1,517 research outputs found

    Image watermarking, steganography, and morphological processing

    Get PDF
    With the fast development of computer technology, research in the fields of multimedia security, image processing, and robot vision have recently become popular. Image watermarking, steganogrphic system, morphological processing and shortest path planning are important subjects among them. In this dissertation, the fundamental techniques are reviewed first followed by the presentation of novel algorithms and theorems for these three subjects. The research on multimedia security consists of two parts, image watermarking and steganographic system. In image watermarking, several algorithms are developed to achieve different goals as shown below. In order to embed more watermarks and to minimize distortion of watermarked images, a novel watermarking technique using combinational spatial and frequency domains is presented. In order to correct rounding errors, a novel technique based on the genetic algorithm (GA) is developed. By separating medical images into Region of Interest (ROI) and non-ROI parts, higher compression rates can be achieved where the ROI is compressed by lossless compression and the non-ROI by lossy compression. The GA-based watermarking technique can also be considered as a fundamental platform for other fragile watermarking techniques. In order to simplify the selection and integrate different watermarking techniques, a novel adjusted-purpose digital watermarking is developed. In order to enlarge the capacity of robust watermarking, a novel robust high-capacity watermarking is developed. In steganographic system, a novel steganographic algorithm is developed by using GA to break the inspection of steganalytic system. In morphological processing, the GA-based techniques are developed to decompose arbitrary shapes of big binary structuring elements and arbitrary values of big grayscale structuring elements into small ones. The decomposition is suited for a parallel-pipelined architecture. The techniques can speed up the morphological processing and allow full freedom for users to design any type and any size of binary and grayscale structuring elements. In applications such as shortest path planning, a novel method is first presented to obtaining Euclidean distance transformation (EDT) in just two scans of image. The shortest path can be extracted based on distance maps by tracking minimum values. In order to record the motion path, a new chain-code representation is developed to allow forward and backward movements. By placing the smooth turning-angle constraint, it is possible to mimic realistic motions of cars. By using dynamically rotational morphology, it is not only guarantee collision-free in the shortest path, but also reduce time complexity dramatically. As soon as the distance map of a destination and collision-free codes have been established off-line, shortest paths of cars given any starting location toward the destination can be promptly obtained on-line

    Genetic programming applied to morphological image processing

    Get PDF
    This thesis presents three approaches to the automatic design of algorithms for the processing of binary images based on the Genetic Programming (GP) paradigm. In the first approach the algorithms are designed using the basic Mathematical Morphology (MM) operators, i.e. erosion and dilation, with a variety of Structuring Elements (SEs). GP is used to design algorithms to convert a binary image into another containing just a particular characteristic of interest. In the study we have tested two similarity fitness functions, training sets with different numbers of elements and different sizes of the training images over three different objectives. The results of the first approach showed some success in the evolution of MM algorithms but also identifed problems with the amount of computational resources the method required. The second approach uses Sub-Machine-Code GP (SMCGP) and bitwise operators as an attempt to speed-up the evolution of the algorithms and to make them both feasible and effective. The SMCGP approach was successful in the speeding up of the computation but it was not successful in improving the quality of the obtained algorithms. The third approach presents the combination of logical and morphological operators in an attempt to improve the quality of the automatically designed algorithms. The results obtained provide empirical evidence showing that the evolution of high quality MM algorithms using GP is possible and that this technique has a broad potential that should be explored further. This thesis includes an analysis of the potential of GP and other Machine Learning techniques for solving the general problem of Signal Understanding by means of exploring Mathematical Morphology

    From holism to compositionality: memes and the evolution of segmentation, syntax, and signification in music and language

    Get PDF
    Steven Mithen argues that language evolved from an antecedent he terms “Hmmmmm, [meaning it was] Holistic, manipulative, multi-modal, musical and mimetic”. Owing to certain innate and learned factors, a capacity for segmentation and cross-stream mapping in early Homo sapiens broke the continuous line of Hmmmmm, creating discrete replicated units which, with the initial support of Hmmmmm, eventually became the semantically freighted words of modern language. That which remained after what was a bifurcation of Hmmmmm arguably survived as music, existing as a sound stream segmented into discrete units, although one without the explicit and relatively fixed semantic content of language. All three types of utterance – the parent Hmmmmm, language, and music – are amenable to a memetic interpretation which applies Universal Darwinism to what are understood as language and musical memes. On the basis of Peter Carruthers’ distinction between ‘cognitivism’ and ‘communicativism’ in language, and William Calvin’s theories of cortical information encoding, a framework is hypothesized for the semantic and syntactic associations between, on the one hand, the sonic patterns of language memes (‘lexemes’) and of musical memes (‘musemes’) and, on the other hand, ‘mentalese’ conceptual structures, in Chomsky’s ‘Logical Form’ (LF)

    KLFDAPC : a supervised machine learning approach for spatial genetic structure analysis

    Get PDF
    CSC-University of St Andrews Joint Scholarship (to X.Q.); International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program) from China Postdoc Council (to X.Q.); National Institute of General Medical Sciences (NIGMS) of the National Institute of Health (grant R35GM142783 to C.W.K.C.). Part of the computation for this work is supported by USC’s Center for Advanced Research Computing (https://carc.usc.edu).Geographic patterns of human genetic variation provide important insights into human evolution and disease. A commonly used tool to detect and describe them is principal component analysis (PCA) or the supervised linear discriminant analysis of principal components (DAPC). However, genetic features produced from both approaches could fail to correctly characterize population structure for complex scenarios involving admixture. In this study, we introduce Kernel Local Fisher Discriminant Analysis of Principal Components (KLFDAPC), a supervised non-linear approach for inferring individual geographic genetic structure that could rectify the limitations of these approaches by preserving the multimodal space of samples. We tested the power of KLFDAPC to infer population structure and to predict individual geographic origin using neural networks. Simulation results showed that KLFDAPC has higher discriminatory power than PCA and DAPC. The application of our method to empirical European and East Asian genome-wide genetic datasets indicated that the first two reduced features of KLFDAPC correctly recapitulated the geography of individuals and significantly improved the accuracy of predicting individual geographic origin when compared to PCA and DAPC. Therefore, KLFDAPC can be useful for geographic ancestry inference, design of genome scans and correction for spatial stratification in GWAS that link genes to adaptation or disease susceptibility.Publisher PDFPeer reviewe

    Automatic control program creation using concurrent Evolutionary Computing

    Get PDF
    Over the past decade, Genetic Programming (GP) has been the subject of a significant amount of research, but this has resulted in the solution of few complex real -world problems. In this work, I propose that, for some relatively simple, non safety -critical embedded control applications, GP can be used as a practical alternative to software developed by humans. Embedded control software has become a branch of software engineering with distinct temporal, interface and resource constraints and requirements. This results in a characteristic software structure, and by examining this, the effective decomposition of an overall problem into a number of smaller, simpler problems is performed. It is this type of problem amelioration that is suggested as a method whereby certain real -world problems may be rendered into a soluble form suitable for GP. In the course of this research, the body of published GP literature was examined and the most important changes to the original GP technique of Koza are noted; particular focus is made upon GP techniques involving an element of concurrency -which is central to this work. This search highlighted few applications of GP for the creation of software for complex, real -world problems -this was especially true in the case of multi thread, multi output solutions. To demonstrate this Idea, a concurrent Linear GP (LGP) system was built that creates a multiple input -multiple output solution using a custom low -level evolutionary language set, combining both continuous and Boolean data types. The system uses a multi -tasking model to evolve and execute the required LGP code for each system output using separate populations: Two example problems -a simple fridge controller and a more complex washing machine controller are described, and the problems encountered and overcome during the successful solution of these problems, are detailed. The operation of the complete, evolved washing machine controller is simulated using a graphical LabVIEWapplication. The aim of this research is to propose a general purpose system for the automatic creation of control software for use in a range of problems from the target problem class -without requiring any system tuning: In order to assess the system search performance sensitivity, experiments were performed using various population and LGP string sizes; the experimental data collected was also used to examine the utility of abandoning stalled searches and restarting. This work is significant because it identifies a realistic application of GP that can ease the burden of finite human software design resources, whilst capitalising on accelerating computing potential

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    The synthesis of variety : developing product families

    Get PDF

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    Modelling aggregation motivated interactions in descriptive text generation

    Get PDF
    corecore