, x2, . . . , xn as repre-
sentations of such sets. If ψ is a boolean combination of {φi | m ≤ i ≤ n}, we
compute in (3) below a BDD, denoted by Hmay(ψ, true,m), for representing the
set of may-successors of ψ. The definition of Hmay is essentially the definition of

434 P. Godefroid, M. Huth, and R. Jagadeesan

H in [14] where post(ψ)∧ η is replaced by ψ ∧¬ ˜pre(¬η) (to facilitate dualizing
this construction later).

Hmay(ψ, η, i) def=




(xi ∧Hmay(ψ, η ∧ φi, i+ 1))
∨(¬xi ∧Hmay(ψ, η ∧ ¬φi, i+ 1)) if 0 < i ≤ n,
1 if i = n+ 1 and ψ ∧ ¬ ˜pre(¬η) is satisfiable,
0 if i = n+ 1 and ψ ∧ ¬ ˜pre(¬η) is unsatisfiable.

(3)

The BDD in (3) can be computed using standard BDD operations [6] plus the
optimizations discussed in [14], while the satisfiability checks can be computed
by calling a theorem prover. Unwinding the recursion in the definition above, it
is clear that the set of may-successors of ψ computed by Hmay is:

next(ψ)may
b

def= {b′ ∈ ΣB | ψ ∧ ¬ ˜pre(¬〈b′, Φ〉) is satisfiable }. (4)

Implementing must-successors of a predicate abstraction. The logical duality of
may versus must is captured by replacing the satisfiability check of ψ∧¬ ˜pre(¬η)
in (3) by the unsatisfiability check of ψ ∧ ˜pre(¬η) in the following equation (5).

Hmust(ψ, η, i) def=




(xi ∧Hmust(ψ, η ∧ φi, i+ 1))
∨(¬xi ∧Hmust(ψ, η ∧ ¬φi, i+ 1)) if 0 < i ≤ n,
1 if i = n+ 1 and ψ ∧ ˜pre(¬η) is unsatisfiable,
0 if i = n+ 1 and ψ ∧ ˜pre(¬η) is satisfiable.

(5)

Thus, the set of must-successors of ψ represented by the BDD Hmust(ψ, true,m)
is:

next(ψ)must
b

def= {b′ ∈ ΣB | ψ ∧ ˜pre(¬〈b′, Φ〉) is unsatisfiable }. (6)

We now show that the BDDs computed by Hmay and Hmust represent exactly
the transitions specified in Definition 7.

Theorem 2 (Soundness and completeness).

– b→may b′ in BΦ iff b′ ∈ next(〈b, Φ〉)may
b ;

– b→must b
′ in BΦ iff b′ ∈ next(〈b, Φ〉)must

b .

Proof. The proof follows from the direct application of the definitions and is
omitted here due to space constraints.

Cost. In the worst case, the computation of Hmay(〈b, Φ〉, true,m) makes O(2n)
calls to the theorem prover. Similarly, the computation of Hmust(〈b, Φ〉, true,m)
makes at most O(2n) calls to the theorem prover. Hence, the complexity of com-
puting Hmust is the same as the complexity of computing Hmay.

Note that optimizations for computing Hmay discussed in [14] can also be
used when computing Hmust. Our algorithm also accommodates the complex-
ity of theorem-proving by allowing the sound over-approximation of Hmay and

Abstraction-Based Model Checking Using Modal Transition Systems 435

under-approximation of Hmust as follows: in both cases, simply convert the ab-
sence of an answer, when truncating the computation performed by the satisfi-
ability checker, into “satisfiable”.

Predicate-Cartesian Abstraction. Unfortunately, predicate abstraction of
MTSs is not incremental: adding a new predicate φn+1 to Φ may not yield a
refinement of the abstraction, and hence the entire abstraction may need to be
recomputed. This is illustrated by the following example.

Example 2. Revisiting Example 1, if Φ = {φ2, φ3}, then BΦ has four states, each
with a must-transition to itself. However, adding the predicate φ1 to Φ, there
are no must-transitions from the abstract state φ1 ∧ φ2 ∧ φ3 (111) in B{φ1}∪Φ.
This is quite unfortunate: the information about variable y is lost even though
y is absent from the assignment x = z. But in Example 1 we saw that there is a
must-transition from φ1∧φ2∧φ3 to the disjunction (φ1∧φ2∧φ3)∨(¬φ1∧φ2∧φ3)
that correctly captures the “absence of effect” on y.

Computing must-transitions with abstract states of the above kind can be ex-
pensive: given n predicates, there are a possible 22

n

such states. This motivates
our next topic: cartesian abstraction.

Specification. The basic idea behind cartesian abstraction is to approximate
sets of tuples by a tuple of sets. For instance, a set {〈0, 1〉, 〈1, 1〉} is represented
by {〈�, 1〉}, where � is used as a wildcard for different values (such as 0 and 1 in
this example). Formally, given a finite set Φ = {φ1, φ2, . . . , φn} of quantifier-free
formulas of first-order logic and a “tri-vector” c ∈ {0, 1, �}n, we write 〈c, Φ〉 for
a monomial whose ith conjunct is φi if ci = 1, ¬φi if ci = 0, and true otherwise.
Abstract states in CΦ are built out of “tri-vectors” of length n.

Definition 8 (Predicate-cartesian abstraction). Given an LTS S and a
finite set Φ = {φ1, φ2, . . . , φn} of quantifier-free formulas of first-order logic, we
derive a finite-state abstract MTS CΦ following Definition 6 (A1 is S and A2 is
CΦ) in such a way that:

– ρ
def= ρΦc ◦ ρΦb ⊆ ΣS ×{0, 1, �}n, where b ρΦc c iff ∀1 ≤ i ≤ n : [ci �= � ⇒ bi =

ci]; and
– ΣCΦ

def= {c ∈ {0, 1, �}n | b ρΦc c for some b ∈ ΣBΦ}, which makes ρΦc total.

The symbol � means “don’t care” in the above definition. It is easy to show that,
by construction, we have:

s (ρΦc ◦ ρΦb) c iff s |= 〈c, Φ〉. (7)

Note that the abstract MTS C′Φ obtained by abstracting BΦ (whose states
are vectors of n-bits) with ρΦc is typically less precise than CΦ. For instance, in
the case of Examples 1 and 2 again, C′Φ would not contain any must-transition
from state 111 (i.e., φ1 ∧ φ2 ∧ φ3), while CΦ does contain a must-transition from
111 to state �11.

436 P. Godefroid, M. Huth, and R. Jagadeesan

The MTS CΦ supports an approximate union operation, defined using the point-
wise application of Kleene’s alignment operator [21]: c∪c′ def= c′′, where c′′i = ci if
ci = c′i and � otherwise. This operation thus approximates disjunctions (sets) of
monomials by tri-vectors. As previously mentioned, cartesian abstraction allows
for incremental abstraction refinement:

Theorem 3 (Incremental refinement). For Φ = {φ1, φ2, . . . , φn} and Ψ =
Φ ∪ {φn+1, φn+2, . . . , φn+m}, the MTS CΨ is a refinement of the MTS CΦ.
Proof. The refinement ρ ⊆ ΣCΨ ×ΣCΦ is given by {(c′, c) | c is a prefix of c′}.
Implementing may-successors of a predicate-cartesian abstraction. Instead of rep-
resenting the abstract post-operator with a BDD as in the predicate abstraction
case, we now use a Ternary Decision Diagram [31], writing [x/v] for the replace-
ment of variable x with value v ∈ {0, 1, �}:

Gmay(ψ, η, i) def=



([xi/1]∧Gmay(ψ, η∧φi, i+ 1))∨([xi/0]∧Gmay(ψ, η∧¬φi, i+ 1))
∨([xi/�]∧Gmay(ψ, η, i+ 1)) if 0 < i ≤ n,
1 if i = n+ 1 and ψ ∧ ¬ ˜pre(¬η) is satisfiable,
0 if i = n+ 1 and ψ ∧ ¬ ˜pre(¬η) is unsatisfiable.

(8)
The function Gmay essentially computes the abstract post-operator of SLAM [1].
Unwinding the recursion in the above definition, the set of may-successors of ψ
represented by the TDD Gmay(ψ, true,m) is:

next(ψ)may
c

def= {c′ ∈ ΣC | ψ ∧ ¬ ˜pre(¬〈c′, Φ〉) is satisfiable }. (9)

Implementing must-successors of a predicate-cartesian abstraction. The TDD
Gmust(ψ, true,m), defined below, represents the set of must-successors of ψ. Sim-
ilar to our presentation of predicate abstraction, we are capturing the logical
duality of may versus must by replacing the satisfiability check of ψ ∧ ¬ ˜pre(¬η)
by the unsatisfiability check of ψ ∧ ˜pre(¬η) in the following equation:

Gmust(ψ, η, i) def=



([xi/1]∧Gmust(ψ, η∧φi, i+ 1))∨([xi/0]∧Gmust(ψ, η∧¬φi, i+ 1))
∨([xi/�]∧Gmust(ψ, η, i+ 1)) if 0 < i ≤ n,
1 if i = n+ 1 and ψ ∧ ˜pre(¬η) is unsatisfiable,
0 if i = n+ 1 and ψ ∧ ˜pre(¬η) is satisfiable.

(10)
Again, by unwinding the recursion, the set of must-successors of ψ represented
by the TDD Gmust(ψ, true,m) is thus defined by:

next(ψ)must
c

def= {c′ ∈ ΣC | ψ ∧ ˜pre(¬〈c′, Φ〉) is unsatisfiable }. (11)

The following theorem states that the TDDs computed by Gmay and Gmust

represent exactly the transitions specified in Definition 8.

Theorem 4 (Soundness and completeness).

– c→may c′ in CΦ iff c′ ∈ next(〈c, Φ〉)may
c ;

– c→must c
′ in CΦ iff c′ ∈ next(〈c, Φ〉)must

c .

Proof. Similar to the proof of Theorem 2.

Abstraction-Based Model Checking Using Modal Transition Systems 437

Cost. In the worst case, the computation of Gmay(〈c, Φ〉, true,m) makes O(3n)
calls to the theorem prover. Similarly, the computation of Gmust(〈c, Φ〉, true,m)
makes at most O(3n) calls to the theorem prover. Therefore, the complexity of
computing Gmust is the same as the complexity of computing Gmay.

Note that the heuristics discussed in [1] for approximating the calculation
of Gmay(〈c, Φ〉, true,m) by restricting the expansion of the recursion to a fixed
depth (rather than n) can be applied when computing Gmust(〈c, Φ〉, true,m) as
well. Again, the absence of answers from the theorem prover for satisfiability
checks can be interpreted as “satisfiable” to yield a sound over-approximation
of Gmay and under-approximation of Gmust.

5 Three-Valued Model Checking on MTSs

The automatic-abstraction algorithms of the previous section can be used to
generate a MTS A2 which, by construction, is guaranteed to be an abstraction
(as defined in Definition 4) of a given, possibly initial and concrete, system A1.
By Theorem 1, we can check a modal mu-calculus formula φ on A1 by analyzing
A2 instead, resulting in three possible answers: either (i) φ is necessarily true
on A2 — its initial state is contained in [| φ |]nec — and hence φ holds for A1
(the answer is true), or (ii) φ is only possibly true on A2 — its initial state
is contained in [| φ |]pos only — and whether φ holds on A1 is unknown (the
answer is unknown), or (iii) φ is not possibly true on A2 — its initial state is
not contained in [| φ |]pos — and φ does not hold on A1 (the answer is false).
We are thus left with a three-valued model-checking problem on MTSs which,
following [5], can be reduced to two model-checking problems on LTSs as follows.

First, we rewrite formula φ to a formula φ+ in positive normal form defined
over all the clauses of (1) plus (2) by pushing all negations in φ inwards so that
they apply only to tt or ff in φ+. This is done using the classic rewrite rules:
¬¬φ = φ, ¬(φ1 ∧ φ2) = (¬φ1) ∨ (¬φ2), ¬((∃α)φ) = (∀α)(¬φ), and ¬(µZ.φ) =
νZ.(¬φ). Then, we translate φ+ into a formula T (φ) by applying the following
translation rules: for all α ∈ Act, replace all occurrences of (∀α) in φ+ by (∀α∀)
and replace all occurrences of (∃α) in φ+ by (∃α∃).

Second, from the MTS A2 = (ΣA2 , Act,→must,→may), we define two LTSs
Apess

2 and Aopt
2 , representing respectively the pessimistic and optimistic inter-

pretations of A2 (see [5]). These two LTSs are defined over the set

Actc
def= {α∀ | α ∈ Act} ∪ {α∃ | α ∈ Act} (12)

of action symbols. Precisely, we define Apess
2 = (ΣA2 , Act

c,→pess) with

(s, α∀, s′) ∈ →pess if (s, α, s
′) ∈ →may (13)

(s, α∃, s′) ∈ →pess if (s, α, s
′) ∈ →must (14)

and we define Aopt
2 = (ΣA2 , Act

c,→opt) with

(s, α∀, s′) ∈ →opt if (s, α, s
′) ∈ →must (15)

(s, α∃, s′) ∈ →opt if (s, α, s
′) ∈ →may . (16)

438 P. Godefroid, M. Huth, and R. Jagadeesan

Finally, we model-check the modal mu-calculus formula T (φ) on the LTSs Apess
2

and Aopt
2 , and combine the results as specified in the following theorem.

Theorem 5 (Correctness of model checking algorithm). Given a MTS
A2 and a modal mu-calculus formula φ, let T (φ), Apess

2 , and Aopt
2 be the formula

and the two LTSs (respectively) as defined above. For any state s ∈ ΣA2 , we then
have

1. s ∈ [| φ |]nec iff (Apess
2 , s) |= T (φ)

2. s ∈ [| φ |]pos iff (Aopt
2 , s) |= T (φ).

Proof. By induction on the structure of φ.

The previous theorem is similar to Theorem 3 of [5]. It reduces three-valued
model checking of MTSs to two traditional (two-valued) model-checking prob-
lems on regular LTSs, namely (Apess

2 , s) |= T (φ) and (Aopt
2 , s) |= T (φ). Since

the transformations performed to obtain T (φ), (Apess
2 , s), and (Aopt

2 , s) can be
done in constant space and time linear in the size of the formula and MTS re-
spectively, three-valued model checking on MTSs has the same time and space
complexity as two-valued model checking on LTSs. Moreover, the problem can be
solved in practice using existing model-checking tools for LTSs, with all the op-
timizations that these tools may already implement. In particular, if the refined
system A1 is concrete and composed of multiple concurrent LTSs or of recursive
procedures (LTSs extended with a “call-stack”), the abstraction algorithms of
the previous section will preserve the architecture of A1 when generating A2,
and existing tools for model-checking concurrent or pushdown systems can be
applied to Apess

2 and Aopt
2 .

6 Conclusions

We developed a framework for automatic program abstraction based on modal
transition systems. This framework can be used for model-checking any formula
of the modal mu-calculus, and is also applicable to the verification of concur-
rent and pushdown systems. It uses cartesian abstraction, implemented with
TDDs and quantifier-free first-order-logic theorem-proving, to extend existing
predicate-abstraction techniques to the verification of formulas containing ar-
bitrarily nested path quantifiers. Cartesian abstraction has no significant cost
overhead and is compatible with the standard incremental refinement process
for adding more predicates.

Acknowledgments. We wish to thank Glenn Bruns and David Schmidt for
inspiring discussions and helpful comments.

Abstraction-Based Model Checking Using Modal Transition Systems 439

References

1. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian Abstraction for
Model Checking C Programs. In T. Margaria and W. Yi, editors, Proceedings of
TACAS’2001, volume 2031 of LNCS, pages 268–283, Genova, Italy, April 2001.
Springer Verlag.

2. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In Proceedings of the Seventh International SPIN Workshop (SPIN 2000),
volume 1885, pages 113–130. Springer Verlag, 2000.

3. S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions on infinite state
systems compositionally and automatically. In A. J. Hu and M. Vardi, editors,
Computer Aided Verification (CAV ’98), volume 1427, pages 319–331, Vancouver,
Canada, 1998. Springer Verlag.

4. G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued
Temporal Logics. In Proceedings of the 11th Conference on Computer Aided Verifi-
cation, volume 1633 of Lecture Notes in Computer Science, pages 274–287. Springer
Verlag, July 1999.

5. G. Bruns and P. Godefroid. Generalized Model Checking: Reasoning about Partial
State Spaces. In Proceedings of CONCUR’2000 (11th International Conference on
Concurrency Theory), volume 1877 of Lecture Notes in Computer Science, pages
168–182. Springer Verlag, August 2000.

6. R. R. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Di-
agrams. ACM Computing Surveys, 24(3):293–318, September 1992.

7. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

8. R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model
checking. In SAS’95: Proc. 2d. Static Analysis Symposium, Lecture Notes in Com-
puter Science 983, pages 51–63. Springer, 1995.

9. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting Finite-state Models from Java Source Code. In
Proceedings of the 22nd Intl’ Conference on Software Engineering, June 2000.

10. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs. In Proc. 4th ACM Symp. on Principles of Programming
Languages, pages 238–252. ACM Press, 1977.

11. P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record
of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 12–25, Boston, Mass., January 2000. ACM Press, New
York, NY.

12. D. Dams. Abstract interpretation and partition refinement for model checking. PhD
thesis, Technische Universiteit Eindhoven, The Netherlands, 1996.

13. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems, 19(2):253–291, 1997.

14. S. Das, D. L. Dill, and S. Park. Experience with Predicate Astraction. In
N. Halbwachs and D. Peled, editors, Proc. of the 11th International Conference
on Computer-Aided Verification, pages 160–172, Trento, Italy, July 1999. Springer
Verlag.

15. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

16. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In
Proceedings of the 24th ACM Symposium on Principles of Programming Languages,
pages 174–186, Paris, January 1997.

440 P. Godefroid, M. Huth, and R. Jagadeesan

17. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Grumberg
O., editor, Conference on Computer-Aided Verification, volume 1254 of Lecture
Notes in Computer Science, pages 72–83, Haifa, Israel, June 1997.

18. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, January 1985.

19. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: a foundation
for three-valued program analysis. In D. Sands, editor, Proceedings of the European
Symposium on Programming (ESOP’2001), volume 2028 of LNCS, pages 155–169,
Genova, Italy, April 2001. Springer Verlag.

20. P. Kelb. Model checking and abstraction: a framework preserving both truth and
failure information. Technical Report OFFIS, University of Oldenburg, Germany,
1994.

21. S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.
22. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,

27:333–354, 1983.
23. K. G. Larsen. Modal Specifications. In J. Sifakis, editor, Automatic Verification

Methods for Finite State Systems, number 407 in Lecture Notes in Computer Sci-
ence, pages 232–246. Springer Verlag, June 12–14 1989. International Workshop,
Grenoble, France.

24. K. G. Larsen and B. Thomsen. A Modal Process Logic. In Third Annual Sympo-
sium on Logic in Computer Science, pages 203–210. IEEE Computer Society Press,
1988.

25. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design: An International Journal, 6(1):11–44, January 1995.

26. R. Milner. An algebraic definition of simulation between programs. In 2nd Interna-
tional Joint Conference on Artificial Intelligence, pages 481–489, London, United
Kingdom, 1971. British Computer Society.

27. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
28. D. M. R. Park. Concurrency and automata on infinite sequences. In P. Deussen,

editor, In Proc. of the 5th GI Conference, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer Verlag, 1989.

29. A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trends. In J. W. de Bakker, editor, Current
Trends in Concurrency, volume 224 of Lecture Notes in Computer Science, pages
510–584. Springer-Verlag, 1985.

30. H. Saidi and N. Shankar. Abstract and model check while you prove. In Proc.
of the 11th Conference on Computer-Aided Verification, number 1633 in Lecture
Notes in Computer Science, pages 443–454. Springer, 1999.

31. T. Sasao. Ternary Decision Diagrams — Survey. In Proceedings of the 27th Inter-
national Symposium on Multi-valued Logic, pages 241–250. IEEE, 1997.

32. W. Visser, S. J. Park, and J. Penix. Using predicate abstraction to reduce object-
oriented programs for model checking. In Proc. of Formal Methods in Software
Practice (FMSP’00), pages 3–12, Portland, Oregon, August 2000.

Efficient Multiple-Valued Model-Checking Using Lattice
Representations

Marsha Chechik, Benet Devereux, Steve Easterbrook, Albert Y.C. Lai, and Victor
Petrovykh

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.

Email: fchechik,benet,sme,trebla,victorg@cs.toronto.edu

Abstract. Multiple-valued logics can be effectively used to reason about incom-
plete and/or inconsistent systems, e.g. during early software requirements or as
the systems evolve. We specify multiple-valued logics using finite lattices. In this
paper, we use lattice representation theory to cast the multiple-valued model-
checking problem in terms of symbolic operations on classical sets of states,
provided the lattices are distributive. This allows us to partially reuse existing
symbolic model-checking technology and improve efficiency over previous im-
plementations that were based on multiple-valued decision diagrams.

1 Introduction

Multiple-valued logics provide an interesting alternative to classical boolean logic for
modeling and reasoning about systems. By allowing additional truth values, they sup-
port the explicit modeling of uncertainty and disagreement. For these reasons, they
have been explored for a variety of applications in databases [19], knowledge represen-
tation [20], machine learning [24], and circuit design [22].

A number of specific multi-valued logics have been proposed and studied. For ex-
ample, Łukasiewicz [23] first introduced a three-valued logic to allow for propositions
whose truth values are ‘unknown’, while Belnap [1] proposed a four-valued logic that
also introduces the value ‘both’ (i.e. “true and false”), to handle inconsistent assertions
in database systems. Each of these logics can be generalized to allow for different lev-
els of uncertainty or disagreement. In practice, it is useful to be able to choose different
multi-valued logics for different modeling tasks.

The motivations that led to the development of these logics clearly apply to the
modeling of software behaviour, especially the exploratory modeling used in the early
stage of requirements engineering and architectural design.

– We need to allow for uncertainty – for example, we may not yet know whether
some behaviours should be possible;

– We need to allow for disagreement – for example, different stakeholders may dis-
agree about how the systems should behave;

– We need to represent relative importance – for example, in the case where some
behaviours are essential and others may or may not be implemented.

For reasoning about dynamic properties of systems, existing modal logics can be
extended to the multi-valued case. Fitting [17, 18] suggests two different approaches

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 441−455, 2001.
 Springer-Verlag Berlin Heidelberg 2001

TM

FT

MF

FF

MT

TF

FM

MM

TT

�
�
�
�
�
�

�
�
�
�
�
�

F

M

T
T

F

(a)

TT

FF

UU

(e)(d) (c)

TT

FF

TF FT FTTF

(b)

Fig. 1. (a) 2, the classical logic lattice; (b) 3, a 3-valued logic lattice, representing uncertainty;
(c) 2x2, a 4-valued logic lattice, representing disagreement; (d) the 5-valued lattice, representing
disagreement with “unknowns”; (e) a lattice 3X3.

for doing this: the first extends the interpretation of atomic formulae in each world to
be multi-valued; the second also allows multi-valued accessibility relations between
worlds. The latter approach is more general, and our work on logic in this paper is
somewhat similar to his. Three-valued logic has received most interest. It has been
shown to be useful for analyzing programs using abstract interpretation [9, 25], and
for analyzing partial models [3, 4]. Bruns and Godefroid also proved that automata-
theoretic model-checking on 3-valued predicates reduces to classical model-checking.
In our recent work [8], we showed that this result extends to many-valued logics, where
the values form a total order (e.g., “True”, “Likely”, “Undecided”, “Unlikely”, “False”).
Work has also been done on deciding a more general class of multi-valued logics. In
particular, the work of Hähnle and others [21, 27] has led to the development of several
theorem-provers for first-order multi-valued logics.

This paper deals with symbolic model-checking for multi-valued logics. In our ear-
lier work [10, 7], we identified a useful family of multiple-valued logics, known as the
quasi-boolean logics [2] (or de Morgan logics [15]). A quasi-boolean logic has truth
values that form a finite lattice, with a negation operator chosen such that the nega-
tion of each value is its image under horizontal symmetry. Conjunction and disjunction
are defined as meet and join in the lattice, respectively. A few quasi-boolean logics are
represented in Figure 1. Classical logic, referred to as 2, is given in Figure 1(a). The
lattice in Figure 1(c) represents possible disagreement between two views: TT and FF
represent unanimous agreement on true or false; TF and FT, two possible types of dis-
agreement. The lattice in Figure 1(d) represents disagreement when some information
is not known by either view. This sometimes happens when merging two partial views,
represented by state machines. Suppose that a state s is present in one state machine,
but a variable v is not. Suppose further that the variable v is present in the other state
machine, but the state s is not. Then neither state machine can give the value for vari-
able v in state s. Such situation requires introduction of a new logic value, “unknown”,
represented in Figure 1(d) by value UU [16].

We are interested in building a model-checker that takes as its input a particular
quasi-boolean logic, represented as a lattice of truth values (L;v), a state machine
model, represented as a multiple-valued Kripke structure, and a temporal logic prop-
erty expressed in CTL enriched with multiple-valued semantics, and returns the truth
value that the property has in the initial state(s) and a counter-example, if applicable.
Success of symbolic model-checking in a given domain (probabilistic, multiple-valued,
timed, etc.) depends on being able to create efficient algorithms for manipulating the
sets of states in which a property holds. We need to calculate union, intersection, com-
plement, and backwards reachability (for computing predecessors). For model checking

442 M. Chechik et al.

in a given multiple-valued logic, we can treat these as operations over multiple-valued
sets: sets whose membership functions are multiple-valued.

We have explored a number of choices for efficient computation of these operations
over multiple-valued sets in our previous work:

– We can use MDDs, the multiple-valued extension of binary decision diagrams [5],
as a canonical representation of the multiple-valued membership function. A multiple-
valued model-checker based on MDDs is described in [7].

– We can represent the multiple-valued set as a collection of classical sets, one for
each value of the logic. This approach has been taken in [10], using a Multiple-
Valued Binary-Terminal Decision Diagram (MBTDD) [13] to represent each set.
Clearly, multi-valued logics with a finite number of values do not add expressive

power to the modeling. However, in many cases they produce a significantly smaller
state space then the alternative approach of introducing additional boolean predicates.
Still, the above approaches suffer from a fairly high running time (O(jLj3n � h � jpj,
where h is the height of the lattice representing the logic, jLj is the number of logic
values, jpj is the size of the formula under analysis, and n is the number of atomic
propositions in the system), and we are interested in further optimizations of the model-
checker.

In this paper, we describe a third alternative. We represent the multiple-valued sets
as a collection of classical sets, but exploit a result of lattice theory to reduce the number
of such sets that we need to represent. In a distributive lattice, any element of the lattice
can be represented uniquely as the join of a subset of the join-irreducible elements
of the lattice. This provides us with a compact encoding of the multiple-valued set
membership function. This encoding supports efficient computation of the necessary
set operations, and hence significantly reduces the running time of our model-checker.

The paper is organized as follows: Section 2 introduces multiple-valued sets and
multiple-valued set operations, whereas Section 3 shows how to represent these using
join-irreducible elements of the lattice describing the logic. We review semantics of
multiple-valued CTL and multiple-valued Kripke structures, and present the model-
checking algorithm in Section 4. We compare the performance of this model-checker
with our previous multiple-valued model-checkers [7, 10] in Section 5 and conclude in
Section 6.

2 Multiple-Valued Sets

2.1 Quasi-Boolean Logics

Our approach to modeling makes use of an entire family of multi-valued logics. Rather
than giving a complete axiomatization for each logic, we simply give a semantics by
defining conjunction, disjunction and negation on the truth values of the logic, and
restrict ourselves to logics where these operations are well-defined, and satisfy commu-
tativity, associativity etc. Such properties can be easily guaranteed if we require that the
truth values of the logic form a lattice. The partial order operation a v b means “b is at
least as true as a”. Conjunction and disjunction of L are defined as u and t (meet and
join) operations of (L;v), respectively. In defining negation, we decided that involu-
tion (::a = a) is essential, whereas the laws of non-contradiction (:a ^ a = ?) and

443Efficient Multiple-Valued Model-Checking Using Lattice Representations

T

F

DK DC

UL
VU

Fig. 2. A finite distributive non-quasi-boolean lattice.

excluded middle (:a_a = >) are not. The resulting family of multiple-valued logics is
known as quasi-boolean logics [2]. A quasi-boolean logic L has truth values that form
a finite quasi-boolean lattice (L;v).

Definition 1. A finite lattice (L;v) is quasi-boolean [2] if there exists a unary opera-
tor : defined for it, with the following properties (a; b are elements of (L, v)):

:(a u b) = :a t :b (De Morgan) ::a = a (: involution)

:(a t b) = :a u :b a v b, :a w :b (: antimonotonic)

Thus, negation is defined as the : operator of (L;v).
In this paper, we additionally assume that (L;v) is distributive, i.e.,

a t (b u c) = (a t b) u (a t c) a u (b t c) = (a u b) t (a u c) (distributivity)

Many lattices that we encounter in practice are distributive. For example, lattices in
Figure 1(a),(b),(c),(e) are distributive. However, the lattice 5 in Figure 1(d) is not dis-
tributive1. Furthermore, not all finite distributive lattices are quasi-boolean. Consider an
example in Figure 2. This lattice also represents levels of disagreement: T, DK (“don’t
know”), DC (“don’t care”), UL (“unlikely”), VL (“very unlikely”) and F. However, val-
ues UL and VL do not have counter-parts satisfying our definition of quasi-complement.

2.2 Definition of Multiple-Valued Sets

We now define the concept of multiple-valued sets over quasi-boolean lattices and give
their operations. In classical set theory, a set is defined by a boolean predicate, also
called a membership function. Typically, it is written using set comprehension notation:
a predicate P defines the set S = fx j P (x)g. For instance, if P = �x 2 Z : 0 �

x � 10, then S is the set of all integers between 0 and 10 inclusive. If, instead of using
a boolean membership function, we allow the membership function to range over a
lattice, we obtain a multiple-valued set theory in which it is possible to make statements
like “element x is more in set S than element y”. We call the resulting sets mv-sets.

Given a lattice L = (L;v), we define a multiple-valued set theory relative to it. For
an mv-set S, and a candidate element x, we use S(x) to denote the membership degree
of x in S. In the classical case, this amounts to representing a set by its characteristic
function.

We can use the 4-valued lattice representing disagreement (Figure 1(c)) to represent
disagreement over membership of the set of years of the second millennium, as shown in

1 We address handling of these lattices in Section 6.

444 M. Chechik et al.

{1001,...,1999}

{...999,2001...}

{1000} {2000}

Fig. 3. The 4-valued set of years in the second millennium.

Figure 3. In order to graphically depict an mv-set, we use the structure of its underlying
lattice, but replace each element with the set of elements which take on that value in the
mv-set. “Pedants” insist that a millennium begins on the year ending in 1, so to them
1000 is not in the set, but 2000 is. However, “partiers” wanted to celebrate the start of
the third millennium in 2000, and so claimed that 1000 is in the second millennium, and
2000 is not. Let (v1,v2) represent the tuple of answers that Pedants and Partiers give to
a question of membership of a given element in the second millennium. Then TT is the
value for all elements of f1001, 1002, ..., 1999g, TF is the value for 2000 (Pedants say
“yes”, whereas Partiers say “no”), FT is the value for 1000 (Pedants say “no”, whereas
Partiers say “yes”), and they agree that no other years belong to the second millennium.

We extend some standard set operations to the multiple-valued case by lifting the
lattice meet and join operations, as follows:

(S \L S
0)(x) , (S(x) u S

0(x)) (Multiple-valued intersection)
(S [L S

0)(x) , (S(x) t S
0(x)) (Multiple-valued union)

S = S
0 , 8x : (S(x) = S

0(x)) (Extensional equality)

It is easy to verify that if L is 2, the two-valued lattice representing classical logic (Fig-
ure 1(a)), then the membership function is a boolean predicate, and the set operations
are simply standard set membership, union, and intersection. If L is the interval [0; 1],
ordered by the usual � relation on real numbers, then we obtain fuzzy set theory [29].
The fuzzy-set lattice is infinite, but complete.

Hence forward, we will restrict ourselves to finite and distributive quasi-boolean
lattices. These are complete, so we can extend the notion of set complement to the
multiple-valued case, by defining it in terms of the quasi-complement of L, and denot-
ing it with a bar:

S(x) , :(S(x)) (Multiple-valued complement)

We then obtain the expected properties:

S [L S0 = S \L S0 (De Morgan 1)
S \L S0 = S [L S0 (De Morgan 2)

S \L (T [L V) = (S \L T) [L (S \L V) (Distributivity 1)
S [L (T \L V) = (S [L T) \L (S [L V) (Distributivity 2)

Since our sets, either classical or multiple-valued, are subsets of some U , we denote
the classical complement of a set S as U nS. For model-checking, U will be the set of
all states of a model.

We now define some additional concepts for mv-sets that are not needed in the
classical set theory:

445Efficient Multiple-Valued Model-Checking Using Lattice Representations

Definition 2. Support, Core, `-cut, and `-clip of a multi-valued set, S:

�(S) , fx j S(x) 6= ?g (Support)
C(S) , fx j S(x) = >g (Core)
*` (S) , fx j ` v S(x)g (`-cut)
+` (S) , fx j S(x) v `g (`-clip)

All of these operations create classical sets. Support, cut, and core are standard concepts
from fuzzy set theory [29]; clip is a new operation, which we shall need to prove some
later result. Following the conventions of fuzzy set theory, we identify an explicit uni-
verse of discourse U , rather than use an undefinable set of all possible entities. Mv-sets
can be thought of as functions from elements of U to the underlying lattice; therefore,
U =*?(S).

Consider the example 4-valued set of Figure 3. By inspection, we can see that
C(S) = f1001; : : : ; 1999g (all the years agreed on by both groups),�(S) = f1000; : : : ;
2000g (all the years considered by either group), and *TF(S) = f1001; : : : ; 2000g, the
second millennium according to the Pedants.

2.3 Multiple-Valued Relations

Now we extend the concept of degrees of membership in an mv-set to degrees of relat-
edness of two entities. This concept, formalized by multiple-valued relations, allows us
to define multiple-valued transitions in a state machine models.

Definition 3. A multiple-valued relation R on two sets S and T is an mv-subset of
S � T . The forward image of an mv-subset Q of S under R is

F (R; Q) , �t:
G

s2S

(Q(s) u R(s; t))

and the backward image B(R; Q) of an mv-subset Q of T is

B(R; Q) , �s:
G

t2T

(Q(t) u R(s; t))

Given an mv-subset of S, its forward image under the relation R is an mv-subset of T ;
likewise, an mv-subset of T has an mv-subset of S as a backward image.

3 Efficient Representations of Multiple-Valued Sets

Having defined mv-sets, we now address an efficient implementation of the mv-set
operations when the underlying lattice is finite and distributive. We represent each mv-
set compactly using the cuts of the join-irreducible elements in the lattice. In this section
we review the concept of join-irreducibility and show that the join-irreducible encoding
allows for efficient implementation of the mv-set operations and efficient recovery of
the full mv-set.

446 M. Chechik et al.

3.1 Join-Irreducibility

Definition 4. [12] An element j in L is join-irreducible iff j 6= ? and for any x and y
in L, j = x t y implies j = x or j = y. Dually, an element m is meet-irreducible iff
m 6= > and for any x and y, m = x u y implies m = x or m = y.

In other words, j cannot be further decomposed into the join of other elements in
the lattice, and m cannot be further decomposed into the meet of other elements in the
lattice, just as prime numbers cannot be further factored into the product of other natural
numbers. For example, the join-irreducible elements of the lattice 3x3 in Figure 1(e),
shown in bold, are fMF, TF, FM, FTg. We denote the sets of all join-irreducible and
meet-irreducible elements of a lattice L by J (L) and M(L), respectively.

We will use join-irreducibility to provide us with a kind of “prime factorization”
for mv-sets. Every lattice element of a finite lattice can be defined as a subset of join-
irreducible elements:

Theorem 1. [12] Let ` be any element in a lattice (L;v). Then `=
F
f j2J (L) j jv

` g.

For example, in the lattice shown in Figure 1(e), TT =
F
fMF;TF;FM;FTg;TM =F

fMF;TF;FMg;FF =
F
;, and so on.

Lemma 1. [12] Let j, x, and y be elements of a distributive lattice (L;v), with j being
join-irreducible. Then j v x t y iff j v x or j v y.

Lemma 2. Let ` be any element of a quasi-boolean lattice (L;v). Then

f:x j x 2 L; ` v x g = fx j x 2 L; x v :` g

The above two lemmas describe properties of join-irreducible elements that we ex-
ploit in our representation of mv-sets. Note that Lemma 1 only applies to distributive lat-
tices, and Lemma 2 uses the : operator that we defined for quasi-boolean lattices. From
here on we will assume all our lattices are distributive quasi-boolean lattices. All proofs
are omitted in this version of the paper due to space limitations. For proofs of Lemma 2
and other non-trivial results, please refer to the extended version of this paper available
at http://www.cs.toronto.edu/˜chechik/publications.html.

Definition 5. Let X be a subset of L. Then

max(X) ,

�
tX if tX 2 X

unde�ned otherwise
min(X) ,

�
uX if uX 2 X

unde�ned otherwise

Definition 6. Up-sets and down-sets of lattice elements are defined as follows:

" ` , fx j x 2 L; ` v xg (Up-set of `)
` , fx j x 2 L; x v `g (Down-set of `)

447Efficient Multiple-Valued Model-Checking Using Lattice Representations

(a)

{1001,...,1999}

{...999,2001...}

{1000} {2000}

(b)

{}

{1000, 1002 ..., 2000}

{1001, 1003, ... 1999}

{}

(c) {1001, 1003, ... 1999}

{1000} {2000}

{1002,..., 1998}

Fig. 4. (a) The 4-valued set of years in the second millennium (same as Figure 3); (b) The even
numbers between 1000 and 2000, represented as a 4-valued set; (c) The mv-intersection of the
two sets.

3.2 Encoding mv-sets Using j-cuts

Given that we can represent any element of a lattice using the join-irreducibles below it,
we proceed to encode mv-sets using the collection of j-cuts for j 2 J (L). We will show
that the j-cuts of an mv-set contain sufficient information to rebuild the original mv-set,
and prove that all the necessary operations for symbolic model-checking – intersection,
union, complement, and backward image – can be easily carried out in this encoding,
provided the lattice is distributive.

Our first result, which follows trivially from Theorem 1, states that the membership
degree of an element in an mv-set is the join of all join-irreducibles whose cuts contain
the element.

Theorem 2. For any mv-set S with underlying lattice L,

S(x) =
G
fj j j 2 J (L); x 2 *j(S)g

We now define the operations over mv-sets in terms of operations over their j-cuts.

Theorem 3. The `-cut of a multiple-valued intersection is the intersection of the `-cuts
of the individual mv-sets. For j 2 J (L), the j-cut of a multiple-valued union is the
union of the j-cuts.

8` 2 L :*` (S \L T) = *` (S)\ *` (T) (Cut-intersection)
8j 2 J (L) :*j (S [L T) = *j (S)[*j (T) (Cut-union)

As an example, consider the two mv-sets shown in Figure 4, parts (a) and (b). The
TF-cut of their mv-intersection should be the same as the (classical) intersection of the
TF-cuts. By inspection, the TF-cut of part (a) is f1000; : : : ; 1999g, and that of part (b) is
f1000; 1002; : : : ; 2000g, with the intersection f1000; 1002; : : : ; 1998g. The TF-cut of
the mv-intersection of (a) and (b), shown in part (c), is f1000; 1002; : : : ; 1998g, which
is indeed the same as the intersection of the individual TF-cuts of these mv-sets. It is
easy to check that the same holds for other j-cuts. Theorem 3 is the fundamental result
that we will use throughout the remainder of this paper.

Formulation of complementation uses two observations. First is a trivial corollary of
Lemma 2, indicating that multiple-valued complement turns each j-cut into a :j-clip:

Lemma 3. Each j-cut of an mv-set, S, is the :j-clip of the complement of S:

*j (S) = +
:j (S)

448 M. Chechik et al.

Second, every up-set of a join-irreducible, j, is the complement (in the lattice) of the
down-set of some meet-irreduciblem:

Lemma 4. In all distributive lattices L = (L;v) there exists a bijection f : J (L) !
M(L) such that, for all join-irreducible j, " j = Ln # f(j).

It follows that for an mv-subset S of some universe U , *j(S) = Un +f(j)(S). We use
this to construct the j-cut of a multiple-valued complement of an mv-set:

Theorem 4. Let S be an mv-subset of some U , based on a lattice L = (L;v), and let
j 2 J (L). The j-cut of the multiple-valued complement of S is the classical comple-
ment (in U) of the f�1(:j) cut of S: *j (S) = U n *f�1(:j) (S).

Finally, we demonstrate that the j-cuts of the backward image of an mv-set under a
multiple-valued relation are simply the backward images of the j-cuts of the relation:

Theorem 5. Let R be a multiple-valued relation on S and T , and Q be an mv-subset
of T , with the same underlying lattice. Then

*j (B(R; Q)) = fs j (9t 2*j (Q) : (s; t) 2*j (R))g (Cut-reachability)

These results allow us to represent each mv-set compactly as a family of its j-cuts.
Theorem 2 guarantees that this representation of mv-sets preserves all information; it
also tells us how to recover mv-set membership from the j-cuts.

The advantage of this representation is in the computation of multiple-valued inter-
sections and unions. If mv-sets were represented by families of pieces, i.e., indexed by
all lattice values, then intersection and union would both take as many as O(jLj

2
) clas-

sical set operations. In contrast, the cut-intersection and the cut-union theorems imply
that our representation requires just O(jJ (L)j) classical set operations.

4 Multiple-Valued Model-Checking

In this section we review multiple-valued Kripke structures, which we call �Kripke
structures, and multiple-valued CTL (�CTL). We then outline a model-checking algo-
rithm based on cuts of join-irreducible lattice values.

4.1 Semantics

A state machine M is a �Kripke structure if M=(S; S0; R; I; A; L), where:

– L is a quasi-boolean logic represented by a lattice (L, v). L provides the lattice for
all mv-sets in the model.

– A is a (finite) set of atomic propositions, otherwise referred to as variables. For
simplicity, we assume that all variables are of the same type, with values ranging
over the values of the logic L.

– S is a (finite) set2 of states; each state is identified by a unique (within M) label s.
– S0 � S is the non-empty mv-set of initial states.

2 S is a classical set, but it can also be considered an mv-set where 8s : S(s) 2 f>;?g.

449Efficient Multiple-Valued Model-Checking Using Lattice Representations

[[a]] , (I(s))(a)

[[' ^]] , [[']] \L [[]]

[[:']] , [[']]

[[' _]] , [[']] [L [[]]

[[EX']] , B(R; [[']])

[[AX']] , [[EX:']]

[[E['U]]] , [[]] [L ([[']] \L [[EXE['U]]])

[[A['U]]] , [[]] [L ([[']] \L [[AXA['U]]] \L [[EXA['U]]]

Fig. 5. Semantics of �CTL operators.

– R is the multiple-valued transition relation. For each state s, there is at least one
(non-false) transition (s; t) 2 �(R), extending the classical notion of Kripke struc-
tures.

– I is a labeling function that maps states in S to mv-subsets of A. Intuitively, for any
symbol a 2 A, (I(s))(a) = ` can be considered equivalent to the variable a having
value ` in state s.

This description of �Kripke structures is that of our previous work [7], influenced by
notation used for fuzzy transition systems [26].

Now we review the semantics of �CTL operators on a �Kripke structure M over
a quasi-boolean logic L. In extending the CTL operators, we want to ensure that the
expected CTL properties [11] are still preserved3. The semantics of �CTL operators is
given in Figure 5. We use the double-brace notation, adopted from denotational seman-
tics, and write [[']] to denote the mv-set of states representing a degree to which ' holds.
The semantics of the EX operator comes from our previous definition of backward im-
age (Definition 3). The definitions of AU , EU and AX are given using the properties
of CTL operators [11].

4.2 Multiple-Valued Model-Checking Algorithm

Our multiple-valued model-checking algorithm is shown in Figure 6. In this algorithm,
we encode state mv-sets and the transition relation for the model by their j-cuts. For
mv-sets, we use the following shorthand:

bb'cc , f*j ([[']]) j j 2 J (L)g (All j-cuts)
bb'ccj , *j ([[']]) (Single j-cut)

The structure of this algorithm is based on our earlier algorithm in [10]. The routine
Check(p) is the entry point, where p is the �CTL formula to be checked. It recurses
through p, associating each sub-formula ' with j-cuts (bb'cc) of state mv-sets. The
handling of^ and_ follows from Theorem 3. The: operator is handled by the negation
function, based on Theorem 4. The next-state operators EX and AX are handled by
the pred function, based on Theorem 5; pred computes EX , and AX(') is obtained

3 Note that the AU fixpoint is somewhat unusual because it includes an additional conjunct,
EXA['U]. This term preserves a “strong until” semantics for states that have no outgoing
> transitions in non-Kripke structures [6].

450 M. Chechik et al.

Check(p)
case p 2 A: return bbpcc
case p = :': return negation(bb'cc)
case p = ' ^ : 8j 2 J (L) : bbresultccj := bb'ccj \ bb ccj

return bbresultcc
case p = ' _ : 8j 2 J (L) : bbresultccj := bb'ccj [bb ccj

return bbresultcc
case p = AX ': return negation(pred(negation(bb'cc)))
case p = EX ': return pred(bb'cc)
case p = A['U]: return QUntil(A; bb'cc; bb cc)
case p = E['U]: return QUntil(E; bb'cc; bb cc)

negation(bb'cc)
8j 2 J (L) : bbnccj = S n (bb'cc neg[j])
return bbncc

QUntil(Q; bb'cc; bb cc)
bbQU cc := bb cc

repeat
bbEXtermcc := pred(bbQU cc)
if Q = A

bbAXtermcc := negation(pred(negation(bbQU cc)))
else // Q = E

bbAXtermcc := S

8j 2 J (L) : bbQU ccj := bb ccj [(bb'ccj \ bbEXtermccj \ bbAXtermccj)
until bbQU cc converges
return bbQU cc

pred(bb'cc)
8j 2 J (L) : bbresultccj := f s j 9t : t 2 bb'ccj ^ (s; t) 2 bbRccj g

return bbresultcc

Fig. 6. The model-checking algorithm.

from :EX(:'). Finally,EU and AU are fixpoints computed iteratively by the QUntil

function using the equations given in Figure 5.
In the negation function, a precomputed neg table is used for quick lookup of

f�1(:j), for any join-irreducible element j, as required by Theorem 4. It is precom-
puted from the constructive proof of Lemma 4 where f is specified: first find f using
f(j) = max(Ln "j), then fill in the neg table using neg[:f(j)] = j.

Theorem 6. Given a�Kripke structure and a�CTL formula p to model-check,Check(p)
in the algorithm in Figure 6 returns bbpcc, i.e., f*j ([[p]]) j j 2 J (L)g.

4.3 Running Times

To determine the running time of this algorithm, we start by analyzing individual opera-
tions: union, intersection, complement and backward image. We use a Multiple-Valued
Binary Terminal Decision Diagram (MBTDD) [13] to represent each j-cut, denoting

451Efficient Multiple-Valued Model-Checking Using Lattice Representations

Operation MBTDD-based MDD-based

[and \ jJ (L)j �MBT(n)2 MDD(n)2

complement jJ (L)j � MBT(n) MDD(n)
back. image jJ (L)j � (MBT(n) + MBT(n)� MBT(2n)) MDD(n) + MDD(n)� MDD(2n)

Table 1. Running times for operations on mv-sets using MBTDDs with j-cut encoding vs.
MDDs.

the size of a MBTDD for n variables as MBT(n). The running time of each operation
on a Kripke structure is given in the middle column of Table 1, where n = jAj. For
example, Theorem 3 allows us to do a pairwise union of each of J (L) j-cuts, tak-
ing jJ (L)j �MBT(n)2 operations. Computation of backward image for each of J (L)
MBTDDs consists of a disjunction (MBT(n) operations) of conjunctions (Definition 3)
between the formula (MBT(n)) and the transition relation (MBT(2n) operations).

Next, note that the computation of QUntil in the model-checking algorithm in Fig-
ure 6 dominates the running time, with each state changing its position in bbQU cc at most
h times, where h is the height of the lattice (L;v), so the maximum number of iterations
of the repeat-until loop is jSj � h. In each iteration, there are two pred operations, two
negation operations, and three unions and intersections. In the worst case, MBT(n) =
O(jLj

jAj�1
), so the running time of QUntil is O(jSj � h� jJ (L)j � jLj

3jAj�2
).

Theorem 7. Given a �Kripke structure (S; S0; R; I; A; L) and a �CTL formula p, the

algorithm in Figure 6 terminates in O(jpj � jSj �h� jJ (L)j � jLj
3jAj�2

) time, where
h is the height of the lattice.

5 Evaluation

In this section, we compare the running time of the algorithm in this paper with those
of our earlier algorithms [7, 10]. Since the structure of the algorithms does not change,
the difference in performance is in the cost of the four operations on mv-sets: union,
intersection, complement and backward reachability.

In our first multiple-valued model-checker [10], we encoded each lattice value x as
a sequence of jLj bits, where bit x was on if x 2 L, and off otherwise. In this paper, we
encode a lattice value x using a bit for each j 2 J (L), which is on only when j v x. It
is always better than the encoding in [10], and thus all operations are faster.

The righthand column of Table 1 lists the running times of the four operations for
the MDD-based representation of mv-sets that we used in [7]. We refer to the size of
an MDD on n variables as MDD(n). Running times for MDD operations are similar to
those for MBTDD operations; however, for a given mv-set, the MBTDDs representing
the j-cuts are usually smaller than an MDD representing the whole mv-set.

We can express the performance improvement of the model-checker in this paper
in terms of the ratio between the average size of an MDD and that of an MBTDD
for a given set of n variables, which we call �. The performance improvements for the
operations in Table 1 are jJ (L)j=�2 for unions and intersections, and at most jJ (L)j=�
for complements and backward images.

452 M. Chechik et al.

We can then assess the overall improvement by estimating � for different types
of problem. In the worst case, an MDD and an MBTDD can have the same number
of non-terminal nodes, making � roughly 1; then the algorithm of this paper actually
results in a slowdown. However, our experience indicates that as problems get larger,
� approaches jLj. This improvement is because there are typically more common sub-
expressions in boolean-terminal diagrams than in their multi-terminal counterparts, and
thus more possibility for sharing. Preliminary experimental results support this analysis.
Results in Table 2 were produced by randomly generating a pool of sample functions
of a given number of variables (3 to 6), and then creating the single MDD and the
collection of jJ (L)j MBTDDs representing the function, and taking the average sizes
of the individual decision diagrams over the sample. We give this issue a fuller treatment
elsewhere [13]. Thus, we believe that there is a significant speedup when using the
model-checking algorithm described in this paper. For unions and intersections this
speedup can range from jLj to as much as jLj2= log

2
jLj, depending on the shape of the

lattice.

Number of variables Mean MDD size Mean MBTDD size Ratio (�)

3 99 66 1.5
4 828 218 3.8
5 7,389 949 7.8
6 66,434 7,510 8.8

Table 2. Empirical results, for randomly-generated functions, with L = 3x3.

6 Conclusion

The challenge for efficient model-checking over multiple-valued logics is to find a com-
pact encoding for mv-sets of states that supports fast computation of mv-set union,
intersection, complement and backwards reachability. In this paper we described an el-
egant solution based on the use of join-irreducible elements of a lattice to provide a
factorization of the mv-sets. We demonstrated that this representation supports the nec-
essary operations, and showed that the result is a significantly faster model-checking
algorithm. The exact speedup depends on the size of the join-irreducible set. For ex-
ample, when we multiply lattices, as we often do when reasoning about multiple points
of view (with or without abstraction) [16], the size of the resulting join-irreducible set
grows as the sum of sizes of join-irreducible sets of the original lattices.

Furthermore, after casting the multiple-valued model-checking problem in terms of
efficient operations on MBTDDs, we can further improve the running times by reusing
existing symbolic model-checking technology. In particular, we can further optimize
the MBTDD negation operation (to jJ (L)j) by using complement arcs, as in Somenzi’s
CUDD library [28].

The use of join-irreducibility to optimize our algorithms introduces an important
restriction on the logics that we can use in the model-checker. We originally chose to
restrict ourselves to logics whose values form a quasi-boolean lattice, as these logics

453Efficient Multiple-Valued Model-Checking Using Lattice Representations

behave similarly to classical logic, but do not enforce the law of excluded middle and
the law of non-contradiction [10]. The optimization described in this paper restricts
us further to logics whose lattices are distributive. Our motivation for developing a
multiple-valued model-checker was to verify properties of models that contain uncer-
tainty and/or disagreement [16]. For this we typically use the logics 3 and 2x2 (shown
in Figure 1), and their products, all of which are distributive. However, when the logic
is represented by a non-distributive lattice, e.g., 5, our model-checker automatically
switches to the MDD-based algorithm, described in [7]. Thus, in the case where the op-
timization is possible, it is applied, and in the other cases, the more general algorithm
is used.

Optimizing model-checking on multi-valued logics through the use of join-irreducible
elements is not restricted to branching-time logic or to symbolic model-checking. In
particular, in our recent work [8] we showed that when all elements of the lattice are
join-irreducible, then multi-valued model-checking reduces to several queries to a clas-
sical model-checker, and built a multi-valued LTL model-checker on top of SPIN.

Acknowledgments

We would like to thank Alasdair Urquhart for suggesting that distributive lattices can
be represented by their join-irreducible elements. This work was financially supported
by NSERC and CITO.

References

1. N.D. Belnap. “A Useful Four-Valued Logic”. In Dunn and Epstein, editors, Modern Uses of
Multiple-Valued Logic, pages 30–56. Reidel, 1977.

2. L. Bolc and P. Borowik. Many-Valued Logics. Springer-Verlag, 1992.
3. G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with 3-Valued Temporal

Logics”. In Proceedings of CAV’99, volume 1633 of LNCS, pages 274–287, 1999.
4. G. Bruns and P. Godefroid. “Generalized Model Checking: Reasoning about Partial State

Spaces”. In Proceedings of CONCUR’00, volume 877 of LNCS, pages 168–182, August
2000.

5. R. E. Bryant. “Symbolic Boolean manipulation with ordered binary-decision diagrams”.
Computing Surveys, 24(3):293–318, September 1992.

6. T. Bultan, R. Gerber, and C. League. “Composite Model Checking: Verification with
Type-Specific Symbolic Representations”. ACM Transactions on Software Engineering and
Methodology, 9(1):3–50, January 2000.

7. M. Chechik, B. Devereux, and S. Easterbrook. “Implementing a Multi-Valued Symbolic
Model-Checker”. In Proceedings of TACAS’01, volume 2031 of LNCS, pages 404–419.
Springer, April 2001.

8. M. Chechik, B. Devereux, and A. Gurfinkel. “Model-Checking Infinite State-Space Systems
with Fine-Grained Abstractions Using SPIN”. In Proceedings of the 8th SPIN Workshop on
Model Checking Software, volume 2057 of LNCS, pages 16–36, May 2001.

9. M. Chechik and W. Ding. “Lightweight Reasoning about Program Correctness”. CSRG
Technical Report 396, University of Toronto, March 2000.

10. M. Chechik, S. Easterbrook, and V. Petrovykh. “Model-Checking Over Multi-Valued Log-
ics”. In Proceedings of FME’01, volume 2021 of LNCS, pages 72–98. Springer, March
2001.

454 M. Chechik et al.

11. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
12. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University

Press, 1990.
13. B. Devereux. Symbolic representation and reasoning over state-based models with mul-

tiplicities. Master’s thesis, University of Toronto, Department of Computer Science, June
2001.

14. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Springer,
1990.

15. J.M. Dunn. “A Comparative Study of Various Model-Theoretic Treatments of Negation:
A History of Formal Negation”. In Dov Gabbay and Heinrich Wansing, editors, What is
Negation. Kluwer Academic Publishers, 1999.

16. S. Easterbrook and M. Chechik. “A Framework for Multi-Valued Reasoning over Incon-
sistent Viewpoints”. In Proceedings of International Conference on Software Engineering
(ICSE’01), pages 411–420, May 2001.

17. Melvin Fitting. “Many-Valued Modal Logics”. Fundamenta Informaticae, 15(3-4):335–350,
1991.

18. Melvin Fitting. “Many-Valued Modal Logics II”. Fundamenta Informaticae, 17:55–73,
1992.

19. Brian R. Gaines. “Logical Foundations for Database Systems”. International Journal of
Man-Machine Studies, 11(4):481–500, 1979.

20. Matthew Ginsberg. “Multi-valued logic”. In M. Ginsberg, editor, Readings in Nonmonotonic
Reasoning, pages 251–255. Morgan-Kaufmann Pub., 1987.

21. Reiner Hähnle. Automated Deduction in Multiple-Valued Logics, volume 10 of International
Series of Monographs on Computer Science. Oxford University Press, 1994.

22. S. Hazelhurst. Compositional Model Checking of Partially Ordered State Spaces. PhD thesis,
Department of Computer Science, University of British Columbia, 1996.

23. J. Łukasiewicz. Selected Works. North-Holland, Amsterdam, Holland, 1970.
24. R. S. Michalski. “Variable-Valued Logic and its Applications to Pattern Recognition and

Machine Learning”. In D. C. Rine, editor, Computer Science and Multiple-Valued Logic:
Theory and Applications, pages 506–534. North-Holland, Amsterdam, 1977.

25. M. Sagiv, T. Reps, and R. Wilhelm. “Parametric Shape Analysis via 3-Valued Logic”. In
Proceedings of 26th Annual ACM Symposium on Principles of Programming Languages,
1999.

26. E. Santos. “Regular Fuzzy Expressions”. In Madan M. Gupta, George N. Saridis, and
Brian R. Gaines, editors, Fuzzy Automata and Decision Processes, pages 169–176, New
York, 1977. North–Holland.

27. Viorica Sofronie-Stokkermans. Automated theorem proving by resolution for finitely-valued
logics based on distributive lattices with operators. Multiple-Valued Logic, 2000.

28. Fabio Somenzi. “Binary Decision Diagrams”. In Manfred Broy and Ralf Steinbrüggen,
editors, Calculational System Design, volume 173 of NATO Science Series F: Computer and
Systems Sciences, pages 303–366. IOS Press, 1999.

29. L.A. Zadeh. “Fuzzy Sets”. In R. R. Yager, S. Ovchinnikov, R. M. Tong, and H. T. Nguyen,
editors, Fuzzy Sets and Applications: Selected Papers by L.A. Zadeh, pages 29–44, New
York, 1987. John Wiley & Sons, Inc.

455Efficient Multiple-Valued Model-Checking Using Lattice Representations

Divide and Compose:
SCC Refinement for Language Emptiness�

Chao Wang1, Roderick Bloem1, Gary D. Hachtel1, Kavita Ravi2, and
Fabio Somenzi1

1 University of Colorado at Boulder
{wangc,hachtel,Fabio}@Colorado.EDU

2 Cadence Design Systems
kravi@cadence.com

Abstract. We propose a refinement approach to symbolic SCC analysis,
which performs large parts of the computation on abstracted systems,
and on small subsets of the state space. For language-emptiness checking,
it quickly discards uninteresting parts of the state space; for the remain-
ing states, it adapts the model checking computation to the strength of
the SCCs at hand.
We present a general framework for SCC refinement, which uses a com-
positional approach to generate and refine overapproximations. We show
that our algorithm significantly outperforms the one of Emerson and Lei.

1 Introduction

Checking language emptiness of a Büchi automaton is a core procedure in LTL
[12,17] and fair-CTL model checking [13], and in language-containment based
verification approaches [11]. The classical algorithm by Emerson and Lei [7]
used in symbolic model checkers is based on the computation of an SCC hull
[15], while Xie and Beerel [18] and Bloem, Gabow, and Somenzi [1] use SCC
decomposition to decide language emptiness.

Although the Lockstep algorithm of [1] has a better complexity than the
one of Emerson and Lei (n log n versus n2), the comparison presented in [15]
shows that the theoretical advantage seldom translates in shorter CPU times. We
present an algorithm that uses abstractions to compute an SCC decomposition
of the system by refinement. It combines this with known language emptiness
approaches to form a hybrid algorithm that shares the good theoretical charac-
teristics of Lockstep, while outperforming the most popular SCC-hull methods,
including the one of Emerson and Lei. This Divide and Compose algorithm,
called D‘n’C, has the following features:

1. It is compositional, performing as much work as possible on abstracted sys-
tems.

� This work was supported in part by SRC contract 98-DJ-620 and NSF grant CCR-
99-71195.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 456–471, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Divide and Compose: SCC Refinement for Language Emptiness 457

2. It considers only parts of the state space at any time.
3. It uses the strength of a given set of SCCs in a given system to decide the

proper model checking algorithm.

We assume that the model is the conjunction of a large number of modules,
including the Büchi automaton for the property. Our approach exploits prop-
erty locality [11] by first performing an SCC decomposition on an abstraction
obtained by composing a small number of modules. Then it automatically re-
fines the system by composing the current abstraction with one of the previously
omitted modules, which enables it to refine the SCC decomposition in turn.

At any stage, if an SCC of an abstracted system does not contain a fair
cycle, then we can safely discard that part of the state space, which means we
do not have to consider it in a more refined system. Because each SCC of a
system is contained in an SCC of a more abstract system, and because we do
not have to consider all SCCs, we can often drastically limit the potential space
in which a fair cycle can lie. This allows us to make very efficient use of don’t
care conditions.

The strength of a Büchi automaton [10,2] is an important factor in sym-
bolic model checking. Specialized model checking algorithms for weak and espe-
cially terminal automata outperform the general language emptiness algorithm
of Emerson and Lei: EF EG fair can be used for weak systems and EF fair can
be used for terminal ones. For strong automata, however, a general fair cycle
detection algorithm must be used.

The classification of [2] determines which model checking approach to use,
based on the strength of the Büchi automaton. This may be inefficient because a
Büchi automaton that contains one strong SCC and several weak ones is classified
as strong. Our approach considers the strength of each individual SCC to decide
which model checking procedure to use. Furthermore, it uses strength reduction:
the fact that the composition of a strong SCC with a Kripke structure may
contain weak SCCs. Our approach analyzes SCCs as they are computed to take
maximal advantage of their weakness.

The rest of this paper is organized as follows. Section 2 reviews the back-
ground material. Section 4 discusses the algorithmic framework for SCC refine-
ment, while Section 5 deals with the compositional approach. Section 6 discusses
the implementation details, and presents preliminary experimental results. These
results show that the algorithm often achieves substantial savings in memory and
CPU time. Section 7 summarizes the contributions of the paper and outlines
promising future work.

2 Preliminaries

A Strongly-Connected Component (SCC) C of a graph G is a maximal set of
nodes such that there is a path between any two nodes in C. An SCC that
consists of just one node without a self loop is called trivial. An SCC-closed set
of G is the union of a collection of SCCs. The set of SCCs of G is denoted by

458 C. Wang et al.

SCCs(G) and is a partition of the vertices ofG. A partition π1 of V is a refinement
of another partition π2 of V if, for every B1 ∈ π1, there exists B2 ∈ π2 such that
B1 ⊆ B2.

We model the systems we consider as generalized Büchi automata.

Definition 1. A (labeled, generalized) Büchi automaton is a six-tuple

A = 〈Q,Q0, T,F , A, Λ〉 ,
where Q is the finite set of states, Q0 ⊆ Q is the set of initial states, T ⊆ Q×Q
is the transition relation, F ⊆ 2Q is the set of acceptance conditions, A is the
finite set of atomic propositions, and Λ : Q→ 2A is the labeling function.

Note that we have defined automata with labels on the states, not the edges.
A run of A is an infinite sequence ρ = ρ0, ρ1, . . . over Q, such that ρ0 ∈ Q0, and
for all i ≥ 0, (ρi, ρi+1) ∈ T . A run ρ is accepting (or fair) if, for each Fi ∈ F ,
there exists qj ∈ Fi that appears infinitely often in ρ.

The automaton accepts an infinite word σ = σ0, σ1, . . . in Aω if there exists
an accepting run ρ such that, for all i ≥ 0, σi ∈ Λ(ρi). The language of A,
denoted by L(A), is the subset of Aω accepted by A. The language of A is
nonempty iff A contains an accepting cycle: a cycle that is reachable from an
initial state and intersects all acceptance conditions. An automaton contains an
accepting cycle iff it contains an accepting SCC : a reachable SCC that intersects
all accepting sets.

A state q is complete if for every a ∈ A there is a successor q′ of q such that
a ∈ Λ(q′). A set of states, or an automaton, is complete if all of its states are.

As is usual in symbolic model checking, given a transition relation T , we
define imgT (S) = {q′ | ∃q ∈ S : (q, q′) ∈ T}, and preT (S) = {q | ∃q′ ∈ S :
(q, q′) ∈ T}. A step is the computation of either imgT (S) or preT (S).

We assume that all automata are defined over the same state space and
agree on the state labels. Communication then proceeds through the common
state space, and composition is characterized by the intersection of the tran-
sition relations: The composition A1 × A2 = 〈Q,Q0, T,F , A, Λ〉 of two Büchi
automata A1 = 〈Q,Q01, T1,F1, A, Λ〉 and A2 = 〈Q,Q02, T2,F2, A, Λ〉 is defined
by Q0 = Q01 ∩ Q02, T = T1 ∩ T2, and F = F1 ∪ F2. Hence, composing two
automata restricts the transition relation and results in the intersection of the
two languages.

If the states of a Büchi automaton are the valuations of r binary state
variables, then language emptiness can be checked by a symbolic algorithm in
O(|Q| log |Q|) = O(r2r) steps [1]. We can improve this bound if we know that
the automaton does not control some of the state variables. Specifically, let V a
finite set (of binary variables), and let A = 〈Q,Q0, T,F , A, Λ〉 be an automaton
such that Q = 2V . Given q ∈ Q and v ∈ V , let qv ∈ Q be the state given by
q∪{v} if v �∈ q and q \ {v} otherwise. Then A controls v if there exist q1, q2 ∈ Q
such that (q1, q2) ∈ T and (q1, qv2) �∈ T . Let VA the set of variables controlled by
A. We define the effective number of states of A as ηA = 2|VA|. One can easily
show that language emptiness for A can be checked in O(ηA log ηA) steps by the
algorithm of [1].

Divide and Compose: SCC Refinement for Language Emptiness 459

We say that A ≤ A′ if Q = Q′, Q0 ⊆ Q′0, T ⊆ T ′, F = F ′, and Λ = Λ′. This
(rather strong) condition induces a partial order on automata, such that A ≤ A′
implies L(A) ⊆ L(A′). If A ≤ A′, we say that A′ is an overapproximation of A.

Let C ⊆ Q be an SCC of A. We define the strength of C as follows (cf. [10,2]).

– C is weak if all cycles contained within it are accepting.
– C is terminal if it is weak, complete, and there is no edge from a node in C to
any non-terminal SCC. Terminality implies acceptance of all runs reaching
C.

– C is strong if it is not weak.

Note that the definition of weakness is more relaxed than that of [10,2], while
still allowing us to use a linear-time symbolic model checking algorithm.

We can order SCCs according to their strength: Strong SCCs are stronger
than weak ones, and weak SCCs that are not terminal are stronger than terminal
SCCs. In general, the weaker an SCC is, the easier it is to decide language
emptiness: An automaton containing a weak (terminal) SCC S has a nonempty
language if EF EGS ∩Q0 �= ∅ (EFS ∩Q0 �= ∅) holds.1 The strength of an SCC-
closed set or of an automaton is the maximum strength of its accepting SCCs.

3 Don’t Care Conditions

Image and preimage usually account for most of the CPU time in symbolic,
BDD-based model checking [4,13]. Therefore, it is important to minimize the
sizes of the representations of both the transition relation, and the argument
to the (pre-)image computation. The size of a BDD is not directly related to
the size of the set it represents. If we need not represent a set exactly, but can
instead determine an interval in which it may lie, we can use known techniques
[6,16] to find a set within this interval with a small BDD representation.

Often, we are only interested in the results as far as they lie within a care
set K (or outside a don’t care set K). Since the satisfaction of a property is
only relevant within the set of reachable states R, we can use R as a care set
to add or delete edges that emanate from unreachable states. By doing this, the
image of a set that is contained within R remains the same. Likewise, the part
of the preimage of a set S that intersects R remains the same, even if we add
unreachable states to S. This use of R as care set depends on the fact that no
edges from reachable to unreachable states are added.

The algorithm of Section 4 manipulates small portions of the state space,
defined by SCC-closed sets. This allows us to use care sets that are often much
smaller than the set of reachable states, and thus to increase the chance of finding
small BDDs. We cannot use the approach outlined for the reachable states, since
there may be edges from an SCC-closed set to other states. We show here that
in order to use arbitrary sets as care sets in image computation, a ‘safety zone’
1 EFS is the subset of Q from which S is reachable, while EGS is the set of states in
Q that are the origins of infinite paths entirely contained in S.

460 C. Wang et al.

consisting of the preimage of the care set needs to be kept; similarly for preimage
computation.

Theorem 1. Let Q be a set of states and let T ⊆ Q×Q be a transition relation.
Let K ⊆ Q be a care set, B ⊆ K a set of states,

T ∩ (K ×K) ⊆ T ′ ⊆ T ∪ (K ×Q) ∪ (Q×K), and
B ⊆ B′ ⊆ B ∪ preT ′(K) .

Then, imgT ′(B′) ∩K = imgT (B) ∩K.

Proof. First, suppose that q′ ∈ imgT ′(B′) ∩ K, and let q ∈ B′ be such that
q′ ∈ imgT ′({q}) ∩ K. Since q′ ∈ K, we have q ∈ preT ′(K). Hence, q ∈ B′
implies q ∈ B, and q, q′ ∈ K, which means that q′ ∈ imgT ({q}) ∩ K. Finally,
q ∈ B implies q′ ∈ imgT (B) ∩K. Conversely, suppose that q′ ∈ imgT (B) ∩K,
and let q ∈ B be such that q′ ∈ imgT ({q}) ∩ K. Now q, q′ ∈ K, and hence
q′ ∈ imgT ′({q}) ∩K, and since q ∈ B′, q′ ∈ imgT ′(B′) ∩K. ��

Hence, we can choose T ′ and B′ to be sets within the given interval that have
a small representation,2 and use them instead of T and B. Through symmetry,
we can prove the following theorem.

Theorem 2. Let Q be a set of states and let T ⊆ Q×Q. Let K ⊆ Q, B ⊆ K,
T ∩ (K × K) ⊆ T ′ ⊆ T ∪ (K × Q) ∪ (Q × K), and B ⊆ B′ ⊆ B ∪ imgT ′(K).
Then, preT ′(B′) ∩K = preT (B) ∩K.

Edges are added to and from the set K (outside K) and the safety zone for
(pre-)image computation excludes the immediate (successors) predecessors of
K. Note that the validity of the aforementioned use of the reachable set as care
set follows as a corollary of these two theorems.

4 SCC Refinement

This paper describes a hybrid algorithm for fair cycle detection that combines
SCC refinement with more classical algorithms—like the one of Emerson and
Lei [7]—that compute an SCC hull [15]. We shall here describe the general
framework, and in later sections we shall discuss the implementation choices
that we have made. The refinement processes uses a set of overapproximations
of the system. We separate the generation of the overapproximations from their
use; the method presented here works for any set of overapproximations.

2 The actual use of don’t care information for the transition relation is asymmetric:
We add edges out of don’t care states, but not into them. This is due to the useful
minimizations that can be performed on a partitioned transition relation.

Divide and Compose: SCC Refinement for Language Emptiness 461

4.1 Refinement

The core of our refinement approach is expressed by the following theorem.

Theorem 3. Let A be a Büchi automaton, and let A1, . . . ,An ≥ A be overap-
proximations. Then, SCCs(A) is a refinement of

{C1 ∩ · · · ∩ Cn | C1 ∈ SCCs(A1), . . . , Cn ∈ SCCs(An)} \ ∅ .

In particular, the set of SCCs of A is a refinement of the set of SCCs of any
overapproximation A′ of A. Hence, an SCC of A′ is an SCC-closed set (but not
necessarily an SCC) of A. This theorem allows us to gradually refine the set of
SCCs until we arrive at the SCCs of A.

One of the benefits of this approach is that we can often decide early that an
SCC-closed set does not contain an accepting cycle. This allows us to trim the
state space before considering the exact system, keeping around only ‘suspect’
SCCs.

Observation 4 Let C be an SCC-closed set of A. If C∩Fi = ∅ for any Fi ∈ F ,
then C has no states in common with any accepting cycle.

We also have the following strength-reduction theorem, which allows us to use
special algorithms for weak and terminal automata without analyzing the com-
plete system.

Theorem 5. Let A and A′ be Büchi automata with A ≤ A′, and let A be
complete. If C is a weak (terminal) set of A′, then C is a weak (terminal) set of
A.

The strength of a strong SCC-closed set may actually reduce in going from A′
to A. For example, a strong SCC may split into two weak ones.

4.2 Algorithm

The results of Section 4.1 motivate the algorithm generic-refinement of
Fig. 1. The algorithm takes as arguments a Büchi automaton A and a set L
of overapproximations to A, which includes A itself. The relation ≤ on L is not
required to be a total order. The algorithm returns true if an accepting cycle
exists in A, and false otherwise.

The algorithm keeps a set Work of obligations, each consisting of a set of
states, the series of approximations that have been applied to it, and an upper
bound on its strength. Initially, the entire state space is in Work, and the algo-
rithm keeps looping until Work is empty or a fair SCC has been found. The loop
starts by selecting an element (S,L′, s) from Work and a new approximation A′
from L. If A′ = A, the algorithm may decide to run a standard model checking
procedure on the SCC at hand. Otherwise, it decomposes S into accepting SCCs,
and after analyzing their strengths, adds them as new Work. The algorithm uses
several subroutines.

462 C. Wang et al.

Subroutine scc-decompose, takes an automaton A′ and a set S, intersects
the state space of A′ with S to yield a new automaton A′′, and returns the set
of accepting SCCs of A′′. Note that an SCC of A′′ is not necessarily an SCC
of A′. The subroutine discards any unfair SCCs, as justified by Observation 4.
Subroutine analyze-strength returns the strength of the set of states. (See
Section 2.) Subroutine model-check (shown) returns true iff a fair cycle is
found using the appropriate model-checking technique for the strength of the
given automaton.

The way entries and approximations are picked is not specified, and neither
is it stated when endgame returns true. These functions can depend on factors
such as the strength of the entry, the approximations that have been applied
to it, and its order of insertion. In later sections we shall make these functions
concrete.

It follows from Theorem 3 that at any point of the algorithm, for any entry
(S,L′, s) of Work, S is an SCC-closed set of A. At any point, the sets of states
in Work are disjoint. Termination is guaranteed by the finiteness of L and of the
set of SCCs of A.

When decomposing an SCC-closed set S, we can use the complement of S
as a don’t care condition as discussed in Section 3. Because S may be small in
comparison to Q, this may lead to a significant improvement in efficiency.

The SCC-refinement algorithm computes much of the needed information
about the SCCs of a system on overapproximations of it. Because these over-
approximations are often much simpler than the concrete system, this approach
may be very efficient. Because the SCCs of a system are a refinement of the SCCs
of any overapproximation, any computation on an overapproximate system di-
vides the state space into several components, some of which are thrown away
without considering them in the exact system, and some of which are analyzed
further in isolation.

At any point in time, we keep around an overapproximation of the reachable
states to discard unreachable SCCs. Whenever we refine the system, we compute
the set of reachable states anew, limiting the search to the overapproximation
that was obtained before. For this computation, we can use the overapproxima-
tion as care set. This scheme computes reachability multiple times, but [14] has
shown that the use of approximate reachability information as a care set may
more than compensate for that.

4.3 Underapproximations

The refinement approach that we have presented can be extended to the use of
underapproximations. Let A1 and A2 be underapproximations of A. First, as
overapproximations can be used to discard the possibility of an accepting cycle,
underapproximations can be used to assert their existence: if A1 contains an
accepting cycle, then so does A.

Furthermore, if an an SCC C1 of A1 and an SCC C2 of A2 overlap, then A
contains an SCC C ⊇ C1 ∪ C2. SCC-decomposition algorithms [18,1] compute
each SCC starting from a seed. The seed is usually a single state, but, in order

Divide and Compose: SCC Refinement for Language Emptiness 463

type Entry = record
S; // An SCC-closed set of A
L′; // Set of approximations that have been considered
s // Upper bound on the strength of the SCC

end

model-check(A, S, s){ // Automaton A, SCC-closed set S, and its strength s
case s of

strong: return Q0 ∩ EGF (S) �= ∅; //call Emerson-Lei
weak: return Q0 ∩ EFEG(S) �= ∅;
terminal: return Q0 ∩ EF(S) �= ∅

esac
}

generic-refinement(A, L){ // Büchi automaton A = 〈Q,Q0, T,F , A, Λ〉, and
set of overapproximations L with A ∈ L

var
Work: set of Entry;

Work = {(Q, ∅, strong)}
while Work �= ∅ do

Pick an entry E = (S,L′, s) from Work;
Choose A′ ∈ L such that there is no A′′ ∈ L′ with A′′ ≤ A′;

if A′ = A and endgame(S, s) then
if model-check(A, S, s) then

return true
fi

else
C := scc-decompose(S,A′);
if C �= ∅ and A′ = A then

return true
else

for all C ∈ C do
s := analyze-strength(C,A′);
insert (C,L′ ∪ {A′}, s) in Work

od
fi

fi
od
return false

}

Fig. 1. The generic SCC-refinement algorithm

to find C, we can use C1 ∪C2. Hence, we can avoid the recomputation of C1 or
C2, and use C1 ∪ C2 as a don’t care set.

464 C. Wang et al.

5 Composition

The SCC refinement algorithm described in Section 4 is generic because it does
not specify: (1) What set of overapproximations L of the Büchi automaton A is
available; (2) The rule to select the next approximation A′ to be applied to a set
S; (3) The priority function used to choose what element to retrieve from the
Work set; and (4) The criterion used to decide when to switch to the endgame.
These four aspects make up a policy ; the first three are the subject of this section,
while the fourth is discussed in Section 6.

5.1 Choice of the Approximations

We assume that A is the composition of a set of modules M = {M1, . . . ,Mn},
and that the set L of overapproximations consists of the compositions of subsets
of M :

L ⊆ {Mi1 × · · · ×Mip | {i1, . . . , ip} ⊆ {1, . . . , n}} .
More flexible strategies (e.g., [9]) may generate larger sets of approximations and
be compatible with our approach, but we shall not discuss them further.

We also assume that the states of A are the valuations of a set of r binary
variables V ; and that the sets of variables controlled by each module Mi are
nonempty and form a partition of V . Hence, n ≤ r and for each A′ ∈ L distinct
from A, 2ηA′ ≤ ηA.

The set of all overapproximations generated from subsets ofM forms a lattice,
shown in Fig. 2 for n = 4. In the case illustrated by this figure, the coarsest
approximation, which is the set of no modules, is the 1 of the lattice. (This
approximation is never used in practice.) The exact system is the composition

M3 × M4

1

M1 M2 M3 M4

M1 × M2 M1 × M3 M2 × M3 M1 × M4 M2 × M4

1 module

2 modules

4 modules

3 modules

0 modules

M1 × M3 × M4 M2 × M3 × M4

M1 × M2 × M3 × M4

M1 × M2 × M3 M1 × M2 × M4

Fig. 2. Lattice of approximations

Divide and Compose: SCC Refinement for Language Emptiness 465

of all four modules. For sufficiently large n, it is impractical to make use of all
2n overapproximations; consequently, we shall only consider efficient policies,
in which a given state is contained in the set passed to scc-decompose O(r)
times.

Specifically, we shall stipulate that there is a constant λ, such that L can
be partitioned into subsets L1, . . . , Lr satisfying the following conditions: (1)
|Li| ≤ λ; (2) for every A′ ∈ Li, ηA′ ≤ 2i; (3) A ∈ Lr.

Two cases are illustrated in the figure. In both cases, (j1, . . . , jn) is a permu-
tation of (1, . . . , n) that identifies a linear order of the modules. At the left of
the figure (solid thick lines), the algorithm of Fig. 1 uses a popcorn-line policy
with (j1, . . . , j4) = (1, 2, 3, 4) and λ = 1. The approximations are:

L = {Ai =Mj1 × · · · ×Mji | 1 ≤ i ≤ n} .
When an entry E = (S,L′, s) is retrieved from Work, the Ai of lowest index that
is not present in L′ is chosen as the next approximation A′.

At the right (thick grey lines), 2n−1 approximations are used in a lightning-
bolt policy, for which λ = 2:

L = {A2i−1 =Mj1 × · · · ×Mji | 1 ≤ i ≤ n} ∪ {A2i =Mj1+1 | 1 ≤ i < n} .
The selection of A′ is done as in the previous case.

In Fig. 2, the order of the modules is (4, 2, 3, 1). The approximations are:

A1 =M4, A2 =M2,
A3 =M4 ×M2, A4 =M3,
A5 =M4 ×M2 ×M3, A6 =M1,
A7 =M4 ×M2 ×M3 ×M1.

In both cases, the number of times a state is in the set passed to scc-
decompose is bounded by the number of approximations in L. Therefore a
popcorn-line policy tends to call scc-decompose fewer times, but a lightning-
bolt policy may break up the SCC-closed sets with easy approximations ({A2i})
before applying to them harder approximations ({A2i−1}). Therefore, it tends
to use less memory.

5.2 Complexity

The refinement algorithm described thus far cannot improve the worst-case com-
plexity of the language emptiness check. Indeed, if all approximations distinct
from A consist of one fair SCC, no benefit comes from the incremental SCC
analysis. Under the stipulated conditions, however, it is easy to show that the
incremental approach is within a constant factor from the non-incremental one.

Theorem 6. If the set of approximations L can be partitioned into subsets
L1, . . . , Lr such that, for some constant λ, (1) |Li| ≤ λ; (2) for every A′ ∈ Li,
ηA′ ≤ 2i; and (3) A ∈ Lr, then the generic refinement algorithm runs in
O(ηA log ηA) steps.

466 C. Wang et al.

Proof. The cost of SCC analysis for A′ is bounded by kηA′ log ηA′ , for some con-
stant k. Hence, the cost of analyzing all approximations and A itself is bounded
by

kηA log ηA(λ+ λ/2 + λ/4 + · · ·+ λ/2r) ,

which is bounded by 2λkηA log ηA. ��
While we cannot hope for an improved run time in the worst case, we can expect
that the refinement-based approach will be beneficial when the state space breaks
up into many small SCC-closed sets. In particular, we can prove the following
result.

Theorem 7. Under the assumptions for L of Theorem 6, if for some constant
γ, the pairs (S,A′) passed to scc-decompose satisfy |S| ≤ γηA/ηA′ , then the
refinement algorithm runs in O(ηA) time.

Proof. The analysis of A consists of the decomposition of SCC-closed sets of
size bounded by γ. Their number is linear in ηA, and each decomposition takes
constant time. Hence, the total time for the analysis of A is O(ηA). If |C| is the
number of states in SCC C of A′, then |C|ηA′/ηA is the effective size of C. The
cost of analyzing A′ is therefore O(ηA′). With reasoning analogous to the one of
Theorem 6, one finally shows that the total time is also O(ηA). ��

Another reason why the refinement-based approach may significantly out-
perform other algorithms is because it can discard large parts of the state space
as soon as it establishes that they intersect no fair cycles by applying Observa-
tion 4. The advantage due to this ability to prune the search can be arbitrarily
large.

5.3 Decomposition Trees

The popcorn-line approach, defines an SCC decomposition tree like the one of
Fig. 3 that highlights the potential advantages of SCC refinement. The figure
corresponds to a model of eight dining philosophers, with a property that states
that under given fairness constraints, if a philosopher is hungry, she eventu-
ally eats. The system has nine modules. (The property automaton besides the
philosophers.) The property passes, i.e., no fair cycles exist in the system. The
tree of fair SCCs is shown. The nodes at Level i are the SCCs of Ai. (A1 is the
property automaton.) The size of each SCC is given; there are about 47k reach-
able states. Note that only very small sets of states remain after the first four
modules3 are composed, and that very little work is done on the exact system.
The effective size of each SCC is also shown in parentheses. Since the effective
sizes correlate to the actual computational effort, the numbers of Fig. 3 show
that the cost is quite modest at all levels of refinement.
3 These four modules are the property automaton, the philosopher named in the prop-

erty, and her two neighbors.

Divide and Compose: SCC Refinement for Language Emptiness 467

23k

840

42

42

350 42

98

14

14

1

2

3

4

6

7

8

23k

182504

5

5.5k 434 588 168 490 252

23k

1.4k910

182

9

Fig. 3. SCC refinement tree

To define a policy we need to specify the order in which elements are retrieved
from the Work set. Two obvious choices are FIFO and LIFO order. As one would
expect, the SCC refinement tree is traversed in breadth-first manner for a FIFO
order, and in depth-first manner for a LIFO order. When, as in Fig. 3, there are
no fair cycles in A, the order in which the tree is visited is immaterial. How-
ever, in the presence of fair cycles, one strategy may lead to earlier termination
than the other. If one assumes that fair cycles are numerous, then depth-first
search is particularly attractive. Breadth-first search, on the other hand, can be
implemented with low overhead.

6 Implementation and Experiments

We describe here details of two implemented policies for the SCC refinement
algorithm D‘n’C, and of the experiments we ran. Both versions implement the
popcorn-line approach, with breadth-first search of the SCC refinement tree.
Both heuristically partition the system to be verified according to the strategy
of [9]. They then sort the modules according to their distances from the state
variables of the property automaton.

The two policies differ in when they switch to the endgame: The first policy
de-emphasizes compositionality in comparison to strength reduction by perform-

468 C. Wang et al.

ing only two levels of composition. At the first level it computes the SCCs of the
property automaton, and at the second level it composes all the other modules
of the system.

The second policy tries to exploit the full compositionality implied by Figs. 2
and 3. For ease of reference, we refer to the first policy as the Two-level method,
and to the second as the Multi-Level method.

In both policies, if any fair SCCs are present, the algorithm checks their
strength. If any of them are weak, they are grouped together, and the exact
system is checked for cycles within these SCCs. The underlying assumption is
that model checking weak SCCs is much cheaper than model checking strong
SCCs. If D‘n’C finds a cycle in the exact system, it terminates, otherwise it
discards these SCCs. If no SCCs are present, the algorithm also terminates:
there are no cycles. Otherwise, the approximate system is refined.

The Multi-Level method heuristically stops the refinement at some point, and
then immediately composes all the remaining modules, thus proceeding directly
to the exact system. Right now we are using a simple heuristic—we stop linear
composition after 30% of the latches have been composed, and then “jump”
to the the exact system to limit overhead, and to avoid having too many fair
SCCs in the full SCC refinement tree. Once the exact system is reached, the Vis
implementation of the Emerson-Lei algorithm is applied to each of its SCC-closed
sets.

Our algorithm is implemented in Vis-1.4 [3], and the results of Table 1 were
obtained by appropriately calling the standard Language Emptiness command of
Vis. SCC analysis is performed with the Lockstep algorithm of [1] implemented
as described in [15]. In Table 1, all examples were run with the same fixed
order (obtained with dynamic variable reordering). For the same set of models
and property automata, we also obtained a second table, with dynamic variable
ordering turned on for each example. Similarly, we obtained a third table, using
the EL2 variant of the Emerson-Lei algorithm [8]. Since the character of the
results was not significantly different, the second and third tables were omitted
for brevity.4 All experiments were run on an IBM Intellistation running Linux
with a 400MHz Pentium II processor with 1GB of SDRAM.

The table has four columns. The three fields of the first column give the
name of the example, a symbol indicating whether the formula passes (P: no fair
cycles exist) or fails (F: a fair cycle exists), and the number of binary latches in
the system. The three fields of the second column, obtained by directly applying
the Vis Emerson-Lei algorithm, give: (1) the time it took to run the experiment
(Time/Out (T/O) indicates a run time greater than 14400s); (2) the peak num-
ber of live BDD nodes (in millions—the datasize limit was set to 750MB); and
(3) the total number of preimage (EX) / image (EY) computations needed.

These same field descriptors also apply to the third and fourth columns (for
the Two-Level and Multi-Level versions of the D‘n’C algorithm), except that
the latter has an additional field that indicates how the verification process

4 The only exception to the statement was the fact that the example nmodem1 took
only 209 seconds with EL2, versus 4384 for the original Emerson-Lei algorithm.

Divide and Compose: SCC Refinement for Language Emptiness 469

Table 1. Experimental results

Emerson-Lei D‘n’C D‘n’C
(Vis LE) Two-Level Multi-Level

Circuit P/ latch Time Bdd EX/EY Time Bdd EX/EY time Time Bdd EX/EY time
and LTL F num (s) (M) (s) (M) ratio (s) (M) ratio
bakery1 F 56 212 5.1 5337/0 31 1.3 354/4 14% 27 1.3 484/328 12%
bakery2 P 49 69 3.4 526/0 20 1.3 10/4 28% 20 1.3 62/73 28% n
bakery3 P 50 421 14 1593/0 46 2.5 90/4 10% 43 1.8 537/428 10%
bakery4 F 58 T/O - -/- 1950 3.4 1088/5 <13% 1337 4.7 947/96 <9%
bakery5 F 59 T/O - -/- 1009 6.1 127/5 <7% 623 6.1 216/243 <4%
eisenb1 F 35 23 1.0 416/0 16 0.9 21/4 69% 16 0.9 21/4 69%
eisenb2 F 35 T/O - -/- 4800 8.2 162/5 <33% 1683 7.7 105/93 <11% w
elevator1 F 37 210 14 163/0 49 2.8 132/9 23% 41 2.2 155/31 19%
nmodem1 P 56 4384 11 5427/0 192 1.1 992/4 4% 233 0.6 5007/71 5%
peterson1 F 70 17 1.1 24/0 20 1.3 19/4 117% 21 1.2 157/173 123%
philo1 F 133 371 12 258/0 7 0.2 8/12 1% 7 0.2 8/12 1% w
philo2 F 133 73 2.8 557/0 30 1.3 258/5 41% 12 0.5 25/44 16% w
philo3 P 133 T/O - -/- T/O - -/- - 115 1.2 993/224 <1%
shamp1 F 143 44 2.1 8/0 103 5.6 9/6 234% 87 2.2 266/280 197%
shamp2 F 144 T/O - -/- 1892 16. 74/6 <13% 101 2.9 345/349 <1%
shamp3 F 145 T/O - -/- 337 4.4 19/17 <2% 335 4.4 19/17 <2% w
twoq1 P 69 12 0.4 25/0 4 0.1 7/9 33% 4 0.1 7/9 33% n
twoq2 P 69 241 8.9 175/0 27 0.8 91/5 11% 30 0.9 181/95 12%

terminates: ‘n’ means that the algorithm arrives at some intermediate level of
the refinement process in which there no longer exists any fair SCC; ‘w’ means
that there is a weak fair SCC found and it contains a fair cycle.

The property automata being used in the experiment are translated from LTL
formulae. In order to avoid bias in favor of our approach, each model is checked
against a strong LTL property automaton. Note that the presence of the n or w
in the last field demonstrates that both pruning of the SCC refinement tree and
strength reduction are active in these experiments.

We first compare the D‘n’C algorithm to the one by Emerson and Lei. With
only three exceptions out of 18 examples, the rows of the table indicate a signif-
icant (more than a factor of 2) performance advantage for the D‘n’C algorithm.

Comparing the Two-Level and Multi-Level versions, one sees that on these
examples, with four exceptions (eisenb2, philo2, philo3, and shamp2), the two
policies give comparable performance. We think that this is because most of our
examples are simple mutual-exclusion and arbitration protocols, in which the
properties have little locality. We expect the compositional algorithm to do even
better on models with more locality, and we are still enlarging the diversity of
our sample set. On the other hand, one can see that the greater compositionality
of the Multi-Level version proves its worth, especially on the larger examples.

470 C. Wang et al.

7 Conclusions

In this paper we have presented a hybrid algorithm for fair cycle detection that
uses abstractions to gradually refine the SCC-closed sets of a system to its SCCs.
We have shown a general framework for SCC refinement and we have discussed
different policies, based on the traversal of a lattice of overapproximate systems.
Our algorithm has the advantages of being compositional, considering only parts
of the complete state space, and taking into account the strength of an SCC to
decide the proper model checking algorithm.

We have implemented two policies. In comparison to the original Emerson-
Lei algorithm, our experimental results demonstrate significant and almost con-
sistent performance improvement. This indicates the importance of all three
improvement factors built into D‘n’C: (1) SCC refinement, (2) compositional-
ity, and (3) strength reduction. Though the compositional approach does not
improve the worst-case complexity over the algorithm of [1], we have identified
conditions under which the proposed algorithm runs in linear time.

The D‘n’C algorithm can be highly parallelized by assigning different entries
from the Work list to different processors. Processors that deal with disjoint
sets of states have minimal communication and synchronization requirements.
Although, the algorithm is geared towards symbolic model checking, SCC re-
finement can also be combined with explicit state enumeration approaches.

The experimental results show that even the simpler Two-Level policy per-
forms very well in comparison to the Emerson-Lei algorithm. On all examples,
the Multi-Level version of D‘n’C is either superior to, or comparable to the Two-
Level version. We have noted that superiority occurs for the larger examples,
and we speculate that D‘n’C will ultimately be able to handle some significantly
larger examples. The simplicity of the implemented policies in comparison to
the generality of Sections 4.1 and 5 suggests that there are many promising ex-
tensions and variations that so far remain experimentally unexplored. Among
these, the joint application of over- and underapproximations is of special in-
terest. Several iterative approaches to model checking have been proposed [11,
9,5]. These approaches do not carry the SCC decomposition from one level of
refinement to the next. On the other hand, they use counterexamples to guide
refinement—something that is currently missing from our implementation, and
that could improve its effectiveness.

References

[1] R. Bloem, H. N. Gabow, and F. Somenzi. An algorithm for strongly connected
component analysis in n logn symbolic steps. In W. A. Hunt, Jr. and S. D. John-
son, editors, Formal Methods in Computer Aided Design, pages 37–54. Springer-
Verlag, November 2000. LNCS 1954.

[2] R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model
checking of linear time logic properties. In N. Halbwachs and D. Peled, editors,
Eleventh Conference on Computer Aided Verification (CAV’99), pages 222–235.
Springer-Verlag, Berlin, 1999. LNCS 1633.

Divide and Compose: SCC Refinement for Language Emptiness 471

[3] R. K. Brayton et al. VIS: A system for verification and synthesis. In T. Hen-
zinger and R. Alur, editors, Eighth Conference on Computer Aided Verification
(CAV’96), pages 428–432. Springer-Verlag, Rutgers University, 1996. LNCS 1102.

[4] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In E. A. Emerson and A. P. Sistla, editors, Twelfth Confer-
ence on Computer Aided Verification (CAV’00), pages 154–169. Springer-Verlag,
Berlin, July 2000.

[6] O. Coudert and J. C. Madre. A unified framework for the formal verification
of sequential circuits. In Proceedings of the IEEE International Conference on
Computer Aided Design, pages 126–129, November 1990.

[7] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus. In Proceedings of the First Annual Symposium of Logic in
Computer Science, pages 267–278, June 1986.

[8] R. Hojati, H. Touati, R. P. Kurshan, and R. K. Brayton. Efficient ω-regular
language containment. In Computer Aided Verification, pages 371–382, Montréal,
Canada, June 1992.

[9] J.-Y. Jang. Iterative Abstraction-based CTL Model Checking. PhD thesis, Uni-
versity of Colorado, Department of Electrical and Computer Engineering, 1999.

[10] O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism: From
linear-time to branching-time. In Proc. 13th IEEE Symposium on Logic in Com-
puter Science, June 1998.

[11] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, NJ, 1994.

[12] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proceedings of the Twelfth Annual ACM Sym-
posium on Principles of Programming Languages, New Orleans, January 1985.

[13] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston,
MA, 1994.

[14] I.-H. Moon, J.-Y. Jang, G. D. Hachtel, F. Somenzi, C. Pixley, and J. Yuan. Ap-
proximate reachability don’t cares for CTL model checking. In Proceedings of the
International Conference on Computer-Aided Design, pages 351–358, San Jose,
CA, November 1998.

[15] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms
for the computation of fair cycles. In W. A. Hunt, Jr. and S. D. Johnson, edi-
tors, Formal Methods in Computer Aided Design, pages 143–160. Springer-Verlag,
November 2000. LNCS 1954.

[16] T. R. Shiple, R. Hojati, A. L. Sangiovanni-Vincentelli, and R. K. Brayton. Heuris-
tic minimization of BDDs using don’t cares. In Proceedings of the Design Automa-
tion Conference, pages 225–231, San Diego, CA, June 1994.

[17] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proceedings of the First Symposium on Logic in Computer
Science, pages 322–331, Cambridge, UK, June 1986.

[18] A. Xie and P. A. Beerel. Implicit enumeration of strongly connected components
and an application to formal verification. IEEE Transactions on Computer-Aided
Design, 19(10):1225–1230, October 2000.

Unavoidable Configurations of Parameterized
Rings of Processes

Marie Duflot1, Laurent Fribourg1, and Ulf Nilsson2

1 LSV, CNRS & ENS de Cachan, 61 av. du Prés. Wilson,
94235 Cachan cedex, France

2 IDA, Linköping University, 581 83 Linköping, Sweden
{duflot,fribourg}@lsv.ens-cachan.fr, ulfni@ida.liu.se

Abstract. Rewrite systems over words are often used for modeling dis-
tributed algorithms over linear networks (or rings) of N processes, where
N is a parameter. Here we are interested in constructing a regular set of
configurations G which is unavoidable, i.e., such that any infinite deriva-
tion intersects G. We give some sufficient conditions of the rewrite system
that allow us to construct an unavoidable set G using Caucal’s algorithm
of prefix rewriting. This construction is used to show the convergence
property of distributed algorithms to closed subsets of configurations.
The method is useful for proving the correctness of self-stabilizing al-
gorithms and the liveness property of termination detection algorithms.
It has been implemented, and successfully applied to several significant
examples, treated in a uniform mechanical way for the first time.

1 Introduction

We consider distributed algorithms over linear or circular arrays with a para-
metric number N of machines. All machines (except perhaps the bottom and the
top ones) are identical finite-state automata, which communicate by reading the
state of their neighbors. A global system configuration is the concatenation of all
the local states of the machines. For brevity, we consider only moves that simul-
taneously modify the local states a and b of two contiguous machines. (Moves
modifying just one or more than two machines can be treated similarly.) The
moves are described uniformly by rewrite rules of the form ab→ a′b′. We want
to prove convergence of the system to a restricted set L of configurations, i.e.,
proving that every infinite sequence of reductions reaches L.

As shown in [3], using a theoretical result of Dershowitz, the problem can
be solved by exploring the branches of an infinite tree, representing repeated
steps of reduction and “narrowing” (i.e. unification coupled with reduction). In
order to make the exploration feasible, the infinite tree has to be folded into a
finite, oriented graph. But this presupposes a manual process of generalization
to infer a regular language from a finite set of words (see [3]). In this paper
we address the problem of generating such a graph in an automatic and exact
way (without over-approximation, as in [3]). More precisely, we observe that
if only narrowing steps are taken into account, each step can be viewed either

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 472–486, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Unavoidable Configurations of Parameterized Rings of Processes 473

as a form of prefix or suffix rewriting, in which case Caucal’s algorithm for
generating regular languages using prefix rewriting can be applied to generate
the graph automatically. We also discuss sufficient conditions under which we
may disregard reduction steps altogether without loss of completeness.

The method has been implemented, and all examples of convergence of self-
stabilizing algorithms treated manually in [3], have been processed mechanically.
As a further application of the new method, we also demonstrate the verification
of liveness properties of termination detection algorithms.

Comparison with related work. As mentioned above, we focus on the prob-
lem of proving convergence properties of distributed algorithms. In the classical
framework, such proofs are typically done by exhibiting a well-founded measure
on the set of configurations that strictly decreases after each step of reduction
(or a bounded number of them) as long as the set L has not been reached. These
measures are usually very subtle and require a deep knowledge of the analyzed
algorithm in order to be discovered by hand (e.g., [17,25,14]). Our method, in
contrast, does not require such specific knowledge, and can be mechanized.

We use several basic ideas that already appear in the literature. The idea of
viewing distributed algorithms over linear networks of machines as rewrite sys-
tems and sets of configurations as regular languages, has been used before (see
e.g., [1,16,19,20,22,26]). However, interest is generally restricted to showing that
the reachability set of a distributed algorithm, i.e. the set of all configurations
reached by a finite derivation, is regular. In contrast we focus on unavoidable
sets, i.e., sets such that any infinite derivation traverses them. That is, we want
to prove liveness properties rather than safety properties. To our knowledge, only
two recent works investigate the verification of liveness properties for parame-
terized rings [7,24]. In [7] Bouajjani et al. prove liveness properties (or, more
generally, ω-regular properties) of distributed algorithms by using strategies for
guessing automatically extended forms of reachability sets in the framework of
Büchi automata. Pnueli and Shahar [24] use related techniques of “acceleration”
but in the framework of second-order monadic logic. In [7], the method basically
relies on the fact that every rewrite system S modeling a studied algorithm is
Noetherian (i.e., it does not contain infinite derivations). This is never the case
in the examples treated here. We only assume that a strict subset of S (ob-
tained by removing the rules affecting the top machine) is Noetherian, which is
a crucial difference. In [24], the method must take into account an unbounded
number of fairness assumptions, several for each process, and these requirements
are also parameterized, often making the computation diverge (see [24], p. 340).
In contrast, our method assumes only the weak fairness assumption that the
top machine is affected at least once in every infinite derivation. The techniques
that we use here are also very different from the ones used in [7,24], and involve
first-order rewriting operations such as narrowing.

Plan of the paper. Section 2 recalls some definitions about string rewrite
systems. Section 3 explains the basic operation of narrowing as a form of prefix
rewriting. Section 4 explains how to construct regular unavoidable languages

474 M. Duflot, L. Fribourg, and U. Nilsson

using a closure assumption on the set of narrowings. Section 5 gives a syntactic
criterion ensuring the closure of this set. Section 6 explains how to use unavoid-
able languages for proving the correctness property of self-stabilizing algorithms
and the liveness property of termination detection algorithms. The implementa-
tion and experimental results are given in Section 7. Section 8 concludes.

2 String Rewriting for Linear Networks of Machines

We use string rewrite systems to model the moves that affect the local states of
the component machines. Local states of machines belong to a finite alphabet Σ.
Each word a1 · · · aN (where N is a parameter) constitutes a global configuration
of the system where machine i is in state ai (1 ≤ i ≤ N). In the following,
each move involves exactly two contiguous machines. The moves are described
by rewrite rules. Special rules have to be considered for the bottom and top
machines. In this framework, we model the actions of a distributed algorithm as
a set S of rewrite rules. We will use first-order variables W,X, Y to represent
in a symbolic way a generic set of states for a portion of contiguous machines.
We first adapt some basic definitions from (string) rewrite systems [5,11] to our
framework.

A ground word is an element of Σ∗, with ε denoting the empty word. An
open word is an expression of the form uWv where u, v are elements of Σ+(=
Σ∗ −{ε}). Henceforth, word refers to an open or ground word, which is written
t, u or v (possibly adorned). Letters are denoted by a, b, c or d (possibly adorned).
A rewrite system S is a set of length-preserving rules, divided into three subsets
TopS , BottomS and MiddleS : bottom rules in BottomS are applied to the two
leftmost letters of words; top rules in TopS are applied to the leftmost and
rightmost letters of words; the other rules in MiddleS are called middle rules.
More precisely, let a, b, a′ and b′ be letters of Σ, and X,Y variables. Then:

– BottomS consists of rules of the form abX → a′b′X
– MiddleS consists of rules of the form XabY → Xa′b′Y (with X 	= ε)
– TopS consists of rules of the form bXa→ b′Xa′

A top rule makes the leftmost and rightmost components of the array commu-
nicate: the system should be considered a ring of machines.1

Example. Consider the alphabet Σ = {0, 1, 2} and the rewrite rules BD =
{B1,M1,M4, T4}, which is a simplified version of Beauquier-Debas’ original sys-
tem [4] (see the example of Sect. 6.1 for the full system):

B1 : 12X → 21X
M1 : X10Y → X01Y with X 	= ε
M4 : X02Y → X20Y with X 	= ε
T4 : 2X1→ 1X2

Here B1 is a bottom rule, T4 a top rule, M1 and M4 middle rules.
1 One can consider also top rules of the form Xab→ Xa′b′ where such communication
does not exist. In this case Y �= ε should be added to middle rules.

Unavoidable Configurations of Parameterized Rings of Processes 475

Reduction consists in replacing an instance of a rule’s left-hand side by the corre-
sponding instance of the rule’s right-hand side. Formally, given two ground terms
t and t′, we say that reduction applies from t to t′ via middle rule M : XabY →
Xa′b′Y if t = uabv and t′ = ua′b′v for some strings u ∈ Σ+, v ∈ Σ∗. This is
written t→M t′. The notion of reduction via M also applies when t is an open
word of the form t1Wt2. Reduction of t then consists in replacing ab with a′b′,
either in the left part t1 or in the right part t2 of t. The notion of reduction of
a ground/open word t is defined similarly for a bottom rule B (resp. top rule
T) instead of a middle rule M . In the case of a bottom reduction (resp. top re-
duction), the replaced letters a and b of t occur in the first and second position
(resp. last and first ones). We say that reduction applies from t to t′ via S, and
write t→S t′, if t→R t′ for some rule R ∈ S. The reduction of a set of words J
via S is defined by ReduceS(J) = {t′ | ∃t ∈ J ∧ t →S t′}. The set J is said to
be closed under a rewrite system S if ReduceS(J) ⊆ J .

Example. The set L = 20∗10∗ ∪ 10∗20∗ is closed under BD.

The mapping ReduceS can be seen as a transducer (see, e.g., [20]) and ReduceS(J)
is regular if J is regular. As usual, →∗S denotes the reflexive-transitive closure
of →S . It is well-known that the set generated from J by iterated application
of →S (i.e, by application of →∗S), is generally not regular, even if J is regular.
Nevertheless, Caucal has shown that iterated prefix reduction (at the beginning
of a word) and iterated suffix reduction (at the end of a word), behave as trans-
ducers. Furthermore, Caucal has designed an efficient algorithm, polynomial in
time for the size of S, for these computations [8]. In this paper, we use prefix
and suffix strategies of reduction in order to apply Caucal’s algorithm.

A ground derivation is a (possibly infinite) sequence of reductions over ground
words. A set of rules S is said to be Noetherian if any ground derivation using
rules of S is finite.

Example. For the system BD defined above, we have t1 = 2100 →M1 t2 =
2010 →M1 t3 = 2001 →T4 t4 = 1002 →M4 t5 = 1020 →M4 t6 = 1200 →B1

t1 = 2100. (The letters replaced at each step of reduction are underlined for
the sake of clarity.) We have thus an infinite (cyclic) ground derivation. Hence
BD is non-Noetherian. On the other hand, BD−T4 is Noetherian. Consider the
well-founded measure ψ that associates

∑
i∈S1

(N−i)+
∑
j∈S2

j with every word
a1 · · · aN , where S1 (resp. S2) is the set of positions i (resp. j) such that ai = 1
(resp. aj = 2). It is easy to see that application of rule M1 (or M4) makes ψ
decrease by 1, while B1 makes ψ decrease by 2.

Note that testing the closure of a regular set J under S is decidable: it consists
in checking the inclusion of two regular sets.

For each middle rule M (resp. bottom rule B) it is convenient to define two
variants of M (resp. one variant of B) as follows:

Definition 1. Given a middle rule M : XabY → Xa′b′Y and a bottom rule
B : abY → a′b′Y ,

476 M. Duflot, L. Fribourg, and U. Nilsson

– the prefix extension of M , written Mpre, is: X�bY → X�a′b′Y ,
– the suffix extension of M , written Msuf, is: Xa�Y → Xa′b′�Y ,
– the suffix extension of B, written Bsuf, is: a�Y → a′b′�Y ,

where � is a new constant added to Σ.

Let t be an open word t1Wt2, and denote by t� the word t1�t2 obtained from
t by instantiating W with �. When t2 starts with b, reduction via Mpre applies
to t�. Such a reduction affects a prefix of �t2, and is hence a prefix reduction
of the right part of t�. Likewise, reduction via Msuf (resp. Bsuf) affects a suffix
of t1�, and is hence a suffix reduction of the left part of t�. The rule extensions
will allow us to consider the operation of narrowing, defined hereafter, as a form
of prefix or suffix reduction, and thus to apply Caucal’s algorithm.

3 Narrowing

Next we define narrowing (e.g., [11]) over open words t1Wt2, with t1, t2 ∈ Σ+.
In this context, narrowing can be seen as a form of replacement of W with Wb,
aW or ε, followed by reduction of the resulting word, as explained below.

3.1 Right, Left, and Bottom Narrowing

Definition 2. Consider a middle rule M : XabY → Xa′b′Y , a bottom rule
B : abX → a′b′X, and two open words t, t′.

– We say that right narrowing applies from t to t′ via M if t = uWbv and
t′ = uWa′b′v, for some u ∈ Σ+, v ∈ Σ∗. This is written t ❀

right
M t′.

– We say that left narrowing applies from t to t′ via M if t = uaWv and
t′ = ua′b′Wv, for some u, v ∈ Σ+. This is written t ❀

left
M t′.

– We say that bottom narrowing applies from t to t′ via B if t = aWv and
t′ = a′b′Wv, for some v ∈ Σ+. This is written t ❀bot

B t′.

Right narrowing from t to t′ via M corresponds to prefix reduction from t� to t′�
via Mpre (since uWbv ❀

right
M uWa′b′v iff u�bv →Mpre u�a′b′v). Likewise, left

narrowing via M (resp. bottom narrowing via B) corresponds to suffix reduction
via Msuf (resp. Bsuf). We have indeed: uaWv ❀

left
M ua′b′Wv iff ua�v →Msuf

ua′b′�v (resp. aWv ❀bot
B a′b′Wv iff a�v →Bsuf a′b′�v).

Example. Using M4 : X02Y → X20Y , we have 01W200 ❀
right
M4

01W2000. This
narrowing is mimicked by the reduction 01�200 →M4pre 01�2000, using the
prefix extension M4pre : X�2Y → X�20Y .

We write t ❀
right
S t′ if t ❀

right
M t′ for some rule M ∈ S, and similarly for left and

bottom narrowing. We will abbreviate ❀bot
S ∪ ❀

left
S ∪ ❀

right
S by ❀S . Given a

set J of open words, we write:

Narrow∗S(J) = {t′ | ∃t ∈ J ∧ t ❀∗S t′}
(NarrowS + ReduceS)∗(J) = {t′ | ∃t ∈ J ∧ t (❀S ∪ →S)∗ t′}.

Unavoidable Configurations of Parameterized Rings of Processes 477

The first set is obtained by iterated application of narrowing only; the second
one by interleaving narrowing and reductions via S. Let IS be the initial set of
S; i.e., the set of open words b′Wa′ corresponding to all right-hand sides of top
rules bXa→ b′Xa′ of S (with W replacing X). We write:

N ∗S = Narrow∗S(IS)
(NS +RS)∗ = (NarrowS + ReduceS)∗(IS).

In the computation of N ∗S , right narrowing on the one hand, bottom and left
narrowing on the other hand, are independent (since they involve sub-words
separated by W) and can be done in parallel. Since right narrowing (resp. bottom
and left narrowing) can be simulated by prefix reduction (resp. suffix reduction),
N ∗S can be computed by iterated prefix and suffix reductions done in parallel,
starting from the right-hand sides of TopS . By Caucal’s result [8] (cf. [5,6]), it
follows directly that:

Proposition 3. N ∗S is regular and can be constructed in polynomial time in the
size of S.

We decompose N ∗S intoM0∪M1, whereM0 (resp.M1) is the subset generated
with 0 (resp. 1) application of bottom narrowing. (It is easy to see that bottom
narrowing can be applied at most once). More precisely, N ∗S =M0 ∪M1 where

– M0 is the result of applying (❀right)∗ to IS , and
– M1 the result of applying ❀bot ◦(❀left)∗ in parallel with (❀right)∗ to IS .

Example. For the Beauquier-Debas system BD, the initial set IBD is 1W2. Ap-
plication of (❀right)∗ to IBD via M4 : X02Y → X20Y yields {1W2, 1W20,
1W200, 1W2000, . . . }. Thus the set M0 is 1W20∗. On the other hand, the
application of ❀bot to IBD via B1 yields 21W2. Then subsequent application
of (❀left)∗ via M1 : X10Y → X01Y yields {21W2, 201W2, 2001W2, . . . },
that is 20∗1W2. By (parallel) application of (❀right)∗, we finally generate
M1 = 20∗1W20∗. We have N ∗BD =M0 ∪M1 = 1W20∗ ∪ 20∗1W20∗.

3.2 Grounding Narrowing

We now consider an operation which removes W from an open word by replacing
W with ε followed by a reduction step, thus yielding a ground word.

Definition 4. Consider a middle rule M : XabY → Xa′b′Y , a bottom rule
B : abY → a′b′Y , an open word t and a ground word t′.

– We say that grounding narrowing applies from t to t′ via M if t = uaWbv
and t′ = ua′b′v, for some u ∈ Σ+, v ∈ Σ∗. This is written t ❀

gr
M t′.

– We say that grounding narrowing applies from t to t′ via B if t = aWbv and
t′ = a′b′v, for some v ∈ Σ∗. This is written t ❀

gr
B t′.

478 M. Duflot, L. Fribourg, and U. Nilsson

We write t ❀
gr
S t′ iff t ❀

gr
M t′ or t ❀

gr
B t′ for some rules M,B of S. Given a set

J of open words, the grounding narrowing of J via S, written GrS(J) or more
simply Gr(J), is Gr(J) = {t′ | ∃t ∈ J ∧ t ❀

gr
S t′} and we set GS = GrS(N ∗S).

The mapping Gr can also be seen as a transducer, hence Gr(J) is regular if J is
regular. In particular, GS is regular. It can be obtained by applying grounding
narrowing to M0 via a bottom rule B and grounding narrowing to M1 via a
middle rule M .

Example. By application of grounding narrowing to M0 = 1W20∗ via the rule
B1 : 12X → 21X, we get 210∗. There is no grounding narrowing applicable to
M1 = 20∗1W20∗ via M1 or M4. Hence GBD = Gr(M0) = 210∗.

4 Unavoidable Regular Languages and Convergence

We now focus on the problem of constructing a regular set unavoidable by S.
Let us first define the notion of “unavoidable set”.

Definition 5. Given a rewrite system S, a set K of ground words is said to be
unavoidable by S if, for all infinite ground derivation of the form t1 →S t2 →S
· · · →S tn →S · · · , there exists a word u ∈ K such that u = ti for some i > 0.

Using the notion of unavoidable set, we can now rephrase the main result (The-
orem 1, Section 3.2) of [3] in a more elegant way, as follows:

Theorem 6. [3] If the rewrite system S − TopS is Noetherian, then Gr((NS +
RS)∗) is unavoidable by S.

The idea of the proof is as follows: Since S − TopS is Noetherian, all infinite
ground derivations contain at least one application of TopS . After application
of such a rule, say bXa→ b′Xa′, the ground word generated is of the form b′ua′

for some u ∈ Σ∗. Therefore the set of words derived from b′ua′ is unavoidable.
However, many words are generated in a redundant manner. Exploiting some re-
ordering properties of infinite ground derivations (first discovered by Dershowitz
[10]), it is possible to prove that no unavoidable word is lost when focusing on
the derivations that start from b′Wa′, and replace iteratively W via successive
narrowings interleaved with reductions. See [3] for the full proof.

We claim that the Noetherian condition on S − TopS is generally met in
practice. Such a condition implies that all infinite derivations affect the rightmost
machine at least once (hence an infinite number of times). It can be considered
as a weak form of fairness concerning the top machine. For instance, in “token
passing” algorithms (as those considered in our examples), the tokens visit the
top machine at least once during infinite derivations, so the Noetherian condition
on S − TopS is always satisfied. Note however that, in order to prove formally
that the condition actually holds, we must generally discover, by hand, a specific
well-founded measure that decreases after each step of reduction, top excepted
(as, e.g., ψ given in an example of Section 2, or norm F of [25], p. 464).

Unavoidable Configurations of Parameterized Rings of Processes 479

The construction of an unavoidable set thus reduces to the generation of
(NS +RS)∗. In [3], over-approximations of (NS +RS)∗ were generated in the
form of regular languages, but the process was done in an ad hoc manner for
each treated example, using human insight. It also required the construction of
a graph expressing reachability relations among the inferred sublanguages, in
order to detect possible divergent loops of execution. In contrast, we now state a
simple and sufficient condition that guarantees that (NS +RS)∗ is regular and
can be constructed in both an exact and automated way. Let us suppose that
N ∗S is closed under S (i.e., ReduceS(N ∗S) ⊆ N ∗S). Then (NS + RS)∗ is simply
N ∗S . Using proposition 1, Theorem 1 thus becomes:

Proposition 7. If the rewrite system S −TopS is Noetherian and N ∗S is closed
under S, then GS is a regular unavoidable set.

Example. In the Beauquier-Debas example, N ∗BD = 1W20∗ ∪ 20∗1W20∗. It is
closed under BD, and BD − TopBD is Noetherian. Therefore GBD = 210∗ is
unavoidable.

Checking the closure of N ∗S under S is decidable (since N ∗S is regular). Note
that, even when N ∗S is closed, GS is generally not closed itself. Therefore, infinite
derivations traverse GS , without staying within it. But if, additionally, GS is con-
tained in a closed set L, all infinite ground derivations are eventually “captured”
by L; we have convergence to L. Formally:

Definition 8. Let S be a rewrite system and L a set of configurations. We say
that S converges to L and write Conv(S,L), if, for all infinite ground derivation
of the form t1 →S t2 →S · · · →S tn →S · · · , there exists k > 0 such that ti ∈ L
for all i ≥ k.

Convergence properties are useful for proving correctness of self-stabilizing algo-
rithms and liveness properties of termination detection algorithms, as illustrated
in Section 6.

Proposition 9. Let S be a rewrite system and L a set of configurations closed
under S. If there exists an unavoidable set K for S such that K ⊆ L, then we
have Conv(S,L).

From proposition 2 and proposition 3, it follows:

Theorem 10. Consider a system S such that S − TopS is Noetherian, and a
set L closed under S. If N ∗S is closed under S and if GS is included in L, then
we have Conv(S,L).

Note that, if L is regular, the inclusion of GS in L is decidable (since GS is
regular). Theorem 2 is a major enhancement of the results in [3], as it allows
to mechanically prove convergence properties, using the construction of N ∗S via
prefix/suffix rewriting.

480 M. Duflot, L. Fribourg, and U. Nilsson

Fig. 1. Construction by hand of the graph in [3] for proving convergence of system BD

Example. In the Beauquier-Debas example, N ∗BD = 1W20∗∪20∗1W20∗ is closed
under BD and GBD = 210∗ is included in L = 20∗10∗∪10∗20∗. Since BD−TopBD
is Noetherian and L is closed, we have Conv(BD,L). Such a proof has been au-
tomatically produced by an implemented program (see Section 7). This is a
breakthrough with respect to [3], where the proof of convergence of BD to L
required manual construction of a graph via an ad hoc process of generalization,
as illustrated in Figure 1. (In the figure, an edge labeled with N + gene mod-
els the inference of a regular language through one step of narrowing followed
by generalization. For example the edge, labeled with NM4 + gene, from 1W2
to 1W20+, means that narrowing via M4 leads from 1W2 to 1W20, which is
generalized to 1W20+.)

5 A Sufficient Syntactic Condition for Closure of N ∗
S

Although the closure condition of N ∗S in Theorem 2 is decidable, it is difficult
to verify, from simple inspection of the rules of S, whether it holds or not. We
next give a syntactic criterion on S, which has a simple operational meaning,
and guarantees the closure condition. This criterion is especially useful for self-
stabilizing algorithms (see Section 6) involving mutual exclusion. In such a case,
the reducible positions in configurations correspond to “tokens” or “privileges”.
The number ϕ of such tokens never increases (no creation of tokens). The prob-
lem is to show that ϕ always eventually decreases until just one token remains;
in which case the set L of “legitimate” configurations is reached. We explain
now that, if we focus on derivations that preserve the number ϕ of tokens, then

Unavoidable Configurations of Parameterized Rings of Processes 481

the system is likely to satisfy an operational condition of unidirectionality that
guarantees the closure property. We need some preliminary definitions.

Definition 11. A middle U-turn from left to left (resp. from right to right) in
a ground derivation is a sequence of reductions of the form uabcv → ua′b′cv →
ua′b′′c′v → ua′′b′′′c′v (resp. uabcv → uab′c′v → ua′b′′c′v → ua′b′′′c′′v), where u
and v are strings.

Definition 12. A bottom U-turn in a ground derivation is a sequence of reduc-
tions of the form abcv → a′b′cv → a′b′′c′v → a′′b′′′c′v. A top right (resp. top
left) U-turn is a sequence of reductions cuab → c′uab′ → c′ua′b′′ such that
dvb′′ → d′vb′′′ for some d ∈ Σ, v ∈ Σ+ (resp. caub→ c′aub′ → c′′a′ub′ such that
c′′vd→ c′′′vd′ for some d ∈ Σ, v ∈ Σ+).

Definition 13. A repetition in a derivation is a sequence of two consecutive
reductions that rewrite the same positions in the term (e.g., uabv → ua′b′v →
ua′′b′′v).

A rewriting system S is said to be unidirectional if no U-turn (middle from left
to left, middle from right to right, bottom, top left, top right) and no repetition
are possible, along any derivation via S. From an operational point of view, it
roughly means that each token always travels in the same direction. It is easy
to determine by inspection of the left- and right-hand sides of rules, whether a
system S is unidirectional or not.

Proposition 14. In a unidirectional system, we have (NS +RS)∗ = N ∗S
More precisely, starting from a word of IS , once we have narrowed a word an
arbitrary number of times at prefix or suffix position, there is no possibility of
reducing the resulting word anywhere else. Unidirectionality is thus a syntactic
sufficient condition that guarantees that N ∗S is closed under S.

A priori, a distributed algorithm S does not satisfy the unidirectionality
property. However we claim that S often can be transformed into a simplified
system T , which is unidirectional, and such that Conv(T ,L) ⇒ Conv(S,L).
This is done by restricting the possible rules of S with respect to the mapping
ϕ. Since ϕ never increases, all the infinite derivations via S preserve ϕ after a
finite number of initial steps. We construct T so that T preserves ϕ (i.e., x→T x′

iff x→S x′ ∧ ϕ(x) = ϕ(x′)). Then clearly Conv(T ,L) holds iff Conv(S,L) does.
The behavior of tokens in T is more restrained than in S. (In particular, there is
no collision of tokens since collision usually eliminates one or two tokens.) So T is
more likely to satisfy the unidirectionality property. As an example, in Sect. 6.1,
we derive a simplified system BD from the original Beauquier-Debas system S
such that Conv(BD,L)⇔ Conv(S,L). The original system is not unidirectional
(for example, there is a U-turn: u110v →M1 u101v →M1 u011v →M2 u002v). In
contrast, the simplified system BD is unidirectional and N ∗BD is therefore closed.

Note that the unidirectionality criterion is a sufficient, but not necessary,
condition for the closure of NS . (There are examples, e.g., Hoepman’s algorithm

482 M. Duflot, L. Fribourg, and U. Nilsson

Fig. 2. Execution-graph for self-stabilizing systems

[18], which are not unidirectional, even in the simplified form, but are still closed.)
However, unidirectionality allows us to understand better why our assumption
of closure of N ∗S is met in practice by several mutual exclusion self-stabilizing
algorithms, like those of Beauquier-Debas and Ghosh [4,17].

6 Applications

We now show some applications of Theorem 2. Throughout this section, we make
three assumptions about S and L:

α. L is regular,
β. L is closed under S,
γ. S − TopS is Noetherian.

We first show how to prove self-stabilization, and then a liveness property of
termination detection algorithms.

6.1 Proof of Self-Stabilization

Self-stabilization is an important concept in distributed computing, and refers to
a system’s ability to recover automatically from unexpected faults [14]. Formally,
a rewrite system S is self-stabilizing wrt a closed set L if all infinite derivations via
S reach a configuration of L for all initial configurations [12]. The configurations
of L are called legitimate. The self-stabilization of a system S wrt L is generally
proven by showing two properties:(1) every ground configuration is reducible via
S, and (2) S converges to L. The former is easy to check: it reduces to an equality
test between two regular languages. The main problem is to prove property (2),
depicted in Fig. 2.

In self-stabilizing algorithms for rings, the set L of legitimate configurations
is always closed and can often be expressed naturally as a regular set. So (α)
and (β) are met in practice. Condition (γ) is generally met by S as explained
in Sect. 4. However the closure of N ∗S under S is not always satisfied. In this
case, as explained in Sect. 5, we try to find a simplified set T of rules such that
Conv(T ,L)⇒ Conv(S,L).

Unavoidable Configurations of Parameterized Rings of Processes 483

Fig. 3. Execution-graph for S satisfying Liv(S,Term) (left) and S−1 satisfying
Conv(S−1,¬Term) (right)

Example. (Beauquier-Debas). The system S modeling the original Beauquier-
Debas algorithm looks as follows:

B1 : 12X → 21X T1 : 0X0→ 1X2
M1 : X10Y → X01Y (X 	= ε) T2 : 0X1→ 1X0
M2 : X11Y → X02Y (X 	= ε) T3 : 0X2→ 1X1
M3 : X12Y → X00Y (X 	= ε) T4 : 2X1→ 1X2
M4 : X02Y → X20Y (X 	= ε) T5 : 2X2→ 1X0
M5 : X22Y → X10Y (X 	= ε)

L is defined as 20∗10∗ ∪ 10∗20∗. One can show that N ∗S is not closed under
S, but as remarked in [4], T1, T2, T3 are applied at most once. As a conse-
quence S converges to L iff S0 ≡ S − {T1, T2, T3} converges to L. Let ϕ be
a measure mapping every ground word to its number of non-zero elements.
Obviously, any application of rule M2,M3,M5 or T5 of S0 strictly decreases
ϕ, while rules B1,M1,M4, T4 preserve it. Therefore, M2,M3,M5 and T5 can
be applied only a finite number of times. It follows that S0 converges to L iff
BD ≡ {B1,M1,M4, T4} converges to L. Hence Conv(BD,L)⇒ Conv(S,L). As
explained above, we know that Conv(BD,L). Thus we have convergence of the
original algorithm S. Note that classical proof methods require human interven-
tion involving quite subtle well-founded measures (see [4]).

6.2 Proving a Liveness Property of Termination Detection

A distributed algorithm terminates when it reaches a global configuration where
no further step is applicable, but some individual machines may be unaware
that the computation has terminated. A termination detection algorithm is an
algorithm that observes the system computation and detects that the computa-
tion has reached a terminal configuration of the underlying algorithm (see [25],
p.268). In our framework, given a set Term of terminal configurations (closed un-
der S), the liveness property Liv(S,Term) of a termination detection algorithm
can be stated as follows: once a configuration of Term is reached, the algorithm
terminates after a finite number of steps. This is depicted to the left in Fig. 3.
Formally:

Definition 15. Let S be a rewrite system and Term a set of configurations
closed under S. We say that S satisfies the property Liv(S,Term), if there is no
infinite ground derivation starting from an element of Term.

484 M. Duflot, L. Fribourg, and U. Nilsson

The method described before does not apply directly for proving Liv(S,Term),
but can be easily adapted as follows. We consider the reverse system S−1,
i.e., the system where the right- and left-hand sides of the rules have been ex-
changed. If we consider derivations via S−1 instead of S, the property is now
depicted to the right in Fig. 3. Proving that any execution in Term via S is
finite is equivalent to proving that any execution in Term via S−1 is finite,
i.e., Conv(S−1,¬Term). Assuming (α), (β), (γ) for S and Term, we can use our
method to prove Conv(S−1,¬Term), hence Liv(S,Term), since the following
conditions hold:
α′. ¬Term is regular (since Term is regular),
β′. ¬Term is closed under S−1 (since Term is closed under S),
γ′. S−1−TopS−1 is Noetherian (since S −TopS is Noetherian, and S is length-

preserving).

Formally we have:
Theorem 16. Consider a system S such that S −TopS is Noetherian. Suppose
also that Term is regular and closed under S. If N ∗S−1 is closed under S−1 and
if GS−1 ⊆ ¬Term, then we have Liv(S,Term).
Checking the closure ofN ∗S−1 and inclusion of GS−1 are both decidable properties.
In contrast to self-stabilizing algorithms where any configuration is reachable,
termination detection algorithms often concern only a restricted set of “admis-
sible” configurations, e.g., configurations with at most one token. Taking this
into account, Theorem 3 can be refined by replacing N∗S−1 with N∗S−1 ∩ Adm
where Adm is a regular language of (open) words containing all admissible con-
figurations. This is illustrated in [15] on the termination detection algorithm of
Dijkstra-Feijen-van Gasteren (cf., [13,25] and [19]).

7 Implementation and Experimental Results

Our approach has been implemented in SICStus Prolog using the Finite State
Automata Utilities of Gertjan van Noord [23]. The resulting program consists of
approximately 400 lines of Prolog code (100 clauses) excluding the FSA utilities.

The core of the implementation uses Caucal’s algorithm for computing the
reachable configurations by prefix and suffix rewriting via systems Spre (the
prefix extensions of S) and Ssuf (the suffix extensions of S) given an initial word
t0 of the form u0�v0. The algorithm boils down to construction of finite automata
A1(Spre, t0) and A2(Ssuf , t0) characterizing the reflexive-transitive closure of
→Spre and →Ssuf applied to �v0 and u0� respectively.

We have run our program on several algorithms drawn from Beauquier-Debas
[4], Ghosh [17], Hoepman [18] and Dijkstra-Feijen-van Gasteren [13]. (Ghosh’s
and Hoepman’s systems involve 3-letters rewrite systems instead of 2, but our
method extends to them in a natural way.) Running each example takes at most
a few seconds on a 200MHz Pentium Pro with 128MB of memory (including
various clean-up operations to facilitate human reading of the output). The main
code of the implementation is given in [15] as well as typical automata output
by the program on the examples.

Unavoidable Configurations of Parameterized Rings of Processes 485

8 Conclusions

We have given a new procedure, based on prefix and suffix rewriting, for con-
structing a regular set GS of “unavoidable” configurations of a rewrite system
S. This is useful e.g., for proving the convergence Conv(S,L) of S to a set L
of configurations. The procedure works under a novel and decidable sufficient
condition: the closure of the narrowing language N ∗S . If N ∗S is not closed, we
suggest a way to find a simplified form T of S which is often closed in practice,
and such that Conv(T ,L)⇒ Conv(S,L). An implementation exists, and all the
examples treated manually in [3], have been processed here for the first time
in a uniform automated manner. The method applies only to linear or circular
arrays of machines. As an extension it would be interesting to investigate more
complicated topologies such as trees, using concepts of tree automata and term
rewriting [9] instead of string rewriting. Nevertheless

– We have simplified the framework of [3], giving a statement of the main
theorem in a more elegant way.

– We have given a new and significant application of prefix rewriting (analysis
of convergence of distributed algorithms) in addition to those given in [6,21].

– Using the idea to reverse the system S, we have shown how to apply the
method for proving the liveness of termination detection algorithms over
parameterized rings (in addition to the correctness of self-stabilizing algo-
rithms).

It is well-known that proving a property such as convergence of parametric linear
array of finite machines is an undecidable problem [2]. Our work can be seen as
a step towards isolating sufficient conditions of parametric systems, which are
both met in practice and allow to verify some liveness properties mechanically.

Acknowledgement. We are grateful to Moshe Vardi for suggesting the use of
prefix rewriting for automatic generation of regular languages.

References

1. P.A. Abdulla, A. Bouajjani, B. Jonsson and M. Nilsson. “Handling global condi-
tions in parameterized system verification”. Proc. CAV’99, LNCS 1633, Springer-
Verlag, 1999, pp. 134-145.

2. K.R. Apt and D.C. Kozen. “Limits for automatic verification of finite-state con-
current systems”. Information Processing Letters 22, 1986, pp. 307–309.

3. J. Beauquier, B. Bérard, L. Fribourg and F. Magniette. “Proving convergence
of self-stabilizing systems using first-order rewriting and regular languages”. Dis-
tributed Computing 14:2, 2001, pp. 83-95.

4. J. Beauquier and O. Debas. “An optimal self-stabilizing algorithm for mutual ex-
clusion on uniform bidirectional rings”. Proc. 2nd Workshop on Self-Stabilizing
Systems, Las Vegas, 1995, pp. 226-239.

5. R.V. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, 1993.

486 M. Duflot, L. Fribourg, and U. Nilsson

6. A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems and
P. Wolper. “An Efficient Automata Approach to Some Problems on Context-Free
Grammars”. Information Processing Letters 74 (5-6), 2000, pp. 221-227.

7. A. Bouajjani, B. Jonsson, M. Nilsson and T. Touili. “Regular Model-Checking”.
Proc. CAV’00, LNCS 1855, Springer-Verlag, 2000, pp. 403-418.

8. D. Caucal. “On the regular structures of prefix rewriting”. Proc CAAP’90, Copen-
hagen, 1990, LNCS 431, Springer, pp. 87-102.

9. H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison and M. Tommasi. Tree
Automata Techniques and Applications.
Available on http://www.grappa.univ-lille3.fr/tata/.

10. N. Dershowitz. “Termination of Linear Rewriting Systems”. Proc. ICALP, LNCS
115, Springer-Verlag, 1981, pp. 448-458.

11. N. Dershowitz and J.-P. Jouannaud. “Rewrite Systems”. Handbook of Theoretical
Computer Science, vol. B, Elsevier - MIT Press, 1990, pp. 243-320.

12. E.W. Dijkstra. “Self-stabilizing systems in spite of distributed control”. Comm.
ACM 17:11, 1974, pp. 643-644.

13. E.W. Dijkstra, W.H.J Feijen and A.J.M. van Gasteren. “Derivation of a Termina-
tion Detection Algorithm for Distributed Computations”. Information Processing
Letters, vol. 16, 1983, pp. 217-219.

14. S. Dolev. Self-Stabilization. MIT-Press, 2000.
15. M. Duflot, L. Fribourg and U. Nilsson. Unavoidable Configurations of Parameter-

ized Rings of Processes. Research Report LSV-00-10, ENS de Cachan, Nov. 2000.
(Available on http://www.lsv.ens-cachan.fr/˜fribourg/publis.html)

16. L. Fribourg and H. Olsén. “Reachability sets of parametrized rings as regular lan-
guages”. Proc. 2nd Int. Workshop on Verification of Infinite State Systems (IN-
FINITY’97), volume 9 of Electronical Notes in Theoretical Computer Science.
Elsevier Science, 1997.

17. S. Ghosh. “An Alternative Solution to a Problem on Self-Stabilization”. ACM
TOPLAS 15:4, 1993, pp. 735-742.

18. J.-H. Hoepman. “Uniform Deterministic Self-Stabilizing Ring-Orientation on
Odd-Length Rings”. Proc. 8th Workshop on Distributed Algorithms, LNCS 857,
Springer-Verlag. 1994, pp.265-279.

19. B. Jonsson and M. Nilsson. “Transitive closures of regular relations for verifying
infinite-state systems”. Proc. TACAS’00, LNCS 1785, Springer-Verlag, 2000.

20. Y. Kesten, O. Maler, M. Marcuse, A. Pnueli and E. Shahar. “Symbolic Model-
Checking with Rich Assertional Languages”. Proc. CAV’97, LNCS 1254, Springer-
Verlag, 1997, pp. 424-435.

21. O. Kupferman and M.Y. Vardi. “An Automata-Theoretic Approach to Reasoning
about Infinite-State Systems”. Proc. CAV’00, LNCS 1855, Springer-Verlag, 2000.

22. D. Lesens, N. Halbwachs and P. Raymond. “Automatic Verification of
Parametrized Linear Network of Processes”. Proc. POPL’97, Paris, 1997.

23. G. van Noord. Fsa Utilities User Manual Version 5, 1998.
24. A. Pnueli and E. Shahar. “Liveness and Acceleration in Parameterized Verifica-

tion”. Proc. CAV’00, LNCS 1855, Springer-Verlag, 2000, pp. 328-343.
25. G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.
26. P. Wolper and B. Boigelot. “Verifying systems with infinite but regular state

spaces”. Proc. CAV’98, LNCS 1427, Springer-Verlag, 1998, pp. 88-97.

Logic of Global Synchrony

Yifeng Chen1 and J.W. Sanders2

1 Department of Mathematics and Computer Science, University of Leicester,
University Road, Leicester LE1 7RH, UK

2 Programming Research Group, Oxford University Computing Laboratory,
Parks Road, Oxford OX1 3QD, UK

Abstract. An intermediate-level specification notation, Logs, is pre-
sented for PRAM/BSP-style programming. It extends pre-post style se-
mantics to reveal state at points of global synchronization before termi-
nation (if that occurs). The result is an integration of the pre-post, finite
and reactive-process styles of specification and in particular an exten-
sion of standard BSP. The language is provided with a complete set of
laws, formulated to benefit from a simple predicative semantics and to
be quite close to programming intuition. The language is compositional,
and parallel composition is simply logical conjunction. Use of Logs, and
of the laws for reasoning about it, is demonstrated on the problem of the
dining philosophers.

1 Introduction

Parallel programs are not only hard to develop in practice but also notoriously
difficult to model in theory. That may be part of the reason that no language
has gained the acceptance for parallel programming which Dijkstra’s guarded-
command language has gained for sequential programming. Perhaps the most
desirable property of a parallel model is compositionality (in particular parallel
modularity) without which it is hard to imagine a language supporting a useful
programming methodology. Unfortunately only models based on point-to-point
message passing such as CSP [13] and CCS [18] seem to be compositional. Most
variable-sharing models such as TLA [15] and UNITY [2] are not; nor are the
implementation languages PRAM [11] and (in particular) BSP [16,21,12] which
we target, for sake of definiteness, in this paper.

Distributed systems are conveniently specified using global information, al-
though they are efficiently and robustly implemented by relying on only local
state and point-to-point communications. The derivation of distributed or par-
allel algorithms is therefore the task of moving from the former to the latter: the
global to the local. We present here an intermediate-level language for describing
and reasoning about BSP algorithms abstracted from the global ‘put’ and ‘get’
commands which BSP uses to implement global synchrony. Since it has been
designed to emphasize description (rather than execution, which is the purpose
of BSP itself) we call the intermediate language a logic, the logic of global syn-
chrony, Logs. Its parallel composition is simply logical conjunction and hence
is compositional. That results in good properties including strong refinement

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 487–501, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

488 Y. Chen and J.W. Sanders

laws. In short, the language Logs is fully compositional; reasoning largely fol-
lows programming intuition; and it integrates the pre/post and reactive styles
of programming. Laws for the further transformation from Logs to real BSP
programs are covered elsewhere (see [6]).

The language BSP provides a controlled form of synchrony, intermediate in
level of abstraction. Communications achieve a global effect at each ‘superstep’.
As a result BSP supports reactive programming and also a weak form of global
synchrony. Nonetheless it is targeted very much towards implementation at the
expense of specification and reasoning. Thus it fails to support abstraction in
the way the guarded-command language achieves it for sequential programming.
In particular BSP offers little modularity, only finite nondeterminism, relies on
synchronisation commands using explicit communications, expresses composi-
tion as parallel-via-medium, and requires a finite tree of executable commands.
The language Logs removes all those restrictions whilst providing a program-
ming theory for global synchrony.

The guarded-command language, like any sequential language, is supported
by semantics (either relational or predicate-transformer, for example) in which a
program is described by the way it transforms initial state to final state. In Logs,
in order to encompass reactive programs, we reveal the sequence of intermediate
states of a computation at the points of global synchrony. That provides the ab-
straction necessary to describe the effect of BSP code but frees the programmer
from preoccupation with how such synchrony is achieved. That view provides
the basic Logs command, a computation with n points of global synchrony. If
the computation terminates then the sequence of intermediate states is finite; if
it is a reactive nonterminating computation then the sequence is infinite with no
final state.

The assertional style, developed originally for sequential programming, has
been used with only limited success in the parallel case [20]. For it offers limited
support to the programmer for how state should be expected to depend on later,
more refined, state through extra (‘auxiliary’) variables. However we follow the
use of a relational model and represent assertions as particular binary relations
(which we shall identify as 0Logs commands).

A complicated specification language makes formal reasoning unnecessarily
complicated. Here the concern must be that the interposition of intermediate
states in a computation has that effect at least on the semantics of Logs. An
important feature of our work has been to provide a relatively simple predicative
semantics and manner of demonstrating soundness with respect to it of the
laws of the notation. That is achieved by the technique of inheritance stemming
from [14] (see [6]).

In section 2 the basic commands of Logs are defined, their laws given and
completeness verified. Important derived operators and their laws are set out
in section 3. In section 4 we show Logs, and in particular its derived opera-
tors for liveness and safety, at work on the benchmark example of the dining
philosophers. A predicative semantics of Logs is enclosed in the appendix.

Logic of Global Synchrony 489

2 Specification Language Logs

No matter how useful it is, global synchronization is expensive to implement
on parallel/distributed systems. There is a case to be made for providing the
programmer with a language intermediate in abstraction between the standard
low-level language (like BSP, for example, with explicit global synchronizations
via the put and get events with respect to which they are implemented) and a
more reified one which abstracts them completely. For a language of the latter
type, though important for requirements capture, does not enable a programmer
to make tradeoffs based on efficiency; and that is the concern at intermediate
stages of design.

In this paper we introduce language Logs. It makes explicit the intermediate
global states at synchronization points between start and (possible) termination,
in such a way that the programmer is aware of the presence of global synchro-
nizations without having to implement them (at this level). It also enables the
programmer to reason, in a simple way, about safety and liveness properties.

On the other hand communications are abstracted in Logs. That is to en-
courage the programmer to focus on the proposed effect of communications on
the global state rather than to decide prematurely which communication com-
mands to use. Logs is thus an intermediate specification language, chosen for
convenience, with no pretence at being as abstract as possible.

The semantic space (see appendix A) of Logs is a complete lattice of pred-
icates in which the ordering � is reverse implication and so corresponds to
removal of nondeterminism.

� magic (top) ⊥ chaos (bottom)
� nondeterministic choice (glb) � parallel composition (lub)
� (refinement) ordering ∼ negation (complement)

For a vector ω of program variables, the primitives of Logs are commands
on ω taking n steps, for n ∈ N ∪ {∞}. Each command starts in its initial state←−ω (pronounced ‘pre-ω’) and, after n intermediate steps, if n < ∞ terminates
in a final state −→ω (pronounced ‘post-ω’) but otherwise does not terminate,
accumulating forever its infinite sequence of intermediate states (in which case
there is no final state).

A typical n-step command is written 〈 p 〉n where predicate

p = p(←−ω ,ω0, . . . ,ωn−1,−→ω)

is called the internal predicate of the command; in it each ωk with k < n denotes
the state at the k-th intermediate synchronization point; thus ω0 records the first
synchronisation after the initial state. The set of all n-step commands is written
nLogs.

Example: 〈←−x + 1 = x0 = −→x − 1 〉1 is a 1Logs command in which the pro-
gram variable x is increased by 1 by the time of its intermediate synchronization

490 Y. Chen and J.W. Sanders

point and increased by 1 again by termination. Alternatively we can think of
this command as a predicate

(←−x + 1 = x0 = −→x −1) ∧ (# = 1)

where # denotes the number of intermediate synchronizations. Such a simple
interpretation aids comprehension but is too weak to provide a fully abstract
semantics, which must incorporate more information about the cumulation of
traces (see appendix A). �

The sequential composition of P and Q is written P � Q. Sequential compo-
sition is associative and the composition of an nLogs command with an mLogs
command forms an (n+m)Logs command. Using standard notation for variable
substitution, the definition becomes the first law.

Law 1 〈 p 〉n � 〈 q 〉m = 〈 ∃ω · p[ω/−→ω] ∧
q[ω,ωn, · · · ,ωn+m−1/←−ω ,ω0, · · · ,ωm−1] 〉n+m

Example: The following command is a composition of a 0Logs command
without any synchronization and a 1Logs command with exactly one synchro-
nization point:

〈←−x = −→x + 1 〉0 � 〈←−x + 1 = x0 = −→x − 1 〉1 = 〈←−x = x0 = −→x − 1 〉1
which is indeed the relational composition of its internal predicates. The final
state of the first Logs command is linked to the initial state of the second and
the interface is then hidden. �

The nondeterministic choice between two nLogs commands is the disjunc-
tion of their internal predicates. That implies monotonicity of the embedding
which takes a predicate to an nLogs command.

Law 2 (1) 〈 p 〉n � 〈 q 〉n = 〈 p ∨ q 〉n (2) 〈 p 〉n � 〈 q 〉n iff q⇒p
The parallel composition of two nLogs commands is the conjunction of their

internal predicates, while that between two nLogs commands of different lengths
is the magic command, which contains no behaviour.

Law 3 (1) 〈 p 〉n � 〈 q 〉n = 〈 p ∧ q 〉n (2) 〈 p 〉n � 〈 q 〉m = � (m �= n)

Example: Laws 3 and 2 can be easily understood in terms of our informal
notation: 〈 p 〉n = (p ∧ #=n) and 〈 q 〉m = (q ∧ #=m) . Non-deterministic
choice is disjunction. If n = m then the commands are merged into a sin-
gle nLogs command (p ∨ q) ∧ # = n; otherwise, they become a disjunction
(p ∧ # = n) ∨ (q ∧ # = m), which cannot be further simplified. Parallel com-
position is conjunction. If n = m then the commands are merged into a single
nLogs command p∧ q ∧#=n; otherwise, their conjunction becomes ‘magic’ or
false. This informal interpretation is not our formal semantics which models se-
quential composition and recursion properly, and thus needs further healthiness
conditions (refer to appendix A). �

Logic of Global Synchrony 491

Negation forms a complement. The negation of an nLogs command can be
calculated inductively by construction of the command. De Morgan’s laws hold
for negation of (arbitrary) disjunctions and conjunctions so that either might
have been introduced as a derived construct. In the following law i, n : N∪{∞}.
Law 4 (1) P � ∼P = �

(3) ∼∼P = P
(5) ∼�P =�{∼P | P ∈ P}

(2) P � ∼P = ⊥
(4) ∼ 〈 p 〉n = 〈 ¬p 〉n � �i �=n 〈 true 〉i
(6) ∼�P =�{∼P | P ∈ P}

Finite commands in Logs have a normal form: �n�∞ 〈 qn 〉n . A proof of
the following theorem appears in [5].

Theorem 1 (Completeness) The laws of Logs are complete for finite Logs
commands: semantic equality between two finite Logs commands is provable
using (just) the laws of Logs and those of first-order logic.

3 Derived Logs Commands and Their Algebraic Laws

The derived commands studied in this section are widely applicable and support
modularised specification and derivation in Logs.

The extreme elements of the semantic lattice are themselves useful specifi-
cations. Chaos ⊥ specifies a command with all possible behaviours. Magic �
specifies a command without any behaviour!

Two further important commands are complements:

� command with all terminating behaviours
� command with all nonterminating behaviours

that is, �� � = ⊥, �� � = � and �= ∼� . In terms of nLogs commands,
we have the following laws (in which n : N ∪ {∞}).
Law 5 (1) ⊥ = �k�∞ 〈 true 〉k

(3) �= �k<∞ 〈 true 〉k
(2) � = 〈 false 〉n
(3) � = 〈 true 〉∞

In particular � = �n�∞ 〈 false 〉n . The (sequential) interactions between the
extreme commands are shown in Table 1.

Table 1. Interactions between extreme commands

P �Q � ⊥ � �

� � � � �
⊥ � ⊥ ⊥ �

� � ⊥ � �
� � � � �

492 Y. Chen and J.W. Sanders

The next few derived commands correspond to code.

skip skip, no operation (b)� conditional magic
✁ b✄ binary conditional

Command skip and conditional magic (b)� are special 0Logs commands:

skip =̂ 〈←−ω =−→ω 〉0 and (b(ω))� =̂ 〈 b(←−ω) ∧←−ω =−→ω 〉0 .

Binary conditional can be derived from skip and conditional magic as usual:

P ✁ b✄Q =̂ ((b)� � P) � ((¬b)� � Q) .

If b is true in the initial state then P is executed; otherwise Q is executed.
Conditional magic satisfies the following straightforward laws in which m<∞ .

Law 6 (1) (b)� � 〈 p 〉n = 〈 b(←−ω) ∧ p 〉n (2) (a)� � (b)� = (a ∧ b)�
(3) 〈 p 〉m � (b)� = 〈 p ∧ b(−→ω) 〉m

Several repetition commands are of use:

Table 2. Recursion, iteration and repetition

µf recursion do b→ P od iteration
Pn repetition n times P∞ infinite repetition
P ∗ arbitrary repetition P� finite repetition
P+ non-zero repetition P⊕ non-zero finite repetition

The modelling of recursion is subtle enough for most existing computational
models to simplify it by disallowing unguarded recursions [9], disallowing non-tail
recursions, disallowing reactive or real-time behaviors [19], disallowing command
skip (or skip, the unit of sequential composition) [1], or disallowing the body
of a loop to take zero time [8].

To integrate pre-post, finite and unbounded specifications, we cannot afford
those compromises. We believe that the calculation of the fixpoint of a recursive
program should start from nontermination not chaos:

�, f(�), f2(�), · · · , fκ(�), · · ·
If � � f(�) with regard to some ordering, the above sequence eventually reaches
a fixpoint; otherwise a more general technique called the strongest negative fix-
point [7] is required.

Iteration do b → P od is a kind of recursion µX · (P � X) ✁ b ✄ skip on
which repetitions can be defined:

P 0 =̂ skip, Pn+1 =̂ P � Pn and P∞ =̂ do true→ P od .

Logic of Global Synchrony 493

Arbitrary repetition is defined by �nP
n, finite repetition by �n<∞P

n, non-
zero repetition by �0<n�∞P

n, and non-zero finite repetition by �0<n<∞P
n .

Example: 〈←−x + 1 = x0 = −→x 〉∞1 specifies a nonterminating reactive com-
mand that increases variable x by 1 at every synchronization point. �

The repetition operators satisfy some laws (in which λ, µ : {n,∞, ∗,�,+,⊕}).

Law 7 (1) P ∗ = P� � P∞
(3) P∞ � Q = P∞

(5) P� � P� = P�

(2) P+ = P⊕ � P∞
(4) Pλ � Pµ = Pµ � Pλ

(6) P⊕ � P� = P⊕

(7) P ∗ � P ∗ = P� � P ∗ = P ∗

(8) P+ � P ∗ = P+ � P� = P⊕ � P ∗ = P+

(9) (P � Q)∞ = P ∗ � Q � (P � Q)∞

An important kind of safety property states that p(←−ω ,ω0,−→ω) holds for every
synchronization point. Such a safe computation simply becomes the arbitrary
repetition, �k�∞ 〈 p 〉k1 , of a 1Logs specification. In most applications, it is
more convenient to assume a stable state before each synchronization point.
That leads us to the definition of a special 1Logs command called a transition:
[p(←−ω ,−→ω)] =̂ 〈 p(←−ω ,−→ω) ∧←−ω =ω0 〉1 .

An always-true safety property is defined: | p | =̂ �k�∞ [p]k .

Example: |←−x =−→x | � 〈←−y + 1 = −→y 〉2 is a 2Logs command that increases
variable y by 1 while keeping variable x unchanged. �

A typical kind of liveness property is a terminating pre-post specification
whose final state is related to its initial state by an internal predicate after a
finite number of synchronizations: |[q(←−ω ,−→ω)]| =̂ �n<∞ 〈 q(←−ω ,−→ω) 〉n .

Example: Computation |[←−x + 1 = −→x]| terminates after finitely many steps
and eventually increases the value of x by 1. The intermediate states of this com-
putation are ‘chaotic’, and no useful information can be extracted by observing
them. �

Safety property | p | distributes various structures consisting of transitions. In
the following laws λ ∈ {n,∞, ∗,�,+,⊕} , P = P � | true | and Q = Q � | true |.

Law 8 (1) | p | � �= [p]�

(3) | p | � [q] = [p ∧ q]
(5) | p | � Qλ = (| p | � Q)λ

(2) | p | � � = [p]∞

(4) | p | � 〈 q 〉0 = skip � 〈 q 〉0
(6) | p | � | q | = | p ∧ q |

(7) | p | � (P � Q) = | p | � P � | p | � Q
(8) (�� | p |) � (�� Q∞) = (�� | p | � Q∞)

The parallel composition of pre-post commands becomes a conjunction of
their internal predicates, while a nondeterministic choice becomes a disjunction.

Law 9 (1) |[p]| � |[q]| = |[p ∧ q]| (2) |[p]| � |[q]| = |[p ∨ q]|

494 Y. Chen and J.W. Sanders

Reactive commands satisfy the following laws.

Law 10 (1) �� [p(←−ω)]∞ = �� [p(−→ω)]∞

(2) �� [p]∞ � �� [q]∞ = �� [p ∧ q]∞

A computation satisfies a rely-guarantee P ⇒ Q iff whenever P is satisfied
Q is guaranteed P ⇒ Q =̂ ∼P � Q .

Thus P ⇒ Q allows any computation that does not satisfy P , in which case
it may not guarantee Q. This corresponds to the reply-guarantee specifications
in TLA [15] and UNITY [2]. A rely-guarantee specification satisfies the laws:

Law 11 (1) P ⇒ P = ⊥ (2) P � (P ⇒ Q) = P � Q

4 Case Study: The Dining Philosophers

4.1 Dining Philosophers

Since it was first described in [10], the example of the dining philosophers has
become a benchmark for the calibration of theories of concurrency and the way
they facilitate reasoning about resource contention. Five philosophers are seated
at a circular dining table. Each philosopher cycles through the phases of thinking,
t, being hungry, h, and eating, e. Neighbouring philosophers may not eat at the
same time. We require that a hungry philosopher eventually eats provided that
thinking and eating are achieved in finitely-many steps.

Let each philosopher have state xk ∈ {t,h, e} and let the state of the vector
of philosophers be x =̂ x0, x1, . . . , x4. The initial state of the system of philoso-
phers is specified as follows, with k− =̂ (k−1) mod 5 and k+ =̂ (k+1) mod 5.

SPEC 1 =̂ �k


 [←−x k = t]⊕ �

[←−x k = h]⊕ �

[←−x k− �=←−x k = e �=←−x k+]⊕



∞

The term [←−x k = h]⊕ specifies termination of philosopher k’s hungry phase.

4.2 Forks

The specification is to be refined by a distributed design in which contention
is mediated by forks, one between adjacent philosophers and numbered like
the philosophers: philosopher k requires forks k and k+ in order to eat. Let
the state of fork k be denoted yk with the vector of forks being denoted
y =̂ y0, y1, . . . , y4. Each fork has two states: either l (being used by the philoso-
pher to its left) or r (to its right). Thus to eat, philosopher k requires yk = r
and yk+ = l.

SPEC 2 =̂ �k


 [←−x k = t]⊕ �

[←−x k = h]⊕ �

[←−x k = e]⊕



∞

� | forks |

where forks =̂ ∀k · (←−x k = e ⇒ −→y k = r ∧ −→y k+ = l)

Logic of Global Synchrony 495

The validity of that design is ensured as follows.

Theorem 2 SPEC 1 � SPEC 2

Proof.
SPEC 2
= Law 8(3)(5)(6)(7)

�k


 [←−x k = t ∧ forks]⊕ �

[←−x k = h ∧ forks]⊕ �

[←−x k = e ∧ −→y k = r ∧ −→y k+ = l]⊕



∞

� monotonicity of various compositions
SPEC 1

�4.3 A Strategy

In this design the forks are resources and the philosophers are (resource) con-
sumers. The thinking phase represents a period during which a consumer needs
no shared resource; the hungry phase represents a period of waiting for required
resources; the eating phase represents a resource-consuming period. Thus ter-
mination of both thinking and eating must be guaranteed by each resource
consumer, whilst termination of the hungry phase has to be guaranteed by a
distributed implementation.

Initially we suppose that termination of the hungry phase is unknown. We
propose the following strategy for each philosopher k and later prove it to ter-
minate:

1. a thinking philosopher may either continue thinking or become hungry;
(←−x k = t) ⇒ (−→x k=←−x k ∨ −→x k=h)

2. a hungry philosopher may either remain hungry or immediately eat, provided
two adjacent forks are available;
(←−x k=h) ⇒ (if ←−y k=r ∧←−y k+ = l then −→x k=e else −→x k =←−x k)

3. an eating philosopher may either continue eating or stop to think;
(←−x k=e) ⇒ (−→x k=←−x k ∨ −→x k=t)

4. if two adjacent philosophers are thinking, the fork between them will not
change direction;
(←−x k− =t=←−x k) ⇒ (←−y k=−→y k)

5. if a philosopher is thinking while his left-hand neighbour is not, then the
philosopher will ‘lose’ the fork between them;
(←−x k− �= t=←−x k) ⇒ (−→y k= l)

6. if a philosopher is not thinking but his left-hand neighbour is, the neighbour
will lose the fork between them;
(←−x k− =t �=←−x k) ⇒ (−→y k=r)

7. if neither of two adjacent philosophers is thinking, the fork between them
will not change direction.
(←−x k− �= t �=←−x k) ⇒ (←−y k=−→y k)

496 Y. Chen and J.W. Sanders

That strategy is formalised as follows.

SPEC 3 =̂ (acyc)� � �kPk where

Pk =̂
(
T⊕k � H+

k � E⊕k
)∞

Tk =̂ [←−x k = t ∧ strategyk]
Hk =̂ [←−x k = h ∧ strategyk]
Ek =̂ [←−x k = e ∧ strategyk]

and stategyk is the conjunction of the seven strategies just introduced.

Pk represents philosopher k, while Tk, Hk and Ek represent thinking, hungry and
eating respectively. SPEC 3 is initialised by the requirement acyc that the forks
form an acyclic priority graph (whose formalisation is standard). The following
lemma states that the fork graph is always acyclic. (In the case of improper
initialization, SPEC 3 becomes miraculous and so still refines SPEC 2.)

Lemma 3 (Acyclic safety) SPEC 3 � [←−−acyc]∞

The proof (see [5]) shows that [←−−acyc]∞, established by initialisation, is main-
tained by

∧
k strategyk .

4.4 Liveness

To reason about liveness we first decompose each philosopher k in two:

Lk =̂
(
T⊕k � H⊕k � E⊕k

)∞
Dk =̂

(
T⊕k � H⊕k � E⊕k

)�
� T⊕k � H∞k .

We think of Lk as denoting a ‘living’ philosopher and Dk as denoting a ‘dying’
one who eventually remains hungry forever. For each philosopher life or death
is a nondeterministic choice! Indeed:
Pk
= definition of Pk(
T⊕k � H+

k � E⊕k
)∞

= Law 7(2)(
T⊕k � (H⊕k � H∞k) � E⊕k

)∞
= distributivity of � and Law 7(3)(

(T⊕k � H⊕k � E⊕k) � (T⊕k � H∞k)
)∞

= Law 7(9)(3)(
T⊕k � H⊕k � E⊕k

)∗
� T⊕k � H∞k

= Law 7(1)(3)((
T⊕k � H⊕k � E⊕k

)�
� T⊕k � H∞k

)
� (

T⊕k � H⊕k � E⊕k
)∞

= definitions of Dk and Lk
Dk � Lk .

Logic of Global Synchrony 497

Now we observe that SPEC 3 is refined by a group of living philosophers:

SPEC 4 =̂ (acyc)� � �kLk .

In fact SPEC 4 equals SPEC 3 because the strategy guarantees that every
philosopher lives. To prove that, we need to eliminate the possibility of deadlock
or starvation. Lemma 4 excludes the possibility that any philosopher dies by
waiting for a fork from a neighbour (i.e. deadlock), whilst Lemma 6 excludes
that of starvation.

Lemma 4 (Deadlock freedom) (acyc)� � �kDk = �
The philosophers are not all dead; otherwise all philosophers would become

hungry forever after some point, which conflicts with our strategies and the
safety property that the directions of the forks are loop free.

Proof.
(acyc)� � �kDk
= definition of Dk
(acyc)� � �k

(
T⊕k � H⊕k � E⊕k

)�
� T⊕k � H∞k

� monotonicity of [·]∞ and termination of
(
T⊕
k � H⊕

k � E⊕
k

)�
� T⊕

k

(acyc)� � �k [strategyk]∞ � (acyc)� � �k(�� [←−x k=h]∞)
� Lemma 3 and Law 6(1)
[strategy ∧←−−acyc]∞ � (�� [←−x =h,h,h,h,h]∞)
� monotonicity of [·]∞
[←−x =h,h,h,h,h⇒ −→x �= h,h,h,h,h]∞ � (�� [←−x =h,h,h,h,h]∞)
� weakening
(�� [−→x �= h,h,h,h,h]∞) � (�� [←−x =h,h,h,h,h]∞)
= Law 10(1)(2), Law 5(2) and (�� � = �) in Table 1
� .

�
The following lemma (proved in [5]) states that a living philosopher is unable

to dine with a dying neighbour.

Lemma 5 Lk− � Dk = �
We therefore infer that at least one philosopher is living and no living philoso-

pher can have a dying neighbour. Consequently all philosophers are living.

Lemma 6 (Starvation freedom) SPEC 3 = SPEC 4

Proof.
SPEC 3
= definition of Pk
(acyc)� � �k(Lk � Dk)
= � distributes through �
(acyc)� � (�kLk) � (D0 � L1 � · · · � L4)

� · · · · · ·
� (L0 �D1 � · · · �D4) � (�kDk)

498 Y. Chen and J.W. Sanders

= lemma 4 and lemma 5
(acyc)� � �kLk � � � �
= � is the top of the complete-lattice space.
SPEC 4

�
In fact specification SPEC 4 is very close to a BSP program. For the deriva-

tion of such a program from SPEC 4 we refer to [6]. Here it remains to check the
validity of SPEC 3 with respect to SPEC 1. But by lemma 6 that follows from
the observation that SPEC 3 refines the safety property | forks |:

Theorem 7 SPEC 2 � SPEC 3

5 Conclusions and Acknowledgements

This paper has introduced a specification language, Logs, which supports the
design of parallel programs based on global synchronizations. It integrates, in one
simple language, specifications of pre-post, finite and infinite reactive processes
in a compositional program-like style. Examples of targeted parallel implemen-
tation languages include PRAM and BSP.

The most significant property of Logs is its compositionality (or parallel
modularity), which appears to be absent from other variable-sharing based mod-
els. Lack of parallel modularity has probably been the main difficulty of BSP
programming. In Logs parallel composition is simply logical conjunction. That
may be simplistic in terms of implementation; however from the viewpoint of
specification, it proves to be rather powerful and, most importantly, to guarantee
compositionality. Although in this paper we take program derivation only as far
as Logs, in [6] we also introduce refinement laws, concerning variable protection,
to transform compositional Logs specifications into BSP programs.

The benchmark problem of the dining philosophers has been studied. The
solution is genuinely distributed and its freedom from livelock is guaranteed.
Furthermore the cycle of five philosophers is easily extended to more general
topologies; and it may be modified to allow a philosopher to remain thinking
forever (see [6]). Although that study is not the ideal vehicle for demonstrating
the conversion of global synchronisation to communications, it does show that
BSP is now suitable for MIMD programming. Our refinement and solution ap-
pear encouragingly simple compared with that in say UNITY [2]. The reasoning
seems to be closer to programming intuition. This is mainly because of Logs’s
compositionality, global synchronization mechanism and its program-like style.

That also distinguishes it from standard temporal logic, although the tempo-
ral operators are represented readily in Logs. Synchronisation in Logs results
in a restricted form of fairness, one reason for its strong laws. In this paper we
have found no need to exploit the temporal operators, though both ‘must’ ✷ and
‘may’ ✸ are readily defined in Logs:

✸P =̂ �� P � ⊥ ✷P =̂ ∼ ✸ ∼P .

Logic of Global Synchrony 499

In the more general language Temporal Logic of Actions [15], an action describes
a transition similarly to 0Logs, while here P may contain more than one step.

It can no longer be sustained that BSP is suitable only for SPMD and SIMD
data-parallelism but not MIMD programming. Such unsuitability was previously
seen as being due to the lack of a rigorous top-down programming methodology.
Our derivation technique differs substantially from previous work on BSP, allows
synchronizations in the body of a loop, and therefore fully supports MIMD
parallel programming.

This paper has benefited from wide-ranging comments from its referees to
whom we are grateful.

References

1. J.A. Bergstra and J.W. Klop, Algebra of communicating processes with abstrac-
tion, Theoretical Computer Science, 37(1): 77-121, 1985.

2. K.M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-
Wesley, 1988.

3. Y. Chen, How to write a healthiness condition, 2nd International Conference on
Integrated Formal Methods, LNCS, 1945:299-317, Springer-Verlag, 2000.

4. Y. Chen and J.W. Sanders, Weakest specifunctions for BSP, Parallel Processing
Letters (to appear) 2001.

5. Y. Chen and J.W. Sanders, Logic of global synchrony, Technical Report, RR-01-
01, (http://web.comlab.ox.ac.uk/oucl/publications/tr/index.html), Oxford
University Computing Laboratory, 2001.

6. Y. Chen, Formal Methods for Global Synchrony, D.Phil. Thesis, Oxford University
Computing Laboratory, 2001.

7. Y. Chen, Fixpoints of non-monotonic functions, Technical Report 29, (http://
www.mcs.le.ac.uk/techreports/2001/tr-2001-29.ps.gz), Department of Math-
ematics and Computer Science, University of Leicester, 2001.

8. J. Davies and S. Schneider, A brief history of Timed CSP, Theoretical Computer
Science, 138: 243-271, 1995.

9. E.W. Dijkstra, Guarded commands, non-determinacy and the formal derivation of
programs, Communications of the ACM, 18: 453-457, 1975.

10. E.W. Dijkstra, Two starvation free solutions to general exclusion problem, EWD
625, plataanstraat 5, 5671 Al Nuenen, The Netherlands, 1978.

11. S. Fortune and J. Wyllie, Parallelism in random access machines. Proc. 10th Annual
ACM Symposium on Theory of Computing : 114-118, 1978.

12. M.W. Goudreau et al. A proposal for the BSP world-wide standard library (pre-
liminary version), 1996.

13. C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
14. C.A.R. Hoare and J. He, Unifying Theories of Programming, Prentice Hall, 1998.
15. L. Lamport, A temporal logic of actions, ACM Transctions on Programming Lan-

guages and Systems, 16(3): 872-923, 1994.
16. D.S. Lecomber,Methods of BSP Programming, Oxford University Computing Lab-

oratory DPhil. thesis, 1998.
17. W.F. McColl, Scalability, portability and predictability: The BSP approach to

parallel programming, Future Generation Computer Systems 12: 265-272, 1996.
18. R. Milner, Communication and Concurrency, Prentice Hall, 1989.

500 Y. Chen and J.W. Sanders

19. G. Nelson, A generalization of Dijkstra’s calculus, ACM Transactions on Program-
ming Languages and Systems, 11(4):517-561, 1989.

20. S.S. Owicki and D. Gries, An axiomatic proof technique for parallel programs I,
Acta Informatica, 6(4): 319-340, 1976.

21. D.B. Skillicorn, Building BSP programs using the refinement calculus, Formal
Methods for Parallel Programming and Applications, IPPS/SPDP’98, 1998.

A Predicative Semantics of Logs

In this appendix we present a predicative semantics for Logs with respect to
which the laws provided in this paper are sound, and exhibit healthiness con-
ditions which characterise Logs commands in that semantic space. Proofs and
further details appear in [6].

Let ω denote the vector of all program (or system) variables. For each logical
variable x in ω its initial state is (also) denoted x, its final state is denoted x′,
its initial trace record is denoted x.tr and its final trace record is denoted x.tr′

(= (x.tr)′). For brevity we adopt these conventions:
ω′ denotes the vector of dashed variables x′ for x in ω.
τ denotes the vector of trace variables x.tr for x in ω.
τ ′ denotes the vector of trace variables x.tr′ for x in ω.
A Logs command can be expressed as a predicate with four free variables

ω, ω′, τ, τ ′ . However not every such predicate represents a Logs command. The
following four healthiness conditions, presented here in the style of [14], must
hold. (For a detailed description of healthiness conditions in this context we
refer to [3]. The conditions here arise from a more general unifying theory called
cumulative computing [6].)

The first healthiness condition states that if a command starts after a failure
or a nonterminating command, it becomes unobservable: if the initial trace
record is infinite then the predicate is arbitrary. Writing |τ | for the length of
sequence τ , that is expressed A = (|τ | �=∞⇒ A), or equivalently:

Healthiness condition: H0(A) =̂ A = (A ∨ |τ |=∞) .

The trace record of Logs is monotonic: a command retains the trace before
its start but may append to it. Writing τ � τ ′ to mean that sequence τ is a
prefix of sequence τ ′, that is expressed:

Healthiness condition: Hτ (A) =̂ A = (A ∧ τ � τ ′) .

The final state of a nonterminating Logs command is not observable. |τ ′|
denotes the length of the trace record at the end of the computation.

Healthiness condition: H∞(A) =̂ A = (A ∨A � (|τ ′|=∞∧ τ � τ ′)) .

A Logs command does not depend on the trace record before its start and
satisfies an additional healthiness condition called shift invariance: a Logs
command can be ‘moved’ backwards or forwards without change. Note that a

Logic of Global Synchrony 501

nonterminating command with an unobservable final state cannot, however, be
moved backwards to become a terminating command!

Healthiness condition: H↔(A) =̂ A = (∃τ0, τ ′0 · A[τ0, τ ′0/τ, τ
′] ∧

(τ ′0−τ0=τ ′−τ) ∧
(|τ ′0|=∞⇒|τ ′|=∞)) .

In fact H↔ can be written as a generic composition and so each of the
healthiness functions is monotonic and idempotent on predicates (see [6] for
details). Thus the composed function

H =̂ H↔ ◦H∞ ◦Hτ ◦H0

is again monotonic and idempotent which, by the inheritance theorem in [6],
ensures:

(a) the range of H forms a complete lattice (consisting of the ‘healthy predi-
cates’) on which the combinators � , � , (�) and var v are closed, and

(b) the laws of that complete lattice involving only �, � and (�) are inherited
from the more abstract language CML (see [6]) so that the soundness of the
foregoing laws of Logs is assured.

We note that conversely every healthy predicate forms the predicative se-
mantics of a Logs command; see [6].

We refer to section 2 for the intuition behind a basic Logs command, and
define its predicative semantics as follows.

The semantics of a nLogs command is simply the predicate P (ω, ω′, τ, τ ′)
which describes its effect in terms of its free variables ω, ω′, τ, τ ′. Examples have
appeared in sections 2 and 4. From now on we assume each predicate has those
four vectors of free variables.

The semantics of P �Q is the disjunction of the semantics of P and Q. This
corresponds to the usual representation of the demonic nondeterminism arising
from the abstraction resulting from concealment of local variables.

The semantics of P � Q for P is given, as usual, by relational composition

P � Q =̂ ∃ω0, τ0 ·P [ω0, τ0/ω′, τ ′] ∧Q[ω0, τ0/ω, τ] .

In particular if P is nonterminating then P � Q equals P .
The semantics of P �Q is the conjunction of the semantics of P and Q. That

provides the simplest kind of parallel composition, and no real parallel computer
system directly implements it. Parallel compositions in real programming lan-
guages are normally much more complicated; their implementation details are
mainly due to efficiency concerns and not suitable for specification purposes,
which is of primary concern here.

The semantics of ∼P is the closure underH of the negation of the predicative
semantics of P .

The semantics of derived Logs commands follows from their definitions,
provided in section 3, in terms of the basic commands.

Compositional Modeling of Reactive Systems
Using Open Nets�

P. Baldan1, A. Corradini1, H. Ehrig2, and R. Heckel3

1 Dipartimento di Informatica, Università di Pisa, Italy
{baldan,andrea}@di.unipi.it

2 Computer Science Department, Technical University of Berlin, Germany
ehrig@cs.tu-berlin.de

3 Dept. of Math. and Comp. Science, University of Paderborn, Germany
reiko@upb.de

Abstract. In order to model the behaviour of open concurrent systems
by means of Petri nets, we introduce open Petri nets, a generalization
of the ordinary model where some places, designated as open, represent
an interface of the system towards the environment. Besides generalizing
the token game to reflect this extension, we define a truly concurrent
semantics for open nets by extending the Goltz-Reisig process semantics
of Petri nets. We introduce a composition operation over open nets, char-
acterized as a pushout in the corresponding category, suitable to model
both interaction through open places and synchronization of transitions.
The process semantics is shown to be compositional with respect to such
composition operation. Technically, our result is similar to the amalgama-
tion theorem for data-types in the framework of algebraic specifications.
A possible application field of the proposed constructions and results is
the modeling of interorganizational workflows, recently studied in the
literature. This is illustrated by a running example.

1 Introduction

Among the various models of concurrent and distributed systems, Petri nets [16]
are certainly not the most expressive or the best-behaved. However, due to their
intuitive graphical representation, Petri nets are widely used both in theoretical
and applied research to specify and visualize the behaviour of systems. Especially
when explaining the concurrent behaviour of a net to non-experts, one important
feature of Petri nets is the possibility to describe their execution within the same
visual notation, i.e., in terms of processes [5].

However, when modeling reactive systems, i.e., concurrent systems with in-
teracting subsystems, Petri nets force us to take a global perspective. In fact,
ordinary Petri nets are not adequate to model open systems which can interact
� Research partially supported by the EC TMRNetwork GETGRATS, by the ESPRIT
Working Group APPLIGRAPH, by the MURST project TOSCA and by the DFG
researcher group Petri Net Technology.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 502–518, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Compositional Modeling of Reactive Systems Using Open Nets 503

cancel

issueTicketready

issueBillpayBillbookHotel

acknowledgedacknowledge

canceledreserve

can

ack

bill

payment

ticket

reserve

Traveler AgencyTraveler

Fig. 1. Sample net modeling an interorganizational workflow.

with their environment or, in a different view, which are only partially speci-
fied. This contradicts the common practice, e.g., in software engineering, where
a large system is usually built out of smaller components.

Let us explain this problem in more detail by means of a typical application
of Petri nets, the specification of workflows. A workflow describes a business
process in terms of tasks and shared resources, as needed, for example, when the
integration of different organizations is an issue. A workflow net [17] is a Petri
net satisfying some structural constraints, like the existence of one initial and
one final place, and a corresponding soundness condition: from each marking
reachable from the initial one (one token on the initial place) we can reach the
final marking (one token on the final place). An interorganizational workflow [18]
is modeled as a set of such workflow nets connected through additional places for
asynchronous communication and synchronization requirements on transitions.

For instance, Fig. 1 shows an interorganizational workflow consisting of two
local workflow nets Traveler and Agency related through communication places
can, ack, bill, payment and ticket and a synchronization requirement between
the two reserve transitions, modeled by a dashed line. The example describes
the booking of a flight by a traveler in cooperation with a travel agency. After
some initial negotiations (which is not modeled), both sides synchronize in the
reservation of a flight. Then, the traveler may either acknowledge or cancel and
re-enter the initial state. In both cases an asynchronous notification (e.g., a fax),
modeled by the places ack and can, respectively, is sent to the travel agency.
Next the local workflow of the traveler forks into two concurrent threads, the
booking of a hotel and the payment of the bill. The trip can start when both
tasks are completed and the ticket has been provided by the travel agency.

504 P. Baldan et al.

The overall net in Fig. 1 describes the system from a global perspective.
Hence, the classical notion of behaviour (described, e.g., in terms of processes)
is completely adequate. However, for a local subnet in isolation (like Traveler)
which will only exhibit a meaningful behaviour when interacting with other
subnets, this semantics is not appropriate because it does not take into account
the possible interactions.

To overcome these limitations of ordinary Petri nets, we extend the basic
model introducing open nets. An open net is a P/T Petri net with a distin-
guished set of places which are intended to represent the interface of the net
towards the external world. Some similarities exist with other approaches to net
composition, like the Petri box calculus [2,9,8], the Petri nets with interface [12,
15] and the Petri net components [7], which will be discussed in the conclusions.
As a consequence of the (hidden, implicit) interaction between the net and the
environment, some tokens can “freely” appear in or disappear from the open
places. Besides generalizing the token game to reflect this changes, we provide
a truly concurrent semantics by extending the ordinary process semantics [5] to
open nets.

The embedding of an open net in a context is formally described by a mor-
phism in a suitable category of open nets. Intuitively, in the target net new
transitions can be attached to open places and, moreover, the interface towards
the environment can be reduced by “closing” open places. Therefore, open net
morphisms do not preserve but reflect the behaviour, i.e., any computation of
the target (larger) net can be projected back to a computation in the source
(smaller) net.

A composition operation is introduced over open nets. Two open nets Z1 and
Z2 can be composed by specifying a common subnet Z0 which embeds both in
Z1 and Z2, and gluing the two nets along the common part. This is permitted
only if the prescribed composition is consistent with the interfaces, i.e., only if
the places of Z1 and Z2 which are used when connecting the two nets are actually
open. The composition operation is characterized as a pushout in the category
of open nets, where the conditions for the existence of the pushout nicely fit with
the mentioned condition over interfaces.

Based on these concepts, the representation of the system of Fig. 1 in terms of
two interacting open nets is given by the top part of Fig. 2, which comprises the
two component nets Traveler and Agency, and the net Common which embeds
into both components by means of open net morphisms. Places with incom-
ing/outgoing dangling arcs are open. Observe that the common subnet Common
of the components Traveler and Agency closely corresponds to the dashed items
of Fig. 1, which represent the “glue” between the two components. The net
resulting from the composition of Traveler and Agency over the shared subnet
Common is shown in the bottom part of Fig. 2.

Obviously, one would like to have a clear relationship between the behaviours
of the component nets (nets Traveler and Agency in the example) and the be-
haviour of the composition (net Global in the example). We show that indeed,
the behaviour of the latter can be constructed “compositionally” out of the

Compositional Modeling of Reactive Systems Using Open Nets 505

reserve

can

ack

bill

payment

ticket

Common

cancel

ready

payBillbookHotel

acknowledge

reserve

can

ack

bill

payment

ticket

Traveler

issueTicket

issueBill

acknowledged

canceledreserve

can

ack

bill

payment

ticket

Agency

cancel

issueTicketready

issueBillpayBillbookHotel

acknowledgedacknowledge

canceledreserve

can

ack

bill

payment

ticket

Global

Fig. 2. Interorganizational workflow as composition of open nets Traveler and Agency.

506 P. Baldan et al.

behaviours of the former, in the sense that two deterministic processes which
“agree” on the shared part, can be synchronized to produce a deterministic pro-
cess over the composed net. Vice versa, any deterministic process of the global
net can be decomposed into processes of the component nets, which, in turn, can
be synchronized to give the original process again. Fig. 3 shows two processes
of the nets Traveler and Agency, the corresponding common projections over net
Common and the process of Global arising from their synchronization.

The synchronization of processes resembles the amalgamation of data-types
in the framework of algebraic specifications, and therefore we will speak of amal-
gamation of processes. In analogy with the amalgamation theorem for algebraic
specifications [4], the main result of this paper shows that the amalgamation
and decomposition constructions mentioned above are inverse to each other, es-
tablishing a bijection between pairs of processes of two nets which agree on the
common subnet and processes of the net resulting from their composition.

The rest of the paper is organized as follows. Section 2 introduces the open
Petri net model and the corresponding category. Section 3 extends the notion
of process from ordinary to open nets and defines the operation of behaviour
projection. Section 4 introduces the composition operation for open nets. Sec-
tion 5 presents the compositionality result for the process semantics of open nets.
Finally, Section 6 discusses some related work in the literature and outlines pos-
sible directions of future investigation. The proofs of the results presented in this
paper can be found in [1].

2 Open Nets

An open net is an ordinary P/T Petri net with a distinguished set of places which
are intended to represent the interface of the net towards the external world
(environment). As a consequence of the (hidden, implicit) interaction between
the net and the environment, some tokens can freely appear in and disappear
from the open places. Concretely, an open place can be either an input or an
output place (or both), meaning that the environment can put or remove tokens
from that place.

Given a set X we denote by X⊕ the free commutative monoid generated by
X and by 2X its powerset. Moreover for a function h : X → Y we denote by
h⊕ : X⊕ → Y ⊕ its monoidal extension and by the same symbol h : 2X → 2Y

the extension of h to sets.

Definition 1 (P/T Petri net). A P/T Petri net is a tuple N = (S, T, σ, τ)
where S is the set of places, T is the set of transitions (S ∩ T = ∅) and σ, τ :
T → S⊕ are the functions assigning to each transition its pre- and post-set.

In the following we will denote by •(·) and (·)• the monoidal extensions of
the functions σ and τ to functions from T⊕ to S⊕. Furthermore, given a place
s ∈ S, the pre- and post-set of s are defined by •s = {t ∈ T | s ∈ t•} and
s• = {t ∈ T | s ∈ •t}.

Compositional Modeling of Reactive Systems Using Open Nets 507

Common process

Traveler process Agency process

: reserve

Global process

: acknowledged: acknowledge

: ack

: cancel
: can

: reserve

: canceled

: reserve

: acknowledge

: ack

: cancel
: can

: reserve

: reserve

: acknowledged

: ack

: can

: reserve

: canceled

: reserve

: ack

: can

: reserve

Fig. 3. Amalgamation of processes for the nets Traveler an Agency.

508 P. Baldan et al.

Definition 2 (Petri net category). Let N0 and N1 be Petri nets. A Petri
net morphism f : N0 → N1 is a pair of total functions f = 〈fT , fS〉 with
fT : T0 → T1 and fS : S0 → S1, such that for all t0 ∈ T0, •fT (t0) = fS

⊕(•t0) and
fT (t0)• = fS

⊕(t0•). The category of P/T Petri nets and Petri net morphisms is
denoted by Net.

Category Net is a subcategory of the category Petri of [10]. The latter has the
same objects, but more general morphisms which can map a place into a multiset
of places.

Definition 3 (open net). An open net is a pair Z = (NZ , OZ), where NZ =
(SZ , TZ , σZ , τZ) is an ordinary P/T Petri net and OZ = (O+

Z , O
−
Z) ∈ 2SZ × 2SZ

are the input and output open places of the net.

The notion of enabledness for transitions is the usual one, but, besides the
changes produced by the firing of the transitions of the net, one considers also
the interaction with the environment, modelled by a kind of invisible actions
producing/consuming tokens in the input/output places of the net. The actions
of the environment which produce and consume tokens in an open place s are
denoted by +s and −s, respectively.
Definition 4 (firing). Let Z be an open net. A sequential move can be (i) the
firing of a transition m⊕ •t [t〉 m⊕ t•, with m ∈ SZ⊕, t ∈ TZ ; (ii) the creation
of a token by the environment m [+s〉 m ⊕ s, with s ∈ O+

Z , m ∈ SZ⊕; (iii) the
deletion of a token by the environment m ⊕ s [−s〉 m, with m ∈ SZ⊕, s ∈ O−Z .
A parallel move is of the form

m⊕ •A⊕m− [A〉 m⊕A• ⊕m+,

with m ∈ SZ⊕, A ∈ TZ⊕, m+ ∈ (O+
Z)
⊕

, m− ∈ (O−Z)
⊕

.

Example. The open nets for the local workflows Traveler and Agency of Fig. 1
are shown in the middle of Fig. 2. Ingoing and outgoing arcs without source or
target designate the input and output places, respectively. The synchronization
transition reserve is common to both nets and the communication places, like
can, become open places.

Definition 5 (open net category). An open net morphism f : Z1 → Z2 is
a Petri net morphism f : NZ1 → NZ2 such that, if we define in(f) = {s ∈ S1 :
•fS(s)− fT (•s) �= ∅} and out(f) = {s ∈ S1 : fS(s)• − fT (s•) �= ∅} then

(i) f−1S (O+
2) ∪ in(f) ⊆ O+

1 and (ii) f−1S (O−2) ∪ out(f) ⊆ O−1 .

The morphism f is called an open net embedding if both fT and fS are injective.
We will denote by ONet the category of open nets and open net morphisms.

Hereafter, to lighten the notation, we will omit the subscripts “S” and “T” in
the place and transition components of morphisms, writing f(s) for fS(s) and
f(t) for fT (t).

Compositional Modeling of Reactive Systems Using Open Nets 509

A morphism f : Z1 → Z2 can be seen as an “insertion” of net Z1 into a larger
net Z2, extending Z1. In other words, Z2 can be thought of as an instantiation
of Z1, where part of the unknown environment gets specified. Conditions (i)
and (ii) first require that open places are reflected and hence that places which
are “internal” in Z1 cannot be promoted to open places in Z2. Furthermore,
the context in which Z1 is inserted can interact with Z1 only through the open
places. To understand how this is formalized, observe that for each place s in
in(f), its image f(s) is in the post-set of a transition outside the image of •s.
Hence we can think that in Z2 new transitions are attached to s and can produce
tokens in such place. This is the reason why condition (i) also asks any place
in in(f) to be an input open place of Z1. Condition (ii) is analogous for output
places.

The above intuition better fits with open net embeddings, and indeed most
of the constructions in the paper will be defined for this subclass of open net
morphisms. However, for technical reasons (e.g., to characterize the composition
of open nets as a pushout) the more general notion of morphism is useful.

Example. As an example of open net morphism, consider, in Fig. 2, the embed-
ding of net Traveler into net Global. Observe that the constraints characterizing
open nets morphisms have an intuitive graphical interpretation:

– the connections of transitions to their pre-set and post-set have to be pre-
served. New connections cannot be added;

– in the larger net, a new arc may be attached to a place only if the correspond-
ing place of the subnet has a dangling arc in the same direction. Dangling
arcs may be removed, but cannot be added in the larger net. E.g., without
the outgoing dangling arc from place can in net Traveler, i.e., if place can
were not output open, the mapping in from Traveler into Global would have
not been a legal open net morphism.

We said that open net morphisms are designed to capture the idea of “inser-
tion” of a net into a larger one. Hence it is natural to expect that they “reflect”
the behaviour in the sense that given f : Z0 → Z1, the behaviour of Z1 can be
projected along the morphism to the behaviour of Z0 (this fact will be formal-
ized later, in Construction 9). Instead, differently from most of the morphisms
considered over Petri nets, open net morphisms cannot be thought of as sim-
ulations since they do not preserve the behaviour. For instance, consider the
open nets Z0 and Z1 below and the obvious open net morphism between them.

tt tt

ss ss

ZZ
00

ZZ
11

Then the firing sequence 0 [+s〉 s [t〉 0 in Z0 is not mapped to a firing sequence
in Z1.

510 P. Baldan et al.

3 Processes of Open Nets

Similarly to what happens for ordinary nets, a process of an open net, represent-
ing a concurrent computation of the net, is an open net itself, satisfying suitable
acyclicity and conflict freeness requirements, together with a mapping to the
original net.

The open net underlying a process is an open occurrence net, namely an
open net K such that NK is an ordinary occurrence net and satisfying some
additional conditions over open places. The open places in K are intended to
represent tokens which are produced/consumed by the environment in the con-
sidered computation. Consequently, every input open place is required to have
an empty pre-set, i.e., to be minimal with respect to the causal order. In fact, an
input open place in the post-set of some transition would correspond to a kind
of generalized backward conflict: a token on this place could be generated in
two different ways and this would prevent one to interpret the place as a token
occurrence. Similarly, to avoid generalized forward conflicts, output open places
are required to be maximal.

Definition 6 (open (deterministic) occurrence net). An open (determin-
istic) occurrence net is an open net K such that

1. NK is an ordinary (deterministic) occurrence net, namely (i) for any t ∈ TK ,
•t and t• are sets, rather than proper multisets; (ii) for any t, t′ ∈ TK , if t �= t′

then •t∩ •t′ = ∅ and t• ∩ t′• = ∅; (iii) the causal relation <K defined as the
least transitive relation such that x <K y if y ∈ x•, for x, y ∈ SK ∪ TK , is a
finitary strict partial order.

2. each input open place is minimal and each output open place is maximal
w.r.t. <K , i.e., ∀s ∈ O+

K .
•s = ∅ and ∀s ∈ O−K . s• = ∅.

Definition 7 (open net process). A (deterministic) process of an open net Z
is a mapping π : K → Z where K is an open occurrence net and π : NK → NZ
is a Petri net morphism, such that πS(O+

K) ⊆ O+
Z and πS(O−K) ⊆ O−Z .

Note that the process mapping π is not, in general, an open net morphism.
In fact, the process mapping must be a simulation, i.e., it must preserve the
behaviour. Moreover, the image of an open place in K must be an open place in
Z, since tokens can be produced (consumed) by the environment only in input
(output) open places of Z.

Example. A process for the open net Traveler can be found in the left part of
Fig. 3. The morphism back to the original net Traveler is implicitly represented
by the labeling (an item : x is mapped to x). Observe that the requirements
of minimality for input places and of maximality for output places of a process
have a natural graphical interpretation: the absence of backward and forward
conflicts extends to dangling arcs, i.e., in total, each place may have at most one
ingoing and one outgoing arc.

Compositional Modeling of Reactive Systems Using Open Nets 511

Definition 8 (category of processes). We denote by Proc the category
where objects are processes and, given two processes π0 : K0 → Z0 and
π1 : K1 → Z1, an arrow ψ : π0 → π1 is a pair of open net morphisms
ψ = 〈ψZ : Z0 → Z1, ψK : K0 → K1〉 such that the following diagram (indeed the
underlying diagram in Net) commutes

K0

π0

ψK
K1

π1
ψ

Z0
ψZ

Z1

Let f : Z0 → Z1 be an open net morphism. As mentioned before, it is natural
to expect that each computation in Z1 can be “projected” to Z0, by considering
only the part of the computation of the larger net which is visible in the smaller
net. The above intuition is formalized, in the case of an open net embedding
f : Z0 → Z1, by showing how a process of Z1 can be projected along f giving a
process of Z0.

Construction 9 (process projection). Let f : Z0 → Z1 be an open net
embedding and let π1 : K1 → Z1 be a process of Z1. A projection of π1 along f
is a pair 〈π0, ψ〉 where π0 : K0 → Z0 is a process of Z0 and ψ : π0 → π1 is an
arrow in Proc, constructed as follows. Take the pullback of π1 and f in Net,
obtaining the net morphisms π0 and ψK .

NK0

π0

ψK
NK1

π1

NZ0 f
NZ1

Then K0 is obtained by taking NK0 with the smallest sets of open places which
make ψK : NK0 → NK1 an open net morphism, namely O+

K0
= ψK

−1(O+
K1

) ∪
in(ψK) and O−K0

= ψK
−1(O−K1

) ∪ out(ψK), and ψ = 〈ψK , f〉.
Example. The embedding of Traveler into Global in Fig. 2 induces a projection
of open net processes in the opposite direction. For instance, the bottom part of
Fig. 3 shows a process of Global. Its projection along the embedding of Traveler
into Global is shown on the left part of the same figure. Notice how transition
acknowledged, which consumes a token in place ack, is replaced in the projec-
tion by a dangling output arc: an internal action in the larger net becomes an
interaction with the environment in the smaller one.

4 Composing Open Nets

We introduce a basic mechanism for composing open nets, characterized as a
pushout construction in the category of open nets. Intuitively, two open nets Z1

512 P. Baldan et al.

and Z2 are composed by specifying a common subnet Z0, and then by joining the
two nets along Z0. For instance, the open nets for the local workflows Traveler
and Agency in the middle of Fig. 2 share the subnet Common, depicted in the
top of the same figure, which represents the “glue” between the two components.
The net Global resulting from the composition of Traveler and Agency over the
shared subnet Common is shown in the bottom part of Fig. 2. This composition
is only defined if the embeddings of the components into the resulting net satisfy
the constraints of open net morphisms. For example, if we remove the ingoing
dangling arc of the place ticket in the net Traveler, the embedding of Common
into Traveler would still represent a legal open net morphism. However, in this
case the embedding of Traveler into Global would become illegal because of the
new arc from issueTicket (see condition (i) of Definition 5).

Formally, given two nets Z1 and Z2 and a span f1 : Z0 → Z1 and f2 : Z0 →
Z2, the composition operation constructs the corresponding pushout in ONet.
Category ONet does not have all pushouts, while category Net does. This
corresponds to the intuition that the composition operation can be performed in
Net and then lifted to ONet, but only when it respects the interfaces specified
by the various components, e.g., a new transition can be attached to a place only
if such place is open (see also [1]).

We start by recalling that for any span N1
f1← N0

f2→ N2 in Net the pushout
always exists. It can be defined as N1

α1→ N3
α2← N2, where the sets of places

and transitions of N3 are computed as the pushout in Set of the corresponding
components, i.e., S3 = S1 +S0 S2 and T3 = T1 +T0 T2. The source and target
functions are defined by: for all t ∈ T3, if t = αi(ti) with ti ∈ Ti and i ∈ {1, 2}
then •t = αi

⊕(•ti) and t• = αi
⊕(ti•). Next we formalize the condition which

ensures the composability of a span in ONet.

Definition 10 (composable span). Let Z1
f1← Z0

f2→ Z2 be a span of open net
morphisms. We say that f1 and f2 are composable if

1. f2(in(f1)) ⊆ O+
Z2

and f2(out(f1)) ⊆ O−Z2
;

2. f1(in(f2)) ⊆ O+
Z1

and f1(out(f2)) ⊆ O−Z1
.

In words, f1 and f2 are composable if the places which are used as interfaces by
f1, namely the places in(f1) and out(f1), are mapped by f2 to input and output
open places in Z2, and also the symmetric condition holds. If, and only if, this
condition is satisfied the pushout of f1 and f2 can be computed in Net and then
lifted to ONet.

Proposition 11 (pushouts in ONet). Let Z1
f1← Z0

f2→ Z2 be a span in
ONet (see the diagram in Fig. 4). Compute the pushout of the corresponding
diagram in the category Net obtaining the net NZ3 and the morphisms α1 and
α2, and then take as open places, for x ∈ {+,−}, OxZ3

= {s3 ∈ S3 | α−11 (s3) ⊆
OxZ1

∧ α−12 (s3) ⊆ OxZ2
}. Then (α1, Z3, α2) is the pushout in ONet of f1 and f2

iff f1 and f2 are composable.

Compositional Modeling of Reactive Systems Using Open Nets 513

Z0 f2f1

Z1
α1

Z2
α2Z3

Fig. 4. Pushout in ONet.

5 Amalgamating Processes of Open Nets

Let f1 : Z0 → Z1 and f2 : Z0 → Z2 be a composable span of open net embed-
dings and consider the corresponding composition, i.e., the pushout in ONet,
as depicted in Fig. 4. We would like to establish a clear relationship among the
behaviours of the involved nets. Roughly speaking, we would like that the be-
haviour of Z3 could be constructed “compositionally” out of the behaviours of
Z1 and Z2.

In this section we show how this can be done for processes. Given two pro-
cesses π1 of Z1 and π2 of Z2 which “agree” on Z0, we construct a process π3
of Z3 by “amalgamating” π1 and π2. Vice versa, each process π3 of Z3 can be
projected over two processes π1 and π2 of Z1 and Z2, respectively, which can be
amalgamated to produce π3 again. Hence, all and only the processes of Z3 can
be obtained by amalgamating the processes of the components Z1 and Z2. This
is formalized by showing that, working up to isomorphism, the amalgamation
and decomposition operations are inverse to each other. This leads to a bijec-
tive correspondence between the processes of Z3 and pair of processes of the
components Z1 and Z2 which agree on the common subnet Z0.

As a first step towards the amalgamation of processes we identify a suitable
condition which ensures that the pushout of occurrence open nets exists and
produces a net in the same class. This condition will be used later to formalize
the intuitive idea of processes of different nets which “agree” on a common part.

For a given span K1
f1← K0

f2→ K2 we introduce the notion of causality
relation induced by K1 and K2 over K0. When the two nets are composed the
corresponding causality relations get “fused”. Hence, to avoid the creation of
cyclic causal dependencies in the resulting net, the induced causality will be
required to be a partial order.

Definition 12 (induced causality and consistent span). Let K1
f1← K0

f2→
K2 be a span in ONet, where Ki (i ∈ {0, 1, 2}) are occurrence open nets. The
relation of causality <1,2 induced over K0 by K1 and K2, through f1 and f2 is
the least transitive relation such that for any x0, y0 in K0, if f1(x0) <1 f1(y0)
or f2(x0) <2 f2(y0) then x0 <1,2 y0.

We say that the span is consistent, written f1 ↑ f2, if f1 and f2 are compos-
able and the induced causality <1,2 is a finitary strict partial order.

The next proposition shows that the composition operation in ONet, when
applied to a consistent span of occurrence nets, produces an occurrence net.

514 P. Baldan et al.

Proposition 13. Let K1
f1← K0

f2→ K2 be a composable span in ONet, where Ki

(i ∈ {0, 1, 2}) are occurrence open nets and let K1
α1→ K3

α2← K2 be the pushout
in ONet. Then f1 ↑ f2 if and only if the pushout object K3 is a occurrence open
net.

Two processes π1 of Z1 and π2 of Z2 can be amalgamated only when they
agree on the common subnet Z0, an idea which is formalized by resorting to the
notion of consistent span of occurrence open nets. In the rest of this section we
will refer to a fixed pushout diagram in ONet, as represented in Fig. 4, where
f1 and f2 are a composable span of open net embeddings.

Definition 14 (agreement of processes). The processes π1 : K1 → Z1 and
π2 : K2 → Z2 agree on Z0 if there exist projections 〈π0, ψi〉 along fi of πi for

i ∈ {1, 2} such that ψ1
K ↑ ψ2

K (i.e., the span K1
ψ1
K← K0

ψ2
K→ K2 is consistent). In

this case 〈π0, ψ1〉 and 〈π0, ψ2〉 are called agreement projections for π1 and π2.

Definition 15 (amalgamation of processes). Let πi : Ki → Zi (i ∈
{0, 1, 2, 3}) be processes and let 〈π0, ψ1〉 and 〈π0, ψ2〉 be agreement projections of
π1 and π2 along f1 and f2 (see Fig. 5). We say that π3 is an amalgamation of π1
and π2, written π3 = π1+ψ1,ψ2 π2, if there exist projections 〈π1, φ1〉 and 〈π2, φ2〉
of π3 over Z1 and Z2, respectively, such that the upper square is a pushout in
ONet.

We next give a more constructive characterization of process amalgamation,
which also proves that the result is unique up to isomorphism.

Proposition 16 (amalgamation construction). Let π1 : K1 → Z1 and
π2 : K2 → Z2 be processes that agree on Z0, and let 〈π0, ψ1〉 and 〈π0, ψ2〉 be
corresponding agreement projections. Then the amalgamation π1 +ψ1,ψ2 π2 is a
process π3 : K3 → Z3, where the net K3 is obtained as the pushout in ONet of
ψ1
K : K0 → K1 and ψ2

K : K0 → K2 and the process mapping π3 : K3 → Z3 is
determined by the universal property of the underlying pushout diagram in Net
(see Fig. 5). Hence π1 +ψ1,ψ2 π2 is unique up to isomorphism.

The amalgamation construction can be given a more elegant (but less construc-
tive) characterization. In fact, process π3 (and the process morphisms φ1 and
φ2) can be obtained by taking the pushout in Proc of the arrows ψ1 : π0 → π1
and ψ2 : π0 → π2.

The next result shows how each process of a composed net can be constructed
as the amalgamation of processes of the components.

Proposition 17 (decomposition of processes). Let π3 : K3 → Z3 be a
process of Z3 and, for i ∈ {1, 2}, let 〈πi, φi〉 be projections of π3 along αi. Then
process π3 can be recovered as a suitable amalgamation of π1 and π2.

Compositional Modeling of Reactive Systems Using Open Nets 515

K0

π0
ψ1
K ψ2

K

K1

π1

φ1
K

Z0f1 f2 K2

π2

φ2
KZ1

α1

K3

π3

Z2

α2

Z3

Fig. 5. Amalgamation of open net processes.

The amalgamation and decomposition results for open net processes are sum-
marized in a theorem which establishes a bijective correspondence between the
processes of Z1 and Z2 which agree on Z0 and the processes of Z3. Let Z be an
open net and let π : K → Z be a process. We denote by [π] the set of processes
of Z isomorphic to π and by DProc(Z) the set of (isomorphism classes of) pro-

cesses of Z. Given a span Z1
f1← Z0

f2→ Z2 in ONet, the isomorphism classes of
processes of Z1 and Z2 which agree on Z0, denoted by DProc(Z1

f1← Z0
f2→ Z2),

is the set
{[π1 ψ

1

← π0
ψ2

→ π2] | ψ1, ψ2 agreement projections for π1, π2 along f1, f2},
where isomorphism of process spans is defined in the obvious way.

Theorem 18 (amalgamation theorem). Let Z0, Z1, Z2, Z3 be as in Fig. 4
and assume that the square is a pushout of two composable open net embeddings
f1 and f2. Then there are composition and decomposition functions establishing
a bijective correspondence between DProc(Z3) and DProc(Z1

f1← Z0
f2→ Z2).

Example. The amalgamation theorem is exemplified in Fig. 3. Two processes
for the component nets Traveler and Agency which agree on the shared subnet
Common, i.e., such that their projections over Common coincide, can be amalga-
mated to produce a process for the composed net Global. Vice versa, each process
of the net Global can be reconstructed as amalgamation of compatible processes
of the component nets.

6 Conclusions and Related Work

The compositionality result for the process semantics (Theorem 18) appears to
be related to the amalgamation theorem for data-types in the framework of
algebraic specifications [4]. There, an amalgamation construction allows one to
“combine” any two algebras A1 and A2 of algebraic specifications SPEC 1 and
SPEC 2 having a common subspecification SPEC 0, if and only if the restrictions
of A1 and A2 to SPEC 0 coincide. The amalgamation construction produces a
unique algebra A3 of specification SPEC 3, union of SPEC 1 and SPEC 2. The fact

516 P. Baldan et al.

that the amalgamation of algebras is a pushout in the Grothendick’s category of
generalized algebras suggests the possibility of having a similar characterization
for process amalgamation using fibred categories.

Open nets have been partly inspired by the notion of open graph transfor-
mation system [6], an extension of graph transformation for specifying reactive
systems. In fact, P/T Petri nets can be seen as a special case of graph trans-
formation systems [3] and this correspondence extends to open nets and open
graph transformation systems. However, a compositionality result corresponding
to Theorem 18 is still lacking in this more general setting.

In the field of Petri nets, several other approaches to net composition have
been proposed in the literature. Most of them can be classified as algebraic
approaches. A first family considers a category of Petri nets where morphisms
arise by viewing a Petri net as the signature of a multisorted algebra, the sorts
being the places. Then the semantics is expressed as a categorical adjunction, a
fact which ensure its compositionality with respect to operations on nets defined
in terms of universal constructions [19,10].

A second, more recent class of approaches to Petri net composition aims at
defining a “calculus of nets”, where a set of process algebra-like operators allows
to build complex nets starting from a suitable set of basic net components. For
instance, in the Petri Box calculus [2,9,8] a special class of nets, called plain
boxes (safe and clean nets), provides the basic components. Plain boxes are
then combined by means of operations which can all be seen as an instance
of refinement over suitable nets. More precisely, the authors identify a special
family of nets, called operator boxes. Once a set of operator boxes is fixed, the
composition is realized by refining such operator boxes with plain boxes, an
operation which produces a net still identifiable with a plain box. The calculus
is given a compositional semantics (both interleaving and concurrent). Although
based on some common ideas, like the use of interface places, this approach is
quite different from ours, since it mainly relies on refinement and it focuses on a
special class of nets and on the possibility of defining a kind of process algebra
over such nets, with plain boxes as constants and operator boxes as operators.

Another relevant approach in the second family, closer to ours, is presented
in the papers [12,15], which introduce a notion of Petri net with interface. The
interface is partitioned into an input part, consisting of places, and an output
part, consisting of transitions, and it is used to combine different nets, the most
basic composition operation consisting of connecting the outputs of one net to
the inputs of another net. Then the authors introduce a set of basic combinators
which can be used to build terms corresponding to nets with an interface. The
pomset semantics of nets with interfaces, defined by using a notion of universal
context for a net, is shown to be compositional with respect to the net combi-
nators [15]. Despite some technical differences and the different focus, which in
these papers is more on the syntactical aspects of the Petri net algebra, Petri
nets with interface appear to have several analogies with open nets, and their
relationship surely deserves a deeper investigation.

Compositional Modeling of Reactive Systems Using Open Nets 517

Finally we recall the work in [7] which introduces Petri net components,
a kind of Petri nets with distinguished input and output places. Components
can be combined by means of an operation which connects the input places
of a component to the output places of the other, and vice versa. A process
semantics is introduced for components and it is proved to be compositional.
Components can be viewed as special open nets and the composition operation
on components can be defined in terms of the composition operation on open
nets. A very interesting idea in [7], which we intend to explore also for open nets,
is the definition of a temporal logic, interpreted over processes, which is used for
reasoning in a modular way over distributed systems.

The notions of projection and of amalgamation of processes can be extended
to general, possibly nondeterministic, processes. We are working on the general-
ization of the amalgamation theorem to nondeterministic processes, which could
represent a first step towards an unfolding semantics for open nets, in the style
of Winskel [11,19], still compositional with respect to our composition operation.

It would be also interesting to extend the constructions and results in this
paper to open high level nets, which have been already studied on a conceptual
level in [14]. Part of the technical background is already available — for instance
it has been shown in [13] how to construct pushouts of algebraic high level nets
— but a suitable formalization of high level processes is still missing.

Acknowledgement. We are grateful to Ugo Montanari for his insightful sug-
gestions and to the anonymous referees for their helpful comments.

References

1. P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional modeling of
reactive systems using open nets [extended version]. The paper can be downloaded
at the address
http://www.di.unipi.it/˜baldan/Papers/Soft-copy-ps/open-ext.ps.gz,
2001.

2. E. Best, R. Devillers, and J. G. Hall. The Petri box calculus: a new causal algebra
with multi-label communication. In G. Rozemberg, editor, Advances in Petri Nets,
volume 609 of LNCS, pages 21–69. Springer Verlag, 1992.

3. A. Corradini. Concurrent graph and term graph rewriting. In U. Montanari and
V. Sassone, editors, Proceedings of CONCUR’96, volume 1119 of LNCS, pages
438–464. Springer Verlag, 1996.

4. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer Verlag,
Berlin, 1985.

5. U. Golz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Control, 57:125–147, 1983.

6. R. Heckel. Open Graph Transformation Systems: A New Approach to the Com-
positional Modelling of Concurrent and Reactive Systems. PhD thesis, TU Berlin,
1998.

7. E. Kindler. A compositional partial order semantics for Petri net components. In
P. Azema and G. Balbo, editors, Application and Theory of Petri Nets, volume
1248 of LNCS, pages 235–252. Springer Verlag, 1997.

http://www.di.unipi.it/~baldan/Papers/Soft-copy-ps/open-ext.ps.gz

518 P. Baldan et al.

8. M. Koutny and E. Best. Operational and denotational semantics for the box
algebra. Theoretical Computer Science, 211(1–2):1–83, 1999.

9. M. Koutny, J. Esparza, and E. Best. Operational semantics for the Petri box
calculus. In B. Jonsson and J. Parrow, editors, Proceedings of CONCUR ’94,
volume 836 of LNCS, pages 210–225. Springer Verlag, 1994.

10. J. Meseguer and U. Montanari. Petri nets are monoids. Information and Compu-
tation, 88:105–155, 1990.

11. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science, 13:85–108, 1981.

12. M. Nielsen, L. Priese, and V. Sassone. Characterizing Behavioural Congruences for
Petri Nets. In Proceedings of CONCUR’95, volume 962 of LNCS, pages 175–189.
Springer Verlag, 1995.

13. J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation
systems. Mathematical Structures in Computer Science, 5(2):217–256, 1995.

14. J. Padberg, L. Jansen, R. Heckel, and H. Ehrig. Interoperability in train control
systems: Specification of scenarios using open nets. In Proc. IDPT, pages 17–28.
Society for Design and Process Science, 1998.

15. L. Priese and H. Wimmel. A uniform approach to true-concurrency and inter-
leaving semantics for Petri nets. Theoretical Computer Science, 206(1–2):219–256,
1998.

16. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical
Computer Science. Springer Verlag, 1985.

17. W. van der Aalst. The application of Petri nets to workflow management. The
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

18. W. van der Aalst. Interorganizational workflows: An approach based on message
sequence charts and Petri nets. System Analysis and Modeling, 34(3):335–367,
1999.

19. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer Ver-
lag, 1987.

Extended Temporal Logic Revisited

Orna Kupferman1�, Nir Piterman2, and Moshe Y. Vardi3��

1 Hebrew University, School of Engineering and Computer Science,
Jerusalem 91904, Israel

orna@cs.huji.ac.il, http://www.cs.huji.ac.il/˜orna
2 Weizmann Institute of Science, Department of Computer Science,

Rehovot 76100, Israel
nirp@wisdom.weizmann.ac.il, http://www.wisdom.weizmann.ac.il/˜nirp

3 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu, http://www.cs.rice.edu/˜vardi

Abstract. A key issue in the design of a model-checking tool is the
choice of the formal language with which properties are specified. It is
now recognized that a good language should extend linear temporal logic
with the ability to specify all ω-regular properties. Also, designers, who
are familiar with finite-state machines, prefer extensions based on au-
tomata than these based on fixed points or propositional quantification.
Early extensions of linear temporal logic with automata use nondeter-
ministic Büchi automata. Their drawback has been inability to refer to
the past and the asymmetrical structure of nondeterministic automata.
In this work we study an extension of linear temporal logic, called ETL2a,
that uses two-way alternating automata as temporal connectives. Two-
way automata can traverse the input word back and forth and they are
exponentially more succinct than one-way automata. Alternating au-
tomata combine existential and universal branching and they are expo-
nentially more succinct than nondeterministic automata. The rich struc-
ture of two-way alternating automata makes ETL2a a very powerful and
convenient logic. We show that ETL2a formulas can be translated to
nondeterministic Büchi automata with an exponential blow up. It fol-
lows that the satisfiability and model-checking problems for ETL2a are
PSPACE-complete, as are the ones for LTL and its earlier extensions
with automata. So, in spite of the succinctness of two-way and alternat-
ing automata, the advantages of ETL2a are obtained without a major
increase in space complexity. The recent acceptance of alternating au-
tomata by the industry and the development of symbolic procedures for
handling them make us optimistic about the practicality of ETL2a.

1 Introduction

In formal verification, we check that a system is correct with respect to a de-
sired behavior by checking that a mathematical model of the system satisfies a
� Supported in part by BSF grant 9800096.
�� Supported in part by NSF grant CCR-9700061, NSF grant CCR-9988322, BSF grant

9800096, and by a grant from the Intel Corporation.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 519–535, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

http://www.cs.huji.ac.il/~orna
http://www.wisdom.weizmann.ac.il/~nirp
http://www.cs.rice.edu/~vardi

520 O. Kupferman, N. Piterman, and M.Y. Vardi

formal specification of the behavior. Early formal-verification efforts considered
terminating systems. There, the specification relates an initial condition about
the system with a condition that is guaranteed to be satisfied upon its termina-
tion [Fra92]. In 1977, Pnueli suggested to use temporal logic in order to describe
nonterminating and reactive systems [Pnu81]. Temporal logics augment proposi-
tional logics with temporal modalities, making it possible to describe a sequence
of events in time. For example, using the temporal modalities always (✷) and
eventually (✸), we can specify the behavior “if p holds in all future moments
then there is a future moment in which q holds” (✷p→ ✸q). Temporal logic has
led to the development of algorithmic methods for reasoning about reactive sys-
tems [CGP99]. In particular, temporal logic model checking enjoys a substantial
and growing use in industrial applications [BBG+94].

A key issue in the design of a model-checking tool is the choice of the formal
language with which behaviors are specified. Almost two decades ago, Wolper
argued that some very basic behaviors cannot be expressed by the linear tem-
poral logic LTL. For example, he showed that the behavior “✷2p”, stating that
an atomic proposition p is true in all even positions, cannot be expressed in
LTL [Wol83]. Wolper suggested to extend linear temporal logic by grammar
operators. It is more convenient to think about Wolper’s extension in terms of
ω-regular languages, as was later suggested in [VW94]1. Intuitively, if the system
is defined over a set AP of atomic propositions, then an infinite behavior of the
system can be viewed as a word over the alphabet 2AP , and a set of allowed
behaviors can be described by an ω-regular automaton whose alphabet consists
of Boolean formulas over AP . For example, the behavior ✷2p can be described
by an automaton whose language is (true · p)ω, and the behavior ✷p→ ✸q can
be described by an automaton whose language is true∗ · ((¬p) ∨ q) · trueω.

It turned out that LTL can express precisely the star-free ω-regular behaviors
[Tho81], and that its inability to express all ω-regular expressions makes LTL
inadequate for numerous important tasks. For example, in compositional model
checking, we verify a system by checking assume-guarantee specifications on its
components. The specification 〈ψ〉M〈ϕ〉 states that a composition that contains
M and satisfies ψ, also satisfies ϕ. The assumption ψ can refer only to proposi-
tions observed by M , and LTL is not expressive enough to specify it [LPZ85] 2.
The recognition that the specification language should be able to specify all
ω-regular properties has led to several other extensions of LTL. This includes
augmenting LTL with quantification over atomic propositions, resulting in QLTL
[LPZ85,SVW87,MP92], and augmenting LTL with fixed-point operators, result-
ing in the linear µ-calculus [BB87,Var88]. These suggestions, however, are not
very appealing in practice: formulas of QLTL and the linear µ-calculus are very

1 In [ET97,HT99] full ω-regularity is achieved by adding regular expressions over
propositions and actions.

2 The reason is that the assumption needs to refer to locations in the interaction
between M and its environment, which cannot be done by a star-free ω-regular
expression.

Extended Temporal Logic Revisited 521

hard to understand, and the satisfiability problem for QLTL is non-elementary
[SVW87,Mey75].

Recall that Vardi and Wolper suggested to use ω-automata as temporal con-
nectives [VW94]. They study the usage of different types of automata. In par-
ticular, the logic ETLr uses nondeterministic Büchi automata, and it enables
the specification of all ω-regular properties. ETLr combines two perspectives of
system specification: the operational perspective (finite-state machines) and the
behavioral perspective (temporal operators). This makes ETLr, as well as related
logics, appealing in practice (cf. [BBL98,AFG+01]). Moreover, unlike QLTL, the
satisfiability problem for ETLr is PSPACE-complete.

The logic ETLr still suffers from two limitations. First, it lacks temporal
operators that can refer to the past. While past temporal operators do not add
expressive power to LTL, they make the specification of many behaviors much
more convenient3 [LPZ85]. This convenience is reflected in the fact that the best
known translation of PLTL, which extends LTL with past temporal operators,
to LTL involves a non-elementary blow up [Gab87]. Also, as mentioned above,
in assume-guarantee reasoning in compositional model checking, the assump-
tions refer only to propositions observed by the component. In PLTL we can
refer to the history of the computation, which resembles using LTL with refer-
ring to locations in the interaction between the component and its environment
[BK85,Pnu85,LPZ85]. To quote from Pnueli: “In order to perform compositional
specification and verification, it is convenient to use the past operators but nec-
essary to have the full power of ETLr” [Pnu85]. The second limitation of ETLr
follows from the limited structure of nondeterministic automata. Unlike LTL,
whose syntax contains both disjunctions and conjunctions, runs of nondeter-
ministic automata are treated purely disjunctively. Modelling of conjunctions
by nondeterministic automata involves a blow up of the state space and results
in automata whose structure is different from the structure of equivalent LTL
formulas. We would like to use automata that preserve as much as possible the
structure of the formulas.

In this paper we describe and study the logic ETL2a, which removes both
limitations. The extension of temporal logic with past is analogous to an exten-
sion of automata with bidirectional movement. Two-way automata can traverse
the input word back and forth (technically, the transition function of two-way
automata maps a state and a letter to a set of pairs, where each pair specifies
both the next state and the direction to which the reading head of the automaton
proceeds). Just like PLTL is not more expressive than LTL, two-way automata
are not more expressive than conventional one-way automata. Also, as in the
temporal-logic paradigm, it is often more convenient to define languages using
two-way automata, and the convenience is reflected in their succinctness. For
example, the translation of nondeterministic two-way Büchi automata to nonde-

3 For example, it is easy to specify the fact that grants are issued only upon requests
using past temporal operators: ✷(grant → ❢− (¬grantSreq)), where ❢− (“Yesterday”)
and S (“Since”) are the past-time counterparts of “Next” and “Until”). The reader
is encouraged to try and specify the behavior without past temporal operators.

522 O. Kupferman, N. Piterman, and M.Y. Vardi

terministic one-way Büchi automata involves an exponential blow-up [GH96]. So,
our ETL2a is going to have two-way Büchi automata as its temporal operators.

In addition, the automata are going to be alternating4. A deterministic au-
tomaton has a single run over an input word. A nondeterministic automaton may
have many runs, and it accepts the word if one of them is accepting. This can be
viewed as if the automaton operates in an existential mode. Dually, in a universal
mode, a word is accepted if all the runs of the automaton on it are accepting. In
an alternating automaton [BL80,CKS81], both existential and universal modes
are allowed. The richer combinatorial structure of alternating automata makes
them a convenient specification language. Formally, alternating Büchi automata
are exponentially more succinct than nondeterministic Büchi automata [DH94].
In addition, the complementation of alternating Büchi automata is quadratic
and simple [KV97].

Our interest in alternating automata is not merely theoretical. Alternating
automata have recently been used in industrial projects. The Intel ForSpec com-
piler uses an intermediate language called SPIF, which is essentially a variant of
ETLa, using alteranting automata as temporal connectives. The ForSpec com-
piler translates ForSpec Temporal Logic (FTL) formulas [AFG+01] into SPIF,
and from SPIF into nondeterministic Büchi automata [AFF+01]. We note, how-
ever, that the ability of FTL to refer to past events is very limited, because
of the limitations of ETLa. Using ETL2a, it would be possible to extend FTL
and SPIF to include reference to past. We also note that it has recently been
shown how nondeterministic Boolean decision diagrams (BDDs) can be used for
maintaining sets of states in order to reason about alternating automata [Fin01].
Thus, we believe that ETL2a is interesting both theoretically and practically.

One may ask, why bother with the logic and not use two-way alternating
automata directly. Indeed Boolean operators are easy to implement with al-
ternating automata. We believe that explicit usage of Boolean connectives and
nesting of formulas is more natural to users. Furthermore, the ability to name a
formula and then refer to that name is much more convenient than dealing with
the internals of alternating automata; indeed, this functionality is available in
FTL [AFG+01].

We note that the succinctness of two-way automata holds also in the frame-
work of alternating automata: Birget has shown that two-way alternating au-
tomata on finite words are exponentially more succinct than one-way alternating
automata on finite words [Bir93], and it is not hard to extend his result to Büchi
automata [Pit00]. Also, the succinctness of alternating automata is valid in the
framework of two-way automata: two-way alternating Büchi automata are expo-
nentially more succinct than two-way nondeterministic Büchi automata [GH96].
So, ETL2a extends ETLr in two important aspects. On the other hand, the two
succinctness results are not additive: there is an exponential translation of two-

4 An earlier attempt to extend ETL with alternating automata is reported in [VW94].
That attempt, however, was somewhat ad-hoc and could not handle alternating
Büchi automata.

Extended Temporal Logic Revisited 523

way alternating Büchi automata to one-way nondeterministic Büchi automata
[Var98].

In the automata-theoretic approach to verification, we reduce questions about
systems and their behavior to questions about automata [VW94]. Given a formal
specification ψ, we construct a nondeterministic Büchi automaton Aψ that ac-
cepts exactly the set of words that satisfy ψ. In order to check if ψ is satisfiable,
we check whether the language of Aψ is nonempty. In order to verify a system
with respect to ψ, we check that the language of the system is contained in the
language of Aψ. Following this approach, we would like to construct, given an
ETL2a formula ψ, a nondeterministic Büchi automaton that accepts exactly the
set of words that satisfy ψ.

The construction proceeds in two stages. We first translate an ETL2a formula
ψ to a two-way alternating hesitant automaton. Alternating hesitant automata
are an extension of alternating weak automata [MSS86], and they combine the
Büchi and its dual co-Büchi acceptance condition. Recall that the complemen-
tation problem for alternating Büchi automata is quadratic. On the other hand,
complementing an alternating Büchi automaton to a co-Büchi alternating au-
tomaton can be done by dualizing the transition function and the acceptance
condition. Consequently, the combination of both conditions leads to a linear
translation of ETL2a to two-way alternating hesitant automata. In the second
stage we translate the two-way alternating hesitant automaton to a one-way
nondeterministic Büchi automaton. For that, we first remove the hesitation and
get a Büchi automaton, and then combine techniques for removing alternation
[MS95] with techniques for removing bidirectionality [Var88]. The fact we deal
with hesitant word automata makes the procedure much simpler than the one
required for the translation of two-way alternating parity tree automata to one-
way nondeterministic parity tree automata [Var98]. All in all, given an ETL2a

formula ψ, the nondeterministic Büchi automaton Aψ has 2O(|ψ|
2) states. It

follows that the model-checking and the satisfiability problems for ETL2a can
be solved in polynomial space. Matching lower bounds are easy to show, hence
the problems are PSPACE-complete, as are the ones for ETLr or LTL [SC85].
It follows that the in spite of the succinctness of two-way and alternating au-
tomata, the advantages of ETL2a are obtained without a major increase in space
complexity.

2 Definitions

For a finite alphabet Σ, a word w ∈ Σω is an infinite sequence of letters from
Σ. We denote by wi the i-th letter of w.
Nondeterministic automata. A nondeterministic automaton is A =
〈Σ,Q,Q0, ρ, F 〉, where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q
is a set of initial states, ρ : Q × Σ → 2Q is a transition function, and F ⊆ Q
is an acceptance condition. A run of A on a word w ∈ Σω is an infinite se-
quence r = q0, q1, . . ., where q0 ∈ Q0 and for all i ≥ 0, we have qi+1 ∈ ρ(qi, wi).
Let inf(r) denote the set of all states occurring infinitely often in r. Formally,

524 O. Kupferman, N. Piterman, and M.Y. Vardi

inf(r) = {s | s = qi for infinitely many i’s}. We consider two types of accep-
tance conditions Büchi and co-Büchi. A run of a Büchi automaton is accepting
if it visits states from F infinitely often; i.e., inf(r) ∩ F �= ∅. A run of a co-
Büchi automaton is accepting if it visits states from F only finitely often; i.e.,
inf(r) ∩ F = ∅.

Hesitant automata combine the Büchi and the co-Büchi acceptance condi-
tions. They extend weak automata [MSS86] by a richer acceptance condition.
A hesitant automaton A = 〈Σ,B,C,Q0, ρ, F 〉 is a nondeterministic automaton
such that the set of states Q = B ∪ C is the disjoint union of a set B of Büchi
states and a set C of co-Büchi states. In addition, there is a partition of Q into
disjoint sets, such that for each set S in the partition, either S ⊆ B, in which case
S is a Büchi set, or S ⊆ C, in which case S is a co-Büchi set. For a state q ∈ Q,
let [q] denote the set of states in q’s set in this partition. There exists a partial
order ≤ on the collection of the sets such that for every two states q and q′ for
which q′ occurs in δ(q, σ), for some σ ∈ Σ, we have [q′] ≤ [q]. Thus, transitions
from a state in a set S lead to states in either the same set or a lower one. It
follows that a run r of a hesitant automaton ultimately gets trapped within some
set S in the partition. The run r is accepting iff either S ⊆ B is a Büchi set and
inf(r) ∩ F �= ∅ or S ⊆ C is a co-Büchi set and inf(r) ∩ F = ∅. Thus, a run of a
nondeterminisitic hesitant automaton may switch between Büchi and co-Büchi
sets, yet eventually it stays forever in some set, and acceptance is determined
according to the classification of this set. Note that if C = ∅, then A is a Büchi
automaton, and that if B = ∅, then A is a co-Büchi automaton.

An automaton A accepts a word w if there exists an accepting run of A on
w. Otherwise, A rejects w. The language of A, denoted L(A), is the set of all
words accepted by A. The complementary language of A is the set Σω \L(A) of
all words w rejected by A.
Alternating automata. For a set Q, we denote by B+(Q) the set of all positive
Boolean formulas over Q, where we also allow true and false. We say that a set
Q′ ⊆ Q satisfies a formula θ ∈ B+(Q) (denoted Q′ |= θ) if by assigning true to
all members of Q′ and false to all members of Q \Q′, the formula θ evaluates to
true. Note that the formula true is satisfied by the empty set and the formula
false cannot be satisfied. Given a formula θ ∈ B+(Q), the dual of θ, denoted by
θ̃, is obtained from θ by switching ∧ and ∨, and switching true and false.

A tree is a set T ⊆ IIN∗ such that if x · c ∈ T , where x ∈ IIN∗ and c ∈ IIN, then
also x ∈ T . The elements of T are called nodes, and the empty word ε is the
root of T . For every x ∈ T , the nodes x · c where c ∈ IIN are the children of x,
the nodes x · y where y ∈ IIN∗ are the successors of x. A node is a leaf if it has
no children. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for every
x ∈ π, either x is a leaf or there exists a unique c ∈ IIN such that x · c ∈ π. Given
an alphabet Σ, a Σ-labeled tree is a pair 〈T, r〉, where T is a tree and r : T → Σ
maps each node of T to a letter in Σ.

An alternating automaton is A = 〈Σ,Q, q0, ρ, F 〉, where Σ, Q, and F are as in
nondeterministic automata, q0 is a unique initial state, and ρ : Q×Σ → B+(Q)
is the transition function. We can say that a nondeterministic automaton accepts

Extended Temporal Logic Revisited 525

a word w = w0 · w1 · w2 · · · from state s if it accepts the suffix w1 · w2 · · · from
one of the states in ρ(s, w0). In alternating automata, we allow posing both
existential and universal demands on the suffix of the word. For example, if
ρ(s, a) = s1 ∧ s2 ∨ s3, then A accepts a word starting with a from state s if it
accepts the suffix of the word from both s1 and s2, or it accepts the suffix from
s3. For that, A sends to the suffix either two copies of itself, in states s1 and s2,
or a single copy, in state s3.

A run of an alternating automaton on a word w ∈ Σω is a Q-labeled tree
〈T, r〉, where r(ε) = q0 and for all x ∈ T the (possibly empty) set {r(x · c) | c ∈
IIN and x · c ∈ T} satisfies the formula ρ(r(x), w|x|). For a path π in the tree
T , let inf(r|π) denote the set of all states occurring infinitely often along that
path in r, formally inf(r|π) = {s | s = r(x) for infinitely many x in π}. We
consider alternating Büchi and co-Büchi automata. A run of an alternating
Büchi automaton is accepting if for all infinite paths π in T , we have inf(r|π)∩
F �= ∅. A run of an alternating co-Büchi automaton is accepting if for all infinite
paths π in T we have inf(r|π) ∩ F = ∅.
Two-way alternating automata. A 2-way alternating automaton is A =
〈Σ,Q, q0, ρ, F 〉, where Σ, Q, q0, and F are as in alternating automata, and the
transition function is ρ : Q × Σ → B+({−1, 0, 1} × Q). Alternating automata
allowed us to pose both existential and universal demands on the suffix of the
word. Two-way automata allow us to pose demands also on the prefix of the word.
Technically, when the reading head of A is on the i-th position of w, it can move
to locations i− 1, i, and i+1. For example, ρ(s0, a) = (−1, s1)∧ (1, s2)∨ (0, s3)
means that when the automaton is in state s0 reading the letter a in location i,
it can either send a copy in state s1 to location i − 1 and a copy in state s2 to
location i+1, or stay in location i in the state s3. If i = 0, the automaton must
choose the second option.

A run of A on a word w ∈ Σω is a (Q × IIN)-labeled tree 〈T, r〉, where
r(ε) = (q0, 0) and for all x ∈ T with r(x) = (r, k), the set {(q,∆) | c ∈
IIN, x · c ∈ T, and r(x · c) = (q, k + ∆} satisfies the formula ρ(r, wk). For a
path π, the set inf(r|π) is defined as in alternating automata, thus inf(r|π) =
{s | there are infinitely many nodes x ∈ π with r(x) ∈ {s} × IIN}. A run of a
2-way alternating Büchi automaton is accepting if all infinite paths π in T have
inf(r|π) ∩ F �= ∅ and a run of a 2-way alternating co-Büchi automaton is ac-
cepting if all infinite paths π in T have inf(r|π) ∩ F = ∅.

A 2-way alternating hesitant automaton A = 〈Σ,B,C, q0, ρ, F 〉 obeys the
same restrictions as a nondeterministic hesitant automaton. Namely, the state
set Q = B ∪ C is the union of Büchi and co-Büchi sets, there is a partition of
the state set and a partial order that restricts the transition function. It follows
that every infinite path in a run tree of a 2-way alternating hesitant automaton
ultimately gets trapped within some S × IIN, for a set S in the partition. The
run 〈T, r〉 is accepting if for every infinite path π in T , either S ⊆ B and
inf(r|π) ∩ F �= ∅, or S ⊆ C and inf(r|π) ∩ F = ∅.

Note that a 1-way alternating automaton can be viewed as a 2-way al-
ternating automaton whose transition function is restricted to formulas from

526 O. Kupferman, N. Piterman, and M.Y. Vardi

B+({1}×Q). Also, a nondeterministic automaton can be viewed as an alternat-
ing automaton whose transitions are restricted to disjunctions over the set Q.
Given an automaton A = 〈Σ,Q, q0, ρ, F 〉 and a state q ∈ Q, we denote by Aq

the automaton with initial state q; i.e, is Aq = 〈Σ,Q, q, ρ, F 〉.
Given a 2-way alternating Büchi automaton A = 〈Σ,Q, q0, ρ, F 〉, the

dual of A is the co-Büchi automaton Ã = 〈Σ,Q, q0, ρ̃, F 〉, where ρ̃(s, a) is
the dual of ρ(s, a). The automata A and Ã accept complementary languages
[MS87]; i.e. L(Ã) = Σω \ L(A). Given an alternating hesitant automaton
A = 〈Σ,B,C, q0, ρ, F 〉, the dual of A is the alternating hesitant automaton
Ã = 〈Σ,C,B, q0, ρ̃, F 〉, where the set of Büchi states and the set of co-Büchi
states switch roles. Again, Ã accepts the complementary language of A. Clearly,˜̃
A is A again.

We denote the different types of automata by four-symbol acronyms in
{1, 2}×{D,N,A}×{B,C,H}×{W}, where the first symbol describes whether
the automaton is 2-way or 1-way, (for 1-way automata we often omit the 1),
the second symbol describes the branching mode of the automaton (determin-
istic, nondeterministic, or alternating), the third symbol describes the type of
acceptance condition (Büchi, co-Büchi or hesitant), and the last symbol indi-
cates that the automaton runs over words. For example, 1DBW denotes 1-way
deterministic Büchi automata, as well as the set of ω-regular languages that can
be recognized by a deterministic Büchi word automaton.
Linear Temporal Logic. The linear temporal logic LTL extends propositional
logic by temporal operators like always (✷), eventually (✸), until (U), and next-
time (❢) [Pnu81]. The semantics of LTL is defined with respect to infinite words
in (2AP)ω, for a set AP of atomic propositions. For example, the formula ✷p
(always p) is satisfied by words all of whose letters contain the atom p. For full
syntax and semantics see [Pnu81].
Extended Temporal Logic. As mentioned above, Vardi and Wolper suggested
to increase the expressive power of LTL by using 1NBW as temporal connectives
[VW94]. Suppose the alphabet of an 1NBW A is the set 2AP . The 1NBW A
defines a set of sequences of truth assignments to the propositions. We can view
A as a formula that is satisfied by exactly all the words accepted by A. The
formal definition is a bit more complex, as automata are allowed to use other
formulas as part of their alphabet and not only propositions. Below we describe
the definition of ETLr as defined in [VW94].

We start with the syntax. Formulas are defined with respect to a set AP of
atomic propositions as follows.

– Every proposition p ∈ AP is a formula.
– If ϕ1 and ϕ2 are formulas, then ¬ϕ1, ϕ1 ∨ ϕ2, and ϕ1 ∧ ϕ2 are formulas.
– For every 1NBW A = 〈Σ,Q, ρ,Q0, F 〉 with Σ = {a1, . . . , an}, if ϕ1, . . . , ϕn

are formulas, then A(ϕ1, . . . , ϕn) is a formula.

The semantics of ETLr is defined with respect to pairs (π, i) ∈ (2AP)ω × IIN,
of words and locations. Consider an 1NBW A = 〈Σ,Q,Q0, ρ, F 〉. A run of a
formula A(ϕ1, . . . , ϕn) over a word π starting at point i, is an infinite sequence

Extended Temporal Logic Revisited 527

σ = q0, q1, . . . of states from Q, such that q0 ∈ Q0 and for all k ≥ 0, there is
some aj ∈ Σ such that (π, i+k) |= ϕj and qk+1 ∈ ρ(qk, aj). The run is accepting
if inf(r) ∩ F �= ∅.

We use (π, i) |= ψ to indicate that the word π in the location i satisfies the
formula ψ. For a word π ∈ (2AP)ω and a location i ∈ IIN, the relation |= is defined
as follows.

– For a proposition p ∈ AP , we have (π, i) |= p iff p ∈ πi.
– (π, i) |= ¬ϕ1 iff not (π, i) |= ϕ1.
– (π, i) |= ϕ1 ∨ ϕ2 iff (π, i) |= ϕ1 or (π, i) |= ϕ2.
– (π, i) |= ϕ1 ∧ ϕ2 iff (π, i) |= ϕ1 and (π, i) |= ϕ2.
– (π, i) |= A(ϕ1, . . . , ϕn) iff there is an accepting run of A(ϕ1, . . . , ϕn) over π

starting at i.

Consider for example the 1NBW A = 〈Σ,Q,Q0, ρ, F 〉, where Σ =
{a, b}, Q = {q0, q1}, ρ(q0, a) = ρ(q1, a) = {q0}, ρ(q0, b) = ρ(q1, b) = {q1},
and Q0 = F = {q1}. The state q1 is visited exactly when A reads the letter
b. A run of A is accepting if it visits state q1 infinitely often. Hence, the ETLr
connective A(¬p, p), where p is a proposition, is true iff p is true infinitely often.
It is equal to the LTL formula ✷✸p. As another example, consider the formula
ψ = ✷(grant → ❢− (¬grantSreq)) stating that grants are issued only upon re-
quests. We describe an equivalent ETLr formula for it. Consider the 1NBW A =
〈Σ,Q,Q0, ρ, F 〉, where Σ = {a, b, c, d}, Q = {q0, q1}, ρ(q0, a) = {q0}, ρ(q0, b) =
{q1}, ρ(q1, c) = {q1}, ρ(q1, d) = {q0}, Q0 = {q0}, and F = {q0, q1}. Note that all
the infinite runs of A are accepting. The state q0 corresponds to a configuration
in which no requests are pending. The state q1 corresponds to a configuration
in which there is at least one request pending. Accordingly, the ETLr formula
A(¬req ∧ ¬grant, req ∧ ¬grant, grant→ req, grant ∧ ¬req) is equivalent to ψ.
Extending temporal logic with 2-way alternating automata. We now
define formally the logic ETL2a. The logic ETL2a extends ETLr by having 2-way
alternating automata as its temporal connectives. Complementing the transition
function of alternating automata is very simple. Hence, by allowing both Büchi
and co-Büchi acceptance conditions, we can make the complementation of the
temporal connectives simple. Accordingly, ETL2a, uses both 2ABW and 2ACW
as automata connectives. Runs of formulas that are automata connectives are
defined as follows.

Consider a 2-way alternating automaton A = 〈Σ,Q, q0, ρ, F 〉. A run of the
formula A(ϕ1, . . . , ϕn) over a word w starting at point i, is a finite or infinite
(Q× IIN)-labeled tree 〈T, r〉 such that r(ε) = (q0, i) and for all x ∈ T with r(x) =
(q, k), there is some aj ∈ Σ such that (π, k) |= ϕj and the (possibly empty) set
P = {(q′, ∆) | There is a child y of x in T such that r(y) = (q′, k+∆)} satisfies
the transition ρ(r(x), aj). Intuitively, the children of x are labeled by the states
of A and the locations in w from which the copies of the automaton should start
running. Note that as ϕ1, . . . , ϕn are not mutually exclusive, different copies may
choose different formulas. If the automaton is a 2ABW, the run is accepting if for
all infinite paths π of T we have inf(r|π)∩F �= ∅. If the automaton is a 2ACW,
the run is accepting if for all paths π of T we have inf(r|π) ∩ F = ∅. When not

528 O. Kupferman, N. Piterman, and M.Y. Vardi

important or clear from the context, we often write the formula A(ϕ1, . . . , ϕn)
as A.

Recall the formula ψ stating that grants are issued only upon requests. We
now describe an ETL2a formula for it. Consider the 2ABW A = 〈Σ,Q, q0, ρ, F 〉,
where Σ = {a, b, c, d}, Q = {q0, q1}, ρ(q0, a) = (q0, 1), ρ(q0, b) = (q0, 1)∧(q1,−1),
ρ(q1, b) = false, ρ(q1, c) = true, ρ(q1, d) = (q1,−1), and F = {q0}. The formula
A(¬grant, grant, req,¬req ∧ ¬grant) is equivalent to ψ. To see that, note that
whenever A visits the state q0 and reads a letter containing a grant, it sends a
copy that goes backwards, expecting a request before it comes across a grant.
Also, as q1 �∈ F , a request has to be eventually found. The ETL2a formula has
very much the same structure as the PLTL formula.

Similar to other logics, handling ETL2a is easier in positive normal form,
where negations are pushed inward using De-Morgan laws. In an ETL2a formula
in positive normal form, negations apply to automata and atomic propositions
only. For a formula ψ, let ψ̃ denote ¬ψ in positive normal form5.

Given an ETL2a formula ψ in a positive normal form, the closure of ψ,
denoted cl(ψ) includes all the subformulas of ψ and their complements. This
includes formulas of the form Aq, for an automata connective A and a state q
of it. For simplicity, we assume that the state sets of the automata connectives
in ψ are pairwise disjoint, thus we can denote the subformula A(ψ1, . . . , ψn) by
q0(ψ1, . . . , ψn), for the initial state q0 of A. Similarly, we denote Aq(ψ1, . . . , ψn)
by q(ψ1, . . . , ψn). When ψ1, . . . , ψn are clear from the context, we write just q0
or q, respectively. Formally, the set cl(ψ) is the minimal set satisfying all the
following.

– ψ ∈ cl(ψ),
– If ψ1 ∈ cl(ψ), then ψ̃1 ∈ cl(ψ).
– if ψ1 ∧ ψ2 ∈ cl(ψ) then {ψ1, ψ2} ⊆ cl(ψ),
– if ψ1 ∨ ψ2 ∈ cl(ψ) then {ψ1, ψ2} ⊆ cl(ψ), and
– if q0(ψ1, . . . , ψn) ∈ cl(ψ), for a 2ABW or a 2ACW A = 〈Σ,Q, q0, ρ, F 〉, then
{ψ1, . . . , ψn} ⊆ cl(ψ), and for all q ∈ Q, we have q(ψ1, . . . , ψn) ∈ cl(ψ).
Note that the formulas in cl(ψ) are in positive normal form. Thus, nega-

tion applies to atomic propositions and automata connectives only. Consider
again the formula ϕ = A(¬grant, grant, req,¬req ∧ ¬grant) discussed above.
The closure of ϕ is cl(ϕ) = {q0, q1,¬q0,¬q1, grant,¬grant, req,¬req,¬req ∧
¬grant, req ∨ grant}.

For a formula ψ, the models of the formula is the set L(ψ) of all infinite words
w ∈ (2AP)ω that satisfy the formula.
5 Consider an automaton A. Note that the formula ψ = ¬A(ϕ1, . . . , ϕn) is not equiv-
alent to the formula Ã(ϕ1, . . . , ϕn), where Ã is the dual of A. This is because both
A and Ã treat the formulas ϕ1, . . . , ϕn existentially. Indeed, for both automata, the
transition from a state to its successor involves a choice of some ϕi. In order for ψ
to be false, all the runs of A should be rejected, thus Ã should treat the formulas
ϕ1, . . . , ϕn universally. Universally in this case means that if ϕi holds then Ã should
take the transition corresponding to the letter ai. This is why the positive normal
form for ETL2a allows the application of negation to automata connectives.

Extended Temporal Logic Revisited 529

3 Decision Procedures for ETL2a

In this section we solve the satisfiability and model-checking problems for ETL2a.
Given an ETL2a formula ψ, we construct a 1NBW Aψ such that Aψ accepts
exactly all the words satisfying ψ. The size of Aψ is 2O(|ψ|

2). Using Aψ, we
show that both the satisfiability and the model-checking problems for ETL2a
are PSPACE-complete. The construction of Aψ proceeds in two stages, with
2AHW serving as an intermediate formalism.

We describe now how to construct the intermediate 2AHW.

Theorem 1. Given an ETL2a formula ψ of length n, there is a 2AHW Hψ such
that L(Hψ) = L(ψ) and Hψ has O(n) states.

Proof: Given a set Q of states, let ¬Q = {¬q | q ∈ Q}. We define the function
dual : B+({−1, 0, 1} × Q) → B+({−1, 0, 1} × ¬Q) as follows. For a formula
θ ∈ B+({−1, 0, 1} × Q), the formula dual(θ) is obtained from θ̃ (the dual of θ)
by replacing every atom of the form (∆, q) ∈ {−1, 0, 1}×Q by the atom (∆,¬q).
So, dual(θ) switches ∨ and ∧, and true and false, and also adds negationa in
front of states in Q. For example, dual(((−1, s) ∧ (0, t)) ∨ (1, q)) = ((−1,¬s) ∨
(0,¬t)) ∧ (1,¬q).

Now, given an ETL2a formula ψ, we define Hψ = 〈2AP , B,C, ψ, η, α〉, where
B ∪ C = cl(ψ), and

– The set of Büchi states is

B =
{q | A is a 2ABW connective in ψ and q is a state of A}∪
{¬q | A is a 2ACW connective in ψ and q is a state of A}.

The set of co-Büchi states is C = cl(ψ) \ B. We note that the decision to
include elements of cl(ψ) that are not states of automata in C is arbitrary.
Indeed, the transition from such states is to strict subformulas, and the
automaton is not going to get trapped in a set associated with them.
The partition of cl(ψ) is as follows. For every state s ∈ cl(ψ) such that s
is not a state of an automaton, the Singleton {s} is a set of the partition.
For an automaton A = 〈Σ,Q, q0, ρ, F 〉 ∈ cl(ψ), all the states {q | q ∈ Q}
form a set in the partition, and all the states {¬q | q ∈ Q} form a set in the
partition. The partial order ≤ on the sets is such that [s′] ≤ [s] iff s′ ∈ cl(s).

– The transition function η : cl(ψ)× 2AP → B+({−1, 0, 1} × cl(ψ)) is defined
for every formula in cl(ψ) and letter a ∈ 2AP as follows.
• For a proposition p ∈ AP , we have η(p, a) = true and η(¬p, a) = false

if p ∈ a, and η(p, a) = false and η(¬p, a) = true if p �∈ a.
• η(ψ1 ∧ ψ2, a) = (ψ1, 0) ∧ (ψ2, 0)
• η(ψ1 ∨ ψ2, a) = (ψ1, 0) ∨ (ψ2, 0)
• Let A(ψ1, . . . , ψn) ∈ cl(ψ) such that A = 〈{a1, . . . , an}, Q, q0, ρ, F 〉 . For

every q ∈ Q we have η(q(ψ1, . . . , ψn), a) =
∨n
i=1[(ψi, 0) ∧ ρ(q, ai)]

• Let A(ψ1, . . . , ψn) ∈ cl(ψ) such that A = 〈{a1, . . . , an}, Q, q0, ρ, F 〉. For
every q ∈ Q we have η(¬q(ψ1, . . . , ψn), a) =

∧n
i=1[(ψ̃i, 0)∨dual(ρ(q, ai))]

530 O. Kupferman, N. Piterman, and M.Y. Vardi

The transition from states associated with a 2ABW or a 2ACW
A(ψ1, . . . , ψn) makes sure that there is indeed an accepting run of the for-
mula. For that, when the automaton is in state q of A, it checks that there
is a formula ψi in ψ1, . . . , ψn such that ψi holds in the current location
(checked by sending the copy (ψi, 0)), and that the formula Aq has an ac-
cepting run starting with the transition taken by reading ai (checked by the
copies sent by ρ(q, ai)). The transition from states associated with a formula
¬A(ψ1, . . . , ψn) are dual.
It is easy to see that η respects the partial order on the partition of B ∪ C.

– The acceptance condition is

α = {q,¬q | q ∈ F, for an automaton connective A = 〈Σ,Q, q0, ρ, F 〉 in ψ}.

For a 2ABW A and state q ∈ F , we would like to visit q infinitely often, and
indeed q is a Büchi state in α. On the other hand, the transition from the
state ¬q is obtained by dualizing the transitions from q, we would like to
visit it finitely often, and indeed it is a co-Büchi state in α. So, both q and
¬q are members of α and the restriction as to whether they should be visited
finitely or infinitely often is determined by their classification as Büchi and
co-Büchi states, respectively.

We describe how to transform the intermediate 2AHW to 1NBW. In [Var98],
Vardi translates 2-way alternating parity tree automata to 1-way nondetermin-
istic parity tree automata. Since Hψ can be defined as a parity automaton,
and since words are a special case of trees, one could use the transformation in
[Var98]. We describe here a simpler and more direct construction. We first need
some notations.

Consider a 2AHW A = 〈Σ,Q, q0, η, F 〉. A restriction of A is a set ξ ∈
2Q×{−1,0,1}×Q. For a restriction ξ ⊆ Q × {−1, 0, 1} × Q, we define state(ξ) =
{u : (u,∆, u′) ∈ ξ}. A strategy for A is an infinite sequence τ = ξ0, ξ1, . . . of
restrictions. We sometimes denote ξi by τ(i). We say that the strategy τ is
on a word w if q0 ∈ state(ξ0), for all i ∈ IIN and states q ∈ state(ξi), the set
{(∆, q′)|(q,∆, q′) ∈ ξi} satisfies η(q, wi), and for all i ∈ IIN and (q,∆, q′) ∈ ξi we
have q′ ∈ state(ξi+∆) (or η(q′, wi+∆) = true). Intuitively, a strategy suggests at
each location i, a possible way for satisfying the transition function.

Lemma 1. Consider a 2AHW A = 〈Σ,Q, q0, η, F 〉 with n states. There is a
1DBW A′ over the alphabet Σ × 2Q×{−1,0,1}×Q such that A′ has 2O(n) states
and it accepts a word (w0, ξ0) · (w1, ξ1) · · · iff ξ0, ξ1, · · · is a strategy for A on
w0, w1, · · ·.

Proof: The intuition is quite simple. When reading (wi, ξi), the automaton A′

has to remember two sets. The set of states that ξi restricts (state(ξi)) and the
set of states that ξi promises that have a strategy from ξi+1 (if (q, 1, q′) ∈ ξi
then ξi promises that q′ has a strategy from ξi+1). It then checks that the states

Extended Temporal Logic Revisited 531

that are promised by ξi+1 that have a strategy from ξi are indeed restricted by
ξi and that all promises of ξi are indeed fulfilled. The local requirements, that
the strategy fulfills the transition of A and that states that should be restricted
by ξi are indeed restricted need no memory in order to be checked. The formal
proof is ommitted.

A path in a strategy τ is a finite or infinite sequence (0, q0), (i1, q1), (i2, q2), . . .
of pairs from IIN × Q such that either the path is infinite, in which case for all
j ≥ 0, there is ∆j ∈ {−1, 0, 1} such that (qj , ∆j , qj+1) ∈ τ(ij) and ij+1 =
ij+∆j , or the path is finite (0, q0), . . . , (im, qm), in which case for all 0 ≤ j < m,
there is ∆j ∈ {−1, 0, 1} such that (qj , ∆j , qj+1) ∈ τ(ij), ij+1 = ij + ∆j , and
η(qm, wim) = true. An infinite path is accepting if it gets trapped in B and visits
IIN×F infinitely often or if it gets trapped in C and visits IIN×F finitely often. A
finite path is always accepting. We say that τ is winning if all infinite paths in τ
are accepting. Otherwise, τ is losing. It is not hard to see that a 2AHW accepts
a word iff it has a winning strategy on the word (c.f., [MS95,Var98,KV00]).

Lemma 2. Consider a 2AHW A = 〈Σ,Q, q0, η, F 〉 with n states. There is a
2NBW A′ over the alphabet 2Q×{−1,0,1}×Q such that A′ has O(n) states and it
accepts exactly all the losing strategies for A.

Proof: We first define a 2NHW A′′ that accepts exactly all the losing strategies
of A. The automaton A′′ = 〈2Q×{−1,0,1}×Q, Q, q0, η′, F 〉, where the co-Büchi set
of A′′ is the Büchi set of A, the Büchi set of A′′ is the co-Büchi set of A, and
η′ is defined for all q ∈ Q and ξ ∈ 2Q×{−1,0,1}×Q as follows. Let options(q, ξ) =
{(∆, q′) | (q,∆, q′) ∈ ξ}. Then,

η′(q, ξ) =
{

false If options(q, ξ) = ∅
options(q, ξ) Otherwise.

Intuitively, when the automaton A′′ reads a strategy τ , it guesses a path
in τ that is not accepting. Accordingly, A′′ rejects when the strategy reaches a
location in which the set of restrictions is empty (this corresponds to the case
where the candidate path is finite). When the candidate path is infinite, it is not
accepting in τ iff it does not satisfy the acceptance condition of A, which is why
A′′ dualizes A.

Now, it is easy to translate the 2NHW A′′ to a 2NBW A′ with a linear blow
up: whenever we are in a co-Büchi set S, we can nondeterministically move to a
copy of the set in which only states from S \ F are present.

The automaton A′ in Lemma 2 uses its bidirectionality in order to follow
the strategy τ . This enables us to remove alternation, but still leaves us with
bidirectionality. To remove the latter, we have to blow up the state space:

Lemma 3. [Var88] Given a 2NBW A with n states, we can construct a 1NBW
A′ with 2O(n

2) states such that L(A′) = Σω \ L(A).

532 O. Kupferman, N. Piterman, and M.Y. Vardi

Intuitively, the 2O(n
2) blow up follows from the fact we have to remember,

for each pair of states 〈q, q′〉, the set of states visited between subsequent visits
of the automaton in q and q′. We can now combine Lemmas 1, 2, and 3 to obtain
our goal.

Theorem 2. Given a 2AHW H over Σ, we can construct a 1NBW A with
2O(n

2) states such that L(H) = L(A).
Proof: Let H = 〈Σ,Q, q0, η, F 〉. By Lemma 1, we can construct a 1DBW A1
over the alphabet Σ×2Q×{−1,0,1}×Q such that A1 has 2O(n) states and it accepts
a word (w0, ξ0)·(w1, ξ1) · · · iff ξ0, ξ1, . . . is on w0, w1, Also, by Lemmas 2 and 3,
we can construct a 1NBW A2 such that A2 accepts a word over the alphabet
Σ × 2Q×{−1,0,1}×Q iff its projection on 2Q×{−1,0,1}×Q is an accepting strategy.
The automaton A is the intersection of A1 and A2, projected on Σ.

We combine now the constructions described above and use the resulting
1NBW for solving the satisfiability and model-checking problems for ETL2a.
First, Theorems 1 and 2 immediately imply the following.

Theorem 3. Given an ETL2a formula ψ of length n, there is a 1NBW Aψ such
that L(Aψ) = L(ψ) and Aψ has 2O(n

2) states.

Once we construct Aψ, we can reduce satisfiability of ψ to nonemptiness of
Aψ, and we can reduce model checking of a system S with respect to ψ to the
language inclusion problem L(S) ⊆ L(Aψ). (The system S is given as a finite
state-transition graph, L(S) is the set of all the words that S generates, and we
say that S satisfies ψ if (π, 0) |= ψ for all the words π that S generate.) As in
LTL, we can use the fact that ETL2a is closed under negation and check the
latter by checking the emptiness of the intersection S ×A¬ψ [VW94]. Since the
nonemptiness problem for Büchi automata can be solved in NLOGSPACE, we
have the following (the lower bounds follow immediately from the lower bounds
on LTL [SC85] and the linear translation of LTL to 1ABW [Var96]).

Theorem 4. The satisfiability and the model-checking problems for ETL2a are
PSPACE-complete.

It follows that in spite of the succinctness of two-way and alternating au-
tomata, the advantages of ETL2a are obtained without a major increase in space
complexity.

4 Discussion

We studied an extension of linear temporal logic with two-way alternating au-
tomata. The resulting logic ETL2a, is as expressive as previous extensions of
linear temporal logic with ω-regular automata, but the added strength of bidi-
rectionality and alternation makes the logic substantially more convenient. The
satisfiability and model-checking problems for ETL2a are PSPACE-complete,

Extended Temporal Logic Revisited 533

as is the case with LTL or weaker extensions of LTL with automata. There
have been two recent developments that make us optimistic about the practical-
ity of ETL2a: the development of symbolic procedures for handling alternating
automata [Fin01], and the usage of alternating automata as an intermediate
formalism at Intel [AFF+01]. Using ETL2a, it would be possible to extend this
intermediate formalism to include convenient reference to past.

In this paper we considered the linear framework to verification. Branching
temporal logic extends linear temporal logic with the path quantifiers A (“for
all path”) and E (“there exists a path”), and its formulas describe computa-
tion trees. The same limitation of LTL applies to its branching-time extension
CTL�. Similar suggestions to extend the expressiveness of CTL� are studied in
the literature. This includes both the extensions of the path formulas of CTL�

with ω-regular word automata [VW84,CGK92], and the extension of the state
formulas with ω-regular tree automata [MS85]. As in the linear framework, one
can strengthen these extensions by using more powerful automata, in particular
two-way and alternating ones. Since it is possible to remove bidirectionality and
alternation also in the branching framework [Var98], our treatment of ETL2a
should work here as well. Its implementation, however, is going to be much more
complicated in the branching framework.

References

[AFF+01] R. Armoni, L. Fix, A. Flaisher, R. Gerth, T. Kanza, A. Landver, S. Mador-
Haim, A. Tiemeyer, M.Y. Vardi, and Y. Zber. The ForSpec compiler. Sub-
mitted, 2001.

[AFG+01] R. Armoni, L. Fix, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-
Haim, A. Tiemeyer, E. Singerman, and M.Y. Vardi. The ForSpec temporal
logic: A new temporal property-specification logic. Submitted, 2001.

[BB87] B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Tem-
poral Logic in Specification, LNCS 398, 62–74. Springer-Verlag, 1987.

[BBG+94] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology
and system for practical formal verification of reactive hardware. In 6th
CAV, LNCS 818, 182–193, Springer-Verlag, 1994.

[BBL98] I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL
formulas. In 10th CAV, LNCS 1427, 184–194. Springer-Verlag, 1998.

[Bir93] J.C. Birget. State-complexity of finite-state devices, state compressibility
and incompressibility. Mathematical Systems Theory, 26(3):237–269, 1993.

[BK85] H. Barringer and R. Kuiper. Hierarchical development of concurrent sys-
tems in a framework. In Seminar in Concurrency, LNCS 197 , 35–61.
Springer-Verlag, 1985.

[BL80] J.A. Brzozowski and E. Leiss. Finite automata and sequential networks.
TCS, 10:19–35, 1980.

[CGK92] E.M. Clarke, O. Grumberg, and R.P. Kurshan. A synthesis of two ap-
proaches for verifying finite state concurrent systes. Logic and Computation,
2(5):605–618, 1992.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

534 O. Kupferman, N. Piterman, and M.Y. Vardi

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of
the Association for Computing Machinery, 28(1):114–133, January 1981.

[DH94] D. Drusinsky and D. Harel. On the power of bounded concurrency I: Finite
automata. Journal of the ACM, 41(3):517–539, 1994.

[ET97] E.A. Emerson and R.J. Trefler. Generalized quantitative temporal reason-
ing: An automata theoretic approach. In TAPSOFT, LNCS 1214, 189–200.
Springer, 1997.

[Fin01] B. Finkbeiner. Symbolic refinement checking with nondeterministic BDDs.
In TACAS, LNCS 2031. Springer-Verlag, 2001.

[Fra92] N. Francez. Program verification. Int. Computer Science. Addison-Weflay,
1992.

[Gab87] D. Gabbay. The declarative past and imperative future. In Temporal Logic
in Specification, LNCS 398 , 407–448. Springer-Verlag, 1987.

[GH96] N. Globerman and D. Harel. Complexity results for two-way and multi-
pebble automata and their logics. TCS, 143:161–184, 1996.

[HT99] J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic.
Annals of Pure and Applied Logic, 96(1–3):187–207, 1999.

[KV97] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that
weak. In 5th ISTCS, 147–158. IEEE Computer Society Press, 1997.

[KV00] O. Kupferman and M.Y. Vardi. µ-calculus synthesis. In 25th MFCS, LNCS
1893, 497–507. Springer-Verlag, 2000.

[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics
of Programs, LNCS 193, 196–218, Springer-Verlag, 1985.

[Mey75] A. R. Meyer. Weak monadic second order theory of successor is not ele-
mentary recursive. In Proc. Logic Colloquium, Vol. 453 of Lecture Notes in
Mathematics, 132–154. Springer-Verlag, 1975.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, Berlin, January 1992.

[MS85] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata,
and second-order logic. TCS, 37:51–75, 1985.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. TCS,
54:267–276, 1987.

[MS95] D.E. Muller and P.E. Schupp. Simulating alternating tree automata by
nondeterministic automata: New results and new proofs of theorems of
Rabin, McNaughton and Safra. TCS, 141:69–107, 1995.

[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak
monadic theory of the tree and its complexity. In 13th ICALP, LNCS 226,
1986.

[Pit00] N. Piterman. Extending temporal logic with ω-automata. M.Sc. Thesis,
The Weizmann Institute of Science, Israel, 2000,
http://www.wisdom.weizmann.ac.il/home/nirp/public_html/publications/msc_thesis.ps.

[Pnu81] A. Pnueli. The temporal semantics of concurrent programs. TCS, 13:45–60,
1981.

[Pnu85] A. Pnueli. In transition from global to modular temporal reasoning about
programs. In Logics and Models of Concurrent Systems, volume F-13 of
NATO Advanced Summer Institutes, pages 123–144. Springer-Verlag, 1985.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear tem-
poral logic. Journal ACM, 32:733–749, 1985.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem
for Büchi automata with applications to temporal logic. TCS, 49:217–237,
1987.

http://www.wisdom.weizmann.ac.il/home/nirp/public_html/publications/msc_thesis.ps

Extended Temporal Logic Revisited 535

[Tho81] W. Thomas. A combinatorial approach to the theory of ω-automata. In-
formation and Computation, 48:261–283, 1981.

[Var88] M.Y. Vardi. A temporal fixpoint calculus. In 15th POPL, pages 250–259,
1988.

[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Logics for Concurrency: Structure versus Automata, LNCS 1043, 238–266,
1996.

[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. In 25th
ICALP LNCS 1443, 628–641. Springer-Verlag, 1998.

[VW84] M.Y. Vardi and P. Wolper. Yet another process logic. In Logics of Programs,
LNCS 164, 501–512. Springer-Verlag, 1984.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Infor-
mation and Computation, 115(1):1–37, November 1994.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1–2):72–99, 1983.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 536−550, 2001.
 Springer-Verlag Berlin Heidelberg 2001

537Symbolic Algorithms for Infinite-State Games

538 L. de Alfaro, T.A. Henzinger, and R. Majumdar

539Symbolic Algorithms for Infinite-State Games

540 L. de Alfaro, T.A. Henzinger, and R. Majumdar

541Symbolic Algorithms for Infinite-State Games

542 L. de Alfaro, T.A. Henzinger, and R. Majumdar

543Symbolic Algorithms for Infinite-State Games

544 L. de Alfaro, T.A. Henzinger, and R. Majumdar

545Symbolic Algorithms for Infinite-State Games

546 L. de Alfaro, T.A. Henzinger, and R. Majumdar

547Symbolic Algorithms for Infinite-State Games

548 L. de Alfaro, T.A. Henzinger, and R. Majumdar

549Symbolic Algorithms for Infinite-State Games

550 L. de Alfaro, T.A. Henzinger, and R. Majumdar

A Game-Based Verification of Non-repudiation
and Fair Exchange Protocols

Steve Kremer and Jean-François Raskin�

Département d’Informatique - Faculté des Sciences
Université Libre de Bruxelles, Belgium

{skremer, Jean-Francois.Raskin}@ulb.ac.be

Abstract. In this paper, we report on a recent work for the verifica-
tion of non-repudiation protocols. We propose a verification method
based on the idea that non-repudiation protocols are best modeled as
games. To formalize this idea, we use alternating transition systems, a
game based model, to model protocols and alternating temporal logic,
a game based logic, to express requirements that the protocols must en-
sure. This method is automated by using the model-checker Mocha, a
model-checker that supports the alternating transition systems and the
alternating temporal logic. Several optimistic protocols are analyzed us-
ing Mocha.

1 Introduction

Non-repudiation protocols. During the last decade, open networks, above all the
Internet, have seen an impressive growth. As a consequence, new security issues,
like non-repudiation have to be considered. Repudiation is defined as the denial
of an entity of having participated in all or part of a communication. Consider
for instance the following scenario: Alice wants to send a message to Bob; after
having sent the message, Alice may deny having sent it (repudiation of origin),
or Bob may deny having received it (repudiation of receipt). Therefore specific
protocols have been designed, generating both a non-repudiation of origin (NRO)
evidence, destined to Bob, and a non-repudiation of receipt (NRR) evidence,
intended to Alice. These evidences are based on digital signatures that provide
proofs of the origin of a message or a receipt. In case of a dispute Alice or
Bob can present their evidences to an adjudicator, who can take a decision
in favor of one of the two entities without ambiguity. The major problem in
these protocols is to handle the fact that at one moment an entity will come
into an advantageous position. For instance, if Alice starts sending her message,
Bob has received all expected information and may stop the protocol being
in an advantageous position. Different solutions have been proposed: they are
generally divided into two classes, according to whether they use a trusted third
party (TTP) or not. The approach without TTP is either based on a gradual
� This author was partially supported by a “Crédit aux chercheurs” granted by the
Belgian National Fund for Scientific Research.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 551–565, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

552 S. Kremer and J.-F. Raskin

release of knowledge or on a probabilistic protocol. It generally requires that
all involved parties have equivalent computational power. In most cases these
protocols are inefficient due to the large number of messages that need to be sent.
The second approach is the one using a TTP. Thus, the message is first sent to
the TTP, who acts as an intermediary to assure delivery. The major problem
of this approach is the network and communication bottleneck, created at the
TTP. To avoid the performance decrease created by this bottleneck, Asokan et
al. introduced the optimistic approach for fair exchanges [2]. In an optimistic
protocol one supposes that in general the involved entities are honest and the
network is well functioning. The rationale is that the TTP only intervenes in
case of a problem (a cheating entity or a network failing a delivery at a critical
moment). Afterwards Zhou et al. applied the optimistic approach to the non-
repudiation protocols [16]. Optimistic protocols are the ones that received most
of the attention in recent literature.
A non-repudiation protocol has to respect several properties. The first one is

fairness1: fairness must ensure that if at least one entity is honest, either both
entities receive the expected non-repudiation evidence or none of them receives
it. This property can also be split in the following two properties. Fairness
for Alice ensures that, if Alice is honest, Bob receives the non-repudiation of
origin evidence only if Alice receives her non-repudiation of receipt evidence.
Fairness for Bob ensures that, if Bob is honest, Alice receives her non-repudiation
of receipt evidence only if Bob receives his non-repudiation of origin evidence.
The fairness requirement is the conjunction of these two properties. Another
property we require is timeliness: we want that the protocol finishes for each
honest player after a finite amount of time. A third property that is desirable but
not necessary is viability. A protocol is viable if two honest players always succeed
in exchanging the expected evidences. In general viability can only be realized
by strengthening the requirements we make on the communication channels.
We define three classes of channels: unreliable channels, resilient channels and
operational channels. No assumptions have to be made about unreliable channels:
data may be lost. A resilient channel delivers data after a finite, but unknown
amount of time. Data may be delayed, but will eventually arrive. When using
an operational channel data arrive before a known, constant amount of time.
Operational channels are however rather unrealistic in heterogeneous networks.
A formal definition of both these properties and the channels, will be found later.
In comparison to other security issues, such as privacy or authenticity of

communications, non-repudiation has not been studied intensively. However, the
more studied authentication protocols have shown that the design of security
protocols is an error prone process. Some flaws have only been found after years,
e.g. the Needham-Schroeder public-key authentication protocol. Hence, a need
for formal verification methods has been identified. These methods include an ad-
equate specification, more precise than the traditional, informal and sometimes

1 The term fairness will be used in two different contexts in this paper that must not
be confused: on one hand it is used to denote the fairness property that a protocol
must respect, on the other hand we use it when discussing fair computations in the
context of temporal logic.

A Game-Based Verification of Non-repudiation and Fair Exchange Protocols 553

ambiguous one often used in literature. Another aim is the automatic verifica-
tion. Several works have been engaged: believe logics, such as BAN [5], general
purpose model checkers, e.g. FDR [9], theorem provers as Isabelle for instance
[12] and also special purpose verification tools as the NRL protocol analyzer [11]
have successfully been applied to authentication protocols. To the best of our
knowledge only four attempts have been made to verify non-repudiation and
fair exchange protocols. First works have been done on non-repudiation proto-
cols using CSP [13], where the proofs were generated by hand, and Zhou and
Gollman briefly considered using the belief logic SVO [15]. Some work on fair
exchange protocols has been realized using the model-checker Murϕ [14] as well
as the animation tool Possum [4].

Non-repudiation protocols as games. There are some fundamental differences
between authentication protocols and exchange protocols, e.g. non-repudiation
protocols. Generally one of the most difficult problems in authentication proto-
cols is to deal with the presence of an intruder. In non-repudiation protocols we
do not need to model an intruder, but we have to consider that either Alice or
Bob, the two entities taking part in the protocol, may cheat (cf also [13] and [4]).
The most important difference is that exchange protocols, above all optimistic
ones, are not linear. Generally authentication protocols are ping pong protocols
and only allow very few different traces. On the other hand, non-repudiation
and fair exchange protocols are divided in several subprotocols (e.g. a main and
a recovery protocol), making branching possible, although they are intended to
be executed in a given order by a honest entity. Changing the order of execution
could result in subtle errors. This is the reason why we propose a new method
for the specification and the verification of exchange protocols. First, we want to
model the actions that are possible in the course of the protocol and not stick to
a given predefined order of execution. In that way, we give a malicious entity the
potential not to follow the protocol, but to construct an attack against the honest
entity. Second, we consider the execution of the protocol as a game: each entity
(Alice, Bob, TTP) and each communication channel are players. We can think of
designing a protocol as finding a strategy : the strategy proposed by the protocol
has to defend a honest entity against all possible strategies of malicious parties
that are trying to cheat. This point of view also allows us to express formally
the required properties as strategies. For instance, a property such as fairness
for Alice can be expressed as follows: “a coalition of Bob and all the communi-
cation channels does not have a strategy to obtain a non-repudiation of origin
evidence without Alice having a strategy to obtain a non-repudiation of receipt
evidence”. Here, we have rephrased the property as the existence of a strategy.
The main advantage of modeling such protocols as games is that we directly
and formally take into account the possibility of adversarial behaviors. As the
communication channels are also modeled as players, they can cooperate with
protocol entities. This means that either the channels are not well-functioning
or that they are controlled by a player of the coalition. For instance, when a
message is lost on an unreliable channel, this can be due to a network failure, or
a dishonest player who removed the message by cooperating with the commu-
nication channels. As a second example, consider the game view of the viability

554 S. Kremer and J.-F. Raskin

property: Alice, in cooperation with Bob must have a strategy against the coali-
tion of the communication channels, such that both Alice and Bob possess their
expected evidences at the end of the protocol. This example illustrates the fa-
cility using the strategies not only to express adversarial behaviors, but also
cooperative behaviors between several players. The trust in the TTP is modeled
by giving the TTP a unique strategy: even if he makes part of one coalition or
the other, his behavior is deterministic and thus cannot choose to help anyone.
By using alternating transition systems and alternating-time temporal logic of
Alur et al. [1], we are able to formalize the non-repudiation protocols and their
requirements in a direct way.

Structure of the paper. We organize the paper as follows. In section 2, we intro-
duce the alternating transition systems and the alternating-time temporal logic
of Alur et al. [1]. Section 3 shows how exchange protocols, and more specifically
non-repudiation protocols, can be modeled naturally and accurately as games. In
section 4, we report on results about the automatic verification of several non-
repudiation protocols using the model-checkerMocha. In section 5, we compare
our techniques to some related works. Finally, we report on plans for future works
in section 6 and draw some conclusions.

2 A Formal Model of Games and Its Logic

Alternating transition systems. The formalism that we use to model exchange
protocols as games is the model of alternating transition systems, ATS for short.
The formal definition of this model is given in [1]. Here we only give an intuitive
introduction. ATS are a game variant of usual Kripke structures. An ATS is
composed of a set of states Q that represents the possible game configurations,
a finite set of propositions P , a labeling function L : Q→ 2P that labels states
with propositions, a set of players Σ and a game transition function δ. The
game transition function defines for every player a and state q the set of choices
δ(q, a) = {Q1, Q2, . . . , Qn}, with Qi ⊆ Q, that the player a can make in q. A
choice is a set of possible next states. One step of the game at a state q is played
as follows : each player a ∈ Σ makes his choice Qa and the next state q′ of the
game is the intersection (that is required to be a singleton) of the choices made by
all the players of Σ, i.e. {q′} = ⋂

a∈Σ Qa. A computation is an infinite sequence
λ = q0q1 . . . qn . . . of states, such that for every i ≥ 0, there exists Qa1 , . . . , Qan

with Σ = {a1, . . . , an} and such that for every j, 1 ≤ j ≤ n, Qaj ∈ δ(qi, aj) and
qi+1 =

⋂
1≤j≤n Qaj .

Alternating-time temporal logic. We now introduce the alternating-time tempo-
ral logic [1], ATL for short. For a set of players A ⊆ Σ, a set of computations
Λ, and a state q, consider the following game between a protagonist and an an-
tagonist. The game starts at state q. At each step, to determine the next state,
the protagonist chooses among the choices controlled by the players in the set
A, while the antagonist chooses among the remaining choices. If the resulting

A Game-Based Verification of Non-repudiation and Fair Exchange Protocols 555

infinite computation belongs to the set Λ, then the protagonist wins. If the pro-
tagonist has a winning strategy, we say that the ATL formula 〈〈A〉〉Λ is satisfied
in state q. Here, 〈〈A〉〉 is a path quantifier, parameterized by the set A of players,
which ranges over all computations that the players in A can force the game into,
irrespective of how the players in Σ \A proceed. The set Λ is defined using tem-
poral logic formulas. If the reader is familiar with the branching time temporal
logics, he may see that the parameterized path quantifier 〈〈A〉〉 is a generalization
of the path quantifiers of CTL: the existential path quantifier ∃ corresponds to
〈〈Σ〉〉, and the universal path quantifier ∀ corresponds to 〈〈∅〉〉. We now illustrate
the expressive power of ATL. Consider the set of players Σ = {a, b, c} and the
following formulas with their verbal reading:

– 〈〈a〉〉✸p, player a has a strategy against players b and c to eventually reach
a state where the proposition p is true;

– ¬〈〈b, c〉〉✷p, the coalition of players b and c does not have a strategy against
a to reach a point where the proposition p will be true for ever;

– 〈〈a, b〉〉 ❢(p∧¬〈〈c〉〉✷p), a and b can cooperate so that the next state satisfies
p and from there c does not have a strategy to impose p for ever.

Those three formulas are a good illustration of the great expressive power of
ATL to express cooperative as well as adversarial behaviors between players.

Fairness. As in the usual temporal logic setting, fairness can be used to rule
out computations. For example, to evaluate a formula of the form 〈〈a〉〉✸φ, we
only consider computations where the antagonists, that is the agents in Σ \ {a},
respect their fairness constraints. A fairness constraint is a function γ : Q×Σ →
22
Q

such that for each q ∈ Q and a ∈ Σ, we have γ(q, a) ⊆ δ(q, a). Given a
computation λ = q0q1 . . . qn . . . , we say that γ is a-enabled at position i ≥ 0
if γ(qi, a) �= ∅. We say that γ is a-taken at position i ≥ 0 if there exists a set
Q′ ∈ γ(qi, a) such that qi+1 ∈ Q′. Finally given a set A ⊆ Σ, we say that
λ is weakly 〈γ, A〉-fair 2 if for each agent a ∈ A, either there are infinitely
many positions of λ at which γ is not a-enabled, or there are infinitely many
positions of λ at which γ is a-taken. To check ATL formulas under weak fairness
constraints, we use the script language of Mocha and a symbolic adaptation of
the techniques described in [1].

Game guarded command language. Instead of modeling protocols directly with
ATS we will use a more user-oriented notation: a guarded command language “à
la Dijkstra”. The details about the syntax and semantics of this language (given
in terms of ATS) can be found in [6]. Here follows an intuitive presentation. Each
player a ∈ Σ disposes of a set of guarded commands of the form

guardξ(X)→ updateξ(X, Y ′) (1)

2 Note that there exists also, as in the usual temporal logic setting a notion of strong
fairness, the interested reader is referred to [1] for the definition. We will not need
the notion of strong fairness in this paper.

556 S. Kremer and J.-F. Raskin

where X denotes the set of all variables and Y ′ the set of variables, controlled by
a in the next state. A computation-step is defined as follows: each player a ∈ Σ
chooses one of his commands whose guard evaluates to true, and the next state
is obtained by taking the conjunction of the effects of each update part of the
commands selected by the players.

3 Formal Modelization of Non-repudiation Protocols

Modeling of the protocols. Non-repudiation and fair exchange protocols have
several particularities that allow us to make some simplifications. As also noted
in [4] all messages are generally protected by digital signatures or an equivalent
mechanism. Hence we consider that only well formed messages can be sent.
Moreover each protocol execution can be uniquely identified by the identity of
the participating entities and a special label. When the label contains some
well chosen information related to an execution, as proposed for instance in
[16], it is possible to show that different parallel executions cannot interfere.
Therefore we do not need to verify the execution of several parallel runs. The
notation, classically used in literature to describe cryptographic protocols (A→
B : m, to denote that Alice sends a message m to Bob), has several drawbacks.
The protocols are presented as a linear sequence of message exchanges, with a
predefined order. In the case of optimistic exchange protocols often subprotocols
can be invoked at different moments. But, running a subprotocol at a time
not foreseen by the designer, may have unexpected side-effects, threatening the
security of a protocol if one of the participating entities tries to cheat the other
entities. We use the modeling language described above to model the exchange
protocols. To execute a given action ξ, guardξ must evaluate to true. The guard
guardξ is used to represent the elements (such as keys, messages, . . .) necessary
for a participating entity, that is a player in our modelization, to execute the
action ξ. The variables controlled by a player represent his current knowledge and
thus determine which actions he/she can execute. This specification takes into
account all possible executions of subprotocols corresponding to a given initial
knowledge, as we do not give any predefined order to these guarded commands.
At each point in the protocol execution all messages that could possibly be sent
are determined. Thus, the specification enables a malicious entity to choose a
different order of execution and construct a possible attack. We model the two
players Alice and Bob with this approach.
The TTP is a special player and has to be modeled in a particular way. The

TTP must be impartial, it may not help one or the other player. To make sure
that the TTP does not have a strategy to help one of the players to cheat, we
model the TTP such that it is deterministic: at each stage of the execution of
the protocol, the TTP executes the action requested by the protocol.

The communication channels are also modeled as players. Each transmission
is modeled as a guarded command. We consider three different kinds of com-
munication channels: unreliable, resilient, and operational. To specify unreliable
channels we add an action that the channel can always take and has no effect, i.e.
this is simply an idle action. As a consequence, a message sent on an unreliable

A Game-Based Verification of Non-repudiation and Fair Exchange Protocols 557

channel may never be delivered. A resilient channel can be specified in a similar
way, but we have to add fairness conditions on the computations in order to force
the transmission before a finite amount of time. More precisely, assume that a
resilient channel c has to deliver a message m1 when the proposition SendM1 is
set to true and the delivery of the message is modeled by setting M1 to true. We
impose the following (weak) fairness constraint on c: for each q ∈ Q such that
q |= SendM1, we have

γ(c, q) = {Q′ | Q′ ∈ δ(c, q) and ∀q′ ∈ Q′ : q′ |= M1}.
This fairness constraint rules out trajectories where c can deliver a message and
never delivers it. Operational channels do not have any additional action and thus
immediately transmit the messages that have been sent on it. By immediately
transmitting messages we alter the channel definition, which requires messages
to be transmitted before a known constant time. This is however acceptable as
the sender can always wait before sending the message to obtain the desired
delay.
When starting to model an informally described protocol we apply the fol-

lowing method. First, we determine the initial knowledge of each player. Initial
knowledge may for instance include nonces, public and shared keys as well as
initially known messages. All these items are represented by boolean variables
initialized to true. All other variables are set to false, indicating that there value
is not known yet. Then we model all useful cryptographic operations that can be
applied on the initial knowledge. By useful we mean that the operation generates
an item that can be used later in the protocol. Now the following steps are ap-
plied to each message X→ Y : Mi = mi1, mi2, . . . , min of the protocol. To represent
the sending of Mi, a guarded command mi1 ∧ · · · ∧ min → SENDmi := true is added
to player X’s description. The guard contains the conjunction of all the elements
of the message. This means that a player is able to send a message if and only if
he has knowledge of all the required elements. The update relation expresses the
intention to send the message. The transmission of the message is represented
by a guarded command added to the description of the communication channel
between X and Y. The command will be of the form SENDmi → Mi := true. Note
that in order to delay this message a communication channel may choose to
execute a different command. Reception of the message is modeled by adding
the following command to Y’s description Mi → mi1 := true; . . . ; min := true. For
each element of Mi being set to true for the first time in Y’s description, we also
add all useful cryptographic operations that can be applied on it.
The above presented method describes how to model Alice, respectively Bob

having arbitrary behavior. To restrict their behavior to the honest protocol ex-
ecution, we can easily reinforce the guards so that the order of execution cor-
responds to the one dictated by the protocol. We get two different descriptions
of Alice, as well as of Bob: the first description models arbitrary behaviors, the
second one only the honest behavior.

Modeling of the requirements. We show here how the main requirements that
an exchange protocol must fulfill, can be naturally rephrased as the existence of

558 S. Kremer and J.-F. Raskin

strategies for the participating entities to reach their goal. The logic ATL is used
to formalize those requirements. We will concentrate here on properties of non-
repudiation protocols. The properties described are general properties that do
not apply to a given protocol. They may need to be instantiated when studying
a protocol.
In a first approximation, we introduced fairness as the property that either

both entities receive all their desired evidences or none of them receives any
valuable evidence. We can now formulate this requirement as the existence of
strategies. We say that the protocol is fair for Alice if “Bob and the communi-
cation channels do not have a strategy to reach a state where Bob has his proof
of origin and Alice has no more a strategy to obtain her proof of receipt”. This
can be formally expressed by the following ATL formula:

¬〈〈B, Com〉〉✸(NRO ∧ ¬〈〈A〉〉✸NRR) (2)

Here, Com denotes the set of all communication channels. NRR and NRO re-
spectively denote the non-repudiation of receipt and origin evidences. This is a
generic notation as the form of those evidences depends on a particular proto-
col. The expressive power of the logic ATL is well illustrated by this example.
Cooperation and adversarity are naturally expressed. To better understand the
advantages of using a game logic to formalize this requirement, let us consider
the following CTL formula:

¬∃✸(NRO ∧ ¬∃✸NRR) (3)

that may look as an appropriate CTL candidate for the formalization of fairness
for Bob. Note that we have obtained this formula by replacing the two teams
in (2) by the entire set of players Σ. Note also that the formula (3) can be
rewritten in the equivalent and more readable positive form:

∀✷(NRO→ ∃✸NRR) (4)

That says “on every state of every run of the protocol, if Bob has his evidence
of origin then there should exist a continuation of the protocol on which Alice
eventually receives her evidence of receipt”. This way, we have lost however
the ability of distinguishing between cooperative and adversarial behaviors. Let
us show what are some consequences of this, so to say, “loss of precision”. For
example, it may be the case that the formula (4) is verified because in the course
of the protocol a resilient channel helps Alice to obtain her proof by delivering a
message within a given bound (which is not generally the case for such a channel).
As this assumption of cooperative behavior of the resilient channels cannot be
made in general, in order to be fair the protocol should guarantee to Alice that
she obtains her proof even if the resilient channel does not deliver the message
within a certain bound. This fact is not ensured by the CTL formalization but is
ensured by our ATL formalization. In fact, in formula (2), it is explicitly stated
that the communication channels play against Alice. A resilient channel has
only the obligation to deliver the message after a finite amount of time and
not within a given bound, even if that helps Alice to obtain her proof. This

A Game-Based Verification of Non-repudiation and Fair Exchange Protocols 559

non-cooperative aspect is precisely formalized in ATL. Also formula (3) may be
verified because there exists some paths, where Bob is honest and allows Alice to
obtain her proof. Again, the protocol should not make the hypothesis that Bob
is honest, and should ensure fairness for Alice even if Bob is trying to cheat her.
This adversarial behavior is formally modeled by our ATL formula and can not be
formalized in CTL. We can also have that the CTL formula is false, even if the ATL
formula holds. Such a situation can occur if Alice’s specification contains some
non-determinism. For instance, if the specification does not contain at which
moment Alice can stop the protocol, she may stop it at a “wrong” moment.
The CTL formula will fail, while the ATL formula may hold, as not stopping the
protocol at a given moment would have lead to a winning strategy. Using the
notion of strategy, we “automatically” exclude behaviors of Alice that do not
serve her objective. Note that this last comment also rules out the following CTL
formula as a candidate for fairness:

∀✷(NRO→ ∀✸NRR) (5)

Situations where the protocol is not well defined, occur frequently when inte-
grating the use of formal methods as an aid in the protocol designing process.
In the first step while designing the protocol, we generally do not want to deal
with all details: the aim of the verification is to determine whether the given
specification contains a winning strategy that leads to a correct protocol. If Al-
ice is specified in a deterministic way, one may use formula 5 to verify fairness
for Alice. However, we believe that at a specification level, as well as during the
design process, the fairness requirement should explicitly contain the adversarial
as well as the cooperative behaviors.
Viability is expressed by the following formula:

〈〈A, B〉〉✸(NRO ∧ NRR) (6)

that says “Alice and Bob can cooperate, so they are honest (i.e. they are following
the protocol), and in that case the protocol should allow them, even in presence
of non-cooperating channels, to obtain their respective evidences”. And finally
timeliness is formalized by :

〈〈A〉〉✸(stopA ∧ (¬NRR→ ¬〈〈B〉〉✸NRO)) (7)

which expresses that “Alice has a strategy to finish the protocol and if she does
not have her evidence at that point, Bob will not be able to obtain his evidence
neither”. The same requirement can be expressed for Bob.

4 Verification with Mocha

We used the model-checker Mocha to verify several protocols. We report in
detail on our verification of the Zhou-Gollmann optimistic protocol [16] and
illustrate on this example our verification methodology. We also checked the
Asokan-Shoup-Waidner certified mail protocol [3], the Kremer-Markowitch non-
repudiation protocol [7], as well as the Markowitch-Kremer multi-party non-
repudiation protocol [10]. For these protocols, due to lack of space, we only
briefly show our results without giving a complete description of the protocols.

560 S. Kremer and J.-F. Raskin

4.1 The ZG Optimistic Non-repudiation Protocol

We first give an informal description of the protocol using the following notation:

– X → Y : transmission from entity X to entity Y
– X ↔ Y : ftp get operation performed by X at Y
– h() : a collision resistant one-way hash function
– Ek(): a symmetric-key encryption function under key k
– Dk(): a symmetric-key decryption function under key k
– SX(): the signature function of entity X
– m: the message sent from A to B
– k: the message key A uses to cipher m
– c = Ek(m): the cipher of m under the key k
– l = h(m, k): a label that in conjunction with the entities (A,B) identifies a
protocol run

– f : a flag indicating the purpose of a message
– t: the time-out chosen by A

The protocol generates the following evidences:

– EOO = SA(fEOO, B, l, t, c): the evidence of origin of c
– EOR = SB(fEOR, A, l, t, c): the evidence of receipt of c
– EOOk = SA(fEOOk , B, l, t, k): the evidence of origin of k
– EORk = SB(fEORk , A, l, t, k): the evidence of receipt of k
– Subk = SA(fSubk , B, l, k): the evidence of submission of k
– Conk = STTP(fConk , A, B, l, t, k): the evidence of confirmation of k issued by
the TTP

The protocol is divided into two subprotocols: a main protocol and a recovery
protocol. As the protocol is based on the optimistic approach, the trusted third
party (TTP) does only intervene in the recovery protocol. We start by describing
the main protocol.

1. A→ B : fEOO, B, l, t, c, EOO
2. B → A : fEOR, A, l, EOR
3. A→ B : fEOOk , B, l, k, EOOk
4. B → A : fEORk , A, l, EORk

First Alice sends the digitally signed cipher c = Ek(m) to Bob. In the second
message Bob responds with the evidence of receipt for this cipher (EOR). If Alice
does not receive the second transmission she stops the protocol, otherwise she
sends the signed decryption key k to Bob. Bob answers by sending the receipt
EORk for the key. The label l, present in each transmission, identifies the protocol
run. The time-out t specified in message 1 is used in the recovery protocol. Alice
may initiate the recovery protocol if Bob does not send the receipt for the key.
The steps of the recovery protocol are the following:

1. A→ TTP : fSubk , B, l, t, k, Subk
2. B ↔ TTP : fConk , A, B, l, t, k, Conk
3. A↔ TTP : fConk , A, B, l, t, k, Conk

A Game-Based Verification of Non-repudiation and Fair Exchange Protocols 561

Alice sends the signed key, together with the deadline t to the TTP. If the
key arrives after t, the TTP does not accept the recovery. Otherwise the TTP
publishes the key together with a confirmation Conk for the key in a read-only
accessible directory, where both Alice and Bob can fetch the key as well as
Conk. Conk serves to Bob as the evidence of origin of the key, and to Alice
as the evidence of receipt of the key as it is accessible to Bob. The deadline t
is necessary for Bob to know the moment when either the key is published or
will not be published anymore. In this protocol, the non-repudiation of origin
evidence NRO is composed of EOO and EOOk or of EOO and Conk. The non-
repudiation of receipt evidence NRR is composed of EOR and EORk or of EOR
and Conk.

Zhou et al. suppose that the channels between Alice and Bob are unreliable
and the channels between the TTP and both Alice and Bob are resilient. In our
model we do not model the ftp get operation, but assume that the TTP takes the
initiative to send messages 2 and 3 of the recovery protocol to Alice respectively
Bob, as soon as these actions are possible.
To verify the protocol we instantiate the properties defined in section 3 for

two versions of both Alice and Bob. The first version allows arbitrary behavior3,
the second one restricts the behavior to the honest protocol execution. The spec-
ification of Alice, respectively Bob, allowing arbitrary behavior will be denoted
with A, respectively B, while the specification of the honest behavior of Alice
and Bob will be denoted Ah, respectively Bh. When we want to check a property,
for instance fairness for Alice, we first verify that Alice has a strategy to assure
the fairness requirements, when she is allowed to behave in an arbitrary way. We
check that

¬〈〈B, Com〉〉✸(EOO ∧ (EOOk ∨ Conk) ∧ ¬〈〈A〉〉✸(EOR ∧ (EORk ∨ Conk)))

holds. If the formula does not hold, even with arbitrary behavior of Alice, the
protocol is flawed and can not be fixed without introducing new ’mechanisms’
in the protocol. If the formula holds we additionally need to check that Alice
cannot be cheated when following the protocol. It is possible that the formula
holds because Alice adopted a strategy, that is not the one proposed by the
protocol. Therefore we check the following formula:

¬〈〈B, Com〉〉✸(EOO ∧ (EOOk ∨ Conk) ∧ ¬〈〈Ah〉〉✸(EOR ∧ (EORk ∨ Conk)))

In this formula we restricted Alice’s behavior to the actions that are dictated
by the protocol. If the formula evaluates to false, it means that the protocol, as
originally described, is flawed. However, it is possible to easily correct it, as a
strategy was found by the model-checking algorithm while checking the previous
formula. This means that we do not have to fundamentally change the protocol,
by adding or changing messages.
While investigating the protocol, we succeeded in finding a flaw in the pro-

tocol, even if Alice’s behavior is not restricted to the honest protocol execution.
3 We call arbitrary behavior, all behavior that is interesting with respect to the pro-
tocol, i.e. behavior that results in sending or obtaining acceptable messages related
to the protocol.

562 S. Kremer and J.-F. Raskin

Remember that the communication channels between the TTP and both Alice
and Bob are resilient and that a finite time-out must be chosen by Alice at
the begin of the protocol. In our model, the time-out is a boolean variable con-
trolled by a player Clock. We restrict the time-out to become true after a finite
amount of time, using a similar technique as used for transmission on resilient
channels. In fact, when the main protocol has been executed until step 3, Bob
has received all of his evidences and may decide to stop the protocol in order
to try to cheat Alice. At this point we check whether Alice in cooperation with
the clock does have a strategy against Bob who is cooperating with the commu-
nication channels, to receive her non-repudiation of receipt evidences. As Alice
cooperates with the clock, she entirely controls the triggering of the time-out.
Intuitively, it means that Alice can choose the time-out to occur as late as she
wants, which represents the fact, that she chooses the time-out at the first step
of the protocol. As Alice does not receive her evidence, she has to initiate a
recovery. For the recovery protocol to be successful, the request needs to arrive
before the time-out. However, as communication channels can help Bob, this
message can be delayed until the time-out occurs. Intuitively, a resilient channel
has the capacity to delay messages: thus for each possible finite time-out value
chosen by Alice, Bob (with the help of the communication channels) can de-
lay long enough the delivery of the message in order for the TTP to reject the
recovery request. However, when we change the communication channel to be
operational (messages are transmitted immediately) the protocol becomes fair.
Unfortunately, operational channels are rather unrealistic in practice.
We can also use our method to find the origin of a flaw. We can add players

to the cooperation to detect the player(s) that make the property fail. As an
example, take a look at the flaw we described in the previous paragraph. We
asked whether Bob, together with all the communication channels, has a strategy
to obtain the NRO evidence, such that Alice, in cooperation with the clock, does
not have any strategy to receive the NRR evidence. Using Mocha we showed
the existence of a flaw, by validating this property. However, it may be difficult
to determine the failure’s origin. Thus we try to change the coalitions to find the
player responsible for the flaw. By adding the communication channel between
Alice and the TTP to Alice’s coalition we succeeded in avoiding the property
to be validated. Once we know that the communication channel is at the origin
of the error it may be interesting to alter the channel’s quality. In that way
we see which modifications are needed to recover the fairness property. In this
example we concluded that replacing the resilient channel by an operational
channel was enough to prevent protocol failure. Hence, we have a rather easy
and quick investigation method to locate and possibly prevent flaws.

4.2 Other Verified Protocols

We also verified the ASW certified e-mail protocol [3]. In this protocol we found
errors due to the fact that sub-protocols can be executed out of order, in a way
not foreseen by the authors. We verified a variant of the KM non-repudiation
protocol [7], where the abort protocol has been removed. This results in a fair
protocol, which however does not respect timeliness anymore and hence is not

A Game-Based Verification of Non-repudiation and Fair Exchange Protocols 563

secure. Finally we analyzed the MK multi-party non-repudiation protocol [10].
We verified an instance with two recipients and showed that problems can arise
due to a race condition, if we do not correctly handle a clock synchronization
problem, as proposed in the original paper. These results can be found in an
extended version of this paper, available as a technical report [8].

5 Related Works

First efforts to apply formal methods to the verification of non-repudiation pro-
tocols have been presented by Zhou et al. in [15]. SVO, a “BAN-like” belief logic
has been used to study a non-repudiation protocol. The aim of that study differs
however from our study. In the context of non-repudiation protocols, belief logics
are useful to reason about the validity of the evidences. They deal with ques-
tions of what a judge has to believe when Alice or Bob present their respective
evidences. Belief logics cannot be applied to verify properties such as fairness
or timeliness. In [13] Schneider uses CSP to prove the correctness of a non-
repudiation protocol. These proofs are not automated and require great efforts.
Recently Boyd and Kearny [4] discussed a method using specification animation
to analyse fair exchange protocols using the Possum animation tool. The tool
gives the possibility to step through the protocol and examine the consequences
of various actions. Boyd et al. use a high level abstraction that only allows to
find errors due to sending messages out of order. However they succeed in finding
errors even on these very simplified versions of the protocols. The most extensive
studies of fair exchange protocols using formal methods have been presented by
Shmatikov and Mitchell in [14]. They use Murϕ, a finite-state model-checker
to analyze a fair exchange and two contract signing protocols. Their approach
differs from ours on some major points. First, they use an intruder model. To
model the fact that a party is malicious and could try to cheat, they make that
party share all its knowledge with the intruder. The same intruder model has
been used to analyse other security protocols. However we believe that there is
no need to use an intruder model. Therefore we directly model Alice as well as
Bob to be potentially malicious. The analysis using Murϕ is based on invariant
checking. Channel resilience is obtained by checking all invariants in final proto-
col states. Protocol runs where messages are lost do not reach the final protocol
states and are discarded. To achieve resilience in our model we need to add
fairness conditions. Invariant checking is sufficient to verify fairness as fairness
is a monotonic property: if fairness is broken at one point of the protocol, the
protocol will remain unfair. Checking only final states is thus sufficient to verify
fairness. However with this approach timeliness cannot be verified. Timeliness
is a liveness property guaranteeing that we can always reach a final state in the
protocol. A protocol run, not respecting timeliness, would be discarded for the
invariant check as the protocol would not be finished. Note that Shmatikov et al.
did not aim to verify timeliness. In our model the timeliness property can easily
be verified. As shown before timeliness is of crucial importance for the security
of a protocol and should be verified.

564 S. Kremer and J.-F. Raskin

6 Conclusions and Future Works

We have shown that exchange protocols, due to their particularities, are best
modeled as games. First, the adversarial and cooperative behaviors that occur
during the execution of those protocols are naturally and precisely expressed
in term of strategies. Second, the main requirements that an exchange protocol
must ensure are easily phrased as existence of strategies for the participating
entities to reach well defined goals. We have proposed to use the framework of
alternating transition systems and alternating-time temporal logic to formalize
this view of exchange protocols as games. The great expressive power of alter-
nating temporal logic in this context has been illustrated. The practical interest
of the method has been demonstrated by analyzing several protocols. For the
analysis, we have used the tool Mocha which is able to automatically verify al-
ternating temporal formula on alternating transition systems. In the future, we
will try to show that this approach is applicable to the analysis and verification
of more specific properties, such as abuse-freeness in contract signing protocols
for instance. We will also investigate the problem of strategy synthesis. Strat-
egy synthesis is a very powerful tool in protocol design and can also be used to
synthesize attacks, showing the origin of flaws.

Acknowledgement. The authors would like to thank Giorgio Delzanno, Olivier
Markowitch and Thierry Massart for carefully reading previous versions of this
paper, as well as Freddy Mang for his assistance while using Mocha and the
anonymous referees for their helpful comments.

References

1. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 100–109. IEEE Computer Society Press, 1997.

2. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.
In T. Matsumoto, editor, 4th ACM Conference on Computer and Communications
Security, pages 6, 8–17, Zurich, Switzerland, Apr. 1997. ACM Press.

3. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair
exchange. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 86–99, Oakland, CA, May 1998. IEEE Computer Society, Technical
Committee on Security and Privacy, IEEE Computer Society Press.

4. C. Boyd and P. Kearney. Exploring fair exchange protocols using specification ani-
mation. In The Third International Workshop on Information Security - ISW2000,
Lecture Notes in Computer Science, Australia, Dec. 2000. Springer-Verlag.

5. M. Burrows, M. Abadi, and R. Needham. A logic of authentication, from proceed-
ings of the royal society, volume 426, number 1871, 1989. In William Stallings,
Practical Cryptography for Data Internetworks, IEEE Computer Society Press,
1996. 1996.

6. T. Henzinger, R. Manjumdar, F. Mang, and J.-F. Raskin. Abstract interpreta-
tion of game properties. In SAS 2000: Intertional Symposium on Static Analysis,
Lecture Notes in Computer Science. Springer-Verlag, 2000.

A Game-Based Verification of Non-repudiation and Fair Exchange Protocols 565

7. S. Kremer and O. Markowitch. Optimistic non-repudiable information exchange.
In J. Biemond, editor, 21th Symp. on Information Theory in the Benelux, pages
139–146. Werkgemeenschap Informatie- en Communicatietheorie, Enschede, may
2000.

8. S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and fair
exchange protocols. Technical Report 451, ULB, 2001.

9. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. Lecture Notes in Computer Science, 1055:147–157, 1996.

10. O. Markowitch and S. Kremer. A multi-party optimistic non-repudiation protocol.
In D. Won, editor, Proceedings of The 3rd International Conference on Information
Security and Cryptology (ICISC 2000), volume 2015 of Lecture Notes in Computer
Science, Seoul, Korea, 2000. Springer-Verlag.

11. C. A. Meadows. Analyzing the Needham-Schroeder public-key protocol: A com-
parison of two approaches. Lecture Notes in Computer Science, 1146:351–365,
1996.

12. L. C. Paulson. Proving properties of security protocols by induction. In Proceed-
ings of the 10th Computer Security Foundations Workshop, pages 70–83. IEEE
Computer Society Press, June 1997.

13. S. Schneider. Formal analysis of a non-repudiation protocol. In Proceedings of the
11th IEEE Computer Security Foundations Workshop (CSFW ’98), pages 54–65,
Washington - Brussels - Tokyo, June 1998. IEEE.

14. V. Shmatikov and J. Mitchell. Analysis of abuse-free contract signing. In Financial
Cryptography ’00, Anguilla, 2000.

15. J. Zhou and D. Gollmann. Towards verification of non-repudiation protocols. In
Proceedings of 1998 International Refinement Workshop and Formal Methods Pa-
cific, pages 370–380, Canberra, Australia, Sept. 1998. Springer.

16. Y. Zhou and D. Gollmann. An efficient non-repudiation protocol. In PCSFW: Pro-
ceedings of The 10th Computer Security Foundations Workshop. IEEE Computer
Society Press, 1997.

The Control of Synchronous Systems, Part II�

Luca de Alfaro, Thomas A. Henzinger, and Freddy Y.C. Mang

Electrical Engineering and Computer Sciences
University of California at Berkeley.

{dealfaro,tah,fmang}@eecs.berkeley.edu

Abstract. A controller is an environment for a system that achieves a
particular control objective by providing inputs to the system without
constraining the choices of the system. For synchronous systems, where
system and controller make simultaneous and interdependent choices,
the notion that a controller must not constrain the choices of the sys-
tem can be formalized by type systems for composability. In a previous
paper, we solved the control problem for static and dynamic types: a
static type is a dependency relation between inputs and outputs, and
composition is well-typed if it does not introduce cyclic dependencies; a
dynamic type is a set of static types, one for each state. Static and dy-
namic types, however, cannot capture many important digital circuits,
such as gated clocks, bidirectional buses, and random-access memory.
We therefore introduce more general type systems, so-called dependent
and bidirectional types, for modeling these situations, and we solve the
corresponding control problems.
In a system with a dependent type, the dependencies between inputs and
outputs are determined gradually through a game of the system against
the controller. In a system with a bidirectional type, also the distinction
between inputs and outputs is resolved dynamically by such a game.
The game proceeds in several rounds. In each round the system and
the controller choose to update some variables dependent on variables
that have already been updated. The solution of the control problem
for dependent and bidirectional types is based on algorithms for solving
these games.

1 Introduction

The control problem asks, given an open system P and a property φ, to construct
a controller Q such that the controlled system P ||Q satisfies φ (or to answer “un-
controllable,” if no such Q exists). The control problem has applications in the
synthesis of reactive programs and sequential circuits [PR89], in discrete-event
control [RW87], in modular verification [AdAHM99], and in early error detec-
tion [dAHM00b]. An important special case is the single-step control problem,
for properties of the form φ =©f(X), where© is the temporal “next” operator,
� This research was supported in part by the SRC contract 99-TJ-683.003, the DARPA

SEC grant F33615-C-98-3614, the MARCO GSRC grant 98-DT-660, the AFOSR
MURI grant F49620-00-1-0327, and the NSF Theory grant CCR-9988172.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 566–581, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

The Control of Synchronous Systems, Part II 567

and f(X) is a predicate on a set X of state variables. In this case, the objective
of the controller Q is to ensure that the system P enters a state satisfying f(X)
in one transition. While “next” properties are, per se, of limited interest as con-
trol objectives, algorithms for all ω-regular control objectives, such as invariance
properties (specifically, φ = ✷f(X)), use as subroutines algorithms that solve
the single-step control problem [BL69,GH82,McN93,Tho95].

We study the single-step control problem under two very general assump-
tions: the closed-loop assumption, and the input-enabling assumption. The
closed-loop assumption has that the state variables which are not given val-
ues by the system P are given values by the controller Q, and vice versa. In
particular, in the unidirectional case, the set X of state variables is partitioned
into a set O of system outputs, which are also controller inputs, and a set I of
system inputs, which are also controller outputs. Later, in the bidirectional case,
what is input and output may change from one state to the next. The input-
enabling assumption has that the state variables that are given values by the
system P cannot be in any way constrained by the controller Q, and vice versa.
More precisely, for all legal environments E of P , every state of the composite
system P ||E must have a successor state, and analogously for Q. It follows, in
particular, that the controlled system P ||Q cannot dead-lock.

The solution and hardness of the single-step control problem depends on
the precise definition of the composition operator ||. The case most commonly
considered in the literature is unidirectional turn-based composition, where the
system P and the controller Q take turns to proceed. With each turn of Q, the
system outputs O remain unchanged, and with each turn of P , the controller
outputs I remain unchanged. Assume that the states in which the controller
outputs can change are defined by the predicate ctr(X), and that the transition
relation of P is defined by the predicate τ(X,X ′), where unprimed state variables
refer to the source state of a transition, and primed state variables refer to the
target state. Then, the states for which the control objective©f(X) can be met
are characterized by the quantified formula

(ctr(X) → (∃X ′)(O′ = O ∧ τ(X,X ′) ∧ f(X ′))) ∧
(¬ctr(X) → (∀X ′)(I ′ = I ∧ τ(X,X ′) → f(X ′))).

Another simple case is that of unidirectional Moore composition, where both the
system P and the controller Q can update their respective outputs in the same
transition, but they cannot do so dependent on each other. In this case, the
appropriate formula is

(∃I ′)(∀O′)(τ(X,X ′)→ f(X ′)) or (∀O′)(∃I ′)(τ(X,X ′) ∧ f(X ′)).
If τ(X,X ′) is the transition relation of an input-enabling Moore system, then
these two formulas are equivalent.

In the Mealy case, where some system outputs may depend on simultaneous
controller outputs, and some controller outputs may depend on simultaneous
system outputs, there is not a single formula that characterizes the controllable
states. Instead, all possible dependencies between variables must be considered

568 L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang

one by one. There are, however, multiple ways in which the notion of “depen-
dency” can be formalized. For this purpose, we introduced type systems for com-
posability [dAHM00a]. In essence, such a type system offers a syntactic criterion
for ensuring that all well-typed composite systems are input-enabling. The sim-
plest type system is based on static types. A static type is a dependency relation
between input variables and output variables. Two statically typed components
can be composed if the union of the component types is acyclic. Examples of
statically typed components include Reactive Modules [AH99], and sequential
circuits without combinational loops. As there are meaningful systems that can-
not be typed statically, we generalized static types to dynamic types. A dynamic
type is a set of static types, one for each state. In a dynamically typed compo-
nent, which outputs depend on which inputs may change from state to state.
An example of a dynamically typed component that cannot be typed statically
is the transparent latch.

Once a type system is adopted, we can distinguish between the fixed-type
control problem and the unknown-type control problem. The fixed-type control
problem assumes that the type of the controller is known: given a typed system P ,
a property φ, and a controller type t, construct a controller Q of type t such
that P ||Q satisfies φ. The unknown-type control problem requires only that the
controller and the resulting closed-loop system are well-typed: given a typed
system P and a property φ, construct a typed controller Q such that P ||Q has
a type and satisfies φ. In case of both static and dynamic types, the fixed-
type controllable states can be characterized by formulas with partially ordered
(Henkin) quantifiers [Hen61]. For example, if controller output i1 depends on
system output o1, and controller output i2 depends on system output o2, and
there are no other variables or dependencies, then the appropriate formula is

(∀o′1)(∃i′1)
(∀o′2)(∃i′2) (τ(X,X

′) ∧ f(X ′)).

The unknown-type controllable states can be characterized by disjunctions of
fixed-type solutions of a particularly simple kind, namely, those which contain
only linearly ordered quantifiers. So, perhaps surprisingly, the unknown-type
control problem is computationally simpler (in the case of boolean variables,
PSPACE-complete) than the fixed-type control problem (NEXP-complete).

This concludes our review of [dAHM00a]. Following [PRSV98], we attempted
to use our theory to automatically synthesize protocol converters, specifically,
an interface between a PCI bus and a component using a two-phase commit
protocol for communication. We found, however, that even dynamic types are
too restrictive, and more general notions of synchronous composition need to
be considered (cf. [BG92]). The common cases where dynamic types prove in-
sufficient for hardware modeling fall into two classes. First, the dependencies
between inputs and outputs may depend not only on the state of the system,
but also on the partial successor state, as it unfolds. For example, in a digital
circuit where gated clocks are used to enable or disable the latches, whether
there is a dependency of the output of a latch on its input depends on whether
its clock signal is asserted or not. This in turn may depend on other parts of

The Control of Synchronous Systems, Part II 569

the system such as the current primary inputs. Second, in many digital circuits,
the complete classification of ports into input and output signals is not done
a priori. In hardware description languages, such as VHDL and Verilog, ports
can be specified as bidirectional, or IO ports, indicating that they are sometimes
used for input and at other times for output. Examples of systems that make
extensive use of IO ports include bidirectional data-buses, random access mem-
ory, and the control subsystem of PCI buses, to name just a few. The use of IO
ports, however, is restricted to circuit simulation; they are not included in the
synthesizable fragment of HDLs.

We present a model of synchronous system composition that includes both
dependent types and bidirectional types. A dependent type chooses the depen-
dencies between variables based on the next-state values of other variables; a
bidirectional type classifies variables into input and output dynamically. We then
solve the single-step fixed-type and unknown-type control problems for systems
with dependent and bidirectional types. Using our solution for the single-step
control problem as a subroutine, controllers for more general temporal properties
can be obtained in the standard way. In particular, our algorithms can be used
to synthesize sequential circuits with gated clocks and IO ports.

The modeling and controller synthesis for dependent and bidirectional types
is based on game-theoretic notions. In a dependent type, the input-output de-
pendencies unfold in steps as the next-state variables acquire values. In a bidi-
rectional type, also the commitments of variables to represent output unfold in
steps as the next-state variables acquire values. These unfoldings can be viewed
as a game in which the system and the controller, starting from a state, proceed
to assign values to individual variables until the next state is completely spec-
ified. Our solutions of the resulting control problems are based on algorithms
for solving such multi-step finite games. Although dependent and bidirectional
types are significantly more general than the static and dynamic types studied
previously, our results show that the computational complexity of the resulting
control problems does not increase. In particular, we prove that for the most gen-
eral, bidirectional types, the fixed-type control problem for boolean systems is
NEXP-complete, and the unknown-type control problem is PSPACE-complete,
as is already the case for static types. We also show that while the composabil-
ity check for dependent types is difficult (coNP-complete), it is no more difficult
than in the case of dynamic types, and simpler than checking if an untyped
system is input-enabled (Π2-complete).

2 Types for Synchronous Composition

Let V be a set of variables. In this paper all variables range over the set IB of
booleans. We denote by PStates(V) the set of partial functions from V to IB,
and by States(V) the set of total functions. Given v ∈ PStates(V), we write
Var(v) ⊆ V for the set of variables on which v is defined. For X ⊆ V , we
write v[X] for the restriction of v to the variables in X. For a boolean formula
ϕ over V , we write ϕ[[v]] = ϕ[v(x1)/x1, . . . , v(xn)/xn] for the formula obtained

570 L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang

by replacing each variable xi ∈ Var(v) in ϕ with the truth value v(xi). We
write V ′ = {x′ | x ∈ V } for the set of corresponding primed variables, and for
v ∈ PStates(V), we write v′ for the partial function in PStates(V ′) such that
v′(x′) = v(x) for all x ∈ Var(v), and v′(x′) is undefined otherwise.

Modules. A module M consists of the following two components:

– A finite set VM of module variables. The states of M are SM = States(VM),
and the partial (next) states of M are RM = PStates(V ′M). Unprimed vari-
ables represent current-state values; primed variables, next-state values. A
pair 〈s, t′〉 ∈ SM ×RM is called an extended state.

– A boolean formula τM , called transition predicate, over the set VM ∪ V ′M of
variables; it relates the current-state and next-state values of the module
variables. The state t ∈ SM a macro-step successor of the state s ∈ SM if
τM [[s∪t′]] is true. For a variable x ∈ VM , the extended state 〈s, u′〉 ∈ SM×RM
is a (micro-step) (x, τM)-successor of the extended state 〈s, t′〉 if x′ �∈ Var(t′)
and there exists b ∈ IB such that u′ = t′∪{(x′, b)} and τM [[s∪u′]] is satisfiable.

Given two modules M and N , the (synchronous) composition M ||N is the mod-
ule with VM ||N = VM ∪VN and τM ||N = τM ∧ τN . A module M is nonblocking if
every state has a macro-step successor; that is, for all states s ∈ SM , there exists
a state t ∈ SM such that τM [[s ∪ t′]] is true. Synchronous composition is prob-
lematic because it may cause blocking even if both components are nonblocking.
This is particularly undesirable in control applications, where we usually want
to rule out controllers that achieve the control objective simply by blocking the
plant from progressing.

Proposition 1 It is Π2-complete to check if the composition of two nonblocking
modules is nonblocking.

In order to simplify the check that synchronous composition is nonblocking, we
augment modules with types. We indicate by (M,γ) the pair consisting of a
module M and its type γ. We will consider several classes of module types. For
each such class T , we will define a notion of T -composability, which specifies
whether two typed nonblocking modules (M,γ) and (N, γ′) with γ, γ′ ∈ T can
be composed into a single nonblocking module.

Single-step control. Given a class T of types and a typed module (M,γ) with
γ ∈ T , a T -controller for (M,γ) is a typed module (N, γ′) with γ′ ∈ T which
is T -composable with (M,γ). The single-step control problem for T asks, given
a typed module (M,γ), a state s ∈ SM , and a boolean formula ϕ over VM ,
if there is a T -controller (N, γ′) for (M,γ) such that for all states t ∈ SM , if
τM‖N [[s ∪ t′]] is true, then ϕ[[t]] is true. The controller N ensures that starting
from s, the predicate ϕ holds after one step of the closed-loop system M‖N , and
it does so without blocking the progress of M . If the answer is Yes, then the
state s is single-step T -controllable by (N, γ′) w.r.t. the control objective ϕ. We
distinguish two kinds of control problems. In the unknown-type control problem
((M,γ), s, ϕ), we are free to choose the type γ′ of the controller; in the fixed-type

The Control of Synchronous Systems, Part II 571

control problem ((M,γ), s, ϕ, γ′), the type γ′ of the controller is specified as part
of the problem statement.
IO-type modules. We partition the module variables into input and output,
when composing modules, we disallow variables to be output from more than
one module. An IO-type module (M,πM), or simply IO-module, consists of a
module M and a partition πM = (V iM , V oM) of the module variables VM into
a set V iM of input variables and a set V oM = VM \ V iM of output variables. We
refer to πM as an IO-type for M . Two IO-modules (M,πM) and (N,πN) are
IO-composable if their output variables are disjoint; that is, V oM ∩ V oN = ∅. The
IO-composition is the IO-module (M‖N,πM‖N), where V oM‖N = V oM ∪ V oN and
V iM‖N = (V iM ∪ V iN)\V oM‖N . The fact that two IO-modules are IO-composable
does not suffice to guarantee that their composition is nonblocking. Therefore, we
either restrict the transition predicate (as in the case of Moore modules), or we
augment IO-types with additional information (such as dependency relations).
Moore modules. A Moore module (M,πM) is an IO-module such that (a) the
moduleM is non-blocking, and (b) the next values of output variables V oM do not
depend on the next values of input variables; that is, for all states s, t, u ∈ SM ,
if τM [[s ∪ t′]] and t[V oM] = u[V oM], then τM [[s ∪ u′]]. The composition of two IO-
composable Moore modules is nonblocking.
Statically typed modules. A dependency relation for an IO-module (M,πM)
is an acyclic binary relation �⊆ V oM ×VM between the output variables and the
module variables (acyclicity means that the transitive closure is irreflexive). The
IO-module (M,πM) respects the dependency relation � at state s ∈ SM if for all
states t ∈ SM with τM [[s ∪ t′]], for each subset Y i ⊆ V iM of input variables, and
for each truth-value assignment ui to the variables in Y i, there is a state u with
τM [[s ∪ u′]] such that u[Y i] = ui, and u[Y] = t[Y] for Y = {z ∈ VM | (not z �∗
y) for all y ∈ Y i}, where �∗ is the reflexive-transitive closure of �. A statically
typed module (M,πM ,�M) consists of an IO-module (M,πM) and a dependency
relation �M for (M,πM) such that (a) the moduleM is nonblocking, and (b) the
IO-module (M,πM) respects the dependency relation �M at all states in SM .
We refer to the pair (πM ,�M) as a static type for M . Two statically typed
modules (M,πM ,�M) and (N,πN ,�N) are statically composable if (1) they are
IO-composable and (2) the relation �M ∪ �N is acyclic. The composition of
two statically composable modules is nonblocking. These modules can be used
to model sequential circuits without combinational loops.
Dynamically typed modules. A composite dependency relation for an IO-
module (M,πM) is a set D = {(ψ1,�1), . . . , (ψm,�m)} of pairs, where each ψi

is a boolean formula over the module variables VM , and each �i is a depen-
dency relation for (M,πM), such that for every state s ∈ SM , there is exactly
one formula ψi, 1 ≤ i ≤ m, such that ψi[[s]] is true. If ψi[[s]], then we write
�s for the corresponding dependency relation �i. A dynamically typed module
(M,πM , DM) consists of an IO-module (M,πM) and a composite dependency
relation DM = {(ψiM ,�iM) | 1 ≤ i ≤ m} for (M,πM) such that (a) the module
M is nonblocking, and (b) at every state s ∈ SM , the module M respects the
dependency relation �sM . We refer to the pair (πM , DM) a dynamic type for the

572 L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang

module M . Two dynamically typed modules (M,πM , DM) and (N,πN , DN) are
dynamically composable if (1) they are IO-composable and (2) the relation �i,j
is acyclic for all 1 ≤ i ≤ m and 1 ≤ j ≤ n for which the conjunction ψiM ∧ θjN
is satisfiable. The composition of two dynamically composable modules is non-
blocking. These modules can be used to model circuits with transparent latches
that may contain combinational loops [dAHM00a].

Theorem 1 [dAHM00a] It can be checked in linear time if two statically
typed modules are statically composable. It is coNP-complete to check if two
dynamically typed modules are dynamically composable.

Theorem 2 [dAHM00a] The single-step control problem for Moore modules
is Σ2-complete. The single-step unknown-type control problems for statically and
dynamically typed modules are PSPACE-complete. The single-step fixed-type con-
trol problems for statically and dynamically typed modules are NEXP-complete.

The goal of this paper is to extend our type systems to capture wider classes of
nonblocking synchronous composition, and study the resulting control problems.
In particular, we add to our list of type classes dependent types and bidirectional
types. Dependent types generalize dynamic types by allowing the dependency
relation to be a function not only of the current state, but also of the partial next
state. Bidirectional types further generalize the dependent types by removing
the requirement that module variables are partitioned into input and output
variables a priori. Rather, the choice of which variables are used as inputs and
outputs is performed dynamically, while the values of the variables themselves
are chosen.

3 Macro-Steps as Micro-Step Graphs

The following notions will be used in the definition of both dependent and bidi-
rectional types. The variable dependency relation establishes the possible orders
in which the variables can be assigned a value in order to determine the next
state, and the dependencies among the values chosen. The micro-step graph
makes explicit the partial states traversed as a new macro-step successor is de-
termined. We will solve single-step control problems by considering games on
this micro-step graph.
Variable dependency relation. A variable dependency relation for M is a set
C = {(ψ1,�1), . . . , (ψm,�m)} of pairs, where each ψi is a boolean formula over
the unprimed and primed module variables VM ∪ V ′M , and each �i⊆ VM × 2VM

is a binary relation with the intention that if ψi holds in an extended state,
and x �i Y , then x can be given a next value, and this value can depend on
the next values of the variables in Y . The set C is an IO-variable dependency
relation for an IO-module (M,πM) if �i⊆ V oM × 2VM for all 1 ≤ i ≤ m; that
is, dependencies are specified only for output variables. A variable dependency
relation is a syntactic object; to make the variable dependencies more explicit, we

The Control of Synchronous Systems, Part II 573

define the corresponding dependency function C̃: SM ×RM × VM → 2VM as the
function that, given an extended state 〈s, t′〉 and a variable x, specifies the set of
variables on which x depends, as C̃(s, t′, x) =

⋃{Y | (ψ, (x, Y)) ∈ C and ψ[[s ∪
t′]] contains no free variables and is true}. The variable x is enabled for (M,C)
at the extended state 〈s, t′〉 if C̃(s, t′, x) ⊆ Var(t). The module M respects the
variable dependency relation C if for every pair of extended states 〈s, t′〉 and
〈s, u′〉 of M , for every variable x ∈ VM that is enabled for (M,C) at both
extended states, and for every b ∈ IB, if t[C̃(s, t′, x)] = u[C̃(s, u′, x)], then the
extended state 〈s, t′ ∪ {(x′, b)}〉 is an (x, τM)-successor of 〈s, t′〉 iff the extended
state 〈s, u′∪{(x′, b)}〉 is an (x, τM)-successor of 〈s, u′〉. If the transition predicate
of a module is specified by a set Γ of nondeterministic guarded commands, then
the variable dependency relation can be deduced from Γ as follows: for each
guarded command []g → x′ = e in Γ , let (g,�) ∈ C, where �= {(x, Y) | y ∈
Y iff y′ occurs in g or in e}.
Micro-step graph. Consider two modules M and N together with variable
dependency relations CM and CN . Let V = VM ∪ VN . The micro-step graph of
M and N encodes the sequential process by whichM and N update the variable
values from a state to its macro-step successor. Formally, for a state s ∈ S, the
micro-step graph MGs(M,CM , N,CN) is a directed acyclic graph whose vertices
are the tuples 〈s, t′, U,W 〉, where s ∈ States(V), t′ ∈ PStates(V ′), U ⊆ VM ,
and W ⊆ VN , together with the additional distinguished vertex ⊥, which is
used to denote an illegal configuration. The edges of MGs(M,CM , N,CN) are
partitioned in M -edges and N -edges; they are defined as follows, for all vertices
α = 〈s, t′, U,W 〉 and all variables x ∈ V :
– If x �∈ Var(t) and x is enabled for (M,CM) at the extended state 〈s, t′〉, then
for each (x, τM)-successor 〈s, u′〉 of α, if 〈s, u′〉 is also an (x, τN)-successor
of α, then there is an M -edge from α to the vertex 〈s, u′, U ∪ {x},W 〉; and
if 〈s, u′〉 is not an (x, τN)-successor of α, then there is an M -edge from α to
⊥. The N -edges are defined symmetrically.

– If x ∈ (Var(t)∩W) and x is enabled for (M,CM) at the extended state 〈s, t′〉,
then there is anM -edge from α to ⊥. TheN -edges are defined symmetrically.

A vertex of MGs(M,CM , N,CN) is terminal if it does not have any outgo-
ing edges. Note that the micro-step graph has the following properties: there
are at most 2O(|V |) vertices, the size of each vertex is at most 4 · |V |, and the
depth of the graph is at most |V | + 1. If a vertex α of MGs(M,CM , N,CN)
has both outgoing M - and N -edges, then α is mixed. The M -reduced micro-
step graph RMGM

s (M,CM , N,CN) is the micro-step graph obtained from
MGs(M,CM , N,CN) by pruning, for all mixed vertices α, all N -edges outgo-
ing from α. Intuitively, the reduced graph represents the situation in which the
module M has precedence over N in updating variable values.

4 Dependent-Type Modules

Consider an IO-module (M,πM) together with an IO-variable dependency rela-
tion CM for (M,πM). Let (E , πE , CE) consist of the module E with the input

574 L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang

0

1

0

1
R

M

N

F

G

1

0

y′

z′

x′

x′

w′

s′

s′

s′

Fig. 1. A cyclic circuit composed of three modules M , N , and R. It performs the
following function: if s′ then w′ = F (G(x′)) else w′ = G(F (x′)), where F and G are
two combinational blocks, such as a shifter and adder.

variables V iE = V oM , the output variables V oE = V iM , the transition predicate
τE = t, and the IO-variable dependency relation {(t, {(x, ∅)}) | x ∈ V oE}. The
triple (E , πE , CE) is the most general dependent-type environment for (M,πM);
it assigns nondeterministically values to the input variables of (M,πM). The
triple (M,πM , CM) is a dependent-type module if (a) the module M respects
the variable dependency relation CM and (b) for every state s ∈ SM , if there
is a path in the micro-step graph MGM

s (M,CM ,E , CE) from the initial vertex
〈s, ∅, ∅, ∅〉 to a terminal vertex α, then α �= ⊥, and α = 〈s, t′, V oM , V iM 〉 for some
state t ∈ States(VM). Condition (b) states that for all environment inputs, the
module M does not block. We refer to the pair (πM , CM) as a dependent type
for M .

Example 1 [Mal94] Cyclic circuits are often used in hardware systems for
minimizing the circuit size. As an example, consider the circuit in Figure 1.
The output w is a function of the inputs s and x. The circuit consists of three
dependent-type modules M , N and R. In guarded commands, they are

M =
[] ¬s′ → y′ = F (x′)
[] s′ → y′ = F (z′) N =

[] ¬s′ → z′ = G(y′)
[] s′ → z′ = G(x′) R =

[] ¬s′ → w′ = z′

[] s′ → w′ = y′

Module M has the variables V oM = {y} and V iM = {s, x, z}, and the IO-
variable dependency relation {(¬s′, {(y, {x, s})}), (s′, {(y, {z, s})})}. Module N
has the variables V oN = {z} and V iN = {s, x, y}, and the IO-variable depen-
dency relation {(¬s′, {(z, {y, s})}), (s′, {(z, {x, s})})}. Module R has the vari-
ables V oR = {w} and V iR = {y, z}, and the IO-variable dependency relation
{(¬s′, {(w, {z, s})}), (s′, {(w, {y, s})})}.

The Control of Synchronous Systems, Part II 575

Proposition 2 Every IO-module with a dependent type is nonblocking. Every
nonblocking IO-module has a dependent type.

Composition. Two dependent-type modules (M,πM , CM) and (N,πN , CN)
are dependent-type composable if (1) they are IO-composable and (2) the
IO-composition (M‖N,πM‖N) respects the IO-variable dependency relation
CM‖N = CM ∪ CN . Then the pair (πM‖N , CM‖N) is a dependent type for the
composite module M‖N . The following theorem shows that checking compos-
ability for dependent-type modules has the same worst-case complexity as for
dynamically typed modules.

Theorem 3 It is coNP-complete to check if two dependent-type modules are
dependent-type composable.

Proof. (sketch) Given two dependent-type modules (M,πM , CM) and
(N,πN , CN), to show that they are not composable one can guess a path
〈s, ∅, ∅, ∅〉, 〈s, t′1, U1,W1〉, 〈s, t′2, U2,W2〉, . . . , 〈s, t′n, Un,Wn〉 = α in the micro-step
graph MGs(M,CM , N,CN), and check that Var(tn) � VM‖N , and that there is
no outgoing edge from α. This last condition can be checked by checking that
Var(tn) contains all input variables V iM‖N , and that no output variable unde-
fined in t′n is enabled at the extended state 〈s, t′n〉. Note that this check requires
only polynomial time, because a variable can be enabled only when all variables
that occur in its enabling condition are assigned a value by s ∪ t′n.
Dependent types capture a larger class of nonblocking synchronous composition
than dynamically typed modules, as shown by the following proposition. For a
dependent-type module (M,πM , CM), the variable x ∈ VM depends on y ∈ VM
at a state s ∈ SM , written x �s y, if there exists a partial state t′ ∈ SM and
a pair (ψ,�) ∈ CM such that ψ[[s ∪ t′]] is true and x � Y with y ∈ Y . Then
DM = {(s,�s) | s ∈ SM} is a dynamic type for M .

Proposition 3 There are two dependent-type modules that are dependent-type
composable but not composable if viewed as dynamically typed.

Example 2 The dependent-type modules M , N , and R from Example 1 are
dependent-type composable. If these modules are viewed as dynamically typed
modules, the output of each module will depend on the respective inputs. Hence
there will be a cyclic dependency in the union of their dependency relations,
namely, y � z and z � y at all states. Since dynamically typed modules do not
permit cyclic dependencies, these modules are not dynamically composable.

Unknown-type control. By relaxing the composability requirement of mod-
ules from dynamic to dependent types, we can control a larger class of modules.

Proposition 4 There is a dependent-type module (M,πM , CM), a control ob-
jective ϕ over VM , and a state s ∈ SM such that s is single-step controllable
w.r.t. ϕ by a dependent-type controller but not by a dynamically typed controller.

576 L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang

Example 3 Let M be the module with V iM = {u, v} and V oM = {x}, and the
following guarded commands:

M =
[] u′ → x′ = ¬v′
[] ¬u′ → x′ = t
[] ¬u′ → x′ = f

The control objective is x = v. There is no dynamically typed controller (at any
state), because such a controller would have x depend on v, and M can set x to
be ¬v. But a dependent-type controller can change the dependencies, namely,
have x not depend on any variable and have v depend on x. The following is a
dependent-type controller:

N =
[] t → u′ = f
[] t → v′ = x′

Consider the single-step unknown-type control problem ((M,πM , CM), s, ϕ). It
is convenient to view this control problem as a game between the dependent-type
module (M,πM , CM) and its controller. The game is played on the M -reduced
micro-step graph RMGM

s (M,CM ,E , CE), where (E , CE) is the most general
dependent-type environment for (M,πM). Note that every nonterminal vertex
of the reduced micro-step graph either has only outgoing M -edges or has only
outgoing E -edges. We call the vertices with only outgoing M -edges the module
vertices, and the vertices with only outgoing E -edges the environment vertices.
Then we solve the game by the following marking algorithm. A terminal vertex
α = 〈s, t′, U,W 〉 is marked if U ∪W = VM and ϕ[[t]] is true. A module vertex
α is marked if all successors β of α are marked. An environment vertex α is
marked if some successor β of α is marked. The answer to the given single-step
unknown-type control problem is Yes iff the vertex 〈s, ∅, ∅, ∅〉 is marked.

If the answer to the control problem is Yes, then the method also suggests a
way of synthesizing a dependent-type controller (N,πN , CN) as a set of guarded
commands Γ . Given a state s ∈ SM , denote by χs the characteristic formula
of s, defined by χs =

∧{x | (x,t) ∈ s} ∧ ∧{¬x | (x, f) ∈ s}. The controller
has the output variables V oN = V iM and input variables V iN = V oM . For every
marked environment vertex α = 〈s, t′, U,W 〉 in the reduced micro-step graph,
choose one marked successor 〈s, t′∪{(x′, b)}, U,W ∪{x}〉 of α, and add to Γ the
guarded command []χs ∧ χt′ → x′ = b. Like composability checking, the single-
step unknown-type control problem for dependent-type modules is no harder
than its counterpart for dynamically typed modules.

Theorem 4 The single-step unknown-type control problem for dependent-type
modules is PSPACE-complete. Moreover, if the answer is Yes, then a dependent-
type controller can be synthesized.

Fixed-type control. The fixed-type control problem is computationally harder
than the unknown-type control problem, although it is no harder than its coun-
terpart for dynamically typed modules. The additional complexity is due to the
fact that we need to construct explicitly the micro-step graph.

The Control of Synchronous Systems, Part II 577

x′
1 y′

1 x′
2 y′

2

s′ ¬s′

z′

NM

(a) Bidirectional data-bus

GNT1GNT2

REQ1 REQ2

FRAME

IRDY

M1 M2 Tgt

Abtr

(b) PCI

Fig. 2. Examples of bidirectional modules. Figure 2(a): A system with two processors
communicating through a bidirectional bus. The variable z is output of the module M
if s′ = t, and it is output of N if s′ = f. Figure 2(b): A PCI system with two master
devices and one target device. The figure also shows the arbiter.

Theorem 5 The single-step fixed-type control problem for dependent-type mod-
ules is NEXP-complete. Moreover, if the answer is Yes, then a dependent-type
controller can be synthesized.

Proof. (sketch) Given a dependent-type module (M,πM , CM), a state s ∈
SM , a control objective ϕ over VM , and a dependent type (πN , CN) for
the controller, one can guess a subgraph G of the reduced micro-step graph
RMGM

s (M,CM ,E , CE), for the most general dependent-type environment
(E , πE , CE), and check that (1) the vertex 〈s, ∅, ∅, ∅〉 is in G; (2) for all module
vertices α in G, all successors of α are also in G; (3) for all environment vertices
α in G, there is exactly one successor β of α in G such that (α, β) is an edge
in G; (4) for all terminal vertices 〈s, t′, ·, ·〉, the formula ϕ[[t]] is true; (5) the
controller respects the IO-variable dependency relation CN at all environment
vertices in G. All of these conditions can be checked in time polynomial in the
size of G. NEXP-hardness comes from the fact that dependent-type modules can
encode dynamically typed modules.

5 Bidirectional Modules

A bidirectional module (M,CM) consists of a module M and a variable depen-
dency relation CM for M such that M respects CM . We refer to CM as a bidi-
rectional type forM . Note that a bidirectional type does not contain an IO-type.
The information about which variables can be outputs of a bidirectional module
is encoded instead by its variable dependency relation: if a variable x �∈ Var(t′)
is enabled at the extended state 〈s, t′〉, then x can be assigned a value at 〈s, t′〉,
and thus used as an output. Unlike the various typed modules we defined pre-
viously, bidirectional modules do not guarantee nonblocking. This is because a

578 L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang

bidirectional module may not be able to produce suitable “outputs” (i.e., values
for some module variables) for all possible environment “inputs” (i.e., values for
the other module variables). For instance, the environment may try to assign
a value to a variable that already has a value assigned by the module. Hence,
the environment has to be specified explicitly, and two bidirectional modules are
composable only if the result is nonblocking.

Composition. Informally speaking, two bidirectional modules are composable
if in all macro-steps, every module variable is assigned a value exactly once (by
either of the modules). Then the composition is nonblocking, and each variable is
output of exactly one component. Given two bidirectional modules (M,CM) and
(N,CN), let V = VM ∪ VN . The modules (M,CM) and (N,CN) are bidirection-
ally composable if for all s ∈ States(V), if there is a path in the micro-step graph
MGs(M,CM , N,CN), from the initial vertex 〈s, ∅, ∅, ∅〉 to a terminal vertex α,
then α �= ⊥, and α = 〈s, t′, U,W 〉 with U∪W = V . Unfortunately, checking bidi-
rectional composability is computationally harder than checking composability
for the other previous types.

Theorem 6 It is Π2-complete to check if two bidirectional modules are bidi-
rectionally composable.

The additional hardness comes from the fact that when composing two bidirec-
tional modules, one of the modules may choose a value for the common variables
such that the other module blocks. This cannot not happen with statically typed,
dynamically typed, or dependent-type modules, because they do not block on
any inputs they receive. For a bidirectional module (M,CM), let V oM = {x ∈ VM |
there exists a pair (ψ,�) ∈ CM such that x � Y for some Y ⊆ VM}. Then the
pair (πM , CM), where πM = (V oM , VM \ V oM), is a dependent type for M .

Proposition 5 There are two bidirectional modules that are bidirectionally
composable but not composable if viewed as dependent-type modules.

Example 4 In a multi-processor system, a bidirectional data-bus can be mod-
eled as a bidirectional module. Typically, at most one processor has the right to
write to the data-bus, while the others can only read from the data-bus. Fig-
ure 2(a) shows a simplified system in which there are two processors M and N
communicating via the data-bus z. The variable z may be an output of either
M or N , depending on the value of s. In guarded commands, M and N are:

M =
[] s′ → z′ = x′1
[] t→ y′1 = x′1

N =
[] ¬s′ → z′ = x′2
[] t→ y′2 = x′2

We assume thatM and N are composed with an environment that nondetermin-
istically chooses values for the variables s, x1, and x2. These three modules are
bidirectionally composable, but they are not composable if viewed as dependent-
type modules because z is output of both M and N .

The Control of Synchronous Systems, Part II 579

Example 5 (PCI bus arbitration) Bidirectional modules can be used to
model the PCI bus protocol[SIG]. The PCI bus is an industry standard com-
monly used for interfacing between the core computer system (e.g., CPU, mem-
ory, etc.) and the peripheral devices (e.g., audio, video etc.). Typically, the mas-
ter devices attached to a PCI bus may request to own the bus in order to
communicate with the respective target devices. Once a request is granted by
the arbiter, the bus will be owned by the selected master device and only this
master device or its target device can write onto the bus.

Consider an instance of the bus protocol depicted in Figure 2(b). There are
two master devices and one target device. During the arbitration phase, the
master devices may request to own the bus. When ownership is granted by the
arbiter, the selected master device checks if the bus is idle (by observing that
the values of both signals FRAME and IRDY are high), and then drives these
two signals, so that they become outputs of this master device. Note that the
two signals can be output of either master device, depending on the decision of
the arbiter. The following guarded commands model the arbitration phase of the
system. The two master devices Mi, i ∈ {1, 2} can be described as:

Mi =
[] t→ REQ i = t
[] t→ REQ i = f
[] FRAME ∧ IRDY ∧GNT i → FRAME ′ = f; IRDY ′ = t

The arbiter Abtr can be described as:

Abtr =
[] t→ GNT ′1 = f;GNT ′1 = f
[] REQ1 → GNT ′1 = t;GNT ′1 = f
[] REQ2 → GNT ′1 = f;GNT ′2 = t

Unknown-type control. Relaxing the composability requirement of modules
from dependent to bidirectional types, we can control a larger class of modules.

Proposition 6 There is a bidirectional module (M,CM), a control objective
ϕ over VM , and a state of s ∈ SM such that s is single-step controllable w.r.t. ϕ
by a bidirectional controller but not by a dependent-type controller.

Example 6 Let M be the module with the variables V = {x, u} and the
following guarded commands:

M =
[] u′ → x′ = f
[] ¬u′ →

The control objective is x = t. There is no dependent-type controller (at any
state), because if the controller sets u′ to t, then M will set x′ to f. On the
other hand, if the controller sets u′ to f, then M does not have an enabled
guarded command to assign a value to x′. But a bidirectional controller can
bind the variable x to its output and set its value to t. The following is a
possible bidirectional controller:

N =
[] t → u′ = f
[] t → x′ = t

580 L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang

Consider the single-step unknown-type control problem ((M,CM), s, ϕ). As for
dependent-type modules, this control problem can be viewed as a game played
between the module and the controller on the M -reduced micro-step graph
RMGM

s (M,CM ,E , CE), where (E , CE) is the most general bidirectional envi-
ronment for M , defined by VE = VM , τE = t, and variable dependency re-
lation CE = {(t, {(x, ∅)}) | x ∈ VE}. A vertex 〈s, t′, U,W 〉 is a stop node if
U ∪W = VM . To solve the game, we use the following marking algorithm. A
stop node 〈s, t′, U,W 〉 is marked if ϕ[[t]] is true, or if it does not have any outgo-
ing M -edges. For all other vertices α, if it is a module vertex, then it is marked
if all successors of α are marked; and if it is an environment vertex, then it is
marked if some successor of α is marked. The answer to the given single-step
unknown-type control problem is Yes iff the vertex 〈s, ∅, ∅, ∅〉 is marked.

If the answer to the control probem is Yes, then we can synthesize a bidirec-
tional controller as follows. We construct a subgraph of the reduced micro-step
graph by keeping all successors of each marked environment vertex, but only
one marked successor of each marked module vertex. This subgraph, called the
control graph, may not be unique. The following observation is crucial: in ev-
ery control graph there are no distinct vertices 〈s, t′1, U1,W1〉 and 〈s, t′2, U2,W2〉
with t1 = t2 but U1 �= U2. We can therefore synthesize a bidirectional controller
(N,CN) as a set of guarded commands Γ from any control graph. The controller
has module variables VN = VE . For every environment vertex α = 〈s, t′, U,W 〉 in
the control graph, if β = 〈s, u′, U,W∪x〉 is the unique successor of α, then we add
to Γ the guarded command []χs ∧χu′ → x′ = b. Note that by the observation on
control graphs, no two guarded commands have identical guards. In summary,
the single-step unknown-type control problem for bidirectional modules is no
harder than its counterpart for dependent-type modules.

Theorem 7 The single-step unknown-type control problem for bidirectional
modules is PSPACE-complete. Moreover, if the answer is Yes, then a bidirec-
tional controller can be synthesized.

Fixed-type control. Also the single-step fixed-type control problem for bidi-
rectional modules is no harder than its counterpart for dependent-type modules.

Theorem 8 The single-step fixed-type control problem for bidirectional mod-
ules is NEXP-complete. Moreover, if the answer is Yes, then a bidirectional
controller can be synthesized.

Proof. (sketch) The proof is very similar to that for dependent-type modules.
One adds to the list of things to check that at each node of the guessed subgraph
there is no conflict in the value assignments to the variables.

References

[AdAHM99] R. Alur, L. de Alfaro, T.A. Henzinger, F.Y.C. Mang. Automating modu-
lar verification. In Concurrency Theory, LNCS 1664, pp. 82–97. Springer,
1999.

The Control of Synchronous Systems, Part II 581

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in
System Design, 15:7–48, 1999.

[BL69] J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-
state strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

[dAHM00a] L. de Alfaro, T.A. Henzinger, F.Y.C. Mang. The control of synchronous
systems. In Concurrency Theory, LNCS 1877, pp. 458–473. Springer,
2000.

[dAHM00b] L. de Alfaro, T.A. Henzinger, F.Y.C. Mang. Detecting errors before
reaching them. In Computer-Aided Verification, LNCS 1855, pp. 186–
201. Springer, 2000.

[BG92] G. Berry and G. Gonthier. The Esterel Synchronous Programming Lan-
guage: design, semantics, implementation. Science Computer Program-
ming, 19:87–152, 1992.

[GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc.
Symp. Theory of Computing, pp. 60–65. ACM Press, 1982.

[Hen61] L. Henkin. Some remarks on infinitely long formulas. In Infinitistic
Methods, pp. 167–183. Polish Scientific Publishers, 1961.

[Mal94] S. Malik. Analysis of cyclic combinational circuits. IEEE Trans.
Computer-Aided Design, 13:950–956, 1994.

[McN93] R. McNaughton. Infinite games played on finite graphs. Ann. Pure and
Applied Logic, 65:149–184, 1993.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
Symp. Principles of Programming Languages, pp. 179–190. ACM Press,
1989.

[PRSV98] R. Passerone, J.A. Rowson, A.L. Sangiovanni-Vincentelli. Automatic
synthesis of interfaces between incompatible protocols. In Proc. Design
Automation Conference, pp. 8–13. ACM Press, 1998.

[RW87] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of
discrete-event processes. SIAM J. Control and Optimization, 25:206–
230, 1987.

[SIG] PCI SIG. PCI local bus specification, rev. 2.2.
[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In The-

oretical Aspects of Computer Science, LNCS 900, pp. 1–13. Springer,
1995.

Author Index

Abdulla, P.A. 1
Aldini, A. 152
de Alfaro, L. 351, 536, 566
Attie, P.C. 137

Baldan, P. 381, 502
Bloem, R. 456
Bouyer, P. 248
van Breugel, F. 336
Bugliesi, M. 102

Castagna, G. 82, 102
Chechik, M. 441
Chen, Y. 487
Corradini, A. 381, 502
Crafa, S. 102

Devereux, B. 441
Duflot, M. 472
Dwyer, M. 39

Easterbrook, S. 441
Ehrig, H. 502

Fribourg, L. 472

Geldenhuys, J. 233
Ghelli, G. 82
Glusman, M. 411
Godefroid, P. 426

Hachtel, G.D. 456
Hatcliff, J. 39
Heckel, R. 502
Heljanko, K. 218
Henzinger, T.A. 351, 536, 566
Hermanns, H. 59
Hirsch, D. 121
Huhn, M. 396
Huth, M. 426

Jagadeesan, R. 426
Jhala, R. 351
Jonsson, B. 1

Katoen, J.-P. 59
Katz, S. 411
Khomenko, V. 366
König, B. 381
Koutny, M. 366

Kremer, S. 551
Kupferman, O. 519
Kwiatkowska, M. 169

Lai, A.Y.C. 441
López, N. 321
Lüttgen, G. 262
Lugiez, D. 396
Lynch, N.A. 137

Majumdar, R. 536
Mang, F.Y.C. 566
Milner, R. 16
Montanari, U. 121

Nardelli, F.Z. 82
Niebert, P. 396
Nilsson, U. 472
Norman, G. 169
Núñez, M. 321

Petit, A. 248
Petrovykh, V. 441
Phillips, I. 305
Piterman, N. 519
Puhakka, A. 202

Raskin, J.-F. 551
Ravi, K. 456

Sanders, J.W. 487
Sangiorgi, D. 292
Sastry, S. 36
Schneider, S. 37
Somenzi, F. 456
Sproston, J. 169
Srba, J. 277

Thérien, D. 248

Valmari, A. 202, 233
Vardi, M.Y. 519
Völzer, H. 184
Vogler, W. 262

Walker, D. 292
Wang, C. 456
Worrell, J. 336

Zennou, S. 396

	CONCUR 2001 – Concurrency Theory
	Preface
	Table of Contents
	Channel Representations in Protocol Verification
	Introduction
	Protocols with a Finite Set of Messages
	Reachability Analysis
	Backward Symbolic Reachability Analysis
	Forward Reachability Analysis

	Channels with an Unbounded Message Alphabet
	Reachability Analysis
	bf Ordered Lossy Channels
	Unordered Channels

	Conclusion
	References

	Bigraphical Reactive Systems
	Introduction
	Bigraphs in Action
	Theoretical Background
	Defining Bigraphs
	Bigrahpical Reactive Systems
	Applications
	Conclusion and Further Work
	References

	Control of Networks of Unmanned Vehicles
	Process Algebra and Security
	Using the Bandera Tool Set to Model-Check Properties of Concurrent Java Software
	Introduction
	Goals and Context of the Bandera Project

	Tool Architecture and Use
	Overview of the Bandera User Interface
	Property Specification Using BSL
	An Example
	Structure of BSL

	Slicing
	Abstraction
	Back End
	Counterexample Display
	Related Work
	Conclusion
	References

	Performance Evaluation := (Process Algebra + Model Checking) × Markov Chains
	Introduction
	Continuous-Time Markov Chains
	Exponential Distributions
	Continuous-Time Markov Chains

	Process Algebra for CTMCs
	CTMC Algebra
	Interaction in CTMCs
	Time Constraints and Phase-Type Distributions
	Compositional Aggregation

	Model Checking CTMCs
	CTMC Temporal Logic
	CTMC Model Checking

	Research Perspectives
	References

	Typing Mobility in the Seal Calculus
	1 Introduction
	2 Revising Untyped Seal Calculus
	3 Typing Mobility
	3.1 Intuition about Interfaces

	4 The Type System
	4.1 Type Dependencies
	4.2 Typing Rules
	4.3 Typing Algorithm
	4.4 Properties

	5 Services vs.Effects
	6 Example: A Web Crawler
	7 Practical Applications
	8 Conclusion
	References

	Reasoning about Security in Mobile Ambients
	Introduction
	Mobile Ambients and Multilevel Security
	Mobile Ambients
	A Simple Resource Access Problem
	Overview of Possible Solutions
	Summary and Assessment

	Boxed Ambients
	Resources and Access Control
	A Type System for MAC Multilevel Security

	Examples
	Related Work and Conclusions
	References

	Synchronized Hyperedge Replacement with Name Mobility
	Introduction
	Hypergraphs and Syntactic Judgements
	Synchronized Hyperedge Replacement with Name Mobility
	Synchronized Replacement Systems as Syntactic Judgements
	Hoare Synchronization vspace {-0.1cm}
	Milner Synchronization

	A Translation for pi-Calculus
	The $pi $-Calculus
	Translation

	Conclusions and Future Work
	References

	Dynamic Input/Output Automata: A Formal Model for Dynamic Systems
	Introduction
	The Dynamic I/O Automaton Model
	Signature I/O Automata
	Configuration Automata
	Clone-Freedom

	Compositional Reasoning
	Simulation
	Modeling Dynamic Connection and Locations
	Example: A Travel Agent System
	Further Research and Conclusions
	References

	Probabilistic Information Flow in a Process Algebra
	Introduction
	Related Work

	A Probabilistic Calculus
	The Model
	The Language

	Equivalence
	Security Properties
	Probabilistic Noninterference
	Probabilistic Measure of Insecure Nondeterministic Behaviors
	Capturing Probabilistic Information Flows
	Nondeducibility On Composition

	Conclusion
	References

	Symbolic Computation of Maximal Probabilistic Reachability
	Introduction
	Symbolic Probabilistic Systems
	Preliminaries
	Symbolic Probabilistic Systems: Definition and Intuition
	Example: Probabilistic Timed Automata

	Maximal Reachability Probability Algorithm
	Conclusions
	References

	Randomized Non-sequential Processes
	Introduction
	Preliminaries
	Randomized Petri Nets
	Probabilistic Computation Trees
	Probabilistic Branching Processes
	Probabilistic Validity of Temporal Properties
	Examples
	Non-sequential vs.Sequential Semantics
	Conclusion
	References

	Liveness and Fairness in Process-Algebraic Verification
	Introduction
	Background
	LTSs, Temporal Logic, and Fairness Operators
	LTSs as Fairness Operators
	Verification Example
	Conclusions
	References

	Bounded Reachability Checking with Process Semantics
	Introduction
	Petri Nets
	Step Semantics
	Interleaving Semantics
	Process Semantics

	Boolean Circuits
	Translating Bounded Reachability into Boolean Circuits
	The Interleaving Semantics
	The Process Semantics
	Checking Reachability

	Experimental Results
	Conclusions
	References

	Techniques for Smaller Intermediary BDDs
	Introduction
	Background and Related Work
	Binary Decision Diagrams
	Related Work
	Contribution

	Freezing BDD Variables
	Partially Freezing the Transition Relation
	Experimental Results
	Conclusions
	References

	An Algebraic Characterization of Data and Timed Languages
	Introduction
	Basic Definitions
	Monoid Recognizability
	Data Automata
	Decidability of the Emptiness Problem
	Extensions of the Model
	Non-deterministic Models
	More General Updates

	Comparison with Timed Automata
	Conclusion
	References

	A Faster-than Relation for Asynchronous Processes
	Introduction
	Timed Asynchronous Communicating Systems
	Design Choices for Faster--than Relations
	Semantic Theory of Our Faster--than Relation
	Example: A 2--Place Storage
	Discussion and Related Work
	Conclusions and Future Work
	References

	On the Power of Labels in Transition Systems
	Introduction
	Basic Definitions
	From Labelled to Unlabelled Transition Systems
	Bisimilarity
	Model Checking

	Applications
	Petri Nets
	Pushdown Systems
	References

	On Barbed Equivalences in -Calculus
	Introduction
	Background
	Infinite Sums
	Characterization of Open Barbed Bisimilarity
	References

	CCS with Priority Guards
	Introduction
	Comparison with Related Work
	Camilleri and Winskel (CW)
	Cleaveland, L{accent 127 u}ttgen, and Natarajan (CLN)

	The Language CPG
	Offers and Reaction
	Labelled Transitions
	Strong Offer Bisimulation
	Weak Offer Bisimulation
	Example
	Expressiveness
	Conclusions
	References

	A Testing Theory for Generally Distributed Stochastic Processes
	Introduction
	Description of the Language
	Stochastic Testing Semantics
	Relation with Other Notions of Testing
	Conclusions and Future Work
	References

	An Algorithm for Quantitative Verification of Probabilistic Transition Systems
	Introduction
	A Metric Terminal Coalgebra Theorem
	Metric Kernels
	The Hutchinson Functor
	Metric Kernels for P-Coalgebras
	The Algorithm
	Related and Future Work
	References

	Compositional Methods for Probabilistic Systems
	Introduction
	Motivational Examples
	Probabilistic Modules and Composition
	Definition of Probabilistic Modules
	Operations on Probabilistic Modules
	Trace Semantics of Probabilistic Systems
	Connecting Syntax and Semantics

	Refinement between Probabilistic Modules
	Definition of Probabilistic Refinement
	Compositionality of Probabilistic Refinement
	References

	Towards an Efficient Algorithm for Unfolding Petri Nets
	Introduction
	Basic Notions
	Finding Possible Extensions
	Experimental Results
	References

	A Static Analysis Technique for Graph Transformation Systems
	Introduction
	Hypergraph Rewriting, Petri Nets, and Petri Graphs
	Graph Transformation Systems
	Petri Nets
	Petri Graphs

	Algorithm Computing the Approximated Unfolding
	Correctness, Termination, and Confluence of the Algorithm
	The Approximated Unfolding at Work: Checking Absence of Deadlocks for Dining Philosophers
	Conclusion
	References

	Local First Search - A New Paradigm for Partial Order Reductions
	Introduction
	Parallel Finite State Systems
	The Structure of Partial Order Executions
	Application to Model Checking
	Experimentation
	Conclusions
	References

	Extending Memory Consistency of Finite Prefixes to Infinite Computations
	Introduction
	Shared Memory Systems and Memory Consistency
	Concrete and Abstract Models of a System's Interface
	Abstract Definition of Sequential Consistency
	Concrete Shared Memory Systems and Sequential Consistency

	Verification by Prefixes and Sequential Consistency
	Some Modelling Assumptions
	An Abstract Sufficient Condition for Aasc --> ASC
	Concrete Conditions Implying $ensuremath {@mathrm {@mathbf {A}}}Psi $
	Examples
	Lazy Caching
	Weak Lazy Caching
	Really-Lazy Caching

	Extension to Systems with Non-textit {WBR} Behaviors
	References

	Abstraction-Based Model Checking Using Modal Transition Systems
	Introduction
	Background: Abstract Modal Transition Systems
	A Relational Calculus for Abstract MTSs
	Implementation of Relationally Specified MTSs
	Three-Valued Model Checking on MTSs
	Conclusions
	References

	Efficient Multiple-Valued Model-Checking Using Lattice Representations
	Introduction
	Multiple-Valued Sets
	Quasi-Boolean Logics
	Definition of Multiple-Valued Sets
	Multiple-Valued Relations

	Efficient Representations of Multiple-Valued Sets
	Join-Irreducibility
	Encoding mv-sets Using j-cuts

	Multiple-Valued Model-Checking
	Semantics
	Multiple-Valued Model-Checking Algorithm
	Running Times

	Evaluation
	Conclusion
	References

	Divide and Compose: SCC Refinement for Language Emptiness
	Introduction
	Preliminaries
	Don't Care Conditions
	SCC Refinement
	Refinement
	Algorithm
	Underapproximations

	Composition
	Choice of the Approximations
	Complexity
	Decomposition Trees

	Implementation and Experiments
	Conclusions
	References

	Unavoidable Configurations of Parameterized Rings of Processes
	Introduction
	String Rewriting for Linear Networks of Machines
	Narrowing
	Right, Left, and Bottom Narrowing
	Grounding Narrowing

	Unavoidable Regular Languages and Convergence
	A Sufficient Syntactic Condition for Closure of ${cal N}^*_{{cal S}}$
	Applications
	Proof of Self-Stabilization
	Proving a Liveness Property of Termination Detection

	Implementation and Experimental Results
	Conclusions
	References

	Logic of Global Synchrony
	Introduction
	Specification Language Logs
	Derived Logs Commands and Their Algebraic Laws
	Case Study: The Dining Philosophers
	Dining Philosophers
	Forks
	A Strategy
	Liveness

	Conclusions and Acknowledgements
	Predicative Semantics of {sc Logs}
	References

	Compositional Modeling of Reactive Systems Using Open Nets
	Introduction
	Open Nets
	Processes of Open Nets
	Composing Open Nets
	Amalgamating Processes of Open Nets
	Conclusions and Related Work
	References

	Extended Temporal Logic Revisited
	Introduction
	Definitions
	Decision Procedures for ETL$_{2a}$futurelet next
	Discussion
	References

	Symbolic Algorithms for Infinite-State Games
	Introduction
	Symbolic Game Structures
	Region Algebras for Game Structures
	Equivalences on Game Structures
	Fixpoint Calculi for Game Structures

	Three Symbolic Semi-algorithms on Game Structures
	Observation Refinement
	Intersection Refinement
	Partition Refinement

	Symbolic Controller Synthesis
	References

	A Game-Based Verification of Non-repudiation and Fair Exchange Protocols
	Introduction
	A Formal Model of Games and Its Logic
	Formal Modelization of Non-repudiation Protocols
	Verification with Mocha
	The ZG Optimistic Non-repudiation Protocol
	Other Verified Protocols

	Related Works
	Conclusions and Future Works
	References

	The Control of Synchronous Systems, Part II
	1 Introduction
	2 Types for Synchronous Composition
	3 Macro-Steps as Micro-Step Graphs
	4 Dependent-Type Modules
	5 Bidirectional Modules
	References

	Author Index

