35,329 research outputs found

    Games for a new climate: experiencing the complexity of future risks

    Full text link
    This repository item contains a single issue of the Pardee Center Task Force Reports, a publication series that began publishing in 2009 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future.This report is a product of the Pardee Center Task Force on Games for a New Climate, which met at Pardee House at Boston University in March 2012. The 12-member Task Force was convened on behalf of the Pardee Center by Visiting Research Fellow Pablo Suarez in collaboration with the Red Cross/Red Crescent Climate Centre to “explore the potential of participatory, game-based processes for accelerating learning, fostering dialogue, and promoting action through real-world decisions affecting the longer-range future, with an emphasis on humanitarian and development work, particularly involving climate risk management.” Compiled and edited by Janot Mendler de Suarez, Pablo Suarez and Carina Bachofen, the report includes contributions from all of the Task Force members and provides a detailed exploration of the current and potential ways in which games can be used to help a variety of stakeholders – including subsistence farmers, humanitarian workers, scientists, policymakers, and donors – to both understand and experience the difficulty and risks involved related to decision-making in a complex and uncertain future. The dozen Task Force experts who contributed to the report represent academic institutions, humanitarian organization, other non-governmental organizations, and game design firms with backgrounds ranging from climate modeling and anthropology to community-level disaster management and national and global policymaking as well as game design.Red Cross/Red Crescent Climate Centr

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    Collaborative Networks as a Mechanism for Strengthening Competitiveness: Small and Medium Enterprises and Non-state Actors in Tanzania as Cases

    Get PDF
    Industrial organizations are increasingly facing more challenges in the market and society. These challenges include the scarcity of resources, short delivery time requirement, frequent emergence of new technologies, demand for wide variety of competencies, and limited availability of up-to-date experts. Coping with these challenges requires continuous restructuring and managing changes in organizations. However, only large organizations can afford to institute these changes. It also requires continuous innovation in deployment of emerging technologies and management concepts. Thus, due to their small size, lack of competitive capital and inability to acquire complex opportunities, majority of SMEs and non state actors (NSA) find it difficult to cope with the required speed of change. However, both research and practice have shown that dynamic time/cost-effective and fluid creation of temporary collaborative networks wrought by ICTs is an enabler for the small and medium enterprises (SMEs) and NSAs in quest of enhancing competitiveness in the marketplace. This article contributes to the understanding of the challenges related to the establishment of collaborative networks of organizations in developing economies and proposes a customizable model for establishing those networks.   Key Terms: Collaborative networks, developing economies, ICTs, SMEs, non state actors, collaborative capital &#160
    • …
    corecore